ML17264A851
| ML17264A851 | |
| Person / Time | |
|---|---|
| Site: | Ginna |
| Issue date: | 03/19/1997 |
| From: | BIDDLE J R, HASSLER L A, HENNINGTON P J FRAMATOME |
| To: | |
| Shared Package | |
| ML17264A848 | List: |
| References | |
| 1258768-01, 1258768-1, NUDOCS 9704070046 | |
| Download: ML17264A851 (672) | |
Text
20440-7(12I95)ENGINEERING INFORMATION RECORDDocumentIdentifier 61-1258768-01 TitleGinnaSpentFuelPoolRe-racking UcenslngReportPREPAREDBY'eebelowREVIEWEDBY:SeebelowSignature Signature Technical ManagerStatement:
InitialsReviewerisIndependent.Remarks:Criticality Preparedby:L.A.Hasslerf11/<1Reviewedby:B.M.Palmer2//'F/FFStructural Thermal-Hydraulic J.BiddleP.J.enningson s/IT/TVS/if//'qpgjl~~QD.A.arnsworth VjNOOR'SOOCUhiEt4T RFVIEVrl.PAPPROVED~ARPROVEihQPMIT FINALOOCUl~UHQglcru'(his LlAYMi&~io~~*'PPR0VEOASliGTED.llAViE C'HV4PH~'JAVOSU('.ITF:lsALOOCL>.'i'TS.li'JiNU Vi.FACTUFiO:O llAYlRGCECOASAPPiOVEO.iLQ(lOT/PNOVEOCORREC ANDREEUUl/lT Pl>EVO':'(OTREDU(REO-l/'FAGTURtNO
~hlAVPRDCEEOAP'.iROVAL CFP+LlDOC"VEVTOOaSROTO'ELIEVEEU/iPLIRiRDhlFUL(.CO!PL(h'iCE'hflTH CONTRACTORFNCHAEECODE/<<I"lREI:O'.
iS...d~+.r~~i)IRG"'FIEGT ERGAii~l""'..L:CTiilC CCRP.Rutherford S.Q.King9704070046 97033iPDRADGCK05000244(
PPDR~Page1ofyq~
TABLEOFCONTENTS
1.0INTRODUCTION
1.1GENERAL.1.2NEWSPENTFUELPOOLCONFIGURATION
..1.3BORATEDSTAINLESS STEELRACKDESCRIPTION 1.3.1Description ofRegion1,Type3Racks1.3.2Description ofRegion2,Type2Racks...............
1.3.3Description ofRegion2,Type4Racks...............
1.3.4NeutronAbsorberMaterial.1.3.5Structural Materials
..1.4SUPPLIERQUALIFICATION ANDEXPERIENCE 1.4.1TeamQualifications
..1.4.2TeamExperience
.2.0PRINCIPAL DESIGNCRITERIA2.1GeneralDesignCriteria2.2Structural Criteria2.3Criticality Criteria~2.4Thermal-Hydraulic Criteria.2.5Radiological Criteria.3.0STRUCTURAL EVALUATION 3.1SCOPE3.2DESIGNCRITERIA.3.2.1Applicable CodesandStandards 3.2.2Acceptance
- Criteria, LoadCombinations andStressLimits..3.3STRUCTURAL DESIGNFEATURES3.4MATERIALS OFCONSTRUCTION 3.4.1Structural Materials 3.4.2Non-structural Materials 3.5STRUCTURAL ANALYSIS..3.5.1LoadingConditions 3.5.1.1Overview3.5.1.2SeismicInputCompliance
..3.5.2Structural AnalysisMethods3.5.2.1Assumptions
-Seismic/Structural 3.5.2.2Analytical Procedure
.3.5.2.2.1 SeismicAnalysis3.5.2.2.2 Structural Analysis3.5.2.2.2.1 RackStresses3.5.2.2.2.2 SupportLegsandConcreteBearingStresses3.5.2.2.2.3 WeldStresses1920212122232425262626525252...5353....54....55......5557..63..65..65.65.72~~~~~~73........73
....77.......100100101101...~.103....103....~..104~....10451-1258768-01 GinnaSFPRe-racking Licensing ReportPage2 TABLEOFCONTENTS...105105.106.106.106.117....117..~.117....117.......118119....119....120120123130132136136..136136....142....142143.143...144..146149.~150....150....152..158....159~...159....161164....167...1713.5:2.2.2.4 Fuel-to-Rack ImpactLoadsEvaluation
.3.5.2.2.2.5 SlidingandTipping......3.5.2.2.2.6 ExpectedLoadsonFloorFromRacks.............
3.5.2.2.2.7 PoolLinerPlateIntegrity Evaluation 3.5.2.3DetailedDescriptions ofMathematical Models.3.5.2.4DetailedDocumentation ofComputerCodes.............
~3.5.2.4.1 General.......
~..3.5.2.4.2 StructuraVSeismic ComputerCodes.3.5.2.4.2.1 ANSYS3.5.2.4.2.1.1 SummaryofElementTypesUsedintheANSYSModels..3.5.2.4.2.1.2 SummaryofANSYSErrorReportsforElementTypesUsed..3.5.2.4.2.2 SIMQKE3.5.2.5Hydrodynamic FluidCoupling.3.5.2.5.1 Fuel-To-Rack Hydrodynamic Coupling3.5.2.5.2 Rack-To-Rack andRack-To-Pool Hydrodynamic Coupling....
3.5.2.6SeismicTimeHistoryFactorDeterminations
..3.5.2.7RackStiffness Sensitivity Study3.5.3Structural Evaluation
........~~.3.5.3.1Normal,UpsetandFaultedConditions
..3.5.3.1.1 VariousInputstothe3-DSingleRackandWholePoolFiniteElementModels~......3.5.3.1.1.1 RackStructural Properties
.............
3.5.3.1.1.2 FuelStructural Properties 3.5.3.1.1.2.1 Consolidated FuelCanisterStructural Properties
.3.5.3.1.1.2.2 FuelAssemblyStructural Properties
.......3.5.3.1.1.3 Interface Stiffness BetweenFuelandRack.3.5.3.1.1.4 Damping3.5.3.1.1.5 Perforated Plates3.5.3.1.1.6 LocalGapsSurrounding EachRack.3.5.3.1.2 RackTubeConnecting TabsandTubeRetainerPlateWelds...3.5.3.1.2.1 Tab/WeldStressesDuetoSeismicLoads..3.5.3.1.2.2 Tab/WeldStressesDuetoFuel-to-Tube Impact........3.5.3.1.2.3 ThermalStressesinTabs/Welds
.....3.5.3.1.2.4 TotalTab/WeldStresses3.5.3.1.2.5 BoratedStainless SteelRetainerPlatesWeldStresses...3.5.3.1.2.6 RackTubeBucklingStrengthandTabWeldSpacing3.5.3.1.2.7 RackTubeMaximumStressEvaluation 3.5.3.1.3 BottomofRackTubetoBasePlateWelds..3.5.3.1.4 WeldingofSupportLegs51-1258768-01 GinnaSFPRe-racking Licensing ReportPage3 TABLEOFCONTENTS3.5.3.1.5 SummaryofSupportPadLoads..3.5.3.1.6 Fuel-to-Rack ImpactLoads.......3.5.3.1.7 SummaryofSingleRack3-DModelResults.3.5.3.1.7.1 BriefDescription of3-DSingleRackModel3.5.3.1.7.2 StudyofEffectsofRackHeightIncrease.3.5.3.1.7.2.1 PurposeofRackHeightIncreaseStudy........
3.5.3.1.7.2.2 Modifications RequiredintheRackModel...~.3.5.3.1.7.2.3 ResultsofRackHeightIncreaseStudy........3.5.3.1.7.3 Peripheral RackAttachment Study.3.5.3.1.7.3.1 PurposeofPeripheral RackAttachment Study..3.5.3.1.7.3.2 Peripheral RackModelInputAdjustments
.....3.5.3.1.7.3.3 SummaryofResults...........
3.5.3.1.7.4 Off-Centered LoadingStudy.......3.5.3.1.7.4.1 PurposeofOff-Centered LoadingStudy.......3.5.3.1.7.4.2 Modifications RequiredtoAnalyzeOff-Centered LoadingCases......3.5.3.1.7.4.3 SummaryofOff-Centered LoadingResults....3.5.3.1.7.5 Comparison ofConnected andDisconnected FuelBeamModels3.5.3.1.8 SummaryofWholePoolModelResults.....3.5.3.1.8.1 RackForcesandMomentsforEachLoadCase.......3.5.3.1.8.2 FinalRackDisplacements forEachLoadCase~.......3.5.3.1.8.3 FinalRackRotations ForEachLoadCase.3.5.3.1.8.4 Representative Plots3.5.3.1.9 SupportLegandBearingPadAnalysis..3.5.3.1.9.1 SupportLegAnalysis3.5.3.1.9.1.1 ExistingRackSupportAnalysis...3.5.3.1.9.1.2 ConcreteandSpentFuelPoolLinerQualification 3.5.3.1.9.1.2.1 AverageConcreteBearingStress3.5.3.1.9.1.2.2 Boussinesq's Solution3.5.3.1.10 RackThermalStressAnalysis3.5.3.1.11 FatigueAnalysis3.5.3.1.12 RackBasePlateEvaluation
.3.5.3.1.13 Sloshing..3.5.3.1.14 SummaryofGapClosurefromFive(5)OBE'sPlusOne(1)SSE.~3.5.3.1.15 BoratedStainless SteelFunctionality 3.5.3.1.16 U.S.Tool4DieRackStructural Evaluation 3.5.3.1.17 SpentFuelPoolandLinerStructural Evaluation 3.5.3.1.18 StuckFuelAssembly-UpliftForce3.5.3.1.19 StorageRacksLiftingAnalysis~ae.173.185.191.191.192.192.192.192.196.196.196196200.200200201201203...206..218230236254256..256...257..257.257260266269272.279283284.287.28929251-1258768-01 GinnaSFPRe-racking Licensing ReportPage4 TABLEOFCONTENTS3.5.3.2AccidentConditions 3.5.3.2.1 Methodology andAssumptions
..3.5.3.2.2 Acceptance Criteria.........
3.5.3.2.3 FuelAssemblyDropAnalysis..............
3.5.3.2.3.1 FuelAssembly-Straight DeepDrop~..3.5.3.2.3.1.1 FuelAssemblyFallsThroughCelltoBasePlate3.5.3.2.3.1.2 FuelAssemblyDropsintoCellandStrikesSupportLeg..3.5.3.2.3.2 FuelAssembly-ShallowDrops..3.5.3.2.3.2.1 FlatImpactonTopInterface oftheRacks.....
3.5.3.2.3.2.2 End-OnImpact....
3.5.3.2.4 TornadoMissileImpact3.5.3.2.5 GateDrop..3.5.3.2.6 RackDrops3.5.3.2.7 CaskDrop.3.5.3.2.8 SummaryofAccidentDropResults3.5.3.2.9 LossofSpentFuelPoolCooling3.5.3.3Tabulation ofResults3.5.3.4Discussion ofResultsandSignificance
.3.5.3.5Conclusion
.3.5.3.6Anticipated ImpactonOperations ofR.E.GinnaNuclearPlant...
3.6REFERENCES
.294294295..295296..296.....301.....304.....305306308310.310314...314316317323323....3243254.0CRITICALITY EVALUATION
4.1INTRODUCTION
~.4.1.1Region1NormalCondition
.4.1.2Region2NormalCondition
.4.1.3AbnormalConditions 4.2ANALYTICAL METHODS.4.2.1Criticality AnalysisMethodology 4.2.2Tolerance Evaluation/Burnup IsotopicGeneration withCASMO-3.4.2.3BurnupCreditMethodology
..4.2.4BoraflexDegradation/Shrinkage Methodology
..4.3CRITICALITY ANALYSES...
4.3.1InputParameters
............,
4.3.1.1FuelAssemblyDescription
..4.3.1.2SpentFuelStorageRackDimensions
.4.3.1.3MaterialSpecifications 4.3.2Tolerance/Uncertainty Evaluation
.4.3.2.1FuelRackTolerance AnalysisMethodology 4.3.2.2Off-Center FuelAssemblyAnalysis.328328329........329...330........331........331...~....332333334..335335335.335..33533633651-1258768-01 GinnaSFPRe-racking Licensing ReportPage5 TABLEOFCONTENTS~Pae4.3.2.3StoragePoolCoolantTemperature Effects4.3.2.4FuelAssemblyMechanical Tolerances
.........336..3374.3.2.5MostReactiveFuelType......~......................
3374.3.2.5.1 IntactFuelAssemblies.....
.....3374.3.2.5.2 Consolidated FuelContainers
.......4.3.2.6SummaryofBiases,Penalties, andUncertainties inAnalysis.....
'.3.3Region1Analysis338..338..3384.3.3.1Region1GeometryModels..........
~............
~..3384.3.3.2BurnupCredit....................
~~..............
3394.3.4Region2Analysis4.3.4.1Region2GeometryModels......
~~........
~.......3393404.3.4.1.1 RackType1-BoraflexRack3404.3.4.1.2 RackType2-BoratedStainless SteelRack.......
3404.3.4.1.3 Region2CombinedModelforRackType4Evaluation
........3404.3.4.2Region2LoadingCurveGeneration...
~.....3414.3.4.2.1 BaseBurnupvsEnrichment CurveGeneration
.3414.3.4.3Generation oftheLoadingCurveforAbnormalAssemblies
..........
4.3.5Interface Effects.4.3.6AccidentAnalysis..4.3.6.1Region1AssemblyDropAnalyses......4.3.6.2Region2AssemblyDropAnalyses.~~.4.3.6.3SeismicAnalysis..4.3.6.3.1 Region1SeismicAnalysis..4.3.6.3.2 Region2SeismicAnalysis..~..4.3.6.3.3 Interface RegionSeismicAnalysis.4.3.7SummaryofResults4.3.7.1Analytical ResultsforRegion14.3.7.1.1 NormalCondition Results4.3.7.1.2 BurnupVersusEnrichment Curve.......~.................
3413423433433443453463463463463473473484.3.7.1.3 IFBARodRequirements
......3484.3.7.1.4 AccidentConditions.....
3484.3.7.2Analytical ResultsforRegion23494.3.7.2.1 Analytical ResultsforNormalConditions...
4.3.7.2.2 BaseBurnupVersusEnrichment Curve....................
4.3.7.2.3 LoadingCurveforAbnormally BurnedAssemblies
...........
4.3.7.2.4 ResultsforAccidentConditions
..4.3.8FuelRodConsolidation
.4.3.9Acceptance CriteriaforCriticality 4.4SUPPLEMENTARY INFORMATION 4.4.1KENOV.aBias4.4.1.1CriticalExperiments
....4.4.1.2CASMO-3/KENO V.aBenchmarks 34935035135135235335435435435751-1258768-01 GinnaSFPRe-racking Licensing ReportPage6 TABLEOFCONTENTS4.4.1.3KENOV.aInfinitetoFiniteModelComparison
.4.4.2BurnupCreditMethodology
.......................
4.4.2.1AxialProfileGeneration
.4.4.2.2AxialProfileIsotopicConcentration Generation 4.4.2.3AxialReactivity Effects4.4.2.4BoraflexDegradation ModelMargin..4.4.3Westinghouse IFBADocumentation
4.5REFERENCES
0~0~Paae3573583583593603613613675.0THERMAL-HYDRAULIC EVALUATION 5~1INTRODUCTION 5.2CRITERIA5.3ASSUMPTIONS.......................................
5.4DISCUSSION OFSPENTFUELCOOLING....................
5.5SPENTFUELPOOLCAPACITYANDDISCHARGE SCENARIOS
~...5.5.1SpentFuelPoolCapacity...
5.5.2CoreOffloadScenarios
.............
~..................
5.5.2.1NormalDischarge Scenario5.5.2.2FullCoreDischarge Scenario.......................
5.6DECAYHEATLOAD5.6.1FullCoreDecayHeatLoad.............................
5.6.2SingleFuelAssemblyDecayHeatLoad.....................
5.7REQUIREDCOREDECAYTIMES5.7.1SingleBatchOffload5.7.2FullCoreOffload..5.8LOCALFUELBUNDLETHERMAL-HYDRAULICS 5.8.1NaturalCirculation intheSpentFuelPoolStorageCanisters 5.8.2EffectsofGammaHeatingintheFluxTrapRegionsandInter-Canister Gaps....5.8.2.1RegionIType3FluxTraps......~...5.8.2.2RegionIIType2Inter-Canister Gaps....5.8.3FlowBlockages......................
5.8.4NaturalCirculation intheConsolidated FuelCanisters............
5.9SPENTFUELPOOLTHERMAL-HYDRAULICS ANALYSISRESULTS5.9.1RegionIwithType3ATEARacks.......5.9.2RegionIIwithType2ATEARacks..~....5.9.3RegionIwithType4ATEASideRacks5.9.4NaturalCirculation intheRegionIFluxTrapRegion............
5.9.5NaturalCirculation intheRegionIIInter-Canister Gaps...........
5.9.6TheEffectofFlowBlockage5.9.7NaturalCirculation intheConsolidated FuelCanister............
~~~~~~~~429430430430431431431431432434434435435435436~~~~~~~~\~~~~439439440441441442442443444445446446447..436..43751-1258768-01 GinnaSFPRe-racking Licensing ReportPage7
TABLEOFCONTENTS5.10LOSSOFTHESPENTFUELCOOLINGSYSTEM..~.~.~..........
4475.11COMPARISON BETWEENORIGEN2RESULTSANDASB9-2METHODOLOGY
.................
~...............
4495.12REFERENCES
6.0 RADIOLOGICAL
EVALUATION 6.1ACCEPTANCE CRITERIA6.1.1OffsiteDoseExposure.6.1.2Occupational DoseExposure.6.2OFFSITEDOSECONSEQUENCES 6.2.1RackDropAccident6.2.2CaskDrop/TipAccident6.2.3GateDropAccident..6.2.4Consolidated CanisterDropAccident6.2.5FuelHandlingAccident.6.2.6TornadoMissileAccident.6.3OCCUPATIONAL EXPOSURE.6.4SOLIDRADWASTE.6.5GASEOUSRELEASES6.6RACKDISPOSAL
6.7CONCLUSION
S
6.8REFERENCES
..451...451..452.452.......452~~~~~~~~~~~~~~~~452..452.452.......453..453.......455..........
4584604614614617.0QUALITYASSURANCE 7.1DESCRIPTION OFSUPPLIER'S QUALITYASSURANCE PROGRAM7.2DESCRIPTION OFQUALITYASSURANCE PLANANDIMPLEMENTATION
.7.2.1Organization
.7.2.2QualityAssurance 7.2.3DesignControl.7.2.4Procurement DocumentControl7.2.5Instructions, Procedures, andDrawings7.2.6DocumentControl7.2.7ControlofPurchased
- Material, Equipment, andServices.....7.2.8Identification andControlofMaterials, Parts,andComponents.....
7.2.9ControlofSpecialProcesses
~...7.2.10Inspection
.7.2.11TestControl............
~............
~7.2.12ControlofMeasuring andTestEquipment
.............
7.2.13Handling, Storage,andShipping~....~...~.......~..........
7.2.14Inspections, Tests,andOperating Status.~...7.2.15Non-Conforming Materials, Parts,orComponents
...~....468....468~......469..~469469...469.~...469.....469...~.469.470470.470...470...471........471........47147151-1258768-01 GinnaSFPRe-racking Licensing ReportPage8 TABLEOFCONTENTS7.2.16Corrective Action7.2.17Audits~ae..4724728.0ENVIRONMENTAL COST/BENEFIT ASSESSMENT 8.1NEEDFORINCREASED STORAGECAPACITY.'..8.2ESTIMATED CONSTRUCTION COSTS.8.3ALTERNATIVES TOINCREASED STORAGECAPACITY.8.4COMMITMENT OFMATERIALRESOURCES
.8.5HEATRELEASEDTOTHEENVIRONMENT
.....473..473..473474..475Table1.3-1Table1.3-2Table1.3-3Table1.3-4Table1.3-5Table1.4-1Table1.4-2NumberofCellsbyRackType.RackDimensions, Weight,Supports....DesignDataforRegion1,Type3Racks(FreshFuelandSpentFuel)..DesignDataforRegion2,Type2Racks(SpentFuel)..~~.DesignDataforRegion2,Type4Racks(SpentFuel).Framatome/ATEA SpentFuelRacks.....
BoratedStainless SteelExperience (WetStorage)..0~29303132333435Table3.2-1Table3.2-2Table3.4-1Table3.4-2Table3.4-3Table3.4-4Table3.4-5Table3.4-6Table3.4-7Table3.4-8Table3.5-1Table3.5-2Table3.5-3Table3.5-4Table3.5-5Table3.5-6Table3.5-7Table3.5-8Table3.5-9StressAcceptance Criteria-StorageRacks304LStainless Steel-StressAcceptance Criteria~.Materials ofConstruction Material:
304LStainless SteelPlate,BarandPipeMaterial:
304Stainless SteelPlate'and BarMaterial:
630Precipitation HardenedSteel.....
Concrete~~~~~~~~~~~I~~~~~~~~~~t0~~~~~~Zircaloy-4 TubingMaterialBoratedStainless Steel..Boraflex~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Regulatory Guide1.60Horizontal SpectraSSEHorizontal SpectraOBEHorizontal SpectraRegulatory Guide1.60VerticalSpectra..SSEVerticalSpectraOBEVerticalSpectraCross-Correlation FactorsforSSETimeHistories
..~Cross-Correlation FactorsforOBETimeHistories........
Geometric Parameters forHydrodynamic MassCoupling-SummaryTable....61.6267.......6869.......70~~~~~~~71.......71...71.......71
~~~~~~78....78.79...79....7980.....808112751-1258768-01 GinnaSFPRe-racking Licensing ReportPage9 TABLEOFCONTENTSTable3.5-10Table3.5-11Table3.5.12Table3.5-13Table3.5-14Table3.5-15Table3.5-16Table3.5-17Table3.5-18Table3.5-19Table3.5-20Table3.5-21Table3.5-22Table3.5-23Table3.5-24Table3.5-25Table3.5-26Table3.5-27Table3.5-28Table3.5-29Table3.5-30Table3.5-31Table3.5-32Table3.5-33Table3.5-34Table3.5-35Table3.5-36Table3.5-37Table3.5-38Table3.5-39Table3.540Table3.5-41Table3.5-42Table3.5-43Table3.5-44Table3.5-45Table3.5-46..128....129131...~.132158158..162..163166.......168170....172.173173174~~..174175175....176....176.177..177..178.........
178.....179.179.~180..180.181.181......182182183183...184.184........~185RackHydrodynamic CouplingMassesStandardConfiguration (NoType4RacksInstalled)
RackHydrodynamic CouplingMassesExtendedConfiguration (Type4RacksInstalled)
..SummaryofDetermination ofSSETimeHistoryFactor(UsingRack8(2B)LoadedwithConsolidated Fuel,mu=0.8).~.SummaryofDetermination ofOBETimeHistoryFactor(UsingRack8(2B)LoadedwithUnconsolidated Fuel,mu=0.8)....Mechanical Tab/WeldStresses.Tabs/Welds ThermalStressesRackCross-Section Properties forTubesCompressive RackCornerTubeStressestpsi].SummaryofTubeStressesBasePlateWeldsCross-Section Properties forNewATEARacksBasePlate&WeldStressSummaryforNewATEARacks........Summation ofSupportLegWeldStresses.Max.Horiz.ModelLegForcesSRSS-LC¹1.Max.VerticalPoolFloorForces-LC¹1Max.Horiz.LegForcesSRSS-LC¹2Max.VerticalPoolFloorForces-LC¹2..Max.Horiz.ModelLegForcesSRSS-LC¹3.Max.VerticalPoolFloorForces-LC¹3Max.Horiz.LegForcesSRSS-LC¹4Max.VerticalPoolFloorForces-LC¹4Max.Horiz.ModelLegForcesSRSS-LC¹5.Max.VerticalPoolFloorForces-LC¹5Max.Horiz.ModelLegForcesSRSS-LC¹6Max.VerticalPoolFloorForces-LC¹6Max.Horiz.LegForcesSRSS-LC¹7Max.VerticalPoolFloorForces-LC¹7...............
Max.Horiz.LegForcesSRSS-LC¹8Max.VerticalPoolFloorForces-LC¹8.~Max.Horiz.LegForcesSRSS-LC¹9Max.VerticalPoolFloorForces-LC¹9..Max.Horiz.LegForcesSRSS-LC¹10Max.VerticalPoolFloorForces-LC¹10Max.Horiz.LegForcesSRSS-LC¹11Max.VerticalPoolFloorForces-LC¹11Max.Horiz.LegForcesSRSS-LC¹12Max.VerticalPoolFloorForces-LC¹12LocalFuel/Rack ImpactForces-LC¹151-1258768-01 GinnaSFPRe-racking Licensing ReportPage10
TABLEOFCONTENTSTable3.5-47Table3.5-48Table3.5-49Table3.5-50Table3.5-51Table3.5-52Table3.5-53Table3.5-54Table3.5-55Table3.5-56Table3.5-57Table3.5-58Table3.5-59Table3.5-60Table3.5-61Table3.5-62Table3.5-63Table3.5-64Table3.5-65Table3.5-66Table3.5-67Table3.5-68Table3.5-69Table3.5-70Table3.5-71Table3.5-72Table3.5-73Table3.5-74Table3.5-75Table3.5-76Table3.5-77Table3.5-78Table3.5-79Table3.5-80Table3.5-81Table3.5-82Table3.5-83Table3.5-84....185....186LocalFuel/Rack ImpactForces-LC¹2..~.LocalFuel/Rack ImpactForces-LC¹3LocalFuel/Rack ImpactForces-LC¹4...LocalFuel/Rack ImpactForces-LC¹5LocalFuel/Rack ImpactForces-LC¹6LocalFuel/Rack ImpactForces-LC¹7LocalFuel/Rack ImpactForces-LC¹8LocalFuel/Rack ImpactForces-LC¹9~.LocalFuel/Rack ImpactForces-LC¹10....
LocalFuel/Rack ImpactForces-LC¹11.LocalFuel/Rack ImpactForces-LC¹12...SummaryofMaximumFuel/Rack CellWallImpactLoaComparison ofResultsforRackModelWithandWithoutaHeightIncrease.SummaryofOBEResultsinPeripheral RackAnalysis.SummaryofSSEResultsinPeripheral RackAnalysis..Comparison ofResultsforHalf-Loaded Consolidated Rack8,SSE1,Mu=0.8.SummaryofConnected andDisconnected FuelBeamModelComparison Results.SummaryofWholePoolModelLoadCases..SummaryofRackLoadingsforLoadCase¹11SummaryofRackLoadingsforLoadCase¹12~RackForcesFx,Fy&Fz-LC¹1.RackMomentsMx,My&Mz-LC¹1RackForcesFx,Fy&Fz-LC¹2RackMomentsMx,My&Mz-LC¹2RackForcesFx,Fy&Fz-LC¹3................
RackMomentsMx,My&Mz-LC¹3RackForcesFx,Fy&Fz-LC¹4RackMomentsMx,My&Mz-LC¹4RackForcesFx,Fy&Fz-LC¹5RackMomentsMx,My&Mz-LC¹5RackForcesFx,Fy&Fz-LC¹6RackMomentsMx,My&Mz-LC¹6RackForcesFx,Fy&Fz-LC¹7RackMomentsMx,My&Mz-LC¹7..RackForcesFx,Fy&Fz-LC¹8.........
~..RackMomentsMx,My&Mz-LC¹8RackForcesFx,Fy&Fz-LC¹9RackMomentsMx,My&Mz-LC¹9........186187.187..188..188..189..189..190..190191ds.........~........195....197.....198201203..203204205..206206~.207207208208..209.............
209210210211211212212213.213214...21451-1258768-01 GinnaSFPRe-racking Licensing ReportPage11 TABLEOFCONTENTSTable3.5-85Table3.5-86Table3.5-87Table3.5-88Table3.5-89Table3.5-90Table3.5-91Table3.5-92Table3.5-93Table3.5-94Table3.5-95Table3.5-96Table3.5-97Table3.5-98Table3.5-99Table3.5-100Table3.5-101Table3.5-102Table3.5-103Table3.5-104Table3.5-105Table3.5-106Table3.5-107Table3.5-108Table3.5-109Table3.5-110Table3.5-111Table3.5-112Table3.5-113Table3.5-114Table3.5-115Table3.5-116Table3.5-117Table3.5-118Table3.5-119Table3.5-120Table3.5-121Table3.5-122Table3.5-123Table3.5-124Table3.5-125RackFarcesFx,Fy&Fz-LC¹10RackMomentsMx,My&Mz-LC¹10.RackForcesFx,Fy&Fz-LC¹11...RackMomentsMx,My&Mz-LC¹11RackForcesFx,Fy&Fz-LC¹12RackMomentsMx,My&Mz-LC¹12........FinalRackRelativeEast-West Disp.-LC¹1FinalRackRelativeNorth-South Disp.-LC¹1.FinalRackRelativeEast-West Disp.-LC¹2FinalRackRelativeNorth-South Disp.-LC¹2....FinalRackRelativeEast-West Disp.-LC¹3FinalRackRelativeNorth-South Disp.-LC¹3FinalRackRelativeEast-West Disp.-LC¹4FinalRackRelativeNorth-South Disp.-LC¹4...FinalRackRelativeEast-West Disp.-LC¹5FinalRackRelativeNorth-South Disp.-LC¹5FinalRackRelativeEast-West Disp.-LC¹6FinalRackRelativeNorth-South Disp.-LC¹6FinalRackRelativeEast-West Disp.-LC¹7FinalRackRelativeNorth-South Disp.-LC¹7.FinalRackRelativeEast-West Disp.-LC¹8FinalRackRelativeNorth-South Disp.-LC¹8FinalRackRelativeEast-West Disp.-LC¹9FinalRackRelativeNorth-South Disp.-LC¹9FinalRackRelativeEast-West Disp.-LC¹10FinalRackRelativeNorth-South Disp.-LC¹10..FinalRackRelativeEast-West Disp.-LC¹11FinalRackRelativeNorth-South Disp.-LC¹11...FinalRackRelativeEast-West Disp.-LC¹12FinalRackRelativeNorth-South Disp.-LC¹12FinalRackRotations
-LC¹1FinalRackRotations
-LC¹2FinalRackRotations
-LC¹3FinalRackRotations
-LC¹4FinalRackRotations
-LC¹5FinalRackRotations
-LC¹6FinalRackRotations
-LC¹7FinalRackRotations
-LC¹8FinalRackRotations
-LC¹9FinalRackRotations
-LC¹10FinalRackRotations
-LC¹11215..215..216216217..217..218218219..219220220221221222222223223224224225~.225226..226227227228228229229...230.230231.231232232233.23323423423551-1258768-01 GinnaSFPRe-racking Licensing ReportPage12
TABLEOFCONTENTS~aeTable3.5-126Table3.5-127Table3.5-128Table3.5-129Table3.5-130Table3.5-131Table3.5-132Table3.5-133Table3.5-134Table3.5-135Table3.5-136Table3.5-137Table3.5-138Table3.5-139Table3.5-140Table3.5-141Table3.5-142Table3.5-143Table3.5-144Table3.5-145Table3.5-146FinalRackRotations
-LC812..MaterialProperties forthePoolLinerandSupportLegs...~..ForcesUsedinQualification ofthePoolLinerandSupportLegs....SupportLegsForceComparison forExistingRacks..Summation ofConcreteStressesSummation ofSpentFuelPoolLinerStresses......
Summation ofSupportLegStresses..RelativeDisp.DuetoEast-West Translation
...RelativeEast-West Disp.DuetoRotation.RelativeDisp.DuetoNorth-South Translation
...RelativeNorth-South Disp.DuetoRotation..SummaryofEast-West RelativeDisp.SummaryofNorth-South RelativeDisp.~SeismicLoadsonRacks1through6-attheBaseofRackSeismicSupportPadLoadonRacks1through6LoadonEachPad..ResultsofSupportLegStressesResultsofConcreteStresses..............
~.ResultsofSpentFuelPoolLinerStresses....ResultsofTabStressesResultsofTubeStressesResultsofBasePlateStresses....235..254......254256258258259280.280281..281282282286......287.....317.....318..~..318~..319321...322Table4.1-1Table4.1-2Table4.1-3Table4.1-4Table4.3-1Table4.3-2Table4.3-3aTable4.3-3bTable4.3-4Table4.3-5Table4.3-6Table4.3-7Table4.3-8Table4.3-9Table4.3-10Polynomial Generated forSpentFuelBurnupvsEnrichment Requirements fortheRegion1Racks..Polynomial Generated BurnupvsEnrichment Requirements fortheRegion2Racks..KENOV.aRegion1(RackType3)ResultsofBurnupvsEnrichment Calculations KENOV.aRegion2(RackTypes1,2,&4)ResultsofBurnupvsEnrichment Calculations FuelAssemblyParameters Consolidation CanisterSpecifications Region1,RackType3CellDimensions
..~..Region1,RackType3DamagedFuelCellDimensions Region2,RackType1CellDimensions......
~.Region2,RackType2CellDimensions Region2,RackType4CellDimensions....
MaterialCompositions forNon-FuelRegions..'..FuelMaterialNumberDensities AssemblyTolerance Penalties (b,k)Reactivity Uncertainty Associated WithFuelAssemblyType.~0~~~~~~~~~0~~~\~~37037137237337437537637637737737837938038138151-1258768-01 GinnaSFPRe-racking Licensing ReportPage13 TABLEOFCONTENTS~aeTable4.3-11Table4.3-12Table4.3-13Table4.3-14Table4.3-15Table4.4-1Table4.4-2Table4.4-3Table4.4-4Table4.4-5Table4.4-6Table4.4-7Table4.4-8Table4.4-9Table4.4-10Table4.4-11Table4.4-12Table4.4-13Table4.4-14Table4.4-15Table4.4-16Table4.4-17Table4.4-18Table4.4-19Consolidation Container Results.SummaryofRackTypeUncertainties, Penalties, AndCredits........
~...Region1,RackType3,DroppedAssemblyAccidentResults............
Region2,RackTypes1,2,&4,DroppedAssemblyAccidentResults.....SeismicEventAccidentResults.........
KENOV.aBIASvsSeparation Distance.Additional UO,CriticalExperiment Comparisons
.....................
MixedOxideCriticalExperiment Comparisons
.International HandbookCriticalExperiments CASMO-3/KENO V.aBenchmark Configurations
..CASMO-3/KENO V.aInfiniteArrayBenchmark Comparison
...........
CASMO-3/KENO V.aInfiniteArrayBenchmark Comparison
...........
KENOV.aInfinitetoFiniteModelComparison GinnaFuelAssemblies UsedforAxialShapeEvaluation RelativeAxialShapesforTypicalNon-Axial BlanketStandardFuelAssemblies RelativeAxialShapesfortheSevenZoneAxialModel.AxialBurnupShapesfortheRegion2LoadingCurveIrradiation InputDataandIsotopicConcentrations for3Wt%InitialEnrichment Fuelat21GWd/mtUBurnupInRegion2Irradiation InputDataandIsotopicConcentrations for4Wt%InitialEnrichment Fuelat34GWd/mtUBurnupinRegion2.......Irradiation InputDataandIsotopicConcentrations for5Wt%InitialEnrichment Fuelat45GWd/mtUBurnupinRegion2.......IsotopicConcentrations forFuelforRegion2Auxiliary Curves...~......AverageIsotopicConcentrations forRegion1LoadingCurve............
Evaluation ofAxialShapeEffectsforAllRackTypes.....
Evaluation ofMarginProvidedbytheBoraflexDegradation ModelforRackType1.381382383383383384385386387387388388388389390391391392393394395395396397Table5.5-1Table5.9-1Table5.9-2Table5.9-3Table5.10-1Table5.11-1GinnaSpentFuelPoolInventory (ActualEcProjected)
RegionIType3RackLocalPoolCoolingResults.~RegionIIType2RackLocalPoolCoolingResultsRegionIIType4EcBoraflexRackLocalPoolCoolingResults...
LossofPoolCoolingandHeat-UpTimeComparison betweenORIGEN2andASB9-2Resultsforafullcorewith15GWD/MTUburnup.~~~~~444445448449.....433443Table6.2-1Table6.3-1Table6.3-2~OQsiteRadiological Consequences ofaHypothetical TornadoMissileAccident.....
~..............................
~...455DoseRatesatLocations ofInterestAroundSpentFuelPool..............
457GammaIsotopicAnalysisofSpentFuelPoolWaterfor1996.........
~..45751-1258768-01 GinnaSFPRe-racking Licensing ReportPage14 TABLEOFCONTENTSTable6.4-1Table6.5-1Table6A-1Radionuclide AnalysisReport-ResinActivity, fromtheSpentResinTanks...........
~GaseousReleasesfromtheAuxiliary Building..Assumptions andInputsUsedinDetermining Offsite.......~....458460Table6A-2Table6A-3Table6A-4DosesDuetoTornadoMissileAccidentInsideAuxiliary Building........TornadoMissileAccidentSourceTermsforRegion1(100HoursofDecay)TornadoMissileAccidentSourceTermsforRegion2(60DaysofDecay).DoseConversion Factors464465466467ifFieFigure1.1-1Figure1.3-1Figure1.3-2Figure1.3-3Figure1.3-4Figure1.3-5Figure1.3-6Figure1.3-7Figure1.3-8~Figure1.3-9Figure1.3-10Figure1.3-11Figure1.3-12Figure1.3-13Figure1.3-14SpentFuelPool-GeneralArrangement
...Type3Rack-Perspective
...............
Type3Rack-GeneralArrangement Type3Rack-DetailofBase.............
Type3Rack-VerticalSection.Type3Rack-TopView.Type3Rack-DetailsofConnecting Tabs..Type2Rack-DetailsofTopType2Rack-Perspective Type2Rack-DetailofBaseType2Rack-VerticalSectionType2Rack-TopViewType2Rack-DetailofConnecting Tabs...Type4Rack.Type4Rack-TopView........37...38.......39.40.....41.....42...43.44....45.46...47...4849........50.51Figure3.5-1Figure3.5-2Figure3.5-3Figure3.5-4Figure3.5-5Figure3.5-6Figure3.5-7Figure3.5-8Figure3.5-9Figure3.5-10Figure3.5-11Figure3.5-12Figure3.5-13..82....83....84....85....86....878888.....89~~~~~~~89~~~~~90~9091Avg.Calculated vs.DesignResponseSpectraforSSE(EW)X-Dir....
Avg.Calculated vs.DesignResponseSpectraforSSE(NS)Y-Dir.....
Avg.Calculated vs.DesignResponseSpectraforSSEZ-Dir.........
Avg.Calculated vs.DesignResponseSpectraforOBE(EW)X-Dir.Avg.Calculated vs.DesignResponseSpectraforOBE(NS)Y-Dir....
Avg.Calculated vs.DesignResponseSpectraforOBEZ-Dir.SSEAcceleration TimeHistory¹1for(EW)X-Dir......
SSEAcceleration TimeHistory¹2for(EW)X-Dir.SSEAcceleration TimeHistory¹3for(EW)X-Dir..SSEAcceleration TimeHistory¹4for(EW)X-Dir.SSEAcceleration TimeHistory¹1for(NS)Y-Dir..SSEAcceleration TimeHistory¹2for(NS)Y-Dir.......
SSEAcceleration TimeHistory¹3for(NS)Y-Dir.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage15 TABLEOFCONTENTSFigure3.5-14Figure3.5-15Figure3.5-16Figure3.5-17Figure3.5-18Figure3.5-19Figure3.5-20Figure3.5-21Figure3.5-22Figure3.5-23Figure3.5-24Figure3.5-25Figure3.5-26Figure3.5-27Figure3.5-28Figure3.5-29Figure3.5-30Figure3.5-31Figure3.5-32Figure3.5-33Figure3.5-34Figure3.5-35Figure3.5-36Figure3.5-37Figure3.5-38Figure3.5-39Figure3.5-40Figure3.5-41Figure3.5-42Figure3.5-43Figure3.5-44Figure3.5-45Figure3.5-46Figure3.5-47Figure3.5-48Figure3.5-49Figure3.5-50Figure3.5-51SSEAcceleration TimeHistory¹4for(NS)Y-Dir..SSEAcceleration TimeHistory¹1forVerticalZ-Dir....
SSEAcceleration TimeHistory¹2forVerticalZ-Dir..SSEAcceleration TimeHistory¹3forVerticalZ-Dir..SSEAcceleration TimeHistory¹4forVerticalZ-Dir..OBEAcceleration TimeHistory¹1for(EW)X-Dir...OBEAcceleration TimeHistory¹2for(EW)X-Dir...OBEAcceleration TimeHistory¹3for(EW)X-Dir..OBEAcceleration TimeHistory¹4for(EW)X-Dir..OBEAcceleration TimeHistory¹1for(NS)Y-Dir.OBEAcceleration TimeHistory¹2for(NS)Y-Dir.OBEAcceleration TimeHistory¹3for(NS)Y-Dir.OBEAcceleration TimeHistory¹4for(NS)Y-Dir.OBEAcceleration TimeHistory¹1forVerticalZ-Dir....
OBEAcceleration TimeHistory¹2forVerticalZ-Dir...OBEAcceleration TimeHistory¹3forVerticalZ-Dir.OBEAcceleration TimeHistory¹4forVerticalZ-Dir.3D-Single RackModelGinna3DWholePoolRackModel.SingleRackFiniteElementModel.GinnaType2RackCellFiniteElementModel..GinnaType3RackCellFiniteElementModel.PlanViewofSpentFuelPoolPercentofValueatStiffness ofContinuous Structure vs.Stiffness Factor.Longitudinal TabImpactModelLateralTabImpactModelDimensions, SupportLeg,andGussetPlatesUsedforWeldQualification Representation ofModelforSingleRackAnalysis.....
Representation ofModelforAnalysisofRack1WithAttachedRack4A.VerticalLegForceFz,Rack1,Leg1-LC¹1.SumofVert.LegForcesFz,Rack1-LC¹1Rack1Horizontal ForceFy-LC¹1Rack1MomentMx-LC¹1....................
Rack7MomentMy-LC¹1Fuel/Rack ImpactLds.+X,Rack1Top-LC¹1.......RelativeDispl.DXRack5/Rack7, Top-LC¹1Rel.Displ.DXRack5/Rack7, Base-LC¹1.Rel.Displ.DYRackl/Rack2, Base-LC¹1.9192929393949495...95969697~~~~~~~97989899.....99...~.111.....112.....~113114........115........116.......135.......153.......156.172193194236237238239240241242..24324451-1258768-01 GinnaSFPRe-racking Licensing ReportPage16
TABIEOFCONTENTSFigure3.5-52Figure3.5-53Figure3.5-54Figure3.5-55Figure3.5-56Figure3.5-57Figure3.5-58Figure3.5-59Figure3.5-60Figure3.5-61Figure3.5-62Figure3.5-63Figure3.5-64Figure3.5-65Figure3.5-66Figure3.5-67Figure3.5-68Figure3.5-69Figure3.5-70Figure3.5-71Figure3.5-72Figure3.5-73Figure3.5-74VerticalLegForceFz,Rack1,Leg1-LC¹2......SumofVerticalLegForcesFz,Rack1-LC¹2.........
Rack1Horizontal ForceFy-LC¹2Rack1MomentMx-LC¹2Rack7MomentMy-LC¹2Fuel/Rack ImpactLoads+X,Rack1Top-LC¹2..RelativeDispl.DXRack5/Rack7, Top-LC¹2..........
RelativeDispl.DXRack5/Rack7, Base-LC¹2.RelativeDispl.DYRackl/Rack2, Base-LC¹2.SupportLegDetailsSupportLegGussetPlateDetailsStressLocations ForBoussinesq's BearingSolution..RackTubesStressContours-To(TopPlane)...
RackTubesStressContours-To(MidPlane)BasePlateStressContours-To(TopPlane).BasePlateStressContours-To(MidPlane).DeformedBasePlatewithLegs-Ta....BottomCornerTubesStressContours-Ta(TopPlane).BottomCornerTubesStressContours-Ta(MidPlane).BasePlateStressContours-Ta(TopPlane).BasePlateStressContours-Ta(MidPlane)~..BasePlateMembraneStressContoursBasePlateMemb.+Bend.StressContours......~ae..245246..247248249..250251252.....253..~~.255256257..261261262262.263264264265265...271...272Figure4.1-1Figure4.1-2Figure4.1-3Figure4.1-4Figure4.3-1Figure4.3-2Figure4.3-3Figure4.3-4Figure4.3-5Figure4.3-6Figure4.3-7Figure4.3-8Figure4.3-9Region1SpentFuelBurnupvsEnrichment Curve.....
Region2BurnupvsEnrichment Curve..SketchofAllowable LoadingConfigurations forRegion1SketchofAllowable LoadingConfigurations forRegion2~~.~....~...GinnaSpentFuelPoolConfiguration Region1Type3BaseCellStructure forInfiniteModelAxialProfileOfFiniteAndInfiniteBaseModels..........
~.Region1-RackType3FiniteModelRegion2BoraflexRack(Type1)-KENOV.aModel.Region2BoratedStainless Steel(Type2)Racks-KENOV.aModel....
AreasModeledtoExamineInterface EffectsbetweenRackTypesandRegionsKENOV.aModelUsedtoExamineInterface Effectbetween(1)RackTypes3CEc2B,and(2)RackTypes2B&3E..........
KENOV.aModelUsedtoExamineInterface EffectsbetweenRackTypes1,4F,and3A.39839940040140240340440540640740840941051-1258768-01 GinnaSFPRe-racking Licensing ReportPage17 TABLEOFCONTENTSFigure4.3-10Figure4.3-11Figure4.3-12Figure4.3-13Figure4.3-14Figure4.3-15Figure4.3-16Figure4.3-17Figure4.4-1Figure4.4-2Figure4.4-3Figure4.4-4Figure4.4-5Figure4.4-6Figure4.4-7Figure4.4-8Figure4.4-9Figure4.4-10411412413414415416417418419420421422423~......424425426427428KENOV.aModelUsedtoExamineInterface EffectsbetweenRackTypes1,4C,and2AKENOV.aShallowDropAccidentModels.KENOV.aSideDropAccidentModel.KENOV.aDeepDropAccidentModelforRackTypes2,3,and4KENOV.aRegion1Misplaced AssemblyModel.KENOV.aRegion2Misplaced AssemblyModel.............
KENOV.aRackType1DeepDropAccidentModelSketchofConsolidation Canister.....
KENOV.aResultsforB&WCriticals forSpacingVariations
....ResultsforWaterSpacingExperiments fromKENOV.a27and44GroupandMCNPContinuous GroupCrossSections.......LeastSquaresFitThroughResultsB&WInterspersed AbsorberExperiments
..TypicalGinnaAxialBurnupShapesforBurnupsbetween10and20GWd/mtUTypicalGinnaAxialBurnupShapesforBurnupsbetween20and30GWd/mtUTypicalGinnaAxialBurnupShapesforBurnupsbetween30and40GWd/mtUTypicalGinnaAxialBurnupShapesforBurnupsbetween40and50GWd/mtUNon-Axial BlanketShapesUsedforAnalysisRelativeNon-Blanket AxialShapesUsedinAnalysis.....Illustration ofSevenZoneRepresentation Figure5.8-1Figure5.8-2Figure5.8-3Figure5.8-4Figure5.9-1SpentFuelPool.NaturalCirculation FlowPath..FluxTrapRegionRegionIIType2Inter-Canister Gap.NaturalCirculation FlowPath-Type3.439~~~~~~~~~~~~~~~~~~~~~~~~~~~440.441Rack.................443Figure6-1Figure6-2OverviewofProposedRe-racking oftheGinnaSpentFuelPool..........
463OverviewofSpentFuel PoolConcrete WallThicknesses.........
463endicAppendix6AAssumptions andInput..46451-1258768-01 GinnaSFPRe-racking Licensing ReportPage18
1.0INTRODUCTION
1.1GENERALThelicensing analysispresented inthefollowing sectionsisapplicable toRochester GasandElectric's R.E.GinnaNuclearPowerPlant.TheGinnaNuclearPlantislocatedapproximately 16mileseastofRochester inWayneCounty,NewYork.ThereactorisaWestinghouse 2-LoopPressurized WaterReactor(PWR)designconfiguration, andutilizesa14x14fuelassembly.
Theplant'sspentfuelpoolwasoriginally rackedin1968.Subsequently, thepoolwasre-racked in1977and1985.Thepresentpoolisconfigured withtwotypesofracks.Region1consistsofthreefluxtraptyperacksproviding storagefor176fuelassemblies, andRegion2consistsofsixhighdensityfixedpoison(Boraflex) typeracksaccommodating 840fuelassemblies foratotalcapacityof1016fuelassemblies.
Thenewspentfuelpoolrackanalysiscontained inthisreportprovidesthenecessary licensing analysestoreconfigure thepooltoaccommodate anetincreaseof353locations.
Thisisaccomplished byretaining thesixexistinghighdensityracks(840minus12forattachment ofnewracks=828locations),
andinstalling newBoratedStainless Steel(BSS)rackswithupto541additional storagelocations foranewtotalof1,369locations.
Theanalysespresented hereindemonstrate thatatotalof1,879fuelassemblies canbeaccommodated inthese1,369locations bystoringconsolidated rodcanisters insomespentfuellocations.
Thenumberoffuelrodscontained intheintactfuelassemblies and/orconsolidated rodstoragecanisters storedintheselocations islimitedtonomorethanthenumberofrodscontained in1,879fuelassemblies (179fuelrodsperassemblyx1,879assemblies
=336,341fuelrods.)There-configured poolwillhavefourtypesofracksintworegions.Region1willcontainonly&eshfueVspent fuelracksdesignated Type3.Region2willcontainspentfuelracksincluding theexistingBoraflexracks,designated Type1,andnewhighdensityracksdesignated Types2and4.TheType2rackswilloccupythemainportionoftheavailable spacewhiletheType4rackswillbeplacedbetweentheexistingType1Boraflexracksandthepoolwall.TheRegionsandTypesaresummarized below;Figure1.1-1showsthenewpoolarrangement.
,";8,':Re'o'n
.';::.';.';:
BSSracksforfreshfueVspent fuelExistingBoraflexracksforspentfuelInteriorBSSracksforspentfuelPeripheral BSSracksforspentfuel*OnlyType2and3rackswillbeinstalled atthistime.TheType4racksarebeingpresented asameansofachieving themaximumstoragecapacityofthepoolandtolicensetheconfiguration, butwillnotbeinstalled, unlessneededinthefuture.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage19 Thenewrackswillconsistofagridarrangement ofverticalsquare-section parallelcellseachdesignedtotakeonefuelassembly.
Thedistancebetweencellsisminimized byinserting neutronabsorberplatesbetweenthecellstoensureadequatemarginagainstcriticality.
Tofacilitate manufacturing andassembly, theseracksarenotofmonolithic construction butaremadeofmodulesplacedsidebyside.Eachmoduleiscomprised ofmultiplecellsandissizedtomatchthegeometryofthestoragepoolzoneavailable andtoallowforhandlingconstraints.
Theracksaredesignedforaforty-year servicelife.Thematerials usedintheirconstruction providecorrosion resistance inpureorboratedwateranddimensional andstructural stability underirradiation.
Inaddition, theirstructure ensurestheintegrity ofthenuclearfuelstoredinthemunderallcircumstances, notablyintheeventofanearthquake.
Theracksuseboratedstainless steelneutronabsorbers intheformofrigidplateswhichhavenotbeensubjected tooperations likebending,welding,ormechanical fastening whichcanreducetheirstrengthandsubsequent integrity underoperating conditions.
Thefabrication methodallowstheneutronabsorberplatestobeheldinplacewithoutbending,welding,ormechanical fastening.
1.2NEWSPENTFUELPOOLCONFIGURATION Figure1.1-1showsthegenerallayoutofthere-configured spentfuelpool.Theracksarelocatedintworegionsasdetailedbelow.REGION1-Freshfuelandspentfuelstoredinacheckerboard arrangement.
Type3:Fiveboratedstainless steelracksaccommodating:
145spentfuelassemblies 144freshfuelassemblies 5damagedfuelassemblies REGION2-Spentfuel.Type1:SixexistingBoraflexracksaccommodating:
840spentfuelassemblies.
