DCL-03-052, Rev 0 to WCAP-15958, Analysis of Capsule V from Pacific Gas & Electric Co Diablo Canyon Unit 1 Reactor Vessel Radiation Surveillance Program, Appendix a Through E

From kanterella
Jump to navigation Jump to search
Rev 0 to WCAP-15958, Analysis of Capsule V from Pacific Gas & Electric Co Diablo Canyon Unit 1 Reactor Vessel Radiation Surveillance Program, Appendix a Through E
ML031400347
Person / Time
Site: Diablo Canyon Pacific Gas & Electric icon.png
Issue date: 01/31/2003
From: Oatley D
Westinghouse
To:
Office of Nuclear Reactor Regulation
References
DCL-03-052, FOIA/PA-2005-0108 WCAP-15958, Rev 0
Download: ML031400347 (151)


Text

A-0 APPENDIX A LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS

  • Specimen prefix "E" denotes Intermediate Plate, Longitudinal Orientation
  • Specimen prefix "R" denotes Correlation Monitor Material
  • Specimen prefix "W" denotes Weld Material
  • Specimen prefix "H" denotes Heat-Affected Zone material
  • Load (1) is in units of lbs
  • Time (1) is in units of milli seconds Appendix A

--- l :~~

A-i t5 3001II (a

0

-j 2001cI 1001III 0 1 2 3 4 5 6 Time (1)

E52, -25°F 5001 I.

4001 I-D 3001 0

-J 2001I I-1001 I.

0 1 2 3 4 5 6 Time (1)

E49, 25°F 500'I0 4001p.

-s3W

-J 0 1 2 3 4 5 6 Time (1)

E55, 75-F Appendix A

A-2 03 0

-J Time (1)

E51, 110-F 0

-J Time (1)

E53, 125°F

'0 0

-J 0 1 2 3 4 5 6 Time (1)

E50, 175 0F Appendix A

A-3 5000 0

0 1 2 3 4 56 Time (1)

E54, 2500 F 1000 1 ,

5000-4000-\

  • ~3000-2000 0

0 1 2 3 4 5 6 Time ()

n 3000 E56, 2750 F 2000 -- \

5000 4000 1000 0.

0 1 2 3 4 5 6 Time (1)

R49. 25F Appendix A

A-4 A

-~ 300(

C

-j 20C I

O 1 2 3 4 5 6 Time (1)

R51, 50°F

'~ ~ ~ ~.. ..... ....... ..

500C3.

400C3.

  • 300C 0

-J 200C3.

~~ ~~ .......

1CC 3.

C 1 2 3 4 S 6 Time (1)

R56, 100 0F I

2000 1000 0 1 2 3 4 5 6 Time (1)

R55, 150°F Appendix A

A-5 sooo + . . . ........

40007

  • 3000I-o 2000 1000~

0 1 2 3 4 S 6 Time (1)

R53, 200°F sooo 2 4000+/-

4000, 3000 4.

2000i 1000-0 1 2 3 4 5 6 Time (1)

R54, 250°F 5000 . . . . . . .-

4000t T

i 3000 } .......

2000+/-

10001 0

0 1 2 3 4 5 6 Time (1)

R50, 300°F Appendix A

A-6 50001 -.

4000+

3000X 20001 1000 - .... ....

0 0 1 2 3 4 S 6 Time (1)

R52, 325°F 5000 4000

  • 0 3000 2000 1000 0

0 1 2 3 4 5 6 Time (1)

WI ,25°F sooo0 .. ..........

4000 1- - -.. .. ... .

X3 0 0 0 2000 . .

1000 0

0 1 2 3 4 S 6 Time (1)

W13, 100°F Appendix A

A-7 0 1 2 3 4 5 6 Time (1)

W12, 150°F 0 1 2 3 4 5 6 Time (1)

W9, 200°F 0 1 2 3 4 5 6 Time (1)

W 10, 225°F Appendix A

A-8 5000 . .. .

sooo b ~~. . . .. . . . . . .. .. . . . . . . ..

4000

'3000 \ -.

2000 . . \ .

1000 .. ...

0 1 2 3 4 5 6 Time (1)

W15, 300°F 5000 ......

4000 .

3000 2000 . .\

10 00 l.. .. . .. .\. ... .. . . .. . .. ... .

1000 0

0 1 2 3 4 5 6 Time (1)

W14, 325°F 5000 . .. ........ ....... .

4000 .. \ . ......

3000 .. .... ...

2000 1000 0

0 1 2 3 4 5 6 Tine (1)

W 16, 350F Appendix A

A-9 0

300( ,1 200(

1lOOt V.

0 1 2 3 4 5 6 Time (1)

H14, -125-F 5001 4001

  • G 3001 0

-J 200(

3-1001 0 1 2 3 4 5 6 Time (1)

H12, -50°F

- 3000-2 3 4 5 6 Time (1)

H 11, 0°F Appendix A

A-10 0 1 2 3 4 S 6 Time (1)

IH10, 72°F 0 1 2 3 4 5 6 Time (1)

H9, OO°F 0 1 2 3 4 S 6 Time (1)

H15, 125°F Appendix A

A-1l

-J 0 1 2 3 4 S 6 Time (1)

H16, 175°F 0

-j 0 1 2 3 4 5 6 Time (1)

H13, 225°F Appendix A

B-O APPENDIX B CHARPY V-NOTCH SHIFT RESULTS FOR EACH CAPSULE PREVIOUS FIT* VS. SYMMETRIC HYPERBOLIC TANGENT CURVE-FITTING METHOD (CVGRAPH VERSION 4.1)

  • The previous fit was plotted by PG&E using the EPRI Hyperbolic Tangent Curve Fitting Routine.

Appendix B

B-1 TABLE B-I Changes in Average 30 ft-lb Temperatures for Intermediate Shell Forging B4106-3 (Longitudinal Orientation)

Previous Fit vs. CVGRAPH 4.1 [F]

Previous Fit CVGRAPH 4.1 Fit Capsule Unirradiated Irradiated AT30 Unirradiated Irradiated AT30 S 5 3 -2 5.14 3.36 -1.78 Y 5 52 47 5.14 53.81 48.66 V - 1 5.14 39.46 34.32 TABLE B-2 Changes in Average 50 ft-lb Temperatures for Intermediate Shell Forging B4106-3 (Longitudinal Orientation)

Previous Fit vs. CVGRAPH 4.1 [F]

l_______ Previous Fit _ CVGRAPH 4.1 Fit Capsule Unirradiated Irradiated AT50 Unirradiated CVGRAPH AT50 S 41 45 4 39.31 45.43 6.11 Y 41 94 53 39.31 91.82 52.51 V - 39.31 77.51 38.19 TABLE B-3 Changes in Average 35 mil Lateral Expansion Temperatures for Intermediate Shell Forging B4106-3 (Longitudinal Orientation)

Previous Fit vs. CVGRAPH 4.1 [F]

Previous Fit CVGRAPH 4.1 Fit Capsule Unirradiated Irradiated AT35 Unirradiated Irradiated AT35

___ 2_

29 29 0 28.65 28.92 0.27 Y 29 75 46 28.65 74.89 46.24 V - - 28.65 89.72 61.07 Appendix B

B-2 TABLE B-4 Changes in Average Energy Absorption at Full Shear for Intermediate Shell Forging B4106-3 (Longitudinal Orientation)

Previous Fit vs. CVGRAPH 4.1 [ft-lb]

Previous Fit* (CVGRAPH 4.1 Fi t Capsule Unirradiated Irradiated AE Unirradiated Irradiated AE S 122 126 4 118 126 8 Y 122 119 -3 118 110 -8 (110) (-12)

V - 118 121 3

  • Values in parenthesis were calculated per the definition of Upper Shelf Energy given in ASTM E185-82.

Note that the CVGRAPH USE values were also defined by ASTM E185-82.

TABLE B-5 Changes in Average 30 ft-lb Temperatures for Surveillance Weld Material Previous Fit vs. CVGRAPH 4.1 [F]

Previous Fit CVGRAPH 4.1 Fit Capsule Unirradiated Irradiated AT30 Unirradiated Irradiated AT30 5S -67 43 110 -65.62 45.17 110.79 Y -67 167 234 -65.62 166.97 232.59 V - -65.62 135.45 201.07 TABLE B-6 Changes in Average 50 ft-lb Temperatures for Surveillance Weld Material Previous Fit vs. CVGRAPH 4.1 [F]

Previous Fit CVGRAPH 4.1 Fit Capsule Unirradiated Irradiated AT5 o Unirradiated Irradiated AT50 S -23 125 148 -24.16 120.38 144.54 Y -23 253 276 -24.16 255.73 279.9 V - - -24.16 219.26 243.43 Appendix B

B-3 TABLE B-7 Changes in Average 35 mil Lateral Expansion Temperatures for Surveillance Weld Material Previous Fit vs. CVGRAPH 4.1 [F]

q Previous Fit CVGRAPH 4 Fit Capsule Unirradiated Irradiated ATs Unirradiated Irradiated AT 35 S -46 96 142 46.52 95:28 141.81 Y -46 195 241 -46.52 194.25 240.77 v -46.52 220.66 267.19 TABLE B-8 Changes in Average Energy Absorption at Full Shear for Surveillance Weld Material Previous Fit vs. CVGRAPH 4.1 [ft-lb]

Previous Fit* CVGRAPH 4.1 Fit Capsule Unirradiated Irradiated AE Unirradiated Irradiated AE S 98 87 -II 91 81 -10 Y 98 66 -32 91 60 -31 (60) (-38)

V - - 91 66 -25

  • Values in parenthesis were calculated per the definition of Upper Shelf Energy given in ASTM El 85-82.

Note that the CVGRAPH USE values were also defined by ASTM E185-82.

TABLE B-9 Changes in Average 30 ft-lb Temperatures for the Weld Heat-Affected-Zone Material Previous Fit vs. CVGRAPH 4.1 [F]

Previous Fit CVGRAPH 4.1 Fit Capsule Unirradiated Irradiated AT3 0 Unirradiated Irradiated AT>

S -168 -91 77 -163.55 -91.24 72.31 Y -168 -84 84 - 163.55 -83.77 79.77 V -163.55 -52.65 110.9 Appendix B

B-4 TABLE B- O Changes in Average 50 ft-lb Temperatures for the Weld Heat-Affected-Zone Material Previous Fit vs. CVGRAPH 4.1 [1F]

U Previos Fit CVGRAPH 41 Fit Capsule Unirradiated Irradiated AT, 0 Unirradiated Irradiated AT 50 s 11 -55 56 -111.75 -55;29 56.46 Y -111 -36 75 -111.75 -35.96 75.78 V - - - -111.75 -1.98 109.77 TABLE B-I I Changes in Average 35 mil Lateral Expansion Temperatures for the Weld Heat-Affected-Zone Material Previous Fit vs. CVGRAPH 4.1 [F]

Previous Fit CVGRAPH 4.1 Fit Capsule Unirradiatedl Irradiated AT35 Unirradiated Irradiated AT3s S -107 -64 43 -107.5 -64.26 43.24 Y 1 -107 -36 71 1 -107.5 -36.47 71.03

- - -107.5 18.76 126.27 TABLE B-12 Changes in Average Energy Absorption at Full Shear for the Weld Heat-Affected-Zone Material Previous Fit vs. CVGRAPH 4.1 [ft-lb]

Previous Fit* CVGRAPH 4.1 Fit Capsule Unirradiated Irradiated AE Unirradiated Irradiated AE S 147 125 -22 136 125 -11

-Y 147 110 -37 136 109 -27 (109) (-38)

V - 136 116 -20

  • Values in parenthesis were calculated per the definition of Upper Shelf Energy given in ASTM El 85-82.

Note that the CVGRAPH USE values were also defined by ASTM El 85-82.

Appendix B

B-5 TABLE B-13 Changes in Average 30 ft-lb Temperatures for the Correlation Monitor Material Previous Fit vs. CVGRAPH 4.1 [F]

Previous Fit CVGRAPH 4.1 Fit Capsule Unirradiated Irradiated AT30 Unirradiated Irradiated AT30 S 46 112 66 46.44 112.06 65.62 Y 46 158 112 46.44 162.23 115.79 V - - - 46.44 163.05 116.61 TABLE B- 14 Changes in Average 50 ft-lb Temperatures for the Correlation Monitor Material Previous Fit vs. CVGRAPH 4.1 [F]

Previous Fit CVGRAPH 4.1 Fit Capsule Unirradiated Irradiated AT50 Unirradiated Irradiated AT50 S 78 146 68 78.3 143.42 65.11 y 78 190 112 78.3 188.9 110.59 V - - 78.3 197.42 119.12 TABLE B-15 Changes in Average 35 mil Lateral Expansion Temperatures for the Correlation Monitor Material Previous Fit vs. CVGRAPH 4.1 [F]

Previous Fit CVGRAPH 4.1 Fit Capsule Unirradiated Irradiated AT35 Unirradiated Irradiated AT3 s S 59 124 65 58.96 124.49 65.53 Y 59 178 119 58.96 178.01 119.05 V - - - 58.96 213.46 154.49 Appendix B

B-6 TABLE B-16 Changes in Average Energy Absorption at Full Shear for the Correlation Monitor Material Previous Fit vs. CVGRAPH 4.1 [ft-lb]

U Previous Fit* CVGRAPH 4.1 Fit Capsule Unirradiated Irradiated l AE Unirradiated Irradiated AE S 124 123 _ -1 123 120 l -3 Y 124 122 -2 123 112 -11 (112) ( -2) _

V - - - 123 117 -6

  • Values in parenthesis were calculated per the definition of Upper Shelf Energy given in ASTM El 85-82.

Note that the CVGRAPH USE values were also defined by ASTM E185-82.

Appendix B

C-O APPENDIX C CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING SYMMETRIC HYPERBOLIC TANGENT CURVE-FITTING METHOD Appendix C

C-1 Contained in Table C-I are the upper shelf energy values used as input for the generation of the Charpy V-notch plots using CVGRAPH, Version 4.1. The definition for Upper Shelf Energy (USE) is given in ASTM E185-82, Section 4.18, and reads as follows:

"ipper shelf energy level the average energy value for all Charpy specimens (normally three) whose test temperature is above the upper end of the transition region. For specimens tested in sets of three at each test temperature, the set having the highest average may be.regarded as defining the upper shelf energy."

If there are specimens tested in set of three at each temperature Westinghouse reports the set having the highest average energy as the USE (usually unirradiated material). If the specimens were not tested in sets of three at each temperature Westinghouse reports the average of all 100% shear Charpy data as the USE. Hence, the USE values reported in Table C-I and used to generate the Charpy V-notch curves were determined utilizing this methodology.

The lower shelf energy values were fixed at 2.2* ft-lb for all cases.

Table C-1 Upper Shelf Energy Values Fixed in CVGRAPH ft-lb]

Nlaterial Unirradiated Capsule S Capsule Y Capsule V Intermediate Shell Plate 118 126 110 121 B4106-3 (Longitudinal Orientation)

Weld Metal 91 81 60 66 (heat # 27204)

HAZ Material 136 125 109 116 Correlation Monitor 123 120 112 117 Material

  • The Charpy V-notch curves show a value of 2.19 ft-lb, rather then 2.2. This is an inconsistency with the CVGraph program; the value of 2.2 is entered into the program, however, the value of 2.19 appears on the plot. This inconsistency is not expected to alter the results.

Appendix C

INTER SHELL PLATE B4106-3 UNIRR (LONG)

CVGRAPI 4i lyperbolic Tangent Curve Printed at 11:11:43 on 0-19-2002 Page I Coefficients of Curve I F A = 60.09 B = 57.9 C = 85.44 T = 54.37 Equation is. CVN = A + B

  • I tanh((T - T)/C) I Upper Shelf Energy: 118 Fixed Temp. at 30 ft-lbs: 5.1 Temp. at 50 ft-lbs 393 Lower Shelf Energy: 219 Fixed Material: PLATE SA533B1 Heat Number: B4106-3 Orientation: LT Capsule: UNIRR Total Fluence:

300-250F 2001F P;%

0_

(I1 z__

150 100 I0 X I I 0 C) 50~~~~~~~~~ ooX t-~~~~~l/

u

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: DCI Cap: UNIRR iaterial: PLATE SA533BI Ori: LT Heat #: B4106-3 Charpy V-Notch Dakta Temperature Input CVN Energy Computed CVN Energy Differential

-50 6 11.45 -5.45

-50 6 11.45 -5.45

-50 6 11.45 -5.45

-20 215 19.47 2.02

-20 28 19.47 8.52

-20 22 19.47 2.52 10 37 32.46 4.53 10 46 32.46 13.53 10 29 3246 -3.46

      • Data continued on next page 'll C-2

INTER SHELL PLATE B4106-3 UNIRR (LONG)

Page 2 Material: PLATE SA533B1 Heat Number. B4106-3 Orientation: LT Capsule. UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 40 55 50.44 4.55 40 25 50.44 -25.44 40 53.5 50.44 3.05 40 50 50.44 -.44 110 77 9323 -1623 110 100 9323 6.76 110 107 9323 13.76 210 120.5 115.04 5.45 210 118 115.04 2.95 210 1145 115.04 -.54 SUM of RDUALS = 5.13 I

I C-3

INTER SHELL PLATE B4106-3 CAPSULE S (LONG)

CVGRAPI! 4.1 yperbolic Tangent Curve Printed at 11:11:43 on 08-19-2002 Page I Coefficients of Curve 2 A= 64.09 B 61.9 C = 108.49 TO = 70.58 Equation is CVN = A + B I tanh((T - T0)/C) I Upper Shelf Energy: 126 Fixed Temp. at 30 ft-lbs: 3.3 Temp. at 50 f-lbs 45.4 Lower Shelf Energy: 2.19 Fixed Material: PLATE SA533B1 Heat Number: B4106-3 I)rientation: LT Capsule: Total Fluence: 2.84E+18 co

"-q M

l 5H V

z4 0)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: DCI Cap: S Material: PLATE SA533BI Ori: LT Heat #: B4106-3 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-25 10 20.33 -1033 25 32 39.51 -7.51 50 59 5249 6.5 76 92 6718 241 125 97 92.78 421 125 59 92.78 -33.78 200 128 115.56 12.43 350 124 12528 -128 SiUIM of RESIDUALS =-4.95 C4

INTER SHELL PLATE B4106-3 CAPSULE Y (LONG)

CVGRAPII 4.1 Hyperbolic Tangent Curve Printed at 11:11:43 on 08-19-2002 Page Coefficients of Curve 3 A = 56.09 B = 53.9 C = 91.63 TO = 10224 Equation is. CVN = A + B tanh((T - T0)/C) I Upper Shelf Energy: 110 Fixed Temp. at 30 f-lbs 53.8 Temp. at 50 ft-lbs 91.8 Lower Shelf Energy: 19 Fixed Material: PLATE SA533BI Heat Number. 4106-3 Orientation: LT Capsule: Y Total Fluence: 1.05E+19 259fY In 20 150 1u z

I

/7 4 4 + +

e,0/

I .1 L 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant DCI Cap: Y Material: PLATE SA533BI Ori: LT Heat : B4106-3 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-25 12 851 3.48 20 20 17.55 244 50 37 2831 8.68 75 33 40.53 -7.53 125 63 6921 -621 175 96 91.7 4129 225 113 103.07 9.92 275 107 10757 -.57 SUM of RESIDUAIS = 14.5 C-5

INTER SHELL PLATE B4106-3 CAPSULE V (LONG)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 11:11:43 on 08-19-2002 Page I Coefficients of Curve 4 A = 61.59 B = 59.4 C = 9629 TO = 96.56 l Equation is: CVN = A + B I anh((T - TO)/C) I Upper Shelf Energy 121 Fixed Temp. at 30 ft-lbs 39.4 Temp. at 50 ft-lbs 77.5 Lower Shelf Energy: 2.19 Fixed Material: PLATE SA533BI leat Number. B4106-3 Orientation: LT Capsule: V Total Fluence 137E+19 300-----_ __

250' 150 10 In 50 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: DCI Cap: V Material: PLATE SA533BI Ori: LT Heat #: 134106-3 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-25 15 11 3.99 25 32 2411 7.88 75 33 48.51 -15.51 110 7Q 69.83 .16 125 92. 78.64 13.35 175 94 10152 -752 250 12 11628 5.71

>>'* Data continued on next page I"*

C-6

INTER SHELL PLATE B4106-3 CAPSULE V (LONG)

Page 2 Material: PLATE SA533B1 leat Number. B4106-3 Orientation: LT Capsule V Total Fluence: 1.37E+19 Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 275 119 118.15 .84 SUM of RESIDUAIS = 8.91 I

i i

i C-7

INTER SHELL PLATE B4106-3 UNIRR (LONG)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 11:38.29 on 08-19-2002 Page I Coefficients of Curve I A= 45.01 B = 44.01 C = 88.8 TO = 4921 Equation is LE = A+ B

  • I tanh((T - T0)/C) I Upper Shelf LE- 89.02 Temperature a LE 35: 28.6 Lower Shelf LE I Fixed Material: PLATE SA533B1 Heat Number. B4106-3 Orientation: LT Capsule: UNIER Total Fluence.

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: DC] Cap: UNIRR liaterial PLATE SA533BI Ori: LT Heat : B4106-3 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE Differential

-50 3 9.51 -6.51

-50 3 951 -6.51

-50 5 9.51 -451

-20 19 16.3 2.69

-20 24 16.3 7.69

-20 20 16.3 3.69 10 31 26.74 425 10 39 26.74 1225 10 23 26.74 -3.74

'** Data continued on next page C-8

INTER SHELL PLATE B4106-3 UNIRR (LONG)

Page 2 Material: PLATE SA533BI Heat Number. 4106-3 Orientation: LT Capsule UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE Differential 40 44 40.46 3.53 40 16 40.46 -24.46 40 45 40.46 4.53 40 40 40.46 -.46 110 60 71.17 -11.17 110 74 71.17 2.82 110 86 71.17 14.82 210 84 86.73 -2.73 210 85 86.73 -1.73 210 89 86.73 226 SUNI of RESIDUALS =-327 I

i I

i I

It I

I C-9

INTER SHELL PLATE B4106-3 CAPSULE S (LONG)

CYGRAPH 41 Hyperbolic Tangent Curve Printed at 11:29 on 08-19-2002 Page 1 Coefficients of Curve 2 A = 3686 B = 3536 C = 75.79 TO =3287 Equation is: LR = A B I anh((T - TO)/C) I Upper Shelf LE 72.72 Temperature at LE 35: 28.9 Lower Shelf LE I Fixed Material: PLATE SA533B1 Heat Number. B4106-3 Orientation: LT Capsule S Total Fluence: 84E+18 200-U)

P-4

. .- 15F 100 0

-5H Pa-- 0 Ct 0 50 0 U

-300 -200 -100 0 100 . 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: DCI Cap: S Material: PLATE SA533B1 Ori: LT Heat #: B4106-3 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE Differential

-25 105 13.79 -329 25 30 3315 -3.15 50 47 4483 2.16 716 68 553 1Z67 125 655 6692 -1.42 125 45.5 66.92 -21.42 200 79 7186 7.13 350 77.5 72.71 4.78 SUM of RESIDUAIS = -2.54 C-10

INTER SHELL PLATE B4106-3 CAPSULE Y (LONG)

CVGRAPII 4.1 llyperbolic Tangent Curve Printed at I1:3829 on 08-19-2002 Page I Coefficients of Curve 3 l A = 43.76 B = 42.76 C = 110.43 TO = 97.85 Equation is LE = A + B tanh((T - TO)/C)

Upper Shelf LE- 86.52 Temperature at L 35: 74.8 Lower Shelf LE I Fixed Material: PLATE SA533BI Heat Number. 131106-3 Orientation: LT Capsule Y Total Fluence: 1.05E+19 AXU I

U) 15V ooL

'I 0a sr -11X

.~~~~~~~~~I u

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: DCI Cap: Y Mlaterial: PLATE SA533BI Ori: LT lleat  : B4106-3 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LR Differential

-25 13 9.34 3.65 20 18 17.78 21 50 31 2631 4.68 75 29 35.03 -6.03 125 50 54.06 -4.06 175 75 69.56 5.43 225 84 7M74 525 275 77 83.19 -6.19 SUM of REiDUALS = 2.94 C-1l

INTER SHELL PLATE B4106-3 CAPSULE V (LONG)

CVGRAPH 4.1 lyperbolic Tangent Curve Printed at 11:3829 on 08-19-2002 Page 1 Coefficients of Curve 4 A = 41.48 B = 40.48 C = 106.09 TO = 106.87 Equation is L = A + B I tanh((T- TO)/C) I .

