ML092870766

From kanterella
Jump to navigation Jump to search

Response to NRC Request for Additional Information for Third 10-Year Interval Inservice Inspection Program Plan, Relief Request 2-ISI-19, Revision 1
ML092870766
Person / Time
Site: Browns Ferry Tennessee Valley Authority icon.png
Issue date: 09/17/2009
From: Krich R
Tennessee Valley Authority
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
TAC ME0764
Download: ML092870766 (65)


Text

Tennessee Valley Authority, 1101 Market Street, Chattanooga, Tennessee 37402-2801 September 17, 2009 10 CFR 50.4 10 CFR 50.55a(a)(3)(i)

U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D.C. 20555-0001 Browns Ferry Nuclear Plant, Unit 2 Facility Operating License No. DPR-52 NRC Docket No. 50-260

Subject:

Response to NRC Request for Additional Information for Third 10-Year Interval Inservice Inspection Program Plan, Relief Request 2-ISI-19, Revision I (TAC No. ME0764)

Reference:

1. Letter from NRC to TVA, "Browns Ferry Nuclear Plant, Unit 2 -

Request for Additional Information for Second 10-year Interval Inservice Inspection Program Plan Relief Request 2-ISI-19 Revision 1 (TAC No. ME0764)," dated August 21, 2009

2. Letter from TVA to the NRC, "Unit 2 - American Society of Mechanical Engineers (ASME)Section XI, Inservice Inspection Program for the Third Ten-Year Inspection Interval - Request for Relief 2-ISI-19, Revision 1," dated March 2, 2009 This letter provides the Tennessee Valley Authority's (TVA's) response to the Nuclear Regulatory Commission's (NRC's) request for additional information (Ref. 1) concerning Browns Ferry Nuclear Plant, Unit 2, Relief Request 2-ISI-19, Revision 1.

The relief request was submitted to the NRC on March 2, 2009 (Ref. 2) due to certain limited Class 1 component weld examinations. This response is due by September 21, 2009.

Please note that relief request 2-ISI-19 Revision 1 was submitted for the Third 10-Year Interval as noted in Reference 2. The request for additional information in Reference 1 refers to the Second 10-Year Interval.

AU,4q-7 Printed on recycled paper Tennessee Valley Authority, 1101 Market Street, Chattanooga, Tennessee 37402-2801 September 17, 2009 10 CFR 50.4 10 CFR 50.55a(a)(3)(i)

U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D.C. 20555-0001 Browns Ferry Nuclear Plant, Unit 2 Facility Operating License No. DPR-52 NRC Docket No. 50-260

Subject:

Response to NRC Request for Additional Information for Third 10-Year Intervallnservice Inspection Program Plan, Relief Request 2-181-19, Revision 1 (TAC No. ME0764)

Reference:

1. Letter from NRC to TVA, "Browns Ferry Nuclear Plant, Unit 2 -

Request for Additional Information for Second 10-year Interval Inservice Inspection Program Plan Relief Request 2-ISI-19 Revision 1 (TAC No. ME0764)," dated August 21,2009

2. Letter from TVA to the NRC, "Unit 2 - American Society of Mechanical Engineers (ASME)Section XI, Inservice Inspection Program for the Third Ten-Year Inspection Interval ~ Request for Relief 2-ISI-19, Revision 1," dated March 2, 2009 This letter provides the Tennessee Valley Authority's (TVA's) response to the Nuclear Regulatory Commission's (NRC's) request for additional information (Ref. 1) concerning Browns Ferry Nuclear Plant, Unit 2, Relief Request 2-ISI-19, Revision 1.

The relief request was submitted to the NRC on March 2, 2009 (Ref. 2) due to certain limited Class 1 component weld examinations. This response is due by September 21,2009.

Please note that relief request 2-ISI-19 Revision 1 was submitted for the Third 10-Year Interval as noted in Reference 2. The request for additional information in Reference 1 refers to the Second 10-Year Interval.

Printed on recycled paper

U.S. Nuclear Regulatory Commission September 17, 2009 Page 2 provides TVA's response to the Request for Additional Information. provides supporting information to Enclosure 1, Response 1. Portions of, pages E2-62 through E2-136, have been identified as containing information that is deemed export controlled under 10 CFR 810, "Assistance to foreign atomic energy activities," and have been appropriately indicated. TVA requests that this information be withheld from public disclosure in accordance with 10 CFR 2.390, "Public inspections, exemptions, request for withholding," paragraphs (a)(1) and (a)(3).

There are no new regulatory commitments included in this submittal. If you have any questions concerning this information, please contact Dan Green at (423) 751-8423.

Respectfully, R?.M.Kri6'h Vice President Nuclear Licensing

Enclosures:

1. Response to Request for Additional Information
2. EPRI Modeling Reports cc (Enclosures):

NRC Regional Administrator - Region II NRC Senior Resident Inspector - Browns Ferry Nuclear Plant u.s. Nuclear Regulatory Commission September 17, 2009 Page 2 provides TVA's response to the Request for Additional Information. provides supporting information to Enclosure 1, Response 1. Portions of, pages E2-62 through E2-136, have been identified as containing information that is deemed export controlled under 10 CFR 810, "Assistance to foreign atomic energy activities," and have been appropriately indicated. TVA requests that this information be withheld from public disclosure in accordance with 10 CFR 2.390, "Public inspections, exemptions, request for withholding," paragraphs (a)(1) and (a)(3).

There are no new regulatory commitments included in this submittal. If you have any questions concerning this information, please contact Dan Green at (423) 751-8423.

Respectfully,

.?!!~

. Vice President Nuclear Licensing

Enclosures:

1. Response to Request for Additional Information
2. EPRI Modeling Reports cc (Enclosures):

NRC Regional Administrator - Region" NRC Senior Resident Inspector - Browns Ferry Nuclear Plant

ENCLOSURE I Tennessee Valley Authority Browns Ferry Nuclear Plant, Unit 2 Third 10-Year Interval Relief Request No. 2-1S1-19, Revision 1 Response to NRC Request for Additional Information Question 1.

Page E1-7 of the submittal is the beginning of a table that summarizes several (and different) ultrasonic angles and modes of propagation that were used to interrogate various reactor pressure vessel nozzle-to-vessel welds. Provide a description for any modeling performed in support of the varied angles and modes of ultrasonic propagation that were applied.

Response 1.

Modeling was performed on the various nozzle to shell weld configurations by the Electric Power Research Institute (EPRI) utilizing the EPRI Nozzle Inner Radius Modeling Process Methodology Procedure (EPRI-MP-001). The modeling was implemented to determine the scan area, transducer nominal angle, skew angle, misorientation angle, and anticipated maximum metal path for circumferential scanning.

The examination parameters were applied in accordance with procedural requirements.

The modeling identification numbers applied for the specific nozzle configurations are identified as IR-2003-17 (for N6A-NV and N7-NV), IR-2003-19 (for N4B-NV, N4C-NV, N4E-NV, N4F-NV, N5A-NV and N5B-NV), IR-2006-236 (for N9-NV), IR-2007-262 (for N2A-NV, N2B-NV, N2C-NV, N2D-NV, N2G-NV, N2H-NV, N2K-NV, N3A-NV, N3B-NV, and N3C-NV), and IR-2007-266 (for N1 B-NV). The modeling reports for these modeling identification numbers are provided in Enclosure 2.

In November of 2006, the EPRI Nozzle Inner Radius Modeling Process Methodology Procedure (EPRI-MP-001)was incorporated into EPRI Final Report #1013452, "Nondestructive Evaluation: Conventional Nozzle Inner Radius Generic Procedure and Modeling Process."

El-1 Question 1.

ENCLOSURE 1 Tennessee Valley Authority Browns Ferry Nuclear Plant, Unit 2 Third 10-Year Interval Relief Request No. 2-151-19, Revision 1 Response to NRC Request for Additional Information Page E1-7 of the submittal is the beginning of a table that summarizes several (and different) ultrasonic angles and modes of propagation that were used to interrogate various reactor pressure vessel nozzle-to-vessel welds. Provide a description for any modeling performed in support of the varied angles and modes of ultrasonic propagation that were applied.

Response 1.

Modeling was performed on the various nozzle to shell weld configurations by the Electric Power Research Institute (EPRI) utilizing the EPRI Nozzle Inner Radius Modeling Process Methodology Procedure (EPRI-MP-001). The modeling was implemented to 'determine the scan area, transducer nominal angle, skew angle,

)

misorientation angle, and anticipated maximum metal path for circumferential scanning.

The examination parameters were applied in accordance with procedural requirements.

The modeling identification numbers applied for the specific nozzle configurations are identified as IR-2003-17 (for N6A-NV and N7-NV), IR-2003-19 (for N4B-NV, N4C-NV, N4E-NV, N4F-NV, N5A-NV and N5B-NV), IR-2006-236 (for N9-NV), IR-2007-262 (for N2A-NV, N2B-NV, N2C-NV, N2D-NV, N2G-NV, N2H-NV, N2K-NV, N3A-NV, N3B-NV, and N3C-NV), and IR-2007-266 (for N1 B-NV). The modeling reports for these modeling identification numbers are provided in Enclosure 2.

In November of 2006, the EPRI Nozzle Inner Radius Modeling Process Methodology Procedure (EPRI-MP-001) was incorporated into EPRI Final Report #1013452, "Nondestructive Evaluation: Conventional Nozzle Inner Radius Generic Procedure and Modeling Process."

E1-1

Question 2.

The highest angle of ultrasonic examination employed is listed as 60-degrees, for both shear and refracted longitudinal waves. Based on the drawings provided for the subject welds, it appears that greater American Society of Mechanical Engineers Code volume examination coverage could be obtained if a higher probe-angle was used. Clarify why higher probe angles were not exercised to maximize coverage on these welds.

Response 2.

In accordance with TVA Non-destructive Examination (NDE) Procedure N-UT-78, "PDI Generic Procedure for the Manual Ultrasonic Examination of Reactor Pressure Vessel Welds PDI-UT-6," the EPRI Performance Demonstration Initiative (PDI) "Generic Procedure For Ultrasonic Examination Of Reactor Pressure Vessel Welds," PDI-UT-6, Table 1 - (Transducer Application Table) shall be used for selection of equipment. The highest examination angle depicted in Table 1 is a 60-degree refracted longitudinal as qualified during the procedure demonstration. Higher examination angles were not successfully qualified during the development of the procedure and therefore may not be used. Generic Procedure PDI-UT-6 has been demonstrated in accordance with the requirements of the American Society of Mechanical Engineers (ASME) Code,Section XI, Appendix VIII as modified by the PDI Program Description. The demonstration was also conducted-in accordance with the requirements of 10 CFR 50.55a(b)(xv), "Appendix, VIII specimen set and qualification requirements."

E1-2 Question 2.

The highest angle of ultrasonic examination employed is listed as 60-degrees, for both shear and refracted longitudinal waves. Based on the drawings provided for the subject welds, it appears that greater American Society of Mechanical Engineers Code volume examination coverage could be obtained if a higher probe-angle was used. Clarify why higher probe angles were not exercised to maximize coverage on these welds.

Response 2.

In accordance with TVA Non-destructive Examination (NDE) Procedure N-UT-78, "POI Generic Procedure for the Manual Ultrasonic Examination of Reactor Pressure Vessel Welds PDI-UT-6," the EPRI Performance Demonstration Initiative (POI) "Generic Procedure For Ultrasonic Examination Of Reactor Pressure Vessel Welds," PDI-UT-6, Table 1 - (Transducer Application Table) shall be used for selection of equipment. The highest examination angle depicted in Table 1 is a 60-degree refracted longitudinal as qualified during the procedure demonstration. Higher examination angles were not successfully qualified during the development of the procedure and therefore may not be used. Generic Procedure PDI-UT-6 has been demonstrated in accordance with the requirements of the American Society of Mechanical Engineers (ASME) Code,Section XI, Appendix VIII as modified by the POI Program Description. The demonstration was alsoiconducted*in accordance with the requirements of 10 CFR 50.55a(b)(xv), "Appendix* I* j, " D,;;

VIII specimen set and qualification requirements."

l';'

E1-2

ENCLOSURE2 Tennessee Valley Authority Browns Ferry Nuclear Plant, Unit 2 Third 10-Year Interval Relief Request No. 2-1S1-19, Revision 1 Response to NRC Request for Additional Information EPRI Modeling Reports EPRI Modeling Reports IR-2003-17, IR-2003-19, IR-2006-236, IR-2007-262, and 1R-2007-266 are provided in this enclosure.

Pages E2-62 through E2-136 of this enclosure have been identified as containing export controlled information under 10 CFR 810, "Assistance to foreign atomic energy activities," and have been appropriately indicated. Pages E2-62 through E2-136 are requested to be withheld from public disclosure in accordance with 10 CFR 2.390, "Public inspections,: exemptions, request for withholding," paragraphs (a)(1) and (a)(3).

E2-1

~, ';

ENCLOSURE 2 Tennessee Valley Authority Browns Ferry Nuclear Plant, Unit 2 Third 10-Year Interval Relief Request No. 2-151-19, Revision 1 Response to NRC Request for Additional Information EPRI Modeling Reports EPRIModeling Reports IR-2003-17, IR-2003-19, IR-2006-236, IR-2007-262, and IR-2007:.266

". ' are provided in this enclosure.;.*

  • .f

. <Pages E2-"62 through E2-136 of this enclosure have been identified as containing export controlleainformation under 10,CFR 810, "Assistance to foreign atomic energy activities;" and have been appropriately indicated. PagesE2-62 through E2-136 are requested to,be withheld from public disclosure in accordance with 10 CFR 2.390,,"Public inspections,: exemptions, request for withholding," paragraphs (a)(1) and (a)(3).

E2-1

re I Examination of Browns Ferry Closure Head Nozzle-to-Shell Welds IR-2003-17 oi

_1 m

U L i E PRI Center 1

1 J

o n

I I U

i

\\

c *..)

Examination of Browns Ferry 'Closure Head Nozzle-to-Shell Welds IR-2003-17 E P R I Nq!!

CITATIONS This document was prepared by EPRI NDE Center 1300 West WT Harris Blvd.

Charlotte, NC 28262 Principal Investigator or Author D. MacDonald This document describes research sponsored by EPRI.

The publication is a corporate document that should be cited in the literature in the following manner:

Examination of Browns Ferry Closure Head Nozzle-toShell Welds, EPRI, Charlotte, NC: 2003.

IR-2003-17.

-4 m

-I rP C.,o

.j

'r iii l

i J 1

I

)

j l

J

'..., I m

N

.J I

W r'

lJ r )

I

,-_:I

.J

" \\,.

J J

I

.j

'j

.. \\

This document was prepared by EPRI NDE Center 1300 West WT Harris Blvd.

Charlotte, NC 28262 Principal Investigator or Author D. MacDonald CITATIONS This document describes research sponsored by EPRI.

The publication is a corporate document that should be cited in the literature in the following manner:

Examination of Browns Ferry Closure Head Nozzle-toSheli Welds. EPRI, Charlotte. NC: 2003.

IR-2003-17.

iii

ABSTRACT This report describes the work performed by the EPRI NDE Center to assist Browns Ferry in developing examination techniques for their closure head nozzle-to-shell weld examinations to be preformed by WesDyne. The necessary geometric inputs to the EPRI spreadsheet model are listed for each nozzle and cross sectional plots are provided. The technique design curves developed by the model are given together with the techniques chosen for each nozzle. Tabular and graphical information on the technique maximum and minimum probe skew angle, radial position and metal path are provided, The combined coverage or minimum misorientation angle achieved by the chosen techniques is also given.

-J

_J MI

'j7n

<1

.4 V

J

._\\

! j

-1

_.J m

]

I\\)

I

~

n I,

I

~

')
-.-i

"')

J

.J

-I

[

J I,

j

\\ J

'I

  • .J ABSTRACT This report describes the work perfonned by the EPRl NnE Center to assist Browns Ferry in developing examination techniques for their closure head nozzle-to-shell weld examinations to be preformed by WesDyne. The necessary geometric inputs to the EPRl S?readsheet model are listed for each nozzle and cross sectional plots are provided. The technique design curves developed by the model are given together with the techniques chosen for each nozzle. Tabular and graphical infonnation on the technique maximum and minimum probe skew angle, radial position and metal path are provided. The combined coverage or minimum misorientation angle achieved by the chosen techniques is also given.

v

CONTENTS 11 IINTRODUCTION..........................................................

1-1 2 VENT NOZZLE (N7).....................................................

2-1

~3 NSTRUMENTATION NOZZLE (N6)....................................

3-1 AI 4f

SUMMARY

OF BROWNS FERRY CLOSURE READ NOZZLE-TO-E qJ SHELL WELD EXAMINATION MODELING PARAMETERS............ 4-1 J

01

!-j

j

_j 2_

Ir vii CONTENTS 1 INTRODUCTION.............................................................................. 1*1 2 VENT NOZZLE (N7)......................................................................... 2*1 i J 3 INSTRUMENTATION NOZZLE (N6)......................... *...... *.... *.. *.... *.. 3*1

\\,

J I

J 4 sUMMARY OF BROWNS FERRY CLOSURE HEAD NOZZLE-TO-SHELL WELD EXAMINATION MODELING PARAMETERS................ 4*1 m

N

-.J I (Jl i-I

',j 1

J j

,.'; J

'1

-j i

if I

--i

. i,

vii

LIST OF FIGURES Figure 2-1. Cross Section Showing Nozzle-to-Shell Weld and Definition of Class I Examination Volume under Code C ase 613......................................................................................................................................

2-2 Figure 2-2. Vent Nozzle-to-Shell Weld: Probe Angle vs. Probe Skew for 45' Corner Trap-Technique Design C urve...........................................

2-2 Figure 2-3. Definition of Probe Skew Angle.................................................................................................

2-3 Figure 2-4. Browns Ferry Vent Nozzle: Probe Angle versus Probe Skew for 450 Corner Trap - Technique Design C urve...................................................................................................................................................

2-4 Figure 2-5. Browns Ferry Vent Nozzle-to-Shell Weld (N7): Probe Scan Limits and Examination Coverage for Vessel Technique 45/(33 to 7 1)v at Theta = 90........................................................................................

2-5 Figure 2-6. Browns Ferry Vent Nozzle-to-Shell Weld: Misorientation Angle (Coverage) for Vessel Technique, 45/(33 to 71)v.......................................................................................................................................

2-6 Figure 2-7. Browns Ferry Vent Nozzle-to-Shell Weld (N7): Metal Path Plot; Vessel Technique: 45/(33 to 7 )v... 2-7 Figure 2-8. Browns Ferry Vent Nozzle-to-Shell Weld (N7): Beam Angle at the Flaw Plot; Vessel Technique: 45/(33 to 7 v)v..................................................................................................................................................

2-8 Figure 3-1. Cross Section Showing Instrumentation Nozzle-to-Shell Weld and Definition of Class I Examination VVolum e under Code Case 613................................................................................................................

3-2 Figure 3-2. Browns Ferry Instrumentation Nozzle-to-Shell Weld (N6): Probe Angle vs. Probe Skew for 450 Corner Trap.....................................................................................................................................................