Whenthesixperipheral Type4racksareinstalled, 12ofthe840locations areusedtosupporttheType4racks.Type2:Twonewboratedstainless steelracksaccommodating:
187spentfuelassemblies 51-1258768-01 GinnaSFPRe-racking Licensing ReportPage20 Type4:Sixperipheral BoratedStainless Steelracksaccommodating:
60spentfuelassemblies.
Thetype4racksarelocatedbetweentheexistingType1BoraflexracksandthepoolwallandareattachedtotheType1racks.1.3BORATEDSTAINLESS STEELRACKDESCRIPTION Theracksconsistofvertically
- oriented, squarecross-section cellseachdesignedtoholdonefuelassembly(seeFigure1.3-1).Thenumberandtypeofracks,thenumberofcellsperrack,andthetotalnumberofcellsareshowninTable1.3-1.TheRegion1,Type3andRegion2,Type2racksare&eestandingandselfsupporting.
TheRegion2,Type4rackshavetwolegseachforsupportandareattachedtotheRegion2,Type1rackstoprovidelateralsupport.Thedimensions, weightandnumberofsupportsforeachrackarelistedinTable1.3-2.1.3.1Description ofRegion1,Type3RacksTheseracksaccommodate freshfuelandspentfuelinacheckerboard pattern.Thegeometryanddimensions ofthesquarecellsaregiveninFigure1.3-5andTable1.3-3.Therackconstituent partsareshowninFigures1.3-1to1.3-6anddescribed below.a)CellsforFreshFuelAssemblies (Figure1.3-2,callout2)-Thesecellsarecomposedof:FourBoratedStainless Steel(BSS)sheetsformingasquarecell~Thesheetsarelinkedtogetheratthecornersandrestonthebaseplate.Eighthorizontal Stainless Steel(SS)beltsmaintaining theBSSgeometryandensuringaveryprecisepitchdimension.
Sevenofthesebeltsarelocatedinthesameverticalpositionasthesevenintermediate spacergridsonthefuelassemblies.
Stainless Steelsquarecross-section funnelsareweldedtotheadjacentSScells.Thesefunnelsguidethefreshfuelassemblyintothecellsandpreventtheinadvertent extraction oftheBSSsheetswhenafuelassemblyisremoved.Inthecellsfacingapoolwallorthecaskarea,thecorresponding BSSsheetfacingthewallorthecaskareaisreplacedbyaSSsheet.b)CellsforSpentFuelAssemblies (Figure1.3-2,callout1).Thesecellsarecomposedof:ExternalSSsquaretubes.Thetubesareformedeitherbyweldingtwochannelsectionsorbyexpanding aroundtubeintoasquaretube.FourinternalBSSsheets.Thesheetsarelinkedtogetheratthecornersandrestonlowertabswhichareweldedtothesurrounding stainless steelcellwallsasintheType2racks(Figure1.3-10,callout8).Atthetop,stainless steeltabsarealsoweldedtothesurrounding SScellwallstorestraintheBSSplatesfromupwardmotion.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage21
Inthecellsfacingapoolwallorthecaskarea,theBSSsheetfacingthewallorthecaskareaisreplacedbyaSSsheet.c)BasePlate-Thisplateprovidesacontinuous horizontal surfaceforsupporting thefuelassemblies (Figure1.3-3,callout1).Holesinthebaseplate,concentric toeachcell,providethenecessary pathforthecoolingwaterflow.Groovesaremachinedontheuppersurfaceofthebaseplateforpositioning eachsquarecell.Thisgrooveensuresaveryprecisecenter-to-center spacingofthecells(pitch).TheSSsquaretubesarefilletweldedtothebaseplate.d)Connecting Tabs-TheSScellsarejoinedtogetheralongtheirlengthbySSconnecting tabsweldedtotheSSsquaretubefaces(Figure1.3-6).Thisformsthecellsineachrackintoacontinuous structure.
Rackassemblyisperformed inamachinedassemblyfixtureresulting inaveryprecisecenter-to-center spacingofthecell(pitch).e)SupportLegs-Theracksupportlegsareoftheadjustable type(Figure1.3-3,callout2).ThenumberofsupportlegsoneachrackisshowninTable1.3-2.Eachlegiscomposedoffourpieces:AnupperSSpartthatisweldedtothebaseplateandcontaining fourflowholesforcooling.Athreadedpinwithaconvexspherical shapeatitsbottom.ThepinismadeofASTM630steelinordertoavoidgalling.ASSsupportplatewithaconcavespherical bearingsurfaceincontactwiththethreadedpin.ASSwasherweldedtothesupportplate.f)FlatPlateandCornerPlate-TheBSScellslocatedeitheronarackedgeoronarackcornerincorporate aSSflatplateorcornerplatetorestrainthecorresponding BSSplate(Figure1.3-2,callout7.)1.3.2Description ofRegion2,Type2RacksThisrackdesignaccommodates spentfuelintwotypesofsquarecells:SScellsandBSScellsarrangedinacheckerboard array.Thegeometryanddimensions ofthesquarecellsaregiveninFigure1.3-10andTable1.3-4.Therackconstituent partsareshowninFigures1.3-7to1.3-12anddescribed below.a)Stainless SteelCells-Thesecellsaremadeeitherbyweldingtwochannelsectionsorbyexpanding aroundtubetoasquaretube(seeFigure1.3-7,callout1).b)BoratedStainless SteelCells-ThesecellsarecomposedoffourBSSsheetslinkedtogetheratthecornersformingasquare(seeFigure1.3-7,callout2).TheBoratedStainless Steelsheetsaresupported byalowertabwhichisweldedtothesurrounding stainless steelcells(Figure1.3-10,callout8).Atthetopastainless steeltabisweldedtotheSScelltoretaintheBSSplatesfromupwardmotion(Figure1.3-10,callout7).51-1258768-01 GinnaSFPRe-racking Licensing ReportPage22 c)NeutronAbsorberMaterial-Thejoiningtabsonbothlongedgesofeachfull-length sheetofBSSarelasercuttoensureprecisealignment ofthesheets(seeFigure1.3-7,callout2).TheBSSsheetsarelocatedinfrontoftheactivefuellengthofthefuelassembly.
d)BasePlate-Thebaseplateprovidesacontinuous horizontal surfaceforsupporting thefuelassemblies (Figure1.3-9,callout6).Holesinthebaseplate,concentric tothecells,correspond tothenecessary sectionforthecoolingwaterflow.Groovesaremachinedontheuppersurfaceofthebaseplateforpositioning eachsquarecellpriortowelding.Thesegroovesensureaveryprecisecenter-to-center spacingofthecell(pitch).e)Connecting Tabs-TheSScellsarejoinedtogetheralongtheirlengthbySSconnecting tabsweldedtotheSSsquaretubefaces(Figure1.3-12).Thisformsthecellsineachrackintoacontinuous structure.
Rackassemblyisperformed inamachinedassemblyfixtureresulting inaveryprecisecenter-to-center spacingofthecell(pitch).f)SupportLegs-Theracksupportlegsareoftheadjustable type(Figure1.3-9,callout5).
ThenumberofsupportlegsoneachrackisshowninTable1.3-2.Eachlegiscomposedoffourpieces:AnupperSSpartthatisweldedtothebaseplateandcontaining fourflowholesforcooling.Athreadedpinwithaconvexspherical shapeatitsbottom.ThepinismadeofASTM630steelinordertoavoidgalling.ASSsupportplatewithaconcavespherical bearingsurfaceincontactwiththethreadedpin.ASSwasherweldedtothesupportplate.g)FlatPlateandCornerPlate-TheBSScellslocatedeitheronarackedgeoronarackcornerincorporate aSSflatplateorcornerplatetorestrainthecorresponding BSSplate.1.3.3Description ofRegion2,Type4RacksTherackdesignemployssquarecelllocations.
Theracksandtheirconstituent partsareshowninFigure1.3-13).a)Cells-TheseSScellsaremadeeitherbyweldingtwochannelsectionsorbyexpanding aroundtubetoasquaretube.BSSsheetsareinsertedbetweenadjacentcells.EachBSSsheetiscontinuous overtheactivelengthofafuelassembly.
ThelowerpartoftheBSSsheetsrestonthebaseplate.QnthesidesfacingtheexistingBoraflexracksandthepoolwall,therearenoBSSsheets.Thegeometryanddimensions ofthesquarecellsaregiveninFigure1.3-14andTable1.3-5.b)BasePlate-Thebaseplateprovidesacontinuous horizontal surfaceforsupporting thefuelassemblies.
Holesinthebaseplate,concentric tothecells,correspond tothenecessary sectionforthecoolingwaterflow.Groovesaremachinedontheuppersurfaceofthebaseplateforpositioning eachsquarecellpriortowelding.Thesegroovesensureaveryprecisecenter-to-center spacingofthecell(pitch).51-1258768-01 GinnaSFPRe-racking Licensing ReportPage23 c)Connecting Tabs-OnthecellsidesfacingtheexistingBoraflexracksandthepoolwall,connecting tabsareweldedbetweentheSSsquaretubefaces.Thisformseachrackintoacontinuous structure.
d)RackAttachment
-Intheupperpartandthelowerpartoftherack,twoconnecting devicesattacheachType4racktoanexistingBorafiexrack(Figure1.3-13.)Eachupperconnecting deviceconsistsofasquaretubeinsertedintoacelloftheexistingBoraflexrack,whichistakenoutofservice.Eachlowerconnecting deviceconsistsofalockingarminsertedintothecoolingflowholeintheexistingBoraflexrack.e)SupportLegs-TherearetwosupportlegsoneachType4rack.Theracksupportlegsareoftheadjustable type.Eachlegsiscomposedoffourpieces:AnupperSSpartthatisweldedtothebaseplateandcontaining fourflowholesforcooling.Athreadedpinwithaconvexspherical shapeatitsbottom.ThepinismadeofASTM630steelinordertoavoidgalling.ASSsupportplatewithaconcavespherical bearingsurfaceincontactwiththethreadedpin.ASSwasherweldedtothesupportplate.1.3.4NeutronAbsorberMaterialTheneutronabsorbermaterialisboratedstainless'teel (BSS)sheet.Itisatype304austenitic chromiumstainless steelmodifiedbytheadditionofboron.TheBSSisinsertedintheracksforneutronabsorption but,duetothedesignoftheracks,nostressesareinducedintheBSS.Moreover, theBSSsheetsarefabricated usingprocesses designedtopreventtheformation ofresidualstresses.
Theneutron"absorber materialisboratedstainless steel(BSS)type304B6/B7inaccordance withASTMSpecification A887-89.Theminimumpercentage ofboronintheBSSis1.70inweight%.Thechemicalcomposition ofborated stainless steeltobeusedatGinnaisinaccordance withASTMA887-89type304B6/B7,aslistedbelow:BlamedCarbonManganese Phosphorous SulfurSiliconChromiumNickelBoronMaximum~Wi~~ht00.082.000.0450.0300.7518.00-20.00 12.00-15.001.70(min.)51-1258768-01 GinnaSFPRe-racking Licensing ReportjPage24 Boronisaddedtotheaustenitic stainless steelforitsneutronabsorption properties.
Itispresentasanalloyingelementandnotasparticles inamixture.Themicrostructure consistsofanaustenitic stainless steelmatrixwithafine,uniformdispersion ofcomplexchromiumborides.Theuniformity oftheborondistribution isensuredbythemanufacturing practiceandmaybeconfirmed byanumberofmethods,including elemental andisotopicboronanalysisordirectattenuation measurement ofsamplestakenfromthefinishedsheet.Whencomparedtoplain304typestainless steel,boratedstainless steelshavehigherstrengthbutlowerductility andlowerimpactresistance.
However,theseproperties havenoimpactontheGinnarackdesignsincetheboratedstainless steelplatesarenotpartoftherackstructure.
Boratedstainless steelsareusedforneutronattenuation inspentnuclearfuelstoragepoolracksandincaskbasketsforstorageandtransportation ofspentfuel.Theseapplications dictatethattheboratedstainless steelbeexposedtoaqueousenvironments withandwithoutboricacid.TheBSStobeusedintheGinnarackshasexceptional resistance tocorrosion byelectrolytic hydration, oxidation, orotherchemicalreactions inboratedorpurewaterforthefollowing reasons:Austenitic stainless steelsarenotsusceptible toanytypeofcorrosion leadingtohydrideproducts.
InBSS,boronispresentasanalloyingelementwhicheliminates microcell effectsandnotasadispersion ofanheterogeneous boroncomponent.
Theproposeddesign,whereintheneutronabsorbermaterialisneitherbentnorwelded,thuspreventing anycrackingorthermalalteration ofthemetal,isanessential factorthatalsocontributes toensuringcorrosion-resistance ofthismaterial.
Earlystudiesofthecorrosion behaviorBSSwithboroncontentsupto2.3wt%confirmed thatBSSexhibitscorrosion resistance similartothatofType304stainless steelinenvironments presentinnuclearreactors"".
Corrosion ratesforBSScontaining 1.35wt%boroninboiling10%nitricacidhavealsobeenmeasured".
Theresultswereconsistent withotherstainless steelbehaviorwitharapidchangeinweight(passivation) within48hoursandnofurtherweightchange.Themaximumpenetration was0.09mils.Corrosion testsofBSSwithboroncontentsof1.0wt%and1.75wt%exposedto2000PPMboricacidsolutions at154'Fforsixmonthdurations havealsobeenrecentlyreported'~.
The154'Ftesttemperature represents themaximumnormaloperating temperature inspentfuelpools.Variouscouponconfigurations representing simpleimmersion,
- creviced, andgalvanically-coupled conditions wereincludedinthesetests.Thetestshowedessentially nodetectable corrosion foralltestconditions.
Therearenosignificant changestothemechanical properties ofboratedstainless steelduetoexposuretothelevelsofirradiation experienced overthedesignlifeoftheGinnafuelstorageracks".1.3.5Structural Materials Theprincipal structural materials arestainless steelmeetingthefollowing standards:
~ASTMA240forstructure
~ASTMA312forweldedpipesexpandedtosquaretubes51-1258768-01 GinnaSFPRe-racking Licensing ReportPage25
~ASTMA564forbarofadjustable support~ASTMA479forsupportlegs.~ASTMA630forthreadedpinsinsupportlegsThesematerials, described furtherinSection3,areofprovendurability inspentfuelpools.1.4SUPPLIERQUALIFICATION ANDEXPERIENCE 1.4.1TeamQualifications TheTeamofFramatome Technologies, Inc.(FTI),SocieteAtlantique deTechniques Avancees(ATEA),Framatome CogemaFuels(FCF),andPeylaConsulting 2Management
- Services, Inc.(PCM)bringanimpressive arrayofexperience andresources totheGinnare-racking projectwhichensureshighqualityrackdesign,fabrication, andinstallation.
Thetechnology andskillsrequiredforanoverallsuccessful projectdemandsaTeamwithcomplimentary strengths.
FTIhasdemonstrated experience inthemanagement ofcomplexnuclearprojectsasasupplierofNuclearSteamSupplySystems(NSSS)andservicemaintenance projectstothenuclearindustryforover30years.Theemployees withintheIntegrated NuclearServicesDivisionhaveexcelledinproviding awiderangeofmanagement andmaintenance servicestothenuclearutilityindustry.
NowFTI'scapabilities havebeenexpandedthroughthenewFramatome ownership byproviding accesstoadditional Europeanresources andtechnologies.
ATEA,withFramatome, hasbeeninvolvedformorethan15yearsinthedesign,manufacturing, licensing, andfielderectionofmorethan3S,000fuelstoragecells.ATEAisequippedwithspecialized equipment andnuclearproduction areastofabricate spentfuelracks.InthelastMAANSHANproject,ATEAhasshownitscapability tomanufacture morethan4300cellswithboratedstainless steelasneutronpoisonabsorber.
FortheGinnaproject,allfabrication andassemblywillbeperformed byATEA.TheATEArackfabrication facilityinNantes,Franceconsistsof2500squaremeterswitha25toncranecapability.
FCFhasbeenproviding nuclearfuelandfuelservicestothedomesticcommercial nuclearindustryforover30years.Includedinthisexperience istheevaluation ofhighdensityfuelstorageracks.Theseevaluations includedcriticality, structural, thermal-hydraulic, andradiological analysesusingNRCapprovedmethodstodemonstrate compliance withNRCrequirements
.PCMwillprovideon-sitemanagement andcoordination fortheon-siteprojectwork.PCM'smanager,DavidPeyla,hasovertwentyyearsoffieldexperience incompleting rackreplacement services.
1.4.2TeamExperience TheFramatome Group,witha1995revenueof3.6billiondollarsand19,000employees, isinvolvedinfourmainindustrial sectors:NuclearEngineering:
nuclearpowerplantdesign,manufacturing, erectionandmaintenance andnuclearfuelservices,51-125S768-01GinnaSFPRe-racking Licensing ReportPage26 Mechanical Engineering:
PWRheavycomponents, turbinesandcompressors, andprecision components, Connectors forelectrical industryandelectronics, Computerservices:
computeraideddesign(CAD),structural
- analysis, andartificial intelligence.
Inthenuclearfield,Framatome iscurrently theprimarynuclearpowerplantdesigner, manufacturer
'ndexporterintheworld,with60PWRunitsdelivered andfiveunderconstruction.
Framatome's scopeinvolvesthedesignofallthemainsystemsandcomponents oftheNuclearSteamSupplySystem(NSSS),including fuelhandlingequipment andfuelstorageracks.Therefore, Framatome hasverystrongteamsspecializing innuclearphysics,thermal-hydraulics, structural andseismicanalysis, shielding andradiological analysisandhasatitsdisposaltherelevantcomputercodesforsuchcalculations.
Framatome hasbeeninvolvedinthedesign,manufacturing, licensing, onsitemountingandtestingofmorethan38,000fuelstoragecells,ofwhichmorethan10,000werehighdensitycellswithneutronabsorberatsixteenunitsworldwide (seeTable1.4-1).IntheFramatome Grouporganization, ATEAisresponsible forrackdesign,fabrication andinstallation.
Since1976,PCMworkedintheNuclearIndustryperforming maintenance, repair,retrofitandre-rackprojects.
Manyoftheseprojectswereoneofakindorthefirsteverattempted.
Responsibilities andpositions havebeenvariedandextensive.
DavePeylaservedasaDiver,Foreman,ProjectSuperintendent andProjectManagerandConsultant performing thisworkandtwentythreere-rackingprojectsforutilities intheUnitedStatesandOverseas.
GinnaNuclearPowerPlantVermontYankeeNineMilePointNuclearStationSurryPowerStationPilgrimNuclearStationKewauneeNuclearPowerPlantOconeeDuaneArnoldSalemDavisBesseBrunswick Steam4ElectricArkansasNuclearOneH.B.RobinsonIndianPoint-2ArkansasNuclearOneIndianPoint-3IndianPoint-2Fitzpatrick NuclearPowerTaiwanPowerCoZionNuclearGenerating StationFortCalhounSalemBoratedstainless steelhasbeenusedinspentfuelpoolapplications worldwide forover20years(seeTable1.4-2).Abriefsynopsisofthisexperience isshownbelow.ForeignExperience
-Boratedstainless steelhasbeenusedinvariousapplications inEuropeforover20years.Someoftheseapplications areproprietaiy; theuserisgenerally notwillingtoprovidespecificinformation.
However,information obtainedfromtwoEuropeansuppliers ofborated51-1258768-01 GinnaSFPRe-racking Licensing ReportPage27 stainless steel,BOHLERBlecheGmbHandKRUPPThyssenNirostaGmbH,indicates theyhavenothadanyclaimsconcerning thematerials thattheyhavesupplied.
Allindications arethattheusershavebeensatisfied forupto20yearswiththematerialsupplied.
DomesticExperience
-Consolidated EdisonCompanyinstalled spentfuelstorageracksutilizing boratedstainless steelastheneutronabsorberintheIndianPointUnit2spentfuelpoolin1982.In1990theserackswereremovedfromthepoolinordertoexpandfuelstoragebyutilizing moredenselypackedracks.Therackswereviewedduringremoval&omthespentfuelpoolandshowednegligible, ifany,corrosion; theoverallappearance oftherackswasgood.REFERENCES 1-1N.R.Grant,"Corrosion ofBoronStainless Steel,"ReactorEng.Div.Quarterly Report,pp57-60,April-June 1965,ANL56011-2W.KermitAndersonandJ.S.Theilacker, "NeutronAbsorberMaterials forReactorControl,"
USAtomicEnergyCommission, 19621-3T.L.HoffmanandT.L.Adams,"Corrosion ofAlloysinVariousICPPDecontaminating Solutions,"
PhillipsPetroleum Co.,AtomicEnergyDivision, April14,19611-4R.J.Smith,G.W.Loomis,C.PaulDeltete,"BoratedStainless SteelApplications inSpentfuelPoolEnvironments,"
EPRIReportTR100784,Project2813-21,June19921-5S.E.SolimanandBaratta,D.L.Youchison, T.A.Balliet,"NeutronEffectsonBoratedStainless Steel,"NuclearTechnology, Vol.96,Dec.199151-1258768-01 GinnaSFPRe-racking Licensing ReportPage28
Table1.3-1NumberofCellsbyRackType"":::::Type;:3"Rack"'-
':~j';."I:"."Nuiiib'e'r,;,':.:-:::.":.:'."'A 3B3C3D3ETOTALTYPE3'::l""':,<Cells~:..""':
".7062505062294':,.4jNoi;'o':,Sp cri,!,':.
- "1A';
- L'oca'tions,>:,.
3531252529145i~",,",:,:.No".-'::,'of;'Fr'eshI'I:,:
- ,,'
- FA':L'ocatio'ri's",~'5 31252528144;:;::!'.,i'pg No:;of:,.'..,:;"',::;";;;
- ,::i::Damaged::FA";,::;
":;::Loca'tio'ns::"':
..0000:.'i~.Typ'e:2'Racket':
2A2BTOTALTYPE2TOTALTYPE2A38899187481I:.:.:;:.No'::of;.Sperit,'".-..~
~FA"":,Locatio'ns'j:
88187332I),':No'."',of:Fr'esh5:i
- ,:-:FA",::Loc'ations,,i 000~;-':.;Dam'a'g'ed:FA;..':.'>j:;-:::,;.L"ocatio'ns'i!;,'::;
000,.'-!.':;:;:Typ'e
'4IRack<,:,',:.;"::
,':.";-:,","Number,'of;:,":i'j m('<';No'.'OfSpent:;;%<..':.FA'::L" o"catio'ris'-':,
- .".::No'.".".'of,'Fresh~".:;<<';':.":I',:FA'~L'ocatioiis",i
,,;:.:':Daiiiaged,::FA':',':
j:;'.::i'::::Locatioii'sI,':::::,':',,.::
4A4B4C4D4E4FTOTAL10101010101060101010101010600000000000000051-1258768-01 GinnaSFPRe-racking Licensing ReportPage29 Table1.3-2RackDimensions, Weight,Supportsi:Rack'No."j';
i-':;:;:~.".,":.;-."."IN-S,Length'~:,:~;:'.:,:.
~)",:~P:.',.::E-'W.:Z "en'gth-:.,':)-.':i.':,
(De'a'd';Weigh't'l,:
~"!"':(lo'ii'g:,tons)';.;:.';:;
- '",;
- Niiirib'er'
- of:,::'-;
'.;suppo'rt;leg's
3A3B3C3D1642mm(64.6in)2345mm(92.3in)1642mm(64.6in)2345mm(92.3in)1173mm(46.2in)2345mm(92.3in)1173mm(46.2in)2345mm(92.3in)1642mm(64.6in)2345mm(92.3in)8.88.06.36.38.01212'-'.,":,':
- Typ'e,':2,:;:::.".
i':Ra'ck'..No!:,:;
2A2B;-.,:';:~)
N8,:L'eii'g'th"::.:':i,';;:':;::i 1729mm(68.1in)1942mm(76.5in),",":,:::"j<>E-',%:',Length'.':;:l..":.::;:,"..,:i 2370mm(93.3in)2370mm(93.3in)i".De'a'd.';Weigh't':.i
- ~~'~(lorig",,',to'ns)-',;.'::::,:
7.88.8!!,:Nii'mber';;of;;::;
","'sup'port'legsi, 1216,':..':::;Typ'e."4I.,:-':,:
- .Ra'ck":No.'.,.
4A4B4C4D4E4F241mm(9.5in)241mm(9.5in)241mm(9.5in)241mm(9.5in)241mm(9.5in)241mm(9.5in):::,':,:'I:::.'.;':"-::E,-":W Length'.:
2138mm(84.2in)2138mm(84.2in)2138mm(84.2in)2138mm(84.2in)2138mm(84.2in)2138mm(84.2in)51-1258768-01 GinnaSFPRe-racking Licensing ReportPage30 Table1.3-3DesignDataforRegion1,Type3Racks(FreshFuelandSpentFuel)Cells~CellsforFreshFuel(BSScells)Innerdimension HeightMaterial206.8x206.8mm(8.14x8.14in)4115mm(162in)BoratedStainless Steel304B6~~hectHeightWidthThickness 3770mm(148.4in)211mm(8.3in)2.5mm(0.1in)CellsforSpentFuel(BSS/SScells)Innerdimension HeightMaterial~ledHeightWidthThickness
~Pitch206.8x206.8mm(8.14x8.14in)4115mm(162in)BoratedStainless Steel304B6304L3700mm(145.7in)211mm(8.3in)2.5mm(0.1in)234.5mm(9.23'in)
~BasePlateThickness Material30mm(1.2in)304L51-1258768-01 GinnaSFPRe-racking Licensing ReportPage31
Table1.34DesignDataforRegion2,Type2Racks(SpentFuel)CellsSScellInnerdimension HeightThickness Material206.8x206.8mm(8.14x8.14in)4026mm(158.5in)2mm(0.08in)304LBSScellInnerdimension HeightMaterial206.8x206.8mm(8.14x8.14in)4026mm(158.5in)BoratedStainless Steel304B6~BSSsheet~PitchHeightWidthThickness 3700mm(145.7in)213mm(8.4in)3mm(0.12in)214mm(8.43in)~BaseplateThickness Material30mm(1.2in)304L51-1258768-01 GinnaSFPRe-racking Licensing ReportPage32
Table1.3-5DesignDataforRegion2,Type4Racks(SpentFuel)CellsInnerdimension HeightThickness Materials 206.8x206.8mm(8.14x8.14in)4026mm(158.5in)2mm(0.08in)(SSmaterial) 304L~BSSsheetWidthHeightThickness Material208mm(8.18in)3770mm(148.42in)2.5mm(0.1in)BoratedStainless Steel304B6~Pitch214mm(8.43in)51-1258768-01 GinnaSFPRe-racking Licensing ReportPage33 Table1.4-1Framatome/ATRA SpentFuelRacksRAN10i;5umbe'r',,of:,;
- St'o'ra'ge".C'ell's OXIPoisori':Material
.:::.::::::;:;.and::Pitch
.:.;..;I'.:~Ye'ar.',.'of:,.:,
- '.:':i'e'sign'::..,'
."::!'.;:.:,;:
Year."os:""5';
- '.,
- -:,;~;;::Fabric'ation":;::,:;.:."
~t:::;Lic'e'n'sed'.:,
'Custo'm'er'ATTENOM
-'ICATTENOM-2CATTENOM-3CATTENOM-4BELLEVILLE
-1BELLEVILLE
-2NOGENT-INOGENT-2PENLY-IPENLY-2GOLFECH-IGOLFECH-2PLhHL'tCHOOZ-ICHOOZ-2CIVAUX-ICIVAUX-2P~LtI0MAANSHANIMAANSHAN2GINNA000MPMHXSGUANGDONG-I GUANGDONG-2
]]2520]]]1260]]1260]]1260]]1260]]1224]]1224]]1380]21602160480BORAL(11.3inches)CADMIUM(11inches)BORATEDSSRegionI:11.1"Region2:9.0"BORATEDSSRegion2:9.2"Region3:8.4"19831988199119961984-1985 19851986-1987 198919851985-1986 1985198619871989-1990 19881990-1991 19891990-1991 1993-1994 19891990199319941995laterin1997August86Sept.90Jan.881993inprogressE.D.F.IIIIIIIIIIIIIIIGNPJVCIIIItTPCIIIIRG&E51-1258768-01 GinnaSFPRe-racking Licensing ReportPage34
-"""i";:,"::No<~<~:::i:;:':,;:!i;.::<.:::i::.':.:':'<'.."->,:CollIlt
@~i<:".:;:k~Y:.::::~:<.,'N>~X':::NU~clcal:,Fac<ili 2356789101112131415161718192021222324252627282930AustriaBelgiumBelgiumBrazilChezRepublicChezRepublicChezRepublicFinlandFinlandFranceGermanyGermanyGermanyGermanyGermanyGermanyGermanyGermanyGermanyGermanyGermanyGermanyGermanyGermanyGermanyGermanyGermanyGermanyGermanyGermanyTullnerfeld Doel3Tihange2Angra2Temelin1-2Dukovany1-2-3-4Mochovoce 1-2-3-4Olkiluoto 1Olkiluoto 2LaHagueKarlsruhe StadeWuerpassen Brunsbuettel Philippsburg 2Neckarwestheim 1Neckarwestheim 2Grohnde(re-racking)
Unterweser Grafenrheinfeld GrohndeGrundremmingen 2-BGrundermmingen 2-CBrokdorfBrokdorf(re-racking)
KrummelIsar1Isar2EmslandBiblisA/BPWRPWRPWRVVERVVERVVERBWRBWRPWRFBRPWRPWRPWRPWRPWRPWRBWRBWRPWRPWRBWRPWRPWRPWRFBRPWRBWRPWRPWR1978UnderConstr.UnderConstr.1985-1987UnderConstr.198119811976-19911980197619891986197719821985198419851986198419841979198851-1258768-01 GinnaSFPRe-racking Licensing ReportPage35 i'",::':;,"';;:;
.,'i'-:,Country',i:,::.':::::::;::::::;:":;:.:!:
.:.5'::::.:;::,'::i:'-.Nuclear:.'Fa'cili
':!.i!!:,:"::.:)kj(
31323334353637'839404142434445HungaryHungaryHungaryHungarySpainSpainSpainSpainSpainKoreaSwedenTaiwanTaiwanUSAUSAPaks1Paks2Paks3Paks4Almaraz1Almaraz2Asco1Asco2Trillo1Kori3CLABinterimspentfuelstoragepoolMaanshan1Maanshan2IndianPt2IndianPt3VVERVVERVVERVVERPWRPWRPWRPWRPWRPWRPWREcBWRPWRPWRPWRPWR19851985198519851991199119921992198519921990199519951982197851-1258768-01 GinnaSFPRe-racking Licensing ReportPage36
~000~rarararnrararararnrn rararnrrar1r1rararar1 r1r1r1rararrarnr1rara~
geJgeJgrjgrj gagagrjgJrgJegrJgrjgrJgrJjrrjgrjgrJgagrJgrjgrJ grJgJrgrjgjrg JrgagrJgrJg JrgjiksglJHUURCHRag RSHVRQRRHRSQCSQ RRHQgasgkagasg QPSNCEHERQEEQa5 QahHHHHHuHU QPSHVHHHaa5%5 kagasgaagasLag asgasgaaLlgk4g asNESNPELsgasg gEagkggaggkkgag gkagkagpkgkagaa ggagggaagkagkg kagggggkaggag kagaagaagaagsag aagkaggagaagkag g4ghagksgaagllh gaasgQQRSQVsg8 QPsgkagkagkagg EsgUg+CsHEEH ksgEIHQHgasHasHaagglVagUg gaagggkagaagg gggkaggagkagaa gaagaaggkagkagg ggIJQUgL'QUQ UgaagQQUg4g UHUQHHVEHRsg QUHUHasQVSHH QUHHHVRHEEHEE QESHBQHHHHH HHUHuHL18uQ UHuLaQuQuH 8HQHUQVEHREH gkagkagkagkagg ggagkagggggka gggggkagkagg "MHL'8884'8.8.HQHÃH~HQHHQ'CtHH 845-HHQ-HH 8I"HMVHVQHHEH~H"QH BQUHUHHQa GUTEQBQCRRQ.EHE.HERQSSQPH QL'HL'QHHasHH QUHQQHQ8HU QRRHUHHQuQa5 ggPsgPEQPsgasg asgPsgaagasgksg algasgNgfCQPcg gaagkagggakgg gaagkagkagkagka gkagkagggkggaa E)gESQFgg'gaggag
%%ghagE%ga%gfag
%%QPg'ggkagaag gPSHGPksgkagRC gUgasgksigflgEl gVsgasC5%%8%%5%5 aaaacDaa"m-mnCF-m-aiba-acQ'aa"m QR~RHBQC'QEEHH Ha5HULIREHVSHPR a5HHVshtfaHQQH MEEHHgPEIQSSH EsgUHRSHEQHHg DHHHVCNksHLH QNVHHDQRS5HHQ555"H5'"HEN'S5 ksgHHVllgPRQREH UgVagasgkagkal RSHRagULLHPRQ gggaagsagaagg gkagggfYgkagka algggggggglfg nglmgagasafaa aigasaaaaE5glJg amugrEsakaarula BSHEDHRHBH8HUH':8CHHhHBHBHH raaar1rararatararara rarlar1raar, Ir1rlrararI 1F1%1raaar1rhrrararara gragejgJrgrjgrJgagrJg JrgJgeJgJrgrjgJgJegJgJgrjgJgrjgjgageJgJrgerJgjrgrjrgagJrgJegaC9gkagLgaagREHEag pkgEagka++kagESgkg 8'"'8"'"'8'8%%%
II.=4:,!ger//g/~.Fr gP~/igirl/g/~BrgJr'Pr'gPl~i g////Y/Pr'.Ji///i/Y/'/Yi//Y///HFiHK~HKNH//;.:~KH~SHK;QKr'H~S/HYN
'////r'fr/'//gr/r'//g/Irgp/rr,gr/I/g<///g/r//g'r///eg////JgY///Aran.<iA/'Yr////rY//r',/rYi//.'~/:~g4/@ling/I'gPPgfir/
gki//'gFwYi'gPlg/J'iryZg~/
Zg.////r'r'.
~/iAY/Y///'//Y////.~i//.//.'////
g~r/r//g%r/ggÃger Y/g'r//r/
g//Y/g<%/'gYg<rrgr/r Y/g///r/'m=aaaamaamm:sac;aK::.a'.ia:;:;
gaagfagkggaagaggrrY/g'/r/r/'g/Y/'//!QY/
Y/g'/r/gg L':L8:48'HUH',,;.
jg;,.jj,;;~/g','-gy',-
jgagggagggggg grig/'Y/g//:gg/yr.g Y/Y/gaagkaahmgESmla///rrkaY/r/';"r.;
..'"r:'.////kaj gagaagaagkaggagg/JJU~Yr=-=rr==r::==re=:=r25F~P VsgEsgasgfsgksgahI%%'a%%EaEa Figure1.3-1Type3Rack-Perspective FRESHFUELCELLSPENTFUELCELI51-1258768-01 GinnaSFPRe-racking Licensing ReportPage38 Figure1.3-2Type3Rack-GeneralArrangement 51-1258768-01 GinnaSFPRe-racking Licensing ReportPage39 Figure1.3-3Type3Rack-DetailofBaseIII~~~."IIIIIIIIII~AIIIIIIII.IiI51-1258768-01 GinnaSFPRe-racking Licensing ReportPage40 Figure1.3-4Type3Rack-VerticalSectionCCPlCU6170an(6.7')51-1258768-01 GinnaSFPRe-racking Licensing ReportPage41 Figure1.3-5Type3Rack-TopViewBSS2.5w(9.1')IIII~~~~~iI~~~IIIII~~~~~~~~I~~~<~~s~~~~~is~~~~~~~<sf~234.5Plf1//51-1258768-01 GinnaSFPRe-racking Licensing ReportPage42 Figure1.3-6Type3Rack-DetailsofConnecting TabsLJI-~aCOSPENTFUELASSEMBLYSS2n~(0,08')FRESHFUELASSEMBLYFRESHFUELASSEMBLYTABS180nnHEIGHT(7.1')AJSPENTFUELASSEMBLYBSS2.5nn(0.1')51-1258768-01 GinnaSFPRe-racking Licensing ReportPage43 Figure1.3-7Type2Rack-DetailsofTop51-1258768-01 GinnaSFPRe-racking Licensing ReportPage44 Figure1.3-SType2Rack-Perspective 51-1258768-01 GinnaSFPRe-racking Licensing ReportPage45 Figure1.3-9Type2Rack-DetailofBase<AV(51-1258768-01 GinnaSFPRe-racking Licensing ReportPage46 Figure1.3-10Type2Rack-VerticalSection15m206.8mm8'14"Ic.t.c.2I1 I6.8m.14"00IAIIIC)o130mm5.12"I'IOCO000051-1258768-01 GinnaSFPRe-racking Licensing ReportPage47 Figure1.3-11Type2Rack-TopViewSSCELL2nm(0.08')BSSCELL3mm(o.u')115Ply(48')(~Z85')51-1258768-01 GinnaSFPRe-racking Licensing ReportPage48 Figure1.3-12Type2Rack-DetailofConnecting TabsSPENTFUELASSEMBLY2mm(o.o8')SPENTFUELASSEMBLYEE~E~E~(n~SPENTFUELASSEMBLYSPENTFUELASSEMBLYtabs1.5mmthickness (0.06")2.5mm(o.>')BSS3mm(o.~z')51-1258768-01 GinnaSFPRe-racking Licensing ReportPage49 Figure1.3-13Type4RackSS2am(0.08')
BSS2.Jnn(0.1')51-1258768-01 GinnaSFPRe-racking Licensing ReportPage50 Figure1.3-14Type4Rack-TopViewCOB.S.S214.12mm[8.4S']thickness 2.50mm[0.10"]DOCODCV2mm[0.08206.80mm[8.14]2mm[0.08'51-1258768-01 GinnaSFPRe-racking Licensing ReportPage51
2.0 PRINCIPAL
DESIGNCRITERjlA 2.1GeneralDesignCriteriaThenuclearfuelstorageracksarerequiredtohaveaminimumservicelifeof40yearsinanenvironment thatincludeshighradiation fields,continuous exposuretopureandboratedwater;mustbedesignedtowithstand severeaccidents duetonaturalphenomenons (i.e.,seismic,tornadomissiles),
anddropaccidents associated withplantoperations.
Theprimaryfunctionoftheracksistoinsuresubcriticality ofthefreshandspentnuclearfuelforavarietyofaccidentscenarios.
Theracksarecategorized assafetyrelatedproductsandaredesignedtocomplywithstringent licensing requirements oftheU.S.NuclearRegulatory Commission's (NRC),Regulatory Guides;theAmericanSocietyofMechanical Engineers (ASME)BoilerandPressureVesselCode(Code),SectionIII,Subsection NF;AmericanInstitute ofSteelConstruction (AISC)ManualofSteelConstruction; variousAmericanNationalStandards Institute (ANSI)andindustrystandards; andmeetotherRG&Edesignspecifications.
Fourmainareas(structural, criticality, thermal-hydraulics, andradiological) areexaminedandanalyzedtomeetthedesigncriteria.
Sections3.0,4.0,5.0,and6.0describeindetailtheparticular designscenarios andtheresultsoftheseanalyses.
2.2Structural CriteriaThestorageracksareconsidered asseismicClassIcomponents andaredesignedtomeettheallowable stressesoftheASMECode,SectionIII,Subsections NFforClass3Component
- Supports, applicable Regulatory Guides,andStandardReviewPlan(SRP)NUREG-0800.
Adetailedstressanalysiswasperformed todetermine theresulting stressesfordeadweight, thermal,seismicandotheraccidentimpactloads(i.e.,droppedfuel,canisters, andothermissiles).
TheseismicanalysisincludeseffectsduetobothOperating BasisEarthquake (OBE)andSafeShutdownEarthquake (SSE)loadingconditions.
FactorsofSafetyagainstgrossslidingandoverturning oftheracksareinaccordance withNUREG-0800, SRP,Section3.S.5,II-S.Thespentfuelpoollinershallnotpermitleakageofthepoolwater,andtheresulting concretebearingloadsshallmeettheallowable concretestressesofACI349-85.Impactsthataredetermined thatcouldpenetrate thelinershallbemitigated orprevented byRG&Ebyinvokingtherequirements ofNUREG-0612, ControlofHeavyLoadsatNuclearPowerPlants.Thismaybeaccomplished byusingloadpathsthatwouldavoidthespentfuelpoolarea,ordesigning handlingandliftingequipment tomeettherequirements of'Single-Failure Proof'andling Systems.Thestructural analytical methodology andresultsarepresented inSection3.0.2.3Criticality CriteriaThecriticality analysisofthestorageracksdemonstrates thatboththe&eshandspentfuelassemblies remainsubcritical (ks0.95)ineitherthenormaloraccidentcondition.
Criticality controlismaintained bygeometrical spacingofthefuelassemblies, andtheuseofneutronabsorption withfixedneutronpoisons.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage52
Thecriticality analytical methodology andresultsarepresented inSection4.0.Theanalysesareperformed usingNRC-approved computercodesCASMO-3,andSCALE4.2(KENO-V.a).
2.4Thermal-Hydraulic CriteriaThermal-hydraulic analyseswereperformed toensurethatthespentfuelpoolcoolingsystemhasadequatecapacitytocoolandmaintainwaterandfuelassemblytemperatures withinthecurrentlicensing criteriagiventheaddedheatloadofthelargernumberofspentfuelassemblies.
Theanalyseswereperformed totherequirements inthefollowing NRCdocuments:
SRP9.1.3,uel~OTPositionforReviewandAcceptance ofSpentFuelStorageandHandlingApplications, datedApril14,1978andrevisedJanuary18,1979.Thethermal-hydraulic analytical methodology andresultsarepresented inSection5.0.2.5Radiological CriteriaReference oQ'sitedosevaluesforevaluating hypothetical accidents involving fissionproductreleasesarespecified in10CFRPart100andare25remtothewholebodyand300remtothethyroidfromiodineexposure.
Bothvaluesareapplicable totheexclusion areaboundary(EAB)andthelowpopulation zoneboundary(LPZ).Section15.7.4.oftheStandardReviewPlan(SRP)specifies acceptance criteriaof25%of10CFRPart100guidelines forpostulated fuelhandlingaccidents.
However,theGinnaStationwasdesignedandbuiltpriortotheSRPandisnotrequiredtomeettheSRPlimits.Apreviousfuelhandlingaccidentanalysisshowedanoffsitedoseof96remthyroidwhichhasbeenpreviously acceptedbytheNRCasbeing"wellwithin"10CFRPart100limits(seeSection6.1.1).Occupational exposuredoselimitsarespecified in10CFRPart20andarefurthercontrolled byplantprocedures.
Therecommended doseratethatshallnotbeexceededinaccessible spacesadjacentthespentfuelpoolisgiveninANSUANS57.2andis2.5mrem/hrtoanypersonsoccupying thosespaces.Therateisspecified forwhenthepoolisatitsdesignfuelinventory andattheminimumdesignwaterdepth.Theradiological analytical methodology andresultsarepresented inSection6.051-1258768-01 GinnaSFPRe-racking Licensing ReportPage53
3.0 STRUCTURAL
EVALUATION Thissectionpresentsthestructural evaluation toensurethattheRochester GasandElectric's GinnaUnit1SpentFuelStorageSystemmeetsallapplicable structural criteriatomaintainasubcritical arrayforthespentfuelandtokeepradiation exposurewithinfederallimits.TheanalysisoftheSpentFuelStorageSystemdemonstrates thatthestructure satisfies therequirements ofTitle10oftheCodeofFederalRegulations Part50.Resultsoftheanalysisshowthedesignsatisfies the~statutory requirements forlicensing.
Theresultsalsodemonstrate theruggedness ofthespentfuelrack.design.
Currentstate-of-the-art methodsareusedinthestructural analyses.
Thestoragerackstructural evaluation isbasedonaconservative interpretation oftheAmericanSocietyofMechanical Engineers (ASME)BoilerandPressureVessel(B&PV)Code.Thespentfuelpoolevaluation isbasedonaconservative interpretation oftheAmericanConcreteInstitute's CodeRequirements forNuclearSafetyRelatedConcreteStructures andAmericanInstitute ofSteelConstruction's BuildingCode.Itisshownthatthespentfuelsystemstructures arerobustandprovidesafestorageofspentfuelunderanyofthenormal,upsetorhypothetical accidentconditions.
Section3.2summarizes thestructural designcriteria.
Section3.3providesthestructural designfeaturesoftheSpentFuelStorageRacks.Section3.4summarizes thematerials ofconstruction andthecorresponding materialproperties.
Section3.5summarizes thestructural analysis.
Specifically, section3.5.3.3summarizes theanalytically determined minimumdesignfactorsforthemajorcomponents.
3.1SCOPEThescopeofthisstructural evaluation includestheRG&E'sGinnaUnit1SpentFuelStorageSystem.Thestructural evaluation includesthespentfuelstorageracksandthefloorandlinerofthespentfuelpool.Structural evaluation ofthestorageracksincludeboththeresidentU.S.ToolandDieracksandthenewATEAracks.TheU.S.ToolandDierackshereafter arereferredtoasRacks1through6.ThenewATEAracksarereferredtoasRacks7through13oras2A,2B,3A,3B,3C,3D,3E.Theperimeter racksarereferredtoasType4Racks.Thedesignofthenewhighdensitystorageracksissuchthatitpreserves theoriginallicensing basis(NRCSERdatedNovember14,1984),hereafter referredtoasthe1985licensing basis,forRacks1through6,andforthespentfuelpoollinerandpoolconcrete.
ThenewATEAstorageracksarefreestandingracksandaresupported onthepoolflooronly.Thegapsbetweentheracks,andthosebetweentherackandthepoolwall,aredesignedsuchthatthenewracksdonotimposeanyadditional loadingsontheresidentracksoronthepoolwall.Theseconditions areverifiedthroughout theanalysis.
Thenewracksarehighdensitystorageracksandarecapableofstoringadditional fuel.Thenumberofsupportlegsaredesignedsuchthatthenewracksdonotimposeanyhigherloadingonthepoollinerorthepoolconcrete.
Thisisalsoverifiedintheanalysis.
Theseismicanalysisisperformed forboththeresidentandnewracks.The1985licensing basisispreserved forallhypothetical accidental dropcasesontheresidentU.S.ToolandDieracks.Therefore, thehypothetical accidentevaluation isperformed onlyonthenewATEAracks.51-1258768-01
'innaSFPRe-racking Licensing ReportPage54 3.2DESIGNCRITERIA3.2.1Applicable CodesandStandards Thissectionoutlinestheapplicable designcodes,standards, specifications, regulations, generaldesigncriteria, regulatory guides,andotherindustrystandards usedintheSpentFuelStorageSystemstructural evaluation.
Thefollowing flowchart providesanoverviewofthecodesandstandards applicable tothestructural evaluation.
Structural Evaluation
-SpentFuelStorageRacks10CFR50GeneralDesignCriteria1,2,4,5,61,62 Regulatory Guide1.13OTPosition1978/79ANSI/ANS57.2SRPNUREG-0800 3.5.1.43.7.13.7.33.8.4,AppendixD3.8.59.1.2Regulatory Guides1.291.60,1.611.921.1171.1241.142LiftingNUREG-0612 StorageRacks-ASMESectionIII,NF,1989PoolLiner-AISC1989PoolConcrete-ACI349-8551-1258768-01 GinnaSFPRe-racking Licensing ReportPage55 10CFR50,GeneralDesignCriteriaRelevantrequirements fortheSpentFuelStorageSysteminclude:GeneralDesignCriterion 1:Safetyrelatedstructure shouldbedesigned, fabricated,...
toqualitystandards commensurate withtheimportance ofsafetyfunctiontobeperformed.
GeneralDesignCriterion 2:Designofthesafetyrelatedstructures beingcapabletowithstand themostseverenaturalphenomena suchastornado,earthquake,...
andtheappropriate combination ofallloads.GeneralDesignCriterion 4:Safetyrelatedstructure beingcapableofwithstanding thedynamiceffectsofequipment failure.GeneralDesignCriterion 5:Relatestosharingofstructure important tosafetyunlessitcanbeshownthatsuchsharingwillnotsignificantly impairtheirvaliditytoperformtheirsafetyfunction.
GeneralDesignCriterion 61:Fuelstoragecapacityrequirements forfullcoredownload.GeneralDesignCriterion 62:Prevention ofcriticality byaphysicalandgeometric safeconfiguration.
USNRC"OTPositionforReviewandAcceptance ofSpentFuelStorageandHandlingApplications,"
datedApril14,1978andthemodifications tothisdocumentdatedJanuary18,1979.Regulatory Guides:Thefollowing recommendations andguidancebytheNRCStaffareusedinthestructural evaluation:
1.13SpentFuelStorageFacilities DesignBasis,Revision1,December19751.29SeismicDesignClassification, Revision3,September 19781.60DesignResponseSpectraforSeismicDesignofNuclearPowerPlants,Revision1,December19731.61DampingValuesforSeismicDesignofNuclearPowerPlants,Revision0,October19731.92Combining ModalResponses andSpatialComponents inSeismicResponseAnalysis, Revision1,February19761.117TornadoDesignClassification, Revision1,April197851-1258768-01 GinnaSFPRe-racking Licensing ReportPage56 1.124ServiceLimitsandLoadingCombinations forClassILinear-Type Components
- Supports, Revision1,January19781.142Safety-Related ConcreteStructures forNuclearPowerPlants(OtherthanReactorVesselsandContainments),
Revision1,October1981StandardReviewPlan-NUREG-0800 3.5.1.4MissileGenerated byNaturalPhenomena, Revision2,July19813.7SeismicDesign3.7.1SeismicDesignParameters, Revision2,August19893.7.3SeismicSubsystem
- Analysis, Revision2,August19893.8.4OtherSeismicCategoryIStructures, AppendixD:Technical PositiononSpentFuelPoolRacks,Revision1,July19813.8.59.1.2Foundations, Revision1,July1981SpentFuelStorage,Revision3,July1981NUREG-0612 ControlofHeavyLoadsatNuclearPowerPlant,July1980ANSI-57.2-1983 DesignRequirements forLightWaterReactorSpentFuelStorageFacilities atNuclearPowerPlants,approvedOct.1983IndustryStandardASMESectionIII,Division1,Subsection NF,1989Edition1989AmericanSocietyofMechanical Engineers, SectionIII,PressureVesselandPipingCode,Subsection NF-RulesforConstruction ofNuclearPowerPlantComponent Supports.
ACI349-85CodeRequirements forNuclearSafetyRelatedConcreteStructures, AmericanConcreteInstitute 1985.AISCManualofSteelConstruction, 9thEdition1989,AmericanInstitute ofSteelConstruction, Specification forStructural SteelBuildings, June1989.3.2.2Acceptance
- Criteria, LoadCombinations andStressLimitsThestructural designmeetsthebasicrequirements specified in10CFR50(GeneralDesignCriteria) andNRCRegulatory Guide1.13,andcanbesummarized as:Thedesignprotectsthehealthandsafetyofthegeneralpublicandpersonnel involvedinspentfuelhandlingundernormal,abnormalandaccidentconditions.
Inaddition, thedesignofspentfuelstorageracksandpool:51-1258768-01 GinnaSFPRe-racking Licensing ReportPage57
Maintains thecapability toremoveandinsertfuelassemblies Preventsphysicaldamagetothestoredfuelassemblies Maintains thestoredfuelinaeoolablegeometryMaintains thestoredfuelinasubcritical configuration Perrequirements ofRegulatory Guide1.29,thespentfuelsystemstructures areclassified as"SeismicCategoryI"andaredesignedtoremainfunctional undertheeffectsoftheSSE.Thesystemisdesignated asasafety-related system.Thespentfuelstorageracksaredesignedandwillbe'onstructed toconformtoASMESectionIII,Subsection NFforClass3component supports.
Allstructural materials selectedforthespentfuelstorageracksarecompatible withthefuelpoolenvironment tominimizecorrosion andgalvaniceffects.Allsafetyrelatedstructures conformto:enASMECode-SectionIII,Subsection NF,Class3Component
- Supports, 1989Edition.~Regulatory Guide1.124~AISC-1989Specification forStructural SteelBuildings, 9thEdition,June1989.~ACI349-85CodeRequirements forNuclearSafety-Related Structures, AmericanConcreteInstitute
~Regulatory Guide1.142LoadCombinations Thefollowing sectionprovidestheloadcombinations considered inthestructural analysis.
