ML13323A552

From kanterella
Revision as of 10:06, 5 April 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search

Attachment 3 to GNRO-2013/00088, JC-Q1B21-N681-1 Rev. 1 Reactor Pressure Vessel Level One Setpoint Calculation
ML13323A552
Person / Time
Site: Grand Gulf Entergy icon.png
Issue date: 10/14/2013
From:
Entergy Operations
To:
Office of Nuclear Reactor Regulation
References
GNRO-2013/00088, TAC ME9764 JC-Q1B21-N681-1, Rev 1
Download: ML13323A552 (50)


Text

Attachment 3 to GNRO-2013/00088JC-QIB21-N681-1 Rev. I "Reactor Pressure Vessel Level One Setpoint Calculation" El ANO-1 [I ANO-2 0 GGNS [ IP-2 [I IP-3 0 Pu'[Q JAF EJPNPS C3 RBS Q] W3D NP-GGNS-3 NP-RBS-3CALCULATION ) EC # 39554 (2)Page I of 49COVER PAGE(3) Design Basis Caic. Z YES E" NO (4) [ CALCULATION El EC Markups Calculation No: JC-QIB21-N681-1 .61 Revision: 0017 Title: Level 1 Setpoint Calculation ) Editorial[:_ YES IZNO) System(s): B21 (10) Review Org (Department): NPE I&C(11) Safty Class: (12) Component/Equipment/Structure Type/Number:[ Safety / Quality Related IB21NO91A, B, E, F 1B21NO81A, B, C, D-Augmented Quality ProgramNA entSafedQaity P m 1B21N691A, B, E, F 1B21N681A, B, C, DLi Non-Safety Related___________ ___________(13) Document Type: J05.02(4) Keywords (DescriptionfropicalCodes): N/AREVIEWS(ts Nine/Signature/Date ('6) Name/Signature/Date i Name/Signature/DateRobin Smith 1W 4 -Mary Cgffaro /?fJdA o _______Responsible Engineer Z Design Verifier Supervisor/Approval0l Reviewer__ Comments Attached E] Comments Attached CALCULATION SHEET-ENTERGYSHEET 2 OF 49CALCULATION NO. JC-01B21-N681-1 REV. 1zRevisiou Riecord: of R e5vision0 Initial IssueEC-39554. Revised to incorporate GEXI2000-00134, GIN 1996-02302, CR-GGN-2007-04245 and the transmitter drift calculation results from JC-Q1 111-09017.1 Revised density error calculation. Incorporated tap location uncertainty, Rev 7 toE100.0 and field compensation for static pressure. Revised reactor trip conditiondiscussions. Added TSTF-493 Section 8.0.

A CALCULATION SHEET~--ENTERGYSHEET 3 OF 49CALCULATION NO. JC-0IB21-N681-1 REV. 1CALCULATION CALCULATION NO: JC-Q1B21-N681-1 Rev 1REFERENCESHEETI. EC MARKUP's INCORPORATED: NoneII. RELATIONSHIPS: Sht Rev Input Output Impact Tracking No.Doc Doc Y/N1. JS09 0 001 0] E N2. J1281L 003A 000 10 E N3. J1281L 003B 000 0 El N4. J1281L 003C 000 0l E N5. J1281L 003D 000 l El N6. J1281L 024A 001 E0 0 N7. J1281L 024B 001 0 El N8. J1281L 024E 000 E0 E N9. J1281L 024F 000 10 E N10. M1077B 0 034 0 El N11. 184C4571 001 009 0 El N12. GEXI2000-00134 -- 0 0 El N13. 169C8392 002 008 0 El N14. NEDC31336 -- 0 0 El N15. CR-GGN-2007-04245 0 0 El N16. PERR91-6068 1 0 El N17. GIN96-02302 0 0 El N18. GEXO2012-00384 -- 000 0 El N19. J1601A 0 003 0 El N20. 06-IC-1B21-R-2005 -- 105 E0 0 Y CR-GGN-2012-09971 CA#1221. 06-IC-IB21-R-0008 107 0 El Y CR-GGN-2012-09971 CA#1222.06-IC-1B21-Q-2004 104 0 El Y CR-GGN-2012-TCN002 09971 CA#1223. 06-IC-1B21-Q-1007 -- 105 0 El Y CR-GGN-2012-09971 CA#1224. E100.0 0 007 0 El N25.460000047 0 300 0 El N26. 460001972 0 300 0 El N27. JI601B 0 003 0 El N28. 164C5150 001 018 0 El N a CALCULATION SHEET-ENTERGYSHEET 4 OF 49CALCULATION NO. JC-01B21-N681-1 REV. 129. 368X543BA 0 044 0 0 N30. 368X544BA 0 025 0 0 N31. 368X558BA 0 024 0 0 N32. J1507A 0 001 0 0 N33. J1507B 0 001 0 0 N34. J1507C 0 001 0 0 N35. J1507D 0 001 0 0 N36. J0400 0 018 0 0 N37. J0401 0 014 0 0 N38. A0552 0 018 0 0 N39. A0553 0 015 0 0 N40. A0554 0 011 .10 0 N41. 368X559BA 0 039 0 0 N42. 865E516 002 008 0] 0 N43. 865E517 002 015 0 0 N44. 865E520 002 008 0 0 N45. 865E521 002 007 0 0l N46. 865E522 002 006 0 0f N47. 865E523 002 006 0 0 N48. 460000944 0 300 0] E0 N49.22A3856AA 0 012 0 0 N50. JC-Ql1111-09017 0 000 0 0 N51. GGNS-NE-09-00018 -- 002 0 0 N52. EC-0000044848 000 000 0 0 N53. EIRR85-10233 -- 000 0 0 N54. GGNS-NE-09-00001 -- 001 0 0 N55. GGNS-SA-09-00001 -- 000 0 0 N56. GEXO2009-00106 -- 000 0 0 NIII. CROSS

REFERENCES:

1. Asset Suite EDB2. GGNS UFSAR, Figure 15.2-103. GGNS UFSAR, Figure 6.2.74. GGNS UFSAR, Figure 6.2.-145. GGNS Technical Specifications, Table 3.3.5.1-16. GGNS Technical Specifications, Table 3.3.6.1-17. GGNS Technical Specifications, Table 3.3.6.3-18. GGNS Technical Specifications, Table 3.3.6.4-19. GGNS Technical Specifications, Table TR3.3.5. 1-110. GGNS Technical Specifications, Table TR3.3.6.1-1 a CALCULATION SHEET-ENTERGYSHEET 5 OF 49CALCULATION NO. JC-Q1B21-N681-1 REV. I11. GGNS Technical Specifications, Table TR3.3.6.3-112. GGNS Technical Specifications, Table TR3.3.6.4-113. GGNS Technical Specifications, Figure B3.3.1.1-114. ASME Steam Tables, 6'h Edition15. GGNS Technical Specification Section 3.3.6.5.3IV. SOFTWARE USED:Title: N/A Version/Release: Disk/CD No.V. DISK/CDS INCLUDED:Title: Version/Release Disk/CD No.VI. OTHER CHANGES:Related references no longer used:M5.8.003, ES 19, C196.0, MS02, JS08, M1020, 762E543, J0187PD, 204B7660, 22A4622,M1077A, J1247 Shts 1,2,5,8, El 160 Sh 57, El 173 Sh 26, El 181 Sh 64, E1182 Sh 24, J1271 Sh 44,J1279 Sh 1,2, J1281 Shts 10,1 1A, 1B,13,C,1 1D,14,18,19,20,21,22,23,39,40, (all previouslyreferenced FSK drawings).

CALCULATION SHEETENTERGYSHEET 6 OF 49CALCULATION NO. JC-01B21-N681-1 REV. 1TABLE OF CONTENTSCOVER SHEETRECORD OF REVISIONCALCULATION REFERENCE SHEETTABLE OF CONTENTSSHEET1236SECTION1.02.03.04.05.0PURPOSEDESIGN REQUIREMENTSREFERENCESGIVENASSUMPTIONS7781115202231336.0 METHODOLOGY7.0 CALCULATION8.0 TSTF CALCULATIONS

9.0 CONCLUSION

APPENDICESN/AATTACHMENTS1 Design Verification Form2 Owner's Review Comments(5 sheets)(11 sheets)

  • h CALCULATION SHEET-i-O ENTERGYSHEET 7 OF 49CALCULATION NO. JC-01B21-N681-1 REV. 11.0 PURPOSEThe purpose of this calculation is to determine the allowable value and the nominal tripsetpoint for all Reactor Vessel Level 1 safety-related, Technical Specification trip loops.The values generated by this calculation are in accordance with JS09 (Ref. 3.1.1) andNEDC31336 (Ref 3.1.14).2.0 DESIGN REQUIREMENTSThere are eight loops that provide Level 1 trip functions. All eight loops are wide rangeloops with a range from -160 to +60 inches (Refs. 3.1.19, 3.1.27). The level I reactorwater level loops perform the following trips (Refs. 3.2.6-3.2.9):1) LPCS/LPCI Initiation2) ADS Initiation3) MSIV Isolation4) Primary Containment Isolation5) Containment Spray Actuation6) Suppression Pool Makeup ActuationThe bounding DBE for this calculation will be a DBA Large Break, Intermediate orSmall Break LOCA. Elevated drywell temperatures are considered (Assumption 5.21).These instruments are classified as QF I (Ref. 3.2.1). Therefore, they are required tooperate after seismic conditions. Per Reference 3.1.1, seismic effects are not required tobe considered for setpoint loops because the reactor will be shutdown following a seismicevent. Therefore seismic effects will not be considered for the subject loops.The analytical limit for the level 1 trip is -154.7 inches (Ref. 3.1.40). The TechnicalSpecification Allowable Value is > -152.5 inches (Refs. 3.2.6-3.2.9) and the TechnicalSpecification Trip Setpoint is > -150.3 inches (Refs. 3.2.10-3.2.13).Reactor Vessel Level 1 Setpoint should be high enough to allow time for the low pressurecore spray injection systems to activate and provide adequate core cooling in the event ofa large break LOCA, but low enough that the decrease in level resulting from a reactorscram or other operational transients will not cause an unnecessary initiation. For ADS, ifHPCS & RCIC cannot maintain water level and other necessary permissives are present,the Level 1 initiation signal ensures that ADS can depressurize the reactor in time toallow LPCI & LPCS to limit fuel cladding temperature.

