ML092310674
| ML092310674 | |
| Person / Time | |
|---|---|
| Site: | Grand Gulf, 06300001 |
| Issue date: | 09/26/2003 |
| From: | Harwell J Framatome ANP |
| To: | NRC/NMSS/DHLWRS/LID/PMBB |
| Shared Package | |
| ML092310639 | List:
|
| References | |
| DOC.20040109.0003 32-5029393-00 | |
| Download: ML092310674 (83) | |
Text
A FRAMATOME ANP 011: QA 20697-6 (2/2002)
CALCULATION
SUMMARY
SHEET (CSS)
DOC.2004010*~.0003 Document Identifier
_3;:.:2=--_5:;.:0:..=2:..=9..::.39::..;3=---0::..;0=--
Title COMMERCIAL REACTOR REACTIVITY ANALYSIS FOR GRAND GULF, UNIT 1 PREPARED BY:
REVIEWED BY:
METHOD: ~ DETAILED CHECK D INDEPENDENT CALCULATION TM STATEMENT:
REVIEWER INDEPENDENCE NAME J. W. HARWELL SIGNATURE Cff'W ~
TITLE ADVISORY ENG.
DATE COST REF.
CENTER
_6.::..:2::..::0:...;1...=;5 PAGE(S)
PURPOSE AND
SUMMARY
OF RESULTS:
80,81 NAME LARRY A. HASSLER /7/#]01'#1/ !If'e..
SIGNATURE~;-r::::6c1/k-TITLE ADVISORY ENG.
DATE p~,~3 I
Purpose:
The purpose of this calculation is to document the Grand Gulf, Unit 1 (GG1), Critical statepoints reactivity calculations using the MCNP computer code.
Summary: The sixteen critical statepoints for the Grand Gulf unit 1 reactor have been calculated using the half core geometry that was developed for the MCNP code. The k-effectives calculated varied from 0.966 to 0.998 for the critical statepoints.
THE FOLLOWING COMPUTER CODES HAVE BEEN USED IN THIS DOCUMENT:
THE DOCUMENT CONTAINS ASSUMPTIONS THAT MUST BE VERIFIED PRIOR TO USE ON SAFETY-RELATED WORK CODENERSION/REV MCNP, VERSION 482L CODENERSION/REV D
YES NO Page 1 __ of 83
Calculation Page 2 or83 Engineered Systems Project
Title:
Conunercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier:
32-5029393-00 Originator:
J. Wayne Harwell Checker:
.Larry A. Hassler Date:
9/26/2003
)
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit I Document Identifier: 32-5029393-00 CalculatioQ Page 3 of83 Record ofRevisions Rev.
Date of Number Revision Description ofChanges 00 09/2003 Original Issue
'\\
V
Calculation Page 4 of 83 Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 TABLE OF CONTENTS Page
- 1. PURPOSE 7
- 2. METHOD 7
- 3. ASSUMPTIONS 7
- 4. USE OF COMPUTER CODES 8
S. REACTOR DESCRIPTION 8
5.1 REACTOR AND ASSEMBLY DESIGN INFORMATION FOR 001 15 5.2 GGI CYCLES 2 THROUGH 8 FUEL ASSEMBLY HISTORY 24 5.3 CONROLBLADE INSERTION DATA FOR STATEPOINTS
.48
- 6. MCNP MODEL 57 6.1 MCNP GEOMETRY 57 6.2 MCNP SAMPLE GEOMETRY INPUT 58 6.3 MCNP NON-FUEL MATERIALS 74 6.4 HOMOGENIZED CONTROL BLADE MIXTURE 74
- 7. REStJLTS 78
- 8. REFERENCES 80
- 9. COLD LISTING 82
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit I Document Identifier: 32-5029393-00 TABLES Calculation Page 5 of83 Page Table 1. GGI Critical Configuration at Statepoints 10 Table 2. GG1 Fuel Batch General Description for Cycles 2 through 8 16 Table 3. GGI Reactor Core and Vessel Design Information 16 Table 4. GG1 Reactor Core Information 18 Table 5. GGl Control Blade Technical Information 18 Table 6. GG1 Technical Information for Fuel Types A, B, C, & D 19 Table 7. GGI Technical Information for Fuel Types E, F, G, H, J, K, L, M, & N 20 Table 8. Grand GulfUnit 1Fuel Assembly Rod Pitch and Channel Data 21 Table 9. GG1 Fuel Assembly and Channel Dimensions Summary 22 Table 10. GG1 Smeared Fuel Pellet Densities 23 Table 11. GG1 Assembly Location for "A" Assemblies Cycles 2 - 8 25 Table 12. GG1 Assembly Location for "B" Assemblies Cycles 2 - 8 26 Table 13. GG1 Assembly Location for "c" Assemblies Cycles 2 - 8 27 Table 14. GG1 Assembly Location for "D" and "E" Assemblies Cycles 2 - 8 28 Table 15. GG1 Assembly Location for "0" and "E" Assemblies Cycles 2 - 8 (Cont.)
29 Table 16. GG1 Assembly Location for "F" Assemblies Cycles 2 - 8 30 Table 17. GG1 Assembly Location for "G" Assemblies Cycles 2 - 8
.31 Table 18. GGI Assembly Location for "H" Assemblies Cycles 2 - 8
.32 Table 19. GG1 Assembly Location for "1" Assemblies Cycles 2 - 8 33 Table 20. GG1 Assembly Location for "K" "L" "M" and UN" Assemblies Cycles 2 - 8 34 Table 21. GG1 Nodal Data for Assembly Types A, B, C, and D
.42
'Table 22. GG1 Nodal Data for Assembly Types E, F, G, and H, Large Diameter 43
~ Table 23. GG1 Nodal Data for Assembly Types E, F, G, and H, Small Diameter 44 Tabl~ GG1 Nodal Data for Assembly Types J, K, L, and M, Large Diameter 45 Table 25. GG1 Nodal Data for Assembly Types J, K, L, and M, Small Diameter 46 Table 26. GGI Nodal Data for Assembly Type N, Large Diameter
.47 Table 27. GG1 Nodal Data for Assembly Type N, Small Diameter
.47 Table 28. Spread Sheet giving Homogenized Control Blade Materials 75 Table 29. MCNP Listing ofthe Non-fuel Mixtures 76 Table 30. MCNP Results For Grand GulfUnit 1 Reactivity Analysis 78
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit I Document Identifier: 32-5029393-00 FIGURES Calculation Page 6 of83 Page Figure 1. GGI Assembly and Control Blade Group Locations 11 Figure 2. GG1 Quarter Core Diagram with Vessel and Shroud 12 Figure 3. GG1 Typical Core Cell for 8x8 Fuel Array 13 Figure 4. Typical BWR Control Blade 14 Figure 5. GG1 Cycle 2 Fuel Assembly Identification and Location 35 Figure 6. GG1 Cycle 3 Fuel Assembly Identification and Location 36 Figure 7. GGI Cycle 4 Fuel Assembly Identification and Location
.37 Figure 8. GG1 Cycle 5 Fuel Assembly Identification and Location 38 Figure 9. GGI Cycle 6 Fuel Assembly Identification and Location
.39 Figure 10. 00I Cycle 7 Fuel Assembly Identification and Location
.40 Figure 11. GG1 Cycle 8 Fuel Assembly Identification and Location 41 Figure 12. GGI Control Blade Configuration in Notches Withdrawn (SP5 and SP6)
.49 Figure 13. GGI Control Blade Configuration in Notches Withdrawn (SP7 and SP10) 50 Figure 14. GG1 Control Blade Configuration in Notches Withdrawn (SPll and SPI2)
.51 Figure 15. GG1 Control Blade Configuration in Notches Withdrawn (SP13 and SP14) 52 Figure 16. GGI Control Blade Configuration in Notches Withdrawn (SP15 and SP16) 53 Figure 17. GGI Control Blade Configuration in Notches Withdrawn (SP18 and SP19)
S4 Figure 18. GG1 Control Blade Configuration in Notches Withdrawn (SP20 and SP21) 55 Figure 19. 001 Control Blade Configuration in Notches Withdrawn (SP22 and SP23) 56 Figure 20. BWR 8x8 Assembly - Control Upper Left 60 Figure 21. BWR 8x8 Assembly - Control Upper Right 61 Figure 22. BWR. 8x8 Assembly - Control Lower Right 62 Figure 23. BWR. 8x8 Assembly - Control Lower Left 63 Figure 24. BWR 9x9 Assembly - Control Upper Left 64 Figure 25. BWR 9x9 Assembly - Control Upper Right 65 Figure 26. BWR. 9x9 Assembly - Control Lower Right 66 Figure 27. BWR 9x9 Assembly - Control Lower Left 67 Figure 28. Collapsed 10 Axial Nodes Description for GG1 Assemblies 68 Figure 29. BWR 9X9 Four Assembly Array 69 Figure 30. MCNP Model for GG1 BWR - Axial Slice 70 Figure 31. Standard Gadolinia Fuel Rod Lattice Map for 9X9-8 GAD Rods 71 Figure 32. Standard Gadolinia Fuel Rod Lattice Map for 9X9-9 GAD Rods 71 Figure 33. Standard Gadolinia Fuel Rod Lattice Map For 9X9~1O GAD Rods 72 Figure 34. Standard Gadolinia Fuel Rod Lattice Map For 8x8-S GAD Rods 72 Figure 35. Standard Gadolinia Fuel Rod Lattice Map For 8x8-6 GAD Rods 73 Figure 36. Standard Gadolinia Fuel Rod Lattice Map For 8x8-8 GAD Rods 73
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 1.
PURPOSE Calculation Page 7 of 83 The objective of this calculation is to document the Grand Gulf Unit 1 (GG1) reactivity calculations for sixteen critical statepoints in' cycles 4 through 8. The GG1 reactor is a boiling water reactor (BWR) owned and operated by Entergy Operations Inc. The Commercial Reactor Criticality (CRC) evaluations support the development and validation of the neutronic models used for criticality analyses involving commercial spent nuclear fuel to be placed in a geologic repository. This calculation is performed as part ofthe evaluation in the CRC program.
This report i s an engineering calculation supporting the burnup credit methodology 0 f Yucca Mountain Project (YMP) 2000 (Reference 5 ) and was performed under Framatome ANP Administrative Procedure 0402-01, Preparing and Processing FANP Calculations (Reference 4) and Framatome Quality Management Manual (Reference 8).
2.
METHOD I
The calculational method used to perform the reactivity analysis calculations consists of using the three dimensional MCNP Monte Carlo neutron transport computer code (Reference 1) to analyze the 16 measured critical condition statepoints that occurred in cycles 4 through 8 for the GG1 reactor. The geometry used in the MCNP code was developed to analyze the GGI reactor using half core symmetric geometry.
Each fuel assembly input into the MCNP code has been depleted through its unique operating histories in Reference 2 for each of ten axial nodes in the assemblies.
The fuel isotopic data were calculated at the 16 specific measured zero power critical points in cycles 4 through 8 of GGI for each ofthe ten axial nodes in each ofthe 106 fuel assemblies followed in one-eighth core. Each fuel assembly depletion calculation was based on detailed core follow information found in Reference 3.
3.
ASSUMPTIONS
,I The following assumptions were used for all reactivity calculations.
3.1 It is assumed that half-core synunetry adequately approximates the fuel loading of the core and also adequately represents the control blade insertion for the core. The fuel assembly information was tabulated for only one-eighth of the core. The fuel for the one-eighth can be expanded to half core and will adequately represent the average of the full core. The reason for setting up the halfcore geometry is to better model the non-synunetrical use ofthe control blades in the GGI reactor. This assumption is used throughout this engineering calculation.
3.2 It is assumed that the water density throughout the core is uniform.
This is not exact since the burned fuel is thennally hot and will cause small local temperature and density gradients. Because ofthe large reactor flow rate, these local gradients will be small and tend to average out and the error will be insignificant.
This assumption is used throughout this engineering calculation.
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit I Document Identifier: 32-5029393-00 Calculation Page 8ofS3 3.3 The stainless steel components between the core shroud and the inner surface of the pressure vessel including the jet pumps are neglected.
This is acceptable because neutron importance in this region is extremely small. This assumption is used throughout this engineering calculation.
3.4 The structural components above and below the active fuel including the upper and lower tie plates, core grid and core support plate are homogenized with the moderator to represent these regions for neutron reflection purposes.
These regions have little impact on the reactivity calculations. The moderator in the homogenized material is the most important component for the reflection of neutrons back into the core and the homogenized material is adequate for this purpose.
3.5 The fuel assembly spacer grids have been omitted from the calculations because they occupy a small volume and being made from zircaloy will have very small effects on the reactivity calculations.
3.6 Generic or standard Gadolinia (Gad) fuel rod locations for the 9x9 assemblies were taken from Reference 12 for 8,9, and 10 Gad rods per assembly and locations in the fuel assembly are shown in Figures 31 to 33. Generic patterns must be used in the calculations because of the proprietary nature of Gad rod locations in an assembly. A generic set of Gad rod locations were then developed for the 8x8 fuel assemblies based on the standard patterns used in the 9x9 assemblies. The 8x8 assemblies use 5, 6, or 8 Gad rods per assembly and the generic patterns are shown in Figures 34 to 36. When the Gad fuel is missing for one axial node or more in a single fuel rod, the pattern with one less Gad rod is used. This could cause a change in the Gad rod pattern for those nodes. Tables 21 to 27 give the number of Gad rods for all the different fuel types for each ofthe 10 axial nodes. The reactivity in the assembly and finally in the core is more dependent on the number of Gad rods than their location within the assembly.
This assumption of using standard Gad rod placement by node is considered to introduce negligible error in the results.
3.7 The large diameter fuel r ods and the smaller diameter fuel rods in the 9x9 assemblies were volume averaged to give a single diameter fuel rod that was used in the calculations. Since the quantity of fuel in the assembly is preserved, the assembly reactivity will not be affected significantly.
4.
USE OF COMPUTER CODES The calculations in this file are perfonned using the computer program MCNP (Reference 1) version 4B21 to calculate the Kefi' for the GG1 reactor at specific statepoints. The computer code has been certified according to Framatome ANP procedure 0902-06 (Reference 9).
5.
REACTOR DESCRIPTION Grand Gulf Unit 1 (GG1) is a General Electric boiling water reactor with a rated power of 3833 MWt (Reference 3, p. 2-1). The reactor cores for Cycle 4 through 8 consisted of a mixture of eight hoodred 8x8 and 9x9 fuel assemblies in each cycle.
The MCNP analyses in this file modeled the lower half of the core or 400 fuel assemblies.
Figure 1 shows the lower right
Engineered Systems Project
Title:
Connnercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Calculation Page 9 of83 quarter core arrangement of fuel assemblies and also gives the available control blade locations.
The other lower left quarter of the modeled core is mirror symmetrical to Figure 1. The cylindrical shroud and pressure vessel surround the fuel assemblies array as seen in Figure 2.
Table 1 gives a description ofthe sixteen statepoint configurations that were analyzed. Figure 3 from Reference 3 shows atypical array 0 f four 8x8 fuel rod assemblies 0 r bundles clustered around a control blade and Figure 4 from Reference 3 shows a typical BWR control blade. The 8x8 fuel assemblies are replaced starting in cycle 5 (see Tables 7 and 8) with fresh fuel assemblies that have 9x9 fuel rod arrays.
The 9x9 fuel rod assemblies have the same outer dimensions and occupy the same space as the 8x8 assemblies but have smaller fuel rod diameters
~d a smaller fuel rod pitch within,the assembly.
Each state-point is represented at a specific time in which the reactor goes critical and the power level is zero.
At these critical conditions, the effective multiplication factor (kerr) for the core was measured to be equal to 1.00.
The eRC reactivity evaluation for each of the critical state-points involves the use ofthe MCNP code to calculate the core keff. The objective ofeach eRC state-point evaluation is to determine how close the developed MCNP model predicts the measured reactor core kefi'.
The depletion calculations performed in Reference 2 provides the depleted fuel and burnable poison isotopic compositions that are used in the eRC reactivity calculations (MCNP) reported in this report.
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Table 1. GG1 Critical Configuration at Statepoints Calculation Page 10 of83 Date Shutdown Burnup Moderator Moderator Statepoint History a EFPD Temperature Density b (mo./day/yr.)
(hours)
(MWd/MTU)
(F) g/cm3 Cycle 4 SP5 4/28/89 994 0
0 148.5 0.98897 SP6 5/31189 425 109 4.01 188 0.97393 SP7 8/22/89 205 1998 73.49 221 0.96018 Cycle 5 SP10 11/24/90 1340 0
0 111 1.00191 SP11 12130/90 273 451 16.54 180 0.97710 SP12 5/23/91 114 4042 148.27 225.5 0.95823 SP13 6/15/91 85 4506 165.29 209 0.96531 SP14 8/04/91 185 5550 203.58 174 0.97944 SP15 1/08/92 247 9280 340.41 140 0.99201 Cycle 6 SP16 6/04/92 1160 0
0 136 0.99342 Cycle 7 SP18 11/26/93 1440 0
0 121 0.99858 SP19 4/01/94 139 2970 108.81 406.5 0.85967 SP20 8/27/94 93 6689 245.05 293 0.92622 Cycle 8 SP21 6/09/95 1348 0
0 140 0.99201 SP22 6/13/95 91 0
0 178 0.97788 SP23 7/16/95 106 480 17.59 229 0.95669 Reference 3, Table 4*372, p.4-538 NOTE:
a Shutdown History is time in hours prior to Statepoints.
b Moderator density is calculated using data from Reference 15 at the given temperature and at 1000 psia pressure which is slightly below the full power operating pressure of 1044 psia given in Tables 3 and 4.
Engineered Systems Project Calculation
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Docwnent Identifier: 32-5029393-00 Page 11 of 83 Figure 1. GG1 Assembly and Control Blade Group Locations V
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 8282 A1 A1 82 B2 A1 A1 B2 82
,,;:,~;.