Theseloadcombinations meettherequirements ofStandardReviewPlan3.8.4,AppendixD.forSeismicCategoryIStructures.
Wherepossible, loadcombinations wereenveloped andcomparedwithlowerAcceptance Limitstoreducethenumberofloadcombinations tobeanalyzed.
Theanalysisprovidesdetailsontheenveloped casesconsidered, whereapplicable.
DesignFactorAtermof"DesignFactor"isusedtorelateactualvalueswithallowable values,givenasapercentage.
Theformofthecalculation isasfollows:DesignFactor(%)=KAllowable
-Actual)/Actual]x10051-1258768-01 GinnaSFPRe-racking Licensing ReportPage58 LoadCombinations
-StorageRacks'na'ccetance'm'+LLevelAservicelimitsD+L+T,D+L+T,+ED+L+T,+ED+L+T,+Pf D+L+T,+E'+
L+F~LevelAservicelimitsLevelAservicelimitsLevelBservicelimitsLevelBservicelimitsLevelDservicelimitsThefunctional capability ofthefuelracksshouldbedemonstrated Theabbreviations usedhereare:DDeadloadsandtheirrelatedinternalforcesandmomentsLLiveload,zeroforstoragerackssincenomovingobjectsintherackELoadgenerated bytheOperating BasisEarthquake E'oadgenerated bytheSafeShutdownEarthquake T,Thermaleffectsandloadduringnormaloperating orshutdownconditions, basedonthemostcriticaltransient orsteadystatecondition T,Thermaleffectsatthehighesttemperature associated withthepostulated abnormalconditions P,Upwardforceontherackscausedbypostulated stuckfuelassemblyF~Forcecausedbytheaccidental dropoftheheaviestload&omthemaximumpossibleheightNote:Provision ofASMESectionIII,Subsection NF-3251.2 isamendedbytherequirements ofparagraphs c.2.3and4ofRegulatory Guide1.124entitled"DesignLimitsandLoadCombinations forClass1Linear-Type Component Supports."
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage59
~~'t4'N~~~t ACCEPTANCE CRITERIAThissectionprovidestheacceptance criteriausedtoqualifySpentFuelSystemstructures.
Tostaywithinthe1985licensing basis,severalself-imposed acceptance criteriaareestablished andarealsodefinedhere.Theacceptance criteriasummarized heremeetalltheregulatory requirements andmeetsalltheself-imposed requirements.
Acceptance Criteria-StorageRacksThestorageracksaredesignedpertherequirements ofSubsection NFoftheASMESectionIIICode.Table3.2-1showstheClass3Component Supportstressallowables forthestructure.
Thestructural evaluation isbasedonaconservative interpretation oftheASMEB&PVCode.ThedesignfactorsprovidedherearemarginsabovetheASMECode.TheCodehaslargebuilt-insafetyfactors.Table3.2-2providesthestressallowables for304L(ASTMA240andASTMA479)stainless steelmaterial.
Thistableisdeveloped usingcriteriaoutlinedinTable3.2-1,andisprovidedasanexample.Forallothermaterials, thestressallowables arecalculated whereapplicable.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage60 Table3.2-1StressAcceptance Criteria-StorageRacks;:.'.'.:Ser'v'ic'e'4-:""':"i F;"'"::~"'::,"":::':,'.Servic'e'.'i'i:":,'::;~,""".::
PrimaryMembraneStresso,PrimaryMembrane+
Bending0)+OpRangeofPrimary+Secondary StressBearingAverageLargedistancefromEdgePureShearAveragePrimaryShearMaximumPrimaryShearWeldStress-FilletWeldWeldmetalBasemetal1.0S1.5SLowerof2SyorSuSy1.5Sy0.6S0.8S0.3SU0.4Sy1.33S1.995SLowerof2SyorSuSy1.5Sy0.6S0.8S0.4Su0.532SyLowerof1.2Syor0.7SuLowerof1.8 Syor'.05SULowerof2SyorSuNoEvaluation Required0.42Su0.42SU0.42Su0.42SUPerASMESectionIII,Subsection NF,SRP3.8.4,2RegGuide1.124where:S=Allowable stressvalueattemperature, fromtheapplicable tableofAppendixISy=Yieldstrengthattemperature Su=Tensilestrengthattemperature Notes:Line1:Line2:Line3:Line4:Line5:Line6:PersectionsofASMESectionIII,Subsection NFandAppendixF:PerNF-3251,NF-3261andF-1332ofASMESectionIIIPerNF-3251,NF-3261andF-1332ofASMESectionIIIPerfootnote6ofTableNF-3523(b)-1 andconservative interpretation ofASMESectionIIIPerNF-3252.1, andF-1332.3ofASMESectionIIIPerNF-3252.2, andF-1332.4ofASMESectionIIIPerNF-3266,TableNF-3324.5(a)-1 ofASMESectionIIIDeformations shouldprecludedamagetothefuelassemblies.
Inadditiontothestressacceptance, thestructure isevaluated againststability (buckling).
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage61
NVREG-0612 (ControlofHeavyLoadsatNuclearPowerPlants),Section5.1.6Safety/actorDesignQK~eQRedundant Lift(Single-Failure Proof)UltimateNon-redundant Lift10UltimateAcceptance Criteria-SpentFuelPoolLinerThespentfuelpoollinerisdesignedinaccordance withtheAISC-1989 Code.Thestorageracksupportpadsaredesignedsuchthattheydonotrestonanylinerweldseams.Thesupportpadsprimarily transmittherackloadsasbearingloadsontheliner.Theredesignonlychangesthefloorbearingloads~BearingAllowable PerAISC0.9FLinerFatigueAnalysisperAISC,AppendixKIIAcceptance Criteria-SpentFuelPoolConcreteThespentfuelpoolconcreteisdesignedperrequirements ACI349-85.Thestorageracks,beingfreestandingstructures, primarily inducebearingloadsontheconcreteatsupportpadlocations.
Theredesignonlychangesthefloorbearingloads.BearingAllowable (I)(0.85fgPerACI349,Section10.15~Demonstrate thattherearenorack-to-wall impacts3.3STRUCTURAL DESIGNFEATURESTheATEAspentfuelrackdesignobjective wastomaximizethenumberofavailable fuelassemblystoragecellswhileensuringthatallcriticality, thermal-hydraulic, andstructural requirements weremet.Specifictothesestructural designfeatures, theATEAracksconsistofthreefundamental racktypes,groupedasTypes2A-2B,3A-3E,and4.Therackmodulesarefreestanding structures thatminimizetheloadingsonthepoollinerandfloor,inthatonlyfrictionloadsandbearingloadsaretransmitted.
Inaddition, rackstructural loadsareminimized bythecompliance offeredbythefree-standingboundarycondition.
Rackmodulesaresizedtoensuresufficient lateralgapsbetweenmodulesandthepoolwallsuchthatnoimpactsaremadeduringthefaultedevents.Therackpedestals arepositioned suchthattheyaresufficiently removedfromtheexistingpoollinerleakchases,thusminimizing theeffectsofadditional loadsintheseareas.Thepedestals arealso51-1258768-01 GinnaSFPRe-racking Licensing ReportPage63 sizedandnumberedtoensureastablerackstructure, thusminimizing tilting,andalsotoequallydistribute andminimizetheresulting bearingloadsontothepoollinerandfloor.Thepedestals alsoprovidethreadedconnections toensuretheoverallrackmodulelevelness duringinstallation, thusminimizing anyloadeccentricities andimbalances.
Thepedestalandrackbaseplate designsprovidesufficient cutoutsforfluidcoolingwhileensuringadequatestructural strength.
TheATEAbaseplate thickness isgreaterthanthatoftheresidentracks.Inaddition, theentirerackfoundation isdesignedwithagussetplatenetworktyingthebaseplate andpedestals throughout therackmodule.Thegussetplatenetworkfurtherstrengthens therack,increasing structural marginsforthebaseplate andpedestals.
Type2rackshaveaprimarystructural designwhosefeaturesincludecelljunctionweldtabs,whichareusedtophysically connectthestainless steelstructural cellsaxiallyalongthecelllength.Theseweldtabslaterally positionthestructural cellsandprovidealoadpathbetweenthesecells.Theweldtabsaresizedandnumberedtoensuresufficient structural margins.Thestructural cellsarealsofabricated withweldedstainless steelretainerplateslocatedatthetopandbottomofthecell.Theseplatesservetoaxiallyconstrain theadjacentboratedstainless steel(BSS)cellswhileproviding agaptoaccommodate anyaxialdifferential thermalexpansion.
Theretainerplatesalsoserveasabearingsurfacethroughwhichloadsaretransmitted fromstructural celltostructural cellthroughthetopandbottomnozzlesofthefuelassemblywithintheBSScell.Theretainerplateweldsaresizedandnumberedtoensureasufficient structural marginforallloadingcases,including astuckfuelassembly.
Type3rackshaveaprimarystructural designwhosefeaturesincludeaseriesofstainless steel"bands"locatedatdiscreteaxiallocations alongthelengthoftheBSScells.Theseaxiallocations correspond tothoseofthefuelassemblyspacergrids.Thespacergridsaretheprimarylateralloadinterface forthefuelassemblyinadditiontothetopandbottomnozzles.Thebandisassembled astwopiecesfittingintomorticejointsontheBSSplatesandthenweldedtoeachothertoformanintegralbandaroundtheBSScell.ThesebandsserveastheloadpaththroughtheBSScelltothestructural cells.Thebandscoupledwiththerack-to-rack cellgapsensurethatonlycompressive loadsandnobendingloadsaretransmitted totheBSSplates.Thetype3racksalsoutilizethecelljunctionweldtabs,whichareusedtophysically connectthestainless steelstructural cellsaxiallyalongthecelllength.Theseweldtabslaterally positionthestructural cellsandprovidealoadpathbetweenthesecells,similartotype2racks.Theweldtabsaresizedandnumberedtoensuresufficient structural margins.Type4racksarespecialrackslocatedontheperiphery oftheresidentrackmodules(type1)tofurtherincreasestoragecapacity.
Theseracksconsistof10rackcellspermodulewhicharesecuredbytwocustommountingfixtureslocatedinthetopoftheoutercellsoftheadjacentresidentracks.Type4racksarealsopositioned onthepoolfloorusingtwopedestals, allowingittobeself-supporting andstable.Foradditional lateralconstraint, tiebarsfixturedtothebottomoftwotype4rackcells(adjacent tothepedestalcells)-interface withthediagonally adjacenttype1rackcells.Thetype4racksandcorresponding mountingfixturesaredesignedandpositioned tominimizerackdisplacement andmaximizestructural marginswhileensuringthatnoimpactswiththepoolwalloccur.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage64 3.4MATERIALS OFCONSTRUCTION GeneralStandards Thissectionaddresses thegeneral'structural material'equirements ofStandardReviewPlan,NUREG-0800, Section3.8.4,AppendixDinthedesignofthespentfuelstorageracks.Theinternalandexternalenvironmental conditions ofthestoragepoolwereconsidered intheselection ofthecomponent materials.
Allofthestructural materials selectedconformtotheASTMSpecifications andmeettheintentofASMESectionIII,Subsection NFrequirements.
Anybenefitsofthestructural strengthofBoraflexandboratedstainless steelarenotconsidered inthestructural analysis.
Table3.4-1summarizes thematerials ofconstruction forthespentfuelstorageracks,spentfuelpoolliner,andthespentfuelpool.3.4.1Structural Materials Type304Land630stainless steelmaterials wereselectedforthestoragerackconstruction becauseof:Corrosion resistance (lowcarboncontentwhichminimizes thesensitization),
- Strength, Fracturetoughness, andASMEacceptability.
The630boltingmaterialisselectedforitshighstrengthandresistance tostresscorrosion
- cracking, evenattemperature to300',andunderseverechlorideandH,Senvironment.
Galvanicreactions arenotexpectedbetweenthe304Landboratedstainless steel,orbetween304Land630austenitic stainless steel.TheresidentU.S.Tool&Diestorageracksandpoollinerarefabricated from304stainless steel.Thespentfuelpoolwallsandfloorareconstructed using3,000psiminimumstrengthconcrete-28dayscured.Tables3.4-2through3.4-6reportthematerialproperties usedinthestructural analyses.
3.4.2Non-Structural Materials Boratedstainless steelandBoraflexareusedasneutronabsorbermaterials.
Theyareconsidered non-structural materials inthestructural analyses.
BoratedStainless SteelTheboratedstainless steel(BSS)isgrade304B6/B7,TypeBinaccordance withASTM-A887-89 andA-480.NaturalBoron(B10)isaddedtotheaustenitic stainless steelwithaminimumcontentof1.7percentinweightandacarboncontentlessthanorequalto0.03%.Themicrostructure consistsofanaustenitic stainless steelmatrixwithfine,uniformdispersion ofcomplexchromiumborides.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage65
Boratedstainless steelsareusedforneutronattenuation inspentfuelstorageandtransportation applications.
BSShasbeenusedinspentfuelstoragepoolssince1978.Currently, morethan4,000metrictonsofBSSareinuseinspentfuelpools.BSShasbeenlicensedin13countries including theU.S.A.foruseinspentfuelpools.BSShasbeenlicensedforuseinspentfuelpoolsatIndianPoint2,IndianPoint3andMillstone 2intheU.S.A.Fortheseapplications, BSSwasexposedtoaqueousenvironments including boricacid,andtheseapplications haveproventhecorrosion resistance ofBSS.Boratedstainless steelhasanexceptional resistance tocorrosion byelectrolytic
'ydridation, oxidation, orotherchemicalreactions inboratedandpurewater.Ascomparedto304typestainless steel,boratedstainless steelhasahigherstrengthbutlowerductility andlowerimpactresistance.
Thecoefficient ofthermalexpansion anddensityforboratedstainless steelareverysimilarto304Lstainless steel(Table3.4-7).BSScorrosion resistance isverysimilartoconventional austenitic stainless steelinaspentfuelpoolenvironment.
Therearenosignificant changestothemechanical properties oftheboratedstainless steeluponexposuretothelevelsofirradiation, overthedesignlifeofthefuelstoragerack.IntheATEArackdesign,theboratedstainless steelplateisafreestandingmember.Theboratedstainless steelisneitherbentnorweldedinthestoragerackdesign.Thiswillprecludeanycrackingorthermalalteration ofthemetal.Theboratedstainless steelisnotconsidered asastructural memberinthestructural
- analysis, anditscontribution tothestrengthoftheracksisneglected.
Insummary,theneutronabsorbermaterialselectedfortherackconstruction provide:Homogeneous Boroninaustenitic stainless steelmatrixCorrosion resistance overthelifeoftheracksHighstability underirradiation (noblistering, nocreep,...)Nodegradation, swellingorballooning.
BoraflexBoraflexisusedasaneutronabsorberintheresidentU.S.Tool&Dieracks.TheBoraflexisnotconsidered asastructural memberinthestrengthanalysis.
TheanalysisreflectsonlytheweightoftheBoraflex.
Table3.4-8reportsthematerialdensityusedintheweightcalculation.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage66 Table3.4-1Materials ofConstruction ATRANewStorageRacksCellWallBaseSupportPlateSupportPadsPerimeter RackConnection (Lower)Bolts(PartofSupportPad)WeldMaterialNeutronAbsorberASTM-A240Type304LorASTM-A312Type304LASTM-A240Type304LASTM-A479Type304LASTM-A240Type304ASTM-A564Type630,Condition H1100Grade308Linaccordance withAWSAS-9ASTM-A887-89,Type304B6/B7,GradeBBoratedStainless SteelResidentStorageRacks(USTool&,DieRacksonWachter's BaseSupport)RackCellWallCellInsertWallFillerBaseSupportAssemblyBaseCornerSupportShimsBoraflexHoldDownBoltsSpentFuelPoolLinerConcreteConsolidated FuelFuelCanWallCellDividerCanBottomASTM-A240Type304ASTM-A240Type304ASTM-A240Type304ASTM-A240Type304ASTM-A240Type3040.020gm/cm'inimum B,oType304Stainless steelASTM-A240 Type3043,000psiminimumstrength, 28dayscuredASTMA240Type304ASTMA240Type304ASTMA240Type30451-1258768-01 GinnaSFPRe-racking Licensing ReportPage67
Table34-3Material:
304Stainless SteelPlateMaterial:
304Stainless SteelBarSpec:ASTM-A240, Type304Spec:ASTM-A479, Type304Composition 18Cr-8NiAllowable StressS-ksiMinimumYieldStrengthSy-ksiMinimumUltimateStrengthSu-ksiElasticModulusE-x10'siLinearThermalExpansion a-x10in/in/'FMeancoefficient goingfrom70'Density-lb/in'07528.30.2918.830758.5517.8257127.68.7916.622.56627.09.00Source
References:
Allowable StressSfromTableI-7.2ofASMESectionIII,AppendixIMinimumSyfromTableI-2.2ofASMESectionIII,AppendixIMinimumSufromTableI-3.2ofASMESectionIII,AppendixILinearThermalExpansion afromTableI-5.0ofASMESectionIII,AppendixIElasticModulusEfromTableI-6.0ofASMESectionIII,AppendixI51-1258768-01 GinnaSFPRe-racking Licensing ReportPage69 Table3.4-4Material:
630Precipitation HardenedSteelSpec:ASTM-A564, Type630BoltingMaterialNominalComposition:
17Cr-4¹i4Cu, Precipitation hardenedsteelMinimumtempertemperature 1100'.'::,;1'00:,,::,,,'"::,".:;~j:.,:::,'.;,'::,;:,:.::;i200":":I::;:,:::::,:.;;:',."::
- ':;,.::,':::,,':,:Fi;300,::-'"::,'";;
Allowable StressS-ksiMinimumYieldStrength-ksiMinimumUltimateStrength-ksiElasticModulus-xl0'siLinearThermalExpansion a-x10'n/in/'F Meancoefficient going&om70'Density-lb/in'ource
References:
11514028.30.29281151405.8928106.314027.65.9028101.914027.05.90Allowable StressSfromTableI-7.3ofASMESectionIII,AppendixIMinimumSyfromTableI-2.1ofASMESectionIII,AppendixIMinimumSufromTableI-3.1ofASMESectionIII,AppendixILinearThermalExpansion ufromTableI-5.0ofASMESectionIII,AppendixIElasticModulusEfromTableI-6.0ofASMESectionIII,AppendixI51-1258768-01 GinnaSFPRe-racking Licensing ReportPage70 Table3.4-5Concrete3,000PSIMinimumStrength28daysCuredConcreteYoung'sModulus(psi)Note1Poisson's RatioDensity(lb/ft')Coefficient ofThermalExpansion (in/in/'F)
Compressive Strength-fc(psi)3.122x10'.251505.5x10~3,000minimumSource:GinnaUFSAR,Table3.8-20(Reference 3.22)Note1:PerSection8.5ofACI349-85(Reference 3.20)Table3.4-6Zircaloy-4 TubingMaterialModulusofElasticity Source:Framatome CogemaFuelTestResults12x10'b/in'@
150'Table3.4-7BoratedStainless SteelASTM-A887-89,Grade304B6/B7,TypeBWeightdensityandcoef5cient ofthermalexpansion takensameas304Lstainless steel.Note:Thismaterialisnotusedasastructural materialinthestructural analysis.
Source:EPRIReport¹EPRITR-100784, "BoratedStainless SteelApplication inSpentFuelStorageRacks,"June1992(Reference 3.31)andASMECodeCaseN-510-1(Reference 3.43).Table3.4-8BoraflexSpec:0.020gm/cmMinimumB,~SpecificGravity1.7g/ccTheBoraflexmaterialisnottobeusedasastructural materialinthestructural analysis.
Source
Reference:
TableA-2ofEPRINP-6159,"AnAssessment ofBoraflexPerformance inSpent-Nuclear-Fuel StorageRacks,"December1988(Reference 3.30).51-1258768-01 GinnaSFPRe-racking Licensing ReportPage71 3.5STRUCTURAL ANALYSISTheRG8cEGinnaUnit1SpentFuelStorageSystemstructure isanalyzedtomeetthecodesandstandards specified inSection3.2.1.Thissectioncoversthestructural analysisofthestorageracks,spentfuelpoolandthepoolliner.There-racking atGinnautilizeshighdensity,free-standing spentfuelstoragerackstoreplaceselectedresident, lowdensityracks.Theracksareoffourbasicdesignvariations; namelyType1Type2,Type3andType4racks.Allracksaredesignedtostoreconsolidated spentfuelcanisters witha2:1consolidation ratio.Thefollowing sketchprovidesagenerallayoutofthearrayofracks'nthepool.Rack4DRack4ERck4FRack2¹2Rack1¹1Rack4¹4Rack3¹3Rack6¹6Rack5¹5Rack3A¹10Rack3CRack2B¹8Rack2A¹7Rack3B¹13Rack3D¹12Rack3E¹11Rack4ARack4BRack4CStorageRacks-RackLocations AndGeneralArrangement Section3.5.1presentsthemethodusedingenerating theseismicinput,thefuelassemblyloadingandvariousloadsconsidered intheanalysis.
Section3.5.2presentsthestructural andseismicanalysismethodology andassumptions.
Section3.5.3presentsanalysesandresultsfornormal(LevelA),upset(LevelB),faulted(LevelD)andhypothetical accidentloadingconditions.
Finiteelementmethodswereusedextensively toanalyzeloads,deformations andstressesinthestructural components.
Computercodesusedforstructural analysisarecertified andbenchmarked toknownsolutions.
Section3.5.2.4providesalistingofcomputerprogramsused.Thecomputerprogram,ANSYS,wasusedforamajorityofthesecalculations.
Severalmathematical modelswereusedwithfeaturestorepresent theslidingandtippingoftheracksandhydrodynamic couplingwhichcanoccurbetweenfuelassemblies andrackcells,betweenracks,andbetweenracksandreinforced concretewalls.Thesemathematical modelsaccountfordifferences inrackmodulesinthepool.Fuelloadingsanalyzedincludedallpossiblecombinations, 51-1258768-01 GinnaSFPRe-racking Licensing ReportPage72 loadingconditions ofempty,half-loaded, unconsolidated andconsolidated fuel.Duetothefactthattheracksare&eetoslideandtip,anonlinear dynamicanalysiswasperformed toevaluateseismicloadings.
Theanalysiswasatimehistoryanalysis, whichpermitted bothslidingandtipping.Section3.5.2.3providesdetaileddescriptions ofthemathematical models.Anoverviewofthemainmathematical modelsisprovidedhere.3-DSingleRackDynamicAnalysisModelsThesemathematical modelsareusedforvarioussensitivity studies.Figure3.5-31providesaschematic ofthe3-Dsinglerackmodel.Theseevaluations reducethenumberofdiscretewholepoolevaluations, thusmakingtheanalysisofthespentfuelpoolracksmoreefficient.
Section3.5.2.7presentstheresultsoftherackstiffness sensitivity study.Theresultspresented concludethattheseismicloadingsandhencestressesarenotsensitive totherackstiffness.
Forthisreason,itisconcluded thatstructural testingisnotrequiredtoverifystiffness calculations.
3-DWholePoolMulti-Rack DynamicAnalysisModelAthree-dimensional wholepoolmulti-rack (WPMR)model(Figure3.5-32)wasusedforthere-rackingseismicandstructural analysis.
Theracksinthemodelreflecttheuseofsixrackscurrently inuseatGinnaandtheadditional seven(7)newATEAracksforatotalofthirteen(13)racksinthespentfuelpool.Theuseofsixadditional perimeter racks(Type4),whichmaybeinstalled atafuturetime,isalsoaddressed inanalyzing severalpoolconfigurations.
Theseismicinputissite-specifictotheGinnaplant.Rackloadsanddisplacements weredetermined fromthisanalysisforallloadcases.3-DSingleRackPlateModelsThesemathematical modelswereusedforstaticstress,thermal,baseplateandliftinganalyses.
Figure3.5-33providesanisometric viewofthe3-DSingleRackPlateModel.IsolatedComponent ModelsExtensive usehasbeenmadeofvariousisolatedmathematical modelsforcalculation ofglobalorisolatedstiffness, supporttabstiffness andtabstresses, etc.Figures3.5-34and3.5-35provideanisometric viewoftype2andtype3fuelcellfiniteelementmodelswithtabsrespectively.
Section3.5.3.1.1.3 describes theisolatedmodelforfuel-to-rack interface stiffness calculation.
Section3.5.3.1.2 describes theisolatedmathematical modelforthetabstresses.
3.5.1LoadingConditions 3.5.1.1OverviewFUELASSEMBLYLOADINGTheempty,halffullandfullyloadedrackswereconsidered intheseismicanalysis.
Theweightof1450poundswasusedforasinglefuelassembly.
Thisweightenvelopes allthreefueldesigns,namelyW-standard, W-OFA,andExxon.The1450poundfuelassemblyweightincludestheweightofcontrolcomponents.
Twofullrackloadingconditions wereanalyzed.
Thefirst,referredtoasunconsolidated, represents arackfilledwithfuelassemblies.
Thesecond,referredtoasconsolidated, represents arackfilledwithfullconsolidation canisters, eachweighing2323pounds.Thehalf-full condition considered isarackwhichisfilledwithfuelassemblies inonehalfand51-1258768-01 GinnaSFPRe-racking Licensing ReportPage73 emptyintheotherhalf,sothattheworstcaseeccentricity wouldexist.Theemptyrackcondition considered isarackwithnofuelassemblies orconsolidation canisters.
DEADWEIGHTThedeadweightloadingincludes:
1)emptystorageracks,2)racksfullyloadedwithfuelassemblies, 3)racksfullyloadedwiththeconsolidated canisters, and4)rackspartially loadedwithamixtureoffuelassemblies andconsolidated canisters.
Theresultspresented forseismicloadingsincludetheeffectofdeadweightloadings.
Section3.5.3.1.5 providesasummaryofthesupportpadloadswhichincludesthedeadweightloads.LIVELOADSTherearenoliveloadsonthestorageracks.Forthisreason,allliveloadsarezerointheloadcombination considered.
SEISMICLOADFortheRGBGinnaUnit1,thegroundseismicresponseis0.08gforOBEand0.2gSSE(GinnaUFSAR,Section3.7.1.2).
Thespentfuelpoolisbuiltontopofhardrock.Therefore, thegroundresponsespectraarealsoapplicable tothepoolfoundation.
TheshapeofresponsespectraisperU.S.NRCRegulatory Guide1.60.Synthetic TimeHistoryFoursetsofstatistically independent synthetic acceleration timehistories weregenerated for2%dampingforOBEand4%dampingforSSEconditions witheachsetcontaining horizontal andverticalacceleration timehistories.
ThemostcurrentversionofthecomputerprogramSIMQKEwasusedtogeneratesynthetic seismictimehistories.
Itwasdemonstrated thateachofthegenerated timehistories wasstatistically independent fromalloftheothers.Inordertoprovestatistical independence, thenormalized cross-correlation coefficient betweenanytwosetsislessthan0.1(SectionN-1213.1ofASMESectionIII,Reference 3.19).Thelargestcoefficient waslessthan0.1.Thetimehistorywasbasedonatimestepof0.01seconds.Thesynthetic timehistories usedhadadurationof20seconds,andthethreeorthogonal components ofeachsetweresimultaneously appliedintheracktimehistoryseismicanalyses.
Thefloorresponsespectrawereregenerated from1.1timestheaverageofallfourdeveloped timehistories.
Theregenerated floorresponsespectraarefoundtomatchverywellthroughout the&equencyrangeoftheCriteriaFloorResponseSpectratomeettherequirements specified inSRP3.7.1ofNUREG-0800, Reference 3.2.Thespecified OBEandSSEresponsespectraareperGinnaUFSAR,Section3.7.1.2.Thecomparison ofthecalculated andtheGinnaspecificSSEresponsespectraareshowninFigures3.5-1through3.5-6.FourSSEandOBEtimehistories wereusedinananalysisoftheRack8(Rack2B).Theparametric studywasbaseduponafrictioncoefficient of0.8,whichproducedthemaximumloads.Forthisstudy,severalparameters wereexamined, suchasmaximumrackforcesandmoments,supportlegloads,andfueltorackimpactloads.Fromthecomparison, itwasfoundthatusingafactoronasingletimehistorywouldenveloptheotherthree.Section3.5.2.6presentsthedetermination ofthe51-1258768-01 GinnaSFPRe-racking Licensing ReportPage74 "single"OBEand"single"SSEtimehistories andassociated factors.Tosimplifycalculations, theremaining analyseswerebasedonsingleOBEandsingleSSEtimehistories.
Fromtheresultsofthefourdifferent timehistories uponthesinglerackmodel,factorswereappliedtoselectedsingleOBEandSSEforcesandmomentsforthestressanalysiscalculations inordertocoverallpossibilities.
ThefourOBE'sindicated thatafactorof1.12appliedtotheOBE-4loadswouldcompletely envelopallfourofthegenerated OBEloads.ThefourSSE'sindicated thatafactorof1.20appliedtotheSSE-1loadswouldcompletely envelopallfourofthegenerated SSEloads.Thesefactorsusedwere1.12and1.20forOBEandSSE,respectively.
THERMALLOADSTheconditions TaandTocauselocalthermalstressestobeproduced.
Twocasesofthermaleffectswereconsidered.
First,anisolatedstoragelocationcontaining afuelassemblywasconsidered, inwhichitwasassumedthatthefuelassemblyisgenerating heatatthemaximumpostulated rate.Thesurrounding storagelocations wereassumedempty.Theheatedwaterwasassumedtomakecontactwiththeinsideofthestoragewalls,therebyproducing themaximumpossibletemperature difference, To,betweentheadjacentcells.Inthesecondcase,itwasassumedthatthereisalossofcoolingsuchthattheentirerackexpands,settingupshearforcesinthesupportlegswhichareassumedtobeheld&omslidingbythehorizontal frictionforcebetweenthesupportlegsbearingpadandpoolfloorliner,seeSection3.5.3.1.9.
SingleHotCell(To)Theworstsituation wasassumedtoexistwhenanisolatedstoragelocationhasafuelassemblywhichisgenerating heatatthemaximumpostulated rate.Thesurrounding storagelocationisassumedtocontainnofuel.Theheatedwatermakesunobstructed contactwiththeinsideofthestoragewalls,therebyproducing themaximumpossibletemperature difference betweentheadjacentcells.Thesumofprimaryplussecondary stressesislimitedtothelesseroftwotimesthematerialyieldstrength, 2Sy,andultimatestrength, Suatthedesigntemperature.
LossofSpentFuelPoolCooling(Ta)Thisthermalcondition isproducedwhenthepoolwaterbulktemperature increases to180'duetolossofartificial cooling.Thepoollinertemperature iskeptthesameasthenormaloperating temperature togenerateconservative stressesintherack.FATIGUEANALYSISThepeakstressrangeintherackstructure andthepoollinerduetothecyclicloadingwasevaluated againstfatiguecriteria.
Forpurposesofevaluating fatiguecompliance, oneSSEandfiveOBEeventswereused.Itwasdemonstrated, byanalysis, thattheCumulative UsageFactorinaccordance withtheprocedures ofNB3222.4(Reference 3.19)didnotexceed1.0forstorageracks.Thepoollinerfatiguestrengthwasevaluated perPart5,AppendixKoftheAISCCode-9thedition.Theanalysisiscontained inSection3.5.3.1.11.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage75 STUCKFUELASSEMBLY-UPLIFTFORCETheabilityoftherackstowithstand averticalorinclined(at45')forceof2000poundsappliedatanypointwithoutdamagingtheracksastoviolatethesub-criticality criteria(K,irlessthan0.95)forthestoredfuelwasdemonstrated byanalysis.
Theanalysisiscontained inSection3.5.3.1.18.
SLOSHINGEFFECTSTheeffectofsloshingofthepoolwaterduringtheseismiceventontherackmotionisnegligible, asdemonstrated byclassical methodsinSection3.5.3.1.13.
Thehydrodynamic pressures fromsloshingofthepoolsurfacewaterhavenoeffectupontheracks.Thesloshingwaterrisesandlowers'ttheendsofthepoolbyabout1ftunderOBEconditions and3ftunderSSE.Theeffectofthisandtheresulting changesinpressureareminimal.HYPOTHETICAL ACCIDENTDROPSThemajorhypothetical accidentconditions addressed inSection3.5.3.2are:a)b)c)d)e)FuelassemblydropduringfuelhandlinginthespentfuelpoolSpentfuelpoolcanalgatedropSpentfuelpoolstoragerackdropTornadomissileimpactSpentfuelcaskdrop.Thestraightdeepdropcasesrequiredanexactitude, (i.e.,fallsthroughcellwithnocontact),
whichhasaverylowprobability ofoccurring.
Nevertheless, theconsequences ofsuchanaccidentwereexamined.
Whiledamagetothefuelrackbottomplateorsupportlegcouldbeexpected, nodamagewouldoccurtothespentfuelpoolfloor.Theshallowdropwasexaminedanditwasfoundthatwithaductility factorlessthan20anddeformation lessthanoneinch,thedistortion ofthecellswouldbeconfinedtotheportionofcellsabovetheboratedstainless steel,andhence,wouldnotaffecttheKfactorusedinthecriticality analysis.
Theconservatism usedinthemechanical accidentanalysesforvariousdropsindicated thatminordistortion oftherackislimitedtothevicinityoftheimpactarea.Thereisnogrossdeformation oftherackawayfromtheimpactarea.Consolidated fuel,thepoolcanalgate,storageracksandspentfuelshippingcaskswereconsidered heavyloadsperNUREG-0612.
Therewillbeadministrative controlformovementofthesehardwareinthespentfuelpoolarea.Alsotheywillbeliftedusingasingle-failure proofcraneandasingle-failure proofliftingsystem.Handlingofthesehardwareinthespentfuelpoolareawillbeperformed inaccordance withtheguidelines ofNUREG-0612 withregardtolimitingthechanceofunacceptable heavyloaddrop.Reference 3.23,NRCStaffsafetyevaluation report,providesexclusion ofheavyloaddropsmeetingthesecriteria.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage76 3.5.1.2SeismicInputCompliance Thissectiondemonstrates compliance ofRG&E'sGinnaspentfuelstorageseismicanalysistimehistories inputwith:a)b)c)U.S.NRCRegulatory Guides1.60and1.61.StandardReviewPlan-NUREG-0800, Section3.7.1.,"SeismicDesignParameters" requirement, andASMECode,AppendixN,SectionsN-1212.2andN-1213.1, 1989edition.DesignResponseSpectraReferences 3.2and3.10providecriteriafordesignfloorresponsespectrainthethreeorthogonal directions asafunctionofthefundamental frequency forOperational BasisEarthquake (OBE).Perreference 3.10,theSafeShutdownEarthquake (SSE)groundresponsespectrais0.20G's(horizontal) and0.133G's(vertical),
whiletheOBEgroundspectrais0.08G'sforhorizontal and0.053G'sforverticalmotioncomponents.
Perreference 3.3,structural dampingvaluesforweldedsteelstructures aretakenas2%and4%(percentofcriticaldamping)forOBEandSSErespectively.
Thesespectrumcurveswereusedfortheseismicanalysisofallracksinthepool.Thenumerical valuesofaccelerations fortheRG&EGinnaUnit1spentfuelpoolspecified groundresponsespectraaregiveninTables3.5-1through3.5-6.Theseacceleration valuesareconsistent withtheU.S.NRCRegulatory Guide1.60requirements.
Synthetic TimeHistories PerReference 3.2,Paragraph 1"DesigngroundMotion",Option2"Multiple TimeHistories" ischosenasananalysisbasis.Persamereference, acceptance criteriafortheOption2requiresaminimumoffourindependently generated timehistories.
Therefore, foursetsofstatistically independent synthetic acceleration timehistories weregenerated assuming2%dampingforOBEand4%dampingforSSEconditions, eachsetcontaining horizontal andverticalacceleration timehistories.
Averagesofthecalculated responsespectrawithanassignedfactorof1.1envelopeachdesignspectragroundmotioncomponent, asshowninFigures3.5-1through3.5-6.Totalseismicactivitytimedurationwastakentobe20seconds.Reference 3.19,SectionN-1212.2"Duration ofTimeHistory"suggestsdurationtimelargerthan6secondsforstrongseismicmotion.Reference 3.4,SectionII"Acceptance Criteria",
paragraph 1-b"DesignTimeHistory"requiresatotaltimedurationbetween10and25seconds.Thus,bothrequirements aremetwitha20secondstimehistoryduration.
Alltimehistories werebasedona0.01secondtimestep.Plotsofthedeveloped acceleration timehistories aregiveninFigures3.5-7through3.5-30.TimeHistories Independence PerReference 3.19,SectionN-1213.1"TimePhaseRelationship",
allartificially generated timehistories metcross-correlation limitrequirement (maximumcorrelation coefficient pertimehistorypairof0.16or16%).Itwasdemonstrated thateachofthegenerated timehistories, wasstatistically independent fromalloftheothers,sinceanormalized cross-correlation coefficient betweenanytwosetswaslessthan0.10(Reference 3.43).Theresultsofthisanalysisforthefoursetsofsynthetic SSEandOBEtimehistories aregiveninTables3.5-7and3.5-8,respectively.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage77 MultipleTimeHistoryInputsThreeorthogonal components ofeachsynthetic timehistorysetweresimultaneously appliedinallthreedirections.
SeismicrunsweremadeforbothSSEandOBEconditions, withasingletimehistorysetchosenforeachcondition (oneoutoffour)forallofthe3Dwholepoolmulti-rack analyses.
Thechosentimehistorysetwasusedinconjunction withloadfactorstoenveloptheloadsanddisplacements ofallfourtimehistorysets.Thesefactorsare1.20,forSSE,usingtimehistorysetnumber1,and1.12forOBE,usingtimehistorysetnumber4.Section3.5.2.6.coversTimeHistoryFactor'etermination.
Synthetic TimeHistories Generation Theartificial timehistorygeneration programSMQKEwasusedtoobtainallsetsofacceleration timehistories.
Table3.5-10.533[Hz]1.009[Hz]4.965.950.7362.5[Hz]0.25[Hz];::Displac'e."..'::(iri j::;-':0.25[Hz]3.24(*)101.001.0001.001.001.003.542.842.612.271.94.253.403.132.722.280.5750.4960.4710.4320.3912.52.1592.051.881~7(*)logarithmic interpolation usingvaluesfor2and5%criticaldampingTable3.5-2'.D'am'ping:,:::-':%,",,::
0.54(*)1033[Hz]0.20.20.20.20.20.29[Hz]0.9920.7080.56730.5220.4540.382.5[Hz]1.190.850.68060.6260.5440.4560.25[Hz]0.14710.11490.09930.09430.08640.0782":Disp1ac.':!':
,fiiig.'.
0.25[Hz]0.640.50.43190.410.3760.3451-1258768-01 GinnaSFPRe-racking Licensing ReportPage78 Table3.5-3-'.;:Damping'.,:.:%:.,",
G3[Hz]9[Hz]2.5[Hz]0.25[Hz]0.25[Hz]0.54(*)100.080.080.0800.080.080.080.39680.28320.22690.20880.18160.15200.47600.34000.27200.25040.21760.18240.05880.04600'3970.03770.03460.03130.2560.20.17280.1640.15040.136Table3.54;:Dampirig
'%"';I;:.;
0.533[Hz]9[Hz]4.965.670.48962.5[Hz]0.25[Hz]'Displiic;;.':firi J:,.';:0.25[Hz]2.134(*)103.542.842.612.271.94.053.242.982.592.170.38390.33170.31490.28740.25981.671.4431.371.251.13(*)logarithmic interpolation usingvaluesfor2and5%criticaldampingTable3.5-50.533[Hz]0.13339[Hz]0.66132.5[Hz]0.75600.06530.28400.25[Hz]0.25[Hz]4(*)100.13330.13330.13330.13330.13330.47200.37820.34800.30270.25330.54000.43210.39730.34530.28930.05120.04420.04200.03830.03460.22270.19240.18270.16670.150751-1258768-01 GinnaSFPRe-racking Licensing ReportPage79 Table3.5-633[Hz]9[Hz]2.5[Hz]0.25[Hz]';DEs'ilac;:l'(iii J,.::;0.25[Hz]0.54(*)100.05330.05330.05330.05330.05330.05330.26450.18880.15130.13920.12110.10130.30240.21600.17280.15890.13810.11570.02610.02050.01770.01680.01530.01390.11360.08910.07700.07310.06670.0000Table3.5-7Cross-Correlation FactorsforSSKTimeHistories X-axes:Y-axes:2-axes:xltox2xltox3xltox4x2tox3x2tox4x3tox4-0.0062-0.0288-0.0664-0.0548+0.0459+0.0097yltoy2yltoy3yltoy4y2toy3y2toy4y3toy4-0.0471+0.0899-0.0608+0.0164+0.0189-0.0004zltoz2zltoz3zltoz4z2toz3z2toz4z3toz4+0.0509-0.0481+0.0087+0.0166+0.0122+0.0357X-Yaxes:X-2axes:Y-2axes:xltoylxltoy2xltoy3xltoy4x2toylx2toy2x2toy3x2toy4x3toylx3toy2x3toy3x3toy4x4toylx4toy2x4toy3x4toy4+0.0205-0.0194+0.0505-0.0214-0.0344-0.0049-0.0266+0.0218+0.0032+0.0522+0.0033-0.0639-0.0054-0.0414-0.0206-0.0152yltozlyltoz2yltoz3yltoz4y2tozly2toz2y2toz3y2toz4y3tozly3toz2y3toz3y3toz4y4tozly4toz2y4toz3y4toz4+0.0573+0.0213+0.0055+0.0236+0.0350-0.0974-0.0090-0.0573-0.0203-0.0414-0.0542+0.0220+0.0133-0.0282-0.0146+0.0185xltozlxltoz2xltoz3xltoz4x2tozlx2toz2x2toz3x2toz4x3tozlx3toz2x3toz3x3toz4x4tozlx4toz2x4toz3x4toz4+0.0480-0.0398-0.0523-0.0597+0.0247-0.0591+0.0096-0.0013-0.0149-0.0277-0.0422+0.0835+0.0705-0.0016+0.0171+0.032751-1258768-01 GinnaSFPRe-racking Licensing ReportPage80 Table3.5-8Cross-Correlation FactorsforOBETimeHistories X-axes:Y-axes:2-axes:xltox2xltox3xltox4x2tox3x2tox4x3tox4-0.0294+0..0605-0.0985+0.0345-0'160-0.0268yltoy2yltoy3yltoy4y2toy3y2toy4y3toy4-0.0066+0.0791+0.0236+0.0173+0.0114+0.0473zltoz2zltoz3zltoz4z2toz3z2toz4z3toz4+0.0128-0'163-0.0679+0.0040-0.0112+0.0429X-Yaxes:xltoylxltoy2xltoy3xltoy4x2toylx2toy2x2toy3x2toy4x3toylx3toy2x3toy3x3toy4x4toylx4toy2x4toy3x4toy4+0.0120-0.0241+0.0435-0.0360-0.0140+0~0380-0.0019+0.0144+0.0029+0.0449-0.0202+0.0234+0.0063+0.0234+0.0565-0.0065X-2axes:yltozlyltoz2yltoz3yltoz4y2tozly2toz2y2toz3y2toz4y3tozly3toz2y3toz3y3toz4y4tozly4toz2y4toz3y4toz4-0.0856+0.0222-0.0159-0.0187+0.0219+0.0028+0.0530+0.0536+0.0478+0.0186+0.0271+0.0046+0.0331+0.0296-0.0310+0.0134Y-2axes:xltozlxltoz2xltoz3xltoz4x2tozlx2toz2x2toz3x2toz4x3tozlx3toz2x3toz3x3toz4x4tozlx4toz2x4toz3x4toz4+0~0240+0.0570+0.0605+0.0121+0.0012+0.0270-0.0206-0.0418+0.0121+0.0727-0'543+0.0278-0.0246+0.0186+0.0237-0.022351-1258768-01 GinnaSFPRe-racking Licensing ReportPage81 QtAgMCh00OI9pHLBPDKG'76C088DDx(00.1~~I1I1I1I'I1II11I1I1II1I1rI111IIIIII'P~~I~~~~~~~~~~~I~~~'II'~~I~~~~w"rI~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I~~~I~I~~~~~~~~~~~~~~I~~~~~~~~~~~~~~~~~III~I~I~~~I~~~~~~~~~rr~~~~1~~~I~~~~rI'~~~~~~~r~~~~~~I~ld~~~~~~~~~I~~~~I'~~~~~II~~~~~~~~~~~~~~~~~~~~~rr~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I~~I~~~~~I1IIIIIIYI'YIIIrII~~~I~~Ir~~~~1~~~~II-r~~~I~~1~~~IJ1~~~~~~~~1~~1~~11~~~~~~~I~I~I~~'1~I~~~~~I~~~~~~~~'I~~~~~~~~~~I~~~~~~I~~~I~~1r~~~~~~~~~~~~~~~~~~~I~~~~~I~~~~~I~~~~~~~I~~II'P~~~~~~~~r-r-r~~~~~~L~~~~~~~~II--r1~~I~~1~~~~IJ~~I~~~~~1'Y~~~~~~~~'1'I~~~~~~~I~~~~~~~~~~~~~~1~~~~~~~~~~~~~~~'h~~~~~~~~~~~~~~~~~~r1rr1rr~~~~~~~~~~~~~~~~~~~~~~~~~~~~I~~~~~~I~~~~~~~~~~~~~~~~~~~I~~~~~~GINNA-SSE Horizontal X-Ave.of4TH'sdamping=4%(factored by3.30)0.110100Naturalf[Hz]
QCAgMLllMChOOOIBQOt~aOQAOQ(9088OOx(00.1FLF--FLFFIII'1IIII~~~~~~~~~1'1Y~~~~~~~~11Y~~~~~~~~1YY~~~~~~Ya~~~~Ad~~~~~~~~'IC~~~~~~~~~~~~~~~~IL~~~~~~~~~~~~~~Y~~~~~~~~~~~~~~~II~~~~~~IC~~~~~~~~~~~~~I~~~~~I~~~~~~~~~~~~~~~~~~~~~~I~~~FC~~~IL~~~~~~~~F'~~I~~~~FF'~~~~~~~~I~~~~~~~~~~~~~~C~~I~~I~~~~~~~~~~~~~~~~~~~~~~I'~~~~~~~~~~~~~~~~~I~~~~~I~~~~~~~I~~~~~~~~~1JI1F11IYYYIIIIIII~~~~~~YF'~I~'YYIIIIY~~~~I'~~~I~~~I~~~~~~F~~~~~~~~~~~~I~~~~~~~~~~~~~~~~~I~~~~~~~II~I~~~~~~~~~~~~~~~~~~~~~~~CF~~~~~~~~~~~I~~I~I~I~~~~~~~~~~~~~~~~~~~~~~~~~~~1~~~~IL~~~~~~~~~F~~a~~~1~~JL~~~~~I~~~~'F~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~IF~~~~~~~~~~~~~~~~~~I~~~~~~~~~~~~~~~~~~~~~~~YA'YrcC~~~~III.FCI'FLFLFIIIII'~~~~~I~~~~~~~~~~~~~~~~~1~~~~L~~~~~I~~~1~~~~~~~~F1~~~~~~~~LF~~~~~~~~~~~~~~1~~~~~~~~~~~~~~~~~~~,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I~~~I~~~~~~~~~~~~~~~~~~~~YIII0.110100Naturalf[Hz]GINNA-SSE Horizontal Y-Avg.of4TH'sdamping=4%(factored by3.30)(NtAVlOCIC4CCICD't5OMo~MMMC4&a GINNA-SSE VerticalZ-Avg.of4TH'sdamping=4%(factored by3.10)SQ0e0.18QQxS0.010.1~~~~~~'IY~~~~'~~~~~~1'I~~iJ~~~~~~~I~~~~~~1~~~~~~~~'~~~~~~~~P'I~~Ph~~e1~~~~YY~~eJ~~~~~I~~~~~~~~CW~~~~~~~~~~P~~~~~~~~~I~~h4~~P~~I'V~~~~dJ~~~~~~~~~~~~1~~'4II'~~~~~~~~~~~~~~II~~~~~~~~~Y'1Y~~~~~~I~IJ~~II~~~~~~~~'IY~~~~~~1~~~~J~~~I~~~~~~~~1~~~~~II'v~~~~I~~~~~~~~~~~~~C'V~~~~~'I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1'I'1'IP~~~~~~P~~~~~~JI.~~~~~~'hP~~1'1P~~~~'P~~~~~'e~~~~~~~I~~~'I~~~J~~~~~~~~~1I'~~~P~~~~CY~~IJ~~PC~~~I~~~~~~~~'i~~~~~~~~~~~~I1Y~~~~I~I~~I~~~~~~~~I~~~~~~~~rv~~~~~~~~P~I~~~~~~~~~~~~~~~I~~I~~~'1'1P~~~C'IP~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"~~'1r~~~~J~~~~'4~I~~~Phe~1~~~~II~~~~~~~~~I~'VYI'vJIJIIII~~~~~~~~~r'i~~~I~~1~~~~~~~~~~~~1C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~rv~~~~~~~~~~~~~~~~~~~~10~~~~~11~~~~~~III'P~~~~~~~~~~I~~P~~~I1C~~~~~h~I~J~~~~4I~~~~~~~~~~~~'ir~~~~~~~J~~I~I~~~I~~~'iC~~~~~~~I~~P~~r-r~~~~~~~~I~~~~rI'~~~~~I,~~~I~~~~~IYY~~~~~~~~~~~~~~~~~~~~100~~~~~~1P'1P~~~~~~~~~~~~~1pI~~~~~~~~r'vY~I~~~~I.Jd.I~~~~~~~~~~~P'hP~~~~~~~~~~~~~~~~~~~~~~~'VY1CiYY~~~~~~~~~~~~~~~~~~~'I~~~~~~~~~~~1~P~~~I~~Naturalf[Hz]
QM"5ChOOOIpRLPD'8QVJ6C0~~e01Q0x6$0.010.11f1'~~~~PP-rr~LrdIPr~~~~PPLPP'IJJJ~~Y1~~P~~~~~~~~~~~~rv~~~~~~~~~~~~~~~~A~~~~~~~~~~~~Ph~~Y'V~~rv~~~~~~P~~~~~LJI~~~~~~~~P~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~A'I'11f1'1'P~PP~IrI'4IIrPIrrP~~'IP~~'PY~~'IP~~~~~~4~~~~~~vr~~~~~~~~~~~~AL~~~~~~~~~~~~~~~~~~~~J~~'IP~~'VY~~~~~~~~P~~~~~~~~~~~~'IP~~~~~~~~~~Jh~~~~~~~~~~~~~~~~~~~~~~~~'~h~~~~~~'V11~~~~h~~~~~~~~~~~~1~~~~~~4~~~~~~~~~~Pl~~~~~~~~~~~~J~~~~~~~~~~~~~~~~~~~~~~h~~1~~1Y~~~~~~~h~~~~fJ~~~~~~~~h~~~~~~~~~~~J~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'V1~~'P1~~~~~~'h'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~PPLPP~~~~~I~h~~~~~~1'If11~~~~~I~~~~~~~~~J~~~~~~~~~~~~~J~~~~~~~~~~~~~~~~~~1'If1~~~~~~~~~~~~~~~~JI~~~~~~~~~~~~~~~~~lff~~~~~~~~~~f~~~~~~~~~~~~~~~~~~~~I~~~'~~~~~~r1'Yf11~~~~~~I~J~~~~~~~~~~~~~~~P~'I~h'~~~~~~~~~~fAlff~I~P~~~~~~~~~~~~'I~'~~~~~~~~~~~~~~~~~~~~J~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I~~~~100GINNA-OBE Horizontal X-Avg.of4TH'sdamping=2k{factored by3.10)Naturalf[Hz]Wo GINNA-OBE Horizontal Y-Avg.of4TH'sdamping=2k(factored bye.30)OlGC0~~e01S0XGf0.010.11r~~~~~~I~~P~~~'I~~~~~~~~~~~~C~~~I~~~~~~~~~~~~~~~~~~~~~~J~~~~~~rw~~~~~~~~I~~~~~~~~~~~~~~~~~~~~~~~~~~~~P~~r1~~~~IJ~~~~~~~~~~~I'~~~'~~~P~~~~~~~~~~~~P~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~P'I~~~~~~~~~~IJ~~~~~~~~~~~~I~~~~~~~~~~~~~PrCP-rPICPPIhAIIA~~~~~~~~JA~~~~~~~~~~~~~~~~~~~~I~~'~~1~~1~~~J~~~~'~~~~IJ~~~~~~~~'~~~~~~~~~~~J~~~~~~~~~~~~~~~~~~~~~~~~JJ~~~~~~~~~~~~~~~~~~~~J~~~~~'I~~~'I1~~J~~~~'I~I~~~AJ~~~~~~~~'I~~~~~~~~~~~J~~~~~~~~~~~~~~~~~~~~IPI-r-PP10~~~~~PI~~~~~~~Y~'I'Vl~~~~~P~~'I~~~~~~~~JJJ~~~~~~~~~~~~JJ~~~~~~~~~~~~~~~~1'I51~~~~~~~~IIlJYPYI~PP~~~~'~~~11I~~~~'~~~~~~~~~~~~~~~~~~~~~~~I'1~~~~~~~~~\~~~~~~~~~~~~~~~C'I~~~~~~I~~~~~~~~~~~~~Jr~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~J~~~~~~~~~~~~~~~~P~~'I~~~~~I~PIPI1IrIr~~11~~~~~~~~~~~~II~~~~~~~~~'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~100~~~P~~I~Y1'P~~~P~Naturalf[Hz]
Q4hgMCA't1ChOOOIpHLpJ~QQA'80VJSC0~~e01QVX6$Z0.010.1~~~~~~~~~P~'PP~~~h~P1~~1~~1r~~~P~~~~r'Oh~~~~~rh~h~~~~Ih~~~~I~~~~~~~~4J~~~~~~rI~~~~~~~~~~~~~~~r'Ir'I~~~~~~~~~~4I~~~~~~~~~~~~I~~1rI'Ilr~~~~PP~P~~~~~IJ~~~~~~~~~~~~~~~'vr~~~~~~~~~I~~~~~~~~~~II~~~~~~~~~~~~~~~~~~~~~h~~~~rpp~~~r--r---r-r~~r---r~~~~~4~~~~~~IPrp~~~~~I~II~4~~'hJ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Pr4J~~~~P'h~~~~~~~~~~~~P~~~~~~~~~~LJ~~~~~~~~~~~~~~~~~~~~4I~PP~~PPPP'vA~JPr~PIP~~~'~~~1Y'V~~~'~h~~~~JJ11~~~~~~~JJ~~~~~~~~~1'I'I~~~~~~~~~~JJ~~~~~~~~~~~~~~P~~~~~~~~~~~~~~~~~~~~~~~~~~~~~JJ~~~~hh~~~1YY~~~1~~~~JJ~~~~~~~hh~~~~~~JAA~~~~~~~~~~~~~~'Ih~~~~~~~~~~~~~~~~J~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'PP~1II'~'0IJJ~~~~~'~~~11I~~~~~~~~~~~~~~~~~~~~~~~~~~~11~~~~~~~~~~~~~~~~~~~~~~~~~~~J~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'~~~r~1~~11~~~J~~~~h~~~~~J~~~~~~~~~'h~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'~~~~1~~~~~~~~~'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~100GINNA-OBE VerticalZ-Avg.of4TH'sdamping=2%%d(factored by3.30)h5OclfAChCOOFCbCh~Je4OC5C0Mo~Naturalf[Hz]
Figure3.5-7SSEAcceleration TimeHistory¹Ifor(EW)XDirection SSEX-Acceleration TimeHistory41damping=4'.25--0.2-0.15CD0.1"'0.05-0"ra-0.05oc-0.1CD-0.15"'8~~-~~~~~~)~p024681012Time[oec]d14161820Figure3.5-8SSEAcceleration TimeHistory¹2for(EW)Xdirection SSEX-Acceleration TimeHistory42damping=4'.2-'.15.CDO.l.O0.05"08co-0.05-oD-0.1"0CD-0.15I-0.21!IIirIII-0.25024a~~g"J~~.~l168101214161820Time[oec]51-1258768-01 GinnaSFPRe-racking Licensing ReportPage88 Figure3.5-9SSEAcceleration TimeHistory¹3for(EW)Xdirection SSEX-Acceleration TimeHistory4-'3damping=4/o0.25--0.2-"0.15<<"(90.1"".98(0-0.05g-0.1(g-015""0,2.i~~i~-0.250,'-~-iI12468101214161820Time[oec3Figure3.5-10SSEAcceleration TimeHistory¹4for(EW)Xdirection SSEX-Acceleration TimeHistory4-'4damping=4'.25-Ia0.20.15-'0.1-""'""O'iI'-005-"Q-01-~~-~~~(g-0.15'r""""*"
"-0.2'>1.-=~4I~II1CiLIlI402468101214161820Time[oec]51-1258768-01 GinnaSFPRe-racking Licensing ReportPage89
Figure3.5-11SSEAcceleration TimeHistory¹1for(NS)Ydirection SSEY-Acceleration TimeHistory4-'1damping=4/o0.25--0.2-4'70.15"(50.1o.ost0>>8[I-0.05-g-0.1-~(g-0.15")-0.2-'VCCII~1II.l,I-0.250IIC4Ct2468101214161820Time[oec3Figure3.5-12SSEAcceleration TimeHistory¹2for(NS)Ydirection SSEY-Acceleration TimeHistory42damping=4'.250.2cl0,15i"-~~""~~(sCDI0.1-"""-i'.05.i---t.0-$q(ca-0.05DI'(g-0.15""
""-""1IIj-02."~"--~.II024IIII,IiljI68101214161820Time[oec351-1258768-01 GinnaSFPRe-racking Licensing ReportPage90 Figure3.5-13SSEAcceleration TimeHistory¹3for(NS)Ydirection SSEY-Acceleration TimeHistory43damping=4'.2510.2-0.05.~0"0.15"CO0.1"oQloM-0.05"g-0.1q(g-0.15->VV>>t111-0.2--1I>>11511-0.2502468101214161820Time[oec]Figure3.5-14SSEAcceleration TimeHistory¹4for(NS)Ydirection SSEY-Acceleration TimeHistory44damping=4'25"-0.2->>c00.15I.CD0.1"o0.05~0-oca-0.05-iag-0.1~0(g-0.15"'j(fltt1102468101214161820Time[sec]51-1258768-01 GinnaSFPRe-racking Licensing ReportPage91 Figure3.5-15SSEAcceleration TimeHistory¹1forverticalZdirection SSEZ-Acceleration TimeHistory41damping=4/o0.15-II8~c-o~!)fiI-0.15"'24681012Time[oec]14161820Figure3.5-16SSEAcceleration TimeHistory¹2forverticalZdirection SSEZ-Acceleration TimeHistory4-'2damping=4'.15'~0.1(9ooLCD0"8Id-O.05iO-O.1.lI!IIIIIikfllipp~II-0.15"02468101214161820Time[oec]51-1258768-01 GinnaSFPRe-racking Licensing ReportPage92 Figure3.5-17SSEAcceleration TimeHistory¹3forverticalZdirection SSEZ-Acceleration TimeHistory4-'3damping=4/o0.15lIf'II-O.1-"-"":0,1-G0ICD-0.05"-""V)I-0.15l024681012Time[oec]14161820Figure3.5-18SSEAcceleration TimeHistory¹4forverticalZdirection SSEZ-Acceleration TimeHistory44damping=4/o0.150.1-0.M)lI;CD0.050)CDCd-0.0O-O.1IIIIIIIIIIIIII-0.15024681012Time[oec]1416182051-1258768-01 GinnaSFPRe-racking Licensing ReportPage93 Figure3.5-19OBEAcceleration TimeHistory¹Ifor(EW)Xdirection OBEX-Acceleration TimeHistory41damping=2/o0.10.06-CO0.04'.02.0-Va-0.02.o-0.04~(g-0.06.-0.08-"VVIJIIII-0.10lII~I42468101214161820Time[oec]Figure3.5-20OBEAcceleration TimeHistory¹2for(EW)Xdirection OBEX-Acceleration TimeHistory@2damping=2'.1-i-0.080.06CO0.04'"O0.02'.a)0-gra-0.02---0.04".DO(g-0.06"IIIII)~-0.08-0.1"I~-Ii2IIICe(024681012Time[oec]1416182051-1258768-01 GinnaSFPRe-racking Licensing ReportPage94
'~4' Figure3.5-21OBEAcceleration TimeHistory¹3for(EW)Xdirection C'JOBEX-Acceleration TimeHistoryP3damping=2l0.1Iii~~II0.06-(90.04-.O0.02-L0-e-0.02-og-0.04.(g-006-0.08lI>>=>>II!IiI">>iiIlII>>~~~>>>>-0.1i('I1I02468101214161820Time[Gec]Figure3.5-22OBEAcceleration TimeHistory¹4for(EW)Xdirection OBEX-Acceleration TimeHistoryP4damping=2/o0.10.080.06'00.04q0.02".L0"M-0.02--0.04"~(g-0.06'~~II>>->>>>IIlI)I.I!,5IIprIii>>5i"~'III>>>>iI55III02468101214161820Time[haec]51-1258768-01 GinnaSFPRe-racking Licensing ReportPage95 Figure3.5-23OBEAcceleration TimeHistory¹j.for(NS)Ydirection OBEY-Acceleration TimeHistory41damping=2/o0.1--WC~".~~~~~(90.04'O0.02-0-8as-0.02"'a-004"(g-0.06--0.08-<<F<<j<<<<h<<1<<<<<<<<IIIl-0.102468101214161820Time[oec3Figure3.5-24OBEAcceleration TimeHistory¹2for(NS)Ydirection OBEY-Acceleration TimeHistoryk2damping=21"""""~"'<<"0.0.080.06-CD0.04"O0.028((s-0.02"D-004-<<.~~~<<<<I1<<III<<O-006.~CO(<<-0.08i<<-01'..<<It<<I(III"<<""r"+"'102468101214161820Timefoec351-1258768-01 GinnaSFPRe-racking Licensing ReportPage96 Figure3.5-25OBEAcceleration TimeHistory¹3for(NS)Ydirection GBEY-Acceleration TimeHistoryl3damping=2'.08-"0.06-.CO0.04o0.02-~Ql8C)ca-0.02-g-0.04T.(g-0.061-0.08-.-0.1,lCl1~~iCi.)jj:III'.l~IIIW4~~IIIll02468101214161820Time{'oec3Pigure3.5-26OBEAcceleration TimeHistory¹4for(NS)Ydirection DBEY-Acceleration TimeHistory44damping=2/o~~4~-~11~0.080.04'O0.02""0)ca-0.02--.-004""-0.06'IIIlI)~0.08Y"""02468101214Time[oec]16182051-1258768-01 GinnaSFPRe-racking Licensing ReportPage97 Figure3.5-27OBEAcceleration TimeHistory¹1forverticalZdirection OBEZ-Acceleration TimeHistory41damping=2'.06"-0.04q-""..Oa)0-N'jICUO-002----l:-OI-oo4--"-"."~1ft)~f-0.060468101214Time[Gec]l'61820Figure3.5-28OBEAcceleration TimeHistory¹2forverticalZdirection OBEZ-Acceleration TimeHistoryP2damping=2'06"0.04~"-"-
"-CQL002C)0-4r)-o.o4ItII~~lI"ClIIIlItIjl1-0.06~'Ii'02468101214161820Time[Gec351-1258768-01 GinnaSFPRe-racking Licensing ReportPage98 Figure3.5-29OBEAcceleration TimeHistory¹3forverticalZdirection OBEZ-Acceleration TimeHistory4-'3damping=2'.06-ICD0.02q--""O'3-0.02-"IOiCDQQ4~~~->>~~i~s~~(IijjiI',iii-0.0602468101214161820Time[Gec]Figure3.5-30OBEAcceleration TimeHistory¹4forverticalZdirection OBEZ-Acceleration TimeHistory44damping=2/ojssi(+c002-0.04-0.06"'"0IIi(('468101214161820Time[Dec]51-1258768-01 GinnaSFPRe-racking Licensing ReportPage99
3.5.2Structural AnalysisMethodsRG8cEGinnaNuclearPlantspentfuelstoragesystemstructure isevaluated usingstate-of-the-artanalytical methods.ToexpediteStaffreview,themethodsusedincurrentlicenseapplications areusedhere.Themethodsofanalysisusedarewelldocumented intextbooksandopenliterature.