A CALCULATION SHEETENTERGYSHEET 8 OF 49CALCULATION NO. JC-Q1B21-N681-1 REV. 13.0 REFERENCES3.1 Relationships3.1.1 Standard No. GGNS-JS-09, Methodology for the Generation of InstrumentLoop Uncertainty & Setpoint Calculations3.1.2 J1281L-003A, Loop Diagram3.1.3 J1281L-003B, Loop Diagram3.1.4 J1281L-003C, Loop Diagram3.1.5 J1281L-003D, Loop Diagram3.1.6 J1281L-024A, Loop Diagram3.1.7 J1281L-024B, Loop Diagram3.1.8 J1281L-024E, Loop Diagram3.1.9 J 1281L-024F, Loop Diagram3.1.10 M1077B, P&ID3.1.11 184C4571, Sh 1, Power Supply PPD3.1.12 GEXI2000-00134, Statistical Variation Associated With PublishedPerformance Variable3.1.13 169C8392, Sh. 2, PPD Rosemount 1152 Transmitters3.1.14 NEDC-31336P-A, Class 3, September 1996, General Electric InstrumentSetpoint Methodology3.1.15 CR-GGN-2007-042453.1.16 PERR91-60683.1.17 GIN96-023023.1.18 Not Used3.1.19 J1601A3.1.20 06-IC- I B2 1 -R-2005, N08 1 A-D Loop Calibration Instruction3.1.21 06-IC- I B2 I -R-0008, N09 1 A,B,E.F Loop Calibration Instruction3.1.22 06-IC-i B21-Q-2004, N681A-D Loop Functional Test Instruction3.1.23 06-IC- I B2 1-Q- 1007, N69 1 A,B,E,F Loop Functional Test Instruction3.1.24 Standard GGNS-E-100.0, "Environmental Parameters for GGNS"3.1.25 Vendor Manual 460000047, Rosemount Instruction Manual 4247-1, dated7/76, Trip/Indicator3.1.26 Vendor Manual 460001972, Rosemount 1153 Transmitters3.1.27 J1601B fCALCULATION SHEET__~ ENTERGYSHEET 9 OF 49CALCULATION NO. JC-01B21-N681-1 REV. 13.1.28 164C5150, Sh. 1, PPD Rosemount Trip Units3.1.29 368X543BA, EDL P0043.1.30 368X544BA, EDL P0053.1.31 368X558BA, EDL P0263.1.32 368X559BA, EDL P0273.1.33 865E516-002, EDL 1H13-P6183.1.34 865E517-002, EDL 1H13-P6293.1.35 865E520-002, EDL 1H13-P6913.1.36 865E521-002, EDL 1H13-P6923.1.37 865E522-002, EDL IH13-P6933.1.38 865E523-002, EDL 1H13-P6943.1.39 Vendor Manual 460000944, Rosemount 1152 Transmitters3.1.40 GE Design Specification Data Sheet 22A3856AA3.1.41 JC-Q 1111-09017, Drift Calculation for Rosemount Range Codes 4-7Differential Pressure Transmitters3.1.42 J 1507A, Instrument Location (Panel 1 H22-P004)3.1.43 J1507B, Instrument Location (Panel 1H22-P026)3.1.44 J1507C, Instrument Location (Panel 1H22-P005)3.1.45 J 1 507D, Instrument Location (Panel 1 H22-P027)3.1.46 J0400, Panel Location ( 1H 13-P601, P618, P692, P694)3.1.47 J0401, Panel Location (1H13-P691, P6938, P629)3.1.48 A0552, Floor Plan3.1.49 A0553, Floor Plan w/Control Room3.1.50 A0554, Floor Plan w/UCS Room Nos.3.1.51 Not Used3.1.52 GGNS-NE-09-000183.1.53 GEXO2012-00384, Small Break LOCA Timing For Low Pressure ECCSPermissive3.1.54 EC 44848-000, Approval Of Short Term Containment Analysis For SmallBreak LOCA (GE Report 0000-0159-5977), Issuance Of Calculation ToDetermine Sensing Line Temperature Of Reactor Water LevelTransmitters3.1.55 EIRR85-10233 ahETEG CALCULATION SHEET---ENTERGYSHEET 10 OF 49CALCULATION NO. JC-O 1 B21-N681-1 REV. 13.1.56 GGNS-NE-09-0000 1, GGNS EPU -Heat Balance3.1.57 GGNS-SA-09-000013.1.58 GEXO2009-001063.2 Cross References3.2.1 Asset Suite EDB3.2.2 GGNS UFSAR Figure 15.2-103.2.3 GGNS UFSAR, Figure 6.2.73.2.4 Not Used3.2.5 GGNS UFSAR Figure 6.2-143.2.6 GGNS Technical Specifications, Table 3.3.5.1-13.2.7 GGNS Technical Specifications, Table 3.3.6.1-13.2.8 GGNS Technical Specifications, Table 3.3.6.3-13.2.9 GGNS Technical Specifications, Table 3.3.6.4-13.2.10 GGNS Technical Specifications, Table TR3.3.5.1-13.2.11 GGNS Technical Specifications, Table TR3.3.6.1-13.2.12 GGNS Technical Specifications, Table TR3.3.6.3-13.2.13 GGNS Technical Specifications, Table TR3.3.6.4-13.2.14 GGNS Technical Specification Section 3.3.6.5.33.2.15 Not Used3.2.16 GGNS Technical Specifications, Figure B3.3.1.1-13.2.17 Not Used3.2.18 ASME Steam Tables, 6th Edition.

