ML020290051

From kanterella
Jump to navigation Jump to search
Part 2 of 22, Diablo Canyon Independent Spent Fuel Storage Installation, Submittal of Non-Proprietary Calculation Packages, Holtec Report No. HI-2002513,-NP, Revision 4, Diablo Canyon ISFSI Site Boundary Confinement Analysis.
ML020290051
Person / Time
Site: Diablo Canyon  Pacific Gas & Electric icon.png
Issue date: 12/21/2001
From: Womack L F
Pacific Gas & Electric Co
To:
Document Control Desk, Office of Nuclear Material Safety and Safeguards, Office of Nuclear Reactor Regulation
References
+sispmjr200505, -RFPFR, DIL-01-004, Holtec Project No 1073 HI-2002513-NP, Rev 4
Download: ML020290051 (225)


Text

INTERNATIONAL Telephone (856) 797- 0900. Fax (856) 797 -0909 Holtec Center 555 Lincoln Drive West. Marlton. NJ 0f8n.53 NON-PROPRrETARY VERSION '.

, DIABLO CANYON ISFSI SITE BOUNDARY CONFINEMENT ANAL YSIS FOR PACIFIC GAS AND ELECTRIC Holtec Report No: HI-2002513 -l /P P-9 Holtec Project No: 1073 Report Class : SAFETY RELATED I I II ij I i J-- -- "T ..........

! ........I!I Ir HOLTEC INTERNATIONAL"VISION STATUS 1 y Confinement Analysis HI-2002513 1073 Author's Initials V KC 9 KC 2: KC 6(CATEGORY:

71 GENERIC PROJECT SPECIFIC Author's Initials VIR # KC 69728 DOCUMENT CATEGORIZATION In accordance with the Holtec Quality Assurance Manual and associated Holtec Quality Procedures (HQPs), this document is categorized as a:Calculation Package 3 (Per HQP 3.2)nI F1 Design Criterion Document (Per HQP 3.4) 1-]Technical Report (Per HQP 3.2) (Such as a Licensing Report) Design Specification (Per HQP 3.4)[F] Other (Specify):

DOCUMENT FORMATTING The formatting of the contents of this document is in accordance with the instructions of HQP 3.2 or 3.4 except as noted below: DECLARATION OF PI Z Nonproprietary E7 Holtec Proprietary.

F-] TOP SECRET Documents labeled TOP SECRET contain extremely valuable intellectual/commercial property of Holtec International.

They cannot be released to external organizations or entities without explicit approval of a company corporate officer.

The recipient of Holtec's proprietary or Top Secret document bears full and undivided responsibility to safeguard it against loss or duplication.

02/06/01 02/12/01 I I Summary of Revisions Revision 1: Due to changes in the ISFSI layout the minimum distance to the controlled area boundary has changed from 1325 feet to 1400 feet. The x/Q value provided by Diablo Canyon is a conservative value for both 1325 and 1400 feet. The revisions to this document are strictly editorial to indicate the change in the minimum distance to the controlled area boundary.

Revision 2: Changes to the ISFSI layout has increased the maximum number of casks in the ISFSI from 138 to 140. This revision reflects that change to the doses due to an effluent release under normal and off normal conditions.

Additionally, this revision adds the letter relating these changes and changes to the previous revision to Appendix B and the list of references.

Revision 3: In Section 3.0 changed 25 rem to 25 mrem in the second paragraph.

Clarified that the x/Q value provided by Diablo Canyon is conservative and applicable for a distance of 1400 feet. Revision 4: Revised the doses due to inhalation to reflect changes in the DCFs for inhalation.

These changes were instituted in response to an RAI from the NRC on the HI-STORM FSAR License Amendment Request (LAR 1014-1).

The equations used in Appendix A are added to the first page of Appendix A. Table 9-1 and Table 9-2 have been revised to reflect the changes above.Report No. HI-2002513 Table of Contents 1.0 Introduction

.........

..........................

............

....................................................................

1 2.0 M ethodology

............................................................................................................

2 2.1 Confinement Requirements for Normal, Off-Normal and Hypothetical Accident Conditions

..........................................................................................................

3 2.1.1 Confinement Vessel Releasable Source Term ..............................................

3 2.1.2 Crud Radionuclides

.......................................................................................

4 2.1.3 Release of Contents under Normal, Off-Normal and Non-Mechanistic Accident Conditions of Storage ....................................................................................

5 2.1.3.1 Confinem ent Boundary Leakage Rate .....................................................

5 2.1.3.2 Percentage of Nuclides that Remain Airborne .......................................

6 2.1.3.3 Fraction of V olum e Released .................................................................

6 2.1.3.4 Release Fraction .......................................................................................

6 2.1.3.5 Radionuclide Release Rate .....................................................................

7 2.1.3.6 A tm ospheric D ispersion Factor ..............................................................

7 2.1.3.7 D ose Conversion Factors ........................................................................

7 2.1.3.8 O ccupancy Tim e ......................................................................................

7 2.1.3.9 Breathing R ate .........................................................................................

8 2.1.4 Postulated D oses ...........................................................................................

8 2.1.4.1 N orm al/O ff-norm al conditions

.................................................................

8 2.1.4.2 A ccident Conditions

................................................................................

8 2.1.4.3 W hole Body D ose ....................................................................................

8 2.1.4.4 Critical Organ D ose .................................................................................

9 3.0 A cceptance Criteria .......................................................................................................

9 4.0 A ssum ptions ..............................................................................................................

...... 10 5.0 Input D ata .........................................................................................................................

12 6.0 Com puter Codes .........................................................................................................

12 7.0 A nalysis ............................................................................................................................

12 7.1 Confinem ent V essel Releasable Source Term .....................................................

12 7.2 Crud R adionuclides

................................................................................................

12 7.3 Confinem ent Boundary Leakage Rate ................................................................

13 7.3.1 A ctual versus Reference Test Conditions

...................................................

13 7.3.2 Calculation of the Leakage Rate ................................................................

13 7.4 Fraction of V olum e Released ...............................................................................

13 7.5 A tm ospheric D ispersion Factor ............................................................................

14 7.6 W hole Body and Critical Organ D ose ...................................................................

14 8.0 Com puter Files ...........................................................................................................

14 9.0 Results ..............................................................................................................................

14 10.0 Conclusion

... ........ .. ......... ...... ..............

..................................................................

15 11.0 References

........................................................................................................................

16 Appendix A ................................................................................................................................

A -1 Appendix B ................................................................................................................................

B-1 Appendix C ................................................................................................................................

C-1 Report No. HI-2002513

1.0 Introduction

This analysis is to demonstrate that radiological releases to the environment resulting from a confinement breach from the Diablo Canyon ISFSI will be within regulatory limits specified in 1OCFR72 [1]. This confinement analysis addresses normal, off-normal and accident conditions of storage. The results from this confinement analysis are an extension of the results presented in Chapter 7 of the Final Safety Analysis Report (FSAR) for the HI-STORM [2,19] System, applied to the Diablo Canyon site. This report is prepared pursuant to the provisions in Holtec Quality Procedures HQP 3.0 and 3.2, which require that all analyses utilized in support of the design of a safety-related or important-to safety structure, component, or system be fully documented such that the analyses can be reproduced at any time in the future by a specialist trained in the discipline(s) involved.

HQP 3.2 sets down a rigid format structure for the content and organization of calculation packages that are intended to create a document that is complete in terms of the exhaustiveness of content. The calculation packages, however, lack the narrational smoothness of a technical report, and are not intended to serve as a technical report. Because of its function as a repository of all analyses performed on the subject of its scope, this document will require a revision only if an error is discovered in the computations or if the equipment design is modified.

Additional analysis in the future may be added as numbered supplements to this package. Each time a supplement is added or the existing material is revised, the revision status of this package is advanced to the next number and the Table of Contents is amended.

Calculation packages are Holtec proprietary documents.

They are shared with a client only under strict controls on their use and dissemination.

This calculation package will be saved as a permanent record under the company's QA program.

The HI-STORM System is comprised of two main components, the Multi-Purpose Canister (MPC) and the overpack.

The fuel basket is a honeycomb structure contained in the MPC, which is designed to locate the stored spent nuclear fuel (SNF). The MPC-32 can house up to 32 intact PWR fuel assemblies.

Damaged fuel and fuel debris may be loaded in the MPC-24EF in specially designed damaged fuel containers (DFC). The CoC [11,19] summarizes the type and number of damaged fuel assemblies and fuel debris that may be stored in the MPC. Since the DFC has screens on the top and bottom, the DFC provides no pressure retention function.

The confinement function of the DFC is limited to minimizing the release of loose particulates within the sealed MPC. The storage design leakage rates are not altered by the presence of the DFCs. As shown in Chapter 7 of the HI-STORM FSAR [2] the estimated dose to an individual at the site boundary as a result of an effluent release from the MPC-24EF is bounded by the MPC-32. Upon loading, the MPC is filled with inert helium gas as protection against corrosion and as a leak detection substance.

The helium leak rate testing performed on the MPC confinement boundary requires the helium leak rate to be less than or equal to 5x106 atm-cm 3/s [11,19]. As demonstrated by analysis in the FSAR [2,19], the MIPC confinement boundary is not compromised as a result of all normal, off-normal, and accident conditions.

Based on the robust nature of the MPC confinement Report No. HI-2002513 I

boundary, the non-destructive examination (NDE) of the welds, and the measurement of the helium leakage rate, there is essentially no leakage.

The overpack is a ventilated cylindrical metal and concrete structure which houses the MPC with its contained SNF for storage. The HI-STORM overpack has penetrations at its lower and upper extremities to allow cooling air to flow over the sealed MPC. No credit is taken for the overpack's ability to maintain confinement, as the MPC provides the confinement boundary during storage.

The only means of pressure increase in the MPC is from the temperature rise due to normal heat-up to normal operating temperatures and the release of backfill and fission gas contents from fuel rods into the MPC cavity. Under the most adverse conditions of normal ambient temperature, full insolation, and design basis decay heat, the calculated pressure increase is well below the system design pressure as shown in Chapter 4 of the FSAR [2,19]. For normal conditions of storage, failure of up to 1% of the fuel rods has been analyzed.

For off-normal conditions of storage, failure of up to 10% of the fuel rods has been analyzed and would result in an MPC internal pressure below the value specified as the normal design pressure.

For accident conditions, with an assumed failure of 100% of the fuel rods, the MPC internal pressure is below the accident condition design pressure.

2.0 Methodology

The potential dose that an individual could receive at or beyond the controlled area boundary' from a radioactive material release from the confinement boundary was determined using the methodology described in NUREG-1 536 [4], ISG-11 [18] and ISG-5 [16]. To calculate the dose, the following parameters are necessary:

the quantity of nuclides available for release, percentage of nuclides that remain airborne, the maximum pressure of the cask cavity, the maximum temperature of the cask cavity, the confinement boundary leakage rate, the distance from the cask to the controlled area boundary, the atmospheric dispersion factor, an individual's breathing rate, an individual's occupancy time, and dose conversion factors.

The MPC uses redundant confinement closures to assure that there is no release of radioactive materials, including fission gases or crud, for all postulated storage accident conditions.

The analysis presented in Chapters 3 and 11 of reference

[2,19] demonstrates that the MPC remains intact during all normal, off-normal and postulated accident conditions, including the associated increased internal pressure and temperature.

The MPC is designed, fabricated and tested in accordance with the applicable requirements of ASME,Section III, Subsection NB [9] to the maximum extent practicable.

In summary, there is no design basis event that results in a breach of the MPC confinement boundary.

The above discussion notwithstanding, this document evaluates the consequences of a non mechanistic postulated ground level breach of the MPC confinement boundary under normal, off normal and hypothetical accident conditions of storage. This breach could result in the release of gaseous fission products, fines, volatiles and airborne crud particulates.

The following doses to an individual were calculated for a minimum controlled area boundary of approximately 1400 feet as a "The terms "controlled area boundary" and "site boundary" are used synonymously throughout this document.

1'?J. LLL+.UUJT I 3 2V .J. Ji~-/U .j I 2 result of an assumed effluent release under hypothetical accident conditions of storage; the committed dose equivalent (CDE) from inhalation and the deep dose equivalent (DDE) from submersion for critical organs and tissues (gonad, breast, lung, red marrow, bone surface, thyroid);

the committed effective dose equivalent (CEDE) from inhalation and the deep dose equivalent (DDE) from submersion for the whole body; the lens dose equivalent (LDE) for the lens of the eye; the shallow dose equivalent (SDE) from submersion for the skin; and the resulting Total Effective Dose Equivalent (TEDE) and Total Organ Dose Equivalent (TODE). The annual dose equivalent for the whole body, thyroid and other critical organs were determined at the minimum controlled area boundary (1400 feet) as a result of an effluent release under normal and off-normal conditions of storage.

For normal and off-normal conditions of storage, the doses were based on the entire ISFSI filled with MPC-32's loaded with design basis fuel. The doses are compared to the regulatory limit for the whole body or any organ, per I OCFR72.104(a)

[1]. For hypothetical accident conditions of storage the doses were determined for one MPC-32 and compared to IOCFR72.106(b)

[I]. The following sections discuss the methodology utilized to determine the potential dose that an individual could receive due to a non-mechanistic breach of the MPC confinement boundary.

2.1 Confinement

Requirements for Normal, Off-Normal and Hypothetical Accident Conditions

2.1.1 Confinement

Vessel Releasable Source Term In accordance with ISG-5 [16] and NIJREG/CR-6487

[6], the following contributions are considered in determining the releasable source term: (1) the radionuclides comprising the fuel rods, (2) the radionuclides on the surface of the fuel rods, and (3) the residual contamination on the inside surfaces of the vessel. In accordance with NUREG/CR-6487, contamination due to residual activity on the cask interior surfaces is negligible as compared to crud deposits on the fuel rods themselves and therefore may be neglected.

The source terms considered for this calculation are from the spallation of crud from the fuel rods, and from the fines, gases and volatiles, which result from cladding breaches.

The methodology of NUREG/CR-6487 is conservatively applied to the storage confinement analysis, as dry storage conditions are less severe than transport conditions.

The inventory for isotopes other than 6 0 Co is calculated with the SAS2H and ORIGEN-S modules of the SCALE 4.3 system as described in HI-STAR 100 Shielding Design and Analysis for Transport and Storage [5]. The inventory for the MPC-32 was based on the B&W 15x 15 fuel assembly with a burnup of 55,000 MWD/MTU, 5 years cooling time, and an enrichment of 4.0%. This assumed burnup and cooling time is chosen to conservatively bound the actual burnup and cooling times for all fuel at the Diablo Canyon site. Documentation that the design basis fuel assembly bounds the fuel at the Diablo Canyon site is provided in Appendix C. All isotopes that contribute greater than 0.1% to the total curie inventory for the fuel assembly are considered in the evaluation as fines. This analysis also includes those actinides that contribute greater than 0.01% to the total curie inventory as the dose conversion factors for these isotopes are in general, greater than other isotopes (e.g., isotopes of plutonium, americium, curium, and neptunium).

3 Report No. HI-20)02513 For storage of spent fuel assemblies with burnups in excess of 45,000 MWD/MTU, under normal and off-normal conditions, the source term from the assumed rod breakage fractions of ISG-5 [16] must be augmented by the source term from 50% of the rods having peak cladding oxide thicknesses greater than 70 micrometers.

ISG-1 1 [18] recommends that for high burnup fuel assemblies to be classified as intact, no more than 3% of the rods may have peak cladding oxide thicknesses greater than 70 micrometers and no more than 1% of the rods may have peak cladding oxide thicknesses greater than 80 micrometers.

Using Equation 2-1 below, the fraction of the source term available for release may be determined:

Equation 2-1 FR -FB*(IOO%)+F 7 o*Ps where: FR is the percentage of the source term available for release, FB is the rod breakage fraction from ISG-5 [16], F 7 0 is the fraction of rods that have peak cladding oxide thicknesses greater than 70 microns, and Ps is the percentage of the source term for rods having peak cladding thicknesses greaterthan 70 microns that must be included in the total source term available for release.

Table 2-1 contains a summary of the values required for Equation 2-1 and the results for normal and off-normal conditions of storage. It is assumed that 100% of the source term is available for release under hypothetical accident conditions of storage.

2.1.2 Crud Radionuclides The majority of the activity associated with crud is due to 6 0 Co [6]. The inventory for 6 0 Co was determined by using the crud surface activity for PWR rods (140x1 06 Ci/cm 2) provided in NUREG/CR-6487

[6] multiplied by the surface area per assembly (3x1 05 cm 2 for PWR, also provided in NUREG/CR-6487).

The source terms were then decay corrected 5 years using the basic radioactive decay equation:

Equation 2-2 A(t) = Ao e-AL where: A(t) is activity at time t [Ci], Ao is the initial activity [Ci], X, is the ln2/tl/2 (where t12 = 5.272 years for 6 0 Co [14]), and t is the time in years (5 years).leport No.

4 4 Report No. 1-1-2002513

2.1.3 Release

of Contents under Normal, Off-Normal and Non-Mechanistic Accident Conditions of Storage 2.1.3.1 Confinement Boundary Leakage Rate The helium leak rate testing performed on the MPC confinement boundary measures the helium leak rate under reference test conditions to be less than or equal to 5x10-6 atm-cm 3/s as required by the CoC [11,19]. As demonstrated by analysis, the MPC confinement boundary is not compromised as a result of normal, off-normal, and accident conditions.

Based on the robust nature of the MPC confinement boundary, the NDE inspection of the welds, and the measurement of the helium leakage rate, there is essentially no leakage. However, it is conservatively assumed that the maximum possible leakage rate is 5.0x 0-6 atm-cm 3/s, under reference test conditions.

Equation B-i of ANSI N14.5-1997

[8] is used to express this mass-like helium flow rate (Q,) measured in atm-cml/s as a function of the upstream volumetric leakage rate (Lu) as follows: Equation 2-3 Q,=Lu

L= Q / P. cm 3/s where: I, is the upstream volumetric leakage rate [cm 3/s] Q. is the mass-like helium leak rate [atm-cm 3/s], and P, is the upstream pressure [ATM] The corresponding leakage rate at normal, off-normal and hypothetical accident conditions is determined using the following methodology.

For conservatism, unchoked flow correlations were used as the unchoked flow correlations better approximate the true measured flowrate for the leakage rates associated with storage packages.

Using the equations for molecular and continuum flow (Equation B-5) provided in ANSI N14.5-1997

[8], the corresponding capillary diameter, D, was calculated under the reference test conditions of Table 7-2. Reference test conditions are used to calculate the capillary diameter as they yield more conservative results than the actual test conditions in Table 7-2. The capillary length required for Equation 2-4 was conservatively chosen to be the MPC lid closure weld, which is 1.9 cm.Report No. HI-20025 13 5 Report No. HI-2002513 5

Equation 2-4 2.4 9 xO6 D 4 3.8xilO 3 D 3 D a + a p, Pt, where: L4 is the allowable leakage rate at the upstream pressure [cm 3/s], a is the capillary length [cm], T is the temperature

[0 K], M is the gas molecular weight [g/mole] from ANSI N14.5, Table B1 [8], u is the fluid viscosity for helium [cP] from Rosenhow and Hartnett [10] Pu is the upstream pressure [ATM], Pd is the downstream pressure [ATM], Pa is the average pressure; Pa = (P, + Pd)/2 [ATM], and D is the capillary diameter [cm]. Using the capillary diameter determined above, and the parameters for normal, off-normal and hypothetical accident conditions provided in Table 7-2, Equation 2-4 was solved for the leakage rate at the upstream conditions for each condition of storage. The parameters provided in Table 7-2 are for the HI-STORM cask system and result in a bounding leakage rate for both the HI-STORM and HI-STAR cask systems.

2.1.3.2 Percentage of Nuclides that Remain Airborne In addition to the small fraction of fines that are released in the event of a cladding breach only about 10 % of the fines released to the MPC cavity remain airborne long enough to be available for release from the cask MPC [15]. It is conservatively assumed that 100% of the volatiles, crud and gases remain airborne and available for release.

2.1.3.3 Fraction of Volume Released Dividing the upstream leakage rate by the minimum free volume of the confinement vessel provides the fraction of volume released per second. The minimum free volume ofthe confinement vessel is presented in the spreadsheets contained in Appendix A of this document.

2.1.3.4 Release Fraction The release fraction is that portion of the total radionuclide inventory that is available for release from the spent nuclear fuel. These fractions account for the radionuclides trapped in the fuel matrix and radionuclides that exist in a chemical or physical form that is not releasable to the environment Report No. HI-2002513 6

under credible normal, off-normal and hypothetical accident conditions.

The release fractions provided in ISG-5 [16] were used and are additionally provided in Table 7-1. 2.1.3.5 Radionuclide Release Rate The radionuclide release rate is the product of the quantity of isotopes available for release, the number of assemblies, the percentage that remains airborne, the fraction of volume released, and the release fraction.

2.1.3.6 Atmospheric Dispersion Factor For the evaluation of the annual dose due to an effluent release for normal and off-normal conditions of storage at the controlled area boundary, the long-term site-specific x/Q atmospheric dispersion factor was provided by Pacific Gas & Electric in a letter from Richard Klimczak to Eric Lewis [20,22,23].

Reference

[20] presents the annual average x/Q value for nine of the sixteen cardinal directions.

The other seven cardinal directions are considered to be unoccupied as they are over water [21]. For conservatism the maximum annual average X/Q value of 3.44x106 s/rm 3 , which occurs in the NW direction, was chosen. The short-term atmospheric dispersion factor for accident conditions at the minimum controlled area boundary of 1400 feet was also provided by Pacific Gas & Electric [3]. The atmospheric dispersion factor of 4.5x1 0-4 s/m 3 provided for the hypothetical accident conditions assumes a release duration of one hour. Although the release period for hypothetical accident conditions is assumed to be 30 days, the x/Q value for the one-hour release period is selected as it conservatively bounds the actual atmospheric dispersion factor under accident conditions.

The two x/Q values above, provided by Pacific Gas and Electric, are conservative values and applicable at both 1325 and 1400 feet. The use ofthe x/Q values is conservative and insures that the doses presented in Table 9-2 are conservative.

All correspondence with Pacific Gas & Electric concerning x/Q values for normal, off-normal and hypothetical accident conditions of storage are included in Appendix B for reference.

2.1.3.7 Dose Conversion Factors Dose Conversion Factors (DCF) from EPA Federal Guidance Report No. 11, Table 2.1 [12] and EPA Federal Guidance Report No. 12, Table M.I1 [13] were used for the analysis.

2.1.3.8 Occupancy Time An occupancy time of 8,760 hours0.0088 days <br />0.211 hours <br />0.00126 weeks <br />2.8918e-4 months <br /> is used for the analysis for normal and off-normal conditions of storage [4]. This conservatively assumes that the individual is exposed 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> per day for 365 days at the controlled area boundary distance of 1400 feet.7 Report No. HI-2002513 An occupancy time of 720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br /> is used for the analysis for hypothetical accident conditions.

This conservatively assumes that the individual is exposed 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> per day for 30 days at the minimum controlled area boundary distance of 1400 feet. The accident event duration is considered conservative as any accident condition of storage resulting in the failure of 100% of the stored fuel rods would be detected by the routine security and surveillance inspections and corrective actions would be completed prior to the end of this 30 day period. 2.1.3.9 Breathing Rate A breathing rate of3.3x] 0-4 m 3/sec for a worker was used forthe analysis [16]. This conservatively bounds the adult breathing rate (BR) of 2.5xl 0-4 m 3/sec for an individual.

2.1.4 Postulated

Doses Postulated doses are calculated for inhalation and external submersion in the plume at the controlled area boundary.

For normal, off-normal and hypothetical accident conditions the dose is calculated at the minimum controlled area boundary distance of 1400 feet. The postulated doses as a result of exposure to soil with ground surface contamination and soil contaminated to a depth of 15 cm were also determined in the HI-STORM FSAR [2,19] and determined to be negligible compared to submersion in the plume and are therefore not reported.

2.1.4.1 Normal/Off-normal conditions The annual dose equivalent for the whole body, thyroid and other critical organs were determined at the minimum controlled area boundary (1400 feet) as a result of an effluent release under normal and off-normal conditions of storage. These doses were based on each HI-STORM cask containing an MPC-32 loaded with design basis fuel. 2.1.4.2 Accident Conditions The following doses to an individual at the minimum controlled area boundary of 1400 feet as a result of an assumed effluent release from a single cask under hypothetical accident conditions of storage were determined; the committed dose equivalent (CDE) from inhalation and the deep dose equivalent (DDE) from submersion for critical organs and tissues (gonad, breast, lung, red marrow, bone surface, thyroid);

the committed effective dose equivalent (CEDE) from inhalation and the deep dose equivalent (DDE) from submersion for the whole body; the lens dose equivalent (LDE) for the lens of the eye; the shallow dose equivalent (SDE) from submersion for the skin; and the resulting Total Effective Dose Equivalent (TEDE) and Total Organ Dose Equivalent(TODE).

2.1.4.3 Whole Body Dose The Total Effective Dose Equivalent (TEDE) to the whole body is the sum of the committed effective dose equivalent (CEDE) and the deep dose equivalent (DDE) for the whole body. The CEDE is the product of the radionuclide release rate, the atmospheric dispersion factor, the Report No. HI-2002513 8 8 Report No. HI-2002513 occupancy time, the breathing rate, and the dose conversion factor.The DDE is the product ofthe nuclide release rate, the atmospheric dispersion factor, the occupancy time, and the dose conversion factor. The Annual Dose Equivalent (ADE) for the whole body is the sum of the CEDE and the DDE forthe whole body. 2.1.4.4 Critical Organ Dose The Total Organ Dose Equivalent to the critical organ (or tissue) is the sum of the committed dose equivalent (CDE) to the critical organ or tissue from inhalation and the deep dose equivalent (DDE) to the organ or tissue from submersion in the plume. The ADE to any critical organ (including thyroid) is the sum of the CDE and the DDE for that critical organ. The CDE to the organ or tissue from inhalation is the product of radionuclide release rate, the atmospheric dispersion factor, the occupancy time, the breathing rate, and the organ/tissue dose conversion factor. The shallow dose equivalent and the deep dose equivalent to the organ or tissue from submersion in the plume is the product of the nuclide release rate, the atmospheric dispersion factor, the occupancy time, and the organ/tissue dose conversion factor. The lens dose equivalent (LDE) as a result of submersion in the plume was estimated using guidance from Dr. James Turner in his book Atoms, Radiation, and Radiation Protection

[17]. Dr. Turner states that alpha particles and low-energy beta particles, such as those from tritium, cannotpenetrate to the lens of the eye (at a depth of 3 mm). The discussion continues that many noble gases emit photons and energetic beta particles, which in turn must be considered in the dose estimate.

Dr. Turner states that the dose-equivalent rate to tissues near the surface of the body (e.g., lens of the eye) is more than 130 times the dose-equivalent rate in the lung from gases contained in the lung. Using the accident condition of storage for the MPC-32 (which is the highest dose to the lung), the estimated dose to the lung from gases in the lung is 1.45xl 0-4 mrem. Conservatively multiplyingthis value by 150, the estimated LDE is 2.175x10-2mrem.

This estimated LDE is a small fraction ofthe 15 rem limit imposed by IOCFR72.106(b).

3.0 Acceptance

Criteria The ISFSI must be demonstrated to meet the confinement accident condition requirements of IOCFR72.106

[1] for storage of spent nuclear fuel. 1OCFR72.106(b)

[1] specifies that any individual located on or beyond the nearest boundary of the controlled area may not receive from any design basis accident the more limiting of a total effective dose equivalent of 5 rem to the whole body, or a total organ dose equivalent to any individual organ or tissue (other than the lens of the eye) of 50 rem. The lens dose equivalent shall not exceed 15 rem and the shallow dose equivalent shall not exceed 50 rem.9 Report No. HI-200)2513 Additionally, the ISFSI must meet the normal and anticipated occurrences (off-normal) requirements of I0CFR72.104

[1]. 1OCFR72.104(a) specifies that the annual dose equivalent to any individual at or beyond the controlled area boundary must not exceed 25 mrem to the whole body, 75 mrem to the thyroid and 25 mrem to any other critical organ. This calculation package provides the effluent dose portion in support of the requirement that the licensee perform a site-specific dose evaluation as part of the ISFSI design as dictated in IOCFR72.212

[1] and Chapter 12 [2,19] to demonstrate compliance with IOCFR72.104

[1]. Direct doses must be added to these effluent doses to determine compliance with these regulations.

4.0 Assumptions

The following are a summary of assumptions for the confinement analysis of the cask system. The minimum distance from the cask to the controlled area boundary is 1400 feet [23]. The controlled area boundary is at least 100 meters from the nearest loaded HI-STORM 100 System in accordance with the requirement of I OCFR72.106(b)

[1]. The short-term x/Q value for normal and off-normal conditions provided, is a conservative value and applicable at 1400 feet. The maximum x/Q value for a one hour release period was chosen to determine a bounding x/Q value for the ISFSI, which is located approximately 1400 feet from the plant boundary.

Additionally, the selection of the maximum x/Q value based on a one hour release period ensures that the x/Q value used to calculate the dose due to an effluent release under accident conditions is conservative for the accident duration of 30 days. The long-term x/Q value for normal and off-normal conditions is provided for a distance of 1325 feet in nine of the sixteen cardinal directions.

This X/Q value provided at 1325 feet is conservative and also applicable for the actual distance to the controlled area boundary of 1400 feet. At a distance of 1400 feet from the ISFSI the other seven cardinal directions are over water and are considered to be unoccupied.

The maximum annual average x/Q value from the 16 cardinal directions is chosen to determine a bounding X/Q value for the ISFSJ. This ensures that the x/Q value used to calculate the dose due to an effluent release under normal and off-normal conditions is conservative.

Under normal conditions of storage, 2.5% of the source term is available for release. Under off-normal conditions of storage 11.5% of the source term is available for release. Under accident conditions 100% of the source term is available for release. These fractions are in accordance with ISG-5 [16], ISG-I I [18] and NUREG-1 536 [4]. Unchoked flow correlations were used as the unchoked flow correlations better approximate the true measured flow rate for the leakage rates associated with transportation packages.Ti K T TTV --. i'..epurt INO. PII-ZUUZJIJ

'U 10 1-epOrL -4O.rIi-.4UUlo1.5 0 For conservatism, the upstream pressure at reference test conditions (inside of the MPC) is assumed to be 2 ATM and the down stream pressure (outside of the MPC) is assumed to be I ATM. 0 The leak hole diameter is determined using reference test conditions rather than actual test conditions from Table 7-2. This is conservative as it yields a larger leak hole diameter.

0 It is assumed that only 10% of the fines remain in an aerosol form long enough to be available for release from the confinement boundary.

It is conservatively assumed that 100% of the volatiles, gases and crud remain in an aerosol form. 0 The temperature at test conditions is assumed to be equal to an ambient reference temperature, 2120 F based on the maximum temperature achievable bythe water in the MPC during performance of the leak test. This is conservative because the leak hole diameter computed from these test conditions is larger. Temperatures and pressures in Table 7-2 are bounding values for normal/off-normal and accident conditions of storage.

The capillary length required for Equation 2-3 was chosen to be the MPC lid closure weld size which is 1.9 cm. The majority of the activity associated with crud is due to 6 0 CO. This assumption follows from the discussion provided in NUREG/CR-6487

[6]. The assumption is made that the maximum possible leakage rate is equal to 5.Ox1 06 atm cm 3/sec under reference test conditions.

This leakage rate is conservative because based on the robust nature of the MPC confinement boundary, the non-destructive examination (NDE) of the welds, and the measurement of the helium leakage rate; there is essentially no leakage.

This is consistent with the helium leak rate test which requires that the leakage rate to be less than 5.Oxl 0-6 atm-cm 3/sec. The leakage rate persists for the entire duration of the given evaluated condition of storage (1 year for normal/off-normal and 30 days for accident conditions) without a decrease in the nuclide concentration due to radioactive decay. The accident event duration is considered conservative as any accident condition of storage resulting in the failure of 100% of the stored fuel rods would be detected and corrective actions would be completed prior to the end of this 30 day period. The individual at the site boundary under normal and off-normal conditions of storage is exposed for 8,760 hours0.0088 days <br />0.211 hours <br />0.00126 weeks <br />2.8918e-4 months <br />. This conservatively assumes that the individual is exposed 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> per day for 365 days. The individual at the site boundary under accident conditions of storage is exposed for 720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br />. This conservatively assumes that the individual is exposed 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> per day for the entire 30 days.Report No. HI-2002513 I1I It is conservatively assumed that all fuel stored in the MPC is of the design basis type with a bounding bumup and cooling time. Dose conversion factors chosen for inhalation reported in EPA Federal Guidance Report No. 11, Table 2.1 [12] were selected by lung clearance class, which reports the most conservative values. Internal temperature and pressure of the MPC for calculation of the confinement boundary leakage rate under normal and off-normal conditions of storage are taken from the HI STORM FSAR [2,19]. These values result in a leakage rate that bounds the leakage rate for the temperatures and pressures in the HI-STAR TSAR [7]. 5.0 Input Data Information on the configuration ofthe HI-STORM System and the acceptable contents are provided in reference

[ 11,19]. Specific input data and its corresponding reference are provided in Section 7.0. All input data is presented on the spreadsheets in Appendix A. 6.0 Computer Codes Microsoft Excel and Mathcad are the only computer codes used for this analysis.

7.0 Analysis

7.1 Confinement Vessel Releasable Source Term The isotope inventory for isotopes other than 60Co was found in HI-STAR 100 Shielding Design and Analysis for Transport and Storage [5]. A summary of the isotope inventories is provided in Table 7-1. 7.2 Crud Radionuclides The inventory for 6 0 Co was determined using the methodology described in Section 2.1.2 with the following results: Total 6 0 Co crud is 140 ýtCi/cm 2 for PWR (NUREG/CR-6487

[6]). PWR Surface area per assy = 3.OE+05 cm 2 140 tCi/cm 2 x 3.OE+05 cm 2 = 42.0 Ci 6 0 Co(t) = 6 0 Co 0 e-(Xt), where X = ln2/tI/2, t = 5 years (MPC-32), tj/2 = 5.272 years for 6 0 Co [14].12L 0~w. -r/-.UUZ.i 1.)

MPC-32 6 0 Co(5) = 42.0 Ci e"0n 2/5.272)5)

" 6°Co(5) = 21.77 Ci 7.3 Confinement Boundary Leakage Rate 7.3.1 Actual versus Reference Test Conditions Table 7-2 presents a summary of the parameters used in Equation 2-4 for the hypothetical reference test conditions and the actual test conditions for which the helium leak rate test is performed.

The MPC helium leak rate test is performed at an elevated pressure (85 psig minimum) to magnify the leakage rate. Meanwhile the Operating Procedures ofthe HI-STORM FSAR [2,19] requires that the helium leakage rate be less than 5.Oxl 0-6 atm-cm 3/sec based on a 1 ATM pressure differential across the weldjoint.

Therefore, the use of reference test conditions to determine the capillary diameter is acceptable, as the leakage rate under actual test conditions is correlated to reference test conditions.

7.3.2 Calculation

of the Leakage Rate The methodology described in Section 2.1.3.1 was used to determine the leakage rate for normal, off-normal, and hypothetical accident conditions.

Using the equations for molecular and continuum flow, Equation B-5 provided in ANSI NI4.5-1997

[8], the corresponding capillary diameter, D, was calculated.

For conservatism, the upstream pressure at reference test conditions (inside of the MPG) is assumed to be 2 ATM (minimum) and the down stream pressure (outside of the MPC) is assumed to be I ATM (at 298 K), therefore, the average pressure is 1.5 ATM. The evaluation was performed using the helium gas temperature at reference test conditions of both 70'F and 212TF. These temperatures are representative of the possible temperature of the helium gas in the confinement vessel during the helium leak test. The 212'F helium temperature is the upper bound because the water inside the MPC is shown not to boil in Chapter 4 as long as the "time-to-boil" time limit is not exceeded.

From the two calculations using the two temperatures, it was determined that the higher temperature (212'F) results in a greater capillary diameter.

The capillary length required for Equation 2-3 was conservatively chosen to be the MPC lid closure weld, which is 1.9 cm. Table 7-2 provides a summary ofthe parameters used in the calculation.

The capillary diameter (D) computed from the above equation is equal to 4.44x1 0.4 em. Using this capillary diameter and the parameters for normal and off-normal conditions provided in Table 7-2, Equation 2-4 was solved for the normal/off-normal leakage rate at the upstream conditions.

The resultant normal and off-normal condition leakage rate, 7.37x10-6 cm 3/s (at 581 K, 6.90 ATM) was calculated.

Using the capillary diameter determined above, and the parameters for accident conditions provided in Table 7-2, Equation 2-4 was solved for the hypothetical accident leakage rate at the upstream conditions.

The resultant hypothetical accident leakage rate, 1.28x 10-G cm 3/s (at 843 K, 16.31 ATM) was calculated.

7.4 Fraction

of Volume Released Dividing the upstream leakage rate determined above by the minimum free volume of the Report No. HI-2002513 13 confinement vessel provided in Chapter 4 of reference

[2,19] the fraction of volume released was determined.

The fraction of volume released (as well as the minimum free volumes) is presented in the Excel spreadsheets in Appendix A for each condition of storage.

7.5 Atmospheric

Dispersion Factor For the evaluation of the annual dose rate at the controlled area boundary under normal, off-normal and hypothetical accident conditions of storage the long-term x/Q (3.44xl 0-6 sec/m 3) and short-term x/Q (4.5x1 04 sec/m 3) were supplied by Pacific Gas & Electric [3,20]. 7.6 Whole Body and Critical Organ Dose The following doses to an individual at the controlled area boundary (1400 feet) as a result of an assumed effluent release under normal, off-normal and accident conditions of storage were determined; the committed dose equivalent (CDE) from inhalation and the deep dose equivalent (DDE) from submersion for critical organs and tissues (gonad, breast, lung, red marrow, bone surface, thyroid; the committed effective dose equivalent (CEDE) from inhalation and the deep dose equivalent (DDE) from submersion for the whole body; the lens dose equivalent (LDE) for the lens of the eye; the skin dose equivalent (SDE) from submersion for the skin; and the resulting Total Effective Dose Equivalent (TEDE) and Total Organ Dose Equivalent (TODE). The annual dose equivalent for the whole body, thyroid and other critical organs were determined at the minimum controlled area boundary (1400 feet) as a result of an effluent release under normal and off-normal conditions of storage. The doses for normal and off-normal conditions were based on each HI STORM cask containing an MPC-32 loaded with design basis fuel; the doses for hypothetical accident conditions were determined for a single MPC-32 loaded with design basis fuel. The doses were calculated using Excel spread sheets, which are provided in Appendix A, and summarized in Table 9-1. 8.0 Computer Files All Microsoft Excel spreadsheets and documents to support this analysis are located on the Holtec International server at f:\projects\1 073\kc\2002513

9.0 Results

The doses to an individual at the minimum controlled area boundary distance of 1400 feet from a single cask are presented in Table 9-1 for normal, off-normal and hypothetical accident conditions.

Table 9-2 presents the doses due to an effluent release at the minimum controlled area boundary of 1400 feet from the Diablo Canyon ISFSI and compares them to the regulatory limits of 1 OCFR72.104(a) for normal and off-normal conditions and 1 OCFR72.106(b) for accident conditions.

The doses for normal and off-normal conditions in Table 9-2 are based on the ISFSI holding 140 casks, while the doses for accident conditions are presented for a single cask.14'r -1 A UIJVI L 0. -V/__j I.:)

10.0 Conclusion As can be seen from Table 9-2, the estimated doses as a consequence of a non-mechanistic postulated ground level breach of the MPC confinement boundary under normal, off-normal, and hypothetical accident conditions of storage are a fraction of the regulatory limit specified in I OCFR72.104(a) and 1 OCFR72.106(b).

This calculation of dose due to effluent release satisfies in partthe requirement of IOCFR72.212 for the licensee to perform a site-specific dose evaluation as part of the ISFSI design to demonstrate compliance with 1 OCFR72.104.

The doses in this report must be added to the direct dose results.Report No. HI-2002513 15 Report No. HI-2002513 is 11.0 References 2[1] 1OCFR72, Licensing Requirements for the Independent Storage of Spent Nuclear Fuel and High-Level Radioactive Waste. [2] HI-STORM 100 System FSAR, Holtec Report HI-941184 (Revision 0), USNRC Docket Number 72-1014.

[3] Specification 10012-N-NPG, Section 6.2.10, pgs 46-47 (Appendix B) [4] NUREG-1536, "Standard Review Plan for Dry Cask Storage Systems", January, 1997. [5] Redmond II, E.L., HI-STAR 100 Shielding Design and Analysis for Transport and Storage, HI-951322, most current revision.

[6] Anderson, B.L. et al. Containment Analysisfor Type B Packages Used to Transport Various Contents.

NUREG/CR-6487, UCRL-ID-124822.

Lawrence Livermore National Laboratory, November 1996. [7] HI-STAR 100 System TSAR, Holtec Report HI-941184 (Proposed Revision 11), USNRC Docket Number 72-1008.

[8] ANSI N14.5-1997. "American National Standard for Radioactive Material Leakage Tests on Packages for Shipment." [9] American Society of Mechanical Engineers (ASME), Boiler and Pressure Vessel Code,Section III, Division 1, Subsection NB, Class 1 Components, 1995 Edition.

[10] Rosenhow, W.M. and Hartnett, J.P., Handbook ofHeat Transfer, McGraw Hill Book Company, New York, 1973. [11] HI-STORM 100 Part 72 Certificate of Compliance 1014, Rev 0. [12] U.S. EPA, Federal Guidance Report No. 11, Limiting Values ofRadionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion, DE89-011065, 1988. This revision status of Holtec documents cited above is subject to updates as the project progresses.

This document will be revised if a revision to any of the above-referenced Holtec work products materially affects the instructions, results, conclusions or analyses contained in this document.

Otherwise, a revision to this document will not be made and the latest revision of the referenced Holtec documents shall be assumed to supercede the revision number cited above. The Holtec Project Manager bears the undivided responsibility to insure that there is no intra document conflict with respect to the information contained in all Holtec generated documents on a safety significant project."" J-. U. /-- I .I 16

[13] U.S. EPA, Federal Guidance Report No. 12, External Exposure to Radionuclides in Air, Water, and Soil, EPA 402-R-93-081, 1993. [14] Shleien, B, The Health Physics and Radiological Health Handbook, Scinta, Inc. Silver Spring, MD, 1992. [15] Rashid, Y.R., et al, "An Estimate of the Contribution of Spent Fuel Products to the Releasable source Term in Spent Fuel Transport Casks," SAND88-2778C, Sandia National Laboratories, 1988 [16] Interim Staff Guidance-5, Revision 1, "Normal, Off-Normal and Hypothetical Dose Estimate Calculations", June 18, 1999 [17] Turner, James E., Atoms, Radiation and Radiation Protection

", McGraw Hill Book Company, New York, 1992. [18] Interim Staff Guidance-1 I, Revision 1, "Transportation and Storage of Spent Fuel Having Burnups in Excess of 45GWD/MTU", May 16,2000 [19] Holtec International License Amendment Request 1014-1, Supplement 1, October 2000. [20] Letter to Eric Lewis from Richard Klimczak, "Diablo Canyon ISFSI Project", September 28, 2000. (Appendix B) [21] Letter to Eric Lewis from Richard Klimczak, "Diablo Canyon ISFSI Project", October 11, 2000. (Appendix B) [22] Letter to Eric Lewis from Richard Klimczak, "Diablo Canyon ISFSI Project", October 19, 2000 (Appendix B) [23] Email to Eric Lewis from Richard Klimczak, "FW: Questions on New ISFSI Layout", January 8, 2001 (Appendix B)Report No. 111-2002513 17 17 Report No. 1I-2002513 Table 2-1 Parameters for Determining the Percentage of the Source Term Available for Release MPC-24, MPC-24E, MPC-24EF, MPC-32, MPC-68 and MPC-68FF Parameter Normal Off-Normal FB .01 .10 F 7 0 .03 .03 Ps 50% 50% FR 2.5% 11.5%INC. fl1-ZUUflhi lx 18 R~eport 1,o. Ht--002-3uz I _

Table 7-1 Isotope Inventory and Release Fraction Ci/Assembly Nuclide MPC-32 Release Fraction Ci/AssemblyI Gases 3 H 2.97E+02 0.30 1291 2.64E-02 0.30 "sKr 4.82E+03 0.30 Crud 6 0 Co 2.18E+01 0.15 normal /off-normal

1.0 accident

Volatiles 9°Sr 5.10E+04 2.OE-04 1'0Ru 1.44E+04 2.OE-04 13Cs 3.01E+04 2.0E-04 1 3 7 Cs 7.82,E-04 2.OE-04 Fines 241Pu 7.75E+04 3.0 E-05 9_ y 5.10E+04 3.0 E-05 14_Pm 2.57E+04 3.0 E-05 "mEu 4.5]E+03 3.0 E-05 " 2 4 4 Cm 5.57E+03 3.0 E-05 "23SPu 3.76E+03 3.0 E-05 125Sb 1.99E+03 3.0 E-05 ]'"Eu 1.28E+03 3.0 E-05 2 4 1 Am 8.06E+02 3.0 E-05 Report No. FII-2002513 19 19 Report No. HI-2002513 Table 7-1 (continued)

Isotope Inventory and Release Fractions Nuclide MPC-32 Release Fraction Ci/Assembly

" 2 4 0 Pu 3.65E+02 3.0 E-05 1.99E+02 3.0 E-05 1 3 7 mBa 7.38E+04 3.0 E-05 l06 Rh 1.44E+04 3.0 E-05 144Ce 8.14E+03 3.0 E-05 144pr 8.14E+03 3.0 E-05 1 2 5mTe 4.86E+02 3.0 E-05 Note: The isotopes which contribute greater than 0.1% to the total curie inventory for the fuel assembly are considered in the evaluation as fines. The analysis also includes actinides which contribute greater than 0.01% to the total curie inventory for the fuel assembly.

This is in accordance with ISG-5 [16].20 Report _No.

Table 7-2 Parameters for Test and Hypothetical Accident Conditions Parameter Actual Test Reference Test Normal/Off-Hypothetical Accident Normal P, 6.78 ATM (min) 2 ATM (min) 6.90 ATM 16.31 ATM Pd I ATM 1ATM 1 ATM I ATM T 373 K 373 K 581 K 843 K M 4 g/mol 4 g/mol 4 g/mol 4 g/mol u (helium) 0.0231 cP 0.0231 cP 0.0309 cP 0.0397 cP a 1.9 cm 1.9 cm 1.9 cm 1.9 cm Report f'lo. 1-11-2U025 13 21 Report No. 1-11-002513 21 Table 9-1 MPC-32 Postulated Doses To An Individual at the Controlled Area Boundary (1400 feet) As a Result of an Assumed Effluent Release (1 cask) Normal Conditions

[mrem/yr]

Gonad Breast Lung Red Marrow Bone Surface Thyoid CDE 2.24E-04 3.35E-04 1.04E-02 1.35E-03 8.69E-03 3.01E-04 DDE 6.38E-06 7.21E-06 6.42E-06 6.37E-06 9.29E-06 6.58E-06 ADE 2.30E-04 3.42E-04 1.04E-02 1.36E-03 8 70E-03 q n~r-.n9A I I Skin/Extremit I Whole Body SDE 1.48E-05 CEDE 1.92E-03 DDE 6.53E-06 ADE 1.93E-03 Off-Normal Conditions

[mrem/yr]Gjonad Breast Lung Red Marrow Bone Surface Thyroid CDE 7.49E-04 4.51E-04 2.74E-02 5.18E-03 3.92E-02 4.24E-04 DDE 7.23E-06 8.18E-06 7.27E-06 7.19E-06 1.07E-05 7.45E-06 ADE 7.56E-04 4.59E-04 2.74E-02 5 19E-03 3 92.00 A I 1-_-AA I I Skin/Extrenmity I Whole Body SDE 4.22E-05 CEDE 5.32E-03 DDE 7.40E-06 ADE 5.33E-03 Accident Conditions

[mrem/30 days]Gonad u -reast Lung Red Marrow Bone Surface Thyroid CDE 1.19E-0I 6.19E-02 4.24E+00 8.31E-01 6.36E+00 5.88E-02 DDE 1.40E-03 1.59E-03 1.39E-03 1.37E-03 2.13E-03 1.44E-03 ADE 1.20E-01 6.35E-02 4.24E+00 8.32E-01 6.36E+00 6.02E-02 ISkin/Eixtremity--ý SDE 2.62E-02 I Whole Body CEDE 8.27E-01 DDE 1.43E-03 TEDE 8.28E-01 I INU. rU-LUULJ II 22 I MPOIL O.nl-/-VV/-Jl-)

22 Table 9-2 Postulated Bounding Doses Compared to Regulatory Limits To An Individual at the Controlled Area Boundary (1400 feet) As a Result of an Assumed Effluent Release from the Diablo Canyon ISFSI Dose Rate Regulatory Limit IOCFR72.104(a)

-Normal (140 Cask ISFSI) Whole body ADE 0.27 mrem/yr 25 mrem/yr Thyroid ADE 0.043 mrem/yr 75 mrem/yr Critical Organ ADE 1.46 mrem/yr 25 mrem/yr (Max) IOCFR72.104(a)

-Off-normal (140 Cask ISFSI) Whole body ADE 0.75 mrem/yr 25 mrem/yr Thyroid ADE 0.060 mrem/yr 75 mrem/yr Critical Organ ADE 5.49 mrem/yr 25 mrem/yr (Max) 1OCFR72.106(b)

-Accident (1 cask) TEDE 0.83 mrem/30 days 5 remi/30 days TODE=DDE+CDE 6.36 mrem/30 days 50 rem/30 days (Max) LDE 0.022 mrem/30 days 15 rem/30 days SDE 0.026 mrem/30 days 50 rem/30 days ADE: Annual Dose Equivalent TEDE: Total Effective Dose Equivalent TODE: Total Organ Dose Equivalent DDE: Deep Dose Equivalent CDE: Committed Dose Equivalent LDE: Lens Dose Equivalent SDE: Shallow Dose Equivalent Report No. HI-20025 13 23 Report No. HI-2002513 23 Appendix A Dose Evaluation Spread Sheets (Total of 46 pages including this cover page) Equations Used in Appendix A Spreadsheets:

Inhalation Spreadsheets:

Fraction Released per See =/-norlofflac Rate at Upstream / MPC Volume Release Rate=Inventory*

% available for release* % remain airborne*No.

Assy*Frac Released per sec*Release Frac DCF (mrem/ýtCi)

= DCF (Sv/Bq)*3.7 x1 0 9 (CDE/CEDE)

= Release Rate

  • X/Q
  • Breathing Rate
  • DCF(mrem/4+/-Ci)
  • Occupancy Time / lxi 0.6 Submersion Spreadsheets:

Fraction Released per See = Lnn.ofga~c Rate at Upstream / MPC Volume Release Rate=Inventory*

% available for release* % remain airborne*No.

