ML040120050

From kanterella
Jump to navigation Jump to search
Undated SDP - Harris Fire Zone 1-4-ACP
ML040120050
Person / Time
Site: Harris Duke Energy icon.png
Issue date: 12/22/2003
From:
- No Known Affiliation
To:
Office of Nuclear Reactor Regulation
References
FOIA/PA-2003-0358
Download: ML040120050 (26)


Text

{{#Wiki_filter:% P. SDP - HARRIS FIRE ZONE 1-A-ACP

                  --------   (A(A-SAFE-SHUT-DOWWANALYSIS-AREAl-A-ACP)
  • Ignition sources: Transients Electrical junction boxes
                                      -Miscellaneous hydrogen fires Welding/Ordinary Combustibles and Welding/Cables
  • Combustible! 2 gal. .transient flammable liquids, with no transient combustible permit required (per FPP-004) 5 gal. transient combustible liquids, with no transient combustible permit required (per FPP-004)

Cable insulation, unknown quantity (IEEE-383) Rubber mats up to 150 sq. ft. may be installed without continuous attendance - per FPP-004. Transient combustibles up to one million Btu above the analyzed combustible loading for a given fire zone are considered a low fire load and no fire watch or other compensatory action is required - per FPP-004. Dimensions: The 1-A-ACP fire area is approximately 336 sq. ft.; with a length of about 28 ft., width of about 12 ft., and ceiling height-of about 23 ft. Assume natural ventilation with a vent opening of 3 ft. wide by 7 ft. high (a doorway). Unprotected horizontal cable trays are approximately 9 ft. above the floor, near the door. Also, many unprotected cables are at the far ebrid-both-ebro-om, in a verica~atbl--ru-n from-thn-te-fl-rup-toab-ourl101t. above the floor, where they turn and run horizontally Into a tunnel and away from the ACP room. Assume the fire starts in front of the vertical cable run. Analysis: 5 gallons of transient oil spill on 50 sq. ft. of rubber mat. Also present is 125 lbs of solid transient combustibles (poly bags, rags, rubber, wood). All get ignited by a portable electrical implement (e.g., grinder, drill, heater, light bulb). Assume the rubber mat has a HRR of 354 Kw/sq. meter, an area of 5.5 sq. meters, and a total HRR of 1,950 Kw. Assume the 125 lbs of solid transient combustibles have a HRR of 500 Kw/ sq. meter, an exposed area of 2 sq. meters, and a total HRR of 1000 Kw. The heat release rates from the rubber mat and the solid transient combustibles are added to the heat release rate from the oil in analyzing the Hot Gas Layer and Plume C/L Temperatures.

I

  -Pool.. .Pool  .RPoDI      _Eiame   -  Pool'- - ]A&Gas- IHoJ10as .HotGas - Hot Gas   Plume Fire    Fire.      Fire     Imping    Fire      Layer    Layer    Layer    Layer    O/L Area    Heat       Flame    ement     Burning Temp.      Temp. Temp. Temp. Temp (sq. Release    Height   to        Duratio After 1    After 2  After 3  After 4  (deg.

ft.) Rate (ft.) Cable n (min.) Minute Minutes Minutes Minutes F) (kW) Tray _(deg. F) (deg. F) (deg. F) (deg. F) 20 3333 14.6 yes 3.3 783 869 925 966 590 40 6667 18.8 yes 1.7 1014 1129 1203 1258 732 60 10000 21.8 yes 1.1 1220 1360 1450 1518 857

Conclusion:

A hot gas layer in excess of the 700 degrees F needed to bum all IEEE 383 cables in the room could occur.

-Worksheet NRR/DSSAISPLB 1. Rev. . AL i I i-{ --.. &'( . C( - 4-March 2002 Wokshop METHOD OF PREDICTING HOT GAS LAYER TEMPERATURE AND SMOKE LAYER HEIGHT IN ROOM FIRE WITH NATURAL VENTILATION COMPARTMENT WITH THERMALLY THICK BOUNDARIES 8 > 1 inch VERSION 1.03 Parameters should be specifed ONLY:IN-THE, YELLOWI NPUTPARAMETER BOXES: n . .- - .-. - 0*6 * .0g.a g - . - - 6 6. - INPUT PARAMETERS COMPARTMENT INFORMATION Compartment Width (wc) 3.00 ft Compartment Length (Ia) 8.00 ft .53m Compartment Height (hc) Vent Width (wv) :3.00 ft0.914 Vent Height (hg) e i09 i t Top of Vent from Floor (VT) Et l-j O7.00 Interior Lining Thickness (&) ~- ]

                                                                                     .12.00in For thermally thick case the Interior lining thickness should be greated then 1 Inch.