(~) CALCULATION SHEET-ENTERGYSHEET 11 OF 49CALCULATION NO. JC-Q1B21-N681-1 REV. 14.0 GIVEN4.1 Instrument Loop Block DiagramTransmitterI B21-LT-N091A,B,E,F1B21-LT-NO81A,B,C,DTrip Unit1B21-LIS-N691A,B,E,F1B21-LIS-N681A,B,C,DPower1 E21 K702IE12K7041B21K613A,B,C,DP&ID LoopDiagram3.1.10 3.1.2-3.1.94.2 Transmitter EnvironmentDescriptionTag NumberData1 B21 -LT-N091A,B,E,F1 B21-LT-N081A,B,C,D1H22-P004, P005, P026, P0271A311, 1A313ReferenceInstrument Location:PanelRoom3.1.2-3.1.93.1.42-45, 48I Environmental Conditions (worst case):Normal:TemperaturePressureRadiation (Gamma)HumidityDBE or Accident:TemperatureRadiationSeismic Conditions:Surveillance Intervals:Zone N-068, N-06960-95°F-I to -0.1 inwc6.3E3 rads (40 yr TID)0.026 R/hr gamma20-90% RHZone A-0161010FN/A3.1.243.1.243.1.243.1.243.1.24Assumption 5.21Assumption 5.21N/ASection 2.030 monthsAssumption 5.9 CALCULATION SHEETENTERGYSHEET 12 OF 49CALCULATION NO. JC-01B21-N681-1 REV. 14.3 Trip Unit EnvironmentDescriptionTag NumberInstrument Location:PanelRoomEnvironmental Conditions:Normal:TemperaturePressureRadiation (Gamma)HumidityDBE or Accident:Surveillance IntervalsData1 B21 -LIS-N691A,B,E,F1 B21 -LIS-N681A,B,C,DReference1H 13-P618,629,691,692,693,694 3.1.2-3.1.90C504/703 3.1.46, 47, 49, 50Zone N-02869-90°F0.1 to 1.0 inwc1.8E2 rads (40 yr TID)0.5 millirads/hr dose rate20-50% RHSame as Normal3.1.243.1.243.1.243.1.243.1.243.1.24115 daysAssumption 5.94.4 Transmitter Vendor Data, Rosemount 1153DD5PC/1153DB5RCDescriptionTag NumberManufacturerData1B21-LT-N091A,B,E,F1B21-LT-N081A,CReferenceRosemount3.1.29, 3.1.30, 3.1.32Model1153DD5PC (N091A,B,E,F)1153DB5RC (N081A,C)750 inwc-160 to +60 inches level3.1.29, 3.1.323.1.29, 3.1.303.1.263.1.20, 3.1.21URLSpanRange-227.34 to -71.0 inwc-227.74 to -71.39 inwc-227.34 to -71.0 inwc-227.74 to -71.39 inwc-227.34 to -70.99 inwc-227.29 to -70.94 inwcSpan156.34 inwc156.35 inwc156.34 inwc156.35 inwc156.35 inwc156.35 inwcTransmitter1B21-LT-NO91A1B21-LT-NO91BI B21-LT-N091E1B21-LT-NO91FIB21-LT-NO81A1B21-LT-NO81CAccuracy:+/- 0.25% span (3ay)Drift:+/- 1.218% span for 30 monthswith -0.0443% span bias3.1.12, 3.1.263.1.41 ACALCULATION SHEET___- ENTERGYSHEET 13 OF 49CALCULATION NO. JC-Q1B21-N681-1 REV. IPower Supply:Temperature:Humidity:Radiation:Static Press (Zero):Static Press (Correction):Static Press (Span):Seismic:Overpressure:Output Range4.5 Transmitter Vendor Data,DescriptionTag NumberManufacturerModelURLSpanRange-227.74 to -71.39 inwc-228.907 to -72.552 inwcAccuracy:Drift:Power Supply:Temperature:<0.005% span per volt (3a) 3.1.12, 3.1.26+/- (0.75% URL + 0.5% span)/1000F (3a) 3.1.263.1.12Sealed unit -no effects 3.1.26N/A Assumptions 5.6, 5.21+/- 0.2% URL / 1000 psi (3a) 3.1.12,3.1.26+/- 0.5% Reading / 1000 psi (3y) 3.1.12, 3.1.26* 0.75% Reading / 1000 psi (3a) 3.1.12, 3.1.26+/- 0.5% URL for 7 g ZPA 3.1.26+ 1.0% URL for 2000 psi (3a) 3.1.12, 3.1.264-20 madc 3.1.26Rosemount 1152DP5N22T0280PBData Reference1B21-LT-N08 IB,DRosemount 3.1.31,3.1.321152DP5N22T0280PB 3.1.13,3.1.31,3.1.32750 inwc 3.1.39-160 to +60 inches level 3.1.20an Transmitter156.35 inwc 1B21-LT-NO81B156.335 inwc 1B21-LT-NO81D+ 0.25% span (3a) 3.1.12, 3.1.39+/- 1.218% span for 30 months 3.1.41with -0.0443% span bias<0.005% span per volt (3a) 3.1.39, 3.1.12+/- 5.00% Span/100F (@ min span) (3a) 3.1.39(0-125 inwc) 3.1.12 isa TEG CALCULATION SHEET---ENTERGYSHEET 14 OF 49CALCULATION NO. JC-01B21-N681-1 REV. 1+ 1.25% Spanl100F (@ max span) (3a)(0-750 inwc)Humidity:Radiation:Sealed unit -no effectsN/A3.1.39Assumptions 5.6, 5.21Static Press (Zero):+ 0.25% URL / 2000 psi (3a)3.1.12, 3.1.39Static Press (Correction):-1.0 +/- 0.25% Reading / 1000 psi (3y) 3.1.12,Assumption 5.14+0.81% Reading/ 1000 psi (3a) 3.1.12,Assumption 5.14Static Press (Span):Seismic:+/- 0.25% URL for 3 g ZPA3.1.39Overpressure:Output Range+/- 1.0% URL for 2000 psi (3a) 3.1.12, 3.1.394-20 madc3.1.394.6 Trip Unit Vendor DataDescriptionTag NumberManufacturerDataReference1 B21-LIS-N691A,B,E,F1 B21 -LIS-N681A,B,C,DRosemountModel510DU3.1.28, 3.1.33-3.1.383.1.16, Assumption 5.203.1.25, Note 1, 3.1.14Repeatability:+/- 0.2% span (3a)Drift:N/AAssumption 5.7Input Range4-20 madc3.1.25Note 1: Table 5 of reference 3.1.25 defines environmental conditions at the Trip Switchin terms of "operating condition" and "environment." Conditions in Zone N-028 arebounded by line 2 defined as "adverse operating conditions" and "normal environment"The corresponding line on Table 6 specifies repeatability under the defined conditions as+/-0.20%. This repeatability is valid for six months operation. An allowance for powersupply effects, temperature effects, humidity effects, drift and radiation effects areincluded in the repeatability.

,4.7 Power SuppliesPower Supply Nominal 24.0 volts Assumption 5.3Power Supply Variations 23 -28 vdc Assumption 5.35.0 ASSUMPTIONS5.1 All uncertainties given in vendor data specifications are assumed to be 2 sigmaunless otherwise specified.*5.2 Per reference 3.1.1, the M&TE error is normally assumed to be equal to thereference accuracy of the transmitter. Per references 3.1.20 and 3.1.21, a Fluke45 and a pressure gauge are used to calibrate the transmitters, these instrumentshave a combined M&TE error of _< 10.041 ma. Converting the ma error to inwc:(0.040 ma)(156.35 inwc / 16 ma) = 0.40 inwc. The setting tolerance fromreferences 3.1.20 and 3.1.21 is +/-0.04 ma, or +0.40 inwc. As the test equipmenterror (setting tolerance) is larger than the reference accuracy of the transmitter(+/-0.27 inwc), +/-0.40 inwc will be assumed for the M&TE error.Per references 3.1.22 and 3.1.23, a Rosemount readout assembly is used tocalibrate the Rosemount trip units. Per reference 3.1.25, the accuracy of thereadout assembly is +/-0.0.1 ma,*which is equal to (0.01 ma)(156.35 inwc/16 ma) =+/-0.10 inwc (MTE2) and the accuracy of the trip unit is +/-0.2% span = (2/3)*0.2%(156.35 inwc) = +/-0.21 inwc. References 3.1.22 and 3.1.23 specify a settingtolerance of +/-0.03 ma = (0.03)(156.35/16) = 0.30 inwc. The larger +/-0.30 inwcsetting tolerance value will be assumed for the M&TE error.5.3 A maximum value of 28 vdc and minimum of 23 vdc will be assumed for powersupply variation, as this is the value provided in PPD 184C4571 for the 24 vdcpower supplies (Ref. 3.1.11). This results in an assumed voltage variation of +4,-1 vdc. Per reference 3.1.17, one of the loop power supplies was replaced with aVicor model VI-N53-IM DC-DC converter that has a maximum variation of0.55%, which is bounded by the original power supply variation. Forconservatism, +4 vdc will be used in this calculation.5.4 The transmitters addressed in this calculation are powered by Rosemount tripunits. The amount of fluctuation in the transmitter excitation voltage (caused byfluctuations in the supply voltage of the trip units) is not addressed in the trip unitvendor manuals. To be conservative, it will be assumed that the maximumfluctuation of the excitation voltage is equal to the maximum fluctuation of thetrip unit power supply output.5.5 The specified overpressure effect of the Rosemount transmitters is for an.overpressurization above the URL but below 2000 psi (Refs. 3.1.26, 3.1.39). It isassumed the maximum differential pressure will not exceed the URL of 750 inwcand OVP will not apply.