Themethodandsourcereferences areidentified throughout thereport.Thefollowing subsections providemoredetailsonthesemethods.3.5.2.1Assumptions
-Seismic/Structural 1.Rackstainless steelrespondselastically underallloading,including seismicOBEandSSE.2.Hydrodynamic couplingtermswerecalculated baseduponpotential flowtheorywithconsideration ofhorizontal flow.3.Forthe3-Dsinglerackmodelandthe3-Dwholepoolmodel,anumberofactualsupportlegsweremodeledbyfourlegsplacedatthecornersoftherackbaseplate.4.Seismicinputconsistsofthreestatistically independent orthogonal timehistories ofmotion,simultaneously appliedateachpoolpointunderracklegs,andatpoolwallpointshydrodynamically coupledtotherackbeams.Foursetsofearthquake inputsweregenerated.
Alleffectsoftheearthquake wereexamined; i.e.,legandpoolwallreactionforces,displacements, tipping,etc.Asingleearthquake timehistorywasselectedforOBEandSSEconditions.
Ineachcase,aseismicresponsespectraenveloping factorwasdetermined, suchthattheaverageoffourdeveloped timehistories wouldenvelopthespecified floorresponsespectrathroughout thefrequency range,tomeettherequirements specified inSRP3.7.1ofNUREG0800.Atimehistoryfactorwasthenappliedtothefinalresultstoensurethattheresultswouldremainthemostconservative andenvelopealltimehistorycases.6.Itwasassumedthatthehydrodynamic couplingforcesweredependent upontheinitialgap.Theresultsofthe3-Dwholepoolanalysisshowedthesuitability ofthisassumption.
Thiswasduetothefactthatincreases ingapsononesideoftheracktendedtobeoffsetbydecreases ingapsontheotherside.Furthergapclosureswouldproducehigherhydrodynamic couplingforces,whichwoulddecreasefurtherclosure.7.Coefficients offrictionbetween0.2and0.8areadequatetocovertherangebetweenthelowerandtheupper&ictionvaluesbetweentheracklegsandthepoolfloor.Aselective runwasmadewiththecoefficient offrictionof0.5toshowthatloadswereboundedforthecoefficient offrictionof0.8,andthedisplacements wereboundedforthecoefficient offrictionof0.2.8.Buoyancywasconsidered forthecalculations ofrackandfuelweights.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage100 9.Theuseof20.0secondsforthedurationoftheseismictimehistories issufficient.
Itwasshownthatthedeveloped timehistories matchtherequirements specified inSRP3.7.1ofNUREG-0800, Reference 3.2.10.Nominaldimensions wereusedintheanalysis.
11.Allowable materialproperties asspecified intheASMECode,SectionIIIwereused.12.Hydrodynamic couplingbetweenfuelandrackcells,betweenracksandbetweenracksandpoolwallwastakenintoaccount.13.Allthefuelassemblies actsimultaneously toproducethemaximumloadingeffect.14.Allrackstresses, excluding thelegsandthelegweldattachments, areevaluated baseduponmaximumforcesratherthanupontimedependent forces.15.Thepoolwasconsidered asarigidstructure withregardtotheseismicexcitation.
16.Adampingcoefficient of2%wasusedforOBEand4%forSSE.17.Boratedstainless steeldensityandcoefficient ofthermalexpansion weretakenasthesameas304Lstainless steel.3.5.2.2Analytical Procedure 3.5.2.2.1 SeismicAnalysisThemethodology usedtoperformtheseismicanalysisoftheracksisdescribed inthissection.Theracksare&eestandingmoduleswhichareindependent ofeachotheraswellasthewalls.Theracksaresimplysupported bythepoolfloorwithnostructural connection.
Therefore, theracksmayslideandtip.Awiderangeofseismicanalyseswereperformed accounting for:A.B.C.D.E.F.variation incoefficient offriction, variation infuelloading,variouslevelsofseismicactivity, hydrodynamic
- coupling, slidingandtippingofracks,andimpactoffuelassemblies withintheracks.Thenewracks(racks7through13)tobeaddedattheGinnaStationutilizehighdensity,freestandingspentfuelstorageracks.Duetothefactthatthenewhighdensityspentfuelracksare&ee-standingstructures whicharefreetoslideandtip,anonlinear dynamicanalysisisrequiredtoevaluatethecasesofOperational BasisEarthquake (OBE)andSafeShutdownEarthquake (SSE).Theracksareoftwobasicdesignvariations:
namelythoseinRegion1andRegion2.Region1isdesignedtoaccommodate
&eshfuelassemblies, whileRegion2isdesignedtoaccommodate spent51-1258768-01 GinnaSFPRe-racking Licensing ReportPage101 fuelassemblies.
Inaddition, Region1and2aredesignedtostoreconsolidated spentfuelcanisters witha2:1consolidation ratio.Agenerallayoutofthearrayofracks,Region1and2,areshowninFigure3.5-36.Theanalyseswereperformed usingseveralmathematical models.Themodelsincludedfeaturestoallowslidingandtippingoftheracksandtorepresent thehydrodynamic couplingwhichoccursbetweenfuelassemblies andrackcells,betweenracks,andbetweenracksandreinforced concretepoolwalls.A3-Dsinglerackbeammodelwasusedtoselecttheappropriate parameters forthemulti-rack wholepoolnonlinear analysis.
The3-Dsinglerackmodelsimulated thethree-dimensional characteristics oftherackmodulesinacomprehensive manner.Thephysicaldegreesoffreedomsuchaslifting,twisting, bending,sliding,overturning, etc.,wereincorporated intothedynamicmodelasrequired.
The3-Dsinglerackmodelcouldnotevaluatemulti-rack effects,suchasrelativerack-to-rack displacements, soa3-Dwholepoolmodelwasused.The3-Dsinglerackmodelwasusedtodetermine thesensitivity ofvariousparameters onthestructural responseandtosimplifytheinputforthe3-Dwholepoolanalysis.
Todetectanyimpactbetweenracksand/oranyimpactbetweentheracksandthepoolwall,additional gapelementswereintroduced intothe3Dwholepoolmodel.The3-Dwholepoolmodelwasusedtodetermine allforcesandmomentsforeachrackmodule,andthenusedforthestressanalysisoftheracks.Thismodelwasalsousedtodetermine therelativerack-to-rack andtherack-to-wall motions.The3-Dsinglerackmodeldetermined thefollowing:
1)Asingleenveloping seismictimehistoryfactor(seeSection3.5.2.6).
2)Effectsofrackstiffness onforces,momentsanddisplacements (seeSection3.5.2.7).
3)Forcestransmitted totheinter-rack connections fromtheperipheral rackstotheexistingRegion2racks.Including parameters fortheseconnections inthe3-Dwholepoolmodelwouldhavemadethemodeltoocomplextorunforthenonlinear analysis.
The3-Dsinglerackmodelwasrunfortherackthatproducedthehighestloadfortheperipheral rack(seeSection3.5.3.1.7.3).
4)Effectsofoff-centered fuelloadings(seeSection3.5.3.1.7.4).
5)Comparison ofsingle3-Drackmodelswithconnected anddisconnected fuelbeams(seeSection3.5.3.1.7.5).
6)Effectofrackheightincrease(seeSection3.5.3.1.7.2).
Inboththe3-Dsinglerackmodelandthe3-Dwholepoolmulti-rack model,theracksandthefuelassemblies ineachrackwererepresented asasinglemember.Hydrodynamic couplingandimpactforceswereobtainedforfueltorackimpact.Impactforcesfromracksupportlegstopoolfloorswerealsoobtained, aswellasmaximumloadings(bothverticalandlateral)onthesupportlegs.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage102 Detaileddescriptions ofthe3-Dsinglerackmodelandthe3-DwholepoolmodelusedintheanalysisaregiveninSection3.5.2.3.Theothermodelsusedinthestressanalysisincluded(1)a3-Dsinglerackplatemodeland(2)singlecellmodelswithtabs.The3-Dsinglerackplatemodelwasusedforthestaticstress,thermal,andthebaseplatestressanalysis.
Thesinglecellmodelswithtabswereusedtodetermine thedistribution ofthelocalfueltorackimpactloadings.
The3-Dwholepoolmodelwasrunfortwelve(12)different poolloadingconfigurations asdescribed inSection3.5.2.3andprovidedinTable3.5-64.Toaccountforallpossiblecombinations, fuelloadingconditions ofempty,half-loaded, andfully-loaded rackswereanalyzed.
Bothnormalfuelassemblies andconsolidated fuelcanisters wereconsidered.
Interface coefficients offrictionconsidered fortherackswereasfollows:a)b)c)d)allat0.2,onerunofallat0.5allat0.8,andmixed,whichwerestatistically determined asprovidedinTables3.5-65and3.5-66.Maximumslidingoccurswhentheinterface coefficient of&ictionis0.2andmaximumtippingandstressoccurswhentheinterface coefficient offrictionis0.8.Therefore, onlyselective runsweremadewiththemixedcoefficients offriction.
Themaximumloadsforeachrackandrelativegapclosuresbetweenracksweredetermined.
Themaximumloadsgenerated ontotheresidentrackswerethencomparedwiththeloadsusedfortheoriginallicensing oftheracks(racks1through6).3.5.2.2.2 Structural Analysis3.5.2.2.2.1 RackStressesTheresultsofallthedynamicanalysisrunsincludedbothseismicanddeadloads.ForbothOBEandSSEconditions, allacceleration timehistories wereamplified byaseismicresponsespectraenveloping factorof1.1.Asdescribed inSection3.5.2.6,atimehistoryfactorof1.2appliedtotheSSEloadswouldcompletely enveloploadsgenerated fromallfouroftheSSEtimehistories.
Similarly, afactorof1.12wasdeveloped fortheOBEloads.Theaccompanying Tables3.5-141through3.5-146listthestressallowable andtheresultsoftheanalyses.
Stressesinthetubeswerecalculated fromthe3-Dwholepoolmodelbasedupontheoverallmomentsandshearsappliedtotherack.Inaddition, thefueltorackimpactscausesbendingstressesinthewallsofthestructural tubes.Sincethetubesacttogetherinresisting seismicloads,shearforcesmustbetransferred throughtheconnecting tabs.Duetotheseshearforces,thetabplatesaresubjected toshearandbendingmoments.Theweldsare,therefore, subjecttostressesduetotabplatebendingandshear.Theconnecting tabsareusedtoconnectstructural tubestogethersothattherackactsasastructural element.Thetabandweldarrangements andresultsaredescribed inSection3.5.3.1.2.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage103
Thetabsaredesignedtobecapableofcanyingtheshearflow&omonetubetothenext.Duetothegridarrangement, theshearstressineachdirection willtendtobeuniforminplan.Maximumbaseshearforce,calculated fromthe3-Dwholepoolanalysis, wasfoundintwoorthogonal directions; i.e.,N-S,E-W.AlltabsandweldsforATEAracksaredesignedfortheworstloadcases.Results&omthe3-Dwholepoolmodelanalysisprovideinformation onoverallmaximumstressesincells.Theoutputforcesandstressesofallboundingrunsusingthe3-DwholepoolmodelareprovidedinSection3.5.3.1.8.
3.5.2.2.2.2 SupportLegsandConcreteBearingStressesThebearingstressesintheconcreteslabandthestressesinthe'upport legsweredetermined fordeadweight, thermalandseismic(OBE&SSE)loadings.
Boussinesq's solution(Reference 3.35)forhalf-space wasalsousedtoestimatebearingstressesintheconcrete(seeSection3.5.3.1.5 forloads).Themaximumhorizontal andverticalloadinputstothemodelweretakenfromtheresultsfromthe3-Dwholepoolanalyses(seeSection3.5.3.1.5 forloads).Themaximumsupportreactions, overallbendingmomentsandforcescalculated fromthetimehistoryanalyseswereusedtodetermine stressesinthesupportlegsandreinforced concrete.
According toReference 3.22,theaverageconcretestrengthofthespentfuelpoolconcreteis3,000psi.Theaveragepressure(bearing) underthebearingpadshallnotexceedthedesignbasispressureforadeadloadorseismicload.Themaximumbearingstressintheconcretewascalculated bytakingthemaximumverticalsupportlegloadsdetermined fromthe3-Dwholepoolanalysesanddividingbytheareaofthebearingpad.Asanothercheckforbearingstresses, Boussinesq's solutionforhalf-space wasused.Inthismethod,itwasassumedthatanormalforceisactingontheplaneboundaryofasemi-infinite solid.Allresultsaresummarized inSection3.5.3.1.9.
Thestressallowable pertaining tothesupportleg,analysisdetailsandtabulated resultsaregiveninSection3.5.3.1.9.
3.5.2.2.2.3 WeldStressesTheweldpatternsofconnecting tabswerecalculated foreachrackinRegion1andRegion2.Thecontrolling loadcombinations weretheconsolidated fuelcaseforbothOBEandSSEconditions withthecoefficient offrictionof0.8.Thestructural tubesareweldedtothebaseplatebymeansoffilletwelds.Theweldstransferthebaseshearforcesandthebasebendingmomentsfromthetubestothebaseplate.ThebaseshearineithertheE-WorN-Sdirection isassumedtocauselongitudinal shearstressesintheweldsorientedintheE-WandN-Sdirections, respectively.
Thebendingmomentscauseverticalshearstressesinthewelds.Theweldmaterialis308L,forwhichtheminimumtensilestrengthisS=70,000psi51-1258768-01 GinnaSFPRe-racking Licensing ReportPage104 Weldstresslimitto0.3SforServiceLevelA=21,000psi.Weldstresslimitto0.42SforServiceLevelD=29,400psiTo=180FTheresultsofthemaximumtabandtubeweldstressesarelistedinTables3.5-144and3.5-145.3.5.2.2.2.4 Fuel-to-Rack ImpactLoadsEvaluation Theloadingduetofuelassemblies wasconsidered forunconsolidated, consolidated, half-full andemptyconditions.
Theimpactforcesbetweenthefuelassemblies andrackcellarepresented inSection3.5.3.1.6.
InallcasesfortheOBEandSSE,thecaseofunconsolidated fuelcausedthegreatestseismicfuel-to-rack impactloadingtooccur.Thehydrodynamic couplingbetweentheunconsolidated fuelandtherackcellswasmuchlowerthanthehydrodynamic couplingbetweentheconsolidated fuelcanisters andtherackcells,thuspermitting greaterimpacttooccur.Theanalysiswasperformed todemonstrate thefuelrack-cell wallstructural integrity duetoimpactloadingoffuelassemblies.
Thelocalstressintherackcellwascalculated
&omthepeakimpactloadobtainedfromallthedynamicanalysisrunsthatincludedbothseismicanddeadloads.Thestresslimitsspecified forLevelBloadings(OBE)andLevelDloadings(SSE)givenintheASMESectionIIICode(Reference 3.19)wereusedtoobtainthelimitingimpactload.Thestressesintherackcellweredetermined usingafiniteelementmodelofasinglecell.Forthisanalysis, thebaseoftheplatewasassumedfixed,theotheredgesalongtheheightofthecellwereassumedsimply-supported, andthetopedgeofthecellwasassumedfree.Themodelwasconstructed ofshellelementswithANSYS5.2(Reference 3.40)Table3.5-58providestheallowable loadandthemaximumloadobtainedforalloftheloadcasesanalyzed.
Asdescribed inSection3.5.2.6,atimehistoryfactor,of1.2and1.12wasappliedtothemaximumSSEandOBEloadsrespectively.
Thecalculated maximumfuelassembly-rack cellwallimpactloadsfortheSSEandOBEcases,accounting forthetimehistoryfactor,arewellbelowtheallowable loadlimit.Thisconfirmsthelocalcellwallintegrity forthemaximumfueltorackcellwallimpactloads.3.5.2.2.2.5 SlidingandTippingInadditiontotheresultsofthe3-Dwholepoolanalysisusedtodetermine
- stresses, dataisalsoprovidedonthemaximumrelativeslidingandtipping.Theresultsindicatethatthevibratory natureoftheseismiceffectsprecludes asignificant degreeofslidingandtipping.Theslidingandtippinghavethreemajoreffects:1)theslidingisanenergydissipator, 2)theslidingprecludes theeffectofresonance sinceenergyisnotstored,and3)bothtippingandslidinglimittheforcesthatcanbeintroduced intotherack.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage105 f
Thehorizontal seismicdisplacements ofthepoolflooraretransferred totheracksthroughthesupportlegs.Thebaseshearforceislimitedbythecoefficient offrictioninsliding.Theeffective bendingmomentatthebaseofther'ackislimitedtothatbendingmomentwhichcausessomesupportlegstoliftoff.However,evenaftertippinghasoccurred, resistance totippingisprovidedbythemomentsattributed totheextremesupportlegsstillbearinguponthefloor.Supporting calculations forthe3-Dsinglerackmodelandthe3-DwholepoolmodelareprovidedinSection3.5.3.1.1.
3.5.2.2.2.6 ExpectedLoadsonFloorFromRacksEachrackrespondstotheseismicinputcausingpeakmaximumsupportpadloadsinadditiontomaximumaveragesupportpadloads.Theconcretebearingstresseswerecheckedformaximumpeakandaveragesupportpadloadsandfoundtobewithintheallowables, aspresented inTable3.5-142.Duetothesupporting surface(concrete) beingwideronallsidesthantheloadedarea(supportpads),thedesignbearingstrengthwasincreased byafactoroftwoperACI349-85,Section10.15,Reference 3.20.Information onthefloorloadsisprovidedinSection3.5.3.1.5.
3.5.2.2.2.7 PoolLinerPlateIntegrity Evaluation Thepoollinerissubjecttoatopsurfaceshearingloadduetothefrictional reactionload.Bydefinition, themaximumshearforceimposedbythesupportlegis0.8timestheverticalforce.Theverticalreactionistransferred directlydownwardtotheconcretethroughthelinerplate.ThemaximumbearingstressesandtensilestressesinducedonthelinerareprovidedinSection3.5.3.1.17.
3.5.2.3DetailedDescriptions ofMathematical ModelsTheANSYS(Reference 3.40)Finite-Element AnalysisCodewasusedforthestructuraVseismic analysisoftheracks.Bothelasticshellelementandbeamelementmodelswerecreated.Thesemodelsincludedfeaturestoallowforslidingandtippingoftheracksandtorepresent thehydrodynamic couplingwhichcanoccurbetweenfuelassemblies andrackcells,betweenracks,andbetweentheracksandthereinforced concretewalls.Themodelsusedintheanalysisaredescribed inthefollowing paragraphs.
Model1-3-DSingleRackPlateModelA3-DSingleRackPlateModel(SeeFigure3.5-33)waspreparedforuseinthestaticstress,thermal,andthebaseplatestressanalysis.
Thismodelconsisted ofshellelementsrepresenting thecellsoftherack.A9x11rackmodulewaschosensinceitholdsthelargestnumberofconsolidated fuelassemblies, whichwillresultinthegreatestsupportpadloadings.
Inthestaticanalysis, allsupportpadsarerestrained againstslidingandtipping.Themaximumhorizontal andverticalloadsandbendingmomentsinputtothemodelweretakenfromtheresultsofthe3-Dwhole'pool modelseismicanalyses.
Upperboundvaluesareusedintheselection oftheseismicgloads.Therefore, thoughresultsofthisanalysisareconsidered conservative, theyprovideimportant information onpadbearingforcesandstressesintherack.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage106 Model2-3-DSingleRackBeamModelA3-DSingleRackBeamModel(seeFigure3.5-31)wasusedforparametric studiesrelatingtotheseismicdynamicanalysesoftheracks.Therackmodulesinthepoolweremodeledasnon-linear dynamicstructures takingthegeometric andphysicalnonlinearities intoconsideration, andanalyzedbythenonlinear timehistoryanalysismethod.Thenonlinearities ariseprimarily fromthefollowing:
1.Thesupportlegsarefreetoslideinanyhorizontal direction andcanliftoff,vertically upward.2.Thefuelassembly, whetherconsolidated inacanisterornot,isnotstructurally tiedtothefuelrackcell.Thisresultsineitherafluidgaporanimpactatanytimeduringtheseismic,event.Allstructural membersaremodeledbytheANSYSBEAM4element.TheBEAM4elementisa3-Delasticbeamwithsixdegreesoffreedomateachnode.Beamelementsareusedtomodeltheracklegs,thebaseplate,theracktubes,andthefuel.Thefuelbeamandtherackbeamareverticalbeamslocatedatthecentroidoftherackinthehorizontal plane.Thefuelbeamandtherackbeamareconnected atthebottomend.Thebaseplate beamsextendhorizontally Romthebottomoftherackbeamtothecentersofthecornerrackcells.Atthecornerrackcells,racklegbeamsextendvertically downwardfromtheendsofthebaseplate beams.Eachlegbeamrepresents onefourthofthetotalnumberofracklegs.Allmassisrepresented byMASS21elements.
TheMASS21elementisalumpedmasselementwhichcanbeappliedinallthreedirections.
TheMASS21elementcanalsoapplyrotaryinertiatorepresent thelumpedmassmoreasadistributed mass.AllcontactelementsbetweentheracklegsandpoollinerandbetweenandtheracktubesandfuelaremodeledwithCONTACT52 elements.
TheCONTACT52 elementisa3-Dpointtopointcontactelementwhichallowsforgaps,interface stiffness, andslidingfriction.
Allhydrodynamic couplingbetweenthefuelandrack,andbetweentherackandadjacentracksaremodeledwiththeFLUID38elements.
TheFLUID38elementisahydrodynamic couplingelementwithtwodegreesoffreedomateachnode,i.e.horizontal translation intwoorthogonal axesperpendicular totheverticalaxesofthecoupledcylinders.
Therackanalysisincorporates inertialfluidcouplingtermswhichmodeltheeffectsoffluidinthegapsbetweenthefuelassemblies andracks,betweenadjacentracks,andbetweentheracksandthepoolwalls.Thecorresponding hydrodynamic masseswerecalculated usingestablished methods,basedonpotential theorydescribed inReferences 3.38.Theinter-rack hydrodynamic masseswerecalculated usingformulations developed forrectangular shapes(Reference 3.38)assumingnominalgapsbetweenracks.Thehydrodynamic massforconcentric longcylinders giveninReference 3.38wasusedforfuel-to-rack couplingterms.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage107
Gapelementswereprovidedinthemathematical modelasfollows:a1Thefuelassemblytocellgapincludedanelasticspringwhichbecameeffective whenthegapisclosed.Thisspringstiffness wasbaseduponthebendingstiffness ofthecellwallsrestrained atcorners.b.Thesupportlegtopoolfloorgapwasrepresented separately intheverticalandhorizontal directions.
Thehorizontal reactionwasbaseduponthecoefficient offrictiontimestheverticalreactionupuntilthesummation ofhorizontal reactionexceededthehorizontal inertialforce,atwhichtimetherackisassumedtoslide.Asaconservatism, theRayleighdampingeffectinthereinforced concreteslabwasnotconsidered, fortheverticalimpactsupportlegload.Therearetwobasicsinglerackmodels.Thefirstisarepresentation ofrack8(2B),a9x11Region2rackdesignedbyATEA.Thesecondisarepresentation ofrack1,anexistingRegion2rackintheR.E.Ginnaspentfuelpool,withaperipheral rack,rack4A,attached.
Model3-3-DWholePoolModelA3-DWholePoolModelwasusedtodetermine therelativerack-to-rack andtherack-to-wall motions.Thismodelwasalsousedtodetermine allmaximumforcesandmomentsforeachrackmodule.Thearrangements oftheGinnaspentfuelpoolwithsevennewATEAspentfuelracksandsixresidentracksareshowninFigure3.5-36.Noteinthisfigurethatracks1,through6aretheresidentracksand7through13arethenewracks.Theindividual rackmodelswerecombinedasshowninFigure3.5-32.Therackproperties weretaken&omtherackproperties foreachrack.Themajordifference betweenthisrackmodelandthe3-Dsinglerackmodelwasintherepresentation ofthefuel.Theindividual rackmodelusedinthe3-DwholepoolmodelusedacommonnodebetweentherackbeamandthefuelbeamatthebaseplateoftherackasshowninFigure3.5-40.Itwasshownthatthiscommonnodedoesnotaffecttherackforcesandmomentsobtainedfromtheanalysis(seeTable3.5-63).Thebaselocationnodesoftherackbeamandthefuelbeamareconnected byaspringelementinthe3-Dsinglerackmodel.Thefuelmassinthe3-Dwholepoolmodelisdistributed with1/4ofthetotalfuelmasslocatedatthetopnodeofthefuelbeamelement.Onehalfofthetotalfuelmassandonehalfoftherackmassarelocatedatthemiddlenodesofthefuelandrackbeams.Theremaining 1/4ofthefuelmass,1/4oftherackmassandthebottomrackplatemass,aswellasthelegmassesarecombinedatthebottomnode.Hydrodynamic couplingtermswerecalculated foreachrackandthenaveragedfortheconnection betweenanytworacks.Thecouplingforanyperimeter racktothepoolwallwastakensimplyasthehydrodynamic couplingforthatspecificrack.Thefueltorackhydrodynamic couplingwasaccounted forwithonehalfofthecouplingplacedbetweenthetopnodesoftherackandfuelbeams.Theotherhalfofthefueltorackcouplingwasplacedbetweenthemiddletwonodesoftherackandfuelbeams.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage108 Theotherparameters usedinthe3-Dwholepoolmodelaresimilartothe3-Dsinglerackanalysis.
Buoyancywasconsidered forthecalculations ofrackandfuelweights.Thecoefficient of&ictionbetweentheracksupportlegsandpoollinerusedinthe3-Dwholepoolanalysiscorresponded tothefollowing cases:i)Allcoefficient offriction=0.2ii)Allcoefficient offriction=0.8iii)Allcoefficient offriction=0.5iv)Combination offrictioncoefficients between0.2and0.8.Thecoefficients offrictionbetweentheracksupportlegsandpoollinerweregenerated usingaGaussiandistribution randomnumbergenerator with0.52asthemeanand0.148standarddeviations.
Separatecalculations werecarriedoutforbothOBEandSSEconditions.
Conditions offull,emptyandhalf-loaded withfuelassemblies wereanalyzed.
Thestoragelocations occupiedbyfuelinthehalf-loaded conditions wereselectedinsuchamannerthatthecenterofgravityoftheloadedracksisfarthest&omitsgeometric planeofsymmetry(i.e.,torsional responseofrackwasconsidered).
Atotaloftwelveseparatecaseswereanalyzedwiththe3-Dwholepoolmodel.Thereisatotalofthirteen(13)racksinthe3-Dwholepoolmodel.Theloadcasesanalyzedaresummarized inTable3.5-64.Thefirsttencasesassumedeachrackfilledwithunconsolidated fuelorconsolidated fuelwiththecoefficient of&ictionbeingvariedwithvaluesof0.8,0.5and0.2.TheseismicloadsconsistofboththeSSEandOBEconditions.
Thelasttwocases(11and12)wererunwiththeracksassignedvariousfuelloadingsasgiveninTables3.5-65and3.5-66.Also,therackswereassignedrandomcoefficients of&ictionwithvaluesof0.8,0.5and0.2asgiveninTables3.5-65and3.5-66.Thekinematic criterion seekstoensurethattherackisaphysically stablestructure.
Thephysicalstability oftherackmustbeconsidered withthecriterion thatinter-rack impactorrack-to-wall impactsdonotoccur.However,theimpactofthefuelassemblyonthecelldoesoccurandwasevaluated andaccounted for.Forcesgenerated fromtheimpacteventsbetweenthefuelassemblies andtherackcellswereconsidered forlocalaswellasoveralleffectsonthecellwallsandrackmodule.Itwasdemonstrated thatsuchanimpactdoesnotleadtodamageoftherackmodules.SingleCellModelswithTabsTwo3-Dfiniteelementmodelsoftype2andtype3individual spentfuelstoragerackcellsweremadewithANSYS5.2usingaSHELL63element.Themodelswereusedtodetermine thedistribution ofconnecting tabtranslational reactionloads.Thefiniteelementmodelsforthetype2rackcellandthetype3rackcellareshowninFigures3.5-34and3.5-35respectively.
Thetype2cellissubjected toapressureloadontheinsidesurfaceofonecellface,andapressureloadonthe51-1258768-01 GinnaSFPRe-racking Licensing ReportPage109
outsidesurfaceofanoppositecellface.Thetype3cellissubjected toapressureloadontheinsidesurfaceofonecellface,andconcentrated loadsateightbeltelevations ontheoutsidesurfaceofanoppositecellface.Theentirelengthoftheconnecting tabsismodeledsuchthatthestiffness ofthetabisrepresented properly.
Thetype2andtype3cellmodelswereloadedasdescribed abovewithanarbitrary loadtorepresent afuelassemblyloadinginsideandoutsideofacell.Theconnecting tabreactionloadswerethenratioedupordownbasedontheactualloading.Thesereactionloadswereusedtodetermine thestressesinthetab,andinthetabweldateachtablocation.
Themaximumstressintensity ofthecell.wasalsoobtainedforthetype2andtype3cellsfromthesefiniteelementmodels.Stressanalysisdetailsontheconnection tabs,welds,andtube(rackcell)aregiveninSection3.5.3.1.2.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage110 Figure3.5-313D-SingleRackModelnrrn24GAPELEMENTn21n33RACKn30FLUIDCOUPLING(Fuel-to-Rack)
ELEMENT0322n10II32n17n29FUELn1GAPn25n9n8n4FLOORn31n28FLUIDCOUPLINGELEMENT(Rack-to-WaII) n2n18SUPPORTLEGn8n1851-1258768-01 GinnaSFPRe-racking Licensing ReportPage111 Figure3.5-32GINNA3DWholePoolRackModelR2R4R6R10R13R9R1RlR3RSR151-1258768-01 GinnaSFPRe-racking Licensing ReportPage112
Figure3.5-33SingleRackFiniteElementModel51-1258768-01 GinnaSFPRe-racking Licensing ReportPage113 I<llii~l<l~~i~lll===:.ii i~~ill<i==-ii=-==~~~<--;Igl<llllili~lgllti~~
<~Ill/====>~Ill[
'lg=~II()~lllp1$5)[-<II(-lily1g'~ll)g<lg==:=i=,---=alii
~~~I I
+.-==I](I~NEMESES~~~l~waeei~ei>E><~wq~~113E
//)Il<~~l'1LWLWWLIIqk~WWkwlllkLILpe)[I$gi//~I)I<1~)~)~j')Ii~lii=l~~lllpl)======il Irr>~'<i')====r I)I[I)~~~~I((l~~~~~/(]~'~
Figure3.5-36PlanViewofSpentFuelPool26663118.02IIBAR~8<<3015.254204%10)0501.75~I(14%10)1040I204trs+I254.304.7514.2514>+(14%10)0.750.7543(14%10)15.50457.750434.3012.75'%6(14%10)3.38a75~5(14%10)17AIO3.3892.34NIO-3A(7%10)0.79$93C(5%10)0.79%8-28(9%11)76460.79~72A(8%1,)6(L07~~(L7992.34620(5%10)+(2%6) 012-3D(5%10)~ll-3E(6%10PIMO2)96.48g7.053271.7230.7364Ai387.74195014.75525~",.6.0O.7.SOI-93>>~NOI"thREGION2~REGIONI(INCLUDES 2A62B)NoteiRacks1thrv6areexlstlngracks+X%East.+Y=N()rth,
+Z=Up~~~Note:Pooloveralldimensions areforinformation only.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage116
3.5.2.4DetailedDocumentation ofComputerCodes3.5.2.4.1 GeneralThefollowing isadescription ofthecomputercodesandverification/validation methods(asapplicable) usedinthestructuraVseismic analysesperformed byFCFfortheGinnaStationSpentFuelStorageRacks.Acopyoftheuser'smanualanddocumentation forSIMQKEisavailable inthePublicDomain.3.5.2.4.2 StructuraVSeismic ComputerCodesTwocomputercodeswereutilizedforthestructural/seismic calculations, ANSYS(Reference 3.40)andSIMQKE(Reference 3.41).3.5.2.4.2.1 ANSYSTheprimarycodewhichwasusedforthestructural analysesisANSYSVersion5.2.ANSYSisageneralpurpose,finiteelementprogramforsolvingawidevarietyofengineering analysisproblems.
ANSYSemploysthelatestfiniteelementtechnology forthesolutionofseveralclassesofengineering problems.
ANSYShasalargelibraryofelementsandanextensive selection ofmaterialproperties, bothlinearandnonlinear.
Thesofbvareservicesawidespectrumofuses,&omthelinearelasticanalysisoftwodimensional andthree-dimensional solidstoapplications inwhichnonlinear materialandgeometric eQectsdominate.
Theseapplications mustbeincludedinconjunction withsophisticated geometric modeling.
Theregimeofapplications variesfromstatictodynamicstructural problems.
Meshgenerators andextensive pre-processing andpost-processing graphicshelpinestablishing thecorrectanalysis.
Since1970,thisprogramhasbeenusedextensively byanalystsinthenuclear,chemical, construction, andelectronic industries.
Extensive usehasledtoahighdegreeofreliability inobtainedcomputerresults.TheANSYSanalysistypesincludethefollowing:
Staticanalysis~DynamicanalysisNonlinear transient, lineartransient, harmonicresponse, mode-frequency, modalseismic,randomvibration.
~Bucklingandstability analysis~Linearbuckling, nonlinear buckling~HeattransferanalysisNonlinearities
- Material, geometric, elementSubstructures 51-1258768-01 GinnaSFPRe-racking Licensing ReportPage117 AllANSYSanalysistypesarebasedonclassical engineering concepts.
Throughprovennumerical techniques, theseconceptscanbeformulated intomatrixequations thataresuitableforanalysisusingthefiniteelementmethod.Thesystemtobeanalyzedisrepresented byamathematical modelconsisting ofelementsandnodes.Structural elementtypesincludespars,pipesandelbows,beams,plates,shells,solids,masses,springs,dampers,slidinginterfaces, andgapinterfaces.
Also,arbitrary stiffness, massanddampingmatrixelementsareavailable.
Loadinginputforstructural analysesmaybenodalforces,bodyforces,displacements, velocities, accelerations, pressures, ortemperatures.
Theseinputsmaybesinusoidal, randomoranarbitrary functionoftimeforthelinearandnonlinear dynamicanalyses.
Modefrequency analysesmayincludeforcespectrumorresponsespectrumloadings.
Structural analysisoutputsareusuallyforces,displacements,
- stresses, andstrains.ANSYShasbeenusedatFCFforthelast21years,andanalysesareperformed perprocedures thatincludetheguidelines forthecertification ofcomputercodes.FCFhasverifiedthatANSYS5.2isacceptable forthisanalysisandthatallapplicable errorreportshavebeenreviewedandhavebeenshowntohavenoeffectontheseanalyses.
3.5.2.4.2.1.1 SummaryofElementTypesUsedintheANSYSModelsThefollowing isalistoftheelementtypeswhichwereusedintheANSYSmodels:BEAM4TheBEAM4elementisa3-Delasticbeamwithsixdegreesoffreedomateachnode.Beamelementswereusedtomodeltheracklegs,thebaseplate, theracktubes,andthefuel.MASS21TheMASS21elementisalumpedmasselementwhichcanbeappliedinallthreeorthogonal directions.
TheMASS21elementcanalsoapplyrotaryinertiatorepresent thelumpedmassmoreasadistributed mass.CONTACT52 TheCONTACT52 elementisa3-Dpoint-to-point contactelementwhichallowsforgaps,interface
- stifRess, andslidingfriction.
FLUID38TheFLUID38elementisahydrodynamic couplingelementwithtwodegreesof&eedomateachnode,translation perpendicular totheaxesofthecoupledcylinders.
SHELL63TheSHELL63elementisanelasticshellelementthathasbothbendingandmembranecapabilities.
Bothin-planeandnormalloadsarepermitted.
Theelementhassixdegreesoffreedomateachnode.TheSHELL63elementwasusedinthesingle3Dplatemodelsoftheracks,andinthelocalrackcellmodelswithconnecting tabs.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage118 3.5.2.4.2.1.2 SummaryofANSYSErrorReportsforElementTypesUsedErrorNo:96-14UseofSHELL63elementswith:(1)NON-UNIFORM thermalloads,and(2)anynonlinearity inthemodel,and(3)extradisplacement shapes.Thiserrorisnotapplicable forouranalysessincewedidn'tuseanynon-uniform thermalloads.ErrorNo:96-26UseofSHELL63elementswiththeAllmanin-planerotational stiffness (KEYOPT(3)=2) inanyoneofthefollowing:
(1)abucklinganalysis, or(2)aprestressed
- analysis, or(3)inanonlinear analysiswithstressstiffening.
Thiserrorisnotapplicable forouranalysissincewedidn'tusetheAllmanin-planerotational stiffness (KEYOPT(3)=2).
==
Conclusion:==
NoneoftheANSYSErrorReportshadanyeffectontheresultsoftheanalyses.
3.5.2.4.2.2 SIMQKETheprogramSIMQKEhasthesecapabilities:
itcomputesapowerspectraldensityfunctionfromaspecified smoothresponsespectrum; itgenerates statistically independent artificial acceleration timeshistories andtries,byiteration, tomatchthespecified responsespectrum; itperformsabaselinecorrection onthegenerated motiontoensurezerofinalgroundvelocity; anditcalculates responsespectrawiththetimehistories asinput.Theartificial motiongenerated bytheprogramisaseriesofsinusoidal wavesmultiplied byanintensity envelopefunction:
Z(t)=I(t)LAsin(w,t+
$gAistheamplitude and$,isthephaseangleofthen~contributing sinusoid.
Byfixinganarrayofamplitudes andgenerating different arraysofphaseangles,oneobtainsdifferent motionswiththesamegeneralappearance butdifferent details.Thecomputerusesarandomnumbergenerator toproducestringsofphaseangleswithuniformlikelihood intherangebetween0and2z.Theamplitudes Aarerelatedtothe(one-sided) spectraldensityfunctionG(w)inthefollowing way:G(wg6w=A~/2Thetotalpowermaybeexpressed as:ZA'/2=ZG(wg5wThreedifferent intensity envelopefunctions I(t)areavailable "Trapezoidal,"
"Exponential" and"Compound."
Theprogramartificially raisesorlowersthegenerated peakacceleration tomatchthetargetpeakacceleration exactly.Theresponsespectracorresponding tothemotionarethen51-1258768-01 GinnaSFPRe-racking Licensing ReportPage119 computed.
Theresponsespectrumforonechosendampingvalueiscalledthe"target"responsespectrumwhichtheprogramwillattemptto"match."Tosmooththecalculated spectrumandtoimprovethematching, aniterative procedure isimplemented.
Ineachcycleoftheiteration, thecalculated responseiscomparedwiththetargetatasetofcontrolfrequencies specified bytheuser.3.5.2.5Hydrodynamic FluidCouplingThepresentrackanalysisincorporates inertialfluidcouplingtermswhichmodeltheeffectsoffluidinthegapsbetweenfuelassemblies andracks,betweenadjacentracks,andbetweentheracksandthepoolwall.Thecorresponding hydrodynamic massesarecalculated usingestablished methods,basedonpotential theory,anddocumented inReferences 3.38.Thefollowing sectionsdescribehydrodynamic massesandtheirmethodsofapplication.
Therelativecontribution offluidcouplingisdependent uponfluidgapsandtherelativemotionbetweenthebodiesconsidered.
Thevaluescalculated forthepresentanalysisarebasedonnominalgaps.Thecouplingtermsfor"in-phase" rackmotionaredetermined forgapsequivalent tonominal,andfor"out-of-phase" rackmotionaredetermined forgapsequaltoI/2nominal.Ageneraldescription ofthemethodsusedisgivenherein.Theequations indicatethatthehydrodynamic couplingforceswouldbecomeinfiniteasthegapsapproachzero,sotobeconservative, thecalculation ofthehydrodynamic massisbasedontheoriginalgaps.Impactforceswouldbecalculated ifgapsaretoclosetozero.ANSYSElementSTIF38isused.Theoptionofcalculating hydrodynamic massesbothondiagonalandoffdiagonaltermsofthemassmatrixisselected.