Upper Shelf LE 81.97 Temperature at L 35: 89.7 Lower Shelf LE I Fixed llaterial: PLATE SA533BI Heat Number3B4106-3 Orientation: LT Capsule V Total Fluence 137E+19 204T Cl)

'--4 150[

0)r-100 4-,

50:

1)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant DCI Cap: V Material: PLATE SA533BI Ori: LT leat : B4106-3 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LK Differential

-25 5 722 -222 25 19 1525 3.74 75 21 29.67 -&67 110 46 4Z68 3.31 125 57 48.33 8.66 175 56 64.41 -8.41 250 78 76.86 113

>> Data continued on next page '

C-12

INTER SHELL PLATE B4106-3 CAPSULE V (LONG)

Page 2 Materi. a1: PLATE SA533BI Heat Number: B4106-3 Ori enlation: LT Capsule V Tolal Fluence 137E+19 Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE Differential 275 80 78.71 - 1,8 SUM of RESIDUALS = -1.18 C-13

INTER SHELL PLATE B4106-3 UNIRR (LONG)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 11:49.00 on 08-19-2002 Page 1 Coefficients of Curve I A = 50 B = 50 C = 10z2.68 T0 = 77.35 Equation is Shear/. = A+ B I tanh{(T - TO)/C)]

Temperature at 50z. Shear. 773 Material: PLATE SA533B1 Heat Number. B4106-3 Orientation: LT Capsule. UNIRR Total Fluence:

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: DCI Cap: UNIRR Material: PLATE SA533B1 Or: LT Heat #: 134106-3 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-50 9 7.72 127

-50 9 7.72 127

-50 9 7.72 127

-20 14 13.05 .94

-20 14 13.05 .94

-20 14 13.05 .94 10 25 2121 3.78 10 20 2121 -121 10 25 2121 378

  • -1 Data continued on next page I'l C-14

INTER SHELL PLATE B4106-3 UNIRR (LONG)

Page 2 Material: PLATE SA533131 Heat Number. B4106-3 Orientation: LT Capsule: UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 40 34 3257 1.42 40 29 32.57 -3.57 40 34 3257 1.42 40 30 32.57 -2.57 110 56 6538 -9.38 110 65 6538 -.38 110 65 65.38 -.38 210 100 92.98 7.01 210 100 92.98 7.01 210 100 92.98 7.01 SUM of RESIDUAL 3 = 20.62 C-15

INTER SHELL PLATE B4106-3 CAPSULE S (LONG)

CVGRAPH 4.1 lyperbolic Tangent Curve Printed at 11:49:00 on 08-19-2002 Page I Coefficients of Curve 2 I A=50 B=50 C=97 T0=87.89 Equation is Shear/ = A+ B I tanh((T - TO)/C) I Temperature at Se!. Shear. 878 Mlaterial: PLATE SA533BI Heat Number. B4106-3 Orientation: LT Capsule: S Total Fluence: 2.84E+18

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant DCI Cap: S Material: PLATE SA533BI Ori: LT Heat : B4106-3 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-25 2 8.88 -6.88 25 20 21.47 -1.47 50 30 31.4 -1.4 76 60 43.9 16.09 125 70 6824 1.75 125 50 6824 -1824 200 100 90.98 9.01 350 100 99.55 A4 SUM of RESIDUAIS = -.69 C-16

INTER SHELL PLATE B4106-3 CAPSULE Y (LONG)

CVGRAPH 4.1 llyperbolic Tangent Curve Printed at 11:9:00 on 08-19-2002 Page I Coefficients of Curve 3 F A50 B = 50 C = 8724 TO = 99.6 Equation is Shear = A + B tanh((T - TO)/C) I Temperature at 50z Shear: 99.6 Material: PLATE SA533BI Ileat Number. 114106-3 Orientation: LT Capsule: Y Total Fluence: 1.05E+19 100~~~~~~~~~~~~~~~~1 80-a)

CD 6(F 0) 0

)

4CF 21r 0~~~~~

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plantl DCI Cap: Y Material: PLATE SA533BI Ori: LT Beat #: B4106-3 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-25 10 5.43 4.56 20 15 13.8 1.11 50 30 2428 5.71 75 30 3625 -625 125 60 64.15 -4.15 175 90 1.91 5.08 225 100 94.65 5.34 Z75 100 9823 1.76 SUM of RESIDUALS = 13.17 C-17

INTER SHELL PLATE B4106-3 CAPSULE V (LONG)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 11:49:00 on 08-19-2002 Page 1 Coefficients of Curve 4 A = 50 B = 50 C = 7205 TO = 117.18 Equation is: Shear = A+ B I tanh((T - TO)/C) I Temperature at 50. Shear. 117.1 Material: PLATE SA533BI Heat Number B4106-3 Orientation: LT Capsule V Total Fluence 1.37E+19

-300 -200 -100 0 100 200 300 400 500 600 Temperature in DeLrees F

.~~~~~~~~~~~~~~~~~~~~ ..

I Data Set(s) Plotted Plant DCI Cap V Mlaterial: PLATE SA533B1 Ori: LT Heat #: B4106-3 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-25 5 1.89 3.1 25 10 7.18 2.81 75 15 23.66 -8.66 110 45 45.02 -.02 125 65 5539 9.6 175 75 8326 -826 250 100 97.55 2.44

-" Data continued on next page *'1, C-18

INTER SHELL PLATE B4106-3 CAPSULE V (LONG)

Page 2 Mlaterial: PLATE SA533B1 Heat Number. B4106-3 Orientation: LT Capsule V Total Fluence 1.37E+19 Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 275 100 98.76 123 SUM of RESIDUALS = 223 C-19

WELD METAL UNIRRADIATED CVGRAPII 4.1 Hyperbolic Tangent Curve Printed at 12:2017 on 08-19-2002 Page I Coefficients of Curve I I A = 4659 R= 44.4 C = 8827 TO = -30.93 Equation is CVN = A + B I tanh((T - TO)/C) I Upper Shelf Energy: 91 Fixed Temp. at 30 -lbs -65.6 Temp. at 50 f-lbs. -24.1 Lower Shelf Energy: 2.19 Fixed Material: ELD LINDE 1092 Beat Number 27204 FLUX LOT 3714 Orientation:

Capsule UNIRR Total Fluence:

300-:

U) 25CFY la 0__

200 Is 15i V_

10 0 03 _ _ _ _ _ _ _ _ _ _ _ _

50 I)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: DCI Cap: UNIRR Material: WELD LINDE 1092 Ori.: Heat #: 27201 FLUX LOT 3714 Charpy V-Notch Data Temperature Input CN Energy Computed CVN Energy Differential

-150 19.5 7B 11.69

-150 9 7.8 1.19

-150 22.5 7.8 14.69

-100 15.5 17.55 -2.05

-100 17.5 17.55 -.05

-100 14 17.55 -3.55

-50 44.5 37.15 734

-50 24 37J5 -13.15

-50 295 37.15 -7.65

  • ' Data continued on next page '

C-20

VELD METAL UNIRRADIATED Page 2 Material: WELD LINDE 1092 Heat Number 27204 FLUX LOT 3714 Orientation:

Capsule, UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input CYN Energy Computed CVN Energy Differential

-20 50 52.07 -2.07

-20 615 52.07 9.42 Ij

-20 54.5 52.07 2.42 ii 10 63.5 65.83 -2.33 I P

10 59.5 65S3 -6.33 10 70 65.83 4.16 I 40 845 76.17 832 i 40 79 76.17 2.82 40 69 76.17 -7.17 110 83 87.49 -4.49 110 945 87.49 7 110 94 87.49 65 UM of RESIDUALS = 26.7 II I

I ii I

C-21

WELD METAL CAPSULE S CVGRAP}I 4.1 lyperbolic Tangent Curve Printed at 122017 on 08-19-2002 Page 1 Coefficients of Curve 2 A = 41.59 B = 39.4 C= 144.65 TO = 89.06 Equation is CVN = A B

  • I tanh((T - T0)/C) I Upper Shelf Energy: 81 Fixed Temp. at 30 ft-lbs 45.1 Temp. at 50 ft-lbs 1203 Lower Shelf Energy: 219 Fixed Material: WiELD LINDE 1092 Heat Number. 27204 LUX LOT 3714 Orientation:

Capule S Total Fluence 284E18 30tF 2507 200 150 50~~~~~ -s-- ~ ~ - --

U' I 300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: DCI Cap: S Material: ELD LINDE 1092 Ori: leat #: 27204 FLUX LOT 3714 Charpy V-Notch Data Temperatt ire Input CVN Energy Computed CVN Energy Diflrerential 25 21 252 -42 60 30 33.78 -3.78 76 49 38.05 10.94 76 43 38.05 4.94 125 42 5119 -9.19 0

200 63 67.01 -4.01 250 80 73.31 6.68 350 81 78.91 2.08 SUM of RESIDUALS = 3.45 C-22

WELD METAL CAPSULE Y CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 12:20.17 on 08-19-2002 Page I Coefficients of Curve 3 l A = 31.1 B = 28389 C = 10821 TO = 171.09 Equation is CVN = A + B I tanh((T - T0)/C) I Upper Shelf Energy: 60 Fixed Temp. at 30 ft-lbs 166.9 Temp. at 50 ft-lbs 255.7 Lower Shelf Energy: 22 Fixed Material: WELD LINDE 1092 Heat Number 27204 FLUX LOT 3714 Orientation:

Capsule: Y Total Fluence: 1.05E+19 c) 7la 44)

~z-4 0) zV1 I

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: DC1 Cap: Y Material: WELD LINDE 1092 Ori: Heat # 27204 FLUX LOT 3714 I

Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential 25 16 5.83 10.16 100 17 14.44 2.55 150 24 25.53 -1.53 185 26 34.79 -8.79 215 42 4222 -22 250 58 49.09 8.9 350 63 57.95 5.04 .i 400 60 59.17 82 i SUM of RESIDUAIS = 16.94 i

i C-23 i I

WELD METAL CAPSULE V CVGRAPII 4.1 lyperbolic Tangent Curve Printed at 12:20:17 on 08-19-2002 Page 1 Coefficients of Curve 4 l A = 34.09 B = 31.89 C= 123.9 TO = 151.46 Equation is: CVN = A+ B [ tanh((T - TO)/C) I Upper Shelf Energy: 65.99 Fixed Temp. at 30 ft-lbs 135.4 Temp. at 50 ft-Ibs 2192 Lover Shelf Energy: 2.19 Fixed Material: WELD UNDE 092 Heat Number 04 FLUX LOT 3714 Orientation:

Capsule. V Total Fluence: 137E+19 300F (I) 250 10 4-,4 200-15f Q) 10fF z

(-

50 U'I 300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant DCI Cap: V Material: WELD LINDE 1092 Ori: Heat #: 27204 FLUX LOT 3714 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential 25 11 9.53 1.46 100 23 21.56 1.43 150 36 33.72 227 200 37 45.99 -8.99 225 52 51.08 .91 300 71 60.68 10.31 325 60 62.34 -2:34

  • 1'$Data continued on next page 'l C-24

WELD METAL CAPSULE V Page 2 Material: ELD LINDE 1092 Heal Number 27204 FLUX LOT 3714 Orientation:

Capsule. V Total Fluence: 1.37E+19 Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Eneergy Differential 350 66 63.51 2.48 SUM of RESIDUALS = 7.56 I I i

C-25  ; 1 I

WELD METAL UNIRADIATED CVGRAPH 4.1 yperbolic Tangent Curve Printed a 1230:39 on 08-19-2002 Page I Coefficients of Curve I A= 44.58 B = 43.58 C = 94.87 TO = -25.31 Equation is LE = A+ B

  • I tanh((T - TO)/C) I Upper Shelf LE 88.17 Temperature at LE 35: -465 Lower Shelf LE. I Fixed Material: WELD LINDE 1092 Heat Number. 27204 FLUX LOT 3714 Orientation:

Capsule: UNIRR Total Fluence

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: DC] Cap: UNIRR Material: ELD LINDE 1092 Ori: Heat : 27204 FLUX LOT 3714 Charpy V-Notch Data Temper;3ture Input Laleral Expansion Computed LE Differential

-150 15 6.86 813

-150 8 6.86 1.13

-150 18 6.86 11.13

-100 12 15.95 -3.95

-100 15 15.95 -.95

-100 14 15.95 -1.95

-50 39 33.49 5.5

-50 21 33.49 -1249

-50 26 33.49 -7.49

'**1 Data continued on next page *'*

C-26

WELD METAL UNIRADIATED Page 2 Material: WELD LINDE 1092 ieat Number: Z7204 FLUX LOT 3714 Orientation:

Capsule: UNIRR Total Fuence Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE Differential

-20 47 47.02 -.02

-20 58 47.02 10.97

-20 50 47.02 2.97 10 60 60.1 -.1 10 54 60.1 -6.1 10 62 60.1 1.89 40 77 70.6 639 40 74 70.6 3.39 40 64 70.6 -6.6 110 76 83.42 -7.42 110 88 83.42 4.57 110 84 83.42 .57 SUM of RESIDUAIS = 9.55 C-27

WELD METAL CAPSULE S CVGRAPH 4.1 llyperbolic Tangent Curve Printed at 12.39 on 08-19-2002 Page I Coefficients of Curve 2 A=37.45 B = 36.45 C = 152.02 TO = 10555 Equation. is: L = A B I tanh((T - TO)/C) I Upper Shelf LE: 73.91 Temperature at LE 35: 952 Lower Shelf LE 1 Fixed Material: 1ELD LINDE 1092 Heat Number: 27204 FLUX LOT 3714 Orientation:

Capsule. S Total Fluence: 284E+18

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: DCI Cap: S Material: YELD LINDE 1092 Ori: leat : 27204 FLUX LOT 3714 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE Differential 25 18 19.76 -1.76 60 28 26.85 114 76 33 30.45 2.54 76 32 30.45 154 125 37 42.09 -5.09 200 57 5758 -.58 250 685 64.43 4.06 350 69 71.1 -21 SUM of RESiDUAIS = -25 C-28

WELD METAL CAPSULE Y CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1X.39 on 08-19-2002 Page 1 Coefficients of Curve 3 1 A = 31.12 B = 30.12 C = 115.87 TO = 17924 Equation is: L = A + B

  • I tanh((T - TO)/C) I Upper Shelf LE 6124 Temperature a LE 35: 1942 Lower Shelf LE I Fixed Material: WELD LINDE 1092 Heat Number 27204 FLUX LOT 3714 Orientation:

Capsule: Y Total Fluence: 1.05E+19 20 0 __ __

15F

'--4 i0iY~~~~~~~~~~~

4-,

v I0 4 4. . I I_

u

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant DCI Cap: Y Material: WELD LINDE 1092 Ori: 1eat : 27204 FLUX LOT 3714 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE Differential 25 13 4.93 8.06 100 15 1322 1.77 150 24 23.67 .32 185 24 32.61 -. 61 I 215 37 40.13 -3.13 250 60 47S52 1247 350 58 5823 -23 400 56 59.93 -3.93 SUM of RESlDUAIS = 6.72 C-29

WELD METAL CAPSULE V CVGRAPH 41 }yperbolic Tangent Curve Printed at 1230.39 on 0-19-2002 Page I Coefficients of Curve 4 A=27.73 B = 26.73 C = 124.44 TO 85.9 Equation i LE = A + B I tanh((T - T0)/C) I Upper Shelf LE 54.47 Temperature at LE 35: 220.6 Lower Shelf LE 1 Fixed Material: 'WELD LINDE 1092 Heat Number. 27204 FLUX LOT 3714 Orientation:

Capsule. V Total Fluence: 137E+19 2007-

- III Ib 50 U I I I I I

-300 ,200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: DCI Cap: V Material: W'ELD LINDE 1092 Ori: leat : 27?204 FUX LOT 3714 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE Differential 25 1 4.74 -3.74 100 13 11.73 126 150 25 2021 4.78 200 24 30.73 -6.73 225 37 35.85 114 300 51 47.09 3.9 325 50 49.3 .69

. >*Data continued on next page ""

C-30

WELD METAL CAPSULE V Page 2 Material: WELD LINDE 1092 Heat Number Z7204 FLUX LOT 3714 Orientation:

Capsule- V Total Fluence. 1.37E+19 Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE Differential 350 48 50.89 -2.89 SUM of RESIDUALS = -1.56 c

I I

C-31

WELD METAL UNIRRADIATED CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 124450 on 08-19-2002 Page 1 Coefficients of Curve I A =50 B = 50 C =75.76 T0 -1593 Equation is: Shear% = A + B I tanh((T - TO)/C) I Temperature at SOx Shear -15.9 Material: WELD LINDE 1092 Heat Number 27204 FLUX LOT 3714 Orientation:

Capsule: UNIRR Total Fluence CZ 0

V)

Ca)

C) 0-

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant DCI Cap: UNI1RR Material: WELD LINDE 1092 Or: Heat #: 27204 FLUX LOT 3714 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-150 18- 282 1517

-150 9 2.82 6.17

-150 14 282 11.17

-100 14 9.8 4.19

-100 13 9.8 3.19

-100 13 9.8 3.19

-50 30 28.92 1.07

-50 18 28.92 -10.92

-50 25 28.92 -3.92

'>" Data continued on next page *'

C-32

WELD METAL UNIRRADIATED Page 2 Material: WELD LINDE 1092 Heat Number 27204 FLUX LOT 3714 Orientation:

Capsule: UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential

-20 40 47.32 -7.32

-20 61 4732 13.67

-20 44 4732 -32 10 56 66.47 -10.47 10 59 66.47 -7.47 10 75 66.47 852 40 90 81.4 859 40 95 81.4 13.59 40 75 81.4 -6.4 110 96 9652 -52 110 100 96.2 3.47 110 100 96.52 3.47 It of RESIDUALS = 45.15 I

i z

q t

I I

I I

I I

I iq i C-33

WELD METAL CAPSULE S CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 12:44.50 on 08-19-2002 Page I Coefficients of Curve 2 A = 50 B = 50 C = 109.59 TO = 110.74 Equation is Shear/. = A + B I tanh((T - TO)/C)

Temperature at 50z. Shear 110.7 Material: WELD LINDE 1092 Heat Number 27204 FLUX LOT 3714 Orientation:

Capsule: S Total Fluence 284E+18 0

U)

CD 0

a-)

00

-300 -200 -100 0 - 100 200 300 - 400 500 600 Temperature in Degrees F Data St(s) Plotted Plant: DCI Cap S Material: WELD LINDE 1092 Ori: Heat : 270241 FLUX LOT 3714 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 25 15 1729 -229 60 20 28.37 -837 76 45 34.66 10.33 76 40 34.66 533 125 50 56.46 -6.46 200 80 83.6 -3.6 250 100 92.69 73 350 100 98.74 125 1 SUM of RESIDUAIS = 3.49 C-34

WELD METAL CAPSULE Y CVGRAPH 4.1 lyperbolic Tangent Curve Printed at 124450 on 08-19-2002 Page 1 Coefficients of Curve 3 l A = 50 B = 50 C = 87.67 TO = 168.75 Equation is Shearz. = A+ B I tanh((T - TO)/C) I Temperature at 50 Shear 168.7 Material: WELD LINDE 1092 Heat Number 27204 FLUX LOT 3714 Orientation:

Capsule: Y Total Fluenee 1.05E+19 C/)

0 I

II

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant DCI Cap: Y Material: WELD LINDE 1092 Ori: Heat #: 27204 FLUX LOT 3714 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 25 15 3.62 11.37 100 15 1724 -224 150 45 39.46 5.53 185 50 59.16 -9.16 215 70 74.17 -4.17 250 100 86.45 1354 350 100 98.42 1.57 100 100 99.49 5 SUM of RSIDUAIS = 16.95 C-35

WELD METAL CAPSULE V CVGRAP}I 4.1 hlyperbolic Tangent Curve Printed at 12:44.50 on 08-19-2002 Page I Coefficients of Curve 4 l A = 50 B C 66.4 TO 20156 Equation is: Shear = A + B I tanh((T - T0)/C) I Temperature at 50/ Shear. 201.5 Material: WELD LINDE 1092 Beat Number. 27204 FLUX LOT 3714 Orientation:

Capsule: V Total Fluence 137E+19 CZ UL) 4a) 0)

C~)

0_

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: DCI Cap: V laterial: WELD LINDE 1092 Ori: Heat : 2"'204 FLUX LOT 3714 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 25 5 .48 451 100 15 4.48 10.51 150 25 17.46 7.53 200 30 48.82 -1882 225 80 66.94 13.05 300 100 95.09 4.9 325 100 97.62 2.37 "t' Data continued on next page 'l C-36

WELD METAL CAPSULE V I Page 2 Material: WELD LINDE 1092 Heat Number 27204 FLUX LOT 3714 Orientation:

Capsule: V Total Fluence 137E+19 Charpy V-Notch Data (Continued) I Temperature Input Percent Shear Computed Percent Shear Differential 350 100 98.86 1.13 SUM of RESlDUAIS = 25.19 I

s C-37

HEAT AFFECTED ZONE UNIRRADIATED CVGRAPII 4.1 hlyperbolic Tangent Curve Printed at 13:33:29 on 08-19-2002 Page I Coefficients of Curve A = 69.09 B = 66.9 C = 137.93 TO = -7125 Equation is: CVN = A + B

  • I tanh((T - T0)/C) I Upper Shelf Energy: 136 Fixed Temp. at 30 f-lbs -163.5 Temp. at 50 ft-lbs -111.7 Lower Shelf Energy: 219 Fixed Material: HEAT AFFD ZONE Heat Number. Orientation:

Capsule: UNIRR Total Fluence: 284E+18 U) la

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted PlanL DCI Cap: UNIRR Material: EAT AFF'D ZONE Ori: Heat :

Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-200 22 20.11 1.88

-200 21 20.11 .88

-200 2 2011 -18.11

-150 35 3457 .42

-150 35.5 34.57 .92

-150 365 34.57 192

-100 445 5535 -10.85

-100 525 55.35 -2.85

-100 88 5535 32.64

... Data continued on next page ....