B1 19 A2A2 A2A2 61 61 81 B1 A2A2 A2A2 81 B1 B1 B1 A2A2 A2A2 81 B1 B1 81 A2A2 A2A2
'oNe:'
"t"-..* :
A1 21 B2 B2 B2 B2 A1 A1 A1 A1 B2 B2 B2 B2 A1 A1 A1 A1 B2 B2 8282 A1 A1 A1 A1 B2 B2 B282 J
81 23 A2A2 A2A2 B1 B1 B1 B1 A2A2 A2A2 B1 B1 81 B1 A2A2 A2A2 81 B1 81 81 A2A2 A2A2 B2 B2 A1 A1 82 B2 A1 A1 82 B2 A1 Ai A1 25 8282 A1 A1 82 B2 A1 A1 B2 B2 A1 Al 26 B1 A2A2 A2A2 B1 B1 61 81 A2A2 A2A2 B1 81 81 81 A2A2 A2A2 B1 B1 81 B1 82 B2 A1 A1 B282 A1 Al 8282 Al 29 82 B2 A1 A1 B282 A1 A1 8282 A2A2 A2A2 B1 B1 8181 A2A2 A2A2 30 B1 81 31 32 ;:,:~~~':1Ii";:_;:~'1~i'l Reference 3. Figure 4-1. p.4423 Note: NB indicates Assemblies with ~ Control Blade on any Comer.
Calculation Page 12 of 83 Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Figure 2. GG1 Quarter Core Diagram with Vessel and Shroud
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit I Document Identifier: 32-5029393-00 Figure 3. GG1 Typical Core Cell for 8x8 Fuel Array Calculation Page 13 of83 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
'"' 00000000 00000000 0000'0000 00000000 00000000 00000000 00000000
~
WATER ROO Reference 3, Figure 2-1, p.2-2
Engineered Systems Project Calculation
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Docwnent Identifier: 32-5029393-00 Page 14 ofS3 Figure 4. Typical BWR Control Blade I'
'.I.
I*.
MANDL!
t1,
ILADE tI *
~,
tI,
00 COUPUNG AEL.!ASE HANOI"I Reference 3, Figure 2-2, p.2-3
Engineered Systems Project
Title:
Connnercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Calculation Page 15 of83 5.1 REACTOR AND ASSEMBLY DESIGN INFORMATION FOR GGI The GGI statepoint reactivity calculations require the depletion of fuel assemblies for thirteen different fuel batches.
The fuel design characteristics vary between each fuel batch.
These different fuel batches were referred to in References 2 and 3 and in this file as assembly types A, B, C, D, E, F, G, H, J, K, L, M, and N.
Assembly types A, B, C, and D use 8x8 array of fuel rods while all the remaining types are 9x9 arrays.
The information documented in this section describes the design specifications needed to construct the MCNP geometrical model for the reactor and fuel assemblies required for the Grand GulfUnit 1 CRC evaluations and gives the specifications that were used in Reference 2 to deplete the fuel assemblies to obtain the fuel isotopics used in this analysis. The reactor and fuel assembly input specifications that were obtained from the Grand Gulf site are considered qualified data.
All non-proprietary information was placed into Reference 3.
This data was developed in accordance with an approved quality assurance program that meets the requirements of the Code of Federal Regulations (CFR) 60 Subpart G.
All data given in this report was taken from Reference 3 unless otherwise noted.
Applicable data for each of the thirteen different fuel types is provided in this section.
Reactivity control in the GGI reactor is accomplished by a combination ofcruciform control blades and integral burnable absorbers (Gadolinia bearing fuel rods). The control blades contain a stainless steel clad boron carbide (B4C) absorber material and the integral burnable absorbers were located in the Gadolinia-bearing fuel rods (Gdz03-UOz). The 193 movable control blades are used in the reactivity control system to control the fission rate and fission density.
The Gadolinia burnable absorber material was placed at different axial nodes and radial fuel pin locations (see Tables 21 to 27) throughout the fuel assembly and is used to balance reactivity effects in fresh and partially burned fuel.
Figures 31 to 36 give the Gadolinia rod positions within the fuel assemblies for the different number ofGad rods in an assembly.
General fuel assembly information for each of the thirteen fresh fuel batches placed in cycles 2 through 8 is provided in Table 2 through 10. Cycles 2 and 3 fresh fuel assembly infonnation are included because they are still in the reactor during the depletion of cycles 4 and 5 and are needed for input into the statepoint calculations occurring in cycles 4 and 5. Table 2 (Reference 3, p. 3-1) gives the fuel assembly type and the assembly average enrichment for each fuel batch.
Tables 3 and 4 (Reference 3, p. 2-5 and p. 2-6) provide general core and operation infonnation needed to construct the M CNP input decks.
Table 5 contains the design data for the control blades. Tables 6 through 10 give design information on fuel enrichments, fuel densities, and fuel rod dimensions for all the fuel batches that will be used to perform the statepoint reactivity analyses.
The fuel rod enrichments and dimensions were averaged to give one size fuel rod and a single fuel enrichment for each fuel type. The 9x9 fuel types (E through N) have some large diameter rods and some smaller diameter fuel rods. These two size rods were averaged and only one size rod was used in the calculations. The Gadolinia bearing rods were separate from the non-Gad.
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit I Document Identifier: 32-5029393-00 Calculation Page 16of83 bearing rods. Both Gad and non-Gad rods had the same smeared fuel enrichment but only the Gad rods contained the burnable absorber.
Table 2. GG1 Fuel Batch General Description for Cycles 2 through 8 Cycle Assembly Fuel Type Fuel Batch Avera~ewt%
Number Designation Type 23 U 2
1 A
ENC8x8 2.81 3
2 B
ANF8x8 3.01 3
C ANF8x8 3.01 4
4 D
ANF8x8 3.37 5
E LTA9x9*5 3.25 5
6 F
ANF9x9-5 3.42 7
G ANF9x9-5 3.42 6
8 H
ANF9x9-5 3.38 9
J ANF9x9*5 2.94 7
10 K
SNP9x9-5 3.42 11 L
SNP9x9-5 3.20 8
12 M
SNP9x9-5 3.07 13 N
SNP9x9*5 3.56 Reference 3, p.3-1 Table 3. GG1 Reactor Core and Vessel Design Information General Description Dimension Total number of assemblies 800 Number of fuel rods per assembly 62 or 76 Number of water rods 20r5 Channel 13.246 em wide, 0.3048 em thick Assembly pitch 15.24 em Pin pitch 8x8fuel 1.61544 em 9><9 fuel 1.43002 em Reactor design thermal power 3833 MW Core Inlet temperature 278.9°C Core saturated temperature 287.7°C Core operating pressure 7.20 MPa operating Reference Moderator Density 0.7367 gtem3 Radius of shroud outer diameter 268.29 em Shroud thickness 5.08 em Radius of liner of vessel wall 321.31 em Thickness of liner 0.476 em Vessel wall thickness 16.392 em Radius of insulation liner 351.79 cm Thickness of insulation liner 0.159 cm
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit I Document Identifier: 32-5029393-00 Table 3. GGI Reactor Core and Vessel Design Infonnation (Continued)
Calculation Page 17 of83 Thickness of Insulation 8.571 em General Description Dimension Radius of concrete wall 436.88 em Radius of jet pump and riser to core center 293 em Number of jet pumps 24 Location of jet pumps every 15 degrees Locations of risers every 30 degrees Jet pump Inside diameter (10) 18.212 em Jet pump outside diameter (00) 20.752 em RlserlD 25.40 em Riser 00 28.245 em Reactor Vessel Inner diameter 642.62 em (21ft 1 Inch)
Base metal material SA-302 Grade B Wall thickness 16.393 em (minimum)
Clad material Weld-deposited E-308 Stainless Steel electrode Clad thickness 0.475 em (minimum)
Reactor Internals Material Shroud 304 stainless steel Core top grid and core bottom grid Stainless steel General Description Dimension Fuel support piece 304 stainless steel Control blade guide tubes Stainless steel Incore instrument tubes 304 stainless steel Core Equivalent core diameter 486.41 em Circumscribed core dIameter 501.65 em Core lattice pitch 30.48 em Total fuel assemblies in core 800 Reference 3, p. 2-5
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit I Document Identifier: 32-5029393-00 Table 4. GG1 Reactor Core Information Calculation Page 18 of83 Parameter Dimension Total number of assemblies 800 Number of fuel rods per assembly. axB array / 9x9 array 62/76 Number of water rods, BxB array /9x9 array 2/5 Channel (can) 13.246 em Wide, 0.3048 em thiek Assembly pitch 15.24 em Pin pitch 8x8 array, 9x9 array 1.61544 cm, 1.43002 em Core inlet temperature 551.9 OK, (534.0 OF, 27B.9 °C)
Core saturated temperature 560.7 OK, (549.9 OF, 2B7.7 0C)
Fuel clad temperature (Estimated) 58B.6 oK (600.0 OF, 315.6 0c)
Core operating pressure 7.20 MPa operating (1044psia)
Reference Moderator Density 0.7367 g/cm3 Fuel Clad, Water Rod Clad, Channel Material Zircaloy Reference 3, p. 2-5 Table 5. GG1 Control Blade Technical Information Parameter Value Neutron absorber material B4C (natural boron).
Percent of B4C theoretical density 70 Total blade span tip to tip 24.902 em Total blade support span 3.937 em Active absorber length 364.998 cm (min) 365.76 em (typical)
Sheath material 304 stainless steel Sheath thickness 0.1143 em Blade thickness 0.8331 em Number of B4C rods per blade 72 84C cladding material 304 stainless steel B4C rod 00 0.5588 em B4Crod 10 0.4216 em B4C rod wall thickness 0.06858 em Reference 3, p. 2-6
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit I Document Identifier: 32-5029393-00 Table 6. GG1 Technical Information for Fuel Types A, B, C, & 0 Calculation Page 190f83 Cycle 2 Cycle 3 Cycle 4 Parameter Units Fuel Type "A" Fuel Types IIBn & "Cn Fuel Type "on Pellet Diameter em 1.02997 1.02997 1.02997 (Highest Enrichment)
(Highest EnriChment)
(Highest Enrichment) 1.02743 1.02743 1.02743 (Other Enrichments)
(Other Enrichments)
(Other Enrichments)
Stack Height Density (based on g/cm3 9.82 for highest enriched pellet in batch fuel pellet smeared to cladding 10) 9.77 for other enrichments without Gd
"" (fuel pellet stack 9.87 for natural pellets mass) I (volume within the clad 9.66 for 3 wt % Gd pellets along active fuel length) 9.63 for 4 wt % Gd pellets 9.60 for 5 wt % Gd pellets Pellet Density Theoretical 94.5 94.5 94.5 Density Fuel Cladding 10 cm 1.05156 1.05156 1.05156 Fuel Cladding 00 em 1.22936 1.22936 1.22936 Active Fuel Length em 381.00 381.00 381.00 Plenum Length em 25.46096 25.46096 25.46096 Water Rod 10 em 1.05156 1.05156 1.05156 Water Rod 00 cm 1.22936 1.22936 1.22936 Spacer Capture cm 1.05156 1.05156 1.05156 RadiO Spacer Capture em 1.22936 1.22936 1.22936 Rod 00 Number of Fuel 62 62 62 Rods per Bundle Water Rmds 1
'1 1
SCRs 1
1 1
Reference 3, p2-7
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Calculation Page 20 of 83.
Table 7. GG1 Technical Information for Fuel Types E, F. G. H, J, K, L, M, &N Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Parameter Units Fuel Type Fuel Type Fuel Types Fuel Types Fuel Types "E"
"F" & "G" "H" & uJ" "K" & "l" "M" & "N" Pellet Diameter em 0.95123 (Large) 0.95123 (Large) 0.89535 (Small) 0.89662 (Small)
Stack Height g/cm3 Large Pellets:
Large Pellets:
Density (based on 9.82 (enriched) 9.77 (enriched) fuel pellet 9.89 (natural) 9.77 (natural) smeared to 9.77 (3.0 wt % Gd) 9.73 (3.0 wt % Gd) cladding 10) 9.725 (4.5 wt % Gd) 9.71 (3.5 wt % Gd) 9.695 (5.5 wt % Gd) 9.68 (4.5 wt % Gd)
= (fuel pellet stack 9.65 (7.0 wt % Gd) 9.64 (5.5 wt % Gd) mass) I (volume 9.63 (6.0 wt % Gd) within the clad 9.61 (6.5 wt % Gd) along active fuel 9.59 (7.0 wt % Gd) length)
Small Pellets:
Small Pellets:
9.80 (enriched) 9.77 (enriched) 9.87 (natural) 9.77 (natural) 9.75 (3.a wt % Gd) 9.73 (3.0 wt % Gd) 9.705 (4.5 wt % Gd) 9.72 (3.5 wt % Gd) 9.675 (5.5 wt % Gd) 9.68 (4.5 wt % Gd) 9.63 (7.0 wt % Gd) 9.65 (5.5 wt % Gd) 9.63 (6.0 wt % Gd) 9.61 (6.5 wt % Gd) 9.60 (7.0 wt % Gd)
Yo Pellet Density
!Theoretical 94.5 94.5 Density Fuel Cladding 10
-cm 0.96774 (Large) 0.97028 (Large) 0.91186 (Small) 0.9144 (Small)
Fuel Cladding OD em 1.12522 (Large) 1.12522 (Large) 1.05918 (Small) 1.05918 (Small)
Active Fuel Length em 381.00 381.00 Plenum Length em 24.4348 24.4348 Water Rod ID cm 1.32588 1.32588 Water Rod 00 em 1.38684 1.38684 Spacer Capture em 0.91186 0.9144 RodlD Spacer Capture em 1.05918 1.05918 RodOD Number of Fuel Rods per Bundle 48 (Large) 48 (Large) 28 (Small) 28 (Small)
4 SCRs 1
1 Reference 3, p 2-8
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit I Document Identifier: 32-5029393-00 Calculation Page 21 of83 Table 8. Grand Gulf Unit 1 Fuel Assembly Rod Pitch and Channel Data Cycle Reload Cycle 2 Cycle 3 4
Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Fuel Type(s)
A B&C 0
E F&G H&J K&L M&N Unit Parameter s
Rod Pitch em 1.61544 1.61544 1.61544 1.43002 1.43002 1.43002 1.43002 1.43002 Channel Thickness em 0.3048 0.3048 0.3048 0.3048 0.3048 0.3048 0.3048 0.3048 Channel Inside Width em 13.2461 13.2461 13.2461 13.2461 13.2461 13.2461 13.2461 13.2461 Channel Comer Inside Radius em 0.9652 0.9652 0.9652 0.9652 0.9652 0.9652 0.9652 0.9652 Reference 3, P 2-9
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Calculation Page 22 of 83 Table 9. GG1 Fuel Assembly and Channel Dimensions Summary Assembly Type Assembly Type Assembly Type Parameter (8x8)
(9x9)
(9x9)
A,B,C&D E,F,&G H, J, K, l, M. & N Number of Fuel Rods 62 Number of Fuel Rods I LO 48 48 Number of Fuel Rods. SO 28 28 No. of Water Rods 1
4 4
No. of Spacer Capture Rods (SCR) 1 1
1 Smeared Fuel 00, em 1.05156 Smeared Fuel 00, LO (em) 0.96774 0.97028 Smeared Fuel 00 SO (em) 0.91186 0.9144 Fuel Clad 00 (em) 1.22936 Fuel Clad 00, LD (em) 1.12522 1.12522 Fuel Clad 00. SO (em) 1.05918 1.05918 Fuel Pin Pitch (em) 1.61544 1.43002 1.43002 Fuel Assembly Pitch (em) 15.24 15.24 15.24 Active Fuel Lenath (em) 381.00 381.00 381.00 Pellet Theoretical Densltv %
94.5 94.5 94.5 Water Rod Material Zircaloy Zircaloy Zirealoy Water Rod ID (em) 1.05156 1.32588 1.32588 Water Rod 00 (em) 1.22936 1.38684 1.38684 SCR 10 (em) 1.05156 0.91186 0.9144 SCROD (em) 1.22936 1.05918 1.05918 Water Channel (Can) Material ZlrcaloY Zirealoy Zirealoy Channel Thickness (em) 0.3048 0.3048 0.3048 Channel Inside Width (em) 13.2461 13.2461 13.2461 Channel Outside Width (em) 13.8557 13.8557 13.8557 LD = Large Diameter SD = Small Diameter Note: Smeared Fuel Rod OD equals the Clad ill Reference 3, Section 2
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Table 10. GG1 Smeared Fuel Pellet Densities Calculation Page 23 of83 Parameter A,B,C&D E,F,&G H, J, K, L, M, & N Natural Uranium Pellets. g/cm 3
9.87 Highest Enriched Uranium Pellets. 9/cm3 9.82 All Other Uranium Pellets, 9/cm3 9.77 Uranium rod with 3.0 wt % Gd, g/cm3 9.66 Uranium rod with 4.0 wt % Gd, 9/cm3 9.63 Uranium rod with 5.0 wt % Gd, 9/cm3 9.60 Large Diameter Natural Pellets, g/cm 3
9.89 9.77 large Diameter Enriched Pellet. g/cm 3s 9.82 9.77 large Diameter Pellet with 3.0 wt% Gd. glcm3 9.77 9.73 Large Diameter Pellet with 3.5 wt% Gd, 9/cm3 9.71 Large Diameter Pellet with 4.5 wt% Gd. 9/cm3 9.725 9.68 Large Diameter Pellet with 5.0 wtOA. Gd. 9/cm3 9.710 Large Diameter Pellet with 5.5 wtO/o Gd, g/cm3 9.695 9.64 large Diameter Pellet with 6.0 wt% Gd. 9/cm3 9.680 9.63 Large Diameter Pellet with 6.5 wt% Gd. g/cm3 9.61 large Diameter Pellet with 7.0 wt% Gd. g/cm3 9.65 9.59 Small Diameter Natural Pellets, 9/cm3 9.87 9.77 Small Diameter Enriched Pellets, 9/cm3 9.80 9.77 Small Diameter Pellet with 3.0 wt% Gd, g/cm3 9.75 9.73 Small Diameter Pellet with 3.5 wt% Gd. g/cm3 9.72 Small Diameter Pellet with 4.5 wt% Gd, g/cm3 9.705 9.66 Small Diameter Pellet with 5.0 wt% Gd, 9/cm3 9.69 Small Diameter Pellet with 5.5 wt% Gd. g/cm 3
9.675 9.65 Small Diameter Pellet with 6.0 wt% Gd, 9/cm3 9.66 9.63 Small DIameter Pellet with 6.5 wtOlo Gd, g/cm 3
9.61 Small Diameter Pellet with 7.0 wt% Gd. 9/cm3 9.63 9.60 Reference 3, p 2-7, 2-8
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit I Document Identifier: 32-5029393-00 5.2 GGI CYCLES 2 THROUGH 8 FUEL ASSEMBLY HISTORY Calculation Page 24 of83
/
The GG1 reactor core contains 800 fuel assemblies. The 800 fuel assemblies will be reduced to 400 for the MCNP calculations by modeling only the lower half of the core. The fuel assembly isotopic information from Reference 2 is only supplied for assemblies in one-eighth core and was expanded symmetrically to fill the half core geometry. This reduced the number of fuel isotopic data sets needed for use in MCNP for the 400 fuel assemblies from 400 to 106.