ft CALCULATION SHEET~--ENTERGYSHEET 16 OF 49CALCULATION NO. JC-Q1B21-N681-1 REV. 15.6 The radiation drift effect (RD) of the transmitters is assumed to be zero as theyare calibrated every 30 months (maximum). Assumption 5.9.5.7 The accuracy of the Rosemount trip units (+/-0.2% span) is valid for six months(Ref. 3.1.25). The trip units are calibrated every 115 days (Assumption 5.9).Therefore, drift is included in reference accuracy.5.8 From page 4-4 of Reference 3.1.14:For errors at reactor pressures above 118 psia and drywell temperatures _3407F, "instrument accuracy for safety actions (narrow and wide ranges) isnot markedly affected by varying drywell temperatures, since the vertical dropof the sensing lines within the drywell as shown in Figure 4.1-1 isapproximately equal (+/-1.0 feet). This provides cancellation of temperatureeffects on the instrument lines, should an elevated drywell temperaturecondition [e.g., Loss of Coolant Accident (LOCA)] occur, and thereby ensurescontinued instrument Setpoint accuracy under these conditions."This assumption is corroborated by as-built elevations for the sensing lines atGrand Gulf. Per Reference 3.1.55, the condensing chambers used by transmittersN091A, B, E, & F, N081A, B, C, & D, are D004A, B, C, and D. From page 1 ofRef. 3.1.55, the condensing chamber, drywell penetration hi, WR lower tap, andWR drywell penetration elevations are as follows:Condensing D004A D004B D004C D004DChamberChamber Elevation 2081.004" 2081.412" 2080.872" 2082.564"(overflow elev.)Drw Pen Hi 2000.76" 2000.868" 2001" 2001.12"Drywell El. Drop 80.244" 80.544" 79.872" 81.444"Ref. Leg(Chamber -Pen)WR Lower Tap 1839.996" 1839.996" 1839.996" 1839.996"WR Dry Pen Low 1762.14" 1761.66" 1756.68" 1756.68"Drywell El. Drop 77.856" 78.336" 83.316" 83.316"Variable Leg(Tap -Pen)Difference in 2.388" 2.208" 3.444" 1.872"Drops(Abs Value ofDrop Ref Leg-Variable Leg Drop)The vertical drop differences are within that assumed by Ref. 3.1.14 (+/-1.0 feet).Thus, the variations of temperatures within the drywell are not considered, since B (~. CALCULATION SHEET_ ENTERGYSHEET 17 OF 49CALCULATION NO. JC-01B21-N681-1 REV. 1the effects will be essentially the same on the reference and variable legs andeffectively cancel each other.5.9 A calibration interval of 30 months will be assumed for the transmitters, which isthe nominal 24-month period, plus a 25% grace period (Refs. 3.2.6 -3.2.9). Acalibration interval of 115 days will be assumed for the trip units (Refs. 3.2.6 -3.2.9)..5.10 The transmitters are conservatively assumed to be compensated for a systemoperating pressure of 1000 psig (Ref. 3.1.20, 3.1.21). The maximum staticpressure at the time of trip is assumed to be equal to the lowest TechnicalSpecification safety relief setting of 1103 psig, plus the +/-15 psi setting tolerance(Ref 3.2.14). Static pressure zero and span effect will apply only to the remaining118 psi (1103 psig + 15 psi -1000 psig) not compensated for in the calibrationprocess.5.11 Primary Element uncertainty is assumed to be negligible and is therefore notconsidered. This is based on the nature of the measurement such that theinstrument does not interfere with the process variable and that there is nouncertainty associated with the reference legs.5.12 The error incurred as a result of temperature gradients in the reference leg due tothermal stratification in the drywell and containment is negligible and unlikely.Ref. 3.1.14, Page 4-4.5.13 It is assumed that the water in the reference leg in containment and the drywell isthe same as ambient temperature based on the fact that the reference leg is madeof long lengths of uninsulated pipe inside containment.5.14 Static pressure span bias effect is calibrated out (Refs. 3.1.20, 21). For the 1153Rosemount transmitters, a static pressure correction uncertainty of +/-0.5%reading/1000 psi remains. For the 1152-T0280 Rosemount transmitters, thevendor manual does not provide a similar static pressure correction uncertainty orstatic pressure span uncertainty (Ref. 3.1.39, Tab 20). Therefore, based on theRosemount manual for 1152 non-T0280 transmitters (Ref. 3.1.39, Tab 6), a staticpressure correction uncertainty of +0.25% reading/1000 psi and a static pressurespan uncertainty of +/- 0.81% Reading / 1000 psi is assumed for 1152-T0280transmitters.5.15 It is assumed that no error is caused by reduced insulation resistance due to mildenvironment for first trip conditions (Assumption 5.21).5.16 For the temperatures and pressures considered in the reference legs to determinethe density effects, two extremes are considered and compared to the conditionsassumed for establishing the calibration parameters of the transmitters.The two limiting conditions, producing maximum and minimum densities, aredefined as follows:

CALCULATION SHEET--~ENTERGYSHEET 18 OF 49CALCULATION NO. JC-Q 1B21-N681-1 REV. 1A. Reference leg at low temperature and high pressure, which will producethe maximum density in the reference leg and will have the effect ofcausing a lower indicated level than actual.B. Reference leg at high temperature and low pressure, which will producethe minimum density in the reference leg and will have the effect ofcausing a higher indicated level than actual.Because the level 1 trip is a decreasing setpoint, only effects which tend to cause ahigher indicated level than actual need be considered. Thus, only condition Babove will be considered in this calculation.The maximum containment temperature that the sensing lines experience prior toa level 1 trip is conservatively assumed to be 100'F (Reference 3.1.54).A minimum pressure of 1000 psia is assumed based the pressure when the level 1trip occurs (Ref. 3.1.52, Fig. 1-b for LBLOCA, Fig. 3-b for SBLOCA).5.17 For the Rosemount static pressure span effect, the 'reading' differential pressureis taken as the magnitude of the calibration input value at the analytical limit (-154.7 inches) (Refs. 3.1.20, 3.1.21). For IB21NO81C, with a level range from -160 to 60 inches (220 inches span) and a calibration range of -227.29 to -70.94inwc (156.35 inwc span):= -[(setpoint (inches) + zero offset)/span (inches)

  • span (inwc)] -calibrationzero (inwc)= -(-154.7 inches + 160 inches)/220 inches
  • 156.35 inwc -(-227.29) inwc= 223.53 inwcThe Rosemount 1152 static pressure span effect includes a -1% bias. This effect iscalibrated out (Assumption 5.14).5.18 An instrument tap location error of 0.25 inches is conservatively assumed. This isconsidered a PM error and is a random effect based on survey uncertainty.5.19 It is assumed the effect of recirculation pump flow past the lower wide-rangeinstrument tap is inconsequential (Ref. 3.1.15). Operation of the recirculationpumps causes a velocity effect at the lower tap, resulting in a reduced pressureand a lower sensed reactor water level. For the Level 1 trip, this bias effect isconservative and will be ignored.5.20 Since Rosemount 51ODU model is obsolete, they may be replaced with 71ODU'sin the future (Ref. 3.1.16). The performance specifications for the 710DU areequal to or better than those of the 51 ODU.5.21 The time at which the level 1 trip is assumed to occur for a Small Break LOCA is-90.67 seconds (Ref. 3.1.53). For a Large Break LOCA, the time at which thelevel 1 trip is assumed to occur is -6 seconds (Ref. 3.2.4 and Ref. 3.1.52, Fig. 1-b). Due to these relatively short time intervals, only normal environmental CALCULATION SHEET-ENTERGYSHEET 19 OF 49CALCULATION NO. JC-Q1B21-N681-1 REV. 1conditions will be used in this calculation for radiation effects and insulationresistance effect. However based on reference 3.1.54, the transmitter willexperience an elevated temperature (approximately 101'F) prior to performing itssafety function. This temperature will be considered the maximum accidenttemperature for the transmitter.5.22 The operating transient for this calculation is based on a loss of feedwater flow.Per reference 3.2.2, the lowest level during the transient is -95 inches, referencedto the bottom of the steam separator skirt. Per reference 3.2.16, instrument zero isapproximately 16 inches above the bottom of the skirt. Therefore, the limitingtransient level will be taken as -111 inches.'5.23 The reference leg density condition assumed for transmitter scaling is obtainedfrom reference 3.1.55. The density in the reference leg is shown to be defined bya specific volume of 0.01602 ft3/lbm with the system pressure at 1005 psig (1020psia). Per reference 3.2.18, those values correspond to a water temperature of80'F. Reference 3.1.56 confirms that EPU did not change the nominal pressureconditions.5.24 Generally, the reference and variable legs will have the same weight of water inthem from the lower instrument tap on the reactor to the transmitter, as they thelines are run in relative proximity and can be assumed to contain similar fluiddensity. Thus, these weights effectively cancel each other when the differentialpressure is measured via the transmitter. In addition, the instrument lines in thedrywell are not considered in this calculation, per the methodology of NEDC-31336P (Ref. 3.1.14 and Assumption 5.8). Thus the only density changesnecessary for consideration are the reference leg fluid densities for the height ofwater between the upper and lower drywell penetrations. For conservatism, thiscalculation will consider the height between the condensing chamber and thelower instrument tap. In order to maximize this effect, the greatest distancebetween the two is obtained from Ref. 3.1.55.

MCALCULATION SHEET---ENTERGYSHEET 20 OF 49CALCULATION NO. JC-01B21-N681-1 REV. 16.0 METHODOLOGY6.1 Device UncertaintiesFor each module, the uncertainty terms applicable to this application will bespecified and combined into the following module errors:RA -reference accuracyL -negative bias uncertaintyM -positive bias uncertaintyMTE -measurement and test equipment inaccuraciesD -drift6.2 Loop UncertaintiesThe random and bias components of:PE -errors associated with the Primary ElementPM -errors in Process Measurement, andIR -errors due to degradation in Insulation Resistancewill be quantified, the loop error equation given, and the device and loopuncertainties combined to produce:AL -SRSS of all device random uncertainties except driftLL -The sum of all negative bias uncertaintiesML -The sum of all positive bias uncertaintiesCL -SRSS of all measurement and test equipment inaccuraciesused for calibration.DL -SRSS of all driftsPer reference 3.1.14, a single side of interest is used by GE to determine reactorlevel setpoints. Accordingly, a factor of 1.645/2 will be applied to the randomportions of LU:LU -(1.645/2)*SRSS( AL, CL, PE, PM ) +/- IR -LL + ML6.3 Total Loop UncertaintyThe total loop uncertainty will be calculated using the reference 3.1.1 equation:TLU = LU + DL6.4 Allowable ValueThe allowable value for the loop will be calculated using the reference 3.1.1equation:

A CALCULATION SHEET-... ENTERGYSHEET 21 OF 49CALCULATION NO. JC-Q1B21-N681-1 REV. 1AV=AL-LU6.5 Nominal Trip SetpointThe nominal trip setpoint will be calculated using the reference 3.1.1 equation:NTSP = AL +/- TLU6.6 Spurious Trip AvoidanceThe probability of a spurious trip during normal plant operation using the TechSpec setpoint will be evaluated using the methodology of reference 3. 1.1 andcalculated loop errors. Per reference 3.1.1, a 95% probability of no spurious tripis acceptable.6.7 LER AvoidanceThe probability of exceeding the Tech Spec allowable value without a trip at thetech spec setpoint will be evaluated using the methodology of reference 3.1.1 andcalculated loop errors. Per reference 3.1.1, a 90% probability of avoiding LERs isacceptable.Note: When considering the probability of a spurious trip, any late actuation willbe conservative. Similarly, when considering the probability of an LER, anyearly actuation will be conservative. This means that single sided distributionsare appropriate for this evaluation. Per reference 3.1.1, a Z of 1.645 correspondsto a probability of 95%. Similarly, a Z of 1.28 corresponds to a probability of90%.6.8 NomenclatureThe nomenclature of reference 3.1.1, Section 1.6, will be used. Errors associatedwith the transmitter will be subscripted with a "1", errors associated with the tripunit will be subscripted with a "2", while loop errors will be subscripted with an"UL. For example, D1 would be the transmitter drift, D2 would be the trip unitdrift, and DL would be the loop drift.6.9 Worst Case LoopThe equipment and environments for each loop are identical; therefore, no worstcase calculation is required.