AMBIENT CONDITIONS Ambient Air Temperature (To) F F77.00 FMZ9 :o' Specific Heat of Air (cp) kJ/kg-K Ambient air Density (po) 1.20 l kg/M3 THERMAL PROPERTIES OF COMPARTMENT ENCLOSING SURFACES FOR Interior Lining Thermal Inertia (kpc) 2.9 (kW/M2.K)2-sec Interior Lining Thermal Conductivity (k) 0.0016 kW/m-K Interior Lining Specific Heat (cp) i.:}, 0.75 kJ/kg-K Interior Lining Density (p) .2400 kg/M 3 1

Worksheet NRRIDSSAf5PLB 1. Rev. 3.0 March 2002Workshop FIRE SPECIFICATIONS Fire Heat Release Rate (0) kW kW1295O.O METHOD OF McCAFFREY, QUINTIERE, AND HARKLEROAD (MQH) ATg = 6.85[Q 2 /(Ao(hv)'2) (AThk)] 1 m Where ATg = Tg - To, upper layer gas temperature rise above ambient (K) 0 = heat release rate of the fire (kW) Ao = area of ventilation opening (rr?) hv= height of ventilation opening (m) hk = convective heat trensfer coefficient (kW/m 2-K) AT = total area of the compartment enclosing surface boundaries excluding area of vent openings (rr?) Area of Ventilation Opening Calculation Ao = (wv)(hv) Ao = 1.95 m 2 Thermal Penetration Time Calculation e tp = (pcp/k)(5/2) 2 Where p = interior construction density (kg/rT3 ) cp = interior construction heat capacity (kJIKg-K) k = interior construction thermal conductivity (kW/m-K) 8 = interior construction thickness (m) tp= 26128.98 sec Heat Transfer Coefficient Calculation hk = (kpclt)1/ 2 fort < tp Where kpc = interior construction thermal inertia (kW/m 2 -K)2-sec (a thermal property of material responsible for the rate of temperature rise) t = time after ignition (sec) Area of Compartment Enclosing Surface Boundaries AT = [2(WcXlc) + 2(hcxwc) + 2(hcxic)] - Ao AT= 335.66 m2 Compartment Hot Gas Layer Temperature With Natural Ventilation ATg = 6.85[Q2/(Ao(hv)1/ 2 ) (AThk)11/3 ATg = Tg- To Tq = ATg + To RESULTS: Time After l hk lAT l T9 Tq lT (min) (s) (kW/me-K) ' (K) (K) (0c) (°F) 1 60 0.22 635.23 933.23 660.23 V1220A41 2 120 0.16 713.02 1011.02 738.02 1360A4M 3 180 0.13 762.87 1060.87 787.87 TI.450211 4 1 240 0.11 800.33 1098.33 825.33 R15J17.60 5 300 0.10 830.66 1128.66 855.66 5720l 2

a s Woftheet NRRIDSSAISPLB 1. Rev. 3.0 March 2002Worichop 10 600 0.07 932.38 1230.38 957.38 7.55 I 15 900 0.06 1 997.57 I 1295.57 1022.57 1872.60 20 1200 0.05 1046.57 1344.57 1071.57 196082 Hot Gas Temperature Natural Ventilatlo 0 5 10 is 20 time (min) ESTIMATING SMOKE LAYER HEIGHT METHOD OF YAMANA AND TANAKA Z = ((2kQ 1'3 t/3Ac) + (1hw3))-= Where z = smoke layer height (m) 0 = heat release rate of the fire (kW) t = time after ignition (sec) hc = compartment height (m) AC = compartment floor area (m2 ) k = a constant given by k = 0.076/pg pg = hot gas layer density (kg/rn3 ) pg is given by pg = 353rrg Tg = hot gas layer temperature (K) Compartment Area Calculation Ac = (WC (Ic) Ac = 59.83 m2 Hot Gas Layer Density Calculation pg = 353/Tg Calculation for Constant K k= 0.076/pg Smoke Gas Layer Height With Natural Ventilation Z= ((2kQ113V3Ac) + (1/hcM 3 ))- RESULTS: 3