3-3

.... i Figure 3-3. Browns Ferry Instrumentation Nozzle: Average Probe Angle versus Probe Skew for 45' Corner Trap -

Technique De sign Curve........................................................................................................................

3-4 Figure 3-4. Browns Ferry Instrumentation Nozzle-to-Shell Weld (N6): Probe Minimum and Maximum Scan Limits and Examination Coverage for Blend Technique 26/90b at Theta = 95.800 and 3.651, Respectively............. 3-5 Figure 3-5. Browns Ferry Instrumentation Nozzle-to-Shell Weld (N46): Probe Minimum and Maximum Scan Limits and Examination Coverage for Vessel Technique 45/(25 to 80)v at Theta = 167T500 and 206.280, Respectively.

3-5 Figure 3-6. Browns Ferry Instrumentation Nozzle-to-Shell Weld (N6): Probe Minimum and Maximum Scan Limits and Examination Coverage for Vessel Technique 55/(20 to 60)v at Theta = 133.23' and 17.390, Respectively.

............................................................................ 3-6 Figure 3-7. Browns Ferry Instrumentation Nozzle-to-Shell Weld: Coverage Map for Vessel Techniques 45vs and 55vs and Blend Technique 26/90bd........................................................................................................

3-7 Figure 3-8. Browns Ferry Instrumentation Nozzle-to-Shell Weld: Metal Path Map; Vessel Techniques 45vs and 55vs and Blend Technique 26/90bd.......................

3-8 Figure 3-9. Browns Ferry Instrumentation Nozzle-to-Shell Weld: Beam Angle at the Flaw Map; Vessel Techniques 45vs and 55vs and Blend Technique 26/90bd..........................................................................................

3-9

._2 alm ix 1

I

-l

-1 m

_J I}.>

0>

'I i *.J

'--'r

~j i,

'_..1

-", I I

_J 1

_J

-j t

__ J LIST OF FIGURES Figure 2-1. Cross Section Showing Nozzle-to-Shell Weld and Definition of Class I Examination Volume under Code Case 613...................................................................................................................................... 2-2 Figure 2-2. Vent Nozzle-lo-Shell Weld: Probe Angle vs. Probe Skew for 45° Corner Trap-Technique Design Curve...................................................................... **.......... *.. *.. *........ *... *............................................. 2-2 Figure 2-3. Definition of Probe Skew Angle.................................................................................................. 2-3 Figure 2-4. Browns Ferry Vent Nozzle: Probe Angle versus Probe Skew for 45° Comer Trap - Technique Design Curve................................................................................................................................................... 2-4 Figure 2-5. Browns Ferry Vent Nozzle-ta-Shell Weld (N7): Probe Scan Limits and Examination Coverage for Vessel Technique 45/(33 to 71)v at Theta = 90°....................................................................................... 2.5 Figure 2-6. Browns Ferry Vent Nozzle*la-Shell Weld: Misorientation Angle (Coverage) for Vessel Technique, 45/(33 to 71)v....................................................................................................................................... 2-6 Figure 2*7. Browns Ferry Venl Nozzle-to-Shell Weld (N7): Metal Path Plot; Vessel Technique: 451(33 to 71)v... 2-7 Figure 2-8. Browns Ferry Vent Nozzle-to-Shell Weld (N7): Beam Angle at the Flaw Plot; Vessel Technique: 451(33 to 71)v.................................................................................................................................................. 2.8 Figure 3-1. Cross Section Showing Instrumentation NozzJe-to-Shell Weld and Definition of Class I Examination Volume under Code Case 613................................................................................................................ 3-2 Figure 3-2. Browns Ferry Instrumentation Nozzle-ta-Shell Weld (N6): Probe Angle vs. Probe Skew for 45° Corner Trap.............................................................................. **.. *... *.............................................................. 3-3 Figure 3-3. Browns Ferry Instrumentation Nozzle: Average Probe Angle versus Probe Skew for 45° Corner Trap-Technique Design Curve........................................................................................................................ 3-4 Figure 3-4. Browns Ferry Instrumentation Nozzle*to-Shell Weld (N6): Probe Minimum and Maximum Scan Limits and Examination Coverage for Blend Technique 26190b at Theta = 95.80° and 3.65°. Respectively............. 3-5 Figure 3-5. Browns Ferry Instrumentation Nozzle-ta-Shell Weld (N6): Probe Minimum and Maximum Scan Limits and Examination Coverage for Vessel Technique 45/(25 to 80)v at Theta = 167.50° and 206.28°. Respectively.

....................................................................................... ***........ *.. *...... *..... ****.. *.. **............................... 3-5 Figure 3-6. Browns Ferry Instrumentation Nozzie-to*SheIl Weld (N6): Probe Minimum and Maximum Scan Limits and Examination Coverage for Vessel Technique 55/(20 to 60)v at Theta = 133.23° and 17.39°, Respectively.

....................................................................................... *.. *................................................................. 3-6 Figure 3-7. Browns Ferry Instrumentation Nozzle-ta-Shell Weld: Coverage Map for Vessel Techniques 45vs and 55vs and Blend Technique 26190bd..............,......................................................................................... 3-7 Figure 3*8. Browns Ferry Instrumentation Nozzle-to-Shell Weld: Metal Path Map; Vessel Techniques 45vs and 55vs and Blend Technique 2619Obd.............................,.......................................................................... 3-8 Figure 3*9. Browns Ferry Instrumentation Nozzle-ta-Shell Weld: Beam Angle at the Flaw Map; Vessel Techniques 45vs and 55vs and Blend Technique 26190bd.......................................................................................... 3-9 be

LIST OF TABLES Table 2-1. Browns Ferry Vent Nozzle (N7) Geometry Inputs to Spreadsheet Model..........................................

2-1 Table 2-2. Spreadsheet Model Techniques for Browns Ferry Vent Nozzle-to-Shell Weld...................................

2-4 Table 2-3. Spreadsheet Model Techniques for Browns Ferry Vent Nozzle-to-Shell Weld...................................

2-4 Table 3-I. Browns Ferry Instrumentation Nozzle (N6) Geometry Inputs to Spreadsheet Model........................... 3-1 Table 3-2. Spreadsheet Model Techniques for Browns Ferry Instrumentation Nozzle-to-Shell Weld................... 3-3 Table 3-3. Spreadsheet Model Techniques for Browns Ferry Instrumentation Nozzle-to-Shell Weld...................

3-4 Table 4-1. Browns Ferry Closure Head Nozzle Nozzle-to-Shell Weld Examination Modeling Parameters........... 4-1 m

-4 U

Ai i,

j\\

i.J I

\\

....l I

..J LIST OF TABLES Table 2-1. Browns Ferry Vent Nozzle (N7) Geometry Inputs to Spreadsheet Model...... *.****.............................. 2-1 Table 2-2. Spreadsheet Model Techniques for Browns Ferry Vent Nozzle-ta-Shell Weld................................... 2-4 Table 2-3. Spreadsheet Model Techniques for Browns Ferry Venl Nozzle-la-Shell Weld................................... 2-4 Table 3-1. Browns Ferry Instrumenlation Nozzle (N6) Geometry Inputs 10 Spreadsheet MooeJ................. *.*****..

  • 3-1 Table 3-2. Spreadsheet Model Techniques for Browns Ferry InstrUmenlation Nozzle-Io-Shell Weld................... 3-3 Table 3-3. Spreadsheet Model Techniques for Browns Ferry Instrumentation Nozzle-la-Shell Weld................... 3-4 Table 4-1. Browns Ferry Closure Head Nozzle Nozzle-to-Shell Weld Examination Modeling Parameters........... 4-1 xi

1m INTRODUCTION This report describes the work performed by the EPRI NDE Center to assist Browns Ferry in developing examination techniques for their closure head nozzle-to-shell weld examinations to be preformed by WesDyne. The necessary geometric inputs to the EPRI spreadsheet model are listed for each nozzle and cross sectional plots are provided. The technique design curves developed by the model are given together with the techniques chosen for each nozzle. Tabular and graphical information on the technique maximum and minimum probe skew angle, radial position and metal path are provided. The combined coverage or minimum misorientation angle achieved by the chosen techniques is also given.

m

-0 I

1-1 j

_.j i

" __,J

~".,

m

"-l I 0)

-1

..i

.-,\\

'~

..J j

.J i )

i I

~.J 1

INTRODUCTION This report describes the work performed by the EPRI NOE Center to assist Browns Ferry in developing examination techniques for their closure head nozzle-to-shell weld examinations to be preformed by WesDyne. The necessary geometric inputs to the EPRl spreadsheet model are listed for each nozzle and cross sectional plots are provided. The technique design curves developed by the model are given together with the techniques chosen for each nozzle. Tabular and graphical information on the technique maximum and minimum probe skew angle, radial position and metal path are provided. The combined coverage or minimum misorientation angle achieved by the chosen techniques is also given.

1*1

2 VENT NOZZLE (N7)

Table 2-1 gives the necessary geometric inputs to the NDE Center spreadsheet model for the vent nozzle-to-shell weld. Figure 2-1 shows the geometric parameters, which define the nozzle-to-shell weld. The ASME Section XI Class I examination volume indicated in Figure 2-1 is appropriate for examinations done under Code Case 613 (i.e. where the examination volume is the weld width +/-0.5 inches).

Table 2-1. Browns Ferry Vent Nozzle (N7) Geometry Inputs to Spreadsheet Model Inside Surface Outside Surface j

Dimensions (inches)

Dimensions (inches)

Weld Start R 3.72 Weld End R 7.87

..J Rbore 2.125 Rnozzle 3.5 Rbi 1.5 Rbo 2

m Rvi 125.69 Rvo 129.69 (0

Figure 2-2 is a plot of the probe beam angle versus the probe skew angle for all values of perimeter distance, S and azimuth, 0 = 0' (the vent nozzle is axi-symmetric). As shown in Figure 2-1, the distance S is the perimeter of the examination volume, i.e. 0 - ExamSitanl -

ExamSitan2 - ExamSitan3 - ExamSitan4. The curve in Figure 2-2 summarizes the information regarding the probe angles and probe skews needed to obtain a 450 comer trap response everywhere in the nozzle-to-shell weld examination volume of the vent nozzle.

2-1 J

j

-)

~"l i

r *1 m

LJ N

I co

-1

~---

.", I

'....J I

....J

]

.~

~

2 VENT NOZZLE (N7)

Table 2-1 gives the necessary geometric inputs to the NDE Center spreadsheet model for the vent nozzle-ta-shell weld. Figure 2-1 shows the geometric parameters, which defme the nOzzle-ta-shell weld. The ASME Section XI Class I examination volume indicated iIi Figure 2-1 is appropriate for examinations done under Code Case 613 (i.e. where the examination volume is the weld width +/-D.S inches).

Table 2-1. Browns Ferry Vent Nozzle (N7) Geometry Inputs to Spreadsheet Model Inside Surface Outside Surface Dimensions (inches)

Dimensions (inches)

Weld StartR 3.72 Weld End R 7.87 Rbore 2.125 Rnozzle 3.5 Rbi 1.5 Rbo 2

Rvi 125.69 Rvo 129.69 Figure 2-2 is a plot of the probe beam angle versus the probe skew angle for all values of perimeter distance, S and azimuth, e = 0° (the vent nozzle is axi-symmetric). As shown in Figure 2-1. the distance S is the perimeter of the examination volume, i.e. 0 - ExamSitan 1 -

ExamSitan2 - ExamSitan3 - ExarnSitan4. The curve in Figure 2-2 summarizes the information regarding the probe angles and probe skews needed to obtain a 45° corner trap response everywhere in the nozzle-ta-shell weld examination volume of the vent nozzle.

2-1

z k,

m 0n Figure 2-1. Cross Section Showing Nozzle-to-Shell Weld and Definition of Class I Examination Volume under Code Case 613.

Browns Ferry Closure Head Vent Nozzzle-to-Shell Weld. 45 dog Comer Trap IT LJ P 4 5 r

0b 40 A

n 9

35 30 30 35 40 45 50 55 60 65 Probe Skew 70 75 Figure 2-2. Vent Nozzle-to-Shell Weld: Probe Angle vs. Probe Skew for 450 Comer Trap-Technique Design Curve.

2-2 m

I\\.)

I......

o z

~---------Rroz~.----------~

Rvi

~

____________________________________________ ~R Figure 2*1. Cross Section Showing Nozzle-to*Shell Weld and Definition of Class I Examination Volume under Code Case 613.

50 P45 o

b e

40 A

9

!35 30 30 Brown. Farry CIDalra Head Venl Nazzzle-lo-8heU Weld. 45 deg Como, Trap I

r--..

\\

'" ~

I I'-...

I

...... -------S I

I 35 40 45 50 55 60 65 70 75 Probe Skaw Figure 2*2. Vent Nozzle-to*Shell Weld: Probe Angle vs. Probe Skew for 45° Comer Trap-Technique Design Curve.

2-2 c

o o

o o

[J u

r-:

U I)

The convention adopted here for probe skew angles has 00 aligned with the nozzle axis with the beam pointed toward the nozzle; 9g0, pointed circumferentially around the nozzle; and 180, again aligned with the nozzle axis but pointed toward the vessel (see Figure 2-3).

j a) Probe Skew = 0° Ir

!-t

'1 b) Probe Skew = +90° c) Probe Skew 180°

= -90' Figure 2-3. Definition of Probe Skew Angle.

2-3

", i

,J

-')

..J n

, I LJ m

fl U

N,

~

~

(-[

U

, I I'

~

'--I i 1

,~

I

'.-J i

,._i

.J

".. _-i The convention adopted here for probe skew angles has 0° aligned with the nozzle axis with the beam pointed toward the nozzle; goo. pointed circurnferentially around the nozzle; and 180 0

again aligned with the nozzle axis but pointed toward the vessel (see Figure 2-3).

a) Probe Skew = 0° b) Probe Skew = +90 0

Figure 2-3. Definition of Probe Skew Angle.

2-3

The spreadsheet technique to examine the Browns Ferry vent nozzle-to-shell weld involves scanning from the outer vessel shell. Table 2-2 gives the probe beam and skew angles, scan surface, and the mode of propagation.

Table 2-2. Spreadsheet Model Techniques for Browns Ferry Vent Nozzle-to-Shell Weld.

. Probe Angle Probe Skew Scan Surface Mode of Propagation 45

+/-(33 to 7 1)

Vessel Shear Wave Figure 2-4 shows this technique in relation to the probe angle versus probe skew curve. This spreadsheet examination technique is summarized again in Table 2-3 together with the corresponding scan surface, minimum and maximum probe radial positions, minimum and maximum metal paths, and maximum misorientation angle.

Table 2-3. Spreadsheet Model Techniques for Browns Ferry Vent Nozzle-to-Shell Weld.

Probe Probe Angle Skew Scan Min R Surface Max R Min MP Max MIP Max Misorientation 45

+/-(33 to 71)

Vessel 5.4 9.5 4.67 5.87 8

LJ Browns Ferry Closure Head Vent Nozzzle-to-Shell Weld, 45 dog Comer Trap m

50 P 45 r

0b C

40 A

n 935 P

30 30 35 40 45 50 55 60 65 70 75 Probe Skew P

P U

U

~*1 Figure 2-4. Browns Ferry Vent Nozzle: Probe Angle versus Probe Skew for 450 Comer Trap -

Technique Design Curve.

Figure 2-5 shows the minimum and maximum probe radial positions and the portion of the examination volume covered by the vessel technique, 45/(33 to 71)v, for probes scanned at the azimuth angle of 900.

2-4 J

m N

I.....

N The spreadsheet technique to examine the Browns Ferry vent nozzle-to-shell weld involves scanning from the outer vessel shell. Table 2-2 gives the probe beam and skew angles, scan surface, and the mode of propagation.

Table 2-2. Spreadsheet Model Techniques for Browns Ferry Vent Nozzle-to-Shell Weld *

. Probe Angle Probe Skew Scan Surface Mode of Propagation 45

+/-(33 to 71)

Vessel Shear Wave Figure 2-4 shows this technique in relation to the probe angle versus probe skew curve. This spreadsheet examination technique is summarized again in Table 2-3 together with the corresponding scan surface, minimum and maximum probe radial positions, minimum and maximum metal paths, and maximum misorientation angle.

Table 2-3. Spreadsheet Model Techniques for Browns Ferry Vent Nozzle-to-Shell Weld.

Probe Probe Scan MinR MaxR Min MP Max MP Max Misorientation Angle Skew Surface 45

+/-(33 to 71)

Vessel 5.4 9.5 4.67 5.87 8

50 P 45 r

0 b

9 40 A

n 9

I 35 e

30 30 Browns Ferry Closure Head Vent Nozzzie-io-Shell Weld, 45 deg Corner Trap I---.

I I

......... I-.....

\\

I I

1'\\

I'" "" ~i--.

I

~

I 35 40 45 50 55 60 65 70 Probe Skew 75 Figure 2-4. Browns Ferry Vent Nozzle: Probe Angle versus Probe Skew for 45° Comer Trap -

Technique Design Curve.

Figure 2-5 shows the minimum and maximum probe radial positions and the portion of the examination volume covered by the vessel technique, 45/(33 to 71 )v, for probes scanned at the azimuth angle of 90°.

2-4 t...

  • c c

[J n

t l,.;

L

i.

Browns Ferry Closure Hend Vent Nozzle4o-Shell Weld (N7), 451(33 to 71)v 133 131 129.

Z m

125 123 1

3 5

7 9

11 R

Figure 2-5. Browns Ferry Vent Nozzle-to-Shell Weld (NT1): Probe Scan Limits and Examination

-i' Coverage for Vessel Technique 45/(33 to 71)v at Theta = 900 J?

2-5 m

N,

W

.. ~

. I

i

~... '

(.1 I I

(.J r-J"

!~

r",

I r-o, i*

i

.J z

Browns Feny Closure Hand Vent Nozzle-to-Shell Weld (N7), 451(33 to 71)v 133 131

~

129 127 I

/

V 125 123 3

5 7

R Figure 2-5. Browns Ferry Vent Nozzle-ta-Shell Weld (N7); Probe Scan Limits and Examination Coverage for Vessel Technique 451(33 to 71)v at Theta = 900 2-5 11

Figure 2-6 shows the misorientation angle, i.e. the coverage plot, for the 45v outer shell examination of the vent nozzle.

Browns Ferry Closure Head Vent Nozzle (N7); Misorientation Angle, 45vs 9

M S

0 r

6 e

n a83 ti 0

n 0

m 1~~i n

Li m

0 2

3 4

5 6

7 8

9 10 11 12 S (inches)

Figure 2-6. Browns Ferry Vent Nozzle-to-Shell Weld: Misorientation Angle (Coverage) for Vessel Technique, 451(33 to 71)v.

r LI Li Li 2-6 9

M i

s 0

r 6 e

n a 3 t

0 n

m N

0 I ->.

.j:o..

Figure 2-6 shows the misorientation angle, i.e. the coverage plot, for the 45v outer shell examination of the vent nozzle.

Browns Ferry Closure Head Vent Nozzle (N7); Misorientation Angle, 45vs.