Assy*Frac Released per sec*Release Frac DCF (mremr/gxCi)

= DCF (Sv/Bq)*3.7 x]0 9 (DDE/SDE)

= Release Rate

  • X/Q
  • DCF(mremrdtCi)
  • Occupancy Time!/ xl0 6 A-I V It 'KT TXT Mnl)c I'I.JlU+/- " kio**. IU d I j

, Inh-Gonad MPC-32 Committed Effective Dose E uivalent Fron % L.r Rate at Fraction Releas Inventory available

% remain MPC Vol Upstream Released Release Rate Nuclide (CI/Assy) for release alrbore No. Assy (cm3) om3ls) per sec Fraction (Ci/sea Gasp: H 3 2.97E+02 2.5% 1100% 32 6.19+06 7.37E06 1.19E2-12 0.30 8.49E 1129 2.64E-02 2.5% 100% 32 :6.19E+06 f 7.372-06 1.19E-12 0.30 7.55E.. KR 85 4.82E+03 2.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30 1.38E-4 00Crud C O 60 2 .18 E + 0 1 1 0 .% 1 0 2 6 1 E 0 .7 61.24 E -'n Inhalation se c) s 5 09 10-X/QI (ser/rn3) 3,44E-06 3.44E-06 3.44E-06 Breathing Rate (m3/seo) .330E-04 3.30E-04 3.30E-04 3ý.302E-04 DCF (Sv/Bq) 1.73E-11 8,69E-11 0.00E+00 4.-T76E.09 S R 9 0 5 .1 0 E + 0 4 1 2 5 % L n n o/ --I n. .I I...I I .........DCF (mRem/uCI) 6.40E-02 3.22E-01 0.00E+00 1-.-76E+01 C 3 3 -3..... ..... ..61 9E06 ,.,-uo I.19E-12 I 2.u -04 I9.7E-12 3 :.44E-06 3.30E 100% .7.37E-06 1.19E-12 I 2.5%100%IUU'Y 32 619E+06 77Fn 2OE 5.4-2 34E0-' I --------..S U~ .____ .1.9E1 3.4 ,0 3.30E-04 I 8,76E-09 -UCS14 3 .01E+04 2.002-04 2.74E-12 3.442-08 ,3E-04 3.30E-04 2.64E-09 1.38E-08 1.30E-08 9.77E+00 5.11E+01 4.81E+01 3.24E+01 1950. 15Fines .3 3 3 3 cc; Time (sec) .15E+07 ,15E+07 .15E+07 .15E+07 .15E+07 .15E+07 .15E+07 .15E+07 CDE (mRem) 1.94E-07 8.68E-11 0.00E+00 7.84E-05 3.39E-06 5.01E-06 9,87E-06 1.73E-05 2.00E.0 Y 2 10 32 61 9 .- 1.19E-12 3,00E-05 1.46-13 3.44E-06 3.30E-04 9.52E-12 3.52E-02 3.15E+07 1.84E-10 PM147 2,57E+04 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.002-05 7.35E-14 3.44-06 .30E-04 1.88E-14 6.96E-05 3.152+07 1.83E-13 EU154 4.512+03 2.5% 10% 32 6.192+06 7.372-06 1.192-12 3.002-05 1.29E-14 3.442-06 3.30E-04 1.17E-08 4.33E+01 3.15E+07 2.OOE-08 CM244 5.57E+03 2.5% 10% 32 6.19E+06 7.37E-06 1.192-12 3.002-05 1.592-14 3.44E-06 3.30E-04 1.59E-05 5.88E+04 3.15E+07 3.35E-05 PU238 3.76E+03 2.5% 10% 32 6.19E+06 7.372-06 1.192-12 3.002-05 1.07E-14 3.44E-06 3.30E-04 2.802-05 1.04E+05 3.15E+07 3.98E-05 SB125 1.992+03 2.5% 10% 32 6.192+06 7,37E-06 1.19E-12 3.002-05 5.69E-15 3.44E-06 3.30E-04 3.60E-10 1.33E+00 3.15E+07 2.712E-10 EU155 1.282+03 2.5% 10% 32 6.192+06 7.372-06 1.192-12 3.002-05 13.66-15 3.44E-06 3.30E-04 3.56E-10 1.32E+00 3.15E+07 1.72E-10 AM241 8.062+02 2.5% 10% 32 6,192+06 7.37E-06 1.19E-12 3.002-05 2.30E-15 3,44E-08 3.30E-04 I3.25E-05 1.20E+05 3.15E+07 9.91E-06 PU240 3.65E+02 2.5% 10% 32 6.19E+06 7.37E-06 1.191-12 3.002-05 1.042-15 3.44E-06 3.30E-04 3.18E-05 1.18E+05 3,15E+07 4.39E-06 PU239 1.99E+02 2.5% 10% 32 6.192+06 7.37E-06 1.192-12 3.002-05 5.69E-16 3.44E-06 3.30E-04 3,1BE-05 1.18E+05 3.15E+07 2,39E-00 BA137M 7.362+04 2.5% 10% 32 6.192+06 7.372-06 1.19E-12 3.OOE-05 2.11 E-13 3.44E-06 3.30E-04 0.00E+00 0.00E+00 3.15E+07 0.0012+00 RH1O6 1.44E+04 2.5% 10% 32 6.19E+06 0 1.192-12 3.002-05 4.122-14 3.44E-06 3.30E-04 0.00E+00 0,00E+00 3.15E+07 0.002+00 02144 8.14+03 2.5% 10% 32 6.19+06 3706 119-12 2.33-14 3.44-06 3.30E-04 1.93E-09 7.14E+00 3.15E+07 5.94E-09 PR144 8.142+03 2.5% 10% 32 6.19E+06 7.372-06 1.192-12 3.002-05 2.33E-14 3.442-06 3.30E-04 2.41E-15 8.92E-06 3.15E+07 7.42E-15 T125M 4.86+02 10% 32 6.19+06 7.37-06 1.19-12 3.-05 1.39-15 3.44E-06 3.30E-04 1.242-10 4.59E-01 3.15E+07 2.28E-11 L 2.24E-04 T UU ,I ".1U~I:-Uq I 5 10,%Report HI-2002513 Page A-2 4 dpz PU241 17.7512+041 2.6% 10% 32 6. --05 , SI I I#l E-04 I i I I I l[ I+/^32 6.19E+OE 7 CS137, 7.B2E ,O 04U 2.5%/6.1gF÷OR 7 2,2-3 34E0 3.30E-04__

1 6.82E-07 -2.52E+03 3.15E+07 Inh-breast MPC-32 Normal Conditions Committed EffectivS Dose Euuivalent From Inhalation

% L.., Rate at Fraction Release Breathing Inventory available

% remain MPC Vol Upstream Released Release Rate X/Q Rate DCF DCF Occ Time CDE Nuclide (CI/Assy) for release airborne No. Assy (cm3) cm3s) per sec Fraction (Cl/sec) (seclm3) (m3/sec) (Sv/Bq) (mRem1uCI (sac) (mRem) S .... ...Gasess Hi3 2.97E+02 2.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30 8.49E -3.44E-06 3.30E-04 1.73E-1+1 6.40E-02 3.15E+07 1.94E-07 1129 2.64E-02 2.5% 100% 32 6.19E+06 7,37E-06 -1.19E-12 .-30 -7.54E.1--15 3.44E-06 3.30E-04 2.09E-10 7.73E-01 3.15E+07 2.09E-00 PR185 -.B2E+03 2.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 5 2.3 32-" -3.4E-06 3.30E-04 0.0 0E -÷0 0.00E .0 0 3.15E+07 0.09E-1 S ...Cru__d TE M 46-0 1 E+0 2.0% 1o%. 32 6.19E+06 7.37E-06 1,19E-12 -1.24E-10 3.44E-06 3.30E-04 1.84E-08 6.BIE-01 3,15E+073.03E-04 0.15 .BlE01 Total0 3.03E-04 Reot. .... .PVolatgles SR 9.._0 5,10E+0._

_.4 2.5._.% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.OO-0 9.72E-12-"" 3.44E-0---'6 3.30E-04"" 2.64E-09 9.77E+00 3.15E+07 3.39E-06 RU0106 1ý.44E*04 2.5l% 100%---" 3---2 6. 19E+06 7.37E--06---

-1.19E-1"2---

2.-O-'04 2.74E-1 2 3.44E-0-'-'-

3.30E-0"-

4-- 1.37E-08 5.07E+01 3.15E+0"-'--'

4,97E-06 6S-134 3-.01-E+04 2.5 10--5"/- 3"-2 -- 6.1 9E+0 ---- 7.37E-0--

1.19E-1"-'""-

2,"-'04 5.73E-1"2-" 3,44E-0-6-'

3.30E-0"4"

1.0BE-08 4--ý.00E+01 3.j 15E+07 81-0 CS13.__ .82 +04 2.5 10"--" 7.37E-06 1.19E-1"-

--' 2.-- E-'0 1.49E-1--

'-- 3.44E-08'-

-' 3,30E-0"-

4-' -7.84E-09 2.90E+01 3.15E+07 1.55E-0"-

---5 -ýU21-.75E04.

....0% -3 Fines PU4 77E04 25 0 2 6.19E+06 7.37E-06 1.19E-12 3-O-"05 2.21 E-1-'-'--

3.44E-0----6 3.30E-0-'""4 3,06E-11 1.13E-01 3.15E+07--'

8,97E.10 Y 90_ 5.I0E+0 2.5%

32 6.19E+0"--"-6 7.37E-06'---

1.19E-12 3,0-"05 3.30E-04----

95-1 352 -02 315E+07 1.84E-10 PM147 2.57+04 2.5% 10% 3"2-- 6.19E+06--

F-"-' .7E-06----

3.00-05 3.44E-06 -3.30E-04----

3.60E-14 1.33E-04 31E0 35E1 EU15.._4 4.51E03 2.50/ -10% 3-2 -E19E+06-'-8 7.37E..0"6- -T 3 -'1.29E-14-"'

3.44E-0"----

15E-08 5-.-74E+01 3,15E+07----

2.64E-08 CM244 5,57E+03 2.5% 1-0%--G' 6.1 9-E+0--6" 7,37E-06-----

1.19E-12"--

3.E0 5 1.59E-1-"-

4' 3.44E-06----

T3,30E-0 --- --1.0E-09 385+0 ,1+729-9 PU238 3.76E+03 2.5% 10% 3----- 6,19E+06 1.19E1'----5 30- 10-12-----

3A40"--'--" .0E0 .0E0 3.85E+00 3,15E+07 2194E-09 199E0312.5% 3-"2-- 6.19E+0-'--67.37E-06--" 1.19E-1------

3.0O--" 5 5.68E-15 3.44E-0"-

--6 3.3012-0-----

4.16E-10 1.54E5+00 3.15E+07----

3.13E-10 EU155 2.5% 10% 32 -,1 9E+06 7.37E--06 1.19E-12 3.-O05 3.-66E-15 34E-06 3,.30E--04 614E-10 2.27E+00 3,15E+0___7 2.97E-1 0 AM241 8.06E+02 ]2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.OE01 5 2'i.30E-15 3.44E-0 T3.30E-04 2.7- 09j 9.d8-8E+00 3.15-E+07-.

1-4-E-1 PU-240 2.5% -10% 32 -6.19E+06-"-

1.19E-1------

3.00E6-" 1.-04E 5.--- 344E-06 --" 0E-04"--"--

951E1-10 3,j.52E+00 P-ýU 239 1 .99E+02 ]. 2 .5% 10__ %/ 3-"-2 7,37E-06-'

-1. 19E-1"- --' 2 -.. 3,00E 0 5.69E-16 3.44EZ-06 l 3 .30EE-04 9.22E-10 3 ,.1 5E0 07 1. 1E 1 EBA137M 7.3BE+04l 2.5% 10% 32 6.19E+06]

7.37E-06 1.19E-12 -3.00" -5 2.11E-1-----

3.30E=-04"---'

0.00E+00 0.00E+00 3.15E+07 R-H106 1,4-4E+04-" -- 2.5% 5.19E+06 ---- 17.-37E-06-'--

1.19E-12---' 0 4.11E-14"-

3.44E-06-'---

3.30E-04"-'---

0.00E+00 3.15E+07 CE144 8.14E+03'--

2.5-%"'~ 10% 32 6.19E+06J 7,37E-06 I1.19E-12 .E05 23 3,4-6 .0E4 1970 *9E0 31E07 .6-0 8.14E+03 2.5% 10% 32 6.19E+0617,37E-06

]1. 19E-1 2 3.OE05 2.33E-1--'-

3,44E-06----

1.05E-14 3.89E-05 3.15E+07 3.23E-14J TE125M 4.86E+02]

2.5% 10___% 32...2 .9+6

1. 19E-1 2 1.39E-15 3.4E0 3.30E-04 1 107E-10 3.96E-01 3.15E+071
i -619E0 3.O 1oa .97E-04 I R eport H I-2002513 P g -

1 1 7 r Inventory (CilAssv;available for 2.b%% remain : rhnmn 100U%(Ci/Assy)

.y m) I for release airborne No 3 Ass MPC Vol 32 ~ ..;---------

I--~ *9E'-12 0.30u [ 7.54E 1 fllY.2.185+01 I 100.0% I 100%KR t .8E0 ..1 ,~. -0U ý_1&1 0 .30U 1.38Et-0 3.4E-06 3.30E-04 O 0.00+00 10.OOE+0(-218E0 10.0 100%___ -.,' -I.9E412 0 .15 1000% 32 619E ..06 737E06 119E t.OE-u 2.74E-12 I 3.44E~-06 3.3E7O4 1.04E..06 3.855E+03 3.15E+07 , 7E-04 CS134 3.01E+04 2.5% 100% 32 N6.19E+06 7.37E-06 1.19E-12 2.005-04 5.73E-12 3.44E-05 3.30E-04 1.18E-08 4.375+01 3.15E+07 8.95E-6 CS137 7,82E+04 2.5% 100% 32 0,19E+66 7,37E-06 1.19E-12 2.0012-04 1.49E-1 3.44E-06 3.30E-04 8.82E-09 3.26E+01 3.15E+07 1.745-05 PU241 7.75E+04 2.5% 10% 325 6.19E+06 7.37E-06 1.19E12 3.00E-05 2.21E-13 3.44-06 3.30E-04 3.185E-06 1.18E+04 3.15E+07 9.32E-05 Y90 5.10E+04 2.5% 10% 32 6.195+06 7.37E-06 1.19E-12 3.005-05 I1.46E-13 3.44E-06 3.30E-04 9.31E-09 3.44E+01 3.15E+07 1.80E-07 PM147 2.57E+04 2.5% 10% 32 6.19E+06 -7.37E-0-6 1.19E-12 3OOE-05 7.34E-14 3.445-06 330E-04 7.74E-08 2.86E+02 3.155E+07 7.52-07 EU154 4.51E03 2.5% 10% 32 6.19E+06 7,37E-06 1.195-2 3.00-05 1.29E-14 3.44E-06 3.30E-04 7.92E-08 2.93E+02 3.15E+07 1.35E-07 M244 5,57E+03 2.5%/6 10% 32 6,195+06 7.37E-06 1.19E-12 350E-05 1.59E-14 3.44E-06 3.30E-04 1.93E-05 7.14E+04 3.15E+07 4.06E-05 PU238 3.755+03 2.5% 10% 32 6.19E+05 7.37E-05 1.19E-12 3.005-05 1.07E-14 3.44E-06 3.30E-04 3.20E-04 1.18E+06 3.15E+07 4.55S-04 SB125 1.99E+03 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.0-05 5.68E-15 3.445-06 3.30E-04 2.2.17E-08 8.03E+01 3.15E+07 1.63E-08 EU15i 1.285+03 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 3.66E-15 3.44E-06 3.30E-04 1.19E-08 4.40E+01 3.15E+07 5.76E-09 AM241 8.06E+02 2,5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 2.30E-15 3.44E-06 3.30E-04 1.84E-05 6.81E+04 3.15E+07 5.61E-06 PU240 3.65E+02 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.04E-15 3.44E-06 3.30E-04 3.23E-04 1.20E+06 3.159+07 4.46E-05 PU239 1.99E+02 2.5% 10/%1 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 5.69E-16 3.44E-06 3.30E-04 1.73E-05 6.40E+04 3.15E+07 1.30E-06 BA137M 7.38E+04 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 2.11E-13 3.44E-06 3.30E-04 0.00E+00 0.00E+00 3.15E+07 0.00E+00 RH106 1.44E+04 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 4.11E-14 3.44E-06 3.30E-04 0.00E+00 0.00E+00 3.15E+07 0.00E+00 CE144 8.14E+03 2.5% 10% 32 6.19E+06 I 7.37E-06 1.19E-12 3.00E-05 2.33E-14 3.44E-08 3.30E-04 7.91E-07 2.93E+03 3.15E+07 2.43E-06 PR144 8.14E+03 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 2.33E-14 3.44E-06 3.30E-04 9.40E-11 3.48E-01 3.15E+07 2.89E-10 TE125M 4.86E+02 2.5% 10% 32 6.19E+06 7.375-06 1.195-12 3.005-05 1.39E-15 3.44E-06 3.30E-04 1.04E-08 3.85E+01 3.15E+07 1.91E-09 Total 1,04E-02 , Inh-Lung MPC-32 E-15 3.4 4E-01 4E-06 3.35-D-04ýSv/B) (R /CI ___ emu ) (sec) (mRem)6.40E-02 !1.1 6E+00-3.15E+07 3.15E+07 3.15E+07 1.94E-07 3.13E-1 0 0.005+00 (Normal Conditions Committed Effective fose Equivalent From Inhalation L.m Rate at Fraction Release Breathing Upstream Released Release Rate X/Q Rate DCF DCF occ Time COE (c3/s) pernsec Fraction (C sec) (se 3 (m3Aec-H 2.97E+02~

2.5% 100% 32 16.19E+08 7.37E-05 I 1. 19E- 12 0.30) 8. 9--- -100 I Crud SR5% 10% Volatiles j Report HI-2002513 Page A-4 (Nuclide I 2.64IE-0 0-60-01UO%32 Normal Conditions a/m3)1015+04 2 32 ..9.72E-12 I Mm I .3E1 S3.14E-10 0I R I¢/I:=+RR 7 4 2.5%-S.-30E04 3.44E-06" 3-.-45E-07

.8E+03 3.15E+07 66E0 S ..... ... ...Q.

I I :'llPdlft 3.4-6 33E0 2.86E-06-1.06E+04

] 3.15E+07 3.68E-03 06u 1 II.44E+0-U4 Inh-R Marrow MPC-32 Normal Conditions Committed Effective Dose Equiv lent From Inhalatio.nn SLnor Rate at Fraction Release Breathing Inventory available

% remain MPC Vol Upstream Released Release Rate X/Q Rate DCF DCF Occ Time CDE (CI/Assy) for release airborne No. Assy (cm3 (cm3 per sec Fraction (Ci/sec (sec/m3) (m3/sec) (Sv/Bq) m (sec) (mRem) S e / i) ( e ) ( e ) HA3 2.97E+02 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 0.30-- 5 8.49E-11 3.44E-06 3.30E-04 1.73E-11 6.40E-02 3.15E+07 1.94E-0 H1629 21644-04 2.5% --/. 10%0"--/.

3-2 6.19E+06 7.37E-06 1.19E-12 0.30-0 7.54E-14 3.44E-06 3.30E-04 1.40E-10 5.18E-01 3.15E+07 1.40E-10 KRC85 4.82E+03 2.5% 10%0 32 6.19E+06 7.37E-06 1.19E-12 0.30 1.38E-019 3.44E-06 3.30E-04 2.06-E+0 0.09E+00 3.15E+07 8.2-E+00 ........ 1 Crud CO--060 2-1 8E+0 1 1Ti0 0/.0 100% 3-2 6. 19E+0_..6.

73-06 71-19E1-12 01.._5 .2E._.__ 34E- 3.30E-0--4--

1.72E-08 6.36E+01 3.15E+07 2,83E-0"--

4 SR 90 5.10E+04 2.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.00E-05 9.72E-14 3.30E-04 -3.36E-07 1.24E+03 3.15E+07 RU10...__6 1.44E+0_.._4 2.5% 100% 6.19E+06---" 7.37---"'

1,19E-1"---2 2.00E-04 2.74E-1" 2' 3.44E-0----

3.30E--04---

1.37E-08 5.07E+01 3.15E+07 4.97E-06 CS13._._4 3.01E+04 2.5%o 100% 3"--2 6,19E+0-6'--

7.37E-0"--" 1.18Eo12-" 2,00E---0-'

573E-129 34E-0-'---

330E---0--4 1.18E-08 4,37E+601 3,T15E+07

-8.9.5E-0"-'6 CS137 7.82E+04 2.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.00E-04 1.49E-15 3.44E-06 3.30E-04 8.30E-09 3.07E+01 3.152+07 1564E-0 ........Fine-s PUI_2..1 .

2.5% 10"--'0 -32 6..19E+06--'-

7.37---- 11E"- -'- 300-"-- "- -34E-- -- .0 -- " 10 E-7 39 +2 31 E0--- 18--- --' PU23 5.176E+03 2.5% 32 6.19E+06 7.37E0----

.9-----2 10E1 33E0 PU23B 3.76E -.,o-0a 5,62E+05 + 2.16E-03 ,91E03 2,% 10 3 819+8 ,3E-6 1.19E-12 3,00E-05 5.68E-15 3.44E-06 3.30E--04 6,49E-1 0 2.40E+00 3,5E+07 4.88EE-10 EU155 1.28+0..____3 2,%

77-0---'"6

.0E-0"5" 3ý.66E-1----5" 3,44E-06"---

3.30E-04 i 1.-43E-08 512-9E+01 3.15E+07'---

6.92E-0._9___

AM24_..1 8.06E+02 2,5% 10% 32 6.19E+06---

7.37E-06-"-'

1.19E.12-'-'

3.00E-0"---5 2.30E-15 3.44E-0"--'-

3.30E-04-----

1.74E-04 6.44E+05 3.15E+0"----

5,30E-05 PU240 3,65E+02 2.5% 10% 3"2"- 6.19E+0"--

7,37E-08'--6 1.1912-1---2" 3.00E-0--

1.04E-1"--

3.44E-0---

3.30E-04 16E0 62E0 35+723E0 PU239___ 1.99E+02 2755-/ 10% 3-2 .,19E+06 7.37E-06 1.19E-12 3.00E-05 5.69E-16 3.44E-06 3.30E-04"-" 1.69E 6.25E+05 3,15E+07 1.27E-05 RAeo37M 7,38E+. _ 1.5% Do/. 32- .19E+0- 7.37E-0" 1.19E-12' 3.0012 2E1 3 3.44E 3.30E

-P.agE+00 O.0E+00 3.15E+07 A.-5E+00 RHI06 1.44E+64 2.5% I--" 3-2(--19E+06 7.37E-06 -I--E-----

-3E 4.11E-I'--

.44E-0- E-04 6.0OE+00 O.OOE+O0 3,15E+07 ).OOE+00 CE144 8.14E+03 2,5% t0--%"-/ 32 3.19E+0---" 7,7E-0----

_719E-12 3.00E-0--

2.33E-1----

3.44E-06 3.i 30E-04--"-

2.67E-08 9.88E+01 3.15E+07 8.22E-081 Ei].14E+03 2- -.5 -%'/ 6.19E+0 73E----- 19----- 30E0 23----" 3.44E_0"--6 8.08E-114 2.99E-04 3.15E+ý07

.4E-131 rE25 ,.-86E0 2.5% 10% 32' 6.19E+06-

' 7,37E-0-1.19E-12 3,00E-0 1.39E-1-'5-3.44E-0"-6-'

3.30E--04"--

3.01E-09 1.11E+01 3.15E+07 5.54E-10l Report HI-2002513 Page A-5 Inh-B Surface MPC-32 Normal Conditions Committed Effective Dose Eoulvalent From Inhalation

% Lm, Rate at Fraction Release Breathing Inventory available

% remain MPC Vol Upstream Released Release Rate X/Q Rate DCF DCF Occ Time CDE Nucilde (CI/Assy) for release airborne No, Assy cM3 (cm31s) ersec Fraction (C./secr (sec/m3) m3/sec) (SvlBq) (mRem/uC (mRem) .....Gases HA 3 2.97E+02 2.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.3.0- 8.49E-1 3.44E-06 3.30E-04 1.73E-10 I 6.40E-02 3.15E1+07 1.94E-0--112.9, 1.4E402 + .5%-/ 2 -6.19E+06 7.37E-06 1.19E-12 0o3.0-05 7.64E-15 3.44E-06 3.30E-04 1.38E-10 5.11E-0 3.15E+07 1.38E- 0 KRC 8 4.82E+03 %. 32 6.19E+06 7.37E-06 1.19E-12 0.00 1.383-04 3.44E-06 3.30E-04 4.,42+08 o.ooE+0o 3.15E+07 1.40E+00 COP60 2.18E+01 20.0% 100% 32 06.19E+06 7.37-06 1.19E-12 3 .10 1-24E-10 3.44E-06 3.30E-04 1.35E-18 5.00E804 3.15E*07 4.22E-14 ...Volatilas 5O E .5 + 7 22 E 0 SR9 0- 51.44E+04 100%y 3-2 -C 2-0 E---0--

3.4--" " " 3 E0-- 727E-07 2.69E+03 3.15E+0 9.35E-04"-'

-

~ ~ ~ ~ ~ ~ ~ ~ ~_L 14E4 5 10-"-'/ " 2"-.906 77-0 119E-1 2 2.001E-"-

0-- 2.74E-12 3.44E-0---

6- 3.30E-04---

1.3712-08 5.07E+01 3,15E+07 4.97E-06-'-

CS134 3.01E+04 2.50% 000% 32 9E0 7.37E-06 1.19E-12 2.00E-O4 5.73E-12----

3.44E-0o-"'o 1.10E-08 4.07E+01 3.15E+07 8.35E-06---

U~S- 137'.82Eo

--IO-O- 3-2 -,9E0 ,3E0 1.19E-12 1.49E-1"----

3.44E-06--

3.30E-"----

7.94E9- 2.94E+01 3.15E+07----

1.56E-05l

.....Fines 7.75E+04 .2.5/_%._

10% 32 6.9+6 73E-6 11E1 3.00E-0"-'

2.21 E-1"-"--3 3.44E-06---

-420E-05 1.T55E+05 3.1-E-+07 Y90___ 5.1015+0.__.4

.2.5% -100/ 3-2 6.19E+06 7.37E-06 1.19E-12 3.00E-0----5 1.46E-13---

3.44E:-0U--'

3.30E--0--4 2.78E-10 11.03E+00 3.15E+07 5.36E-09--" PM14__77 2.57E+04 2..5% 10% 32 6.19E+06 7.37E-06 71 9E-1 2 -3.00E-0--

5-'

3.30E-04-'-'

1.02E-07 3.i77E+02 3.15E+07 9.91 E-07----i EU15.. _.4 4.51E+03 2.5% 1 32 6,19E+06 7.37E-06 1.1912-12

,2E-1 -3.44E,06---

3.30E-04--'--

F 523E-07 1.94E+0)3 3.15 E+0 7 8.92E-07---'

CM244 5.57E+03 2.5% 10% 32 6.19E+06 7.372-06 1.19E-12 3.00E-05 1.59E-14 3.44E-06 3.30E-04 1.17E-03 4.33E+02 3.15E+07 2.46E-03 PU238 3.76E+03 10% 32 7.19E+06 -7.37E-06 "1.19-1 3.00E-0--

1.07E-1-'--4 3.44E-00-'--

3.30E-04 1.90E-03 " 7.03E+06 3.15E+07 SB12___55 1.99E+03 2.5%T 10% 32 6.19E+06]

7.37E-06 1.19E-1--

3.00E-0-5" 5.68E-16 3.44E-0-"---

3.30E-0 2.73E-09 _1.01E+01 3 ,15E+07 2.05E-09----

EU15.___5 1.28E+03 2.5% 10%--G- 3-2 6.1 9E+06 7 -37E-06 71-19 El12 3,00OE-0--

5' 3.6-6E-1--'--'

3.44E-06 3.30E-04 -1.-52E-07 56E0 73E0-"'

!.="---- 10 3T .19+067.3E-06 1.19E-12 3.00E-0-----

2.30E-1--'---ý-

344E-0"--6 3.30E-04 --- Fj 27E0-03 8.03E+06 3.15E+07 6.61 E-04"--'-PU240 3.65E+02 2.5% 32"--9E' 737----- ,19-1 3.00E-0-----

1.04E-I'----

3.30E--0-4 2.11 E-03 7.81 E+06 3.15E+07-'---1-'

-0 PU239 1.99E+02 2.5%/1 0-/ 32 6.1 9E+06 7.37E-0 1.19E-12 30E-05 5.69E.16 3.44E-06 3.30E-04 2.11 E-03 7,81Ef+08 7 E0 BA137.._MM 7.38E+04 2.5o_ _ 1% 32 6.19E+06 7.37E-06 1.1121 3.00E-O"--'

2.11_E-1"3---

3.44E-06---

3.30E-04 0.00E+00 05.00E+00 3.T15E+07 0.00E+O0"--

RH106i 1.4ý4&+04 2.5% _ 10% 32 6.1gE+06 _737E-06 1I19-1 3.O0E-0"--

5 4.11EI'---'-

4E-0---- T3.0 0,00E+00 0-.00EF+00 3.15E+07 00E0 814 +03 -.10-3 6.19E+06 7.37F-0R 1.19E-12 3.00E-0---5 2,33E-1"-'

3.44E-0"-"6 4.5i4E-08 1.68E+02 3.15E+07 P 4I.861 E+02 I.5 I0----3 I. 3.0-0" -' -- 2.33E-1---4

-3.44E--0--

6- 1 ý3,30E-0-'

--' 1.35EE-13 5.00E-04 3.15E+07 TE125._ MM 4.86E+02 2.5% _ 32- -' 6.19E+06 7,37E-08 OO.0 E-0--' 5 -5 .4---' 3.0-"- -532 E0 ,9 +2 31 E 0 .0 -g Total B.69E-03 Report HI-2002513 Page A-6 Inh-Thyroid Normal C 'onditions

....Comn__mitted Effecti__

ve DoeEuvalent From Inhalation Ivnoy % Rate at Fraction Release Breathing OcTm D 'I Inventory available

% remain MPC Vol Upstream Released Release X/Q Rate DCF DCF OcTm CD Nuclid..__e (CI/Ass___

yy for release alrbom.__

No. Ass.. (cm (cm3/s) ere Fraction (C/e) (sec/m3.___)

(3sc S/3) (~mu -H3 2.5% 100% 32 6.19E+0677E0 11E. 03--- 8.49E-1"---

1 3.44E-0---6 3.30E-04"--

1.73E-11 6.40E-02 3.15E+0-----

1.94E-0-7-" 1129 2.5% 100% 32 6.19E+06 7.37E-0"--'6 1.19E-12 0.30 7.54E-15 3.44E-06 3,30E-0----

4 1,56E-06 5,77E+03 3.15E+0 156E-0-----RR .._B55 100% 3-- _6"19+06 0.001=+00 0,00E+00 3. 15E+07 S (TO 6-0

.-1000/ 100%/ 3._ ..2 6.19E+06 7.37E-06 .1.19E-12 0.1"' 5"- .4-"- -,0,0- -1.62E--08 5,9 + 1 31 E 0 26 E-04 S .. ....Volatiles 5.10E+0.4___

2.5 6 100%/ 32 6.19E+0 7.37E-06 1.19E-12 2.00E-0-" 4-' 9.72E-1---2 3.30E-0----

4 2.64E-09 9.77E+00 3.15E+073,39E-0---'6 RU106 1.44E+04 2.5o0 100% 6.19E+0"--

67.37E-06---

1.19E-1---2 2.00E-04--

2.74E-1----

3.44E-06---

3.30E-04-" 1.37E-08 5.07E+01 3.15E+077 44,9977EE-0---

CS134 3,01E+0.__4 2.5_._.% 100% 32 6.19E+0-6--

7.37E-0"---

6 2.00E-?ý 5.73E-12 3.44E-0"-6-'

3,30E-04"'-

1. 11 E-08 4,11E+01 3.1 5E+07 -.---- 842E-0-"'6 CS137 3.1E+ 0 6 1.19-1 20E"- 14-1"--" 3.30E'04 7.93E-09 2.93E+01 3.15E+07 S Fines PU2417.75E+04 2.50/ 10 a 32 61 9E+06 7.7- 1.19E-12 3.00E-05 2.21 E-1"'--- 12E1 .9-2 31E0 ,3-"-PM14._..7 2-57EE+04 2.5%/ 10% 32 6.19E+0-6---'

7.37E-0 --- 1.19E-12"-" 3.00E-05 7-34F-1--'-

-, .4-"- --73 E0 .5 +7 19E1 CM24 _ 9..._ -457E+03 2.5%/ 10__%..% 32 7

1,9---- .9-"-"- .4.0---' .0-"-'- ,4-9E+00 3, 15E+07 12.23E-09 P-U-23__...

-3,76E+0_._.3 2.5% 10%M 6.1 9E+0----'67.37E-0---6-" 1,9E-12 3.00E-.--

1.07E-14 3.44E-06--'

3 .30 E04-10 3.56E+00 3.'15E+07 1.37E-09 SB12____ _ ' 2.5% 10%/ 32 6.19E+0-----

I H)-"----6 11E-1----

3.00E-0----

5.68E-15--'

3.44E-06---

04 3.24-10 1.20E+00

-2.44E-10 EU15.._5 1.28E+03 2.5% 10% 32--'--- 6.19E+0--"-67.37E-0"----

1.19E-12 3.00E-0" -ý--" 3.66E-1" -- 3.44E-06-"--

3.30E-04---

2,40E-10 8.88E-01 3.15E+07 1.16E-10 8,06E+02 2.5"--%-/

10% 6,19E+06---7-'-

737E-06 I.19E-12----

3.00E-0"5" 2.30E-1----5 344-"---

160E-09 ._5.92E+00 3.15 +07-'-

PU24_.._0 3.65E+02 2.5% 10% 6.19EE+06-" 7.37E-06"-'

1.19E-1"--

3.00E-0-5-'

1.04E-1"----

3,30E-04"--'

9.05E-10 3.35E=+00_

1.25E.10 PU23..9_91.99E+02 2.5"-%F 10_.%_%

7.37E-06-" 1.19E-1--2-'

3 5.69E-16 3.44E-06"---

9.03E-10 3.34E+00 3.15E+07 37E1 BA137M 7 .38+0 -25% 10% 3--2"- 6.19E+06-7.37---6 1.19E-1"----

3.00E-05 2.11E-13 3.44E=-06-"---

0.00E +00 0.00E+0 3-5E0 O--0E+0 RH10_.6_61.44E+0._

4 2.5% 10%./ 32 6.9E0 .3E 1.19E-12 3.00E-0-'-'

4.11 E-1 4 3.44E-06-- CE14__4 8,14E+03 2.5% 10% 3"2- 6.19E+06 7.7E 0 1.19E=-12 3.00E-0--'-

2,33E-14 3.44E-06----

3,30E-04E018E0 0I0+059E+0 315+731E07=0E+0,7E0_._ 14E+O0-- 2.5% 10% 3"2'- 6.19E+06"--

6 1.19E=-1---'2-3.001=-0----" 2.33E-1--

4- 3.44E-06"U-0----

0 8471-5 31E0 .1-4 R e p o rt H I-2 0 0 2 5 1 3 D g -

C Inh-Effective Nuclide 1 I r *. ---Inventory (CI/Assy)available for release% remain airborne No. Assy MPC Vol (cm3)Up H 3 2.97E+02 I2.5% 1 100% 1 32 -6. 192-+0 6 -7. 1129 12.64E-02 12.5% 4 100% 32 J .9+6 7.-CO 6-0'4.82E+03 2.18E+01' 2.5% 100.0%100% 100 32 6.19E+06 100%.619+06 7, SR~J 90 5.1012+04 RU106 1.4E0 CS134Q 3.0112+04I 2.5%+ I 10%__, 2.5% 100% 6 19E+06 7.100%100%100%¶ nn%32 ,1~+~ .7.: CS137 7. ..6 1 9E+06 7 5 U .10E,-04 K 1-~ .I -+ I. -- 1 Fine luo/10%10% I .-1 3qF0fE 5 1 7.6E1 I 3.44E.06 I4 E Ia PM14 I 257204 t2.5 i~ ~ ; *~ + ~ ~ ~ --tU.~gEn -,0E-05 i 2.21E-13ffl~

3.442-06 PM4 2.7E0 1. 2-5j. **-"4 3.U-- IA EU154 I4.51E+0 2,5% % 32 ____ 7..37E06j

-1.19E-12 3.ODE4J, no,,,.2516 10% 32 619E+7.34E-14 1.29F-14 3.44E-06 3i.442-06 3.30E-04 3.3015-04 3.30E-04 5% 10% 32 619E+06 .7E-06 -L-1.19E-12 3.OOE-05 1.07E-14 3.44E-06 I 3.30E-04 1.06E-04 I 3.92E+05 3.15E+07 1.51 E-04 88125 1.99E+03 2.5% 10% 32 6.19E+06 7.37E-06 OOE-05 5.68E-15 3.44E-06 3. 3 C Z- 0-4 3.30E-09 1,22E+01 3.15E+07 2.48E-09 EU155 1.28E+03 2.5% 10 0/. 2- 6.19E+06 7.37E-06 I =.19E-12 3.OOE.05 3,66E-15 3,44E-06 3.30E-04 i.12E-08 4.14E+01 3.15E+07 5.42Eý69 AM241 8.06E+02 2.5% lot-j 32 6.19E+06 7.37E.06 I 1.19E-12 3,00E,05 2.30E-15 3.44E-06-'

3.3012-04 1.20E-04 -4.44E+05 3-.ISE+07 3,66E-05 PU240 3.65E+02 2.5% 10% 6.19E+06 7.37E-06 1.19E-12 3.0012-05 1.04E-15 3.44E-06 3.30E-04 1.16E-04 4.29E+05 3,1 5E+07 1.60E-05 PU239 1.99E+02 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.OOE-05 5.69E-16 3.44E-06 MOE-04 1.1611-04 4.29E+05 3.15E+07 8.73E-06 BA137M 7.38E+04 2.5% 10% 32 6,19E+06 7.37E-06 1.19E-12 3.OOE-05 2.11 E-1 3 3.44E-06 3.30E-04 O.OOE+00 O.OOE+00 3.15E+07 O.OOE+00.

RH1 06 1.44E+04 2.5% 10% 32 6.19E+06 7.37E-06 1,1915-12 3.00E-05 4.11 E-1 4 3.44E-06 3.30E-04 O.OOE+00 O.OOE+00 3.15E+07 0.0012+00 CE144 8.14E+03 2.5% ' 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00 -05 2.33E-14 3.44E-06 3.30E-04 5.84E-08 2.16E+02 3.15E+07 1.80E-07 PRI44 8.14E+03 2.5 32 6.19E+06 7.37E-06 1.19 -12 3.OOE-05 2.33E-14 3.44E-06 3.30E-04 1.17E-11 4-33E-02 3.15E+07 3.GOE-1 1 TE125M 4.86E+09 2.5% 1 10% 1 32 6.19E+06 -T-37E-06

1. 19 E --12-r -3, 0 0 E -0 5 1.39E-15 3.44E-06 3.30E-04 1.52E-09 5.62E+00 3 15E+07 2.80E-10 -- I --i-- -I I .LLý tal 1.92E-03 2.2312-06 1.06E-08 7.73E-08 8.25E+03 3.922+01 2.862+02 3.15E+07 3,15E+07 3.15E+07 3.15E+07 6.53E-05 4.40E-08 1.03E-07 1.32E-07 Report HI-2002513 Page A-8 PU238 I 3.76E+0 MPC-32 Normal Conditions Committed Effective Dose Equiv alnt From Inhalation Rate at Fraction Release Breathing

'stream Released Release Rate XIQ Rate DOF DCF 0cc Time CEDE m3Is) per sec Fraction (Cllsec) (seclm3) (m3/sec) (Sv/Sq) (mRem/uCl) (sac) (mRem) Gases 37-E-06 1.192-12 0.30 8.49E-1 1 3.442-06 3.360E--04 1.73E-1 I .40E-02 3. 152+07 1.94E-07 37E-06 1.19I E--12 -0.30 7.542-15 3.44E-06 3.30E-04 4.69E-08 1.74E+02_

3. 15E+07 4.68E-08 37E-06 1.19E-12 0.30 1.382-09 3.44E-06 3.30E-04 0.0012+00 0.OOE+00 3.15E+07 0-.002+00 Crud 37E-06 1.19E-12 0.15 1.242-10 3.441-0-6-6 i.-30E-04 5.912-08 2.192+02 3.15E+07 9,73E-04 Volatiles 37E-0 .9-2 2020 9.722-12 3.44E-06 3.30E-04 3.51E.07 1-T.30E+03 3.15E+07 4.51E-04' 37E-06 1.19-1 20-04 2.74E-12 3.44E-06 3.30E-4 1220 4.772+02 3-.15E+07 I4.68E-05 372oS 1.1E-2 .00-0 5732-12 3,44E-06 3.302-4 .520 4.63E+01 3.15E+07 9.48E-06 372-06 ~ ~9 1.9-2 2020 .9-1 3.4 -06 3.OE.04 I 863E-09 2 O3~I 2.5M.PU241 7.75E+04 2.5%-2.5-%9-04 Sub-Gonad MPC-32 Normal Conditions Effective Dose Euiv aent From Submersion

% Lro Rate at Fraction Release Inventory available

% remainl MPC Vol Upstream Released Release Rate X/Q DCF DCF Occ Time DDE Nuclide (CI/Assy._.__ ) for releas. e airborne.

No. Ass y (cm3) (cm31s) per sec (Ci/sec) (Sv/B3q) (mRem/uC[)_ (sec) (mRem) 3 2.5% 100% 32 6.19E+06 7.37E-06 1.1911-12 0.30--- 8.49E-1"-"

3.44E-06 O,00E+00 00E0 .5+7 00E0 112 2.4E02 2.% 00% ---3-619E+0---

7.37E-06 1.19E-12 0.30 -7,55E-1"-

5- 3.44E-06 4.83E-16 1.79E-06 .,15E+07 -1.46E-12 K85 4.-82E+0,3 25% E+ 0---' 6 1.19E-12 _0"-_i' 1.8-9 34E06 11E1 .3 -07 35E+07 6.46E-08 CO60 000 10 3 .1E06 1.19E-12 0.15 1.24E-10 3.44E-06 1,23E-13 4.55E-04 3.15E+07 6.14E-06 S......Volatilea SIR90 5.10E+0._.._4 2.5i/_ 1_ý00%-/ 3-2 _6.1 9E+0 67.37-0 1.19E-12 2.00E-0--'-

9,72E-12 3.44E-06 7.78E-18 2.88E-08 3.15E+07 3.03E-1 1 RýU10-6 1.f4-4E+0._.

4 2.5%/ 100% 32 6.1_9E+06 737E-06 T1.19E-12 -Y -E0 2E74 E--12 3.4-4E-06 0_ý.00E+00 0ý.00E+00 3.S_15E+07 0.00E+00 CS134.___._4

.1E+04 2.5o% 100"-%-/ 3 6.19E+06"---'

7._37E-06 7 _19E-12 2,00ýOE-04 5_ý.74E-12 3.4_4E-06

_7;.4_0E-14 2_i.74E-04 3.15E+07 1.70E-07 CS137 7.82E+0._._4 2.5% .100---%-/ 6.19E+06---

7,37E-06 1.19E-12 2.00E-04 1,49E-1 I 3.44E-06 7.96E-18 2,95E-08 3.15E+07 4.76E-11 S......Fines PTU24___1 7.75E+0.___4 2, _ 5% -/ 10% 3-2 6719E+06 .T3_7E-06 1.19E-12 3.00E-05 2.22E-1------

3.44E-06 7.1911-20 2.66E-10 .15+0 6.39E-15 Yg 51E0 .% 6,19E+06--

7.37E-06 1.19E-12 3.-00_E-05 1.46E-13 3.44E-06 1.8_9E-1-"---6 6._ý99E-07 3.15E+07 1.10E-11 FM 14-7 2T5_7E+04 2.% 10% 6.9r+0"----

7 _37E-06 7719 E-1 2 3,00E-05 7,35E-1-4--

--5 .-44E-06-- --- .48E-1--_--"j.77E-09 3_ý.15E+07 22E1 EU15-4 4,51 E+03 2,5% 10% i, 19 E+0 6 7.37E-06 1.19E-12 3.00E.-05 1.29E-14 3.44E-.06 6.00E-1--""--

2.22E-04 3.15E+07 3.10E-10 CM244 5.57E+03 2.5% 10-%--'- 32-" 6.19E+06-"-

7.37E-06 1.19E-12 3.00E-05 1.59E-14' " 3,44E-06 6.90E-1"--'8" 2.55E-08 3.15E+07 4.40E-14 PU238 2.5%/

7.37E-06 1,19E-12 3,44E-08 6.56E-18 2.43E-08 3.15E+07-

_ 2.83-E-14 SB125 1,99E+03 2. 5..__% 10% 32 6,19 E+ 0-6 -7.3 7 E-0._6._ 7_6 119E-12 3.00OE-05 5.9E-15 3.44E-06 1.98E-14 7.33E-05 3.15-E+07 4.'T51E-11 EU15 1.2E+0 25 10--'o 3 .19E+0617.37E-06 1.19E-12 3.00E-0"5-

-i--- ,66E-1"--

3.44E-06 2.49E-15 9.21 E-06 3.15E+07 3.65E-12 AM24__.1 8.06E+02 2.

-3E0 1.19E-12 3.00E-0",-

2.30E-15" " 3.44E-06 8.58E-16 3.17E-08 3.15E+07 7.93E-13 PVU240 3.ý6_5E+02 2.5%, 10%"'-/ 3"2-- 6.19E+0617.37E-06 3.00E--0--

5- 1.04E-15 3.44E-06 6.36E-18 2,35E-08 3-5.15E+07 2.66E-1,5 PU239 1.99E+02 10%/ 32 6.19E+06--'-

7.37E-06 1.19E-12 3.00E-0"-" 5.69E-16 -3.44E-06

-4.84E-18

-1.79E-08 31E0 0- 5 BA137M 7.38E+04 2.5% 10% 32 6.19E+06--" 7.37E-06 1.19E-12 3,00E-0"----

If _E2.11E-3 3.44E-06 2-i.82E-14 1_ý.04E-04 3.T15E+07-2.39E-09 RH_10.6_.i6.4 4 E+0 4 2.5% 10%-/ 3"- 2-- 6.19E+06"--

7.37E-06 1J.19_E-12 3.00E-05 4.12E-14 3.44E-.06 1.01E-14 3.74E-05 3_ý.15E+07

-1,67E-10 CE14 E.14+03 2.% 3 737E06 1.19E-12 3.00E-05 2.33E-14 i3.44E-06 85E1 3.E-6 3.15E+07 7.96E-12 PR1 44 2.5% 10%--- -o 7.37E0 1.19E-12 I3.00E-05 3.44E.-06 1.90E-15 7.03E-06 3.15E+07 1.77E-1 1 TE125M 4.86E+02 2.5%= 10 O/ 32 6.19E+06.__.

7.37E-06 1.19E-12 3.00OE-05 1.39E-15 3.4-06 5.96E-1 6 1 2.21 E-06 3.15E+07 3.32E-13 0- -FTotali 6.38E-06 Report HI-2002513 Page A-9 Sub-breast available for release 2.5% 2.5% 2.5% 100.0% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5%No. Assy 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 AM241 8.06E+02 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 2.30E-1l PU240 3.65E+02 2.5% _ 10% --32 6.19+06 7.37-06 1.19E-12 3.00E-05 1.04E-11 .3 1.19E-12 3.00-05 5.69E-1l MPC Vol (cm3) 6.19E+06 6.192+06 6.19E+06 6.19E+06 6.19E+06 6.19E+06 6.19E+06 6.19E+06 6.19E+06 6.19E+06 6.19E+06 6.19E+06 6.19E+06 6.19E+06 6.19E+06 MPC-32 Normal Conditions Effective Dose Equivalent From Submersion Fraction Released persec 1.19E-12 1.19E-12 1.19E-12 1.192-12 1.19E-12 1.19E-12 1.19E-12 1.19E-12 1.19E-12 1.19E-12 1.19E-12 1.19E-12 1.19E-12 1.10=-12 L, Rate at Upstream (cm3/s) 7.37E-06 7.37E-06 7.37E-06 F7.37E-08 7.37E-06 7.37-0 7.37E-06 7.37E-06 7.37E-06 7.37E-06 7.37E-06 7.37E-06 7.37E-06 7.37E-06 7.37E-06 Release Rate (Cl/sec) Gases 8.492-1 1 7.55E-15 1.38E-09 Crud 1.242-1 V-oiatjes 9.2E-12_ 2.74E-12 5.74E-12.

1.49E-11 Fines 2.22E-13 1.46E-13 7.35E-14 1.29E-14 1.59E-14 1.07E-14 5.69E-15 5 5 2.11E-13 4.12E-14 2.33E-14 2.33E-14 1.39E-15 Release Fraction 0.30 0.30 0.30 0.15 2.00E-04 2.O0E-04 2.00E-04 2.00E-04 3.002-05 3.00E-05 3.00E-05 3.00E-05 3.002-05 3.002-05 Nuclide H_ 3 1129 KR 85 CO 60 SR 90 RU106 CS1 34 CS137 PU241 Y 90 .PM147 EU154 CM244 PU238 SBI25 8.482-16 L

____________

I ____________

I ____________

I ____________

I ____________

Inventory (Ci/Assy) 2.97E+02 2.64E-02 4.82E+03 2.1 8E+01 5.1012+04 1.44E+04 3.012E+04 7.822E+04 7.-752E+04 5.102+04 2.572+-0_4 4.512_+03 5.,'57E+03 3,76E+03I 1.99E+031 1.28E+031 3.4 I0% remain airborne 100% 100% 100% 100%To 100% 100% 1 QO% 100% 10% 10% 10% 10% 10% 10% 10% 10%I I. -- -..-.-A2 I.'~u I I.1ic~-1Z I I0% 10% 10% 10%32 32 32 32 6.19E+06 6.19E+06 6.19E+06 6.19E+06 7.37E-06 7.37E-06 7.37E-06 7.37E-06 1.19E-12 1.19E-12 1.19E-12 1.19E-12 3.00E-05 3.00E-05 3.o00E-05 3.00E-05 3.00E-05 Report HI-2002513 Page A-10 (, X/Q (sec-m3) 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3,44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06I DCF (Sv/Bq) 0.00E+00 6.66E-16 1.34E-16 13 92-E13 9.49E-18 O.OOE+00 8.43E-14 9.67E-18 8.67E-20 2.20E-16 9.56E-19 6.812-14 1.33E-17 1.27E-17 2.27E-14 2.95E-15 1.07E-15 1.23E-17 7.55E-18 3.22E-14 1.16E-14 1.01E-15 2.15E-15 8F4 8 E-1 6 DCF (mRemluCi) 0.00E+00 2.46E-06 4.96E-07 5.14E-04 3.51E-08 0.00E+00 3.12E-04 3.58E-08 3.21 E-10 8.14E-07 3.54E-09 2.52E-04 4.92E-08 4.70E-08 8.40E-05 1.09E-05 3.96E-06 4.55E-08 2.79E-08 1.19E-04 4.29E-05 3.74E-06 7.96E-06 .4E-6 0,iI.~,IvI I...3ot1-U.+

I 0.b 1(n%CE144 PR144 TE125M 2.5% 2.50/1.44E+04 8.14E+03 8.14E+03 4.86E+02 Occ Time (sec) 3.15E+07 3.15E+07 3.152+07 3.15E+07 3.152+077 3_152+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3,15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 Total 7.212-06 DDE (mRem) 0.00E+00 2.02E-12 7.40E-08 6.94E-06 3.70E-11 0.00E+00 1.94E-07 5.78E-11 7.702-15 1.29E-11I 2.822-14 3.52E-10 8.49E-14 5.47E-14 5.17E-11 4.33E-12 9.88E-13 5.15E-15 1.72E-15 2.72E-09 1.91E-10 9.42E-12 2.01E-11 4.73E-13 I R9 R I 7 4 Sub-Lung MPC-32 Normal Conditions Effective Dose Equivalent From Submersion

% Ln, Rate at Fraction Release Inventory available

% remain MPC Vol Upstream Released Release Rate X]Q DCF DCF Occ Time DDE Nuclide (Ci/Assy) for release airborne No. Assy (cm3) (cm3/s) per sec Fraction (CI/sec) (sec/m3) (Sv/Bq) (mRem/uCi) (sec) (mRem) S~~G ases HB .._3 2897E+0. 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 0.30 8049E-13 3.44E-00 2.75E-18 1.02E-08 3.15E+07 9.36E-11 1129 2.64E-02 2.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30 7552-1 3.44E-06 2.14E-16 7.92E-07 3.15E+07 6.48E-13 KR 85 25% 00-'-/. -_T0 -/. 7.37E-08 1.19E-12 1,38E-09 .4-4E--08 1.14E-16 4.22E-07 3._15E+07 6.30E-08 CO~ ~ ~ ~ ~ ~ ~ ~ ~1 6.___021E0 100 0oo rud _E0 60 ý.1 BE 01 -TO ý% _FO_1. 3-2.. __ý_ 619E+06 -7.37E-06 71.19E-1 2 0.1 1.4E1 3.4E--06 1-i.24E-13 4_ý.59E-04

_-3.-15E+07

_6.19-0 .....V o l a t i l e s. 1 E 0 S9R40 5.10E+03 2.5% 100% 322 6.19E+06 7.37E-06 1.19E-12 2300E-04 9.72E-12 3.44E-06 6.44E-18 2.38E-08 3.15E+07 2.51E-11 RU106 1.44E+0.__..4 2.5% 100%. 32 6.19E+06 7.3_7E-0"-

--,19E-1-"----

2.00E-0------

2,74E-12 3.4ýE0-06 0.00OE+00 0.00E+00 315 E+0 7 0-&.00E+00 CE S1 3._._4 -TO01 E+04.___i_ , 25 % 1_O0o-/. 32.2 __619 E+ 06 7 _37E-06 T1.19E-1 2 2.O0 -5.74E-12

-3,44E-06

-7.37E-14

-2.73E-04

-3.15E+07

-1.70E-07 CS137 7.82E+04.____.