C-38

HEAT AFFECTED ZONE UNIRRADIATED Page 2 Material: HEAT AFFD ZONE Heat Number Orientation:

Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential

-50 88 79.32 8.67

-50 825 79.32 3.17

-50 565 79.32 -22.82 10 10 115 120 104.5 10.49 I; 104.5 15.49 10 87 104.5 -175 40 105.5 113.76 -826 40 100 113.76 -13.76 40 1085 113.76 -526 110 130 126.9a 3.01 110 1355 126.99 8.51 110 142.5 126.93 15.51 LM of RESIDUALS = 4.09 C-39

HEAT AFFECTED ZONE CAPSULE S CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 13.53:38 on 09-03-2002 Page I Coefficients of Curve I A= 63.59 B = 61.4 C = 9237 TO = -3448 Equation is: CVN =A B I tanh((T - T0)/C) I Upper Shelf Energy: 125 Fixed. Temp. at 30 ft-lbs -912 Temp. at 50 ft-lbs -552 Lower Shelf Energy: 2.19 Fixed Mlaterial: IIEAT AFFD ZONE Beat Number. Orientation:

Capsule S Total Fluence 2.84E+18 300 cn 250_

150 100

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Setts) Plotted Plant DCI Cap: S Material: IEAT AFF'D ZONE Ori: Heat #:

Charpy V-Notch Data Temperaiture Input CVN Energy Computed CVN Energy Differential

_IRr I . IIIq II I 1i 1.49

-100 Il

-100 21 26.13 -5.13

-10 25 26.13 -1.13

-75 43 3827 4.2 0 85 85.51 -51 76 115 114.71 28 200 118 12423 -623 350 132 124.97 7.02 SUM of RESIDUALS = 51 C-40

HEAT AFFECTED ZONE CAPSULE Y CVGRAPII 4.1 yperbolic Tangent Curve Printed at 133329 on 0-19-2002 Page I Coefficients of Curve 3 A= 5559 B = 53.4 C = 114.66 T0 = -23.9 Equation is CN = A + B I tanh((T - TO)/C) I Upper Shelf Energy: 109 Fixed Temp. at 30 ft-lbs -83.7 Temp. at 50 ft-lbs -35.9 Lower Shelf Energy: 2.19 Fixed Material: HEAT AFFD ZONE Heat Number Orientation:

Capsule: Y Total Fluence 1.05E+19 30Y 7- _ _ __ _ _ _

U) 25CFf

,.0

~z-4 20(

bl CD a) 1507 zw-r-10(

1-u 4 4 4 1

()

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: DCI Cap: Y Material: EAT AFFD ZONE Or: Beat #:

i I

I Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-150 5 1285 -785

-100 23 2458 -1.58

-50 42 43.65 -1.65

-25 72 55.08 16.91 25 63 77.08 -14.08 75 90 9284 -2.84 150 114 104.09 9.9 225 104 107.62 -3.62 SUM of RESIDUALS = -4.83 C-41

HEAT AFFECTED ZONE CAPSULE V CVGRAPII 4.1 lyperbo]ic Tangent Curve Printed at 13:3329 on 08-19-2002 Page I Coefficients of Curve 4 A 59.09 B = 56.9 C=125.62 TOz=12S Equation i CVN A+ B I tanh((T - TO)/C) I Upper Shelf Energy: 116 Fixed Temp. at 30 fL-]bs -526 Temp. at 50 ft-]bs: -1.9 Lower Shelf Energy: 2.19 Fixed Material: HEAT AFFD ZONE Ileat Number. Orientation:

Capsule: V Total Fluence: 1.37E+19 300-U) la 200-150-a) 100 1A 50G-0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: DC1 Cap: V Material: HEAT AFFD ZONE Ori: Heat #':

Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-125 19 12.75 624

-50 36 30.89 51 0 47 50.87 -3.87 72 66 8204 -16.04 10 88 9164 -3.64 125 128 94 29.59 175 95 10732 -1232 I'll Data continued on next page I'l C-42

HEAT AFFECTED ZONE CAPSULE V Page 2 Material: HEAT AFFD ZONE Ileat Number Orientation-Capsule V Total Fluence 137E+19 Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CN Energy Differential 225 124 111.91 12.08 SUM of RIDUALS = 17.12 II I I I I I I C43

HEAT AFFECTED ZONE UNIRRADIATED CVGRAPI 4.1 lyperbolic Tangent Curve Printed at 1427:03 on 08-19-2002 Page I Coefficients of Curve I A = 44.65 B = 43.65 C= 127.88 TO = -78.75 Equation is: LE = A + B tI lanh((T - TO)/C)

Upper Shelf LE- 88.3 Temperature at LE 35: -1075 Lower Shelf LE I Fixed Material: HEAT AFFD ZONE leat Number. Orientation:

Capsule: UNIRR Total Fluence:

F 20a--t Y F

. P- 150-S

--I 4 4 4 + 4 + + 4 10 *q. I

0) 0 I/

2 I 5 1 1 t~0 0U 1 I I I i

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: DCI Cap: UNIRR Material: HEAT AFFD ZONE Ori: leat #:

Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE Differential

-200 15 12.39 2.6

-200 17 12.39 4.6

-200 3 IZ.39 -939

-150 23 ZZ57 A

-150 23 22.57 .42

-150 24 2257 1.42

-100 29 37.46 -8.46

-100 33 37.46 -4.46

-100 53 37.46 1553

'll Data continued on next page I

C-44

HEAT AFFECTED ZONE UNIRRADIATED Page 2 Material: HEAT AFFD ONE Heat Number. Orientation:

Capsule: UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature

-50

-50 Input ateral Expansion 60 52 Computed LE 54.3 54.3 Differential 5.69

-23 I

-50 40 543 -14.3 10 7 70.87 7.12 10 80 70.87 9.12 10 64 70.87 -6.87 40 76 76.51 -.51 40 78 76.51 1.48 40 75 76S5 -1.51 110 82 83.97 -1.97 110 84 83.97 .02 110 83 83.97 -.97 SUM of RESDUAIS =-Z32 r-A,

HEAT AFFECTED ZONE CAPSULE S CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1427:03 on 08-19-2002 Page 1 Coefficients of Curve 2 l A = 4137 B = 40.37 C = 9453 TO = -4921 Equation is: LE = A + B

  • I tanh((T - TO)/C) I Upper Shelf LE: 81.74 Temperature at LE 35 -642 Lower Shelf LE I Fixed Material: EAT AFFD ZONE Heat Number Orientalion:

Capsule S Total luence 84E+18 U)

P-

. r-4a)

CZ

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: DCI Cap: S Mlaterial: HEAT AFFD ZONE Ori: leat :

Charpy V-Notch Data Temperature Input Lateral Expansion Compuled LE Differential

-150 15 9.55 544

-100 205 2155 -1.05

-100 16.5 21.55 -5.05

-75 32 30.62 1.37 0 63 60.67 2.32 76 74 76.41 -Z41 200 80.5 81.33 -.83 350 84 81 .72 2Z1 SUM of RESIDUALS = 2.05

HEAT AFFECTED ZONE CAPSULE Y CVGRAPIl 4.1 Hyperbolic Tangent Curve Printed at 14-27D03 on 08-19-2002 Page I Coefficients of Curve 3 A = 41.72 B = 40.72 C = 134.42 TO = -14.06 Equation is LE = A + B

  • I tanh((T - T)/C) I Upper Shelf LE 245 Temperature at LE 35: -36.4 Lower Shelf LE I ixed Material: HEAT AFED ZONE Heat Number Orientation:

Capsule Y Total Fluence 1.05E+19 20UW U)

"-4 150 5ff-U

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Planl DCI Cap: Y Material: HEAT AFFD ZONE Ori- Heat #:

Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE Differential

-150 3 1051 -751

-100 18 18.74 -.74

-50. 30 31.09 -1.09

-25 52 38.42 13.57 25 46 5323 -723 75 60 65.34 -5.34 150 8o 75.92 4.07 225 80 80.19 -.19 SUlM of RIIDUALS = -4.47 C-47

HEAT AFFECTED i ZONE CAPSULE V CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1427:03 on 08-19-2002 Page I Coefficients of Curve 4 A=41.84 B =40.B4 C=143.96 TO 4312 Equation is: LE A + B tlanh((T - TO)/C)

Upper Shelf LE 82.69 Temperature at LE 35: 18.7 Lower Shelf LE I Fixed Material: HEAT AFFD ZONE Heat Number Orientation:

Capsule: V Total Fluence: 137E+19 Y p Y .Y*

20( i U) 1507

.r1-100 0,

50 u

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant DCI Cap: V Material: HEAT AFFD ZONE Ori: Heat #:

Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE Differential

-125 4 82 -42

-50 22 18.58 3.41 0 31 29.96 1.03 (2 45 49.93 -4.93 100 56 5719 -IJ9 125 71 62.85 8.14 175 65 71.41 4.41

  • '*' Data continued on next page

C48

I HEAT AFFECTED ZONE CAPSULE V Page 2 Material: HEAT AFFD ZONE Heat Number: Orientation:

Capsule V Total Fluence 1.37E+19 Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE Differential 225 79 76.64 2.35 SUM of RESIDUALS = -1.8 C49

HEAT AFFECTED ZONE UNIRRADIATED CVGRAPH 4.1 lyperbolic Tangent Curve Printed at 14:0124 on 09-03-2002 Page I Coefficients of Curve I I A = 50 B 50 C = 109.44 TO = -7294 Equation is Shear,. = A + B I tanh((T - TO)/C) I Temperature at 50 Shear. -729 Material: IEAT AFFD ZONE Heat Number Orientation:

Capsule. UNIRR Total Fluence:

0 C)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: CI Cap: UNIRR laterial: HEAT AFF'D ZONE Ori: Hea #:

Charpy V-Notch Data Temper, iture Input Percent Shear Computed Percent Sheear Differential

-200 18 8.93 9.06

-200 18 8.93 9.06

-200 5 8.93 -3.93

_150 23 19.65 3.34

-150 21 19.65 1.34

-150 23 19.65 3.34

-100 29 378 -s.sa

-100 34 37. -3.88

-100 52 37M8 1411

"" Data continued on next page '>

C-50

HEAT AFFECTED ZONE UNIRRADIATED Page 2 Material: EAT AFFD ZONE Heat Number Orientation:

Capsule. UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Inpul Percent Shear Computed Percent Shear Differential

-50 59 60.32 -122

-50 51 60.32 -9.32

-50 43 60.32 -1722 10 95 81.99 13 10 100 81.99 18 10 59 81.99 99 40 90 88.73 126 40 100 88.73 1126 40 100 88.73 1126 110 100 96.58 3.41 110 100 96.58 3.41 110 100 96.58 3.41 SUM of REI1DUAIS = 37.67 C-51

HEAT AFFECTED ZONE CAPSULE S CV'GRAPII 4.1 lyperbolic Tangent Curve Printed at 14D1:24 on 09-03-2002 Page I Coefficients of Curve 2 A 50 B = 50 C = 101.74 TO -15.46 Equation i Shear = A B tanh((T - T)/C) 1 Temperature at . Shear. -15.4 Material: HEAT AFFD ZONE Heat Number Orientation:

Capsule S Total Fluence 2.84E+18 CZ Q) 0 0)

C-)

0)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Sel(s) Plotted Plant: DCI Cap: S Material: HEAT AFFD ZONE Ori: Heat #:

Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-150 5 6.63 -1.63

-100 10 15.95 -5.95

-100 10 15.95 -5.95

-75 40 23.68 1631 0 50 57.54 -7.54 76 90 85.79 42 200 100 98.57 1A2 350 100 99.92 .07 SUM of RESIDUALS = .94

-52

HEAT AFFECTED ZONE CAPSULE Y CYGRAPH 4.1 }yperbolic Tangent Curve Printed at 14.D124 on 09-03-2002 Page I Coefficients of Cujrve 3 A = 50 B = 50 C = 113.01 1' = -3627 Equation is Shear>'. = A B tanh((T - T0)/C) ] I Temperature at 50. Shear. -362 I Material: 13EAT AFFD ZONE Heat Number Orientation:

Capsu]e: Y Total Fluence: 1.05E+19 I

0-0Z 0D 0jc I i

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Decrees F Data Set(s) Plotted Plant: DCI Cap: Y Material: IIEAT AFFD ZONE Or: 1eat #:

Charpy V-Notch Data Temperature Input Percent Shear Computed Percenl Shear Differential

-150 5 11.79 -6.79

-100 25 24.45 .54

-50 40 43.95 -3.95

-25 70 54.97 15.02 25 65 74.73 -9.73 75 84 87.75 -3.75 150 100 96.43 356 225 100 99.02 .97 SUM of RESIDUAIS = -4.12 C-53

HEAT AFFECTED ZONE CAPSULE V CVGRAPII 4.1 Hyperbolic Tangent Curve Printed at 14:0124 on 09-03-2002 Page I Coefficients of Curve 4 l A = 50 B = 50 C = 116.82 TO = -15.93 Equation is: Shear/ = A + B I tanh((T - TO)/C) I

- Temperature at 50:. Shear -15.9 Material: HEAT AFFD ZONE Heat Number Ori entation:

Capsule: V Total Fluence: 1.37E+19

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant DCI Cap: V Material: IEAT AFD ZONE Ori: Heat #:

Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-125 10 13.38 -3.38

-50 45 35.82 9.17 0 50 56.77 -6.77 72 75 81.83 -683 100 90 87.91 a08 125 100 91.77 822 175 100 96.33 3.66

  • ' Data continued on next page ...

HEAT AFFECTED ZONE CAPSULE V Page 2 Material: HEAT AFFD ZONE Heat Number Orientation:

Capsule V Total Fluene 137E+19 Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 225 100 98.4 159 SUM of RESIDUALS = 7.73 C-55

STANDARD REFERENCE MATERIAL UNIRRATIATED CVGRAPH 4.1 hlyperbolic Tangent Curve Printed at I:05:06 on 09-06-2002 Page I Coefficients of Curve I A= 659 B = 60.4 C =81 25 TO = 95.5 Equation is CVN = A+ B

  • I tanh((T - TO)/C) I Upper Shelf Energy: 23 Fixed Temp. at 30 fl-lbs 46.4 Temp. at 50 ft-]bs 78.3 Lower Shelf Energy: 2.19 Fixed Material: SRM SA533BI Heat Number Orientation: LT Capsule: UNIRR Total Fluence 30(T U)25-200 10

~I z- 15(

U4 1 1) 0

=, .

0A) e0

, _I II 0' 1 I

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: DCI Cap: UNIRR Material: SRM SA533BI Ori: LT Heat #:

Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-50 3 5.47 -247

-50 5 5.47 -.47

-50 5 5.47 -.47

-20 6 8.84 -Z84

-20 6.5 8.84 -2.34

-20 9 48.I i5 10 135 15.32 -1.82 10 12 15.32 -3.32 10 14.5 15.32 -B2

  • '* Data continued on next page '"

C-56

STANDARD REFERENCE MATERIAL UNIRRATIATED Page 2 Material: SRM SA533BI Heat Number Orientation: LT Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 40 22- 26.74 -4.74 40 36 26.74 925 40 35 26.74 825 85 52 54.83 -2.83 85 58.5 54.83 3.66 85 415 54.3 -1333 110 63.5 7325 -9.75 110 82.5 7325 924 110 85.5 7325 1224 160 109 10249 6.5 160 108.5 102.49 6 160 1 10249 -21.49 210 121 116.19 4.8 210 117 116.19 .8 210 115 116.19 -1.19 300 117.5 12221 -4.71 300 125 12221 2.78 300 127 12221 4.78 SUM of RSIDUA: S = -4.17 C-57

STANDARD REFERENCE MATERIAL CAPSULE S CVGRAPII 4.1 Hyperbolic 'Tangent Curve Printed at 11.)5:06 on 09-06-2002 Page I Coefficienls of Curve 2 l A = 61.09 B = 58.9 C = 79.04 T0 = 158.49 Equation is CVN = A + B

  • I tanh((T - TO)/C)

Upper Shelf Energy: 120 Fixed Temp. at 30 ft-lbs 1112 Temp. at 50 f-lbs 143.4 Lower Shelf Energy: 219 Fixed Material: SRM SA533BI Heat Number Orientation: LT Capsule: S Total Fuence: 84E+18 I)

In

.1 4-,

0) z D

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Planl: DCI Cap S Material: SRM SA533BI Or: LT Heat :

Charpy V-Notch Data Temperature Input CVN Energy Compuled CVN Energy Differential 25 6 6.08 -.08 76 19 15.19 3.8 125 47 37.53 9.46 125 31 37.53 -6.53 150 52 54.79 -2.79 200 81 89.46 4.46 250 125 109.41 15.58 400 115 119.73 -4.73

SiJA of RESIDUAIS = 623 C-58

STANDARD REFERENCE MATERIAL CAPSULE Y CVGRAPII .1Hyperbolic Tangent Curve Printed at 1l)5:06 on 09-06-2002 Page I Coefficients of Curve 3 l A = 57.09 B = 54.9 C = 64.9 TO = 197.34 Equation i CVN = A + B I tanh((T - TO)/C) I Upper Shelf Energy: 112 Fixed Temp. at 30 ft-lbs 162.2 Temp. a 50 ft-]bs: 188.9 Lower Shelf Energy: 2.19 Fixed Material: SRM SA533BI lleat Number Orientation: LT Capsule: Y Total Fluence: 1.05E+19 300-250 a) 20(7--

1 150-

-)

1007-5(7 U

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant DCI Cap: Y laterial: SM SA533BI Or: LT Ileat #:

Charpy V-Notch Data Temperature Inpul CVN Energy Computed CVN Energy Differential 50 10 335 6.64 100 14 7.41 6.58 150 25 22.91 2.08 175 38 38.91 -.91 200 54 5934 -5:34 250 100 93.89 6.1 295 104 106183 -2.83 325 119 109.89 9 Si3Mof REIDUAIS = 21.42 C-59

STANDARD REFERENCE-MATERIAL CAPSULE V CVGRAPII 4.1 lyperlolic Tangent Curve Printed at 11.05:06 on 09-06-2002 Page I Coefficients of Curve 4 A 59.59 B = 57.4 C= 8557 TO 211.87 Equation is CVN = A + B tanh((T - TO)/C) I Upper Shelf Energy: 117 Fixed Temp. at 30 f-lbs 163 Temp. at 50 ft-lbs 197.4 Lower Shelf Energy: 2.19 Fixed Material: SRM SA533BI ieat Number Orientation: LT Capsule: V Total Fluence: 137E+19 300-250-200/

15f 10f F +~ ~~~

I I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: DCI Cap: V Material: SRM SA533BI Ori: LT leat #:

Charpy V-Notch Data Temperature Input CVN Energy Computed CN Energy Differential 25 4 3.63 .36 50 8 4.75 324 100 10 10.03 -.03 150 33 24.08 8.91 200 47 51.68 -4.68 250 74 83.6 -9.6 300 114 104.01 9.98

  • Data continued on next page ....

