ML18004A007

From kanterella
Revision as of 06:09, 6 July 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
2018/01/02 Seabrook La -
ML18004A007
Person / Time
Site: Seabrook NextEra Energy icon.png
Issue date: 01/02/2018
From:
NRC
To:
Division of Operating Reactor Licensing
References
17-953-02-LA-BD01
Download: ML18004A007 (14)


Text

1 SeabrookLANPEm Resource From:SeabrookLAHearingFile Resource Sent: Tuesday, January 02, 2018 2:42 PM To: SeabrookLANPEm Resource Attachments:

170444-L-001 Rev. 0.pdf

Hearing Identifier: Seabrook_LA_NonPublic Email Number: 1341 Mail Envelope Properties (8d5e0168125e4699b25984c1e541eb8d)

Subject:

Sent Date: 1/2/2018 2:41:42 PM Received Date: 1/2/2018 2:41:52 PM From: SeabrookLAHearingFile Resource Created By: SeabrookLAHearingFile.Resource@nrc.gov Recipients: "SeabrookLANPEm Resource" <SeabrookLANPEm.Resource@nrc.gov>

Tracking Status: None

Post Office: HQPWMSMRS01.nrc.gov Files Size Date & Time MESSAGE 3 1/2/2018 2:41:52 PM 170444-L-001 Rev. 0.pdf 619783 Options Priority: Standard Return Notification: No Reply Requested: No Sensitivity: Normal Expiration Date: Recipients Received:

6 November2017Mr. EdwardCarleyEngineering Supervisor - License RenewalNextEra Energy Seabrook, LLC.

P.O. Box 300, Lafayette RoadSeabrook, NH 03874Project170444 - License Amendment Request & NRC Review Support, NextEra Energy Seabrook Station,Seabrook,NHReference - Evaluation of Containment Enclosure VentilationArea (CEVA), Calculation160268-CA-05(FP101122),22 March 2017 Document Number: 170444-L-001

DearMr. Carley:

The structural evaluation of the Containment Enclosure Ventilation Area (CEVA), referenced above, showed that its north wall between EL +3 and +19 ft was bowed outward with a maximum out-of-plumbness of 1.25 in., measured during SGH field observation in February 2017. The referenced calculation showed that the wall can move by anadditional 25% (reaching to 1.5 in.

at the point of maximum bowing) before conducting a more robust analysis or repairing the wall becomes necessary. The bowing limit of 1.5 in. was calculatedconservatively in the referenced calculation by neglecting the compression reinforcement in calculating themoment-curvaturebehavior ofthe wall. The limit of bowing is recalculated as shown in Attachment A consideringthe compression reinforcement in the moment-curvature calculation, and including the effects of upward vertical movement of CEVA.The upward movement of CEVA can imposevertical tension inthe north wall of CEVA. Accordingly, moment-curvature relationships are calculated at different levels of tension.At each level of axial force, a limiting curvature is determined to avoid unacceptable behavior. As explained in Attachment A, the curvature value of 0.003 1/in. corresponds either to the buckling of compression reinforcement (for cases with low level of axial tension) or rupture of tension reinforcement (for cases with high level of axial tension). Conservatively, 90% of this curvature value (0.0027 1/in.) is selected for computing the maximum bowing that the wall can resist. The computed moment-curvature relationships are assigned to afinite element model of the wall, and nonlinear analyses are performed to determinethe lateral displacement at which the curvature of the wall at the point of maximum bowing reaches the limiting curvature. Figure A2 in AttachmentA shows that 2 in. of lateral wall deformation induces curvature of0.00271/in.in the wall with alow level of axial force, while the same displacement induces curvature of 0.0023 1/in.

in the wall with ahigh level of axial tension.Therefore, the wall can resist alateral bowing of 2in.

Mr. Edward Carley - Project170444 6 November2017Document No. 170444-L-001Revision 0 before buckling or rupture of the vertical reinforcement will occur(with 10% margin), andit is recommended that the wall beretrofittedprior to itexperiencing 2 in. of bowing. Thesite visit report (170444-SVR-01-R0, FP101192-00) for the recent measurements indicates that the wall moved outwardsince the previous measurements;bulging has increased to 1-7/16 in. Additionally, at alocalized area, hammer sounding indicated portions of the concrete coverpotentiallysusceptible to separation, especially atareas with larger horizontal cracks. Therefore, sensitive equipment or processes shouldbe protected againstpossible fallingpieces of concrete cover fromthis wall before it is retrofitted.Sincerely yours,Said BolourchiMichael Mudlock, P.E.Senior PrincipalSenior Project Manager NH License No. 14808I:\BOS\Projects\2017\170444.00-LARS\Workspace\CEVA North Wall\170444-L-001 Rev. 0.docx PROJECTNO:170444DATE:Nov2017CLIENT:NextEraEnergySeabrookBY:MR.M.Gargari