/. 2.5% 100-/. 32_._ 619 E+0 6 7. 37 E-06 1.19E-12 2,00E-04 1.49E-11 I 3.44E-06 __6.8E-1 8 2.E-0 3.5-E+07 3,9 9 E-11I -..... .- 9E 0 -._ _ _O Fines PU241 7.75E+04 2.5% 10% 32 6.192+06 7.37E-06 1.19E-12 3,00E-05 2.22E-14 3.44E-06 6,48E-20 2.40E-10 3.15E+07-1.76E-15 Y90 5.10 4 E+04 2.5% 10% 3-2 6.19E+06 7.37E-06 1.19E-12 3.OOE-05 1.46E-13 3.44E-06 1.77E-16 6.55E-07 3,15E+07 1.03E-11 _M 14-7 2,i.57E+04 .5/ _10-"%.-/

3"-2 6.1 9E+0 6 ---- 7.-37E-06 1.19E-12 3.00E-05 7.35E-1-3.44E-0--'-6 5.5E1 2.0i2E-09 35._15E+07 1.61E-14 EU15-4 751 E+03 1'. 0"'-/= 6. 19-E+0-----6 7.37E-06 1.1 9E-1 2 3,00E-05 1.29E-14-'-

3.44E-06-"-

5.99E-14 2.22E-04 3.1_5E+07

-3.1012-10

-5.57E+03

_2.5%._.___

10% 3-2 " .19+0 7.37E-06 1.19E-12 3.00OE-0---

---

3.44E-06 -TO08 E-1 9 2_._62E-09

-3.15E+07 45E1 P_ýU238 3.76E+0__33 2.5___%% 10% 3-2-- 6.19E+06 7.37E-06 1.19E-12 3.0012-05-'--

1.07E-14 3,44E-06 1.06E-18 3.92E-09 3.15E+07 4.57E-15 SB125.. 1.99E+0..__3 2.5% 10- %" 3-2-" 6.19E+06--'

7,37E-06 1.1_9E-12 -i.-O-5_ý E 15 3i.44-E-06 1595-E-1 4 7.T2-2E-0---'----- .15E+07 4, 45 E-1I1 EU155 I1.28E+03 2.5% 9E+06----

7.37E-0"----6

.1E1 -E-1 3.4- 22E-15 8.21-06 5 E 32621 AM241 .6. -13.i0015E05 i.6 6 F4_4 T2_2 Total E.06+0 32E-12 Repot32 6.19E+06 Pag.37-06 1,19E-12 3,00E-05 2.30E-15 3.44E-06 6,74E-16 2.49E-06 3.15E+07 6.23E-13 ISU-240 -3.65E+02 _2.5% 10% _2_ 6 -.19E+06- -

1.19E-12 3.00E-0"--'-

1.04E-15 i._44E-06 1-i.09E-18

-4.03E-09 3.15E+07 4.56E-1-6 PU239~ ~ ~ ~ ~~2 19+0 25% 10----= -6.-190--"" 7.37E6 1,1T -1 30-0-i-OO-0--

76 9-E-1 6 3.44_E-06 2.65E-1 8 -9.81E-09 3.15E+07 6.04E-16 BA137M I7.38 E+04 2.5% 10% 32-7,37E-06 1.19E-12 3,00E-05 2.11 E-1 3 3.44E-06 2.80E-114 1.04E-04 3.15E+07 2.37E-09 RH106 1 144E+0..__4 2.5% 10% 32-7.37E-06 1.19E-12 3.0012-05 4,12E-14 3.44E:6--T.0

.0E-14 -3.74E-05 3.1 5 E+0 7 1.67E-10 CE144 8 .14E+03 2,5% 10% 32-- 6.19E+06--- 7.37E-06 1.19E-12 3,00E-05 2.33E-14 ;3.44E-06

,7.69E-16 2.85E-06 -3.15E+07 7.17E-12 PR144 8 E.14E+03 2.5% 10--'%--/

"2- 6.19E+06---

7.37E-06 1.19E-12 3,00E.-05 2"3E1-'- -----.344E-06 1.90E-1 5 7.03E-0 .5+7 17E1 TE125M.___I

-.86E+02 2.5%

06 7.37E-06 1.19E-12 3.00E-05 1.39E-15 3.44E-06Z

-2.23E-1 6 8.25E-07 3.15E+07 1.ý24E-1 3 Report HI-2002513 Page A- 11 Sub-R Marrow Inventory (CIIAssy)% available for release MPC-32 Normal Conditions

________ Effective Dose Equivalent From Submersion

% remain airbome-No. Assy MPC Vol (cm3)Lrw Rate at Upstream (cm3/s)Fraction Released per seo Release Fraction Release Rate (ClIsec)H 3 2.97E+02 2.5% 100% 32 6.19E+06 I7.372-06 1.192-1 2 0.30 8,49E-11I 1129 2.64E-02 2.5% 100% 32 6,19E+06 7.372-06 1.192-12 0.30 7.55E-15 4.82E+3 -ý09/.M3PC-32 KR 85 4.2+3 2.5% 10 32 619 E +06 7.37E-06 1.19E-12 0.30 -1.38E-09 Crud CO 60 2.18E+01 100.0% 100% 32 6.192+06 7.372-06 91.9-12 0.15 1.242-10 NomlodiinVolatiles90 5.10UE-+4 2.--7E l. 19 E-1 2 100%10% 32 6.I~n 7.A m ~ f~RU10U 1.441+04 2.5%2.00E-04 9.72E-12 XIQ (sec/m3) 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 100%32 SB2 19203 25% 1% 32 6.192+06 7.37E-06 1.192-12 3.00-05 5.69E-i1 S~Fines PU241 7.75E+04 2.5% 10% 32 6.19E+06 7.372-06 1.192-12 3.002-05 2.22E-1i Y90 5.10E+04 2.5% 10% 32 6.19E+606 .37E-061 1.19E-12 3.00E-0-5--

1.46E-1: PM147 2.57E+04 2.5% 10% 32 6.19E+06 7.37E-06-" 1. 19E-1 2 3.00E-0----

5 7.35E-1, EU154 4.51E+03 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.002E-05 1.29E-1 CMV2-44 5.57E+03_

_2.5_%/ 10% -32 6.19E+06 7,37E-06 1.19E-12 I3.00E-0"--'" 1.59E-1""" PU238 3.76E+03 2.% 0 32 6,19E+06 7.37E-06 !.1E-12 3.60E-0--

65-"- 1.0712-1"---'

SB125 1.99E+03 2.5,% ,1,% 32 6.19E+062"5 7.37E-06 1.19E-1--'--

3.00E-05 EU155 1.28E+03l 2.5% 10% 32 6.19E+06-6 7.37E-06 1.19E-12---

3.00E-05'---

3.66E-1---

AM241 8.06E+021 2.5% 10% 32 6.19E+06 7.37E-06 1.9E1 3.OE PU240 3.65E+02 1 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.04E-1t PU239 1.99E+02 2.5% 10% 32 6.192+06 7.372-06 1.19E-12 3.00E-05 5.69E-1I 5.7412-1 1.44E+04 8.14E+03 8.14E+03 4.86E+02 2.5% 2.5% 2.5% -2.5%10% 10% 10% 10%32 32 32 32 6.192+06 6.19E+06 6.19E+06 6.19E+06 7.37E-06 7.37E-06 7.37E-06 7.37E-06 ~7 rJT nt 1.192-12 1.19E-12 1.19E-12 1.19E-12 3.00E-05 3.00E-05 3.00E-05 3.002-05 2.11E-13 4.12E-14 2.33E-14 2.33E-14 2.5% 10% 32 619E+06 .73.3.442-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-0___6 3.442-06 3.442-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 32.442-06 Report HI-2002513 Page A-12 (Nuclide (u- lI 7.82EI+U4 2.5%DCF (Sv/Bq) 0.00E+00 1.64E-16 1.09E-16 1.23E-13 5.44E-18 Occ Time (sec) 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 RH0_ 6 CE144 PR144 TE125M DCF (mRem/uCI) 0.00E+00 6.07E-07 4.03E-07 4.55E-04 2.01E-08 0.00E+00 2.66E-04 2.11E-08 2.08E-10 5.99E-07 1.65E-09 2.17E-04 5.40E-09 6.22E-09 6.92E-05 6.85E-06 1.93E-06 6.11E-09 9.88E-09 1.01E-04 3.61E-05 2.47E-06 6.92E-06 6.88E-07 DDE (mRem) 0.00E+00 4.96E-13 6.02E-08 6.14E-06 2.12E-11 0.00E+00 1.65E-07 3.41 E-11 5.00E-15 9.47E-12 1.31E-14 3.03E-10 9.32E-15 7.24E-15 4.26E-11 2.71 E-12 4.81E-13 6.90E-16 6.09E-16 2.31E-09 1.61E-10 6.23E-12 1.74E-11 1.04E-13 Total 6.37E-06 7.19E-14 5.70E-1 8 5.63E-20 1.62E-16 4.46E-19 5.87E-14 1 .46E-18 1.68E-18 1.87E-14 1.85E-15 5.21E-16 1.65E-18__

2.67E-18 2.73E-14 9.75E-15 6.68E-16 1.87E-15 1.86E-16______ -_______ 4 *-.-.-..L...........L

_______ I ________ I ________ I. _______ j ________ j ________ j _______ j ___________

I 2 1 3 3 4 4 41 4 5 5 6.19E+08 I 7 R71:=.nR t ,Io10_,1o CS134 3.01E+04 1 2_l I 5% 100 32 619E+06 73 ETT lOB%32 I 7 R71:::./1R

'1 'lor'_'lO OOE=-04 Sub-2 Surface Report HI-2002513 Page A-13 Sub-Thyroid MPC-32 Normal Conditions Effective Dose Equlvalent From Submersion

% Lrw Rate at Fraction Release Inventory available

% remain MPC Vol Upstream Released Release Rate XIQ DCF DCF Oco Time DDE Nuclide (Ci/Assy) for release airborne No. Assy (cm3) (cm3/s) persec Fraction (ClIsec) (sec/m3) (Sv/Bq) (mRem/uCi) (sec) (mRem) ......:-7+0 -5 Gase'" "s '- PU239 .992+0 2.5% 0% 32 6.19E+06 7.37E-06 1.19E-12 03.002 5.69E-16 I .4-6 3821 .420 .5 7 8821 HAT 3 2 ,7 2.64E +02 2.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 30030 8.IE 3.44E-06 2.0 -E+00 0.0 0E+-0 3.15E+07 0.00E+00 KR 851 .4E+03 2.5% 100% 32 6.19E+06 7.37E-06 1.192-12-, 0.3--55E-15 3.44E-06 3.86E-16 1.43E-06 3.15E+07 1.17E-12 K R_ _ 5 ,.2+___Z 2 5 I 0 -- -,9 ,0-- .Z -6 1.19E-12---

-0.3-- --- -1.38E-0--

-- -

6 1.1 E-1-- -- -4.37E 07- -3.15E+07 6.52E-08 C 60

  • 2.8E0 10.) -i.9+6 73 Crud CO0 .8E01 10.% 100%/ 32 6.9+673E-06 1.19Eo12 0.15 1-24E-10 3.44E-06 1.27E-1---'-3 4.70E-04 -3.15E+07 6.34E-06 S......Volatiles SR090 5.10E+04 2.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 9.72E-12 3.44E-06 7.33E-18 2.71E-08 3.15E+07 7.85E-11 RU106 1.44E+04 2.5__ _% 100"- %'-/ 32 6.19E+0"-'" -7.37E-06 -1.19E-12

-2274-.0044-0 0 0 +0 000 00 31 + 7 0.00E+ 01 -.0 1_E+0.._4 2.5%/ 100%--"/ 32 6.19E+06 7.37E-06 1.19E-12 2.00E-04 5.74E-12 3.44E-05 7.57E.14 2.80E-04 3. .15E+07- -1.74E-07 CS137 7.82E+04 2.5% 100% 372 -6,19E+06

-7,37E-06 1,19E-12 2,00E.-04 1.49E-1 1 3,44E-06 7.55E-18 2.79E-08 3.15E+07-4-51E-11 S.....Fi-nes PU241 7.75E+04 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 2.22E-14 3.44E-06 1.98E-20 2.58E-10 3.15E+07 .820E-15 Y90 5.10 E+ 04 2.5% 10--"%- 3---2-- 6.19E+06"'-

7.37E-06 1,1 9E-1 2 3,00OE-05

-1.46E-1 3 -3.44E-06 1.87E-16 6.92E-07 31E0 109-11 PM147 2.57E+04 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 7.35E-14 3.44E-06 6.75E-19 2.50E-09 3.15E+07 1.99E-14 EU154 4.51E+03 2.5% 32 6.19E+06" 7.37E 1T19E-12 3.0E-0t 1.8E-0 CM244 5.57E+03 2.5% 10P 32 6.19E+06a 7.37E 119E-12 3.0E-0"- 159E-14 3.44E.-06 4,19E-18 1.55E-08 3.15E+07 2.67E-14 PU23. 8 2.5" % 10%-"/ 32"-1"70-737-0 1.19E-12----

%3.00E-0"----5 1.07E-I"-"-

3.44E-0-----6 4.01 E-1 8 1.48E-08 3.15E+07 1.73E-14 SB12._.5 1.99E+03__....1 2.5"-%-- 10%-"--%'19E+06 7.37E-06 1.9E1 3,OE 5,69E-15----

3.44E-0-6---

2.01 E-1 4 7.44E-05 3.15E+07 4-.58E- 11 EU15.__.5 1.E*3_._] 10----% 3-2-- -6.19E+061 7,37E-06 1.9E1 3.OE 3.66E-15----

3.44E-0-----

2.41E-15---'

8.92-E--06 3.15E+07 3.54E-12 AM241 8.06E+021 2.5"-%- 10"--%- 3"--'2" 7.37E-06 1.19E-12 3,00E-05----

2.30E-1 5 3.44E-06 7-8 3 E -16"--'- 2.90E-06 3.1512+07 7.23E-13 PU240 2.5"---% 10"--%-' 32-'- 6.19E+06-'---

7.37E-06 1.19E-12 3.00E-O'---'

1.04E-15 3.44E-06 3192E-1"" 1.45E-08 3.15E+07 1.64E-15 PU23....9 1,99E+02-----

2.5%-'-/ 10% 3--'2-" 6.19E+06---'-

7.37E-06 1.19E-12 3,00E-0----

5.69E-16 3.44E-.06 3.88E-18 1.44E-08 3.15E+07 T8.85 E- 16 B-A-137M 2.5% 10% 32 6.19E+061 7.37E-06 1.19E-12 3.00E-05 2.711E-13 3.44E-06 2 8 8 E- 14 1.07E-04 3,15E+07 2.44E-09 RH10___.6 2.5% 1 0---%- 32 6.19E+0-6"---

7.37E-06 1.19E-12 3.-E-5 4.12E-14 3,44E.06 1.03E-14 3.81 E-05 3.5+7 1,70E-10 CE144 8,14E+03.__1 2.5%"; 10% -6.19E+06"--'

7,37E-05 1.19E-12 -3.00E-05

-2.33E-14

-3.44E-06

-8.33E-16

-3.0E-6 -2.15-E+07 77E1 PR44 814+312.%

10 2 .9E06 .3E06 119E-12 3.0012-05 2.33E-14 3.44E-06 1.95E-15 7.22E-06 3.15E+07 1,82E-11I TE125M 4.86E+021 10"' 3" 2--61E0-"-'

7.37E-06 1.19E-12 3.00E-05 1F3-9E-15 1.4-6 .4 -16 172LE-06 3.15E+07 2.59E-13 o t a l 6 5 B E -0 6 Report HI-2002513 Page A-14 Sub-Effective MPC-32 Normal Conditions Effective Dose Equlvant From Submersion

% Lnor Rate at Fraction Release Inventory available

% remain MPC Vol Upstream Released Release Rate X/Q DCF DCF Occ Time DDE Nuclide (Ci/Assy) for release airborne No. Assy (cm3) (cm3/s) persec Fraction (Ci/sec) .(sec/m3) (Sv/Bq) (mRem/uCI) (sec) (mRem) Gases 2.97E+02 2.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30 8.49E-11 3.44E-06 3.31E-19 1.22E-09 3.15E+07 1.13E-11 1129 2.64E-02 2.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30 7.55E-15 3.44E-06 3.80E-16 1.41E-06 3.15E+07 1.15E-12 KR 85 4.822+03 2.5% 100% 32 6.19E+06 7.37-06 1.19E-12 0.30 1.38E-09 3.44E-06 1.19E-16 4.40E-07 3.15E+07 6.57E-08 Crud CO 60 2.18E+01 100.0%o 100% 32 6.19E+06 7.372-06 1.19E-12 0.15 1.24E-10 3.44E-06 1.26E-13 4.66E-04 3.15E+07 6.29E-06 Volatiles SR 90 5.10E+04 2.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.00E-04 9.72E-12 3.44E-0--'6 7.53E-18 2.79E-08 3.15E+07 2.932-11 RU106 1.44E+04 2.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.OOE-04 2.74E-12 3.44E-06 O.6O 0 0.00E+00 3.15E+07 0.00E+00 CS134 3.01E+04 2.5% 1Q0% 32' 6.19E+06 7.372-06 1.19E-12 2.OOE-04 5.74E-12 3.44E-06 7.E7E-14 2.80E-04 3.15E+07 1.74E-07 CS137 7.82E+04 2.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.002-04 1.49E-11 3.442-06 7.74E-18 2.86E-08 3.15E+07 4.62E-11 Fines PU241 7.75E+04 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 -2.22E-13 3.44E-06 7.25E-20 2.68E-10 3.15E+07 6.44E-15 Y90 5.10E+04 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.46E-13 3.44E-06 1.90E-16 7.03E-07 3.15E+07 1.11E-11 PM147 2.57E+04 2.5% 10% 32 6.19E+061 7,37E-06 1.19E-12 3.00E-05 _7352-14 3.44E-06 6.9-3E-19 2.56E-09 3.15E+07 2.04E-14 EU154 4.51E+03 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.29E-14 3.44E-06 6.14E-14 2.27E-04 3.15E+07 3.17E-10 CM244 5.57E+03 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.59E-14 3.44E-06 4.91E-18 1.82E-08 3.15E+07 3.13E-14 PU238 3.76E+03 2.5% 10% 32 6_.19+06 7.37E-06 1.19E-12 3.00E-05 1107E-14 3.44E-06 4.88E-18 1.812-08 3.15E+07 2.10E-14 SB125 1.99E+03 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.002-0-5 5.69E-15 3.44E-06 2.02E-14 7.47E-05 3.15E+07 4.60E-10 E155 2803 5 10% 32 6,9E0 7.37E-06 .1E1 i. 3.66E-1 5 3.44E-06 2.49E-15 9.21E-06 3.1j5E+07 3.65E-12 AM241 8.06E+02 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.002-05 2.30E-15 3.44E-06 8.18E-16 3.03E-06 3.15E+07 7.56E-13 PU240 3.65E+02 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.04E-15 3.44E-06 4.75E-18 1.76E-08 3.15E+07 1.99E-15 PU239 I1.99E+02 2.5% 32 61E0 7,37E-06 1.9-2 30E0 .9-6 34E-06 4,24E-1 8 1.57E-08 3.T15E+07

-9.67E-16

ýA 13-7M -7.38E+04 -2.5% 10%"--I- 32 6.19E+06 I7.37E-06 1.19E-12 3.00E-05 2.11 E-1 3 3i.44-E-06 2.88E-14 1.0O7E-04 3.1I5E+07 2.44E-09 RH106 1,44E+04 2.5% 32 7,37E-06 1.19E-12 3.00E-05 412 E--14----

.4E-06 I 1.04E-14 -3.5-0 3.5+7 12E0 CE144 8.1 4E+03 2.5%,/ 10% 32 6ý.19E+06 7.3-7E-06 1.19E-12 3.00E-05 2.3_3E-14---

3.44E-06-" 8.53E-16 3.16E-06 3.15E+07 7.96E-12 PR144 8.14E+03 2.5% 32 7.37E-06 1.1912-12 3.0012-05 2.33E-14-'-

1.95E-15 7.22E-06 3,15E+07 1,82E-1 1 TE125M 4.86E+02 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.392-15 3.44E-06 4.53E-16 1,68E-06 3.15E+07 2.53E-13 Total 6.532-06 Report HI-2002513 Page A-15 K (Sub-Skin MPC-32 Normal Conditions Report HI-2002513 Page A-16%00 Ln Rate at Fraction Release Inventory available

% remain MPC Vol Upstream Released Release Rate X/Q DCF DCF Occ Time SDE Nuclide (Ci/Assy) for release airborne No. Assy (cm3) (cm3/s) per sec Fraction (CI/sec) (sec/m3) (Sv/Bq) (mRem/uCI) (sac) (mRem) Gases H 3 2.97E+02 2.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30 8.49E-11 3.44E-06 0.00E+00 0.OOE+00 3.16E+07 0.00E+00 1129 2.64E-02 2.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30 7.55E-15 3.44E-06 1.10E-15 4.07E-06 3.15E+07 3.33E-12 KR 85 4.82E+03 2.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30 1.38E-09 3.44E-06 1.32E-14 4.882-05 3.15E+07 7.29E-06 Crud CO 60 2.18E+01 100.0% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.15 1.24E-10 3.44E-06 1.45E-13 5.37E-04 3.15E+07 7.24E-06 Volatiles SR 90 5.10E+04 2.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.OOE-04 9.72E-12 3.44E-06 9.20E-15 3.40E-05 3.15E+07 3.59E-08 RU106 1.44E+04 2.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.00E-04 2.74E-12 3.44E-06 0.002+00 0.002+00 3.16E+07 0.00E+00 CS134 3.01E+04 2.5% 100% 32 6.19E+06 7.37E-06 1.192-12 2.002-04 5.74E-12 3.44E-08 9.452-14 3.502-04 3.15E+07 2.172-07 CS137 7.82E+04 2.5% 100% 32 6.192+06 7.37E-06 1.19E-12 2.00E-04 1.492-11 3.44E-06 8.63E-15 3.19E-05 3.15E+07 5.16E-08 Fines PU241 7.75E+04 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.OOE-05 2.22E-13 3.44E-06 1.17E-19 4.33E-10 3.15E+07 1.04E-14 Y 90 5.10E+04 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.46E-13 3.44E-06 6.24E-14 2.31E-04 3.15E+07 3.65E-09 PM147 2.57E+04 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 7.35E-14 3.44E-06 8.11E-16 3.00E-06 3.15E+07 2.39E-11 EU154 4.51E+03 2.5% 10% 32 6.19E+06 7.37E-06 1.192-12 3.00E-05 1.29E-14 3.44E-06 8.29E-14 3.07E-04 3.15E+07 4.29E-10 CM244 5.57E+03 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.59E-14 3.44E-06 3.91E-17 1.45E-07 3.15E+07 2.50E-13 PU238 3.76E+03 2.5% 10% 32 6.192+06 7.37E-06 1.19E-12 3.00E-05 1.07E-14 3.44E-06 4.09E-17 1.51E-07 3.15E+07 1.76E-13 SB125 1.99E+03 2.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 5.69E-15 3.44E-06 2.65E-14 9.81E-05 3.15E+07 6.04E-11 _EU155,,., .1.28E+03.^

^2.5%.. 10% ... 32 6.19E+06 7,37E-06 1. 19E-1 2 3.00E-05 3.66E-15 3.44E-06 3.39E-15 1.25E_-05 3.5E0 7E-12. CM241 8.142+03 2.5% 10% 32 6.192+06 7.37E-06 1.192-12 3.002-05 2.332-14 3.44E-06 2.928-15 4.74E-06 3.15E+07 1.18E-12 PR240 8.142+03 2.5% 10% 32 6.192+06 7.37E-06 1.19E-12 3.002-05 2.332-14 3.442-06 8.42-1 31.45E-04 3.15E+07 1.64E-14 P 2 9 1 9 E 0 2 .% 1 %3 6 .9 0 6 7 .3 7 E -0 6 1 .9 -2 3 O E 0 .9 -6 3 4 E 0 .6 -7 6 .8 8 E -0 8 3 .1 5 E + 0 7 4 .2 4 E -1 5 B A 3 M 7 3 E 0 .% 1 %3 .9 + 6 7 .3 7 E -0 6 -1 9 E 2 .O 0 5 .1 E 1 3 3 4 E 0 6 3 .7 3 E -1 4 1 .3 8 E -0 4 3 .1 5 E + 0 7 3 ,1 6 E -0 9 R 1 6 1 4 E 0 2 .%0 %3 6 , 9 0 6 7 ,3 7 E -0 65 1 1 -1 .0 2 0 , 2 -4 I 3 4 E 0 , 9 2 1 4 .0 3 E -0 4 3 .1 5 E + 0 7 1 .8 0 E -0 9 C 1 4 8 1 E 0 2 .% 1 %3 6 .9 0 6 7 .3 7 E -0 6 1 .9 2 1 2 3 O E 0 .3 -4 3 4 E 0 .3 -5 1 .0 8 E -0 5 3 .1 5 E + 0 7 2 .7 3 E -1 1 I P R 4 .4 + 3 2 0 2 .9 + 6 7 .3 7 E -0 6 1 9 E 2 O E -5 2 .3 3 E -1 4 3 4 E 0 8 .E 1 4 3 .1 2 E -0 4 3 .5 + 7 7 .8 6 E -1 0 T E 2 M 4 8 E 0 .% 1 %3 .9 + 6 7 .3 7 E -0 6 1 9 E 2 .O -5 1 .3 9 E -1 5 3 .4 4 E -0 6 1 .4 -5 7 .1 8 E -0 6 3 .1 5 E + 0 7 O B0 E -1 2 Totall 1.48S-05 hing te 3ec) :-04 --04 :-04 :-04 "-04 ".-04 --04 '-04 :-04 ":-04 .-04 '-04 --04 -04 .-04 1-04 :-04 .-04 .-04 :-04 :-04 Page A-17 DCF (Sv/Bq) 1.73E-1 1 8.69E-11 0.00E+00 4.76E-09 2.64E-09 1.38E-08 1.30E-08 8.76E-09 6.82E-07 9.52E-12 1.88E-14 1.17E-08 1.59E-05 2.80E-05 3.60E-10 3.56E-10 3.25E-05 3.18E-05 3.182-05 0,00E+00 0.00E+00 1.93E-09 2.41E-15 1.24E-10 DCF (mRem/uCI) 6.40E-02 3.22E-01 0.00E+00 1.76E+01 9.77E+00 5.112+01 4.81E+01 3.24E+01 2.52E+03 3,52E-02 6.96E-05 4.33E+01 5.88E+04 1.04E+05 1.33E+00 1.32E+00 1.20E+05 1.1BE+05 1.-18E+05 0.00E+00 0.00E+00 7.1l4E+00 8.92E-06 4.59E-01 Occ Time CDE (sec) (mRem) 3.15E+07 8.94E-07 3.15E+07 3.99E-10 3.15E+07 0.00E+00 3,15E+07 7.84E-05 3.15E+07 1.56E-05 3.15E+07 2.30E-05 3.15E+07 4.54E-05 3.15E+07 7,94E-05 3.15E+07 9.19E-05 3.15E+07 8,44E-10 3.15E+07 8.40E-13 3.15E+07 9.18E-08 3.15E+07 1,54E-04 3.15E+07 1.83E-04 3.15E+07 1.25E-09 3.15E+07 7.92E-10 3.15E+07 4.56E-05 3.15E+07 2.02E-05 3.15E+07 1.10E-05 3.15E+07 0.00E+00 3.15E+07 0.00E+00 3.15E+07 2.73E-08 3.15E+07 3.41E-14 3.15E+07 1.05E-10 Total 7.49E-04 (Inh-breast 0ff-Normal Conditions

% L.. Rate at Fraction Release Inventory available

% remain MPC Vol Upstream Released Release Rate X/Q Nuclide (CI/Assy) for release airborne No. Assy ( (cn3ls) parsec Fraction (CI/sec) (sec/m3) Gases H 3 2.97E+02 11.5% 100% 32 6.19E+06 7.37E-06 1,192-12 0.30 3.90E-10 3,44E-06 1129 2.642-02 11.5% 100% 32 6,19E+06 I 7.372-06 1.192-12 03 -3n1 3 KR 85 4,822+03 11.5% 100% 32 6,19E+06 7.372-06 1.19E-12 0.30 6'.34209 3.442-06 Crud 0060 2.18E+01 100.0% 100% 32 6.19E+06I 7.37E-06 1.192-12 0.15 1.242-10 3.44E-06 SR0 5,10E+04I 11.5%IiI I .1 I _RU106 11.44E+04 11.5% 100% 32 6,19E+06 7.37E-06 1.19E-12 I 2.002-04 ,,.. .... ..... 32 6.19E+06 -7.37E: -n CS 137 7.820+04 11.5% 100% 32 6.19E+06 7.37E-05 11.5% l000/- all A I oC.,na 7,.= .=1.195-1;__... -..-..- .-.-'ul --& .,-,U* I gTU .=.~I-lJU I. ] 1:-I14__.

PU241 7.752+04 11.5% 10% 32 6.192+06 7.372-05 1.19E.1 Y 90 5.102+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-1; PM147 2.572+04 11.5% 10% 32 6.19E+06 7.37E-06 1.192-12 EU154 4.51E+03 11.5% 10% 32 6.192+06 7.37E-06 1.19E-12 C23 732 6.19+06 7.372-06 1,19-1, C M 244 I5,57E+03 11.5 %/ 10%32 1 6 9E 0 7. E 06 .9E 2 SB125 EU155 AM241 PU240 PU239 BA137M RH106 CE144 PR144 TE125M 1.99F+03 1.28E+03 8.06E+02 3.65E+02 1.99E+02 7.38E+04 1a445+04 8.14E+03 8.14E+03 4.86E+02 11.5% 11.5% 11.5% 11.5% 11.5% 11.5% 11.5% 11.5% 11.5% 11.5%10% 10% 10% 10% 10% 10% 10% 10% -10% 10%32 32 32 32 32 32 32 32 32 6.19E+06 6,19E+06 6.19E+06 6.195+06 6.19E+06 6.19E+06 6.19E+06 6.19E+06 6.19E+06 6.19E+06 6.19E+06 7.37E-06 7.37E-06 73372-06 7.37E-06 7.37E-0-6 7.375-06 I 7.37E-06 7.37E-06 7.37E-06 7.37E-06 7.37E-06 1.19E-12 1.19E-12 1.19E-12 1.19E-12 1.192-12 1.195-1___.2 1.19E-12 1.19E-12 1.10E-12 1.192-12 11911-12 2.002-04 2.0012-04 3.002-05 3.002-05 3.00E-05 3.002-05 3.0-02-0O5 3.0012-05 3.002-05 3.0012-05 3.002-05 3.002-05 3.002-05 3.002-05 3.00S-015 3.002-05 3.0012-05 3.002-05 Volatiles 4.472-11I 1.262-11I 2.642-11 6.852-11I Fines 1.02E-12 6.70E-13 3.38E-13 5.93E-14 7.32E-14 4.94E-14 2.61E-14_

1.68E-14 1.062-14 4.i802-15 2.62E-15 9.70E-1 3 1.89E-13 1.07E-13 1.07E-13 6.392-15 3.442-06 3.44E-06 3.44E-05 3.44E-06 3.44E-06 3.44E-06 3.44r-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 Breathing Rate (m3/s3c) 3.30E-04 3.30E-04 3.30E-04 3.30E-04 3.30E-04 3.30E-04 3.30E-04 3.30E-04 J3.30-4 I3,30E-04 S3.30E ]3.30E-0___4

]3.30E-o_0_.4 S3.30E-0.__4.

13.30E-0_..4

[3.30E-0.___4

[3.30E-04

[3.30E-0__44 S3.30E-o.__4 1.072-10 3.962-01 -____________

-L ____________

L L _______________

L Report HI-2002513 Page A-18 (K DCF -1.-73E-11 2.09E-10 0.00E+00 1.784E0-08 2.F645-09 1.37E-08 1,08E-08 7.84E-09 3.06E-1 1 -9.52E-12 3.50tE-14 1.55E,-08 1.04E-09 1.005-09 -4.1tE-10 6.14F:-10 2.67E-09 9,51 E-1 0 9.22E-10 0.00E+00 0.00E+00 1.97E-09 1.05E-14 1.07E-10'Ii4.512-04

+07 DCF 7.-405E-02 7.73E-01 0,00E+00 3.81E+01 9.77E+00 5.075+01 4,00E+01 2.272+00 9.823-01 3.52E-02 5.74E+01 3.412+00 3.70E+00 1.540+00 2.27E+00 9.88E+00 3.52E+00 3.41E+00 0.00E+00 0.00E+00 7.29E+00 3.89E-05 3,.96E-01 Occ Time 3.15E+07 3,15E+07 3.15E+07 3.152+07 3.15E+07 3.15E+07 3.15E+07 3f15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3T1Et0 CDE (mRem) 8.94E-07 9.60E-10 0.00E+00 3.03E-04 1.56E-05 2.29E-05 3.77E-05 7.11E-05 4.12E-09 8.44E-10 1.61E2-12 1.22E-07 1.01E-08 6.54E-09 1.44E-09 1,37E-09 3.74E-09 6.04E-10 3.19E-10 0.00E+00 0.00E+00 2,79E-08 1.49E-13 9.05E-11i 4.51E-04 UPPAIJ Off-Normal Conditions Total i 100%:32 6_lgF:+nR I -7 2 2 Inh-Lung MPC-32 Off-Normal Conditions Committed Effective Dose Equivalent From Inhalation

% Lrr Rate at Fraction Release Breathing Inventory available

% remain MPC Vol Upstream Released Release Rate X/Q Rate DCF DCF Occ Time CDE Nuclide (Cf/Assy) for release airborne No. Assy (cm3) (cm3/s) per sec Fraction (CI/sec) (sac/m3) m3/sec) (Sy/Bq) (mRem/uCI) (sac) (mRem) Gases HR 3 2.97E+02 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.00 3.26E-10 3.44E--06

-3.30E-04

-1.73E-11 6.40E-02 3.15E+07 8.94E-07 T129 32.64E-02 11.5% 100% 32 6.19E+06 7.37E-06 -1.19E-12 2.0 00 47 .E-14 3.44E-06 3.30E-04 -- .14E-10 4.372+01 3.152+07 1.442E-0 KR8._ 5 4.82E+03 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0,30 6.34E-09 3.44E-06 3.30E-04 0.2-E+00 0.00E+00 3.15E+07 0.OOE+00 ~Crud COP6_ 0 2.18E+01 100.0% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.E5 1.24E-10 3.4420 3.30E-04 3.45E-07 1.28E+03 3.15E+07 .568E-034

~Volatiles SR 90 5.10E+04 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.O0E-04 4.70-11 3.44E-06 3.30E-04 2.86E-06 3.02E+04 3.15E+07 1.6E-02 RU0 1.44E+04 11 .5%/ 100% 32 6.19E+0"--'

737E.-0"---8 1.19E-12 2.00E-04 1.26E-11I 3.44E-06 3.30E-0"----

1.04E-06 38E0 .5+7 17E0 CS134 3.01 E+04 11.5%/ 100% 3-.4 -j 3.15E+07 4127E0 Pl.57+04 11.5% 10% 32 6.19E206 7.37E-06 1.19E-12 2.00E-04 2.64E-13 3.442-06 3.30E-04 7.78E-08 4.37E*01 3.E+007 3 -0 EU137 7.52+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.OOE-04 5.835-14 3.44E-06 n3.0E-04 8.82E-09 3.26E+01 3.15E+07 8.00E-05 i n e s PU241 7.75E+04 11.5%/ 10% 32 -6.19E+06 7.37E-06 I1.19E-12 3.00E-05 1.02E-12 3,44E-06 3.18E-06 1.18E+04 3.15E+07

4.29E-04--"'

Y90o 5.10E+04 11.5%o 10% 32 6.19E+0"'

6- 7.37E-0------

1.19E-12 3,00E-05 6.70E-13 34E-06 3.30E-0"

4 9.31 E-09 3.44E+01 3.15E+0"---"'

8.26E-07 PM14_..7 2.57E+04 11.5% 10% 32 6,19E+06 7.37_E-_0--'--'--

3.00E-05 -3.3 8-E-13 3.44E-06 3.30E-0-----

7.74E-08 -2.86E+02 31E0-"-- T .6-.0' EU5 1E0 15 10% 3 6.9E07 -n 1 nr7.37E06

-.9E1 00.OE-051 5.93& 3,44E-0 3 30E0 w 3.1E0 3.6E05.57E+03 11,5% 10% 32 6.19E+06 7,37E-06 11E-12----"----4 PýU_238 3.i7-6E+03

_11.5% _10% _32 6.9E+06 7.-37E-06

-1.19E-12

-3.00E-05 4.94E-14 S 125 199E+03 11.5% 10% 32 6,19E+06 .7.37E-06 1.19E.12 3.D-5 26E-4 34E0 EU1655 1.28E+03 11.5% 10% 32 6.19E+06 7.37E-06'

_1.19E-12 3.00OE-05 1.68E-14 3.44E-06 AM241 8.06E+02 11.5% I 10% 32 6.19E+06'7.3_7E-05 1.19E--12 i _3.00E-05 1.06E-14 3.44E-06 PU4 3.65E+02 11.50/= 10%,, 32 6.19E-,06----

7.37E-06 1.19E-1"2"3" OE0 .0.5 34E0 PU23.. _9 1.99E+02 11,5%_ 10% 32 6.19E+66-" 7.37E-06-"-

1,19E-12 3.00E--05

-2.62E-15 3.4_4E-0e BA137M 7.38E+04 11.5% 10% 32 6,19E+06 7.37E-06 1.1 9E-1 2 3 _.00E-05 9.70E-1 3.44E-06 RH106 1,44E+04 11.5% 10%/ 32 6.19E+06 7.37E-0"-

)-6 1.19E-12 3.00E-05 1.89E-13 3.44E-06 CE14. ._4 8.14E+03 11,5%/, 10%/ 32 6,19E+0 "6 " 7.37E-0--

'-- 1.19E " 3 O E05l- .1 0 7E-1 '3 Q = _na PR144 8.14E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00-05 1.07E-13 TE125M 4.86E+02 11.5% 10% 32 6.19E+06 7.37E-0T 1.19-123 Report HI-2002513 3.44E-06 3.30E-04 1.93E-05 7.14E+04 3.15E+07 1.87E-04 3.30E-04 3.20E-04 1.18E+O6 3.15E+07 2.09E-03 3.30E-04 2.17E-08 8.03E+01 3.15E+07 7.51E-08 3.30E-04 1.19E-08 4.40E+01 3.15E+07 2.65E-08 3.30E-04 1.84E-05 6.81E+04 3.15E+07 2.582-05 3.30E-04 3.23E-04 1.20E+06 3.15E+07 2.05E-04 3.30E-04 1 .73E-05 6.40E+04 3.152+07 5.99E-06 3.30E-04 0.00E+00 0.00E+00 3.15E+07 0.002+00 3.30E-04 0.002+00 0.00E+00 3.152+07 O.002+00 3.30E-04 7.91 E-07 2.93E+03 3.15E+07 1.12E-05 3.30E-04 9.40E-11 3.48E-01 3.15E+07 1.33E-09 3.30E-04 1.04E-08 3.85E+01 3.15E+07 8.80E-09 Total 2.74E-02 Page A-19 B 6_ L L L L L L 3 I (i (Inh-R Marrow MPC-32 Off-Normal Conditions Committed Effective Dose Equivalent From Inhalation

% L. Rate at Fraction Release Breathing Inventory available

% remain IMPC Vol Upstream Released Release Rate X/Q Rate DCF DCF Occ Time CDE Nuclide (CI/Assy) for release airborne No. Assy (cm3) (cm3/s) per sac Fraction (ClIsec) (sec/m3) (m3/sec) (Sv/Bq) (mRem/uCi) (sac) (mRem) Gases H 3 2.97E+02 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30 3.90E-10 3.44E-06 3.30E-04 1,73E-11 6.40E-02 3.15E+07 8.94E-07 1129 2.64E-02 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30 3.47E-14 3.44E-06 3.302-04 1.40E-10 5.18E-01 3.15E+07 6.43E-10 KR 85 4,82E+03 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30 6.34E-09 3.44E-06 3.30E-04 0.002+00 0.00E+00 3.15E+07 0.00E+00 Crud CO 60 2.18E+01 100.0% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.15 1.24E-10 3.44E-06 3.30E-04 1.72E-08 6.36E+01 3.15E+07 2.83E-04 VolatIles SR90 5.10E+04 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.00E-04 4.47E-11 3.44E-06 3.30E-04 3.36E-07 1.24E+03 3.15E+07 1.99E-03 RU106 1.44E+04 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.00E-04 1.26E-11 3.44E-06 3.30E-04 1.37E-08 5.07E+01 3.15E+07 2.29E-05 CS134 3,01E+04 11.5% 100% 32 6.19E+06 7.37E-06 1,19E-12 2.00E-04 2.64E-11 3.442-06 3.30E-04 1.18E-08 4.37E+01 3.15E+07 4.12E-05 CS137 7.82E+04 11.5% 100% 32 6.19E+06 7,37E-06 1.19E-12 2.00E-04 6.85E-11 3.44E-06 3.30E-04 8.30E-09 3.07E+01 3.15E+07 7.53E-05 Fines PU241 7.75E+04 11.5% 10% 32 6.19E+06 7.372-06 1.19E-12 3.00E-05 1.02E-12 3.44E-05 3.30E-04 3.36E-06 1.24E+04 3.15E+07 4.53E-04 Y90 5.10E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 6.70E-13 3.44E-06 3.30E-04 2.79E-10 1.03E+00 3.15E+07 2,47E-08 PM147 2.57E+04 11.5% 10% 32 6.19E+06 7,37E-06 1.19E-12 3.00E-05 3.38E-13 3.44E-06 3.30E-04 8.16E-09 3.02E+01 3.15E+07 3.65E-07 EU154 4.51E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 5.93E-14 3.44E-06 3,30E-04 1.056-07 3.92E+02 3.15E+07 8.31 E-07 CM244 5.57E+03 11.5% 10% 32 6,19E+06 7.37E-06 1.19E-12 3.00E-05 7.32E-14 3.44E-06 3.30E-04 9.38E-05 3.47E+05 3.15E+07 9.09E-04 PU238 3.76E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.002-05 4.94E-14 3.44E-06 3,30E-04 1.52E-04 5.62E+05 3.15E+07 9.94E-04 SB125 1.99E+03 11.5% 10% 32 6.19E+06 7.372-06 1.19E-12 3.00E-05 2.61E-14 3.44E-06 3.30E-04 6.49E-10 2.40E+00 3.15E+07 2.24E-09 EU155 1.28E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.68E-14 3.442-06 3.30E-04 1.43E-08 5.292+01 3.15E+07 3.18E-08 AM241 8.06E+02 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.06E-14 3.44E-06 3.302-04 1.74E-04 6.44E+05 3.15E+07 2.44E-04 PU240 3.65E+02 11.5% 10% 32 6.19E+06 7.372-06 1,19E-12 3,00E-05 4.80E-15 3.44E-06 3.30E-04 1.69E-04 6.25E+05 3.15E+07 1.072-04 PU239 1.99E+02 11.5% 10% 32 6,19E+06 7.37E-06 1.19E-12 3.00E-05 2.62E-15 3.44E-06 3,30E-04 1.69E-04 6.25E+05 3,15E+07 5.85E-05 BA137M 7.38E+04 11.5% 10% 32 6,19E+06 7.37E-06 1.19E-12 3.002-05 9.70E-13 3.44E-06 3.30E-04 0.00E+00 0.00E+00 3.15E+07 0.00E+00 RH106 1.44E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.89E-13 3.44E-06 3.30E-04 0.00E+00 0.00E+00 3.152+07 0.00E+00 CE144 8.14E+03 11.5% 10% 32 6.19E+06 7.372-06 1.19E-12 3.00E-05 1.07E-13 3.44E-06 3.30E-04 2,67E-08 9.88E+01 3.15E+07 3.78E-07 PR144 8.14E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.07E-13 3.44E-06 3.30E-04 8.08E-14 2.99E-04 3.15E+07 1.14E-12 TE125M 4.86E+02 11.5% 10% 32 6.192+06 7.37E-06 1.19E-12 3.002-05 6.392-15 3.44E-06 3.30E-04 3.01 E-09 1.11E+01 3.15E+07 2.55E-09 I I I Total 5.18E-03 Report HI-2002513 (Page A-20 Inh-B Surface MPC-32 Off-Normal Conditions Committed Effective Dose Equivalent From Inhalation

% L.r Rate at Fraction Release Breathing Inventory available

% remain MPC Vol Upstream Released Release Rate X/Q Rate DCF DCF Occ Time CDE Nuclide (CI/Assy) for release airborne No. Assy (cm3) (cm3/s) per sec Fraction (CI/sec) (sec/m3) (m3/sec) (Sv/Bq) (mRem/uCI) (sac) (mRem) Gases H 3 2.97E+02 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30 3.90E-10 3.44E-06 3.30E-04 1.73E-11 6.40E-02 3.15E+07 8.94E-07 1129 2.64E-02 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0,30 3.47E-14 3,44E-06 3.30E-04 1.38E-10 5.11E-01 3.15E+07 6.34E-10 KR 85 4.82E+03 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30 6.34E-09 3.44E-06 3.30E-04 0.00E+00 0.00E+00 3,15E+07 0.00E+00 Crud CO 60 2.18E+01 100.0% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.15 1.24E-10 3,44E-05 3.30E-04 1.35E-08 5.00E+01 315E+07 2.220-04 Volatiles SR 90 5.10E+04 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.00E-04 4,47E-11 3.44E-06 3,30E-04 7.27E-07 2.69E+03 3.15E+07 4.30E-03 RU106 1.445+04 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.00E-04 1.26E-11 3.44E-06 3.30E-04 1.37E-08 5.07E+01 3.15E+07 2.29E-05 CS134 3.01E+04 11.5% 100% 32 6,19E+06 7.37E-06 1.19E-12 2.00E-04 2.64E-11 3.44E-06 3.30E-04 1.10E-08 4.075+01 3.15E+07 3.84E-05 CS137 7.82E+04 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.00E-04 6.85E-11 3.44E-06 3.30E-04 7.94E-09 2.94E+01 3.15E+07 7.20E-05 Fines PU241 7.75E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.OOE-05 1,02E-12 3.44E-06 3.30E-04 4.20E-05 1.55E+05 3.15E+07 5.66E-03 Y 90 5,10E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 6.70E-13 3.44E-06 3.30E-04 2.78E-10 1.03E+00 3.15E+07 2.47E-08 PM147 2,57E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 3,38E-13 3.44E-06 3.30E-04 1.02E-07 3.77E+02 3.15E+07 4.56E-06 EU154 4.51E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 5.93E-14 3.44E-06 3.30E-04 5.23E-07 1,94E+03 3.15E+07 4.10E-06 CM244 5.57E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 7.32E-14 3.44E-06 3.30E-04 1.17E-03 4.33E+06 3.15E+07 1.13E-02 PU238 3.76E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 4.94E-14 3.44E-06 3.30E-04 1.90E-03 7,03E+06 3.15E+07 1.24E-02 SB125 1.99E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 2.61E-14 3.44E-06 3.30E-04 2.73E-09 1.01E+01 3.15E+07 9.44E-09 EU155 1.28E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.OOE-05 1,68E-14 3.44E-06 3.30E-04 1.52E-07 5.62E+02 3.15E+07 3.38E-07 AM241 8.06E+02 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3,001-05 1,06E-14 3.44E-06 3.30E-04 2.17E-03 8.03E+06 3.15E+07 3,04E-03 PU240 3,65E+02 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3,00E-05 4.80E-15 3.44E-06 3.30E-04 2.11E-03 7.81E+06 3.15E+07 1.34E-03 PU239 1.99E+02 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.OOE-05 2.62E-15 3.44E-06 3.30E-04 2.11E-03 7.81E+06 3.15E+07 7.30E-04 BA137M 7.38E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 9.70E-13 3.44E-06 3.30E-04 0.005+00 0.005+00 3.15E+07 0.005+00 RH106 1.44E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.89E-13 3,44E-06 3.30E-04 0.00E+00 0.00E+00 3.15E+07 O.00E+00 CE144 8.14E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.07E-13 3.44E-06 3.30E-04 4.54E-08 1.68E+02 3.155+07 6.435-07 PR144 8.14E+03 11.5% 10% 32 6.195+06 7.375-06 1.195-12 3,OOE-05 1.07E-13 3,44E-06 3.305-04 1.35E-13 5.OOE-04 3.155+07 1.91E-12 TE125M 4.86E+02 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.005-05 6.39E-15 3,44E-06 3.30E-04 3.21E-08 1.19E+02 3.15E+07 2.72E-08 Total 3.925-29 Report HI-2002513 Page A-21 K Inh-Thyroid Report HI-2002513 Page A-22 (MPC-32 Off-Normal Conditions Committed Effective Dose Equivalent From inhalation

% L. Rate at Fraction Release Breathing Inventory available

% remain MPC Vol Upstream Released Release Rate X/Q Rate DCF DCF Occ Time CDE Nuclide (Ci/Assy) for release alrbome No. Assy (cm3) (cm3/s) per sec Fraction (ClI/sec) (sec/m3) (m3/sec) (Sv/Bq) (mRem/uCI) (sec) (mRem) Gases H 3 2.97E+02 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30 3.90E-10 3.44E-06 3.30E-04 1.73E-11 6.40E-02 3.15E+07 8.94E-07 1129 2.64E-02 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30 3.47E-14 3.44E-06 3.30E-04 1.56E-06 5.77E+03 3.15E+07 7.16E-06 KR 85 4.82E+03 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30 6.34E-09 3.44E-06 3.30E-04 0.00E+00 0.00E+00 3.15E+07 0.OOE+00 ___Crud CO 60 2.18E+01 100.0% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.15 1.24E-10 3.44E-06 3.30E-04 1.62E-08 5.99E+01 3.15E+07 2.67E-04 Volatiles SR 90 5.10E+04 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.00E-04 4.47E-11 3.44E-06 3.30E-04 2.64E-09 9.77E+00 3.15E+07 1.56E-05 RUI06 1.44E+04 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.OOE-04 1.26E-11 3.44E-06 3.30E-04 1.37E-08 5.07E+01 3.15E+07 2.29E-05 CS134 3.01E+04 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.00E-04 2.64E-11 3.44E-06 3.30E-04 1.11E-08 4.11E+01 3.15E+07 3.87E-05 CS137 7.82E+04 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.00E-04 6.85E-11 3.44E-06 3.30E-04 7.93E-09 2.93E+01 3.15E+07 7.19E-05 Fines PU241 7.75E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.02E-12 3.44E-06 3.30E-04 1.24E-11 4.59E-02 3.15E+07 1.67E-09 Y 90 5.10E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 6.70E-13 3.44E-06 3.30E-04 9.52E-12 3.15E+07 8.44E-10 PM147 2.57E+04 11.5% 10% 32 6.19E+06 '7.37E-06 1.19E-12 3.00-E05 3.38E-13 3.44E-06 3.30E-04 1.98E-14 7.33E-05 3.15E+07 8.85E-13 EU154 4.51E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 5.93E-14 3.44E-06 3.30E-04 7.14E-09 2.64E+01 3.15E+07 5.602-08 CM244 5.57E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 7.32E-14 3.44E-06 3.30E-04 1.01E-09 3.74E+00 3.15E+07 9.78E-09 PU238 3.76E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 4.94E-14 3.44E-06 3.30E-04 9.62E-10 3.56E+00 3.15E+07 6.29E-09 SB125 1.99E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 2.61E-14 3.44E-06 3.30E-04 3.24E-10 1.20E+00 3.15E+07 1.12E-09 EU155 1.28E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.68E-14 3.44E-06 3.30E-04 2.40E-10 8.88E-01 3.15E+07 5.34E-10 AM241 8.06E+02 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.06E-14 3.44E-06 3.30E-04 1.60E-09 5.92E+00 3.15E+07 2.24E-09 PU240 3.65E+02 11.5% 10% 32 6.19E+05 7.37E-06 1.19E-12 3.00E-05 4.802-15 3.44E-06 3.30E-04 9.05E-10 3.35E+00 3.15E+07 6.74E-10 PU239 1.99E+02 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 2.62E-15 3.44E-06 3.30E-04 9.03E-10 3.34E+00 3.152+07 3.13E-10 BA137M 7.38E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 9,70E-13 3.44E-06 3.30E-04 0.00E+00 0.00E+00 3.15E+07 0.00E+00 RH106 1.44E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.89E-13 3.44E-06 3.30E-04 0.00E+00 0.00E+00 3.15E+07 0.00E+00 CE144 8.14E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.07E-13 3.44E-06 3.30E-04 1.88E-09 6.96E+00 3.15E+07 2.66E-08 PR144 8.14E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.07E-13 3.44E-06 3.30E-04 8.47E-15 3.13E-05 3.15E+07 1.202-13 TE125M 4.86E+02 11.5% 10% 32 6.192+06 7.37E-06 1.192-12 3.002-05 6.39E-15 3.44E-06 3.30E-04 9.93E-11 3.67E-01 3.15E+07 8.40E-11 Total 4.24E-04 Kmr 85 I '.Ozt:+U0 11 .5%..... ...... ..... .. ........ , .o- h CF--" U..4 U O1.qt-Ud9 3.,44E-06 3.30E-04 0.00E+00 0.OOE+00 3.15E+07 0.00F+00 CO 60 2.18E+01 100.0% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.15 1.24E-10 3.44E-06 3.30-4 .0 2.19E+02 3.15E+07 9.73E-04 I______ _________

Volatiles E_4__9_E0 SR 90 5.10E+04 11.5% 100% 32 6,19E+06 7.37E-06 1.19E-12 2.00E-04 4.47E-11 3.44E-06 3.30E-04 3.51E-07 1.30E+03 3.15E+07 2.08E-03 RU106 1.44E+04 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.OOE-04 1.26E-11 3.44E-06 3.30E-04 1.29E-07 4.77E+02 3.15E+07 2.15E-04 CS134 3.01E+04 11,5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.002-04 2.642-11 3.44E-06 3.30E-04 1.25E-08 4.63E+01 3.15E+07 4.36E-05 CS137 7.82E+04 11.5% 100% 32 R6 1FE+R 717E09 I lam4 4- n n Inh-Effective Nuclide I I Inventory (CI/Assy)available for release% remain airborne No. Assv MPC Vol (cm3l 1,-sl e ec I .. n I I '--I- scia I~~~~~~~~~o I +/- -----___ ___ _Off-Normal Conditions Committed Effective Dose Equivalent From Inhalation L r Rate at Upstream Fraction Released Release Release Rate X/Q H 3 2.97E+02 11.5% 100% 32 6.19E+061 7.37E-06 1.19-12i 0.30 -3.44E-1IIa 2 .64-02 11 .b%11.50/~ 100 2 61En 7 17C~l IA 4 4n 306 .44E-06 Breathing Rate (m3/sec) 3.30E-04 3.30E-04 DCF DCF Occ Time CEDE (Sv/Bq) (mRem/uCI) (sec) (mRem)1.73E-11 4.692-08 6.40E-02 1.74E+02 3.15E+07 3.15E+07 8.94E-07 2.15SE°07 S.... .... .. .... .,=-= .uu~u ouo -]I .-KE-U6 ;.;3E-04 8.63E-09 3.19E+01 3.15E+07 7.83E-05 Fines PU241 7.75E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1,02E-12 3.44E-06 3.30E-04 2.23E-06 8.25E+03 3.15E+07 3.01E-04 Y90 5.10E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 6.71E-13 3.44E-06 3.30E-04 2.28E-09 8.44E+00 3.15E+07 2.02E-07 PM147 2.57E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 3.38E-13 3.44E.-06 3.30E-04 1.06E-08 3.92E+01 3.15E+07 4.74E-07 EU154 4.51E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 5.93E-14 3.44E-06 3.30E-04 7.73E-08 2.86E+02 3.15E+07 6.07E-07 CM244 5.57E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.192-12 3.002-05 7.32E-14 3.44E-06 3.30E-04 6.70E-05 2.482+05 3.152+07 6.492-04 PU238 3.76E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.OOE-05 4.94E-14 3.44E-06 3.30E-04 1.06E-04 3.92E+05 3.152+07 6.93E-04 S8125 1.99E+03 11.5% 10% 32 6.192+06 7.37E-06 1.19E-12 3.00E-05 2.62E-14 3.44E-06 3.30E-04 3.30E-09 1.22E+01 3.15E+07 1.14E-08 EU155 1.28E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.68E-14 3,44E-06 3.30E-04 1.122-08 4.142+01 3.15E+07 2.492-08 AM241 8.06E+02 11.5% 10% 32 6.192+06 7.372-06 1.192-12 3.002-05 1.06E-14 3.442-06 3.30E-04 1.20E-04 4.44E+05 3.152+07 1.682-04 PU240 3.65E+02 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3,00E-05 4.80E-15 3.44E-06 3,30E-04 1.162E-04 4.29E+05 3.15E+07 7,37E-05 PU239 1.99E+02 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 2.62E-15 3.44E-06 3.30E-04 1.16E-04 4.29E+05 3.15E+07 4.02E-05 BA137M 7.38E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 9.702E-13 3.44E-06 3.30E-04 0.00E+00 0.002E+00 3.15E+07 .002E+00 RH106 1.44E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.89E-13 3.44E-06 3.30E-04 0.00E+00 0.00E+00 3.15E+07 0.00E+00 CR144 8.14E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.07E-13 3.44E-06 3.30E-04 5.84E-08 2.16E+02 3.15E+07 6.27E-07 PR144 8.14E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3,00E-05 1.07E-13 3.44E-06 3.30E-04 1.17E-11 4.33E-02 3.15E+07 1.66E-10 TE125M 4.86E+02 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 6.402-15 3.44E-06 3.30E-04 1.52E-09 5.62E+00 3.15E+07 1.29E-09 ITotal 5.32E-03 Report HI-2002513 Page A-23 I MPC-32 06 1OO%R tqp+nR 10001 R 7