I 'Mh CALCULATION SHEET-ENTERGYSHEET 22 OF 49CALCULATION NO. JC-OIB21-N681-1 REV. 17.0 CALCULATION7.1 Transmitter Uncertainties, Rosemount 1153Using the vendor data from Section 4.4 (Transmitter N081C is used -the slightdifference in calibration spans between the transmitters does not result insignificant differences in device errors):URL = 750 inwcSPAN = 156.35 inwcRAI = +/- 0.25% span (3a)= +/- 2/3(0.0025)*( 156.35) inwc= +/- 0.27 inwcTemp Effect = +/- (0.75 % URL + 0.5% span) / 100'F (3a)= + 2/3((0.75%)(750 inwc) + (0.5%)(156.35 inwc))/1000F= +/- 4.28 inwc /100°FTemperature effect will be broken into TD (65-90'F per reference 3.1.1), TEN(90-95°F, the balance of the normal range from Section 4.2) and TEA (95-101°F,the additional accident range from Sec 4.2).Therefore:TDI = + (4.28)*(25/100)+ 1.07 inwcTEN[ = -(4.28)*(5/100)0.22 inwcTEA1 = , (4.28) *(6/100)0.26 inwcPer reference 3.1.26, humidity has no effect on the sealed transmitter.HE =+0.00 inwcRadiation Drift (normal)RD1 = , 0.00 inwc Assumption 5.6Radiation Effect (Accident)REA1= +/- 0.00 inwcSection 2.0 I CALCULATION SHEETENTERGYSHEET 23 OF 49CALCULATION NO. JC-01B21-N681-1 REV. 1Per Assumption 5.3, the worst power supply variations are taken as +/- 4.0 volts.PSi = + 0.005% span / volt variation (3a)= + 2/3(0.00005)( 156.35 inwc)(4 volts)= 0.03 inwcSeismic EffectSE, = + 0.00 inwc Section 2.0Overpressure EffectOVP1 = +/- 0.00 inwc Assumption 5.5Static Pressure EffectSPE (zero) = + 0.2% URL / 1000 psi (3Y) Assumption 5.10=+/- 2/3*0.2% (750 inwc)

  • 118 psi/ 1000 psi=-0.12 inwcSPE (correction)= +/- 0.5% reading/ 1000 psi (3a) Assumption 5.10, 5.17= +/- 2/3*0.5% (223.53 inwc)
  • 1118 psi / 1000 psi=+0.84 inwcSPE (span) = -0.75% reading / 1000 psi (3y) Assumption 5.10, 5.17= -(2/3)*0.75% (223.53 inwc)
  • 118 psi / 1000 psi= 0.14 inwcSPE1 = +/- SRSS(SPE (zero), SPE(correction), SPE (span))= SRSS(0.12, 0.84, 0.14)=-0.86 inwcDriftDR1 = +/- 1.218% span for 30 months with -0.0443% span bias=-0.01218*(156.35 inwc) -0.000443 (156.35 inwc)=+/- 1.91 inwc -0.07 inwcSummarizing for the transmitter (1153):Ai = +/- SRSS(RAI, (TENI + TEAI), PSI, SPE)= -SRSS(0.27, (0.22 + 0.26), 0.03, 0.86)=+/- 1.03 inwc= -0.0 inwc Cl = +/- 0.40 inwc Assumption 5.2DI= SRSS(DRI, TD1)= SRSS(1.91, 1.07) inwc- 0.07 inwc=+2.19 inwc -0.07 inwc7.2 Transmitter Uncertainties, Rosemount 1152Using the vendor data from Section 4.5 (Transmitter N081 B is used -the slightdifference in calibration spans between the transmitters does not result insignificant differences in device errors):URL = 750 inwcSPAN = 156.35 inwcRAI = + 0.25% span (3a)= +/- 2/3(0.0025)*( 156.35) inwc= +/- 0.27 inwcThe Temperature Effect at the calibrated span is determined as follows:(CalSp-MinSp) = (X-TE0)MinSp)(Max Sp -Min Sp) (TE @ Max Sp -TE @ Min Sp)(156.35-125)inwc = (X- 5% span)(750 -125) inwc (1.25% span -5% span)31.35 * (-3.75) = 625X- 3125X =(31.35 * (-3.75)) + 3125625= 4.82% spanTemp Effect = 4.82% span/100°F (3a)= -2/3*4.82%
  • 156.35 inwc / 100°F= -5.03 inwc / 100'FTemperature effect will be broken into TD (65-90'F per reference 3.1.1), TEN(90-95'F, the balance of the normal range from Section 4.2) and TEA (95-101'F,the additional accident range from Sec 4.2).Therefore:TDITD1= +/- (5.03)*(25/l00) af CALCULATION SHEET-C- ENTERGYSHEET 25 OF 49CALCULATION NO. JC-01B21-N681-1 REV. 1= 1.26 inwcTEN, = +/- (5.03)*(5/100)=--0.26 inwcTEA1 = , (5.03)*(6/100)=+/-0.31 inwcPer reference 3.1.39, humidity has no effect on the sealed transmitter.HE, = +/- 0.00 inwcRadiation Drift (normal)RD1= +/- 0.00 inwcAssumption 5.6Radiation Effect (Accident)REAr= +/- 0.00 inwcSection 2.0Per Assumption 5.3, the worst power supply variations are taken as +/- 4.0 volts.PSI = +/- 0.005% span / volt variation (3y)= +/- 2/3(0.00005)(156.35 inwc)(4 volts)=+/-0.03 inwcSeismic EffectSE1= , 0.00 inwc Section 2.0Overpressure EffectOVPI= +/- 0.00 inwcAssumption 5.5Static Pressure EffectSPE (zero) = +/- 0.25% URL / 2000 psi (3a) Assumption 5.10= +/- 2/3*0.25% (750 inwc)
  • 118 psi / 2000 psi=+/-0.08 inwcSPE (correction)= +/- 0.25% reading / 1000 psi (3a) Assumption 5.10, 5.17= +/- 2/3*0.25% (223.53 inwc)
  • 1118 psi / 1000 psi= +/- 0.42 inwcSPE (span)= +/- 0.81% reading / 1000 psi (3a) Assumption 5.10, 5.17= +/- (2/3)*0.81% (223.53 inwc)
  • 118 psi / 1000 psi=+/-0.15 inwc o CALCULATION SHEETSHEET 26 OF 49CALCULATION NO. JC-Q1B21-N681-1 REV. 1SPE1Drift= 1 SRSS(SPE (zero), SPE(correction), SPE (span))= +/- SRSS(0.08, 0.42, 0.15)= +/- 0.46 inwc= + 1.218% span for 30 months with -0.0443% span bias= +/- 0.01218*(156.35 inwc) -0.000443 (156.35 inwc)= 1.91 inwc -0.07 inwcDR1Summarizing for the transmitter (1152):Al = +/- SRSS(RAI, (TENI + TEAI), PSI, SPE1)= +/- SRSS(0.27, (0.26 + 0.31), 0.03, 0.46)+/- 0.79 inwcLI =- 0.0 ,inwcMI = + 0.0 inwcC1 = +/- 0.40 inwc Assumption 5.2D1.= +/- SRSS(DRI, TDI)= +/- SRSS(1.91, 1.26) inwc- 0.07 inwc= +/- 2.29 inwc -0.07 inwc7.3 Trip Unit UncertaintiesUsing the vendor values from Section 4.6:Span= 156.35 inwcUsing transmitter N08 1 CA2= RA2=+/- 0.2% span (3a)= +/- (2/3)*(0.002)*(156.35 inwc)+/- 0.21 inwc=- 0.00 inwc+ 0.00 inwcCD2D-? = DR2ý=+0.30 inwc0.00 inwcAssumption 5.2Assumption 5.7Assumption 5.117.4 Primary Element AccuracyPE= N/A A CALCULATION SHEET-~-ENTERGYSHEET 27 OF 49CALCULATION NO. JC-Q1B21-N681-1 REV. 17.5 Process Measurement AccuracyInstrument Tap Installation ErrorPMTap = +/- 0.25 inches Assumption 5.18+/- 0.25 inches / 220 inches
  • 156.35 inwc0. 178 inwcDensity Effects ErrorPer Assumption 5.16, the PM effect due to density is determined from thenominal reference leg conditions used for scaling (cal) as compared to theminimum density at the worst case condition.The maximum reference leg height is computed from the Condensing ChamberD004D information in Assumption 5.8 as follows:h = Condensing chamber overflow elev. -WR lower tap elev.= 2082.564 -1839.996 inches= 242.568 inchesCalibration:Densityc,, = 1/specific volumeWhere specific volume equals 0.01602 ft3/lbm Assumption 5.23Densityca, = 1/(0.01602 ft3/ibm
  • 1728 in3/ft3)= 0.0361238 Ibm/in3The pressure produced from the column of water is determined as follows.= h
  • Densitycal * (1 inwc/0.03609 psi)= 242.568
  • 0.0361238 * (1 inwc/0.03609 psi)= 242.7952 inwcMinimum Density (Condition B of Assumption 5.16):DensityB = 1/specific volumeWhere:specific volume = 0.01608128 ft3/lbm (100'F, 1000 psia) Assumption 5.16,Ref. 3.2.18DensityB = 1/(0.01608128 ft3/lbm
  • 1728 in3/ft3)= 0.0359862 lbm/in3The pressure produced from the column of water is determined as follows.