C-60

STANDARD REFERENCE MATERIAL CAPSULE V Page 2 Maler ial: SRM SA533131 Heal Number. Orientation: LT Capsule: V Total Fluence: 1.37E+19 Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 325 120 10928 10.61 SUMI of RESIDUALS = 18.8 C-61

STANDARD REFERENCE MATERIAL UNIRRADIATED CVGRAPH 4.1 Hyperbolic Tangenl Curve Printed at 11D9.33 on 09-06-2002 Page I Coefficients of Curve I A = 43.65 B = 42.65 C 84.0S TO = 76X7 Equation is LE = A + B tanh((T - TO)/C) I Upper Shelf LE: 8631 Temperaturi ^ at LE 35: 58.9 Lower Shelf LE I Fixed Material: SRM SA533BI leat Number. Orientation: LT Capsule: UNIRR Total Fluence:

20fF 15 r-4 I00 4-,

a) 0~

DU 0

e1~~ 4. I I I I U

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: DCI Cap: UNIRR laterial: SRM SA533 3I Ori: LT Heal #:

Charpy V-Notch Da ta Temperature Input Lateral Expansion Computed LE Differential

-50 4 5.03 -1.03

-50 3 5.03 -2.03

-50 5 5.03 -.03

-20 9 8.84 .15

-20 6 8.a4 -2.&4

-20 10 8.84 115 10 14 15.61 -1.61 10 15 15.61 -.61 10 14 15.61 -1.61 I'll Data continued n next page I'll C(62

STANDARD REFERENCE MATERIAL UNIRRADIATED Page 2 Material: SRM SA533BI }1eat Nmber Orientation: LT Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Compuled LE. Differential 40 23 26.31 -3.31 40 32 26.31 5.68 40 32 26.31 5.68 85 45 48.06 -3.06 85 51 48.06 2.93 85 42 48.06 -6.06 110 54 59.9 -5.9 110 60 59.9 .09 110 71 59.9 11.09 160 79 76.07 2.92 160 72 76.07 -4.07 160 69 76.07 -7.07 210 87 8291 4.08 210 84 82.91 1.08 210 88 82.91 5.08 300 83 85.9 -2.9 300 87 85.9 1.09 300 84 85.9 -1.9 SUM of RESIDUAIS = -3.03 C-63

STANDARD REFERENCE MATERIAL CAPSULE S CVGRAPH 4.1 lyperbolic Tangent Curve Printed at 11.1933 on 09-06-2002 Page I Coefficients of Curve 2 A = 43.48 B = 4248 C = 100.49 TO = 144.84 Equation is LE = A + B I tanh((T - TO)/C) I Upper Shelf LE. 85.97 Temperature at LE 35: 124.4 Lower Shelf LE I Fixed NMaterial: SM SA533B I Heat Number: Orientation: LT Capsule S Total Fluence: 284E+18 200-150 10f 0

0

-.-er I ._

I-

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: DCI Cap: S laterial: SRII SA533BI Ori: LT Heat #:

Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE Differential 25 7 8.16 -1.16 76 20 1821 1.78 125 4Z5 352 729 125 29.5 352 -5.7 150 44.5 45.66 -116 200 59.5 64.71 -521 250 84 76.64 735 400 82.5 85.44 -294 SUM of RIDUALS = 24 C-64

STANDARD REFERENCE MATERIAL CAPSULE Y CVGRAPI 4.1 Hyperbolic Tangent Curve Printed a 1%O9.33 on 09-06-2002 Page I Coefficients of Curve 3 l A = 51.69 B = 50.69 C 106.44 TO = 214.43 Equation i LE = A B I tanh((T - T0)/C) I Upper Shelf LE. 102.39 Temperature at LE 35: 178 Lower Shelf LE I Fixed Material: SRM SA533BI Heat Number. Orientation: LT Capsule Y Total Fluence: 1.05E+19 Cl) a)

CZ

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant DCI Cap: Y Material: SRM SA533B1 Ori: LT Beat #:

Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE Differential 50 10 5.41 4.58 100 14 1157 2.42 150 23 2427 -127 175 32 33.73 -1.73 200 42 4486 -2.B6 250 73 68.03 4.96 295 83 84.1 -1.1 325 90 91.1 -11 SUM of RESIDUALS = 3.88 C-65

STANDARD REFERENCE MATERIAL CAPSULE V CVGRAPH 4.1 lyperbblic Tangent Curve Printed at 11.09:33 on 09-06-2002 Page I Coefficients of Curve 4 A= 597 B = 5127 C = 117 TO = 254.48 Equation is: LE = A B

  • I tanh((T - TO)/C) I Upper Shelf LE: 103.54 Temperature at LE 35: 213.4 Lower Shelf LE I Fixed Material: SRM SA533BI Heat Number. Orientation: LT Capsule V Total Fluence: 137E+19 iuu

'-4i 1507

.- 4 100 0

50

-~~~~~~~~~~~~~~~

u

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant DCI Cap V Material: SRM SA533B1 Ori: LT Heat #:

Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE Differential 25 0 2.99 -2.99 50 3 4.01 -1.01 100 4 78Z -3.82 150 20 15.72 427 200 31 2998 1.01 250 48 50.3 -2.3 300 72 71Z7 .72

-* Data continued on next page **>'

C-66

STANDARD REFERENCE MATERIAL CAPSULE V Page 2 Material: SRM SA533BI Ileat Number. Orientation: LT Capsule V Total Fluene I.37E+9 Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE Differential 325 80 79.9 .09 SUM of RESIDUALS =-4.03 C-67

STANDARD REFERENCE MATERIAL UNIRRADIATED CVGRAPH 4 Hyperbolic Tangent Curve Printed at 11:15:09 on 09-06-2002 Page I Coefficients of Curve I A= 50 B=50 C= 100.89 TO = 85.54 Equation is.Shear/. = A + B tanh((T - TO)/C) I Temperature at 5. Shear 85.5 Material: SRM SA533BI Heat Number. Orientation: LT Capsule: UNIRR Total Fluence:

CZ a)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: DCI Cap: UNIRR Material: SRM SA533BI Ori: LT Heat #:

Charpy V-Notch Data Temperature Inpul Percent Shear Computed Percent Shear Differential

-50 9 6.37 2.62

-50 9 6.37 Z62

-50 9 6.37 2.62

-20 13 10.98 201

-20 9 10.98 -1.98

-20 13 10.93 201 10 23 1827 4.72 10 23 1827 4.72 10 23 1827 4.72 I'> Data continued on next page >>>>

C-68

STANDARD REFERENCE MATERIAL UNIRRADIATED Page 2 Material: SRM SA533BI leat Number. Orientation: LT Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 40 33 28B4 4.15 40 29 28.84 .15 40 29 28.84 .15 85 42 49.72 -7.72 85 43 49.72 -6.72 85 41 49.72 -8.72 110 55 61.88 -68 110 58 61.88 -3B8 110 67 61.88 5.11 160 87 81.39 5.6 160 84 8139 2.6 160 85 81.39 3.6 210 100 9217 7.82 210 98 92.17 5.82 210 98 92.17 5.82 300 100 98.59 1.4 300 100 98.59 1.4 300 100 9859 1.4 1 of RESIDUALS = 35.18 C-69

STANDARD REFERENCE MATERIAL CAPSULE S CVGRAPII 4.1 lyperbbli6 Tangent Curve Printed at 11:1509 on 09-6-2002 Page I Coefficients of Curve 2 l A = 50 B = 50 C = 90.18 T0 157.61 Equation is: Shear/. = A + B I tanh((T - TO)/C) I Temperature at 50>'. Shear. 157.6 Material: SRM SA533B] Ileat Number. Orientation: LT Capsule S Total Fluence: 2.84E+18 U)

C) 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Decrees F Data Set(s) Plotted Plant DCI Cap S Material: SRM SA5331 Ori LT 3eat Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 25 I 5.01 -4.01 76 I0 14.06 -4.06 125 45 32.66 1233 125 30 3266 -2.66 150 45 45.78 -.78 200 60 71.9 -11.9 250 100 88.58 11.41 400 100 99.53 .46 SUM of RIDUAIS = .77 C-70

STANDARD REFERENCE MATERIAL CAPSULE y CYGRAPII 4.1 Hyperbolic Tangent Curve Printed at 11:15:09 on 09-06-2002 Page I Coefficients of Curve 3 A = 50 B = 50 C = 67.9 TO = 188.37 Equation is Shear/ = A + B I tanh((T - T0)/C) I Temperature at 507. Shear. 188.3 Material: SRM SA533B1 Heat Number Orientation: LT Capsule Y Total Fluence: 1.05E+19 0)

C) 0)

SH4

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Decrees F Data Set(s) Plotted Plant: DCI Cap: Y MIaterial: SRM SA533B1 Ori: LT Heat #I:

Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 50 10 1.66 8.33 100 15 6.89 8.1 150 25 24.41 .58 175 40 4027 -27 200 50 58.47 -8.47 250 96 85.99 10 295 100 95135 4.14 325 100 9824 1.75 SUM of RESIDUALS = 24.18 C-71

STANDARD REFERENCE MATERIAL CAPSULE V CVGRAPII 4.1 yperbolic Tangent Curve Printed at 11:15:09 on 09-06-2002 Page I Coefficients of Curve 4 A= 50 B = 50 C= 901 TO = 20343 Equation i Shear = A + B I tanh((T - TO)/C) I Temperature at 507 Shear. 203.4 Material: S1 SA533BI Heat Number- Orientation: LT Capsule V Total Fluence. 1.37E+19

4)

C-)

0-m

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: DCI Cap V Material: SRM SA533BI Ori: LT leat #:

Charpy V-Notch Data Temperature Inpul Percent Shear Computed Percent Shear Differential 25 5 255 2.44 50 10 4.18 581 100 15 10.8 4.19 150 30 25.15 4.84 200 40 4824 -824 250 65 7211 -711 300 100 87.76 1223 I,, Data continued on next page 'I C-72

STANDARD REFERENCE MATERIAL CAPSULE V Page 2 Material: SRM SA533BI Ieat Number Orientation: LT Capsule V Total Fluence 137E+19 Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 325 100 9227 7.72 SUM of RESIDUALS = 21.89 C-73

D-O APPENDIX D DIABLO CANYON UNIT 1 SURVEILLANCE PROGRAM CREDIBILITY ANALYSIS Appendix D

D-1 INTRODUCTION:

Regulatory Guide 1.99, Revision 2, describes general procedures acceptable to the NRC staff for calculating the effects of neutron radiation embrittlement of the low-alloy steels currently used for light-water-cooled reactor vessels. Position C.2 of Regulatory Guide 1.99, Revision 2, describes the method for calculating the adjusted reference temperature and Charpy upper-shelf energy of reactor vessel beltline materials using surveillance capsule data. The methods of Position C.2 can only be applied when two or more credible surveillance data sets become available from the reactor in question.

To date there have been three surveillance capsules removed from the Diablo Canyon Unit I reactor vessel. To use these surveillance data sets, they must be shown to be credible. In accordance with the discussion of Regulatory Guide 1.99, Revision 2, there are five requirements that must be met for the surveillance data to be judged credible.

The purpose of this evaluation is to apply the credibility requirements of Regulatory Guide 1.99, Revision 2, to the Diablo Canyon Unit I reactor vessel surveillance data and determine if the Diablo Canyon Unit I surveillance data is credible.

EVALUATION:

Criterion 1: Materials in the capsules should be those judged most likely to be controlling with regard to radiation embrittlement.

The beltline region of the reactor vessel is defined in Appendix G to 10 CFR Part 50, "Fracture Toughness Requirements", as follows:

"the reactor vessel (shell material including welds, heat affected zones, and plates or forgings) that directly surrounds the effective height of the active core and adjacent regions of the reactor vessel that are predicted to experience sufficient neutron radiation damage to be considered in the selection of the most limiting material with regard to radiation damage."

Appendix D

D-2 The Diablo Canyon Unit I reactor vessel consists of the following beltline region materials:

  • Lower Shell Plate B4107-1 (Heat C3121-1)
  • Intermediate Shell Plate Longitudinal Weld Seams 2-442 A, B, C (Heat # 27204, Linde 1092)
  • Lower Shell Plate Longitudinal Weld Seams 3-442 A, B, C (Heat # 27204, Linde 1092)
  • Intermediate to Lower Shell Plate Circumferential Weld Seam 9-442 (Heat # 21935, Linde 1092)

Per WCAP-8465, the Diablo Canyon Unit I surveillance program was based on ASTM El 85, "Recommended Practice for Surveillance Tests on Nuclear Reactor Vessels". Per Section 3.1 of ASTM El 85-70, "Sample shall represent one heat of the base metal and one butt weld if a weld occurs in the irradiated region."

At the time the Diablo Canyon Unit I surveillance capsule program was developed, intermediate shell plates were judged to be most limiting based on the lowest initial upper shelf energy values and higher initial copper values. Hence, all the intermediate shell plates were therefore utilized in the surveillance program.

The weld material in the Diablo Canyon Unit I surveillance program was made of the same wire heat as the reactor vessel upper to intermediate and lower shell longitudinal weld seams (Wire Heat No. 27204, Flux Type Linde 1092). This represents six of the seven welds in the beitline area. The seventh weld, the intermediate to lower shell girth welds, was made from heat 21935. This weld had a higher initial USE and lower copper content than heat 27204. Thus, heat 27204 was chosen as the surveillance weld.

ASTM El 85-70 only requires that the surveillance material represent a weld in the irradiated region.

Since the surveillance weld heat # 27204 is the same as the intermediate and lower shell longitudinal welds, then this criterion is true.

Hence, Criterion I is met for the Diablo Canyon Unit I reactor vessel.

Criterion 2: Scatter in the plots of Charpy energy versus temperature for the irradiated and unirradiated conditions should be small enough to permit the determination of the 30 ft-lb temperature and upper shelf energy unambiguously.

Appendix D

D-3 Plots of Charpy energy versus temperature for the unirradiated and irradiated condition are presented in Appendix C. Based on engineering judgment, the scatter in the data presented in these plots is small enough to permit the determination of the 30 ft-lb temperature and the upper shelf energy of the Diablo Canyon Unit I surveillance materials unambiguously. Hence, the Diablo Canyon Unit I surveillance program meets this criterion.

Criterion 3: When there are two or more sets of surveillance data from one reactor, the scatter of ARTNDT values about a best-fit line drawn as described in Regulatory Position 2.1 normally should be less than 28°F for welds and 17°F for base metal. Even if the fluence range is large (two or more orders of magnitude), the scatter should not exceed twice those values.

Even if the data fail this criterion for use in shift calculations, they may be credible for determining decrease in upper shelf energy if the upper shelf can be clearly determined, following the definition given in ASTM El 85-82.

The functional form of the least squares method as described in Regulatory Position 2.1 will be utilized to determine a best-fit line for this data and to determine if the scatter of these ARTNDT values about this line is less than 28°F for welds and less than 17°F for the plate.

Following is the calculation of the best fit line as described in Regulatory Position 2.1 of Regulatory Guide 1.99, Revision 2. In addition, the recommended NRC methods for determining credibility will be followed. The NRC methods were presented to industry at a meeting held by the NRC on February 12 and 13, 1998. At this meeting the NRC presented five cases. Of the five cases Case I ("Surveillance data available from plant but no other source") most closely represents the situation listed above for Diablo Canyon Unit I surveillance weld metal. Note, for the plate materials, the straight forward method of Regulatory Guide 1.99, Revision 2 will be followed.

Appendix D

D-4 TABLE D-1 Diablo Canyon Unit I Surveillance Capsule Data MIaterial Capsule F(' l FF(2 l ARTNDT(3 ) FF x ARTNDT FF 2 Intermediate Shell S 0.284 0.656 o(4) 0 0.430 Plate B4106-3 Y 1.05 1.014 48.66 49.34 1.028 (Longitudinal) V 1.37 1.087 34.32 37.31 1.182 SUM 86.65 2.64 CFpalre (FF X ARTNDT)

  • X( FF ) = 86.65 . 2.64 = 32.8°F 2

Weld Metal S J 0.284 0.656 110.79 72.68 0.430 (Heat # 27204) Y 1.05 1.014 232.59 235.85 1.028 V 1.37 1.087 201.07 218.56 1.182 SUM 527.09 2.64 CFm,!d = X (FF X ARTNDT) 2

) = 527.09 2( . 2.64 = 199.7 0 F Notes:

1. F = Calculated fluence from Section 6 of this report, [x 1019 nlcm 2, E > 1.0 MeV].
2. FF = fluence factor = F028 - log F)
3. ARTNDT values are the measured 30 ft-lb shift values, [IF].
4. Actual value for Capsule S is -1.78. However, a negative shift in RTNDT should not physically occur.

Thus, a value of zero is conservatively assumed.

The scatter of ARTNDT values about the functional form of a best-fit line drawn as described in Regulatory Position 2.1 is presented in Table D-2.

Appendix D

D-5 TABLE D-2 Best Fit Evaluation for Diablo Canyon Unit I Surveillance Materials Material Capsule CF (OF) FF Measured Best Fit Scatter < 17°F (Base ARTNDT ARTNDT of Metals)

(30 ft-lb) (OF) ARTNDT < 28°F (Weld

(°F) (°F) Mletal)

Inter. Shell S 32.8 0.656 -1.78 21.52 -23.3 No Plate B4106-3 Y 32.8 1.014 48.66 33.26 15.4 Yes (Longitudinal) V 32.8 1.087 34.32 35.65 -1.33 Yes Weld Metal S 199.7 0.656 110.79 131.00 -20.21 Yes (Heat # 27204) Y 199.7 1.014 232.59 202.50 30.09 No V 199.7 1.087 201.07 217.07 160 Yes Table D-2 indicates that one of the plate data points and one of the weld data points has a scatter value that is greater than a I a of 17°F and 28°F, respectively. Therefore, neither the plate nor the weld meets the criterion for credibility.

Criterion 4: The irradiation temperature of the Charpy specimens in the capsule should match the vessel wall temperature at the cladding/base metal interface within +/- 25°F.

The capsule specimens are located in the reactor between the thermal shield and the vessel wall and are positioned opposite the center of the core. The test capsules are in baskets attached to the thermal shield.

The location of the specimens with respect to the reactor vessel beitline provides assurance that the reactor vessel wall and the specimens experience equivalent operating conditions such that the temperatures will not differ by more than 25°F. Hence, this criterion is met.

Criterion 5: The surveillance data for the correlation monitor material in the capsule should fall within the scatter band of the database for that material.

The Diablo Canyon Unit I surveillance program does contain correlation monitor material. NUREG/CR-6413, ORNLITM-13133 contains a plot of residual vs. Fast fluence for the correlation monitor material (Figure 9 in the report). The data used for this plot is contained in Table 14. However, the data within this report only contains the two capsules and not Capsule V. In addition, it used the old fluence values.

Thus, Table D-3 contains an updated calculation of Residual vs. Fast fluence.

Appendix D

D-6 TABLE D-3 Calculation of Residual vs. Fast Fluence Capsule Fluence Fluence Measured RG 1.99 Shift Residual (x 109 n/cm 2 ) Factor Shift (CF*FF)a) (Nleas.- RG Shift)

_ __ _ _ _ __ __ _ _ _ _ _ _ _ (F F ) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

S 0.284 0.656 65.62 73.01 -7.39 Y 1.05 1.014 115.79 112.9 2.89 V 1.37 1.087 116.61 121.0 -4.39 Notes:

(a)PerNUREG/CR-6413, ORNL/TM-13133, the Cu and Ni values for the Correlation Monitor Material are 0.15 Cu and 0.65 Ni. This equates to a Chemistry Factor of II1.3°F from Reg. Guide 1.99 Rev. 2.

Table D-3 shows a 2a uncertainty of less than 50°F, which is the allowable scatter in NUREG/CR-6413, ORNL/TM-13133. Hence, this criterion is met.

CONCLUSION:

Based on the preceding responses to all five criteria of Regulatory Guide 1.99, Revision 2, Section B and 10 CFR 50.61, the Diablo Canyon Unit I surveillance data is not credible. This is based on not satisfying the third criterion for credibility. It is recommended that PG&E review all current reactor vessel Integrity Evaluations (PTS and PT Curves) to assess the impact, if any, of non-credible data for the plate B41 06-3 and weld heat #27204.

Appendix D

E-O APPENDIX E VALIDATION OF THE RADIATION TRANSPORT MODELS BASED ON NEUTRON DOSIMETRY I MEASUREMENTS Appendix E

E-1 E.l Neutron Dosimetry Comparisons of measured dosimetry results to both the calculated and least squares adjusted values for all surveillance capsules withdrawn from service to date at Diablo Canyon Unit 1 are described herein. The sensor sets from these capsules have been analyzed in accordance with the current dosimetry evaluation methodology described in Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence."IE 'I One of the main purposes for presenting this material is to demonstrate that the overall measurements agree with the calculated and least squares adjusted values to within +/- 20% as specified by Regulatory Guide 1.190, thus serving to validate the calculated neutron exposures previously reported in Section 6.2 of this report. This information may also be useful in the future, in particular, as least squares adjustment techniques become accepted in the regulatory environment.

E.]. I Sensor Reaction Rate Determinations In this section, the results of the evaluations of the three neutron sensor sets withdrawn to date as a part of the Diablo Canyon Unit I Reactor Vessel Materials Surveillance Program are presented. The capsule designation, location within the reactor, and time of withdrawal of each of these dosimetry sets were as follows:

Azimuthal Withdrawal Irradiation Capsule ID Location Time Time [EFPYI S 400 End of Cycle 1 1.25 Y 400 End of Cycle 5 5.87 V 4° - 40° End of Cycle 11 14.27

  • Capsule V was irradiated at a 40 location during Cycles 1 through 5 followed by irradiation at a 40° location during Cycles 6 through II when it was subsequently removed from service.

The azimuthal locations included in the above tabulation represent the first octant equivalent azimuthal angle of the geometric center of the respective surveillance capsules.

Appendix E

E-2 The passive neutron sensors included in the evaluations of Surveillance Capsules S, Y, and V are summarized as follows:

Reaction Sensor Material Of Interest Capsule S Capsule Y Capsule V Copper 6 3 Cu(n,a)6oCo X X X 54 Iron Fe(n,p)4 Mn X X X Nickel 5 8Ni(n,p)"Co X X X Uranium-238 2 38 U(n,f)' 3 7Cs X X X Neptunium-237 7Np(n,f) 37CS X X X Cobalt-Aluminum* 5 9 Co(n,y)6OCo X X X

  • The cobalt-aluminum measurements for this plant include both bare wire and cadmium-covered sensors.

The copper, iron, nickel, and cobalt-aluminum monitors, in wire form, were placed in holes drilled in spacers at several radial locations within the test specimen array. As a result, gradient corrections were applied to these measured reaction rates in order to index all of the sensor measurements to the radial center of the respective surveillance capsules. Since the cadmium-shielded uranium and neptunium fission monitors were accommodated within the dosimeter block centered at the radial, azimuthal, and axial center of the material test specimen array, gradient corrections were not required for the fission monitor reaction rates. Pertinent physical and nuclear characteristics of the passive neutron sensors are listed in Table E-l.

The use of passive monitors such as those listed above does not yield a direct measure of the energy dependent neutron flux at the point of interest. Rather, the activation or fission process is a measure of the integrated effect that the time and energy dependent neutron flux has on the target material over the course of the irradiation period. An accurate assessment of the average neutron flux level incident on the various monitors may be derived from the activation measurements only if the irradiation parameters are well known. In particular, the following variables are of interest:

  • The measured specific activity of each monitor,
  • the physical characteristics of each monitor,
  • the operating history of the reactor,
  • the energy response of each monitor, and
  • the neutron energy spectrum at the monitor location.

Appendix E

E-3 The radiometric counting of the neutron sensors from Capsules S and Y was carried out at the Westinghouse Analytical Services Laboratory at the Waltz Mill Site. 1 E-2 ] The radiometric counting of the sensors from Capsule V was completed at the Pace Analytical Laboratory, also located at the Waltz Mill Site. In all cases, the radiometric counting followed established ASTM procedures. Following sample preparation and weighing, the specific activity of each sensor was determined by means of a high-resolution gamma spectrometer. For the copper, iron, nickel, and cobalt-aluminum sensors, these analyses were performed by direct counting of each of the individual samples. In the case of the uranium and neptunium fission sensors, the analyses were carried out by direct counting preceded by dissolution and chemical separation of cesium from the sensor material.

The irradiation history of the reactor over the irradiation periods experienced by Capsules S, Y, and V was based on the reported monthly power generation of Diablo Canyon Unit I from initial reactor startup through the end of the dosimetry evaluation period. For the sensor sets utilized in the surveillance capsules, the half-lives of the product isotopes are long enough that a monthly histogram describing reactor operation has proven to be an adequate representation for use in radioactive decay corrections for the reactions of interest in the exposure evaluations. The irradiation history applicable to Capsules S, Y, and V is given in Table E-2.

Having the measured specific activities, the physical characteristics of the sensors, and the operating history of the reactor, reaction rates referenced to full-power operation were determined from the following equation:

A R = A NoFY X' Cj I- e Pre where:

R = Reaction rate averaged over the irradiation period and referenced to operation at a core power level of Pref (rps/nucleus).

A = Measured specific activity (dps/gm).

No = Number of target element atoms per gram of sensor.

F = Weight fraction of the target isotope in the sensor material.

Y = Number of product atoms produced per reaction.

Pj = Average core power level during irradiation period j (MW).

Pref = Maximum or reference power level of the reactor (MW).

Cj = Calculated ratio of O(E > 1.0 MeV) during irradiation period j to the time weighted average O(E > 1.0 MeV) over the entire irradiation period.

= Decay constant of the product isotope (I/sec).

tj = Length of irradiation period j (sec).

td = Decay time following irradiation period j (sec).

Appendix E

E-4 and the summation is carried out over the total number of monthly intervals comprising the irradiation period.

In the equation describing the reaction rate calculation, the ratio Pj]/[Pf] accounts for month-by-month variation of reactor core power level within any given fuel cycle as well as over multiple fuel cycles. The ratio Cj, which was calculated for each fuel cycle using the transport methodology discussed in Section 6.2, accounts for the change in sensor reaction rates caused by variations in flux level induced by changes in core spatial power distributions from fuel cycle to fuel cycle. For a single-cycle irradiation, Cj is normally taken to be 1.0. However, for multiple-cycle irradiations, particularly those employing low leakage fuel management, the additional Cj term should be employed. The impact of changing flux levels for constant power operation can be quite significant for sensor sets that have been irradiated for many cycles in a reactor that has transitioned from non-low leakage to low leakage fuel management or for sensor sets contained in surveillance capsules that have been moved from one capsule location to another.