, , MPC-32 Off-Normal Conditions Effective Dose Eulvalent From Submersion SL. Rate at Fraction Release Inventory available

% remain MPC Vol Upstream Released Release Rate X/Q DCF DCF Occ Time DDE Nuclide (Ci/Assy) for release airborne No. Assy __(cm3) (cm3ls) per sec Fraction (Cl/sc scm) (v~) (~mul sec) (mRem) (cm3-s) _ sec/m3) (Sv/Bq) " mRem/uCi) se,) (oeo Gases H 3 2.97E+02 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30 3.90E-10 3.44E-06 0.00E+00 0.aOE+00 3.15E+07 0.OOE+00 1129 2.64E-02 11.5% 100% 32 6.19+06 7.37E-06 1.19E-12 0.30 3.47E-14 3.44E-06 4.83E-16 1.79E-06 3.15E+07 6.72E-12 KR 85 4,82E+03 11.5% 100% 32 6.19E+06 7.37E-06 1.-19E-12 0.30 6.34E-09 3.44E-06 1.17E-16 4.33E-07 3.S+7 2920 7.37E-0rud 34 E0 43 E-7 3.15E+07 2.97E-07 CO137 2.8E+01 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.0 4 6.2-10 3.44E-06 1.23E-13 4.55E-04 3.15E+07 6.14E-06 F ies SR90 7.70E+04 11M/.5% 100% 32 6.19Ei06 7,37E-06 1.19E-12 2,E-04 3.44E-06 7.78E-8 2.688E-08 3,15E+07 11,39-10 R U 1 6 .4 4 + 0 1 1 5 % 1 0 0 3 6 .9 E 0 6 7 .3 7 E -0 6 1 .1 9 E -1 12 2 .O 0 11.2 6 12- 1 1 3 .4 4 E -0 6 O .O E 0 0 ,0 0 E + 0 0 _ _ 3 ._1 5 E -+0 7 0 O.0 0 E + 0 0 C S 3 4 3 .1 E 0 4 1 1 5 % 1 0 % 2 .1 E + 6 7 .3 7 E -0 6 1 .1 9 E -1 2 2 .O 0 2 .4 3 .4 -6 7 .0 E 1 2 .7 4 E -0 4 3 .1 5 E + 0 7 7 .8 3 E --0 7 C S 1 7 7 8 2 E 0 4 1 .5 1 0 % 3 6 .9 E 0 6 7 .3 7 E -0 6 1 .1 9 E -1 2 2 .O -4 6 8 E 1 3 .4 E -0 6 7 .6 E 1 2 .9 5 E -0 6 8 3 .1 5 E + 0 7 2 .1 9 E -1 0 S FinesIII P 2 1 7 7 E 0 1 % 1 03 2 6 1 E 0 _7 .3 7 E -0 6 , 1 .1 9 E -12 3 .O E 0 1 .0 2 E -1 2 3 ,4 4 E -0 6 I A E 2 2 .6 6 E -1 0 3 .1 5 E + 0 7 2 ,9 4 E -14 I .I I1.010 1 U'Io fi.lgE+flRI I -U154 14.51E+031 11.5%10% J.ut- 5.3E1 3.44E-06 I 7 .0I4fl1.--_ I .... I J" I ."°. t I..Jit-vu PU238 I 3.76E+03 I 11.5%4.9E%1 3.4E0 6.6E1 .1~n 2.3E0 I 3.f15EI+07na 2.52-0 3.152+07 7a~r SB125 1.99E+03t 115%~ 10/ aa, I 4' ____1.1 9E-12 3.002-05 3.38E-13 3.44E-06 1.192-12 3.oo0-05 7.32E-14 3.44E-06 1.89E-16 7.48E-10 6.90E-18 6.99E-07 2.77E-09 2.22E-04 2.55E-08 3.15E+07 3.15E+07 3.15E+07 3.15E+07 I5.08E-1 1 1.01E-13 1,43E-09 2.03E-13 1.30E-13 S. .... .. ., ., ,u,-- .uu0'-u5 2.6t1E-14 3.44E-06 1.98E-14 7.33E-05 3.15E+07 2.08E-10 EU155 1.28E+03 11.5% 10% 32 6.19E+06 7.37E-06 1,19E-12 3.002-06 1.68E-14 3.44E-06 2.49E-15 9.21E-06 3.15E+07 1.68E-11 AM241 8.06E+02 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.06E-14 3.44E-06 8,58E-16 3.172-06 3.15E+07 3.64E-12 PU240 3.65E+02 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 4.80E-15 3.44E-06 6,36E-18 2.35E-08 3.15E+07 1.22E-14 PU239 1.99E+02 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.002-05 2.622-15 3.44E-06 4.84E-18 1.79E-08 3.15E+07 5.08E-15 BA137M 7.3BE+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3,00E-05 9.70E-13 3.44E-06 2.82E-14 1.04E-04 3.15E+07 1.10E-08 RH106 1.44E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.89E-13 3.44E-06 1.01E-14 3.742-06 3.152+07 7.662-10 CE144 8.14E+03 11.5% 10% 32 6.19E+06 7.372-06 1.19E-12 3.00E-05 1.072-13 3.44E-06 8.53E-16 3.16E-06 3.15E+07 3.66E-11 PR144 8.14E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.07E-13 3.44E-06 1.90E-15 7.03E-06 3.15E+07 8.15E-11 TE125M 4.86E+02 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.002-05 6.39E-15 3.44E-06 5.96E-16 2.21E-06 3.15E+07 1.53E-12 Total 7.23E-06 Report HI-2002513 Page A-24 DKAIA7 llc7n i i I .I -01imo-vu I I.IUC-14 3-OOE-05 6.70E-13 I 3.44E.06 Sub-Gonad I UU I IJ, IUL. I I I.i]7a III-I.B 4 101.D 11'2 6 lgr-+nr 1 7 10%R 7 "I I I ",J I 10% R I 7 Sub-breast MPC-32 Off-Normal Conditions Effective Dose Equivalent From Submersion

% LnRate at Fraction Release Inventory available

% remain MPC Vol Upstream Released Release Rate XIQ DCF DCF Occ Time DDE Nuclide (CI/Assy) for release airborne No. Assy (cm3) (cm3/s) per sec Fraction (Cl/sec) (sec/m3) (Sv/Bq) (mRem/uCl) (sec) (mRem) H 3 9 1. E+02 15.% 100% 32 G s -.7 0 3.52 0 7m e 6.19E+06 7.37E-06 1.19E-12 0.30 3.9.0-13 3.44E-06 3.2-E+00 1.1-E+00 3.15E+07 0.00E+00 R119 1.64402+0 11.5% 10% OM,- 32 6.19E+06 7.37E-06 1.19E-12 0.3-05 .49-134 3.44E-06 1.86E-16 -.46E-06 3.15E+07 9.27E-12 CERR4 8.14-B2E+03 11.5% 10 o% 3]_2 6.192+06 7,37E-06 1.19E-12 0-30 -13 3.44E-06 1.34E-16 4.96E-07 3.15E+07 3.40E-07 CR1608.1E+03 100.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.-05 1.047-1 3.44E-06 .139E-13 5.14E-04 3.15E+07 93E-06 100% 2 6.1E+067.37E-06 1.19E-12 2.O-4 4.7- 3.44E-06 9.49E-18 3--,.51E-08 3.ý-15E+07 1.7017-10 RU10 1.4E+4 1 .5% 00% 32 ,19 +06 7,37E-06 1,9E1 2,O -4 1,6 -3 .44E-06 0 ,00E+00 0.00E+00 3.ý1 5E+07 0,00E+00 --ES13- 3.1 E+4 10% 2 6.9E+ 7.-37-E-06 -F -E1 -T -E0 2.64E-1 1 3.44E-06 8.43E-14 3,12E-04 3.15E+07 8.91E-07 S137M 4.62E+02 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 3.OOE-0 6.85E-1 I 3.44E-06 8867E-18 3.51E-08 3.15E+07 2,66E-10 -ý7 7- -E+4 1.5 1 % 3 --6.9E 06 7.37E-06 1,19E-12 3.020 1.2E1 3.44E-06 8.67E-20 3.211E-10 3.16E+07 -3.54E-14 7.37E-06 1.19E-12 To 6.70E-13 3.44E-06 2.20E-16 8.14E-07 3.15E+07 5.91E-101 Report37E-06 119E12 3.00-5 3,38E-13 3.44E-06 9.56E-19 A5.54E-09 315E+07 1.29E-13 7.37E-06 1.19E-12 3.00E-05 5.93E-14 3.44E-06 6.811-14 2.52E-04 3.15E(07 1.62E-09 7.37E-06~~~~~

19E2 300-5 73-1 t133- 1 4.92E-08 3.15E+07 3.90E-13 PU3 37E+3 115 1% 32 619+67,37E-06 1.19E-12 3.00E-05 4.94E-14 I- 06 1.27E-17 4.70E-08 3.5E0 2,52E-13 B15 i.903 -1% 0% 3 6,9067.37E-06 1.19E-12 -3,E.00 5 2.1-4 34E-06I 2,27E-14 8.40E-05 -3,15E+07----" 2.38E-10 7 7 E 0 6 1.19 E -1 3 .0 0E -0 62-4 .4 E o .9 5 E -15 1.0 9 E -0 53 1 5 0 7 .9 E 1 A M 4 .6 + 27.5 0 2 .9 6 _ 3 _7E&0 6 1.19 -E-1 2 3.00OE -05 1,06 1 -- 4 6 07E -15 3 .96E -06 3.15 E +07 4 .55E -112 PU 4 .5 + 2 1 .% 1 % 3 .9 + 6 7.37E-06 1 .19E-12 3.00E-05 4.0E 1 3 4 E 0 1.23E-17 -4.55E -08 3 1 E 0.7- 1 P U 2 9 1 9 9 E 0 2 1 .5 -T I /1. 3 2 .1 9 + 0 6 7 .3 7 E -0 6 1 .1 9 E -112 3 .0 0 E- 0 5 -: .6 --- 5 -4 4 -6 7 .5 5 E -1 8 2 .7 9 E -0 8 3 .1 5 E + 0 7 7 ,9 2 E -1 5 B I3 M T 58 04 1 .% 1 % 3 E 9 06 7.37E-06 1.19E-12 3.0012-05 9.0E1 3.44E-06 3.22E-14 11 E 0 .5 + 7 12 E 0 7.3 7 E _06 1.19 E _12 3 .0 E -05 i 8 _ 3 .44 E -1 .6E _ _ , _ 9 E 0 ,1 E 0 8 8 E 1 EE4 i. 4+3 T 5-/ 0% -2 6.9+67.37E-06 1,19E-12 3,00-E-05

-10E1 3,44E-06 1,01 E-15 3,74E-06 3.15E+07 4.33E-11I P R 1 4 .1 E + 3 1 .% 1 % 2 .1 E + 6 7 , .3 7 -E- 0 6 F1 1 9 -E- 1 2 -T O E 0 1 0 E 1 3 .4 4 E -06 2 .1 5E -1 5 7 .9 6 E .- 06 3 .1 5 E + 0 7 -9 ,2 2 E -1 1 T E 2 M 4 .6 + 2 1 5 % 1 %3 2 1 6 1 9 + 6 7 .3 7 E -0 6 I 1 .1 9 E -1 2 3 .O -5 6 3 E 1 3 .4 4 E -0 6 8 4 E -1 6 3 .1 4 E -0 6 3 .1 5 E + 0 7 -- 2 .1 7 12- 1 2 Toa 8.18E-06 Report HI-2002513 Page A-25 (K MPC-32 Off-Normal Conditions Effective Dose Equivalent From Submersion Lrw Rate at Fraction Release Inventory available

% remain IMPC Vol Upstream Released Release Rate X/Q DCF DCF Occ Time DDE Nuclide (Ci/Assy) for release airborne No. Assy (cm3) (cm3/s) per sec Fraction (Cilsec) (seclm3) (Sv/Bq) (mRemluCi) (sec) (mRem) Gases H 3 2.97E+02 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30 3.90E-10 3.44E-06 2.75E-18 1.02E-08 3.15E+07 4.30E-10 1129 2.64E-02 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30 3.47E-14 3.44E-06 2.14E-16 7.92E-07 3.15E+07 2.98E-12 KR 85 4.82E+03 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30 6.34E-09 3.44E-06 1.14E-16 4.22E-07 3.15E+07 2.90E-07 Crud CO 60 2.18E+01 100.0% 100% 32 6.19E+06 37E7-06 119E12 0.4 SR 90 RU106 CS134 CS137 PU241 Y 90 I T I 5.10E+04 1.44E+04 3.01E+04 7.82E+04 7.75E+04 5.10E+04 11.5% 11.5% 11,5% 11.5% 11.5% 11.5%100% 100% 100% 100% 10% 10%32 32 32 32 6.19E+06 6.19E+06 6.19E+06 6.19E+06 6.19E+06 6.19E+06 73 7E-0. . PM147 2.57E+04 11.5% 10% 32 6.19E+06 7.37E-06 2 11.5% 10% 32 6.19E+06 7.37E-06 7.37E-06 S7.37E-066 S7.37E-06 7,37E-06 7.37..05 CM244 I 5.57E+031 11.5%238 3.76E+03 ,,OID 10 I I.E1I1I"÷U1 11fi%EU155 AM241 PU240 PU239 RH106 CE144 PR144 TE125M 10% 32 ..lgFn I 1-A O I UTh I R IOF.I.nfl I

I .. I l/ýIý4l~1.*19E-12 1.192-12 1.19E-12 1.19E-12 1.19E-12 1.19E.12 1.19E-12 1,19E-12 1.192-12 1.28E+03 8.06E+02 3.65E+02 1.99E+02 7.382+04 1.44E+04 8.14E+03 8.14E+03 4.86E+02 11.5% 11.5% 11.5% 11.5% 11.5% 11.5%' 11.5% 11.5%_ 11.5%/10% 100% 10% 10% 10% 10% 10% 10%6.19E+06 6.19E+06 6.19E+06 6.19E+06 6.19E+06 6.19E+06 6.19E+06 6.19E+06 6.19E+06 7.37E-06 7.37E-06 7.37E-06 7.37E-06 7.37E-06 7,37E-06 7.37E-06 7.37E-06 7.37E-06 1.19E-12 1.19E-12 1.19E-12 1.19E-12 1.19E-12 1.192-12 1.19E-12 1.19E-12 1.19E-12 1.19E-12 U. I 2.002-04 2.00E-04 2.00E-04 2.00E-O4 3.002-05 3,0-05 3.OOE -0___5 3.00E..05 3.0012-05 3.00E-05 3.00E-05 3.002-05 3,0012-05 3.00E-05 3,00E-05 3.002-05 3.00E-05 3.00E-05 3.OOE-05 3.00E-05 3.OOE-05 Volatiles 4.47E-1_ 1 1.26E-11 2.64E-11 6.85E-1 1 Fines 1.022-12 6,70E-13 3.38E-13 5.93E-14 7,32E-14 4.94E-14 2.61 E-14 1.68E-14 1.06E-14 4.80E-15 2.62E-15 9.70E-13 1.89E-13 1.07E-13 1.07E-13 6.39E-153.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-05 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.442-06 3.442-06 2.232-18 I ____________

L L.....................,...j I.............................L

_____________

I _____________

I 1,24E-13 6.44E-18 0.00E+00 7.37E-14 6.68E-18 6.48E-20 1.77E-16 5.45E-19 5.99E-14 7.082-19 1.06E-18 1.95E-14 2.22E-15 6.74E-1 6 1.09E-18 2.652-18 2.80E-14 1.01E-14 7.69E-16 1.90E-15 2.23E1 4.59E-04 2.38E-08 0.00E+00 2.73E-04 2.47E-08 2.40E-10 6.55E-07 2.02E-09 2.22E-04 2.62E-09 3.92E-09 7.22E-05 8.21E-06 2.49E-06 4.03E-09 9.81E-09 1.04E-04 3.74E-05 2.85E-06 7.03E-06 8.25E-07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.1-5E+07 3.15E+07 3.15E+07 3.15E+07 Total 6.19E-06 1.15E-10 0.00E+00 7.79E-07 1.84E-10 2.652-14 4.762-11 7.38E-14 "1.42E-09 2.08E-14 2.10E-14 2.04E-10 1.50E-11 2.86E-12 2.10E-15 2.78E-15 1.09E-08 7.66E-10 3.30E-11 8.15E-11 5.72E-13 7.27E-06 Report HI-2002513 Page A-26 (S Sub-Lung 1(]%R 7 4 4n_ _ _ 32 32 S32 32 I , 1 1.1912-12..7.10%

orN vu 3 -. Iu]-u"Q 1] T.1 uu%_.... ..... ...-.... .-.. -.....-, -, ,,,uu,--u, + .,'1f:-I 1 ..f.44b-18 2.01E-08 3.152+07 9.752-11 RU106 1.442+04 11.5% 100% 32 6.19E+06 7.372-06 1.192-12 2.002-04 1.26E-11 3.44E-06 0.00E+00 0.00E+00 3.15E+07 0.00E+00 CS134 3.012+04 11.5% 100% 32 6.19E+06 7.372-06 1.192-12 2.002-04 2.642-11 3.442-06 7.192-14 2.66E-04 3.152+07 7.602-07 CS137 7..2E+04 11.5% 100% 32 6.19I+06 7.372-06 1.192-12 2.00E-04 6.85E-11 3.442-06 5.70E-18 2.11E-O8 3.15E+07 1.572-10 Fines _____ PU241 7,752+04 11.5% 10% 32 6.192+06 7.37E-06 1.19E-12 3.00E-05 1.024-12 3.442-06 5.63E-20 2.05E-10 3.15E+07 2.30E-14 Y90 5.102+04 11.5% 10% 32 6.192+06 7.372-06 1.19E-12 3.002-05 6.70E-13 3.442-.06 1.622-16 5.99E-07 3.152+07 4.352-11 PM147 2.57E+04 11.5% 10% 32 6.192+06 7.372-0,6 1.192-12 3.00E-05 3.382-13 3.442-06 4.46E-19 1.65E-09 3.152+07 6.042-14 EU154 4.512+03 11.5% 10% 32 6.192+06 7.372-06 1.192-12 3.002-05 5.932-14 3.44E-06 5.872-14 2.172-04 3.152+07 1.40E-09 CM244 5.572+03 11.5% 10% 32 6.192+06 7.372-06 1.192-12 3.002--05 7.322-14 3.44E-06 1.462-18 5.40E-09 3.15E+07 4.292-14 ..PU238 3,762+03 11.5% 10% 32 6.192+06 7.37E-06 1.19E-12 3.002-05 4.942-14 3.442-06 1.68E-18 6.222-09 3.152+07 3.33E-14 SB125 1.992+03 11.5% 10% 32 6.192+06 7.372-06 1.19E-12 3.O0E-05 2.612-14 3.442-06 1.87E-14 6.92E-05 3.152+07 1.962-10 EU155 1.282+03 11.5% 10% 32 6.192+06 7.372-06 1.192-12 3.00E-05 1.682-14 3.442-06 1.852-15 6.85E-06 3,15E+07 1.25E-11 AM241 8.062+02 11.5% 10% 32 6.162+06 7.37E-06 1.192-12 3.O0E-05 1.062-14 3.44E-06 5.212-16 1.932-06 3.15E+07 2.212-12 PU240 3.65E+02 11.5% 10% 32 6.192+06 7.372-06 1.192-12 3.002-05 4.802-15 3,442.-06 1.652-18 6.11E-09 3.152+07 3.172-15 PU239 1.992+02 11.5% 10% 32 6.192+06 7.372-06 1.192-12 3.002-05 2.622-15 3.442-06 2.672-18 9.882-09 3.152+07 2.0E1 BA137M 7.382+04 11.5% 10% 32 6.192+06 7.372-06 1.192-12 3.002-05 9.702-13 3.442-06 2.732-14 1.012-04 3.152+07 1.062-08 RH106 1.442+04 11.5% 10% 32 6.192+06 7.37E-06 1.192-12 3.002-05 1.892-13 3.442-06 9.75E-15 3.612-05 3.152+07 7.402-10 CE144 8.14E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.002E-05 1.07E-13 3.44E-06 6.682-16 2.472-06 3.152+07 2.872-11 PR144 8.142E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.OOE-05 1.07E-13 3.44E-06 1.7E-15 6.922E-06 3.15E+07 8.02E-11 TE125M 4.86E+02 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 6.39E-15 3.44E-06 1.862E-16 6.88E-07 3.15E+07 4.77E-13 Total 7.192-06 Sub-R Marrow Nuclide Off-Normal Conditions T__ ---- Effective TDose Equiva lent From Submersion Inventory (CI/Assv)available for release% remain airbome No. Assv (rcm31 IC31N ve ec I aCkn MPC Vol L,, o, Rate at Upstream Fraction Released Release Release Rate.u/sec)H 3 2.97E+02 11.5% 100% 32 6.19E+06 7.372_-06 1.192-12 0.30 3.90E-10 3.44E-06 1129 2.64E-02 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30 3.47E-14 3.44E-06 KR 85 4.82E+03 11.5% 100% 32 6.19E+06 7.-372-06 1.19E-12 0.30 6.34E-09 3.44E-06 Crud CO 60 2.18E+01 100.0% 100% 32 6.19E+06 -7.37E-06 1.19E-12 0.15 1.24E-10 3.44E-06 I__ _ Volatiles X/Q DOF DCF Occ Time DDE (seclm3) (Sv/Bq) ,(mRem/uCl) (sec) (mRem)0.00E+00 1.64E-16 1.09E-16 0.00E+00 6.07E-07 4.03E-07 3.15E+07 3.15E+07 3.15E+07 0.00E+00 2.28E-12 2.77E-07 1.23E.13 4.55E-04 3.15E+07 6.14E-06 Report HI-2002513 Page A-27 MPC-32 No. Assv 19 R "1ql::÷nR 7 147r:_net 1 4a r- , n A t (Sub-B Surface Report HI-2002513 Page A-28 (MPC-32 Off-Normal Conditions Effective Dose Equivalent From Submersion

% Ln. Rate at Fraction Release Inventory available

% remain MPC Vol Upstream Released Release Rate X/Q DCF DCF Occ Time DDE Nuclide (CVAssy) for release airborne No. Assy (cm3) (cm3/s) per sec Fraction (CI/sec) (sec/m3) (SvlBq) (mRem/uCI) (sec) (mRem) Gases H 3 2.97E+02 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30 3.90E-10 3.44E-06 0.00E+00 0.002+00 3.15E+07 0.00E+00 1129 2.64E-02 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30 3.47E-14 3.44E-06 1.10E-15 4.07E-06 3.15E+07 1.53E-11 KR 85 4.82E+03 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30 6.34E-09 3,44E-06 2.20E-16 8.14E-07 3.15E+07 5.59E-07 Crud CO 60 2.18E+01 100.0% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.15 1.24E-10 3.44E-06 1.78E-13 6.59E-04 3.15E+07 8.88E-06 Volatiles SR 90 5.10E+04 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.002-04 4.47E-11 3.44E-06 2.28E-17 8.44E-08 3.15E+07 4.09E-10 RU106 1,44E+04 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.00E-04 1.26E-11 3.44E-06 0.00E+00 0.00E+00 3.15E+07 0.O0E+00 CS134 3.01E+04 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.OOE-04 2.64E-11 3.44E-06 1.20E-13 4.44E-04 3.15E+07 1.27E-06 CS137 7.82E+04 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.002-04 6.85E-11 3.44E-06 2.29E-17 8.47E-08 3.15E+07 6.29E-10 Fines PU241 7.75E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.02E-12 3.44E-06 2.19E-19 8.10E-10 3.15E+07 8.94E-14 Y90 5.10E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00OE-05 6.70E-13 3.44E-06 4.44E-16 1.64E-06 3.15E+07 1.19E-10 PM147 2.572+04 11.5% 10% 32 8.192+06 7.37E-06 1.19E-12 3.00E-05 3.3BE-13 3.44E-06 2.18E-18 8.07E-09 3.15E+07 2.95E-13 EU154 4.51E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 5.93E-14 3.44E-06 9.43E-14 3.49E-04 3.15E+07 2.24E-09 CM244 5.57E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.OOE-05 7.322-14 3.442-06 8.822-18 3.262-08 3.15E+07 2.59E-13 PU238 3.76E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 4.94E-14 3.44E-06 9.30E-18 3.44E-08 3.15E+07 1.84E-13 SB125 1.99E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 2.61E-14 3.44E-06 3.53E-14 1.31E-04 3.15E+07 3.70E-10 EU155 1.28E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.68E-14 3.44E-06 8.09E-15 2.99E-05 3.15E+07 5.46E-11 AM241 8.06E+02 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.06E-14 3.44E-06 2.87E-15 1.06E-05 3.15E+07 1.22E-11 PU240 3.65E+02 11.5% 10% 32 6.19E+06 '7.37E-06 1.19E-12 3.00E-05 4.80E-15 3.44E-06 9.26E-18 3.43E-08 3.15E+07 1.78E-14 PU239 1.99E+02 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 2.622-15 3.44E-06 9.47E-18 3.50E-08 3.15E+07 9.93E-15 BA137M 7.38E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.192-12 3.00E-05 9.70E-13 3.44E-06 4.63E-14 1.71E5-04 3.15E+07 1.80E-08 RHI06 1.44E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00-E05 1.89E-13 3.44E-06 1.72E-14 6.36E-05 3.15E+07 1.31E-09 CE144 8.14E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.002-05 1.07E-13 3.44E-06 2.49E-15 9.21E-06 3.15E+07 1.07E-10 PR144 8.14E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.OOE-05 1.072-13 3.44E-06 2.992-15 1.11E-05 3.15E+07 1.28E-10 TE125M 4.86E+02 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 6.392-15 3.44E-06 1.22E-15 4.512E06 3.152+07 3.13E-12 Total 1 Sub-Thyroid MPC-32 Off-Normal Conditions Effective Dose Equivalent From Submersion

% Lrr Rate at Fraction Release Inventory available

% remain MPC Vol Upstream Released Release Rate X/Q DCF DOF Occ Time DDE Nuclide (Ci/Assy) for release airborne No, Assy (cm3)' (cm3/s) per sec Fraction (CI/sec) (seclm3) (Sv/Bq) (mRem/uCi) (sec) (mRem) S ....... Gases -H3 2.97E+02 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 00--0.30 3.90E-10 3.44E-06 0300E+00 0.00E+00 3.15E+07 0.00E+00 112. 9 2.64E-02 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30--' 3.47E-14 3.44E-06 3.86E-16 1.43E-06 3.15E+07 5.37E-12 RR_135 3.02+04 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30 2.642-11 3.44E-06 1.51E-16 .4037-o0 3.15E+o7 8.ooE-07 S......Crud O1630 .81E+04 100.0% 100% 32 6.19E+06 7.37E-06 1.19-12 0.10 1.24E-10 3.44E-06 1.27E-13 4.70E-04 3.15E+07 .734E-06 Volatiles SR90 5.10E+04 11.5% 100% 32 6.19E+06 7.372-06 1.19E-12 2.00E 4.7E-11 3.44E-06 7.337-16 2.922-07 3,15E+07 1.31E-10 RU106 1.44E+04 11.5% 10%0 32 6.19E+06 7.37E-06 1.19E-12 2.00E-05 1.26E-11 3.44E-06 6.00E+00 0.00E+00 3.15E+07 9.14E+00 &S134 3.01E+04 11.5% 10% 3- 2 619E+06 7.37E-06 1.19E-12 3.O0E-04 2.64E-11 3,44E-06 7.57E-14 2.80E-04 3.15E+07 8.01E-07 C$137 7.82E+04 11.5% 100% 32 6,19E+06 7,37E-06 1.19E-12 2.00E--04 2685E-11 3.44E-06 .558E-18 1279E-08 3.152+07 2.07E-10 S......Fines U24A13 7.75E+04 11.59/% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.02E-12 3.44E-06 26.98E-20 2752E-10 3.15E+07 2.85E-14 TY910 5.10E+04 11.5% 10% 32 6.19E+06 7.37E-06 1,19E-12 3.00E-05 1.70E-13 3.44E-0--

1.87E-16 3.192E-07

-- 3.15E+07 5.03E-11 2M1448_7 257E+04 11.5 /% 10% 2 7.37E-06 1.19E-12 3.00E-05 3.38E-13 3.44E-06 6.75E-19 2.50E-09 3.15E+07 9.14E-14 EU154 4.51E+03 11.5% 10% 32 6.19E+06_

7.37E-06 1.19E-12 3.00E-05 5.93E-13 3.44E-06 15E-14 2.28E-04 3.15E+07 1.46E-09 CM244 5.57E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.002-05 7.32E-15 3.44E-06 4.64E-16 1.55E-08 3.15E+07 1.23E-13 PUG23._._8 3,76E+03 11.5% 10% 12 6T1_9E+06

-7.37E-06 1.19E-12 3.00OE-05 4.94E-14 3.44E-06 4.01E-18 1.4BE-08 3.15E+07 7.95E-14 8B3125 -1.99E+03 11.5% -10% 3--2 ---6.19 E+ 0 6 -- T3--' 7E-06 _T 1 19E-1 2 35,00E-05 2761 344E-06 2.01 E-14 .44E-05 3.15E+07 2.11 E-1 0 EU1.55 1.28E+03 11,5-'-/ _10"--%-/

3-2 -E19 E+ 0 6"- 7.37E-06 1,19E-12 30-"--'O---'5 1,68E-14 3.44E-06 2i,41 E-1,5 8.2E-06 3.5-15E+07 1.63E-11I AM241 8.06E+02 11.5% 110% 32 .19E+06 73-7E-06 1. 19E-1 2 3,00OE-05 1-i.06E-14 3ý.44E-0.6 7.83E-16 2.T90E-06 3.15E+07 3.33E-12 PýU_240 -3.65E+02

_11.5__.%

10% 32 6.19E+06----

7.37E-0"----

1,19E-12 3,00E-05--'

4.80E-15 3.44E-06 3.92E-18 1.45E-08 3.15E5+07 7.54E-15 PU239 1.99E+02 11.5___.%

10'-%-'/ 32"-

7.37E-0-6'-

1.9E1 3. 0 2.2E1 3.44E-06 3.88E-18 1.44E-08 3.151E+07-4.07E-15 BA137M 7.38E+-04 711759/ _10---%--

3-'-2 6j._1 9E+06------

737E-06 I,19E-12 3,00E--0----

9.70E-1"----

3,44E-06 -2.88E-14 1,07E-04 3.-15E+07 1.12E-08 RH16 ,4E+4!115%

10 3---2 .37E-0 1.1E1 3.00E-0"--

1.89E-13 3i.44E-06 1,03E-14 3.81 E-05 -3.15E+07

-7.82E-10 CE14__.4 8.14E+03--" 11.5-"%-/ 3" 6.19E+06-'

7.37E-06 1.19E-12 3.00E-0"--'

3.44E-06 8.33E-16 3.08E-06 3,16E+07 3.57E-1 1 PR144 8.14E+03 11.5__.% 100% 32 16.19E+06 I7.37E-06 1.19E.12 3,00E-05_

1.07E-13 3.44E-06 1.95E-15 7.22E-06 3.15E+07 8,37E-1 1 TE 12-5M -4.86E+021 11.5%/ 32 6.19E+06----

7.37E-06 1.19E-12 3.00E-0"---'--"-5 96E39E-15 F3.44E-06 4.-64E-16 1.72E-06 3.-15E+07 I1.19E-12 Total 7.45E-06 Report HI-2002513 Pnne A-29

((Sub-Effective MPC-32 Off-Normal Conditions EftieDose Equivalent From Submersion Nuclide~R~Il T~fl~4~r 4~OL .inoj t~ t ..nn..t-.....-

Inventory (Ci/Assvl available% remain for ~ ~ ~ N rees m s prseIFaton1(lsu)_

MPC VolRate at Upstream Fraction Released Release Release Rate i Gases H 3 2.97E+02 11.5% f.100% .32 6,19E+06 J7.37E-06 I1.19-E-12-1 0.30 13.90E-10 1129 2.64E-021 11.5% +100% 32 6.19E+064 7.37E-06 1.19E-12 0.30 -T3.472-14 KR~ 85 CO 6U 4.82E+03 11.O'h 1011%.-.-" .19E-1 0.3 1~ 6.34E-09 I 3.44E-06 1.19E-16 j4.40E-07 3 XIQ DCF DCF Occ Time DDE (sec/m3) (Sv/Bq) (mRem/uCi) (sea) (mRem)3.44E-06 3.44E-06 3.31E-19 3.80E-16 1.22E-09 1.41E-06 1uu.U%'(0(1#",t n 4r',, ,, n. ....L- ru 2.18+01. f .-.9En 1 0.51I.4 -1 44 0 3 4.66E-04.15E+07 3.15E+07 .15E+07 5.18E-11 5.29E-12 3.02E-07 3.15E+07 6.29E-06 SI 90. ..0.. ..0...........%.

-, .,.uuE.-u .4.47E-111 3l.q44E-06 7.53E-1 8 12.79E-00 3.15E+07 1.35E-10 RU106 1.44E+04 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.002-04 1.26E-11 3.44E-06 0.00E+00 0.00E+00 3.15E+07 0.00E+00 CS134 3.01E+04 11.5% 100% 32 6.19E+06 7.37E-06 1.192-12 2.00E-04 2.64E-11 3.44E-06 7.57E-14 2.80E-04 3.15E+07 8.01E-07 CS137 7.82E+04 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.00E-04 6.85E-11 3.44E-06 7.74E-18 2.86E-08 3.15E+07 2.13E-10 Fines PU241 7.75E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.02E-12 3.44E-06 7.25E-20 2.68E-10 3.15E+07 2.96E-14 Y 90 5.10E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.OOE-05 6.70E-13 3.44E-06 1.90E-16 7.03E-07 3.15E+07 5.11E-11 PM147 2.57E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00-E05 3.38E-13 3.44E-06 6.93E-19 2.56E-09 3.15E+07 9.39E-14 EU154 4.51E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 5.93E-14 3.44E-06 6.14E-14 2.27E-04 3.15E+07 1.46E-09 CM244 5.57E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 7.32E-14 3.44E-06 4.91E-18 1.82E-08 3.15E+07 1.44E-13 PU238 3.76E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 4.94E-14 3.44E-06 4.88E-18 1.81E-08 3.15E+07 9.67E-14 SB125 1.99E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 2.61E-14 3.44E-06 2.02E-14 7.47E-05 3.15E+07 2.12E-10 EU155 1.28E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.68E-14 3.44E-06 2.49E-15 9.21E-06 3.15E+07 1.68E-11 AM241 8.06E+02 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.OOE-05 1.06E-14 3Y44E-06 8.18E-16 3.03E-06 3.15E+07 3.47E-12 PU240 3.65E+02 11,5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 4.80E-15 3.44E-06 4.75E-18 1.76E-08 3.15E+07 9.14E-15 PU239 1.99E+02 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 2.62E-15 3.44E-06 4.24E-18 1.57E-08 3.15E+07 4.45E-15 BA137M 7.38E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 9.70E-13 3.44E-06 2.88E-14 1.07E-04 3.15E+07 1.12E-08 RH106 1.44E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.89E-13 3.44E-06 1.04E-14 3.85E-05 3.15E+07 7.89E-10 CE144 8.14E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.07E-13 3.44E-06 8.53E-16 3.16E-06 3.15E+07 3.66E-11 PR144 8.14E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.07E-13 3.44E-06 1.95E-15 7.22E-06 3.15E+07 8.37E-11 TE125M 4.86E+02 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 6.39E-15 3.44E-06 4.53E-16 1.68E-06 3.15E+07 1.16E-12 Total 7.402-06 Report HI-2002513 Page A-30 SA ........reo,=) pur r-racuon (uIIsec)3 3 3 4 R 7 qT= n=4 4hE ..59/.I UU 713 11 IHP"'PIlII I

Sub-Skin MPC-32 Off-Normal Conditions Effective Dose Equivalent From Submersion Nuclide Inventory (Ci/Assy)1:1. O1.14I::'"U5 I .u/available for release% remain -airborne H 3 2.97E+02 11.5% 100%1Nf%'A No. Assy MPC Vol (cm3)S... ... .R, IOP+ uu I h f 1 .4-IsU' , 1129 2.64E-02 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 0.30 KR 85 4.82E+03 11.5% 100% 32 6,19E+06 7.37E-06 1.19E-12 0.30..... ..... .. ..~...... ,.,, ,--, ,. -, .uu,---u1 2.Oq--11 9.45E-14 3.50E-04 3.15E+07 1. CS137 7.822+04 11.5% 100% 32 6.19E+06 7.37E-06 1.19E-12 2.00E-04 6.862-11 3.44E-06 8.63E-15 3.19E-05 3.15E+07 2. Fines PU241 7.75E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.02E-12 3.44E-06 1.17E-19 4.33E-10 3.15E+07 4, Y90 5.10E+04 11.5% lfl 0... -- n-. rc~= -,, ,,,u,,-u .. ... ..I1-i~.4IU

...... .120 312+7 1.Upstream (cm3/s)ractUUUI1 Released per sec Release Fraction CU ou SR 90 RU106 2. 18l-U1 5.10E+04 1.44E+04 1uU.U0/% 11.5% 11.5%100% 100% 100%t -- ____ [32 32 32 flI.1M n~lfl:4.n~l-11 1D/ 4Al00% ,2 6.19E+06 6.19E+06 6.1+0 ..7-fI .-0.I2 ')JAA 7.37E-06 7.37E-06 1,19E-12 1.19E-12 0.15 2.00E-04-- I -t~ -~'~ IC..UJL.~~t 1.22-1 Release Rate (ClIsec) Gases 3.91 E-10 3.47E-14 6.342-09 Crud 1.24E-10 Volatiles 4,47E-1 1 1.26E-11I XJQ (sec/m3) 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.44E-06 3.442-06 0.002+00 DCF (Sv/Bq) 0.00E+00 1.10E-15 1.32E-14 1.45E-13 9.20E-15 DCF (mRem/uCi) 0.00E+00 4.07E-06 4.88E-05 5.372-04 3.40E-05 O.OOE+00 Occ Time (sec) 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 3.15E+07 SD (mRR 0.002 1.53E 3.35E 7.24E 1.65E 0.00E 00E 37E 78E 90 51E0 .... .. ......5 ,0 32, 619E-06 73E6 .19E-12 3Ouu-uo 6.71E--13 3.44E=-06 6.24E-14 2.31 E-04 3.15E+07 1.68E PM147 2.57E+04 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 3.38E-13 3.44E-06 8.11E-16 3.00E-06 3.15E+07 1.10E EU154 4.51E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 5.93E-14 3.44E-06 8.29E-14 3.07E-04 3.15E+07 1.97E CM244 5.57E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 7.32E-14 3.44E-06 3.91E-17 1.45E-07 3.15E+07 1.15E PU238 3.76E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 4.94E-14 3.44E-06 4.09E-17 1.51E-07 3.15E+07 8.11E SB125 1.992+03 11.5% 10% 32 6.192+06 7.372-06 1.19E-12 3.00E-05 2.62E-14 3,44E-06 2.65E-14 9.81E-05 3.15E+07 2.78E EU155 1.28E+03 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 1.68E-14 3.44E-06 3.39E-15 1.25E-05 3.15E+07 2.29E AM241 8.06E+02 11.5% 10% 32 6.19E+06 7.37E-06 1.192-12 3.00E-05 1.06E-14 3.44E-06 1.28E-15 4.742-06 3.15E+07 5.44E PU240 3.65E+02 11.5% 10% 32 6.19E+08 7.37E-06 1.19E-12 3.00E-05 4.80E-15 3.44E-06 3.92E-17 1.45E-07 3.152+07 7.542 PU239 1.99E+02 11.5% 10% 32 6.19E+06 7.37E-06 1.19E-12 3.00E-05 2.62E-15 3.44E-06 1.86E-17 6.88E-08 3.15E+07 1.95E 2A137M 7.5]AF+n4 11 FA/. 1n1o/.L ", *ln, -- --, ... ....---...

R 06 iuo I 11.0o 1 UA R1W I-fI::+ 7 I 4 o= 4' .o n E-13 3.44E-06 3.73E-14 1.09E-13 1.38E-04 4.03E-04 3.15E+07 3.15E+07 CE44I_.1E_31115%

10 ___2_ 619E_06 73.JU -0 1.19E-12 3.0012-05~

1.07E+/--13

~13.44E-06 I 2.93E-15 1.082-05 [3.15E+07 1., 8.: 1.:-0 I1.07 # 3.:62E-109 TE125M 4.862+02 11.5% 1 10% 32 J6.19E+06]

7.372-06 1922 3.00E-05#6.4012-1 3.420 .4-5 71 0 .5+7 4921 I _ ___ ___ _ L___ _ I___ _ i _ ___I _ ___i _ ___I _ ___I ___ __ __ ___ __ __ ___ __Tota~ll4.22E-05 45E 28E 26E E em) -+00 E-1 1 --05 E-06 E-07 +00 --06 14 10 -09 "-12 10 "-11 -12 "-14 "-14 "-08 -10 Report HI-2002513 P~qe A-31 32 qO PR144 8. . 14E+03 115%lo /I.]L O.i.'tr"'l'-tln

!

1 IUk.-¶'J rlRI; NE: 5% 1 100% 1 32 61 7. ..-.0E-13 I .44 10% 32 619E+06 737E-06 119E iR t QI:=+NR 7 qT=_n=CS134 301E+04 115%BA137M I 738E+04 11.S*4AI E-06

, Inh-Gonad Report HI-2002513 Page A-32 MPC-32 Accident Conditions co mf- Pf tir- .n.gsva- ; 1 4 p I % IiIdll L.e, Rate at Fraction Release Breathing Inventory

% remain MPC Vol Upstream Released Release Rate X/Q Rate DCF DCF Occ Time CODE Nuclide (CI/Assy) airborne No. Assy (cm3) (cm3ls) per sec Fraction (Ci/sec) (sec/m3) (m3/sec) (SvlBq) (mRem/uCi) (sec) (mRem) Gases H 3 2,97E+02 100% 32 6.19E+06 1.28E-05 2.07E-12 0.30 5.90E-09 4.50E-04 3.30E-04 1.73E-11 6.40E-02 2.59E+06 3.93E-14 1129 2.64E-02 100% 32 6.19E+06 1.28E-05 2.07E-12 0.30 5.24E-13 4.50E-04 3.30E-04 8.69E-11 3.22E-01 2.59E+06 6.49E-08 KR 85 4.82E+03 100% 32 6.19E+06 1.28E-05 2.07E-12 0.30 9.58E-08 4.50E-04 3.30E-04 0.00E+00 0,00E+00 2.59E+06 0.00E+00 Crud CO 60 2.18E+01 100% 32 6.19E+06 1.28E-05 2.07E-12 1.00 1.44E-09 4.50E-04 3.30E-04 4.76E-09 1.76E+01 2.59E+06 9.77E-03 Volatiles SR 90 5.10E+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.00E-04 6.75E-10 4.50E-04 3730E-04 2.64E-09 9.77E+00 2.59E+06 2.54E-03 RU106 1.44E+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.00E-04 1.91E-10 4.50E-04 3.30E-04 1.38E-08 5.11E+01 2.59E+06 3.75E-03 CS134 3.01E+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.00E-04 3.99E-10 4,50E-04 3.30E-04 1.30E-08 4.81E+01 2.59E+06 7.38E-03 CS137 7.82E+04 100% 32 6.19E+06 1.28E-05 -2.07E-12 2.00E-04 1.04E-09 4.50E-04 3.30E-04 8.76E-09 3.24E+01 2.59E+06 1.29E-02 Fines PU241 7.75E+04 10% 32 6.19E+06 1.28E-05 2,07E-12 3.00E-05 1.54E-11 4.50E-04 3.30E-04 6.82E-07 2.52E+03 2,59E+06 1.49E-02 Y 90 5.102+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.01 E-11 4.50E-04 3.30E-04 9.52E-12 3.52E-02 2.59E+06 1.37E-07 PM147 2.572+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 5.11E-12 4.50E-04 3.30E-04 1.88E-14 6.962-05 2.59E+06 1.37E-10 EU154 4.51E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 8.96E-13 4.50E-04 3.30E-04 1.17E-08 4.33E+01 2.59E+06 1.49E-05 CM244 5,57E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.11E-12 4.50E-04 3.30E-04 1,59E-05 5.88E+04 2.59E+06 2.50-02 PU238 3.76E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 7.47E-13 4.50E-04 3.30E-04 2.80E-05 1.04E+05 2.59E+06 2.98E-02 SB125 1.99E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 3.95E-13 4.50E-04 3.30E-04 3.60E-10 1.33E+00 2.59E+06 2.02E-07 EU155 1.28E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 2.54E-13 4.50E-04 3.30E-04 3.56E-10 1.32E+00 2.59E+06 1.29E-07 AM241 8.01E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.60E-13 4.50E-04 3.30E-04 3.25E-05 1.202+05 2.59E+06 7.41E-03 PU240 3.65E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 7.25E-14 4.50E-04 3.30E-04 3.18E-05 1.18E+05 2.59E+06 3.28E-03 PU239 1.99E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 3,95E-14 4.50E-04 3,30E-04 3.18E-05 1.18E+05 2.59E+06 1.79E-03 BA137M 7.38E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.47E-11 4.50E-04 3,30E-04 0.00E+00 0.00E+00 2.59E+06 0.00E+00 RH106 1.44E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 2.86E-12 4.50E-04 3.30E-04 0.00E+00 0.00E+00 2.59E+06 0.00E+00 CE144 8.14E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3,00E-05 1.62E-12 4.50E-04 3.30E-04 1.93E-09 7.14E+00 2.59E+06 4.44E-06 PR144 8.142+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.62E-12 4.50E-04 3,30E-04 2.41E-15 8.92E-06 2.59E+06 5.55E-12 TE125M 4.86E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 9.66E-14 4.50E-04 3.30E-04 1.24E-10 4.59E-01 2.59E+06 1.71E-08 IIIII Total 1.19E-01 (

Inh-breast MPC-32 Accident Conditions Committed Effective Dose Equivalent From Inhalation L.-, Rate at Fraction Release Breathing Inventory

% remain MPC Vol Upstream Released Release Rate XJQ Rate DCF DCF Occ Time CDE Nuclide (Ci/Assy) airborne No. Assy (cm3) (cm3/s) per sec Fraction (Cli/sec) (sec/m3) (m3/sec) (Sv/Bq) (mRem/uCi) (sec) (mRem) Gases H 3 2.97E+02 100% 32 6.19E+06 1.28E-05 2.07E-12 0.30 5.90E-09 4.50E-04 3.30E-04 1.73E-11 6.40E-02 2.59E+06 1.45E-04 1129 2.64E-02 100% 32 6.19E+06 1.28E-05 2.07E-12 0.30 5.24E-13 4.50E-04 3.30E-04 2.09E-10 7.73E-01 2.59E+06 1.56E-07 KR 85 4.82E+03 100% 32 6.19E+06 1.28E-05 2.07E-12 0.30 9.58E-08 4.50E-04 3.30E-04 0,00E+00 0.00E+00 2.59E+06 0.00E+00 Crud CO 60 2.18E+01 100% 32 6.19E+06 1.28E-05 2.07E-12 1.00 1.44E-09 4.50E-04 3.30E-04 1.84E-08 6.81E+01 2.59E+06 3.77E-02 Volatiles SR 90 5.10E+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.00E-04 6.75E-10 4.50E-04 3.30E-04 2.64E-09 9.77E+00 2.59E+06 2.54E-03 RU106 1.44E+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.00E-04 1.91E-10 4.50E-04 3.30E-04 1.37E-08 5.07E+01 2.59E+06 3.72E-03 CS134 3.01E+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.002-04 3.99E-10 4.50E-04 3.30E-04 1.08E-08 4.00E+01 2.59E+06 6.13E-03 CS137 7.82E+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.00E-04 1.04E-09 4.50E-04 3.30E-04 7.84E-09 2.90E+01 2.59E+06 1.16E-02 I_ Fines PU241 7.75E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.54E-11 4.50E-04 3.30E-04 3.06E-11 1.13E-01 2.59E+05 6.70E-07 Y90 5.10E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.01E-11 4.50E-04 3.30E-04 9.52E-12 3.52E-02 2.59E+06 1.37E-07 PM147 2.57E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 5.11E-12 4.50E-04 3.30E-04 3.60E-14 1.33E-04 2.59E+06 2.62E-10 EU154 4.51E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.002-05 8.96E-13 4.502-04 3.30E-04 1.55E-08 5.74E+01 2.59E+06 1.98E-05 CM244 5.57E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.11E-12 4.50E-04 3.30E-04 1.04E-09 3.85E+00 2.59E+06 1.64E-06 PU238 3.76E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 7.47E-13 4.50E-04 3.30E-04 1.002-09 3.70E+00 2.59E+06 1.06E-06 S8125 1.99E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 3.95E-13 4.50E-04 3.30E-04 4.16E-10 1.54E+00 2.59E+06 2.34E-07 EU155 1.28E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.002-05 2.54E-13 4.50E-04 3.30E-04 6.14E-10 2.27E+00 2.59E+06 2.22E-07 AM241 8.06E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.60E-13 4.50E-04 3.30E-04 2.67E-09 9.88E+00 2.59E+06 6.082-07 PU240 3.65E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 7.25E-14 4.50E-04 3.30E-04 9.51E-10 3.52E+00 2.59E+06 9.81E-08 PU239 1.99E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.002-05 3.95E-14 4.50E-04 3.30E-04 9.22E-10 3.41E+00 2.59E+06 5.19E-08 BA137M 7.38E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.47E-11 4.50E-04 3.30E-04 0.00E+00 0.002+00 2.59E+06 0.00E+00 RH106 1.44E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 2.86E-12 4.50E-04 3.30E-04 0.002+00 0.00E+00 2.59E+06 0.00E+00 CE144 8.14E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.62E-12 4.50E-04 3.30E-04 1.97E-09 7.29E+00 2.59E+06 4.53E-06 PR144 8.14E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.62E-12 4.50E-04 3.30E-04 1.05E-14 3.89E-05 2.59E+06 2.422-11 TE125M 4.86E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 9.66E-14 4.50E-04 3.30E-04 1.07E-10 3.96E-01 2.59E+06 1.47E-08 III__-___

I Totalf 6.19E-02 Report HI-2002513 Page A-33 1000/n , ... -..-2 .uu=-u4 1.U4E-0u 4.50E-04I 3.30E-04 8.82E-09 3.26E+01 Fines PU241 7.75E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.OOE-05 1.54E-11 4.50E-04 3.30E-04 3.18E-06 1.18E+04 Y90 5,10E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.01 E-11 4.50E-04 3.30E-04 9.31E-09 3.44E+01 PM147 2.57E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.OOE-05 5.11E-12 4.50E-04 3.30E-04 7.74E-08 2.86E+02 , Inh-Lung MPC-32 Accident Conditions Committed Effective Dose Equivalent From Inhalation 1 Rate at Fraction Release , Breathing Inventory rI Im Vl ... .--.. .. ...airborne TO00%-/ 100% 100% 100/6 No. Assy 3-2 32 32 32 (cm3) 6.71 92+06 6.19E+06 6.19E+06 6.19E+06 (cm3ls) 1 .28E-05 1.28E-05 1.28E-05 1.28E-05 r~uudbaeu per sec 2.07E-12 2.07E-12 2.07E-12 2.07E-12 Release Fraction 0.30 0.30 0.30 1.00 Rate (CI/sec) Gases 5.90E-09 5.24E-13 9.58E-08 Crud 1.44E-09 Volatiles 5.10E+04 1000% 32 16.19E+06 1.28E-05 2.07E-_12 12.0012-04 6.752-10 14.50E-04 1.442+04 100% 32 16.19E+06 1.2820 2.7212 2.0-04 1.912-10 I4,50E-04 X/Q (sec/m3) 4.50E-04 4.502-04 4.50E-04 4.50E-04 100%7 32 6.19EL+06

1. ,9F-2.07E-12 2.00E-04 3.99E-10 4.50E-04 Rate (m3/sec) 3.30E-04 3.30E-04 3.30E-04 3.30E-04 3.30E-04 3.30E-04 3.30E-04 CS137 I 7.822+04 DCF (Sv/Bq) 1.73E-11 3.14E-10 0.OOE+00 3.45E-07 2.86E-06 1.042-06 1.18E-08 DCF (mRem/uCi) 6.40E-02 1.16E+00 O.00E+00 1.28E+03 1.06E+04 3.85E+03 4.37E+01 Occ Time (sea) 2.59E+06 2.59E+06 2.59E+06 2.59E+06 2.59E+06 2.59E+06 2.59E+06 2.59E+06 2.592+06 2.59E+06 2.59E+06 2.59E+06 CM244 5.....03 ...%....6.9.06128E0-v. 3.O.I-05 1.1E-12"I 4.50E-04 3.30E-04 1.93E-05 7.14E+04 2.59E+06 3.04E-02 PU238 3.76E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.OOE-05 7.47E-13 4.50E-04 3.30E-04 3.20E-04 1.18E+06 2.59E+06 3.402-01 SB125 1.99E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 3.952-13 4.50E-04 3.30E-04 2.17E-08 8.03E+01 2.59E+06 1.22E-05 EU155 1.28E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 2.54E-13 4.50E-04 3.30E-04 1.19E-08 4.40E+01 2.59E+06 4.31E-06 AM241 8.06E+02 10% 32 6.19E+06 1.282-05 2.07E-12 3.002-05 1.60E-13 4.502-04 3.30E-04 1.84E-05 6.81E+04 2.59E+06 4.19E-03 PU240 3.65E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 7.25E-14 4.50E-04 3.30E-04 3.23E-04 1.20E+06 2.59E+06 3.33E-02 PU239 1.99E+02 10% 32 6.19E+06 1.28E-05 2.072-12 3.002-05 3.95E-14 4.50E-04 3.30E-04 1.73E-05 6.40E+04 2.59E+06 9.73E-04 BA137M 7.38E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.47E-11 4.50E-04 3.30E-04 0.00E+00 0.00E+00 2.59E+06 0.00E+00 RH106 1.44E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.OOE-05 2.86E-12 4.50E-04 3.302-04 0.00E+00 0.OOE+00 2.59E+06 0.00E+00 CE144 8.14E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.62E-12 4.50E-04 3.30E-04 7.91E-07 2.93E+03 2.59E+06 1.82E-03 PR144 8.14E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.62E-12 4.50E-04 3.30E-04 9.40E-11 3.48E-01 2.59E+06 2.16E-07 TE125M 4.86E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 9.66E-14 4.50E-04 3.30E-04 1.04E-08 3.85E+01 2.59E+06 1.43E-06 Total 4.24E+00 CDE (mRem) 1.452-04 2.342-07 0.002+00 7.08E-01 2.75E+00 -2.8217-01 1.30E-02 76.97E-62 1.34E-04 5.62E-04 5120 10 32I0 2E-5 27 1 Report HI-2002513 Page A-34 Nuclide H-i 3 1129 KR 85 00 60I (CI/Assy) 2.972+02 2.6415-02 4.82E+03 2.18E+01 RU106 CS1 34.1 04I~U J ____ I I I I i.]f..D. -I "j II I I..--'l'j 1.28E-05 2.07E-12 2.00E-04 6.75E-10 4.50E-04 1.28E-05 2.07E-12 2.00E-04 1.91E-10 4.50E-04 6.97E-02 1.34E-04 5.62E-04 1.01E-04 f f 1 EU154 4.