I i

I I I

I i

I i !

i 1

.i 1

o 2

3 4

5 6

7 8

9 10 11 S (inches)

\\

Figure 2-6. Browns Ferry Vent Nozzle-ta-Shell Weld: Misorientation Angle (Coverage) for Vessel Technique, 451(33 to 71)v.

2-6 12 l...'

r:

u r~

i L-'

r u I'

I; LJ r u c

Figure 2-7 shows a similar plot of the metal path to the points on the examination volume for the coverage shown in Figure 2-6.

Browns Ferry Closure Head Vent Nozzle (N7); Metal Path, 45vs 6

CA__ F i ___

IT5.2_

P 5.i h 4.6 0

1 2

3 4

5 6

7 8

9 10 11 12 S {inches) m r'j (11 Figure 2-7. Browns Ferry Vent Nozzle-to-Shell Weld (N7): Metal Path Plot; Vessel Technique:

451(33 to 71)v.

2-7

  • . 'j

_ ** J

.. j r,

" i U

(,

"I m

I, I\\,)

U I.....

tn r'o J I LJ c-..

o I l i

~,

,*--1 I !

r**-i L.J

, 'i

_J i

j Figure 2-7 shows a similar plot of the metal path to the points on the examination volume for the coverage shown in Figure 2-6.

Browns Ferry Closure Head Vent Nozzle (N7); Metal Path, 45vs 6~--~I----T----r--~----r---'----TT,--~r---~---r--~----'

5,B,!--i----+---+--+-+--l---+--+-----+--f---f-f--T-f T

/

=

5.6 [l\\'-+--I........ -+-.....,............ -+-.....t.l~

i f

!5.4 l'

I T

i/

I ~2}_--~--_+----~--+_--~~\\~----+---~--_+----~--~---1 p'