'OWorksheet NRR/DSSAISPLB 1, Rev. 3.0 March 2002Wokshop l t pq k l z l z l 3 (min) kg/m _ l(m) _ l_______ 1 0.38 0.201 0.16 0 2 0.35 0.218 0.14 0.46 3 0.33 0.228 0.13 0 4 1 0.32 0.236 0.13 0 5 0.31 0.243 0.12 0. d 10 0.29 0.265 0.11 0 15 0.27 0279 0.10 20 0.26 0.289 0.09 ' Smoke Gas Layer Height Natural Ventila 0.50 r 0 E 0.45 E

                          =0.40 c0 Ca)

X 0.35 0 5 10 is 20 time (min) NOTE 4

Worksheet NRR/DSsANSPLB 1. Rev. 3.0 March 2002Workshop P--C METHOD OF PREDICTING HOT GAS LAYER TEMPERATURE AND SMOKE LAYER HEIGHT IN ROOM FIRE WITH NATURAL VENTILATION COMPARTMENT WITH THERMALLY THICK BOUNDARIES 8 > 1 inch VERSION 1.03 mifra,~eters should be is' cified ONLY.IN THE YELLOW INPUT-PARAMETER XE.

    . 0~~~e   -  K-  I I I 1.-F.Ig1MEI14 I Me I9 -          -- NFM
                                                                  .*      UM4a1otu       -I  MI T        -M.

INPUT PARAMETERS COMPARTMENT INFORMATION Compartment Width (wc) [e:-  ;-23.001O1E Compartment Length (Ic) .00 ft Compartment Height (he) Vent Width (wv) 00 fE Vent Height(hg) *;0t Top of Vent from Floor (VT) i f,7 tt Interior Lining Thickness (5) in For thermally thick case the Interior lining thickness should be greated then 1 Inch. AMBIENT CONDITIONS Ambient Air Temperature (To) lF Specific Heat of Air (cp) 1.00 kJ/kg-K Ambient air Density (po) 1.20 kplm3 THERMAL PROPERTIES OF COMPARTMENT ENCLOSING SURFACES FOR Interior Lining Thermal Inertia (kpc) r (kW/m 2-K)2-sec Interior Lining Thermal Conductivity (k) ;1-:.O.0016 kW/m-K Interior Lining Specific Heat (cp) 0.75 kJ/kg-K Interior Lining Density (0) . 240O kg/m3 1

Worksheet NRR/DSSArSPLB 1. Rev. 3.0 March 2002Workshop Me .. haM M FIRE SPECIFICATIONS Fire Heat Release Rate (0) Hi' -9617.O kW METHOD OF McCAFFREY, QUINTIERE, AND HARKLEROAD (MQH) Mfi-re na re te- rMIMIQMXo &EMM ATg = 6.85[Q 2 /(Ao(hv)'2) (AThk)] 1 3 Where ATg = Tg - To, upper layer gas temperature rise above ambient (K) 0 = heat release rate of the fire (kW) Ao = area of ventilation opening (rn2) hv height of ventilation opening (m) hk convective heat trensfer coefficient (kW/m2 -K) AT = total area of the compartment enclosing surface boundaries excluding area of vent openings (rrF) Area of Ventilation Opening Calculation Ao = (wv)(hv) Ao = 1.95 m2 Thermal Penetration Time Calculation I ater 2 tp = (pCP/k)(8/2) Where p = interior construction density (kg/rr9) cp = interior construction heat capacity (kJ/Kg-K) k = interior construction thermal conductivity (kW/m-K) 8 = interior construction thickness (m) tp = 26128.98 sec Heat Transfer Coefficient Calculation hk = (kpctt)l 2 for t < tp Where kpc = interior construction thermal inertia (kW/m 2-K) 2 -sec (athermal property of material responsible for the rate of temperature rise) t = time after ignition (sec) Area of Compartment Enclosing Surface Boundaries AT = [2(WcXlc) + 2(hcxwc) + 2(hcxlc)] - Ao AT= 335.66 M2 Compartment Hot Gas Layer Temperature With Natural Ventilation ATg = 6.85[Q2 /(Ao(hv)1 1 ) (AThk)] 1'3 ATg = Tg- To Tg ATg + To RESULTS: Time After l_ l_ hk l ATg l T Tq T l (min) (s) (kW/m--K) I (K) I (K) { (C) (OF) I 1 60 0.22 520.92 818.92 545.92 I0014.667 2 120 0.16 584.72 882.72 609.72 1 I129 4.1 3 180 0.13 625.60 923.60 650.60 1120308t 4 240 0.11 656.32 954.32 681.32 IM258381 5 300 0.10 681.19 979.19 706.19 ,; 303315 2