t CALCULATION SHEETSENTERGYSHEET 28 OF 49CALCULATION NO. JC-01B21-N681-1 REV. 1HB = h

  • Density8 * (I inwc/0.03609 psi)= 242.568
  • 0.0359862 * (1 inwc/0.03609 psi)= 241.8703 inwcThe PM due to density effects is therefore:PMdensity = Heal -HB= 242.7952 -241.8703 inwc= 0.9249 inwcNEDC-31336 (Ref. 3.1.14) treats the density term as a random variable. Thus:PMdensity = +/-0.9249 inwcTotal PM ErrorPM = SRSS(PMtap, PMdensity)= SRSS(0.178, 0.9249) inwc= -0.9419 inwc= -0.9419 inwc / 156.35 inwc
  • 220 inches= 1.33 inchesNote that for decreasing trip signals, negative bias errors are ignored in LU and TLUcalculations.7.6 Insulation Resistance BiasIR = + 0.0 inwc Assumption 5.157.7 Loop UncertaintiesUsing the equations from reference 3.1.1 and the values from above, including thelimiting transmitter accuracy for the 1153 (which results in higher LU and TLU):AL = +/- SRSS(A1, A2)= SRSS(1.03, 0.21)-+1.052 inwc-+/-1.052 inwc/ 156.35 inwc
  • 220 inches-+/-1.49 inchesLL = -L1 -L, = 0.0 inwcML = + M , + M, = 0.0 inwcCL = +/- SRSS(C1, C2)-+/- SRSS(0.40, 0.30)= +/- 0.50 inwc

-+-0.50 inwc / 156.35 inwc-+/-0.71 inchesDL = SRSS(D1, D2)= + SRSS(2.19, 0.0) -0.07-+/-2.19 inwc -0.07 inwc(Negative drift bias is not required for decreasing setpoint)-+ 2.19 inwc / 156.35 inwc

  • 220 inches-+ 3.09 inchesPer reference 3.1.1, the margin reduction technique of single side of interest maybe employed for setpoints that actuate in one direction only:LU = + 1.645/2
  • SRSS(AL, CL, PM)-+ 1.645/2
  • SRSS(1.052, 0.50, 0.9419) inwc+ 1.24 inwc-+ 1.24 inwc / 156.35 inwc
  • 220 inches-+ 1.75 inches7.8 Total Loop UncertaintyPer reference 3.1.1, the margin reduction technique of determining TLU by SRSSmay be employed for setpoints that require additional margin:TLU = SRSS(LU, DL)-+ SRSS(1.24, 2.19) inwc+ 2.52 inwc+ + 2.52 inwc / 156.35 inwc
  • 220 inches-+ 3.55 inches7.9 Allowable ValueAV =AL+LU= -154.7 + 1.75--152.95 inchesThe Technical Specifications Allowable value of- 152.50 inches is conservativewith respect to the calculated AV.7.10 Nominal Trip SetpointNTSP = AL + TLU= -154.7 + 3.55= -151.15 inchesThe plant setpoint of -150.3 inches is conservative with respect to the calculatedNTSP.

a CALCULATION SHEET-__- ENTERGYSHEET 30 OF _49CALCULATION NO. JC-Q I B21-N681-1 REV. 17.11 Spurious Trip AvoidanceZ = ABS(NTSP -XT) / SRSS(Sigmai, SigmaN) Ref. 3.1.1XT = Limiting Operating Transient Assumption 5.22= -111.0 inchesSigma1 = (1/n)

  • SRSS(AL, CL, DL, PM)n=2= (1/2)
  • SRSS(1.49, 0.71, 3.09, 1.33)= 1.88SigmaN = XT standard deviation= 0 Ref. 3.1.1Z = ABS(-150.3 -(-111.0)) / SRSS(1.88, 0.0)= 20.90This is above the Section 6.6 & 6.7 minimum acceptable Z value of 1.645 for 95%.7.12 LER AvoidanceZ = ABS(AV -NTSP) / (1/n*SRSS(AL, CL, DO,)) Ref. 3.1.1= ABS(-152.5 -(-150.3)) / (1/2)
  • SRSS(1.49, 0.71, 3.09)= 1.256This is below the Section 6.7 minimum Z value of 1.28 for 90% but is deemedacceptable.

A CALCULATION SHEET_.__ ENTERGYSHEET 31 OF 49CALCULATION NO. JC-Q1B21-N681-1 REV. 18.0 TSTF CALCULATIONS (Ref. 3.1.1)8.1 As-Left ToleranceALT, -Transmitter TSTF-493 CalculationALT, = RAI= +0.27 inwcConverting to loop current:ALT, = +(0.27 inwc/156.35 inwc)* 16 mA= +/- 0.027 mAALT2 -Trip Unit TSTF-493 CalculationALT, = RA-+/-+0.21inwcConverting to loop current:ALT2 = +/-(0.2linwc/156.35inwc)*l6mA-+/- 0.021 mA8.2 As-Found Tolerance (AFT)AFT, -Transmitter TSTF-493 CalculationThe drift value used in this calculation to determine transmitter drift wasderived by statistical analysis, therefore per Reference 3.1.1:AFT, = +/-DR1DR1 = +/- 1.91 inwc -0.07 inwc for 30 monthsAFT, = -1.98 inwc, +1.91 inwcConverting to loop current:AFT, --(1.98 inwc/156.35 inwc)

  • 16 mA,= -0.20 mAAFT,+ = +(1.91 inwc/156.35 inwc)
  • 16 mA= +0.19mAThen,AFT, =-0.20 mA, +0. 19 mA ina TEG CAILCULATION SHEET-~~ENTERGYSHEET 32 OF 49CALCULATION NO. JC-01B21-N681-1 REV. 1AFT2 -Trip Unit TSTF-493 CalculationAFT2 = +/- SRSS(RA2, MTE2, DR2) Reference 3.1.1AFT2 = + SRSS(0.21, 0.10, 0)= +0.23 inwcConverting to loop current:AFT2 = +/- (0.23 inwc/156.35 inwc)
  • 16 mA= +/- 0.023 mA8.3 Loop TolerancesALTL -As-Left Loop ToleranceALTL = +/- SRSS (ALTI, ALT2)= +/- SRSS (0.27, 0.21)= +/-0.34inwcConverting to loop current:ALTL = +/- (0.34 inwc/156.35 inwc)
  • 16 mA= + 0.034 mAAFTL -As- Found Loop ToleranceAFTL = + SRSS (AFT,, AFT2)AFTL = -SRSS (1.98, 0.23)= -1.99inwcAFTL+ = + SRSS (1.91, 0.23)= +1.92inwcConverting to loop current:AFTL-- -(1.99 inwc /156.35 inwc)
  • 16 mA,= -0.20mAAFTL+ = +(1.92 inwc /156.35 inwc)
  • 16 mA= +0.19mAThen,AFTL = -0.20 mA, + 0.19 mA C CALCULATION SHEET___- ENTERGYSHEET 33 OF 49CALCULATION NO. JC-01B21-N681-1 REV. 1