\\ I a

5+---~--_+--~~--+_---~!4\\~~--+_--~--_+----~--4_--__f til II h4.8}_--4----+-I--~--_+----~-~\\----+---~--_+----1_--+_--_1 i,

~~~--~~

4.6 +---~I----+---+---t----~--+----+--~----+---+---+-----j i

i 4.4+---~--_+--~----~--~--~----+---~--_+----~--~--~

o 234 5

6 7

8 9

10 11 12 S (Inches)

Figure 2-7. Browns Ferry Vent Nozzle-to-Shell Weld (N7): Metal Path Plot; Vessel Technique:

451(33 to 71)v.

2-7

MEN Figure 2-8 shows the plot the beam angle at the flaw (nominal inspection angle) for the points on the examination volume for the coverage shown in Figure 2-6.

Browns Ferry Closure Head Vent Nozzle (N7); Beam Angle at Flaw, 45vs so B 49 47 n 4 a 44

+/-

t FI 423 a

401 0

1 2

3 4

5 6

7 8

9 10 11 12 S Inchies) mr'3 Figure 2-8. Browns Ferry Vent Nozzle-to-Shell Weld (N7): Beam Angle at the Flaw Plot; Vessel Technique: 45/(33 to 71)v.

m rI. i L

[7 Li L

U C-2-8 m

N I.....

O'l Figure 2-8 shows the plot the beam angle at the flaw (nominal inspection angle) for the points on the examination volume for the coverage shown in Figure 2-6.

Browns Ferry Closure Head Vent Nozzle (N7); Beam Angle at Flaw, 45vs 50 B 49 e

a 48 m

A 47 n4S I

I I

r I

I II 9

145 e

8 44 I

1\\

I i

I

/

I i I 43 F,42 a

w 41 40 I

4 6

10 11 12 S Qnchel)

Rgure 2-8. Browns Ferry Vent Nozzle-to-Shell Weld (N7): Beam Angle at the Flaw Plot; Vessel Technique: 45/(33 to 71)v.

2-8 n

L~

c

('-,

I' I

'...J

(

i L

L

3 INSTRUMENTATION NOZZLE (N6)

Table 3-1 gives the necessary geometric inputs to the NDE Center spreadsheet model for the instrumentation nozzle-to-shell weld (N6). Figure 3-1 shows the geometric parameters, which define the nozzle-to-shell weld. The ASME Section XI Class I examination volume indicated in Figure 3-1 is appropriate for examinations done under Code Case 613 (i.e. where the 1

examination volume is the weld width +/-0.5 inches).

TTable 3-1. Browns Ferry Instrumentation Nozzle (N6) Geometry Inputs to Spreadsheet Model "1

Inside Surface Outside Surface Dimensions (inches)

Dimensions (inches)

Weld Start R 4.94 m

-4.

U1 Rbore Rbi Rvi Xoff 3.11 1.5 125.69 48 Weld End R Rnozzle Rbo Rvo Yoff 9.08 5.72 2

129.69 0

ri 3-1

'. i,

'[

j

-1

,J 11 c'!

m LJ N

I......

0

-...j q

'_I q

.J I'!

)

I U

,. "}

1 L*

r' !

3 INSTRUMENTATION NOZZLE (NS)

Table 3-1 gives the necessary geometric inputs to the NDE Center spreadsheet model for the instrumentation nozzle-to-shell weld (N6). Figure 3-1 shows the geometric parameters. which define the nozzle-to-shell weld. The ASME Section XI Class I examination volume indicated in Figure 3-1 is appropriate for examinations done under Code Case 613 (Le. where the examination volume is the weld width +/-O.5 inches).

Table 3-1. Browns Feny Instrumentation Nozzle (N6) Geometry Inputs to Spreadsheet Model Inside Surface Dimensions Weld StartR Rbore Rbi Rvi Xoff Outside Surface (incbes)

Dimensions 4.94 Weld End R 3.11 Rnozzle 1.5 Rbo 125.69 Rvo 48 Yoff tfY ffid f"P ~

/ Z5 /t. "J}?..f l.ZSo/AJr 3-1 (Incbes) 9.08 5.72 2

129.69 0

fP)b<O.ANDXoff>D, THEN 0=0jis "Up Hill" Side IfPhi>0 AND Xoff<o, THEN e=01 is "Down Hill" Side Phi and Xoff should always have Opposite Signs.

(Rco,Zco) -.,+

Xoff Ri m

OD Figure 3-1. Cross Section Showing Instrumentation Nozzle-to-Shell Weld and Definition of Class I Examination Volume under Code Case 613.

3-2 m

N I.....

ex>

IfPhi<OANDXoff>o, THEN 8=0° is "Up Hill' Side IfPhi>O AND Xoff<O. THEN 8=0° is "Down Hill' Side Phi and Xo ff should a1w~. h"". Oppo site Signs.

~

(Rco.Zeo) '+-

t---~----__

~

Rbo CRci,ZcO r------~llnni:iSl~eo.,.w,re"'ativ. x. :-'+

~-----------Xoff---------~ru f------4-lnside Cord Positive X Rvi Rvo Figure 3*1. Cross Section Showing Instrumentation Nozzle-to-Shell Weld and Definition of Class I Examination Volume under Code Case 613.

3-2

\\ !

f' i

1 LJ h

i... :

L:

\\ '

LJ

Figure 3-2 is a plot of the probe beam angle versus the probe skew angle for all values of perimeter distance, S and azimuth, 0. As shown in Figure 3-1, the distance S is the perimeter of the examination volume, i.e. 0 - ExamSitanI - ExamSitan2 - ExamSitan3 - ExamSitan4. The curves in Figure 3-2 summarizes the mass of information regarding the probe angles and probe skews needed to obtain a 450 comer trap response everywhere in the nozzle-to-shell weld examination volume of the instrumentation nozzle. Also shown in Figure 3-2 is the average probe angle versus probe skew (thick line with open circles); the technique design curve.

m M

ri Ii LI p

~2

'~1 Li 21 II Figure 3-2. Browns Ferry Instrumentation Nozzle-to-Shell Weld (N6): Probe Angle vs. Probe Skew for 450 Comer Trap.

The spreadsheet techniques to examine the Browns Ferry instrumentation nozzle-to-shell weld involve scanning from the outer vessel shell and the blend radius. Table 3-2 gives the probe beam and skew angles, scan surface, and the mode of propagation.

Table 3-2. Spreadsheet Model Techniques for Browns Ferry Instrumentation Nozzle-to-Shell Weld.

Probe Angle Probe Skew Scan Surface Mode of Propagation 45 55 26

+/-(25 to 80)

Vessel

+/-(20 to 60)

Vessel

+/-90 Blend Shear Wave Shear Wave Shear Wave 3-3

... \\

I : **** 1 r--I i'

i

~

'_.~I P

n 0

b U

e

[J A

n m

9 I

I e

r)

<0

~

r) i I

!_J

-)

I

'...J

\\]

--)

J I

1 i

-1

......i Figure 3-2 is a plot of the probe beam angle versus the probe skew angle for all values of perimeter distance, S and azimuth, e. As shown in Figure 3-1. the distance S is the perimeter of the examination volume, i.e. 0 - ExamSitanl - ExamSitan2 - ExamSitan3 - ExamSitan4. The curves in Figure 3-2 summarizes the mass of information regarding the probe angles and probe skews needed to obtain a 45° corner trap response everywhere in the nozzle-to-shell weld examination volume of the instrumentation nozzle. Also shown in Figure 3-2 is the average probe angle versus probe skew (thick line with open circles); the technique design curve.

!II * -..

1111.--:

IS.,

IS III IS to III BroW1S Feny C 16sure Head InstrumentlUon Nozzle*I/rS hell Weld INS): probe Angle vs Probe Skew (45 deg comertlap)

I I

t.

if

_!ff I

~-

/

.,..;., =--- //,

II1iiii A) §

/. 1',>-"::

-~

!', -...... ;--..;.; ~

,~

W",/'/ 0" L

-.....;:r- ~~

~

~h

\\. "----""'-\\

~

~

,------= ~

---........ ~

~

I I

..... - -- "'1_. __."_

probe Skew Figure 3-2. Browns Ferry Instrumentation Nozzle-to-Shell Weld (NS): Probe Angle vs. Probe Skew for 45° Comer Trap.

The spreadsheet techniques to examine the Browns Ferry instrumentation nozzle-to-shell weld involve scanning from the outer vessel shell and the blend radius. Table 3-2 gives the probe beam and skew angles, scan surface, and the mode of propagation.

Table 3-2. Spreadaheet Model Techniques for Browns Ferry Instrumentation Nozzle-lo-Shell Weld.

Probe Angle 45 55 26 Probe Skew Scan Surface

+/-(25 to 80)

Vessel

+/-(20 to 60)

Vessel

+/-90 Blend 3*3 Mode of Propagation Shear Wave Shear Wave Shear Wave

Figure 3-3 shows these techniques in relation to the average probe angle versus average probe skew curve. These spreadsheet examination techniques are summarized again in Table 3-3 together with the corresponding scan surfaces, minimum and maximum probe radial positions, minimum and maximum metal paths, and maximum misorientation angles.

Table 3-3. Spreadsheet Model Techniques for Browns Ferry Instrumentation Nozzle-to-Shell Weld.

Probe Probe Angle Skew Scan Min R Max R Min MP Max MP Max Misorientation Surface r-7 45

+/-(25 to 80)

Vessel 6.89 12.0 4.67 6.16 0

55

+/-(20to 60)

Vessel 7.17 8.66 5.78 7.60 18 26

+/-90 Blend 5.94 7.10 4.89 7.44 20 m

0"1 eOMMs Ferly Closure Head inslrlWmnt1 n NoZZle-t-s hell Weld (N6): Average Probe Angle vs Probe Skew(45 deg comer bulmp 0111 r

b0 eA

]-*

__I Probe S kew Li

[3 Li n

It 1~

in ISO Figure 3-3. Browns Ferry Instrumentation Nozzle: Average Probe Angle versus Probe Skew for 45*

Corner Trap - Technique Design Curve.

U 3-4 I.-

m I\\.)

I I\\.)

0 P'Ia r.

Figure 3-3 shows these techniques in relation to the average probe angle versus average probe skew curve. These spreadsheet examination techniques are sununarized again in Table 3-3 together with the corresponding scan surfaces, minimum and maximum probe radial positions, minimum and maximum metal paths, and maximum misorientation angles.

Table 3-3. Spreadsheet Model Techniques for Browns Ferry Instrumentation Nozzle-to-Shell Weld.

Probe Probe Scan MinR MaxR MinMP MaxMP Max Misorientation Angle Skew Surface 45

+/-(25 to 80)

Vessel 6.89 12.0 4.67 6.16 0

55

+/-(20to 60)

Vessel 7.17 8.66 5.78 7.60 18 26

+/-90 Blend 5.94 7.10 4.89 7.44 20 B"""". FellY ClosuIB He.~ InstlUmentaUon NOZZIB-ID-5hell weld (N6): Average Probe Angle v. Probe Skew (45 deg comer traPI i

r i, c, '

[

~..

e SS

!II A. ~~---+--~--L-~---+--~--~-4--~--+---~-+--~~~

[J

n.

9 (.

e. *..

S *....

4111 tID probe Skew,.....

s* _

Figure 3-3. Browns Ferry Instrumentation Nozzle: Average Probe Angle versus Probe Skew for 45" Corner Trap - Technique Design Curve.

3*4 I

till L

Figure 3-4 shows the minimum and maximum probe radial positions and the portion of the examination volume covered by the blend technique, 26/90b, for probes scanned at the azimuth angles of 95.80' and 3.650, respectively.

B0Wn. t.Y OWW0H.3dkW Mts~opa.-O.0Wh*1 W.1dmj 2&tO=O I

111-ITm r

Li ri t~I LI 2

4 6

a 10 12 14 2

4 6

V 10 2

Figure 3-4. Browns Ferry Instrumentation Nozzle-to-Shell Weld (N6): Probe Minimum and Maximum Scan Limits and Examination Coverage for Blend Technique 26190b at Theta = 95.80' and 3.650, Respectively.

Figure 3-5 shows the minimum and maximum probe radial positions and the portion of the examination volume covered by the vessel technique, 45/(25 to 80)v, for probes scanned at the azimuth angle of 167.500 and 206.28', respectively.

F

.*fly Iur.Head tmtdan W-F cIO.2 He l4542m5nt tjon No8h-to-Weflw d FN). 400(2666 80(0 StIJI Weld (N46),

45025 60 00)o jI ft R

Figure 3-5. Browns Ferry Instrumentation Nozzle-to-Shell Weld (N6): Probe Minimum and Maximum Scan Limits and Examination Coverage for Vessel Technique 451(25 to 80)v at Theta 167.500 and 208.28*, Respectively.

3-5

... ~

( '1 11 LJ r"l I i l~

r'i

! 1 m

LJ N

I N

r*~

j 1 u

U

! I i I

, \\

'-J U

I !

I LJ

\\ ;

--.1 Figure 3-4 shows the minimum and maximum probe radial positions and the portion of the examination volume covered by the blend teclmique, 26/90b, for probes scanned at the azimuth angles of95.80° and 3.65°, respectively.

....... ".... aos...........,"'m ___

...s..

11 II "3 r-,-__

W,..'_I'_("'_~_-_. ____ ---,

I

"'OWN 1;1'1')' ao.ur..... d lnttr\\Imentation NazzIe.to..

SMIIWetd(NI),2MDb 127 r--.,---,-----------,

.25

'23 Z 117 Z1Z1

.19 117

'"~

2 MI R

Figure 3-4. Browns Ferry Instrumentation Nozzle-to-Shell Weld (N6): Probe Minimum and Maximum Scan Limits and Examination Coverage for Blend Technique 26190b at Theta = 95.80*

and 3.65*, Respectively.

Figure 3-5 shows the minimum and maximum probe radial positions and the portion of the examination volume covered by the vessel teclmique, 45/(25 to 80)v, for probes scanned at the azimuth angle of 167.50° and 206.28°, respectively.

Brown_ fitnyClosu,.. He., ~ItonJrllDutHo.

_W"'(III~4!Jt280'Y

'~r-.---'-------------'

117 Z 1115 113 1~~-_-__ -----____ - __ ~

2 R

.0

'2 14 Browns r.ny CtQsan Head Ntrutnent.uon NozdMo.

stell Weld (NB). 411(15 to ao~

1~r-'----'---------------~

119 117 Z 115 113

11.

.~~----------~----~

2 12 R

Figure 3-5. Browns Ferry Instrumentation Nozzle-to-Shell Weld (N6): Probe Minimum and Maximum Scan Limits and Examination Coverage for Vessel Technique 451(25 to 80)v at Theta =

1,67.50* and 208.28*, Respectively.

3*5

Figure 3-6 shows the minimum and maximum probe radial positions and the portion of the examination volume covered by the vessel technique, 55/(20 to 60)v, for probes scanned at the azimuth angle of 133.230 and 17.39', respectively.

B o F-ny CWe. H od fblo tb k. IkN 8i.4b-I y

rmq e

H eelm m1.od hat w on Non.

o-Sh*UW eld (NO), s5M2to e)v I FS W ed (S), 5 *20to 6O)V 6

8 R

4 8

8 R

10 12 14 Figure 3-6. Browns Ferry Instrumentation Nozzle-to-Shell Weld (N6): Probe Minimum and Maximum Scan Limits and Examination Coverage for Vessel Technique 55/(20 to 60)v at Theta=

133.230 and 17.39°, Respectively.

m (7

U 3-6 m

N I

N N

Figure 3-6 shows the minimum and maximum probe radial positions and the portion of the examination volume covered by the vessel technique, 55/(20 to 60)v, for probes scanned at the azimuth angle of 133.23° and 17.39°, respectively.

BraWns FenyQaslft HNd tnstrumtnlatkln NI::IuIH:o-s... w.,. (NIl. 551(2010 ** tv 1~r-'-----r----------------'

"9 111

% t15

,oo~----------------------~

R "I

I Browns ~

aotu,-. HNd mtrumtJltl'don NDz$.,to-

_w... (NII.*O/I2..... tv 121 r-,------r-----------------,

125 123 Z 121

".1----------------------~

2 R.

10 12

1. I L-__________________________ I Figure 3-6. Browns Ferry Instrumentation Nozzle-to-Shell Weld (N6): Probe Minimum and Maximum Scan Limits and Examination Coverage for Vessel TechniqUe 55/(20 to 60)v at Theta =

133.23° and 17.39°, Respectively.

3-6

[:

C' r

I' ;

I '

,.0

{"

I LJ r'

I L

Figure 3-7 shows the translation of the nozzle-to-shell examination volume onto a foldout grid, upon which has been plotted the coverage plot for the blend technique 26/90bd and the outer vessel shell techniques 45vs, 55vs. The colors here correspond to the techniques' misorientation angle at the points on the perimeter surface.

BrmwM Fery ClcaUre H~ead Iflstrunl~ntflto NOZZ19 U16): Cofitifed Coverage; 45VS. 55VS. 26/90bd ImO-3 *3-6 o6-9 o9-12 012-15 U 15-18 R18-21 JI n..

m I.'

N.,

AN NURUIL Ilk QUORL-1

-111111L Xý 49=201&

ILS anarju V XL NIVOINGIL-10 T-4 r"VIOU \\"

Ný-

Ila a I%,%-

Ago, "W4R!1!RMF
19) 47 1

F Q V ",

j

'd ff, in a RN tv Olaklmm ;11

" AMONON, );ý --

'Ohm" -

L hi a; Ar VOLIQ Nnlý-

V 4L 14 Ahl Nk N &

Ar

-1, '00000000000

lllik6, "fig IR ILt h0bWL&.-ý 002040 D.00 0.a.

1.10 1.79 2.39

2.

jq S.58 9.18 3.77 5.37 5.97 S"10 6.57 7.16 7.76 0.36 U-J-

0.74 1.34 1.9410

  • t a

" a W=

=m

-1 inii sme OMin0i0Us Theta (degrees)

Figure 3-7. Browns Ferry Instrumentation Nozzle-to-Shell Weld: Coverage Map for Vessel Techniques 45vs and 55vs and Blend Technique 26190bd.

3-7 r-,

\\

r" n

J

~

\\.;

r-;

U n

lJ n

m

./

u N

I N r--,

w i I LJ r-]

u

...J 0

I.

n !

U I

l l

.~

j I U

Figure 3-7 shows the translation of the nozzle-to-shell examination volume onto a foldout grid, upon which has been plotted the coverage plot for the blend technique 26/90bd and the outer vessel shell techniques 45vs. 55vs. The colors here correspond to the techniques' misorientation angle at the points on the perimeter surface.

8/OWlS Feny ClosUre Head InstnJrrentatlOn Nozzle IN61: CantlIne" cavelllQe; 45VS. 55vs. 16/90l1li 1*0-3.3-606-909-12.12-15.15-18.18-21 I I

I I

I I

D *** a._~ ____________ ~

Theta (degrees)

Figure 3-7. Browns Ferry Instrumentation Nozzle-to-Shell Weld: Coverage Map for Vessel Techniques 45vs and 55vs and Blend Technique 26190bd.

3-7

Figure 3-8 shows a similar foldout of the nozzle-to-shell weld examination volume upon which has been plotted the metal path to the points on the examination volume for the coverage shown in Figure 3-7.

Browns Ferry Closure Head Instirmentation Nozzle-to-Shell Weld:

Metal Path, 45vs, 55vs, 26*,Obd

  • 44 3

4311 0"

4.9342 IE T41215 I 54ME I

.lm 5.144 14 H I

  • 1Y4 S 776773 7".A 0 72.-7 m

Masi.

1411111111111111 pool 1111111111116d 111111111111IF AN

'Aar Aso now ANEr NNEr ANN ANNE 11111MIS NEW r

23,

-7.16

-1as 11.15 11.15 o) ui mi rn 1

,3 215 m

.0 MiT I

MiS T heta Figure 3-8. Browns Ferry Instrumentation Nozzle-to-Shell Weld: Metal Path Map; Vessel Techniques 45ve and 55ve and Blend Technique 26/90bd.

3-8 C-i..

LU-

'rl m

I\\.)

I I\\.)

.1:>0 Figure 3-8 shows a similar foldout of the nozzle-to-shell weld examination volume upon which has been plotted the metal path to the points on the examination volume for the coverage shown in Figure 3-7.

BrolMlS Ferry Closure Head InstrumentaUon Nozzle-m-Shell Weld:

Metal Path, 45vs, 55VS, 26190bd I *..:s

  • 4.M8 [J IUI4.!I [J 4S52
  • Uo5.5. 5.H8. S8&t... MiA. 8.4Cj'

."'-7 * ').7.3

  • 7J107.8. 7.&-7.

+-+-+-IH-, "...

o 27 SII 8'1

-..U5 _

r... mg., !III !lit Theta Figure 3-8. Browns Ferry Instrumentation Nozzle-to-Shell Weld: Metal Path Map; Veaael Techniques 45va and 55v8 and Blend Technique 26190bd.

3*8 i

I.

r*, '

n I.

1.-'

c I, U

[

i

[;

r*

r-' L i

LJ

Figure 3-9 shows the translation of the nozzle inner comer region onto a rollout grid, upon which has been plotted the beam angle at the flaw (nominal inspection angle) for the points on the examination volume for the coverage shown in Figure 3-7:

Brows Ferry Closure Head Instrumentaton Nozzle-to-S hell Weld:

Beam Angle at Flaw. 45vs. 5Svs, 26190bd a 4"M 4041 0H 42 0

4*4B1 1 14 aa &

0 474B 0 90' 9

N i

E*0M' B4 Lii i

Ca,,s s

LiT r

  • "L*.*TT--eID atm Fiue3 rwn er ntuenainNzl-o-hl ed em.Agea h FlawMap
  • J Ve fle Tehiue4v n

5eadBedTcnoe210d U1 7.75 r"*

-am Lj e

  • ~~ 2'/S7 8 1" =

M1.S 111 18 I

'O

=

2 M

M 7 3=

3 S Figure 3-9. Browns Ferry Instrumentation Nozzle-to-Shell Weld: Beam Angle at the Flaw Map;

ý_j Vessel Techniaues 45vs and 55vs and Blend Techniq~ue 26[90bd.

-1[..............................

1.....

m N

I N

01 11 U u

. I

, I

'--.1 r-**'

, I I

I

~

Figure 3-9 shows the translation ofthe nozzle inner comer region onto a rollout grid, upon which has been plotted the beam angle at the flaw (nominal inspection angle) for the points on the examination volume for the coverage shown in Figure 3-7:

B/'O\\M'IS Feny Closure Head Instrumentation Nozzle-iD-S hell Weld:

BeamAngle at Flaw. 4SVs. SSvs. 26190bd 1*iD41*4t4D.. D...............",.~.......

1IDS'I1

.~_...... rn..

I 0I7511181_'I!5 __ 2I6aB2IDfIII...,

Them Figure 3-9. Browns Ferry Instrumentation Nozzle-ta-Shell Weld: Beam Angle at the Flaw Map; Vessel Techniques 45vs and 55vs and Blend Technique 2619Obd.

3-9

4

SUMMARY

OF BROWNS FERRY CLOSURE HEAD NOZZLE-TO-SHELL WELD EXAMINATION MODELING PARAMETERS Table 4-1. Browns Ferry Closure Head Nozzle Nozzle-to-Shell Weld Examination Modeling Parameters.

Browns Ferry Metal Path Beam Angle at Flaw Maximum Misorientation Closure Head Angle Nozzle ED Minimum Maximum Minimum Maximum Vent (NT) 4.67 5.87 42 49 8

Instrumentation (N6) 4.67 7.60 40 55 20 Mr n,,

U C)

A f--J; 4-1 r--.

t.. i

~

,.-1

I U j

I m

\\ -~

LI N

I N

r!

(J) u n

L~\\

r-,

i:

U r'j LJ

'-l u

C'..

U f:"'!

i c...i C I 4

SUMMARY

OF BROWNS FERRY CLOSURE HEAD NOZZLE-TO-SHELL WELD EXAMINATION MODELING PARAMETERS Table 4.1. Browns Ferry Closure Head Nozzle Nozzle-to-Shell Weld Examination Modeling Parameters.

Browns Ferry Closure Head NozzleID Vent(N7)

Metal Path Beam Angle at Flaw Minimum Maximum Minimum Maximum 4.67 Instrumentation (N6) 4.67 5.87 7.60 42 40 49 55 4-1 Maximum Misorientation Angle 8

20

About EPRI EPRI creates science and technology solutions for the global energy and energy services industry. U.S. electric utilities established the Electric Power Research Institute in 1973 as a nonprofit research consortium for the benefit of utility members, their customers, and society. Now known r

simply as EPRI, the company provides a wide range of innovative products and services to more than 1000 energy-rmlated organizations in 40 countries. EPRI's multidisciplinary team of scientists and engineers draws on a.

11, worldwide network of technical and business

[.

expertise to help solve today's toughest energy and environmental problems.

EPRI. Electrify the World L

L a2003 Electric power Research institute 1aPRI1, Inc. AilL rights reserved. Electric Power Research Institute and E PRI are registered service marks ot the Electric Power Research Institute, Inc. EPRI. ELECTRIFY THE WORLD is a SWIeM mark of the Electric Power Research Ilnstute, Inc.