SUBJECT:

EvaluationofAdditionalDisplacementfortheNorthWallofCEVAVERIFIER:I.BaigATTACHMENT AMOMENTCURVATURERELATIONFORTHECEVANORTHWALLA1.REVISIONHISTORYRevision0:Initialdocument.A2.OBJECTIVEOFCALCULATIONTheobjectiveofthiscalculationistocomputemoment-curvaturediagramsforthenorthwallo fContainmentEnclosureVentilationArea(CEVA)structuresubjectedtodifferenttensileforce.A3.RESULTSANDCONCLUSIONSFigureA2presentsmoment-curvaturediagramforthewallsectionsubjectedtodifferenttensileforce.Ascanbeseenfromthefigure,byincreasingthemagnitudeoftensileforce,thefailuremodechangesfrom compressiverebarbucklingtotensilerebarrupture.Forallcases,thepointofseveredamageinitiation approximatelycorrespondstocurvaturevalueof0.003(1/in.).Accordingly,thispointisselectedas alimitingcurvatureandthewallisallowedtodeformuptothiscurvature.FigureA3providesacomparisonbetweentwocases,onewithaccountingfortheeffectofcompressiverebarsandtheotheronewithoutconsideringthecompressiverebars.Ascanbeseenfromthefigure,includingtheresistanceofferedbycompressivereinforcementdoesnotaffecttheultimatecapacit ynoticeably,however,itincreasestheductilityofasection.A4.DESIGNDATA/CRITERIASeeSection4ofthecalculationmainbody(160268-CA-05Rev.0).A5.ASSUMPTIONSA5.1JustifiedassumptionsTherearenojustifiedassumptions.A5.2UnverifiedassumptionsTherearenounverifiedassumptions.AttachmentA-A-1-Revision0 A6.METHODOLOGYTocalculatethemoment-curvaturediagrams,sectionalanalysisbasedonfibersectionmethodfo rintegratingoverthecrosssectionisused.Inthismethod,thecrosssectionisdiscretizedintofibers(orlayerssubjectedtounidirectionalbending),andanappropriatematerialmodelisassignedtoeachfiber.FigureA1demonstratesatypicalfibersectiondiscretization.Inthisstudy,eachsectionisdiscretizedinto20fibers/layers.TheconcretematerialisrepresentedbyKentandPark[A5]modelincompressionand Steven'sexponentialsofteningmodelintension[A3].Reinforcingsteelbarsaremodeledusingelastic perfectlyplasticmaterialwithstraincutoffof0.007intensionandaccountingforinelasticbucklingmodelo fKashanietal.[A4]incompression.Moment-curvaturediagramsarethencalculatedforaxialtensionof0,10,30and60kips.Eachpointisderivedbyselectinganaxialforce,andthenchangingcurvaturevalueandcalculatingthemoment.Figure A2presentsthecomputedmoment-curvaturediagrams.

Anadditionalstudyisconductedtoshowtheeffectofincludingorexcludingcompressivereinforcement.Thestudyshowsaccountingfortheeffectofcompressiverebarsincreasestheductilityofamemberas presentedinFigureA3;therefore,themembercanaccommodatemoredisplacement.A7.REFERENCES[A1]SimpsonGumpertz&HegerInc.,EvaluationofContainmentEnclosureVentilationArea,160268-CD-05Rev.1,Waltham,MA,Mar.2017.[A2]UnitedEngineers&ConstructorsInc.,SeabrookStationStructuralDesignDrawings.