Thehydrodynamic elementmassesinsertedinthemassmatrixare:m>>0mI300m>>0m,4m>>0m>>00m4,0m44where:m>>=M,m~~=M m>>=m,I=(M,+M)m~~=M,+M~+Mm,4=m4,=-(M,+M
)m44=M,+M,+MThegeneralequationforfluidkineticenergyisusedtoestimatethehydrodynamic mass.Thevaluesofthesemassesisbasedupontheequations developed bySingh-90(Reference 3.38).3.5.2.5.1 Fuel-to-Rack Hydrodynamic CouplingFuelAssemblies Thefuelassemblycontains179individual fuelrods,16guidetubesandoneinstrument tube.Theserodsandtubesareheldinpositionbyspacergrids.Thereisnooutsidesheathing, sothehydrodynamic couplingisbaseduponeachfuelrod,assumedtobeatthecenterofthecell.Forconcentric longcylinders, thehydrodynamic massisgivenbySingh-90(Reference 3.38):51-1258768-01 GinnaSFPRe-racking Licensing ReportPage120 R+R21R-R21nnPR1hwhereR,=fuelrodradiusR,=rackcell"equivalent" radiush=heightoffuelwithinrackp=densityoffluidn=numberoffuelrodsandtubesTherefore:
SinceR,<<R2R+R21R-RH=PIIR1hi~1FuelAssemblyParameters:
W-Standard W-OFAExxonFuelAssemblyRodsperAssemblyCladO.D.-inch14x141790.42214x141790.414x141790.424No.OfguideTubesGuideTubeO.D.-in160.539160.528160.524No.OfInstrument TubeInstrument TubeO.D.-in10.42210.39910.424Alsousing:p=9.345x10'b-sec'/
in'=158.5in(rodandtubeslengthtakenasfulllengthofrack)R,=rodortube(O.D./2)weobtain,theM-hydrodynamic massesforthefuelcoupling, andresultaresummarized attheendofsection.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage121 M,=massoffluiddisplaced bytheinnerbody=thisissameasMforlongconcentric cylinders withR,<<R2M,=massoffluidinsidetheouterbodyintheabsenceoftheinnerbody=areaxheightxfluiddensityForATEAracks(Type2,3or4)insidefuelcelldimension 8.1417inForU.S.Tool&DieRacks,insidefuelcelldimension is8.113inHeightis158.5inDensityoffluidis9.345x10'b-sec'/
in'heresultsofM,M,andM,aresummarized belowforbothATEAandU.S.ToolEcDieRacks:Summary-FueltoRackHydrodynamic Masses-lb-sec2/inMnM,M2W-Standard W-OFAFuelFuel0.4270.3870.4270.3870.9820.982ExxonFuel0.4280.4280.982Consolidated FuelCanisters Consolidated fuelstorageconsistsoffuelrodsstoredwithinaclosedcanister.
Thehydrodynamic couplingtothecellisbaseduponthecanisterratherthantheindividual fuelrods.Forconcentric longrectangular bodies,thehydrodynamic massalongxandy-directions isgivenbySingh-90(Reference 3.38).1653hH=-p-H3wwhereh=heightofrectangular body=158.5inp=densityoffluid9345x10-s lbseci/in'1-1258768-01 GinnaSFPRe-racking Licensing ReportPage122 M,=(2b-w)'xhxpM,=(2b+w)'hxpTheresultsfortheconsolidated fuelhydrodynamic massesaresummarized withinputparameters.
Outsidedimension ofconsolidated fuelInsidedimension ofATEArackfuelcell8.0x8.0in8.1417inInsidedimension ofU.S.Tool&Dierackfuelcell8.113inSummary-Hydrodynamic couplingMassesforConsolidated Fuel-EachbwMM,M~ATEARack4.0350.07173.270.9480.982U.S.Tool&DieRack4.036inch0.0715inch91.39lb-sec~/in0.948lb-sec~/in0.975lb-sec'in3.5.2.5.2 Rack-to-Rack andRack-to-Pool Hydrodynamic Coupling~~~Foreccentric longrectangular bodies,thehydrodynamic massalongxandy-directions isgivenbySingh-90(Reference 3.38).M~(HORZ'Z)
=2phC-+-+-CC2B3g~3'~Nz=Ph(2C-gz)2b-I)2H~=ph(2C+g~)2b+()251-1258768-01 GinnaSFPRe-racking Licensing ReportPage123
pg291g392-2BPLANwhereh=heightofrackp=densityoffluidgi~go~g3=gapsIfg,gapsaredifferent amongNorthorSouthsideofrack,theaveragegapsareusedinthehydrodynamic masscalculations.
Forcaseswhenthereisoverlapoftwoormoreracksonthesideofarack,theweightedaveragegapsareusedinthecalculations.
WeightedGapsFortheidealization ofgaps,ifmorethanonerackwithdifferent gapsisinthevicinityoftherackunderconsideration, aweightedgapisused.Theweightedgapisbasedonlengthofoverlapbetweentheracks.L1L2G2L3G351-1258768-01 GinnaSFPRe-racking Licensing ReportPage124 WeightedaveragegapZLzGzZLiTable3.5-9summarizes geometric parameters andalsotheweightedgaps.WeightedAverageRackCouplingThehydrodynamic masscouplingbetweenracktorackmotionunderseismiceventsisbasedonweightedmasscoupling.
Theweightedmassisbasedonlengthofoverlapbetweentheracks.Case1Case2LIL4LSL2L3L751-1258768-01 GinnaSFPRe-racking Licensing ReportPage125 UsingEffective CoupledLengthsforHydrodynamic Mass:L~L~H-+HHsLHzL5I~M-+HHggHpHH)~2M1,4M-+ML~L~HggH47Tables3.5-10and-11summarize hydrodynamic masses.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage126
Table3.5-9Geometric Parameters forHydrodynamic MassCoupling-SummaryTableGapsattheTopoftheRack4'.j',-:::;-:.~;"'...Ga
'sat:the':.To'::.'of-:.the, Rack"':'i.':::::..;>;-";.:','-'::.-'.:
- E,-",V,::!Length:::
N-',SLength':p':y;~'OX~;%';.",;'.
%e'st,:'.'Gap
- "4':1n.':.!
ll"North'::,Gap'::::.Ea'st:,'Gap'."'"":-":::
g2':::::::-"':"::::South",Gap';
1andTe42andTe43andTe44andTe4SandTe46andTe4159159159.15915915915915915915915915984.3084.3084.3084.3084.3084.3084.3084.3084.3084.3084.3084.30118.02127.21118.02127.21118.02127.21118.02127.21118.02127.21118.02127.2110.5010.509.759.751.751.751.251.250.750.750.630.630.500.5015.256.030.750.7514.255.030.750.7512.753.531.751.751.251.250.750.750.630.630.840.843.183.2114.755.530.500.5015.506.280.750.7517.007.780.750.757or2A8or2B10or3A159.68159.68159.6892.7392.7391.9367.575.8864.230.840.843.591.291.931.291.201.3696.777.341.361.2113or3B9or3C12or3D11or3E159.68159.68159.68159.6891.9391.9391.9391.9264.2345.7645.7655.771.203.551.201.291.931.211.211.213.451.203.513.481.211.211.2196.39Usingthesegeometric parameters, thehydrodynamic massesarecalculated fortheracktopoolandracktorackcoupling.
Theresultsaresummarized inthefollowing table.TheX-direction corresponds toEastdirection.
TheY-direction corresponds toNorthdirection.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage127
Table3.5-10RackHydrodynamic CouplingMassesStandardConfiguration (NoType4RacksInstalled)
- ".
- .':;',1b';se'c/,in.:'":."4>.:"::::,"'.'..;lbec~."/.'in.':::".;:.'ndividual RackCoupling::;"j,',')",':.:'lb" se'c~/,::iii'-;';
~'";~.:::
>";.,','.7:,:Ib;se'c,'.:/;in.::,':::.,':.;:<.'.
1234567(Rack2A)8(Rack2B)9(Rack3C)10(Rack3A)11(Rack3E)12(Rack3D)13(Rack3B)3028.213572.705978.957176.087532.386050.911807.094273.001426.572334.691668.511426.712337.263139.213223.446570.868284.389648.984735.823292.766308.243036.123226.973782.043045.613275.97147.83148.83147.83147.83147.83147.8393.40105.0062.7788.1176.5062.7788.11191.19189.42173.17170.33173.27172.18216.43111.1669.5197.23221.2869.4897.09WeightedAverageRackCouplingRacks1and2Racks1and3Racks2and4Racks3and5Racks3and4Racks4and6Racks5and6Racks5and7Racks5and8Racks6and10Racks6and9Racks6and8Racks7and8Racks8and11Racks8and9Racks10and13Racks9and10Racks12and13Racks9and12Racks11and123300.454503.585374.396755.666577.51.6613.56791.652638.77~3570.422352.861917.37901.663040.042970.752849.782335.971880.631881.981426.641547.613181.324855.035753.918109.927427.626510.107192.403797.744900.172421.952460.451028.224800.505045.144672.183251.473131.553160.793040.863413.82147.83147.83147.83147.83147.83147.83147.8376.5278.3470.3760.8022.0999.2090.7583.8988.1175.4475.4462.7769.63190.30182.18179.88173.22171.75171.26172.73135.3587.1679.7269.0224.52163.79166.2290.3397.1683.3783.2969.49145.3851-1258768-01 GinnaSFPRe-racking Licensing ReportPage128 Table3.5-11RackHydrodynamic CouplingMassesExtendedConfiguration (Type4RacksInstalled)
Individual RackCoupling-.',":.:.:.:;:;::,;lb:s'ec~,"'./':in
':':;-":,.",:,
':,~:""";::::::lb';sec,=/';in'.,".i;:",<
.:i'~.,"":."1b."s'ec.',.'/
in':,-'i;;,'
.2'4567(Rack2A)8(Rack2B)9(Rack3C)10(Rack3A)11(Rack3E)12(Rack3D)13(Rack3B)5601.655960.828358.8010218.219664.2410096.491807.094273.001426.572334.691668.511426.712337.263288.113363.236843.528646.0310012.095003.733292.766308.243036.123226.973782.043045.613275.97159.34159.34159.34159.34159.34159.3493.40105.0062.7788.1176.5062.7788.11191.15189.38173.13170.30173.23172.20216.43111.1669.5197.23221.2869.4897.09WeightedAverageRackCouplingRacks1and2Racks1and3Racks2and4Racks3and5Racks3and4Racks4and6Racks5and6Racks5and7Racks5and8Racks6and10Racks6and9Racks6and8Racks7and8Racks8and11Racks8and9Racks10and13Racks9and10Racks12and13Racks9and12Racks11and125781.246980.228089.529011.529288.5110157.359880.373480.843926.363681.772572.73928.713040.042970.752849.782335.971880.631881.981426.641547.613325.675065.826004.638427.817744.786824.887507.914316.444803.672859.612439.58690.694800.505045.144672.183251.473131.553160.793040.863413.82159.34159.34159.34159.34159.34159.34159.3489.1978.2583.7460.7320.2399.2090.7583.8988.1175A475.4462.7769.63190.26182.14179.84173.18171.71171.25172.72154.4183.9091.5066.4722.07163.79166.2290.3397.1683.3783.2969.49145.3851-1258768-01 GinnaSFPRe-racking Licensing ReportPage129
3.5.2.6SeismicTimeHistoryFactorDeterminations ApproachFourSafeShutdownEarthquake (SSE)andfourOperating BasisEarthquake (OBE)timehistories aredeveloped toevaluatetheracksfortheRG&EGinnaSpentFuelPool.Thedevelopment ofthetimehistories isdocumented inSection3.5.1.Eachtimehistoryisappliedtoa3-DsinglerackmodelforRack8(2B),a9x11rackmanufactured byATEA.Afterapplyingeachtimehistorytothemodel,amultiplication factorisfoundthat,whenappliedtothecriticalresultsofoneofthetimehistories, wouldenvelopetheresultsproducedwhenrunningtheotherthreetimehistories.
Afterthetimehistoryfactorsaredetermined fortheSSEandOBEtimehistories, onlythetimehistories forwhichfactorshavebeencalculated areusedonthewholepoolmodel.Thecalculated factorsforSSEandOBEarethenappliedtotheresultsoftheevaluations.
SSETimeHistoryFactorTable3.5-12listskeyresultsofthesinglerackmodelevaluations forthefourSSEtimehistories.
Thelastcolumnofthetablegivestheresultsofmultiplying theresultsofSSE1bythecalculated factor.Theseresultsprovideverification thattheresultsfromalloftheotherSSEtimehistories areenveloped.
TheresultfromSSE1whichrequiresthehighestenveloping factoristhehorizontal rackload.Thefactorrequiredtoenvelopethehorizontal rackload&omSSE2is:Factor=73,320/62,980
=1.164Thus,theenveloping factordetermined fortheSSEtimehistories is1.20xSSE1.Therefore, allSSEevaluations willbeperformed usingSSE1.Thefactorof1.20isappliedtoallresultstakenfromtheevaluation.
Thefactorof1.20alsoenvelopes afactorfromtheeffectsofanincreaseinrackheight,seeSection3.5.3.1.7.
OBETimeHistoryFactorTable3.5-13listskeyresultsofthesinglerackmodelevaluations forthefourOBEtimehistories.
Thelastcolumnofthetablegivestheresultsofmultiplying theresultsofOBE4bythecalculated factor.Theseresultsprovideverification thattheresultsfromalloftheotherOBEtimehistories areenveloped.
TheresultfromOBE4whichrequiresthehighestenveloping factoristhehorizontal rackload.Thefactorrequiredtoenvelopethehorizontal rackloadfromOBE1is:Factor=32,420/29,810
=1.08851-1258768-01 GinnaSFPRe-racking Licensing ReportPage130
Thus,theenveloping factordetermined fortheOBEtimehistories is1.12xOBE4.Therefore; allOBEevaluations willbeperformed usingOBFA.Thefactorof1.12isappliedtoallresultstakenfromtheevaluation.
Thefactorof1.12alsoenvelopes afactorfromtheeffectsofanincreaseinrackheight,seeSection3.5.3.1.7.
Table3.5-12SummaryofDetermination ofSSETimeHistoryFactor(UsingRackS(2B)LoadedivithConsolidated Fuel,mu=0.8)SingleModelLegHorizontal
- "
- i4SSEI'/san';,';
34,910SSE224,660-:;?'.;'SSE3j;,:;::37,390i:;;.'..',
SSE4,"..;;.":
31,580':,::.:1"';20.*.,SSB1::.::
41,892Max.LegLoad(lbs.)SingleModelLegVerticalLegTotalVertical138,000122,700322,800307,100129,000320,200127,300307,100165,600387,360Max.RackLoad(lbs.)Horizontal Vertical62,98013,48073,32012,82071,19013,37059,00012,82075,57616,176Max.RackMoments(in.-lbs.)
Bending6.645*106.267*107001*10'.875*10~
7974*10~Max.ImpactLoad(lbs.)FueltoRack12,95012,71011,05011,74015,540Displacement ofLeg(in.)Horizontal 0.033540.029380.027650.025480.0402551-1258768-01 GinnaSFPRe-racking Licensing ReportPage131 l
Table3.5-13SummaryofDetermination ofOBETimeHistoryFactor(UsingRackS(2B)LoadedwithUnconsolidated Fuel,mu=o.S):.Ij.,i:;:"..::~Item.:i,;::i'-::::;".
';;:":,"'i:;OBE 1',ll""'!
>N<"'.':,.OBE2':i')ti',:
!agjOBB3,'%:,~;:<N Il'l2.'...OBFA.'::
Max.LegLoad(lbs.)SingleModelLegHorizontal SingleModelLegVertical8,63064,4407,69662,4107,34759,7408,72363,0909,77070,661LegTotalVertical159,400157,700156,400156,500175,280Max.RackLoad(lbs.)Horizontal Vertical32,42011,23025,59011,11026,50011,02029,81011,03033,38712,354Max.RackMoments(in.-lbs.)
Bending3.382*10'.206*10' 070*10~3.114*10~
3.488*10~
Max.ImpactLoad(lbs.)FueltoRack42,98038,98042,33051,44057,613Displacement ofLeg(in.)Horizontal 0.0086750.0076970.0073480.0087310.0097793.5.2.7RackStiffness Sensitivity StudyStatement ofConcernIntheJuly1996meetingbetweentheNuclearRegulatory Commission, (NRC),RG&E,andFramatome CogemaFuels,theNRCexpressed concernsaboutthestiffness oftherackstructures.
Theissueraisedwasthattherackstiffness usedintheanalytical modelsmaynotnecessarily represent theactualstiffness oftherack.Thedifference instiffness mayexistbecausetherackstiffness inthemodelisbasedonacontinuous structure, whiletherackismadeupoftubesconnected byweldedtabs.TheNRCexpectedthismethodoffabrication toresultinastructure withapotentially lowerstiffness thanthatusedinthestructural analysisoftherack.TheNRCrecommended testingtoverifythattherackstiffness isclosetothestiffness usedintheanalyses.
Theobjectives ofthisstudyaretodetermine thedifference instiffness betweenacontinuous structure andasegmented structure, ifany,andtoshowthattherackseismicloadsandhencestressesarenotsensitive totherackstiffness.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage132 Resolution ofConcernTheapproachtakentoresolvethisconcernistoapproximate thedifference instiffness betweenacontinuous structure andastructure connected bytabsandthentodetermine theimpactthatthedifference instiffness wouldhaveoncriticalresultsoftherackanalysis, suchasthereactionforcesonthepoolfloor,themomentsgenerated intherack,andthemovementoftherack.Todetermine thedifference instiffness, acontinuous structure wasmodeledusingANSYSandloadedtocalculate itsstiffness.
ThefiniteelementcomputerprogramANSYSwasverifiedagainstexperimental testdata.Themodelwasthenmodifiedtoseparatethestructure intosegmentswhichwerethenconnected withtabs.Thestiffness ofthesegmented structure connected byfourtabsasintheactualrackdesignwasfoundtobeabout13.5%lowerthanthestiffness ofthecontinuous structure.
Becausethestiffness ofthestructure waslowerforthesegmented structure connected bytabs,theimpactofthisstiffness wasexamined.
Amodelfordynamicanalysisofasinglerackwas-modifiedtohaverackstiffnesses ranging&om50%to200%ofthestiffness ofthecontinuous structure.
Themodelwasofafreestandingspentfuelrackwhichincludedracktorackhydrodynamic
Becausetherackswerefreestanding, thegapsandhydrodynamic couplinghadalargereffectthanrackstiffness ontheloads,moments,andrackmovements sincetherewasrigidbodymotion.Thesemodelswereevaluated usingasinglespecified safeshutdownearthquake (SSE)timehistory.Theresultsoftheseanalyseswerethenplottedaspercentages ofthevaluescalculated usingthestiffness ofthecontinuous structure vs.thefactorappliedtothestiffness.
Theresultsplottedwerethemaximumtotalreactionloadatthefloor,themaximumhorizontal displacement attwocornersoftherack,andthemaximummomentsatthebaseoftherack.Ascanbeseeninthefollowing tableandplot,themaximumreactionforcesatthefloorareessentially independent oftherackstiffness.
Themomentsatthebaseoftherackshowedslightdependence onthestiffness withthemomentsincreasing withincreasing stiffness.
Therackdisplacements showedthegreatestvariation withchangingstiffness, following thegeneraltrendofincreasing displacement withincreasing stiffness.
Notethatthedisplacements referredtoareracktranslations causedbyfueltorackimpacts.Astifferrackbeamcausesmoreenergyfromtheimpacttogeneratetranslation oftheentirerackratherthanbendingoftherackbeam.Conclusions Thecomparison ofacontinuous structure andasegmented structure connected withtabsindicates thatusingtabsasthemethodoffabricating therackwillresultinastiffness about13.5%lowerthanthatofacontinuous structure.
SSEanalysesperformed onasinglerackmodelwithstiffnesses rangingfrom50%to200%ofthestiffness ofacontinuous structure indicates thatthereactionloadsatthefloorremainconstant, bendingmomentsintherackincreaseslightlywithincreasing stiffness, andrackdisplacements increasewithincreasing stiffness.
Theseresultsarelistedinthefollowing tableandareplottedinFigure3.5-37.51-125876S-01 GinnaSFPRe-racking Licensing ReportPage133
\~
RackStiffness Sensitivity StudyResults;>Perceiita'ge:of:;;;;:
';,',"Stiffn"e's's'."of,.'.":;::::
'j~I:.';:,:Co'ntin'uou's",,::.,'I".
',,':.";,s,'.'.:Structure':.;:::":.'-",',.'0%
80%1PP%120%150%200%100%1PP%100%1PP%100%100%85%97%100%105%108%111%55%(0.018in.)73%(0.023in.)100%(0.032in.)124%(0.040111.)155%(0.049in.)176%(0.056in.)Resultsarebasedonfullyconsolidated rackloadingandcoefficient offrictionof0.8.Displacements listedaregivenforcomparison purposesonly.Forrackdisplacements andgapclosures, seeSection3.5.3.1.14.
Rackstiffness isnotacriticalparameter inthedetermination ofpoolfloorreactionloads,rackmoments,orrackdisplacements.
Therefore, experimental verification oftherackstiffness isunnecessary.
Thestiffness usedinthemodeloftheGinnaracksisslightlyhigherthantheactualstiffness oftherack(basedonthestiffness ofacontinuous structure ratherthanasegmented structure connected bytabs).Theresultofusingahigherrackstiffness ishigherbendingmomentsandrackdisplacements, thusmakingtheuseofahigherthanactualrackstiffness conservative fortheseismicanalyses.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage134 PercentofValueatStiffness ofContinuous Structure vs.Stiffness FactorMoments,Forces,andDisplacements 2PP%15PCIv100%I05pp0.250.50.7511.251.5FactorAppliedtoStiffness 1.75~SRSSMoments~VerticalForces~Horizontal Displacement Figure3.5-37PercentofValueatStiffness ofContinuous Structure vs.Stiffness Factor 7L 3.5.3Structural Evaluation TheRG&EGinnaUnit1SpentFuelStoragesystemstructure, i.e.,newATEAstorageracks,theresidentU.S.ToolandDieracks,spentfuelpoolandliner,wasevaluated forlicenseapplication.
Forallthesestructures, thenormal,upset,faulted,andthehypothetical accidentconditions wereevaluated.
Thestructural evaluation methodsusedprovendesignpractices andcurrenttechnology withinnovative engineering principles.
Detailsoftheseevaluations areprovidedinthenextsubsections.
3.5.3.1Normal,UpsetandFaultedConditions TheSpentFuelStorageSystemwasdesignedtomeetallapplicable structural criteriafornormal(LevelA),upset(LevelB)andfaulted(LevelD)conditions asdefinedinNUREG-0800, SRP3.8.4,AppendixD.Thedeadweight,thermal,seismicandstuckfuelassemblyloadingswereconsidered.
Theloadcombinations wereperformed perSRP3.8.4,AppendixD.Thecombinedloadswereusedtoassessstoragerackstructural integrity basedonallowable stresslimitsprovidedforClass3component supportofASMESectionIII,Subsection NFoftheASMEBoilerandPressureVesselCode.Allrackcomponents wereshowntomeettheASMESectionIIIstructural requirements.
Inaddition, thestoragerackliftingstresseswereshowntomeettheNUREG-0612 liftingrequirements oftheheavyloadliftinthenuclearpowerplant.Thespentfuelpoolevaluation wasbasedonallowable stresslimitsprovidedinACI349-85.Thespentfuelpoolwasshowntomeetthesestressrequirements.
Thepoollinerevaluation wasbasedonstresslimitsprovidedinAISC-9thedition.Thepoollinerwasshowntomeetthesestressrequirements.
Thestructural integrity wasevaluated usingconservative analytical methods.3.5.3.1.1 VariousInputstothe3-DSingleRackandWholePoolFiniteElementModels3.5.3.1.1.1 RackStructural Properties Type2RackGeneralInformation SSWallThickness
=0.08in.CellSize=8.30in.CellHeight=158.5in.DensityofSS304L=0.290lb/in'orated SSthickness
=0.12in.BoratedSSOD=8.38in.BoratedSSHeight=145.7in.DensityofBoratedSS=0.290lb/in'ack Baseplate thickness
=1.18in.Cellbottomholediameter=3.74in.LengthofRackSupportLeg=13.70in.Center-center dimension (pitch)=8.43in51-1258768-01 GinnaSFPRe-racking Licensing ReportPage136 Type2RackStructural Properties
'.";Size,'",,'d.AV,-'E'(Iii)".':::i y<.C!;I~ength':ii-;:s(in)',:
.':I:V,-:.i'::(in,)',.
72A82B8x119xll113.9129.593.3193.3168.0776.4643,97164,00982,25095,291Type2RackTotalDryWeights":::Rack:.;
I,".'.,':.:No.':::;
.'4!.,;:Ra'ck~:.';Total",:I
,:.',.',',:,:Total.::::,,:.::::::,:,,:";".:I.'Total:.:;:.::;
- Type',::i
~,,":::,No,;"P,'..:.
- I'No!"of.,::::.
I:;,;Rack:,::Dry',':;',
.".jTot'al::L'eg'a'nd':::,'.
- Ba'sepIate'Dry".;
':;',.Weigh't(lb's';).,"
pTotal"Diy~
',::Unco'ns'olidated:::j,
- ::.::Pu'e1:
Wt::(1bs".:)':"'::
"Cons'olidated:
>.'":',:'.:'Pu'el'::Wt.":,;"';
"::,',:;:.:;j"':~;::(1bs'i')'~'::'j::"::-".,'A 12882B169914,07215,7013,0383,640127,600143,550232,170261,192Type2RackTotalWetWeights.Rack:'.':::;,Rack':::
,,',':No;::::.,:::
'.",:Ty'pe!':
,':Total.:::
';,":L'egs',-.
72A128882B169912,31913,7472,6593,187114,980129,353204,385229,933Type2RackTotalCombined(Rack+Baseplate+Legs+Fuel)
WetandDryWeights(inlbs.).'-:Rack:::::
".Rack'".:
- ~Type';;",
'~'otal!Dry.,:-.':.;;:,:;,,
- Un'consolIdate'd,;
";:Combin'ed'.Wts"':":
I,;::~j',::',jTotal:::Diy.,'".".",.',:,"4'::,";;::,".:,':,.:::.,;~Total':~Wet';::..!~.':;,'::::,.':Cori'solida'te'dI.:;I.".:::,;:',:!
Uric'o'n's'olida'ted'k
,Coiribiried".;its':'::::,:;::,Combiiie'd',':,Wts'.':,:,
>',.<~;-"',,',Total';:Wet';.':,.:::;,',','::;.
i~'~Coiiibined;Wts:,.:,"::I 2A2B144,710162,891249,280280,533129,958146,287219,363246,86751-1258768-01 GinnaSFPRe-racking Licensing ReportPage137 Type2RackMaximumWetandDryWeightsPerSupportLeg(inlbs.)".;RackI~
',,';::No"..".':,'?:
gg.'?.".'?
.?;,::;::Rack'..
- '.T?y?pe,:',.,
- M.'.'?i?.:::'.,Unco'ns'olid?ated:'.':,::,,':.:.:.:':Consoiida'te'd:,::;:.'..:.:.".-'.Uric'on':;At':-'.:;:on',:Oiie',:Leg',.':,;;,'..:;:','.Total':Wet'.P-:.,.-:4;;,.::
':-:,::;Corisolidate'd::.Wt.".':,'.:
- ,;:::':;:::i.:io'n':.On?e':';L'eg'-'!:.""
- ;""
- :.",
72A82B12,05910,18120,77317,53310,8309,14318,28015,429Type3RackGeneralInformation.
SSWallThickness
=0.08in.CellSize=8.50in.CellHeight=162.0in.DensityofSS304L=0.290lb/in'ack Baseplate thickness
=1.18inCellbottomholediameter=3.74in.BoratedSSthickness
=0.10in.BoratedSSOD=8.34in.BoratedSSHeight=145.7in.DensityofBoratedSS=0.290lb/in'ength ofRackSupportLeg=13.70inCenter-center dimension (pitch)=9.23inType3RackStructural Properties
!No"':
',;Rack'::,
";'::,!;;:;;:,;Size',.$
- ,;,;'T","'."
- ,:::;:::::.
g(in'.)::,.-?::.
%?'.',"..:Width'w,.-:E(jr:j:::
L'e'n'gth':N s'(in)':::';I:;::N-,'s':;{iii,);:"
~I)w'.E:(in,'.;)":
103CSx103A7x1066.292.792.3492.3446.1864.6512,07947,40232,72666,35912133E6x10+23DSxlo3BSx10+1284.866.282.192.3492.3492.34,55.4146.1812,07947,40264.65,46.1825,99855,47956.19,64.6326,00866,04051-1258768-01 GinnaSFPRe-racking Licensing ReportPage138
Type3RackTotalDryWeights".'Ra'ck",';
.',jNo;:i',.
.,:,::Rack':,':,:
- IIType'
- ,.l 5;N.,.,@bi.'::
'jTotal.,
<:I"of-":::"-"
,',L'e'gs;,:.:,.
- .::-Cells~",:.-
,",.:;:;,),':Total'.':I
',"::::-Total>Lega'n'd';;,:::,
'.-:Rack::Dry)',-.',
Baseplate",:Dry,.'.,':
,"'.'-IVfeight';".':.,"-'-:::::,.':;%'eight.",(lbs.)';,':;
'lUiiconsolidate'd".,
".Fuel)Wt'::(ebs')'~",:
',::-';;Tot'al';::Dry':,-:..":i' Con's"olidat'e'd::
- .>Fu'el'
- Wt.'.,',:,:
1012133C3A3E3D3B1212507062506211,54816,23214,54711,54814,6512,1422,9582,7712,1422,67272,500101,50089,90072,50089,900131,915184,681163,575131,915163,575Type3RackTotalWetWeights;;::Ra'ckI::
- '.
- ::No.":,'
":::Rack::;:;
- ';,'Total
':i',Ty'pe:i:,,:::;,:::,No."::,::".l
- .,":;Total':;':,:;;,':;;!~Total.:"':;:,:-:,:::i
~:,"TotaI',L'eg:and~":;
..NoIof::;:::;,:;IRack;.Wet'~:,;;.;.,'!,.':"';Has'eplate>>':,,;'"'.;;
,'.:!Cells::::,::,.'..:,'::j':,,:WeightI.,(,,:",.,:Wet,:%'eIght':',':::I".
- iI-;',:.':,';.TotaI:::%'et':::!Ij':
.~:;;,".;;:;
Total::::;Wet:,,'":>Uii'co'n'salidated::':Cons'olidated'.;,:
- '"!Pu'e1'%'t;
- (lbs'.::)':,':;::-.",i".Fuel::.','Wt!':,:,'"
1012133C83A123E123D83B11507062506210,11114,21112,73510,11112,8271,8752,5892,4251,8752,34065,33091,46181,00965,33081,009116,128162,461143,999116,128143,99951-1258768-01 GinnaSFPRe-racking Licensing ReportPage139
Type4RackStructural Properties 4A-F1x1025.98.3084.5629215,471Type4RackTotalDryWeights::;:::Rack";:,
"':<<Type'::.
- ';Total'
- :;;;:
iNo',:",of:::
- ,'
- "':L'egs
":,;;,:<<:;:<<<<',,:,.','.Total":ji"'
No-of-;:';Cells,.,:-.';:::';::;::I:i,::::;::Total:...:
<.',:'.:"':Rack:;Dry".il',:::::::,:;Weight;
':.'::;::;:::;;(lb's'),!,'..:,',',
I':,T<<otalIL'e'g>>'and:;:i::l..-'.;::,!::,
Total'Dry',a,;:,".':,;:>I.:':;:::.;.':,.;;:;:.'.Total'.Dry,.:..:.;;.:,.",'"..".:
';:Ba's'eplate':Diy,'II.
',','Uncon>>solida'ted';:;:
':.';:;:.::,Cons'olidated':;;-:";
lWeiglit:,'(1bs')
ll::,::;::;;::Fu'el.';Vt;:::;(Ibs",<<)'",'-':
;.:Fuel!
Wt",{lb's')".'A-F 101,91941814,50026,383Type4RackTotalWetWeightsR'ack.:,;.Typ"'e
'c'>>'.:':;:Total':.'.':::::::
'-.:::.:;of:::',::;::::;:::
- ,:Legs'-'.::
l:,'":,Total;-.'.::::,
:;No'.:.":.'of::.;:
- "-."'
- ,',Cells",".
- <<'.NY.',.""::-:,,'-';:',:.Total'..";:,'::.";:
- Rack':.Net':=>>
- .":::':::::-,':Weight"
",::,':'..'i:;:-"."(lbs')'.;.'.'.-:;j':;.
.';.,Total,:L:e'g
'an'd<<':..':<<;.;:.;Baseplate;'!.',:;:;.
- "%et:Weight',;;<'.:,
~j:::.:.","i:,"'.:':{lb's'<<)'.i'~,'i,,,:.,':.:"::.:;
5-";::;.;:!!To>>'t'aI':,Wet;.::::"...'"""":-'To't'al:%',et
""'"":::Uiiconsolldate'd:.'::.
':.:.,;::,:.Co'ris'olidate'd'::;:-'.;:'
Fuell:Wt'..'(1bs
)'::';.:,,"':Fu>>"el';:Wt::'>>(lbs.'-).".';
4A-F2101,68036513,06623,266Type4RackTotalCombined(Rack+Baseplate+Legs+Fuel)
WetandDryWeights(inlbs.):IRack",::;;:;
i:;Type,',
4A-F,',:;:':;:":.;";;:-':;:;,Total::;:Dr'y',.",",.':"';,;.';-',',:;,
- .',i;-'
- ;,Uncoiisolidated'j,::,;,
',',::,'-:",:.';.Co'inbirie,:W>>ts."'.i,.'-',:;
16,837:::;:':.':%Total~Dry,;'::'!
'.;:i".'.':.:;:.::.:;:;-,.:;.Co'nsolidated".',.','"i";.
i:.,'::::::~.;Coiiibined'.Wts';-".'.,':,'8,720
- ",.>Uiic'on's'olidate'd'
- l,:-,:
-.".:,Co'nlbi'n>>edIWts'::'.':::.::
15,111",'-'...:.'<<i.'-:I::.".":,
Total:,Wet'-,'.';::;:;:<<~jj,.'i,:
".~g::'::'::Co'nsolidat'edNm."'.",i";::";!:
i'.;.'.Coinbiiied':Wtsii",.
':25,311Type4RackMaximumWetandDryWeightsPerSupportLeg(inlbs.)::;;:Ty'pe,'.i';..:::::,.i-'::.;-;:.Uriconsoli'dated'";::-:;:;-::;:.
"',.Co'nsolld'ated',%t:.';oii'.;::
<):.:-.'!
j,:';Total:;:.,Wet",'::<<-::"-"::
.;,';..;;-,',Unc'o'n's'olidated:~i'.
- ,
- .Wt'.".:on",Oii'e'Leg<<':;":":,"
<<:..Conso1idat'e'd'~>>Wt:o'n>>
(><<r'.%.q.:z'<<s<<<<'pr~~g>>>><<gyp<<,:.j,>>.'
'jg,<<gij,':;:.'...<<:::,One;L'eg;,".:"::<..:,.;','p:";i 4A-F8,41914,3607,55612,65651-1258768-01 GinnaSFPRe-racking Licensing ReportPage141
~~ay 3.5.3.1.1.2 FuelStructural Properties 3.5.3.1.1.2.1 Consolidated FuelCanisterStructural Properties Theconsolidated fuelcanisterisrepresented byabeamelementintheseismicanalysis.
Boththestructural canisterandthe358fuelrodsarerepresented byasinglebeam(singleA,IandE).Sincethecanister(304SS)andthefuelcladding(Zircaloy) arefabricated ofdifferent materials, theequivalent A,zandI,~arecalculated forabeamwithEofthecanister.
OutsideLengthofFuelCanister=8.00in.CanisterThickness
=0.093in.InsideLengthofFuelCanister/Divider PlateLength=7.814in.DividerPlateWidth=0.093in.AreaofCanister=3.6681in~AverageMomentofInertiaofCanister=32.5031in4Theelasticmodulusofthecanistermaterial(304SS)=27.87x10'si.FuelRodStructural Properties FuelCladdingOuterDiameter=0.424in.(Exxon)FuelCladdingThickness
=0.03in.(Exxon)NumberofRods=358AreaofFuelCladding=13.2938in'omentum ofInertiaofCladding=0.2595in4Theelasticmodulusofthefuelrodcladding(Zircaloy) isonly12x10'si.Effective Cross-Section Properties ofConsolidated CanisterTheindividual properties ofthefuelcladdingandtheconsolidated canisterareusedtocalculate thecombinedcross-section properties asfollow.Theelasticmodulusofthecanisterisusedforthebeamrepresentation intheseismicanalysis.
Effective AreaEffective MomentofInertiaAg(Ef/E,)Ar+A,=9.3920inI,A=(Er/E,)ir
+I,=32.6148inWhere:E<=FuelCladdingElasticModulus,12x10'siA,=FuelCladdingCrossSectional Area=13.2938in'<=FuelCladdingMomentofInertia=0.2595in',=CanisterElasticModulus,27.87x10'siA,=CanisterCrossSectional Area=3.6681in~I,=CanisterMomentofInertia=32.5031in451-1258768-01 GinnaSFPRe-racking Licensing ReportPage142
~I 3.5.3.1.1.2.2 FuelAssemblyStructural Properties Thefollowing structural properties wereusedintherackanalysistorepresent thefuelassembly.
Theproperties envelopeExxon'sandWestinghouse's (standard andoptimized) fuelassemblies.
Eachfuelassemblyrepresents 179fuelrods,16guidetubes,and1instrument tube.Theproperties closelyresemblethepreviousanalysis(Reference 3.25,section5.10).FuelAssembly's CrossSectional Area=7.1419in'uelAssembly's BeamShearFactorUsedinANSYS=1.89FuelAssembly's AreaMomentofInertia=2.17in4TheElasticModulusoftheFuelAssembly(Zircaloy)
=12.0x10'si.FuelAssembly's Width=7.763inFuelAssemblyWetWeight=1306.6lbs(perassembly) 3.5.3.1.1.3 Interface Stiffness BetweenFuelandRackThecalculations wereperformed togeneratetheinterface stiffness betweenthefuelandrackcells.Theinterface ofinterestwastheimpactoftheupperendfittingwiththestainless steeltubeoftherack.Thisstiffness wascalculated usingaplatefiniteelementmodelofasinglecellandcomputerprogramANSYS5.2.Apressureloadwasappliedintheareaofcontactbetweentheupperendfittingandthecellwallwhileconstraints preventbeambendingofthecell.Thestiffness desiredwasonlythelocaleffectbecausethebeamsinthemodelalreadyaccountforbeamdeflection.
Thestiffness wasthendetermined bydividingthetotalloadappliedbytheaveragedeflection atthetopedgeofthecellwall.Contactareabetweenupperendfittingandcellwall:Type1(Existing Racks)CellHeight=159in.OutsideTubeWidth=8.43in.TubeWallThickness
=0.090in.Types2and3(NewATEARacks):CellHeight:Type2=158.5in.Type3=162in.InsideTubeWidth:Type2=8.1417in.Type3=8.3386in.TubeWallThickness
=0.07874in.FuelAssemblyHeightsExxon-160.13in.Westinghouse OFA-159.710in.UpperEndFittingHeightsExxon-6.865in.Westinghouse OFA-3.480in.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage143 4
Elevation ofbeginning ofcontactbetweenupperendfittingandcellwall:Exxon:h=153.265in.Westinghouse OFA:h=156.230in.Themodelusedwasconstructed ofshellelementswhichwereplacedatthemidplaneofthetubewalls.Inthetype1racks,therewasatubeforeachfuelassembly.
Therefore, theloadwasappliedtoonlyonesideofthecell.Forthetype2and3racks,therewasonetubeforeverytwofuelassemblies.
Therefore, theloadwasappliedinthesamedirection onoppositesidesofthetube.Thedeflections weregenerated fromthefiniteelementmodel.Thestiffness wasthendetermined bydividingthetotalloadappliedbytheaveragedeflection atthetopedgeofthecellwall,whichissummarized below:FuelCellImpactStiffness summary:Type1(Existing U.S.Tool&DieRacks):4449lb/in.Type2andType4(NewATEARacks):7036lb/in.Type3(NewATEARacks):6595lb/in.3.5.3.1.1.4 DampingStructural dampingwasspecified intheseismicanalysis.
ThecomputerprogramANSYSprovidedfivechoices(orfiveforms)toinputdampingvalues.AmongthemRayleighDamping(alsocalledasalphaandbetadamping)methodwasusedintheGinnaseismicanalysis, whereTheDampingMatrix.[C]=a[M]+P[iqThevaluesofaandParenotgenerally knowndirectly, butcanbecalculated frommodaldampingratios,$i.Where$iistheratioofactualdampingtocriticaldampingforaparticular modeofvibration, i.Ifoi;isthenaturalcircularfrequency ofmodei,aandPsatisfytherelation:
aP,+I26)2Isince6)=27rfIIa+ofP4mfI51-1258768-01 GinnaSFPRe-racking Licensing ReportPage144 OnlyonesetofaandI3areinputinananalysis, sooneneedstoselectthedominantfrequency activeinthatloadstep,tocalculate uandI3.Inthestoragerackseismicanalysis, thefuelassemblyimpactwasdominant.
Forthatreason,thefuelassembly&equencies wereusedinthecalculations ofuandPvalues.Also,itwasconsidered thatthefirstthreemodesofthefuelassemblywereimportant intheseismicanalysis.
ThevaluesfornandPweredeveloped forfirstthreemodesoffuelassemblyfrequencies.
Thedamping(gi)valuesweretaken&omU.S.NRCRegulatory Guide1.61(Reference 3.11),forweldedsteelstructure.
TheuandPvaluesweredeveloped forbothOBEandSSEloadingsusingfuelfrequencies andRegulatory guidedamping.FuelAssembly:
Firstmodefrequency isf;=3Hz(Page19,U.S.ToolEcDieSeismicReport,Reference 3.25)j'=cgEI8'"Forhinged-free beam:(Mark'sHandbook7thEditionPage5-101,Reference 3.33)WhereCn=2.45forfirstmodehinged-free beam,andCn=16.6forthirdmodehingedfreebeam.Usingthisthethirdmodefrequency is16.6f~=-'32.45=20.3hzUsingdampingvaluesfromU.S.NRCRegulatory Guide1.61forweldedsteelstructure:
(pgp=2%01'02=4%ol'.04Mode+gg~erFrequency gdampingQJK320.30.020.020.040.0451-1258768-01 GinnaSFPRe-racking Licensing ReportPage145 J
ForOBE:Mode1@Mode3a+xx20.3xP0.02=1a+mr3rP4zr30.02=147tr20.3Solving:a=0.6568andP=2.7323x10~ForSSE:Similiarly solvingforSSE:a=1.3136andP=5.4647x10~Summary:aandPvaluesfordamping:OBESSEa=0.6568a=1.3136P=2.7323x10~P=5.4647x10"3.5.3.1.1.5 Perforated PlatesThebottomplatesforthespentfuelstorageracksareplateswithflowholes.Theequivalent homogeneous platewasidealized forplateswithcircularholesarrangedinsquarepattern.Theplatethickness waskeptthesameintheanalysis.
TheYoung'sModulus(E')andPoisson's Ratio(v')wasmodifiedtoreflectsquarepatternperforation intheplate.ASMESectionIII,AppendixA,ArticleA-8000addresses theperforated plate.However,theArticleA-8000onlyaddresses theholesinarrayofequilateral triangle.
TheWeldingResearchCouncilBulletin¹151,June1970(Reference 3.28)titled,"FurtherTheoretical Treatment ofPerforated PlateswithSquarePenetration Pattern"wasused.Thisbulletinaddressed theloadinginpitchanddiagonaldirection.
Fortheseismicanalyses, thepitchdirection loadingwasmoreappropriate andwasused.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage146 Nomenclature:
2h2RpType2andType4(ATEA)Racks-Perforated Plateh/RLigamentefficiency EYoung'sModulusofmaterialE'ffective Young'sModulusofperforated platewiththesamethickness v'ffective Poisson's ratiooferforated platewiththesamethickness Thickness ofplatet=1.18inFlowholesize3.74inRectangular Pitch2R=8.43inWidthofligament2h=Pitch-Holediameter=8.43-3.74=4.69inLigamentef5ciency h/R=4.69/8.43=0.56FromFigure3ofWRCB8151forloadinginpitchdirection:
0.68Eandv'02&51-1258768-01 GinnaSFPRe-racking Licensing ReportPage147 Type3(ATRA)Rack-Perforated PlateThickness ofplateFlowholesizeRectangular Pitcht=1.18in3.74in2R=9.23inWidthofligament2h=Pitch-Holediameter=9.23-3.74=5.49inLigamentefficiency h/R=5.49/9.23
=0.59FromFigure3ofWRCB¹151forloadinginpitchdirection:
E'.72Eandv'0.285SummaryofPerforated PlatesForperforated plates,usingsamethickness asdrawing,theequivalent E'oung'sModulusandequivalent v'oisson's Ratioforhomogeneous idealization isasfollows.Thesevalueswereusedinthestressanalysisoftheperforated plates.ATEAType2RackATEAType3RackATEAType4RackPlateThickness in1.181.181.18E'/E0.680.720.68V0.280.2850.2851-1258768-01 GinnaSFPRe-racking Licensing ReportPage14S 4-1Iw5'
3.5.3.1.2 RackTubeConnecting TabsandTubeRetainerPlateWeldsThetabplatesareweldedtorackcells(tubes)inordertomaintainthestructural integrity oftherack.Theprimaryfunctionoftabsistoprovideatransferoftheshearflowbetweenthetubes.InATEAracks,mutuallyperpendicular pairsoftabsareweldedtoadjacentinteriorstainless tubes.Forbothtype2andtype3racks,thereare4pairsofuniformly spacedtabspereachinteriortubeedge.Tabstressesarederivedfromthefollowing threestresscomponents:
only.Thepoolruns.lopKookPionea)Interiorrackbeamloadsresulting fromseismicfullpoolrackanalyses.
Baseplateshearforcecomponents areassumedtoactasuniformly distributed loadsalongrackheight,anddevelopshearstressesactingupontabs.Resultant interiorrackbendingmomentsinducenormalstressesinracktubes,butnotintabswhichareexposedtoshearrackforcesandmomentsareprovidedfromthefullIIzb)Rack-to-fuel beam(regularfuelassemblyorconsolidated fuelcanister) impactloads.Depending onanimpactdirection relativetotaborientation, twoimpactmodelsareconsidered.
Section3.5.3.1.2.2 describes theracktofuelbeamimpactmodelsinmoredetail.Obtainedtabloadsaresuperimposed tothecondition "a)"shearstresses.
Notethattheinternalrackforceandmomentresultants obtainedfromthefullpoolanalysesarereflected inthe"a"tabshearstresscomponents calculation.
Impactloadsalsoproducenormal(axial)stressesintabs,aswellasbendingmomentinbothtabsandtabwelds.Resvttont SiosePeyoteSeisin@Looos~IIIIc)Thermally inducedstressesdueto"Normal-To"and"Abnormal
-Ta"thermalconditions.
Section3.5.3.1.10 coversthermalstresscalculation.
Depending ontheloadcombinations, thermalstressesforthetwoconditions aresuperimposed tothecombined"a"and"b"stresses.
3.5.3.1.2.1 Tab/WeldStressesduetoSeismicLoadsThissectionevaluates themaximumshearstressesdeveloped inracktubesinterconnecting tabs,developed asaresultofseismicrackshearforcesFxandFy.Assumingclampedsimplebeamasanequivalent ofracktubes,seismicshearforceresultants FxandFyareconsidered uniformly distributed acrosstheracktubeheight.Atanyracktubecross-section paralleltothebaseplate,parabolic shearstressdistribution isdeveloped.
Maximumshearstressesoccurnearbythebaseplate,i.e.inthelowesttabgroup,andalsoalongtheracktubecrosssectionneutralaxes:V=-QI'(Zt)51-1258768-01 GinnaSFPRe-racking Licensing ReportPage150 A)*4~<<
where:VIztRackshearloadresultant, FxorFy.Momentofinertiaforaracktubescrosssectionaboutitsprincipal axesperpendicular totheshearforce(V)direction.
Firstmomentofinertiaattheneutralaxislocationoftheracktubescrosssection.Cumulative tabthickness, foralltubesalongtheneutralaxistotheshearforcedirection.
ExtremeOBEloadcaseisnumber8,withmaximumshearloadsdeveloped inrack3E(¹11):Fx=51,930lbsandFy=20,820lbs;(section3.5.3.1.8)
ExtremeSSEloadcaseisnumber3,withmaximumshearloadsdeveloped inrack2B(¹8):Fx=98,880lbsandFy=60,740lbs;(section3.5.3.1.8)
Crosssectionproperties forracks3E(¹11)and2B(¹8)arelistedinthetablebelow:.'ATEA'~Rack~;.j,.:~i':3E;:(¹II):;.:.::!5,"-"28;(¹8)k',""':
t[in]Ix[in4]Iy[in'Qx[in~]Qy[in'(zt)(zt)0.078731,33577,0731,073607.8St9t0.059175,257110,2011,506.51,222.78t10tMaximumTabuseMetal)ShearStressesforOBECaseSeismicstressenveloping factorforOBEcasesisf=1.12.Theshearstressesare:=2,058p.s.i.I'zg)77,073x(5x0.0787) vv>>220,820607.8639g.s.i.7(zt:)31,335x(9x0.0787)
Combinedtabshearstressactinginvertical-Z direction is'K='K+'r=2g697g~ski+51-1258768-01 GinnaSFPRe-racking Licensing ReportPage151 MaximumTabPaseMetal)ShearStressesforSSECaseSeismicstressenveloping factorforSSEcasesisf=1.20Theshearstressesare:z>12098I8801<506~53431I(Zt)110/201 (80.0591)fy12060,7401,222~72,004p.s.i.I(Z5')75,257(100.0591)Combinedtabshearstressactinginvertical-Z direction is=5,435p.s.i.MaximumWeldStressesTabsareweldedtothetubesviafilletwelds,withthefollowing effective weldthroats:Type2tabs:a=0.8mm=0.0315"Type3tabs:a=1.2mm=0.0472"Weldstressescanbeobtainedbylinearlyscalingtab~shearstress,actinginvertical-Z direction, duetocombinedinfluence ofFxandFyshearforces:Rack¹8(type2):(~)=(~)~t/a=(x),1.5/0.8=1.875(~~~Rack¹11(type3):(~)=(~~~t/a=(x)2.0/1.2
=1.667(~)~Resultsaresummarized inthetablebelow-;."':.'-::Sh'ear','St'r'esse's.:,-
(<)~Ipsil(c~[psi]:;:-';::;OBK.";(Rack',¹ll):.;:::-,:::I, 2,6975,057!,-:SSE'::,(Rack':¹8);;:
5,4359,058~Estimated stressesareconservative, sincemaximumofthetwocomponent shearforcesFxandFymaynotoccuratthesametimeinstant.3.5.3.1.2.2 Tab/WeldStressesduetoFuel-to-Tube ImpactThissectiondiscusses atabstrengthwhenafuelassemblyorconsolidated canisterimpactsaracktube.Theimpactloadisfurthertransmitted throughthesetoftabpairstotheadjacenttubes.Maximumfueltorackbeamscumulative impactloadsfornewATEAracksarelistedinSection3.5.3.1.8:
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage152 I
VOBE:811lbsx1.12(stressenveloping factor)=908lbsSSE:1,331lbsx1.20(stressenveloping factor)=1,597IbsConsidering tabandtab-to-tube weldsstrength, twopossibleimpactscenarios aredistinguished:
a)Longitudinal tabimpactb)LateraltabimpactA)Longitudinal rabimpactrefertoacasewheretheimpactforceistransmitted alongthetab,sothattheforcedirection isparalleltothetabplane.Eachstainless steeltubecornerisconnected toitsneighboring SStubeswithasetoftabpairs,mutuallyperpendicular toeachother.Thisdesignenablestransmission offueltoracktubesimpactsineitherXorYdirections.