L IR-203-17 Prirtld on recydedpaPeIr tMre Unfied States of Arnenw L

EPRI

  • PC Box 10412, Palo Alto, California 94303' USA 800,313.374 - 650.855.2121 ° ask
  • e*L.to

!, www.epriscotM i

m N

I N

-..j About EPRI EPRI creates science and technology solutions for the global energy and energy services industry. U.S. electric utilities established the Electric Power Research Institute in 1973 as a nonprofit research consortium for the benefit of utility members, their customers, and society. Now known simply as EPRI', the company provides a wide range of innovative products and services to more than 1000 energy.related organizations in 40 countries. EPRl's multidisciplinary team of scientists and engineers draws on a.

worldwide network of technicel and business expertise to help solve today's toughest energy and environmental problems.

EPRI. Electrify the World C 2003 ElectriC power Research Instttute (EPRI), Inc. All rights reserved. Eloctric Power Research Institute and E PRI are registered ** rvice marks of the Electric Power Aesearch InstItUte, Inc. EPRI. ELECTRIFY THE WORLD Is a saovic.

marl< of the Electric Power Research InstItUto, Inc.

IR*2Q)3*\\7 Pdntsd on recycled paper In Ihs United States of AmeriCa EPAI. 34\\2 Hillview Avenue, Palo Alto, California 94304* PO Box 10412, Palo AlIo, CoIlfomia 94303* USA 800.313.3774.650.855.2121

  • A.kepri@epricom*www.epli.com t.;

o c

o lJ r L r L j'

L.

1 Browns Ferry RPV Nozzle-to-Shell Weld Examination IR-2003-1 9 F1 U

I]

I II Cn 7, NUT Ej

ý-ePIU e

m 00

.]

'1 EPI2I J

1 J

l

....1 Browns Ferry RPV Nozzle-to-Shell Weld Examination

]

[J IR-2003-19 i]

0

[J m

I\\.)

I 0

I\\.)

co r*l U

!I U

0

]

iJ l

,J i

EPRI NqS

...J 1

I

~

--I

!1 m

I'0

~1 1-.4

~1

'-4 J

]

a

]

  • 11

-J Browns Ferry RPV Nozzle-to-Shell Weld Examination IR-2003-19 Internal Report, May 2003 EPRI Project Manager Douglas E. MacDonald EPRI

  • 3412 H*ovew Avenue. Pdjn Arm, Callomia 94304 - PO Bo 10412, Palo ANo. Catfn 84303. USA 800.313,3774
  • 650.855.2121. *Iskep4@eplLcom wenw.aepriom i

~-I I

-1 i

.1 j

--1

)

-l J

l

~.J

]

-1 U

m N

I 0

N

<0

]

~I oj

]

]

I

_J

-1

.J

\\

-~

Browns Ferry RPV Nozzle-to-Shell Weld Examination IR-2003-19 Internal Report. May 2003 EPRI Project Manager Douglas E. MacDonald EPRI. 3412 HIIMow Avenue. PaIo_. C8l1cm1a 804304* PO Box 10412. Palo _. CailIDmla 94303* USA 8OO.313.3n4

  • 850.85.5.2121
  • 81i<ep1t@epri.c:om
  • _.epri.cam

I DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THilS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WO)RK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI).

NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, NOR ANY PERSON ACTING ON BEI-ALF OF ANY OF THEM:

(A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I) WVTH RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR 7

PURPOSE, OR 01) THAT SUCH USE DOES NOT INFRINGE ON OR INTERFERE WITH PRIVATELY OWNED RIGHTS, INCLUDING ANY PARTYS INTELLECTUAL PROPERTY, OR (111) THAT THIS DOCUMENT IS SUITABLE TO ANY PARTICULAR USER'S CIRCUMSTANCE; OR (B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER UABILITY WHATSOEVER ONCLUDING ANY CONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILTY OF SUCH DAMAGES) RESULTING FROM YOUR SELECTION OR USE OF THIS DOCUMENT OR ANY INFORMATION{ APPARATUJý METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT ORGANIZATION(S) THAT PREPARED THIS DOCUMENT Research Institute, Inc. EPRI. ELECTRIFY THE WORLD is a service mark of the Electric Power Reasearch Institute, Inc.

[-

Copyright © 2003 Electric Power Research Institue, Inc. All rights reserved.L.

ii' mF m '"

I W o DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES "THIS DOCUMENT W/>S PREPARED BY "THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF VIoORK SPONSORED OR COSPONSORED BY "THE ElECTRIC POWER RESEARCH INSTllUTE, INC. (EPRI).

NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BElOW, NOR ANY PERSON ACTING ON BEHALF OF ANY OF THEM:

(A) MAKES ANY WARRANl'( OR REPRESENTATION IMiATSOEVER, EXPRESS OR IMPUED, (I) 'MTH RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, ME1HOD, PROCESS, OR SIMIlAR ITEM DISCLOSED IN THIS DOCUMENT, INCWDlNG MERCHANTABIUTY AND FITNESS FOR A PARTICUlAR PURPOSE. OR 01) THAT SUCH USE DOES NOT INFRINGE ON OR INTERFERE WTH PRIVATa Y ~ED RIGKTS, INCWDING ANY PARlYS INTEllECTUAL PROPERTY, OR 011) THAT THIS DOCUMENT IS SUITABlE TO ANY PARTICUlAR USER'S CIRCUMSTANCE; OR (B) ASSUMES RESPCNSIBIUTY FOR ANY DAMAGES OR OTHER UABIUTY IMiATSOEVER ONCLUDING ANY CONSEQUENTIAl DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBIUTY OF SUCH DAMAGES) RESULTING FROM YOUR SELECTION OR USE OF THIS DOCUMENT OR ANY INFORMATION. APPARATUS, METHOD, PROCESS, OR SIMIlAR ITEM DISCLOSED IN "THIS DOCUMENT.

ORGANIZATION(S) THAT PREPARED THIS DOCUMENT EPRI HOE Cerd8r Electric Power Research Ins1itule and EPRI are registered service mar1<s of the Eladrtc Power Research Institute, Inc. EPRI. ELECTRIFY THE WORLD Is a service mark of the Electrtc Power Research Institute, Inc.

Copyright@ 2003 Electric Power Research Institute, Inc. All rights reserved.

u D

c o

o o

o IJ

[

~.,

I.

U

CITATIONS This document was prepared by EPRI 1300 West WT Harris Blvd.

Charlotte, NC 28262 Principal Investigator or Author D. MacDonald

-)

This document describes research sponsored by EPRI.

The publication is a corporate document that should be cited in the literature in the following manner:

Browns Ferry RPVNozzle-to-Shell Weld Examination, EPRI, Charlotte, NC: 2003. IR-2003-19.

rF1 I

Li U

LI

-1

-J

-J iii i J j

1

""\\

I

'..::J "1

I

--J

--, J

[J

'l m

LJ N

I 0

W r,

, I u

0

]

'l

_J I

_J

'OJ

_J i

This document was prepared by EPR!

1300 West WT Harris Blvd.

Charlotte, NC 28262 Principal Investigator or Author D. MacDonald CITATIONS This document describes research sponsored by EPR!.

The publication is a corporate document that should be cited in the literature in the following manner:

Browns Ferry RPV Nozzle-to-Shell Weld Examination, EPR!, Charlotte, NC: 2003. IR-2003-19.

iii

ABSTRACT J-This report describes the work performed by the EPRI NDE Center to assist Browns Ferry in developing examination techniques for their nozzle-to-shell weld examinations. The examinations are to be done by Framatome. The necessary geometric inputs to the EPRI I.j spreadsheet model are listed for each nozzle and cross sectional plots are provided. The technique design curves developed by the model are given together with the techniques chosen

" I for each nozzle. Tabular and graphical information on the technique maximum and minimum,(

probe skew angle, radial position and metal path are provided. The combined coverage or minimum misorientation angle achieved by the chosen techniques is given, as well as, the associated metal path and beam angle at the flaw.

1 7

m

.!J C,)j Ji

._J V

I I

' ** 1 c,

, I o

o fl iJ J

ABSTRACT This report describes the work perfonned by the EPRl NDE Center to assist Browns Ferry in developing examination techniques for their nozzle-to-shell weld examinations. The examinations are to be done by Framatome. The necessary geometric inputs to the EPRl spreadsheet model are listed for each nozzle and cross sectional plots are provided. The technique design curves developed by the model are given together with the techniques chosen for each nozzle. Tabular and graphical infonnation on the technique maximum and minimum-f probe skew angle, radial position and metal path are provided. The combined coverage or minimum misorientation angle achieved by the chosen techniques is given, as well as, the associated metal path and beam angle at the flaw.

v

I CONTENTS 1

I INTRODUCTION................................................................................

1-1 2-BROWNS FERRY RECIRCULATION OUTLET NOZZLE (NI)........ 2.-1 3BROWNS FERRY RECIRCULATION INLET NOZZLE (N2)........... 3-1 4 BROWNS FERRY MAIN STEAM NOZZLE (N3)....................... 4-1 5-BROWNS FERRY FEEDWATER NOZZLE (N4)................................

5-1 6 BROWNS FERRY CORE SPRAY NOZZLE (NS)................................

6-1 7

BROWNS FERRY JET PUMP INSTRUMENTATION NOZZLE (N8) 7-1 8

SUMMARY

OF BROWNS FERRY NOZZLE-TO-SHELL WELD J

MODELING PARAMETERS 8-1 ii vii 1 j

~ i J

C")

I CONTENTS

("'

[

J

... J 1 INTRODUCTION................................................................................ 1-1

'"1 I

'_cJ 2 BROWNS FERRY RECIRCULATION OUTLET NOZZLE (Nl)........ 2-1 I""~,. [

~-.}

3 BROWNS FERRY RECIRCULATION INLET NOZZLE (N2)............ 3-1 n u rl U

4 BROWNS FERRY MAIN STEAM NOZZLE (N3)............................... 4-1 r-]

J 5 BROWNS FERRY FEEDWATER NOZZLE (N4)................................ 5-1 i..J m

N I

[-I VJ VJ LJ 6 BROWNS FERRY CORE SPRAY NOZZLE (N5)................................ 6-1 0

7 BROWNS FERRY JET PUMP INSTRUMENTATION NOZZLE (N8) 7-1 i i

~

8

SUMMARY

OF BROWNS FERRY NOZZLE-TO*SHELL WELD J

MODELING PARAMETERS.................................................................... 8-1

[J J I

,,-.* J

i

.J vii

I I_.1

-]

LIST OF FIGURES Figure 2-1. Cross Section ofTapered Nozzle Showing Geometric Prameters.............................................

2-2 Figure 2-2. Cross Section Showing Nozzle-to-Shell Weld and Definition of Class I Examination Volume under C odeC ase6 3......................................................................................................................................

2 -2 Figure 2-3. Browns Ferry Recirculation Outlet Nozzle-to-Shell Weld (N1): Probe Angle vs. Probe Skew for 500 C om er T rap..........................................................................................................................................

2-3 Figure 2-4. Definition of Probe Skew Angle................................................

2-4 Figure 2-5. Browns Ferry Recirculation Outlet Nozzle-to-Shell Weld (NI): Average Probe Angle versus Probe Skew for 500 Comer Trap - Technique Design Curve...............................................................................

2-5 Figure 2-6. Browns Ferry Recirculation Outlet Nozzle-to-Shell Weld: Probe Scan Limits and Examination Coverage for Blend Technique 43/106b at Theta = 90°............................................................................................

2-6 Figure 2-7. Browns Ferry Recirculation Outlet Nozzle-to-Shell Weld: Probe Scan Limits and Examination Coverage for Vessel Technique 60/(60 to 78)v at Theta = 90..................................................................................

2-7 Figure 2-8. Browns Ferry Recirculation Outlet Nozzle-to-Shell Weld (NI): Coverage Map for Blend Technique 43/106b................................................................................................................................................

2 -8 Figure 2-9. Browns Ferry Recirculation Outlet Nozzle-to-Shell Weld (NI): Coverage Map for Vessel Technique 60/(60 to 78)v.......................................................................................................................................

2-9 Figure 2-10. Browns Ferry Recirculation Outlet Nozzle-to-Shell Weld (NI): Summary Coverage Map; Union of Blend Technique 43/106b and Vessel Technique 60/(60 to 78)v..............................................................

2-10 Figure 2-11. Browns Ferry Recirculation Outlet Nozzle-to-Shell Weld: Metal Path Map; Union of Blend Technique 43/106b and Vessel Technique 60/(60 to 78)v................................

...................................... 2-11 Figure 2-12. Browns Ferry Recirculation Outlet Nozzle-to-Shell Weld: Beam Angle at the Flaw Map; Union of Blend Technique 43/106b and Vessel Technique 60/(60 to 78)v..............................................................

2-12 m

Figure 3-1. Browns Ferry Recirculation Inlet Nozzle-to-Shell Weld (N2): Probe Angle vs. Probe Skew for 500 1P C om er Trap...........................................................................................................................................

3-2 Figure 3-2. Browns Ferry Recirculation Inlet Nozzle-to-Shell Weld (N2): Average Probe Angle versus Probe Skew

_* 1* =Jfor 500 Comer Trap - Technique Design Curve........................................................................................

3-3 Figure 3-3. Browns Ferry Recirculation Inlet Nozzle-to-Shell Weld: Probe Scan Limits and Examination Coverage for Blend Technique 40/120b at Theta = 55...................................

....... 3-4 Figure 3-4. Browns Ferry Recirculation Inlet Nozzle-to-Shell Weld: Probe Scan Limits and Examination Coverage for Vessel Technique 60/(36 to 66)v at Theta = 90...................................................................................

3-4 Figure 3-5. Browns Ferry Recirculation Inlet Nozzle-to-Shell Weld (N2): Coverage Map for Blend Technique 40/120b................................................................................................................................................

3-5 Figure 3-6. Browns Ferry Recirculation Inlet Nozzle-to-Shell Weld (N2): Coverage Map for Vessel Technique 60/(36 to 66)v.......................................

36 Figure 3-7. Browns Ferry Recirculation Inlet Nozzle-to-Shell Weld (N2): Summary Coverage Map; Union of Blend Technique 40/120b and Vessel Technique 60/(36 to 66)v..........................................................................

3-7 Figure 3-8. Browns Ferry Recirculation Inlet Nozzle-to-Shell Weld: Metal Path Map; Union of Blend Technique 40/120b and Vessel Technique 60/(36 to 66)v..........................................................................................

3-8 Figure 3-9. Browns Ferry Recirculation Inlet Nozzle-to-Shell Weld: Beam Angle at the Flaw Map; Union of Blend Technique 40/120b and Vessel Technique 60/(36 to 66)v..........................................................................

3-9 Figure 4-1. Browns Ferry Main Steam Nozzle-to-Shell Weld (N3): Probe Angle vs. Probe Skew for 500 Comer T rap......................................................................................................................................................

4 -2 Figure 4-2. Browns Ferry Main Steam Nozzle-to-Shell Weld (N3): Average Probe Angle versus Probe Skew for

,.J 50* Comer. Trap - Technique Design Curve.............................

4-3 Figure 4-3. Browns Ferry Main Steam Nozzle-to-Shell Weld: Probe Scan Limits and Examination Coverage for

-i.Blend Technique 40/115b at Theta = 90.................................................................................................

4-4 j

Figure 4-4. Browns Ferry Main Steam Nozzle-to-Shell Weld: Probe Scan Limits and Examination Coverage for Vessel Technique 60/(54 to 74)v at Theta = 90°.................................................................................

4-4 Figure 4-5. Browns Ferry Main Steam Nozzle-to-Shell Weld (N3): Coverage Map for Blend Technique 40/115b.

4-5 Figure 4-6. Browns Ferry Main Steam Nozzle-to-Shell Weld (N3): Coverage Map for Vessel Technique 60/(54 to 74)v......................................................................................................................................................

4-6 lic

]

-l

. I

]

LIST OF FIGURES Figure 2-1. Cross Section of Tapered Nozzle Showing Geometric Parameters.................................................... 2-2

.]

Figure 2-2. Cross Section Showing Nozzle-to-Shell Weld and Definition of Class I Examination Volume under Code Case 613.. ".................................................................................................................................. 2-2 Figure 2-3. Browns Ferry Recirculation Outlet Nozzle*tOoShell Weld (Nt): Probe Angle vs. Probe Skew for 50' Corner Trap.......................................................................................................................................... 2-3

""1 Figure 2-4. Definition of Probe Skew Angle................................................................................................... 2-4

J Figure 2-5. Browns Ferry Recirculation Outlet Nozzle-to*Shell Weld (N!): Average Probe Angle versus Probe Skew for SO* Corner Trap* Technique Design Curve............................................................................... 2-5

]

Figure 2-6. Browns Ferry Recirculation Outlet Nozzle*tOoShell Weld: Probe Scan Limits and Examination Coverage for Blend Technique 431106b at Theta = 90*............................................................................................ 2-6 Figure 2-7. Browns Ferry Recirculation Outlet Nozzle*to*Shell Weld: Probe Scan Limits and Examination Coverage for Vessel Technique 60/(60 to 78)v at Theta = 90'.................................................................................. 2-7 0]

Figure 2-8. Browns Ferry Recirculation Outlet Nozzle-1OoSheU Weld (Nl): Coverage Map for Blend Technique 43/106b..........................................................................................................,..................................... 2-8 Figure 2-9. Browns Ferry Recirculation Outlet Nozzle-to-Shell Weld (NI): Coverage Map for Vessel Technique 60/{60 to 78)v........................................................................................................................................ 2-9 J

Figure 2-10. Browns Ferry Recirculation Outlet Nozzle-1OoShell Weld (NI): Summary Coverage Map; Union of Blend Technique 43/106b and Vessel Technique 60/(60 to 78)v.............................................................. 2-10 Figure 2-11. Browns Ferry Recirculation Outlel Nozzle*tOoShell Weld: Metal Path Map; Union of Blend Technique i]

43/106b and Vessel Technique 60/(60 to 78)v........................................................................................ 2-11 Figure 2-12. Browns Ferry Recirculation Outlet Nozzle-to-Shell Weld: Beam Angle at the Flaw Map; Union of Blend Technique 43/106b and Vessel Technique 601{60 to 78)v.............................................................. 2-12 m

Figure 3-1. Browns Ferry Recirculation Inlet Nozzle*le-Shell Weld (N2): Probe Angle vs. Probe Skew for 50' N

i I

W

~

i-.J Comer Trap.......................................................................................................................................... 3-2 Figure 3-2. Browns Ferry Recirculation Inlet Nozzie-tOoShell Weld (N2): Average Probe Angle versus Probe Skew for 50' Comer Trap* Technique Design Curve........................................................................................ 3-3 I-..J Figure 3-3. Browns Ferry Recirculation Inlet Nozzle-to-Shell Weld: Probe Scan Limits and Examination Coverage for Blend Technique 40/120b at Theta = 55'............................................................................................ 3-4 Figure 3-4. Browns Ferry Recirculation Inlet Nozzle-tOoShell Weld: Probe Scan Limits and Examination Coverage for Vessel Technique 60/{36 to 66)v at Theta = 90*.................................................................................. 3-4

]

Figure 3-5. Browns Ferry Recirculation Inlet Nozzle-to-Shell Weld (N2): Coverage Map for Blend Teclmique 401120b................................................................................................................................................ 3-5 Figure 3-6. Browns Ferry Recirculation Inlet Nozzlo-to-Shell Weld (N2): Coverage Map for Vessel Technique 60/(36 to 66)v........................................................................................................................................ 3-6

