ML033450369

From kanterella
Jump to navigation Jump to search

Tech Spec Pages for Amendment 165 One-Time Extension of Steam Generator Inspection Interval
ML033450369
Person / Time
Site: Summer South Carolina Electric & Gas Company icon.png
Issue date: 12/15/2003
From:
NRC/NRR/DLPM
To:
Cotton K, NRR/DLPM, 415-1438
Shared Package
ML033490314 List:
References
TAC MB7312
Download: ML033450369 (3)


Text

REACTOR COOLANT SYSTEM OPERATIONAL LEAKAGE LIMITING CONDITION FOR OPERATION 3.4.6.2 Reactor Coolant System leakage shall be limited to:

a. No PRESSURE BOUNDARY LEAKAGE,
b. 1 GPM UNIDENTIFIED LEAKAGE,
c. 150 gallons per day through any one steam generator not isolated from the Reactor Coolant System,
d. 10 GPM IDENTIFIED LEAKAGE from the Reactor Coolant System, and
e. 33 GPM CONTROLLED LEAKAGE at a Reactor Coolant System pressure of 2235 +/- 20 psig.
f. The leakage rate specified for each Reactor Coolant System Pressure Isolation Valve in Table 3.4-1 at a Reactor Coolant System pressure of 2235 +/- 20 psig.

APPLICABILITY: MODES 1, 2,3 and 4 ACTION:

a. With any PRESSURE BOUNDARY LEAKAGE, be in at least HOT STANDBY within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in COLD SHUTDOWN within the following 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />.
b. With any Reactor Coolant System leakage greater than any one of the above limits, excluding PRESSURE BOUNDARY LEAKAGE and Leakage from Reactor Coolant System Pressure Isolation Valves, reduce the leakage rate to within limits within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> or be in at least HOT STANDBY within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in COLD SHUTDOWN within the following 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />.
c. With any Reactor Coolant System Pressure Isolation Valve Leakage greater than the limit, isolate the high pressure portion of the affected system from the low pressure portion within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> by use of at least two closed manual or deactivated automatic valves, or be in at least HOT STANDBY within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in COLD SHUTDOWN within the following 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />.

SURVEILLANCE REQUIREMENTS 4.4.6.2.1 The Reactor Coolant System leakages shall be demonstrated to be within each of the above limits by:

a. Monitoring the reactor building atmosphere (gaseous or particulate) radioactivity monitor at least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

SUMMER - UNIT 3/4 4-1 9 Amendment No. 464, 165

REACTOR COOLANT SYSTEM BASES 3/4.4.5 STEAM GENERATORS The Surveillance Requirements for inspection of the steam generator tubes ensure that the structural integrity of this portion of the RCS will be maintained. The program for inservice inspection of steam generator tubes is based on a modification of Regulatory Guide 1.83, Revision 1. Inservice inspection of steam generator tubing is essential in order to maintain surveillance of the conditions of the tubes in the event that there is evidence of mechanical damage or progressive degradation due to design, manufacturing errors, or inservice conditions that lead to corrosion. Inservice inspection of steam generator tubing also provides a means of characterizing the nature and cause of any tube degradation so that corrective measures can be taken.

The plant is expected to be operated in a manner such that the secondary coolant will be maintained within those chemistry limits found to result in negligible corrosion of the steam generator tubes. If the secondary coolant chemistry is not maintained within these limits, localized corrosion may likely result in stress corrosion cracking. The extent of cracking during plant operation would be limited by the limitation of steam generator tube leakage between the primary coolant system and the secondary coolant system (primary-to-secondary leakage = 150 gallons per day per steam generator). Cracks having a primary-to-secondary leakage less than this limit during operation will have an adequate margin of safety to withstand the loads imposed during normal operation and by postulated accidents. Operating plants have demonstrated that primary-to-secondary leakage of 150 gallons per day per steam generator can readily be detected by radiation monitors of steam generator blowdown.

Leakage in excess of this limit will require plant shutdown and an unscheduled inspection, during which the leaking tubes will be located and plugged.

Wastage-type defects are unlikely with proper chemistry treatment of the secondary coolant. However, even if a defect should develop in service, it will be found during scheduled inservice steam generator tube examinations. Plugging will be required for all tubes with imperfections exceeding 40% of the tube nominal wall thickness. Steam generator tube inspections of operating plants have demonstrated the capability to reliably detect wastage-type degradation that has penetrated 20% of the original tube wall thickness.

Whenever the results of any steam generator tubing inservice inspection fall into Category C-3, these results will be promptly reported to the Commission pursuant to 10CFR50.72(b)2(i) prior to resumption of plant operation. Such cases will be considered by the Commission on a case-by-case basis and may result in a requirement for analysis, laboratory examinations, tests, additional eddy-current inspection, and revision of the Technical Specifications, if necessary.

SUMMER - UNIT 1 B 3/4 4-3 Amendment No. 35, 9, 067 A49, 165

REACTOR COOLANT SYSTEM BASES OPERATIONAL LEAKAGE (Continued)

The PIV leakage limit is 0.5 GPM per nominal inch of valve size with a maximum limit of 5 GPM. The NRC, through NUREG-1431, has endorsed this PIV leakage rate limit.

The surveillance requirements for RCS Pressure Isolation Valves provide added assurance of valve integrity thereby reducing the probability of gross valve failure and consequent intersystem LOCA. Leakage from the RCS Pressure Isolation Valves is IDENTIFIED LEAKAGE and will be considered as a portion of the allowed limit.

Leakage from the RCS Pressure Isolation Valves may be identified by surveillance testing performed during plant heatup or cooldown above 2000 psig and may be adjusted to obtain the leakage value at 2235 i 20 psig using calculation guidance provided by ASME Code, Section Xl, Part OM-10.

The maximum allowed steam generator tube leakage of 450 GPD (3 steam generators with 150 GPD each) for all steam generators not isolated from the RCS ensures that the dosage contribution from the tube leakage will be limited to a small fraction of Part 100 limits in the event of either a steam generator tube rupture or steam line break. The 150 GPD per steam generator limit preserves the assumptions used in the analysis of these accidents and ensures that steam generator tube integrity is maintained in the event of a main steam line rupture or under LOCA conditions.

PRESSURE BOUNDARY LEAKAGE of any magnitude is unacceptable since it may be indicative of an impending gross failure of the pressure boundary. Therefore, the presence of any PRESSURE BOUNDARY LEAKAGE requires the unit to be promptly placed in COLD SHUTDOWN.

3/4.4.7 CHEMISTRY The limitations on Reactor Coolant System chemistry ensure that corrosion of the Reactor Coolant System is minimized and reduces the potential for Reactor Coolant System leakage or failure due to stress corrosion. Maintaining the chemistry within the Steady State Limits provides adequate corrosion protection to ensure the structural integrity of the Reactor Coolant System over the life of the plant. The associated effects of exceeding the oxygen, chloride and fluoride limits are time and temperature dependent. Corrosion studies show that operation may be continued with contaminant concentration levels in excess of the Steady State Limits, up to the Transient Limits, for the specified limited time intervals without having a significant effect on the structural integrity of the Reactor Coolant System. The time interval permitting continued operation within the restrictions of the Transient Limits provides time for taking corrective actions to restore the contaminant concentrations to within the Steady State Limits.

The surveillance requirements provide adequate assurance that concentrations in excess of the limits will be detected in sufficient time to take corrective action.

SUMMER - UNIT B 3/4 4-5 Amendment No. 4-,4 165