Thisanalysisalsoconservatively assumesthatseriesoftabsperpendicular totheassumedimpactdirection donotcontribute asstressbearingelements.
Actualstressesinlongitudinal tabsaretherefore lowerthanpredicted.
Figure3.5-38depictstopviewofapairofSStubesconnected withatabsetparalleltothedirection oftheimpacting force,assumedheretoacthorizontally.
Figure3.5-38Longitudinal TabImpactModelType2Tabype3o.bGapwidth:Type2:d=0.0717"Type3:d=0.657"Afiniteelementmodeloftheracktubewithintegraltabsisconstructed toobtainimpactloaddistribution acrossalltubetabs.Impactresultants areobtainedforalltubemodeltabs,andarebasedon1,000lbstotalimpactforce.Maximumresultant impactreactions actinguponasingletabfortype2and3racktubesarethenappliedtoasingletabfiniteelementmodelwithneighboring SStubes,asshowninFig.3.5-38.
Tabmodelconsistsof3shellfiniteelements, whilehalfofaneachSStubesideisdiscretized intosixshellelements.
Tabtotubeweldsaremodeledsothatweldedtabedgessharecommonedgesofthecorresponding SStubefiniteelements.
Obtainedstressreactions usedfortab(basemetal)andweldstrengthqualification arelistedinthetablebelow:51-1258768-01 GinnaSFPRe-racking Licensing ReportPage153 Fx[Ibs]Fy[lbs]Fz[Ibs]45.39.5215.3110.358.4Mx[in-lbs]negligible negligible My[in-lbs]Mz[in-lbs]21.621.3813641.32Localtabcoordinate systemwheretheforceandmomentcomponents aredefinedisshowninthesketchbelow:fzIIIIyl~IIIOveralltablength:type2:L=1.3487"type3:L=2.329"Tabheight:h=7.0866"Tabthickness:
type2:t=0.0591"type3:t=0.0787"Tabweldthroat:type2:t=0.0315"type3:t=0.0472"Thefollowing stresscomponents areconsidered:
a)membranestressa-tabcrosssectionperpendicular tox-axis.b)averageshearx=V/A;whereV=((F)~+(FQ~)'",
andA=htc)normalstresso>>-dueM:GI,yMyh/2IywhereI=h't/12d)normalstressob,-fromsingletabfiniteelementmodel51-1258768-01 GinnaSFPRe-racking Licensing ReportPage154
-Totalnormalstress:a=om+sly+Gpz-Maximumprincipal stress:o,=1/2[a+(o+4m')'"]a)averageshear~=V/A;whereV=((F)+(F)'+(Fg')'",
andA=hab)normalstressa>>-dueM:a,yMyh/21ywhereI=h'a/12c)normalstress0-fromsingletabfiniteelementmodel,scaledforthethroatthickness
-Totalnormalstress:a=q,+a-Maximumprincipal stress:a,=1/2[a+(o+4~)'"]Resultsfortype2and3tabsandweldsaretabulated below:'Stress':,Com'ponents::.':,';:;,'Ba'se":;Metal::,(Tab):.";.;.':.'",~
- "
- ,
- '::::,:T'y'pe',:2~,':m,:..,'::
,XI,-::-,'..Yy'pe)3:.;:~::.
"I.',~Type:,:2
";::,::,;::,:::;;Type::3;,',:,
Membrane-o.Avg.shear
-~Normal-abNormal-aNormal-aPrincipal
-a,726.3110.525.9290136533656444.7224206.5496156125621N/A1377.7824685.547685138N/A745344.2826886138677B)Lateraltabimpactrelatestotabstrengthinasituation wherefuelassemblyorconsolidated canisterimpactsaboratedstainless steel(BSS)tubeinwhichcasetheimpactloadcanbefurthertransmitted toatabinterconnecting adjacentstainless steel(SS)tubes.TypicallayoutisshowninFig.3.5-39, incaseofthetype2racktabs.Thisconsideration isnotfullyapplicable tothetype3racktabs,duetotheexistence ofbeltconnectors thatbridgeBSStoadjacentSScelltubesforloadtransmission.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage155 Figure3.5-39LateralTabImpactModelType2RackTabImpactModelBSSNODE20~Impactdirection CobCharacteristic dimensions:
a=0.485inb=0.096inc=0.800inTabthickness t=0.0591" (1.5mm)TablengthI=7.087"(180mm)F'filetweldThetabismodeledasabeamclampedatbothends(weldlocations, nodes1and4)andsimplysupported atnode2,thepointwheresurfacecontactbetweenthetabandtheSStubewallends.BSStubeisassumedtoimpactthetabatthepointmarkedasnode3.Forthistwicestatically indeterminate beam,athreebeamsegmentfiniteelementmodelwasmade(ANSYS)withaverticalunitloadP=1lbs,actingintheassumedimpactdirection.
Thefollowing resultswereobtained:
ShearForce[Ibs](*)0.145*P-1.077*PP-0.077*PBendingMoment[in-lbs]0.0248*P0.0496*P0.039*P0.0226*P(*)positiveshearforcedirection isassumedtobeindirection ofappliedP,ie.downward.
Thelargestbendingmomentwillbedeveloped atnode2,ifPreacheslimitvalueP,causingyieldingofthetabcrosssection.Thecorresponding bendingmomentlimitis:bt2H=a-lY=143.3in-lbs51-1258768-01 GinnaSFPRe-racking Licensing ReportPage156 whereaisthetabmaterialyieldstrength(21.3ksiforSS304L,takenat150'F).Hence,thelimitloadisthenP=M/0.0496=2,888lbs.Theaverageshearatthatcrosssectioncanbeestimated asE=(0.145+1.077)P/
(bt)=8,343psi<9,420psi(ServiceLevelAorBStressAcceptance Criteriaforpureshear).Themaximumcumulative impactloadsbetweenfuelandrackbeam,forthenew'TEAracksareforbothOBEandSSEconditions lessthanlimitloadestimated valueP..Hence, itisconcluded thatthetype2racktabs>villnotundergopermanent deformation ifimpactedbyanadjacentloadedBSStube.Thisconsideration excludesthefactthatonlypartoftheaboveexpectedimpactloadswouldbetransmitted toasingletab,aswellasthattheotherBSStubecorneroredgewouldimpactanothertabgroupweldedtotheotherSStubecorner.Themaximumcombinedstressdeveloped infilletweldatnode1inFig.3.5-39 isestimated ass=~o'+~'here oisthebendingmomentinducedstressinweld,andxistheverticalshearatthesamelocation.
Hence,whereM,=0.0248*(0.5*P;,),
andP;,=thetotalBSStubetotabimpactload(listedabove)I=(ba)/12,thetabcrosssectionmomentofinertia(a=0.0315" or0.8mmtheweldthroat)V,=0.145(0.5*P;)A,=ba,theeffective weldsheararea(reducedtoitsthroat)Resultsaretabulated below:.OBESSEP;,=908lbsP;=1597lbscr=9.65ksia=16.9ksiC=0.295ksiC=0.52ksiS=9.654ksiS=16.91ksiTheallowable filletweldmetalstressesare21ksiforServiceLevelA(OBE),and31.5ksiforServiceLevelD(SSE).Therefore, tabweldscanwithstand estimated impactforceswithmarginofsafetygreaterthan86%(forbothSSEandOBEconditions).
Summaryofthemechanically inducedtabstresses51-1258768-01 GinnaSFPRe-racking Licensing ReportPage157 0
Superimposed loadingconditions are:1)Seismically inducedtab/weldstresses(Section3.5.3.1.2.1).
2a)Stressesduetothelongitudinal impact(Section3.5.3.1.2.2.A).
Stressesareobtainedfor1,000lbstotalimpactforce,andscalingfactorshavetobeappliedforOBE(0.908)andSSE(1.6)conditions, 2b)Stressesduetothelateralimpact(Section3.5.3.1.2.2.B).
Resultsaresummarized inthetablebelow:Table3.5-14Mechanical Tab/WeldStresses:,",Ty'pe,';-..'::.",,"".,"'Str'es's"::,Category':>
- ,OBE',
- Stress",(psi)P>:;.',:.,"'::.:';~-:.',"':-'~::."
- (I)'
- :":,+';:::,(m'a'x'.:,of.,'.2a::.or,'::2b);'::;;:;:,,::,';:i::::j(f)':;:+,:,:
(max,::.,'of,;::2aor,,:,:2b)':",.:'.:-::;:",:.i,:
BaseMetal(Tab)WeldPmPm+PbAvg.ShearAvg.ShearPm+Pb726.3(2a)*0.908
=659.55621(2a)*0.908=5104 or5759(2b)2697(1)+1324(2b)or224(2a)*0.908 5057(1)+1377.7(2a)*0.908
=1251or295(2b)8677(2a)*0.908
=7879or9659(2b)726.3(2a)*1.6=1162 5621(2a)*1.6=8994 or10148(2b) 5435(1)+2333(2b)or224(2a)*1.6 9058(1)+1377.7(2a)*1.6
=2204or520(2b)8677(2a)*1.6
=13883or9659(2b)3.5.3.1.2.3 ThermalStressesinTabs/Welds Maximumthermally inducedstressesintabsandtabweldsaretakenfromsection3.5.3.1.10.
Anassumption ismadethatmaximum'thermal stressesoccurring inracktubesconservatively enveloptab/welds thermalstresses.
Therackthermalfiniteelementmodel(section3.5.3.1.10) assumesrigidconnections betweentheracktubes.Inreality,thetubesareconnected viatabsandtab-to-tube linewelds.Inreturn,thewholerackstructure ismoreflexiblethantheassumedrackfiniteelementmodel.Hence,theobtainedstressesfromthemodelenveloprealthermalstressesintabsandtab-to-tubes welds.Table3.5-15summarizes thermalstressesforNormal(To)andAbnormal(Ta)thermalconditions.
Table3.5-15Tabs/Welds ThermallInducedStressesStr'ess.
[ysi]-:,::::;::::.',.',:;:
...".::::;::::;:::".:;.:>W'-",',:.'.
membrane3,8379,654,,To',:-.,"',coii'd'tioii;~~.';",jTa~-.-',:,~condition",
membrane+bending9,8569,80351-1258768-01 GinnaSFPRe-racking Licensing ReportPage158
3.5.3.1.2.4 TotalTab/WeldStressesStresscomponents fromsummarytableinSection3.5.3.1.2.1, Tables3.5-14and3.5-15aresuperimposed inordertoarrivetomaximumestimated stressesintabsandtabwelds..Summarized valuesarereportedinSection3.5.3.3,Table3.5-144.Itistherefore concluded thattabsandtabweldshasadequatemarginagainstASMEcodeallowables forlevelsA,BandD.3.5.3.1.2.5 BoratedStainless SteelRetainerPlatesWeldStressesType2and3RacksBoratedStainless Steelcellsareheldinplaceby4mmthickplates.Thefollowing calculations qualifytheretainerplatesandweldsformaximumimpactloadings(shear)ontherackcell.Thefollowing figureshowstheretainerplatelocations anddimensions.
40mmTopRetainerPlate10mm(typ4places)7fnSS.TubeBSSPlpte10m(typ3placeI3.12In~BottomRetainerPlate51-1258768-01 GinnaSFPRe-racking Licensing ReportPage159 Type2and3RetainerPlateDimensions:
~esHeight(vertical)
Length(horizontal)
PlateThickness e'nerPlate7.87in(200mm)5.71in(145mm)0.16in(4mm)1.18in(30mm)5.12in(130mm)0.16in(4mm)Theretaining platesarethesamesizeforbothracktypes2and3.Theminimumweldthroatequals0.0313inches(0.8mm)forbothtopandbottomplates.Thetotalweldlengthrequiredforthetopretainerplateequals3.15inches(80mm),Aw=0.10in~Thetotalweldlengthforthebottomretainerplateequals1.18inches(30mm),Aw=0.04in~.TheBSS'sdeadweight equals164.9lbs.Eachlowerretainerplatereceives165/4or41.25lbs.Themaximumstressesresultfromastuckfuelassemblyaccidentcondition wherethetotalupliftforceactingonallfoursidesoftheBSStubeequals2000lbs.Eachtopretainerplatereceives1/4oftheupliftor500lbs.Thestuckfuelassemblycondition affectstheupperretainerplateandoccursonlyintheServiceLevelBstresses.
ForServiceLevelDstresses, a"g"value(acceleration) wasdetermined forSSE.Themaximumrackweightisracknumber8(2B)equaling246,867lbspersection3.5.3.1.1.1.
ThemaximumSSEplusdeadweight forrack8equals322,400(persection3.5.3.1.5 forLoadcase3).Theratioofthehighestdeadweight plusSSEovertherackdeadweight gaveanacceleration valueof1.31g(includes deadweight).
Usingthetimehistoryfactorof1.2givesa"g"valueof1.57.Therefore, theSSEloadingoftheBSScell(perplate)equals41.25*1.57
=64.8lbs.IObtainedstressesandcorresponding allowables aresummarized below:aderveeeServiceLevelAServiceLevelBServiceLevelDBa~el~e1,031psi5,000psi1,620psi0.4*Sy=9,260psi0.532~Sy=11,725psi0.42*Su=28,120psiRetainerPlatesweldsareshownqualified.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage160 4
3.5.3.1.2.6 RackTubeBucklingStrengthandTabWeldSpacingThissectionevaluates thestrengthoftheRochester GasEcElectricGINNAspentfuelATEAracktubeagainstbucklingrequirements.
Thissectiondemonstrates thecompliance ofStandardReviewPlan,Section3.8.4,AppendixD,andASMESectionIII,Subsection NF.Theresultsareapplicable toATEAtype2,3,and4racks.Compressive stressesinracktubesareevaluated atthelower,baseplatelevel,asaresultofcombinedactionofbendingmomentsaboutprincipal axesMandMandverticalinertialloadF,(a,=F,/A, A-material crosssectionforalltubes),allduetoseismicactivity.
Totalstressthusobtainedisscaledwiththetimehistoryenveloping factorf,equalto1.20forSSEor1.12forOBEconditions (section3.5.2.6),
as2~2XzjlXYSquarerootofsumofsquaresofeachpeakcompressive loadcomponent istakensincegenerally theydonotoccuratthesametimeinstant.Asdepictedinthesketchshownbelow,thetotalcompressive tubestressisevaluated forthefarthestedgeofthecornertubeforeachrack(distances xandy,measuredwithrespecttoshownprincipal coordinate system).Thisensuresconservatism ofcalculated stresses.
Crosssectionproperties (tuberacks)forallracksaresummarized intheTable3.5-16.CornerTubeXiXctIIIIIArbltroryTubeRock'sBosePlote51-1258768-01 GinnaSFPRe-racking Licensing ReportPage161 Table3.5-16RackCross-section Properties forTubesRackXprYprIx-pr¹[in][in][in"4]Iy-prAtXctYct[in"4][in"2][in][in]7891011121346.446.446.246.146.146.242.733.737.923.132.335.523.129.453,89375,25716,30841,40731,33516,30833,48698,523110,20159,24081,05777,07359,24069,215126.2141.176.2104.194.776.293.546.3746.3746.1546.1546.1546.1549.5533.7237.9423.0832'135.4923.0835.19Note:XprYprIx-prIy-prAtXctYctX-location ofY(NS)principal axis*Y-location ofX(EW)principal axis*Principal momentofinertia(tubes)aboutXaxisPrincipal momentofinertia(tubes)aboutYaxisTotalcrosssectionarea(alltubes)Max.corner tubeedgetobaseplatecenterdistanceinXMax.corner tubeedgetobaseplatecenterdistanceinY(*)principal axesareobtainedforensembleofalltubesinparticular rackbaseplateMomentsofinertiaforalltubesingivenrackarecalculated viawheren,isthetotalnumberoftubesforparticular rackandI~,"andI>'reprincipal tubemomentsofinertia,A,-materialtubecrosssectionandxy,-tubecentroidlocationwithrespecttotheprincipal coordinate system(asshowninthesketchabove).Obtainedstressesfortypes2and3ATEAracksarelistedinTable3.5-17forallloadcases.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage162 Table3.5-17Compressive RackCornerTubeStressesfpsi]rack¹7101213LoadCase¹14,28623,67135,67544,14054,29765,48173,4398*2,7559*2,18810*2,487112,78912*4884,5374,0505,6834,4774,6005,6743,6892,9662,2942,4146502,1084,1374,1606,9794,0764,1305,6193,8514,1133,0583,1296,1752,9864,1983,7245,7934,0714,3185,2093,4822,7672,4312,3088256424,9974,4366,3934,8645,0306,1434,3104,5432,9292,8854,4284,0293,965-3,9146,4613,9474,0606,2383,7394,4462,8382,8723,8482,9254,9414,6636,9645,217S,3236,5024,6094,2142,8052,7304,6533,653(*)OBEloadcases.Highestcompressive stressesdeveloped forservicelevelsAandB(OBEcondition) arefromloadcase¹8forrack¹11,whereopgp4,543psi.IncaseofservicelevelD(SSEcondition),
theworststressesarefromloadcase¹3forrack¹9,where~E=6,979psi.PerReference 3.19(ASMESectionIII,subsection NF3322(c)(2)(eq.6a,foraustenitic stainless steel),theallowable stressincompression forstainless steelgrosssectioncolumnmember(forkLlr=11.28(types 2dc4),Il.02(type3))<120iskL/rF=S0.47ez'4410.29ksi(type2and4)12.31ksi(type3)where:S=k=L23.15ksiT=150'FforSStubematerial(ASMESectionIII,AppendixI)1.0,compressive bucklingcoefficient (ASMESectionIII,subsection NF3322.2(b)(1)),forbracedframes37.9[in],interconnecting tabweldsspacingfortube'speripheral edges(type3rack)3.36[in],tubecrosssectionradiusofgyration(type2rack),3.44[in],tubecrosssectionradiusofgyration(type3rack)51-1258768-01 GinnaSFPRe-racking Licensing ReportPage163
Thetuberadiusofgyrationisobtainedfrom:A3.36in,forracktubetypes2and43.44in,fortype3racktubewhereI=(2/3)h't=0.667x8.22'x0.0787=29.16 in',isthetype2tubecrosssectionmomentofinertia,anditsareaisA=4ht=2.59in.Similarly forthetype3rack,I=31.29in',andA=2.65in.Grosstubecrosssectionbucklingisnotcontrolling, sincebothaortaandossaarelowerthantheallowable F,.Localelasticbucklingstressisevaluated fromReference 3.42,andinthecaseoftype2and3racktubes:9.24ksi(types2&4)12(1~)AS.S2ksi(typc3) where:v,=0.3,Poison'sratioforSSsteelO150'Ft=0.0787[in],tubewallthickness h=8.22[in],tubesidewidth(medianline)(types2&4rack)8.417[in],tubesidewidth(medianline)(type3rack)k=4Again,bothao~HandassHforracktypes2,3and4arelowerthanthecorresponding criticalstresslimita.Consequently, bucklingisnotaconcernforRochester Gas&ElectricGINNAUnit1SpentFuelracks,forgivenlevelofseismicconditions, andmaximumtabweldsperipheral tubespacingisadequate.
3.5.3.1.2.7 RackTubeMaximumStressEvaluation Inthissection,maximumracktubestressesareevaluated andcomparedwithASMEcodeallowable stressesforServiceLevelsA,BandD.Inadditiontoaxial(compressive) tubestresses, shearstressesareactinguponbottomtubeends.Itwillbeshownthatshearstressescontribution isonlyafractionoftotaltubestress.Therefore itissuQicient toconsidershearloadsforSSEcondition (loadcase83)actinguponrack3C(89),wherethehighestcornertubeaxialstressoccurs.Theobtainedshearstressesconservatively envelopeOBEinducedshearstresses.
a)ShearstressesduetorackbaseplateseismicloadsFandF:(F+x(F)=1240pst51-1258768-01 GinnaSFPRe-racking Licensing ReportPage164 wherefTH=1.20,timehistoryenveloping factorforSSEcondition x(Fg,x(F)
-averageshearstressesactingatthebaseplatelevel:Fx(F)n0.5A981.9psiFx(F)n,0.5A321.5psiwhereF=65,050lbandF=21,300lb(loadcase¹3,rack¹9,section3.5.3.1.8.1)
A,=2.65in',thetube(type3)crosssectionarea(section3.5.3.1.2.6).
Notethatareduction factorof0.5isusedsinceeachpairofneighboring tubessharesacommonSSwall.n,=Sx10=50,totalnumberoftubesforrack¹9(3C)b)ShearstressesduetoracktorsionM,:184.6psiwhereM,=221,000in-lb(loadcase¹3,rack¹9,section3.5.3.1.8.1) r=52.6in,therackcornertocenterdistanceforrack¹9J=75,548in',torsional constantforrack¹9(=I+I,Table3.5-16)Generally torsionaddslittletotheoverallmaximumtubestress.Itistherefore conservatively takenxT=250psi.Combinedshearstressisevaluated asasquarerootofsumofsquaresoftheshearcomponents:
22r-rF+rT1,265psi7,202psi/-223psiPrincipal tube(type3rack)stressesarenowobtained:
a,~2=-[a+a,+4x]-12+21/22z-wherea,=assE=6,979psi,maximumaxialtube(type3)stress(Table3.5-17).51-1258768-01 GinnaSFPRe-racking Licensing ReportPage165
Table3.5-18(Cont'd)D+L+E+Ta(LevelB)PrimaryMembranePrimaryMembrane+BendingRangeofPrimary+Secondary AveragePrimaryShearD+L+E'+Ta(LevelD)PrimaryMembranePrimaryMembrane+BendingRangeofPrimary+Secondary AveragePrimaryShear4,5434,87214,6751,2656,9797,20217,0051,26520,88131,32244,0809,42026,44839,67244,08028,12336054220064427945015921233.5.3.1.3 BottomofRackTubetoBasePlateWeldsThissectiondemonstrates compliance ofRochester GaskElectricGINNAspentfuelstoragerackswithallowable baseplateweldsstresslimitsforservicelevelsBandD,perASMESectionIII,Subsection NFforClass3component supports.
BasePlateWeldsLayoutSquareracktubesareweldedtothebaseplateviaapairof2mmfilletweldsperdesignated racktubesides.Totalweldlengthpertubesidevariesfromminimum3.150in(2x40mm)tomaximum6.299in(2x80mm).Weldlengthsareoptimized sothatadequatedesignfactorsareobtainedforallnewATEAracksandall12loadcases(bothOBE(levelB)andSSE(levelD)conditions).
Additional requirements specified actualweldlengthsin10mmincrements.
Weldthroatistakentobe0.047in(1.2mm).Adoptedweldlengthsare:WeldType1L[mm]405060708051-1258768-01 GinnaSFPRe-racking Licensing ReportPage167
~~
Depending ontheallowable stresslimitslowerdesignfactorscanbedeveloped eitherinweldsorinthebasemetal(racktubematerial).
Criticalcrosssectionforweldsisassumedtobethethroatarea(throatwidthtimesweldlength).Incaseofbasemetal,criticalcrosssectionisequaltoatotalweldlengthpertubesidetimesthetubewallthickness.
Baseplatewelds/base metalcrosssectionproperties foreachrackarelistedintheTable3.5-19.Forbothweldsandbasemetal,sheararearepresents totalweldareaforallweldedracktubesides,foralltubesofaparticular rack.Sameweldsorbasemetallinesaretakenintoaccountforcalculating theircrosssectionprincipal momentsofinertia.Positions ofcorresponding principal axesarealsolistedintheTable3.5-19.Soobtainedcrosssectionproperties areusedforstresscalculations.
Table3.5-19BasePlateWeldsCross-section Properties forNewATRARacks;:Rack::",:.j'.:
'...Sh'earA'~[in~]:,".:::";';':,;::,"'"";::':Principal':;I:[in4]','-'-:<:::,'~
"".:.".',.'-.Princip'ai.I'-"[in'.:]:',':::-.;-:::!<.'.;:..i
,,'::.Principal.'Axes~i
- >Weld',
- :,::;::;,':::.':::::B'as'e'.i';:::,.,:",::::,:
':Weld.;:.:.':.::,':::::;::.'.,"
lBa'se':.;'-':,'.""'-"'="-"""-"
x:;.[in],P'.
y.[in]:,~28.647.713,66722,77824,15740,26246.3733.5832.554.219,80133,00128,54047,56746.2237.94101223.939.933.655.928.247.025.041.65,80810,81412,1426,7839,68018,02320,23611,30423,16638,61031,06824,04451,78040,07420,59534,32646.4045.9946.1246.4423.0832.2235.1823.081329.048.311,62119,36824;08940,14942.4429.36(Note:x-direction isinEW,y-direction isinNS)WeldLoadsThefollowing tube-to-base plateweldloadcomponents areconsidered:
a)Seismicloads-actinguponbottomrackbeamnode,andalsosharedbythebaseplatecrossbeams.Loadcomponents areobtainedfromthefullpoolanalyses(section3.5.3.1.8) andconsistoftransverse FandFcomponents, verticalF,component normaltothebaseplate,bendingmomentsMandM,andtorsionM,.Transverse FandFforcesareassumedtobeuniformly distributed acrossallwelds.Loadsaredistributed similarly fortorsioninducedshearfromM,.Alltheloadsarethenassumedtoactatthetoprackplane.Loadcomponents (forcesandmoments)takenfromsection3.5.3.1.8 aremultiplied bythetimehistoryenveloping factor(1.20forSSEand1.12forOBEcondition).
Resulting weld/basemetalstressesarecalculated as:51-1258768-01 GinnaSFPRe-racking Licensing ReportPage168 4~L4~A whereoandoarethenormalstressesduetobaseplatebendingmomentsMandM.Thestresseswhichactuponthetubebottom(basemetal),arenormalstresses, aswellascombiedshearstressesintube-to-base platewelds:HTHZwhereIandIareprincipal momentsofinertiaforthewholeweldorcorresponding basemetalgroup,(x;,y;)isweldedtubesidecenterlocationwithrespecttotheweldgroupprincipal coordinate system.Theprincipal coordinate systemoriginislocatedat(x,y)withrespecttoSE(lowerleft)baseplatecorner.Horizontal weldandbasemetaltotal(average) shearstressxisduetotransverse FandF,verticalF,andtorsionMallreducedtotheweldorbasemetalgrouptotalareaA:2222FFFHx+tz+x,+xT wherex=f-";x=f-~;x=f-';x=f-'rxTH~yTH~zTH@TTHNotethatstresscomponents areevaluated attherackcornerwhichisfarthestfromtheweldgroupprincipal coordinate systemorigin(atdistancer).Polarmomentofinertiafortheweld/base plategroupisJ=I+I.Resultsaresummarized inTable3.5-20.b)Thermally inducedloads-duetothedifference inthermalexpansion ofthebaseplateandthetubes.Twoconditions wereconsidered (section3.5.3.1.10):
eratin'""-AnANSYSmodelyieldsthemaximumstressof5,031psiatthe"hot"cell-to-base plateinterface (minimum-type1weldlengthof40mmisassumed).
d'""-freethermalexpansion ofthebaseplateandtubesispartially constrained duetotheexistence offrictionbetweenlegsandpoolliner.Maximuminducedstressesareinthecornertubes,andestimated (ANSYSmodel)stressis6,676psiforcornertube-tobaseplatewelds(80mmweldlength,fortype2Brack).51-1258768-01 GinnaSFPRe-racking Licensing ReportPage169 K
';L'o'a'd;'.I;;;:;:;::I:;
'-:,,Case"0;:,i.,;::.':;::.
Table3.5-20BasePlate&WeldStressSummaryforNewATEARacks:..",8:,:.'(2B):,"::':.,':-::.".':':.9;'(3C),":::,":,::i",-',:.'::.::;."g0;.:'(3if)
':;::.':::':
':','I1(3E)"'":",.'12.;:(3D).;::
.'::,::13(3B)::,,".;:.':
Ibm10,50610,6115,9008,8377,1705,1517,28617,51017,6869,83414,72911,9508,58512,1432bm8,9869,4425,9607,9186,2295,1056,84814,97615,7379,93313,19610,3818,50911,4143bm13,97613,3889,56512,0468,7248,23410,2964bm23,29310,15910,4755,8128,6006,9145,12322,31315,94220,07714,54113,72317,1607,6695bm6bm16,93210,53717,56213,50417,4599,68710,7705,99917,9509,99813,3117,94114,33411,5248,5399,1967,1815,31410,9868,3568,02915,32711,9698,85712,7827,82813,0479,61722,50722,18613,23618,30913,92713,38216,0297bm8,3978,6155,4787,4856,0274,8266,76613,99614,3589,12912,47510,0448,04411,2778bm6,7686,9265,5935,9306,2055,6116,19711,28011,5449,3229,88410,3419,35110,3289bm10bm5,3868,9776,0915,3828,9705,6534,2327,0534,3875,0958,4914,8633,9466,5773,8983,5975,9953,6564,1346,8894,02110,1529,4227,3128,1056,497~6,0946,07211bm6,8691,6228,4541,8456,2434,9846,86411,4482,70414,0903,07510,4058,30611,44012bm1,2114,9594,0421,4255,3113,7195,3816,7368,2642,018NOTE:bm-basemetal,w-weldstresses2,3748,8516,1998,96951-1258768-01 GinnaSFPRe-racking Licensing ReportPage170 P~
pV Table3.5-21Summation ofSupportLegWeldStresses';<i:5~::"kL'oad,Co'iiibia'atioxn's';::.;"i~8".:,'!Max".%eld,'Streass"'(p'si);::
.'!A'lloiiable';Str'ess":,(psi):.'elds:
D+E(LevelA)D+E+Ta(LevelB)D+E'+Ta(LevelD)BaseMedal:D+E(LevelA)D+E+Ta(LevelB)D+E'+Ta(LevelD)11,67711,73318,3028,2578,29712,9420.3*(Su)=21,000 0.40*(Su)=27,930 0.42*(Su)=29,400 0.40*(Sy)=9,260 0.532~(Sy)=11,725 0.42*(Su)=28,123 Figure3.5-40Dimensions, SupportLeg,andGussetPlatesUsedForWeldQualification RACKBASEPLATE 5.31I-3.74-I~01013.274.05SUPPORTLEG9.23.351.5755.919.17GUSSETPLATE1.71/.394~Ctyp)T3.005.34.16(0taX)5.55~0943.00l.7~SUPPORTI-0.00~*FhorlZontal FvertlCal51-1258768-01 GinnaSFPRe-racking Licensing ReportPage172 l
3.5.3.1.5 SummaryofSupportPadLoadsThefollowing horizontal andverticalloadsaregivenforthemodellegs.Theactuallegloadsforeachrackmustthenbemodifiedbytheactualnumberoflegsperrack.Thetablesalsodonotincludethetimehistoryfactorsof1.12forOBEand1.20forSSE.Table3.5-22Max.Boric.ModelLegForcesSRSS-LCQ1GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹1-Unconsolidated Fuel-SSE-Mu=0.8AbsoluteRack12345678910111213ValuesLeg154,57046,60045,26039,25037,32042,71030,34038,05026,47039,20032,43031,09034,870-Horizontal Leg266,62073,03043,40049,04043,87045,53033,28041,80027,52036,24035,75026,22033,920SRSS(FxLeg366,48057,70045,92041,13048,31052,51035,09033,65022,92032,37032,48025,25025,230&Fy)Leg454,97055,55037,63038,38039,89042,38042,12040,04023,77025,48029,75022,61024,590LbsMax.66,62073,03045,92049,04048,31052,51042,12041,80027,52039,20035,75031,09034,870Table3.5-23Max.VerticalPoolFloorForces-LCg1GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹1-Unconsolidated Fuel-SSE-Mu=0.8Rack12345678910111213Leg1122,700124,400113,400114,100115,600119,40083,640100,20055,49071,97067,57057,24073,390Leg2149,700'46,600128,600130,500119,900135,70096,810117,50068,41082,67089,03068,56085,750Leg3161,200151,800156,700142,600156,400144,40083,73098,64057,78070,70068,16053,26074,280VerticalLegandRackForces-LbsLeg4130,000117,300107,800109,600114,600116,40091,750116,40062,33082,94074,00062,62070,590Max.Leg161,200151,800156,700142,600156,400144,40096,810117,50068,41082,94089,03068,56085,750RackTotal274,100265,300263,900262,500269,100272,100162,100186,900104,300135,600132,200105,400121,00051-1258768-01 GinnaSFPRe-racking Licensing ReportPage173 Table3.5-24Max.Horizontal LegForcesSRSS-LC52GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase52-Unconsolidated Fuel-SSE-Mu=0.2AbsoluteValues-Horizontal SRSS(Fx&Fy)-LbsRack12345678910111213Leg124,18023,27020,68020,26021,79022,54015,75017,13010,02012,88012,00010,20012,550Leg222,55023,62020,19020,98021,24022,85015,51017,36010,49012,79012,83010,42011,470Leg323,34023,53018,57019,28018,97021,31013,27016,2409,93011,78012,3509,81310,930Leg421,27021,62020,20021,18020,76022,42015,38017,61011,24013,16012,44010,85010,720Max.24,18023,62020,68021,18021,79022,85015,75017,61011,24013,16012,83010,85012,550Table3.5-25Max.VerticalPoolFloorForces-LCg2GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCaseI2-Unconsolidated Fuel-SSE-Mu=0.2VerticalLegandRackForces-LbsRack12345678910ll1213Leg1121,000116,400103,500102,400108,900112,70078,68085,34050,07064,29060,67050,93062,430Leg2112,800117,800101,700104,800106,200114,20077,52086,71052,39063,87063,92052,03056,870Leg3116,600117,600106,20097,28098,680106,40071,79081,18051,19063,12061,70049,07054,640Leg4107,600107,900100,400105,900103,600112,00076,93087,95056,08065,78062,16054,05054,300Max.Leg121,000117,800106,200105,900108,900114,20078,68087,95056,08065,78063,92054,05062,430RackTotal262,200263,300262,200262,200262,800264,700157,700184,900109,100132,500118,200101,800115,700'1-1258768-01 GinnaSFPRe-racking Licensing ReportPage174 Table3.5-26Max.Horiz.ModelLegForcesSRSS-LCN3GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase53-Consolidated Fuel-SSE-Mu=0.8AbsoluteValues-Horizontal SRSS(Fx&Fy)-LbsRack12345678910ll1213Leg164,98052,63034,64031,45029,52036,74041,30048,82031,90029,91043,73035,09038,160Leg286,33067,46039,73036,72031,24048,46046,78062,63027,59034,09038,60032,79038,210Leg360,80053,26046,30041,28042,72047,63034,94046,83028,85031,26037,62032,17028,970Leg471,86057,29032,76030,31027,82038,87039,01039,38032,82034,67045,19038,02032,360Max.86,33067,46046,30041,28042,72048,46046,78062,63032,82034,67045,19038,02038,210Table3.5-27Max.VerticalPoolFloorForces-LCI3GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase53-Consolidated Fuel-SSE-Mu=0.8VerticalLegandRackForces-LbsRack12345678910111213Leg1189,900190,100162,800162,200155,000164,400123,600145,60087,060107,600112,00085,290115,600Leg2199,800201,400174,200175,500174,900182,500119,600150,30085,000101,100107,50085,680101,900Leg3208,900190,100162,000163,600172,500186,000129,600149,00087,990111,600112,20085,210103,600Leg4198,700174,900150,800154,800162,000172,300128,000146,50084,370108,900101,10085,57091,960Max.Leg208,900201,400174,200175,500174,900186,000129,600150,30087,990111,600112,20085,680115,600RackTotal465,500465,500465,500465,500465,500465,500276,700322,400166,300221,600204,200173,300203,40051-1258768-01 GinnaSFPRe-racking Licensing ReportPage175 Table3.5-28Max.Horizontal LegForcesSRSS-LCN4GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase54-Unconsolidated Fuel-SSE-Mu=0.5AbsoluteValues-Horizontal SRSS(Fx&Fy)-LbsRackLeg1Leg2Leg3Leg4Max.1234567891011121349,66046,00037,75037,20035,86043,14034,91041,41026,62033,43031,80026,04031,7105,8,,72062,79048,60054,05041,16049,18032,50041,16026,34034,01031,98024,00033,87063,07056,07042,30034,59046,07050,86031,31033,14020,69029,91026,96020,78022,84053,36050,66035,92038,45040,88044,05034,74035,98021,84026,79023,87022,47023,45063,07062,79048,60054,05046,07050,86034,91041,41026,62034,01031,98026,04033,870Table3.5-29Max.VerticalPoolFloorForces-LCI4GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase84-Unconsolidated Fuel-SSE-Mu=0.5VerticalLegandRackForces-LbsRack12345678910111213Leg1121,900123,600110,700110,300117,900122,60083,56094,66055,68074,91069,85058,75076,110Leg2146,000146,100124,800126,100124,700135,80093,060112,10064,07083,92082,02066,02082,910Leg3156,600152,600148,500138,100145,100138,800,83,07096,,74058-~49068,54069,32056,20072,920Leg4120,400122,500108,300109,500118,500121,20094,390115,40062,26084,41067,99061,22067,630Max.Leg156,600152,600148,500138,100145,100138,80094,390115,40064,07084,41082,02066,02082,910RackTotal267,000266,800264,200263,400270,100272,600166,400187,000108,800139,300127,500106,900123,800=51-1258768-01 GinnaSFPRe-racking Licensing ReportPage176
~A~~<<J4~~,,*'t Table3.5-30Max.Horiz.ModelLegForcesSRSS-LCg5GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹5-Unconsolidated Fuel-SSE-Mu=0.8AbsoluteValues-Horizontal SRSS(Fx&Fy)-LbsRack12345678910ll1213Leg163,63059,60047,59048,47045,47049,92034,96045,84026,52034,55038,32031,10037,720Leg269,79068,83049,96045,07047,04053,92037,89036,86029,04031,77032,73026,79035,320Leg370,00053,42047,74041,90050,27055,28043,69035,40025,91026,90027,06022,82026,650Leg465,03057,67050,31048,76044,58048,22031,48033,86025,29025,56030,93024,00029,960Max.70,00068,83050,31048,76050,27055,28043,69045,84029,04034,55038,32031,10037,720Table3.5-31Max.VerticalPoolFloorForces-LCN5GENNA3DWholePoolModel-WithPerimeter RacksLoadCase¹5-Unconsolidated Fuel-SSE-Mu=0.8VerticalLegandRackForces-LbsRack12345678910111213Leg1136,400132,200123,300114,800121,300123,40086,270103,10057,44069,56069,75055,99078,470Leg2150,600154,400121,600127,300117,800121,90084,320108,10064,34080,34078,53064,93083,720Leg3148,200139,600125,100122,400128,800127,60077,57091,97055,68065,37067,68052,81065,960Leg4136,900139,400128,500130,200116,600123,70094,180110,70060,48082,46072,82059,04067,610Max.Leg150,600154,400128,500130,200128,800127,60094,180110,70064,34082,46078,53064,93083,720RackTotal297,200290,400283,200283,200288,500288,300162,500192,90097,710134,800122,80099,740119,60051-1258768-01 GinnaSFPRe-racking Licensing ReportPage177
Table3.5-32Max.Horiz.ModelLegForcesSRSS-LC56GlNNA3DWholePoolModel-WithPerimeter RacksLoadCase56-Consolidated Fuel-SSE-Mu=0.8AbsoluteValues-Horizontal SRSS(Fx&Fy)-LbsRack12345678910111213Leg164,02064,04038,47034,61032,94038,65036,91051,21029,39038,77040,26028,13039,660Leg268,46055,95042,42036,92031,79043,82035,89058,98028,50034,29040,83032,83039,600Leg365,79059,80047,92044,15045,24050,17036,96046,33027,97034,65037,11031,54028,120Leg466,38061,78031,30031,98031,82038,62039,04048,23033,19034,87042,83030,39031,650Max.68,46064,04047,92044,15045,24050,17039,04058,98033,19038,77042,83032,83039,660Table3.5-33Max.VerticalPoolFloorForces-LCI6GINNA3DWholePoolModel-WithPerimeter RacksLoadCase56-Consolidated Fuel-SSE-Mu=0.8VerticalLegandRackForces-LbsRack12345678910111213Leg1213,400206,600168,000170,100159,300170,200121,100140,00081,330107,700102,10082,060105,900Leg2220,000215,100188,200185,000185,900187,800130,400156,00086,280109,600102,80087,480109,500Leg3204,000195,800167,900172,600173,900189,800117,500136,50082,30097,400108,10083,81098,730Leg4194,800186,000163,700160,700165,400181,200106,600138,90082,54095,92094,94086,77088,910Max.Leg220,000215,100188,200185,000185,900189,800130,400156,00086,280109,600108,10087,480109,500RackTotal496,500494,100494,100494,100494,100494,100276,600322,500169,800221,600204,800170,900202,60051-1258768-01 GinnaSFPRe-racking Licensing ReportPage178 k'N Table3.5-34Max.Horizontal LegForcesSRSS-LCg7GZNNA3DWholePoolModel-WithPerimeter RacksLoadCase07-Unconsolidated Fuel-SSE-Mu=0.2AbsoluteValues-Horizontal SRSS(Fx&Fy)-LbsRack12345678910111213Leg123,40024,30020,64021,10021,76022,68015,81017,42010,21012,75012,8309,86512,100Leg223,29024,35020,70021,49021,63022,68014,54016,59010,33011,91012,8709,96711,320Leg322,14022,49019,94019,81020,39022,01013,56016,2809,78711,63012,2309,54611,160Leg'421,96022,93021,57022,68022,75024,14014,55017,10010,21012,52011,69010,24010,490Max.23,40024,35021,57022,68022,75024,14015,81017,42010,33012,75012,87010,24012,100Table3.5-35Max.VerticalPoolFloorForces-LCI7GlNNA3DWholePoolModel-WithPerimeter RacksLoadCase07-Unconsolidated Fuel-SSE-Mu=0.2VerticalLegandRackForces-LbsRack12345678910ll1213Leg1117,100121,400103,300105,400108,800113,40078,70086,31050,95063,79063,33049,35060,750Leg2116,400121,600104,200107,300108,100113,20073,23082,89051,65059,60064,21049,81056,560Leg3110,600112,500103,800101,900102,000110,00071,03081,40050,45062,78061,14047,74056,210Leg4109,700114,600107,700113,500113,900120,60072,69085,12051,09062,54058,29051,10052,440Max.Leg117,100121,600107,700113,500113,900120,60078,70086,31051,65063,79064,21051,10060,750RackTotal283,200283,200283,200283,200283,200284,100158,500181,600100,900131,800117,600101,800115,90051-1258768-01 GinnaSFPRe-racking Licensing ReportPage179
Table3.5-36Max.Horizontal LegForcesSRSS-LCg8GINNA3DWholePoolModel-WithPerimeter RacksLoadCase58-Consolidated Fuel-OBE-Mu=0.8AbsoluteValues-Horizontal SRSS(Fx&Fy)-LbsRack12345678910111213Leg122,85019,44012,60013,02014,65016,66010,20011,58016,7907,67430,05022,04015,890Leg222,69019,38012,45012,86014,63016,58010,20011,42017,5107,66525,33023,82014,940Leg322,69019,38012,45012,86014,62016,58010,20011,42017,0307,66529,10022,74016,190Leg422,86019,44012,60013,02014,65016,66010,20011,58014,0507,67427,19025,99015,470Max.22,86019,44012,60013,02014,65016,66010,20011,58017,5107,67430,05025,99016,190Table3.5-37Max.VerticalPoolFloorForces-LCQSGINNA3DWholePoolModel-WithPerimeter RacksLoadCase08-Consolidated Fuel-OBE-Mu=0.8VerticalLegandRackForces-LbsRack12345678910111213Leg1162,100160,300128,500129,000126,900132,60082,21097,56058,90070,91086,55075,85087,540Leg2159,700150,400134,500131,300125,100128,90091,200111,10068,61076,17089,14068,97078,730Leg3151,600149,200127,200128,300128,200135,90090,440106,80067,46077,60081,74066,21075,190Leg4151,900145,000121,100123,500124,100128,00079,42097,25058,70068,89083,45068,60064,670Max.Leg162,100160,300134,500131,300128,200135,90091,200111,10068,61077,60089,14075,85087,540RackTotal424,500424,500424,500424,500424,500424,500238,200270,000138,100195,200172,600141,300170,90051-1258768-01 GinnaSFPRe-racking Licensing ReportPage180
Table3.5-38Max.Horizontal LegForcesSRSS-LCg9GINNA3DWholePoolModel-WithPerimeter RacksLoadCase59-Unconsolidated
.Fuel-OBE-Mu=0.2AbsoluteValues-Horizontal SRSS(Fx&Fy)-LbsRack12345678910111213Leg121,85020,48018,24017,21017,19018,01011,94013,9108,8859,79110,9909,11510,790Leg220,12019,74015,34015,89014,82016,95012,00014,3208,3839,60610,3808,3519,172Leg319,37018,53015,83015,29015,54016,54012,41014,2908,95210,96010,1208,1729,128Leg419,75020,41016,81016,37016,66017,12011,81012,5507,9699,8349,7037,9598,687Max.21,85020,48018,24017,21017,19018,01012,41014,3208,95210,96010,9909,11510,790Table3.5-39Max.VerticalPoolFloorForces-LCI9GINNA3DWholePoolModel-WithPerimeter RacksLoadCaseg9-Unconsolidated Fuel-OBE-Mu=0.2VerticalLegandRackForces-LbsRack12345678910ll1213Leg1109,300102,40091,19086,06087,12090,99059,73069,53044,42048,95054,97045,56053,960Leg2101,60098,83084,18085,42084,46091,19062,09071,63041,91048,03052,93041,76046,370Leg396,84092,63084,34086,76078,81085,71062,05071,46044,76054,77050,59040,84045,640Leg498,720102,00086,62087,43083,97089,37059,14067,91039,84049,18048,52039,80044,170Max.Leg109,300102,40091,19087,43087,12091,19062,09071,63044,76054,77054,97045,56053,960RackTotal243,100243,100243,100243,100243,100243,100139,600156,50084,790116,000103,70085,220102,90051-1258768-01 GinnaSFPRe-racking Licensing ReportPage181
Table3.5-40Max.Horizontal LegForcesSRSS-LCN10GlNNA3DWholePoolModel-WithoutPerimeter RacksLoadCaseI10-Unconsolidated Fuel-OBE-Mu=0.2AbsoluteValues-Horizontal SRSS(Fx&Fy)-LbsRack12345678910111213Leg121,95020,84017,94017,12016,06015,89013,11014,5509,07710,24010,9408,79510,520Leg220,70020,45015,48016,54015,22014,75012,53014,1908,36610,45010,3908,3959,309Leg319,35017,54016,48015,53014,81016,11012,44013,7408,62110,42010,5308,4539,974Leg420,79019,15014,37014,62014,49015,72012,16014,0308,63110,16010,2907,7938,717Max.21,95020,84017,94017,12016,06016,11013,11014,5509,07710,45010,9408,79510,520Table3.5-41Max.VerticalPoolFloorForces-LCg10GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCaseN10-Unconsolidated Fuel-OBE-Mu=0.2VerticalLegandRackForces-LbsRack12345678910ll1213Leg1109,800104,10089,69085,59082,92088,26065,53072,72045,39051,21054,70043,98052,830Leg2103,500102,30084,50088,68077,29084,01062,63070,96041,83052,23051,95041,96048,040Leg398,07092,25082,63079,49082,81082,45062,20068,70043,10052,09052,66042,27049,860Leg4103,90096,51083,23081,24084,62084,74060,79070,62043,15050,99051,48038,96043,620Max.Leg109,800104,10089,69088,68084,62088,26065,53072,72045,39052,23054,70043,98052,830RackTotal230,700230,700230,700230,700230,700230,700139,600156,50084,740115,400102,80083,740103,70051-1258768-01 GinnaSFPRe-racking Licensing ReportPage182 Table3.5-42Max.Horizontal LegForcesSRSS-LC¹11GINNA3DWholePoolModel-WithPerimeter RacksLoadCase$11-MixedFuel-SSE-Mu=MixedAbsoluteValues-Horizontal SRSS(Fx&Fy)-LbsRack12345678910111213Leg127,67026,65029,11033,22026,01029,08021,19010,70029,4205,47830,61031,13031,360Leg242,71046,55023,62026,88024,16032,90019,49011,03028,7106,00923,58022,55023,780Leg330,14030,16028,69031,72024,32026,88021,92010,26025,1605,58122,49023,10024,640Leg434,54034,76028,06026,77029,55025,67023,15010,60030,5905,64727,85023,76024,250Max.42,71046,55029,11033,22029,55032,90023,15011,03030,5906,00930,61031,13031,360Table3.5-43Max.VerticalPoolFloorForces-LC¹11GINNA3DWholePoolModel-WithPerimeter RacksLoadCase511-MixedFuel-SSE-Mu=MixedVerticalLegandRackForces-LbsRack12345678910111213Leg157,75057,78068,950106,70089,810154,40068,51019,75080,43018,21070,23054,06072,440Leg289,72091,08054,710116,900127,800172,80045,19019,94084,21019,74074,50059,37072,320Leg381,92076,440101,400104,20063,930166,80081,98019,85071,50018,83065,10054,64067,860Leg495,52093,56070,060108,30092,180169,30075,95019,38077,17018,52066,89054,41062,970Max.Leg95,52093,560101,400116,900127,800172,80081,98019,'94084,21019,74074,50059,37072,440RackTotal158,000154,600157,100283,200262,600494,200142,60022,240157,50020,040117,700101,400118,70051-1258768-01 GinnaSFPRe-racking Licensing ReportPage183 Table3.5-44Max.Horizontal LegForcesSRSS-LCI12GINNA3DWholePoolModel-WithPerimeter RacksLoadCase512-MixedFuel-OBE-Mu=MixedAbsoluteValues-Horizontal SRSS(Fx&Fy)-LbsRack12345678910111213Leg116,0704,26011,9007,78212,77016,7705,78110,85016,8006,36620,72014,26012,360Leg215,4504,24011,8108,07611,62010,0306,15314,05013,8006,68520,24016,76011,430Leg314,3804,37711,8107,64415,52014,5005,36314,09015,3506,24121,01013,33012,130Leg415,6603,87411,9007,51214,74013,6506,72811,66015,1906,28719,95013,94011,600Max.16,0704,37711,9008,07615,52016,7706,72814,09016,8006,68521,01016,76012,360Table3.5-45Max.VerticalPoolFloorForces-LCN12GINNA3DWholePoolModel-WithPerimeter RacksLoadCase512-MixedFuel-OBE-Mu=MixedVerticalLegandRackForces-LbsRack12345678910ll1213Leg1113,40017,82073,34018,36053,63055,72014,90063,28042,88015,64075,89054,60072,830Leg275,21017,73074,46017,97033,66032,65015,12070,74044,33016,84079,16049,01069,600Leg377,77018,31072,65018,68066,41070,44014,17069,88042,73015,14075,27033,95069,740Leg442,91016,21074,09018,44046,09047,45015,82062,51039,76015,36074,70025,66059,920Max.Leg113,40018,31074,46018,68066,41070,44015,82070,74044,33016,84079,16054,60072,830RackTotal222,30033,710243,30032,970136,500136,20016,890156,50085,33019,270170,90078,400170,80051-1258768-01 GinnaSFPRe-racking Licensing ReportPage184 3.5.3.1.6 Fuel-to-Rack ImpactLoadsTable3.5-46LocalFuel/Rack ImpactForces-LCNlGINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase$1-Unconsolidated Fuel-SSE-Mu=0.8LocalFuel/Rack ImpactForcesFx&Fy(lbs)perFuelAssy.Rack12345678910ll1213EastFx1,3881,1631,5181,1361,2991,3808031/2379881,0821/3231,1071,307NorthFy1,2241,0531,2911,2611,3411,3051,011873915978870944991WestFx1,3501,2991/2311,3041,2471/1226901,1147718321,2048911,046SouthFy1,3481/3221,2891,2401,2891,4321,2061,1741,1711,1281/1731,1811,175Table3.5-47LocalFuel/Rack ImpactForces-LCN2GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase$2-Unconsolidated Fuel-SSE-Mu=0.2LocalFuel/Rack ImpactForcesFx&Fy(lbs)perFuelAssy.Rack12345678910ll1213EastFx1,2881,3671,5421,2041,3061,5241,1197951,1311,0601,1991,2541,054NorthFy1,1991,1601,2901,1421,3001,2191,149777917978971940988WestFx1/3171,4321,3071,3041,2701,2998607461,0018411,0441,079907SouthFy1,2531,1591/2231/2311,2911,3941,2881,1361/2231,0971,2511/2271/23351-1258768-01 GinnaSFPRe-racking Licensing ReportPage185
Table3.5-48GINNA3DWholeLoadCase83-LocalFuel/Rack ImpactForces-LCg3PoolModel-WithoutPerimeter RacksConsolidated Fuel-SSE-Mu=0.8LocalFuel/Rack ImpactForcesFx&Fy(lbs)perFuelAssy.Rack12345678910111213EastFx299281293292293307260291306278330310289NorthFy317305290269339344176178166155156163142WestFx331333367359395396354380366330392366338SouthFy262290314302325328221227198199203191188Table3'-49GINNA3DWholeLoadCase54LocalFuel/Rack ImpactForces-LCN4PoolModel-WithoutPerimeter RacksUnconsolidated Fuel-SSE-Mu=0.5LocalFuel/Rack ImpactForcesFxFy(lbs)perFuelAssy.Rack12345678910111213EastFx1,2671,3741,0751,4141,5231,4238151,3281,0831/2131,1031,2101,280NorthFy1,1941,2741,0821,1341/1311,2081,2181/1238741,2648881,149990WestFx1,3351/1211,2291,3041,5081,1747881/1179749661,0459821,018SouthFy1,4211,2611,3011,3641,3281,3761,2391/2271/1721,1211,1981,2201,20251-1258768-01 GinnaSFPRe-racking Licensing ReportPage186
~t Table3.5-50LocalFuel/Rack ImpactForces-LC¹5GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹5-Unconsolidated Fuel-SSE-Mu=0.8LocalFuel/Rack ImpactForcesFxFy(lbs)perFuelAssy.Rack12345678910111213EastFx1,4511,3161,5011,5251,5161,3081,0879941,1121,0439509251/127NorthFy1,2051,0431,2741,2951,1391/2131,2159398079901,0139441,136WestFx1,2581,3041,5321,3241,5011/3279941,0361,031967821819969SouthFy1,4571,4481,2441,3301,3801,4391,2481,3018981/3311,1851,2281,229Table3.5-51LocalFuel/Rack ImpactForces-LC¹6GINNA3DWholePoolModel-WithPerimeter RacksLoadCase$6-Consolidated Fuel-SSE-Mu=0.8LocalFuel/Rack ImpactForcesFx&Fy(lbs)perFuelAssy.Rack12345678910111213EastFx318317313311309318250267302272301286282NorthFy314298289269349355177176164'55153164144WestFx342340353348385385331363363318389368343SouthFy26530131130032032422322319720119819118951-1258768-01 GinnaSFPRe-racking Licensing ReportPage187
- Table3.5-52LocalFuel/Rack ImpactForces-LC¹7GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹7-Unconsolidated Fuel-SSE-Mu=0.2LocalFuel/Rack ImpactForcesFxFy(lbs)perFuelAssy.Rack12345678910ll1213EastFx1,3291,3891,5701,4231,4641,4661,2897819399989641,2581,000NorthFy8428438431,01712271,2361,0068581/2729819461,267991WestFx1,1431,4311,4701,1861,4931,3701,0269137579118041,099883SouthFy1,1021,1841,1161,3081,3971,4501,2161,2101,2031/2321/2731,1061,230Table3.5-53LocalFuel/Rack ImpactForces-LC¹8GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹8-Consolidated Fuel-OBE-Mu=0.8LocalFuel/Rack ImpactForcesFx&Fy(lbs)perFuelAssy.Rack'2345678910ll1213EastFx11510910910310810480757667796965NorthFy1411371331321321329795100817910375WestFx132140142144144144122121119110120112111SouthFy11010610010094948481887778927351-1258768-01 GinnaSFPRe-racking Licensing ReportPage188 Table3.5-54,LocalFuel/Rack ImpactForces-LC¹9GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹9-Unconsolidated Fuel-OBE-Mu=0.2LocalFuel/Rack ImpactForcesFx&Fy(lbs)perFuelAssy.Rack12345678910111213EastFx382661696640362561378446441765411376497NorthFy682421469738563703620356603467589609621WestFx459691748699419573448574695735518489514SouthFy571573596519743690785426565587522698811Table3.5-55LocalFuel/Rack ImpactForces-LC¹10GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹10-Unconsolidated Fuel-OBE-Mu=0.2LocalFuel/Rack ImpactForcesFx&Fy(lbs)perFuelAssy.Rack12345678910111213EastFx618357440803465629333413343485358583461NorthFy707503590417751670461681575574489598624WestFx605392604959523794389524582574436521546SouthFy50460857751572094660847279772464949165851-1258768-01 GinnaSFPRe-racking Licensing ReportPage189 Table3.5-56LocalFuel/Rack ImpactForces-LCN11GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹11-MixedFuel-SSE-Mu=MixedLocalFuel/Rack ImpactForcesFxaFy(lbs)perFuelAssy.Rack12345678910111213EastFx1,5771,4881,4511,449322330258026601,0291,1931,070NorthWestFyFx1,0561,4071,1671,5201,1651,4959521,49729336524837217330400167284008981,0431,0349909771,026SouthFy1/3111,4091,4111,232304286219019401,2391,2611/272Table3.5-57LocalFuel/Rack ImpactForces-LC¹12GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹12-MixedFuel-OBE-Mu=MixedLocalFuel/Rack ImpactForcesFx&Fy(lbs)perFuelAssy.Rack12345678910111213EastFx1070618059052105685060808369NorthFy1260666067466706466290689877WestFx1430895064073005827380117122109SouthFy106075807887490683536064807351-1258768-01 GinnaSFPRe-racking Licensing ReportPage190
~~I Table3.5-58SummaryofMaximumFuel/Rack CellWallImpactLoads.'",,';:;.