,-I Figure 3-7. Browns Ferry Recirculation Inlet Nozzle-te-Shell Weld (N2): Summary Coverage Map; Union of Blend Technique 401120b and Vessel Technique 60/{36 to 66)v.......................................................................... 3-7 Figure 3-8. Browns Ferry Recirculation Inlet Nozzle-to-Shell Weld: Metal Path Map; Union of Blend Technique

]

40/120b and Vessel Technique 60/(36 to 66)v.......................................................................................... 3-8 Figure 3-9. Browns Ferry Recirculation Inlet Nozzle-to-Shell Weld: Beam Angle at the Flaw Map; Union of Blend Technique 40/l20b and Vessel Technique 60/(36 to 66)v.......................................................................... 3-9 Figure 4-1. Browns Ferry Main Steam Nozzle-tOoShell Weld (N3): Probe Angle vs. Probe Skew for SO' Comer i

,J Trap..................................................................................................................................................... 4-2 Figure 4-2. Browns Ferry Main Steam Nozzle*to-Shell Weld (N3): Average Probe Angle versus Probe Skew for SO' Comer Trap* Technique Design Curve............................................................................................. 4-3

'i

.-i Figure 4-3. Browns Ferry Main Steam Nozzle-to-Shell Weld: Probe Scan Limits and Examination Coverage for Blend Technique 401115b at Theta = 90'................................................................................................. 4-4 Figure 4-4. Browns Ferry Main Steam Nozzie-tOoShell Weld: Probe Scan Limits and Examination Coverage for Vessel Technique 60/(54 to 74)v at Theta = 90'....................................................................................... 4-4 Figure 4-5. Browns Ferry Main Steam Nozzle-to*Shell Weld (N3): Coverage Map for Blend Technique 401115b.

............................................................................................................................................................ 4-5 Figure 4-6. Browns Ferry Main Steam Nozzio-tOoShell Weld (N3): Coverage Map for Vessel Technique 60/(54 to 74)v...................................................................................................................................................... 4-6 Ix

Figure 4-7. Browns Ferry Main Steam Nozzle-to-Shell Weld (N3): Summary Coverage Map; Union of Blend Techrique 40/I 15b and Vessel Tenchique 601(54 to 74)v..........................................................................

4-7 Figure 4-8. Browns Ferry Main Steam Nozzle-to-Shell Weld: Metal Path Map; Union of Blend Technique 40/115b and Vessel Technique 601(54 to 74)v...........................................................

4-8 Figure 4-9. Browns Ferry Main Steam Nozzle-to-Shell Weld: Beam Angle at the Flaw Map; Union of Blend Technique 40/1 11b and Vessel Technique 60/(54 to 74)v..........................................................................

4-9 Figure 5-1. Browns Ferry Feedwater Nozzle-to-Shell Weld (N4): Probe Angle vs. Probe Skew for 500 Comer Trap.

5-2 5-2 Figure 5-2. Browns Ferry Feedwater Nozzle-to-Shell Weld (N4): Average Probe Angle versus Probe Skew for 500 Com er Trap - Technique Design Curve...................................................................................................

5-3.

Figure 5-3. Browns Ferry Feedwater Nozzle-to-Shell Weld: Probe Scan Limits and Examination Coverage for Blend Technique 40/120b at Theta = 90................................

......... 5-4 Figure 5-4. Browns Ferry Feedwater Nozzle-to-Shell Weld. Probe Scan Limits and Examination Coverage for Vessel Technique 60/(35 to 67)v at Theta = 900.......................................................................................

5-5 Figure 5-5. Browns Ferry Feedwater Nozzle-to-Shell Weld (N4): Coverage Map for Blend Technique 40/120b..5-6 Figure 5-6. Browns Ferry Feedwater Nozzle-to-Shell Weld (N4): Coverage Map for Vessel Technique 60/(35 to 67)v

........... 5-7 Figure 5-7. Browns Ferry Feedwater Nozzle-to-Shell Weld (N4): Summary Coverage Map; Union of Blend Technique 40/120b and Vessel Technique 60/(35 to 67)v..........................................................................

5-8 Figure 5-8. Browns Ferry Feedwater Nozzle-to-Shell Weld: Metal Path Map; Union of Blend Technique 40/120b and Vessel Technique 60/(35 to 67)v.....................................................................................................

5-9 Figure 5-9. Browns Ferry Feedwater Nozzle-to-Shell Weld: Beam Angle at the Flaw Map; Union of Blend ij Technique 40/120b and Vessel Technique 60/(35 to 67.....................................................................

5-10 Figure 6-1. Browns Ferry Core Spray Nozzle-to-Shell Weld (N5): Probe Angle vs. Probe Skew for 500 Comer

.Trap.................................

6-2 Figure 6-2. Browns Ferry Core Spray Nozzle-to-Shell Weld (N5): Average Probe Angle versus Probe Skew fbr 50' Com er Trap - Technique Design Curve...................................................................................................

6-4 m

Figure 6-3. Browns Fersy Core Spray Nozzle-to-Shell Weld: Probe Scan Limits and Examination Coverage for SBlend Technique 35/68b at Theta = 90...................................................................................................

6-5 C-.

Figure 6-4. Browns Ferry Core Spray Nozzle-to-Shell Weld: Probe Scan Limits and Examination Coverage for On Vessel Technique 60/(30 to 64)v at Theta = 90

.................................................. 6-6 Figure 6-5.

Browns..........

FryCrSryWl(N Figure 6-5. Browns Ferry Core Spray Nozzle-to-Shell Weld (N5): Coverage Map for Blend Technique 35/68b...6-7 Figure 6-6. Browns Ferry Core Spray Nozzle-to-Shell Weld (NS): Coverage Map for Vessel Technique 60/(30 to

.64)v Figure 6-7. Browns Ferry Core Spray Nozzle-to-Shell Weld (N5): Summary Coverage Map; Union of Blend Technique 35/68b and Vessel Technique 60/(30 to 64)v.........................................

6-9 Figure 6-8. Browns Ferry Core Spray Nozzle-to-Shell Weld: Metal Path Map; Union of Blend Technique 35/68b and Vessel Technique 60/(30 to 64)v.....................................................................................................

6-10 Figure 6-9. Browns Ferry Core Spray Nozzle-to-Shell Weld: Beam Angle at the Flaw Map; Union of Blend Technique 35/68b and Vessel Technique 60/(30 to 64)v.........................................................................

6-11 Figure 7-1. Browns Ferry Jet Pump Instrumentation Nozzle-to-Shell Weld (NS): Probe Angle vs. Probe Skew for 507 Com er TTrap....................................................................................................................................

7-2 Figure 7-2. Browns Ferry Jet Pump Instruimentation Nozzle-to-Shell Weld (N8): Average Probe Angle versus Probe F

Skew for 500 Comer Trap - Technique Design Curve.........................................................................

7-3 Figure 7-3. Browns Ferry Jet Pump Instrumentation Nozzle-to-Shell Weld: Probe Scan Limits and Examination Coverage for Vessel Technique 50/(15 to 45)v at Theta = 90..

7-4 Figure 7-4. Browns Ferry Jet Pump Instnrmentation Nozzle-to-Shell Weld (N8): Coverage Map for Vessel Technique 50/(15 to 45)v.......................................................................................................................

7-5 Figure 7-5. Browns Ferry Jet Pump Instrumentation Nozzle-to-Shell Weld: Metal Path Map; Vessel Technique 501(15 to 45)v......................................................................................................................................

7 -6 Figure 7-6. Browns Ferry Jet Pump Instrumentation Nozzle-to-Shell Weld: Beam Angle at the Flaw Map; Vessel Technique 50/(15 to 45)v.

7-7 x

Figure 4-7. Browns Ferry Main Steam Nozzle-to-Shell Weld (N3): Summary Coverage Map; Union of Blend Tecllnique4(l(llSb and VllSsel Tecbnique60I(S4m 7<\\)v.......................................................................... 4-7 Figure 4-8. Browns Ferry Main Steam Nozzle-to-Shell Weld: Metal Path Map; Union of Blend Technique 401l15b and Vessel Technique 60/(54 to 74)v.......................................................................................................4-8 Figure 4-9. Browns Ferry Main Steam Nozzle-to-Shell Weld: Beam Angle at the Flaw Map; Union of Blend Technique 40/1lSb and Vessel Technique 60/(S4 to 74)v.......................................................................... 4-9 Figure 5-1. Browns Ferry Feedwater Nozzle-to-Shell Weld (N4): Probe Angle vs. Probe Skew for 50° Comer Trap.

............................................................................................................................................................ 5-2 Figure 5-2. Browns Ferry Feedwater Nozzle-to-Shell Weld (N4): Average Probe Angle versus Probe Skew for 50° Comer Trap - Technique Design Curve................................................................................................... 5-3 Figure 5-3. Browns Ferry Feedwater Nozzle-to-Shell Weld: Probe Scan Limits and Examination Coverage for Blend Technique 40/l20b at Theta = 90°........................................................................................................... 5-4 Figure 5-4. Browns Ferry Feedwater Nozzle-to-Shell Weld: Probe Scan Limits and Examination Coverage for Vessel Technique 60/(35 to 67)v at Theta = 90°....................................................................................... 5-5 Figure 5-5. Browns Ferry Feedwater Nozzle-to-Shell Weld (N4): Coverage Map for Blend Technique 40/120b.. 5-6 Figure 5-6. Browns Ferry Feedwater Nozzle-to-Shell Weld (N4): Coverage Map for Vessel Technique 60/(35 to 67)v...................................................................................................................................................... 5-7 Figure 5-7. Browns Ferry Feedwater Nozzle-la-Shell Weld (N4): Summary Coverage Map; Union of Blend Technique 40/120b and Vessel Technique 60/(35 to 67)v.......................................................................... S-8 Figure 5-8. Browns Ferry Feedwater Nozzle-ta-Shell Weld: Metal Path Map; Union of Blend Technique 40/120b and Vessel Technique 60/(35 to 67)v....................................................................................................... 5-9 Figure 5-9. Browns Ferry Feedwater Nozzle-to-Shell Weld: Beam Angle at the Flaw Map; Union of Bland Technique 40/120b and Vessel Technique 60/(35 to 67........................................................................... 5-10 Figure 6-1. Browns Ferry Core Spray Nozzle-ta-Shell Weld (N5): Probe Angle vs. Probe Skew for 50".Corner

.Trap.................................................................................................................... :................................ 6-2 Figure 6-2. Browns Ferry Core Spray Nozzle-to-Shell Weld (NS): Average Probe Angle versus Probe Skew for 50° Comer Trap - Technique Design Curve................................................................................................... 6-4 Figure 6-3. Browns Ferry Core Spray Nozzle-to-Shell Weld: Probe Scan Limits and Examination Coverage for Blend Technique 35/68b al Theta = 90°................................................................................................... 6-5 Figure 6-4. Browns Ferry Core Spray Nozzle-ta-Shell Weld: Probe Scan Limits and Examination Coverage for Vessel Technique 60/(30 to 64)v at Theta = 90°....................................................................................... 6-6 Figure 6-5. Browns Ferry Core Spray Nozzle-to-Shell Weld (N5): Coverage Map for Blend Technique 35/68b... 6*7 Figure 6-6. Browns Ferry Core Spray Nozzle-to-Shell Weld (NS): Coverage Map for Vessel Technique 60/(30 to 64)v...................................................................................................................................................... 6-8 Figure 6-7. Browns Ferry Core Spray Nozzle-to-Shell Weld (NS): Summary Coverage Map; Union of Blend Technique 3S168b and Vessel Technique 60/(30 to 64)v................................................................ :.......... 6-9 Figure 6-8. Browns Ferry Core Spray Nozzle-ta-Shell Weld: Metal Path Map; Union of Blend Technique 3S/68b and Vessel Technique 60/(30 to 64)v..................................................................................................... 6-10 Figure 6-9. Browns Ferry Core Spray Nozzle-la-Shell Weld: Beam Angle at the Flaw Map; Union of Blend Technique 35/68b and Vessel Technique 60/(30 to 64)v......................................................................... 6-11 Figure 7-1. Browns Ferry Jet Pump Instrumentation Nozzle-ta-Shell Weld (NS): Probe Angle vs. Probe Skew for 50° Comer Trap.................................................................................................................................... 7-2 Figure 7-2. Browns Ferry Jet Pump Instrumentation Nozzle-to-Shell Weld (NS): Average Probe Angle versus Probe Skew for 50° Comer Trap - Technique Design Curve............................................................................... 7*3 Figure 7-3. Browns Ferry Jet Pump Instrumentation Nozzle-ta-Shell Weld: Probe Scan Limits and Examination Coverage for Vessel Technique 50/(15 to 4S)v at Theta = 90°................................................................... 7-4 Figure 74. Browns Ferry Jet Pump Instrumentation Nozzle-la-Shell Weld (NS): Coverage Map for Vessel Technique SO/(lS to 45)v....................................................................................................................... 7-5 Figure 7-5. Browns Ferry Jet Pump Instrumentation Nozzle-to-Shell Weld: Metal Path Map; Vessel Technique SO/(15 to 4S)v........................................................................................................................................ 7-8 Figure 7-6. Browns Ferry Jet Pump Instrumentation Nozzle-to-SheU Weld: Beam Angle at the Flaw Map; Vessel Technique SO/(lS to 4S)v....................................................................................................................... 7-7 x

[~

I' L

n L

o n

u c

[j

..1 LIST OF TABLES Table 2-1. Browns Ferry Recirculation Outlet Nozzle (NI) Geometry Inputs to Spreadsheet Model for Nozzle-to-Shell W eld Exam ination.........................................................................................................................

2-1 Table 2-2. Spreadsheet Model Techniques for Recirculation Outlet Nozzle-to-Shell Weld 2-5 Table 2-3. Spreadsheet Model Techniques for Recirculation Outlet Nozzle-to-Shell Weld..................................

2-5 Table 3-1. Browns Ferry Recirculation Inlet Nozzle (N2) Geometry Inputs to Spreadsheet Model for Nozzle-to-Shell W eld Exam ination.................................................................................................................................

3-1 Table 3-2. Spreadsheet Model Techniques for Recirculation Inlet Nozzle-to-Shell Weld.....................................

3-3 Table 3-3. Spreadsheet Model Techniques for Recirculation Inlet Nozzle-to-Shell Weld...................... 3-3 Table 4-1. Browns Ferry Main Steam Nozzle (N3) Geometry Inputs to Spreadsheet Model for Nozzle-to-Shell Weld E xam ination..........................................................................................................................................

4-1

]

Table 4-2. Spreadsheet Model Techniques for Main Steam Nozzle-to-Shell Weld..............................................

4-3 Table 4-3. Spreadsheet Model Techniques for Main Steam Nozzle-to-Shell Weld..............................................

4-3 Table 5-1. Browns Ferry Feedwater Nozzle (N4) Geometry Inputs to Spreadsheet Model for Nozzle-to-Shell Weld Exam ination..........................................................................................................................................

5-1 j

Table 5-2. Spreadsheet Model Techniques for Feedwater Nozzle-to-Shell Weld.................................................

5-3 Table 5-3. Spreadsheet Model Techniques for Feedwater Nozzle-to-Shell Weld...............................................

5-3 Table 6-1. Browns Ferry Core Spray Nozzle (N5) Geometry Inputs to Spreadsheet Model for Nozzle-to-Shell Weld Exam ination...................................................................................................................

....... 6-1 Table 6-2. Spreadsheet Model Techniques for Core Spray Nozzle-to-Shell Weld...............................................

6-3 Table 6-3. Spreadsheet Model Techniques for Core Spray Nozzle-to-Shell Weld...............................................

6-4 Table 7-1. Browns Ferry Jet Pump Instrumentation Nozzle (N8) Geometry Inputs to Spreadsheet Model for Nozzle-j to-Shell W eld Exam ination.....................................................................................................................

7-1 rI Table 7-2. Spreadsheet Model Techniques for Jet Pump Instrumentation Nozzle-to-Shell Weld..........................

7-3 l-a Table 7-3. Spreadsheet Model Technique for Jet Pump Instrumentation Nozzle-to-Shell Weld............................

7-3 CA)o,*

Table 8-1. Browns Ferry Nozzle-to-Shell Weld Examination Modeling Parameters....................................

8-1 zj j

m N

I W

0)

']

1 1

"1 i

)

]

']

i

,~

'1 u J

.J I J i

,-.J LIST OF TABLES Table 2-1. Browns Ferry Recirculation Outlet Nozzle (NI) Geometry Inputs to Spreadsheet Model for Nozzle*ta-Shell Weld Examination......................................................................................................................... 2-1 Table 2*2. Spreadsheet Model Techniques for Recirculation Outlet Nozzle-ta-Shell Weld.................................. 2-5 Table 2*3. Spreadsheet Model Techniques for Recirculation Outlet Nozzle-ta-Shell Weld.................................. 2-5 Table 3-1. Browns Ferry Recirculation Inlet Nozzle (N2) Geometry Inputs to Spreadsheet Model for Nozzle-ta-Shell Weld Examination................................................................................................................................. 3-1 Table 3-2. Spreadsheet Model Techniques for Recirculation Inlet Nozzle-la-Shell Weld..................................... 3-3 Table 3-3. Spreadsheet Model Techniques for Recirculation Inlet Nozzle-to-Shell Weld..................................... 3-3 Table 4-1. Browns Ferry Main Stearn Nozzle (N3) Geometry Inputs to Spreadsheet Model for Nozzle-ta-Shell Weld Examination.......................................................................................................................................... 4-1 Table 4-2. Spreadsheet Model Techniques for Main Steam Nozzle-la-Shell Weld.............................................. 4-3 Table 4-3. Spreadsheet Model Techniques for Main Steam Nozzle-ta-Shell Weld..............................................4-3 Table 5-1. Browns Ferry Feedwater Nozzle (N4) Geometry Inputs to Spreadsheet Model for Nozzle*to-Shell Weld Examination......,....................................,.............................................................................................. 5-1 Table 5*2. Spreadsheet Model Techniques for Feedwater Nozzle-ta-Shell Weld................................................. 5*3 Table 5-3. Spreadsheet Model Techniques for Feedwater Nozzle-to-Shell Weld................................................. 5-3 Table 6-1. Browns Ferry Core Spray Nozzle (N5) Geometry Inputs to Spreadsheet Model for Nozzle-ta-Shell Weld Examination.......................................................................................................................................... 6-1 Table 6-2. Spreadsheet Model Techniques for Core Spray Nozzle-to-Shell Weld............................................... 6-3 Table 6-3. Spreadsheet Model Techniques for Core Spray Nozzle-to-Shell Weld............................................... 6-4 Table 7-1. Browns Ferry Jet Pump Instrumentation Nozzle (N8) Geometry Inputs to Spreadsheet Model for Nozzle-to-Shell Weld Examination..................................................................................................................... 7-1 Table 7-2. Spreadsheet Model Techniques for Jet Pump Instnunentation Nozzle-to-Shell Weld.......................... 7-3 Table 7-3. Spreadsheet Model Technique for Jet Pump Instrumentation Nozzle-to-Shell Weld............................ 7-3 Table 8-1. Browns Ferry Nozzle-to-Shell Weld Examination Modeling Panuneters........................................... 8-1 xi