Inh-R Marrow MPC-32 Accident Conditions Committed Effective Dose Equivalent From Inhalation LamRate at Fraction Release Breathing Inventory

% remain MPC Vol Upstream Released Release Rate X/Q Rate DCF DCF 0oc lime ODE Nuclide (C/ASSY) airborne No. Assy (cm3) (cm3/s) per sec Fraction (Cl/sec) (sec/m3) (m3/sec) (Sv/Bq) (mRem/uCi) (sac) SR3 90 2.9E+02 100% 32 16.19E+06 1.28E-05 2.07E-12 0.30 5.90E-09 4.50E-04 3.30E-04 1.73E-11 6.40E-02 2.59E+06 3.23E-04 1129 1.442+04 100% 32 6.19E+06 1.28E-05 2.07E-12 20.30 5.24E-13 4.50E-04 3.30E-04 11.40E-0 5.0E-01 2.5925+06 3.04E-07 1.28E-05 2.07E-12 0.30 9.58E-08 000E3.99.004.50E-40 2.59E+06 01.28-05 2.07E-12 1.00 1.44E-09 1O.32-09 3.02+01- 2.597+06 1 CO 6i%8Volatiles

.31.28E-05 2.07E-12 3.00E-0 1.54-1 0 -3.36E-06 1.24E+04 2.59E+06 7.36-02 V 90 5.10E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 2.00E-05 1.012-104 1.79-0 5.07E+00 2.592+06 3.72E-03 11.28-05 2.072-12 2.00E-04 6.99E-10 4.502-04 3.30E-04 8.16E-07 3.02E+01 2.59E+06 3.23E-01 410% 32 6.19E+06 1.28E-05 2.07E-12 2.00E-04 1.91E-10 4.502-04 3.302-04 1.30E-08 3.07E+01 2.59E+06 1.72E-04 3 9E+02 10%1 .32 6.19+06 28-05 2.07E-12 3.002E-05 3.95E-10 4.50E-04 3.30E-04 1.69E-04 6 .25E+05 2.59E+06 9.512-03 BAS137M .382E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.002-05 1.04E-11 4.50E-04 3.30E-04 8.30E-09 3.02E+01 2.59E+06 0.02E-+0 RU106 7545E+04 10% 32 6.19E+06 1.28E-05 2,07E-12 3.OOE-05 ,856E-13 4.50E-04 3.302-04 0.06E-02 1.92E+04 2.59E+06 0.30E-02 02144 5.14E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.OOE-05 1.61E-12 4.50E-04 3.30E-04 2.67E-08 1.03E+00 2.59E+06 6.42E-05 PM238 2.576E+04 10% 32 61912+06 1.213E-05 2.07E-12 3.00E-05 7.7-3 450E-04 3,30E-04 8165E-04 3.0212+05 2.59E+06 5.93E-05 EU1254 4.1.9E+03 10% 3 6.9+81.28E-05 2.07E-12 3.00E-05 8,96E=-13 4.50E-04 3.30E-04 1.49E-107 23.02E+02 2.59E+06 13.5E-047 CM2445.572E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.54E-12 4.50E-04 3.30E-04 1.438E-05 3.47E+05 2.59E+06 1.48E-01 AM244 8.26E+03 10% 32 6.19E+06 1.28E-05 2.072-12 3.00E-05 1.62E-13 4.50E-04 3.30E-04 1.02E-04 2.92E+05 2.59E+06 1.62E-01 PU3 .9E+03, 10% 32 6.19E+06 1.28E-05 2-07E-12 3.00E-05 3.95E-13 4.50E-04 I3.30E5-04 6.49E-104 2.40E+00 2.59E+06 3.651E-07 BA3 2 .8E+03 10% 32 6.19E0 I.R-5 20E1 .0 -0 134E1 4.50E-04 3.301-4 00E0 0.E+0 25506 .0E0 RH106 1 .44+0 10 2 6 E+06 1.28E-05 2.07E-12 3.00E-05 2.54E-1 E.0-4 331-04 1,43E-08 5.29E+01 2.59E+06 5.017E+06 CEkM214 8.06E+02 10% 32 6.9+6 1.28E-05 2.07E-12 3.00IE-05 1,60E-112 4.50E-04 330E-04 1.74E-04 6.44E+05 2.59E+06 3.14E-02 PU240 3.65E+02 10% 32 6.1 9E+06 1,28E-05 2.07E-12 3.O0E-05 1.62E-12 4.50E-04 3.30E-04 8.69E-04 62995E-05 2.59E+06 1.86EE-010 TE125M 4.86E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 9.66E-14 4.50E-04 3.30E-04 3.01E-09 1.112E+01 2.59E+06 4.14E-07 TotaAl 5.3 1 3 0 O Report HI-2002513 Paoe A-35 (C lnh-B Surface Report HI-2002513 Page A-36 MPC-32 Accident Conditions Committed Effective Dose Equivalent From Inhalation Lace Rate at Fraction Release Breathing Inventory

% remain MPC Vol Upstream Released Release Rate X/Q Rate DCF DCF Occ Time COE Nuclide (Ci/Assy) airborne No. Assy (cm3) (cm3/s) per sec Fraction (Ci/sec) (sec/m3) (m3/sec) (Sv/Bq) (mRem/uCi) (sec) (mRem) Gases H 3 2.97E+02 100% 32 6.19E+06 1.28E-05 2.07E-12 0.30 5.90E-09 4.50E-04 3.30E-04 1.73E-11 6.40E-02 2,59E+06 1.45E-04 1129 2.64E-02 100% 32 6.19E+06 1.282-05 2.07E-12 0.30 5.24E-13 4.50E-04 3.30E-04 1.38E-10 5.11E-01 2.59E+06 1.03E-07 KR 85 4.82E+03 100% 32 6.19E+06 1.28E-05 2,07E-12 0.30 9.58E-08 4.50E-04 3.30E-04 0.00E+00 0.00E+00 2.59E+06 0.OOE+00 Crud CO 60 2.18E+01 100% 32 6.19E+06 1.28E-05 2.07E-12 1.00 1.44E-09 4.50E-04 3.30E-04 1.35E-08 5.OOE+01 2.59E+06 2.77E-02 Volaties I SR 90 5.10E+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.00E-04 6.75E-10 4.5012-04 3.30E-04 7.27E-07 2.69E+03 2.59E+06 6.99E-01 RU106 1.44E+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.00E-04 1.91E-10 4.50E-04 3.30E-04 1.37E-08 5.07E+01 2.59E+06 3.72E-03 CS134 3.01E+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.00E-04 3.99E-10 4.50E-04 3.30E-04 1.10E-08 4.07E+01 2.59E+06 6.24E-03 CS137 7.82E+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.00E-04 1.04E-09 4.50E-04 3.30E-04 7.94E-09 2.94E+01 2.59E+06 1.17E-02 Fines PU241 7.75E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.54E-11 4.50E-04 3.30E-04 4.20E-05 1.55E+05 2.59E+06 9.20E-01 Y90 5.10E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.01E-11 4.50E-04 3.30E-04 2.78E-10 1.03E+00 2.59E+06 4.01E-06 PM147 2.57E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 5.11E-12 4.50E-04 3.30E-04 1.02E-07 3.77E+02 2.59E+06 7.41E-04 EU154 4.51E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 8.96E-13 4.50E-04 3.30E-04 5.23E-07 1.94E+03 2.59E+06 6.672-04 CM244 5.57E+03 10% 32 6.192+06 1.28E-05 2.07E-12 3.00E-05 1.11E-12 4.50E-04 3.30E-04 1.17E-03 4.33E+06 2.59E+06 1.84E+00 PU238 3.76E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3,002-05 7.47E-13 4.50E-04 3.30E-04 1.90E-03 7.03E+06 2.59E+06 2.02E+00 SB125 1.99E+03 10% 32 6.19E+06 1,28E-05 2.07E-12 3.00E-05 3.95E-13 4.50E-04 3.30E-04 2.73E-09 1.01E+01 2.59E+06 1.54E-06 EU155 1.28E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.002-05 2.54E-13 4.50E-04 3.30E-04 1.52E-07 5.62E+02 2.59E+06 5.50E-05 AM241 8.06E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.60E-13 4.50E-04 3.30E-04 2.17E-03' 8.03E+06 2.59E+06 4.94E-01 PU240 3.65E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 7.25E-14 4.50E-04 3.30E-04 2.11E-03 7.81E+06 2,59E+06 2.18E-01 PU239 1.99E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 3.95E-14 4.50E-04 3.30E-04 2.11E-03 7.81E+06 2.59E+06 1.19E-01 BA137M 7.38E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.47E-1 1 4.502-04 3.30E-04 0.00E+00 0.OOE+00 2.592+06 0.00E+00 RH106 1.44E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 2.86E-12 4.50E-04 3.30E-04 0.00E+00 0.00E+00 2.59E+06 0.00E+00 CE144 8.14E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.62E-12 4.50E-04 3.30E-04 4.54E-08 1.68E+02 2.59E+06 1.04E-04 PR144 8.14E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.62E-12 4.50E-04 3.30E-04 1.35E-13 5.00E-04 2.59E+06 3.11E-10 TE125M 4.86E+02 10% 32 6.19E+061 1.28E-05 2.07E-12 3.00E-05 9.66E-14 4.50E-04 3.30E-04 3.21E-08 1.19E+02 2.59E+06 4.41E-06 rotal 6.R36i+00 ,

Inh-B Thyroid Report HI-2002513 P-le A-37 MPC-32 Accident Conditions Committed Effective Dose 2 ulvalent From Inhalation L.- Rate at Fraction Release Breathing Inventory

% remain MPC Vol Upstream Released Release Rate X/Q Rate DCF DCF Occ Time CDE Nuclilde (Ci/Assy) airborne No. Assy (cm3) (cm3/S) per see Fraction (Ci/sec) (sec/m3) (m3/sec) (Sv/Bq) (mRem/uCi) (sac) (mRem) S .3 2.97E+02 _100% 32 6.19E+06 1.28E-05 2.07E-12 0.30 .5.90E-09 4.553E-04 E-0--'- 1.735-11 6.405-02 2.59E+06 1.452-04 1129 2.64E-02 100% 32 6.19E+06 1.28E-05 2,07E-12 0.30 5.24E-13 4.50E-04 3.30E-04 1.56E-06 5.77E+03 2.59E+06 .16E-03 KR5 4.21+0. 3 100__% 32 6.19E+06 1.28E-05 2.07E-12 0.30 9.58E-08 4.50E-04 3.30E-04 0.00E+00 0.00E+00 2.59E+06 0.00E+00 co6 3.0125+04 100% 32 6.19E+06 1.28E-05 2.075-12 2.00-04 1.E-0 4.505-04 3.30E-04 1.62E-08 5.99E+01 2.59E+06 3.32E-02 .....V o la t i le s CSR90 75.10+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.00E-04 6.5E-10 4.50E-04 53.30E-04 7.694-09 9.77E+00 2.592+062..15-02 RU106 1,44E+04 10%0 32 6.195+06 1.28E-05 2.07E-12 2.OOE 1.9i7E-1-'

4.50E-04 3,30E-04 92.37-108 3.56+00 2.59E+06 3.72E-03 CS134 .0112+04 100% 32 6.19E+06-1.28E-05 2.072-12 2,002-05 3.99E-10 4.50E-04 3.30E-04 1.211E-08 4.11+01 2.59E+06 6.30E-03 CS13. 7 17.82E+04 10% 32 6.19E+06 1.28E-05 2.072-12 2.00E-0 1.04E 9 4.50E-04 3.30E-04 0.002+0 0.005+00 2.695+06 0.102 ... Fines ---.3-09 .3+1 259+611E0 PU241 8.175 +034 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-0 5 1.62E-11 4.50E-04 3.30 2-04 1.24E-10 4.9E +0 -2.591+06 4.332-0 6 Y9R_0 5.104+04 10% 32 6.19E+06 1.285E-05 2.07E-12 3.00 1.016-12 4.50E-04 3.302-04 9.52E-12 3.52E-02 2,59E+06 1.375-07 PM14._.7 2.57E+0._..4 10%---/ 3'2 --- 6195-+0--'"-

Or, 25E-05 20-7E-1 2 3,0050-'-'

5.11E-12 -T5 0 -3.30E-04"" 1.98E-14 7.33E-05 2.59E+06' 1.44E-10 5U1.__F .550 0 2 6195+05 1.28-05 3.00E-05 8.96E-13 4ý.505-04

-3.30E-04 7,14E-09 2.-645+01 2.59E+06 9.10E-06 C6M 244 3.7E+0__._3

-10/16 3-2 6.19E+0"'6" 1.28E-05 2.07E-12 3.00E-05 1.11E-12 4.50E-0"--------04 1,01E-09 3.f 74E+00 2-.-59E+06, 1.9-0 PU2 38 4.786+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.005-05 7.476-13 4.50E-04 3.30E-04 9.622-10 3.56E+00 2.59E+06 1.02E-06 6B 12.___5 199E+03 10% 32 5,19E+06 1-.-2-8E-05

.0o7E-12 -3.00E-05 3.95E-13 4.50E-04 -3.30E-04

-3,24E-10

-1.20E+00

-2.59E+06 IT.82E-0 E15.5_5 1-.28E+03 10% 3"--2 -1E0 2,07E-12 30E5 254-3 8.88E-01 2.59E+06" 8.69E-08--" AM24_._.1 8.06E+02 10%/ 32 6.19E+06-----

1.28E-05 2.07E-12 3.00E-05 1.60E-13 4.50E-04--"-

3.30E-04 1.60E-09 -5.92E+00 -2.59E+06i PU240 3,65E+02 10% 32 6.19E+05---"-

1.28E-05 2.07E-12 3.005--05 7.25E-14 4.50E-0--

4--- 3.30E-04 9.05E-10 3.35E+00 2.59-+-0-6 9.34E-08 U39 99+2 10%/ 6.9+5 1.28E-05 2.07E-12 3.00E-05"--

4.50E-04"----

3.30E-04 -9,03E-10 3.-34E+00 2.59E+06 5.08E-08 ýA-137M 7.38E+04 10% 3--2--' 6,19E+06"---

1.285-5 2.0-7E-12 3.0OE05-0----

1.47E-1--'

3.30E-04 -0.00E+00 0.E+0 25+0 .0+0 RH106 1.44E+04 10% -'- 19E+06-' 1.28E-05 2.-07-E-12 3.005-05---'--

.86E-12 4.50E-04 3.30E-04 0.00E+00 0O.00E+00 2.59E+060O.00E+00 C5144 8.14E+0.__3 10%/ 32 1.28E-05 2.07E-12 3.005-05---'

1.62E-12 4.50E-04 3.30E-04 1.88E-0g 6.96E+00 2.59E+06 4.33E-06 PR14..__4 8.14E+03 10% 3-- fl.19E+06

--'- .285-05 300-0-'7 j-oE-0--

1.62E-129 4.50E-04 3.30E-04 8.47E-15 3.13E-05 2.659E+06 1.95E-1 1 TE 1 25 M o.865+02 10%. 3"--2" 6.195S+05

--'-- 1.28E-05 1 .0-5 .6 -14 4.5-0E--04 3.305-04 9,93E-11 3.67E-01 1 2.59E+06 1.37E-08 1 -Total 5.885-02 Inh-Effective MPC-32 Accdent Conditions SCo~~C mmitted Effective Dose muvlntFo Inhalation L..= Rate at Fraction Release Breathing EE Inventory

% remain MPC Vol Upstream Released Release Rate X/Q Rate DCF DCF Occ Time CD N.uclfd_.

e (Ci/Assy) airborne No. Assy (cm3) (cm3/s) per sec; Fraction (CI/sec)...__ (sec/m3) (m3/sec) (Sv/Bq) (mRem/uCi) (sec) I(oeo Gases HP39 2.97E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 0.30 5.90E-0914 4,50E-04 3.30E-04 1.73E-11 6.40E-02 2.59E+06 1.45E-04 1129 2.64E-02 100% 32 6,19E+06 1.28E-05 2.07E-12 0.-30 5.4E-13 4.50E-04 3.30E-0 4.69E-08 1.74E+02 0 2.59E+06 3.50E-05 KR 85 482E+03 100% 32 6.19E+06 1.28E-05 2.07E-12 0.30 9.58E.08 4.502-04 3.30E-04 0.00E+00 0.002+00 2.59E+050.002+00 E.0-4 33E0 .O+0 OOE0 .9+6OOE0 CO60 8.. 14a2.E+0o 1 ,32 6.192+06 28E-05 2.07E-12 1.00 1.44E-09 4.50E-04 3.30E-04 5.91E-08 2.19E+02 2.59E+06 1,21E-04 Volatiles SR 90 5,10E+0..__4

_iO/ 32 i.90 1.28E-05 2.0712-11 2,00E-0--'-'-

6.75E-10-----E-0 3.0- __73.51E-07 1.0+3 259E0 33E0--'" RU106 1.44E+04 100%/ 32 6.19E+06 1.28E-05----

2.07E-12 2.0-"---4

.1------ .0-"-'-

4,77E+02 2.59E+0-63.50E-02 RSI4 3.01E+04 100% 32 6.19E+06 1.282-05 2.072-12 3.00E-04 1.962-10 4.50E-04 3.30E-04 1.25E-08 4.63E+01 2.59E+06 C-S 13.-..7 7,8 2 E +04 100%/ 3-2 6.19E+06 2,07E-12 1.04E.-09--"" 4.50E-0-- 3.30E-0"---" 8.63E-09 3.19E+01 2.5912+06 12E0 Fines PU24._.1 7.75E+04 10% 32 6.1 9E÷06 .28E-05 2.7E1 3.OE0 1.4- 4.50E-04 3.309-0-4

_2.23E-06 8'.-25E+03 2.5_9E+06 4.89E-0____2 M g0 5E+0. 10% 32 8.19E+06 1.28E-05 2.07E-12 3.00a-05 9.o6E-1 4.50E-04 3.30E-04 .228E-09 .644E+00 2,59E+06 3.29E-05 PM147 2.57E+0_...4 10 2 61E0 2.07E-12 5.11E-12 4.50E-04 3.30E..04 1.06E-508-3T92 E+0 1 2.5 9 E+ 0-67.70E-0_._5 EU15.._.4 4.51 E+03 32 .1E0 12E0 2.07E-1 2 3.00E.-05 8.96E-13 4.50E-04 3.30E-04 7.73E-08 -2.86E+02 2.59E+06 9.86E-05 CM244 10% 32 6.9+612E0

.7-2 30E0 .1-2 4.0-4 3.30E-04 I 6.70E-05 2.48E+05 2.59E+06 1.06E-0-1"--

PU238 3.76E+03 10% 32 6119E+06 1.28E-05 2.07E-12 3.00E-05 7,47E-13 4.50E-04 3.30E-64 -1.06E-04

-3.92E+05-2.59E+06 11E0 SB125 1.99E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-059 3.95E-13 4.50E-04 3.30E-04 3.30E-09 1,22E+01 2.59E+06 1.86E-06 EU15._._5 1.28E+0._

_.3 10%/ 32 6,19E+06 1.28E-05 2.07E-12 3.00E-05 2.54E-13 4,50E-04 3.30E-04 1.2-8 4.14E+01 2.59E+06 AM241R.06E+0eport2 1 o 32 6.19E+06 1.28E05 2.07E-12 3.00E-05 10E-13 4.50E-04 3.30E.04 120E-04 4 2.59E+06 2.73E-02 PU240 3.65E+02 10%- 32 6.19E+06 1.28E 2.07E-1 2 3.00E-05 7.25E-14 4.5-0E-04

-3.30E-04 1.16E-04 4.29E+0"--"-"5 2.59E+06 1.20E-02'-'

PU239 1.99E+02 10%/ 32 6.19E+06 1.28E-05 2.07E-1 2 3.0012-05 3.9-5E-14 4.50E-04 3.30E-04 1. 1 6E-04 -- 4.29E+05 -2.59E+06 6.53E-03--

SA 13-7.... M -7.38E+04

_10% 32 6.19E+06 1.58E-05 2.07E-12 3.00E-05 1.47E-11 T 4.50E-04 3.30E-04 0.00E+00 0,00E+00"'

2.59E+060O.00E+00 RH10_.6_61.44E+04 10% 32 6,19E+06 1,28E-05 2.07E-12 3.00E-05 2,86E-12 4.60E-04 3.30E-04 0.00E+00 OO0E+00 2.59E+06 0,0012+00"-

CE144..._

8.14E+03 10%/ 32 16.19E+06 1.28E-05 2.0_7E-12 3.00OE-05 1,62E-12 4.50E-04 3.30E-04 5.84E-08 --2.-16E+02 2i.59E+06

-.4E-04---'

TR 14-4 8.i14E+03

_10%/ 32 6.19E+06 1.28E-05 "2.07E-12

-3.00E-05 1.62E-12 4.50E-04 I3.30E-04 1.7-1 4.33E-02 2.59E+06 2.69E-08-'"'

TE125.__.M 4.86E+0____21 10% 32 6,19E+061 1.28E-05 I2.07E-12 3.00E-05 9.665-14 4.50E-04 I3,30E-04 1.62E-09m 5.62E+00 2.59E+06 2.9-0SR Report HI-2002513 Page A-38 Sub-Gonad MPC-32 Accident Conditions Effective Dose Eulvalent From Submersion Lac. Rate at Fraction Release Inventory

% remain MPC Vol Upstream Released Release Rate X/Q DCF DCF Occ Time DDE Nuclide (Ci/Assy) airborne No. Assy (cm3) (cm3/s) per sec Fraction (Ci/sec) (sec/m3) (Sv/Bq) (mRem/uCi) (sec (mRem) Gases H 3 2.97E+02 100% 32 6.19E+06 1.28E-05 2.07E-12 0.30 5.90E-09 4.50E-04 O.OOE+ 0 00 2.59E+06 0.OOE+00 1129 2.64E-02 100% 32 6.19E+06 1.28E-05 2.07E-12 0.30 5.24E-13 4.50E-04 4.83E-16 1.79E-06 2.59E+06 1.09E-09 KR 85 4.82E+03 100% 32 6.192+06 1.28E-05 2.07E-12 0,30 9.57E-08 4.50E-04 1.17E-16 4.33E-07 2.59E+06 4.83E-05 Crud CO 60 2.18E+01 100% 32 6.19E+06 1.28E-05 2.07E-12 1.00 1.44E-09 4.50E-04 1.23E-13 4.55E-04 2.59E+06 7.64E-04 Volatiles SR 90 5.10E+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2OOE-04 6.752-10 4.50E-04 7.78E-18 2.882-08 2.592+06 2.262-08 RU 1.442+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.OOE-04 1.91E-10 4.50E-04 0.OOE+00 0.00E+00 2.59E+06 0.OOE+00 CS134 3.012+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.00E-04 3.982-10 4.50E-04 7.40E-14 2.74E-04 2.59E+06 1.27E-04 CS137 7.82E+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.00E-04 .1.03E-09 4.502-04 7.96E-18 2.952-08 2.59E+06 3.55E-08 Fines PU241 7.75E+04 10% 32 6.19E+06 1.28B-05 2.07E-12 3.00E-05 1.54j-11 4.502-04 7.19E-20 2.66E-10 2.59E+06 4.77E-12 Y 90 5.10E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.002-05 1.01E-11 4.50E-04 1.89E-16 6.99E-07 2.59E+06 8.25E-09 PM147 2.57E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 5.10E-12 4.50E-04 7.48E-19 2.772-09 2.59E+06 1.65E-11 EU154 4.51E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 8.952-13 4.502-04 6.002-14 2.222-04 2.59E+06 2.32E-07 CM244 5.57E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.OOE-05 1.11E-12 4.50E-04 6.90E-18 2.552-08 2.59E+06 3.29E-11 PU238 3.76E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 7.46E-13 4.50E-04 6.56E-18 2.43E-08 2.59E+06 2.11E-11 SB125 1.99E+03 10% 32 6.19E+06 1.28E-05 2.072-12 3.00E-05 3.952-13 4.50E-04 1.98E-14 7.33E-05 2.59E+06 3.37E-08 EU155 1.28E+03 10% 32 6.19E+06 1.28E-05 2.072-12 3.002-05 2.542-13 4.502-04 2.492-15 9.21E-06 2.59E+06 2.73E-09 AM241 8.06E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.60E-13 4.50E-04 8.58E-16 3.17E-06 2.59E+06 5.92E-10 PU240 3.65E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.o00-05 7.25E-14 4.50E-04 6.36E-18 2.35E-08 2.59E+06 1.99E-12 PU239 1.992+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 3.95E-14 4.50E-04 4.84E-18 1.792-08 2.59E+06 8.25E-13 ,BA137M 7.38+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 .1.47E-11 4.50E-04 2.82E-14 1.04E-04 2.59E+06 1.78E-06 RHI06 1.44E+04 10% 32 6.19E+06 1.282-05 2.072-12 3.002-05 2.862-12 4.502-04 1.012-14 3.742-05 2.59E+06 1.25E-07 CE144 8.14E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.62E-12 4.50E-04 8.53E-16 3.16E-06 2.59E+06 5.94E-09 PR144 8.14E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 1.00E+00 5.39E-08 4.502-4 1.902-15 7.0321-06 4.410 E4 TE125M 4.86E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 2.00E+00 6.44E-09 4.50E-04 56962-16 2.212-06 2.59E+06 1.65E-05 Total 1.40 A- 3 9 Report HI-2002513 Page A-39

((Sub-breast MPC-32 Accident Conditions L... Rate at Fraction Release Inventory

% remain MPC Vol Upstream Released Release Rate X/Q DCF DCF Occ Time DDE Nuclide (Ci/Assy) airborne No. Assy (cm3) (cm3/s) per sec Fraction (Ci/sec) (sec/m3) (Sv/Bq) (mRem/uCi) (sea) (mRer) Gases H 3 2.97E+02 100% 32 6.19E+06 1.28E-05 2.07E-12 0.30 5.90E-09 4.50E-04 0.00E+00 0.00E+00 2.59E+06 0.00E+00 1129 2.64E-02 100% 32 6.19E+06 1.28E-05 2.07E-12 0.30 5.24E-13 4.50E-04 6.66E-16 2.46E-06 2.59E+06 1.51E-09 KR 85 4.82E+03 100% 32 6.19E+06 1.28E-05 2.07E-12 0.30 9.57E-08 4.50E-04 1.34E-16 4.96E-07 2.59E+06 5.53E-05 Crud CO 60 2.18E+01 100% 32 6.19E+06 1.28E-05 2.07E-12 1.00 1.44E-09 4.50E-04 1.39E-13 5.14E-04 2.59E+06 8.63E-04 Volatiles SR 90 5.10E+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.OOE-04 6.75E-10 4.50E-04 9.49E-18 3.51E-08 2.59E+06 2.76E-08 RU106 1.44E+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.00E-04 1.9112-10 4.50E-04 0.00E+00 0.00E+00 2.59E+06 0.00E+00 CS134 3.01E+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.OOE-04 3.98E-10 4.50E-04 8.43E-14 3.122-04 2.59E+06 1.45E-04 CS137 7.82E+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.002-04 1.03E-09 4.50E-04 9.67E-18 3.58E-08 2.59E+06 4.32E-08 Fines PU241 7.75E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.54E-11 4.50E-04 8.67E-20 3.21E-10 2.59E+06 5.75E-12 Y 90 5.10E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.01E-11 4.50E-04 2.20E-16 8.14E-07 2.59E+06 9.61 E-09 PM147 2.57E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 5.10E-12 4.50E-04 9.56E-19 3.54E-09 2.59E+06 2.10E-11 EU154 4.51E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 8.95E-13 4.50E-04 6.81E-14 2.52E-04 2.59E+06 2.63E-07 CM244 5.572+03 10% 32 6.19E+06 1.28E-05 2.072-12 3.00E-05 1.11E-12 4.50E-04 1.33E-17 4.92E-08 2.59E+06 6.34E-11 PU238 3.76E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 7.46E-13 4.50E-04 1.27E-17 4.70E-08 2.59E+06 4.09E-11 SB125 1.99E+03 10% 32 6.192+06 1.28E-05 2.07E-12 3.OOE-05 3.95E-13 4.50E-04 2.27E-14 8.40E-05 2.59E+06 3.87E-08 EU155 1.28E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.OOE-05 2.54E-13 4.50E-04 2.95E-15 1.09E-05 2.59E+06 3.23E-09 AM241 8.06E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.60E-13 4.50E-04 1.07E-15 3.96E-06 2.59E+06 7.38E-10 PU240 3.65E+02 10% 32 6.19E+06 1.28E-05 2.072-12 3.00E-05 7.25E-14 4.50E-04 1.23E-17 4.55E-08 2.59E+06 3.84E-12 PU239 1.99E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 3.95E-14 4.50E-04 7.55E-18 2.79E-08 2.592+06 1.29E-12 BA137M 7.38E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.47E-11 4.50E-04 3.22E-14 1.19E-04 2.59E+06 2.03E-06 RH106 1.44E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 2.86E-12 4.50E-04 1.16E-14 4.29E-05 2.59E+06 1.43E-07 CE144 8.14E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.62E-12 4.50E-04 1.012-15 3.74E-06 2.59E+06 7.04E-09 PR144 8.14E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 1.00E+00 5.39E-08 4.50E-04 2.15E-15 7.96E-06 2.59E+06 4.99E-04 TE125M 4.86E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 2.00E+00 6.44E-09 4.50E-04 8.48E-16 3.14E-06 2.59E+06 2.35E-05 Total 1.592-03 Report HI-2002513 Page A-40 ,.

Sub-Lung MPC-32 Accident Conditions EIffective Dose Euvalent F~rom Submersion Ler.. Rate at Fraction Release Inventory

% remain MPC Vol Upstream Released Release Rate X/Q DCF DCF Occ Time DIDE Nuclid. e airborne No. Ass__. y (cm3_____._/)

per sec Fraction (CGasec)ýs ct3) (S/q (mRem/uCi)_. (sec) H 3 2.97E+02 100% 32 6.19E+06 1.28E-05 2.07E-12 0.30 5.90E-09 4-.50E-04 2.75E-18 1.02E-08 -2.59E+06

-6.99E-08 1129 2.64E-02 100% 32 6.19E+06 1.28E-05 2.07E-12 0.30 5.24E-13 4.50E-04 2.14E-16 7.92E-07 2.59E+06 4.84-1 KýR _8____5 -4.82E+03 100% 32 6E.1 9E+06 1ý.28E-05 2.07E-12 0.30- 9.57E-08 4.50E-04 1.14E-16 4.22E-07 245970E-05 S~Crud OE 60 2,8+1 10 2 61E+0 6 1.28E-05 2.07E-12 1.00 1.44E-09 4.50E-04 1.24-5 4.990 25E +0 6 -7.70E-04 S~Volatiles SR 90 5.10E+04 100% 32 6.1 9E+06 1.28E-05 2.07E-12 2.0-4 67E1 .0-4 6.44OE-18 2.38E-08 2.59E+06 1.87E-08 RU5106 1.-44E+04 100%-/ 3-2 6.19E+06 1i.28E-05 2.0-7E-12 2-i.00E-04 1.91E-10 -4.50E-0400000

.0+0 259+6 .0E0 CS34 3.1E04 10% 32 6.9E061.8-0 207-1 20E-04 3.98E-10 4.50E-04 7.37E-14 2.73E-04 2.59E+06 1.27E-04 CS137 7.82E+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.00E-04 1.03E-09 4.50E-04 6.68E-18 2.47E-08 2.-59E+06

-2.98E-08 Fines PU241 7.75E+04 10% 32 6.19E+06 1.28E-05 2j.0O7E-12 3.00E-05 1.54E-11I 4.50E-04 6.48E-20 2.40E-10 2.159E+06 4.30E-12 Y79-0 5.10E+04 _10%. 32 6.19E+06 1.28E-05 2ý.07E-12 3_.00OE-05 1._01E-11 4.ý50OE-04 1.77E-16 65.5512-07 2.59E+06 7.73E-09

-2.57E+04

_10% 3-2 -6.19E+06 1.28E-05 2.07E-12 3ý.00E-05

7. 10 E-12 45E0 .5-9 20E0 .9+6 12E1 EU154 I4.51 E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00OE-05 8.95E-13 4.5017-04 5.99E-14 2.22E-04 2.59E+06" 2.3 1E-07 UM 2. 4_. 557E+03 _10% 32 6.1l 9E+06 1.2-8E-05

-2.-07E-12

-3.00E-05

-1.11E-12 2.62E-2ý.59E+06 3,38E-12 PU23..__8 3.76E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 7.46E-1-3 4.50E.04 1.06E-18 3.92E-09 2.59E+06 3.41 E-1 2 SB125 1.99E+03!

10% 32 6.19E+06 1.8-E0 2.07E-12 3.00E-05 3.95E-13 4._50E-04 1.95E-14 7.22E-05 2.59E+06 3.32E-08 EU155 1.28E+03 10% 32 6.19E+06 1.28E-05 2,07E-12 3.00E-05 2.54E-13 4.50E-04 2.22E-15 8.21 E-06 2.59E+06 2.43E-09 AM24 80E+02 10 32 6.19E+06 1.28-0 2.7E1H2- 3.00OE-0 1.ý60E- 13 4,50E.04 6.74E-16 2.49E-06 2.59E+06 4.65E-1 0 P'U 24-0 3i.65E+02 10 2 6.19E+06 1,28E-05 2.07E- 12 3,00E-05 7.25E-14 4.50E-04 1.09E-18 4.03E-09 2.59E+06 3.41E-13 PU239 1.99E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 3.95E-14 4.50E-04 2.65E-18 9__._81E-09 2.59E+06 4.51 E- 13 BA137M 7.38E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 30E0 1.7-145-4 280-4 1.04E-04 2.59E+06 1,77E-06 R H 1 0 6 1 4 4 E + 0 4 1 0 % 3 2 .1 9 E + 0 1 .2 8 E -5 2 .0 7 -1 2 3 .0 0 E -0 5 21 .4 7 E -1 1 -4.5 0 E --0 4 12 .80 1 E -1 4 3 7 E 0 .9 + 6 1 2 E 0 CEH1044 8144E+04 109/ 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 2.862E-12 4.50E-04 1.01E-14 3.74E-05 2.59E+06 1.36E-07 TE125M .86E+02 10% 32 6-.19E+06 1T.28E-05 2i.0_7E-12 20E0 .4-945E0 .3-6 82E0 CE44.14E.035.6 61E-09 Tot .1.9E-03 Report HI-2002513 P~ne A-41 (Sub-R Marrow Inventory (CI/Assy) 2.97E+02 2.64E-02 4.82E+03 2.18E+01 5.10E+04 1.44E+04 3.01E+04 7.82E+04% remain airborne 100% 100% 100%No. Assy 32 32 32'MPC Vol (cm3) 6.19E+06 6.19E+06 6.19E+06 L..= Rate a' Upstream (cm3ls) 1.28E-05 1.28E-05 1.28E-05 MPC-32 Accident Conditions Efetv DoeEuvletFo umersion Fraction Released per sec 2.07E-12 2.07E-12 2.07E-12_ _ _ I I 100% 32 f 6.19E+06 1.28E-05 2.07E-12 100% 100% 100% 100%L .1 ____________

I I I 32 32 32 32 6.19E+06 6.19E+06 6.19E+06 6.192+06 1.282-05 1.28E-05 1.28E-05 1.2/F-(AR 2.07E-12 2.07E-12 2.07E-12 128E-05 2 07E-12 . . -1 6.19E+06 Release Fraction 0.30 0.30 0.30 1.00 2.002-04 2.002-04 DII~~~~~~A.I~

F~~~~.t~ .I ~ ~ ines 32 Ii..... .. ..... 2flI Avv !t fl7 ..RIaF+nR I 1 I 2.07E-12 PM147 2.57E+04 10% 32 6.19E+06 1.28E-05 EU154 4.51E+03 10% 32 6.19E+06 1,28E-05 32 619+06 12Ei05s 3.ooE-05 Release Rate .(Cl/sec) Gases 5.90E-09 5.24E-13 9.57E-08 Crud 1.44E-09 Volatiles 6.75E-10 1.9112-10 3.98E-10 X/Q (sec/m3) 4.50E-04 4.502-04 4.50E-04 4.50E-04 4.50E-04 4.50E-04 4.50E-04 4.502-04 atvrnn I I DCF * (Sv/Bq) 0.00E+00 1.64E-16 1.09E-16 1.23E-13 5.44E-18 0.00E+00 7.19E-14 1 .OI:;-~d OO U'-U 7. 19_2I-14 }1.3-0 .50E,-04 5. IU-'11 1.54E-1 1 5.10212 4.OE-0 DCF (rnRem/uCl) 0.002+00 6.07E-07 4.03E-07 4.55E-04 2.01E-08 0.00E+00 2.66E-04 2.662-04 2.11E-08 2.08E-10 5.99E-07 1.6512-09 1 .65E-09 Occ Time (sec) 2.59E+06 2.59E+06 2.59E+06 2.59E+06 2.59E+06 2.59E+06 2.5912+06 2.59E+06 2.59E+06 2.59E+06 2.59E+06 2.59E+06 9.81 2-12 4.50E-04 4.50E-04 4.50E-04 5.63E-20 1.62E-16 4.46E-19 DDE (mRem) 0.00E+00 3.71 E-10 4.502-05 7.64E-04 1.58E-08 0.00E+00 1.24E-04 2.54E-08 3.74E-12 7.07E-09 9.81 E-1 2 ,207E. .30 89..5. ---u04 o.8 E-14. 2.17E-04 2.59E+06 2.27E-07 CM244 5.57E+03 10% 32 6.19E+06 1.28E-05 2.072-12 3.00E-05 1.11E-12 4.50E-04 1.46E-18 5.402-09 2.59E+06 6.96E-12 PU238 3.76E+03 10% 32 6.19E+06 1.282-05 2.07E-12 3.00E-05 7.46E-13 4.50E-04 1.68E-18 6.22E-09 2.59E+06 5.412-12 SB125 1.99E+03 10% 32 6.19E+06 1.28E-05 2.072-12 3.00E-05 3.95E-13 4.50E-04 1.87E-14 6.92E-05 2.59E+06 3.18E-08 EU155 1.28E+03 10% 32 6.19E+06 1.28E-05 2,07E-12 3.00E-05 2.54E-13 4.50E-04 1.85E-15 6.85E-06 2.59E+06 2.032-09 AM241 8.06E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.60E-13 4.502-04 5.21E-16 1.93E-06 2.59E+06 3.59E-10 PU240 3.65E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 7.25E-14 4.50E-04 1.65E-18 6.11E-09 2.59E+06 5.16E-13 PU239 1.99E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.002-05 3.95E-14 4.50E-04 2.67E-18 9.88E-09 2.59E+06 4.552-13 BA137M 7.38E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.002-05 1.47E-11 4.50E-04 2.73E-14 1.01E-04 2.59E+06 1.72E-06 RH106 1.44E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 2.86E-12 4.50E-04 9.75E-15 3.61E-05 2.59E+06 1.20E-07 CE144 8.14E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.62E-12 4.50E-04 6.68E-16 2.47E-06 2.59E+06 4.65E-09 PR144 8.14E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 1.00E+00 5.39E-08 4.50E-04 1.87E-15 6.92E-06 2.59E+06 4.34E-04 TE125M 4.86E+02 10% 32 6.19E+06 1.282-05 2.07b-12 2.00E+00 6.44E-09 4.50E-04 1.86E-16 6.88E-07 2.59E+06 5.16E-06 Total 1.372-03 Report HI-2002513 Page A-42 Nýuclide H 3 1129 KR 85 uu 6u SR 9O RU106 CS134 CS137 PU, I 7.75E04 U0% I2 Y uIU5-.1-O+04 10%rtrtg," ed rig: 0 5.10E-12-I11/.Itlr*. IJI II X .....619E+06 1 9AE 5 F2,-1 3.0012-0 07E 3 5 101E Sub-B Surface MPC-32 Accident Conditions Effective Dose Equivalent From Submersion L.,, Rate at Fraction Release Inventory

% remain MPC Vol Upstream Released Release Rate X/Q DCF DCF Occ Time DDE Nuclide (Ci/Assy) airborne No. Assy (cm3) cm3/s) parsec Fraction (Cl/sec (sec/m3) Sv/Bq) (mRem/uCi) sec (mRem) Gases HI 3 2.97E+02 100% 32 6.19E+06 1.28E-05 2.07E-12 0.30 5.90E-09 4.50E-04 0.00E+00 0.00E+00 2.59E+06 0.0OE+00 1129 2.64E-02 100% 32 6.19E+06 1.28E-05 2.07E-12 0.30 5.24E-13 4.50E-04 1.10E-15 4.07E-06 2.59E+06 2.49E-09 KR 8. 5 4.82E+03 100% 32 6.19E+06 1.28E-05 2.07E-12 0.30 9.57E-08 4.50E.04 2.202-16 8.14E-07 2.59E+06 9.08E-05 S~Crud CO 60 2.18E+01 100% 32 6.19E+06 1.28E-05 2.07E-12 1,00 1.44E-09 4.502-04 1.782-13 6.59E-04 2.59E+06 1.11E-03 Vo-latiles SR190 8.142+03 100% 32 6.19+06 1.28E-05 2-.0072-12 E-04 000 75E-10 4.50E-04 2.28E-17 8.44E-08 2.59E+06 6.64E-08 RU 10-6 1.44E+04 100% 32 6.169E+06 1.28E-05 2ý.07E-12 2.0-04 1.91 -10450E-04 0-d.00E+00 0.00-+-00 2.-59-E+06

-.00E+00 ES134 3.01E+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.00E-04 3.98E-10 4.50E-04 1.20E-13 4.44E-04 2.59E+06 2.06E-04 CS137 7.8-2E+04 10-0%/ 32 12-0 2.712 2.00E-04 1,03E-09 4.50E-04 2.9-7 .4-0 259+6 12-7 7.5E+4 1% 3 619E+06 128E-05 2.07E-12 3.0-5 15E1 .0 -04 2.9E-19 8.47E-08 2.69E+06 1.02E-1 Y 90 5.10E+04 10% 32 6~~~-i.19E+06 12-0 2.7 -12 .00E-05 1.1- 1 4F50E-s 4.4-6 16-6 25E0 .945E-08 -F 2414 -.7 257E +0 4 10% 3-2 .1+0 128E-05 217E12.541E-121 4.50E-04 2.19E-19 8.107E-109

-- 2.59E+06 48E1 S9 41TE+0o 10% 32 t38E-05 207E Rep+ ort F19E+06 1T28 -F 2 3.00E-05 1.11E-12 4.50E-04 84 1.6E-06 2.59E+06 1021E-08 PM1472.576E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 5.10E-12 4-50E-04 2.18E-18 8.07E-09 2.59E+06-4.80E-1 1 SBU12_4__..

5 19E+03 -10% 32 6.9+61.28E-05 2.07E-12 3.00E-05 8.95E-13450-4 35-4 1.104 29+0- .1-8 .8+3 10 2 61E0612E0

.0E1 ,0 -0 2,4- 1 4.5-0E-04 89.43E-14 3.49E-04 2.59E+06 3864E-07 CM244 5.57E+03 10% 32 6.19E+06 I1.28E-05 2.07E-12 3.00E-05 1.11E-12 4.50E--04 2i.87E-15 3.26E-08 2.59E+06 42E1 P-ýU240 3.765E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 7.25-E-14 4.-50E-04 9.6-1;30E-j8 3.44E-2-.-59E+06

-2.99E-121 PUB 239 1.99E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 3.-95E-14

-4,50E-04 93.53E-14 13150E-04 2.59E+06 6.01E-08 EU13755._M 1.28E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 2,47E-13 4.50E-04 8. WE -15 2.99E-05 2.59E+06 8.86E-09 RHM-210.___6614E+04

--O0%/ 3-2 6. 1 9E+06 1i.28E-05

-2.07E-12 3.00E-05 1.60E-13 4,50E-04 21.872E -15 1.06E-05 -2.59E+06 1.98E-09 PU2404 8.65E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3,00E-05 7.625E-14 4.50E-04 9264E-18 9.43E-06-8 2.59E+06 2.89E-12 PR14423 8ý.14E+03 1% 32 6.19E+06 1.28E-05 2.07E-12 1.0E+00 3.395E-14 4.50E-04 26.997E-18 3.50E-08 2.59E+06 1619E-12 TE1M 44o8.1E+03 10% 32 6. 19E+06 1.28E-05 2.07E-12 2.00E+00 1624E-12 4.50E-04 2.49E-15 9.21 E-06 2.59E+06 31.74E-08 Report HI1-2002513 Pwie A-43

((i Sub-Thyroid MPC-32 Accident Conditions

,.UIValenI&,FIUrTmouumersion L 8= Rate at Fraction Release Inventory

% remain MPC Vol Upstream Released Release Rate X/Q DCF DCF Occ Time DDE Nuclide (CI/Assy) airborne No. Assy (cm3) (cm3/s) per sec Fraction (Ci/sec) (sec/m3) (Sv/Bq) mRem/uCi) (sec) (mRem) Gases H 3 2.97E+02 100% 32 6.192+06 1.28E-05 2.07E-12 0.30 5.90E-09 4.50E-04 0.00E+00 0.00E+00 2.59E+06 0.002+00 1129 2.64E-02 100% 32 6.19E+06 1.28E-05 2.072-12 0.30 5.24E-13 4.50E-04 3.86E-16 1.43E-06 2.59E+06 8.72E-10 KR 85 4.82E+03 100% 32 6.19E+06 1.28E-05 2.07E-12 0.30 9.57E-08 4.50E-04 1.18E-16 4.37E-07 2.59E+06 4.87E-05 Crud CO 60 2.18E+01 100% 32 6.19E+06 1.28E-05 2.07E-12 1.00 1.44E-09 4.502-04 1.27E-13 4.70E-04 2.59E+06 7.89E-04 I Volatiles SR 90 5.10E+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.00E-04 6.75E-10 4.502-04 7.33E-18 2.71E-08 2.59E+06 2.132-08 RU106 1.44E+04 100% 32 6.192+06 1.28E-05 2.07E-12 2.002-04 1.91E-10 4.50E-04 0.00E+00 0.OOE+00 2.59E+06 0.00E+00 CS134 3.01E+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.00E-04 3.98E-10 4.50E-04 7.57E-14 2.80E-04 2.59E+06 1.30E-04 CS137 7.82E+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.0QE-04 1.03E-09 4.50E-04 7.55E-18 2.79E-08 2.59E+06 3.37E-08 Fines PU241 7.75E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.54E-11 4.50E-04 6.98E-20 2.58E-10 2.59E+06 4.63E-12 Y 90 5.10E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.0012-05 1.012-11 4.50E-04 1.87E-16 6.92E-07 2.592+06 8.16E-09 PM147 2.57E+04 10% 32 6.19E+06 1.28E-05 2.072-12 3.00E-05 5.10E-12 4.50E-04 6.75E-19 2.50E-09 2.5911+06 1.49E-11 EU154 4.51E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.002-05 8.95E-13 4.50E-04 6.152-14 2.28E-04 2.592+06 2.37E-07 CM244 5.57E+03 10% 32 6.19E+06 1.282-05 2.072-12 3.002-05 1.11E-12 4.50E-04 4.19E-18 1.55E-08 2.591+06 2.00E-11 PU238 3.76E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 7.46E-13 4.50E-04 4.01E-18 1.48E-08 2.59E+06 1.292-11 SB125 1.99E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.002-05 3.95E-13 4.50E-04 2.01E-14 7.44E-05 2.59E+06 3.42E-08 EU155 1.28E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 2.54E-13 4.50E-04 2.41E-15 8.92E-06 2.59E+06 2.64E-09 AM241 8.06E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.60E-13 4.50E-04 7.83E-16 2.902-06 2.592+06 5.40E-10 PU240 3.65E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 7.25E-14 4.50E-04 3.92E-18 1.45E-08 2.59E+06 1.22E-12 PU239 1.99E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 3.95E-14 4.50E-04 3.88E-18 1.44E-08 2.59E+06 6.61E-13 BA137M 7.38E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.47E-11 4.50E-04 2.88E-14 1.07E-04 2.59E+06 1.82E-06 RHI06 1.44E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 2.86E-12 4.502-04 1.03E-14 3.81E-05 2.592+06 1.27E-07 CE144 8.142+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.62E-12 4.50E-04 8.33E-16 3.08E-06 2.59E+06 5.80E-09 PR144 8.14E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 1.00E+00 5.39E-08 4.50E-04 1.95E-15 7.9r2-06 2.59E+06 4.53E-04 TE125M 4.86E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 2.00E+00 6.44E-09 4.50E-04 4.64E-16 1.72E-06 2.59E+06 1.292-05 IIITotal 1.442-03 Report HI-2002513 Page A-44 Sub-Effective MPC-32 Accident Conditions

-Effective Dose u aenFrm Submersion L.,, Rate at Fraction Release Inventory

% remain MPC Vol Upstream Released Release Rate X/Q DCF DCF Occ Time DDE Nuclide (Ci/Assy) airborne No. Assy (cm3) (cm3/s) per sec Fraction (CI/sec) (sec/m3) (Sv/Bq) (mRemuCi) (sec) (mRem) Gases H 3 2.97E+02 100% 32 6.19E+06 1.28E-05 207E-12 0.30 5.90E-09 4.50E-04 3.31E-19 1.22E-09 2.59E+06 8.42E-09 1129 2.64E-02 100% 32 6.19E+06 1.28E-05 2.07E-12 0.30 5.24E-13 4.50E-04 3.80E-16 1.41E-06 2.59E+06 8.59E-10 KR 85 4.82E+03 100% 32 6.19E+06 1.282-05 2.07E-12 6 0.30 9.58E-08 4.50E-04 1.19E-16 4.40E-07 2.59E+06 4.91E-05 Crud CO 60 2.18E+01 100% 32 6.19E+06 1.28E-05 2.07E-12 1.00 1.44E-09 4.50E-04 1.26E-13 4.66E-04 2.59E+06 7.83E-04 8 +128 2-05 2.0_ 7 2- 1 -0 5 Volatiles PU4R 9. 0 5 E+04 100% 32 6.19E+06 1.282-05 2.076-12 3.002-05 7.75E-10 4.50E-04 75 2-18 2.762-08 2.592+06 1.492-12 RU106 1.44E+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.00E-04 3.952-14 4.502-04 4.242+18 1.572-08 2.592+06 7.20E+00 CA134 3.013E+04 100% 32 6.19E+06 1.28E-05 2.07E-12 3.002-05 1.472-11 4.50E-04 2.582-14 1.072-04 2.59E+06 1.30E-04 CS 1T.82+04 100% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-04 2.04E-09 4.50E-04 1.74E-18 2.86E-08 2.59E+06 3.46E-08 Fines -T-7.7E0 10% 3-2 6.1 9E+06 1.8- 0 2.7,2 30E0 .4- 450E-04 7.25E-20 2.68E-10 2-.-59E+06