The fuel cycle specific neutron flux values along with the computed values for Cj are listed in Table E-3.

These flux values represent the cycle dependent results at the radial and azimuthal center of the respective capsules at the axial elevation of the active fuel midplane.

Prior to using the measured reaction rates in the least-squares evaluations of the dosimetry sensor sets, additional corrections were made to the 23SU measurements to account for the presence of 235U impurities in the sensors as well as to adjust for the build-in of plutonium isotopes over the course of the irradiation.

Corrections were also made to the 238U and 237Np sensor reaction rates to account for gamma ray induced fission reactions that occurred over the course of the capsule irradiations. The correction factors applied to the Diablo Canyon Unit I fission sensor reaction rates are summarized as follows:

Correction Capsule S Capsule Y Capsule V 235 U ImpuritylPu Build-in 0.873 0.844 0.831 23 8 U(y,f) 0.958 0.958 0.958 238 Net U Correction 0.836 0.809 0.796 237 Np(y,f) 0.985 0.985 0.985 These factors were applied in a multiplicative fashion to the decay corrected uranium and neptunium fission sensor reaction rates.

Results of the sensor reaction rate determinations for Capsules S, Y, and V are given in Table E-4. In Table E-4, the measured specific activities, decay corrected saturated specific activities, and computed reaction rates for each sensor indexed to the radial center of the capsule are listed. The fission sensor reaction rates are listed both with and without the applied corrections for 23sU impurities, plutonium build-in, and gamma ray induced fission effects.

Appendix E

E-5 E. 1.2 Least Squares Evaluation of Sensor Sets Least squares adjustment methods provide the capability of combining the measurement data with the corresponding neutron transport calculations resulting in a Best Estimate neutron energy spectrum with associated uncertainties. Best Estimates for key exposure parameters such as ¢(E > 1.0 MeV) or dpats along with their uncertainties are then easily obtained from the adjusted spectrum. In general, the least squares methods, as applied to surveillance capsule dosimetry evaluations, act to reconcile the measured sensor reaction rate data, dosimetry reaction cross-sections, and the calculated neutron energy spectrum within their respective uncertainties. For example, R; + R = E, (5qig , +/-ci'3,9N g

relates a set of measured reaction rates, R,, to a single neutron spectrum, 4g, through the multigroup dosimeter reaction cross-section, q.g, each with an uncertainty o. The primary objective of the least squares evaluation is to produce unbiased estimates of the neutron exposure parameters at the location of the measurement.

For the least squares evaluation of the Diablo Canyon Unit 1 surveillance capsule dosimetry, the FERRET code'E~6' was employed to combine the results of the plant specific neutron transport calculations and sensor set reaction rate measurements to determine best-estimate values of exposure parameters ((E > 1.0 MeV) and dpa) along with associated uncertainties for the three in-vessel capsules tested to date (a total of five capsules have been removed to date; two of the five are in storage).

The application of the least squares methodology requires the following input:

1 - The calculated neutron energy spectrum and associated uncertainties at the measurement location.

2 - The measured reaction rates and associated uncertainty for each sensor contained in the multiple foil set.

3 - The energy dependent dosimetry reaction cross-sections and associated uncertainties for each sensor contained in the multiple foil sensor set.

For the Diablo Canyon Unit I application, the calculated neutron spectrum was obtained from the results of plant specific neutron transport calculations described in Section 6.2 of this report. The sensor reaction rates were derived from the measured specific activities using the procedures described in Section E. 1.1. The dosimetry reaction cross-sections and uncertainties were obtained from the SNLRML dosimetry cross-section library[E-7]. The SNLRML library is an evaluated dosimetry reaction cross-section compilation recommended for use in LWR evaluations byASTM Standard E1018, "Application of ASTM Evaluated Cross-Section Data File, Matrix E 706 (IIB)".

Appendix E

E-6 The uncertainties associated with tlie measured reaction rates, dosimetry cross-sections, and calculated neutron spectrum were input to the least squares procedure in the form of variances and covariances.

The assignment of the input uncertainties followed the guidance provided in ASTM Standard E 944, "Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance."

The following provides a summary of the uncertainties associated with the least squares evaluation of the Diablo Canyon Unit I surveillance capsule sensor sets.

Reaction Rate Uncertainties The overall uncertainty associated with the measured reaction rates includes components due to the basic measurement process, irradiation history corrections, and corrections for competing reactions. A high level of accuracy in the reaction rate determinations is assured by utilizing laboratory procedures that conform to the ASTM National Consensus Standards for reaction rate determinations for each sensor type.

After combining all of these uncertainty components, the sensor reaction rates derived from the counting and data evaluation procedures were assigned the following net uncertainties for input to the least squares evaluation:

Reaction Uncertainty Cu(n,a)'Co 5%

-Fe(n,p)-Mn 5%

-Ni(n,p)sCo 5%

2-U(n,f) 37Cs 10%

237 Np(n,f) 137Cs 10%

9

' Co(n,y)6Co 5%

These uncertainties are given at the Ia level.

Dosimetry Cross-Section Uncertainties The reaction rate cross-sections used in the least squares evaluations were taken from the SNLRML library. This data library provides reaction cross-sections and associated uncertainties, including covariances, for 66 dosimetry sensors in common use. Both cross-sections and uncertainties are provided in a fine multigroup structure for use in least squares adjustment applications. These cross-sections were compiled from the most recent cross-section evaluations and they have been tested with respect to their accuracy and consistency for least squares evaluations. Further, the library has been empirically tested for use in fission spectra determination as well as in the fluence and energy characterization of 14 MeV neutron sources.

For sensors included in the Diablo Canyon Unit I surveillance program, the following uncertainties in the fission spectrum averaged cross-sections are provided in the SNLRML documentation package.

Appendix E

E-7 These tabulated ranges provide an indication of the dosimetry cross-section uncertainties associated with the sensor sets used in LWR irradiations.

Calculated Neutron Spectrum The neutron spectra input to the least squares adjustment procedure were obtained directly from the results of plant specific transport calculations for each surveillance capsule irradiation period and location. The spectrum for each capsule was input in an absolute sense (rather than as simply a relative spectral shape). Therefore, within the constraints of the assigned uncertainties, the calculated data were treated equally with the measurements.

While the uncertainties associated with the reaction rates were obtained from the measurement procedures and counting benchmarks and the dosimetry cross-section uncertainties were supplied directly with the SNLRML library, the uncertainty matrix for the calculated spectrum was constructed from the following relationship:

M = R 2 + R

  • R
  • P.

where Rn specifies an overall fractional normalization uncertainty and the fractional uncertainties Rg and Rg specify additional random groupwise uncertainties that are correlated with a correlation matrix given by:

Pg, = [I-6J6g, + e where 2

H (g - g) 2y2 The first term in the correlation matrix equation specifies purely random uncertainties, while the second term describes the short-range correlations over a group range y (O specifies the strength of the latter term). The value of 5 is 1.0 when g = g', and is 0.0 otherwise.

Appendix E

E-8 The set of parameters defining the input covariance matrix for the Diablo Canyon Unit I calculated spectra was as follows:

Flux Normalization Uncertainty (Rn) 15%

Flux Group Uncertainties (Rg, R..)

(E > 0.0055 MeV) 15%

(0.68 eV < E < 0.0055 MeV) 29%

(E < 0.68 eV) 52%

Short Range Correlation (0)

(E > 0.0055 MeV) 0.9 (0.68 eV < E < 0.0055 MeV) 0.5 (E < 0.68 eV) 0.5 Flux Group Correlation Range (y)

(E > 0.0055 MeV) 6 (0.68 eV < E < 0.0055 MeV) 3 (E < 0.68 eV) 2 E. 1.3 Comparisons of Measurements and Calculations Results of the least squares evaluations of the dosimetry from the Diablo Canyon Unit I surveillance capsules withdrawn to date are provided in Tables E-5 and E-6. In Table E-5, measured, calculated, and best-estimate values for sensor reaction rates are given for each capsule. Also provided in this tabulation are ratios of the measured reaction rates to both the calculated and least squares adjusted reaction rates.

These ratios of M/C and M/BE illustrate the consistency of the fit of the calculated neutron energy spectra to the measured reaction rates both before and after adjustment. In Table E-6, comparison of the calculated and best estimate values of neutron flux (E > 1.0 MeV) and iron atom displacement rate are tabulated along with the BE/C ratios observed for each of the capsules.

The data comparisons provided in Tables E-5 and E-6 show that the adjustments to the calculated spectra are relatively small and well within the assigned uncertainties for the calculated spectra, measured sensor reaction rates, and dosimetry reaction cross-sections. Further, these results indicate that the use of the least squares evaluation results in a reduction in the uncertainties associated with the exposure of the surveillance capsules. From Section 6.4 of this report, it may be noted that the uncertainty associated Appendix E

E-9 with the unadjusted calculation of neutron fluence (E > 1.0 MeV) and iron atom displacements at the surveillance capsule locations is specified as 12% at the a level. From Table E-6, it is noted that the corresponding uncertainties associated with the least squares adjusted exposure parameters have been reduced to 6% for neutron flux (E > 1.0 MeV) and 7% for iron atom displacement rate. Again, the uncertainties from the least squares evaluation are at the Icr level.

Further comparisons of the measurement results with calculations are given in Tables E-7 and E-8.

These comparisons are given on two levels. In Table E-7, calculations of individual threshold sensor reaction rates are compared directly with the corresponding measurements. These threshold reaction rate comparisons provide a good evaluation of the accuracy of the fast neutron portion of the calculated energy spectra. In Table E-8, calculations of fast neutron exposure rates in terms of 4(E > 1.0 MeV) and dpa/s are compared with the best estimate results obtained from the least squares evaluation of the capsule dosimetry results. These two levels of comparison yield consistent and similar results with all measurement-to-calculation comparisons falling well within the 20% limits specified as the acceptance criteria in Regulatory Guide 1.190.

In the case of the direct comparison of measured and calculated sensor reaction rates, the M/C comparisons for fast neutron reactions range from 0.78-1.12 for the 15 samples included in the data set.

The overall average M/C ratio for the entire set of Diablo Canyon Unit I data is 0.94 with an associated standard deviation of 8.3%. This value is used to determine the Best Estimate fluence (E >1.0 MeV) and iron atom displacement values on a cycle wise basis. Table E-9 lists the Best Estimate values on a cycle by cycle basis for the fluence at the capsule center as shown.

In the comparisons of best estimate and calculated fast neutron exposure parameters, the corresponding BE/C comparisons for the capsule data sets range from 0.86-1.00 for neutron flux (E > 1.0 MeV) and from 0.88 to 1.02 for iron atom displacement rate. The overall average BE/C ratios for neutron flux (E > 1.0 MeV) and iron atom displacement rate are 0.91 with a standard deviation of 8.3% and 0.93 with a standard deviation of 8.3%, respectively.

Based on these comparisons, it is concluded that the calculated fast neutron exposures provided in Section 6.2 of this report are validated for use in the assessment of the condition of the materials comprising the beltline region of the Diablo Canyon Unit I reactor pressure vessel.

Appendix E

E-10 Table E-1 Nuclear Parameters Used In the Evaluation of Neutron Sensors Target 90% Response Fission Monitor Reaction of Atom Range Product Yield Material Interest Fraction Half-life (7)

(MeV)

Copper 63 0.6917 4.9 - 11.8 5.271 y Cu (n,a)

Iron 54 0.0585 2.1 -8.3 312.3 d Fe (n,p)

Nickel 58Ni (n,p) 0.6808 1.5-8.1 70.82 d Uranium-238 23 8 0.9996 1.2 - 6.7 U (n,f) 30.07 y 6.02 Neptunium-237 237 1.0000- 0.4 - 3.5 Np (n,f) 30.07 y 6.17 Cobalt-Aluminum 59Co (n,y) 0.0015 non-threshold 5.271 y Notes: The 90% response range is defined such that, in the neutron spectrum characteristic of the Diablo Canyon Unit I surveillance capsules, approximately 90% of the sensor response is due to neutrons in the energy range specified with approximately 5% of the total response due to neutrons with energies below the lower limit and 5% of the total response due to neutrons with energies above the upper limit.

Appendix E

E-11 Table E-2 Monthly Thermal Generation During the First Eleven Fuel Cycles Of The Diablo Canyon Unit I Reactor (Reactor Power of 3338 MWt through October 6, 2000, and 3411 MWt thereafter)

Thermal Thermal Thermal Generation Generation Generation Year Month (MWt-hr) Year Month (MWt-hr) Year Month (MWt-hr) 1984 11 167071 1988 1 2035485 1991 3 0 1984 12 781228 1988 2 1710575 1991 4 1610788 1985 1 84750 1988 3 274544 1991 5 2161086 1985 2 497207 1988 4 0 1991 6 2392176 1985 3 1854601 1988 5 0 1991 7 2481053 1985 4 0 1988 6 0 1991 8 2482327 1985 5 1632108 1988 7 927368 1991 9 2350718 1985 6 2286901 1988 8 2358057 1991 10 2481357 1985 7 2435846 1988 9 2068428 1991 11 2197143 1985 8 2218873 1988 10 2427826 1991 12 2480444 1985 9 2374552 1988 11 2368095 1992 1 2480772 1985 10 2163216 1988 12 2404073 1992 2 2322063 1985 11 1523963 1989 1 2398489 1992 3 2138149 1985 12 1929994 1989 2 2207286 1992 4 2224782 1986 1 2424269 1989 3 2449786 1992 5 2410682 1986 2 2102251 1989 4 2162399 1992 6 2400268 1986 3 2406348 1989 5 2441421 1992 7 2418213 1986 4 2132185 1989 6 2363360 1992 8 2381626 1986 5 2490682 1989 7 2468579 1992 9 835392 1986 6 2163689 1989 8 2384230 1992 10 0 1986 7 1842336 1989 9 2400292 1992 11 1352555 1986 8 1366070 1989 10 439623 1992 12 2428355 1986 9 0 1989 11 0 1993 1 2483047 1986 10 0 1989 12 818953 1993 2 2065992 1986 11 0 1990 1 2433618 1993 3 2338926 1986 12 48788 1990 2 2037409 1993 4 2402015 1987 1 1140482 1990 3 2491017 1993 5 2481334 1987 2 2028965 1990 4 2377992 1993 6 2256675 1987 3 2277945 1990 5 2516299 1993 7 2482118 1987 4 2394500 1990 6 1585625 1993 8 2480942 1987 5 2118322 1990 7 2340515 1993 9 2400588 1987 6 2141394 1990 8 2473468 1993 10 2432353 1987 7 2381703 1990 9 2370556 1993 11 2401678 1987 8 2090122 1990 10 2443130 1993 12 1867363 1987 9 2375321 1990 11 2346761 1994 1 2437616 1987 10 2308588 1990 12 1793532 1994 2 2242952 1987 11 2347282 1991 1 2391971 1994 3 872868 1987 12 1817741 1991 2 27364 1994 4 0 Appendix E

E-12 Table E-2 cont'd Monthly Thermal Generation During The First Eighteen Fuel Cycles Of The Diablo Canyon Unit I Reactor (Reactor Power of 3338 through October 6 2000 and 3411 MWt thereafter)

Thermal Thermal Thermal Generation Generation Generation Year Month (MWt-hr) Year Month (MWt-hr) Year Month (MWt-hr) 1994 5 546539 1997 7 2480639 2000 9 2391812 1994 6 2383038 1997 8 2466623 2000 10 400560 1994 7 2493803 1997 9 2394045 2000 11 695918 1994 8 2490277 1997 10 2361899 2000 12 2449052 1994 9 2407121 1997 11 2389197 2001 1 2385664 1994 10 2482344 1997 12 2468651 2001 2 2291938 1994 11 2398894 1998 1 2404594 2001 3 2537268 1994 12 2059217 1998 2 2188679 2001 4 2450959 1995 1 2425927 1998 3 2414420 2001 5 2537285 1995 2 2242278 1998 4 2336535 2001 6 2381547 1995 3 2449140 1998 5 2469944 2001 7 2533658 1995 4 2298107 1998 6 2360812 2001 8 2536196 1995 5 2485576 1998 7 2414420 2001 9 2455470 1995 6 2387434 1998 8 2414420 2001 10 2534575 1995 7 2479699 1998 9 2336535 2001 11 2177067 1995 8 2478524 1998 10 2414420 2001 12 2506152 1995 9 2070677 1998 11 2336535 2002 1 2537285 1995 10 0 1998 12 1572621 2002 2 2260854 1995 11 60824 1999 1 2474763 2002 3 2530637 1995 12 1650488 1999 2 500553 2002 4 2217016 1996 1 2482638 1999 3 1098455 1996 2 2271956 1999 4 2396984 1996 3 2045407 1999 5 2480081 1996 4 2397718 1999 6 2396014 1996 5 2480874 1999 7 2473999 1996 6 2198496 1999 8 2474498 1996 7 2329842 1999 9 2136320 1996 8 1911123 1999 10 2214363 1996 9 2398306 1999 11 2224383 1996 10 2481168 1999 12 2464655 1996 11 1686924 2000 1 2377796 1996 12 2425633 2000 2 2298401 1997 1 2470296 2000 3 2469797 1997 2 2215833 2000 4 2352203 1997 3 2479111 2000 5 1311575 1997 4 1429228 2000 6 2400627 1997 5 0 2000 7 2481168 1997 6 2072263 2000 8 2479288 Appendix E

E-13 Table E-3 Calculated C. Factors at the Surveillance Capsule Center Core Midplane Elevation Fuel O(E> 1.0 MeV) [n/c m2 -s] C Cycle Capsule S Capsule Y Capsule V* S Y V*

I 7.23E+10 7.23E+10 2.24E+I 0 1.000 1.267 0.761 2 6.03E+ 10 1.94E+I 0 1.057 0.657 3 6.28E+10 1.60E+10 1.101 0.542 4 4.85E+ 10 1.63E+ 0 0.850 0.554 5 4.14E+ 10 1.54E+ 10 0.726 0.522 6 4.16E+10 1.411 7 4.1 IE+10 1.394 8 3.69E+10 1.252 9 3.87E+ 10 1.314 10 3.80E+ 10 1.289 11 3.84E+ 10 1.305 Average 7.23E+10 5.70E+ I0 2.95E+ 10 1.000 1.000 1.000

  • Note: Cj factors based on the ratio of the cycle specific fast (E > 1.0 MeV) neutron flux divided by the average flux over the total irradiation period were deemed unsuitable for Capsule V since reaction rates did not vary by constant values as a function of azimuthal position for this capsule. To a large extent, this was due to moving Capsule V from a 4° to 40° location following the fifth fuel cycle. As a result of this observation, the Cj terms that were utilized in the final Capsule V analysis were based on the individual reaction rates determined from the synthesized transport calculations. The final Cj terms for Capsule V, which are based on individual reaction rates, are reported on the next page of this table.

Appendix E

E-14 Table E-3 cont'd Calculated Ci Factors at the Surveillance Capsule Center Core Midplane Elevation (Capsule V only)

Fuel Capsule V Reaction Rates [rps/atom]

Cycle 6

3Cu (n,oa) 54 Fe (n,p) 238 U (n,f) 237 Np (n,f) 59 Co (n,y) 59Co (n,y) 59 Co (n,'Y) Cd I 2.22E-17 1.99E- 15 2.67E- 15 8.37E-15 5.66E-14 7.12E- 13 3.69E- 13 2 1.96E-17 1.74E-15 2.33E-15 7.25E-15 4.88E-14 6.09E-13 3.16E-13 3 1.66E- 17 1.45E-15 1.94E- 15 5.99E- 15 4.02E- 14 5.01E-13 2.60E- 13 4 1.71E-17 1.49E-15 1.99E-15 6.14E-15 4.10E-14 5.08E-13 2.63E-13 5 1.62E-17 1.40E-15 1.88E-15 5.79E-15 3.87E-14 4.79E- 13 2.49E-13 6 2.78E-17 2.98E-15 4.10E-15 1.45E-14 1.12E-13 1.69E-12 8.94E-13 7 2.77E-17 2.96E-15 4.06E-15 1.44E-14 1. IOE-13 1.66E- 12 8.81E-13 8 2.50E- 17 2.66E- 15 3.65E- 15 1.29E- 14 9.89E-14 1.49E- 12 7.90E- 13 9 2.64E- 17 2.80E- 15 3.84E-15 1.36E-14 1.04E-13 1.56E- 12 8.27E- 13 10 2.60E-17 2.75E-15 3.77E- 5 1.33E- 14 1.02E-13 1.53E-12 8.1OE-13 11 2.64E- 17 2.79E- 15 3.83E- 15 1.35E- 14 1.03E- 13 1.55E- 12 8.20E- 13 Average 2.28E- 17 2.27E-15 3.09E-15 1.05E-14 7.77E-14 1.12E-12 5.89E-13 Fuel Capsule V Cj Cycle Cu (n,a) -4Fe (n,p) 238w (n,f) Np (n,f) 59Co (n,y) Co (n,yn,yd 1 0.97 0.88 0.86 0.80 0.73 0.64 0.63 2 0.86 0.76 0.75 0.69 0.63 0.55 0.54 3 0.73 0.64 0.63 0.57 0.52 0.45 0.44 4 0.75 0.65 0.64 0.58 0.53 0.45 0.45 5 0.71 0.62 0.61 0.55 0.50 0.43 0.42 6 1.22 1.31 1.32 1.38 1.44 1.51 1.52 7 1.21 1.30 1.31 1.37 1.42 1.49 1.50 8 1.09 1.17 1.18 1.23 1.27 1.34 1.34 9 1.16 1.23 1.24 1.29 1.34 1.40 1.40 10 1.14 1.21 1.22 1.26 1.31 1.37 1.37 11 1.16 1.23 1.24 1.28 1.33 1.39 1.39 Average 1.00 1.00 I 1.00 1.00 1.00 1.00 1.00 Appendix E

E-15 Table E-4 Measured Sensor Activities And Reaction Rates Surveillance Capsule S Radially Radially Adjusted Adjusted Measured Saturated Saturated Reaction Activity Activity Activity Rate Reaction Location (dps/g) (dps/g) (dps/g) (rps/atom) 61Cu (n,a) 60Co Top 4.470E+04 3.146E+05 3.269E+05 4.987E- 17 Bottom 4.290E+04 3.019E+05 3.137E+05 4.786E- 17 Average 4.887E-17 54Fe (n,p) 5 4Mn W-3 Charpy 1I.130E+06 2.716E+06 2.830E+06 4.486E- 15 W-4 Charpy 1I.130E+06 2.716E+06 2.830E+06 4.486E-15 W-8 Charpy I .150E+06 2.764E+06 2.880E+06 4.565E- 15 E-41 Charpy 1.330E+06 3.196E+06 2.739E+06 4.342E- 15 R-47 Charpy 1.350E+06 3.244E+06 2.780E+06 4.408E- 15 Average 4.457E-15 5 8Ni (n,p) 58Co Middle 8.200E+06 4.785E+07 4.986E+07 7.137E-15 Average 7.137E-15 238U (n f 137CS (Cd) Middle 1.310E+05 4.634E+06 4.634E+06 3.043E- 14 238U (n,f) 137 Cs (Cd) Including 235 U, 2 39 pU, and y,fission corrections: 2.545E-14 237Np (n,f) 137 Cs (Cd) 237Np (n,f) 37 Middle 9.970E+05 3.527E+07 3.527E+07 2.250E- 13 1 Cs (Cd) Including y,ission correction: 2.215E-13 59 Top 7.560E+06 5.321 E+07 5.098E+07 3.326E- 12 Co (n,y) 6 Co Middle 7.350E+06 5.173E+07 4.956E+07 3.233E- 12 Bottom 7.870E+06 5.539E+07 5.307E+07 3.462E- 12 Average 3.340E-12 59 Co (n,y) 60 Co (Cd) Top 4.030E+06 2.836E+07 2.454E+07 1.601 E-12 Middle 3.980E+06 2.801E+07 2.423E+07 1.581E-12 Bottom 4.050E+06 2.851 E+07 2.466E+07 1.609E- 12 Average 1.597E-12 Notes: I) Measured specific activities are indexed to a counting date of February 2, 1987.