Worksheet NRRDSSAPSPLB 1, Rev. 3.0 March 2Workshop 10 600 0.07 764.61 l 1062.61 l789.61 114533 15 900 I 0.06 I 818.07 i 1116.07 843.07 h1549525f 20 1200 0.05 858.25 1156.25 883.25 L1621.857I Hot Gas Temnrature Natural Venfilatio 0 5 10 15 20 tme (min) ESTIMATING SMOKE LAYER HEIGHT METHOD OF YAMANA AND TANAKA z = ((2kQ0 3 t/3Ac) + (1/hc2M3)2 Where z = smoke layer height (m) Q = heat release rate of the fire (kW) t = time after ignition (sec) hc = compartment height (m) Ac = compartment floor area (m2 ) k = a constant given by k = 0.076/pg pg = hot gas layer density (kg/rrP) pg is given by pg = 353/Tg Tg = hot gas layer temperature (K) Compartment Area Calculation AC = (wc) (Ic) A> = 59.83 m2 Hot Gas Layer Density Calculation pg 353/Ig Calculation for Constant K k= 0.076/pg Smoke Gas Layer Height With Natural Ventilation Z= ((2kQ0" 3t3A.) + (1/hcz/3))-32 RESULTS: 3

(Vorksheet NRRADSSAISPLB 1. Rev. 3.0 March 2002Workshop t l Pq k l z l z l (min) kg/rn3 __ i_ (m) l_(ft)_l 1 0.43 0.176 0.22 2 0.40 0.190 0.19 3 0.38 0.199 0.18 0 4 0.37 0205 0.18 5 0.36 0211 0.17 10 0.33 0.229 0.15 15 0.32 0.240 0.14 20 0.31 0.249 0.13 Smoke Gas Layer Height Natural Ventila 0 5 10 is 20 time (min) 4

a Worksheet NRFVDSSASPLB 1, Rev. 3.0 Match 2002Workshop Jkc-- METHOD OF PREDICTING HOT GAS LAYER TEMPERATURE AND SMOKE LAYER HEIGHT IN ROOM FIRE WITH NATURAL VENTILATION COMPARTMENT WITH THERMALLY THICK BOUNDARIES 8 > 1 inch VERSION 1.03 1Parameters should be specified ONLY IN THE YELLOW!INPUT.PARAMETER @ - 4.- BOXES. -w.

           *4

__1fMTq II 11Mm lM e MIM _TM1,1.oM I-oeI___e o1Y114- -11I -? INPUT PARAMETERS COMPARTMENT INFORMATION Compartment Width (wc) 23.00 ft i . n Compartment Length (1) 8.00fX Compartment Height (hc) Vent Width (wv) . 3.00 It Vent Height (hv) i et .7.00 Top of Vent from Floor (VT) t 7.00 t Interior Lining Thickness (8) 2.00 in

                                                                                      .1 For thermally thick case the interior lining thickness should be greated then 1 Inch.

AMBIENT CUNDITIUNS Ambient Air Temperature (To) MEN Specific Heat of Air (cQ) l ~ 1.00klJ/kg-K Ambient air Densitv (Do) l 1.201l kk/M3 THERMAL PROPERTIES OF COMPARTMENT ENCLOSING SURFACES FOR 2-K)2-sec Interior Lining Thermal Inertia (kpc) ZT

-.2.9(kW/m Interior Lining Thermal Conductivity (k) - 0.0016 kW/rnK Interior Lining Specific Heat (q,) i-.7 lkg-K Interior Lining Density 4') is  ! "2400 kg/m 3 INTERIOR LINING EXPERIMENTAL THERMAL PROPERTIES FOR COMMON MATERIALS lummnum-:(pre0 4126 09 43 w~~~u, SJ0!00 A . 9I Fi ~C.sia onBa - .. 05 4 1