9.0 CONCLUSION

The Technical Specifications Setpoint and Allowable Value are conservative with respectto the calculated values.SUMMARY OF RESULTSSYSTEM B21LOOP NUMBERS N691A,B,E,F; N681A,B,C,DCalibration units Reactor Level(inwc) (inches)TOTAL LOOP UNCERTAINTY + 2.52 + 3.55LOOP UNCERTAINTY + 1.24 + 1.75DRIFT ALLOWANCE + 2.19 +/- 3.09M&TE +/- 0.50 +/- 0.71SPECIFIED (inches) CALCULATED (inches)Analytical Limit -154.70Allowable Value -152.5 -152.95Nominal Trip Setpoint -150.3 -151.15SUMMARY OF CALIBRATION TOLERANCESAs-Left Transmitter TSTF-493 (ALT,) +/-0.27 inwc,____ ___ ___ ____ ___ ___ ____ ___ ___ +/-0.027 mAAs-Left Trip Unit TSTF-493 (ALT-) +/-0.21 inwc," +0.021 mA-1.98 inwc,+/-1.91 inwcAs-Found Transmitter TSTF-493 (AFT1) -0.20 mA,+0.19 mAAs-Found Trip Unit TSTF-493 (AFT2) +/-0.23 inwc,+/-0.023 mAAs-Left Loop Tolerance (ALTL) +/-0.34 inwc,_______________________________ +/-0.034 mA-1.99 inwc,As-Found Loop Tolerance (AFTL) +1.92 inwc-0.20 mA,____ ___ ____ ___ ____ ___ ___ +0.19 mA ATrACHMENT IDESIGN VERIICATIONJC-Q1B21-N681.1, REV. ISHEET 34 OF 49Sheet 1 of 1DESIGN VERIFICATION COVER PAGEE' ANO-1 1] ANO-2 [El IP-2 [IJ]P-3 EJJAF [-]PLPElPNPS [-VY 0 GGNS [-RBS "]W3 [I NPDocument No. JC-Q1B21-N681-1 ] Revision No. I Page 1 of 4Title: Level 1 Setpoint Calculation0 Quality Related El Augmented Quality RelatedDV Method: [ Design Review El Alternate Calculation -] Qualification Testing ATTACHMENT I JC-QIB21-N681-1, REV. IDESIGN VERIFICATION SHEET 35 OF 49Sheet 1 of 3IDENTIFICATION: DISCIPLINE:Document Title: Level I Setpoint Calculation []Civil/Structural[]ElectricalDoc. No.: ..I&CJC-QIB21-N681-1 .Rv. 1 QA Cat.: SR [-MechanicalMMr Coffaro J/fl({ Ct4 (OE-(3 jINuclearVerifier: []OtherManagerauthorization forsupervisorperformingVerification.m N/A Print Sign DateMETHOD OF VERIFICATION:Design Review .. Alternate Calculations -- Qualificaton Test ElThe following basic questions are addressed as applicable, during the performance of any designverification. [ANSI N45.2.11 -1974] [NP] [QAPD, Part II, Section 3] [NQA 1994, Part 11,BR 3, Supplement 3s-1].NOTE The reviewer can use the "Comments/Continuation sheet" at the end for entering anycomment/resolution along with the appropriate question number. Additional items with newquestion numbers can also be entered.1. Design Inputs -Were the inputs correctly selected and incorporated into the design?(Design inputs include design bases, plant operational conditions, performance requirements,regulatory requirements and commitments, codes, standards, field data, etc. All informationused as design inputs should have been reviewed and approved by the responsible designorganization, as applicable.All inputs need to be retrievable or excerpts of documents used should be attached.See site specific design input procedures for guidance in identifying inputs.)Yes Z No El N/A El2. Assumptions -Are assumptions necessary to perform the design activity adequatelydescribed and reasonable? Where necessary, are assumptions identified for subsequentre-verification when the detailed activities are completed? Are the latest applicablerevisions of design docwnents utilized?Yes Z No [-] N/A El13. Quality Assurance -Are the appropriate quality and quality assurance requirementsspecified?Yes Z No El N/A El ATTACHMENT 1 JC-QIB21-N681-1, REV. 1DESIGN VERIFICATION SHEET 36 OF 49Sheet 2 of 34. Codes, Standards and Regulatory Requirements -Are the applicable codes, standardsand regulatory requirements, including issue and addenda properly identified and aretheir requirements for design met?Yes E No 0i N/A nI5. Construction and Operating Experience -Have applicable construction and operatingexperience been considered?Yes nI No Li N/A Z6. Interfaces -Have the design interface requirements been satisfied and documented?Yes ni No Li N/A Dq7. Methods -Was an appropriate design or analytical (for calculations) method used?Yes E No Li N/A niS. Design Outputs -Is the output reasonable compared to the inputs?Yes E No L-- N/A ni9. Parts, Equipment and Processes -Are the specified parts, equipment, and processessuitable for the required application?Yes Li No ni N/A E10. Materials Compatibility -Are the specified materials compatible with each other andthe design environmental conditions to which the material will be exposed?Yes Li No Lii N/A N11. Maintenance requirements -Have adequate maintenance features and requirementsbeen specified?Yes Li No E] N/A E12. Accessibility for Maintenance -Are accessibility and other design provisions adequatefor performance of needed maintenance and repair?Yes Li No Li N/A E13. Accessibility for In-service Inspection -Has adequate accessibility been provided toperform the in-service inspection expected to be required during the plant life?Yes n No [-] N/A E14. Radiation Exposure -Has the design properly considered radiation exposure to thepublic and plant personnel?Yes [i No Ei N/A ]15. Acceptance Criteria -Are the acceptance criteria incorporated in the design documentssufficient to allow verification that design requirements have been satisfactorilyaccomplished?Yes E No i N/A Li ATTACHMENT 1 JC-QIB21-N681-1, REV. 1DESIGN VERIFICATION SHEET 37 OF 49Sheet 3 of 316. Test Requirements -Have adequate pre-operational and subsequent periodic testrequirements been appropriately specified?Yes D No D- N/A M17. Handling, Storage, Cleaning and Shipping -Are adequate handling, storage, cleaningand shipping requirements specified?Yes El No D] N/A []18. Identification Requirements -Are adequate identification requirements specified?Yes Ij No [1 N/A N19. Records and Documentation -Are requirements for record preparation, review,approval, retention, etc., adequately specified? Are all documents prepared in a clearlegible manner suitable for microfilming and/or other documentation storage method?Have all impacted documents been identified for update as necessary?Yes Z No F] N/A F120. Software Quality Assurance- ENN sites: For a calculation that utilized softwareapplications (e.g., GOTHIC, SYMCORD), was it properly verified and validated inaccordance with EN- IT-104 or previous site SQA Program?ENS sites: This is an EN-IT-104 task. However, per ENS-DC-126, for exempt software,was it verified in the calculation?Yes [E No [E N/A Z21. Has adverse impact on peripheral components and systems, outside the boundary of thedocument being verified, been considered?Yes 11 No El N/A Z ATTACHMENT 1DESIGN VERIFICATIONJC-QIB21-N681-1, REV. ISHEET 38 OF 49Comments / Continuation SheetQuestion # Comments Resolution [ Initial/Date1 Comments provided by markup. I Comments incorporated. MJC 10/1/124 4 4- ____________4- ____________4 ++

ATTACHMENT 2 JC-QIB21-N681-1, REV. 1OWNER'S REVIEW COMMENTS SHEET 39 OF 49Comment Department / 1 Comment DateNo. Reviewer Discipline / Comment[ Date Resolution ResolvedI Program Res d I IOwner's Review Comments to JC-0IB21-N681-1 (EC 18458) Level 1 SetpointI Ceneral Ic I ietll~I J Voss EXCEL This calculation computes 8/14/12 None RequiredServices Corp. uncertainties that are too large towork with the existing AnalyticalLimit, Allowable Value and NominalTrip Setpoint. Various measures aresuggested below to reduce theuncertainty values and to provide asolution. However, because of thevery small margin in this parameter,solution to this problem could requireadjustment to the Analytical Limitand / or Allowable. Value and / orNominal Trip Setpoint.2 :J Voss EXCEL -If the suggested adjustments still do 9/14/12 Setpoint and AV are now conservative.Services Corp. not provide errors that are acceptablefor the setpoint and AV, thenconsider the removal of MTE (andpossibly reference accuracy) from theequations, since the drift valuesinclude these terms.

ATTACHMENT 2 JC-QIB21-N681-1, REV. 1OWNER'S REVIEW COMMENTS SHEET 40 OF 49Department /Comment DaComment Reviewer Discipline / Comment Date Resolution DateI Program ResolvedOwner's Review Comments to JC-01B21-N681-1 (EC 18458) Level 1 Setpoint3 J Voss EXCEL At this point, it would appear that an 8/14/12 Setpoint and AV are now conservative.Services Corp. acceptable resolution may not bepossible by merely reducing theuncertainties, and changing therequired operating conditions, assuggested below. Ifthis proves to betrue. the calculation should beprepared in an approach thatestablishes new, acceptable values.Thus, the calculation will not use theold values for AV to compare for theZ values, etc. It should be positivelypresented, and then possibly shownat the end that the AV, AL. NTSP (asappropriate) need to be changed.4 J Voss EXCEL Suggest intermediate terms be 8/14/12 Not required. Setpoint and AV are nowServices Corp. expressed to 4 decimal resolution, so conservative.that we aren't having multiple round-up issues that make for overlyconservative values. As is, we arecompounding roundups at least at 3or 4 intermediate computations.

ATTACHMENT 2 JC-QIB21-N681-1, REV. 1OWNER'S REVIEW COMMENTS SHEET 41 OF 49C Department Comment DateComment Reviewer Discipline / Comment Date ResolutionI No. rormResolvede Program I I- E I L_______ Owner's Review Comments to JC-01B21-N681-1 (EC 18458) Level 1 Setpoint ____5J VossEXCELServices Corp.Section 2.0 Design RequirementsRWL level I trip is used togenerate initiation signals of lowpressure emergency core coolingsystems. This means that thebreak is of sufficient size toexceed the capacity of the highpressure system but not sufficientsize to rapidly depressurize theRPV. The environmentallylimiting condition is the criticalsize break that slowly lowerslevel and releases the maximumenergy to the environment aroundthe reference legs. Alluncertainties should be evaluatedat the worst case condition withinthe design basis.8/14/12Section design basis now refers to aSBLOCA as well as IBLOCA andLBLOCA.

ATTACHMENT 2OWNER'S REVIEW COMMENTSJC-Q1B21-N681-1, REV. 1SHEET 42 OF 49Department IComment Department/Com Reviewer Discipline I.ProgramCommentCommentDateResolutionDateResolvedI1 I_ _Owner's Review Comments to JC-01B21-N681-1 (EC 18458) Level I Setpoint6J VossEXCELServices Corp.Assumption 5.1 Should considerRosemount internal testing anddefine some uncertainties as 3sigma as defined by GE setpointmethodology and Rosemountdocuments. All Rosemounttransmitters are verified by testingto perform better than thereference accuracy prior toshipment. All Rosemounttransmitters are tested verified toperform within the Temperatureuncertainty limits prior toshipment. For T0280 transmitterssupplied by GE, the specificationswere based on testing during thedevelopment of the setpointmethodoloEv document8/14/12Per GEXI2000-00134, Rosemount 3-sigma values incorporated.