~,;::Seismic,',',:.('.:';.,.::,",;
~;:::Calculated!Load;-;:
- .'jj',
- ::'p:;:.:.,',:;::.:.:(Ibs);~;;.":.:;.',!
~i';;,-.':;TH.".Fa'cto'r L'oad,:
",,:Ma'ximum":L'o'ad;,
i';.:'::Maximum,,,',.;'.",',:
!'Allow'able'.:L'o'a'd.'
,'i::;..',';-:,.".';,
'(lb');;'",'-,::,l'.;;,";;,';
SSE13311.2016002902OBE8111.129082291Note:1)Max.allowable loaddetermined asloadtoproducemax.allowable stressesinrackcellwallsperASMESectionIIIcriteria, asprovidedinTable3.2-1.3.5.3.1.7 SummaryofSingleRack3-DModelResultsThesespecialstudiesonsinglerackmodelsareperformed toevaluatetheeffectsofcertainparameters ontheresultsofseismicanalyses.
Theseevaluations reducethenumberofwholepoolevaluations whicharerequired, thusmakingtheanalysisoftheR.E.Ginnaspentfuelpoolracksmoreefficient.
Twostudieshavealreadybeenreported.
Section3.5.2.6coversthedetermination oftimehistoryfactorsforSSEandOBE,andSection3.5.2.7coversastudyoftheeffectsofrackstiffness onstressesanddeflections.
Fouradditional studiesarereportedinthissection.Thefirststudyisanevaluation oftheeffectsthatincreasing theracktubeheightwillhaveontheforces,moments,anddisplacements oftherack.Thesecondstudyreportedisanevaluation oftheeffectsofattaching aperipheral rackontotheexistingregion2racks.Thisstudyincludestheevaluation oftheconnection betweentheperipheral rackandtheexistingregion2rack.Thethirdstudyreportedisanevaluation ofthreeoff-centered loadingcasesforhalf-loaded rackstofindthemostcriticalloadingtobeusedinthewholepoolmodel.Thefourthstudyisacomparison ofmodelswithconnected anddisconnected fuelbeams.3.5.3.1.7.1 BriefDescription of3-DSingleRackModelTheanalysesofthe3-Dsinglerackmodelareperformed usingANSYS5.2,afiniteelementcodeacceptedbytheUnitedStatesNuclearRegulatory Commission (USNRC)forseismicandstressanalysis.
Themodelismadeupofbeamelements, masselements, contactelementsandhydrodynamic couplingelements.
.Allstructural membersaremodeledbytheBEAM4element.TheBEAM4elementisa3-Delasticbeamwithsixdegreesoffreedomateachnode.Beamelementsareusedtomodeltheracklegs,thebaseplate, theracktubes,andthefuel.Thefuelbeamandtherackbeamareverticalbeamslocatedatthecentroidoftherackinthehorizontal plane.Thefuelbeamandrackbeamareconnected atthebottomend.Thebaseplate beamsextendhorizontally Romthebottomoftherackbeamtothecentersofthecornerrackcells.Atthecornerrackcells,racklegbeamsextendvertically downwardfromtheendsofthebaseplate beams.Eachlegbeamrepresents onefourthofthetotalnumberofracklegs.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage191 Allmassisrepresented byMASS21elements.
TheMASS21elementisalumpedmasselementwhichcanbeappliedinallthreeorthogonal directions.
TheMASS21elementcanalsoapplyrotaryinertiatorepresent thelumpedmassmoreasadistributed mass.AllcontactsbetweentheracklegsandpoollinerandbetweentheracktubesandfuelaremodeledwithCONTAC52elements.
TheCONTAC52elementisa3-Dpointtopointcontactelementwhichallowsforgaps,interface stiffness, andslidingfriction.
Allhydrodynamic couplingbetweenthefuelandrack,andbetweentherackandadjacentracksaremodeledwithFLUID38elements.
TheFLUID38elementisahydrodynamic couplingelementwithtwodegreesof&eedomateachnode,translation perpendicular totheaxesofthecoupledcylinders.
Therearetwobasicsinglerackmodels.Thefirstisarepresentation ofrack8(2B),a9x11region2rackdesignedbyATEA,seeFigure3.5-41.Thesecondisarepresentation ofrack1,anexistingregion2rackintheR.E.Ginnaspentfuelpool,withaperipheral rack,rack4Aattached, seeFigure3.5-42.3.5.3.1.7.2 StudyofEffectsofRackHeightIncrease3.5.3.1.7.2.1 PurposeofRackHeightIncreaseStudyDuringevaluation oftheracks,itbecameapparentthattheheightoftherackswouldhavetobeincreased.
Theoriginaldesignheightofthetubesontherackswas158.5in.Thisheight,forthisstudy,wasincreased 3in.to161.5in.Allofthepreviousanalyseshadbeenperformed usingtheshorterrackheight,sothisstudywasperformed todetermine theeffectsthatthischangewillhaveonthestructural seismicperformance oftheracks.3.5.3.1.7.2.2 Modifications RequiredinfheRackModelThefollowing modifications weremadetothestandardmodelforrack8(rack2B,11x9)inordertorepresent arackinwhichthetubeheighthadbeenincreased 3in.1.2.3.45.Increaserackbeamheightby3in.Addmassofadditional racktubeheight,98.6lbsRecalculated MassMomentsofInertiaforheightof161.5in.Scalefueltorackhydrodynamic couplingmassesby(161.5/158.5).
Scaleracktorackhydrodynamic couplingmassesby(162.68/159.68).
3.5.3.1.7.2.3 ResultsofRackHeightIncreaseStudyA3in.increaseintheheightoftheracktubeswasfoundtohaveonlyminoreffectsontheresulting rackloads,moments,anddisplacements.
Table3.5-59providesacomparison oftheresultsofarackanalyzedwithoutandwiththeheightincrease.
Theactualheightincreaseoftherackswas3.5in.(to162.0in)ratherthanthe3.0in.usedinthisstudy.However,comparing thisdifference withthehighestanalyzedratioproducedinTable3.5-59equals(3.5/3.0)(0.028)
=0.033,whichwhenroundedtotwosignificant figuresstillshowsamaximumof3percentincreaseduetotheactualheightincreaseoftheracksby3.5inches.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage192 Figure3.5-41Representation ofModelforSingleRackAnalysis21n24GAPELEMENTn21n33RACKn30FLUIDCOUPLING(Fuego-Reck)
ELEMENT21nl77-n1Tn32n10n29FUELn1GAP~ELEMENT~~FLOORn15n31FLUIDCOUPLINGELEMENT(Reck<o-WeN) n2n6~SUPPORTLEGn6n16Note:Comparison withtheabovesimplified modelandthemodelshowninFigure3.5-31isprovidedinSection3.5.3.1.7.5.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage193
Figure3.5-42Representation ofModelforAnalysisofRack1withAttachedRack4ACAPELEWEg33SSRACKToRACK~SlCONNECTION 47W~S3SgTYPE4RACKEXISTINGRACK3~8~131080C~P~LEuEIYT32S8748~EXISTING RACK'SFUELS8651531TYPE4RACK'SFUEL8GAPdcFRICTION~~
- ELEIIENT, 186341434842FLUIDCOUPLINGELEIIENT(RACK-TO-WALL) 45TYPE4SUPPORT~44LEG(IOFa)49616lp~R64RACK-To-RACK CONNECTION EXISTINGRACKSUPPORTLEG(IOF4)51-1258768-01 GinnaSFPRe-racking Licensing ReportPage194 0
Table3.5-59Comparison ofResultsforRackModelWithandWithoutaHeightIncreaseMax.LegLoad(lbs)SingleModelLegHorizontal SingleModelLegVertical,';:,W(thout:.":Height:,",':.'Ii'icrea'se,".";:.':,:.,:;'.:,',:,:;":::.:;'.);';::::.""'"'4,910 138,000;;.%'ith"Hei'gh't.'.'"
- Iiic'iea'se'.::;.',';::;.';.'.,,:.".';;:
33,570133,500;:::n'e""'edei"ht".;.
':"Or'igin'al':Height,"..".
0.9620.967Max.RackLoad(lbs)Max.RackMoments(in-lbs)Max.ImpactLoads(lbs)Displacement ofLeg(in)LegTotalVerticalHorizontal VerticalRackBendingMomentFuel-to-Rack Horizontal 322,80062,98013,4806.645*10'2,950 0.03354322,80064,74013,5706.701*10~
11,8700.031781.0001.0281.0071.0080.9170.948Includedinthetableisthefactorwhichwouldhavetobeappliedtotheresultsoftheanalysiswithouttheheightincreasetoenvelopetheresultsoftheanalysiswiththeheightincrease.
Thisfactoris1.028and.isgovernedbyhorizontal rackload.Thisfactorneedstobeincreased by(3.5/3.0)(.028)
=0.033foratotalof1.033toaccountfortheactualheightincreaseof3.5in.ratherthan3.0in.asusedinthisstudy.Thisfactorappliestoallrackswhichhavebeenincreased 3.5in.inheight.However,thisfactorwasaccounted forwhenselecting theenveloping timehistoryfactorsinSection3.5.2.6.Theactualtimehistoryfactorcalculated forSSEis1.164.Thecombinedtimehistoryfactoris:SSETimeHistoryFactor=1.164*1.033=1.2024=1.20Thus,thetimehistoryfactorselectedforSSEis1.20.Likewise, theactualtimehistoryfactorcalculated forOBEis1.088.Thecombinedtimehistoryfactoris:OBETimeHistoryFactor=1.088*1.033=1.1239=1.12Thus,thetimehistoryfactorselectedforOBEis1.12.Becausethefactorforincreased rackheighthasalreadybeenaccounted forinthetimehistoryfactor,noadditional factorsneedtobeapplied.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage195 3.5.3.1.7.3 Peripheral RackAttachment Study3.5.3.1.7.3.1 PurposeofPeripheral RackAttachment StudyInthewholepoolmodels,theglobaleffectsoftheperipheral rackswasstudiedbyaddingthecorresponding sizeandweighttotheresidentracks.However,thesizeandcomplexity ofthewholepoolmodeldidnotallowdetailedmodelingoftheperipheral racks.Therefore, amodelofasingleperipheral rackattachedtoaresidentrackwasdeveloped.
Thismodelincludesseparatebeammodelsforthetworacks,withbeamsconnecting thetworacks.Thefinerdetailofthismodelprovidesloadingsfortheconnections, thelegsoftheperipheral rack,andtheloadsontheperipheral rackitself.Arepresentation ofthemodelusedisthisanalysisisincludedasFigure3.5-42.3.5.3.1.7.3.2 Peripheral RackModelInputAdjustments Themodeltoanalyzetheconnections betweentheType4peripheral racksconsistsofbeamelementmodelsoftheType1residentrackandtheType4peripheral rackconnected byadditional beams.Thebeamsforthelowerconnection linkthelegsoftheType1racktothebaseplate oftheType4rack.Thetype4racksaremodeledwith2legs.Theupperconnection ismodeledasasinglebeamwhichconnectsthecentersofthetworacks.Connection Dimensions BottomConnection (2permodel)MaterialisSSType304width=90mm(3.543in.)height=20mm(0.787in.)length=285mm(11.22in.)SectionProperties:
Area=2.788 in',I~=0.144in4,I=2.917in4TopConnection (1permodel)MaterialisSSType304Lwidth=140mm(5.512in.)height=40mm(1.575in.)length=57.4mm(2.26in.)SectionProperties:
Area=8.681in',I~=1.795in4,I=3,778.695 in43.5.3.1.7.3.3 SummaryofResultsTheresultsofthismodelareanalyzedtofindtheloadsineachoftheindividual racksandintheconnections betweenthetworacks.Tables3.5-60and3.5-61providesummaries ofthedisplacements andtheforcesandmomentsontheracksandtheconnections forOBEandSSErespectively.
Incalculating thestressesintheconnection, theloadsencountered duringthermalaccidentconditions, atemperature rise&om150'Fto180'F,mustbeincluded.
Themaximumloadscausedbythethermalaccidentarehorizontal legforcesequaltothedeadloadoftherackmultiplied bythecoefficient offrictionbetweentthelegandthepoolliner.Thetopendofthefrictionrangeis0.8.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage196 Table3.5-60SummaryofOBEResultsinPeripheral RackAnalysis';.';,Resident'.Rack!1:;.;"
'",'Periphe'rail Rack;:4'ax.
LegLoad(lbs)Max.RackLoad(lbs)RackMoments(in-lbs)Max.RackMoments(in-lbs)Max.ImpactLoad(lbs)Displacement ofLeg(in)SingleModelLegHorizontal SingleModelLegVerticalLegTotalVerticalHorizontal RackLoadVerticalRackLoadRackMomentMxRackMomentMyRackBendingMomentFuel-to-Rack ImpactLoadsHorizontal 16,190137,10019,56016,990978,000747,8001.042*10~
5,6140.01620424,8008,70827,11013,7001,340502,600583,8006.661*10',699 0.01770AxialLoad(lbs)BendingLoad(lbs)BottomConnection UpperConnection BottomConnection VerticalUpperConnection Horizontal Tension:11,034Compres.:
-2,063Tension:7,618Compres.:
-7,753-7031,218'OBEresultsneedtobemultiplied byaseismicloadfactorof1.12.TopConnection StressesforOBEo,,=1,000psi 51.0*S=15,700psi(304LS.S.)
o~=157psi~0.6*S=9,420psi BottomConnection StressesforOBEob=4,433psis1.0*S=18,300psi(304S.S.)o~~b+b,~=25,740psi 51.5*S=27,450psi 51-1258768-01 GinnaSFPRe-racking Licensing ReportPage197 I54\t1AM*4PtHP Table3.5-61SummaryofSSEResultsinPeripheral RackAnalysis':".::R'e'side'rit.Rack-:::
1.',,':::,;:.
',:.'Pe'ripher'al'Rack"4A'::
'ax.LegLoad(lbs)Max.RackLoad(lbs)RackMoments(in-lbs)Max.RackMoments(in-lbs)Max.ImpactLoad(lbs)Displacement ofLeg(in)SingleModelLegHorizontal SingleModelLegVerticalLegTotalVerticalHorizontal RackLoadVerticalRackLoadRackMomentMxRackMomentMyRackBendingMomentFuel-to-Rack ImpactLoadsHorizontal 41,410184,90042,87023,2002.081*10'.323*10~
2.196*10'4,050 0.03793484,50018,08031,17025,7101,5188634*10s6.569*10'.676*10'1,910 0.03682AxialLoad(lbs)BendingLoad(lbs)BottomConnection UpperConnection BottomConnection VerticalUpperConnection Horizontal Tension:25,724Compres.:
-5,164Tension:17,153Compres.:
-17,319-9012,297'SSEresultsneedtobemultiplied byaseismicloadfactorof1.20.TopConnection StressesforSSEa~,~>=2,394psi s1.2~S=26,450psi(304LS.S.)
a>>~=318psis0.42~S=28,123 psiBottomConnection StressesforSSE0~,~,=11,072psi 51.2*S=31,200psi(304S.S.)
o,~,~~=31,914psi s1.8~S=46,800psi
~~~51-1258768-01 GinnaSFPRe-racking Licensing ReportPage198 e4acktreefIxx=292in4Iyy=15,471in4A=25.9in'xx=8.3/2=4.15incyy=84.56/2=42.28ino,(X-Dir)=8,000psis1.0*S=15,700psi(304LS.S.)o,,(Y-Dir)=1,787psis1.0*S=15,700psi(304LS.S.)Note:RackOverturning momentsresultinlocalcellwallmembranestressesTe4eeo,>(X-Dir)=14,725psis1.2~Sy26,450psi(304LS.S.)o,,(Y-Dir)=2,145psis1.2*S=26,450psi(304LS.S.)Note:RackOverturning momentsresultinlocalcellwallmembranestressesnee'eacacUpperConnection o,>=687psis1,194psilocalcriticalbucklingstressLowerConnection Thisconnection runstheentire84.56in.interface betweentheType4RackandtheResidentRacksAreaincompression
=42.28in',~=1,453psis31,200psi(LevelDloadingwithLevelAallowables) 51-1258768-01 GinnaSFPRe-racking Licensing ReportPage199 I~~*~ll)fl 3.5.3.1.7.4 Off-Centered LoadingStudy~~~~~3.5.3.1.7.4.1 PurposeofOff-Centered LoadingStudyOneofthescenarios whichisanalyzedusingthewholepoolmodelisamixedloadcase.Themixedloadcaserepresents anyofthefollowing rackloadingconfigurations:
1.2.3.4.5.Full,Unconsolidated Full,Consolidated HalfLoaded,Unconsolidated HalfLoaded,Consolidated EmptyThecaseswhichinvolvehalfloadedrackscanbeloadedoff-centered, causingthehigherloadingsanddisplacements thaniftheyarepartially loadedwithanevendistribution.
Therearethreedifferent waystoloadthefueltoprovideoff-centered loading:1.Loadhalfofrackononesideofshortaxis.2.Loadhalfofrackononesideoflongaxis.3.Loadhalfofrackononesideofdiagonal.
Eachofthesethreeconditions areanalyzedtodetermine whichprovidesthehighestloads,moments,anddisplacements forthehalfloadedracks.Itshouldbenotedthattheabsolutemaximumracksloadsoccurwithfullyloadedrackswithconsolidated fuel.Further,themaximumrackdisplacements occurwithfullyloadedrackswithunconsolidated fuel.3.5.3.1.7.4.2 Modifications RequiredtoAnalyzeOff-Centered LoadingCasesTherackmodeledisrack8(2B),aregion211x9rack.Thehalfloadedcaseismodeledwith50consolidation canisters.
Thefuelbeamarea,fuelbeammomentofinertia,fuelweight,fueltorackinterface stiffness, andfueltorackhydrodynamic couplingarealladjustedbymultiplying by50canisters ratherthan99.Thecentroids oftheracksareadjustedforeachcasetorepresent theoff-centeredloading,andtheappropriate massmomentsofinertiaareapplied.Centroidofcenteredloadingcase:x:46.655in.y:38.23in.Case1:Loadononesideofshortaxis.x:66.5193in.y:38.23in.Case2:Loadononesideoflongaxis.x:46.655in.y:22.0442in.Case3:Loadononesideofdiagonal.
x:60.6336in.y:27.9300in.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage200 3.5.3.1.7.4.3 SummaryofOff-Centered LoadingResultsAsummaryoftheresultsoftheloadingsisprovidedinTable3.5-62.Theresultsindicatethatingeneral,thediagonalloadingpatternprovidesthehighestloads,momentsanddisplacements.
Maximumvaluesareshowninboldtext.Fiveofthesevenitemsarehighestforthediagonalloadingpattern.Forthetwoitemswhicharehigherfortheshortaxisloadingcase,thevaluesforthediagonalloadingarewithin5percent.Table3.5-62Comparison ofResultsforHalf-Loaded Consolidated Rack8,SSE1,Mu=0.8SingleModelLegHorizontal Load17,480lbs13,720lbs':Diagonal';,.'::;:;:,'.:y::;,;:.:,;,::ygg,':,',;,
19,210IbsSingleModelLegVerticalLoad85,820lbs84,060lbs91,880IbsTotalVerticalLoadonLegsRackLoad-Horizontal RackLoad-VerticalRackBendingMomentLegDisplacement
-Horiz.165,700lbs30,830lbs12,830lbs3.361*10'n-lbs 0.02273in.164,000lbs27,970lbs12,700lbs2.873*10'n-lbs 0.01478in.166,100lbs29,640lbs12,870lbs3.222*10~
in-lbs0.02325in.3.5.3.1.7.5 Comparison ofConnected andDisconnected FuelBeamModelsAllofthemodelsusedthusfarhaveconnected thefuelbeamtotherackatthelowerend.Thismodelsimplification wasperformed toaidconvergence inthewholepoolmodel.Inordertomaintainconsistency betweenthesinglerackmodelsandthewholepoolmodels,thesamesimplification wasmadeonthesinglerackmodels.However,thesinglerackmodel,havinglesscomplexity thanthewholepoolmodels,converged withthefuelbeamessentially disconnected
&omtherack(weakspringswereusedtoconnectthefueltotherackatthebase,inordertoaidconvergence).
Thepurposeofthisstudywastocomparetheresultsoftwoanalyses, onewiththefuelconnected andonewithfueldisconnected, todetermine theeffectsofconnecting thefuelontheforces,moments,anddisplacements seenintherack.Theobjective wastojustifyuseoftheconnected fuelbeammodelforthewholepoolmodels.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage201 I~41L Differences BetweenConnected andDisconnected FuelBeamModelsThefirstanalysiswasperformed usingaconnected fuelbeam(Figure3.5-41),andthesecondanalysiswasperformed usingthedisconnected fuelbeam(Figure3.5-31).BothanalysesmodeledRack8(2B)withconsolidated fuel,andusedacoefficient offrictionof0.8andSSEtimehistorysetnumber1.Thefollowing isalistofthedifferences betweenthetwomodels:1.2.3.45.Separatenodeforbottomoffuelbeam.Thefuelmasswasseparated fromrackmassandappliedatnewnode.Newnodewasattachedtorackbeambyweaklinearandtorsional springs.Ahydrodynamic couplingelementwasaddedatthebottomofthefuelbeam.Thefueltorackhydrodynamic couplingwasredistributed, 25%attopofrack,50%atmiddleofrack,and25%atbottomofrack.Fueltorackgapelementswereaddedatthebottomofthefuelbeamforthe+X,+Y,-X,and-Ydirections.
ResultsofConnected andDisconnected FuelBeamModelComparison Table3.5-63containstheresultsofthecomparison betweentheconnected anddisconnected beammodels.Thetablereportstheresultsoftheindividual evaluations andtheratiooftheresultsoftheconnected beammodelwiththedisconnected beammodel.Thecomparison showsthatthedifferences betweentheresultsofthetwomodelsissmall,andtheconnected beammodelresultsareslightlyhigherandaretherefore moreconservative.
Therefore, useofthesimplerconnected fuelbeammodelisjustified.
Table3.5-63SummaryofConnected andDisconnected FuelBeamModelComparison Results'.:;:.:,::::;:.';;,:.";;,".",:.::Comp oiierit,':j~:;:<g.,-',.::;-,
':.q.Conne'cted':Fuel%Beam:;:;
SingleModelLegHorizontal ForceSingleModelLegVerticalForce34,910lbs138,000Ibs29,070lbs134,500lbsI,'"i"'.zDIs'c'o'nnect'e'd!
Fu'e1N>::,:,:jl:
1.2011.026SumofLegsVertical.Force322,800lbs322,600Ibs1.001Horizontal RackForceVerticalRackForceHorizontal RackMoment62,980lbs13,480Ibs6.645x10'n-Ibs57,090Ibs13,470lbs6.342x10'n-Ibs1.1031.0011.048Horizontal LegDisplacement 0.03354in.0.03120in.1.07551-1258768-01 GinnaSFPRe-racking Licensing ReportPage202 3.5.3.1.8 SummaryofWholePoolModelResultsTheresultsofthewholepoolmulti-rack analysisarepresented inthissection,exceptforselectedtopics(ie,Fuel-to-Rack ImpactLoads)whicharecoveredinothersections.
Thesubsections areasfollows:3.5.3.1.8.1 3.5.3.1.8.2 3.5.3.1.8.3 3.5.3.1.8.4 RackForcesandMomentsforEachLoadCaseFinalRackDisplacements forEachLoadCase'inalRackRotations forEachLoadCaseRepresentative PlotsTable3.5-64SummaryofWholePoolModelLoadCasesSSE:;:j,:::ij~'jL'oading:"':i.:':::'.:'-:.::"'l Unconsolidated
,":::;'-",:::,:'!
P,.crim'eter:,'-',i
',PNo-..:;:::;;Coefficie'rit."of;.:,!
'..'::;:;::.:,-"::i.:Friction',"',
ji;.';",."'.c'"...'a".."
'~::.".i0.81012SSESSESSESSESSESSEOBEOBEOBESSEOBEUnconsolidated Consolidated Unconsolidated Unconsolidated Consolidated Unconsolidated Consolidated Unconsolidated Unconsolidated Mixed'ixed'o NoNoYesYesYesYesYesNoYesYes0.20.80.50.80.80.20.80.20.2Mixed'ixed'otes:
1)FuelloadingsofEmpty,Half-Consolidated, Half-Unconsolidated, Full-Consolidated andFull-Unconsolidated wererandomlyassignedtotheracksinthepool.2)Coefficients ofFrictionrangingfrom0.2to0.8(withameanof0.5,andastandarddeviation of0.15)wererandomlyassignedtotheracksinthepool.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage203 Table3.5-65SummaryofRackLoadingsforLoadCase¹11,,";;::NI,:;:',':;:,;Co ef5cIent'of'::.;'-;"';-'.
101213Half-Unconsolidated, NE'alf-Unconsolidated, NEHalf-Unconsolidated, NWFullUnconsolidated Half-Consolidated, SEFullConsolidated Half-Consolidated, NWEmptyFullConsolidated EmptyFullUnconsolidated FullUnconsolidated FullUnconsolidated 0.480.530.580.750.660.250.430.590.420.310.590.710.47Notes:1)Fuelloadingsofhalffullusedadiagonalfuelloadingforworsteccentricity.
Thelocations ofthecentroidforthehalfloadedconditions wererandomlyassignedtooneofthefourcornersoftherack.Thus,NE=North-East, NW=North-West, SW=South-West andSE=South-East.
2)Coefficients offrictionintherangebetween0.2and0.8wererandomlyassignedtotheracks.ThemeanofthevaluesforLoadCase¹11is0.52andthestandarddeviation is0.148.Distribution ofFuelLoadsforLoadCase¹11Lu~FullConsolidated FullUnconsolidated HalfConsolidated HalfUnconsolidated EmptyQh2423251-1258768-01 GinnaSFPRe-racking Licensing ReportPage204 4
Table3.5-66SummaryofRackLoadingsforLoadCase¹12101213Half-Consolidated, SW'mptyFullUnconsolidated EmptyHalf-Unconsolidated, NWHalf-Unconsolidated, NWEmptyFullUnconsolidated FullUnconsolidated EmptyFullConsolidated Half-Consolidated, SWFullConsolidated 0.420.240.500..450.550.400.430.770.650.410.430.750.36Notes:1)Fuelloadingsofhalffullusedadiagonalfuelloadingforworsteccentricity.
Thelocations ofthecentroidforthehalfloadedconditions wererandomlyassignedtooneofthefourcornersoftherack.Thus,NE=North-East, NW=North-West, SW=South-West andSE=South-East.
2)Coefficients offrictionintherangebetween0.2and0.8wererandomlyassignedtotheracks.ThemeanofthevaluesforLoadCase¹12is0.49andthestandarddeviation is0.153.Distribution ofFuelLoadsforLoadCase812Lua&eFullConsolidated FullUnconsolidated HalfConsolidated HalfUnconsolidated Empty2322451-1258768-01 GinnaSFPRe-racking Licensing ReportPage205 e
3.5.3.1.8.1 RackForcesandMomentsforEachLoadCase~~~~~~Table3.5-67RackForcesFx,Fy&Fz-LC¹1GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹1-Unconsolidated Fuel-SSE-Mu=0.8RackForcesFx,Fy&Fz(lbs)Rack12345678910111213MinFx-52,790-47,730'-52,960-54,020-73,610-67,270-56,650-64I390-35,110-42,430-44,190-37,490-42,010MaxFx48,960,56,87040,22045,66054,30046,41051,99059,14032,44042,91050,49035,78044,180MinFy-95,430-92,630-105,000-95,510-81,040-84,280-24,720-37,730-14,060-24,340-19,790-10,180-23(340MaxFy90,50084,69077,03076,14082,45088,82033,78042,31013,79022,98025,57016,22025,000MinFz-23,460-22,930-22I810-22,690-23,260-23,510-11,460-13,140-10,260-13,330-13I090-10,310-12,090MaxFz-13,890-13I650-14,190-14,190-13,720-14I200-6,824-7,841-5,674-8,283-6,938-5,847-7,388Table3.5-68RackMomentsMx,My&Mz-LC¹1GlNNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹1-Unconsolidated Fuel-SSE-Mu=0.8RackMomentsMx,My&Mz(in-lbs)x1E6Rack12345678910111213MinMx-10.640-10.130-8.325-8.653.-8.884-9.460-3.154-4.669-1.325-2.556-2.783-1.138-2.424MaxMx10.95011.0709.9789.4408.9269.8263.0514.2231.1822.2532.4041.1102.284MinMy-6.556-5.283-4.775-4.703-7.813-7.416-5.735-7'30-3'10-5.044-4.405-3.575-3.972MaxMy5.8996.0424.3504.6805.2275.5426.3236.7293.5334.9024'383.6994.515MinMz-0.522-0.606-0.577-0.377-0.366-0F508-0.208-0.281-0.237-0.146-0.166-0.135-0.189MaxMz0.5950.6770.5350.2720.4250.5820.2390.3310.2150'660.1850.1250.18551-1258768-01 GinnaSFPRe-racking Licensing ReportPage206 I,~'f Table3.5-69RackForcesFx,Fy&Fz-LC¹2GZNNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹2-Unconsolidated Fuel-SSE-Mu=0.2RackForcesFx,Fy&Fz(lbs)Rack1235678910111213MinFx-50,330-52,770-46,020-53I420-43,320-43,000-47,250-44,110-28,350-36,730-35,370-27,700"33,300MaxFx47,92051,31046,44044,68046,07044,00041,46046,20030,65037,95037,46028,63033,330MinFy-63,490-61,840-61,140-61,420-60,860-73,570-28,000-33,770-12,860-26,080-23,670-12,070-25,230MaxFy72,31068,07058,39068,47068,44090,93025,57042,68013,25022,73020,42012,54019,060MinFz-22,660-22,710-22,660-22,660-22,720-22,880-11,200-12,980-10,630-13,010-11,750-9,960-11,570MaxFz-13,900-13,570-13,460-13,460-13,460-13,470-7,134-7,788-5,653-8,373-7,460-6,047-7,651Table3.5-70RackMomentsMx,My&Mz-LC¹2GONNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹2-Unconsolidated Fuel-SSE-Mu=0.2RackMomentsMx,My&Mz(in-lbs)x1E6Rack12345678910111213MinMx-9.342-9.097-7.066-7.515-8.004-8.725-2'67-4.418-1.398-2'49-2.2741~277-2.405MaxMx7.9557.3846'196.4306.5637.9412.4183.8361.0422.2262.1970.9852.260MinMy-5.506-5.325-4.635-4.343-3.653-4.092-5.137-5.276-3.387-4.289-4.102-3.468-3.788MaxMy5.0034.7793.4153.6303.1863.3755.3556.0243.6504.2804.4233.4814.120MinMz-0.370-0.291-0.194-0'25-0.235-0.323-0'44-0.159-0.120-0.112-0.095-0.072-0.129MaxMz0.2920.2500.1960.2350.2700.3680.1670.1960.1290.1360.1030.0750.10051-1258768-01 GinnaSFPRe-racking Licensing ReportPage207 Table3.5-71RackForcesFx,Fy&Fz-LCg3GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCaseg3-Consolidated Fuel-SSE-Mu=0.8RackForcesFx,Fy&Fz(lbs)Rack12345678910111213MinFx-66,330-57,400-60,520-60,290-65,780-69,900-79,380-82,650-52,350-65,250-63/300-49,740-61,500MaxFx71,48054,08057,64051,58054,30056,79086,28098,88065,05072,76074,98059,82067,090MinFy-147,200-131,900-101,700-106,500-98,050-104,700-40,040-51,140-181540-35,700-31,200-19,800-35,060MaxFy137,700119,500108,600107,600108,000117,80045,42060,74021,30036,29032,49023,53033,130MinFz-24,060-24,060-24,060-24,060-24,060-24,060-11,650-13,460-9,837-13,170-12,250-10,250-12,290MaxFz-12,630-12,730-12,750-12,750-12,750-12,750-6,779-7,888-5,310-7,864-6/996-5,530-7/212Table3.5-72RackMomentsMx,My&Mz-LCI3GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCaseg3-Consolidated Fuel-SSE-Mu=0.8RackMomentsMx,My&Mz(in-lbs)x1E6Rack1234i5678910111213MinMx-15.840-14'60-11.160-10.480-9.832-11.480-3.848-5.114-1'79-2.821-2.451-1.403-2.468MaxMx14.95013.60010.7309.84210F42012.0503.3104.9091.6782.8572.6611.4352.972MinMy-6.339-5.366-3.900-3.957-4.897-5.369-7.457-8.893-5.341"6.487-6.969-5.424-6.146MaxMy7.3075.3213.4413.5804.3184.9698.6489.4406.8137.5177.3336.3996.830MinMz-0.888-0'19-0.340-0.220-0.199-0.275-0.180-0.324-0.221-0.182-0.260-0'11-0.284MaxMz0.8980.4910.2720.1730'710.2930.2310.3530.2170.2130.2660'300.32251-1258768-01 GinnaSFPRe-racking Licensing ReportPage208 Table3.5-73RackForcesFx,Fy&Fz-LC¹4GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹4-Unconsolidated Fuel-SSE-Mu=0.5RackForcesFx,Fy&Fz(lbs)Rack12345678910111213MinFx-51/490-46,580-61,530-53,010-64,430-65,330-57,600-63,580-34,780-44,950-41,200-35,730-35,060MaxFx59,47053,85044,99043,26049,92060,21050,18056,17033,07044,39043,38035,10042,560MinFy-92,040-87,100-91,480-89,380-77,530-82,560-29,510-39,670-13,050-26,660-20,200-10,890-24,380MaxFy86,22089,18073,310-79,11086,68088,10033,70043,28012,65029,75023,60011,35024,200MinFz-23,050-23,060-22,840-22,770-23,340-23,550-11/810-13,170-10,720-13,680-12,640-10,530-12,310MaxFz-13,740-13,460-13,940-13,810-13,920-13,900-6,715-7,906-5,496-8,234-7,326-5,671-7,174Table3.5-74RackMomentsMx,My&Mz-LC¹4GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹4-Unconsolidated Fuel-SSE-Mu=0.5RackMomentsMx,My&Mz(in-lbs)x1E6Rack12345678910111213MinMx-10.430-10.430-8.321-8.416-8.156-9.294-3.055-4.580-1.289-2.474-2.634-1.000-2.680MaxMx11.49010.8909.1069.0208'859.5772.8963.9261.3092.2712.1091.1582.662MinMy-5.788-4.886-5.468-5.542-7.789-7.997-6.100-6.961-3.650"4.894-4.448-3.657-3.946MaxMy5.8725.9814.2404.7205.7855.9355.8396.6733.5354.8354.5763.6064.622MinMz-0.504-0.543-0.289-0.417-0.325-0.366-0.159-0.341-0.151-0.169-0.172"0.141-0.155MaxMz0.6540.3760.3360.3660'360.3600.1920.3910.1380.1400.1580.1630.13851-1258768-01 GinnaSFPRe-racking Licensing ReportPage209
Table3.5-75RackForcesFx,Fy&Rz-LC¹5GONNA3DWholePoolModel-WithPerimeter RacksLoadCase¹5-Unconsolidated Fuel-SSE-Mu=0.8RackForcesFx,Fy&Fz(lbs)Rack12345678910111213MinFx-46I410-48,550-51,080-49,500-71,970-81,550-57,340-70I580-33,960-42,600-38,990-35,120-39,010MaxFx51,27054,79042,07042,44047,94053,64054,57059,84035,27046,36055,46035,70042,250MinFy103,900104,600-96,110-97,660-97,320102,900-29,000-45,040-14,720-28,250-24,760-12,600-28,440"MaxFy109,100105,20095,89097,74089,39097,70034,34040,21012,70026,68021,80013,37026,050MinFz-25,870-25,430-24,700-24I700-25,160-25,140-11,510-13,580-9,535-13,250-12,170-9,740-11,970MaxFz-14I070-14,320-14,680-14,740-14,430-14,280-7,102-7,830-5,702-8,087-7,055-5,515-7,140Table3.5-76RackMomentsMx,My&Mz-LC¹5GONNA3DWholePoolModel-WithPerimeter RacksLoadCase¹5-Unconsolidated Fuel-SSE-Mu=0.8RackMomentsMx,My&Mz(in-lbs)x1E6Rack12345678910111213MinMx-12'30-12'60"11.410-11.310-10.040-10.650-3.145-4.538-1.453-2'73-2.199-1.121-2.800MaxMx13.46011.92011.08011.56010.96011.8303.0034.9461.3092.8682.7151.3072.742MinMy-4.887-4.816-4.913-4.252-7.132-6.449-6.261-6.909-3.539-4.944-4.412-3.527-4'33MaxMy4.6974.1643'864.2344.6714.9746.3546.9163.4884.8134.7523.6334'33MinMz-0.709-0.739-0.491-0.421-0.598-0.332-0.212-0.295-0.180-0.155-0.230-0'38-0.180MaxMz0.5480.7500.4060.5110'060.4240.2520.2730.1320.2030.2410.1350.14551-1258768-01 GinnaSFPRe-racking Licensing ReportPage210 Table3.5-77RackForcesFx,Fy&Fz-LC¹6GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹6-Consolidated Fuel-SSE-Mu=0.8RackForcesFx,Fy&Fz(lbs)Rack12345678910111213MinFx-70,290-65,800-62,710-67,340-71,790-72,390-65,260-84,380-53,660-56,100-63,610-53,130-61,190MaxFx59,94050,59049,58047,81056,63063,11090,64084,64056,94072,92063,84066,96062,430MinFy-144,000-129,300-107,200-107,000-101,600-108,400-39,500-54,980-18,140-36,530-31,290-20,620-35,200MaxFy145,800123,700119,700118,800114,300125,10045,21063,02019,66036,96031,35018,89033,010MinFz-25,950-25,800-25,800-25,800-25,800-25,800-11,650-13,470-10,040-13,170-12,290-10,110-12,240MaxFz-13,170-13,170-13,170-13,170-13,170-13,170-6,815-7,838-5,575-8,024-6,851-5,598-6,846Table3.5-78RackMomentsMx,My&Mz-TC¹6GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹6-Consolidated Fuel-SSE-Mu=0.8RackMomentsMx,My&Mz(in-lbs)x1E6Rack12345678910111213MinMx-15.390-15.050-12.430-11.420-10.490-12.310-4.070-5.555-1.646"2.882-2.305-1.408-2.387MaxMx15.93012.78011.70010.85010.77012.1603.2884.6081.5532.7122.5651.5042.648MinMy-5.518-6.292-3.967-4.713-5.261-5.664-6.997-9.052-5.132-6.343-6.481-5.596-5.881MaxMy5.5415.4653.9933.9874.6344.8848.0547.9255'126.5177.0356.0856.491MinMz-0.516-0.533-0.250-0.248-0.144-0.179-0.215-0.323-0'85-0.214-0'32-0.197-0.233MaxMz0.7010.8450.2080.2170.1230.1490.2460.3950.2120.2410.2270.2090.19751-1258768-01 GinnaSFPRe-racking Licensing ReportPage211
Table3.5-79RackForcesFx,FyEFz-LC¹7GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹7-Unconsolidated Fuel-SSE-Mu=0.2RackForcesFx,Fy&Fz(lbs)Rack12345678910111213MinFx-59,090-48/380-43,220-41,430-38,700-46,190-40,620-39,420-28,900-34,250-34,050-27,760-31,360MaxFx55,91046,53039,65053,07044,67043,21038,76046,99029,18037,82035,07029,20031,690MinFy-70,350-67,240-61,890-69,170-73,460-82,560-25,540-42,170-19,840-29,830-25,470-16,670-25,500MaxFy75,78072,95074,53068,82071,53096,50024,89040,08012,64024,80019,90011,61025,950MinFz-24,700-24,700-24,700-24,700-24,700-24,780-11/260-12,770-9/851-12,960-11,700-9,956-11,590MaxFz-14,790-14,880-14,430-14,430-14,430-14,430-7,219-7,940-5,949-8,340-7,545-5,840-7,417Table3.5-80RackMomentsMx,MyaMz-LC¹7GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹7-Unconsolidated Fuel-SSE-Mu=0.2RackMomentsMx,My6Mz(in-lbs)x1E6Rack12345678910111213MinMx-9.349-9.193-7.675-7.884-8.760-9.640-2.710-4.177-1.220-2.426-2.026-1F055-2.354MaxMx8.7968.6627.1006.8187.6799.3032.4414.0011.1642.2402.1611.0062'32MinMy-4.441-4.681-4'05-3.6703~272-3.292-4.906-4.897-3.468-3.856-4.191-3.488-3.620MaxMy4.2464.1403.6913.4613.1143.0664'675.3193.3643.7794.3853.5074.100MinMz-0.221-0.262-0.185-0.276-0.231-0.319-0'25-0.132-0.105-0.108-0.103-0.074-0.094MaxMz0.2780.2730.1810.3080.3040.4070.1710'870.1220.1080.1340.0830.09051-1258768-01 GinnaSFPRe-racking Licensing ReportPage212
Table3.5-81RackForcesFx,Fy&Fz-LCN8GONNA3DWholePoolModel-WithPerimeter RacksLoadCaseg8-Consolidated Fuel-OBE-Mu=0.8RackForcesFx,Fy&Fz(lbs)Rack12345678910111213MinFx-46,380-38,460-30,360-31/580-33I460-32,590-39,830-39,420-39,680-30,590-51,930-41,410-36,700MaxFx42,38037,83034,95033,65029,11027,99030,61034,93031,63025,11042,77040,77030,680MinFy-85,620-74,010-56I530'52,960-73,110-79,430-28,490-37,940-12,420-21,120-20,820-13,350-20,950MaxFy99,54088,26056,64053,88056,47061,01023,87032,40010,90021,76017,42010,07020,830MinFz-20,850-20,850-20,850-20,850-20,850-20,850-10,030-11,270-8,178-11,600-10,360-8,363-10,330MaxFz-15,980-15,980-15/980-15,980-15,980-15,980-8,295-9,219-6,987-9,608-8,628-6,845-8,692Table3.5-82RackMomentsMx,My&Mz-LC58GONNA3DWholePoolModel-WithPerimeter RacksLoadCaseNS-Consolidated Fuel-OBE-Mu=0.8RackMomentsMx,My&Mz(in-lbs)x1E6Rack12345678910111213MinMx-10.640-9.256-5.797-5'71-5.902-6.334-2.145-2.828-1.000-1.602"1.314-0.888-1.584MaxMx10.1608.3475.3915.0306.9577.5922.1293.6050.9942.0662.0930.9222.150MinMy-3.968-3.412-2.581-2.299-2.596-2.647-4.378-4.575-4.348-3.283-5.220-4.740-4.199MaxMy3.6282.8172.1992.0431.8761.9923'843.9333.9592.8885.4944.8114.197MinMz-0.000-0.000-0.000-0F000-0.000-0.000-0.000-0.003-0.061-0.000-0.093-0.100-0.081MaxMz0.0000.0000.0000.0000.0000.0000.0000.0040.0630.0000.0830.1020.05451-1258768-01 GinnaSFPRe-racking Licensing ReportPage213 4lt+AI~gq~\')1~
Table3.5-83RackForcesFx,FyaFz-LC¹9GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹9-Unconsolidated Fuel-OBE-Mu=0.2RackForcesFx,Fy&Fz(lbs)Rack1235678910111213MinFx-38/300-31,830-28,990-31,420-33,230-27,350-37,940-38,580-25,390-30,010-29,570-21,520-24,810MaxFx33,27028,85030,15030,1302S,92026,08030,52032,79027,43027,28030,46021,65025,070MinFy-67,440-62,750-51,200-52,740-60,110-51,230-19,910-24,210-10,250-12,680-14,600-9,840-15,740MaxFy63,89058,13051,07053,58061,87052,20019,40022,5909,79915,04011,9508,59914,310MinFz-21,210-21/210-21,210-21,210-21,210-21,210-9,922-11,030-8,312-11,420-10,300-8,321-10,290MaxFz-17,510-17,510-17,510-17,510-17,510-17,510-8,542-9,418-6,978-9,830-8/733-6,895-8,832Table3.5-84RackMomentsMx,My6Mz-LC¹9GZNNA3DWholePoolModel-WithPerimeter RacksLoadCase¹9-Unconsolidated Fuel-OBE-Mu=0.2RackMomentsMx,My&Mz(in-lbs)x1E6Rack12345678910111213MinMx-8.108-7.581-4.687-4.809-4.988-5.782-1.783-2.363-0.875-10327-1.242-0.674-1.198MaxMx8.3367.5265'835.4915.0745.5531.7652.2890.7831.4691.1760.7031.390MinMy-2.595-2.804-2.539-2.068-2'42-2.086-3'04-3.956-2.935-3'31-3.527-2.988-2.838MaxMy2.9562.5572.4552.0852.2012.1023.3913'403.1212.3593.6772.9662.692MinMz-0.185-0.128-0.167-0.087-0.066-0.078-0.072-0.078-0.054-0.062-0.054-0.032-0.051MaxMz0.1850.1980.1900.0850.0500.0880.0590.0940.0420.0580.0500.0320.06351-1258768-01 GinnaSFPRe-racking Licensing ReportPage214 I
Table3.5-85RackForcesFx,Fy&Fz-LC¹10GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹10-Unconsolidated Fuel-OBE-Mu=0.2RackForcesFx,Fy&Fz(lbs)Rack12345678910111213MinFx-34,740-30,270-34,310-29,010-27,410-39,260-32,790-32,820-25,420-25,500-29,520-24,000-23,010MaxFx37,84034,12029,99034,49031,40029,05032,78036,59027,08026,77024,89024,94021,090MinFy-56,520-59,450-48,080-51,390-58,770-50,920-17,130-27,360-9,398-16,720-13,850-10,900-14,930MaxFy54,27063,30054,76047,61058,87052,15017,40024,2309,52115,82014,2608,51917,800MinFz-19,950-19,950-19,950-19,950-19,950-19,950-9,922-11,030-8,316-11,360-10,200-8,211-10,370MaxFz-16,470-16,470-16,470-16,470-16,470-16,470-8,542-9,418-7,041-9,830-8,896-7,018-8,844Table3.5-86RackMomentsMx,My&Mz-LC¹10GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹10-Unconsolidated Fuel-OBE-Mu=0.2RackMomentsMx,My&Mz(in-lbs)x1E6Rack12345678910111213MinMx-6.622-6.944-5.023-4.659-5.158-4.850-1.831-2.428-0.890-1.387-1.254-0'09-1.364MaxMx7.3047.1495'965.2054.4905.2181.7642.5860.9891.4811.1050.7221.468MinMy-3.373-2.751-2.292-2.365-2.328-2.557-4.039-4.076-3.006-2'90-3.584-3.016-2.631MaxMy3.9733.7102.5872.5432.2572.5103.7053.5723.1012.9473.2522.9702.486MinMz-0.155-0'17-0.121-0.112-0.092-0.063-0.080-0.080-0.062-0.050-0.047-0.044-0'61MaxMz0.1880.0930.1060.1320.0980.0550.0930.0830.0430.0490.0540.0380.06151-1258768-01 GinnaSFPRe-racking Licensing ReportPage215 Table3.5-87RackForcesFx,Fy&Fz-LC¹11GZNNA3DWholePoolModel-WithPerimeter RacksLoadCase¹11-MixedFuel-SSE-Mu=MixedRackForcesFx,Fy&Fz(lbs)Rack12345678910111213MinFx-31,020-32,360-27940-31,290-34,340-58,400-39,090-15,480-53/780-10,960-41,190-33,950-42,590MaxFx26,09026,29025,10042,99033,51062,02040,39015,38055,23012,07039,65033,81035,970MinFy-70,390-61,450-55,930-68,710-59,820-81,720-27,180-17,430-14,180-12,090-18,910-12,700-22,810MaxFy46,51047,21055,93061,97074,51098,51023,81022,32016,25013,52020,72015,99022,310MinFz-24,290-23,730-24,100-24,700-25,370-25,800-11,240-13,490-9,322-,12,710-11,640-9,940-11,870MaxFz-15,070-15/370-15,410-14,440-14,390-13,160-7,180-7,898-6,032-8,540-7,394-5/738-7,756Table3.5-88RackMomentsMx,My&Mz-LC¹11GONNA3DWholePoolModel-WithPerimeter RacksLoadCase¹11-MixedFuel-SSE-Mu=MixedRackMomentsMx,My&Mz(in-lbs)x1E6Rack12345678910111213MinMx-5.815-5.501-5'39-6.993-7.137-9.980-1:943-0.734-1.500-0.585-2.133-0.997-2.123MaxMx8.2227.5806.4777.2575.7158.4691.7970.7041.0750.5142.3021.0942'20MinMy-2.948-3.246-2.098-3.501-2.399-3.812-3.506-0.912-5.366-0.805-4.109-3.601-3.954MaxMy2.7182.9651.8943.9122.7775.3114.2050.8966.0150.8784.3563.3804.322MinMz-0.261-0.248-0.234-0.094-0.172-0.235-0.108-0.102-0'06-0.039-0.127-0.088-0.142MaxMz0.2250.1980.2070.0740.1490.2850.1200.1180.1330.0480.1170.0920.16851-1258768-01 GinnaSFPRe-racking Licensing ReportPage216
Table3.5-89RackForcesFx,Fy8Fz-LC¹12GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹12-MixedFuel-OBE-Mu=MixedRackForcesFx,Fy&Fz(lbs)Rack1235678910111213MinFx-181950-11,140-23,560-11,610-17,680-15,970-9,893-37,740-27,570-10,460-39,560-21,370-32,750MaxFx16,9808,00927,67011,26015,95016,2309,51431,64027,0109,99345,87028,87032,160MinFy-40,320-15,440-38,210-17,270-32,500-37,820-6,669-22,830-8,257-8,776-13,820-7,209-201110MaxFy45,93014,01041,05018,84034,20034,7806,99420,0609,2158,30413,7507,71815,010MinFz-21,470-21,580-21,230-21,110-20,970-20,920-10,390-11,030-8,351-12,190-10,250-8,485-10,330MaxFz-17,750-17,860-17,520-18,360-18,100-18,110-8,539-9,418-6,886-9,684-8,628-6,851-8,691Table3.5-90RackMomentsMxIMyaMz-LC¹12GZNNA3DWholePoolModel-WithPerimeter RacksLoadCase¹12-MixedFuel-OBE-Mu=MixedRackMomentsMx,My6Mz(in-lbs)x1E6Rack12345678910111213MinMx-5.514-1.665-3.134-1.722-3.105-3'31-0.474-1.809-0.699-0.467-0.945,-0.496-1.334MaxMx4.3771.6783.4431.6543.3584.0700.4751.9850.6340.4771.3980.6861'29MinMy-1.124-0.722-1.472"0'38-1.257-1.436-0.647-3.784"3.083-0.728-4.905-2.126-3.454MaxMy1'900.5711.2200.7271.3561.3860.6533.6263'750.7385.3923.1093.780MinMz-0.075-0.034-0.000-0'31-0.055-0.052-0.025-0.040-0.057-0.040-0.039-0.049-0.027MaxMz0.0830.0290.0000.0370.0580.0590.0290.0340.0600.0330.0330.0620.03151-1258768-01 GinnaSFPRe-racking Licensing ReportPage217 3.5.3.1.8.2 FinalRackDisplacements forEachLoadCaseTable3.5-91FinalRackRelativeEast-West Disp.-LCgiGINNA3DWholePoolModel-WithoutPerimeter RacksLoadCaseN1-Unconsolidated Fuel-SSE-Mu=0.8Fa.naReRack/Rack WW/1WW/21/32/4.3/S4/6S/7S/86/86/96/108/ii9/i210/i311/EW12/EW13/EWatzveHorzzonta GapStatusOpeningClosingClosingOpeningClosingClosingOpeningClosingClosingOpeningOpeningClosingClosingOpeningOpeningOpeningClosingXDisp.E-WAbsoluteMagnitude 0.024170.021800.036670.009130.003360.005520.002670.008110.005780.035450.018400.000520.023120.018700.024490.005850.01891ora(in)racs:Table3.5-92FinalRackRelativeNorth-South Disp.-LC01GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCasegl-Unconsolidated Fuel-SSE-Mu=0.8Fz.naReRack/Rack SW/11/22/NWSW/33/44/NWsw/ss/66/NWSW/77/88/99/1010/NWSW/1111/1212/1313/NWatxveHorzzonta GapStatusOpeningOpeningClosingClosingOpeningOpeningOpeningClosingOpeningClosingClosingOpeningOpeningOpeningClosingOpeningOpeningOpeningYDxsp.N-SAbsoluteMagnitude 0.012730.010730.023450.023920.000860.023060.001730.019100.017370.097080.022450.002350.049140.068040.149160.014880.025720.10856ora(in)racs:51-1258768-01 GinnaSFPRe-racking Licensing ReportPage218 llljA,A...