Each of the fuel assemblies was given a unique alphanumeric designation, which was then used in tracking the assembly through its entire period of exposure. This includes both the cycle and location where each fuel assembly was irradiated. Tables 11 through 20 and Figures 5 through 11 from Reference 3 pages 3-9 through 3-25 describe where each unique assembly ill is located in the one-eighth core which can then be expanded to half core. Beginning with fresh fuel type "A" for Cycle 2, each subsequent type of assembly is assigned a unique letter designation ("B" and "C" for fresh fuel in Cycle 3, "D" and "E" for Cycle 4, "F" and "G" for Cycle 5, "H" and "J" for Cycle 6, "K" and "L" for Cycle 7, and "M" and "N" for Cycle 8).
For each fuel type designation, a number is assigned in the ascending order of the fuel assembly number that was loaded in the one-eighth core.
Tables 21 to 26 from Reference 2 give the fuel and Gad rod information by node for each of the fuel types. Figures 31 to 36 show the standard or generic placement of Gadolinia bearing fuel rods within the different fuel assembly types.
In summary, Tables 11 through 26 and Figures 5 through 11 and Figures 31 through 36 provide the following information:
The cycles in which the various fuel assemblies were irradiated, The locations ofthe various fuel assemblies by core map row and column in each cycle for lISth core (see Figure 5 for example),
The assembly identification and fuel type by node and the number and location ofthe Gadolinia rods by node for each fuel type.
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier; 32-5029393-00 Table 11. GG1 Assembly Location for "An Assemblies Cycles 2 - 8 tI Calculation Page 2S of83 Fuel Type Initial Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 CycleS Designation Cycle Location Location Location Location Location Location Location Loaded (lJ)
(iJ)
(I.n lI.n lI.n n.n (IJ)
A1 2
.~.
23,29 20.30 29,18 A2.
2 19,29 30,19 23,20 A3 2
24,28 30,22 29,20 A4 2
18,28 25,20 32,17 A5 2
25,27 30,17 22, 17 AS 2
21,27 18,17 31,20 A7 2
19,27 28,23 29,22 A8 2
24,26 29, 18 30,23 A9 2
18,26 21,28 31,18 A10 2
27.25 30,21 23,22 A11 2
21,25 18,23 30,24 A12 2
29,23 30.20 19,18 A13 2
27,23 19,28 29,25 A14 2
25,23 27,22 32,18 A15 2
23,23 23,28 28,27 A16 2
17,23 22,29 31,17 A17 2
30,22 24,27 25,20 A18 2
28,22 20,25 29,26 A19 2
26,22 22,23 29,27 A20 2
22,22 28,17 31,23 A21 2
18,22 25,22 26,28 A22 2
27,21 27.26 25, 18 A23 2
25,21 22,25 31,22 A24 2
30,20 18,30 21,20 A25 2
28,20 24,29 21,18 A26 2
18,20 27, 18 31,19 A27 2
27, 19 27,28 27,27 A28 2
23,19 29,20 29,24 A29 2
30,18 28,25 26,25 A30 2
22,18 23,30 17,17 A31 2
18, 18 27,20 31,21
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Calculation Page 26 of 83 Table 12. GG1 Assembly Location for "8" Assemblies Cycles 2 - 8 y'
Fuel Type Initial Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Designation Cycle Location Location Location Location Location Location Location Loaded n,n
<I,n n,n n,n n,n (I,n n,n 81 3
21,17 28,21 17,17 82 3
27,17 26, 17 83 3
18,16 25,22 31,21 B4 3
20,18 23,21 24,30 85 3
22,18 22,21 32,17 86 3
24, 18 20, 19 87 3
26, 18 28, 17 20,31 88 3
19,19 21,28 28,17 89 3
21,19 26, 21 26,29 810 3
23, 19 30,21 24,17 811 3
18,20 27,26 25, 18 812 3
20,20 26,23 31,23 813 3
24,20 19,26 31, 19 814 3
26,20 22,25 31,22 815 3
17,21 26,27 24,21 816 3
19,21 26,19 17,31 817 3
23,21 30, 19 21,24 818 3
25,21 27,18 31,17 819 3
27,21 20, 17 27,29 820 3
16,22 21,26 29,26 821 3
22,22 30,22 18,19 822 3
19,23 28,25 18,25 823 3
21,23 23,26 29,27 824 3
18,24 24,17 825 3
20,24 30, 17 24,23 826 3
22,24 17,20 32,18 827 3
24,24 26,28 23,20 828 3
26,24 23,18 829 3
28,24 24,19 27,26 830 3
19,25 19,30 26,17 831 3
21,25 18,27 30,24 832 3
27,25 20,30 22,17 833 3
20,26 27,22 21,31 834 3
24,26 28,26 19,21 835 3
19,27 18,17 18,32 836 3
21,27 30, 18 17,26 837 3
25,27 30,20 19, 18
Engineered Systems Project Calculation
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Docwnent Identifier: 32-5029393-00 Page 27 of 83 Table 13. GG1 Assembly Location for UC" Assemblies Cycles 2 - 8 Fuel Type Initial Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Designatio Cycle Location Location Location Location Location Location Location n
Loaded (IJ)
(lJ)
(lJ)
(IJ)
(lJ)
(IJ)
(I,j)
C1 3
19,17 28,23 20,29 C2 3
29,17 27,24 29.20 C3 3
17,19 25,24 25.29 C4 3
28,20 17.30 26.23 C5 3
21,21 27.20 18.31 C6 3
29.21 24.21 17.28 C7 3
26.22 19,28 31.18 C8 3
23,23 21.19 31.20 C9 3
27,23 23,24 28,27 C10 3
25.25 23,28 29,22 C11 3
22,26 28,19 29.25 C12 3
23,27 24,23 28,28 C13 3
22,28 22.19 17.32 C14 3
17,29 23.29 21.19 C15 3
19,29 29,23 17,22 C16 3
21,29 21,24 28,19
Epgineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Calculation Page 28 of83 Table 14. GG1 Assembly Location for "on and "En Assemblies Cycles 2 - 8 I
Fuel Type Initial Cycle 2 Cycle 3 Cycle 4 Cycle 5 CycleS Cycle 7 Cycle 8 Designation Cycle Location Location Location Location Location Location Location Loaded (lJ)
(lJ)
(I,n lI,n lI,n n,n (l,n 01 4
19,17 18,29 27,26 02 4
21,17 27,20 29,26 03 4
23,17 30,23
.18,20 04 4
25,17 24,25 05 4
27,17 19,22 32,17 06 4
29,17 22,21 31,17 07 4
18,18 25,20 08 4
- 20. 18
- 27. 18 18,32 09 4
22, 18 29,24 22,27 010 4
24,18 24.29 26,25 011 4
26, 18 17, 18 17, 32 012 4
28, 18 25,22 32,18 013 4
19, 19 19,26 014 4
23, 19 25,28 29, 17 015 4
25, 19 22,30 20,27 016 4
27,19 26,19 29,27 017 4
29, 19 24,27 29,18 018 4
20.20 30, 19 30,18 019 4
22,20 21,28 30,23 020 4
24,20 30,21 27,22 021 4
26,20 26,28 18,27 022 4
28,20 21,23 29,25 023 4
21,21 27,22 21.31 024 4
25,21 20,30 25,26 025 4
27,21 20,25 026 4
29,21 17,20 31,18 027 4
18,22 28,23 24,27 028 4
22,22 21,20 27,29 029 4
24.22 27,27 27,18 030 4
26,22 28,21 31.21
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Calculation Page 29 of 83 Table 15. GG1 Assembly Location for"D" and OlE" Assemblies Cycles 2 - 8 (Cant.)
Fuel Type Initial Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Designation Cycle Location Location Location Location Location Location LocatIon Loaded (I,n u,n (I,n (I,n (I,n (I,n (I,n 031 4
28,22 21,26 31,20 032 4
17.23 23,30
- 19. 19 033 4
19,23 28.25 29.22 034 4
23,23 29,18 27,24 035 4
25,23 30, 18 17,29 036 4
27,23 23, 18 26,26 037 4
18,24 30,22 20, 18 038 4
22,24 28,26 27.20 039 4
24.24 18,30 29,20 040 4
26,24 19,24 23,31 041 4
28,24 18,21 20,29 042 4
17.25.
25,24 22,31 043 4
19,25 30,20 17,17 044 4
21.25 21.30 28,28 045 4
25,25
- 24. 19 30,24 046 4
27,25 27.24 22.29 047 4
18,26 30, 17 18,31 04B 4
17.27 26.25 31,19 049 4
19.27 22, 19 24.30 050 4
21,27 18.17 20,31 051 4
25,27
- 20. 19 29,24 052 4
18,28 23,22 31,22 053 4
20,28 18,23 31,23 054 4
22,28 23,21 19.31 055 4
24,28 21,18 21,30 056 4
17,29 26,21 23,30 057 4
21,29 20, 17 30,21 E1 4
26,26 19,20 25,25
Engineered Systems Project Calculation
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Page 30 of 83 Table 16. GG1 Assembly Location for "F" Assemblies Cycles 2 - 8 f!
Fuel Type Initial Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Designation Cycle Location Location Location Location Location Location Location Loaded (Ij) o.n (lj)
(I,n n.n n.n n,n F1 5
23,17 18,19
~
F2 5
25,17 21,22 22,31 F3 5
27,17 18,23 25,29 F4 5
29,17 30,20 20,25 F5 5
18,18 23,20 19,31 F6 5
20,18 19,20 31,23 F7 5
24,18 18,21 28,26 Fa 5
28,18 28,25 27, 18 F9 5
19,19 23, 18 28,27 F10 5
25,19 19,26 27,28 F11 5
29, 19 28,23 17,17 F12 5
18,20 20,19 32, 18 F13 5
22,20 24,19 17, 31 F14 5
24.20 23,24 18,32 F15 5
28,20 22,30 17,20 F16 5
25,21 19,22 28,28 F17 5
29.21 30, 17 25.20 F18 5
20,22 19,18 30,24 F19 5
24.22 19,24 F20 5
28.22 23,26 27,26 F21 5
17,23 21, 18 F22 5
25,23 18.25 F23 5
27,23 24,25 29,24 F24 5
29,23 17,28 20.27 F25 5
18,24 22, 17 17.32 F26 5
20,24 24,23 F27 5
22,24 26, 19 29,25 F28 5
28,24 19,30 27,22 F29 5
17,25 25,18 31,21 F30 5
19,25 22,19 29,27 F31 5
23,25 22,21 21,31 F32 5
27,25 27,27 24,24 F33 5
26,26 28,19 24,27 F34 5
23.27 25,24 18,30 F35 5
25,27 19,28 29, 18 F36 5
18.28 30,22 20,17 F37 5
22,28 26,23 23,29 F38 5
19,29 23,28 27,24 F39 5
21,29 30, 19 25,22 F40 5
23,29 28,17 27,20
Engineered Systems Project
Title:
ConunerciaI Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Calculation Page 31 of83 v' Table 17. GG1 Assembly Location for "G" Assemblies Cycles 2 - 8 Fuel Type Initial Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 CycleS Designation Cycle Location Location Location Location Location Location Location Loaded n.n (I.n (IJ)
(lj)
(I,n n.n (lJ)
G1 5
19,17 27,28 19,20 G2 5
21.17 20,25 29,26 G3 5
22,18 17,20 31,19 G4 5
26, 18 17,26 24,29 G5 5
17,19 21,26 31, 18 G6 5
23,19 20,17 26.28 G7 5
27,19 28,21 18,29 G8 5
20,20 21,20 31,20 G9 5
26,20 22,25 24,30 G10 5
17.21 25,20 30,23 G11 5
21.21 20,21 18,31 G12 5
27,21 21,28 29,23 G13 5
22,22 22,23 23.30 G14 5
26,22 17, 18 G15 5
19,23 24.21 31,22 G16 5
23,23 26.17 30, 18 G17 5
24,24 18.17 G18 5
26,24 28.26 18.25 G19 5
25,25 28,27 20.19 G20 5
18.26 24,17 31.17 G21 5
20,26 23,22 27.29 G22 5
22,26 25,22 23.31 G23 5
24,26 26,28 25.18 G24 5
19,27 26,21 26.27 G25 5
21,27 17.24 32.17
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Calculation Page 32 of83 Table 18. GG1 Assembly Location for UH" Assemblies Cycles 2 - 8 rJ Fuel Type Initial Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Designation Cycle Location Location Location Location Location Location Location Loaded (lJ)
(j,n n,H (I,n li,n ll,n n,n H1 6
28, 18 26,23 31,19 H2 6
27, 19 21,26 31,17 H3 6
29, 19 27,27 17,17 H4 6
28,20 28, 17 31,18 H5 6
27,21 26, 19 23,30 H6 6
29,21 25,26 29, 18 H7 6
28,22 28,25 25, 18 H8 6
27,23 30,22 22,25 H9 6
29,23 19,28 27,24 H10 6
24,24 24, 19 29,24 H11 6
26,24 23,26 19,31 H12 6
28,24 21,28 29,,20 H13 6
27,25 23,28 19,18 H14 6
24,26 23,24 29,25 H15 6
21,27 26,21 17,31 H16 6
25,27 28,23 18,19 H17 6
18,28 19,26 30,23 H18 6
20,28 24,23 25,29 H19 6
22,28 22,30 25,22 H2O 6
24,28 28,21 20,29 H21 6
21,29 26,25 18,29 H22 6
23,29 28, 19 24,27
Engineered Systems Project Calculation
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit I Document Identifier: 32-5029393-00 Page 33 of83 Table 19. GG1 Assembly Location for "J" Assemblies Cycles 2 - 8 I Fuel Type Initial Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 CycleS Designation Cycle Location Location Location Location Location Location Location Loaded (lJ)
(lj)
(I,n (I,n (I,n (I,n (I,n J1 6
19,17 30,21 20,27 J2 6
21,17 21,22 28,28 J3 6
23, 17 20,21 31,20 J4 6
25,17 21,18 29,26 J5 6
27,17 17,18.