[A3]YuanLu,andMariosPanagiotou."Three-dimensionalcyclicbeam-trussmodelfornonplana rreinforcedconcretewalls."JournalofStructuralEngineering,2013,140(3):04013071.[A4]MohammadM.Kashani,LauraN.Lowes,AdamJ.Crewe,NicholasA.Alexander,Phenomenologicalhystereticmodelforcorrodedreinforcingbarsincludinginelasticbucklingand low-cyclefatiguedegradation,ComputerandStructures,156(1),58-71,2015.[A5]Dudley.C.Kent,andRobertPark,Flexuralmemberswithconfinedconcrete,ASCEJournalo fStructuralDivision,97(ST7),1969-1990,1971.AttachmentA-A-2-Revision0 A8.COMPUTATIONGeometryRebardiameter d b1.128inReinforcementratio21in 212in24in6.94410 3ConcreteMaterialModelCompressivestrengthofconcrete f c 3ksiKent&ParkModelStrainatPeakcompressivestrengthco0.002Strainat50%compressivestrength50u30.002 f c psif c psi 10004.510 3Modelparameter Z0.550uco200Residualcompressivestrength f c.res f c0.02575psiSteven'sModelYoung'smodulusofconcrete E c3120ksiTensilestrengthofconcrete f t 5f c psi273.861psiStrainatcrackingcr f t E c8.77810 5ModelparameterthatcontrolsresidualM75mmd b0.018Modelparameterthatcontrolssofteningslopet 540 M4.00510 3MATconc()minf c.res f c 1Zcocoif f c 2coco2co 0if E c0crif f t 1M()etcrMcr ifConstitutivemodelforconcreteAttachmentA-A-3-Revision0 0.01510 3 0 420StrainStress(ksi)MATconccksicSteelMaterialModelYieldstrengthofsteel f y60ksiYoung'smodulusofsteel E s29000ksiYieldstrainy f y E s2.06910 3Rupturestrainsr0.07AccountforbucklingBuckling1Put0toignore,put1toconsiderKashaniModel(buckling)Unbracedlength/DiameterLD15Slendernessratiop f y100MPa LD30.509Modelparameters14.572p74.4365.0572318.4e 0.071p36.495star3.75 f y LD15ksiAttachmentA-A-4-Revision0 ConstitutivemodelforsteelMATsteel()f yBuckling0=ifstar f ystare12yyotherwiseyif f yysrif 0sr if E sotherwise0.050 0.05 500 50StrainStress(ksi)MATsteelsksisConcreteFibersWidthoffibersb12inRef.2,2ftthickwallTotalthicknessorheighth24inNumberoffibersConcNum 20HeightoffibersConc H hConcNum1.2inConcretefibercoordinatesConc y ans i h 2Conc H 2i1()Conc Hi1ConcNumfor ansConcretefiberstrainConcoans ioConc y ii1ConcNumfor ansAttachmentA-A-5-Revision0 ConcretefiberstressConcoans iMATconcConcoii1ConcNumfor ansConcretefiberforceConc Foans iConcoibConc Hi1ConcNumfor ansReinforcement/SteelfibersDepthtoreinforcementd20.5inRef.2,2ftthickwallAreaoftensilereinforcement(#9@12in.)

A s1in 2Numberofreinforcementinrow,e.g.equalto2fortensileandcompressiveSteelNum 2DepthtoreinforcementfiberSteel y 1 d h 28.5inSteel y 2 d h 28.5inAreaofreinforcementfiberSteel As 1 A s1in 2Steel As 2 A s1in 2SteelfiberstrainSteeloans ioSteel y ii1SteelNumfor ansSteelfiberstressSteeloans iMATsteelSteeloii1SteelNumfor ansSteelfiberforceSteel Foans iSteeloiSteel As ii1SteelNumfor ansAttachmentA-A-6-Revision0 AxialEquilibrium Forceoans10ans1ans1Conc Foii1ConcNumforans20ans2ans2Steel Foii1SteelNumforansans1ans2MomentEquilibriumMomentoans10ans1ans11Conc FoiConc y ii1ConcNumforans20ans2ans21Steel FoiSteel y ii1SteelNumforansans1ans2SolutionKnownparametersAxialforceP60kipIterationCurvature0.003 1 inSolveforstrainatcentroidAxialstrainatcentroid(initialguess)x o0.03RequiresiterationAxialforceequilibrium fx()Forcex()Pcentrootfx ox o0.027Sectionalforces Forcecent60kipMomentcent48.079kipftAttachmentA-A-7-Revision0 StressandstraininconcreteandsteelSteelfiberstressandstrainRebarSteelcent0.0521.26610 3RebarSteelcent6036.723ksiSteel Fcent6036.723kipConcrete yConc yConcretefiberstressandstrainConcreteConccentConcreteConccentMaximumcompressivestraininconcretemax.compRebar2Rebar1Steel y 2Steel y 1h 2Steel y 1Rebar19.23410 3AttachmentA-A-8-Revision0 A9.TABLESTherearenotables.A10.FIGURESFigureA1:SchematicrepresentationoffibersectionmethodFigureA2:Moment-curvaturediagramsfordifferentaxialforceAttachmentA-A-9-Revision0 FigureA3:Moment-curvaturediagramconsideringtheeffectofincludingorexcludingcompressiverebarsAttachmentA-A-10-Revision0