I INTRODUCTION This report describes the work performed by the EPRI NDE Center to assist Browns Ferry in developing examination techniques for their nozzle-to-shell weld examinations. The

- 3 examinations are to be done by Framatome. The necessary geometric inputs to the EPRI spreadsheet model are listed for each nozzle and cross sectional plots are provided. The technique design curves developed by the model are given together with the techniques chosen J

for each nozzle. Tabular and graphical information on the technique maximum and minimum probe skew angle, radial position and metal path are provided. The combined coverage or minimum misorientation angle achieved by the chosen techniques is given, as well as, the associated metal path and beam angle at the flaw.

m U

f--i I ij LiLJ 1-1 m

N I

W

-..,j

,-"'I I

I

..1 I

.. 1 n

I
_.. J r--I 1 I

~j r*'

I U

n U

("*1 I

I LJ r-l I

I U

q U

U

- 1 J

, J r"*j 1

INTRODUCTION This report describes the work perfonned by the EPRI NDE Center to assist Browns Ferry in developing examination techniques for their nozzle-to-shell weld examinations. The examinations are to be done by Framatome. The necessary geometric inputs to the EPRI spreadsheet model are listed for each nozzle and cross sectional plots are provided. The technique design curves developed by the model are given together with the techniques chosen for each nozzle. Tabular and graphical infonnation on the technique maximum and minimum probe skew angle, radial position and metal path are provided. The combined coverage or minimum misorientation angle achieved by the chosen techniques is given, as well as, the associated metal path and beam angle at the flaw.

1-1

Li co-5 BROWNS FERRY FEEDWATER NOZZLE (N4)

Table 5-1 gives the necessary geometric inputs to the NDE Center spreadsheet mo or the Browns Ferry feedwater nozzle-to-shell weld.

Table 5-1. Browns Ferry Feedwater Nozzle (N4) Geometry Inputs to S cdsheet Model for Nozzle-to-Shell Weld Examination Inside Surface Outside Su ce Dimensions (inches)

Dimen Si (inches)

Weld Start R 19.219 Weld End R 23.965 Rbore

12.

Rnozzle 21.313 Rbi 3.063 Rbo 4.75 R

125.6875 Rvo 131.9375 5-1

.. " i:

( "~

r--,

tJ n i i I

,. I n

f!

i I

,J fJ

'1 1 J I.

n lJ ii LJ m

N I

[J W

(Xl n

u rl U 0

0 1]

I U

-~

/... -.

5 BROWNS FERRY FEEDWATER NOZZLE (N4)

Table 5-1 gives the necessary geometric inputs to the NDE Center spreadsheet mo Browns Ferry feedwater nozzle-to-shell weld.

Table 6-1. Browns Feny Feedwater Nozzle (N4) Geometry Inputs to S to-Shell Weld Examination


~~----------

Inside Surface Dimensions WeidStartR Rbore (inches) 19.219 (inches) 23.965 Rnozzle 21.313 Rbo 4.75 Rvo 131.9375 5-1

PL.vIInoer-1.,vlinaer I eoereu riaw mousi ~A~55 1 VI.UD II~.AW r

Cynnuer-uVi1naer I apered WSYY Model Class i V-1.0D ic.xm Browns Fery Feedwater Nozzle N4 Only Input Parameters in BOLD Rmax 28.75 28.75 Zmax 147.6075 Initial Beam Angle at Flaw 70 Weld Start R 11.25 initial Skew Angle at Flaw 90 Weld End R 15.59990825 Exam Volume Height 0.91875 Plot Theta 0

Exam Start R 10.75 Exam End R 16.09990825 Inside Surface Parameters (in)

Ouside Surface Parameters (in)

Rbore 6

Rnozzle 13 Zbore 147.6075 Znozzle 147.6075 Taper Angle I 0

Taper Angle 0 0

Rbi 3

Rbo 3.75 RvI 125.6875 Rvo 131.8125 Inverse E2-39 Cylinder-CylinderTapered NSW Model Class 1 V1.OB1c.xls Browns FenyFeedwaler Nozzle N4 Only Input Parameters in BOLD Rmax 28.75 28.75 Zmax 147.6075 Initial Beam Angle at Flaw 70 WeldStartR 11.25 InitIal Skew Angle at Flaw 90 Weld EndR 15.59990825 Exam Volume Height 0.91875 Plot Theta 0

Exam StartR 10.75 Exam End R 16.09990825 Inside Surface Parameters (in)

Ouside Surface Parameters (in)

Rbore 6

Rnozzle 13 Zbore 147.6075 Znozzle 147.6075 Taper Angle I 0

Taper Angle 0 0

Rbi 3

Rbo 3.75 Rvl 125.6875 Rvo 131.8125 Inverse E2-39

Figure 5-1 is

  • plot of the probe beam angle versus the probe skew angle for all values of perimeiter disr'-LeCe, S and azimuth, 0. As shown in Figure 2-2, the distance S is the perimeter of p~-r~i tr d

volume, i.e. 0 - ExamSitani - ExamSitan2-ExamSitan3-ExamSitan4. The the exaJnnFag.l.rf 5-1 summarizes the mass of information regarding the probe angles and probe crews Ileed to obtain a 50* comer trap response everywhere in the nozzle-to-shell weld skews teed

.olume of the feedwater nozzle. Also shown in Figure 5-1 is the average probe exami*1ti

  • obe skew (thick line with open circles); the technique design curve.

angle versus "

We Ferry Feedwitar NHoze-to-Shell Weld (N4): Probe Angle ve Probe Skew (60 dog comer trap)

35F L

3035 40"* 45 M0 W5 M 65 70 75 all 85 90 95 100 105 110 116 120 125

  • o 35--

~

Probe Sketw

,nsFerry Feedwater Nozzle-to-Shell Weld (N4): Probe Angle vs. Probe Skew for o*

60° qu er TraP" I~!

5r sw

'O"1 i

045 U

iiiL~L 5-2 SC 85 775089 91015I015202 l' 9-plot of the probe beam angle versus the probe skew angle for all values of Fig~e 5- ;'~1;~ce, S and azimuth, e. As shown in Figure 2-2, the distance S is the perimeter of per1mete~ 1 ti on volume, i.e. 0 - ExamSitanl - ExamSitan2-ExamSitan3-ExamSitan4. The the exa~xll~~ g1..l.re 5-1 summarizes the mass of information regarding the probe angles and probe curves In ; d to obtain a 50° comer trap response everywhere in the nozzle-to-shell weld skews ne~ e volume of the feedwater nozzle. Also shown in Figure 5-1 is the average probe examintlt10n p!,obe skew (thick line with open circles); the technique design curve.

angle versUs 65 P60

55 50 "45 D

!40 s,.owns Ftrry F ** anter Nozzl... to-Blteti Weld (N"): Probe Angle vs "rob. Skew (50 dog como'tnlp) 35. AO

<15 so 55 60 65 70 75 80 85 90 Il5 100 105 110 115 120 125 30 Probe Stew Browns Ferry Feedwater Nozzle-to-Shell Weld (N4): Probe Angle va. Probe Skew for Figure 6-1.

600 Corner Trap*

5-2 r

[

n u

o rJ I

i lJ L

12 The spreadsheet techniques to examine the Browns Ferry feedwater nozzle-to-shell weld involve scanning from the outer blend radius and the outer vessel shell. Table 5-2 gives the probe beam and skew angles, scan surfaces, and the mode of propagation.

Table 6,2. Spreadsheet Model Techniques for Feedwater Nozzle-to-Shell Weld.

Probe Angle Probe Skew Scan Surface Mode of Propagation 40 60

+/-120 Blend Shear Wave Shear Wave m

r t jLi Li Li LI Li U

Li U

J VI Figure 5-2 -shows these techniques in relation to the average probe angle versus average probe skew curve. These spreadsheet examination techniques are summarized again in Table 5-3 together with the corresponding scan surface, minimum and maximum probe radial positions, minimum and maximum metal paths, and maximum misorientation angle.

Table 5-3. Spreadsheet Model Techniques for Feedwater Nozzle-to-Shell Weld.

Probe Probe Angle Skew Scan Min R Max R Min MP Max MP Max Misorientation Surface 40

+/-120 Blend 13.45 14.55 7.64 11.35 6

60

+/-(35 to 67)

Vessel 17.27 20.71 9.73 14.44 20

+/-(35 to 67)

Vessel Browns Feny Peedwater Nozzle-to-Shell Weld (N4): Probe Angle vs Probe Skew (50 deg corner trap)

P 60i 0bF so A

n 40--0 C

30 35 40 45 50 55 o0 6s 70 75 80 85 90 95 100 105 110 115 120 125 Probe Skew Figure 8-2. Browns Ferry Feedwater Nozzle-to-Shell Weld (N4): Average Probe Angle versus Probe Skew for 500 Comer Trap - Technique Design Curve.

5-3

,I i I i.\\

r~i,

j i f:

! 1 I.. I n

I

...1 i

f"""! i r tJ

~l i j

,I U

rl l....,

11 m

U I\\.)

I 0

~

0

[J fJ U

--)

'J r-l

'~.-'

The spreadsheet techniques to examine the Browns Ferry feedwater nozzle-to-shell weld involve scanning from the outer blend radius and the outer vessel shell. Table 5-2 gives the probe beam and skew angles, scan surfaces, and the mode of propagation.

Table 5-2. Spread8heet Model Techniques for Feedwater Nozzle-to-Shell Weld.

Probe Angle 40 60 Probe Skew Scan Surface

+/-l20 Blend

+/-(35 to 67)

Vessel

~odeofPropagation Shear Wave Shear Wave Figure 5-2'shows these techniques in relation to the average probe angle versus average probe skew curve. These spreadsheet examination techniques are summarized again in Table 5-3 together with the corresponding scan surface, minimum and maximum probe radial positions, minimum and maximum metal paths, and maximum misorientation angle.

Table 5-3. Spreadsheet Model Techniques for Feedwater Nozzle-to-Shell Weld.

Probe Probe Scan MinR MaxR MinMP MaxMP Max Misorientation Angle Skew Surfa""

4()

60 65 P 60 r

o b 65 e

50 A

"'IS 9

'40 35

+/-120

. Blend 13.45 14.55 7.64 11.35 6

+/-(35 to 67)

Vessel 17.27 20.71 9.73 14.44 20 Brown. Feny Feedwatar Nozzle-to*Sheli Weld (N4): Probe Angle va Probe Skew (50 deg co,ner trap)

I r-.........

"'".......... ~ --

.P -

30 35 40 45 50 65 60 65 70 75 80 85 90 95 100 105 110 115 120 125 Probe Skew Figure 5-2. Browns Feny Feedwater Nozzle-to-Shell Weld (N4): Averege Probe Angle versus Probe Skew for SOo Comer Trap - Technique Design Curve.

5-3

Figure 5-3 shows the minimum and maximum probe radial positions and the portion of the examination volume covered by the blend technique, 40/120b, for probes scanned at the azimuth angle of 900.

Browns Ferry FeedwaterNozzle-to-Shel Weld (N4),4GM120b 135 131 129 127 125 1

123 3

5 7

9 11 13 15 17 19 21 23 25 27 RL m

Figure 6-3. Browns Ferry Feedwater Nozzle-to-Shell Weld: Probe Scan Limits and Examination Coverage for Blend Technique 401120b at Theta 90*.

.j" L

f-5-4 Figure 5-3 shows the minimum and maximum probe radial positions and the portion of the examination volume covered by the blend technique, 40/120b, for probes scanned at the azimuth angle of 90°.

z Browns Feny FaedWatar Nozzla4>-Shen Weld (N4). 4OI120b m..---..--------r-------------~

13'

'29 117

,~L---------------------------~~~

II R

17 19 21 23 Figure 6-3. Browns Feny Feedwater Nozzle-to-5hell Weld: Probe Scan Llmlta and Examination Coverage for Blend Technique 40/120b at Theta = 90°.

54 r

o I:

n o

n Lj o

o o

o c

(.

I.

l.. :

i:

J:

f !

m N,9ý6 CA)

'-in (I

Li Li Li Li Li Li j

~2 Browns Ferry Feedwater Nozzle-to-Shell Weld (N4), 60/(35 to 67)v z

R Figure 5-4 shows the minimum and maximum probe radial positions and the portion of the examination volume coveredby the vessel technique, 60/(35 to 67)v, for probes scanned at the azimuth angle of 900.

Figure 5-4. Browns Ferry Feedwater Nozzle-to-Shell Weld: Probe Scan Uimits and Examination Coverage for Vessel Technique 60/(36 to 67)v at Theta - 90.

5-5 r ~l f-: i I

r*-*)

I,

!... j

(._J i i i..,

r-1 U f-l LJ

[]

0 m

I\\)

I 0

w U

0

'--I

J I
.J

,.. /

.. j

.J

-I I

-j Figure 5-4 shows the minimum and maximum probe radial positions and the portion of the examination volume covered.by the vessel technique*, 60/(35 to 67)v, for probes scanned at the azimuth angle of 90°.

Browns Feny Feedwatar Nozzle-to-Shell Weld (N4), 601(35 to 67)v 137 135 133 131 Z

129 127 125 123 3

11 13 15 17 21 23 25 27 R

Figure 5-4. Browns Ferry Feedwater Nozzle-to-Shell Weld: Probe Scan Umlts and examination Coverage for Vessel Technique 60/(35 to 67)v at Theta.. 90°.

5-5

Figure 5-5 shows the translation of the nozzle-to-shell examination volume onto a foldout grid, upon which has been plotted the coverage plot for the outer blend radius technique: 40/120b.

The colors here correspond to the techniques' misorientation angle at the points on the inner surface.

Browns Fory Feedwater Nonzle-to-Shetl Weld (N4): Ulsoflentatlon Angle; 40112Zbd 100-3 113-6 06-9 09-12 M12-15 mi5-I8 *18-21 m

L FF-111 FI-7.,

fl-911. 011111111k,11111 11 A kL.AMMMMlk=-x)ý AT L-A:

0.31 0.63 0.94

-12.6

-1.57 1.89

.220 2.52 72.86 3.15 3.46 3.77 4.09 9.40 4.72 5.03 5.35 5.66 5.98

-6.29$"

8.61 6.92 7.23 7.55 7.86 8.18

-8.49

-8,81

-9.*12

-9.44

-9.75

-10.07

-0.38

=10.70 11.01

-11.32

-11.64 11.95 1227 12.58 P!

Lif7 0

18 36 54 72 90 108 126 144 162 180 Theta (degrees)

Figure 5-5. Browns Ferry Feedwater Nozzle-to-Shell Weld (N4): Coverage Map for Blend Technique 401120b.

5-6 Figur~ 5-5 shows the translation of the nozzle-ta-shell examination volume onto a foldout grid, upon which has been plotted the coverage plot for the outer blend radius technique: 40/120b.

The colors here correspond to the techniques' misorientation angle at the points on the inner surface.

Brown. Fony Feodwotor NDzzle*lo-Shell Weld (N4):

II"D~ontatlDn Angle; 4DI1ZDbd o

18 36 54 12 90 108 126 144 182 180 Theta (degrees)

Figure 5-6. Browns Feny Feedwater Nozzle-to-Shell Weld (N4): Coverage Map for Blend Technique 40/12Db.

~.. :

i I n

u r*

I' I.'

o c

o r u o

o

Li Figure 5-6 shows a similar rollout of the inner examination surface upon which has been plotted the coverage (misorientation angle) for the outer vessel technique: 60/(35 to 67)v.

SrOwne Feny Feedwater Nonzle-to-Shell Weld (N4): Mlsoirlentaton Angle; 601(35 to 67)v

  • 10-3 03-6 E6-9 09-12 E12-15 115-18 m18-21 I qFy VIL.

it Al IMIMMIL AA V

INIONEYBRAM NOMPIA&F 11VAf lu

'AL JAI Ask

=10mrolk

. 1-.

FRIO-tqp_%Oý FgH Fin

-0.00 0.31 0.63 0.94 126

-1.57 1.89 220 2.52 2.83 3.15 3.46

.3.77 14.09 14.40 14.72 15.03 15.35 15.66 15.98

-629 5"

-6.61 68.92 17.23

-7.55

-7.86

-8.18

-8.49

-9.12

-9AI4

-9.75

-10.07

-10.38

-10.70

-11.01

-11.32

-11.64

-11.95

-12.27

-12.58 18 36 54 72 90 108 128 144 182 180 Theta (degrees)

Figure 5-6. Browns Ferry Feedwater Nozzle-to-Shell Weld (N4): Coverage Map for Vessel Technique 601(35 to 67)v.

5-7 r***:

r-;

! l.j r,

, I 1.1 r-;

L.~

(1 U

n I

Lj n : i L..J il u

m N

I 0

~

01 r-l u

I I U fJ

-1

'-J

'-_.J r,

i I

Figure 5-6 shows a similar rollout of the inner examination surface upon which has been plotted the coverage (misorientation angle) for the outer vessel technique: 60/(35 to 67)v.

arowne Feny F ** dwOler Noulo*IO-Sheli Weld IN4): Mlao~.ntatlon Anglo; 60/13510 67).

o 18 36 54 72 90 108 126 144 162 180 Theta (degrees)

Figura 5-6. Browns Fany Faedwater Nozzle-to-Shell Weld (N4): Coverage Map for Vessel Technique 601(35 to 67)v.

5-7

Islas In viewing Figures 5-5 and 5-6, each of these probe/skew angle combinations is effective within some subset of the examination volume and ineffective in other areas. The summary coverage map in Figure 5-7, which is the union of Figures 5-5 and 5-6, shows these techniques best performance for each potential flaw location in the required examination volume., The summary coverage map in Figure 5-7 is for positive probe skew scans only, (i.e. 40/+120b, etc.) not the clockwise probe scans (i.e. 40/-120b, etc.).

Browns Fery Fieedwater Nozzle.to-Shell Weld (N4): Misorenttllon Angle; 401120b. 601(35 to 671v 0-3 U13-11 06-9 0-12 e12415 015.18 m18.21 0.00

-0.31

-0.94F

-126

-1.57

-1.8g

-2.52

-2.83

-3.15 I~Li

-3.77 14.09

-4.40 1132

-5.03 I-rl 5.35

-5.98 0)-629 8"

11.61 16.92 17.65

-7.88

-8.18

-8.49 8.81 i _j 912 09.44 f1 1

-10.07 J

-1038

-10.70

-11.01

-11,32

-11.64

-11.95I

-12.27 0 18 65 72 90 08 12 14 162 180 Theta (degrees)

Figure 5-7. Browns Ferry Feedwater Nozzle-to-Shell Weld (N4): Summary Coverage Map; Union of Blend Technique 40/120b and Vessel Technique 60/1(35 to 67)v.

5-8 m

N

.J:,.

en In viewing Figures 5-5 and 5-6, each of these probe/skew angle combinations is effective within some subset of the examination volume and ineffective in other areas. The summary coverage map in Figure 5-7, which is the union of Figures 5-5 and 5-6, shows these techniques best performance for each potential flaw location in the required examination volume.. The summary coverage map in Figure 5-7 is for positive probe skew scans only, (i.e. 40/+120b, etc.) not the clockwise probe scans (Le. 40/-120b, etc.).

_no F.ny F ** ctw.t., No..... toOSh.1I W.1d IN.): MlaortontaUon Anall; 401t20b. 801(35 to 67)v I

I o

18 36 54 72 90 lOB 126 144 162 180 Theta (degrees)

Figure 5-7. Browns Ferry Feedwater Nozzle-to-Shell Weld (N4): Summary Coverage Map; Union of Blend Technique 40112011 and Vessel Technique 6D/(35 to 67)v.

5-8

't. J r;

t.:

n

/..:

I I... J n

L; c

o n,. :

U f-:

U n U L,..I LJ L

Figure 5-8 shows a similar foldout of the nozzle-to-shell weld examination volume upon which has been plotted the metal path to the points on the examination volume for the coverage shown in Figure 5-7.

Browns Ferry Feedwater Nozzle-to-Shell Weld (N4): Metal Path; 401120bd, 601(35 to 67)v n

n 7.5-8 8-&8.5 0 8.5-9 09-9.5

  • 9.5-10 n 10-10.51n10.5-11 m11-11.5==11.5-12==12-12.5
  • 12.5-13 l 13-13.5 013.5-14 u 14-14.5 m

i-4 Fl Li

[]

'7.

Li

.1

-0.00

-0.63

-1.26

-1.89

-2.52

-3.15

-3.77

-4.40

-5.03

-5.66

-629 S"

-6.92

-7.55

-8.18

-8.81

-9.44

-10.07

-10.70

-11.32

-11.95

-12.58 0

27 54 81 108 135 162 Theta Figure 6-8. Browns Ferry Feedwater Nozzle-to-Shell Weld: Metal Path Map; Union of Blend Technique 401120b and Vessel Technique 601(35 to 67)v.

5-9 r-~

I r-!

I :

r-:

i

~

r-~I.,

i !

I ;

r1 l._ I n I' Li II I'

lJ r:

I I l.;

r-'

i:

m lJ N

I 0

-...j Il LJ r-,

Ii I G

-)

i i...J

,--,-}

i

--.i

~ -"I

i U

.J

~J Figure 5-8 shows a similar foldout ofthe nozzle-to-shell weld examination volume upon which has heen plotted the metal path to the points on the examination volume for the coverage shown in Figure 5-7.

Browns Feny Feedwater Noule-to-Shell Weld (N4): Metal Path; 40/120bd, 60/(35 to 67)v

.7.5-8

.~.5 08.5-9 09-9.5

.9.5-10.10-10.5.10.5-11.11-11.5.11.5-12.12-12.5

.12.5-13.13-13.5.13.5-14.14-14.5 o

27 54 81 108 135 162 Theta Figure 6-8. Browns Ferry Faadwatar Nozzla-to-Sheli Weld: Metal Path Map; Union of Blend Technique 40/120b and Vessel Technique 60/(35 to 67)v.

5-9

Figure 5-9 shows a fold out of the nozzle-to-shell weld examination volume, upon which has been plotted the beam angle at the flaw (nominal inspection angle) for the points on the examination volume for the coverage shown in Figure 5-7.

Browns Ferry Feedwater Nozzle-to-Shell Weld (N4): Beam Angle at Flaw; 401120bd, 601(35 to 67)v

.,4-4

..44-48 048-52 o 52-56 a 5"o0 m 6-64 a -6"8 MOP rI3Irj 50 U.UU m

coI 3.63 126 1.89 2.52 3.15 3.77 4A0n 5.03 5.66 6,29 S" 1.92 7.55 8.18 8.81 L

9.44C-10,07 10.,70 11.32 11,95 12,58 to at the Flaw Map; Union of 0

18 36 54 72 90 108 126 144 162 180 Theta Figure 5-9. Browns Ferry Feedwater Nozzle-to-Shell Weld: Beam Ang Blend Technique 40/1 20b and Vessel Technique 601(35 to 67 5-10 m

N I

.j:>.

OJ Figure 5-9 shows a fold out of the nozzle-to-shell weld examination volume, upon which has been plotted the beam angle at the flaw (nominal inspection angle) for the points on the examination volume for the covera e shown in Fi re 5-7.

Browns Feny Feed_ter Nozz/e*to-Shall Weld (N4): Beem Angle at Flaw; 401 120bd, 801 (35 to 87)v I_ 40 4448 048-52 0 52-56

  • 56-60 _ 60-64 _ 64-681 o 18 36 54 72 90 108 126 144 162 180 Theta s..

Figure 5-9. Browns Ferry Feedwater Nozzle-to-Shell Weld: Beam Angle at the Flaw Map; Union of Blend Technique 4OI120b and Vessel Technique 601(36 to 87 5-10 r

l' L.l

\\l

\\

j U

n U n

1 (

LJ

\\l L (j

I !

6 BROWNS FERRY CORE SPRAY NOZZLE (N5)

F Table 6-1 gives the necessary geometric inputs to the NDE Center spreadsheet model for the I_

UBrowns Ferry core spray nozzle-to-shell weld.