J6 6
18,18 30, 19 18,27 J7 6
22,18 22, 17 27,29 J8 6
24,18 18,21 J9 6
26,18 21,24 28,27 J10 6
17, 19 21,30 27,20 J11 6
21,19 28,24 22,27 J12 6
23,19 17,22 29,27 J13 6
25, 19 24,21 J14 6
20,20 23,20 23,31 J15 6
22,20 19,22 31,21 J16 6
24,20 24,28 27,22 J17 6
26,20 21,20 20,31 J18 6
19,21 22,19 21,31 J19 6
21,21 18,19 J20 6
23,21 22,21 J21 6
25,21 25,24 26,28 J22 6
18,22 24,25 28,26 J23 6
22,22 26,17 17,32 J24 6
24,22 30,17 27,28 J25 6
26,22 26,26 30,24 J26 6
17,23 30,20 25,20 J27 6
19,23 17,26 32,17 J28 6
21,23 24, 17 J29 6
23,23 22,29 24,25 J30 6
25,23 23,18 32, 18 J31 6
20,24 29,20 31,22 J32 6
17,25 29,22 25,24 J33 6
19,25 19,30 27, 18 J34 6
21,25 17,30 21,21 J35 6
23,25 20,23 31,23 J36 6
18,26 23,22 J37 6
20,26 19,18 J38 6
17,27 18,17
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Calculation Page 34 of 83 iJ Table 20. GG1 Assembly Location for uK" "L" KM" and "N" Assemblies Cycles 2 - 8 cJ K Assemblies L Assemblies M and N Assemblies Initial Cycle 7 Cycle 8 Initial Cycle 7 Cycle 8 Initial Cycle 8 Fuel Cycle Location Location Fuel Cycle Location Location Fuel Cycle Location Designation Loaded (I, j)
(i, j)
Designation Loaded (i, J)
(I, j) besignatlon Loaded (I, J)
K1 7
19 17 30 21 L1 7
23, 17 23.20 M1 8
29 17 K2 7
21 17 24, 19 L2 7
25 17 19,22 M2 8
20 18 K3 7
18,18 17,30 L3 7
27, 17 24 17 M3 8
22 18 K4 7
20 18 26,25 L4 7
29, 17 17 26 M4 8
24 18 K5 7
26, 18 28 24 L5 7
22,18 22,29 M5 8
21 19 K6 7
28,18 25,28 L6 7
24 18 19,26 M6 8
23,19 K7 7
19,19 28,17 L7 7
21, 19 20 17 M7 8
20 20 K8 7
20 20 30 17 La 7
23, 19 19 20 M8 8
22,20 K9 7
24,20 21,28 L9 7
25,19 20,23 M9 8
23.21 K10 7
26 20 21 20 L10 7
27 19 24,21 M10 8
22 22 K11 7
28 20 26,21 L11 7
29,19 30 20 M11 8
24,22 K12 7
22 22 17 28 l12 7
22 20 23 18 M12 8
28 22 K13 7
24 22 23 28 L13 7
21,21 26 27 M13 8
23 23 K14 7
26,22 19,28 L14 7
23,21 23,24 M14 8
27 25 K15 7
20,24 28.21 L15 7
25,21 17 22 M15 a
19 17 K16 7
22 24 28,23 L16 7
27 21 18,21 M16 8
21,17 K17 7
26,24 19 30 L17 7
29,21 26,23 M17 8
23 17 K18 7
22 26 28, 19 L18 7
18 22 29,22 M18 8
25 17 K19 7
24,26 30, 19 L19 7
28,22 22,30 Mig 8
27, 17 K20 7
18 28 28,25 L20 7
17 23 22,21 N1 8
27, 19 L21 7
19,23 20,19 N2 8
29, 19 122 7
21,23 24 23 N3 8
24,20 L23 7
23,23 27,26 N4 8
26 20 L24 7
25 23 22,23 N5 8
28.20 L25 7
27,23 17, 18 N6 8
25 21 L26 7
18 24 26,19 N7 8
27,21 L27 7
17.25 22 19 N8 8
29 21 L28 7
21.25 22,17 N9 8
26 22 L29 7
23,25 23,22 N10 8
25 23 L30 7
25 25 27 27 N11 8
27 23 L31 7
27,25 18,30 N12 8
29 23 L32 7
21 27 21 18 N13 8
24 24 L33 7
23 27 18.17 N14 8
26 24 L34 7
25,27 30 18 N15 8
25,25 L35 7
22 28 30,22 NiB 8
26 26 L36 7
17,29 26 17 N17 8
18,18 N18 8
26 18 N19 8
28 18 N20 8
19 19 N21 8
25 19
Engineered Systems Project Calculation
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Page 35 of83 Figure 5. GG1 Cycle 2 Fuel Assembly Identification and Location 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 17 A29 A30 18 i A31 19 ~_LI----+_-+_-+-_+-A2_8-t-_+----iI---+_A2_7-+-_+-_t----+_-i 20L __...L~~-..
+-_-+_-+_-+_-+_-+_-+_-t-_-+-
A2 5
A2 4+-_-f i '
I
- -6-+ 1
--+A2-0-+--+-......_A2_3-+-A-19-t_A2_2-t-A-1-8+--+-A-1-7+--t
...._......_+._-_ __L_****...l*_****..******r***..****_..I-- -+--+--+--+--+--+--+---1---1 231 ~:~_.L..__ l..__I j
_.._..L _ A_1_5-t-_+-A_14-+_
A_1_3+-_ A_1_2
_+-........
- ~~W--I-I-+--+--+--f---+--+--..I l...._*_*-t***_**_*+..*__**+*_*....*..+*_**_*_*~**_*_*+***....***..***r**..******..**t-.---+----+-A_10-+---+---t 261_~~_*_~+----+_-+-_+---I
- r-t~+A+_~H+~-H--!-i-+--+-----
29r+'t LA21-n-~l-i~
30 l****_***_****t--*_*I---..-r*--*--r..*--*l-*i-..**..**-t--**_**_*t-..*..*****..l J
I..*******..****..****_***_..r..__.._*~....*.._***-t**...._*.._**f--_*j_***_********t....**....*******l 31 L.. _l.._ _~_ _.l.. _J._..__ L__..J
..J 321... _J..._J o
Fuel Assembly Designation (Ai are fresh fuel in Cycle 2)
Engineered Systems Project Calculation
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit I Document Identifier: 32-5029393-00 Page 36 of 83 Figure 6. GG1 Cycle 3 Fuel Assembly Identification and location 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 A20 C2 A5 AS A2 C4 A28 A12 C6 A10 A3 A7 829 A29 82 B19 A22 A14 C7 814 A31 A4 A2i 818 813 817 810 C5 81 C1 A6 17 1I--+--+--I--I----.;I--......,I-......,f---I--+--+--+--+--+--+--+-""""
18 i 83 84 85 86 87 A26 l***..*-*********t---I--..............-~---+-+-+--+---+--+---+--+---+--+-
- ~-I'-;;;, B8 812 89 I
,...-...-.........*..-..r*-..-..+--I---II--......,I-......,f----I--+--+--+--+--+--+--i 21 I 8151 816 I 1
- +..*..*_
-J
,I----II---+--+--_+_-+--+---f--+--+---+-~
22 !
i 820 I
I 821 I!
I 1
- r~~ft;,~-+l*_C_8-+-
8 2
7
+-- 8 2
8+-C_9-+-_+-_J.---+_-.l l*..-..-T-*~....*--*-r-*--..-+_..-*r-*-....l....-......-**...
! --+--+----1--+--+--...............
25~-+-eL~~.I~-I-+--
..""_C_10-+_-+_83_2-+_-+--C 26 'I' l 1 IB33 !
! C11 I i B34 I I
1 I
i 271*..****........*..* ****..I*..;;~*..r*....*..*+~;~..T-***_****t""~~*;T~~-; I..*~;;..I 1** *..*..**_*,
_ t"- __..j...__l.- - ~.._+ -t "1"
- _..**t-*..* **,...*--+---+--'
281-4~t'..-*..*-*I*..-~~.Jr*~~-L~~-Ll-.....
29! Ci4!
I C15 i Ci6 I A16 i IA25 I I
I I
30 1- -..*.. i..;~..r *---t*~~ t*- *.._*..*t* *..r*~;~-*r*..-*-r *
~ ___ _l 311~
l,..*_*_*..-+...._*-..~*........_..----_.._..........***__........*_...._-
321......_.....L.........J o Fuel Assembly Designation (BI and CI are fresh fuel in Cycle 3)
Engineered Systems Project Calculation
Title:
Conunercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Page 37 of83 Figure 7. GG1 Cycle 4 Fuel Assembly Identification and Location 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 A30 B35 01 B19 02 A5 03 B24 D4 B2 05 B7 06 B25 M6 A4 07 A12 08 A25 09 828 010 A22 011 818 012 Ai 836 A9 A14 I
013 B6 C8 C13 014 B29 015 816 016 C11 017 817 A26 I-~t-I 018 A24 019 A2 020 A17 021 C5 022 A3 837 A6 I******..***..*..*t***..*..**"-I*'..
I I
r I
023 85 B4 C6 024 89 025 81 026 810 A31 r--1-j-*-i--
I 027iii 028 A10 029 B3 030 B33 031 A7 821 A23 1..._.._....1
........__.....,...........,,'1.._.._....1.._.._...
I032 I I033 I I
034 C12 035 812 036 C1 C15 A8 A20 r-........T~;;**r*....*-....*l-*-......r~16T~~;..
C9 039 C3 040 C2 041 A28 A11
!--t._-~.~"T-+'
I 042 [
1 043 I044 ~14 I
045 A29 046 822 A13 l*........*_*~..*......***_+*......
,_.._.+.....-
I......_*_*t-**..
ID47l 613 I I 820 I I 623 I E1 811 634 A18 I
,I.,*,
,...............+......_..........*........*..*t-..*_......t..*..*..........f*..*...._..*...L*........*--f_.._*..t-*
I048 I 831 I049 i I 0501 I I I 051 815 A27 A15 A19
!..........*.._*t-*_****....+..........*..*+*..*..**..**..-t-...._**.._*..............+..............,--._....["..._. '"-........... !
I I 052 C7 I0531 88 !054 IC10 I 055 I 827 I A21
~....*..*...._..t..*_**..*...... *..*_....-4.._*....*....**..__..*-._......_...~_.._._.. -...................._.......J................_................""-
23 24 26 20 22 18 21 19 25 17 27 28 31 1 I
I I
I j I
............._.+.._.._
~
_.J.._
L _..L...............
~
32L. J
_J o Fuel Assembly Designation (01 and EI are fresh fuel In Cycle 4)
Engineered Systems Project Calculation
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit I Document Identifier: 32-5029393-00 Page 38 of 83 Figure 8. GG1 Cycle 5 Fuel Assembly Identification and Location 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 81 050 G1 057 G2 832 F1 810 F2 830 F3 88 F4 047 818 85 I 011 837 F6 055 G3 036 F7 811 G4 08 Fa 034 035 C7 826 F5
"-"-"-"_*F9 051 C14 049 G6 045 F10 016 G7 C16 F11 018 813 026 I F12 I E1 G8 028 F13 827 F14 D7 G9 02 F15 C2 043 C8 1
1 t.********..****.........*..*****1..*_.._._*..
IG10I041 I834 I G11 06 054 815 F16 056 G12 030 F17 020 83
"'-"'-'r"""'-'"~'''-1-'-''''''''
! C15 i I 05 i F18 I G13 052 F19 012 G14 023 F20 C10 037 814 I
t I
I l
1-....*--****....*..*.......***"[*..**..*..*....t*_..**_..*...........
IF21 ! 053 IG15 I
!022 I G16 825 F22 C4 F23 027 F24 03 812 r.............r;;~T~~~*..;;~i..~~*;t;;;*..i G17 042 G18 046 F28 09 831 I
I i i I
t**..*****......t*...*_*..*..*..r..*......***..****....**_**...r-..***_****~...._**..*..i..*****__*,
IF29 I 622 1 F30I025 I I
I F31 I 04 G19 048 F32 033 C11 r..****....-r*....*..**--r....***........l--.....*.....*t*.._****_....r**_*-l-""-""'-r--'
i F33 829 038 820 l...~~~-~ G~~.J-~~=..J..~.~.~...l..~~
1 J.~..~~-L-............L~.~:.J....._...__..
I I
I I
! G24 I G25 i I F34 I 017 I F35 I 029 C9 823
~~;t-----j;;1-;~1 C12 I*........*..*...*.._..*..__*..~**....****_*..l-**..*..**..*t...........**..*~..*...._..i**..............t............***L_*-l...---..t*_-_*
1
~
I I
L......_.. _.~....l.~~.-L..:.~-.l...~~ 1_.............l....~~~...L~..~.~L~.~..J._..~=.._L~~.~...1 J
I I
21 26 22 23 24 20 19 25 18 17 27 28 29
- I_~~~J L- _t--.__._~_
.L l_
_"'"..__.J 321 C13 1 835 I 1..
.1.._._
1 o
Fuel Assembly Designation (FI and GI are fresh fuel in Cycle 5)
Engineered Systems Project Calculation
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32*5029393-00 Page 39 of83 Figure 9. GG1 Cycle 6 Fuel Assembly Identification and Location 014 F17 06 05 017 018 026 012 H3 F39 048 039 F4 031 H6 057 030 033 F36 D52 H9 019 053 051 045 022 02 016 17 18 19 20 21 22 23 24 25 26 27 28 29 30
'31 32 171 043 G17 J1 G6 J2 F25 J3 G20 J4 GiS J5 F40 181...~_~.~..
J6 FiB 037 F21 J7 F9 48 F29 J9 029 Hi I
191 J10 I F1 032 F12 J11 F3D J12 F13 J13 F27 H2 F33 20 1***~~""i""~;**"1 F6 J14 G8 J15 F5 J16 G10 J17 038 H4 21 t1~..:.~
J19
.31 J20 G15 J21 G24 H5 G7 221 IJ22 IF16 I i F2 J23 G21 J24 G22 J25 020 H7 j..*_......***+.**_**_"j***_..****-j-*_*..**..t..*...._**-t---+--+--+--+--+--+--+--+--+--t j :~ J31~-! ;:: ::: ;: ::: :: :::
j*--**_..r-...........t*..*__..j'**..** *..*+..*_..*_..t-.._..-i*_.._..*+-+--+---+--+--+---+-_....
251!'....~:~*..L~.~_1.~.~~J G2 TI..:..:~..L~~~!._J3=_L.~~=... E1 010 H13 F8 I
26 1 G4 IJ361 F10 I J37 ! G5 1 1
F20 IH141 024 036 01 G18
!..*..* -t.._*_*_*r ** *i-..*..**- *..**..*..* "-"",, **_..*_* t..*
t _* t--I-~I--~I--t 27 i J38 I021 I i 015 IH1s1 09 I I027 IH16.
F32 Gi9 28~r;,;t;;~~;;-.G1 044 1*....*-*.... _..***_*..+_*..*..*.....ll...--....-t........_......L.._.......r-.._..+..__..J I
I 31I I 047 I054 050 I 023 I 042 040 I
.................f
_.~_._
- .!..._ _ l...__.._ l.....,*..-..__._
.J 321 011 I 08 !
L
_L J
o Fuel Assembly Designation (HI and JI are fresh fuel in Cycle 6)
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gul~ Unit 1 Docwnent Identifier: 32-5029393-00 Calculation Page 40 of 83 Figure 10. GG1 Cycle 7 Fuel Assembly Identification and Location 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 17 F11 J38 K1 F36 K2 J7 L1 J28 L2 J23 L3 H4 L4 J24 G20 G25 181 J5 K3 J37 K4 J4 l5 J30 L6 G23 K5 FB K6 F35 G16 G5 F12
!.....""...-,.t--.......-t----t--t----+--+---+--+---+-+--+-+--+-o+---"
19 1 IJ19 K7 G19 L7 J18 La H10 L9 H5 L10 H22 L11 J6 G3
- ..**_""..t*,,_**....*-*~......,I----t~--t--+--+--+---+--+---t---+--+--+--i 20 F15 I
. G1 K8 J17 L12 J14 K9 F17 K10 F40 K11 J31 J26 G8 211-t;t-1 J3 l13 J2j) l14 J13 l15 H15 l16 H20 l17 J1 F29 22~
K12 J36 K13 F39 K14 F28 l19 J32 H8 G15
- r~~1.t~~I~: :: :: :~ :: ::: :: :::
F6 25 r;:;;l;,;f]-*;~***r~;..*r**..**..*....*1....~~*..i J22 L30 H21 L31 H7 F27
...." *..t***__
l*_*** t..******-1--t* _ 1--......---+--r---+---I 26 J27 I H17/
H2 IK18 I H11 I K191 H6 J25 F20 F7 G2
--~I*- -j--l-----f-l-
- ~--FH9-rr~j-J*~+~+~~~I:: :.:
F30 29t~ttJj~~~~=bJ
- ~~I~~:;tf*~~+~J
~
_.f' _~
-.....l__**..J 321 ~~.~..L.~.~.~
o Fuel Assembly Designation (KI and LI are fresh fuel in Cycle 7)
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit I Document Identifier: 32*5029393*00 Calculation Page 41 of83 Figure 11. GG1 Cycle 8 Fuel Assembly Identification and Location 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 27 25 17 18 19 20 21 22 23 24 26 H3 L33 M15 L7 Mi6 128 M17 L3 M18 L36 Mi9 K7 M1 K8 H2 J27 I L25 N17 H13 M2 L32 M3 L12 M4 H7 NiB J33 Ni9 H6 L34 H4 J30 I
I I-_...........~~~..~...l N20 L21 M5 L27 M6 K2 N21 126 N1 Ki8 N2 Ki9 Hi I
I I L8 M7 Ki0 M8 L1 N3 J26 N4 J10 N5 H12 L11 J3
"---rL161...._........*
J34 L20 M9 Li0 N6 Kii N7 K15 N8 Ki J15 I..***_..*_**t-****......_*t.._....._...~_.............
IL15 I I L2 L
Mi0 129 M1i Hi9 N9 J16 Mi2 L18 L35 J31
,...._**_..f-..*_...._j-.._......*- -_...........*..........1
! Ii. L9 I IL24 Mi3 122 Ni0 L17 Ni1 Ki6 Ni2 H17 J35 r~~'
I I
I i
I L14 Ni3 J32 N14 H9 K5 Hi0 J25 r-r-r-,-t-Ij-I J29 N15 K4 M14 K20 Hi4 I****_..........t-.._........t'..*_-_*,-*..__**_L..__......L-._......~.......-.....)..................
I L4 I I L6 I I I
I I
I Ni6 123 J22 J4 1......_..*....I*..~;-*t-**--r..~*~-..T....-~*~*~--......*i*..~~;-*r..
I L13 L30 J9 Ji2 I
t-
~
L 1 I i i I
........_....+.........................-...................._......*.._*.._;-*...._****t-*_*-r-.._*1*.._....*....**
~_~-+~~-+ K6~~_I~
J2-I 1 H2i.
H20' L5!
I
.Hi8 I J7 o Fuel Assembly Designation (MI and Nl are fresh fuel in Cycle B)
Engineered Systems Project Calculation
Title:
Conunercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Page 42 of83 Table 21. GG1 Nodal Data for Assembly Types A, 8, C, and D I Assy.