Worksheet NRRIDSSAtSPLB 1, Rev. 3.0 March 2002Workshop I wifie~~~~~iwooffwre1U-:w~~~~~~~~i G~EOM M FIRE SPECIFICATIONS Fire Heat Release Rate (Q) I 6283.00 kW METHOD OF McCAFFREY, QUINTIERE, AND HARKLEROAD (MQH) e S _ ATg = 6.85[Q2 /(Ao(hv) 1 t2) (AThk)] 1Q Where ATg = Tg - To, upper layer gas temperature rise above ambient (K) Q = heat release rate of the fire (kW) Ao = area of ventilation opening (rrn) h = height of ventilation opening (m) hk= convective heat trensfer coefficient (kW/m2 -K) AT = total area of the compartment enclosing surface boundaries excluding area of vent openings (rrn) Area of Ventilation Opening Calculation Ao = (wV)(hv) Ao = 1.95 m2 Thermal Penetration Time Calculation Emii ate a tp = (pcp/k)(6/2) 2 Where p = interior construction density (kg/rrP) cp = interior construction heat capacity (kJ/Kg-K) k = interior construction thermal conductivity (kW/m-K) 6 = interior construction thickness (m) tp = 26128.98 sec Heat Transfer Coefficient Calculation hk = (kpc/t)lr2 fort < tp Where kpc = interior construction thermal inertia (kW/m 2-K)2 -sec (a thermal property of material responsible for the rate of temperature rise) t = time after ignition (sec) Area of Compartment Enclosing Surface Boundaries AT = [2(WcXlc) + 2(hcxwc) + 2(hcxlc)] - Ao AT = 335.66 m2 Compartment Hot Gas Layer Temperature With Natural Ventilation ATg = 6.85[Q2 /(Ao(hv)"12 ) (AThk)] 1 3

            &Tg =         Tg- To Tg            ATg + To RESULTS:

Time After hk AT l T_ Tg l T I (min) (s) (kW/m,'-K) (K) (K) (°C) (OF) 1 60 0.22 392.22 690.22 417.22 .82*9 2 120 0.16 440.25 738.25 465.25 869 3 180 0.13 471.03 769.03 496.03 9241 4 240 0.11 494.16 792.16 519.16 96&4 5 300 0.10 512.89 810.89 537.89 000'2 2

6 . Worksheet NRRIDSSAISPLB 1. Rev. 3.0 March 2002Workshop l 10 600 l 0.07 1 575.70 1 873.70 l 600.70 W.1,13 I 15 900 1 0.06 1 615.94 1 913.94 1 640.94 1.1185-7D 20 1200 0.05. 64620 944.20 671.20 11240I1 Hot Gas Temperature Natural Ventilatlo 0 5 10 is 20 time (min) ESTIMATING SMOKE LAYER HEIGHT METHOD OF YAMANA AND TANAKA Z = ((2kQ11 3t/3Ac) + (1/hc3) 302 Where z = smoke layer height (m) 0 = heat release rate of the fire (kW) t = time after ignition (sec) hc = compartment height (m) Ac = compartment floor area (m2 ) k = a constant given by k = 0.076/pg pg = hot gas layer density (kg/rm3) pg is given by pg = 353/Tg Tg = hot gas layer temperature (K) Compartment Area Calculation Ac = (Wc) (Ic) AC= 59.83 m2 Hot Gas Layer Density Calculation pg = 353fTg Calculation for Constant K k= 0.076/pg Smoke Gas Layer Height With Natural Ventilation 3 Z= ((2kQlVt/3Ac) + (1/hY '))3a2 RESULTS: 3

Worksheet NRRIDSSAISPLB 1. Rev. 3.0 March 2002Workshop t noq k 7 izz (min) kg/M3 l___ ( m) 1 0.51 0.149 0.33 2 0.48 0.159 0.30 0 3 0.46 0.166 0.28 4 0.45 0.171 0.27 5 0.44 0.175 0.26 0 10 0.40 0.188 0.24 0 15 0.39 0.197 0.23 20 0.37 0.203 0.22 Smoke Gas Layer Height Natural Ventila 1.10'