-4,81E-12 C4 90 8 512E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.01E-11 4.50E-04 1.90E-16 7.03E-07 2.59E+06 8.30E-09 PM147 8.142+03 10% 32 6.192+06 1.28E-05 2.07E-12 3.00E-05 5.11E-12 4.50E-04 6.93E-19 2.56E-09 2.59E+06 1.53E-11 EU154 4.51 E+03 10% 32 6.19E+06 1.28E i-05 207E-12 3.00E-05 8.96E-13 450OE-04 65.14E-14 22E0 .9+6 23E0 C M 44__ _ _ 5 5 7 + 3 0 3 6 1 E + 6 1 .8 -0 5 2 0 E 1 3 .E 0 5 .1 -2 4 5 E 0 4 4 9 -81 82,2 E -0 4 2 .5 9 E + 0 6 2 .3 7 E -0 7 M24454.876E+03 10% 32 6.19E+06 1.28E-05 2.072-12 2.002+05 .42E-10 4.50E-04 4.532-16 1.82-06 2.592+06 1.262-05 SB2 199+3 10 2 6.9+6 .8 -05 .0-7E-12 3.00E-05 39E1 4.0-4.2902E-14 8 7.82E-08 2.59E+06 23.4E-108 .8E0 !0 2 9E+06 2.07E-12 3.00E-05 2.54E-13 4'ý.50E-04 24.88E-18 1.81E-08 2,59E+06 1.573E-109 AM 24518.069E+02 0 32 61+0 1.E-5 20E1 3.0-5 16-34.E04 88-1 30E -06 2.59E+06 565-PU24 36E0 10 32 619 E+ 06 1.28E-05 2.07E-12 3.00E-05 3.95E-13 4.50E-04 2.02E-14 1-.47E-05 2.910 .44E-08 Tota 1.3- 2.593 PU39 .9E0 102 6E+03+0 1.8 -05 2.07M-12 3.00E-05 2.954E-13 4-.-50E-04 42.249E-15 9.57E-06 2.9E0 273E0 BA3____M24 7.38E+04 10% 32 6.19E+06 1.28E-05 2.7 -2 3.00E-5 1.60E-13 4.50E-04 8.18E-14 3.03E-06 2.5 E -0 5.65E-10 PU240 361.44+02 10% 32 6,19E+06 1.28E-05 2.07E-12 3.00E-05 7258E-14 4.50E-04 4.75E-18 1.76E-08 25 9E+0 1.49E.07 PU39144 .99E+02 10%- 32 6.19E+06 1,28E-05 2.07E-12 3.00E-05 3.95E-14 4.50E-04 4.24E-18 1.57E-08 2,59E+06 7.23E-13 PR14 37 .8.E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 1.00E+00 1.47E-108 4.50E-04 2.88E-14 1,07E-04 2.59E+06 1.82E-06 TE125M 4.86E+02 10%- 32 6.19E+06 1.28E-05 2.07E-12 2.00E+00 6.44E-09 4.50E-04 4,53E-16 1.68E-06 2.59E+06 1.26E-05 Toa 1.43-E-03 Report HI-2002513 Pap A-45 ( (

Sub-Skin MPC-32 Accident Conditions Effective Dose Equivalent From Submersion Lacc Rate at Fraction Release Inventory

% remain MPC Vol Upstream Released Release Rate X/Q DCF DCF Occ Time SDE Nuclide (Ci/Assy) airborne No. Assy (cm3) (cm3/s) per sec Fraction (Ci/sec) seclm3 (Sv/Bq) (mRem/uCi) (sec) (mRem) Gases H 3 2.97E+02 100% 32 6.19E+06 1.28E-05 2.07E-12 0.30 5.90E-09 4.50E-04 0.00E+00 0.OOE+00 2.59E+06 0.00E+00 1129 2.64E-02 100% 32 6.19E+06 1.28E-05 2.07E-12 0.30 5.24E-13 4.50E-04 1.10E-15 4.07E-06 2.59E+06 2.49E-09 KR 85 4.82E+03 100% 32 6.19E+06 1.28E-05 2.07E-12 0.30 9.57E-08 4.50E-04 1.32E-14 4.88E-05 2.59E+06 5.45E-03 Crud CO 60 2.18E+01 100% 32 6.19E+06 1.28E-05 2.07E-12 1.00 1.44E-09 4.50E-04 1.45E-13 5.37E-04 2.59E+06 9.01E-04 Volatiles -F8E0 5R9 .10E+04 10 32 61.0612-0 20712 2.00E-04 6.75E-10 4.50E-04 9.20E-15 3.40E-05 259+6 .8-0 R161.44E+04 100% 32- 6.19E+06 1.2811-05 2.07E-12 2,00E-04 1.91 E-1 0 4,50E-04 0.00E+00 O.00E+O0 2.59E+06 0.00E+00 CS3 3.01 E+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.00E-04 3Y.9_8E-10 4.50E-04 9.45E-14 3.,90E.04 2-i.59E+06-1.62E-04 TE1M7 4.82E+04 100% 32 6.19E+06 1.28E-05 2.07E-12 2.00E-04 1.03E-09 4.50E-04 8.63E-15 3.19E-05 2.59E+06 3.85E-05 Fines P217 75E+04 10% 32 6.1911+06 1.28E-05 2.07E-12 3,00E-05 1.54E-11I 4.50E-04 1.17E-19 4.33E-10 2.59E+06 7.76E-12 Y0 5,10E+04 10%_ 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.01E-11 4.50E-04 6.24E-14 2.31 E-04 2.59E+06 2.72E-06 P172.57E+04 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 5.10E-12 4.0E0 8.11E-16 3.0012-06 2.59E+06 1.78E-08 E14.14511E+w03 10% 32 6.19E+06 1.28E-05 2,07E-12 3.00E-05 8.95E-13 4.0E0 8.29E-14 3.07E-04 2.59E+06 3.20E-07 C245.57E+031 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05T 1.1-1E- 12 4.50OE-04 3.91E-17 1.45-E-07 2.59E+06 1.86E-10 PU3 .76E-+03 10% 32 6.1911+06 1.28E-05 2.07E-12 3.00E-05 7.46E-13 4.50E-04 4.09E-17 1.51E-07 2.59E+06 1.32E-10 SB125 1 1.99E+03 10% 32 6.19E+06 1P28E-05 2.07E-12 3.0E-405 3.95E-13 4.501-04 2.65E-14 9.81E-05 2.59E+6 4.51E-08 EU155 1.28E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 2.54E-13 4.50E-04 3.39E-15 1.25E-05 2.59E+06 3.71 E-09 AM241 8.06E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.60E-13 4..50E-04_

1.28E-15 4.74E-06 2.59E+06 8.83E-10 PU240 3.65E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 7.25E-14 4.50E-04 3.92E-17 1.45E-07 2.59E+06 1.22E-11I PU239 1.99E+02 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.86"-E-1-6.8"---8E-0---6 2.59E+06 3.17E-12 B6A137-M -7.38E+0-4

_10% 32 6,19E+06--

1.28E 2.07E-12---'

3.0012-O"----

1.47---E-1--1

-4.50E-04 3.73E-14 1.T38E-04 2,59E+06 2.36E.06 RH106 1.44E+04 10% 32 6.19E+06 1.28E-05 2.07E=-12 3.00E-05 2.86E-12 4.5012-04 1.09E-13 4.03E-04 2.5915+06 1.34E-06 CE144 8.14E+03 10% 32 6.19E+06 1.28E-05 2.07E-12 3.00E-05 1.62E-12 4.50E-04 2.93E-15 1.08E-05 2,59E+06 2.04E-08 PR144 8,14E+03 10% 32 6.19E+061 1.28E-05 2.07E.12 1.00E+00 5.39E-08 4.50E-04 8,43E-14 3.12E-04 2.59E+06 1.06E-02 TE25 486+0 1% 2 6.19E+06_1 1.28E-05 I2.07E-12 2.00E+00 6.44E-09 4.50-0 1.4-15 7.18E-06 2.59+6 53E0 Report HI-2002513 Page A-46 Appendix B Correspondence with PG&E Diablo Canyon Specification 10012-N-NPG Section 6.2.10 (2 pages) September 28, 200 letter to Eric Lewis from Richard Klimczak (5 pages) October 11, 2000 letter to Eric Lewis from Richard Klimczak (5 pages) October 19, 2000 letter to Eric Lewis from Richard Klimczak (5 pages) January 8, 2001 email to Eric Lewis from Richard Klimczak (3 pages) (Total of 21 pages including this cover page)NO.

B-i B-1 Report No. HIt-20025313 XV.Y,--3 rzfd )LRZJO Lir ObUd suo.g!puoo opoad!q EMN-N-UOU UOI 4!0-dS IVILNDCIUNOO

ýR AZ:]wv-L3lMciMJJ PROPRIETARY

& CONRFDENTAL Spe-cification 10O12-N-NPG Specific Conditions Page 48 of 287)AJF fi'Pq+714t/ýj)

(?P- 0 P-1 r-C Mr. Exic Lewis tIP--1 Froject Maager HMIec Interatioal<Y t Holtec Center 555 Lincoln Drive West Markon, New Jersey 08053 Subject Diablo Canyon ISFSI Project -Diablo Canyon Units I and 2 Transmittal of Analysis Inputs SEP 2 8 2000 NEVV,Ja-6i=s OvacE 4W'yAk Rtferencr.

1) E/nmil from Holtec (E. Lewis) to PG&,E (Patton and Klirncak) of 9/19/00 2t E/mul frrom I-oltec (E. Lewis) to PG&E (Patron and Klimczak) of 9/22/00 Dear Eric Enclosed please find for your.use as design inputs. Please conaRrm receipt ofthe package at your convenicuce via e/mail to riklpges.doin.

If you have any questions regarding this infornarion 1 please conract me 0 805-595-6321.

Sincerely>

Richard L Klimczak Project Engineer Diablo Canyon Used Futel Storage Project ixt3 cc; TLGrebel RDHagler CAFfanz PWHuang BFiPatton EOOlweny DCPP 10+ (w/o) SLO Bl3 (w/o) DCJP 104 (w/o) DCPP 201 (w/o) DCPP 104 (w/o) SLO B9 ('w/o)TPtee sLO B 12 (w/a) LJStricknd SLO Boa (w/o) AFTafoya SLO B10 (w/o) DCPP RMS DCPP 119/1 (w/o) DCPP File No, 72. 1C.5 (w/o) DCPP Chronological Pile

Enclosures:

1) Response to Hoktec Quarions 2) Copy- of E-mail rrferences SFGO 77/24 (w/o 1&2)Se tember 28'ýI-)-f cc_- BR.?hizlip.s Septenber 2g" 2000 ReS..ponse to 9/19/2000 E.-manl: The following X/Q numbers should be used for the normal and off-normal conditions.

Please note these numbers accounted for the frequency the wind actually blown to the sectors.

NW -"3.,44XIO-6 "NW- 2. 7OXI-" N -t.51X10-6 NNE -8.25X10-7 NE -1,62X10-7 ENE -9.18X10-8 I -i.07oxIo-7 ESE -5.20X10-7 SE -1.32XI04 PG&E Refereaces:

1999 a.mmal Radioactive Effluent Release RepDrt dated 4/28/2000 (PG&E lerer DCL-00-06t).

Reup se to 9/22/2000 E-raail: Item 1: Procedure RP1.IDS is anached.

tem 2 44C0 is the correct number to use- This is based on adding numbers from Spec. sections 3.1.1,1, 3.2-3 and 3-2.4 and rounded up to A400. Item 3: The estimated annual dose io the public for rorm=l operation is shown on pages 39, 40 and 41 f the attached DCPP 1999 Armual Radioactive Bffluant Release Report. Item 4; Use 8760 hours0.101 days <br />2.433 hours <br />0.0145 weeks <br />0.00333 months <br /> (Full Occupancy) fur your off-site dose calculation.

PG&rE Reference; NRC's Interim Staff GCdance Memorandum (ISG) No. 13, "Real Individwd" Revision 0.dated May 2000(attached), Item 5: The minimum distance from the nearest cask location on Erie ISFSI pad to the nearest site boundary, exclusion area boundary, or unrestricted area boundary is 1325 ft. PG&E

Reference:

Fig. 6.4--1, pg. 132, Spec. 10012-N-NPG Item 6: The minimumn distance from the nearest cask location on d6e ISFSI pad to a normally occupied locadton within DCPP iS. Location -Make-up water Facili'y Distance -300 ft Additional data: Minmum distance from ihe nearest cask location on the ISFSI pad to a tcLrporary occupied location related to ISFSh Location Cask Transfer Facility Distance 200 ft Location Distance -Security Booth so i, PG&E

Reference:

Drawltgs 496635) 4C4M3S anc Fig. 6.4-1 of the Spec Item 7_The distance and direýtion to the nearest 2ermunent resident are: Distance Direction Occupancy 1.5 miles 2 Persons PG&E References.

ISFSI SAR, Section 2.1.3.1, Information verilied.4..

Kiimczak, Richard Fro.r Eric Lewis fEric Lewfthoite.ComJ Sent: Tuesday. September I1O, 200C 6:47 AM ro: Patton. Bruce Klimczak, Richard Cc Ukris cummrngs@holtec.com; Everett Redmond

Subject:

XJQrinfo request Bruce, Rich Kria Cuminihgs had the following comment and reqnuests your concurrence with the Methodoloqy and needs a annual average XiQ. We will need a response by the 29th of September if possible.

>Sectior 6.2-.0 provides an acceptable atmospheric dispersion factor WX/Q) to >calculare the doses under accident conditions at the minimun site boundary >due to an effluent release. The value of 4.5xlO^-4 sec/ma2 is appropriate

>for this calculation and the accident condition doses wilL be compared to >limits in 10CFR72.]06(h).

However, this value is not appropriate for >calculating the doses under normal and off-normal conditions for c0mparisen

>with IOCFR72.104t(a}..

DCPP will need to provide an anr.ual average X/0 >vialue for use at the controlled area boundary of approximately 800 meters. Let me know if you can meet the schedjled need o0 if ycu need further -clarification.

Eric 7 -----------------------------------------------------------------

Eric G Lewis Tel. (856) 797-0900, ext. 645 Project Manager Fax: (B56) 797-0909 1o" tec International E-Mail: Eric Lewisholtec.

t on Holtec Canter Holtac Websit-a:

ww1u holtacinternational .cm -. 555 Lincoln Drive West Marlton, NJ 08053 I Klimczak, Richard From: Eric Lewis cLo c Sent: Friday, September22.

200D 1:21 PM To: Patton, Brune; Klimczak.

Richard

Subject:

Request For lnb for Shielding Evaluaton Bruce & Rich This is the wish list from our shielding guys. 1. Please provide a copy of PG&E procedure RPI.ID6.

2. Section 3.2.3 and 3.2.4 imply that the number of assemblies to be stored is approximately 4090. Section 6.1.14 item 2.V.B.i and Section 6.44.1 state that up to 4400 assemblies may be stored on 1he ISFSI. Please confirm that 4400 is the correct number of assemblies to be using for the ISFSI calculations
3. Please provide the estimated annual dose to the public beyond the controlled area boundary as a result of DCPP normal operation.

This value is needed to demonstrate compliance with IOCFR72.104.

4. Please provide the occupancy factor to be used in the calculation of the off-site dose rate, 8760 hours0.101 days <br />2.433 hours <br />0.0145 weeks <br />0.00333 months <br /> (full occupancy) or 2000 hours0.0231 days <br />0.556 hours <br />0.00331 weeks <br />7.61e-4 months <br /> (40 hour4.62963e-4 days <br />0.0111 hours <br />6.613757e-5 weeks <br />1.522e-5 months <br /> work week). 5. Please provide the minimum distance from the ISFS1 to the controlled area boundary that is to be used in the calculations.
6. Pleaseprovide the minimum distance from the ISFSI to a normally occupied location within the DCPP, 7. Please provide the distance and direction to the nearest permanent resident.

This information may only be used to further indicate the conservatism and low radiation exposure to the public. Please provide this information as soon as possible.

Appreciate you help! Thanks, Eric Eric G Lewis Tel: (856) 797-0900, ext. 645 Project Manager Fax: (856) 797-0909 Holtec International E-Mail: Eric Levis@holtec.com Holtc Center Holtec WebsitF www.,holtecinimtiinatiacom 555 lincoln Drive West Madton, NJ 08053 60ct 12 00 lo:3aa Ti CS2 905-595 -6402 hl Pcfic gsn ad OUPP Used FWa Ssuq Prn~ct Lakwu Simla fs Suntaf .c Dhibtimom wr Plant MaiN OaSiLl4USD 48B Oipm Stuat Soms~ fI*&its CA 93401 lansurksm (BO51 ISIM4 FXA} Mr. Eric Lewia }Toltec InnrtinzU02B H-OWe Center 555 Lincoja Drive West Mariron, New Jersey 080533

Subject:

Diablo Canyon lSFSI Pnqect -Diablo Canyon Units I and 2l Transmittal of Analysis Input

Reference:

1 ) 2-mail from Uohee (F-- Lewis ) wo PG&E (Patton and [Uicnczk) of 911 I/CQ 2) E-rnitl fromt Holtec (1E. Rosenbaum) to ?C3&E (Patton) of 9,2/00 3) E-mail from Heitec (E. Lewis) to PG&E- (Patton and Ujurozak) of 9129100 4) E-m=i from Hoktec (F. Lcwis} lo 1'G&E3 (Patton and Klimczak) of 10/6/00

Dear Eric,

Enclosed please fnid for y=u use as design inputs and nvyicw of draft SEP (hcnnal evaluation, Please confirm receipt of lhe package a[ your conveniene'e via c/mail to r1kI~pgt-cnm.

If you have uny questions regarding this b'fonnutkp.

please contAct mft @ 805-595-6321.

Sincerely, Richard L. Klirn za Q Projet Enginer Diib lo Canyon Used Fuel Storage Project Cc: TJ-tkebel RDftagler CAI-artz PWllnaig BHpattou Efl~iwny SLO BA (w/q) SLO B 13 (w/o) SWX 84 (w/o) IJCPP 201 (W1o) SEQ BB (W/p) SLO 86 (wk,)TPE.ce SLQ B 12(w/o) U-1trickland SLOB!I (wvlo) AFTafoya SLO 131I (wlo) DC'?P RMS9 DCPP 11 911 (w/o) DCPP Vile No. 72-10,05 (W10) I)CP? Chronological File (0 Lm Cc.ober 11, 2000 to 91f1_20C0 Email gremhad trnI) Itemn#4: Ad"e PG&E reference Westinghonseleter 00PGE-G-00S5.

tern# 14: A=&. Bkl 8.Finar Slob Stiffnisesm

1. For Cask Rece area in SFP: 157,000 KVit @ased oa nderlying rock jroperties)
2. For 2' thick Skb in cosk wahdown 27,600 K/ik) 3. For 2!-6' thick slab in ihe reeewizF/shippng aret 26A4O0 ýirlw- note tha these stiffnese am mU in the verdtcl (out of ;lJne) dirctions of the -especthe stubs. The caskhwabwn asea Is an a bounding coarcr drop. For the receiving shipping area, te stiffness is based oat a side drop. Description of cornet anti side drop= L The Cask is saswmued to have a flat drop o theslab wirh th Cask againstthe wll, i.e. the cask bottom surface imparts a uiformly distibutad vercal impact load onm Lhcslab i. The side drop is x drop of the Cask at the E-W centrline of either the Cask Washdown or Shipping/Receiving areas, but with hm Cask agaiswt the west wall of the Cask Waihdown and Shippiog/Recciving ares. The west walk om column line "T" on the floor plan drawings (e.g. see Dwgs. 438431 and 43533 for Units I and 2 respectively, or other area plan dvg.) iiW. The corner drop is a Cask drop in th6 Cask Wusbdown area with thc edge oldhe Cask lading just west of hre face of the supporting wall located below the slab, and with The Cask against the SFP wall. The sworting wal below rum N-S and Is loated about midway of the Cask Washdmown area in the EW dir. (e.g. see Dwgs 4J8432 and 439533 for Unit! and 2Z respectively).

Noc. A conmr drop at the NW -orner df rhe Unit I Cask Washdown a2 (SW for Vuit 2) is disregrded due to tbe exis&t;n c=CreeM eadosure, which protects piping rmiing verdicAy agains the walls iv the corner. PG&E

References:

PG&E C4a atiana No. 52-15-122 R ponsx to 9/25/2000 E-ml_: Rvc-iw of draft SFP Thermal evaluation ,Ho]rec Report HI-2002494).

PG&,E's comments are shown on the attached copy of the subject report, Copies of PG&Edwgs:

6W5034-30 Rev. Zaud 695034-31 Rev. 2 are provided.

Additional Comments:

The final evlnuaion should be snbrirdrrd -as a Holtec calcLotiao.

t-'4- I n0 Mel, I I Oct 12 O0 10:37a p.s October U, 2000 Reso.gw 9/29/2000 Suljeet Diablo Cayo= Miss Datc: 9/29/2000 Questions br. Eric Lewi.5 1. Please nFm thattdIe in3aCt veloCit of 240 mph is correct for the ornado missiles from the 500 W towers (refer to Spe Pan. 6.2.7-5 tI)- In light of the recene changc, t1ere is a question uo whedh this velocity should bc red-wed to 157 mpL. 2. Pleas specify the tnacridl of the 750-1b insulaornsrinj (refermi Spec. Nra 6Z2-511M, 3. Plesse provikl the dimensions of the 750-1b inislator a-,ng. I& particular.

l nced to know the inpact footp/itn f.e,, wMI itimpact she cask over aCi" d6imetw 12' iamleter?

4 An wer i. Tower Mi.ile Impact Velocity:

Tornado missiles ordginaing fiom 500 IN towers shall be conservativnly asumed to equal the tornado :mGoaionol speed of 157 mph (based on the required 2M mph tornsdo -Rev.1 of Spec-) if resits based on this boudiug aimpton are unscceprRe then the nuiuie Ipaa velocity may be calculhted based on the missile phijrkai propertes as pyovided bVw to yield less conservative inpocnsfo c T s. iL Suspesion Inulator Paperti&&TypeW F::g Type Ridi-Socket ANSI 5td. C.292 92: Connecting harduart CLs 52-5 (Table 3 & Fig. 2) B&S, TYPeLj Dimensions:

Shell diameter (B) Unit spaci6ng (A)No. of 6mnlators per str Weight_48 10" to [0-t1 (Rýe) 5-3/4' (See fig 2. NSI C,.29.2)(pcrzPG&E dwg. 33z199)13.5 Ibs per lisulitor, 15 ibs yoke WL (approx.)

Tcral wt. = 760 Ibs, per sring tzsulator Shel SocketCap Socket Key Ball Pin -Uigh trrength Poxeiain (Iipaa strength = 9u inbs) Malleable Iron (Hot-dip Galvaaired)

Brass Forged Steel (FIot-dip Galvanizcd}

Materials:

rBCS2 "Oct 12 00 lO;3?a DCS2 a05SS-6402 p.6 October it, 2(30 3. Addirtoal nmoe: A further brief descipdan of the suspension zim-arion may &-- fomind in ANSI C29 ut. The imp= area vold likey be ekhnr the ponlain shall pcimmcor the metallic socket cap, which by, proporien ha a diaxnnr of approy- 2-inches.

Impact by either the porcelain shels or meal ends of thm sting suml be copwsa in dcamaining the bounding npact load. 4. PG&R

Reference:

i PG&E Drawings:

Dwg. 331919 -nsnlator Stnings Diablo Canyon P-P. -Switchyard Tie, 500 IV Tmusmission Lin?", Rev. 6. Dwg. 0154CW4, Tabic 12 -'Suspension Type Invulators', pg. 13, Rev. 0, 03-21-97 ii ANSI C291-1992:

Anteriran National Strmuai kr Insulatrs

-Wtt-Process Porcelain and Tontened GlawsSuspenugon Type". in. The Ohio Brass ComAnv CGaulog 60, Pg. 25, "Extended Leakage Suspeion Inmnlators¶, Funura, Bali-Socket Number 47+14 (Code 31-4079, Catalog No.: 47414 -3311 & 3310) iv. Lock.e m1nators catslog, Pg. 12- "'0,000 lb. M&E', (Code 31-4079, Catalog No. 30563 IM-OL) XIQ nalues are not provided for the other seven sectors since they are overthe water (secwn ame considred to be umoccupied).

PG&E TES Report No. 420DC1D0.19

-" 1999 Annual Radiolojcml Environmenal Operating REP(rt f1Pacific Gas and Electric Company DCPP Used Fuel Storage Project hund Fuef Stmnu Prepen dUCbm Suriksa roniruo, Urabh, Camon Power Pkt Mol Coda SW 4UW1 4098 HIgn Stret Sun Lli IUdsp CA IM4T IM51 TAXl Mr. Eric Lewis Project Manager Holtec Interational Holtec Cener 555 Lincoln Drive West Marlton, New Jersey 08053 riir 2 0 2000 NOL0":" -. ..... .-, Subject- Diablo Canyon (SFS1 Project -Diablo Canyon Units I and 2 Transmittal of Anlysis Inputs and Technical Review Cominmets

Reference:

]) E-mail from Holtec (E. Lewis) to PG&E (Patton and Klimczak)of 10/6,100 2 E-mail from Hdtec (E. Lewis) to PG&P, (Patton and Klimczak) of 1011011O Holtec :'Dekign Criteria Document for Cask Seismic/Strctuaml Analyses for DCPP't H1otee Report No; 2002478

Dear Eric,

8nc'osed please find for your Use design inputs and review comments on Holtec Report No, 2002473.

Please confirm rccept of the package at your convenience via e/mail to rlklI,!pge.com.

If you have any questions regarding this information, please eontctme @ 805-595-6321 Sincerely, Richard L. Khimc.ak Project Engineer Diablo Canyon Used Fuel Storage Project cc: TLGrebel RD1-lagler CAHartz PWHuang BIIPatton EOO'weny SLO BA (w/6) SLOBi3 (wro) SLO B4 (w/o) DCPP 201 (wlo) SLO BB (w) SLO B6 (w/c)TPLee SLOB 12 (w/o) LjStlickland

$1,0 BI (wi%) A.}fafoya S1,0 B I I (w/o) DCPP RMS DCPP.I 1911 (w/o} DCPP File No. 72.10.05 (w/o) DCPP Chrotiologicnd pile/ <1 7-9 ,2)

Enclosures:

1) Response to FIoltec Questions
2) Copy of B-mail references
3) Comunents on Holtec ReportNo.

2002478 cc: BRPhillips SEGO 77/24 (w/o 1&2) kran I October 19, 2000 _P_,nse t. 10106/2000 FE-ma& Add to PG&E Referente:

Mark Somerv-.e wt T'iU Lee ermail dated 10/11/2000.

Rewponse to 1D/ 11/2000E-m

-: Item 1: The lener of September 28 is accurate.

Section 6.2.10 will be rev~ied to ;me that: "the distance to -he nenestr pl boundary is approximately 4oo inetre." PG&E Reference Dwg. 471124 Rev. 1. Item 2: The etter ofSepfemnber 28 is acatate.

Item 3: The letter of September 23 is accurate.

The X/Q value C X*443x104is aypropriate to use the 403 meters to the nearest site boundary.

Review Comments td HoItegjReport Nc. 1-1-2.92478 received PR on 9/b18/200 Attached are PG&E'S review comments, 6sed onPG&E'j Specification 10012-N-NPG, on the subject repc "Design Criteria Document For Cask Sedsmic/Stncmuaj Analyses For DCPp1.

Page Iot-2 Kiimczak Richard_ _ Irfni: Ertc Lewi [Erfo LemqsghobI~ernj Sebt: FtidaY, October OS, 2000 12-44 P1M To-, Patton, Bajuce; Klimczakr RiChard'gt

Subject:

FWd: Atmosphertc DiSPL-r.Won Fac~tcrs Bruce/Rich I litfle help agaiTL please. Eric ii--- I -4ý-l Eric, 09:32 AM 1/8/01 -0500, Fwd: FW: Questions on New ISFSI Layout X-Sender:

eric lewis@holtec.com@mail.holtec.com X-Mailer:

QUALCOMM Windows Eudora Pro Version 4.1 Date: Mon, 08 Jan 2001 09:32:18 -0500 To: Everett Redmond <EverettRedmond@holtec.com>,kris cummings@holtec.com From: Eric <ericlewis@holtec.com>

Subject:

Fwd: FW: Questions on New ISFSI Layout From: "Klimczak, Richard" <RLK1@pge.com>

To: "'ericlewis@holtec.com'" <ericlewis@holtec.com>

Cc: .'brian-gutherman@holtec.com'" <brian-gutherman@holtec.com>, "Patton, Bruce" <BHPl@pge.com>, "Tafoya, Albert" <AFT2@pge.com>, "Strickland, L Jearl" <LJS2@pge.com>, "Vitkus, Darius" <DW3@pge.com>, "Grebel, Terence" <TLGI@pge.com>, "Hartz, Christopher" <CEHl@pge.com>, "Olweny, Edwin" <EO02@pge.com>

Subject:

FW: Questions on New ISFSI Layout Date: Fri, 5 Jan 2001 16:51:35 -0800 X-Mailer:

Internet Mail Service (5.5.2650.21)

Eric, The following our PG&E's responses to Holtec's questions in your 12/18/00 e-mail to us regarding distances and dimensions from the new ISFSI layout: Answers are based on PG&E Dwg. 471124 Rev. 1 and Dwg. 4016849 Rev. 0. <? xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" /> 1 -What is the shortest distance from the new ISFSI to the site boundary?

1400 ft 2 -What is the shortest distance from the new ISFSI to the nearest occupied location (the water makeup facility)?

223 ft 3 -Please confirm that the nominal pitch of the HI-STORM overpacks will not exceed 17 feet even though the pads will be constructed as needed? Yes, the nominal pitch of the HI STORM overpacks will not exceed 17 feet. 4 -What is the shortest distance from the new ISFSI to the area around the reactor building ? This number will be used for estimating occupational exposure from the ISFSI. The shortest distance from the new ISFSI to the nearest Aux. Building Wall is 798 ft. 5- What is the distance to the nearest resident from the ISFSI? 1.5 miles (same as previously as this is a conservative distance that bounds both the new and old ISFSi pad locations) 6 -What is the shortest distance from the CTF to the site boundary?

1625 ft 7 -What is the shortest distance from the CTF to the nearest occupied location (the water makeup facility)?

669 ft 8 -What is the shortest distance from the CTF to the area around the reactor building?

This number will be used for estimating occupational exposure from the CTF. The shortest Printed for Kristopher Cumfmings

<kriscummings@ho1tec.com>

Pagel1 of 3 2/8/01 Eric, 09:32 AM 1/8/01 -0500, Fwd: FW: Questions on New ISFSI Layout Page 2 of 3 distance from the CTF to the nearest Aux. Building Wall is 740 ft. 9 -What is the distance to the nearest resident from the CTF? 1.5 miles This information will also be transmitted to you via a letter. Rich Klimczak DCPP Used Fuel Storage Project Project Engineer (805) 595-6321 --Original Message-From: Eric lewistholtec.com

Sent: Monday, December 18, 2000 2:41 PM To: Patton, Bruce Cc: Klimczak, Richard; Strickland, L Jean C.L .-A. -.,, h ,n I.. TCrCT I Eric, 09:32 AM 1/8/01 -0500, Fwd: FW: Questions on New ISFSI Layout Page 3 of 3 Appendix C Documentation for Selection of the Design Basis Assembly (Holtec International Proprietary Information)

Report No. HI-20025 13 c-I Report No. HI-2002513 C-1 Holtec Center, 555 Lincoln Drive West, Marlton, NJ 08053 Telephone (856) 797- 0900 Fax (856) 797 -0909 iNTERNATIONAL I I ANALYSIS OF ANCHORED HI-STORM CASKS AT THE DIABLO CANYON ISFSI FOR PG&E Holtec Report No: HI-2012618 Holtec Project No: 1073 Report Class : SAFETY RELATED.--..., .,...". NON PROPRIETARY VERSION Ai I' DOCUMENT NAME: Seismic Analysis of Anchored Il-STORM 100 Casks at Diablo Canyon ISFSI DOCUMENT NO.: 2012618 CATEGORY:

[F] GENERIC PROJECT NO.: 1073 X PROJECT SPECIFIC Rev. Date Author's Rev. Date Author's No. Approved Initials VIR # No. Approved Initials VIR # 0 3/5/01 AIS 50049 3 6/19/01 AIS 165327 1 3/5/01 AIS 211334 4 44 11/6/01 MS 832701 2 5/11/01 AIS 388872 115 12/11/01 AIS 51938 DO1UUIVIENT CATEGORIZATION In accordance with the Holtec Quality Assurance Manual and associated Holtec Quality Procedures (HQPs), this document is categorized as a: X Calculation Package 3 (Per HQP 3.2) Design Criterion Document (Per HOP 3.4)ED Other (Specify):

!-Z Technical Report (Per HOP 3.2) (Such as a Licensing Report) -Design Specification (Per HOP 3.4)DOCUMENT FORMATTING The formatting of the contents of this document is in accordance with the instructions of HOP 3.2 or 3.4 except as noted below: DECLARATION OF PROPRIETARY STATUS This document is labeled: X Nonproprietary

[E Holtec Proprietary

[I TOP SECRET Documents labeled TOP SECRET contain extremely valuable intellectual/commercial property of Holtec International.

They cannot be released to external organizations or entities without explicit approval of a company corporate officer. The recipient of Holtec's proprietary or Top Secret document bears full and undivided responsibility to safeguard it against loss or duplication.

Report M1-2012618 1 G :\Projects\1073\AIS\REPORTS\JIM-2012618kRev 5\Hi2012618r5.DOC Notes I': Thiýs document'has been subjected to teviuw, veri'ficationi andiapproval iprocess set forth in1 t.he Holtec Quality Assuranmie Procedures~

Manual. Password controlled si gnatures of Holtec personnel whoj parti'cipxid in :the preparatizrn'krtiivi, and QA validation ofrthis docuinen t areb

  • shved in the N-dhivebfilie conmpay' e htoik The Validationi Id nti~fiet Record uVR nuber is a radom number tha igeradbytecomputdr after- the specific revision of thi's docume nt has uýnderg'one the reqjiire rve w anda aproa pres and th pprpiate Holtec Pe rsonnel ave, The rdocld then rpasswordc coiitrolled electroniucconiurrenc&tot .the'docume'nt.

sl~ ~ hi -oun twýpodrdb fePoetM'aea a 2 A revision to this dcmnwllboreebyePjctM agrnd credOut if anyV iýof its content's is Thatqnaiij affected during, evolutioni ofttlus roet. Te- determiination astol th need, for reisio vi11n bnc emdb th 'Pdje6t~ihanagr wit input trn othesadem ncsar ý3 Revi sions to Calculato Pakgsmay be made by adding c supplements to the..documen~t'.

Iand replacing.

th ccalo -ntenit anI~ h eiio o ~ th~~ p5' T 'a .0 he'Report HI-2012618 2 G :.Projects\1073

\AIS\REPORTS\HII-2012618kRev 5kHi2012618r5.DOC HOLTEC SAFETY SIGNIFICANT DOCUMENTS In order to gain acceptance as a safety significant document in the company's quality assurance system, this document is required to undergo a prescribed review and concurrence process that requires the preparer and reviewer(s) of the document to answer a long list of questions crafted to ensure that the document has been purged of all errors of any material significance.

A record of the review and verification activities is maintained in electronic form within the company's network to enable future retrieval and recapitulation of the programmatic acceptance process leading to the acceptance and release of this document under the company's QA system. Among the numerous requirements that this document must fulfill, as applicable, to muster approval within the company's QA program are: " The preparer(s) and reviewer(s) are technically qualified to perform their activities per the applicable Holtec Quality Procedure (HQP). " The input information utilized in the work effort is drawn from referencable sources. Any assumed input data is so identified. " All significant assumptions are stated. 0 The analysis methodology is consistent with the physics of the problem.

"* Any computer code and its specific versions used in the work have been formally admitted for use within the company's QA system. "* The format and content of the document is in accordance with the applicable Holtec quality procedure. " The material content of the report is understandable to a reader with the requisite academic training and experience in the underlying technical disciplines.

Once a safety significant document, such as this report, completes its review and certification cycle, it should be free of any materially significant error and should not require a revision unless its scope of treatment needs to be altered. Except for regulatory interface documents (i.e., those that are submitted to the NRC in support of a license amendment and request), editorial revisions to Holtec safety significant documents are not made unless such editorial changes are deemed necessary by the Holtec Project Manager to prevent erroneous conclusions from being inferred by the reader. In other words, the focus in the preparation of this Report 1I-2012618 3 G:\Projects\1 073 \AIS \REPORTS \HI-2012618\Rev 5\Hi2012618r5.DOC I

document is to ensure correctness of the technical content rather than the cosmetics of presentation".

Report 11-2012618 4 G:-\Projects\1073

\AIS\REPORTS\HI-2012618\Rev 5\-i2O12618r5.DOC REVISION LOG Revision 0- Original issue. Revision 1 -Revised in accordance with client comments.

Analyses completely redone with seismic input applied at base of slab (instead of top of embedment).

Preloaded anchor studs removed from analyses by using different free body and replaced by long anchor rods that tie the embed plate to the concrete.

These are not preloaded.

All seismic analyses redone using specification damping values at the base of the embed plate (concrete) and the long rods (steel), and results are filtered at 40 Hz. The analyses of the preload between cask and embed plate is performed as a separate item where it is demonstrated that the preload is sufficient under the computed forces from the dynamic analyses of the long anchor rods. Also, editorial comments are incorporated.

Revision 2 -Addressed technical comments from client. New calculations added to demonstrate that the effect of initial loading of the embedment anchor rods is small and the dynamic results remain valid. Revised model (gusset locations) for the calculation of the sector lug stress to resolve comments and reduce the stress. Added additional figures describing stress state in sector lugs. Revised and expanded weld calculations.

Appendix A calculations revised based on class 2A threads and final compression block geometry.

Revision 3 -Editorial comments from client incorporated in this revision.

PE stamp added. Technical review comments from independent alternate calculations were not incorporated since they confirmed conservative safety factors.

Revision 4 -Text information added after Table 3 (per request of client e-mail, 10/20/01) discussing effect of scale factors (on time histories required to meet SRP 3.71) on calculated results. Ref 11.14 added since it is noted in added information.

Revision 5 -Corrected free- length of stud calculation in Appendix A. This required that some self-contained calculations in main text be altered to conform with new results in Report HI-2012618 5 G:\Projects\1073\AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC Appendix A. However, these changes did not alter any of the VN simulations nor their results. The text calculations were updated (stud fatigue, the calculation of incremental stud loads), and the nomenclature in a sketch in the text was updated to clarify the simulation model. This version is PE stamped. "The revision status of Holtec documents is subject to updates as the project progresses.

This document will be revised if a revision to any of the above-referenced Holtec work products materially affects the instructions, results, conclusions or analyses contained in this document.

Otherwise, a revision to this document will not be made and the latest revision of the referenced Holtec documents shall be assumed to supersede the revision numbers cited above. The Holtec Project Manager bears the undivided responsibility to ensure that there is no intra-document conflict with respect to the information contained in all Holtec generated documents on a safety significant project".Report HI-2012618 6 G :\Projects\1073

\AIS\REPORTS

\HI-2012618\Rev 5\Hi2O12618r5.DOC PREFACE This Calculation Package has been prepared pursuant to the provisions of Holtec Quality Procedures HQP 3.0 and 3.2, which require that all analyses utilized in support of the design of a safety-related or important-to-safety structure, component, or system be fully documented such that the analyses can be reproduced at any time in theffuture by a specialist trained in the discipline(s) involved.

HQP 3.2 sets down a rigid format structure for the content and organization of Calculation Packages that are intended to create a document that is complete in terms of the exhaustiveness of content. The Calculation Packages, however, lack the narration smoothness of a Technical Report, and are not intended to serve as a Technical Report. Because of the Calculation Package's function as a repository of all analyses performed on the subject of its scope, this document is typically revised only if an error is discovered in the computations or the equipment design is modified.

Additional analyses in the future will be added as numbered supplements to this Package. Each time a supplement is added or the existing material is revised, the revision status of this Package is advanced to the next number and the Table of Contents is amended.

Report HI-2012618 7 G :\Projects\1073

\AIS\REPORTS

\HI-2012618\Rev 5\Hi2O12618r5.DOC EXECUTIVE S UMMARY The HI-STORM 1OOSA storage overpack, containing a loaded MPC, is anchored to the Diablo Canyon ISFSI steel embedment by pre-tensioned anchor studs grounded to appropriately designed embedment steelwork.

This preload generates a large compressive interface force between the base of the cask and the top surface of the steel embedment plate. The embedment plate structure is held to the slab by long anchor rods that are not preloaded and attached to the bottom surface of the embedment plate. The bottom of the embed plate is grounded on concrete but no compression other than the total vertical load from the cask system is assumed to act. The storage system can be subject to a seismic event that causes forces and moments to be transferred to the embedment and from the embedment to the slab through the anchor rods and compression at the embed plate concrete interface (the lower surface of the embed plate). The design basis seismic excitations are designated as: DE -Design Earthquake DDE -Double Design Earthquake HE -Hosgri Earthquake LTSP -Long Term Seismic Program Earthquake Each of these seismic events is characterized by free- field acceleration-time histories, in each of three orthogonal directions.

The DE and DDE have 41 sec. event duration, while the HE and the LTSP have 48 sec. duration.

Only the LTSP and the HE events are utilized as these events have the largest zero period accelerations (ZPA) and provide the bounding results for a Part 72 evaluation.

To ensure that the most bounding solution is obtained, simulations are also performed with the direction of the vertical excitation reversed.

The objectives of the simulations are two-fold:

To demonstrate that the seismic events do not induce acceleration levels that exceed the cask design basis (per the FSAR) and do not induce a state of stress in the preloaded anchor studs that connect the cask to the embed plate that exceeds the design basis ASME Code limits. To establish the interface loads transferred to the ISFSI pad embedment.

These interface loads provide the design input for an evaluation of the structural integrity of the ISFSI Report HI-2012618 8 G :\Projects\1073

\AIS\REPORTS\HI-2012618\Rev 5\Hi2012618r5.DOC pad and the anchor rods that maintain the interface between the lower surface of the embedment plate and the concrete slab. The results from the series of evaluations performed in this report are summarized below: The anchored casks do not develop body decelerations that exceed the cask design basis of 45 g's [I L.4,Table 3.1.2, and 3.1.3 including footnotes].

This ensures the integrity of the fuel basket and ready retrievability of the fuel where both lateral and longitudinal "g" loadings must be considered.

The state of stress in the pre-tensioned cask anchor studs and in the cask flange and shell meet the stress limits of the ASME Code Section III, Subsection NF and Appendix F. The interface loads at the lower surface of the embed plate are summarized in tabular form. The values are obtained from the time histories that result from the dynamic simulations.

These time history results are filtered (to remove higher frequency (above 40Hz) peak values) prior to reporting the peak results in the table.I SEISMIC EVENT AT ISFSI Maximum/Minimum Interface Compression 674.2/127..6 684.1/105.8 773.3/130.6 632.0/55.6 Force (kips)***

Maximum Interface Shear Force Along X 509.4 432.0 379.9 325.8 axis (kips)

  • Maximum Interface Shear Force Along Y 460.5 355.5 426.1 364.6 axis (kips)* Maximum Net Interface Shear Force (kips) 515.0 440.0 428.0 390.0 Maximum Interface Moment About X Axis 54,564 42,139.2 50,498 43,209 at Interface (kip- in.) Maximum Interface Moment About Y Axis 60,369 51,197.2 45,017 38,603 at Interface (kip-in.)

Maximum Net Interface Moment (kip-in) 61,000 52,000 50,500 46,000 Effective COF at Cask/Embedment 0.180 0.154 0.150 0.132 Interface a I ensile.Load in Emoeament Anchor Rods (kip)62.13 48.85 49.73 42.34 Report 1H1-2012618 9 G:\Projects\1073

\AIS\REPORTS\HI-2012618\Rev 5\-i2O12618r5.DOC HE: j] *.T ii:..

  • Base Maximum Shear forces are computed by dividing the appropriate maximum moment by the height to the centroid (118.5 inch). Y-Shear goes with MX, X-Shear goes with MY. ** These simulations have the vertical excitation reversed in direction over the total event time. *** Includes dead load = 360,000 lb. The moments and forces reported above act at the lower surface of the embed plate. The X, Y, Z axes are located at a point on the cask longitudinal centerline (extended to the bottom surface of the embed plate). The X, Y directions correspond to the East-West and North-South directions, respectively, and the Z-axis is vertically upward. Subsequent to the anchored cask analyses, it was determined that the Hosgri seismic event at 7% damping required scaling-up by 7% [Reference 11.14] in order to meet SRP 3.7.1 spectral matching criteria; the Hosgri time histories for 4% & 5% damping, however, need no scaling [Reference 11.14] to conform to SRP 3.7.1 spectral matching requirements.

The LTSP seismic event, which does not provide bounding loads for the pad design, needs scaling at 5% [Reference 11.14] in order to completely satisfy SRP criteria.

We note, however, that the LTSP does not provide the bounding inputs for the pad design; this remains true even if the results for the LTSP input are scaled up by 5%. If we therefore limit discussion to the bounding HE, in order for the results reported in Table 3; to be completely in conformance to the regulations, no more than 5% damping should be associated with the cask/concrete compression interface (the reported results are based on 4% steel! 7% concrete damping for the Hosgri event per Appendix A). It is our considered opinion, based on engineering judgment, that the effect of a decrease in the damping at this location (all other damping values are at 4%) would lead primarily to additional amplifications only for high frequency contributions.

Since the results of interest for pad design are filtered to remove components above 40 Hz, we expect that a damping reduction at the concrete/cask interface will have negligible effect on the results.Report HI-2012618 10 G :\Projects\1073

\AIS\REPORTS\HI-2012618\Rev 5 \Hi2O12618r5.DOC TABLE OF CONTENTS HOLTEC SAFETY SIGNIFICANT DOCUMENTS

...............................................

3 REVISION LO G ...........................................................................................................

5 PREFA CE ..........................................................................................................................

7 EXECUTIVE SUM M ARY ..........................................................................................

8 TABLE OF CONTENTS ...........................................................................................

11 1.0 INTR ODU CTIO N AND SCOPE ..........................................................................

16 2.0 M ETH OD OLO GY ..............................................................................................

18 3.0 A CCEPTAN CE CRITERIA ................................................................................

19 4.0 A SSUM PTIONS ....................................................................................................

20 5.0 INPUT DATA ........................................................................................................

22 6.0 CO M PUTER CO DES .........................................................................................

26 7.0 ANALYSES ..........................................................................................................

27 7.1 STATIC ANALYSES ........................................................................................

27 7.2 D YNAMIC ANALYSES ...................................................................................

27 8.0 CO M PUTER FILES ............................................................................................

42 9.0 RESULTS OF ANALYSES .................................................................................

46 9.1 QUASI-STATIC ANALYSES .............................................................................

46 9.2 DYNAMIC ANALYSES ...................................................................................

51 9.3 ENVIRONMENTAL LOADINGS ........................................................................

57 10.0

SUMMARY

AND CONCLUSIONS

................................................................

59 11.0 REFEREN CES ...................................................................................................

61 12.0 FIGURES .............................................................................................................

62 FIGURE 1 -CROSS-SECTION OFANCHORAGE ATLOCATION OF ANCHOR STUD ..........................................................................................................................

62 Report HI-2012618 11 G :\Proj ects\1073

\AIS\REPORTS\IHI-2012618\Rev 5\Hi2O12618r5.DOC FIGURE 2 LTSP ACCELERATION TIME HISTORIES FOR DIABLO CANYON ISF SIPA D ..................................................................................................................

63 FIGURE 3. -HE A CCELERATION TIME HISTORIES FOR DIABLO CANYON ISF SI P A D ..................................................................................................................

64 FIGURE 4- DDE ACCELERATION TIME HISTORIES FOR DIABLO CANYON ISF SI P A D ..................................................................................................................

65 FIGURE 5 -LOCATION OF CASK ANCHOR STUDS AND EMBEDMENT ANCH OR RODS ....................................................................................................

66 FIGURE 6 EXPLODED VIEW- GROUND PLANE, OVERPACK, MPC, AND OVERPACK TOP LID ..........................................................................................

67 FIGURE 7 ASSEMBLED HI-STORM 1 OCA ON PAD -MPC INSIDE O VERPA CK 68 FIGURE 8 SECTOR LUG FINITE ELEMENT MESH AND BOUNDARY COND ITIONS ........................................................................................................

69 FIGURE 9.1 SECTOR LUG FINITE ELEMENT MESH AND INPUTPRELOADS 70 FIGURE 9.2 STRESS INTENSITYDISTRIBUTION-CASE 1 PRELOAD ...........

71 FIGURE 9.3 RADIAL STRESS IN BASE PLATE -CASE 1 PRELOAD ...............

72 FIGURE 9.4 CIRCUMFERENTIAL STRESS IN BA SE PLATE -CASE 1 PREL GAD ....................................................................................................................................

7 3 FIGURE 9.5 RADIAL STRESS IN SECTOR LUG LOWER ANNULAR RING -CASE 1 PR EL O A D ...............................................................................................................

74 FIGURE 9.6 CIRCUMFERENTIAL STRESS IN SECTOR LUG LOWER ANNULAR RING -CASE ] PRELOAD ...................................................................................

75 FIGURE 9.7 RADIAL STRESS IN LEFT GUSSET- CASE] PRELOAD ............

76 FIGURE 9.8 VERTICAL STRESS IN LEFT GUSSET- CASE ] PRELOAD ........ 77 FIGURE 9.9 RADIAL STRESS IN RIGHT GUSSET- CASE 1 PRELOAD ..........

78 FIGURE 9.10 VERTICAL STRESS 1N RIGHT GUSSET- CASE ] PREL OAD ....... 79 FIGURE 9.11 RADIAL STRESS IN UPPER RING -CASE ] PRELOAD ............

80 FIGURE 9.12 CIRCUMFERENTIAL STRESS IN UPPER RING -CASE ] PRE LOAD .........................................................................................................

81 FIGURE 9.13 CIRCUMFERENTIAL STRESS IN HI-STORM SHELL -CASE I P RE L OA D ..................................................................................................................

82 Report HI-2012618 12 GA\Projects\1073\AIS\REPORTS\HI-2012618\Rev 5\Hi2012618r5.DOC FIGURE 9.14 RADIAL STRESS IN HI-STORM SHELL -CASE 1 PRELOAD ........ 83 FIGURE 10.1 SECTOR LUG STRESS INTENSITY

-CASE 2 MAXgMUM STUD CA PA CITY .............................................................................................................

84 FIGURE 10.2 STRESS INTENSITY IN BASEPLA TE -CASE 2 ..........................

85 MAXIMUM STUD CAPACITY ............................................................................

85 FIGURE 10.3 STRESS INTENSITY IN SECTOR LUG LOWER ANNULAR RING CASE 2 MAXIMUM STUD CAPACITY .............................................................

86 FIGURE 10. 4 STRESS INTENSITY IN SECTOR LUG LEFT GUSSET- CASE 2 MAXIMUM STUD CAPA CITY ............................................................................

87 FIGURE 10.5 STRESS [NTENSITY IN SECTOR LUG RIGHT GUSSET -CASE 2 MAXIMUM STUD CAPA CITY ............................................................................

88 FIGURE 10.6 STRESS INTENSITY IN SECTOR LUG UPPER RING -CASE 2 MAXIMUM STUD CAPACITY ............................................................................

89 FIGURE 10.7 STRESS INTENSITY IN HI-STORM SHELL -CASE 2 MAXIMUM STUD CAPA CITY .................................................................................................

90 FIGURE 10.8 SZ STRESS-STUD SIDE OF LEFT GUSSET -CASE 2 MAXIMUM STUD CAPACITY .................................................................................................

91 FIGURE 10.9 SZ STRESS-INLET AIR DUCT SIDE OF LEFT GUSSET- CASE 2 MAXIMUM STUD CAPACITY ............................................................................

92 FIGURE 11 COMPRESSIVE FORCE ATINTERFACE (Unfiltered and Filtered)

LTSP SEISMIC EVENT .......................................................................................

93 FIGURE 12 MOMENT "MX" AT INTERFA CE (Unfiltered and Filtered)

-LTSP SEISM IC E VEN T ...................................................................................................

94 FIGURE 13 MOMENT "Mf4Y" A T INTERFA CE (unfiltered and Filtered)

-LTSP SEISM IC E VEN T ...................................................................................................

95 FIGURE 14 TENSILE FORCE INANCHOR ROD 26 (Unfiltered and Filtered)

LTSP SEISM IC EVENT .......................................................................................

96 FIGURE 15 NET OVERTURNING MOMENT- LTSP SEISMIC EVENT ..........

97 FIGURE 16 SHEAR "VX"ATINTERFACE

-LTSP SEISMIC EVENT .............

98 FIGURE 17 SHEAR "V'7" ATINTERFACE (Unfiltered and Filtered)

-LTSP SEISM IC E VEN T ...................................................................................................

99 Report HI-2012618 13 G :\Projects\1 073 \MS\REPORTS\HI-201261K8Rev 5\Hi2012618r5.DOC FIGURE 18 NET SHEAR FORCE -LTSP SEISMIC EVENT ...............................

100 FIGURE 19 EFFECTIVE COEFFICIENT OF FRICTION -L TSP SEISMIC EVENT ..................................................................................................................................

10 1 FIGURE 20 COMPRESSIVE FORCE INCREMENT AT INTERFA CE (Unfiltered and Filtered)

-HE SEISMIC EVENT .....................................................................

102 FIGURE 21 MOMENT "MX" A T INTERFA CE (Unfiltered and Filtered) -HE SEISM IC E VEN T .....................................................................................................

103 FIGURE 22 MOMENT "'MY" AT INTERFA CE (Unfiltered and Filtered)

-HE SEISM IC E VEN T .....................................................................................................