- of U235
- of high U02
- of
- Gd2O, U02(Gd)
Node Twe 10 Urods wt%
Enriched pins alec Gd rods wt'Yo alec Ht (em)
Axxn01 57 0.71 0
9.87 5
0.0 9.87 15.24 Axxn02 57 2.99 20 9.788 5
3.0 9.66 60.96 Axxn03 57 2.99 20 9.788 5
3.0 9.66 45.72 Axxn04 57 2.99 20 9.788 5
3.0 9.66 45.72 Axxn05 57 2.99 20 9.788 5
3.0 9.66 45.72 Axxn06 57 2.99 20 9.788 5
3.0 9.66 45.72 Axxn07 57 2.99 20 9.788 5
3.0 9.66 45.72 Axxn08 57 2.99 20 9.788 5
3.0 9.66 30.48 Axxn09 57 2.99 20 9.788 5
3.0 9.66 30.48 Axxnl0 57 0.71 0
9.87 5
0.0 9.87 15.24 Bxxn01 54 0.71 0
9.87 8
0.0 9.87 15.24 Bxxn02 54 3.21 20 9.789 8
4.0 9.63 60.96 Bxxn03 54 3.21 20 9.789 8
4.0 9.63 45.72 Bxxn04 54 3.21 20 9.789 8
4.0 9.63 45.72 Bxxn05 54 3.21 20 9.789 8
4.0 9.63 45.72 Bxxn06 54 3.21 20 9.789 B
4.0 9.63 45.72 Bxxn07 54 3.21 20 9.789 8
4.0 9.63 45.72 Bxxn08 54 3.21 20 9.789 8
4.0 9.63 30.48 Bxxn09 54 3.21 20 9.789 8
4.0 9.63 30.48 Bxxn10 54 0.71 0
9.87 8
0.0 9.87 15.24 Cxxn01 56 0.71 0
9.87 6
0.0 9.87 15.24 Cxxn02 56 3.21 20 9.788 6
4.0 9.63 60.96 Cxxn03 56 3.21 20 9.788 6
4.0 9.63 45.72 Cxxn04 56 3.21 20 9.788 6
4.0 9.63 45.72 Cxxn05 56 3.21 20 9.788 6
4.0 9.63 45.72 Cxxn06 56 3.21 20 9.788 6
4.0 9.63 45.72 Cxxn07 56 3.21 20 9.788 6
4.0 9.63 45.72 Cxxn08 56 3.21 20 9.788 6
4.0 9.63 30.48 Cxxn09 56 3.21 20 9.788 6
4.0 9.63 30.48 Cxxn10 56 0.71 0
9.87 6
0.0 9.87 15.24 Dxxn01 54 0.71 0
9.87 8
0.0 9.87 15.24 Dxxn02 54 3.61 20 9.789 8
5.0 9.60 60.96 DxxnQ3 54 3.61 20 9.789 8
5.0 9.60 45.72 Dxxn04 54 3.61 20 9.789 8
5.0 9.60 45.72 Dxxn05 54 3.61 20 9.789 8
5.0 9.60 45.72 Dxxn06 54 3.61 20 9.789 8
5.0 9.60 45.72 Dxxn07 54 3.61 20 9.789 8
5.0 9.60 45.72 Dxxn08 54 3.61 20 9.789 8
4.0 9.63 30.48 Dxxn09 54 3.61 20 9.789 8
4.0 9.63 30.48 Dxxn10 54 0.71 0
9.87 8
0.0 9.87 15.24 Reference 2, Table 15
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit I Document Identifier: 32-5029393-00 Calculation Page 43 of83 Table 22. OGI Nodal Data for Assembly Types E, F, 0, and H, Large Diameter I
Assy.
- ofLD U235 U02
- ofLD Gd203 Gd rods Node Twe ID U rods wt%
glee Gd rods wt%
glee Ht (em)
Exxn01 44 0.71 9.89 4
0.0 9.89 15.24 Exxn02 44 3.47 9.82 4
6.0 9.68 60.96 Exxn03 44 3.47 9.82 4
6.0 9.68 45.72 Exxn04 44 3.47 9.82 4
6.0 9.68 45.72 Exxn05 44 3.47 9.82 4
6.0 9.68 45.72 Exxn06 44 3.47 9.82 4
6.0 9.68 45.72 Exxn07 44 3.47 9.82 4
6.0 9.68 45.72 Exxn08 44 3.47 9.82 4
5.0 9.71 30.48 Exxn09 44 3.47 9.82 4
5.0 9.71 30.48 Exxn10 44 0.71 9.89 4
0.0 9.89 15.24 Fxxn01 44 0.71 9.89 4
0.0 9.89 15.24 Fxxn02 44 3.80 9.82 4
7.0 9.65 45.72 Fxxn03 44 3.80 9.82 4
7.0 9.65 30.48 Fxxn04 44 3.80 9.82 4
5.5 9.695 45.72 Fxxn05 44 3.80 9.82 4
5.5 9.695 45.72 Fxxn06 44 3.80 9.82 4
5.5 9.695 60.96 Fxxn07 44 3.80 9.82 4
5.5 9.695 60.96 Fxxn08 44 3.80 9.82 4
4.5 9.725 30.48 Fxxn09 44 3.80 9.82 4
3.0 9.77 15.24 Fxxn10 44 0.71 9.89 4
0.0 9.89 30.48 Gxxn01 44 0.71 9.89 4
0.0 9.89 15.24 Gxxn02 44 3.80 9.82 4
7.0 9.65 45.72 Gxxn03 44 3.80 9.82 4
7.0 9.65 30.48 Gxxn04 44 3.80 9.82 4
7.0 9.65 45.72 Gxxn05 44 3.80 9.82 4
7.0 9.65 45.72 Gxxn06 44 3.80 9.82 4
7.0 9.65 60.96 Gxxn07 44 3.80 9.82 4
7.0 9.65 60.96 Gxxn08 44 3.80 9.82 4
5.5 9.695 30.48 Gxxn09 44 3.80 9.82 4
4.5 9.725 15.24 Gxxn10 44 0.71 9.89 4
0.0 9.89 30.48 Hxxn01 44 0.71 9.77 4
0.0 9.77 15.24 Hxxn02 44 3.78 9.77 4
7.0 9.59 60.96 Hxxn03 44 3.78 9.77 4
7.0 9.59 45.72 Hxxn04 44 3.78 9.77 4
5.5 9.64 60.96 Hxxn05 44 3.78 9.77 4
5.5 9.64 45.72 Hxxn06 44 3.70 9.77 4
7.0 9.59 30.48 Hxxn07 44 3.70 9.77 4
7.0 9.59 30.48 Hxxn08 44 3.70 9.77 4
4.5 9.68 30.48 Hxxn09 44 3.70 9.77 4
3.0 9.73 30.48 Hxxn10 44 0.71 9.77 4
0.0 9.77 30.48 Reference 2, Table 16
Engineered Systems Project Calculation
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1
(
Document Identifier: 32-5029393-00 Page 44 of 83 Table 23. GGI Nodal Data for Assembly Types E, F, G, and H, Small Diameter I Assy.
- ofSO U235 U02
- ofSO GdzOs Gd rods Node TvoelD U rods wt%
glee Gd rods wt%
glee Ht (em)
Exxn01 24 0.71 9.87 4
0.0 9.87 15.24 Exxn02 24 3.47 9.80 4
6.0 9.66 60.96 Exxn03 24 3.47 9.80 4
6.0 9.66 45.72 Exxn04 24 3.47 9.80 4
6.0 9.66 45.72 Exxn05 24 3.47 9.80 4
6.0 9.66 45.72 Exxn06 24 3.47 9.80 4
6.0 9.66 45.72 Exxn07 24 3.47 9.80 4
6.0 9.66 45.72 Exxn08 24 3.47 9.80 4
5.0 9.69 30.48 Exxn09 24 3.47 9.80 4
5.0 9.69 30.48 Exxn10 24 0.71 9.87 4
0.0 9.87 15.24 Fxxn01 24 0.71 9.87 4
0.0 9.87 15.24 Fxxn02 24 3.80 9.80 4
7.0 9.63 45.72 Fxxn03 24 3.80 9.80 4
7.0 9.63 30.48 Fxxn04 24 3.80 9.80 4
5.5 9.675 45.72 Fxxn05 24 3.80 9.80 4
5.5 9.675 45.72 Fxxn06 24 3.80 9.80 4
5.5 9.675 60.96 Fxxn07 23 3.80 9.80 5
5.5 9.675 60.96 Fxxn08 23 3.80 9.80 5
4.5 9.705 30.48 Fxxn09 23 3.80 9.80 5
3.0 9.75 15.24 Fxxn10 24 0.71 9.87 4
0.0 9.87 30.48 Gxxn01 22 0.71 9.87 6
0.0 9.87 15.24 Gxxn02 22 3.80 9.80 6
7.0 9.63 45.72 Gxxn03 22 3.80 9.80 6
7.0 9.63 30.48 Gxxn04 23 3.80 9.80 5
7.0 9.63 45.72 Gxxn05 23 3.80 9.80 5
7.0 9.63 45.72 Gxxn06 23 3.80 9.80 5
7.0 9.63 60.96 Gxxn07 22 3.80 9.80 6
7.0 9.63 60.96 Gxxn08 22 3.80 9.80 6
5.5 9.675 30.48 Gxxn09 22 3.80 9.80 6
4.5 9.705 15.24 Gxxn10 22 0.71 9.87 6
0.0 9.87 30.48 Hxxn01 23 0.71 9.77 5
0.0 9.77 15.24 Hxxn02 24 3.78 9.77 4
7.0 9.60 60.96 Hxxn03 24 3.78 9.77 4
7.0 9.60 45.72 Hxxn04 24 3.78 9.77 4
5.5 9.65 60.96 Hxxn05 24 3.78 9.77 4
5.5 9.65 45.72 Hxxn06 23 3.70 9.77 5
7.0 9.60 30.48 Hxxn07 23 3.70 9.77 5
7.0 9.60 30.48 Hxxn08 23 3.70 9.77 5
4.5 9.68 30.48 Hxxn09 23 3.70 9.77 5
3.0 9.73 30.48 Hxxn10 23 0.71 9.77 5
0.0 9.77 30.48 Reference 2, Table 17
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf: Unit 1 Document Identifier: 32-5029393-00 Calculation Page 4S of 83 Table 24. GGI Nodal Data for Assembly Types J, K, L, and M, Large Diameter Y Assembly
- ofLD U235 U02
- oflD
- Gd20, Gd rods Node TvoelD U rods wt"lo glee Gd rods wt 0/0 glee Ht (em)
Jxxn01 44 0.71 9.77 4
0.0 9.77 15.24 Jxxn02 44 3.28 9.77 4
7.0 9.59 60.96 Jxxn03 44 3.28 9.77 4
7.0 9.59 45.72 Jxxn04 44 3.28 9.77 4
5.5 9.64 60.96 Jxxn05 44 3.28 9.77 4
5.5 9.64 45.72 Jxxn06 44 3.19 9.77 4
7.0 9.59 30.48 Jxxn07 44 3.19 9.77 4
7.0 9.59 30.48 Jxxn08 44 3.19 9.77 4
7.0 9.59 30.48 Jxxn09 44 3.19 9.77 4
4.5 9.68 30.48 Jxxn10 44 0.71 9.77 4
0.0 9.77 30.48 Kxxn01 44 0.71 9.77 4
0.0 9.77 15.24 Kxxn02 44 3.77 9.77 4
7.0 9.59 45.72 Kxxn03 44 3.77 9.77 4
7.0 9.59 30.48 Kxxn04 44 3.77 9.77 4
7.0 9.59 30.48 Kxxn05 44 3.87 9.77 4
6.0 9.63 45.72 Kxxn06 44 3.87 9.77 4
6.0 9.63 60.96 Kxxn07 44 3.77 9.77 4
7.0 9.59 30.48 Kxxn08 44 3.77 9.77 4
7.0 9.59 45.72 Kxxn09 44 3.77 9.77 4
3.5 9.71 45.72 Kxx.n10 44 0.71 9.77 4
0.0 9.77 30.48 Lxxn01 44 0.71 9.77 4
0.0 9.77 15.24 Lxxn02 44 3.52 9.77 4
7.0 9.59 60.96 Lxxn03 44 3.52 9.77 4
7.0 9.59 45.72 Lxxn04 44 3.62 9.77 4
6.0 9.63 60.96 Lxxn05 44 3.62 9.77 4
6.0 9.63 45.72 Lxxn06 44 3.52 9.77 4
7.0 9.59 30.48 Lxxn07 44 3.52 9.77 4
7.0 9.59 30.48 Lxxn08 44 3.52 9.77 4
7.0 9.59 30.48 Lxxn09 44 3.52 9.77 4
3.5 9.71 30,48 Lxxn10 44 0.71 9.77 4
0.0 9.77 30.48 Mxxn01 44 0.71 9.77 4
0.0 9.77 15.24 Mxxn02 44 3.44 9.77 4
6.5 9.61 60.96 Mxxn03 44 3.44 9.77 4
6.5 9.61 45.72 Mxxn04 44 3.44 9.77 4
6.5 9.61 60.96 Mxxn05 44 3.44 9.77 4
6.5 9.61 45.72 Mxxn06 44 3.30 9.77 4
7.0 9.59 30.48 Mxxn07 44 3.30 9.77 4
7.0 9.59 30.48 Mxxn08 44 3.30 9.77 4
7.0 9.59 30.48 Mxxn09 44 3.30 9.77 4
3.5 9.71 30.48 Mxxn10 44 0.71 9.77 4
0.0 9.77 30,48 Reference 2, Table 18
Calculation Page 46 of83 Engineered Systems Project
Title:
Conunercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Table 25. GGt Nodal Data for Assembly Types J, K, L, and M, Small Diameter Assembly
- of50 U235 U02
- of50 Gd203 Gd rods Node TVDelD U rods wt%
alec Gd rods wt"lo alee Ht {eml Jxxn01 23 0.71 9.77 5
0.0 9.77 15.24 Jxxn02 23 3.28 9.77 5
7.0 9.60 60.96 Jxxn03 23 3.28 9.77 5
7.0 9.60 45.72 Jxxn04 24 3.28 9.77 4
5.5 9.65 60.96 Jxxn05 24 3.28 9.77 4
5.5 9.65 45.72 Jxxn06 23 3.19 9.77 5
7.0 9.60 30.48 Jxxn07 23 3.19 9.77 5
7.0 9.60 30.48 Jxxn08 23 3.19 9.77 5
7.0 9.60 30.48 Jxxn09 23 3.19 9.77 5
4.5 9.68 30.48 Jxxn10 23 0.71 9.77 5
0.0 9.77 30.48 Kxxn01 23 0.71 9.77 5
0.0 9.77 15.24 Kxxn02 23 3.77 9.77 5
7.0 9.60 45.72 Kxxn03 23 3.77 9.77 5
7.0 9.60 30.48 Kxxn04 23 3.77 9.77 5
7.0 9.60 30.48 Kxxn05 23 3.87 9.77 5
6.0 9.63 45.72 Kxxn06 23 3.87 9.77 5
6.0 9.63 60.96 Kxxn07 23 3.77 9.77 5
7.0 9.60 30.48 Kxxn08 23 3.77 9.77 5
7.0 9.60 45.72 Kxxn09 23 3.77 9.77 5
3.5 9.72 45.72 Kxxn10 23 0.71 9.77 5
0.0 9.77 30.48 Lxxn01 23 0.71 9.77 5
0.0 9.77 15.24 Lxxn02 24 3.52 9.77 4
7.0 9.60 60.96 Lxxn03 24 3.52 9.77 4
7.0 9.60 45.72 Lxxn04 24 3.62 9.77 4
6.0 9.63 60.96 Lxxn05 24 3.62 9.77 4
6.0 9.63 45.72 Lxxn06 23 3.52 9.77 5
7.0 9.60 30.48 Lxxn07 23 3.52 9.77 5
7.0 9.60 30.48 Lxxn08 23 3.52 9.77 5
7.0 9.60 30.48 Lxxn09 23 3.52 9.77 5
3.5 9.72 30.48 Lxxn10 23 0.71 9.77 5
0.0 9.77 30.48 Mxxn01 23 0.71 9.77 5
0.0 9.77 15.24 Mxxn02 24 3.44 9.77 4
6.5 9.61 60.96 Mxxn03 24 3.44 9.77 4
6.5 9.61 45.72 Mxxn04 24 3.44 9.77 4
6.5 9.61 60.96 Mxxn05 24 3.44 9.77 4
6.5 9.61 45.72 Mxxn06 23 3.30 9.77 5
7.0 9.60 30.48 Mxxn07 23 3.30 9.77 5
7.0 9.60 30.48 Mxxn08 23 3.30 9.77 5
7.0 9.60 30.48 Mxxn09 23 3.30 9.77 5
3.5 9.72 30.48 Mxxn10 23 0.71 9.77 5
0.0 9.77 30.48 Reference 2, Table 19
Calculation Page 47of83 Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Table 26. GGl Nodal Data for Assembly Type N, Large Diameter I Assembly
- otLO U235 U02
- otLO GdZ03 Gd rods Node TvnelD U rods wt%
alec Gdrods wt%
alcc Ht(cm}
Nxxn01 44 0.71 9.77 4
0.0 9.77 15.24 Nxxn02 44 4.06 9.77 4
6.5 9.61 45.72 Nxxn03 44 4.06 9.77 4
6.5 9.61 30.48 Nxxn04 44 4.06 9.77 4
6.5 9.61 30.48 Nxxn05 44 4.06 9.77 4
6.5 9.61 45.72 Nxxn06 44 4.06 9.77 4
6.5 9.61 60.96 Nxxn07 44 3.76 9.77 4
7.0 9.59 30.48 Nxxn08 44 3.76 9.77 4
7.0 9.59 45.72 Nxxn09 44 3.76 9.77 4
3.5 9.71 45.72 Nxxn10 44 0.71 9.77 4
0.0 9.77 30.48 Reference 2, Table 20 Table 27. 001 Nodal Data for Assembly Type N, Small Diameter Assembly
- ofSO U235 U02
- ofSD GdZ03 Gd rods Node TVDeID U rods wt%
. glee Gd rods wt%
alec Ht (em)
Nxxn01 23 0.71 9.77 5
0.0 9.77 15.24 Nxxn02 24 4.06 9.77 4
6.5 9.61 45.72 Nxxn03 24 4.06 9.77 4
6.5 9.61 30.48 Nxxn04 24 4.06 9.77 4
6.5 9.61 30.48 Nxxn05 24 4.06 9.77 4
6.5 9.61 45.72 Nxxn06 24 4.06 9.77 4
6.5 9.61 60.96 Nxxn07 23 3.76 9.77 5
7.0 9.60 30.48 Nxxn08 23 3.76 9.77 5
7.0 9.60 45.72 Nxxn09 23 3.76 9.77 5
3.5 9.72 45.72 Nxxn10 23 0.71 9.77 5
0.0 9.77 30.48 Reference 2. Table 21
Calculation Page 48 of83 Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 5.3 CONROL BLADE INSERTION DATA FOR STATEPOINTS Figures 12 through 19 give the control blade positions for each ofthe 16 different statepoints and were taken from Reference 3 pages 4-539 through 4-546. Figure I (Reference 3 page 4-423) shows the control blade position relative to the fuel assemblies in the lower right quarter of the core. 0 ther quadrants are symmetrical to Figure 1 (Reference 3 page 4-422).