F I Table 6-1. Browns Ferry Core Spray Nozzle (NS) Geometry Inputs to Spreadsheet Model for I !

Nozzle-to-Shell Weld Examination L.

LA Li Ll Li Inside Surface Outside Surface Dimensions (inches)

Dimensions (inches)

Weld Start R 8.813 Weld End R 13.10 Rbore 4.8 RInozzle 10.5 Rbi 2.25 Rbo 3.25 Rvi 125.6875 Rvo 131.8125 6-1 r-!

r-i I r-*

l._.;

--1 I L.

r:

i I

,_ I i) lJ n

U n

u n

U m

N

~

0 CO

r.

! j u

il u

i-I LJ

~'1 J

,-)

I I

c..J r*Ol

1 t_.1 6

BROWNS FERRY CORE SPRAY NOZZLE (NS)

Table 6-1 gives the necessary geometric inputs to the NDE Center spreadsheet model for the Browns Ferry core spray nozzle-to-shell weld.

Table 6-1. Browns Feny Core Spray Nozzle (NS) Geometry Inputs to Spreadsheet Model for NozzIe.to-Shell Weld Examination Inside Surface Outside Surface Dimensions (Inches)

Dimensions.

(inches)

Weld StartR 8.813 WeldEndR 13.10 Rbore 4.8 Rnozzle 10.5 Rbi 2.25 Rbo 3.25 Rvi 125.6875 Rvo 131.8125 6-1

Figure 6-1 is a plot of the probe beam angle versus the probe skew angle for all values of perimeter distance, S and azimuth, 0. As shown in Figure 2-2, the distance S is the perimeter of the examination volume, i.e. 0 - ExamSitanl - ExamSitan2-ExamSitan3-ExamSitan4. The curves in Figure 6-1 summarizes the mass of information regarding the probe angles and probe skews needed to obtain a 500 comer trap response everywhere in the nozzle-to-shell weld examination volume of the core spray nozzle. Also shown in Figure 6-1 is the average probe angle versus probe skew (thick line with open circles); the technique design curve.

Browns Ferry Core Spray Nozzle-to-Shell Weld (115): Probe Angle vs Probe Skew (50 dog comertrap) 65 P60 r

b eS0 A 45 n

o 40

.35 30 m

Cii01 Li Lj Probe Skew Figure 6-1. Browns Ferry Core Spray Nozzle-to-Shell Weld (N5): Probe Angle vs. Probe Skew for 50' Comer Trap.

LJ 6-2 m

I\\),

01 0

Figure 6*1 is a plot of the probe beam angle versus the probe skew angle for all values of perimeter distance, S and azimuth, 9. As shown in Figure 2*2, the distance S is the perimeter of the examination volume, i.e. 0 - ExamSitanl - ExamSitan2-ExamSitan3-ExamSitan4. The curves in Figure 6*1 summarizes the mass of information regarding the probe angles and probe skews needed to obtain a 50° comer trap response everywhere in the nozzle-to-shell weld examination volume of the core spray nozzle. Also shown in Figure 6-1 is the average probe angle versus probe skew (thick line with open circles); the technique design curve.

65 peo r

055 b

e50 A 45 n

9 40 I

e35 30 Browns Ferry Cora Spray Nozzle*to*Shen Weld (NS): Probe Angle V8 Proba Skew (50 deg coma. trap)

~

~

~

~ ~

25 30 35 40 45 50 55 eo 65 70 75 80 65 90 95 100 105 110 115 Proba Skew Figure 8-1. Browns Feny Core Spray Nozzle-to-5hell Weld (NS): Probe Angle vs. Probe Skew for 50* Comer Trap.

6-2

i... '

i n I, I:

L.-,

! I LJ I (,

I U

[1 P

The spreadsheet techniques to examine the Browns Ferry core spray nozzle-to-shell weld involve scanning from the outer blend radius and the outer vessel shell. Table 6-2 gives the probe beam and skew angles, scan surfaces, and the mode of propagation.

Table 6-2. Spreadsheet Model Techniques for Core Spray Nozae-to-Sholl Weld.

Probe Angle Probe Skew Scan Surface Mode of Propagation 35

+/-68 Blend Shear Wave 60

+/-(30 to 64)

Vessel Shear Wave F

F mn Pi MI 6-3 rl n U n

r-1 I!

LI 0

11 LJ 0

0 n

L:J m

tv I

0 0'1

[1 w

0 0

fl U

~ ~'1

! i n

LJ r-I I i I

'-.-J The spreadsheet techniques to examine the Browns Ferry core spray nozzle-to-shell weld involve scanning from the outer blend radius and the outer vessel shell. Table 6-2 gives the probe beam and skew angles, scan surfaces, and the mode of propagation.

Table 6-2. Spreadsheet Model Techniques for Core Spray Nozzle-to-Shell Weld.

Probe Angle 35 60 Probe Skew Scan Surface

+/-68 Blend

+/-(30 to 64)

Vessel 6-3

~odeofPropagation Shear Wave Shear Wave

Figure 6-2 shows these techniques in relation to the average probe angle versus average probe skew curve. These spreadsheet examination techniques are summarized again in Table 6-3 together with the corresponding scan surface, minimum and maximum probe radial positions, minimum and maximum metal paths, and maximum misorientation angle.

Table 6-3. Spreadsheet Model Techniques for Core Spray Nozzle-to-Shell Weld.

Probe Probe Scan Min R Max R Min MY Max MP Max Misorientation Angle Skew Surface F:

35 168 Blend 11.89 12.89 7.53 10.99 16 60

+/-(30 to 64)

Vessel 14.43 19.39 9.72 14.33 14 r

F L

m

,'n Browns FerTy Core Spray Nozzle-to-Shell Weld (N5): Probe Angle vs Probe Skew (50 deg comer trap) 65 -

I 0 55 b

e35 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 Probe Skew Figure 6-2. Browne Ferry Core Spray Nozzle-to-Shell Weld (N5): Average Probe Angle versus Probe Skew for 50° Comer Trap - Technique Design Curve.

k ILI

[I Li F

6-4 m

N I

(}1 N

Figure 6-2 shows these techniques in relation to the average probe angle versus average probe skew curve. These spreadsheet examination techniques are summarized again in Table 6-3 together with the corresponding scan surface, minimum and maximum probe radial positions, minimum and maximum metal paths, and maximum misorientation angle.

Table 6-3. Spreadsheet Model Techniques for Cora Spray Nozzle-to-Shell Weld.

Probe Angle 35 60 65 P60 r

055 b

e50 A45 n

g40 I

e 35 i 30 Probe Scan MlnR MuR MlnMP MuMP Max Misorientation Skew Surface

+/-68 Blend 11.89 12.89 7.53 10.99 16

+/-(30 to 64)

Vessel 14.43 19.39 9.72 14.33 14 Browns Ferry Core Spray Nozzle-to-5 he II Weld (NS): Probe Angle vs Probe Skew (50 deg comarlrap)

~~ ~

l"a "' ~

r--..~ f"'"-1'--0 I

I I

I I I

25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 Probe Skew Figura 6-2. Browns Feny Core Spray Nozzle-to-Shell Weld (NS): Average Probe Angle versus Probe Skew for 50* Comer Trap - Technique Design Curve.

6-4 I"

i i

L_..

I:

L~

n u

o o

[

'~

i-ri L

r I L..

r L L

I_

Figure 6-3 shows the minimum and maximum probe radial positions and the portion of the examination volume covered by the blend technique, 35/68b, for probes scanned at the azimuth angle of 900.

Browns Ferry Core Spray Nozzle-to-Shel Weld (NM), 35M68b 134 i

Lj Z 132 124 122 4

6 a

1 0

12 14 16 18 20 ri Figure 6-3. Browns Ferry Core Spray Nozzle-to-Shell Weld: Probe Scan Limits and Examination Coverage for Blend Technique 35168b at Theta S 90'.

6-5 r-,

i "

L._:

r--I

{

.~

l._

i 1..._,

[-;

L~;

r'.

I I

U n

I

! I L.J 0

rl U

0 m '"

I (J1 0

VJ 0

0 It J J

",....-, J

~\\

j I.

\\

Figure 6-3 shows the minimum and maximum probe radial positions and the portion ofthe examination volume covered by the blend technique, 35/68b, for probes scanned at the azimuth angle of 90°. r------------------------------------------.

Browns Fany Core Spray Nozzle-tcHilheD Weld (MS), 35168b

,~~----~--------~------------------~

,M 13' Z 130 II I

1 124,

12 t4 R

Figure 6-3. Browns Feny Cora Spray Nozzle-to-5hell Weld: Probe Scan Limits and Examination Coverage for Blend Technique 35168b at Theta = 90 0

6-5

Figure 6-4 shows the minimum and maximum probe radial positions and the portion of the examination volume covered by the vessel technique, 60/(30 to 64)v, for probes scanned at the azimuth angle of 900.

Browns Ferry Core Spray Nozzle-to-Shell Weld (NS), 601(30 to 64)v r

r L

r L

L m

0r 2

4 6

8 I0 12 14 16 Is 201 Figure 6-4. Browns Ferry Core Spray Nozzle-to-Shell Weld: Probe Scan Umits and Examination Coverage for Vessel Technique 601(30 to 64)v at Theta = 900.

r I~.j Li V

L.

L.

6-6 Li H

m N

I 01

.j::.

Figure 6-4 shows the minimum and maximum probe radial positions and the portion of the examination volume covered by the vessel technique, 60/(30 to 64)v, for probes scanned at the azimuth angle of 90°.

~~------------------------------------,

Browns Ferry Core Spray Nozzle-to-SheU Weld (NS), 601(30 to 64)v

'~r------r------------~--------------------,

I Z,30 L

'N~--______________________ --____________ --~

2 12

'8 2D R

Figure 6-4. Browns Ferry Core Spray Nozzle-to-Shell Weld: Probe Scan Umi1s and examination Coverage for Vessel Technique 601(30 to 84)v at Theta = 90".

6-6

\\ !

i_

I L

c c

o o

o

[J r:

L; Li r L

[

r

,...1 Figure 6-5 shows the translation of the nozzle-to-shell examination volume onto a foldout grid, upon which has been plotted the coverage plot for the outer blend radius technique: 35/68b. The colors here correspond to the techniques' misorientation angle at the points on the inner surface.

I-i Mrn (11 C),

F1 Li

-I LI Brown$ Ferny Corn Spray Nozzle-to-Shell Weld (N5): Mlsorlentatlon Angle, 35168bd 10-3-6 08-9 E9-12 312-15 I15418 m`18-21_I 0O.00

-0.31

-0.62

-0.93

-124

-1.56 1.87

-2.18

-2.49

-2.80 13.11 11.52

-3.73 14.05 11436 0 367

'44.98

-5.29 5.60

[ l i t I

I l I F

- 5.91 6.224S 6.95

-7.16

-7.78 8.09 8.40

-9. 03

-9.96

-10.58

-10.89

-11.20

-11.52

-11.83

-12.14

-12A5 0

18 36 54 72 90 108 126 144 162 180 Theta (degrees)

Figure 6-5. Browns Ferry Core Spray Nozzle-to-Shell Weld (N5): Coverage Map for Blend Technique 35168b.

6-7 r-;, :

i J r*~

I

\\ 1. __

"'"1,

i

  • .. J

[-j t.-i r--1

\\ ;

u

~ I L.J n

1..-

n u

("l U m

I\\),

0 c.n c.n 0

0

-1

.J

']

i

.J

'1

, I

'--1 Figure 6-5 shows the translation of the nozzle-to-shell examination volume onto a foldout grid, upon which has been plotted the coverage plot for the outer blend radius technique: 35/68b. The colors here correspond to the techniques' misorientation angle at the points on the inner surface.

Brown, Ferry Core Sprey Nozzlo-to*Shan Weld (H51: Misorientation Angle, 35/88bd

[8"0-3.3-606.909-12.12-15.15-18.18-21]

o 18 36 54 72 90 108 126 144 162 Theta (degrees)

Figure 6-5. Browns Ferry Core Spray Nozzle-to-Shell Weld (N5): Coverage Map for Blend Technique 35/68b.

6-7

Figure 6-6 shows a similar rollout of the inner examination surface upon which has been plotted the coverage (misorientation angle) for the outer vessel technique: 60/(30 to 64)v.

Brown$ Feny Core Spray Nozzle-to-Shell Weld (IN): Mlsortentatlon Angle, 601(30 to 64)v In0-3 113-6 06.9 09-12 U12-15 115-18 a 18-21 L

0.00 0.31 0.62 i

-0.93

-1.24

-1.87

-2.18

-2.49

-2.0

-3.11

-3.42

-3.73 F

-4.05 1 :

-4.36

-4.67

-4.98

-5.29

-5.60 MT

-5.91 Tehnqu 6.223 toS"v "6.54 6.85

-7.16

-7.47 1

-7.78 L

-8.09

-8.40

-8.71

-9.03L

-9.34

-9.65

-9.96

  • [*

10.58

-10.89 I*

  • 11 11.52 "l

I~tl 11.83

  • 1 *

-12.14 IS 3

54 7

90108 12'6 144 162 180 TheM (degrees)

[-

Figure 6-6. Browne Ferry Core Spray Nozzle-to-SheUl Weld (N5): Coverage Map for Vessel-Technique 601(30 to 64)v.

6-8 m

N I

01

0)

Figure 6-6 shows a similar rollout of the inner examination surface upon which has been plotted the coverage (misorientation angle) for the outer vessel technique: 60/(30 to 64)v.

Browne Feny cora Spray Nozzle-\\o-Shell Weld (N6): Mleo~.ntallon Angie. 601 (30 to 64).

I o

18 36 54 72 90 108 126 144 162 180 Theta (degrees)

Figure 6-6. Browns Ferry Core Spray Nozzle*to-8hell Weld (NS): Coverage Map for Vessel Technique 601(30 to 64)v.

6-8 r

L

[

i

\\

n U

o o

o c

n LJ fi U

r c..;

r I' l"':

I:

,~

In viewing Figures 6-5 and 6-6, each of these probe/skew angle combinations is effective within some subset of theexamination volume and ineffective in other areas. The summary coverage map in Figure 6-7, which is the union of Figures 6-5 and 6-6, shows these techniques best performance for each potential flaw location in the required examination volume. The summary coverage map in Figure 6-7 is for positive probe skew scans only, (i.e. 35/+68b, etc.) not the clockwise probe scans (i.e. 35/-68b, etc.).

Browns Fony Core Spray Nozzle-to-Shell Weld (NG): Combined Coverage, 35188b, 601(30 to64)v 100-3 53-6 06.9 09-12 012.15 018-18.18-21t IT!I 1ý1 CnI 4]

v.w 0.31 0.62 0.93 124 1.56 1.87 2.18 A.9 2.80 3.11 3.42 3.73 4.05 4.36 4.67 4.98 5.29 5.60 5.91 6.54 6.85 7.16 7,47 7.78 8.09 8.40 8.71 9.03-9.34 9.65 9,96 1027 10,58 10,89 1120 11.52 11.83 12.14 12A5 18 36 54 72 90 108 126 144 162 180 Theta (degrees)

Figure 6-7. Browns Ferry Core Spray Nozzle-to-Shell Weld (N6): Summary Coverage Map; Union of Blend Technique 35/68b and Vessel Technique 601(30 to 64)v.

6-9 Ii

\\,..

! I; l.. '

[]

r',

I I U

Ii i I U

r:

I I u

o o

'I iJ

- i U

]

I I

'-1 In viewing Figures 6-5 and 6-6, each of these probe/skew angle combinations is effective within some subset of the examination volume and ineffective in other areas. The summary coverage map in Figure 6-7, which is the union of Figures 6-S and 6-6, shows these techniques best performance for each potential flaw location in the required examination volume. The summary coverage map in Figure 6-7 is for positive probe skew scans only, (i.e. 35/+68b, etc.) not the clockwise probe scans (i.e. 351-68b, etc.).

Brown. Ferry Core Spray Nozzl.... o*Sh.1I Wild (NI): Combined Coverage. 35/sab, 801 (30 to 84)v o

18 36 54 72 90 108 126 144 162 Theta (degrees)

Figure 6-7. Browns Ferry Core Spray Nozzle-to-Shell Weld (NS): Summary Coverage Map; Union of Blend Technique 35168b and Vessel Technique 60/(30 to 64)v.

6-9

Figure 6-8 shows a similar foldout of the nozzle-to-shell weld examination volume upon which has been plotted the metal path to the points on the examination volume for the coverage shown in Figure 6-7.

Browns Ferry Coro Spray Nozzle-to-Shell Weld (N6): Metal Path; 381 68bd, 601(30 to 64)v a 8-8.5 w8.5-9 c9-9.5 r39.5-10,10-10.5 m10.5-11, 11-11.5Sll.5-12,12-12.5

,12.5-13

  • 13-13.5 E 13.5-14 N 14-14.5 m

01 I

~

I~

t I MF 0.62 1.24

2.49 3.11.

3.73

4.36
4.98 68.22 S" 68.85
7.47
8.09
8.71 98.34
9.96
10.58 L

'1120

11.83F
12.45S.

ath Map; Union of Bland L*

u.UU 0

27 54 81 108 135 162 Theta Figure 6-8. Browns Ferry Core Spray Nozzle-to-Shell Weld: Metal P Technique 35/68b and Vessel Technique 601(30 to 64)v.

6-10 m '"

I 01 (Xl Figure 6-8 shows a similar foldout of the nozzle-to-shell weld examination volume upon which has been plotted the metal path to the points on the examination volume for the coverage shown in Figure 6-7.

Browns Feny Cora Spray Nozzle*to-Shell Weld (NS): Metal Path; 3S/88bd, 601 (30 to 64)v

.8-8.5 a 8.5*9 09-9.5 09.5-10 a 10-10.5.10.5-11.11-11.5.11.5*12.12*12.5.12.5-13

.13-13.5.13.5-14.14-14.5 o

27 54 81 108 135 162 Theta Figure 6-8. Browns Ferry Core Spray Nozzle-to-Shell Weld: Metal Path Map; Union of Blend Technique 35/68b and Vessel Technique 60/(30 to 64)v.

6-10 I:

I:

L r L o

c n

tJ i:

I'

\\~

r, L~

n

, I L.';

['i U

Figure 6-9 shows a fold out of the nozzle-to-shell weld examination volume, upon which has been plotted the beam angle at the flaw (nominal inspection angle) for the points on the examination volume for the coverage shown in Figure 6-7.

j towns Ferry Core Spray Nozzle-to-Shell Weld (N5): Beam Angle at Flaw; 351/8bd, 601(30 to 64)v 1.40-44 s 44-48 0 48-52 E3 52-56 i 5-80 60-64 E 64-68

'IJ L..;

1ý12

.j PL. F7 0.00 0.62 1.24 1.87 2.49 3.11 3.73 4.36 4.98 5.60 5.22 S" 6.85 7.47

8. 09 S.71 1.34 9.96 10,58 11.20 11.83 2

0A5I I

0 18 36 54 72 90 108 126 144 162 180 Theta Figure 6-9. Browns Ferry Core Spray Nozzle-to-Shell Weld: Beam Angle at the Flaw Map; Union of Blend Technique 35168b and Vessel Technique 601(30 to 64)v.

6-11 r \\

t i..

r*

I,

..,)

r",

,~

i I

'l.)

/.....

! \\

l.,.1 r~

t I U

n I I

.. )

r-I i!

u m

~

I n

01 CO lJ

'1

I

,J il L.J

-~

'1

! I

',.J i

..-J J

Figure 6-9 shows a fold out of the nozzle-to-shell weld examination volume, upon which has been plotted the beam angle at the flaw (nominal inspection angle) for the points on the examination volume for the coverage shown in Figure 6-7, rowns Ferry Core Spray Nozzle*to*Shell Weld (N5): Beam Angle at Flaw; 35/68bd. 601 (30 to 64)v I_ 40-44 _ 4448 [J 48-52 c 52-56 * ~O _ 60-64 _ 64-68\\

I o 18 36 54 72 90 108 126 144 162 180 Theta Figure 6-9. Browns Ferry Core Spray Nozzle-to*Shell Weld: Beam Angle at the Flaw Map; Union of

.Blend Technique 35/68b and Vessel Technique 60/(30 to 64)v.

6*11

J 8

SUMMARY

OF BROWNS FERRY NOZZLE-TO-SHELL WELD MODELING PARAMETERS Table 8-1 lists the summary of the modeling parameters for the Browns Ferry nozzle inner radius examinations.

Table 8-1. Browns Ferry Nozzle-to-Shell Weld Examination Modeling Parameters.

Browns Ferry Nozzle ID Metal Path Beam Angle at Flaw Maximum Misorientation Angle Minimum Maximum Minimum Maximum i

R__ircu_

__ion Out-et-(______.66_15.76_40_68_12

!j Recirculation Outlet (N1) 7.66 15.76 40 68 12 FlRecirculation Inlet (1,2) 7.63 14.76 40 68 6

Mr L_

Main Steam (N3) 7.29 14.96 40 68 14

,P Feedwater (N4) 7.64 14.44 40 68 20 L0 Core Spray (N5) 7.53 14.33 40 68 16 Jet Pump Instrumentation (N8) 7.79 10.75 40 68 8

Li F*

i P

i 8-1 r'

i r-'

f"

~ "-j r

o

__ I

~ '!

(-j r'j u

rl tJ Fl I;

m LI N

1 r!

en 0

U q I!

U r:

LJ

'-'I i

'-.1

~ -.!

I

....J i

,..J

... i

~.;

8

SUMMARY

OF BROWNS FERRY NOZZLE-TO-SHELL WELD MODELING PARAMETERS Table 8-1 lists the summary of the modeling parameters for the Browns Ferry nozzle inner radius examinations.

Table 8-1. Browns Ferry Nozzle-to-SheU Weld Examination Modeling Parameters.

Browns Ferry Nozzle ID MetalPatb Beam Aogle at Flaw Maximum Mioimum Maximum Mioimum Maximum Misorieotatioo Aogle Recirculation Outlet (Nl) 7.66 15.76 40 68 12 Recirculation Inlet (N2) 7.63 14.76 40 68 6

Main Steam (N3) 7.29 14.96 40 68 14 Feedwater (N4) 7.64 14.44 40 68 20 Core Spray (N5) 7.53 14.33 40 68 16 Jet Pump Instrumentation (N8) 7.79 10.75 40 68 8

8-1

About EPRI EPRI creates science and technology solutions for the global energy and energy services industry. U.S. electric utilities established the Electric Power Research Institute in 1973 as a nonprofit research consortium for the benefit of utility members, their customers, and society, Now known simply as EPRI, the company provides a wide range of innovative products and services to more than 1000 energy-related organizations in 40 countries. EPRI's multidisciplinary team of scientists and engineers draws on a worldwide network of technical and business expertise to help solve today's toughest energy and environmental problems.

EPRI. Electrify the World m

L 0 2003 ElecM Power Research institute (EPRII, Inc AM rights reserved. Electric Power Researchr Insdt and EPRI ar registered service mfate of the Electri Power Resea.rc Insthrie, I= EPRI. ELECTRWFY THE WORLD is a servkk-e mark of t15 ElectrI*c Power Research Instibhe, Irro IR-Z003-19 L

P-,n(.

on recychopaperk fnth Unied Stat -

of America EPRI 3412 HiEview Avenue, Palo Alt. Califomna 94304

  • PO Bas 10412, Palo Alto, Califorria 94303 - USA 800.313.3774 050.85652121 askel&

-w.ewi e.coo, I,

L F.

L.

AboutEPRI EPRI creates science and tecl1nology solutions for the global energy and energy services industry. U.S. electric utilities established the Electric Power Research In~

in 1973 as a nonprOfit research consortium for the benefit of utility members, their customers, and soCiety, Now known simply as EPRI, the company provides a wide range of innovative products and services to more than 1000 energy-related organizations in 40 countries, EPRl's multidisciplinary t9am of scientists and engineers draws on a worldwide network of technical and business expertise to help solve teday's toughest energy and environmental problems.

EPRI. Electrify the World o 2003 E/oC!I1C __ R_rch Inatitule (EPRI), lilt..>JI rlgh1s ",.. MId, EllICtrlc Power R.... rch 1_

and EPRI

.... ragi._ aarvk:e mBf1<a at the Eleclri< Power R_

In.-,I"", EPRI. ELECTRIFY THE WORLD is a.. rvk:e marl< 01 II,,; ElO<;trIc Power Ro_lnatJlute, Inc.

IR*~003.19 e /'Iinfed an tecYc/IIId paper In !he United Sill,..

of~

EPRI' 3412 HIIIMw A""nuo, Palo Alb). CII~omla 94304' pO Box 10412, Plio AltO, California 94303' USA 800.313,3174' 650.s55,2121

  • Hfsemj@<P'i_'_,api,com
.~

r i:

I r U r

'_ ** 1 o

o o

o o

o c

c i L