2)The average 23 8U (n.f) reaction rate of 2.545E-14 includes a correction factor of 0.873 to account for plutonium build-in and an additional factor of 0.958 to account for photo-fission effects in the sensor.

3) The average 237Np (n,f) reaction rate of 2.215E-13 includes a correction factor of 0.985 to account for photo-fission effects in the sensor.

Appendix E

E-16 Table E-4 cont'd Measured Sensor Activities And Reaction Rates Surveillance Capsule Y Radially Radially Adjusted Adjusted Measured Saturated Saturated Reaction Activity Activity Activity Rate Reaction Location (dps/g) (dps/g) (dps/g) (rps/atom) 63Cu (n,ax) 6OCo Top 1.23E+05 1.52E+05 1.45E+05 2.21 E-17 Bottom 1.28E+05 1.58E+05 1.51 E+05 2.30E-17 Average 2.26E-17 54 Fe (n,p) 5Mn W-09 Charpy 1.02E+06 1.15E+06 1.IOE+06 1.74E- 15 W-16 Charpy 1.05E+06 1.19E+06 1.13E+06 1.80E-15 E-49 Charpy 8.87E+05 I.OOE+06 1I.15E+06 1.83E-15 E-56 Charpy 9.03E+05 1.02E+06 1.1 7E+06 1.86E-15 Average 1.81E-15 58Ni (n,p) 5 8Co Middle 9.58E+06 2.09E+07 1.99E+07 2.85E- 15 Average 2.85E-15 238U (n,f) 137Cs (Cd) Middle 4.68E+05 1.69E+06 1.69E+06 1.11 E-14 238U (n,f) 137Cs (Cd) Including 235U,239 Pu, and y,fission corrections: 8.84E-15 237Np (n,f) 137Cs (Cd) Middle 3.44E+06 1.24E+07 1.24E+07 7.94E-14 237Np (n,f) '"Cs (Cd)

Including y,fission correction: 7.82E-14 59Co (n,y) 6Co Top 1.38E+07 1.70E+07 1.62E+07 1.06E-12 Middle 1.46E+07 1.80E+07 1.71 E+07 1.12E-12 Bottom 1.39E+07 1.71 E+07 1.63E+07 1.06E- 12 Average 1.08E-12 59 Top Co (n,y) 6OCo (Cd) 6.53E+06 8.05E+06 7.65E+06 4.99E-1 3 Middle 7.42E+06 9.15E+06 8.69E+06 5.67E- 13 Bottom 6.37E+06 7.85E+06 7.46E+06 4.87E-1 3 Average 5.18E-13 Notes: I) Measured specific activities are indexed to a counting date of August 1, 2002.

2

2) The average 38U (n.f) reaction rate of 8.84E-15 includes a correction factor of 0.831 to account for plutonium build-in and an additional factor of 0.958 to account for photo-fission effects in the sensor.

237

3) The average Np (n.f) reaction rate of 7.82E-14 includes a correction factor of 0.985 to account for photo-fission effects in the sensor.

Appendix E

E-17 Table E-4 cont'd Measured Sensor Activities And Reaction Rates Surveillance Capsule V Radially Radially Adjusted Adjusted Measured Saturated Saturated Reaction Activity Activity Activity Rate Reaction Location (dps/g) (dps/g) (dps/g) (rps/atom) 63 Cu (n,cx) 6OCo Top 3.80E+04 7.80E+04 8.12E+04 1.24E-17 Bottom 3.81 E+04 7.82E+04 8.14E+04 1.24E-17 Average 1.24E-17 54 54 Fe (n,p) Mn R-48 Charpy 1.58E+06 2.55E+06 2.66E+06 4.22E- 15 R-42 Charpy 1.62E+06 2.62E+06 2.73E+06 4.33E- 15 H-2 Charpy 1.47E+06 2.37E+06 2.48E+06 3.93E-15 S-58 Charpy 1.90E+06 3.07E+06 2.65E+06 4.19E-15 S-52 Charpy 1.87E+06 3.02E+06 2.60E+06 4.13E- 15 W-2 Charpy 1.75E+06 2.83E+06 2.44E+06 3.86E-15 Average 4.11E-15 238 U (n,f) 137 Cs (Cd) Middle 2.52E+05 1.64E+06 1.64E+06 1.08E- 14 23 5 U (n,f) 13 7 Cs (Cd) Including 235U, 239Pu, and yfission corrections: 8.64E-15 237' Np (n,f) 37 1 Cs (Cd) Middle 1.23E+05 7.99E+05 7.99E+05 5.1OE-15 23 7Np (n,f) 137 Cs (Cd) Including y,fission correction: 5.02E-15 59Co (n,y) Co Top 3.1 IE+06 6.38E+06 6.1I E+06 5.98E- 16 Middle 2.82E+06 5.79E+06 f5.54E+06 5.42E-16 Bottom 3.01 E+06 6.18E+06 5.91 E+06 5.79E-16 Average 5.73E-16

"'Co (ri,y) 'Co (Cd) Top 1.53E+06 3.14E+06 22.77E+06 2.71E-16 Middle 3.17E+04 6.51 E+04 55.74E+04 5.62E-18 Bottom 1.52E+06 3.12E+06 22.75E+06 2.69E-16 Average 1.82E-16 Notes: I) Measured specific activities are indexed to a counting date of March 30, 1985.

238

2) The average U (n.f) reaction rate of 8.64E- 15 includes a correction factor of 0.837 to account for plutonium build-in and an additional factor of 0.960 to account for pholo-fission effects in the sensor.

237

3) The average Np (n.f) reaction rate of 5.02E- 15 includes a correction factor of 0.984 to account for photo-fission effects in the sensor.

Appendix E

E-18 Table E-5 Comparison of Measured, Calculated, and Best Estimate Reaction Rates At The Surveillance Capsule Center Capsule S Reaction Rate [rps/atom]

Best Reaction Measured Calculated Estimate M/C M/BE 63Cu(n,a) 60Co 4.89E-17 4.46E- 17 4.69E- 17 1.10 1.04 54Fe(n,p) 54Mn 4.46E-15 5.01E-15 4.87E- 15 0.89 0.92 18Ni(n,p) Co 7.14E- 15 6.91E-15 6.96E- 15 1.03 1.03 23 8U(n,f 37Cs (Cd) 2.54E-14 2.50E-14 2.49E-14 1.02 1.02 2 37 Np(n,f)1 37Cs (Cd) 2.21E-13 1.97E-13 2.10E-13 1.13 1.05 59 Co(n,y)6oCo 3.34E- 12 2.93E- 12 3.32E- 12 1.14 1.00 5 9Co(n,y)6Co (Cd) 1.60E- 12 1.60E- 12 1.53E-12 1.04 1.00 Capsule Y Reaction Rate [rps/atom]

Best Reaction Measured Calculated Estimate M/C M/BE 6 3 Cu(n,a)60Co 3.67E- 17 3.69E- 17 3.58E-17 0.99 1.02 54Fe(n,p)5 Mn 3.44E- 15 4.02E- 15 3.63E-15 0.86 0.94 58Ni(n,p) 5 8 Co 5.23E- 15 5.54E- 15 5.1 OE- 15 0.94 1.02 23 8U(n,f)137 Cs (Cd) 1.82E-14 1.98E-14 1.77E-14 0.92 1.03 2 37 Np(n f)137 Cs (Cd) 1.24E-13 1.54E-13 1.30E-13 0.81 0.95 59 Co(n,y)6Co 2.35E- 12 2.26E- 12 2.35E-12 1.04 1.00 5 9Co(n,y)6oCo (Cd) 1.15E-12 1.18E-12 1.15E-12 0.97 1.00 Capsule V Reaction Rate [rps/ tom]

Best Reaction Measured Calculated Estimate M/C M/BE 6 3 Cu(n,a)6OCo 2.26E-17 2.32E- 17 2.16E-17 0.97 1.04 5 Fe(n,p)5 Mn 1.81E-15 2.32E-15 1.97E-15 0.78 0.92 58Ni(n,p)"Co 2.85E-15 3.16E-15 2.77E-15 0.90 1.03 2 38U(n,f)13 7Cs (Cd) 8.84E-15 1.08E-14 9.24E-15 0.82 0.96 2 37 Np(n,f)' 3 7 Cs (Cd) 7.81E-14 8.06E-14 7.39E-14 0.97 1.05 59 Co(n,y)6oCo 1.08E-12 1.13E-12 1.08E- 12 0.95 1.00 59 Co(n,y)6oCo (Cd) 5.18E-13 5.87E-13 5.20E-13 0.88 1.00 Appendix E

E-19 Table E-6 Comparison of Calculated and Best Estimate Exposure Rates At The Surveillance Capsule Center 4(E > 1.0 MeV) [n/cm2 -s] I Best Uncertainty Capsule ID Calculated Estimate (I ) BE/C S 7.23E+10 7.26E+lO 6% 1.00 Y 5.68E+10 5.05E+10 6% 0.89 V 3.04E+I 1 2.61 E+ 1 6% 0.86 Notes: ) Calculated results are based on the synthesized transport calculations taken at the core midplane following the completion of each respective capsules irradiation period.

Iron Atom Displacement Rate [dpa/s]

Best Uncertainty Capsule ID Calculated Estimate (I ) BE/C S I.22E-10 1.23E-10 7% 1.01 Y 9.56E- 1 8.44E-1 1 7% 0.88 V 5.05E- I 4.39E-1 1 7% 0.87 Notes: I) Calculated results are based on the synthesized transport calculations taken at the core midplane following the completion of each respective capsules irradiation period.

Appendix E

E-20 Table E-7a Comparison of Measured/Calculated (M/C) Sensor Reaction Rate Ratios Including all Fast Neutron Threshold Reactions M/C Ratio Reaction Capsule S Capsule Y Capsule V 63Cu(n,(x) Co 1.10 0.99 0.97 54Fe(n,p)5 4Mn 0.89 0.86 0.78 s Ni(n,p)"Co 1.03 0.94 0.90 2 38U(n,p)' 37Cs (Cd) 1.02 0.92 0.82 2 37 Np(n,f)' 3 7 Cs (Cd) 1.12 0.81 0.97 Average 1.03 0.90 0.89

% Standard Deviation 8.7 8.2 9.8 Note: 1) The overall average M/C ratio for the set of 15 sensor measurements is 0.94 with an associated standard deviation of 8.3%.

Table E-7b Comparison of Measured/Calculated Individual Sensor Reactions without Recourse to the Least Squares Adjustment Encompassing all In-Vessel and Ex-Vessel Dosimetry In-Vessel - Ex-Vessel Combined Average Unc. Average Unc. Average Unc.

Reaction M/C (I ) M/C (I ) M/C (I )

6 3Cu(n,a)'Co 1.02 7.0 0.87 8.0 0.95 10.6 54 Fe(n,p)54Mn 0.84 5.7 0.84 11.1 0.84 0.0 5RNi(n,p) 5SCo 0.96 6.7 0.89 10.6 0.93 4.9 23 8U(n p)' 3 7 Cs (Cd) 0.92 10.0 0.96 11.4 0.94 2.8 23 7 Np(n, f)' 3 7Cs (Cd) 0.97 16.0 0.98 13.1 0.91 0.7 Linear Average 0.94 6.7 0.91 6.0 0.91 43 Table E-8 Comparison of Best Estimate/Calculated (BE/C) Exposure Rate Ratios BE/C Ratio Capsule ID (E> 1.0 MeV) dpa/s S 1.00 1.02 Y 0.89 0.89 V 0.86 0.88 Average 0.92 0.93

% Standard Deviation 8.0 8.4 Appendix E

E-21 Table E-9 Best Estimate Fluence and Iron Atom Displacement Values on a Cycle-By-Cycle Basis Cumulative Best Estimate Values Operating ¢(E > 1.0 MeV) Iron Displacements Cycle Time I n/cm2) Idpa)

{EFPY) 40 400 Capsule 40 400 Capsule V* V*

1 1.25 8.03E+ 17 2.59E+18 8.03E+ 17 1.34E-03 4.51 E-03 1.34E-03 2 2.27 1.37E+ 18 4.36E+ 18 1.37E+ 18 2.28E-03 7.59E-03 2.28E-03 3 3.45 1.91 E+ 18 6.48E+18 1.91E+18 3.18E-03 1.13E-02 3.18E-03 4 4.51 2.41 E+ 18 7.96E+ 18 2.41 E+18 4.01 E-03 1.38E-02 4.01E-03 5 5.87 3.01 E+ 18 9.58E+18 3.01 E+ 18 5.01 E-03 1.67E-02 5.01E-03 6 7.14 3.60E+ 18 1.I1 E+ 19 4.53E+ 18 5.99E-03 1.93E-02 7.64E-03 7 8.47 4.19E+ 18 1.27E+19 6.09E+ 18 6.98E-03 2.20E-02 1.04E-02 8 9.75 4.69E+ 18 1.40E+ 19 7.44E+ 18 7.81 E-03 2.44E-02 1.27E-02 9 11.38 5.40E+ 18 1.58E+19 9.25E+ 18 8.98E-03 2.75E-02 1.58E-02 10 12.87 5.98E+ 18 1.75E+ 19 1.09E+ 19 9.96E-03 3.03E-02 1.87E-02 I1 14.27 6.60E+ 18 1.91 E+19 1.25E+ 19 l. lOE-02 3.3 E-02 2.14E-02 Projections 16.00 7.34E+ 18 2.1OE+19 1.22E-02 3.64E-02 Projections 24.00 1.08E+ 19 3.02E+ 19 1.80E-02 5.25E-02 Projections 32.00 1.43E+ 19 3.94E+ 19 2.38E-02 6.85E-02 Projections 40.00 1.78E+19 4.87E+19 2.97E-02 8.45E-02 Projections 48.00 2.13E+19 5.79E+19 3.55E-02 I.OOE-01 Projections 54.00 2.39E+19 3.98E-02 1.12E-0 1 Notes: 1)

  • Capsule V was irradiated at a 4 capsule position for cycles 1-5 at which point it was moved to be irradiated in a 40° location until it was removed at the end of cycle 11.

Appendix E

E-22 Table E-10 i Best Estimate Azimuthal Variation of Maximum Exposure Rates And Integrated Exposures at the Reactor Vessel Clad/Base Metal Interface Cumulative Cumulative Neutron Flux (E > 1.0 MeV)

Cycle Irradiation Irradiation [n/cm 2-s]_

Length Time Time Cycle [EFPS] [EFPS] [EFPY] O0 150 30° 450 I 3.94E+07 3.94E+07 1.25 6.14E+09 9.73E+09 1.23E+I 0 1.90E+ l0 2 3.23E+07 7.16E+07 2.27 5.40E+09 7.69E+09 1.06E+ 10 1.59E+10 3 3.72E+07 1.09E+08 3.45. 4.39E+09 7.16E+09 1.08E+I 0 1.66E+10 4 3.34E+07 1.42E+08 4.51 4.49E+09 6.89E+09 8.68E+09 1.30E+10 5 4.31 E+07 1.85E+08 5.87 4.25E+09 6.42E+09 8.01E+09 1.09E+10 6 4.01 E+07 2.25E+08 7.14 4.44E+09 6.96E+09 8.07E+09 1.1OE+10 7 4.18E+07 2.67 E+08 8.47 4.28E+09 6.88E+09 8.18E+09 1.08E+ lO 8 4.04E+07 3.08 E+08 9.75 3.81 E+09 6.24E+09 7.50E+09 9.84E+09 9 5.13E+07 3.59 E+08 11.38 4.17E+09 6.36E+09 7.64E+09 1.02E+I 10 4.72E+07 4.06 E+08 12.87 3.71 E+09 6.61 E+09 7.95E+09 9.98E+09 11 4.58E+07 4.52 E+08 14.27 4.02E+09 7.46E+09 8.63E+09 I .OOE+ I0 Projection 5.29E+07 5.05 E+08 16.00 4.18E+09 6.84E+09 8.16E+09 1.06E+10 Projection 2.53E+08 7.57 E+08 24.00 4.18E+09 6.84E+09 8.16E+09 1.06E+ 10 Projection 2.53E+08 1.0 IE+09 32.00 4.18E+09 6.84E+09 8.16E+09 1.06E+10 Projection 2.53E+08 1.26E+09 40.00 4.18E+09 6.84E+09 8.16E+09 1.06E+10 Projection 2.53E+08 1.5 lE+09 48.00 4.18E+09 6.84E+09 8.16E+09 1.06E+10 Projection 1.89E+08 1.70E+09 54.00 4.18E+09 6.84E+09 8.16E+09 1.06E+10 Appendix E

- l~~~~~~~~~~

E-23 Table E-10 cont'd Best Estimate Azimuthal Variation of Maximum Exposure Rates And Integrated Exposures at the Reactor Vessel Clad/Base Metal Interface Cumulative Cumulative Neutron Fluence (E > 1.0 MeV)

Cycle Irradiation Irradiation [n/cm 2 ]

Length Time Time Cycle [EFPS] [EFPS] [EFPY] 00 150 300 450 I 3.94E+07 3.94E+07 1.25 2.42E+17 3.83E+ 17 4.85E+ 17 7.46E+17 2 3.23E+07 7.16E+07 2.27 4.16E+ 17 6.31E+17 8.26E+ 17 1.26E+ 18 3 3.72E+07 1.09E+08 3.45 5.79E+17 8.97E+17 1.23E+18 1.88E+18 4 3.34E+07 1.42E+08 4.51 7.29E+ 17 1.13E+18 1.52E+ 18 2.31E+18 5 4.31 E+07 1.85E+08 5.87 9.12E+17 1.40E+ 18 1.86E+18 2.78E+18 6 4.0 E+07 2.25E+08 7.14 1.09E+18 1.68E+ 18 2.19E+18 3.22E+18 7 4.18E+07 2.67 E+08 8.47 1.27E+18 1.97E+ 18 2.53E+ 18 3.67E+ 18 8 4.04E+07 3.08 E+08 9.75 1.42E+ 18 2.22E+ 18 2.83E+ 18 4.07E+ 18 9 5.13E+07 3.59 E+08 11.38 1.64E+ 18 2.55E+ 18 3.22E+ 18 4.59E+ 18 10 4.72E+07 4.06 E+08 12.87 1.81E+18 2.86E+ 18 3.60E+18 5.06E+ 18 11 4.58E+07 4.52 E+08 14.27 1.99E+ 18 3.20E+ 18 3.99E+ 18 5.52E+ 18 Projection 5.29E+07 5.05 E+08 16.00 2.22E+18 3.56E+ 18 4.42E+18 6.08E+ 18 Projection 2.53E+08 7.57 E+08 24.00 3.27E+ 18 5.29E+ 18 6.48E+ 18 8.75E+ 18 Projection 2.53E+08 1.0 IE+09 32.00 4.33E+18 7.02E+ 18 8.54E+ 18 1.14E+ 19 Projection 2.53E+08 1.26E+09 40.00 5.38E+18 8.74E+ 18 1.06E+ 19 1.41E+19 Projection 2.53E+08 1.51 E+09 48.00 6.43E+ 18 1.05E+ 19 1.27E+ 19 1.68E+ 19 Projection 1.89E+08 1.70E+09 54.00 7.22E+18 1.18E+19 1.42E+19 .88E+19 Appendix E

E-24 Table E-10 cont'd Best Estimate Azimuthal Variation of Fast Neutron Exposure Rates And Iron Atom Displacement Rates At the Reactor Vessel Clad/Base Metal Interface Cumulative Cumulative Iron Atom Displacement Rate Cycle Irradiation Irradiation [dpa/s]

Length Time Time Cycle [EFPS] [EFPS] [EFPY] 00 15° 300 450 3.94E+07 3.94E+07 1.25 9.96E-12 1.56E-1 1 1.99E-11 3.06E-1 I 2 3.23E+07 7.16E+07 2.27 8.74E-12 1.23E-11 1.70E-11 2.57E-Il 3 3.72E+07 1.09E+08 3.45 7.13E-12 1.15E-II 1.74E-I1 2.68E-I1 4 3.34E+07 1.42E+08 4.51 7.28E-12 I.IOE-11 1.40E-11 2.10OE-1 5 4.311E+07 1.85E+08 5.87 6.88E-12 1.03E-I1 1.29E-11 1.76E-Il 6 4.011E+07 2.25E+08 7.14 7.20E-12 1.IE-1I 1.30E-11 1.77E-I1 7 4.18E+07 2.67E+08 8.47 6.94E-12 LIOE-11 1.32E-1I 1.75E-Il 8 4.04E+07 3.081E+08 9.75 6.18E-12 9.99E-12 1.211-Il 1.59E-I1 9 5.13E+07 3.591E+08 11.38 6.76E-12 1.02E-1I 1.23E-11 1.65E-II 10 4.72E+07 4.06E+08 12.87 6.04E-12 1.06E-I1 1.28E-11 1.61E-ll 11 4.58E+07 4.52 E+08 14.27 6.55E-12 I.I9E-11 1.39E-11 1.62E-II Projection 5.29E+07 5.051E+08 16.00 6.78E-12 1.09E-11 1.31E-11 1.71E-1I Projection 2.53E+08 7.571E+08 24.00 6.78E-12 1.09E-11 1.31E-11 1.7113-II Projection 2.53E+08 I.OE+09 32.00 6.78E-12 1.09E-11 1.31E-11 1.71E-ll Projection 2.53E+08 1.26E+09 40.00 6.78E-12 1.0913-11 1.3113-11 1.71E-1l Projection 2.53E+08 1.511E+09 48.00 6.78E-12 1.09E-11 1.3113-11 1.71E-1I Projection 1.89E+08 1.70E+09 54.00 6.78E-12 1.09E-1 1.31E-11 1.71-I Appendix E

I E-25 Table E-10 cont'd Best Estimate Azimuthal Variation of Maximum Exposure Rates And Integrated Exposures at the Reactor Vessel Clad/Base Metal Interface Cumulative Cumulative Iron Atom Displacements Cycle Irradiation Irradiation [d a]

Length Time Time Cycle [EFPS] [EFPS] [EFPY] 00 150 300 450

_ 3.94E+07 3.94E+07 1.25 3.92E-04 6.13E-04 7.83E-04 I.21 E-03 2 3.23E+07 7.16E+07 2.27 6.74E-04 1.01 E-03 1.33E-03 2.04E-03 3 3.72E+07 1.09E+08 3.45 9.39E-04 1.44E-03 1.98E-03 3.03E-03 4 3.34E+07 1.42E+08 4.51 1.1 8E-03 1.81 E-03 2.44E-03 3.73E-03 5 4.31 E+07 1.85E+08 5.87 1.48E-03 2.25E-03 3.OOE-03 4.49E-03 6 4.01 E+07 2.25E+08 7.14 1.77E-03 2.70E-03 3.52E-03 5.20E-03 7 4.18E+07 2.67 E+08 8.47 2.06E-03 3.16E-03 4.07E-03 5.93E-03 8 4.04E+07 3.08 E+08 9.75 2.31 E-03 3.56E-03 4.55E-03 6.57E-03 9 5.13E+07 3.59 E+08 11.38 2.65E-03 4.08E-03 5.19E-03 7.42E-03 10 4.72E+07 4.06 E+08 12.87 2.94E-03 4.58E-03 5.79E-03 8.18E-03 11 4.58E+07 4.52 E+08 14.27 3.24E-03 5.12E-03 6.43E-03 8.92E-03 Projection 5.29E+07 5.05 E+08 16.00 3.59E-03 5.70E-03 7.12E-03 9.82E-03 Projection 2.53E+08 7.57 E+08 24.00 5.31 E-03 8.47E-03 1.04E-02 1.41 E-02 Projection 2.53E+08 1.0 I E+09 32.00 7.02E-03 1.1 2E-02 1.38E-02 1.84E-02 Projection 2.53E+08 1.26E+09 40.00 8.73E-03 1.40E-02 1.71 E-02 2.28E-02 Projection 2.53E+08 1.51 E+09 48.00 1.04E-02 1.68E-02 2.04E-02 2.71 E-02 Projection 1.89E+08 1.70E+09 54.00 1.1 7E-02 1.88E-02 2.29E-02 3.03E-02 Appendix E

I E-26 To document the ex-vessel dosimetry program the following tables have been extracted from Reference E-8.