BWR control blades enter from the bottom of the core. Fully inserted control blades are shown as 0 notches withdrawn. Blades with 48 notches withdrawn are fully removed from the core. Any control blade with notches withdrawn anywhere between 0 and 48 are partially inserted control blades.
A notch is equal to 3 inches of blade movement. Blades are normally moved in multiples of 2 notches or 6 inches increment. Review of the control blade positions in Figures 12 to 19 show that partially withdrawn rods are always an even number of notches withdrawn confirming the two notch minimum movement. Note that for statepoint 15 an error was found in the positions for three of the blades as given in Reference 3 when checked against the original infonnation received from Grand Gulf. The correct positions have been marked on Figure 16. The corrected positions were used in the MCNP calculations and were not needed in the Reference 2 fuel depletions.
Reference 2 fuel depletions used full power rod insertions that were given in Reference 3.
Engineered Systems Project
Title:
Conunercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Calculation Page 49 of 83 0
0 0
0 0
0 0
0 0
48 0 48 0
48 0 48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
0 0
48 0
48 0 0
0 48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
0 0
48 0
18 0 0
0 48 0
0 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0 48 0 0
0 48 0
48 0
18 0 48 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0 0
0 48 0 18 0 0
0 48 0
0 0 48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
0 0 48 0
48 0
0 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
48 0
48 0 48 0
0 0
0 0
0 0
0 0
Critical Configuration, Statepoint 5, Cycle 4 Exposure 0 MWd/MTU Cy 4, Moderator Temperature 148.5 of, Period 128 sec.
o 2 4
6 8
10 12 14 16 18 20 22 24 26 28 30 32 2
4 6
8 10 12 14 16 18 20 22 24 26 28 30 32 Critical Configuration, Statepoint 6, Cycle 4 Exposure 109 MWd/MTU Cy 4, Moderator Temperature 188 of. Period 90 sec.
o 2
4 6
8 10 12 14 16 18 20 22 24 26 28 30 32 2
4 6
8 10 12 14 16 18 20 22 24 26 28 30 0
0 0
0 0
0 0
0 0
48 0 148 0 48 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 '48 0
0 0
48 0
48 0
0 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0 0
0 48 0 48 0 12 0 48 0
0 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0
48 0
0 0 48 0 48 0
48 0
48 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0
0 0
48 0 48 0 0
0 48 0 0
0 48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
0 0
48 0
48 0
0 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
48 0
48 0
48 0 0
0 0
0 0
0 0
0 32 Figure 12. GG1 Control Blade Configuration in Notches Withdrawn (SP5 and SP6)
Engineered Systems Project
Title:
Conunercial Reactor Reactivity Analysis for Grand Gult; Unit 1 Document Identifier: 32-5029393-00.
Calculation Page 50 of83 0
0 0
0 0
0 0
0 48 0 48 a 48 0 48 0 48 0 0
0 0
0 a 4
0 0
0 0
0 0
0 48 0 48 0 48 0 48 0 48 0 48 0 48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0 48 0 48 0 48 0 48 0 48 0 48 0 48 0 0 a 0 a 0 a 0
0 0
0 0
0 4
0 0
0 48 0 48 0 48 0 48 0 48 0 48 0 48 0
0 0
4 0
0 0
0 0
0 0
0 0
0 0
0 0 48 0 48 0 48 0 48 0 48 0 48 0 48 0 a
0 0
0 0
0 0
0 0
0 0
0 0
0 48 48 0 48 0 48 0 48 0 48 0 48 0 48 0
0 0
0 0
0 0
4 0
0 0
0 0
0 48 0 48 0 48 0 48 0
48 0
0 0
0 0
0 0
0 Critical Configuration, Statepolnt 7, Cycle 4 Exposure 1998 MWd/MTU Cy 4, Moderator Temperature 221°F. Period 110 sec.
o 2 4
6 8 10 12 14 16 18 20 22 24 26 28 30 32 2
4 6
8 10 12 14 16 18 20 22 24 26 28 30 32 Critical Configuration, 5tatepoint 10, Cycle 5 Exposure 0 MWd/MTU Cy 5, Moderator Temperature 111 of. Period 87 sec.
o 2
4 6
8 10 12 14 16 18 20 22 24 26 28 30 32 2
4 6
8 10 12 14 16 18 20 22 24 26 28 30 0
0 0
0 0
0 0
48 0 48 0 20 0 48 0 48 0 48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
0 0 48 0 48 0
0 0 48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
0 0 48 0 0
0 0
0 48 0 0
0 48 0 a 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0 48 0 0
0 48 0 48 0
0 0 48 0 20 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0
0 0 48 0
0 0
0 0 48 0
0 0 48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
0 0 48 0 48 0
0 0 48 0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0 48 0 20 0 48 0 48 0 48 0
0 0
0 0
0 0
32 Figure 13. GG1 Control Blade ConfIguration in Notches Withdrawn (SP7 and SP10)
Engineered Systems Project
Title:
Commercial ReactorReactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Calculation Page 51 of83 0
0 0
0 0
0 0
0 0
48 0 48 0
48 0 48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
0 0
48 0 48 0
0 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
0 0
48 0 26 0
0 0 48 0
0 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0
48 0
0 0 48 0 48 0
26 0
48 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0
0 0
48 0 28 0
0 0 48 0
0 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
0 0
48 0
48 0
0 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0 48 0
48 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0 48 0 48 0 48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0 0
0 48 0 48 0
0 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0 0
0 48 0 48 0 14 0 48 0 0
0 48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0
48 0
14 0 48 0
48 0
48 0
48 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0 0
0 48 0 48 0
16 0 48 0
0 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
0 0 48 0
48 0
0 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0 48 0 48 0
48 0
0 0
0 0
0 0
0 0
Critical Configuration, Statepoint 11, Cycle 5 Exposure 451 MWd/MTU Cy 5, Moderator Temperature 180 of, Period 83 sec.
o 2 4
6 8
10 12 14 16 18 20 22 24 26 28 30 32 2
4 6
8 10 12 14 16 18 20 22 24 26 28 30 32 Critical Configuration, Statepolnt 12, Cycle 5 Exposure 4042 MWd/MTU Cy 5, Moderator Temperature 225.5 of, Period 89 sec.
o 2 4
6 8
10 12 14 16 18 20 22 24 26 28 30 32 2
4 6
8 10 12 14 16 18 20 22 24 26 28 30 32 Figure 14. GG1 Control Blade Configuration In Notches Withdrawn (SP11 and SP12)
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit I Docwnent Identifier: 32-5029393-00 Calculation Page 52 of83 0
0 0
0 0
0 0
0 0
0 48 0 48 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0 48 0 48 0
0 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
48 0
48 0
48 0
48 0
48 0 48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0
48 0 48 0 48 0
48 0
48 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0
48 0 48 0 48 0
48 0 48 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
8 0
48 0
48 0 48 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0
48 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0 48 0 48 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0 12 0 48 0 0
0 48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
0 0
48 0 48 0 48 0
10 0 48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0
48 0 48 0 48 0
48 0 48 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0 10 0 48 0 48 0
48 0 0
0 48 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0
0 0
48 0
12 0 46 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
- 48. 0 48 0
0 0
0 0
0 0
0 0
0 Critical Configuration, Statepolnt 13, Cycle 5 Exposure 4506 MWd/MTU Cy 5, Moderator Temperature 209 OF, Period 163 sec.
o 2 4
6 8
10 12 14 16 18 20 22 24 26 28 30 32 2
4 6
8 10 12 14 16 18 20 22 24 26 28 30 32 Critical Configuration, Statepoint 14, Cycle 5 Exposure 5550 MWd/MTU Cy 5. Moderator Temperature 174 OF, Period 140 sec.
o 2 4
6 8
10 12 14 16 18 20 22 24 26 28 30 32 2
4 6
8 10 12 14 16 18 20 22 24 26 28 30 32 Figure 15. GG1 Control Blade Configuration in Notches Withdrawn (SP13 and SP14)
Engineered Systems Project Calculation
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Page S3 of 83 Critical Configuration, Statepolnt 15, Cycle 5 Exposure 9280 MWd/MTU Cy 5, Moderator Temperature 140 of, Period 103 sec.
0 0
0 0
0 0
0 0
0 48 0 24 0
48 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
0 0 48 0
48 0
0 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 O~48 I 48 0
0 0
48 0
0 0
0 0
48 0
0 0
~
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0 48 0
0 0 48 0
48 0
0 0
48 0
(]"I~18 I 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0
0 0
48 0
0 0
0 0
48 0
0 0
O~~48 I 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
0 0
48 0 48 0 0
0 48 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0 26 0
48 0 48 0
0 0
0 0
0 0
0 0
o 2 4
6 8
10 12 14 16 18 20 22 24 26 28 30 32 2
4 6
8 10 12 14 16 18 20 22 24 26 28 30 32 Critical Configuration, Statepoint 16, Cycle 6 Exposure 0 MWd/MTU Cy 6, Moderator Temperature 136 of, Period 316 sec.
0 0
0 0
0 0
0 0
0 48 0 48 0 48 0 48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
0 0 48 0 48 0
0 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
0 0
48 0 16 0 0
0 48 0
0 0 48 a
0 a 0
0 a 0
0 0
0 a a 0 a a 48 0 48 a a a 48 0 48 0
16 0 48 0 48 0
0 0
0 0 a 0
0 0
0 0
0 0
0 0
48 0
0 0 48 0 14 0
0 0 48 0
0 0
48 0
0 0
0 0
0 a
0 0
0 0
0 0
0 0
0 48 a 0
0 48 0
48 0
0 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0 48 0
48 0
48 0 0
0 0
0 0
0 0
0 o 2 4
6 8
10 12 14 16 18 20 22 24 26 28 30 32 2
4 6
8 10 12 14 16 18 20 22 24 26 28 30 32 Figure 16. GG1 Control Blade Configuration in Notches Withdrawn (SP15 and SP16)
Engineered Systems Project
Title:
Conunercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Calculation Page 54 of 83 0
0 0
0 0
0 0
0 0
48 0
48 0
48 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
0 0
48 0 48 a 0
0 48 a 0
0 0
0 0
0 0
0 0
0 a 0
0 0
0 48 0 0 a 48 0
18 0 0 a 48 0
0 0
48 0
0 a 0
0 0
0 0
0 0
0 0
0 0
0 48 0
48 0
0 0
48 0 48 0
16 0 48 0
48 a
0 0
0 0
0 0
0 0 a 0
0 0
0 0
48 0
0 0
48 a 16 0 0
0 48 0
0 0
48 0
0 0
0 0
0 0
0 a a 0 a 0
0 0
0 48 0 a 0
48 a 48 0
0 0 48 0
0 0
0 0
0 0
0 a 0
0 0
0 0
0 0
48 0 48 0
48 0 48 0
0 0
0 0
0 0
0 0
0 8
0 0
0 8
0 48 0
48 0
48 0
48 0
48 0 48 0
0 8
0 0
0 12 0 0
0 8
0 0
0 48 0
48 0 48 0
48 0 48 0
48 0
0 8
0 0
0 8
0 0
0 8
0 0
0 8
0 48 0
48 0
48 0 48 0 48 0
48 0 48 0 48 0
0 0
8 0
0 0
8 0
0 0
8 0
0 0
48 0
48 0 48 0
48 0 48 0
48 0 48 0 46 0
0 0
12 0 0
0 8
0 0
0 8
0 0
0 48 0
48 0
48 0
48 0
48 0 48 0
48 0
48 0
8 0
0 0
8 0
0 0
8 0
0 0
B 0
0 48 0 48 0 48 0
48 0
48 0
48 0
0 0
8 0
0 0
8 0
0 0
8 0
0 48 0 48 0
48 0 48 0 48 0
48 0
8 0
0 0
8 0
Critical Configuration, Statepoint 18, Cycle 7 Exposure 0 MWd/MTU Cy 7, Moderator Temperature 121°F, Period 376 sec.
o 2 4
6 8
10 12 14 16 18 20 22 24 26 28 30 32 2
4 6
8 10 12 14 16 18 20 22 24 26 28 30 32 Critical Configuration, Statepolnt 19, Cycle 7 Exposure 2970 MWd/MTU Cy 7, Moderator Temperature 406.5 OF, Period 539 sec.
o 2 4
6 8
10 12 14 16 18 20 22 24 26 28 30 32 2
4 6
8 10 12 14 16 18 20 22 24 26 28 30 32 Figure 17. GG1 Control Blade Configuration in Notches Withdrawn (SP18 and SP19)
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Calculation Page 55 of83 0
0 0
0 0
0 0
0 0
48 0
48 0
48 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0 0
0 48 0
48 0
0 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
0 0
48 0
48 0
12 0
48 0
0 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0
48 0
14 0 48 0
48 0
48 0
48 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0
0 0
48 0 48 0
12 0 48 0 0
0 48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
0 0
48 0
48 0
0 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
48 0
48 0
48 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0
32 0
48 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
0 0 48 0
48 0
0 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0 0
0 48 0
0 0
0 0
48 0
0 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0 48 0
0 0
48 0 48 0 0
0 48 0 32 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0 0
0 48 0 0
0 0
0 48 0
0 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
0 0
48 0
48 0
0 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
34 0 48 0
48 0 0
0 0
0 0
0 0
0 Critical Configuration, Statepolnt 20, Cycle 7 Exposure 6689 MWd/MTU Cy 7. Moderator Temperature 293 OF. Period 137 sec.
o 2 4
6 8
10 12 14 16 18 2022 24 26 28 30 32 2
4 6
8 10 12 14 16 18 20 22 24 26 28 30 32 Critical Configuration, 5tatepoint 21, Cycle 8 Exposure 0 MWd/MTU Cy 8, Moderator Temperature 140 OF. Period 160 sec.
o 2 4
6 8
10 12 14 16 18 20 22 24 26 28 30 32 2
4 6
8 10 12 14 16 18 20 22 24 26 28 30 32 Figure 18. GG1 Control Blade Configuration in Notches Withdrawn (SP20 and SP21)
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Calculation Page 560f83 0
0 0
0 0
0 0
0 0
48 0 48 0
48 0 48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
0 0
48 0
48 0
0 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 46 0
0 0
48 0
0 0
0 0
48 0
0 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0
48 0
0 0
48 0 48 0
0 0
48 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0
0 0
48 0 34 0 0
0 48 0
0 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
0 0 48 0 48 0 0
0 48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0 48 0
48 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0 48 0
48 0 48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0 0
0 48 0
48 0 0
0 48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0 0
0 48 0 48 0
48 0
48 0 0
0 48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0
48 0
0 0 48 0
46 0
0 0
48 0
48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
48 0 0
0 48 0
48 0 24 0
48 0 0
0 48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0
0 0 48 0 48 0
0 0 48 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 48 0 48 0
48 0 48 0 0
0 0
0 0
0 0
0 Critical Configuration, Statepolnt 22, Cycle 8 Exposure 0 MWd/MTU Cy 8, Moderator Temperature 178 of, Period 108 sec.
o 2 4
6 8
10 12 14 16 18 20 22 24 26 28 30 32 2
4 6
6 10 12 14 16 16 20 22 24 26 28 30 32 Critical Conflgurationf Statepoint 23, Cycle 8 Exposure 480 MWd/MTU Cy 8, Moderator Temperature 229 of, Period 118 sec.
o 2 4
6 8
10 12 14 16 18 20 22 24 26 28 30 32 2
4 6
8 10 12 14 16 18 20 22 24 26 28 30 32 Figure 19. GG1 Control Blade Configuration In Notches Withdrawn (SP22 and SP23)
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit I Document Identifier: 32-5029393-00 6.
MCNP MODEL 6.1 MCNP GEOMETRY Calculation.
Page 57 of 83 The geometry for the MCNP analysis uses the dimensions from Tables 2 through 9.
The geometry starts with modeling an assembly in the x-y direction with the fuel rods shown discretely (fuel + clad + water) in either an 8x8 or 9x9 lattice with all the fuel rods for a particular fuel rod array (8x8 or 9x9) having the same dimensions. Both uranium only and also Gadolinia bearing fuel rod dimensions are averaged to arrive at the final radial dimensions for the discrete fuel rods. The SAS2H model used in Reference 2 to deplete the fuel for isotopics was for a smeared assembly and there is no reason to have different size fuel rod in the MCNP mus. The fuel inside the clad was also smeared to the inside of the clad. This omitted the pellet-clad gap. The fuel density was revised to accommodate this pellet size increase. The fuel rod array was set-up to allow the Gadolinia bearing fuel rods and the uranium only fuel rods to be in different locations.
The water rods were modeled using their actual size and the spacer capture rods (SCR) were modeled to be the same as the water rods. This was done for both the 8x8 and 9x9 assemblies.
The fuel rod and water rod array was surrounded with a thin gap ofwater to account for the fuel rod array being slightly smaller than the inside of the channel/can that surrounds the fuel array.
The zircaloy channel was modeled discretely.