104 FIGURE 23 TENSILE FORCE INANCHOR ROD 11- HE SEISMIC EVENT .... 105 FIGURE 24 NET MOMENT -HE SEISMIC EVENT ..........................................

106 FIGURE 25 SHEAR "VK" ATINTERFACE

-HE SEISMIC EVENT ...................

107 FIGURE 26 SHEAR "VY" ATINTERFACE -HE SEISMIC EVENT ....................

108 FIGURE 27 NET SHEAR FORCE -HE SEISMIC EVENT ....................................

109 FIGURE 28 EFFECTIVE COEFFICIENT OF FRICTION-HE SEISMIC EVENT110 FIGURE 29 COMPRESSIVE FORCE INCREMENT A TINTERFACE (Unfiltered and Filtered)

-LTSP SEISMIC EVENT- NEGATIVE VT 1......................................

11 FIGURE 30 -MOMENT MXA T EMBED/CONCRETE INTERFACE

-L TSP SEISMICEVENT-NEGATIVE VTEARTHQUAKE

...............................................

112 FIGURE 31- MOMENTMYATEMBED/CONCRETE INTERFACE

-LTSP SEISMIC EVENT NEGATIVE VTEARTHQUAKE

.................................................

113 FIGURE 32 -ANCHOR ROD 22 TENSIONAT EMBED/CONCRETE INTERFACE -LTSP SEISMIC EVENT-NEGATIVE VTEARTHQUAKE

..................................

114 FIGURE 33 -NET MOMENT -L TSP SEISMIC EVENT-NEGATIVE VT EAR TH Q UAK E ........................................................................................................

115 FIGURE 34 -SHEAR VX- LTSP SEISMIC EVENT-NEGATIVE VT EARTH Q UAKE ........................................................................................................

116 FIGURE 35 -SHEAR TY -LTSP SEISMIC EVENT-NEGATIVE VT EARTH Q UAK E ........................................................................................................

117 FIGURE 36- NET SHEAR -L TSP SEISMIC EVENT-NEGATIVE VT EAR TH Q UAKE ........................................................................................................

118 Report HI-2012618 14 G-\Projects\1073

\AIS\REPORTS\HI-2012618\Rev 5\Hi2012618r5.DOC FIGURE 37- EFFECTIVE COEFFICIENT OF FRICTION -LTSP SEISMIC EVENT-NEGATIVE VT EARTHQUAKE

...............................................................

119 FIGURE 38 COMPRESSION LOAD INCREMENT-HE SEISMIC-NEGATIVE VT EAR TH Q UAK E ........................................................................................................

120 FIGURE 39- MOMENT MXATEMBED/CONCRETE INTERFACE-HE SEISMIC EVENT-NEGATIVE VTEARTHQUAKE

...............................................................

121 FIGURE 40- MOMENT MYATEMBED/CONCRETE INTERFACE

-HE SEISMIC E VENT NE GA TIVE VTEARTHQUAKE

.................................................................

122 FIGURE 41- ANCHOR ROD 22 TENSION AT EMBED/CONCRETE INTERFA CE -HE SEISMIC EVENT-NEGATIVE YTEARTHQUAKE

.....................................

123 FIGURE 42- NET MOMENTA TEMBED/CONCRETE INTERFACE-HE SEISMIC EVENT-NEGATIVE VTEARTHQUAKE

...............................................

124 FIGURE 43 -SHEAR VXA TEMBED/CONCRETE INTERFA CE -HE SEISMIC EVENT-NEGATIVE VTEARTHQUAKE

...............................................................

125 FIGURE 44 -SHEAR VY AT EMBED/CONCRETE INTERFA CE -HE SEISMIC EVENT-NEGATIVE VTEARTHQUAKE

...............................................................

126 FIGURE 45- NET SHEAR ATEMBED/CONCRETE INTERFACE-HE SEISMIC EVENT-NEGATIVE VTEARTHQUAKE

...............................................................

127 FIGURE 46-EFFECTIVE COEFFICIENT OF FRICTION-HE SEISMIC EVENT -NEGATIVE VTEARTHQUAKE

............................................................................

128 13. APPENDICES

...................................................................................................

129 APPENDIX A- SUPPORTING CALCULATIONS

................................................................

129 APPENDIX B- SECTOR LUG FINITE ELEMENT ANALYSIS INPUT SCRIPTS .....................

129 APPENDIX C -POST-PROCESSOR FORTRAN AND MATLAB SCRIPTS ..............................

129 Report HI-2012618 15 G:\Projects\1073

\AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC

1.0 INTRODUCTION

AND SCOPE The ISFSI at Diablo Canyon is designated as a high seismic site as some of the site specific seismic inputs are too large to ensure stability of a freestanding storage cask. To safely store spent nuclear fuel in a H1-STORM 100 at such a site, special provisions for anchoring the cask to the ISFSI pad are added to the cask, and the anchorage must be designed and analyzed to demonstrate compliance with the appropriate design code. Herein, we provide the calculation details that support the structural qualification of the HI-STORM 100SA (the "A" designating a cask with added anchoring features and the "S" designating a low profile cask) at the Diablo Canyon ISFSI site. The anchored HI-STORM sits on a steel embedment plate having a diameter in excess of the outer diameter of the HI-STORM baseplate.

The HI-STORM is anchored to the steel embedment plate using pre-tensioned anchor studs threaded into compression blocks to ensure a continuous compressive state of stress at the interface between the cask and the embedment plate. The embedment plate is held to the concrete by longer anchor rods that are not initially pretensioned but are loaded as the seismic event proceeds to the extent necessary to maintain force and moment equilibrium.

.Figure 1 shows a section of the anchored cask connection to the ISFSI. The cask flange is held in contact with the embedment plate by a series of pre-tensioned anchor studs. The studs are threaded into a "compression block" that serves to induce a high compressive state of stress at the steel steel interfaces

  1. 1 and #2 in Figure 1. The entire embedment (plate plus compression blocks) is fixed to the concrete by a set of long cask anchor rods that are not pre tensioned.

Figure 1 shows the compression block hole as a threaded hole through the block thickness.

In reality, the thread starting location, relative to interface

  1. 2, is set to ensure the proper free-length of the pre-tensioned anchor stud. The nomenclature introduced in Figure 1 is used throughout this report. The scope of this analysis includes qualification of the pre-tensioned anchor studs that attach the cask to the steel embedment plate at the top surface of the ISFSI slab, structural Report HI-2012618 16 G :\Projects\1073\AIS\REPORTS\HI-2012618aRev 5\Hi2O12618r5.DOC qualification of the support structure (cask sector lugs), and the determination of interface loads at the base of the embedment plate transmitted to the ISFSI pad and to the embedment plate anchor rods. The embedment plate design and qualification, the qualification of the embedment anchor rods, and the structural analysis of the ISFSI pad utilize these interface loads as design basis input Report Hl-2012618 17 G:\Proj ects\1073

\AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC

2.0 METHODOLOGY

The objectives of the seismic analyses are the following:

i Quantify the structural safety factor in the pre-tensioned anchor studs connecting the cask to the upper surface of the embedment plate, and in the cask sector lugs that constitute the fastening system for the loaded HI-STORM 100SA overpack.

The structural safety factor is defined as the ratio of the permitted stress (stress intensity) per Subsection "NF" of the ASME Code to the maximum stress (stress intensity) developed in the loaded component.

ii. Demonstrate that fatigue failure of the pre-tensioned anchor studs and sector lugs from a single seismic event is not credible.

iii. Quantify the interface loads at the interface of the lower surface of the embedment plate to the ISFSI pad to enable the ISFSI owner to design and analyze the embedment plate, the ISFSI pad, and the embedment plate anchor rods and shear resisting structure that fix the embedment plate to the concrete pad. The above design objectives are satisfied by performing dynamic analyses of a loaded H11-STORM IOOSA plus the embedment plate that is considered to be bearing on the slab and held to the slab by a set of long anchor rods. The dynamic analyses employ a three dimensional model that incorporates contact impacts between the overpack and MPC, and simulation of the anchoring system (bearing loads on the concrete and tensile loads in the anchor rods). The key design concept for the anchored rI-STORM 1 OOA storage system is to extend the baseplate of the overpack to form a flange. This flange permits "mating" of the overpack to the ISFSI pad steel embedment by preloaded cask anchor studs. The preloaded cask anchor studs ensure that interface contact is maintained between the ISFSI pad embedment upper surface and the lower surface of the HI-STORM baseplate.

This continued contact allows for development of interface friction forces to preclude significant lateral movement of the base relative to the ISFSI pad and also ensures that the ISFSI pad embedment provides the majority of the resisting moment to stabilize the system under the large seismic forces. Report 1I-2012618 18 G :\Projects\1073

\AIS\REPORTS\HI-2012618\Rev 5\-i20O12618r5.DOC K-3.0 ACCEPTANCE CRITERIA The design criteria for the HI- STORM 100 Storage System (the anchored system at the Diablo Canyon ISFSI is designated as HI-STORM IOOSA) are compiled in the FSAR in Chapter 2.0. As the anchorage system for the HI-STORM 100SA is an integral part of the cask, the anchorage system has the same design requirements imposed.

The anchorage (cask anchor studs and sector lugs) is designed to the static stress limits of the ASME Code,Section III, Subsection NF [11.6] and Appendix F [11.7]. Two conditions are defined: Level A (Preload)

-The cask anchor stud preload is established at approximately 157 kips in each stud. Under this load and the corresponding balancing load from the ISFSI, the sector lug structural components must meet the allowable stress limits for plate and shell structures given in NF-3200 of [11.6]. Table 3.1.10 in [11.4] provides the stress limits for SA-516 Grade 70 material at 200 degrees F (a conservatively high temperature).

Level D (Preload + Seismic Load) -Per Appendix F of [11.7], the tensile stress in the stud averaged through the cross-section is limited to 70% of the ultimate strength of the stud material.

The extreme fiber stress in the stud is limited to the ultimate strength per F 1335.1. The stress intensity limits for the sector lug components are given in Table 3.1.12 [11.4] in accordance with the design criteria set forth in Section 4.2 of [11.2]. The cask anchor stud alternating stress intensity, under the dynamic loading from one design basis seismic event, must be sufficiently low so that a safety factor > 1.0 against a cask anchor stud fatigue failure is demonstrated for the number of stress intensity cycles associated with the seismic event. Report HI-2012618 19 G :kProjects\1073

\AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC

4.0 ASSUMPTIONS

In the dynamic analyses, the HI-STORM IOOSA overpack and the internal loaded MPC are modeled as separate rigid bodies. This is consistent with the response frequencies associated with the event and with the lowest elastic frequencies associated with the bodies. In the dynamic analysis, the overpack and the embedment plate are assumed to move as a single body. This is a realistic assumption since the preload existing at interface

  1. 1 (Figure 1) serves to minimize relative movement.

In the dynamic analyses, the contact between the MPC and the overpack is simulated by a classical impulse-momentum equation.

The coefficient of restitution (COR) is set to 0.0 reflecting the large contact areas involved and the coefficient of friction is set to 0.5, which is representative of steel-on-steel.

The choice of coefficient of restitution is realistic and allows for energy loss during contact between the two large rigid bodies. The coefficient of friction involved in MPC-to overpack contacts plays little role in the dynamic analyses since the contacts are primarily normal impacts.

In the dynamic simulations, the interface contact between the base of the embedment and the ISFSI concrete is modeled by discrete linear springs to simulate the embedment anchor rods and by compression-only elements to simulate the balancing force from the concrete under the embedment.

The spring rates are computed using a specified effective free length for the embedment anchor components and damping consistent with the Diablo Canyon Specification for steel and concrete components.

These are realistic assumptions that appropriately model the expected interface behavior.

In the dynamic model, bounding (high) weights are used for conservative results; inertia properties are computed consistent with these bounding weights.

Report 2012618 20 G:\Projects\1073

\AIS\REPORTS

\HI-2012618\Rev 5\Hi2O12618r5.DOC In the post-processing of the results from the dynamic analysis, filtering is employed to remove high frequency peaks in the solutions that arise due to the large stiffness values that are multiplied by small displacements to achieve a numerical result (i.e. for stud incremental force). To capture all of the energy of the seismic event, the filtering frequency is set as 40 Hz. Structural qualification of the cask anchor studs and the cask sector lugs is based on the peak filtered loads. The use of filtering of dynamic results in cask structural integrity analysis has been previously used in the rn-STAR SAR (impact limiter performance), FSAR (drop and tipover analysis), and in the HI-STORM FSAR [11.4, Appendix 3.A].Report HI-2012618 21 GX\Projects\1073\AIS\REPORTS\HI-2012618\Rev 5\Hi2012618r5.DOC

5.0 INPUT

DATA The bounding weights for the loaded rn-STORM 100A and for the MPC are used in the analysis.

Table 3.2.1 of [11.4] lists these bounding weights as: rn-STORM 100A -270,000 lb. (empty) MPC -90,000 lb. SA193-B7 has been chosen by the ISFSI owner as a suitable cask anchor stud material.

For the dynamic simulation, the following properties are used: [11.5] Anchor Stud Minimum Yield Strength -105 ksi Anchor Stud Minimum Ultimate Strength -125 ksi The dimensions for the two bodies are obtained from relevant drawings in Section 1.5 of [11.4,11.11].

Mass moment of inertia properties are computed based on cylindrical body assumptions with the specified mass assumed to be uniformly distributed.

The free-field seismic inputs for the dynamic analyses are obtained from acceleration time histories developed from appropriate response spectra and have been provided to Holtec. Figures 2-4 provide the acceleration vs. time inputs for the LTSP, the HE, and the DDE events, respectively.

The DDE time histories are obtained from the DE event by multiplying by 2.0. The maximum amplitudes of the acceleration time histories, in each of three directions, represent the Zero Period Acceleration (ZPA) values. The following values are obtained from a scan of the supplied time histories:

Report 111-2012618 22 G:.\Projects\1073

\AIS\REPORTS\H-II-2012618\Rev 5\Hi2012618r5.DOC LTSP HE Time History #1(horizontal E-W) Time History #2(horizontal N-S) Time History #3(vertical) 0.885 0.83 0.725 0.766 0.816 0.547 DDE 0.401 0.404 0.27 DE 0.2 0.202 0.135 Detailed dynamic simulations are performed herein only for the LTSP and the HE events as these events impart the highest loading to the anchorage components.

The following table summarizes the design inputs used for the analyses with the actual values used at the Diablo Canyon ISFSI: TABLE I INPUT DATA FOR SEISMIC ANALYSIS MODEL OF ANCHORED HI-STORM 100 SYSTEM Item Data Used Actual Value for DC ISFSI Cask height, inch 231.25 215" (Dwg. 1495 of [11.4]) Contact diameter at ISFSI pad, inch 146.5 146.5 (Dwg. 3187 of [1 1.4]) Overpack empty, wt. Kips 270 267.87 (Table 3.2.1 of[11.41)

Bounding wt. of loaded MPC, kips 90 88.135 (Table 3.2.1 of [1 .4]) Overpack-to-MPC radial gap (inch) 0.63 0.63 (Dwg. 1495, [11.4]) Overpack C.G. height above ISFSI 117.0 116.8 (Table 3.2.3 of [11.4]) pad, inch I Overpack with Loaded MPC -C.G. 118.5 118.5 (Table 3.2.3 [11.4]) above ISFSI pad (inch) Applicable Seismic Inputs Figs. 2-3 Figs. 2-4 No. of Anchor Studs. 16 16 Anchor Stud Diameter (inch); Yield 2.0; 105; 125; 62.8 2.0; 105; 125; 55-65 stress, ksi; Ultimate stress, ksi; Pre load tensile stress, ksi Interface Coefficient of Friction 0.25 0.25 (minimum per ASME NF, NF 3324.6) Cask Anchor Stud Spring Rate, 10,380 10,380 kips/inch Cask/Embedment Compression 65,880 58,660 Contact Spring Rate, kips/inch per stud Embedment Anchor Rod Spring Rate, 1,898 1,898 kips/inch Embedment/concrete Compression 25,250 25,250 Contact Spring Rate, kips/inch per contact point Effective Damping at ISFSI interface 4% steel; 7% concrete for HE Per Specification

[11.1] (assumed) 5% steel; 5% concrete LTSP Coefficient of Restitution for HI- 0.0 NA STORM/MPC Impacts (assumed)

Report HI-2012618 23 G :\Projects\1073\AIS\REPORTSTHI-201261 8\Rev 5MHi2O12618r5.DOC I

The cask anchor stud locations are provided in tabular form below. The locations are referenced to a coordinate system grounded at the center of the circular contact patch at the interface between the base of the cask and the top surface of the embedment.

The local Z-axis of this coordinate system is vertically upward. The embedment anchor rods have the same X-Y coordinate locations.

The sector lug geometry is detailed in Holtec Drawing 3570, Rev. 0. The following identifiers and X, Y coordinates locate the linear springs representing the 16 pre-tensioned cask anchor studs around the cask anchor stud circle. These coordinates also are the locators for the embedment anchor rods that tie the embedment plate to the concrete.

For the purpose of simplifying data input, these locations are determined by dividing the stud circle into thirty-two equal angular segments and identifying 16 locations for the actual studs and rods. These locations differ slightly from the locations identified on the cask drawings since the location and width of the air inlet ducts are not included in the model. These minor geometry differences have insignificant effect on the numerical results and conclusions.

Spring Number X(inch) Y(inch) 16 13.61 68.41 18 38.75 57.99 20 57.99 38.75 8 -38.75 -57.99 1 68.41 -13.61 10 -57.99 -38.75 11 -68.41 13.61 13 -57.99 38.75 15 -38.75 57.99 3 57.99 -38.75 5 38.75 -57.99 6 -13.61 -68.41 22 13.61 -68.41 24 -68.41 -13.61 26 -13.61 68.41 28 68.41 13.61 Report HI-2012618 24

\AIS\REPORTS\HI-2012618\Rev 5q-i2O12618r5.DOC The coordinates are defined in a X-Y system with X (east) and Y (north) and the center of the axes set located at the center of the stud circle. For example, studs 28, 20, 18, and 16 lie in the northeast quadrant.

Figure 5 pictorially locates the studs and rods around the stud circle periphery.

In the dynamic simulation model, each embedment anchor rod is simulated by a linear spring with a force- deformation relation of the form: F =-kS4 -cS where k, c are the spring constant and the damping coefficient (see Appendix A), and 8 is the local spring extension.

The resistance of the concrete against the lower surface of the embedment is simulated by a custom contact model in VN where each facet is assigned a force-deformation relation similar to that for the embedment anchor rods, but with appropriate spring constant and damping coefficient as computed in Appendix A. Subsection

7.2 contains

a sketch with a typical anchor rod and compression element representation.

Report HI-2012618 25 G-:\Proj ects\1073 5\Hi2O12618r5.DOC

6.0 COMPUTER

CODES The main section of this report is written using Microsoft Word (Office 2000), while the calculation appendices are prepared using MathCad (Version 2000 unless otherwise noted below), or are also written in MS Word and contain manual calculations and/or finite element results.

The following CAD and analysis codes have been used in the analyses:

CAD program -Solidworks 2000, Solidworks, Inc. VisualNastran 2001, MSC Corporation ANSYS 5.6, ANSYS, Inc. Matlab 5.2, Mathworks, Inc, 1997. Both VisualNastran 2001 (formerly known as Working Model 4-D) and ANSYS have been independently validated in accordance with Holtec QA requirements.

The CAD program is an established commercial CAD program used by Holtec for design and drafting tasks. Matlab is an established commercial code that is used herein to perform filtering of the results from VisualNastran.

Matlab has been previously employed for calculations in support of the rI-STAR SAR Part 71 submittal.

It is a widely accepted program with usages comparable to Mathcad and Excel.Report HI-2012618 26 G:\Proj ects\1073

\AIS\REPORTS\HI-2012618\Rev 5\Hi2012618r5.DOC

7.0 ANALYSES

The objectives of the dynamic seismic analyses are the following:

is Quantify the structural safety factor in the cask anchor studs and in the sector lugs that constitute the fastening system for the loaded rI-STORM 1 OOA overpack.

The structural safety factor is defined as the ratio of the permitted stress (stress intensity) per Subsection "NF" of the ASME Code to the maximum stress (stress intensity) developed in the loaded component.

ii. Compute the safety factor against fatigue failure of the cask anchor studs from a single seismic event. iii. Quantify the interface loads applicable to the ISFSI pad to enable the ISFSI owner to design the ISFSI pad. 7.1 Static Analyses Finite element analyses of the sector lugs, subject to preload and to a representative Level D load set, are performed to structurally qualify the sector lugs. Figure 8 shows the finite element mesh and the extent of the model. The stud hole in the lower annular ring (the extension of the overpack base plate) is not modeled; rather, the stud load is assumed as uniformly distributed over the area of the stud washer (not modeled) and the stiffening effect of the washer conservatively neglected.

The results from the finite element analysis are described in Subsection 9.1 below. A bounding stud load is used and it is conservatively assumed that there is local separation under the sector lug during a seismic event. 7.2 Dynamic Analyses The dynamic model of the HI-STORM 100SA System consists of the following major components.

Report HI-2012618 27 G:\Projects\1073\AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC it The HI-STORM 100 overpack, together with the underlying embedment plate is modeled as a six degree-of-freedom (rigid body) component.

The initially pre-tensioned cask anchor studs are assumed to maintain cask base and embednrnt plate interface contact.

ii. The loaded MPC is also modeled as a six degree-of-freedom (rigid body) component that is free to rattle inside the overpack shell. Gaps between the two bodies reflect the nominal dimensions from the drawings.

iii. The contact between the MPC and the overpack is characterized by a coefficient of restitution and a coefficient of friction.

For the dynamic analysis, the coefficient of restitution is set to 0.0, reflecting the large areas of nearly flat surface that come into contact and have minimal relative rebound. The coefficient of friction is set to 0.5 between all potentially contacting surfaces of the MPC/overpack interface.

The value employed for coefficient of friction is not critical since the internal impacts are essentially normal impacts.

iv. The embedment anchor rods, initially under zero tensile load, together with compression between the embedment plate lower surface and the ISFSI slab, provide the vertical connection between the embedment plate and the ISFSI slab. The embedment anchor rods are modeled as individual linear springs connecting the periphery of the embedment plate to the ISFSI pad section. As shown in Figure 1, the location of the embedment anchor rods mirrors the location of the cask anchor studs; the compression blocks shown in Figure 1 serve as the load transmission vehicle between the embedment anchor rod tension that arises from seismic loading and incremental changes in the cask anchor studs and the interface compression loads (at interfaces 1 and 2 in Figure 1). The resistance at the embedment/ISFSI pad concrete foundation is simulated by compression-only elements.

The spring rates for the embedment anchor rods and for the compression-only contact elements are developed in Appendix A. Appropriate structural damping is assigned using the appropriate percent of critical damping specified in [11.1]. Appendix A contains the calculation details to support the dynamic analyses model and the spring rates reported in Table 1 in Section 5 of this report. Appropriate shear resistance is imposed on the model to ensure that the embedment plate does not move laterally during the seismic event. A sketch of the interface modeling details is provided below: Report HI-2012618 28 G :\Projects\1073

\AIS\REPORTS\HI-2012618\Rev 5 \Hi2O12618r5.DOC SKETCH SHOWING DETAILS AT INTERFACE (Nomenclature per Appendix A) v. The ISFSI pad is driven with the three components of acceleration time history applied simultaneously.

Figures 2-4 provide the three components of excitation for the LTSP, HE, and DDE, respectively.

The DE seismic time histories are 50% of the DDE events. It is clear that the response from the LTSP and HE events provide the boumding loads to the anchorage; therefore, detailed results are presented only for these events. To evaluate the importance of directional effects on the responses, both the LTSP and the HE simulations are run twice with the only change being the negative of the vertical seismic time history is used in conjunction with the specified horizontal time histories.

vi. The initial preload applied to the cask anchor stud is assumed to be fully reacted at the compression interface and that any tensile load induced in the Report 1I-2012618 29 G:\Projects\1073

\AIS\REPORTS

\HI-201261 8\Rev 5\Hi2O12618r5.DOC I

embedment anchor rods during the preload will be lost since the concrete will undergo creep. This is a simplifying assumption that is justified in the analysis section of this report. The HI-STORM IOSA dynamic model described above is implemented on the public domain computer code VisualNastran (formerly known as Working Model) (See Subsection 3.6.2 of [ 1.4] for a description of the algorithm).

Figures 6 and 7 show the rigid body components of the dynamic model before and after assembly.

The linear springs are not shown. Mass and inertia properties of the rigid bodies are consistent with the bounding property values in Table 1. Dynamic analyses are performed using the design basis LTSP and HE acceleration time histories and then rerun with the vertical input direction reversed.

Results from the analyses are summarized in Subsection 9.2. The post-processing requirements are discussed below: The VisuaINastran (VN) dynamic analyses produce time history results for the tensile loads in each of N embedment anchor rods, and time history results for the total interface compression load between the base of the embedment and the ISFSI concrete.

The total interface compressive load reflects any local separation by evaluating the local separation at each facet point evaluated for contact, but there is no reporting of the offset of the total compressive load; hence, the effect of the resultant moment of the compressive load cannot be directly determined from a VN "meter". The results of the VN time history analyses are stored in Excel spreadsheet form and a separate computer code developed to post-process the results for the anchor rod tensions and the local compressions around the periphery so as to determine vertical load and overturning moment time histories for the embedment analysis.

Appendix C contains the Fortran code written to develop the desired results. The Fortran code has been validated specifically for this application by comparison with manual calculations.

In what follows, a description of the post processing of the seismic results is presented:

Report HI-2012618 30 G :.\Projects\1073

\AJS\REPORTS\HI-20 12618\Rev 5\Hi2O12618r5.DOC The inputs to the post-processor are from the VN seismic analysis; specifically, Time history results for N embedment anchor rod tensile loads Time history results for net compressive load at the embedment plate/ISFSI concrete interface (i.e., the sum of all compression loads at the interface compression element locations)

KB, KF, the embedment anchor rod and foundation spring rates The following quantities are defined: W ATj = ACi = rod location xiYi = AV AM = N = C =dead weight of loaded HI-STORM 100 SA incremental tensile load in Ih embedment anchor rod incremental compressive load on embed plate at each embedment anchor x, y coordinates of Ib embedment rod centerline incremental net load (vertical) on embedment plate lower surface incremental net bending moment on embedment plate lower surface number of cask anchor studs (and embedment anchor rods) Current compression

-dead weight applied to embedment

= ZACi The configuration shown below represents the cask and the embedment plate. The applied loading at the plate/concrete interface is a vertical force W+AVe and an overturning moment AM,. The vertical force is made up of dead weight plus any incremental vertical reactions from seismic loading. The incremental overturning moment arises only from seismic loading. These net forces and moments are balanced by the tensile loads in the embedment anchor rods and the interface compression loads that are calculated from the dynamic simulation.

The free body below shows the incremental loads from the anchor rods and the interface compression balancing the applied seismic loading. The vertical reaction balancing the dead weight is not shown. The assemblage of rod tensions and interface compression loads around the periphery are equivalent to, and can be replaced by, a net incremental load and a net incremental moment. We now seek Report HI-2012618 31 G:.Projects\1073\AIS\REPORTS\HI-2012618\Rev 5V-i2012618r5.DOC to determine the incremental load and moment AV and AM as it is more convenient to describe the interface loads in terms of net force and moment rather than individual anchor rod loads and compression interface loads. FREE BODY AT TIME "T" (Incremental Loads Only) Embedment structure interface with ISFSI pad AT.-AC. I I Under the seismic action, the external incremental loads cause increments ATi and ACi to develop around the periphery of the embedment anchor rod circle, and an overturning moment develops since these incremertal anchor rod and interface compression loads that react the applied load vary around the periphery.

Since the "stretch" of the embedment anchor rod is equal to the "compression" of the local interface, as long as there is no interface separation, the following relation between the incremental embedment anchor rod tension and the incremental embedment/ISFSI pad interface compression holds: Report HI-2012618 32 G :\Projects\1073

\AIS\REPORTS\HI-2012618\Rev 5\Hi2012618r5.DOC AT_ AC K, KF (1) Replacing the contributions from the individual tension and compression elements with the net force and moment gives the equations:

AV=ZAC -EAT (2) The above equation defines the incremental vertical load. Noting that IACi = C, the change in vertical load is AV = C -YEAT (3) Similarly, the resultant moment is defined by the contributions from the individual elements and produces the defining relation:

AM = x(AT -AC,)X (4) Using equation (1), when there is no separation at any stud location, gives the result: Au =zx,( I+ KF T. 5 KB(5) The above relation holds as long as there is no separation under the embedment anchor rod at the interface.

Since embedment anchor rod preload is removed by concrete creep, the initial compression at the interface, at the start of a seismic event, is simply the total cask weight divided by the total compression stiffness at the interface.

Define this initial compression as "Do" so that Report HI-2012618 33 G \Proj ects\1073

\AIS\REPORTS\HI-2012618\Rev 5\g-i2012618r5.DOC Do = W/(KF)Local separation is evaluated by comparing Do with the computed extension of the anchor rod "Dr", where a- = AT /(KB) (7) If Dr > Do, then there is local separation and the total change in compression at the local interface is limited to KF x Do at that instant of time. The above relationships have been incorporated into a post-processing computer code (see Appendix C). With the time history of the ensemble of embedment anchor rods established, the maximum tension load in the embedment anchor rods can be established and an evaluation of the effect of the preload and the embedment anchor rod loads on the state of loading at the interface between the compression block and the embedment plate and between the embedment plate and the cask sector lug flange. Consider a free-body of the compression block associated with the embedment anchor rod having the maximum tensile load over the seismic event duration.

Define this maximum tension as "R". At the instant of time when the maximum tension occurs, equilibrium of the compression block (see Figure 1), the preloaded cask anchor stud and the local interface compression load together provide force equilibrium.

We neglect the small amount of compression that may exist at the block/concrete interface.

Define To as the initial cask anchor stud preload and Co as the corresponding interface local compression load. The values associated with these initial loading are assumed to be the values after any initial tensile loads in the embedment anchor have relaxed due to creep of the ISFSI concrete.

The change in these loads necessary to ensure compression block force equilibrium is designated as DT and DC, respectively.

Therefore, the free-body of the compression block is (neglect small contribution from compressive loads at the embedment/concrete interface) under a change in anchor rod tension DR is: Report 11-2012618 34 G:.\Projects\1073

\AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC (6) 0 Interface

  1. 2 Co+DC I .. Compression Block From the analysis in Appendix A associated with the cask/embedment connection (interfaces 1 and 2 in Figure 1), spring rates for the cask anchor studs and for the interface compression resistance have been computed.

Identify these spring rates as "KbJ" and "keffr", respectively (consistent with the nomenclature in Appendix A) and note that compatibility of displacements at the interface requires that DT DC Kb] kej (8)Therefore, the embedment anchor rod tensile force change "DR" is accommodated by changes in cask anchor stud tension "DT" and local interface compression, "DC" as follows: DT = KbI )DR keff I +Kb1 DC = (- -)DR keff, + Kb]Since keff > Kb1 (see calculation in Appendix A), it is clear that the embedment anchor rod tensile loads are primarily accommodated by a decrease in the compression at interface

  1. 2 (and #1) rather than a large increase in cask anchor stud tension. Separation at interface
  1. 2 will not occur as long as Report HI-2012618 35 G :\Projects\1073

\AIS\REPORTS

\HI-201261 8\Rev 5\Hi2O12618r5.DOC (9) keff I CO -DT- > 0 (10) Kbl Therefore, since the initial interface compression is equal to the cask anchor stud preload (after creep of the concrete under the embedment plate has occurred so as to eliminate any preload induced in the embedment anchor rods by the preloading of the cask anchor studs), separation at the metal-to-metal interfaces occurs when the change in stud tension, DT, satisfies:

DT> To Kb- (11) keýff I Equation (11) permits the computation of the maximum incremental cask anchor stud tension that will lead to local separation at the cask/embedment plate interface and at the embedment plate/compression block interface.

We now consider the initial preload operation.

The following sketch shows the compression block subject to initial preload "Tp" in the cask anchor studs, which is resisted by interface compression "Cp", and induced tension "Rp" in the embedment anchor rod.Report HI-2012618 36 G:\Projects\1073

\AIS\REPORTS\HI-2012618\Rev 5\-i2012618r5.DOC U COMPRES BLOCI I I1I S1ON ,Tp Cp I i ,- 4 t F Rp The equilibrium equation is Tp = Cp +Rp Tp is assumed to be specified and Cp and Rp are related to "u", the average movement of the compression block, by the relations:

Cp = kfn u Rp=Kru Report HI-2012618 37 G :-\Projects\1073

\AIS\REPORTS\HI-20 12618\Rev 5\H-i2012618r5.DOC W

The stiffness values for the compression elements and for the anchor rod are given in Appendix A. Solving the three equations for u, Cp, and Rp gives the results: Cp- T 1 + Kr 1+ KFl Kr Tp Pp= keffl l+ Kr Ike.ff From Appendix A, the cask anchor stud stiffness divided by the interface compression stiffness is: KB- = 0.177 keip Since the nominal diameters of the cask anchor stud and the embedment rod are equal, the ratio of anchor rod stiffhess interface to interface compression stiffness (based on elastic length) is: K, = 0.177x 8.296875" = 0.030595 keff1 48" Using the value, Tp = 157,000 lb. (approximate value per stud simulated in dynamic analysis) with the appropriate stiffness ratios, gives Cp = 0.970314 Tp = 152,339.2 lb.Rp = 0.029686 Tp = 4,660.7 lb.The anchor rod tension that develops is resisted by the cone of concrete surrounding the anchor rod. Since concrete will creep, the anchor rod induced tension, "Rp", will relax over time and the initial preload and the interface compression will change to Report I1-2012618 38 G:\Projects\1073

\AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC accommodate the relaxation.

The sketch below shows the configuration during the relaxation period. T+dTo Cp+dCo u+du COMPRES SON BLOCl% Rp-dR The equilibrium equation relating the incremental changes in load, after using the relation between Tp, Cp, and Rp, is: dTo =dCo -dR ; dR = Rp (complete relaxation of the anchor rod load) We also make use of the incremental force-deflection relations:

dTo = -KBi x du dCo = k1ff x du Ti.,,- )fl'3 1 I 0 Pr7vo 07T L je-cu 107 I12 39 G.\Projects\1073

\AIS\REPORTS\I-I-2012618\Rev 5 \t-i2012618r5.DOC The solution for the incremental load changes is: KýB, dTo -k+ K I -RP = -0.150382x4,660.71b.

= -700.8871b.

dCo -.Rp 3,959.8131b.

1+ KBIlff Therefore, after the relaxation has occurred, the cask anchor stud preload and the interface compression between the cask and the embedment and between the embedment and the compression block have the values: TO = Tp + dTo = 156,299 lb. CO = Cp +dCo = 156,299 lb The above computation demonstrates that there is a 0.445% difference in the preload due to the presence of the embedment anchor rods during the initial preloading of the cask anchor studs. This small difference is ignored in the remaining analyses.

Returning to equation (11), above, the incremental cask anchor stud tensile load, prior to local separation at the base of the overpack, is calculated as: DT = 27,789 lb. The results of the post-processing are unfiltered results that contain high frequency peaks due to the large stiffness values associated with the interface.

While it is recognized that these peaks appear to be correlated in time with MPC-to-Hi-STORM impacts, for structural analysis purposes and comparison with allowable stresses appropriate for static load scenarios, the results are filtered at 40Hz, a frequency that ensures complete capture Report 1I-2012618 40 G:\Projects\1073\AIS\REPORTSTHI-2012618\Rev 5\-i20 12618r5.DOC of the input energy content from the input seismic excitation.

The commercial code MATLAB is used to filter the results from the postprocessor.

Appendix C contains a typical file for the MATLAB session. The input is the output time histories of the vertical force and moments from the Fortran code in Appendix C and the output is a direct plot of the unfiltered and filtered results on a single plot. This particular "m" file has previously been used to support the data analysis of the HI-STAR impact limiter tests described in the HI-STAR 100 SAR (1OCFR71 application).

Report IE-2012618 41 G:-\Projects\1073

\AIS\REPORTS\HI-2012618\Rev 5\-i2012618r5.DOC

8.0 COMPUTER

FILES All relevant computer files associated with this calculation package are archived on the Holtec Server. A directory listing of computer files is given below: The seismic zip files contain individual VN files and excel spreadsheets with all meter data. The post-process zip file contains all files associated with the post-processing.

This report, appendices, and zip files for the finite element runs are found in the directory:

Projects\1073\ais\reports\hi2O01261 8\revl. This directory was created on 3/1/01 A listing appears below: Report HI-2012618 42 G :\Projects\1073

\AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC S-i~ REV 1 Select an item to view its description.

See also: Documents My Network Places My Computer Siz I " Tp Modfi 1 Name _. ~$2012618rl.DOC C.Anchor Figures.doc jrANCHOR-1jpg kIAPPENDA revl.mcd -jAPPENDB.doc C-.: APPENDC.doc

%Cover Page. pdf C FIGURES for REV... ITHE Accel 4-7% IS... *]HE NegVT postxls jHENE~postxls

K hepost xIs @jHi2012618r1.DOC El Hi2012618rl.zip SLTSP Accei 5-5Z I... lItsp figs.doc ;] tspposlxls b= MX-HEOUT.Ixt IM MX-ltspnegOUT.txt Of MX-LTSPOUT.txt UBj MX-NEGHEOUT.txt

-MX-NEGLTSPOU...

[MY-HEOUT.

xt LMY--spnegOUT.txt 0MY-LTSPOUT.txt SMY-NEGHEOUT.Ixt SMY-NEGLTSPOU...

SNeg HE Figs.doc INEG HE VT 02-21... LTSP FIGS.doc LTSP VT 2-2.. ,]NEG LTSP VT po... CNegltspposLxls Spostprocess 2-24-...

M Poststud.exe

._m POSTSTUD.FOR Crelfigs.doc For revision 2, the relevant files are located in the directory Projects\l 073\ais \reports Vi201261 8\rev2. A listing appears below: I Report HI-2012618 43 GA\Projects\1073

\AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC 1 KB Microsoft Word Doc... 184 KB Microsoft Word Doc... 136KB JPEGlmage 119KB Mathcad Document 59 KB Microsoft Word Doc... 71 KB Microsoft Word Doc... 10KB Adobe Acrobat Doc... 510 KB Microsoft Word Doc... 78,438 KB WirZip File 4,550 KB Microsoft Excel Wor... 8,797 KB Microsoft Excel WoL.. 8,823 KB Microsoft Excel Wor... 25.979 KB Microsoft Word Doc... 7,123 KB Wirnip File 75,227 KB WinZip File 115 KB Microsoft Word Doc... 8,797 K8 Microsoft Excel Wor... 488 KB Text Document 487 KB Text Document 488 KO Text Document 488 KB Text Document 488 KB Text Document 488 KB Text Document 487 KB Text Document 488 KB Text Document 488 KB Text Document 488 KB Text Document 114KB Microsoft Word Doc... 75,105 KB WinZip File 118 KB Microsoft Word Doc... 75,477 KB WinZip File 11,989 KB Microsoft Excel Wor... 8,799 KB Microsoft Excel Wor... 43.082 KB WinZip File 408 KB Application 5 KB Fortran Source File 149 KB Microsoft Word Doc...* 3/1/2001 4:11 PM 2/20/2001 1242PM 2/23/2001 5:09 PM 3/1/20011:55 PM 1/31/2001 12:24AM 2/28/2001 7:49 AM 1/31/2001 2:46 PM 2/24/2001 12-53 PM 2/20/2001 9:12 AM 2/24/2001 11:50 AM 2/26/2001 3:26 PM 2/25/2001 1:21 PM 3/1/2001 3:47 PM 3/1/2001 3:49 PM 2/20/2001 8:24 AM 2/26/2001 11:15AM 2/26/2001 352 PM 2/23/2001 12 35 PM 2/25/2001 11:54 AM 2/24/2001 10:16 AM 2/24/2001 11:27AM 2/24/2001 12-29 PM 2/23/2001 1237 PM 2/25/2001 12:15 PM 2/24/2001 10:23AM 2/24/2001 11:37AM 2/2412001 12:35 PM 2/26/2001 7:49 AM 2/22/2001 7:40 AM 2/25/2001 12:21 PM 2/24/2001 7:44 AM 2/24/2001 12:13 PM 2/25/2001 1:1G"PM 2/26/2001 3:54 PM 2/25/2001 1:25 PM 2/25/2001 1:23 PM 2/5/20018:38 AM Size I Tvpe.I Modified Size Typ 1 Modified REV2 Select an item to view its description.

See also: Documents

t. Network Places My Computer C] sectorLug FEA k[1 APPENDA revl.mcd @)APPENDB.doc 91APPENDBr2.doc .jAPPENDC.doc

'M Cover Page.pdf fK Hi2Ol2618r2.DOC linterface.vsd

%interim rev2 texLpdf 119KB 59 KB 58 KB 71 KB 1OKB 56,371 KB 18KB 12,279 KB File Folder Mathcad Document Microsoft Word Doc... Microsoft Word Doc... Microsoft Word Doc... Adobe Acrobat Doc... Microsoft Word Doc... VISIO 4 Drawing Adobe Acrobat Doc...5/4/2001 2:22 PM 3/1/2001 1:55PM 1/31/2001 12:24AM 4/4/2001 318 PM 2/28/2001 7:49 AM 1/31/2001 2:46 PM 4/29/200110:43 AM 4/5/2001 8:40AM 5/4/2001 9:22AM The finite element analyses results for the revised sector lug analyses are located in the following directories:

\projects\1073\jz\sector lugs\preload\final run"LV Li Final-Run Select an item to view its description.

See also: My Documents My Network Places My Compute SAnchor-PIAV.inp

  • ,i'Loadipg jýSx-LGussetjpg

ýSg-Lfing.hg LASx.R~usset.jpg jSx U Rring jpg -fSy-BPIate.jpg Sy-LRing.k

.Sy-shelLjpg iSy-URingipg Lf Sz-RGusseLjpg SiSz-shelL[pg I- ."Size I Type 7KB 124KB 122 KB 53KB 45KB 46 KB 47KB 44 KB 44 KB 46KB 47KB 45KB 44 K 44KB 45KB 45KB INP Re JPEG Image JPEG Image JPEG Image JPEG Image JPEG Image JPEG Image JPEG Image JPEG Image JPEG Image JPEG Image JPEG Image JPEG Image JPEG Image JPEG Image JPEG Image 4/62001 3:25 PM 4/6/2001 324 PM 4/6/2001 315 PM 4/6/2001 a.32 PM 4/6/2001 3:49 PM 4/6/2001 345 PM 4/6/2001 3a42 PM 4/6/2001 3:48 PM 4/6/2001 3:41 PM 4/6/2001 350 PM 4/6/2001 3a.42 PM 4/6/2001 336 PM 4/6/2001 340 PM 4/6/2001 3-46 PM 4/6/2001 3:47 PM 4/612001 3a35 PM Report {H1-2012618 44 G:\Projects\1073

\AIS\REPORTS\HI-20.1261 8\Rev 5\H-i2012618r5.DOC

'.S .ize I 'Tvpe, I .Modified

\projects\1073\jz\sector lugs\seismic\final run Li Final-Run Select an item to view its descption.

See also: My Documents My Network Places MY Computer Name RAnchor-S2WV.inp .NewModeljpg Lf Sint-BPlate.jpg gSint.G.jpg

! Sint-LGusse.jpg 2Sint-LRing.jpg

.4Sint-RGusset.jpg J' Sint-shell.jpg

.Sint-URing jpg .Sz-shelljpg Size I I Modilied 7KB 194 KB 45 KB 63KB 46 KB 49KB 45 KB 61 KB 44KB 53KB INP File JPEG Image JPEG Image JPEG Image JPEG Image JPEG Image JPEG Image JPEG Image JPEG Image JPEG Image 4/5/2001 4:40 PM 4/5/2001 1:11 PM 4/5/2001 4:53 PM 4/5/2001 4:46 PM 4/5/2001 4:52 PM 4/5/2001 4:50 PM 415/2001 4:53 PM 4/5/2001 4:48 PM 4/5/2001 4:49 PM 415/2001 4:47 PM For Rev. 3, only the main text was updated to incorporate comments.

The directory listing is \projec~ts\1073

\ais\reports\hi201261 8\rev3 Naeý Size- Jipe I jHi201218r3.DOC jResponse to Cornm. Yfev3doconly.zip 53,186KB Microsoft Word Doc... 6/17/20018:12AM 1,874 KB Microsoft Word Doc... 6/17/20018:11AM 12,817KB WirZip File W/17/20018:15AM For revision 4, there were only text changes -the updated file is in \projects

\1 073\ais\reports\hi2O12618\rev4 (see footer).

For Revision 5, the revised Main Text and the revised Appendix A are located in the new subdirectory.

All other files that are unchanged remain in their respective directories above. \projects

\1 073\ais\reports\hi2O12618\rev5 (see footer).REV3 Report HI-2012618 45 G.\Proj ects\1073

\AIS\REPORTS\HI-2012618kRev 5-Hi2012618r5.DOC I.........

._ _Isi~e I -Type

9.0 RESULTS

OF ANALYSES 9.1 Quasi-Static Analyses A conservative assessment of the safety factors in the sector lugs under stud tension is obtained by performing a finite element analysis of a repeated element of one of the sector lugs containing a pretensioned stud. Figure 8 shows the modeled section and the finite element mesh and boundary conditions.

The sector lug portion modeled involves two gussets, and the associated IR-STORM shell section encompassing 50% of an inlet air duct and one-half of the structure between the stud being simulated and the next stud around the periphery.

Figure 9.1 shows the loads applied for the preload condition.

For the load case simulating preload, the bounding stud load of 160 kips is applied as a uniform pressure applied over a 5"x 5" section of the extended baseplate simulating the washer between two gussets. The balancing loading from the interface is applied as a pressure over the extended baseplate flat plate surface between the adjacent gussets. For the load case involving preload plus seismic excitation, the bounding case of local separation is considered and a load conservatively equal to the stud capacity is applied as a uniform pressure load over the 5"x 5" load patch simulating the washer. The most limiting segment of the sector lug is the portion containing one stud that is adjacent to an inlet duct. Two cases are considered:

(1) the pre- loaded state (a Normal Condition of Storage-Level A stress limits apply); and, (2), the seismic load condition at the location of the maximum tensile load in a stud (an Accident Condition of Storage -Level D stress intensity limits apply). Figures 9.2-9.14 and 10.1-10.9 present stress results for the following representative load conditions, respectively.

Level A Analysis -Preload /stud = 160 kips (bounds the applied preload of 157 kips). Level D Analysis -Maximum Load Per Stud = 214.4 kips (bounds computed load and is slightly below the ultimate capacity of 215.6 kips computed in Appendix A)Report HI-2012618 46 G:.\Projects\1073

\AIS\REPORTS\HI-2012618\Rev 5 \Hi2012618r5.DOC In the Level A analysis, the resisting local foundation pressure exactly balances the preload. For the Level D analysis, local separation is conservatively assumed (it is demonstrated in Subsection 9.2 that there is no separation) and a bounding load approximately equal to the limit load permitted for the stud (70% of stud material ultimate strength) is assumed. The use of this load permits evaluation of the HI-STORM sector lug stress state under tensile load independently from the results of the various dynamic analyses.

The ANSYS input files are given in Appendix B. The discussion below details how the safety factors for the sector lug are computed.

Table 2 is a summary of the key results Allowable values are from Tables 3.1.10 and 3.1.12 of [11.4] for SA-516 Grade 70 @ 200 degrees F. The results reported in the stunmary table below are based on visual examination of applicable figures for each load case. For the preload case, primary and secondary stresses are considered.

However, as Level D evaluations consider only primary membrane and primary bending stresses, secondary stresses arising from discontinuity stresses arising in the sector lug flat plate sections are disregarded in the evaluation of safety factors. For the fatigue evaluation, however, local stress intensities near the shell connection and adjacent to the load patch are considered.

Finally, it is noted that since the results presented in Subsection

9.2 demonstrate

that the maximum cask anchor stud load will not exceed 165,000 lb., computed safety factors in Table 2, based on the ultimate capacity of the stud as a load input, may be fir-ther amplified by the multiplier 1.31 (see calculations in Subsection 9.2 below). For the preload case, the ASME Code stress limits are based on maximum stress; Figure 9.2, however, provides a sense of the state of stress in the component under preload by a stress intensity plot for the entire component modeled. Figures 9.3-9.14 provide the individual surface stresses on the structural members making up the sector lug region under study. The largest stress computed anywhere in the sector lug is a circumferential stress in the lower annular plate section under the loaded region (Figure 9.6). The Report HI-2012618 47 GA.Projects\1073\AIS\REPORTS\

HI-2012618kRev 5%Hi2Ol2618r5.DOC allowable stress for this primary bending stress is 1.5 x Code allowable membrane stress at temperature.

Table 2 provides the computed safety factor. Independent confirmation of the magnitudes of the applied loading is provided by a compilation of the vertical reactions at all nodes restrained in this direction.

As expected, the net vertical reaction at restrained nodes is zero. For the seismic load case where separation is assumed to occur, Figure 10.1 documents the surface stress intensity state for the entire modeled sector lug. A check of the net vertical reaction load at the restraint nodes provides confirmation that the correct maximum stud capacity load has been used as the input load. We note the existence of large values for surface stress intensity near the region directly loaded by the stud, at the joint between the upper annular ring and the shell, and at local points where sharp comers appear in the model. These last areas are not considered as the large stress intensities arise solely from the neglect of comer radii in the finite element model. Therefore, for evaluation of primary stress intensity safety factors, we need consider only the results from Figures 10.2, 10.3, and 10.7 that show the distributions for the baseplate and lower annular ring, and for the overpack shell. Specific results used herein are obtained from visual evaluation of the graphical results. From Figures 10.2 and 10.3, the stress intensity in the baseplate and annular ring, at the location of the overpack shell connection, is 48,309 psi. From Figure 10.3, the stress intensity under the load is 43,010 psi. The extent of circumferential length over which a stress state should be considered as primary at this location is established from the following figure that shows a portion of the lower annular ring and the stud location between two gussets and the overpack shell viewed from above.Report HI-2012618 48 GX:Projects\1073

\AIS\REPORTS

\HI-2012618\Rev 5\Hi2012618r5.DOC Le Stud Assuming that the "region of influence" of the stud extends back to the overpack/shell joint at a 45-degree angle, the result for "Le" is 9 inches. Although the gussets are not shown in Figure 10.3, it is easily established that the extent of the region stresses to 48,309 psi is about 50% of "Le". Therefore, the safety factor in Table 2 for primary stress intensity in the baseplate/lower annular ring is computed using 43,010 psi. Now consider the surface stress intensity in the overpack shell in the region above the sector lug upper annular ring shown in Figures 10.1 and 10.7. The maximum value is 86,641 psi but clearly this value is applicable only for a fatigue evaluation.

To differentiate between primary and secondary state of stress intensity, we note that the "bending boundary layer" in a shell is proportional to (Rt)"/2 with a proportionality factor of at least 2 usually applied. For the shell dimensions R=66.25" and t=-0.75", (Rt)'" = 7.05". Therefore, stress intensities closer than 7.05" (in the vertical direction) to the annular ring and less than 14.1" in circumferential extent are clearly of a secondary nature. Based on the above consideration, from Figures 10.1 and 10.7, the primary stress intensity is set at 43,722 psi for the purpose of establishing the Level D safety factor. A review of the results for the remaining components of the sector lug shows no higher primary stress intensity state. The key results are summarized below: Report HI-2012618 49 G:\Projects\1 073 \AIS\REPORTS\HI-201261 8\Rev 5\Hi2O12618r5.DOC TABLE 2

SUMMARY

OF RESULTS FOR SECTOR LUGS FROM STATIC FEA EVALUATION Item Calculated Allowable Safety Factor = (Allowable Value from Value Value/Calculated Value) FEA from FSAR "Maximum Primary Membrane + 10.23 26.3 2.57 Bending Stress (ksi) -Case 1 Preload (Figure 9.6) Maximum Primary Membrane + 43.01 62.3 1.45 Bending Stress Intensity in Lower Annular Ring Away From Discontinuity (ksi) -Case 2 -Stud Capacity (Figure 10.3) Maximum Primary Membrane + 43.72 62.3 1.43 Bending Stress Intensity Overpack Shell Away From Discontinuity (ksi) -Case 2 -Stud Capacity (Figures 10.1 and 10.7) Maximum Baseplate Shear Stress 10.21 29.4 2.88 (ksi) (Appendix A, Sec. 5) Maximum Weld Shear Stress -26.997 29.4 1.089 Lower Annular Ring-to-Gussets and Overpack (ksi) (Appendix A, Sec. 5) Maximum Weld Shear Stress -23.482 :29.4: t1.518 Gusset-to-Overpack Shell (ksi) _(Appendix A, Sec. 5) Maximum Secondary Stress 86.64 Fatigue Not Applicable Intensity (ksi) Fatigue Evaluation (Figure 1037) The most limiting weld stress is obtained by evaluating the available load capacity of the fillet weld attaching the extended baseplate annulus region to the gussets and to the shell. In Appendix A, this weld calculation is performed for the cask anchor stud loading based on the Level D limit stud load. Figures 10.8 and 10.9 are used in the weld analysis to evaluate the moment at the base of the gusset about a radial axis.Report HI-2012618 50 G :\Projects\1073

\AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC

9.2 Dynamic

Analyses Figures 11 through 46 show results of the dynamic analysis using the design basis seismic time histories as input accelerations to the ISFSI pad. Figure 1 -19 present results for the LTSP event, Figures 20-28 present results for the HE event, Figures 29-37 present results for the LTSP event with vertical seismic excitation direction reversed, and Figures 38-46 present results for the HE event with vertical seismic excitation direction reversed.