Capsule Identifications for Ex-Vessel Irradiations Azimuth Capsule Identification - Cycle 1 Irradiation

[degrees] Core Top Core Midplane Core Bottom 0.0 F 13.5 E 33.8 D 45.0 C B A Azimuth Capsule Identification - Cycle 2 Irradiation

[degrees] Core Top Core Midplane Core Bottom 0.0 A 10.9 B 35.1 C 42.0 (48.0) D E F Azimuth Capsule Identification - Cycles 3-4 Irradiation

[degrees] Core Top Core Midplane Core Bottom 0.0 A 10.9 B 35.1 C 42.0 (48.0) D E F Azimuth Capsule Identirication - Cycles 5-6 Irradiation

[degrees] Core Top Core Midplane Core Bottom 0.0 G 10.9 H 35.1 1 42.0 (48.0) 3 K L Appendix E

E-27 Azimuth Capsule Identification - Cycles 7-10 Irradiation

[degrees] Core Top Core Midplane Core Bottom 0.0 M 10.9 N 35.1 0 42.0 (48.0) P Q R Appendix E

E-28 Contents of Multiple Foil Sensor Sets Cycle I Irradiation Capsule ID Bare or Radiometric Monitor ID and Cadmium U U Position Covered Fe Ni Cu Ti Co Nat. Dep. SSTR A-1 Bare A 9 DC-19 A-2 Cd Cov. 3 DU CN/CU 3 A-3 Cd Cov. UN-05 U8-05 DC-23 B-1 Bare B/7 7 DC-01 B-2 Cd Cov. SI CL/CK I B-3 Cd Cov. UN-06 U8-06 DC-09 C-1 Bare C 8 DC-17 C-2 Cd Cov. 2 SH CM 2 C-3 Cd Cov. UN-07 U8-07 DC-21 D-1 Bare D 10 DC-02 D-2 Cd Cov. 4 DK CP/CR 4 D-3 Cd Cov. UN-08 U8-08 DC-10 E-1 Bare E 11 DC-03 E-2 Cd Cov. 5 DL CT/CS 5 E-3 Cd Cov. UN-09 U8-09 DC-Il F-I Bare F 12 DC-04 F-2 Cd Cov. 6 DM AU/CU 6 F-3 Cd Cov. UN-10 U8-10 DC-12 Appendix E

E-29 Cycle 2 Irradiation Capsule ID Bare or Radiometric Monitor ID and Cadmium Position Covered Fe Cu Nb Co U-238 SSTR A-1 Bare G AS W2-7 A-2 Cd Cov. H AK S A A-3 Cd Cov. G W2-8 B-1 Bare N AR W2-5 B-2 Cd Cov. I AL T B B-3 Cd Cov. H W2-6 C-1 Bare 0 AP W2-3 C-2 Cd Cov. J AM N C C-3 Cd Cov. I W2-4 D-1 Bare p AN W2-9 D-2 Cd Cov. K AN 0 D D-3 Cd Cov. W2-10 E-1 Bare R AO W2-1 E-2 Cd Cov. L AO p E E-3 Cd Cov. K W2-2 F-1 Bare S AM W2-11 F-2 Cd Cov. M AP R F F-3 Cd Cov. M W2-12 Appendix E

E-30 Cycles 3-4 Irradiation Capsule ID Bare or Radiometric Monitor ID and Cadmium I U Position Covered Fe Ni Cu Ti Co De Nb SSTR A-1 Bare AA G W8-07 A-2 Cd Cov. AB K AR AA H G A-3 Cd Cov. W8-08 B-1 Bare AC I W8-05 B-2 Cd Cov. AD L AS AB J H B-3 Cd Cov. W8-06 C-i Bare AE K W8-03 C-2 Cd Coy. AF M AT AC L I C-3 Cd Coy. W8-04 D-1 Bare AG M W8-09 D-2 Cd Coy. AH N BG AD N J D-3 Cd Cov. W8-10 E-1 Bare Al 0 W8-01 E-2 Cd Cov. AJ 0 BH AE P K E-3 Cd Cov. W8-02 F-1 Bare T R W8-11 F-2 Cd Coy. U P BJ AF S L F-3 Cd Cov. W8-12 Appendix E

E-31 Cycles 5-6 Irradiation Capsule ID Bare or Radiometric Monitor ID and Cadmium U Position Covered Fe Ni Cu Ti Co Dep. Nb SSTR G-1 Bare BA AA W23-7 G-2 Cd Cov. CA G CA G-3 Cd Cov. W23-8 H-1 Bare BB AB W23-5 H-2 Cd Cov. CB H CB H-3 Cd Cov. W23-6 I-1 Bare BC AC W23-3 1-2 Cd Cov. CC I CC 1-3 Cd Cov. W23-4 J-1 Bare BD AD W23-9 J-2 Cd Cov. CD CD J-3 Cd Cov. W23-10 K-1 Bare BE AE W23-1 K-2 Cd Cov. CE K CE K-3 Cd Cov. W23-2 L-1 Bare BF AF W23-11 L-2 Cd Cov. CF L CF L-3 Cd Cov. W23-12 Appendix E

E-32 Cycles 7-10 Iadiation Capsule ID Bare or Radiometric Monitor ID and Cadmium .

Position Covered Fe Ni Cu Ti Co Nb U-238 Np-237 M-1 Bare BA BA M-2 Cd Cov. AA A A AA A M-3 Cd Cov. 14 8 N-1 Bare BB BB AB N-2 Cd Cov. B B AB B N-3 Cd Cov. 15 9 BC 0-1 Bare BC AC 0-2 Cd Cov. C C AC C 0-3 Cd Cov. 16 10 BD P-1 Bare BD AD P-2 Cd Cov. D D AD D P-3 Cd Cov. 17 12 BE Q-1 Bare BE AE Q-2 Cd Cov. E E AE E Q-3 Cd Cov. 18 13 BF R-1 Bare BF AF R-2 Cd Cov. F F AF F R-3 Cd Cov. 19 14 Appendix E

E-33 The results of the dosimetry evaluations performed for the Diablo Canyon Unit I Ex-Vessel capsules withdrawn to date from locations opposite the core axial midplane are provided below. The data tabulations for each capsule evaluation include the following information:

I - The Measured, Calculated, and Best Estimate reaction rates for each sensor.

2 - The Measurement to Calculation Ratio (M/C) and the Measurement to Best Estimate Ratio (MIBE) for each sensor.

3 - The Calculated and Best Estimate values of neutron flux (E > 1.0 MeV) and Iron atom displacement rate with associated uncertainties.

4 - The Best Estimate to Calculation Ratio (BE/C) for both neutron flux (E > 1.0 MeV) and Iron atom displacement rate.

The M/C and M/BE ratios for the individual sensors establish a comparison between measurement and calculation before and after the least squares evaluation. The reduction in these reaction rate ratios for the best estimate case is an indication of the improvement in the neutron spectrum and corresponding reduction in uncertainty brought about by the application of the least squares procedure. The comparisons of calculated and best estimate values of neutron flux (E > 1.0 MeV) and Iron atom displacement rate with associated uncertainties also provided an indication of the improved results obtained with the least squares procedure.

Appendix E

E-34 Capsule IDF Azimuthal LocationO.0° Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycle I Measured Calculated Best Est. M/C M/BE Cu-63(n,a)Co-60 1.97E-1 9 2.24E-19 1.92E-1 9 0.88 1.03 Fe-54(n,p)Mn-54 1.37E-1 7 1.68E-17 1.41 E-17 0.82 0.97 Ni-58(n,p)Co-58 1.98E-1 7 2.41 E-17 2.03E-1 7 0.82 0.98 U-238(n,f)Cs-1 37 Cd 8.61 E-17 9.52E-17 8.33E-1 7 0.90 1.03 Np-237(n,f)Cs-137 Cd 1.88E-15 1.68E-1 5 1.72E-15 1.12 1.09 Co-59(n,g)Co-60 4.22E-1 4 6.93E-1 4 4.27E-14 0.61 0.99 Co-59(n,g)CO-60 Cd 1.94E-14 2.59E-1 4 1.94E-14 0.75 1.00 Calculated  % Unc. Best Est.  % Unc. BE/C Flux(E > 1.0 MeV) 3.37E+08 14 3.03E+08 6 0.90 dpa/s 1.33E-12 14 1.26E-12 9 0.95 Capsule IDE Azimuthal Location 13.5° Ex-Vessel Axial Location Core Midplane Irradiation PeriodCycle I Measured Calculated Best Est. M/C M/BE Cu-63(n,a)Co-60 2.28E-1 9 2.97E-19 2.23E-1 9 0.77 1.02 Fe-54(n,p)Mn-54 1.65E-17 2.36E-1 7 1.71 E-17 0.70 0.96 Ni-58(n,p)Co-58 2.41 E-17 3.39E-1 7 2.47E-1 7 0.71 0.98 U-238(n ,f)Cs-137 Cd 1.08E-1 6 1.37E-16 1.02E-16 0.79 1.06 Np-237(n,f)Cs-137 Cd 2.12E-15 2.43E-1 5 2.02E-1 5 0.87 1.05 Co-59(n,g)Co-60 4.98E-1 4 9.30E-1 4 5.1OE-14 0.54 0.98 Co-59(n,g)CO-60 Cd 2.96E-1 4 3.95E-14 2.93E-1 4 0.75 1.01 Calculated  % Unc. Best Est.  % Unc. BE/C Flux(E > 1.0 MeV) 4.89E+08 14 3.74E+08 6 0.76 dpa/s 1.93E-1 2 14 1.57E-12 10 0.81 Appendix E

E-35 Capsule IDD Azimuthal Location33.8' Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycle I Measured Calculated Best Est. M/C M/BE Cu-63(n,a)Co-60 3.11E-19 3.91 E-1 9 3.10E-19 0.80 1.00 Fe-54(n,p)Mn-54 2.57 E-17 3.30E-1 7 2.59E-1 7 0.78 0.99 Ni-58(n,p)Co-58 3.72E-1 7 4.81 E-17 3.77E-1 7 0.77 0.99 U-238(n,f)Cs-137 Cd 1.67E-16 2.03E-16 1.61 E-16 0.82 1.04 Np-237(n,f)Cs-137 Cd 3.06E-15 3.78E-1 5 3.07E-1 5 0.81 1.00 Co-59(n,g)Co-60 8.58E-14 1.35E-13 8.69E-14 0.64 0.99 Co-59(n,g)CO-60 Cd 4.56E-14 5.78E-14 4.54E-14 0.79 1.00 Calculated  % Una. Best Est.  % Unc. BEJC Flux(E > 1.0 MeV) 7.44E+08 14 5.96E+08 6 0.80 dpa/s 3.OOE-1 2 14 2.46E-12 9 0.82 Capsule IDB Azimuthal Location45.00 Ex-Vessel Axial Location Core Midplane Irradiation PeriodCycle I Measured Calculated Best Est. WC MBE Cu-63(n,a)Co-60 3.73E-1 9 4.26E-1 9 3.68E-1 9 0.88 1.01 Fe-54(n,p)Mn-54 2.93E-17 3.63E-17 3.11 E-1 7 0.81 0.94 Ni-58(n,p)Co-58 4.72E-1 7 5.30E-1 7 4.67E-1 7 0.89 1.01 U-238(n,f)Cs-137 Cd 2.32E-16 2.26E-16 2.03E-1 6 1.03 1.14 Np-237(n,f)Cs-137 Cd 3.73E-15 4.11E-15 3.76E-1 5 0.91 0.99 Co-59(n,g)Co-60 6.60E-14 1.32E-13 6.81 E-14 0.50 0.97 Co-59(n,g)CO-60 Cd 4.06E-14 5.02E-14 4.OOE-1 4 0.81 1.02 Calculated  % Unc. Best Est.  % Unc. BE/C Flux(E > 1.0 MeV) 8.34E+08 14 7.60E+08 6 0.91 dpals 3.15E-12 14 2.88E-12 9 0.91 Appendix E

E-36 Capsule IDA Azimuthal LocationO.0° Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycle 2 Measured Calculated Best Est. M/C M/BE Cu-63(n,a)Co-60 1.88E-1 9 1.98E-19 1.86E-19 0.95 1.01 Fe-54(n,p)Mn-54 1.33E-17 1.46E-17 1.35E-17 0.91

  • 0.99 Ni-58(n,p)Co-58 U-238(n,f)Cs-1 37 Cd 7.87E-1 7 8.20E-17 7.62E-17 0.96 1.03 Np-237(n,f)Cs-137 Cd Co-59(n,g)Co-60 4.24E-14 5.81 E-14 4.26E-14 0.73 1.00 Co-59(n,g)CO-60 Cd 1.72E-14 2.17E-14 1.73E-14 0.79 0.99 Calculated  % Unc. Best Est.  % Unc. BE/C Fldx(E > 1.0 MeV) 2.89E+08 14 2.68E+08 8 0.93 dpa/s 1.12E-12 14 1.04E-12 11 0.93 Capsule IDB Azimuthal Location 10.9° Ex-Vessel Axial Location Core Midplane Irradiation PeriodCycle 2 Measured Calculated Best Est. M/C M/BE Cu-63(n,a)Co-60 2.OOE-19 2.36E-19 1.99E-19 0.85 1.01 Fe-54(n,p)Mn-54 1.47E-17 1.82E-17 1.51E-17 0.81 0.97 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Cd 9.41 E-17 1.04E-16 8.84E-17 0.90 1.06 Np-237(n,f)Cs-137 Cd Co-59(n,g)Co-60 4.94E-14 7.28E-14 4.98E-1 4 0.68 0.99 Co-59(n,g)CO-60 Cd 2.36E-1 4 3.05E-14 2.36E-1 4 0.77 1.00 Calculated  % Unc. Best Est.  % Une. BE/C Flux(E > 1.0 MeV) 3.68E+08 14 3.17E+08 8 0.86 dpa/s 1.46E-12 14 1.28E-12 12 0.88 Appendix E

E-37 Capsule IDC Azimuthal Location35. 1° Ex-Vessel Axial Location Core Midplane Irradiation PeriodCycle 2 Measured Calculated Best Est. M/C M/BE Cu-63(n,a)Co-60 3.11E-19 3.54E-1 9 3.08E-1 9 0.88 1.01 Fe-54(n,p)Mn-54 2.45E-1 7 2.95E-17 2.53E-1 7 0.83 0.97 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Cd 1.71 E-16 1.80E-1 6 1.59E-16 0.95 1.08 Np-237(n,f)Cs-137 Cd 3.03E-1 5 3.31 E-1 5 3.02E-1 5 0.92 1.00 Co-59(n,g)Co-60 8.55E-14 1.16E-13 8.62E-14 0.74 0.99 Co-59(n,g)CO-60 Cd 4.29E-1 4 4.96E-14 4.28E-14 0.86 1.00 Calculated  % Unc. Best Est.  % Unc. BE/C Flux(E > 1.0 MeV) 6.57E+08 14 5.88E+08 7 0.90 dpa/s 2.62E-1 2 14 2.39E-12 10 0.91 Capsule IDE Azimuthal Location42.0 0 Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycle 2 Measured Calculated Best Est. M/C MIBE Cu-63(n,a)Co-60 3.21 E-19 3.68E-19 3.14E-19 0.87 1.02 Fe-54(n,p)Mn-54 2.44E-17 3.11E-17 2.56E-17 0.78 0.95 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Cd 1.77E-16 1.93E-16 1.62E-16 0.92 1.09 Np-237(n,f)Cs-137 Cd 2.95E-15 3.56E-1 5 2.99E-15 0.83 0.99 Co-59(n,g)Co-60 7.65E-1 4 1.1 6E-13 7.71 E-1 4 0.66 0.99 Co-59(n,g)CO-60 Cd 3.51 E-14 4.66E-1 4 3.52E-1 4 0.75 1.00 Calculated %Unc. Best Est.  % Unc. BE/C Flux(E > 1.0 MeV) 7.13E+08 14 5.99E+08 7 0.84 dpals 2.76E-112 14 2.37E- 12 9 0.86 Appendix E

E-38 Capsule IDA Azimuthal Location O.00 Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycles 3-4 Measured Calculated Best Est. M/C MIBE Cu-63(n,a)Co-60 1.55E-1 9 1.72E-1 9 1.55E-1 9 0.90 1.00 Fe-54(n,p)Mn-54 1.12E-17 1.25E-17 1.13E-17 0.90 0.99 Ni-58(n,p)Co-58 1.61 E-17 1.79E-17 1.61E-17 0.90 1.00 U-238(n,f)Cs-137 Cd 6.46E-17 6.98E-17 6.34E-17 0.93 1.02 Np-237(n,f)Cs-137 Cd Co-59(n,g)Co-60 3.58E-14 5.05E-14 3.62E-14 0.71 0.99 Co-59(n,g)CO-60 Cd 1.70E-14 1.88E-14 1.69E-14 0.90 1.01 Calculated I% Unc. Best Est.  % Unc. BE/C Flux(E > 1.0 MeV) 2.45E+08 14 2.24E+08 7 0.91 dpa/s 9.60E-1 3 14 8.80E-1 3 11 0.92 Capsule IDB Azimuthal Location 10.90 Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycles 3-4 Measured Calculated Best Est. M/C M/BE Cu-63(n,a)Co-60 1.82E-19 2.14E-19 1.81 E-19 0.85 1.01 Fe-54(n,p)Mn-54 1.34E-17 1.63E-17 1.37E-17 0.82 0.98 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Cd 8.26E-17 9.24E-17 8.07E-17 0.89 1.02 Np-237(n,f)Cs-137 Cd 1.61 E-15 1.62E-15 1.54E-15 0.99 1.05 Co-59(n,g)Co-60 4.45E-14 6.43E-14 4.49E-14 0.69 0.99 Co-59(n,g)CO-60 Cd 2.16E-14 2.69E-1 4 2.16E-14 0.80 1.00 Calculated  % Unc. Best Est.  % Unc. BE/C Flux(E > 1.0 MeV) 3.27E+08 i4 2.92E+08 7 0.89 dpa/s 1.30E-12 14 1.1 9E-12 10 0.92 Appendix E

E-39 Capsule IDC Azimuthal Location35.1° Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycles 3-4 Measured Calculated Best Est. M/C M/BE Cu-63(n,a)Co-60 2.94E-1 9 3.34E-1 9 2.89E-1 9 0.88 1.02 Fe-54(n,p)Mn-54 2.23E-1 7 2.75E-17 2.31 E-17 0.81 0.97 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Cd 1.52E-16 1.66E-16 1.43E-16 0.92 1.06 Np-237(n,f)Cs-137 Cd Co-59(n,g)Co-60 7.50E-14 1.06E-13 7.56E-14 0.71 0.99 Co-59(n,g)CO-60 Cd 3.68E-14 4.50E-14 3.68E-14 0.82 1.00 Calculated  % Unc. Best Est. % Unc. BE/C Flux(E > 1.0 MeV) 6.06E+08 14 5.24E+08 8 0.86 dpals 2.40E-12 14 2.13E-12 12 0.88 Capsule IDE Azimuthal Location42.0° Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycles 3-4 Measured Calculated Best Est. MIC M/BE Cu-63(n,a)Co-60 2.78E-1 9 3.50E-1 9 2.78E-19 0.79 1.00 Fe-54(n,p)Mn-54 2.29E-17 2.92E-1 7 2.34E-17 0.78 0.98 Ni-58(n,p)Co-58 3.46E-1 7 4.25E-1 7 3.46E-1 7 0.81 1.00 U-238(n,f)Cs-1 37 Cd 1.60E-1 6 1.80E-16 1.50E-16 0.89 1.07 Np-237(n,f)Cs-137 Cd Co-59(n,g)Co-60 6.52E-14 1.05E-13 6.60E-14 0.62 0.99 Co-59(n,g)CO-60 Cd 3.28E-14 4.23E-14 3.27E-14 0.78 1.00 Calculated  % Unc. Best Est. % Unc. BE/C Flux(E > 1.0 MeV) 6.60E+08 14 5.58E+08 7 0.84 dpals 2.54E-1 2 14 2.19E-12 11 0.86 Appendix E