The water gap surrounding the fuel assemblies was split in half. This means that the control blade was also split in half. Each fuel assembly has a control blade around one comer of the assembly depending on whether the control blade is inserted. Figure 3 showed how the control blade fits between the assemblies. The MCNP model was developed to have geometric cells include half of the homogenized control blade with each fuel assembly. The control blade can be inserted by assigning the control rod materials to the blade cells. By assigning water to those cells the control blade is withdrawn. Figures 20 through 27 describe the layout ofthe 8x8 and 9x9 fuel assemblies.
The axial height of an assembly block was made 15.24 centimeters or 6 inches.
The original depletion data for the fuel that was received from Grand Gulf had the fuel assemblies divided into 25 equal axial nodes of6 inches each. In Reference 3, when summarizing the GG1 data, the 25 nodes were consolidated into 10 nodes to limit the amount ofdata that had to be handled. The reduction to 10 nodes used multiples of the original 25 nodes. Not all fuel types had the same dimensions for the 10 nodes. This means that fuel type A had different nodal dimensions than a type F which in turn was different from a type H. There were four different axial nodal spacing for the fuel used in cycles 2 through 8 of GG1. Figure 28 shows the variation in nodal spacing.
Figure 28 shows that by using an assembly block with an axial height of 15.24 centimeters or 6 inches that all four nodal spacings can be handled by simply stacking the fuel axial blocks into a 25 high array to obtain the desired 10 unique nodes. Because the control blades are moved in minimum 6 inch increments (two notches) this model with 6 inch axial blocks can easily accommodate any full or partial blade insertion. Axial assembly blocks have different cell and universe numbers in the MCNP model so that each blocks can have different fuel compositions to account for axial bumup differences and different control blade compositions to achieve blade-in and blade-out conditions.
The blocks were modeled to allow two fuel rod types
Engineered Systems Project Calculation
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Page 58 of 83 (uranium only and Gadolinia bearing rods) and water rods.
The x-y arrangements of the different rods are easily changed using the fuel rod lattice description in the MCNP input for each assembly in any axial block/node.
Figures 31 through 36 show the different standard Gadolinia fuel rod patterns used in the 8x8 and 9x9 fuel assemblies. In Reference 12, Figures 4.24 and 4.25 gave the standard Gadolinia rod patterns for the 9x9 fuel assemblies.
Standard patterns for the 8x8 Gadolinia rod positions were developed based on the the 9x9 Gad rod patterns. The numbers of Gadolinia fuel rods in each fuel batch type are shown in Tables 21 through 27 and were taken from Tables 15 through 20 of Reference 2.
The same block description can be used more than once in the stack to construct the nodes that are more than a single block high.
After constructing all the different fuel assemblies needed in the core by stacking the axial blocks to make up the 10 axial nodes, the half core can then be assembled using these fuel assemblies in an x-y lattice containing 400 assemblies that have an axial height equal to the active fuel height.
Figure 29 demonstrates how the assemblies fit together in a node using a simple 2x2 array with the control blade in the center. Core configurations of quarter core, half core, or even full core can be constructed if enough unique assembly geometries are compiled in the MCNP input.
Figure 30 is an axial slice through the core and shows the regions above and below and to the side of the fuel region. Because the 8x8 and 9x9 fuel assemblies have the same outer dimensions the two fuel assembly types can be inter-mingled in the core. The halfcore geometry containing 400 assemblies was used in the MCNP reactivity analyses to perform the 16 statepoints for GGI because half core geometry was considered necessary to adequately model the non-symmetric control blade patterns that were used at the various statepoints.
6.2 MCNP SAMPLE GEOMETRY INPUT The final MCNP input deck is too long to list in this report after all the geometry is complete and the mixtures cards added. The reader must go to the COLD listing for the complete input decks.
The final input deck for a statepoint is more then 307,000 lines long. A sample ofthe card input necessary to describe the geometry for a unit block or node is listed below to demonstrate the MCNP cards necded to describe just one axial block for one fuel assembly.
u=1 imp:n=1 $ water u=l imp:n=l $ clad u=1 imp:n=l $ water around tube u=2 imp:n=l $ fuel rod u=2 imp:n=l $ cladding u=2 imp:n=l $ water around fuel rod c BWR 8x8 Control Blade Upper Left Comer c
c u=1 for Water Rod c
20 40 -0.98897
-10 21 11 -6.56
+10-11 22 40 -0.98897
+11 c
c u=2 for fuel rod c
23 6001 -9.78
-10 24 11 -6.56
+10 -11 25 40 -0.98897
+II
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Calculation Page 59 of 83 c
523 6002 -9.60 -10 524 11 -6.56
+10-11 525 40 -0.98897
+11 u=6 imp:n=1 $ Gd fuel rod u=6 imp:n=1 $ cladding u=6 imp:n=1 $ water around fuel rod c
26 40 -0.98897 (-5045 -4642):(-4145 -4652) u=101 imp:n=1 $blade UL 27 40 -0.98897 -51 50 -46 42 u=101 imp:n=l $blade 28 40 -0.98897
-4145 -52 53 u=101 imp:n=1 $blade c
c u=3 for fuel rod lattice c
29 0
-20 +21 -22 +23 lat=1 u=3 imp:n=1 fill=-4:3 -4:3 0:0 22222222 22622622 26222262 22221222 22212222 26222262 22622622 22222222 c
c u=4 to cut out rod array with u=3 and surround with h20 & Zr channel c
30 0
-24 +25 -26 +27 fill=3 imp:n=1 u=4 $ 8x8 Lattice 31 40 -0.98897 (24:-25:26:-27) -30 +31 -32 +33 u=4 imp:n=l $Water 32 51 -6.56 (30:-31:32:-33) u=4 imp:n=1 $Zr Can c
33 0
-3435 -3637 fill=4 u=5 imp:n=1 34 40 -0.98897 (34:-35:36:-37) u=5 imp:n=1 $Water in Gap to blade c
35 0
-4041 -4243 fill=5 u=101 imp:n=1 36 40 -0.98897 (40:-41:42:-43) #26 #27 #28 u=101 imp:n=1 $Water + Blade
Engineered Systems Project
Title:
Conunercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Figure 20. BWR 8x8 Assembly - Control Upper Left
-~~ 4.83108 ---71 Calculation Page 60 ofS3
)
Surface Numbers
~ 6.62305
)
DFuel Rods (Piteh=1.61544 em) 6.92785
)
"'.~~i:J:::'~*
Water Rods 7.20344 7.62000
)
All Dimensions in Centimeters Note: Not to Scale
Engineered Systems Project Calculation
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Page 61 of83 Figure 21. BWR 8x8 Assembly - Control Upper Right
"'- Surface Numbers l'
L()
co
<0 (J) or-
'Vr 2
0I,t)
T'""
I,t) co Iri
.~
l' co 0
T'""
. (')
co
...t.L
)
r-4.83108 ~~
5.65150---+ 1.9685071
,.*~a~i,~,d~~C ntrol~l~de.
~ '.
~ 6.62305
--)~I DFuel Rods (Pitch=1.61544 cm)
(
6.92785 7.20344 7.62000
)
)
~
~WaterRods All Dimensions in Centimeters Note: Not to Scale
Engineered Systems Project Calculation
Title:
Conunercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Page 62 of83 Figure 22. BWR 8x8 Assembly - Control Lower Right 6.46176
--7
'" Surface Numbers
,"HalfWldthC ntr'oJ'SJade-,
'4;83-10if4~,::: :";5.661'60<*"""'"",..,....--~Jt;
~..
',j
~
~..
r3'~~~
~
6.62305
--7 DFuel Rods (Pitch=1.61544 em)
(
6.92785
)
'~r";:~J Water Rods
~
.1. ~,.
(
7.20344
)
(
7.62000
)
All Dimensions in Centimeters Note: Not to Scale
Engineered Systems Project
Title:
Conunercial Reactor Reactivity Analysis for Grand Gulf, Unit I Document Identifier: 32-5029393-00 Figure 23. BWR 8x8 Assembly - Control Lower Left Calculation Page 63 of 83 Co' In.-
In 6.62305
(
6.92785
(
7.20344
(
7.62000
)
~ Surface Numbers DFuel Rods (Piteh=1.61544 em)
E~.;~jlwater Rods All Dimensions in Centimeters Note: Not to Scale
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Docwnent Identifier: 32-5029393-00 Figure 24. BWR 9x9 Assembly - Control Upper Left Calculation Page 64 ofS3 1
I~- 5.65150 --~- 4.83108 Half Wldth,Coi'ltrilI:SI '~I"
~ 6.62305 ---~
~-- 6.92786 ---~
~ 6.43609
)
Surface Numbers DFuel Rods (Pitch=1.43002 em) 1~rJ;::\\~waterRods 14'--- 7.20344 ---~)I 7.62000 ----~
All Dimensions in Centimeters Note: Not to Scale
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit I Document Identifier: 32-5029393-00 Calculation Page 65 of83 Figure 25. BWR 9x9 Assembly - Control Upper Right I~ 4.83108 -7 5.65150--~1
.----------1----.."'""'.-.--f--.,.-----4ft----r.-~~~~:-;____:::t\\"
5
."Hlilf'N.!dttiCnlrolJ!!lade It)
CD CD G!
~6.43509
)
Surface Numbers
~ 6.62305 DFuel Rods (Piteh=1,43002 em)
(
6.92785
[.;~;IWater Rods
(
7.20344
)
All Dimensions in Centimeters
(
7.62000 Note: Not to Scale
Engineered Systems Project
Title:
Conunercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Calculation Page 66 of83 Figure 26. BWR 9x9 Assembly - Control Lower Right (mtrolBlade
..r.e
.. 5~66160;-:~
t..
~ 6.62305 ---~
~6.43509 ---)~I Surface Numbers DFuel Rods (Piteh=1.43002 em) 1<1::(-- 6.92785 ---~
I~<-- 7.20344 ----);;.,
7.62000 ----?I IfW;;lwater Rods All Dimensions in Centimeters Note: Not to Scale
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Figure 27. BWR 9x9 Assembly - Control Lower Left Calculatjon Page 67of83
""(,.......- 6.82305 ----~~
~6.43509
)
I~(-- 6.92785 ---~",
I<E('---- 7.20344 -----:)~I 7.62000 -----~)
1~f:~~:Jfwater Rods All Dimensions in Centimeters Note: Not to Scale
Calculation Page 68 of83 Engineered Systems Project
Title:
Connnercial Reactor Reactivity Analysis for Grand Gulf, Unit I Document Identifier: 32-5029393-00 Figure 28. Collapsed 10 Axial Nodes Description for GG1 Assemblies Control Blade Notches Withdrawn Control Notches Withdrawn Position I
0 I
I 2
I I
4 I
I 6
I I
8 I
I 10 I
I 12 I
I 14 I
I 16 I
I 18 I
I 20 I
I 22 I
I 24 I
I 28 I
I 28 I
I 30 I
I 32 I
I 34 I
I 36 I
38 I
I 40 I
I 42 I
I 44 I
I 48 I
I 48 I
~
0.00 7.62
-7:62 53.34 114.30.
'83.82.
220.98 342.$0 251.48 373.38
- ,.160.02 Assemblies K,N
.',: :*297,18' r':
0.00 7.62' 81i.58 175.26 312.42 "
373,38 I**...
! 220.98.
Assemblies H.J.L,M
- p." "'r-:>",
"'! *.'-'1:'.
"j 1- :-
251.46 236.22 129.54,'.
160.02 53.34.,
175.26 68.58.
7.62.':.
7.62 0.00 0.00
-7.62.
-7.82 MCNP Axial Coordinates 114:30',
I,,'
Assemblies Assemblies A.S.C,D,E F.G 373.38 373.38 358.14:
. 342.90
,327.68 327:66 297:18 '
'297:18 25 358.14 24 342.90 23 327.66 22 312.42 21 297.18 20 261.94 19 266.70 18 251.46 17 236.22 16 220.98 15 205.74 14 190.50 13 175.26 12 160.02 11 144.78 10 129.54 9
114.30 8
99.06 7
83.82 8
68.58 5
53.34 4
38.10 3
22.86 2
7.62 1
0.00
-7.62 37338 MCNP Original Axial Nodes Coordinates
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Figure 29. BWR 9X9 Four Assembly Array Calculation Page 69 of83
Engineered Systems Project Calculation
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit I Document Identifier: 32-5029393-00 Page 70 of83 Figure 30. MCNP Model for GG1 BWR - Axial Slice Bypass Region Upper Tie Plate Region Lower Plenum Region Fuel Support/Core Plate Region Core Grid and Upper Plenum Region 263.21 268.29 Lower Fuel Tie Plate Region I
321.31 ----------+--
-~
338.17 28.55 45.72
.J, l'
27.33
~
38.957 45.72
+
(
(
~------ 243.84 ---------~
- i}
-~-....---_------------------.r---It~
I Vessel Core Region Jet Pump Region Core Shroud 381.00 Note: All Dimensions in Centimeters NOT TO SCALE
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Calculation Page 71 or83 Figure 31. Standard Gadolinia Fuel Rod Lattice Map for 9X9-8 GAD Rods.;
2 3
4 5
6 7
8 9
8 8
8 8
8 8
8 8
Figure 32. Standard Gadolinia Fuel Rod Lattice Map for 9X9-9 GAD Rods 2
3 4
5 6
7 8
9 2
9 9
9 3
4 5
9 f~~f~~
9 6
7 9
8 9
9 9
9
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Calculation Page 72 of83 Figure 33. Standard Gadolinia Fuel Rod Lattice Map For 9X9-1 0 GAD Rods
/
CONTROL CORNERj;&ii!i1~~2_1!I!&i131!i1ii;ii!!iiEi!4!!!!i1---=5_.......::6~~7-,r-8:""--r-.:9--.
2 3
10 10 10 10 4
5 6
7 8
9 10 10 10 10 10 10 Figure 34. Standard Gadolinia Fuel Rod Lattice Map Fo~ 8x8-5 GAD Rods rJ CONTROL CORNERiiE_1llll1llli21511i1lE.3.!!i!!!!!i4i&1J-..:.5_.-..:6:....-.......:..7---.r-.:.8---.
2 3
4 5
6 7
8 5
5 5
5 5
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit I Document Identifier: 32-5029393-00 Calculation Page 73 of83 Figure 35. Standard Gadolinia Fuel Rod Lattice Map For 8x8-6 GAD Rods I CONTROL CORNEjRii!!!!!__ii2~i!5Ei!3!!i!!!i!F5!ii4&,-.:.5--r-.-.:6=--..--.:..7--.~=-8 2
6 6
3 6
4
~
5 f1 6
6 7
6 6
8 Figure 36. Standard Gadolinia Fuel Rod Lattice Map For 8x8-8 GAD Rods CONTROL CORNER 2
3 4
5 6
7 8
2 3
4 5
6 7
8 8
8 8
8 8
8 8
8
Engineered Systems Project Calculation
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Page 74 of83 6.3 MCNP NON-FUEL MATERIALS The fuel mixtures were obtained from the Reference 2 depletion calculations that were done for each node of each assembly in one-eighth core. The one-eighth core isotopics were used in the expanded half core MCNP calculation by using symmetry. The fuel for each node was depleted in Reference 2 using the core follow history data given in Reference 3. The isotopes transferred from Reference 2 for the burned fuel matched those used in earlier MCNP calculations such as performed in Reference 10 for the Quad Cities Unit 2 reactor.
The non-fuel materials in the MCNP model are mixtures that do not change with depletion. The fuel cladding, the channel or can, the core shroud, the core pressure vessel, the mixtures above and below the active fuel, and the homogenized control blade are mixtures that do not change with fuel depletion. There was not enough information in Reference 3 to detennine the mixtures above and below the active fuel. Therefore, these mixtures and thicknesses were obtained from the Quad Cities reactivity calculations done in Reference 10.
The shroud, the control blade center section, and cladding for the B4C pellets in the control blades are standard stainless steel 304. The core pressure vessel was also modeled as SS304 for simplicity. The vessel is far from the fuel and its influence on the core is almost negligible, so using SS304 as the vessel material does not introduce any significant error in the reactivity calculations. Isotopics for 88304 were taken from Reference 11. The zircaloy-2 and zircaloy-4 compositions for the fuel cladding, the water rod cladding, and the channel surrounding the fuel array were also from Reference 11.
6.4 HOMOGENIZED CONTROL BLADE MIXTURE The wing part 0 f t he control blade that contained the 8 8 clad B 4C pellets was homogenized allowing it to be split in half making the control blade's geometrical configuration in the MCNP simpler. The control blade is so "black" to neutrons that the homogenization of the blade will have no effects on the reactivity calculations. The part ofthe blade that is homogenized is shown below. The full control blade has 4 ofthese wings that contain 18 B4C rods in each wing giving a total of72 rods in the complete control blade. The area that is not occupied by the outer SS304 sheath or the B4C rods is filled with water. The rod is squared offon the outside end.
0.1143 an Thick Sheath Filled with 18 84C Rods SS304Clad
-0.41655 rrz;;:~====:::;:::;::=======:::::::::=========::::;;;~-
OJ -",-
0.8331
.~~~::::::::::::::::::=================:::::::::~.-l
_~_
~----------
10.06603 em
)
~---------- 10.4B258cm -------------~)I The volume fractions of each type ofmaterial will be calculated.
Total wing area =(10.48258)(0.8331) = 8.733037 cm 2 Sheath area = (0.6045)(0.1143) + (10.06603)(0.1143)(2) + II/2(0.416552 - 0.302252)
= 2.499244 em 2 B4C area =I1I4(0.4216) 2 (18) =2.51283 em 2
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Clad area =TI/4(O.55882 - 0.42162 )(18) = 1.901603 cm 2 Volume Fraction B4C = 2.51283/8.733037 = 0.287738 Volume Fraction 88304 =(1.901603 +2.40245)/8.733037 =0.492847 Calculation Page 75 of 83 Volume Fraction Water = (1.0 - 0.287738 - 0.492847) = 0.219415 B4C Density = (0.70) (2.52) =1.764 g/cm3 (B4C Theoretical Density from Reference 14) 88304 Density = 7.94 g/cm3 Water Density = 0.98135 g/cm3 Table 28 below give a spread sheet calculating the material densities for the homogenized blade.