                       - 1.00 '

0 E 0.9s -

                                .C X'B0.80-_

0.70- l 0 5 10 15 20 time (min) NOTE 4

V - Worksheet NRR/DSSANSPLB 9. Rev.0 March 2002 Workshop METHOD OF ESTIMATING TEMPERATURE OF A BUOYANT FIRE PLUME VERSION 1.0 bier . 0 IR.-. IP. -i I. I- - INPUT PARAMETERS Heat Rlease Rate of the Fire (0) '12950.00 kW Distance from the Top of the Fuel to the Ceiling (z) L j ;; 23.00 ft Area of Combustible Fuel (Ac)  ; - 60.00ft2 AMBIENT CONDITIONS Ambient Air Temperature (To) 77.00 'F Specific Heat of Air (cp) 1.00 kJ/kg-K Ambient Air Density tPo) 1.20 kg/M 3 Acceleration of Gravity (g) - 9.81 rn/sec2 Convective Heat Release Fraction (yc) 0.50 ESTIMATING PLUME CENTERLINE TEMPERATURE Tp(centerine) - To = 9.1 (Tog cp2 pa2)1 '3 Qc23 (z -zo) Where QC = Convective portion of the heat release rate (kW) To = ambient air temperature (K) g = acceleration of gravity (mfsec2 ) cp = specific heat of air (kJ/kg-K) po = ambient air density (kg/m-P) z = distance from the top of the fuel package to the ceiling (m) zo = hypothetical virtual origin of the fire (m) Convective Heat Release Rate Calculation Qc = Xc 0 Where 0 = heat release rate of the fire (kW) xc = convective heat release fraction Qc= 6475 kW Pool Fire Diameter Calculation Adike = i*D 2 /4 D= (4 Adike/,) 1"2 D= 2.66 m Hypothetical Virtual Origin Calculation zo/D = -1.02 + 0.083 (02'5)/D Where zo = virtual origin of the fire (m) o = heat release rate of fire (kW) D = diameter of pool fire (m) zo/D= 0.36 zO = 0.95 m 1

Worksheet NRR/DSSANSPLB 9, Rev.0 March 2002 Workshop Centerline Plume Temperature Calculation Tp(centeruine) - To = 9.1 (ro'g cp2 po2)"3 Qc2 (z -zo) M Tp(centerline) - To= 433.24 Tp(centerline)= 731.24 K

                     ;~~~O          U1                              _ANSWER NOTE 2

Worksheet NRRIDSSANSPLB 9, Rev.O March 2002 Workshop E 3

Worksheet NRRJDSSAISPLB 9. Rev.O March 2002 Workshop 4

9, Rev.0 NRR/DSSNSPLB Worksheet Worksheet NRRIDSSAISPLB 9, Rev.0 . March 2002 Workshop METHOD OF ESTIMATING TEMPERATURE OF A BUOYANT FIRE PLUME VERSION 1.0 li-n. .Pe- itR- 11 Pararnieters should be specified ONLY. IN THE YELLOW INPUT.,PARAMETER BOXES.;i4- ~-. D$.'t..

  • 6WO - . . . e-* i-iisa .66- T OW _

1_ SWIM INPUT PARAMETERS Heat Rlease Rate of the Fire (Q) - 9617.00 kW Distance from the Top of the Fuel to the Ceiling (z) [--23.00 ft Area of Combustible Fuel (Ac) 7-40.00 12 I AMBIENT CONDITIONS Ambient Air Temperature (To) 77.00T° Specific Heat of Air (cp) 1.00 kJ/kg-K Ambient Air Density (po) 1.20 kg/m3 Acceleration of Gravity (g) 9.81 m/sec 2 Convective Heat Release Fraction (yc) 0.50 ESTIMATING PLUME CENTERLINE TEMPERATURE e;ren

  • t . Ild=diU P Tpwcenterline) - To = 9.1 (To/g cp2 po2)1'3 Qc2'3 (z - z0 w Where Qc = Convective portion of the heat release rate (kW)