We note that the dynamic simulation, which uses an impulse-momentum relationship to simulate the rattling contact between the MPC and the HI-STORM, leads to results having a number of sharp peaks during the high intensity period of the motions that are found to correspond to lateral and vertical impacts of the MPC. As noted earlier, given that the stress intensity limits in the Code assume static analyses, filtering of the dynamic results is certainly appropriate prior to comparing with any static allowable strength.

To ensure capturing all seismic energy content (primarily occurring at a frequency below 25 Hz), a filtering frequency of 40 Hz is applied to the interface compression, to the overturning moments, and to the embedment anchor rod tension loads. Subsequent combinations of these quantities to form net moments and shears are made using the filtered results from the simulations.

The interface loads and moments at the embedment/ISFSI pad concrete interface are summarized in tabular form in Table 3. These interface loads are obtained from the post processing algorithm established in Section 7. Graphical results for the interface loads and moments are reported for both unfiltered and filtered (after removal of higher frequency (above 40Hz) peak values). The filtered results are obtained directly from the output graphics from the Matlab processing (note that the title on each Matlab graph reports the filtered peak values).

Report HI-2012618 51 G-:\Proj ects\1073

\AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC TABLE 3 I SEISMIC EVENT AT ISFSI JHE Maximum/Minimum Interface 674.2/127.6 684.1/105.8 773.3/130.6 632.0/55.6 Compression Force (kips)***

Maximum Interface Shear Force 509.4 432.0 379.9 325.8 Along X axis (kips)

  • Maximum Interface Shear Force 460.5 355.5 426.1 364.6 Along Y axis (kips)* I Maximum Net Interface Shear 515.0 440.0 428.0 390.0 Force (kips) _ _ __ Maximum Interface Moment 54,564 42,139.2 50,498 43,209 About X Axis at Interface (kip in.) Maximum Interface Moment 60,369 51,197.2 45,017 38,603 About Y Axis at Interface (kip in.) Maximum Net Interface 61,000 52,000 50,500 46,000 Moment (kip-in) I I Effective COF at 0.180 0.154 0.150 0.132 Cask/Embedment Interface mviaxinum .I ensue Load m Embedment Anchor Rods (kip)62.13 48.85 49-73 42.34* Base Maximum Shear forces are computed by dividing the appropriate maximmn moment by the height to the centroid (118.5 inch). Y-Shear goes with MX, X-Shear goes with MY. ** These simulations have the vertical excitation reversed in direction over the total event time. *** Includes dead load = 360,000 lb. Subsequent to the anchored cask analyses, it was determined that the Hosgri seismic event at 7% damping required scaling-up by 7% [Reference 11.14] in order to meet SRP 3.7.1 spectral matching criteria; the Hosgri time histories for 4% & 5% damping, however, need no scaling [Reference 11.14] to conform to SRP 3.7.1 spectral matching requirements.

The LTSP seismic event, which does not provide bounding loads for the pad design, needs scaling at 5% [Reference 11.14] in order to completely satisfy SRP criteria.

We note, however, that the LTSP does not provide the bounding inputs for the pad design; this remains true even if the results for the LTSP input are scaled up by 5%. If we therefore limit discussion to the bounding HE, in order for the results reported in Table 3; to be completely in conformance to the regulations, no more than 5% damping should be associated with the cask/concrete compression interface (the reported results are based on 4% steel/ 7% concrete damping for the Hosgri event per Appendix A). It is Report HI-2012618 52 G:\Projects\1 073 \AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC LTSPT.TRP**

our considered opinion, based on engineering judgment that the effect of a decrease in the damping at this location (all other damping values are at 4%) would lead primarily to additional amplifications only for high frequency contributions.

Since the results of interest for pad design are filtered to remove components above 40 Hz, we expect that a damping reduction at the concrete/cask interface will have negligible effect on the results reported in Table 3. The maximum net shear at the base of the embedment plate is 515 kips. Based on the bounding cask weight of 360 kips, we see that the effective "g" loading on the cask is Getf= 515/360 = 1.43 It is clear that the cask design basis deceleration level (from the FSAR) of 45 g's is not exceeded during the seismic event. Subsection 3.4.7.1 of [11.4] presents stress results for a load of 169.2 kips applied at the center of a cask that is considered fixed to the ISFSI slab. The maximum membrane stress in the overpack steelwork due to this lateral load is computed in [11.4] as S = 1,573 psi Therefore, under the amplified lateral load induced by the seismic event, the HI-STORM shell metal stress is S1 = S x 515/169.2

= 4,788 psi From Table 3.1.12 of [11.4], the allowable primary membrane stress intensity

(@ 350 deg. F) is 22,100 psi. Therefore, the safety factor for the HI-STORM metal shell is: SF = 22,100/4,788

= 4.62 Report 1I-2012618 53 G :\Proj ects\1073

\AIS\REPORTS'J-I-2012618aRev 5\Hi2012618r5.DOC Figures 19, 28, 37, and 46 are plots of the net shear/current compression force at the steel-to-steel interfaces

  1. 1 and #2 (see Figure 1) based on the assumption that the computed compression force at the base of the embedment plate, including the dead weight, is simply increased by the initial steel-to-steel compression force from the pre load in the cask anchor studs (16 studs x 157 kips/stud

= 2,512 kips). The four figures essentially define the coefficient of friction that must exist at the cask/embedment plate interface in order to ensure that there is no relative sliding at that location.

From the simulations performed, the largest required value for the coefficient of friction, summarized in Table 3, is 0.18. In accordance with the ASME Code [11.6, NF-3 324.6, Table-3324.6 (a)(4)-I], for studs used as frictional joints, we have conservatively assumed interface frictional resistance to be a maximum of 25% of the normal force at the interface (i.e., a minimum coefficient of friction of 0.25 can be assumed to exist at the interface).

Therefore, the ratio of minimum available friction coefficient to required friction coefficient is: 0.25/0.18

= 1.39 We now examine the steel-to-steel interfaces to ascertain whether there is any local separation between the embedment plate and the compression block and the cask and the embedment plate. As shown in Section 7, the embedment anchor rod tensile load is reacted by a change in tension in the preloaded cask anchor studs and a change in compression at the steel-to-steel interfaces between the cask and the embedment plate and between the embedment plate and the compression blocks. To evaluate the load swing in the cask anchor stud capacity, we note from Table 3 that the maximum excursion in any embedment anchor rod tensile force, "R", is: R = 62.13 kips Using this value, together with equation (11) in Section 7, and stud and interface stiffness computed in Appendix A, Sec. 2.3, the increase in cask anchor stud tension and the corresponding decrease in. the local interface compression is: Report HI-2012618 54 G:.\Projects\1073\AIS\REPORTS\IHI-2012618\Rev C = -0.85 x R = -52.8105 kips It has been shown that interface separation will not occur until the incremental change in cask anchor stud tension exceeds Tmx = 27,789 kips Therefore, we can define a safety factor against local separation at the cask/embedment plate interface as: SF = Tmxl/T = 27.789/9.3195

= 2.982 Note that this safety factor is simply a measure of the effectiveness of the preload; there is no regulatory requirement that needs to be met. We now evaluate the safety factors associated with the stud under thr loadings associated with maximum filtered tensile load (anywhere).

Incorporating the incremental change, T, in the cask anchor stud, the maximum cask anchor stud tension is: Stud Tension = 157 kip + 9.3195 kip = 166.32 kip. Under seismic action, the permitted stud load is 215.6 kip (see Appendix A); therefore, the safety factor on cask anchor stud tension is: SF = 215.6/166.32

= 1.296 In accordance with the ASME Code, no shear force need be considered in the stud since the joint has been shown to function as a frictional joint.Report FI-2012618 55 G :\Proj ects\1073

\AIS\REPORTS\HI-2012618\Rev 5\Hi20 i2618r5.DOC T = 0. 15 x R = 9.3195 kips;-

Finally, we evaluate the propensity for a fatigue failure under the action of a design basis seismic event. We perform an evaluation of the stud under the expected tensile stress oscillations and a corresponding evaluation of the sector lug. Examination of the four figures showing the embedment anchor rod tensile loads enables identification of a conservative number of stress cycles to characterize fatigue damage. We can conservatively identify 20 stress cycles thit could be considered as contributing to fatigue damage during a seismic event. A maximum load range of 9,320 lb in the cask anchor studs can therefore be identified as bounding for a fatigue calculation.

A maximum fatigue reduction factor of 4 is appropriate for the studs (per ASME Code rules). Therefore, a conservative analysis of fatigue for the stud is based on an alternating stress range (stress area of stud = 2.5 sq. inch) of: S(alt) = .5 x (3,728 psi) x 4 = 7,456 psi for 20 cycles (conservatively assume full range for all 20 cycles).

The ASME Code Subsection NF offers no methodology for evaluation of low-cycle fatigue. Therefore, we use the methodology from Article X[V-1000 of the Code Appendices for Section III. To estimate fatigue life, we use a fatigue curve from the ASME Code for high strength steel bolting materials (Figure 1.9.4 in Appendix I, ASME Code Section III Appendices

[11.7]). For an amplified alternating stress intensity range of 7,456 psi, Figure 1.9.4 in [11.7] predicts cyclic life of approximately 150,000 cycles. Therefore, the safety factor for failure of a stud by fatigue during one design basis LTSP or HE seismic event is SF(stud fatigue) = 150,000/20

= 7,500. The result clearly demonstrates that fatigue failure of the anchor stud, from a single seismic event at the Diablo Canyon ISFSI, is not a credible event.Report HI-2012618 56 G:-\Projects\l 073 \AIS\REPORTS\HI-2012618\Rev 5'-Hi20l2618r5.DOC To evaluate the propensity for a failure by fatigue in the sector lug, we use the results from the finite element analysis of the sector lug under the limiting tensile load. From Figure 10.7, the maximum stress intensity range is 86,641 psi just above the overpack shell/upper annular ring connection.

We assume that the fatigue reduction factor is equal to increasing the stress intensity by a suitable stress concentration factor, which is associated with an angle in tension. From [11.10, Table 17.1,case 22], Kf=2.50 (assuming a radius equal to the weld size at that location).

Then a bounding alternating stress intensity factor for fatigue evaluation of the sector lug is Sa = .5 x 86,641 psi x 2.5 = 108,301 psi for 20 stress cycles Using Table 1.9.1 (associated with Figure 1.9.1) from Appendix I of [11.7], the Safety factor, SF, is computed as SF = 465 cycles/20 cycles = 23.25 Therefore, we again conclude that a fatigue failure is not credible.

9.3 Environmental

Loadings In contrast to a freestanding HI- STORM 100 System, the anchored overpack is capable of withstanding much greater lateral pressures and impulsive loads from large missiles.

In the HI-STORM FSAR [11.4], a-number of wind and missile strike evaluations have been performed for a freestanding HI-STORM.

The site-specific missile strikes have also been evaluated in [11.12]. The conclusions reached in the FSAR and in the site specific analysis are that missile strikes pose no credible threat to the integrity of the HI-STORM storage system and there would be no potential for cask tipover in the event the HI STORM were to be considered a free-standing cask. The conclusions for an anchored cask must be the same, insofar as the cask is concerned.

However, we note that the ISFSI pad design should evaluate the effect of a large missile strike at the top of the cask based Report HI-2012618 57 G.\Projects\1073

\AIS\REPORTS\HI-2012618\Rev 5 \Hi2012618r5.DOC on the assumption that the entire overturning moment must be reacted by the foundation.

Reference

[11.13] presents estimates for the impact force transmitted to a target. For the values associated with the DC ISFSI, the overturning moment from a site-specific large tornado missile plus tornado wind is computed in [11.12] as: M(overtuming)

= 2,448 kip-ft = 29,376 kip-inch Since this unfiltered moment does not exceed the maximum filtered peak value of 61,000 kip-in reported in Table 3, no additional load case need be considered.

The cask can accept this load and meet the requirements of the FSAR even if the cask anchor studs were removed. We conclude that there will be no separation at the cask/embedment plate interface nor will the cask anchor studs be overstressed in the event of a tornado missile strike. Nevertheless, we report this load case for completeness of the interface loading as an additional case for consideration by the ISFSI pad designer (note that all other casks are subjected only to tornado wind although the case of tornado wind alone will not lead to any appreciable overturning moment compared to the values computed for a seismic event). Vertical Load = 360,000 lb. Overturning Moment = 29,376 kip- inch Shear Load = 127,031 lb (Overturning Moment/Cask Height) These results bound transmitted loads from all other missile strikes at Diablo Canyon. The design basis wind is 80 MPH with a 1.1 gust factor [11.12]. Appendix 3.C of the HI STORM FSAR [11.4] calculates a wind force of 32,730 lb for a 360 mph tornado wind. Therefore, for the design basis wind, the force is estimated as: F(wind) = 32,730 x (88/360)-

= 1,956 lb Report HI-1-2012618 58 G:\Projects\1 073 \AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC This produces an overturning moment M(wind) = 1,956 lb x 118.5 inch = 232 kip-inch The results in Table 3 show clearly that this is an insignificant moment that will be borne primarily by embedment compressive load redistribution, and will add no significant incremental load to the initial stud preload. For the tornado wind speed specified in [11.1, Sec. 6.2.2.3], the force F(wind) is F(wmid) = 32,730 x (300/360)2

= 22,729 lb and M(wind) is M(wind) = 22,729 lb x 118.5 inch = 2693.4 kip-inch The effects of tornado wind alone, based on the design basis tornado wind in [11.1], outside the ftiel handling building will only alter previous results by 4.4% (based on the calculated seismic maximum net moment. 10.0

SUMMARY

AND CONCLUSIONS This backup calculation package supports the structural integrity evaluation of the HI-STORM lO0A System required to deploy HI-STORM IOOSA casks at the Diablo Canyon ISFSI. All analyses presented here demonstrate the viability of the anchored HI-STORM 100A in a high seismic environment and under external environmental loads. The results from the series of evaluations performed in this report are summarized below: Report HI-2012618 59 GW:Proj ects\1 073 \AIS\REPORTS\HI-2012618\Rev 5 \H-i2O12618r5.DOC The anchored casks do not develop body decelerations that exceed the cask design basis of 45 g's. The state of stress in the pre-tensioned cask anchor studs and in the cask flange and shell meet the stress limits of the ASME Code Section III, Subsection NF and Appendix F. The interface loads at the lower surface of the embed plate are summarized in tabular form. The values are obtained from the time histories that result from the dynamic simulations.

These time history results are filtered (to remove higher frequency (above 40Hz) peak values) prior to reporting the peak results in the table. The interface load Table 3, together with the added result for large missile impact, provides the necessary design input to the ISFSI pad designer.Report 1HI-2012618 60 G.:\Projects\1073

\AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC

11.0 REFERENCES

[11.11 DCPP Specification 10012-N-NPG, Revision Dated 10/2000.

[11.2] Design Criteria Document for Cask Seismic/Structural Analyses for DCPP, Holtec Report HI-2002478, Revision 0, 2000 (not submitted to PG&E). [11.3] VisualNastran Desktop, Version 2001, MSC Software, 2001. [11.4] rI-STORM 100 FSAR, Holtec Report HI-2002444, Proposed Revision 1, 2000. [11.5] ASME Boiler & Pressure Vessel Code, Section H, Part D, 1998. [11.6] ASME Boiler & Pressure Vessel Code,Section III, Subsection NF, 1998. [11.7] ASME Boiler & Pressure Vessel Code,Section III, Appendices, 1998. [11.8] Mechanical Engineering Design, J. Shigley, and C. Mischke, 5"h Edition, McGraw-Hill, 1989. [11.9] Mechanical Design of Heat Exchangers and Pressure Vessel Components, K.P. Singh, and A.I. Soler, Arcturus Publishers, 1984. [11.10] Mechanical Design and Systems Handbook, H.A. Rothbart, Editor, 2 nd Edition, McGraw-.Hill, 1985, Table 17.1. [11.11] HI-STORM 100 Drawings (1495 (Sheets 1-6, Revs 10,11,9,10,11,4, respectively) and 1561 (Sheets 1-5, Revs. 9,9,9,9,11 ,respectively)).

[11.12] Holtec Report HI-2002497, Design Basis Wind and Tornado Evaluation for DCPP, Rev.1, April 2001. [1 1.13]Design of Structures for Missile Impact, BC-TOP-9A, Rev. 2, Bechtel Power Corporation Topical Report, Sept. 1974. [11.14] November 1, 2001 Letter from Richard L. Klimczak to Eric Lewis.Report HI-2012618 61 G :\Projects\1073

\AIS\REPORTS'\HI-2012618\Rev 5\Hi2O12618r5.DOC I

12.0 FIGURES PRE-TENSIONED CASK ANCHOR STUD-.. ANCHOR STUD NUT --- WASHER FIGURE 1 -CROSS-SECTION OF ANCHORAGE AT LOCATION OF ANCHOR STUD Report HI-2012618 62 G :\Projects\1073

\AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC

) .... .-......................

..... ----- r T ... .,.... ...- .. ..... .-.--, .. ....... .... .- ... .. .. .........

... ....... .... . ...... ..- A .... ..... .............

.i .. .i -... .........

00 40 1-~ ... ... .. .... .... ....-' ... 61. .~~~... .. ... ... .. .... ....... ."'." ........,, 1.*1 II i 0 0HC/ CC) -; ; .. ....... .... .. .. ...... ... S..... ..- ... .. ... ... .. ... if 00 .it .t i A

((0 Ig .N) -I If + + i's :. j Z1l r -r 3.- ý 0 = .... .... ....... ...... .... .... .. .. .. ... ... + + ...i .+ ...... ..--..........

.... ...... + + ' + + + "0 ' "~"-1 ~~~~. .... ..... .. ..... -7 00 ""-iH "I. :1i l i ++ o°+ ,,.. ......../ i} ~... ._ -. .........

000 ~.. ......... ...... -...... ,.........

r.t.+ ... .. ...... ....... .... .... .... .. .. ... ..... ... .I ' ' i.... ....P ~ L l ... .....,., ........ .. ...., : ..I .I.. .... ... ......-. ' ........ ..... ....! ..... ....... ................

S o + ,*+ + l l' -+ + + + ++,.... .... .... ....... J .. .. . S...... * ........ ---... .- ....... --.. i !::1!~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~I --": ..... ..... ..... ........r- "° "+ i l --..-.... ('J Pi : i i I .~ .......... .... "-+"-+.. i i ~ 7 1 -........ + ' ...... ...+ ... .. ..... ........ ... ... ..... ..-.. .. .........! ... ................... ....... .... ...... ........ ..... .....---.... L ...... ..... .... ....... C3 -M I ' r IT i ..r-. .;..Ll ,-, i i ,+ " _ i / ..... , .i !-i+ , .....+ i--- +:-,...... ... .. OGS/Ul ZV (IV Xv ..... ........ ... ...I 30(j'g-ISjqZjOZT V\ .1-1\gAg'd\819ZIOZ-IH\SIUOCIHU\Sj 99 819ZIOZ-jHljodoU QVJ IS9Sl NIOANV3 oriwvll([ Uod SMHOILSIH aml NOIILVuarlH3DV a([([ -t, aHaohl Iý+Goooo' I ý+9000k**l ?+@0009'1 ý+2000871 Z4.20000'Z Z+@00RE------- -- -- --...... ........I Y 24 1 10 3 FIGURE 5 -LOCATION OF CASK ANCHOR STUDS AND EMBEDMEI ANCHOR RODS Report MI-2012618 66 G:-\Projects\1073\AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC N4T FIGURE 6 EXPLODED VIEW -GROUND PLANE, OVERPACK, WPC, AND OVERPACK TOP LID Report HI-2012618 67 G:\Projects\1073\AIS\REPORTS\HI-2012618\Rev 5\Hi2012618r5.DOC .FIF: FIGURE 7 ASSEMBLED HI-STORM 100A ON PAD -MPC INSIDE OVERPACK Report HI-2012618 68 GG\Proj ects\1073 \AIS\REPORTS\HI-201261 8\Rev 5 \Hi2O12618r5.DOC FE Analysis of Anchored HI-STOIR! 1OOA Under Preload FIGURE 8 SECTOR LUG FINITE ELEMENT MESH AND BOUNDARY CONDITIONS Report HI-2012618 69 G:\Projects\1073\AIlS\REPORTS\HI-2012618kRev 5\Hi2012618r5.DOC I FE Analysis of Anchored HI-STORM 1O0A Under Preload FIGURE 9.1 SECTOR LUG FINITE ELEMENT MESH AND INPUT PRELOADS Report 1I-2012618 70 G:\Projects\1073\AJS\REPORTS\HI-201261 8\Rev 5"-i2012618r5.DOC I ANSYS 5.6 APR 6 2001 15:31:42 NODAL SOLUTION STEP=1 SUB =1 TI.ME= SINT (AVG) PowerGraphics EFACET=-I AVRES-Mat Dmx .004505 SvN 4.484 SNX. =12.784 4.484 U 1424 2844 4264 W 568.4 710 El 9 9 4 4 S1136G4 U *12784 FE Analysis of Anchored HI1STORM 100A. Under Preload FIGURE 9.2 STRESS INTENSITY DISTRIBUTION -CASE 1 PRELOAD Report HI-2012618 71 G :\Projects\1073 \AIS\REPORTS\HI-2012618\Rev 5\ Hi2012618r5.DOC AkNSYS 5.6 APR 6 2001 15:49:18 NODAL SOLUTION STEP=1 SUB =1 TIME=I SX (AVG) RSYS=O PowerGraphics EMACEý AVRES-Mat DMX =.001571 SMN =-4075 SNX =3929 -4075 "-2.297 -1407 -517.8886 3I 371.44G 12 61 FI2150 M 3039 M 3929 FIGURE 9.3 RADIAL STRESS IN BASE PLATE -CASE 1 PRELOAD Report HI-2012618 72 G :\Projects\1073 \AIS\REPORTS\HI-2012618\Rev 5\Hi2012618r5.DOC I Report 111-2012618 73 G:\Projects\1073 \AIS\REPORTS \HI-2012618\Rev 5\Hi2012618r5.DOC ANSYS 5.6 APR 6 2001 15:49:49 NODAL SOLUTION STEP=1 SUB =1 TIMB--= SY (AVG) RSYS=O PouerGraphics EFACET=-I AVRES--Nat DMX =..001571 SI=- 1334 SNX =1473 ...-1334. -398.514 -8 6.62 225.274 537.160 849.063 1i 1 6 1 , 1473 ,- 14 f FE Analys.p of Anchored HI-STORM. 1OA. Under Preload FIGURE 9.4 CIRCUMFERENTIAL STRESS IN BASE PLATE -CASE 1 PRELOAD ANSYS 5.6 APR 6 2001 15: 41:44 NODAL SOLUTION STEP=I SUB =1 TINE=I Sx (AVG) RSYS=O PowerGraphics EFACET71 AVRESFNat DNX =.003824 =-7203 sNX =7220 -7203 ý5600 -3998 -792.594 809.957 2.413 4015 5618 , 7x22o FE A~lysiS of Anchored HI-STORM 100A .Unde'r Preload FIGURE 9.5 RADIAL STRESS IN SECTOR LUG LOWER ANNULAR RING CASE 1 PRELOAD Report HI-2012618 74 G.:Projects\1073\AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC ANSYS 5.6 APR 6 2001 15:42:20 NODAL SOLUTION STEP=1 SUB =1 TIME=1 SY (AVG) RSYSO-0 PowerGraphics EFACET= ýAVRES--at DMX =.003824 SNK =-10119 SMX =10230 -10119 S-7858 .-5597 -3336 -1075 1186 E 3447 ElI5708 7969 10230 FE Analysis ofAnchored HISTORM 10OA Under Pre.load FIGURE 9.6 CIRCUMFERENTIAL STRESS IN SECTOR LUG LOWER ANNULAR RING -CASE 1 PRELOAD Report HI-2012618 75 GX:Projects\1073 \AIS\REPORTS \HI-201261 8\Rev 5-i20 12618r5.DOC ANSYS 5.G APR 6 2001 15:44:50 NODAL SOLUTION STEPl-1 SUB =1 TIME=1 SX (AVG) RSYS=0 PowerGraphics EFACET-1 AVPES-Nat DDIX =. 0042 6 SNN -1920 SMX =1731 -1920 ..- 1 5 1 5 -703.321 -297.681 107.96 513.6 919.24 1325 1731 FE Analysis of Anchored HI STORM 100A Under Preload FIGURE 9.7 RADIAL STRESS IN LEFT GUSSET -CASE 1 PRELOAD Report HI-2012618 76 G:\Projects\1073\AIS\REPORTS\HI-2012618\Rev 5\Hi2012618r5.DOC I Report HI-2012618 77 G :\Projects\1073\AIS\REPORTS\HI-2012618\Rev 5\H-1i202618r5.DOC ANSYS 5.6 APR 6 2001 15:46:23 NODAL SOLUTION STEP-l SUB =1 TIME=1 SSZ (AVG) RSYS=0 PowerGraphics EFACEýT AVRýESMat DmX .=.00426 SMN =-3340 5MX =3871 "-3340 -173 7 -936.178 -134.909 666.359 1 4 6 8 2269 3070 3871 FE AnalySis of Anchored HI-STORM 1O0A Under Preload FIGURE 9.8 VERTICAL STRESS IN LEFT GUSSET -CASE 1 PRELOAD ANSYS 5.6 APR 6 2001 15:48:19 NODAL SOLUTION STEP=1 SUB =1 TIPIE=1 Sx (AVG) RSYS_0 PowerGraphici EFACETT-1 AVRESN-Mt DNX =.004434 SMN =-1840 SmX =1756 -1840 S: -1 4 4 0 .. -=1041 -641.145 -241.561 158 .022 557.605 957.188 1357 1756 FE Analysis of Anchored HI-STORM 100A Under Preload FIGURE 9.9 RADIAL STRESS IN RIGHT GUSSET -CASE I PRELOAD Report HI-2012618 78 G :\Projects\1073 \AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC ANSYS 5.6 APR 6 2001 15:47:25 NODAL SOLUTION STEP=1 SUB =1 S~TIME= 1 Sz (AVG) RSYS=O PowerGraphics EFACET-1 AVRES=Mat DMX =.004434 ZNN =-2934 SMX =3836 -2934 -2182 -1430 -407579 74.666 826.911 1579 E]l 2 3 3 1 []3084 383.6 FE Analysis of Anchored HI-STORM ,100A Under Preload FIGURE 9.10 VERTICAL STRESS IN RIGHT GUSSET -CASE 1 PRELOAD Report HI-2012618 79 G :\Projects\1073 'AIS\REPORTS'cHI-2012618\Rev 5\Hi2012618r5.DOC .AHSYS 5.6 APR 6 2001 15:41:02 NODAL SOLUTION STEP=1 SUB =1 TIME=l Sx (AvG) RSYS=O PowerGraphics EFACET1 AVRES=Mat DmX =.004434 SMM =-1222 =1556 "-1222. -604.587 -295.968 321.271 II629.69 938.509 1247 U 1556 FE Analysis of Anchored HI-STORN 100A. Under Preload FIGURE 9.11 RADIAL STRESS IN UPPER RING -CASE 1 PRELOAD Report 1I-2012618 80 G :\Projects\1073 \AIS\REPORTS\HI-2012618\Rev 5\Hi2O012618r5.DOC ANSYS 5.6 APR 6 2001 15:40:31 NODAL SOLUTION STEP=I SUB =1 TIME=lI SY (AVG) RSYS=O PowerGraphics EFACET=1 AVRES=-Mat DNmX =.004434 SMN =-704.423 SMX =1268 "-704.423 -485.306 -2 66.189 -47.071 172'046 391.163 610.28 829.398 i 1049 -1268 FE Analysis of Anchored HI-STORM 100A Under Preload FIGURE 9.12 CIRCUMFERENTIAL STRESS IN UPPER RING -CASE 1 PRELOAD Report HL-2012618 81 G:\Projects\1073 \AIS\REPORTS\HI-2012618\Rr~v 5\-i2 012618r5.DOC ANSYS 5.6 APR 6 2001 15:36:07 NODAL SOLUTION STEP=l gg SUB =1 TIME= 1 SY (AVG) RSYS=0 PowerGraphics EFACET-1 AVRES=Mat DN =.0045o5 SNN =-1935 R SmX =3495 -1935 * -13.32 S-728..349 478.435 1082' EI1685 2289 2892 3495 FE. Ahelysis of Anchored HI-STORM 1O0A -under Preload FIGURE 9.13 CIRCUMFERENTIAL STRESS IN iII-STORM SIBELL -CASE 1 PRELOAD Report HI-2012618 82 G :\Projects\1073 \AIS\REPORTS\HI-2012618\Rev 5\Hi2012618r5.DOC ANSYS 5.6 APR 6 2001 15:35:27 NODAL SOLUTION STEP=1 SUB =1 TIME--SZ (AVG) RSYS0 PowerGraphics EFACET&l AVRES;Nat DNX =.b04505 SMND -6459 SMX =586 "-6459 -4787 -3115 "-1444 227.837 3571 52 43 6914 m858.6 FIGURE 9.14 RADIAL STRESS IN El-STORM SHELL -CASE 1 PRELOAD Report I1-2012618 83 G :.Projects\1073\AIS\REPORTS\HI-2012618\Rev 5\Hi2012618r5.DOC ANSYS 5.6 APR 5 2001 16:45:37 NODAL SOLUTION STEP=1 SUB =1 TINE=l SINT (AVG) PowerGraphics EFACETI1 AVRES=Mat mx =. 174433 sN =G22.238 sMX =97371 622.23.8 11372 22122 32872 43 622 F- 54372 E 5122 "E1. 75871

  • 86621 "97371 FE Analysis of Anchored HI-STORM 100A :Under Seismic Load FIGURE 10.1 SECTOR LUG STRESS INTENSITY

-CASE 2 MAXIMUM STUD CAPACITY Report 1H1-2012618 84 G :\Projects\1073 \AIS\REPORTS\HI-2012618\Rev 5q-i2012618r5.DOC ANSYS 5.6 APR 5 2001 16:53:40 NODAL SOLUTION STEP--l SUB =1 TIME=I "SINT (AVG) PowerGraphics EFACET=Il AVRES-Nat DNX =.022057 SMN =11293 smx =53104 11293 S[ 1 5 9 3 9 20584 25230 29876 34521 39167 43813 48458 53104 FE Analysis of Anchored HI-STORM 10OA Under Seismic Load FIGURE 10.2 STRESS INTENSITY IN BASEPLATE -CASE 2 MAXIMUM STUD CAPACITY Report HI-2012618 85 G:\Projects\1073\AIS\REPORTS\HI-2012618\Rev 5 \Hi2O12618r5.DOC ANSYS 5.6 APR 5 2001 16:50:36 NODAL SOLUTION STEP=1 SUB =1 TIME=I SINT (AVG) PowerGrapkics EFACET=-I AVRES=Mat DpiX =.104464 SMN =622.238 SMX =48309 622.238 5921 11219 1651B 21816 27115 32413 37712 43010 48309 FE Analysis of Anchored HI-STORM 100A Under Seismic Load FIGURE 10.3 STRESS INTENSITY IN SECTOR LUG LOWER ANNULAR RING -CASE 2 MAXIMUM STUD CAPACITY Report I-I-2012618 86 G.-Projects\1073\AIS\REPORTS\HI-2012618\Rev 5\Hi2012618r5.DOC ANSYS 5.6 APR 5 2001 16:51:40 NODAL SOLUTION STEP=I SUB =1 TIME=1 SINT (AVG) PowerGraphics EFACE7l71 AVPES=Mat DNX .=171425 "SNN =975.719 SNX =3.1505 975.719 4488

  • 8000 11512 .15024 18537 22049 T .1 25561 29073 32585 FE Analysis of Anchored HI-STORM 100A Under- Seismic Load FIGURE 10.4 STRESS INTENSITY IN SECTOR LUG LEFT GUSSET -CASE 2 MAXIMUM STUD CAPACITY Report HI-2012618 87 G :\Projects\1073

\AIS\REPORTS\HI-2012618\Rev 5Hi-2012618r5 .DOC ANSYS 5.6 APR 5 2001 1G:52:31 NODAL SOLUTION STEP=I SUB =1 TINE=-I SINT (AVG) PowerGraphics EFACET=-I AVRES=Nat DMX =.172336 mm =1177 SNX =304G1 1177 4431 Fn 7685 10938 14192 17446 20699 23953 27207 30461 FE Analysis of Anchored HI-STORM 100A Under Seisnic Load FIGURE 10.5 STRESS INTENSITY IN SECTOR LUG RIGHT GUSSET -CASE 2 MAXIMUM STUD CAPACITY Report HI-2012618 88 G:\Projects\1073 \AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC ANSYS 5,6 APR 5 2001 16:49:05 NODAL SOLUTION STEP=1 SUB =1 TINE=1 SINT (AVG) PowerGraphics EFACET=-I AVRE-Mat DmX =.172336 SNN =2801 SNX =68338 2801 10083 17365 24647 31929 39211 46493 " 53775 61057 S68338 FE Analysis of HI-STORM.100A.Under Seismic Load FIGURE 10.6 STRESS INTENSITY IN SECTOR LUG UPPER RING -CASE 2 MAXIMUM STUD CAPACITY Report FH-2012618 89 G:\Projects\1073 \AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC I ý APISYS 5.6 APR 5 2001 16:48:17 NODAL SOLUTION STEP=I SUB =i * ~TIME=I SINT (AVG PowerGraphics EFACET-1 AVRERSMat DMX -=.174433 5M--802.728 SkX =97371 802-.728 11533* 22262 32992 F 43722 5445Z 65,182 75912 86641 *"97371 FE .na.ysis of Anchored HI-STORM 100A Under Seismic load FIGURE 10.7 STRESS INTENSITY IN HI-STORM SHELL -CASE 2 MAXIMUM STUD CAPACITY Report 1I-2012618 90 G:.\Projects\1073 \AIS\REPORTS\HI-2012618\Rev 5\Hi201261 8r5.DOC ANSYS 5.6 MAY 7 2001 10:23:23 NODAL SOLUTION SUB =1 TINE=I SZ (AVG) RSYS-O P o.werGrapkics EFACET1= AVRES-.Nat DNX =.171425 SNN =-11946 SMX =27858 -11946 -7524 5744 10167 14590 19013 23435 27858 FE Analysis of Anchored HI-STORM 100A Under Seismic Load FIGURE 10.8 SZ STRESS-STUD SIDE OF LEFT GUSSET -CASE 2 MAXIMUM STUD CAPACITY Report HI-2012618 91 G:-\Projects\1073\AIS\REPORTS\-I-2012618\Rev 5\Hi2O12618r5.DOC I A'ASYS 5.6 MAY 7 2001 10:25:12 NODAL SOLUTION STEP=1 SUB =1 TIE= 1 Sz (AVG) RSYS=O PowerGraphics AVRES-Mat DMX =.171425 =D4N -11946 SMX =27858 -7524 -3101 1322 5744 10167 14590 i 9013 23435 *27858 FZ. Analysis of Ancho.red HI-STORN lIOOA Under Seismic Load. FIGURE 10.9 SZ STRESS-INLET AIR DUCT SIDE OF LEFT GUSSET -CASE 2 MAXIMUM STUD CAPACITY Report HI-2012618 92 G :\Projects\1073 \AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC Fitered (-) d (.:.jforc2, Cutoff Freq 2.40 Hz Max. Filtiedr-= 24053.8558 a=tlme -.9 2 s..:

  • xl -0 W .Fitre .-5419559'A5' Mt f be =9.954-4 s 14

..... ....... ....... ...--------...----- + I. . a aI -a a.,a , I LIP a a 2 --a a a ------------a- --- -------a a a-a- FIGURE 11 COMPRESSIVE FORCE AT INTERFACE (Unfiltered and Filtered) LTSP SEISMIC EVENT Report 1HI-2012618 93 GA:Projects\1073 \AIS\REPORTS\-HI-2012618kRev 5\Hi2O12618r5.DOC Fitrd -nd.Unfliheredi(i..)force, CbtffFreq." .40 Hz '-Max. Filtered 133934atre=1.l1.

  • M.n. Filltare d, -4139198.6007.

at lihi Q1ý 1.3643 s 4 ------ -----i 4: ~ 1/ FIGURE 12 MOMENT "MX" AT INTERFACE (Unfiltered and Filtered) -LTSP SEISMIC EVENT 7 IIIII --- -- ------------T -------------------- -- ------ -----------------, i,-- ,. :- I Report HI-2012618 94 GAProjects\1 073 \AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC !i Filtered FYand* Unfiltered (.ý.)(orce, Cutdff Freq -A4D -Hz .Mix. Filtered = 45350695.102, at-time 13,542s x 10 Min. Filtered =.-6 19M9.6365, at time= 100369 s -------------- -- --I --A ' , F 1 and.......... -LT SE-ISI EE N T S.. .. .I a a Ii~ q :

  • a ai~ :'.' a a' a a*................

....... ............. ............

  • a a a a FIUE1 MO EN "Y ATITRAC (Uflee an Fitrd -LTS SEISMIC EVa NT Report HI-2012618 95 G:-\Projects\1073

\AIS\REPORTS \HI-2012618\Rev 5\H-i2012618r5.DOC Filteired,-) and Cutoff Freq- = .. Max. Filtered z.43153.0499, at-timie =1.152 s ._x 10 4 Min. Filtered ~-6229.14 55,1 at rne 11.4E89 s ------- ---------------------------- T----------------------------------------I


-- -- T ------------I- ------ ---------I- -----I -- ----- --- ------------

... ... .. -- --- --......". ....... --- ---.--- -- ---.--........................................-----


---V.~~~~ 1/20~2a .-.,- -a , " FIGU.REg 14 TENSILE FORCE IN ANCHIOR ROD) 26 (Ul~nfilteredl and Filtered)

LTSP SEISMIC EVENT Report HI-2012618 96 G:\Projects\1073 \AIS\REPORTS\HI-2012618\Rev 5\-I20 12618r5.DOC tiet Moment -LTSP 60000000 50000000 40000000 ,.1 o 30000000. S 0 20000000 K 0B 30000000801 f Ak 0 5 10 15 20 .25 30D 35 40 "45 Time (se.). FIGURE 15 NET OVERTURNING MOMENT -LTSP SEISMIC EVENT 50 Report HI-2012618 97 GA:Proj ects\1 073 \AIS\REPORTS\.HI-2012618\Rev 5 VHi2012618r5.DOC Shear Force VX -LTSP Event 500000 7 1 .I" P 400000 30O000 . 200000 100000 Y 0 L6 6 © .100000 S-2080000:ý . -300000:' -400000E -500000 Time (sec.) FIGURE 16 SHEAR "VX" AT INTERFACE -LTSP SEISMIC EVENT Report HI-2012618 98 G:\Projects\1073\AIS\REPORTS\HI-2012618\Rev 5\Hi20 12618r5.DOC Shear Force VW -LTSP Event 400000 -X 300000 200000 MP.... -- 100000 p; 0 L 6 -200000 :400000- 1 0 Time (sec.) FIGURE 17 SHEAR "VY" AT INTERFACE (Unfiltered and Filtered) -LTSP SEISMIC EVENT Report HI-2012618 99 G:\Proj ects\1073 \AIS\REPORTS\HI-2012618\Rev 5 \Hi2O12618r5.DOC Met Shear -LTSP Event 500000 1 4500000 4 00000 ^ 150o00 1300000 FIGURE 18NT SHEA -7R FOC 7 -L7 S SEIMIEEN 4"200000o i-r ýmt ý j V 150000". 300000 M mMI. V 250000 2000 0 a W 1 10 wi 20i2 .1 3 z 1Time0 a;.I .ru F.. m ý FIUE18000 SE0FOC LS SIMC VN:40 45 50 Report I--2012618 100 G.\Projects\1073 \AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC )u-J I-J 0 U 0 E 0 a, I., a, C a, I 0 U a, c~o = CUý CU -CU C! =z CD as cm CU a]O: aig;Ru U-)C14 C14 uI PA t C\z u 0 ,--I 00 C, 00 clt C)..cm ... Fiter:d (-) and. Unfiltere.d(jForce, Cutoff Freq. = 4 Hz * .-"

  • Max. Filtered=

3.14249.727, at time = 15.9017 s -Min.: Fle d ;- * .: B 8. ; tj.i. : 11.-; 57. 9s, 12 .- 10...,__, 71. -0 25 a _- *'[40'~I. TimIIF Z 13 .:n. I. ,A~'.I4.ICl FIGURE 20 COMPRESSIVE FORCE INCREMENT AT INTERFACE (Unfiltered and Filtered) -HE SEISMIC EVENT x 10l I .... ....... .... .. .I

  • S I kW"'; --I-----------i

-I F --------------------.. ... .. .. .. -- ---------------------- ---- ----- -------------... .... ... .... ... .... .... ... .... ..",-,-------- " i ' J if 3 ~If -.--- i --,,, ijiil ,F i ,! I [" ri ] i ',t i ,

  • a rI -------- ------- ------- ------, ---------------------- -------------T ------------, ------------. S, i, : !a S Report HI-2012618 102 G:AProj ects\1 073 \AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC i

S ..... .. .I..I. -.:S .::X, U;: t S, --------- -- ...........

  • C ---------.

-00 04 Iz ---------------------- -- ---- ---- ---00 ------------


eq ,. C,:, ................r' ." .. ......" .. .... .. . Filtered Hf and Unittered.(...)fomric.,ff F...rq.-40 H -z -Min..:lte U 3946B.2429, .... ---------- I -- ----- L ------- I. .3. -46 .M x .F lt e e d 1 5 7 1 8 7 1 7 8 , 'ti e 1 0 .2 9 9 5...s. 2q i i i: L ; i ! !! ..... '" ..... C I a+. ' '. FIGURE 22 MOMENT "MY" AT INTERFACE (Unfiltered and Filtered) -BE SEISMIC EVENT Report 1H-2012618 104 \AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DO C Filtered 5 nd Unfiltered (...)force, Cutoff Ffeq- = 40 Hz --iFiltered =62134.4834 'at time I 0O29~5s X 10 xlOMin. Filtered --b-14.800J9, at time= 10.347 s 7-:7 6 -------- --------4 -- ------ -------------- -------------------------- ----------I- ---------------


T-------------------------



------------

I----------


L ------I -------j ------I -----------------3--------406 "- :"-*i:S:1 20:25 0:40 ! .. ................. .IM. .sec) FIGURE 23 TENSILE FORCE IN ANCHOR ROD I11 HE SEISMIC EVENT Renot HI.-2012618

.Inc'1 ..G:.\Projects\1073 \AIS\REPORTS\HI-2012618\Rev 5\Hi2012618r5.DOC Net Moment vs. Tim e- HE Event 70000000 T 80000000 50000000 I "40000000 N 1 30000000 20000000 10060000 0 0 .5 10 5 20 25 30 35 40 45 50 Time fsec.)FIGURE 24 NET MOMENT -HE SEISMIC EVENT Report HI-2012618 106 G :\Projects\1073 \AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC Shear Force Vx -HE Event 400000 300000 200000 6 100000 I. 0 -40000 -400000 -ZOOOO -600000 .*\t~~ 4 5.~ ~.~4.1 V I ,.'> ..4 Time (sec) FIGURE 25 SHEAR "VX" AT INTERFACE -HE SEISMIC EVENT Report HI1-2012618 107 G:\Projects\1 073\AIS\REPORTS\1-I-201261 8\Rev 5\Hi2012618r5.DOC Shear Force Vy -HE Event 500000 I." 400000 t 300000 ;P, io -000 L~ 500000 Time (sec.) FIGURE 26 SHEAR "VY" AT INTERFACE -HE SEISMIC EVENT Report 1H-2012618 108 G:\Projects\1073\AIS\REPORTS\HI-2012618\Rev 5\1Hi2012618r5.DOC Ret Shear -HE Eyent@000. 600000 * -.400000 fJ 0 W"z 200000 100090001 0 0 1o -2 30 40. Time (see.) FIGURE 27 NET SHEAR FORCE -HE SEISMIC EVENT 50 60 Keport Hi-ZUL0b1?1 109 G :Projects\1073 \AIS\REPORTS\HI-2012618\Rev 5\-i2012618r5.DOC f Net ShearfCompression Force 0,2~ 012 0,1 fii" ,o o,1. 1ý,Tm mý -RS t.- r~i .7!M 0M0R 0.14 0.12, 0 10 20 30 40 !50 "'irne(sec.) FIGURE 28 EFFECTIVE COEFFICIENT OF FRICTION -HE SEISMIC EVENT 60 Report HI-2012618 110 G :.\Projects\1073 \AIS\REPORTS\HI-2012618\Rev 5\Hi2012618r5.DOC H-and Unfiltered (,`)fdrcdTCUtotfFraq. =40 Hz .<'ax.IFill arad =.271969.93189, at time = q96969 s 12 L ------- I ----- ------ I------------ "" ..:"-..- -: :' -" " * -..t...-------------


.-------



I".:1 1 I I', ----------

--- --- ---- -------------------



.-: ...-'. :'..- ,T im,, ,s e a ) :)i~i li~i ;~ii.!!~i. ............... FIGURE 29 COMPRESSIVE FORCE INCREMENT AT INTERFACE (Unfiltered and Filtered) -LTSP SEISMIC EVENT -NEGATIVE VT Report 1H-2012618 111 G:\Projects\1073 \AIS\REPORTS-IJHI-2012618'Rev 5"-I12012618r5.DOC 6 2 Phltered Hand:Unbitored-(.:.-jtnrce; Cutoff iýreq. = 4U V17 S.Max. FilItred=38135B57:I461 at time-= 11 4788:s : ...:- -! .! : : ; : i i -.i : ;- : .! i ;i ? ? ! M i n .-F# i l t ee di -4 3 2 0 7 68 : 6 M a t t; i m e e i 1 8 .M 4 , } J .: i S .: -. : X 1 .7---------


-------- --: -------- ...... .... ...-------------


SI --- -----------------------

-~.- ---.------------



I *-..... .. s (s c).. .... .. .... ...... .*. -,. -* L ! I .-l'; ' !FIGURE 30 -MOMENT MX AT EMBED/CONCRETE INTERFACE

-LTSP SEISMIC EVENT -NEGATIVE VT EARTHQUAKE Report HI-2012618 112 G:\Projects\1073 \AIS\REPORTS\HI-2012618\Rev 5\Hi2012618r5.DOC , , .* . 00T9'E8 I 9ZJ I OZI{RE A;)j\S I 9Z OZ-I SJ1XOJaU\SIV\UEO [\SIOQFI&:

0. EII 819ZIOZ-IH diodo4 3MVflHJDVa LA [AIVDN: 1NaAa DIIWSIaS JS,]L' -

I NO,/IfOI II lV AN .INMWOA -Ic Malma _..................................... --.. -------.. ---. ...-. -- zHj rm , w ...a..o pa....uri B Filtered H and Unfiltered (..TortcetCuf .Freq. 4 0 Hz Max.' Filtered =42338.2353;, at timae 10.3095 s--I I~'"D~ 5 iOi~15 20l:2 40J A5 1 FIGURE 32 -ANCHOR ROD 22 TENSION AT EMBED/CONCRETE INTERFACE -LTSP SEISMIC EVENT -NEGATIVE VT EARTHQUAKE 1 Y r Report H-2012618 114 G:\Projects\1073\AIS\REPORTS\HI-2012618\Rev 5\Hi2012618r5.DOC 5:{5 i: i Netfhmoedn Ng, LTSP VT V W1 I 1 .4 I -. ~ ~ "dsf tA A-1 20 5 70 35~.T 40 F7UR 33 NET. MOME*NT -TS SISMuICENT-GAIEV EA1THQUAK Report HI-2012618 115 G :\Projects\1 073 \AIS\REPORTS\HII-20 1261 S\Rev 5 \Hi2O 1261 8r5.DOC Shear VX- Neg. LTSP VT L m -P7 -OW, f00 !seq, FIGURE 34- SHEAR VX -LTSP SEISMIC EVENT -NEGATIVE VT EARTHQUAKE Report MI-2012618 116 G-:\Proj ects\1073 \AS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC $he&WV llNog, LTSP VT 4A1W aL ILI HI G Villtec FIGURE 35-- SHA1P-LS ESICEE -EAIEV EARTHQUAKE PP Report 111-2012618 117 GA\Projects\1 073 \AIS\REPORTS\HI1-20 1261 S\Rev 5 \Hi2O 1261 8r5.DOC Net $hear -Neg. M~P VT 4ýcrvklT1 -IL 1. ri 1.115A-0. 10 5 20 2. Z 5 40 45 50 Tim lilt.) FIGURE 36 -NET SHEAR -LTSP SEISMIC EVENT -NEGATIVE VT EARTHQUAKE Report 111-201261 8 118 G:\Projects\1073 \AIS\REPORTS\HI-20 1261 8\Rev 5\1{i20 1261 8r5.DOC Net SheaRnterfnce Compression -Neg. LTSP VT IL 0 U 0 l0 I5 2C, 30 3i 40 45 FIGURE 37 -EFFECTIVE COEFFICIENT OF FRICTION -LTSP SEISMIC EVENT -NEGATIVE VT EARTHQUAKE I 510 Report 1H-2012618 119 G:.rojects\1073\AIS\REPORTS\HI-2012618\Rev 5\1-i2012618r5.DOC

  • filtred (-j ~and .Unhiltere(.jterce, Cutoff h req. =ý 4U Hz Max. Filtered t4J1341. 378, at time =14.4 341 s Min. Filtered -229489H732, at time =10.12M s 1 ----, --, Ii ' S 12 ............. .-------- J, P--------

L q a I- -4 C [-- -------I -------I --------------------------------

--- : ; ., , ------- -----------


! ------ T --------Im -------e ------ -------ec-------------

FIGURE 38 COMPRESSION LOAD INCREMENT -HE SEISMIC -NEGATIVE VT EARTHQUAKE Report HI--2012618 120 G :\Proj ects\1073 5\-i2012618r5.DOC Filtered,(-) anddUnfiltered (...)force, Cutoi Freq. =40 Hz *Max. Fillered =4845466S. 9 1921-at timne 13.1417 s . x: -id Mivin. Fitered-.-50498417.484,.f time= 18.3164s :. .:. . --- -- --- -- ------- ---- ------- -- --L---- -- I -- ----- I -- ----- j ----- -- 1---- -Z, -, c T -, I f 2 2 ' {j %,.j 5 S..... .,-,:. *2.:1~: .r ie ~ ~ FIGURE 39 -MOMENT MX AT EMBED/CONCRETE INTERFACE -BiE SEISMIC EVENT -NEGATIVE VT EARTHQUAKE Report HI-2012618 121 G :.Projects\1073 \A-S\REPORTS\HI-2012618\Rev 5\Hi2012618r5.DOC -.Filtbred (--) nd Unffiered (.:jfocej Cutoff Freq. 40Hz Max. Fiftered=441E84T7:5,2a6,.attime -14:4216 s Min. Filtered =--45016946;6899, it tims 10.90~ s'ILIF!'I. ---.........-


-.-- .. -.. -..-.. ..-----'I ...A ':-

."-: : ;: :i t~ :Z'r4 7:
'.i-; `i~2:

FIGURE 40 -MOMENT MY AT EMBED/CONCRETE INTERFACE -HE SEISMIC EVENT NEGATIVE VT EARTHQUAKE Report I-I-201261 8 122 G \Projects\1073 \AIS\REPORTS\HI-2012618\Rev 5 \H-i2012618r5.DOC IT ------- ------~~~~~-------- ....................--....---..-............ .....................---.........-

  • ..............................

.- .lteerj Unftlred (:..jorca. Uutolt Ieq.-4UMz: io ~~Ma ife~d 497311-2224, 61time 10.3045S ......... ..... .. ,................. -- ........ ....... 4............ , ..... 3 ------- T -------i-------I----- -------------------- -------- --- ---I I FIGURE 41 -ANCHIOR ROD 22 TENSION AT EMBED/CONCRETE INTERFACE -HE SEISMIC EVENT -NEGATIVE VT EARTHQUAKE Report HI-2012618 123 G:\Proj ects\1073 \AIS\REPORTS\HI-2012618\Rev 5\Hi2012618r5.DOC U Wý00 Ln 00 0 00 "o C4)ýA 5.LU -1: CUI-410 WOLU43-1V J.tbtg Shear Force. VX .HE Neg, VT 400) OJ 2mow a U. C10)ue Pling sc.)FIGURE 43 -SHEAR VX AT EMBED/CONCRETE INTERFACE -HE SEISMIC EVENT -NEGATIVE VT EARTHQUAKE Report HI-2012618 125 G :\Projects\1073 \AIS\REPORTS\H-II-2012618\Rev 5\Hi2O12618r5.DOC I Shear Force VYW-E Neg, VT q 'A IL. Li -2t i'. ;L FIGURE 44 -SHEAR VY AT EMBED/CONCRETE INTERFACE -HE SEISMIC EVENT -NEGATIVE VT EARTHQUAKE Report I1-2012618 126 G:\Projects\1 073 \AIS\REPORTS\HI-2012618\Rev 5'1 I-i2012618r5.DOC Net Sheat Force -HE Neg, Vr 4~FCiW.ffff.0)19m 1(1 U f(&CO) 'V 0 S 15 25 35 0 45 flrni fsee,)FIGURE 45 -NET SHEAR AT EMBED/CONCRETE INTERFACE -HE SEISMIC EVENT -NEGATIVE VT EARTHQUAKE Report HI-2012618 127 G :\Projects\1073 \AIS\REPORTS\HI-2012618\Rev 5\Hi2O12618r5.DOC M A.9 CD 0 1+ U.) C7% Do, C/) ýi IV 00 Lh 00 Go-ell ci ITI M I" Oil lid UD r--MýCmpw. cio:r ISI-1ý.iAý.:26" zu 3z m tp ýi EK

13. APPENDICES Appendix A -Supporting Calculations

[Holtec Proprietary] Appendix B -Sector Lug Finite Element Analysis Input Scripts [Holtec Proprietary] Appendix C -Post-Processor Fortran and Matlab Scripts [Holtec Proprietary] Report HI-2012618 129 G:\Projects\1073WAIS\REPORTS\-II-2012618\Rev 5\1i2012618r5.DOC}}