Table 28. Spread Sheet giving Homogenized Control Blade Materials Iso Of Elem Xsect 10 Atom Abund.
MoIWt.
IsoWtFract MatlWt"Io Mati alCC MlxglCC Mixwt%
55304 C
6012.50C 98.9 12.011 1.000 0.080 0.006352 0.003131 0.067526 N
7014.50C 99.63 14.0067 1.000 0.100 0.00794 0.003913 0.084407 Si 14000.5OC 100 28.0655 1.000 1.000 0.0794 0.039132 0.844073 P
15031.50C 100 30.9737621 1.000 0.045 0.003573 0.001761 0.037983 5
16032.50C 95.021 32.071 1.000 0.030 0.002362 0.001174 0.025322 Cr*SO 24~0.60C 4.345 49.946047 0.042 0.793 0.06296425 0.031032 0.66935 Cr-S2 24052.60C 63.79 51.940511 0.837 15.903 1.2627039 0.62232 13.42335 Cr*53 24053.6OC 9.5 52.940652 0.097 1.838 0.1459204 0.071916 1.551228 Cr*54 24054.6OC 2.365 53.938884 0.025 0.466 0.03701146 0.018241 0.393456 Mn-55 25055.50C 100 54.938048 1.000 2.000 0.1588 0.078264 1.688146 Fe-54 26054.60C 5.9 53.939613 0.057 3.903 0.30993034 0.152748 3.294759 Fe-56 26056.60C 91.72 55.93494 0.919 62.926 4.9963341 2.462428 53.11424 Fe-57 26057.60C 2.1 56.935396 0.021 1.467 0.11644099 0.057388 1.237843 Fe-58 26058.60C 0.28 57.933278 0.003 0.199 0.01579757 0.007786 0.167938 Ni*58 28058.60C 68.27 57.935346 0.674 6.234 0.49497954 0.243949 5.261951 NI-60 280eO.60C 26.1 59.930788 0.267 2.465 0.19575111 0.096475 2.08096 Ni-61 28061.60C 1.13 60.931058 0.012 0.109 0.0086165 0.004247 0.091599 Nt-62 28062.60C 3.59 61.928346 0.038 0.350 0.0278226 0.013712 0.295772 NI*64 26064.60C 0.91 63.927966 0.010 0.092 0.00728025 0.003568 0.077394 Totals 100 7.94 3.913205 64.4073 B4C 810 15010.50C 19.9 10.0129372 0.184 14.4245 0.25444881 0.073215 1.579229 811 5011.56C 80.1 11.0093056 0.816 63.8381 1.12610347 0.324023 6.989127 C
6012.50C 98.9 12.011 1.000 21.7374 0.38344772 0.110332 2.379857 Totals 100 1.764 0.50757 10.94821 H2O H
1001.50C 98.985 1.0079 1.000 11.1894 0.10980757 0.024093 0.519692 0
8016.50C 99.76 15.9994 1.000 66.8106 0.87154243 0.191229 4.124794 Totals 100 0.9813500 0.215323 4.644486 Final Homogeneous Density ::
4.636098 100 Note: IsotopIc abundances were taken from Reference 13
Engineered Systems Project Calculation
Title:
Conunercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Page 76 of 83 All the non-fuel mixtures used in the MCNP are listed in Table 29 which is a listing from the MCNP input for the various materials.
Table 29. MCNP Listing of the Non-fuel Mixtures
$ B4C for Blades
-0.084407
-0.037983
-0.669350
-1.551228
-1.688146
-53.11424
-0.167938
-2.080960
-0.295772
-1.579229
-4.124794 7014.50c 15031.50c 24050.60c 24053.60c 25055.50c 260S6.60c 2605a.60c 28060.60c 2a062.60c S010.50c 8016.50c C
MATERIAL SPECIFICATIONS C
C Stainless Steel, B4C, and Water homogenized for the Control Blade Wings C
M0008 6012.50c
-2.447382 14000.50c
-0.844073 16032.50c
-0.025322 24052.60c
-13.42335 24054.60c
-0.393456 26054.60c
-3.294759 26057.60c
-1.237843 2805a.60c
-5.261951 28061.60c
-0.091599 28064.60c
-0.077394 5011.56c
-6.989127 1001.50c
-0.519692 c
C Zlrcaloy-2 for Fuel Rod Cladding C
M0011 8016.50C -0.12 24050.60C -0.004 24052.60C -0.084
$ ZIRC-2 CL 24053.60C -0.01 24054.60C -0.002 26054.60C -0.006 26056.BOC -0.091826057.60C -0.002 260sa.60C -0.0003 28058.60C -0.033728060.BOC -0.013 28061.60C -0.0006 28062.60C -0.001928064.60C -0.005 40000.60C -98.230 50000.35C -1.4
$ MODERATOR
$ZIRC-4 CH 24050.60C -0.004 24052.60C -0.084 24054.60C -0.002 26054.60C -0.011 26057.60C -0.004 260sa.60C -0.0006 50000.35C -1.4 C
C Water for Moderator, Radial Reflector, and Upper/Lower Plenum Regions C
M0040 1001.50C -11.1894 8016.50C
-88.8106 MT0040 lWTR.01 C
C Zlrcaloy-4 for Channel/Can around Assembly C
MOO51 8016.50C -0.12 24053.60C -0.01 26056.60C -0.184 40000.60C -98.180 C
C Stainless Steel 304 for Control Blade, Shroud, and Pressure Vessel C
M0070 6000.50C -0.080 7014.50C -0.1000 14000.50C -1.000 $ 55304 SHR 15031.50C -0.045 16032.50C -0.03 24050.60C -0.793 24052.60C -15.903 24053.60C -1.838 24054.60C -0.466 25055.50C -2.0 26054.60C -3.903 26056.60C -62.926 26057.60C -1.467 26058.60C -0.199 26058.60C -6.234 28060.60C -2.465 28061.60C -0.109 28062.60C -0.350 28064.60C -0.092 C
Engineered Systems Project Calculation
Title:
Conunercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Page 77 of83 C Homogenized Mixture for the Upper Tie Plate Region C
M0080 6000.50C -0.037 7014.50C -0.047 14000.50C -0.349 $ 55304 ZIR 15031.50C -0.021 16032.50C -0.014 24050.60C -0.370 24052.60C -7.422 24053.60C -0.858 24054.60C -0.218 25055.50C -0.932 26054.60C -1.827 26056.60C -29.447 26057.60C -0.686 26058.60C -0.093 28058.60C -2.905 280GO.60C -1.149 28061.60C -0.051 28062.60C -0.1G3 28064.GOC -0.043 8016.50C -35.425 1001.50C -4.426 40000.60C -13.337 50000.35C -0.190 C
C Homogenized Mixture for the Lower Tie Plate Region C
M0090 6000.50C -0.057 7014.50C -0.071 14000.50C -0.535 $ 55304 ZIR 15031.50C -0.032 16032.50C -0.021 24050.60C -0.566 24052.60C -11.353 24053.60C -1.312 24054.60C -0.333 25055.50C -1.427 26054.60C -2.796 26056.60C -45.077 26057.GOC -1.051 26058.60C -0.143 28058.60C -4.449 28060.60C -1.759 28061.60C -0.077 28062.60C -0.250 28064.60C -0.065 8016.50C -22.167 1001.50C -2.770 40000.60C -3.637 50000.35C -0.052 C
C Homogenized Mixture for the Lower Core Support Region C
M0091 6000.50C -0.071 7014.50C -0.089 14000.50C -0.667 $ 55304 H20 15031.50C -0.040 16032.50C -0.027 24050.60C -0.705 24052.60C -14.14624053.60C -1.635 24054.GOC -0.415 25055.50C -1.779 26054.60C -3.485 26056.GOC -56.178 2G057.GOC -1.309 26058.60C -0.178 28058.60C -5.545 28060.60C -2.193 28061.60C -0.097 28062.60C -0.312 28064.60C -0.082 1001.50C -1.237 8016.50C -9.813
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 7.
RESULTS Calculation Page 78 of83 The MCNP calculations were performed for the sixteen statepoints for the Grand Gulf Unit 1 BWR and the resulting effective multiplication factors <Keff) are tabulated in Table 30.
The Average Energy of Neutron Causing Fission (AENCF) is also tabulated for each case.
The AENCF is defined as the energy loss to fission divided by the neutron weight taken from the neutron balance tables in the MCNP output. The Uranium isotopes U-235 and U-238 cross sections are available in the MCNP library at either 294 degrees Kelvin or 587 degrees Kelvin.
The actual moderator/fuel temperature varies between 111 degrees Fahrenheit and 406.5 degrees Fahrenheit (317 OI( to 481 OI().
The higher temperature of 587 Kelvin was used for all calculations except for statepoint 5 which was run at both temperatures. In Table 30, it can be seen that the higher temperature gives a more conservative Keff for criticality safety than the lower temperature.
Engineered Systems Project Calculation
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Page 79 of83 Table 30. MCNP Results For Grand Gulf Unit 1 Reactivity Analysis Note: SP5a was ron usmg 294 degree Kelvm temperatures for U-235 and U-238 rather than 587 degrees KelvIn.
Burnup Moderator Moderator Statepoint EFPD Temperature Density Ke" Sigma AENCF (MWdIMTU)
(F) a/cm3 Cycle 4 SP5 0
0 148.5 0.98897 0.99554 0.0001 0.173732 SP5a' 0
0 148.5 0.98897 1.00118 0.0001 0.172746 SP6 109 4.01 188 0.97393 0.99324 0.0001 0.176229 SP7 1998 73.49 221 0.96018 0.99296 0.0001 0.178494 Cycle 5 SP10 0
0 111 1.00191 0.99461 0.0001 0.173252 SP11 451 16.54 180 0.97710 0.99810 0.0001 0.176283 SP12 4042 148.27 225.5 0.95823 0.98685 0.0001 0.181266 SP13 4506 165.29 209 0.96531 0.98551 0.0001 0.181162 SP14 5550 203.58 174 0.97944 0.98295 0.0001 0.180717 SP15 9280 340.41 140 0.99201 0.98309 0.0001 0.181072 Cycle 6 SP16 0
0 136 0.99342 0.99875 0.0001 0.172694 Cycle 7 SP18 0
0 121 0.99858 0.98993 0.0001 0.173256 SP19 2970 108.81 406.5 0.85967 0.98249 0.0001 0.191510 SP20 6689 245.05 293 0.92622 0.96644 0.0001 0.190001 Cycle 8 SP21 0
0 140 0.99201 0.99211 0.0001 0.174008 SP22 0
0 178 0.97788 0.99380 0.0001 0.174805 SP23 480 17.59 229 0.95669 0.98986 0.0001 0.178296
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 8.
REFERENCES Calculation Page 80 of83 1.
Briesmeister, 1. F., Ed., "MCNP TM - A General Monte Carlo N-Particle Transport Code, Version 4B," LA-1262S-M, Los Alamos National Laboratory (LANL), March 1997.
2.
Framatome ANP Doc. 32-5028092-00, "Commercial Reactor Criticality Depletion For Grand Gulf, Unit 1, /I September 2003, Framatome ANP, Lynchburg, Virginia.
3.
Framatome ANP Doc. 38-5028974-00, June 2003, DOE, Summary Report of Commercial Reactor Criticality Datafor Grand Gulf1, Bechtel Doc., TDR-UDC-NU-000002 REV 00, Bechtel SAIC Company, LLC, Las Vegas, Nevada.
4.
Framatome ANP, Administrative Procedure, Number: 0402-01, Preparing and Processing FANP Calculations, February 2003, Framatome ANP, Lynchburg, Virginia.
5.
Framatome ANP Doc. 38-5032055-00, September 2003, YMP (Yucca Mountain Site Characterization Project) 2000, Disposal Criticality Analysis Methodology Topical Report, YMPITR-004Q, Rev. 1. Las Vegas, Nevada: Yucca Mountain Site Characterization Office. ACC: MOL.20001214.0001.
6.
Not Used.
7.
Not Used.
8.
Framatome ANP Inc., Quality Assurance, Quality Management Manual, 56-5015885-01, May 2002, Framatome ANP, Lynchburg, Virginia.
9.
Framatome ANP, Administrative Procedure, Number: 0902-06, Software Certification, November 2002, Framatome ANP, Lynchburg, Virginia.
10.
Framatome ANP Doc. 38-5033807-00, September 2003, CRC Calculationsfor Quad Cities Unit 2, Bechtel Doc., BooOOOOOO-01717-0210-00010 REV 01,October 1999, Bechtel SAIC Company, LLC, Las Vegas, Nevada. ACC:MOL.19991109.0279.
11.
Framatome ANP Doc. 38-5032054-00, September 2003, Waste Package Materials Properties, Bechtel Doc., BBAOOOOOO-01717-021Q-00017 REV 00, Bechtel SAIC Company, LLC, Las Vegas, Nevada. ACC:MOL.19990407.0172.
12.
Framatome ANP Doc. 38-5033808-00, September 2003, Summary Report ofCode to Code Comparisons Performedfor the Disposal Criticality Analysis Methodology, Bechtel Doc., TDR-UDC-NU-000005 REV 00, Bechtel SAIC Company, LLC, Las Vegas, Nevada.
13.
Nuclides and Isotopes, Chart ofthe Nuclides, Fifteenth Edition, 1996. San Jose, California, General Electric Corporation and KAPL, Inc. (BSC TIC: 233705)
Calculation Page 81 of 83 Engineered Systems Project
Title:
Conunercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 14.
CRC Handbook ofChemistry and Physics, 58th Edition (BSC TIC: 24512) 15.
Thermodynamic and Transport Properties ofSteam, ASME Steam Tables, Fourth Edition, The American Society ofMechanical Engineers, New York, New York.
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Docwnent Identifier: 32-5029393-00 9.
COLD LISTING Calculation Page 82 of83 mcnp5.out KOCHENDARFER RA Commercial Reactor f12 mcnp5 b66282 32-5029393-00 08/12/2003 09:57:40 30015 Reactivity Analysis for Grand Gulf Unit 1 mcnp6.out 32-5029393-00 08/18/2003 07:22:57 ANDERSON WJ Commercial Reactor Reactivity Analysis for Grand Gulf Unit 1
£12 mcnp6 b71773 mcnp7.out 32*5029393-00 08/21/2003 03:26:11 ANDERSON WJ 30015 Commercial Reactor Reactivity Analysis for Grand Gulf Unit 1 f17 mcnp7 b731B7 mcnp10.out 32-5029393-00 Oe/06/2003 12:46:33 KOCHENDARFER RA 30015 Commercial Reactor Reactivity Analysis for Grand Gulf Unit 1 f13 mcnp10 b45701 mcnp11.out 32-5029393-00 08/21/2003 16:56:32 ANDERSON WJ 30015 Commercial Reactor Reactivity Analysis for Grand Gulf Unit 1 f16 mcnp11 b73188 mcnp12.out 32-5029393-00 08/10/2003 22:34:43 KOCHENDARFER RA 30015 Commercial Reactor Reactivity Analysis for Grand Gulf unit 1 f17 mcnp12 b66279 mcnp13.out 32-5029393-00 08/12/2003 03:34:48 KOCHENDARFER RA 30015 Commercial Reactor Reactivity Analysis for Grand Gulf Unit 1 f13 mcnp13 b66281 mcnp14.out 32-5029393-00 OB/03/2003 21:4B:05 KOCHENDARFER RA 30015 Commercial Reactor Reactivity Analysis for Grand Gulf Unit 1 f16 mcnp14 b417B4 mcnp15.out 32-5029393-00 08/03/2003 23:23:38 KOCHENDARFER RA 30015 commercial Reactor Reactivity Analysis for Grand Gulf Unit 1
£17 mcnp15 b4115S mcnp16.out 32-5029393-00 08/18/2003 07:22:07 ANDERSON WJ 30015 Commercial Reactor Reactivity Analysis for Grand Gulf Unit 1 f16 mcnp16 b72341 mcnp18.out 32-5029393-00 08/18/2003 07:22:42 ANDERSON WJ 30015 Commercial Reactor Reactivity Analysis for Grand Gulf Unit 1 fl1 mcnp18 b71972
&1/21')
?
Engineered Systems Project
Title:
Commercial Reactor Reactivity Analysis for Grand Gulf, Unit 1 Document Identifier: 32-5029393-00 Calculation Page 83 of 83 mcnp19.out ANDERSON WJ Commercial Reactor
£17 mcnp19 b72340 mcnp20.out KOCHENDARFER RA Commercial Reactor
£16 mcnp20 b51929 mcnp21.out ANDERSON WJ Commercial Reactor f16 mcnp21 b71638 mcnp22.out ANDERSON WJ Commercial Reactor f13 mcnp22 b71684 mcnp23.out KOCHENDARFBR RA Commercial Reactor f17 mcnp23 b51920 mcnpsa.out ANDERSON WJ Commercial Reactor f17 mcnp5a b87057 32-5029393-00 08/18/2003 07:22:05 30015 Reactivity Analysis for Grand Gulf Unit 1 32-5029393-00 08/06/2003 21:07:24 30015 Reactivity Analysis for Grand Gulf Unit 1 32-5029393-00 08/14/2003 04:38:41 30015 Reactivity Analysis for Grand Gulf Unit 1 32-5029393-00 08/22/2003 19:13:30 30015 Reactivity Analysis for Grand Gulf Unit 1 32-5029393-00 08/06/2003 21:30:11 30015 Reactivity Analysis for Grand Gu~f Unit 1 32-5029393-00 09/21/2003 17:38:49 30015 Reactivity Analysis for Grand Gulf Unit 1