ATTACHMENT 2OWNER'S REVIEW COMMENTSJC-QIB21-N681-1, REV. 1SHEET 43 OF 49-.-.-..-r -Comment Department /Com Reviewer Discipline /o I _ProgramCommentCommentDateResolutionDateResolved___________________ L I LOwner's Review Comments to JC-01B21-N681-1 (EC 18458) Level 1 Setpoint7J VossEXCELServices Corp.Assumption 5.2 I Recommend aprogrammatic change to ensurethat combined M&TE or Settingtolerance is always less than orequal to reference accuracy whenpossible and only use settingtolerance where it is not possibleto purchase the necessary M&TEequipment. This may not resultin a reduction in the uncertaintyfor the current calculation unlessit can be verified that the M&TEused in the last calibration isequal to or better than thereference accuracy. If this isverified, then reduce uncertaintiesto actual M&TE used.S/14/12Not within the scope of this revision.M&TE error determined per upcomingrevision to JS09.8 J Voss EXCEL Assumption 5.3 Evaluate the 8/14/12 Voltage variation determined perServices Corp. normal output voltage to confirm applicable design documents. No re-that it is 24 volts, if it is not evaluation required.reevaluate the spread of voltagebetween actual and the limits of23 and 28 volts and adjustuncertainty calculation. This is asmall uncertainty and will notmake a significant difference inthe calculation outcome, but withnegative margin any possiblereduction is attempted.

ATTACHMENT 2OWNER'S REVIEW COMMENTSJC-QlB21-N681-1, REV. IDepartmen 44 OF4Comment Department/Com Reviewer Discipline IN ProgramCommentCommentDateResolutionDateResolvedOwner's Review Comments to JC-01B21-N681-1 (EC 18458) Level 1 Setpoint9 J Voss EXCEL Assumption 5.6 How does the 8/14/12 The assumption that RD is calibratedServices Corp. calibration interval affect the out and that the dose rates are low is stillradiation drift uncertainty? Any valid for 24 month intervals. Noresidual uncertainty caused by the changes required.exposure would beindistinguishable from drift andcould be assumed to be includedin the drift term. B21-682states:- The radiation drift forthe transmitters and trip unitsis assumed to be negligiblebecause of the low normaldose rates. Per reference xxxthere is no effect ontransmitters below 0.1 Mrad.-"10 J Voss EXCEL Assumption 5.7 The justification 8/14/12 Not so. the Rosemount manualServices Corp. that drift is include in the trip unit specifically says the accuracy is goodrepeatability term is based on the for 6 months.calibration interval and not on theRosemount specification.II J Voss EXCEL Assumption 5.10 Are the panels 8/14/12 Seismic effects no longer considered, soServices Corp. ridged for seismic considerations this is no longer relevant.or is the acceleration amplified bythe panel. This should referencethe floor spectra and be a designinput and not an assumption.

ATTACHMENT 2 JC-Q1B21-N681-1, REV. IOWNER'S REVIEW COMMENTS SHEET 45 OF 49Department / r 1m1 DateComment Reviewer Discipline / Comment Comment Resolution DeNo. Program I Date I ResolvedOwner's Review Comments to JC-01B21-N681-1 (EC 18458) Level 1 Setpoint12 J Voss EXCEL Assumption 5.11 states that there 8/14/12 PE refers to primary element. GGNSServices Corp. is no PE uncertainty; later in the does not consider reference legs to be acalculation an installation primary element.uncertainty associated with thereference legs is identified andcalculated. Revise statement tono PE and remove the referenceleg discussion since that isconsidered as a PM uncertaintylater in the calculation.13 J Voss EXCEL Assumption 5.14 Assumes that 8/14/12 The assumption is that the 1152-T0280Services Corp. the calibration procedure corrects has a similar uncertainty for staticfor suppression, elevation and pressure as the regular 1152density compensation, This transmitters, not that the static pressureshould be confirmed by review of is calibrated out. The calibrationprocedures clearly reflect a staticthe calibration procedure to verity pressure adjustment.that the difference in calibrationcondition and operating conditiondensities have been considered.14 J Voss EXCEL Section 5.15 assumes no IR Assumption clarified to state that a 220Services Corp. uncertainty due to mild second trip time will not invoke IRconditions, the next section errors.identifies reference leguncertainties due to plantchanges. Are the environmentchanges due to the limiting__________LOCA evaluated for IR changes? _____ ________________

ATTACHMENT 2 JC-QIB21-N681-1, REV. 1OWNER'S REVIEW COMMENTS SHEET 46 OF 49Comm Department / Comment DateNo. ent Reviewer Discipline / Comment D ResolutionResoedI o.Program DaeRsleOwner's Review Comments to JC-01B21-N681-1 (EC 18458) Level 1 SetpointDensity Error Issues15J VossEXCELServices Corp.Section 5.16 This sectionevaluates the density relateduncertainties between normaloperation and trip requiredoperating conditions. Theassumptions identified are basedon conditions that would not bepresent at the time of trip for thiswater level. As an example theRPV at zero PSIG, based on theassumed 6 second trip time inGGNS-N E-00018 and thepressure curves, a realisticevaluation of actual tripconditions and density in thevessel and reference legs shouldbe identified. Unfortunately, theuncertainty associated with PMuncertainty is relatively small inthis calculation and the extensivelevel of effort to evaluate theexact density changes for theevent will not result in a largechange in uncertainty, except thatthe uncertainty is applied as abias.8/14/12This section has been revised to accountfor more realistic trip conditions.

ATTACHMENT 2 JC-QIB21-N681-1, REV. IOWNER'S REVIEW COMMENTS SHEET 47 OF 49Comment Department / C eComment mDateNo. Reviewer Discipline Comment Date Resolution ResolvedI ProgramI IIOwner's Review Comments to JC-01B21-N681-1 (EC 18458) Level 1 Setpoint6 J Voss EXCEL Section 5.16 Bounding Condition 8/14/12 The environmental document (E 10.0)Services Corp. B, bullet B identifies a 60 degree is the authority on bounding ambientcontainment temperature as a conditions.bounding condition, is this arealistic temperature for plantoperations, this appears to be animproper use of the EQcompartment temperature rangesto identify plant conditions.Tap Error Issues17 J Voss EXCEL Section 5.18 What is this 8/14/12 This is not considered 'PE' at GGNS.Services Corp. uncertainty considered to be a The error is now considered to bebias effect, the location of all taps random based on surveyhas been surveyed with a 0.25 uncertainty.inches tolerance, but there is noreason not to assume as a randomuncertainty. Additionally, there isan assumption that there is PEI uncertainty.Procciro rffpet EIc..n18 J Voss EXCEL Section 5.17: Would normally 8/14/12 Rosemount states that there is still aServices Corp. expect the static pressure zero static pressure uncertainty even if theeffects to be calibrated out. If calibration corrects for staticzero effects have been eliminated pressure.during calibration, this wouldreduce the uncertainty.Additionally evaluate the highpressure assumption for StaticPressure uncertainty. Confirmzero uncertainties have not beencompensated for duringcalibration.

ATTACHMENT 2 JC-QIB21-N681-1, REV. 1OWNER'S REVIEW COMMENTS SHEET 48 OF 49Department / Comment DateComment Reviewer Discipline / Comment Commetve Reso oDNo. Program ResolvedOwner's Review Comments to JC-01B21-N681-1 (EC 18458) Level 1 SetpointOther Issues19 1 Voss EXCEL Justify removing the seismic 8/14/12 Seismic uncertainty no longerServices Corp. uncertainty, it is the largest single considered, based on upcoming revisioncontributor to channel uncertainty to JS09.20J VossEXCELServices Corp.Sections 5.2 and 6: Should add aparagraph somewhere within themethodology section (6)regarding the change inmethodology for consideration ofM&TE errors, if this is going tobe done. Note that the approachemployed (using the greater of theactual M&TE, setting tolerance,or reference accuracy of thedevice being calibrated) is notcovered in the JS-09methodology. [For this project,we recommend across the boardthat the procedures be changed,so that M&TE and SettingTolerance are equal to or less thanRA for the calibrated devices.From the TSTF-493 perspective,this will simplify implementation.This should also be considered inSections 5.2 and 6. Use of thisapproach would slightly reducecalibration errors.]8/14/12Upcoming revision to JS09 will containnew M&TE methods.

ATTACHMENT 2 JC-QIB21-N681-1, REV. 1OWNER'S REVIEW COMMENTS SHEET 49 OF 49Comment Department / Comment DateNo. Reviewer Discipline / Comment Date Resolution ResolvedNo. I Program IRIOwner's Review Comments to JC-0IB21-N681-1 (EC 18458) Level I Setpoint21 J Voss EXCEL Section 5.21 and 5.22 uses the 8/14/12 5.22 is an existing assumption notServices Corp. FSAR as a reference, this is changed by 24 MFC. 5.21 has beengenerally not a good idea, and the revised.reference should be the analysisthat supports the FSAR statement.