E-40 Capsule IDG Azimuthal LocationO.0° Ex-Vessel Axial Location Core Midplane Irradiation PeriodCycles 5-6 Measured: Calculated Best Est. M/C MIBE Cu-63(n,a)Co-60 1.58E-19 1.67E-19 1.56E-1 9 0.95 1.01 Fe-54(n,p)Mn-54 1.1OE-17 1.22E-17 1.14E-17 0.90 0.96 Ni-58(n,p)Co-58 1.63E-17 1.73E-17 1.64E-1 7 0.94 0.99 U-238(n,f)Cs-137 Cd 7.41E-17 6.76E-17 6.62E-1 7 1.10 1.12 Np-237(n,f)Cs-137 Cd 1.24E-15 1.17E-15 1.21 E-15 1.06 1.02 Co-59(n,g)Co-60 3.43E-14 4.71 E-14 3.46E-14 0.73 0.99 Co-59(n,g)CO-60 Cd 1.48E-1 4 1.76E-1 4 1.48E-14 0.84 1.00 Calculated  % Unc. Best Est.  % Unc. BE/C Flux(E > 1.0 MeV) 2.37E+08 14 2.37E+08 6 1.00 dpa/s 9.19E-13 14 9.28E-1 3 9 1.01 Capsule IDH Azimuthal Location 10.90 Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycles 5-6 Measured Calculated Best Est. M/C M/BE Cu-63(n,a)Co-60 1.80E-1 9 2.05E-1 9 1.78E-19 0.88 1.01 Fe-54(n,p)Mn-54 1.28E-17 1.56E-17 1.32E-17 0.82 0.97 Ni-58(n,p)Co-58 1.89E-1 7 2.23E-17 1.90E-17 0.85 0.99 U-238(n,f)Cs-137 Cd 8.20E-1 7 8.79E-1 7 7.61 E-17 0.93 1.08 Np-237(n,f)Cs-1 37 Cd Co-59(n,g)Co-60 4.06E-14 5.87E-14 4.1 OE-14 0.69 0.99 Co-59(n,g)CO-60 Cd 2.05E-14 2.47E-14 2.05E-14 0.83 1.00 Calculated  % Unc. Best Est.  % Unc. BE/C Flux(E > 1.0 MeV) 3.11 E+08 14 2.72E+08 7 0.87 dpa/s 1.22E-12 14 1.09E-12 11 0.89 Appendix E

E-41 Capsule IDI Azimuthal Location35.1° Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycles 5-6 Measured Calculated Best Est. M/C M/BE Cu-63(n,a)Co-60 2.39E-1 9 2.66E-1 9 2.35E-19 0.90 1.02 Fe-54(n,p)Mn-54 1.79E-17 2.17E-17 1.87E-1 7 0.82 0.96 Ni-58(n,p)Co-58 2.78E-1 7 3.14E-17 2.76E-1 7 0.89 1.01 U-238(n,f)Cs-137 Cd 1.21 E-16 1.30E-1 6 1.15E-16 0.93 1.05 Np-237(n,f)Cs-137 Cd 2.21 E-15 2.38E-15 2.19E-15 0.93 1.01 Co-59(n,g)Co-60 6.45E-14 8.43E-14 6.49E-1 4 0.77 0.99 Co-59(n,g)CO-60 Cd 3.12E-14 3.58E-14 3.12E-14 0.87 1.00 Calculated  % Unc. Best Est.  % Unc. BE/C Flux(E > 1.0 MeV) 4.74E+08 14 4.23E+08 6 0.89 dpa/s 1.89E-12 14 1.73E-12 9 0.92 Capsule IDK Azimuthal Location42.0 0 Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycles 5-6 Measured Calculated Best Est. M/C M/BE Cu-63(n,a)Co-60 2.23E-1 9 2.67E-1 9 2.19E-19 0.84 1.02 Fe-54(n,p)Mn-54 1.65E-17 2.21 E-17 1.75E-17 0.75 0.94 Ni-58(n,p)Co-58 2.63E-17 3.22E-17 2.60E-17 0.82 1.01 U-238(n,f)Cs-137 Cd 1.22E-16 1.36E-16 1.1OE-16 0.90 1.11 Np-237(n,f)Cs-137 Cd 1.92E-15 2.48E-1 5 1.99E-15 0.77 0.96 Co-59(n,g)Co-60 5.44E-1 4 8.23E-14 5.49E-1 4 0.66 0.99 Co-59(n,g)CO-60 Cd 2.64E-14 3.29E-14 2.63E-14 0.80 1.00 Calculated  % Unc. Best Est.  % Unc. BE/C Flux(E > 1.0 MeV) 4.98E+08 14 4.05E+08 6 0.81 dpa/s 1.93E-12 14 1.60E-12 9 0.83 Appendix E

E-42 Capsule IDM Azimuthal LocationO.0° Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycles 7-10 Measured Calculated Best Est. M/C M/BE Cu-63(n,a)Co-60 1.46E-19 1.56E-1 9 1.44E-19 0.94 1.01 Fe-54(n,p)Mn-54 1.03E-17 1.1 3E-17 1.04E-17 0.91 0.99 Ni-58(n,p)Co-58 1.43E-17 1.62E-17 1.48E-17 0.88 0.97 U-238(n,f)Cs-1 37 Cd 6.29E-17 6.32E-1 7 5.98E-17 1.00 1.05 Np-237(n,f)Cs-137 Cd 1.24E-1 5 1.10E-15 1.16E-15 1.13 1.07 Co-59(n,g)Co-60 3.1 8E-14 4.53E-1 4 3.21 E-1 4 0.70 0.99 Co-59(n,g)CO-60 Cd 1.38E-14 1.69E-1 4 1.38E-14 0.82 1.00 Calculated  % Unc. Best Est.  % Unc. BE/C Flux(E > 1.0 MeV) 2.22E+08 14 2.14E+08 6 0.97 dpa/s 8.67E-1 3 14 8.65E-1 3 9 1.00 Capsule IDN Azimuthal Location 10.90 Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycles 7-10 Measured Calculated Best Est. MIC M/BE Cu-63(n,a)Co-60 1.70E-19 1.96E-1 9 1.67E-1 9 0.87 1.02 Fe-54(n,p)Mn-54 1.22E-17 1.49E-17 1.26E-17 0.82 0.97 Ni-58(n,p)Co-58 1.79E-17 2.13E-17 1.82E-17 0.84 0.98 U-238(n,f)Cs-1 37 Cd 7.87E-1 7 8.41 E-17 7.50E-17 0.94 1.05 Np-237(n,f)Cs-137 Cd 1.64E-1 5 1.47E-15 1.52E-15 1.12 1.08 Co-59(n,g)Co-60 3.89E-1 4 5.69E-1 4 3.93E-14 0.68 0.99 Co-59(n,g)CO-60 Cd 1.96E-1 4 2.39E-1 4 1.96E-14 0.82 1.00 Calculated  % Unc. Best Est.  % Unc. BEIC Flux(E > 1.0 MeV) 2.98E+08 14 2.73E+08 6 0.92 dpa/s 1.17E-12 14 1.14E-12 9 0.97 Appendix E

E43 Capsule IDO Azimuthal Location35.1° Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycles 7-10 Measured Calculated Best Est. M/C M/BE Cu-63(n,a)Co-60 2.25E-1 9 2.54E-19 2.22E-1 9 0.89 1.01 Fe-54(n,p)Mn-54 1.74E-1 7 2.07E-17 1.79E-1 7 0.84 0.97 Ni-58(n,p)Co-58 2.59E-1 7 3.OOE-17 2.63E-17 0.86 0.98 U-238(n,f)Cs-137 Cd 1.18E-16 1.24E-16 1.13E-16 0.95 1.04 Np-237(n,f)Cs-137 Cd 2.53E-15 2.27E-1 5 2.35E-1 5 1.11 1.08 Co-59(n,g)Co-60 6.OOE-1 4 8.11E-14 6.04E-1 4 0.74 0.99 Co-59(n,g)CO-60 Cd 2.85E-1 4 3.45E-14 2.85E-1 4 0.83 1.00 Calculated  % Unc. Best Est.  % Unc. BE/C Flux(E > 1.0 MeV) 4.52E+08 14 4.22E+08 6 0.93 dpa/s 1.80E-1 2 14 1.76E-12 9 0.98 Capsule IDQ Azimuthal Location42.0° Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycles 7-10 Measured Calculated Best Est. MIC M/BE Cu-63(n,a)Co-60 2.07E-1 9 2.52E-1 9 2.05 E-1 9 0.82 1.01 Fe-54(n,p)Mn-54 1.65E-17 2.08E-17 1.71 E-17 0.79 0.96 Ni-58(n,p)Co-58 2.53E-17 3.03E-1 7 2.54E-17 0.83 1.00 U-238(n,f)Cs-137 Cd 1.18E-16 1.28E-1 6 1.11E-16 0.92 1.06 Np-237(n,f)Cs-137 Cd 2.42E-1 5 2.34 E-1 5 2.29E-15 1.03 1.06 Co-59(n,g)Co-60 5.14E-14 7.87E-14 5.19E-14 0.65 0.99 Co-59(n,g)CO-60 Cd 2.40E-1 4 3.15E-14 2.40E-1 4 0.76 1.00 Calculated  % Unc. Best Est.  % Unc. BE/C Flux(E > 1.0 MeV) 4.68E+08 14 4.19E+08 6 0.89 dpa/s 1.82E-12 14 1.70E-12 9 0.93 Appendix E

E-44 The results of the dosimetry evaluations performed for the Diablo Canyon Unit I Ex-Vessel capsules withdrawn to date from locations opposite the top and bottom of the active are provided following. The data tabulations for each capsule evaluation include the following information:

I - The Measured, Calculated, and Best Estimate reaction rates for each sensor.

2- The Measurement to Calculation Ratio (M/C) and the Measurement to Best Estimate Ratio (M/BE) for each sensor.

3 - The Calculated and Best Estimate values of neutron flux (E > 1.0 MeV) and Iron atom displacement rate with associated uncertainties.

4 - The Best Estimate to Calculation Ratio (BE/C) for both neutron flux (E > 1.0 MeV) and Iron atom displacement rate.

The M/C and M/BE ratios for the individual sensors establish a comparison between measurement and calculation before and after the least squares evaluation. The reduction in these reaction rate ratios for the best estimate case is an indication of the improvement in the neutron spectrum and corresponding reduction in uncertainty brought about by the application of the least squares procedure. The comparisons of calculated and best estimate values of neutron flux (E > 1.0 MeV) and Iron atom displacement rate with associated uncertainties also provided an indication of the improved results obtained with the least squares procedure.

Appendix E

E-45 Capsule IDC Azimuthal Location45.0° Ex-Vessel Axial Location Core Top Irradiation PeriodCycle I Measured Calculated Best Est. M/C M/BE Cu-63(n,a)Co-60 1.04E-19 1.1 9E-19 1.07E-19 0.87 0.97 Fe-54(n,p)Mn-54 9.41 E-1 8 1.03E-17 1.01 E-17 0.91 0.93 Ni-58(n,p)Co-58 1.67E-17 1.50E-17 1.57E-1 7 1.11 1.06 U-238(n,f)Cs-137 Cd 8.49E-17 6.47E-17 6.99E-1 7 1.31 1.21 Np-237(n,f)Cs-1 37 Cd 1.10E-15 1.21 E-15 1.21 E-15 0.91 0.91 Co-59(n,g)Co-60 3.68E-14 4.09E-1 4 3.70E-14 0.90 0.99 Co-59(n,g)CO-60 Cd 1.77E-14 1.56E-14 1.76E-14 1.13 1.01 Calculated  % Unc. Best Est.  % Unc. BE/C Flux(E > 1.0 MeV) 2.40E+08 14 2.64E+08 6 1.10 dpals 9.36E-1 3 14 9.92E-13 9 1.06 Capsule IDA Azimuthal Location45.0° Ex-Vessel Axial LocationCore Bottom Irradiation PeriodCycle 1 Measured Calculated Best Est. M/C M/BE Cu-63(n,a)Co-60 1.38E-19 1.29E-19 1.41 E-19 1.07 0.98 Fe-54(n,p)Mn-54 1.31 E-17 1.11E-17 1.28E-17 1.18 1.02 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Cd 8.02E-17 7.04E-1 7 8.13E-17 1.14 0.99 Np-237(n,f)Cs-137 Cd 1.53E-15 1.32E-15 1.52E-15 1.16 1.01 Co-59(n,g)Co-60 4.31 E-1 4 4.41 E-14 4.35E-14 0.98 0.99 Co-59(n,g)CO-60 Cd 2.27E-1 4 1.69E-14 2.24E-1 4 1.34 1.01 Calculated  % Unc. Best Est.  % Unc. BE/C Flux(E > 1.0 MeV) 2.62E+08 14 3.03E+08 7 1.16 dpa/s 1.02E-12 14 1.16E-12 9 1.13 Appendix E

E-46 Capsule IDD Azimuthal Location42.0° Ex-Vessel Axial Location Core Top Irradiation PeriodCycle 2 Measured Calculated Best Est. M/C M/BE Cu-63(n,a)Co-60 1.13E-19 1.35E-1 9 1.11E-19 0.84 1.02 Fe-54(n,p)Mn-54 8.36E-1 8 1.15E-17 9.14E-18 0.73 0.91 Ni-58(n,p)Co-58 U-238(n,f)Cs-1 37 Cd 7.64 E-17 7.13E-17 6.14E-17 1.07 1.24 Np-237(n,f)Cs-137 Cd 1.12E-15 1.32E-15 1.16E-15 0.85 0.97 Co-59(n,g)Co-60 3.58E-1 4 4.17E-14 3.60E-1 4 0.86 0.99 Co-59(n,g)CO-60 Cd 1.79E-1 4 1.70E-14 1.78E-14 1.05 1.01 Calculated  % Unc. Best Est.  % Unc. BE/C Flux(E > 1.0 MeV) 2.63E+08 14 2.31 E+08 7 0.88 dpa/s 1.02E-12 14 9.37E-1 3 10 0.92 Capsule IDF Azimuthal Location42.0° Ex-Vessel Axial LocationCore Bottom Irradiation PeriodCycle 2 Measured Calculated Best Est. M/C M/BE Cu-63(n,a)Co-60 1.39E-1 9 1.36E-19 1.39E-19 1.02 1.00 Fe-54(n,p)Mn-54 1.1 8E-17 1.16E-17 1.19E-17 1.02 0.99 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Cd 7.67E-1 7 7.28E-1 7 7.50E-1 7 1.05 1.02 Np-237(n,f)Cs-137 Cd Co-59(n,g)Co-60 4.14E-14 4.28E-14 4.16E-14 0.97 1.00 Co-59(n,g)CO-60 Cd 2.OOE-14 1.75E-14 1.99E-14 1.14 1.01 Calculated  % Unc. Best Est.  % Unc. BE/C Flux(E > 1.0 MeV) 2.69E+08 14 2.78E+08 8 1.03 dpa/s 1.05E-1 2 14 1.09E-12 11 1.03 Appendix E

E-47 Capsule IDD Azimuthal Location42.0° Ex-Vessel Axial LocationCore Top Irradiation PeriodCycles 3-4 Measured Calculated Best Est. M/C M/BE Cu-63(n,a)Co-60 9.72E-20 1.17E-19 9.62E-20 0.83 1.01 Fe-54(n,p)Mn-54 7.58E-1 8 9.79E-18 8.07E-1 8 0.77 0.94 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Cd 6.1OE-17 6.05E-1 7 5.43E-17 1.01 1.12 Np-237(n,f)Cs-137 Cd 1.20E-1 5 1.12E-15 1.15E-15 1.07 1.04 Co-59(n,g)Co-60 3.22E-14 3.59E-14 3.23E-1 4 0.90 1.00 Co-59(n,g)CO-60 Cd 1.56E-14 1.46E-1 4 1.55E-14 1.07 1.01 Calculated  % Unc. Best Est. % Unc. BE/C Flux(E > 1.0 MeV) 2.23E+08 14 2.07E+08 7 0.93 dpa/s 8.69E-1 3 14 8.62E-1 3 10 0.99 Capsule IDF Azimuthal Location42.0° Ex-Vessel Axial LocationCore Bottom Irradiation PeriodCycles 3-4 Measured Calculated Best Est. M/C M/BE Cu-63(n,a)Co-60 9.98E-20 1.15E-19 1.01 E-19 0.87 0.99 Fe-54(n,p)Mn-54 8.74E-1 8 9.71 E-1 8 8.72E-1 8 0.90 1.00 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Cd 5.65E-1 7 6.05 E-1 7 5.51 E-17 0.93 1.03 Np-237(n,f)Cs-137 Cd 9.83E-16 1.13E-15 1.01 E-15 0.87 0.97 Co-59(n,g)Co-60 3.65E-14 3.63E-1 4 3.66E-14 1.01 1.00 Co-59(n,g)CO-60 Cd 1.74E-14 1.48E-14 1.72E-1 4 1.18 1.01 Calculated  % Unc. Best Est. % Unc. BE/C Flux(E > 1.0 MeV) 2.23E+08 14 2.04E+08 7 0.91 dpa/s 8.77E-13 14 8.11 E-13 9 0.92 Appendix E

E-48 Capsule IDJ Azimuthal Location42.0° Ex-Vessel Axial LocationCore Top Irradiation PeriodCycles 5-6 Measured Calculated Best Est. MIC M/BE Cu-63(n,a)Co-60 7.70E-20 9.04E-20 7.77E-20 0.85 0.99 Fe-54(n,p)Mn-54 6.26E-18 7.54E-1 8 6.80E-1 8 0.83 0.92 Ni-58(n,p)Co-58 1.10E-17 1.10E-17 1.05E-17 1.00 1.05 U-238(n,f)Cs-137 Cd 5.40E-17 4.65E-1 7 4.70E-17 1.16 1.15 Np-237(n,f)Cs-137 Cd 9.87E-16 8.60E-1 6 9.63E-1 6 1.15 1.02 Co-59(n,g)Co-60 2.60E-14 2.83E-1 4 2.61 E-1 4 0.92 1.00 Co-59(n,g)CO-60 Cd 1.27E-14 1.15E-14 1.26E-14 1.10 1.01 Calculated  % Unc. Best Est.  % Unc. BE/C Flux(E > 1.0 MeV) 1.71 E+08 14 1.80E+08 6 1.06 dpals 6.71 E-13 14 7.30E-1 3 9 1.09 Capsule IDL Azimuthal Location42.0° Ex-Vessel Axial LocationCore Bottom Irradiation PeriodCycles 5-6 Measured Calculated Best Est. M/C M/BE Cu-63(n,a)Co-60 6.77E-20 8.66E-20 6.91 E-20 0.78 0.98 Fe-54(n,p)Mn-54 5.68E-18 7.28E-18 5.95E-1 8 0.78 0.95 Ni-58(n,p)Co-58 9.62E-18 1.06E-17 9.09E-1 8 0.91 1.06 U-238(n,f)Cs-137 Cd 3.91 E-17 4.53E-17 3.88E-17 0.86 1.01 Np-237(n,f)Cs-137 Cd 6.99E-16 8.49E-16 7.27E-1 6 0.82 0.96 Co-59(n,g)Co-60 2.72E-14 2.84E-14 2.72E-14 0.96 1.00 Co-59(n,g)CO-60 Cd 1.23E-1 4 1.15E-14 1.22E-14 1.07 1.01 Calculated  % Unc. Best Est.  % Unc. BE/C Flux(E > 1.0 MeV) 1.67E+08 14 1.45E+08 6 0.87 dpals 6.64E-1 3 14 5.89E-1 3 9 0.89 Appendix E

E-49 Capsule IDP Azimuthal Location42.0° Ex-Vessel Axial LocationCore Top Irradiation PeriodCycles 7-10 Measured Calculated Best Est. M/C M/BE Cu-63(n,a)Co-60 7.25E-20 9.84E-20 7.53E-20 0.74 0.96 Fe-54(n,p)Mn-54 6.37E-18 8.14E-18 6.81 E-18 0.78 0.94 Ni-58(n,p)Co-58 1.17E-17 1.18E-17 1.07E-17 0.99 1.09 U-238(n,f)Cs-1 37 Cd 4.57E-17 4.98E-17 4.69E-1 7 0.92 0.97 Np-237(n,f)Cs-137 Cd 1.05E-1 5 9.12E-16 9.93E-16 1.15 1.06 Co-59(n,g)Co-60 2.27E-14 2.92E-1 4 2.29E-1 4 0.78 0.99 Co-59(n,g)CO-60 Cd 1.15E-14 1.19E-14 1.14E-14 0.97 1.01 Calculated  % Unc. Best Est. % Unc. BE/C Flux(E > 1.0 MeV) 1.83E+08 14 1.81 E+08 6 0.99 dpals 7.08E-13 14 7.28E-13 9 1.03 Capsule IDR Azimuthal Location42.0° Ex-Vessel Axial LocationCore Bottom Irradiation PeriodCycles 7-10 Measured Calculated Best Est. M/C M/BE Cu-63(n,a)Co-60 7.59E-20 9.48E-20 7.99E-20 0.80 0.95 Fe-54(n,p)Mn-54 7.39E-18 7.90E-18 7.30E-1 8 0.94 1.01 Ni-58(n,p)Co-58 1.1 6E-17 1.15E-17 1.1OE-17 1.01 1.05 U-238(n,f)Cs-137 Cd 4.05E-17 4.88E-17 4.69E-17 0.83 0.86 Np-237(n,f)Cs-1 37 Cd 9.42E-1 6 9.04E-1 6 9.20E-1 6 1.04 1.02 Co-59(n,g)Co-60 2.68E-14 2.92E-1 4 2.69E-1 4 0.92 1.00 Co-59(n,g)CO-60 Cd 1.30E-14 1.19E-14 1.29E-14 1.09 1.01 Calculated  % Unc. Best Est. % Unc. BE/C Flux(E > 1.0 MeV) 1.80E+08 14 1.76E+08 6 0.98 dpals 7.04E-1 3 14 6.95E-13 9 0.99 Appendix E

E-50 Appendix E References E-l. Regulatory Guide RG-1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence," U. S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, March 2001.

E-2. RSAC-PGE-807, "Analysis of Neutron Dosimetry form Diablo Canyon Unit I Surveillance Capsule Y," Anderson, S. L. July 26, 1993.

E-3. E. B. Norris, "Reactor Vessel Material Surveillance Program, Capsule S - Turkey Point Unit No. 3, Capsule S - Turkey Point Unit No. 4," Final Report SwRI Project No. 02-5131 and SwRI Project No. 02-5380, Southwest Research Institute, May 1979.

E-4. P. K. Nair and E. B. Norris, "Reactor Vessel Material Surveillance Program for Turkey Point Unit No. 3: Analysis of Capsule V," Final Report SwRI Project No. 06-8575, Southwest Research Institute, August 1986.

E-5. WCAP-14044, Revision 0, "Westinghouse Surveillance Capsule Neutron Fluence Reevaluation,"

April 1994.

E-6. A. Schmittroth, FERRETDataAnalysis Core, HEDL-TME 7940, Hanford Engineering Development Laboratory, Richland, WA, September 1979.

E-7. RSIC Data Library Collection DLC-178, "SNLRML Recommended Dosimetry Cross-Section Compendium", July 1994.

E-8. WCAP-15780. "Fast Neutron Fluence and Neutron Dosimetry Evaluations for the Diablo Canyon Unit I Reactor Pressure Vessel." December 2001.

Appendix E