To = ambient air temperature (K) g = acceleration of gravity (m/sec 2 ) cp = specific heat of air (kJ/kg-K) pa = ambient air density (kg/rri) z = distance from the top of the fuel package to the ceiling (m) zo = hypothetical virtual origin of the fire (m) Convective Heat Release Rate Calculation Oc =xcQ Where Q = heat release rate of the fire (kW) xc = convective heat release fraction Qc= 4808.5 kW Pool Fire Diameter Calculation Acike = itD 2/4 D= (4 Adike/n)112 D= 2.18 m Hypothetical Virtual Origin Calculation zo/D = -1.02 + 0.083 (Q215)/D Where zo = virtual origin of the fire (m) O = heat release rate of fire (kW) D = diameter of pool fire (m) zoD = 0.48 ZO= 1.03 m 1

Worksheet NRRFDSSAISPLB 9, Rev.0 March 2002 Workshop Centerline Plume Temperature Calculation Tp(centermine) - To = 9.1 (To/g Cp2 pa2)1 13 QcZ'3 (Z Zo)-M Tp(centerline) - To = 363.99 Tpgcenterlin) = 661.99 K Z1j RF ANSWER NOTE 0 0 ~

                                      -   0   0   -     ~   0    ** ~  0 0 0 *0 0  Zn -  0 - * - .0ii 2

Worksheet NRRIDSSNSPLB 9, Rev.O March 2002 Workshop Hm 3

Worksheet NRR/DSSANSPLB 9. Rev.0 March 2002 Workshop 4

Worksheet NRRIDSSAISPLB 9. Rev.0 March 2002 Workshop METHOD OF ESTIMATING TEMPERATURE OF A BUOYANT FIRE PLUME VERSION 1.0 fParameters should be specified ONLY INTHE YELLOW INPUT PARAMETER BOXES:c S i;

             *~=!~
               -             0Z                -.-..                 --   6.~4.-0                 4S INPUT PARAMETERS Heat Rlease Rate of the Fire (Q)                                                :6283.00 kW Distance from the Top of the Fuel to the Ceiling (z)                            Z:., 23.00 It Area of Combustible Fuel (Ac)                                                 _:L20.00     ft 2

III AMBIENT CONDITIONS Ambient Air Temperature (To) 77.00 TF Specific Heat of Air (cQ) 1.00 kJ/kg-K Ambient Air Density (po) 1.20 kg/m3 Acceleration of Gravity (g) 9.81 rn/sec2 Convective Heat Release Fraction (Xc) 0.50 ESTIMATING PLUME CENTERLINE TEMPERATURE e re . re rote EditS -P~a2.9 Tp(centernine) - To = 9.1 (To/g cp2 po2 )113 Qc2 3 (z - zo) 5> Where Qc = Convective portion of the heat release rate (kW) To = ambient air temperature (K) g = acceleration of gravity (m/sec 2 ) cp = specific heat of air (kJlkg-K) po = ambient air density (kg/in3 ) z = distance from the top of the fuel package to the ceiling (m) zo = hypothetical virtual origin of the fire (m) Convective Heat Release Rate Calculation Qc = xc a Where Q = heat release rate of the fire (kW) xc = convective heat release fraction QC= 3141.5 kW Pool Fire Diameter Calculation Adike = nD2 /4 D = (4 Acrike/7n) 112 D= 1.54 m Hypothetical Virtual Origin Calculation zo/D = -1.02 + 0.083 (Q0/ 5)/D Where zo = virtual origin of the fire (m) o = heat release rate of fire (kW) D = diameter of pool fire (m) zo/D= 0.76 Zo= 1.17 m 1

Worksheet NRRIDSSNSPLB 9, Rev.0 March 2002 Workshop Centerline Plume Temperature Calculation Tp(centeriine) - To = 9.1 (To/g cp2 po2 )1/3 Qcw (z - zo) m Tp(centerfine) - To = 285.14 Tp(cenferline) 583.14 K 5=1IflE ANSWER NOTE 3~~~~~6 S.Sf - 6

  • S if
             *m     .0
  • 0. 00  ! I Ci S - - .0
  • 0
                   ;!l0          - 11   [R*I  S    -i   -   .. 0     0-                    .0.         0.       *    .10f    * ~
              -          0.6.                                           .      C    _   _-     .0
  • 0 - f f 0 - 50 S 5 - 0 _ *g -

2

a & Worksheet NRRIDSSANSPLB 9, Rev.O March 2002 Workshop 3

Worksheet NRRIDSSANSPLB 9, Rev.0 March 2002 Workshop 4}}