4:%IIA~It~~,0P4ttle+.aft~h Table3.5-93FinalRackRelativeEast-West Disp.-LC¹2GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹2-Unconsolidated Fuel-SSE-Mu=0.2FinaReatzveHora.zonta XDxsp.E-Woralracs:Rack/Rack WW/1WW/21/32/43/54/65/75/86/86/96/108/119/1210/1311/EW12/EW13/EWCapStatusClosingOpeningClosingClosingClosingClosingClosingClosingClosingClosingOpeningClosingClosingClosingOpeningOpeningClosingAbsoluteMagnitude(in) 0.007630.034300.007250.002080.010170.011640.195460.141370.186990.207720.055270.130150.038440.067190.296560.225580.00865Table3.5-94FinalRackRelativeNorth-South GlNNA3DWholePoolModel-WithoutPerimeter LoadCase¹2-Unconsolidated Fuel-SSE-MuDisp.-LC¹2Racks0.2Fz.nalRelativeHorz.zontal YDz.sp.N-Sforalracs:Rack/Rack SW/11/22/NWSW/33/44/NWSW/55/66/NWSW/77/88/99/1010/NWSW/1111/1212/1313/NWGapStatusClosingOpeningOpeningClosingClosingOpeningClosingOpeningOpeningClosingClosingOpeningOpeningOpeningClosingOpeningClosingOpeningAbsoluteMagnitude(in) 0.141720.054690.087030.154610.004410.159020.160200.010210.149990.215960.007280.040890.019310.163040.14911'.075540.111410.1849851-1258768-01 GinnaSFPRe-racking Licensing ReportPage219
~4 Table3.5-95FinalRackRelativeEast-West Disp.-LCN3GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCaseN3-Consolidated Fuel-SSE-Mu=0.8FinaReativeHorizonta Disp.E-Woraracs:Rack/Rack WW/1WW/21/32/43/54/65/75/86/86/96/108/119/1210/1311/Ew12/Ew13/EwGapStatusOpeningOpeningClosingOpeningClosingOpeningClosingClosingClosingClosingClosingClosingOpeningOpeningOpeningOpeningClosingAbsoluteMagnitude(in) 0.054600.000680.049840.002630.000950.000920.017450.007250.007660.033090.011430.031670.024190.022160.035110.004690.01494Table3.5-96FinalRackRelativeNorth-South Disp.-LCN3GlNNA3DWholePoolModel-WithoutPerimeter RacksLoadCaseN3-Consolidated Fuel-SSE-Mu=0.8FinalRelativeHorizontal Disp.N-Sforallracks:Rack/Rack SW/11/22/NWSw/33/44/NWSW/55/66/NwSw/7,7/88/99/1010/NWSw/1111/1212/1313/NWGapStatusClosingOpeningClosingClosingOpeningOpeningClosingOpeningClosingClosingClosingClosingOpeningOpeningClosingOpeningClosingOpeningAbsoluteMagnitude 0.001540.013100.011560.009110.003290.005820.008780.012830.004050.005930.024830.029800.051610.008940.060630.040960.032450.0521251-1258768-01 GinnaSFPRe-racking Licensing ReportPage220
~-~P Table3.5-97FinalRackRelativeEast-West Disp.-LCN4GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCaseg4-Unconsolidated Fuel-SSE-Mu=0.5Fa.naReatzveHorizonta XDz.sp.E-Woraracs:Rack/Rack WW/1WW/21/32/43/S4/6S/75/86/86/96/io8/119/i210/i311/EW12/EW13/EWGapStatusClosingClosingOpeningOpeningClosingClosingOpeningOpeningOpeningOpeningOpeningClosingClosingOpeningOpeningOpeningClosingAbsoluteMagnitude(in) 0.000090'08310.003090.010360.019170.007190.000680.039860.028830.043920.007940.031250.043780.090560.007550.004990.09336Table3.5-98FinalRackRelativeNorth-South Disp.-LCI4GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCaseN4-Unconsolidated Fuel-SSE-Mu=0.5Fz.naRelativeHorxzonta YDz.sp.N-Sforaracs:Rack/Rack SW/11/22/NWSW/33/44/NWsw/ss/66/NWSW/77/88/99/1010/NWSW/1111/1212/1313/NWGapStatusClosingOpeningClosingClosingOpeningOpeningClosingClosingOpeningClosingClosingOpeningClosingOpeningClosingClosingOpeningOpeningAbsoluteMagnitude(in) 0.001230.025320.024090.022820.003940.018880.004770.011370.016140.058390.023070.020800.030800.091450.083630.016340.051660.0483251-1258768-01 GinnaSFPRe-racking Licensing ReportPage221 n"rrC.~<,Was.~~rr;..w~!~'H'rrr1rj Table3.5-99FinalRackRelativeEast-West Disp.-LC¹5GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹5-Unconsolidated Fuel-SSE-Mu=0.8Fz.naReativeHors.zonta XDz.sp.E-Woraracs:Rack/Rack WW/1WW/21/32/43/S4/6S/7S/86/8-6/96/108/119/1210/1311/EW12/EW13/EWGapStatusOpeningOpeningClosingClosingOpeningOpeningOpeningOpeningClosingClosingClosingOpeningOpeningOpeningClosingClosingClosingAbsoluteMagnitude(in) 0.030920.001700.036630.004220.018470.030230.015690.013560.001380.022690.027170.021420.048830.051460.047750.053850.05200Table3.5-100FinalRackRelativeNorth-South Disp.-LC¹5GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹5-Unconsolidated Fuel-SSE-Mu=0.8FinaReatzveHors.zonta YDa.sp.N-Soraracs:Rack/Rack SW/11/22/NWSW/33/44/NWsw/ss/66/NWSW/77/88/99/1010/NWSW/1111/1212/1313/NWGapStatusOpeningClosingClosingOpeningClosingOpeningClosingClosingOpeningClosingClosingClosingOpeningOpeningClosingClosingOpeningOpeningAbsoluteMagnitude(in) 0.050420.019510.030910.006620.009330.002710.004740.001040.005770.052070.002280.048590.037730.065220.052600.019830.017400.0550351-1258768-01 GinnaSFPRe-racking Licensing ReportPage222 Iil>>tA~~4~
Table3.5-101FinalRackRelativeEast-West Disp.-LC¹6GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹6-Consolidated Fuel-SSE-Mu=0.8FinaReatzveHors.zonta XDz.sp.E-Woraracs:Rack/Rack WW/1WW/21/32/43/54/65/75/86/86/96/io8/ii9/12io/i311/EW12/EW13/EWCapStatusOpeningOpeningOpeningClosingClosingClosingClosingOpeningOpeningClosingOpeningClosingOpeningOpeningOpeningClosingClosingAbsoluteMagnitude(in) 0.004540'06600.002290.000020.002760.003570.000370.015890.016960.006480.001030.051800.004670.026880.031830.001200.03092Table3.5-102FinalRackRelativeNorth-South Disp.-LC¹6GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹6-Consolidated Fuel-SSE-Mu=0.8Fa.naReatzveHorz.zonta YDx,sp.N-Sforaracs:Rack/Rack SW/11/22/NWSW/33/44/NWsw/55/66/NWSW/77/88/99/1010/NWSW/1111/1212/1313/NWGapStatusOpeningClosingClosingClosingClosingOpeningClosingOpeningOpeningClosingClosingClosingOpeningOpeningClosingOpeningClosingOpeningAbsoluteMagnitude(in) 0.059790.023410.036390.006310.001240.007550.010720.007980.002740.012550.027770.007800.026770.021350.045370.016380.020280.0492751-1258768-01 GinnaSFPRe-racking Licensing ReportPage223
~Q-~1I Table3.5-103FinalRackRelativeEast-West Disp.-LC¹7GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹7-Unconsolidated Fuel-SSE-Mu=0.2FinaReatzveHors.zonta XDzsp.E-Woraracs:Rack/Rack WW/1WW/21/32/43/S4/6'/7S/86/86/96/108/119/1210/1311/EW12/EW13/EWGapStatusOpeningOpeningOpeningClosingOpeningClosingOpeningOpeningOpeningOpeningOpeningClosingClosingClosingOpeningOpeningClosingAbsoluteMagnitude 0'04230.045900.005300'42300.015370.004410.034290.033640.059360.008900.054440.215700.275500.038070.157160.267420.01555(in)Table3.5-104FinalRackRelativeNorth-South Disp.-LC¹7GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹7-Unconsolidated Fuel-SSE-Mu=0.2Fa.nalRelativeHorzzonta YDz.sp.N-Soraracs:Rack/Rack SW/11/22/NWSW/33/44/NWsw/ss/66/NWSW/77/88/99/1010/NWSW/1111/1212/1313/NWGapStatusClosingOpeningOpeningClosingClosingOpeningClosingClosingOpeningClosingClosingOpeningOpeningOpeningClosingOpeningClosingOpeningAbsoluteMagnitude(in) 0.059380'27150.032230.049460.035720.085180.101250.062970.164220.200510.019690.029840'42740.147620.189760.043030.038870.1856051-1258768-01 GinnaSFPRe-racking Licensing ReportPage224
Table3.5-105FinalRackRelativeEast-West Disp.-LCN8GINNA3DWholePoolModel-WithPerimeter RacksLoadCaseNS-Consolidated Fuel-OBE-Mu=0.8FinaReativeHorizonta XDisp.E-Woraracs:Rack/Rack WW/1WW/21/32/43/S4/6S/7S/86/86/96/108/119/1210/1311/EW12/EW13/EWCapStatusClosingClosingClosingOpeningOpeningOpeningOpeningOpeningOpeningClosingOpeningOpeningOpeningClosingOpeningClosingOpeningAbsoluteMagnitude(in) 0.002490.003090.000100.000140.000410.000220.000380.000620.001160.005950.000290.000850.009210.009650.000710.000540.01209Table3.5-106FinalRackRelativeNorth-South Disp.-LCI8GINNA3DWholePoolModel-WithPerimeter RacksLoadCaseNS-Consolidated Fuel-OBE-Mu=0.8FinaReativeHorizonta YDisp.N-Sforaracs:Rack/Rack SW/11/22/NWSW/33/44/NWSW/SS/66/NWSW/77/88/99/1010/NWSW/1111/1212/1313/NWGapStatusOpeningClosingClosingClosingOpeningClosingClosingClosingOpeningClosingClosingOpeningOpeningOpeningClosingClosingOpeningOpeningAbsoluteMagnitude(in) 0.003780.000740.003040.000120.000160.000040.004590.000710.005300.004520.001760.000410.001960.003910.008730.010880.011580'080351-1258768-01 GinnaSFPRe-racking Licensing ReportPage225 i>%ca Table3.5-107FinalRackRelativeEast-West Disp.-LCN9GINNA3DWholePoolModel-WithPerimeter RacksLoadCaseN9-Unconsolidated Fuel-OBE-Mu=0.2Fz.naReativeHors.zonta XDz.sp.E-Woraracs:Rack/Rack WW/1WW/21/32/43/54/65/75/86/86/96/108/119/1210/1311/EW12/EW13/EWGapStatusClosingOpeningOpeningClosingOpeningOpeningOpeningClosingClosingClosingClosingOpeningOpeningClosingClosingOpeningOpeningAbsoluteMagnitude(in) 0.016060.005680.006330.007920.012200.010360.023890.011080.016720.021630.015340.041940.000880.098810.033340.012640.10603Table3.5-108FinalRackRelativeNorth-South Disp.-LC59GINNA3DWholePoolModel-WithPerimeter RacksLoadCase49-Unconsolidated Fuel-OBE-Mu=0.2FinaReatzveHors.zonta YDa.sp.N-Sforaracs:Rack/Rack SW/11/22/NWSW/33/44/NWSW/55/66/NWSW/77/88/99/1010/NWSW/1111/1212/1313/NWGapStatusClosingOpeningClosingClosingOpeningOpeningOpeningClosingOpeningOpeningClosingOpeningClosingClosingClosingOpeningClosingOpeningAbsoluteMagnitude(in) 0.011790.051420.039630.016800.002750.014050.000120.022730.022600.000180.019660.034190.007810.006910.033250.039520.013290.0070251-1258768-01 GinnaSFPRe-racking Licensing ReportPage226 k
Table3.5-109FinalRackRelativeEast-West Disp.-LC¹10GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹10-Unconsolidated Fuel-OBE-Mu=0.2Fz.naReataveHorzzonta Dz.sp.E-Woraracs:Rack/Rack Ww/1WW/21/32/43/54/65/75/86/86/96/108/ii9/i210/i311/Ew12/Ew13/EwGapStatusClosingOpeningOpeningClosingOpeningClosingOpeningOpeningOpeningClosingClosingOpeningClosingClosingClosingOpeningOpeningAbsoluteMagnitude(in) 0.016430.022050.016200.016300.001080.006080.006850.014790.015960.013170.043310.062240.032780.082060.077870.046280.12570Table3.5-110FinalRackRelativeNorth-South Disp.-LC¹10GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹10-Unconsolidated Fuel-OBE-Mu=0.2FinalRelativeHorizontal Dxsp.N-Sforallracs:Rack/Rack SW/11/22/NWSw/33/44/NWSW/55/66/NWSw/77/88/99/1010/NWSw/1111/1212/1313/NWGapStatusClosingOpeningOpeningClosingOpeningOpeningClosingOpeningClosingClosingClosingOpeningClosingClosingClosingOpeningClosingOpeningAbsoluteMagnitude(in) 0.069400.01541'0.053990.017150.008150.009000.024080.032330.008250.011770.007040.021160.001550.000810.026750.025550.011330.0125351-1258768-01 GinnaSFPRe-racking Licensing ReportPage227 Table3.5-111FinalRackRelativeEast-West Disp.-LC¹11GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹11-MixedFuel-SSE-Mu=MixedFinaReatzveHors.zonta Dzsp.E-Woraracks:Rack/Rack WW/1WW/21/32/43/54/65/75/86/86/96/108/ii9/i210/i311/EW12/EW13/EWGapStatusOpeningOpeningClosingClosingOpeningOpeningOpeningClosingClosingOpeningOpeningOpeningClosingClosingOpeningOpeningClosingAbsoluteMagnitude(in) 0.046140.028640.075180.023140.035750.001710.028460.078950.079440.002810.023020.032530.069760.020950.039700.059730.00929Table3.5-112FinalRackRelativeNorth-South Disp.-LC¹11GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹11-MixedFuel-SSE-Mu=MixedFz.nalReatzve'ors.zonta Da.sp.N-Sforallracks:Rack/Rack SW/11/22/NWSW/33/44/NWSW/55/66/NWSW/77/88/99/1010/NWSW/1111/1212/1313/NWGapStatusClosingOpeningOpeningClosingOpeningOpeningClosingClosingOpeningOpeningClosingClosingOpeningOpeningClosingOpeningClosingOpeningAbsoluteMagnitude(in) 0.136540.063510.073030.012860.007530.005330.008820.008480'17300.015090.079440.018510'33410.049450.059670.029350.038410.0687251-1258768-01 GinnaSFPRe-racking Licensing ReportPage228 Table3.5-113FinalRackRelativeEast-West Disp.-LCg12GINNA3DWholePoolModel-WithPerimeter RacksLoadCaseN12-MixedFuel-OBE-Mu=MixedFinaReativeHorizonta XDisp.E-Woraracs:Rack/Rack WW/1WW/21/32/43/54/65/75/86/86/96/108/119/1210/1311/EW12/EW13/EWCapStatusClosingClosingOpeningOpeningClosingClosingOpeningOpeningOpeningClosingOpeningClosingOpeningClosingOpeningClosingOpeningAbsoluteMagnitude(in) 0.006990.000330.005790.005910.002970.010730.067920.004850.005830'03940.017720.008020.027320.020900.007340.018230.00833Table3.5-114FinalRackRelativeNorth-South Disp.-LCN12GINNA3DWholePoolModel-WithPerimeter RacksLoadCaseN12-MixedFuel-OBE-Mu=MixedFinaRelativeHorizonta Disp.N-Soralracks:Rack/Rack SW/11/22/NWSW/33/44/NWSW/55/66/NWSW/77/88/99/1010/NWSW/1111/1212/1313/NWGapStatusOpeningClosingOpeningOpeningClosingOpeningOpeningClosingClosingOpeningClosingClosingClosingOpeningClosingClosingOpeningOpeningAbsoluteMagnitude(in) 0.000020.048070.048040.000940.004680.003750.002570.000580.001990.010270.013900.010170.025910.039710.006240.054340.055290.0053051-1258768 GinnaSFPRe-racking Licensing ReportPage229 ti'%,~I 3.5.3.1.8.3 FinalRackRotations forEachLoadCaseTable3.5-115FinalRackRotations
-LCN1GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹1-Unconsolidated Fuel-SSE-Mu=0.8FinalRackRotations ROTZ(AboutVertical)
Rack12345678910111213Radians-0.00187-0.000840.00004-0.000120.000320.000090.000350.000780.001280.00027-0.000590.001020.00044Degrees-0.10722-0.048020.00232-0.006680.018060.005210.020060.044640.073480.01554-0.033530.058660.02527Table3.5-116FinalRackRotations
-LC52GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹2-Unconsolidated Fuel-SSE-Mu=0.2FinalRackRotations ROTZ(AboutVertical)
Rack12345678910111213Radians-0.00180-0.00054-0.00014-0.000290.000700.000140.000200.002570.001040.001710.002410.002180.00337Degrees-0.10340-0.03108-0.00784-0.016720.040140.008270.011390.147190.059660.097720.137860.124860.1932051-1258768-01 GinnaSFPRe-racking Licensing ReportPage230 4151 Table3.5-117GINNA3DWholeLoadCase53FinalRackRotations
-LCg3PoolModel-WithoutPerimeter RacksConsolidated Fuel-SSE-Mu=0.8FinalRackRotations ROTZ(AboutVertical)
Rack12345678910111213Radians-0.000350.00003-0.00007-0.00003-0.000010.000010.000840.000950.001100.000680.000710.002220.00080,Degrees-0.020010.00150-0.00393-0.00168-0.000550.000680.048310.054250.063300.038750.040720.127080.04609Table3.5-118GINNA3DWholeLoadCase54FinalRackRotations
-LCQ4PoolModel-WithoutPerimeter RacksUnconsolidated Fuel-SSE-Mu=0.5FinalRackRotations ROTZ(AboutVertical)
Rack12345678910111213Radians0'00090.000100.00012-0.000030.00008-0.00009-0.00054-0.000630.00022-0.000170.001860.002080.00192Degrees0.005060.005510.00713-0.001970.00436-0.00542-0.03118-0.036300.01281-0.009990.106350.118940.1097851-1258768-01 GinnaSFPRe-racking Licensing ReportPage231
Table3.5-119GINNA3DWholeLoadCaseI5-FinalRackRotations
-LCg5PoolModel-WithPerimeter RacksUnconsolidated Fuel-SSE-Mu=0.8FinalRackRotations ROTZ(AboutVertical)
Rack12345678910111213Radians-0.00029-0.00067-0.00022-0.00010-0.000140.00004-0.00079-0.000560.00033-0.000170.00029-0.00011-0.00169Degrees-0.01645-0.03828-0.01269-0.00583-0.008300.00208-0.04528-0.031830.01918-0.009500.01665.-0.00611-0.09679Table3.5-120GENNA3DWholeLoadCaseN6FinalRackRotations
-LCN6PoolModel-WithPerimeter RacksConsolidated Fuel-SSE-Mu=0.8FinalRackRotations ROTZ(AboutVertical)
Rack12345678910111213Radians-0.00019-0.00018-0.00005-0.00006-0.000000.000000.000240.000830.000310.000310.001030.000770.00077Degrees-0.01111-0.01018-0.00305-0.00352-0.000220.000270.013670.047350.017530.017970.058960.044320,.0439151-1258768-01 GinnaSFPRe-racking Licensing ReportPage232
Table3.5-121GINNA3DWholeLoadCase57FinalRackRotations
-LCN7PoolModel-WithPerimeter RacksUnconsolidated Fuel-SSE-Mu=0.2FinalRackRotations ROTZ(AboutVertical)
Rack12345678910111213Radians-0.00041-0.00046-0.00029-0.000070.000430.00034-0.000390.000580.000950.000780.002380.002500.00183Degrees-0.02349-0.02647-0.01673-0.004180.024910.01946-0.022340.032970.054570.044820.136370.142960.10472Table3.5-122FinalRackRotations
-LCNSGINNA3DWholePoolModel-WithPerimeter RacksLoadCaseI8-Consolidated Fuel-OBE-Mu=0.8FinalRackRotations ROTZ(AboutVertical)
Rack12345678910111213Radians-0.00000-0.000000.00000-0.00000-0.00000-0.00000-0.000000.00000-0.000010.000000.000220.000350.00004Degrees-0.00000-0.000000.00000-0.00000-0.00000-0.00000-0.000000.00005-0.000670.000000.012750.019860.0021251-1258768-01 GinnaSFPRe-racking Licensing ReportPage233 HPL,E Table3.5-123GINNA3DWholeLoadCase¹9FinalRackRotations
-LC59PoolModel-WithPerimeter RacksUnconsolidated Fuel-OBE-Mu=0.2FinalRackRotations ROTZ(AboutVertical)
Rack12345678910ll1213Radians-0.00013-0.000220.00005-0.00001-0.00003-0.00002-0.00002-0.000040.000470.000050.000380.000740.00010Degrees-0.00762-0'12330.00297-0.00038-0.00171-0.00132-0.00133-0.002250.026660.003020.022010.042590.00590Table3.5-124FinalRackRotations
-LCg10GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹10-Unconsolidated Fuel-OBE-Mu=0.2FinalRackRotations ROTZ(AboutVertical)
Rack12345678910111213Radians0.00026-0.00017-0.00008-0.00004-0.00002-0.000010.00038-0.000060.000720.000350.000010.00045-0.00019Degrees0.01470-0.00991-0.00477-0.00228-0.00122-0.000510.02198-0.003640.041130.020290.000410.02575-0.0106651-125S768-01 GinnaSFPRe-racking Licensing ReportPage234
Table3.5-125FinalRackRotations
-LCg11GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹11-MixedFuel-SSE-Mu=MixedFinalRackRotations ROTZ(AboutVertical)
Rack12345678910111213Radians0'00900.00057-0.00049-0.00001-0.000070.000060.000910.000480.000790.000900.000030.000240.00040Degrees0.051430.03237-0.02835-0.00050-0.003930.003210.052290.027300.045310.051520.001520.013520.02318Table3.5-126FinalRackRotations
-LCN12GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹12-MixedFuel-OBE-Mu=MixedFinalRackRotations ROTZ(AboutVertical)
Rack1235678910111213Radians-0.000010.000230.00000-0.00020-0.00000-0.00002-0.00057-0.000020.00024-0.00067-0.00003-0.001470.00001Degrees-0.000400.013310.00000-0.01164-0.00009-0.00136-0.03250-0.000970.01360-0.03824'-0.00168
-0.084350.0004451-1258768-01 GinnaSFPRe-racking Licensing ReportPage235 3.5.3.1.8.4 Representative PlotsThefollowing plotsarerepresentative ofalltheplotsthatwereobtainedforeachloadcase.Figure3.5-43VerticalLegForceFz,RackI,Leg1-LC¹l(IIof02)FZIOl2TIMEGINNAWPM,LC¹1,Unconsolidated Fuel,mu=0.8,SSE51-125878-01GinnaSFPRe-racking Licensing ReportPage236 Figure3.5-44SumofVert.LegForcesFz,Rack1-LC01(I10002)2bR1FZ18lb1012lb18TIMEGINNAWPM,LC¹1,Unconsolidated Fuel,mu=0.8,SSE51-1257-1GinnaSFPRe-racking Licensing ReportPage237
Figure3.5-45Rack1Horizontal ForceFy-LC¹1(~Ioee2)Rck1FY-l0002I0l2IS22TINEGINNAWPM,LC¹1,Unconsolidated Fuel,mu=0.8,SSE51-257-01GinnaSFPRe-racking Licensing ReportPage238 Figure3.5-46Rack1MomentMx-LC¹1(s104t4)Rck1MX7-125021012I8TIMEGINNAWPM,LC¹1,Unconsolidated Fuel,mu=0.8,SSE51-12587-1GinnaSFPRe-racking Licensing ReportPage239
Figure3.5-47Rack7MomentMy-LCQ1(Ilosel)Rck7MY1012TIMEGINNAWPM,LCC1,Unconsolidated Fuel,mu=0.8,SSE1-157-01GinnaSFPRe-racking Licensing ReportPage240 Figure3.5-48Fuel/Rack ImpactLds.+X,Rack1Top-LC01(II0012IR1TGFXPII25IO'ISGINNAWPM,LC¹1,Unconsolidated Fuel,mu=0.8,SSE51-12587-01GinnaSFPRe-racking Licensing ReportPage241 Figure3.5-49RelativeDispl.DXRack5/Rack7, Top-LC¹1(s10t"I)2~DX-5-72o5101218TIMEGINNAWPM,LC¹1,Unconsolidated Fuel,mu=0.8,SSE51-12587-1GinnaSFPRe-racking Licensing ReportPage242
Figure3.5-50Rel.Displ.DXRack5/Rack7, Base-LC¹1(110s-2)DX-5-710l2IdISTIMEGINNAWPM,LC¹1,Unconsolidated Fuel,mu=0.8,SSE51-187-1GinnaSFPRe-racking Licensing ReportPage243
~%1II.I Figure3.5-51Rel.Displ.DYRackl/Rack2, Base-LC¹1(~Iofo"2)DY-1-221I0l2IeIS22TIMEGINNAWPM,LC¹1,Unconsolidated Fuel,mu=0.8,SSE51-1257-1GinnaSFPRe-racking Licensing ReportPage244
Figure3.5-52VerticalLegForceFz,Rack1,Leg1-LC¹2(~1000217FZ10121e1822TINEGINNAWPM,LC¹2,Unconsolidated Fuel,mu=0.2,SSE51-1257-1GinnaSFPRe-racking Licensing ReportPage245 Figure3.5-53SumofVerticalLegForcesFz,Rack1-LC¹2(sl0002}272e23<<CR1FZIS17lel5001012leIS22GINNAWPM,LC¹2,Unconsolidated Fuel,mu=0.2,SSE51-2578-1GinnaSFPRe-racking Licensing ReportPage246 I
Figure3.5-54Rack1Horizontal ForceFy-LC02(>>oee2>Rck1FY"2"80010121822GINNAWPM,LC02,Unconsolidated Fuel,mu=0.2,SSE51-1257-1GinnaSFPRe-racking Licensing ReportPage247 Xh4v~
Figure3.5-55Rack1MomentMx-LC¹2(~l00t4)Rck1MXl0002l0l2l6ls22TIMEGINNAWPM,LC¹2,Unconsolidated Fuel,mu=0.2,SSE51-12578-01GinnaSFPRe-racking Licensing ReportPage248 1<a.sa>c.r1
~sii**~.W4a"~~~\l4L.t%4~I Figure3.5-56Rack7MomentMy-LC02(s10ee3)1cCRck7MY-e25021012leTIMEGINNAWPM,LC¹2,Unconsolidated Fuel,mu=0.2,SSE1-1257-1GinnaSFPRe-racking Licensing ReportPage249 Figure3.5-57Fuel/Rack ImpactLoads+X,Rack1Top-LC¹2t~1041)R1TGFXPCC-710121822TIMEGINNAWPM,LC¹2,Unconsolidated Fuel,mu=0.2,SSE51-1257-1GinnaSFPRe-racking Licensing ReportPage250 j\
Figure3.5-58RelativeDispl.DXRack5/Rack7, Top-LC¹2(I1000-1)20DX-5-7<<C-210121822TIMEGINNAWPM,LC¹2,Unconsolidated Fuel,mu=0.2,SSE1-157-1GinnaSFPRe-racking Licensing ReportPage251
- 1~
Figure3.5-59RelativeDispl.DXRack5/Rack7, Base-LC¹2(~1000-l)2020DX-5-71.6le0-l.22l012IST1MEGINNAWPM,LC¹2,Unconsolidated Fuel,mu=0.2,SSE51-17-1GinnaSFPRe-racking Licensing ReportPage252 1f~
Figure3.5-60RelativeDispl.DYRackl/Rack2, Base-LC¹2(sloco-I)<<b<<CDY-1-2IOl2IS22TIMEGINNAWPM,LC¹2,Unconsolidated Fuel,mu=0.2,SSE51-1257-1GinnaSFPRe-racking Licensing ReportPage253
3.5.3.1.9 SupportLegandBearingPadAnalysisThemodelshowninFigure3.5-61wasusedtodetermine thestressesinthesupportleg,andbearingstressesintheconcretefordead-weiglit, thermalandseismic(OBE8'cSSE)loadings.
Boussinesq's solutionforelastichalf-space (Reference 3.35)wasalsousedtoestimatebearingstressesintheconcrete.
Thepoollinerisa1/4inchASTMA240Type304SSplate.Thesupportpadsare6.6929inchdiameterASTMA479Type304LSSbarstock.Thefollowing materialproperties (andallowables) wereusedinthisevaluation:
E(304L)=27.9 x10psi@150'(27.71x10psi@180')a(304L)=8.74E-6 in/in'F180'(8.67E-6in/in'F150')Table3.5-127MaterialProperties forthePoolLinerandSupportLegs(Reference 3.19):;:;To':,.-;
...,..',::.Ope'r'atiiig':;Temp::(1:50,:,:,F)'",:::::,'::.:::.,';:Ta:';,=.',',
':A'bn'o'riiial;:Temp'eratu'r'e'.
,(1:80...'aterial TypeA240Type304A479Type304L15.723.15Sy18.327.5Su73.068.118.015.7Sy26.022.0Su71.867.0Note:Allallowables areinksiThefollowing perlegdead-weight, thermal,andOBEandSSEhorizontal andverticalloads(i.e.supportpadreactions) weretaken&omtheresultsofthe3-DFullRackand2-DMulti-Rack analysesandusedinthepresentanalysis.
Theloadspertaintothenewracksonly.Table3.5-128ForcesUsedinQualification ofthePoolLinerandSupportLegs'DeadWeihtDThermalTaOBESSE(E')14,62414,55422,81218,28042,47652794'ncludesdeadweight inverticalforce.maximumfrictionloadallowedbeforeslippageofthesupportlegoccurs(lessthancalculated thermalload)51-1258768-01 GinnaSFPRe-racking Licensing Report-FinalDraftPage254 h*4~'
Intherackanalysismodels,eachrackwasrepresented byonlythe4cornerlegs.Forexample,amajorityofthenewracksinthepoolhavebeendesignedtohavetwelvesupportlegs.The3-Dsinglerackmodelhasfourlegstorepresent thetwelvetotallegs.Therefore, theloadpersupportlegisfoundbydividingby12/4or3.ThemaximumsupportverticallegloadsforSSEwerefoundatasinglerackwitheightsupportlegs(racknumber9fortheverticalloadandracknumber12forthemaximumhorizontal load).Therefore, theloadwasdividedby8/4or2todetermine themaximumloadpersupportleg.TheverticalloadwasappliedintheZdirection (compression) andthehorizontal loadwastheSquareRootSumoftheSquaresoftheXandYdirections (refertoFigure3.5-61).Fortheseismicloadcases,thereexistedsignificant lateral(horizontal) loadsonthesupportleg.Supportlegstressesattwolocations wereevaluated.
Thefirstlocation(case1)evaluated wasatthelocationofthecylinder's holes(4.05inchesbelowthebottomofthebaseplate).
Thecross-sectional area(Ag=6.90in,andthesectionmodulus(Sx)=12.38in'.Thissectionwasshowntoproducethehigheststresses.
Thesecondlocation(case2)wasatthebaseplate bottom(wheremomentsarethelargest).
Thecylinder's cross-sectional area(A,)=13.33in,andthesectionmodulus(Sx)=17.58in'.Figure3.5-61-SupportLegDetailsRACKBASEPLATE f374~~1483.3513SUPPORTLEGI$755.9!97GUSSETPLATETCnax>0.9l40(nax)I.7~SUPPORTPAOI669~9'69999Ontal.
FvertICal51-1258768-01 GinnaSFPRe-racking Licensing Report-FinalDraftPage255
Figure3.5-62-SupportLegGussetPlateDetails.00Ii0.394IIII+1.71.061.211.87l2.103.001.575IIGUSSTPTiRACKLEG3.5.3.1.9.1 SupportLegAnalysis3.5.3.1.9.1.1 ExistingRackSupportAnalysisEvaluation oftheexistingracksupportwasperformed bycomparison ofnewloadswiththepreviousrackleganalysis(Reference 3.26).Thefollowing tablegivesthemaximumloadsofthenewanalysiscomparedwiththepreviousanalysis.
Sincethenewrackanalysisresultsinlowerexistingsupportloadsthanthepreviousanalysis(Reference 3.26),existingracksandsupportloadsarequalified percomparison tothepreviousrackanalysis.
Table3.5-129SupportLegsForceComparison forExistingRacks(Newvs.OldAnalyses)
.",:::.:',
..:::.::;:.':;::.';.:;!Ho'rIzontalILo'ad,,:,:,:,',:';::;,':,::
StandardFuelSSEConsolidated FuelHorizontal 141,939Vertical237,862:"::;;,",':.':;,";;:P:U:;S:;::,To'ol<<'&-'Die':An'alysis;:"'.:-'"ll":
..::.'<<:'",::I,;:";:I:::L'oads':,atISupp'oit:::Pad';:(Ibs),:';:.';:',;'.l!',;,.'.
Horizontal 87,636Vertical193,440!I;','.i::;:::i:;.I'.,:,",.'<<Loa<<ds:,at.Su<<ppo'rt".,Pa<<'dI'(1bs);.:!;:,::::::.::'>NWNP SSE(E')151,144282,782103,596250,680'ncludesdeadweight inverticalforce.SSEloadsarefactoredby1.2051-1258768-01 GinnaSFPRe-racking Licensing Report-FinalDraftPage256 3.5.3.1.9.1.2 Concrete'and SpentFuelPoolLinerQualification The28dayscuredcompressive strengthofthespentfuelpoolconcreteis3,000psi.Theaveragepressure(bearing) underthebearingpadshallnotexceedthedesignbasispressurefordeadloadorseismic.Thebearingstressesandcomparison toallowables arepresented inTable3.5-130.3.5.3.1.9.1.2.1 AverageConcreteBearingStressThemaximumbearingstressesintheconcretearecalculated below,whereastheaveragebearingstressesarecalculated bytakingthemaximumverticalsupportlegloadsdetermined fromthesingleandmulti-rack analysesanddividingbytheareaofthebearingpadasfollows:GBEARING=P/A, whereA=md'/4=35.18 ind=6.693in.(supportpaddiameter)
~BEARING,DEADLOAD+BEARING,OBE+DL+BEARING,SSE+18,280/35.1842,476/35.1852,794/35.18520psi.1,207psi.1,501psi.3.5.3.1.9.1.2.2 Boussinesq's SolutionAsanothercheckforbearingstresses, Boussinesq's solutionforelastichalf-space isused(Reference 3.35,pages398through402).Inthismethod,itisassumedthatanormalforce,P,isactingontheplaneboundaryofasemi-infinite solidasshowninthefollowing figure.Allresultsaresummarized inTable3.5-130.Figure3.5-63StressLocations ForBoussinesq's BearingSolution8CA51-1258768-01 GinnaSFPRe-racking Licensing Report-FinalDraftPage257
Table3.5-130Summation ofConcreteStressesMaximumSlabBearinBoussinesq's Solution5207793,5703,570D+EMaximumSlabBearinBoussinesq's Solution1,2071,8113,5703,570D+E'aximum SlabBearinBoussinesq's Solution1,5012,2513,5703,570Concrete's bearingallowable
=$(0.85)fc' 0.70(0.85)3000 psi*2'3,570psi'inceAreaofconcrete>>areaofpad=xd'/4=35.18in',bearingallowable isincreased byfactorof2(Reference 3.20,section10.15)Fortheevaluation ofcompressive stressesintheconcrete, thespecified Boussinesq solutionisconsidered valid.Table3.5-131Summation ofSpentFuelPoolLinerStresses.','!:.'.I::';::.'j,:,:.:'.'.::;,::::;Corn
,','::;A'llo'wable','Stress','(p'si)";
LinerBearinStressD+E'inerBearingStress1,2071,5010.9*=23,4000.9~(Fy)=23,400 PoolLiner'sAllowable StressisfromReference 3.2151-1258768-01 GinnaSFPRe-racking Licensing Report-FinalDraftPage258 Table3.5-132Summation ofSupportLegStressesDevelAPrimMembranemPrimaryMembrane+
Bendingm+Pb6,15616,9951>>S=15,7001.54(S)=23,550D+EevelBPrimMembranePmPrimaryMembrane+
Bendingm+PbAveraeShearStress6,15616,9952,1091.334S=20,8801.995*(S)
=31,3200.6*S=9,420D+E'velDPrimMembranemPrimaryMembrane+
BendingPm+PbAverageShearStress7,65124,6403,3061.2*S=26,4481.8*(Sy)=39,6720.42*(Su)
=28,12351-1258768-01 GinnaSFPRe-racking Licensing Report-FinalDraftPage259 3.53.1.10 RackThermalStressAnalysisTwothermalaccidentconditions wereconsidered.
Analysisisperformed onANSYS3Dsinglerackplatemodeloftherack88(2B)withthelargestplanprojection (footprint),
aswellaslargestnumberofcells.Asaconsequence, thiswillproducelargestincreaseinoveralllineardimensions oftherackstructure.
1)NormalorUpsetCondition (To)-Thisthermalcondition isproducedwhenanisolatedstoragelocationhasafuelassemblygenerating heatatthemaximumpostulated rate.Surrounding storagetubesareassumedtocontainnofuelassemblies.
Inlieuofrunningafullthermalanalysisto~determine theactualtemperature distribution alongtheinnerandouterhotcellwalls,itwasconservatively assumedthattheoutsidetubewalltemperature remainsat150'F,whiletheinnerwalltemperature iskeptat212'F.Thisresultsinaconservative 62'Ftemperature differential acrossthe2mm(0.0787in)thicktubewall.ThismaximumDTassumption envelopes theactualthermaldistribution inthecellwallsduetoamaximumoutletwaterbulktemperature whichexitsthecellat224'F,andlinearlydropstothetubeinlettemperature of150'F.Thehotcelloutsidewaterbulk.temperature isassumedtobe150'F,andtemperature dropthroughthewall'sadjacentboundarylayersisnotconsidered.
Duetothistemperature differential, thermalgrowthofthehotcellinducesmembraneandbendingstressesintherackbaseplateandtubewalls.StresscontoursinrackcellsaroundmiddlehotcellareshowninFigures3.5-64(topplane)and3.5-65(midplane).Halfoftherackisshown,sincethestressdistribution issymmetric aboutNSdirection.
BaseplatestresscontoursareshowninFigures3.5-66(topplane)and3.5-67(midplane).Summarized, thelocalhotcellmaximumthermalstressesare:a)Tubewalls:membrane=3,837psi;membrane+bending
=9,856psib)Baseplate:membrane=1,198psi;membrane+bending
=5,941psi51-1258768-01 GinnaSFPRe-racking Licensing ReportPage260
Figure3.5-64RackTubesStressContours-To(TopPlane)ANSYS6>NOV7100020:$1:60PLOTNO.1NODALSOLVTIONSTEP<<1SVB<<ITIME<<1SlNTQVO)TOPDllX<<.007145SMN$N$1SMX<<9060SMXB24004A<<5$2N0$B1047C2742D<<$0$dE<<4051F<<00260<<7120H0214I<<9009RO58RaaX28(Iixs)ThermalCond.TolNormaBFigure3.5-65RackTubesStressContours-To(MidPlane)ANSYS6.2Nov7191020.62NdPLOTNO.2NODALSOLVTIONSTEPiSVB<<1TIME<<1BINTBRAVO)MIDDLEDMX<<.007145SMN<<5290SMX<<$007A2102d7B<<04$.07dC<<1070D149dE<<1021F<<2047O<<277$H<<$190I<<$024RO58Rack28(Iix9)Than<<elCond.'To'io>mal) 51-1258768-01 GinnaSFPRe-racking Licensing ReportPage261 CIl'p~,
Figure3.5-66BasePlateStressContours-To(TopPlane)ANSYS62NOV7100820:55A3PLOTNO.2NODALSOL(mONSTEP<<1SIIS<<1%IE<<1SINT(AVG)TOPDMX<<.003102SMN<<1527$SMX<<50118MX8<<15l77 A<<35IA028~1003C<<1881D~E<<2Q78F<<383'<<e205H<<4053I<<5811ROLERack28(11xQ)ThermalCond.'To'Nonna8 Figure3.5-67BasePlateStressContours-To(MidPlane)ANSYS62NOV7100820:SSMPLOTNO.1NOSTESVSTIMESINTMIDDMXSMNSMXA8CDE<<73IL302<<880.543<<1001~1132DALSOLUllONP<<1~I(AVG)<<.003102<<18AM<<1108~.10<<2133II~.581<<e75.822@$7.082ROSERack28(11xQ)ThermalCond."To'Nanna!)
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage262 2)AbnormalCondition (Ta)-Thisthermalcondition isproducedwhenthepoolwaterbulktemperature reachesamaximumallowable valueof180'F,whenauxiliary pumpsareactivated.
Reference temperature withnothermally inducedstressesisassumedtobenormalpooloperating temperature of150'F.Legsarefixedtothepoolliner(Figure3.5-68).StresscontoursatthebottomofthecornerracktubesareshowninFigures3.5-69(topplane)and3.5-70(midplane).BaseplatestresscontoursareshowninFigures3.5-71(topplane)and3.5-72(midplane).Summarized, thermally inducedstressesare:a)Tubewalls:membrane=9,654psi;membrane+bending
=9,803psib)Baseplate:membrane=596psi;membrane+bending
=1,556psiFigure3.5-68DeformedBasePlatewithLegs-TaANSYS0.2HDV710002$OO:IdPLOTND.1DISPIACEMEHT STEP<<1SUB<<1TIME<<1RSYS<<ODMX<<.01d$$0SEPC<<72A12 DSCA<<$0220$XV<<.042YV<<.7221ZV<<A200DIST<<00.00 XF~0$0$YF<<$7.7$2ZFM.OOSA<$~.022PRECISEHIDDENROSERookt11n0)ThonnolCond.To'LAooMont) 51-1258768-01 GinnaSFPRe-racking Licensing ReportPage263 Figure3.5-69BottomCornerTubesStressContours-Ta(TopPlane)ANSYS$2NOV7100823:14MPLOTNO.1NOOALSOUJTION6~16UB~1TIMEolBINTQVO)TOPDMXn.0187846MN~6M~006MX~SMX&11008 AW201B&030C0o8238E~$F>76340o8182H~8831Io0470ROSERack{11a0)ThermalCond.faAedden9Figure3.5-70BottomCornerTubesStressContours-Ta(MidPlane)ANSYS6XNOV7100823:14I48PLOTNO.2NOOALSOUmONSTEPrr1SUS>ITIME1BINTQVO)MIDOLEOMX~AIL87846MN~106MX~A~2BW0$8C<<$6840~11EHATF~74830rL8880H0876I&34R08ERack(11x0)
ThermalCond.Ta~51-1258768-01 GinnaSFPRe-racking Licensing ReportPage264 t*
Figure3.5-71BasePlateStressContours-Ta(TopPlane)ANSYS52NOV8100810:20:52PLOTNO.1NODALSOLUTIONSTEP>>1SUB>>1TIME>>1SINT(AVO)TOPDMX>>.015S30 SMN>>188.778 SMX>>15SSSMXB>>1030 A>>24S.SOO 8W00.048C>>OS'>>708AOO fWOS.MOF>>1017O>>1171H>>1S25I>>1470ROLERack(11xQ)ThermalCond.TsAcddenDFigure3.5-72BasePlateStressContours-Ta(MidPlane)DMX>>.01SMNSMX>>$A>>25S.8>>205C>>33A22D>>37404fW1.388FWSS~OW0541S330>>23$AQS0$.24470A51H>>535282575~ANSYS5>NOV81QQS10:21:04PLOTNO.2NODALSOLUllONSTEP>>1SUB>>1TIME>>1BINT(AVO)MIDDLEROSERack(11x0)ThermalCond.Ts(AcrddenD 51-1258768-01 GinnaSFPRe-racking Licensing ReportPage265 3.5.3.1.11 FatigueAnalysisApplicable CodesandStandards
-Structural fatigueanalysisoftheRochester GasandElectric's R.E.GinnaUnit1highdensityspentfuelstorageracksandspentfuelpoollinerisperformedhere.
Thedesignbyanalysisprocedureisemployed forqualification.
Thenumberof earthquake cyclesisperStandardReviewPlan,Section3.7.3,Subsection II.2(NUREG-0800).
Theacceptable maximumstressrangeinvariousstoragerackstructures isbasedonthedesigncriteriagivenintheAmericanSocietyofMechanical Engineers BoilerandPressureVesselCode-SectionIII,RulesofConstruction ofNuclearPowerPlantComponents, DivisionI,1989edition.Hereafter itisreferredtoastheASMECode(Reference 3.19).Theacceptable maximumstressrangeinpoollinerstructures isbasedonthedesigncriteriagivenintheAmericanInstitution ofSteelConstruction, ManualofSteelConstruction, Part5-Specification andCodes,NinthEdition.Hereafter itisreferredtoastheAISCCode(Reference 3.21).Thefuelstorageracksareconsidered Class3component supportsandareplateandshelltypesupports.
DesignrulesgiveninSubsection NFoftheCodeareutilizedintheevaluation.
Generalrequirements concerning stressdetermination, definitions, derivation ofstressintensities, derivation ofstressrange,andclassification ofstressesareperSubsections NBandNFoftheASMECode.PerSubsection NFoftheCode,thesecondary stressesevaluation isnotrequiredfortheClass3supports.
However,asaconservative
- approach, therangeofprimaryplussecondary stressesisevaluated againsttheloweroftwotimesyieldstrengthorultimatetensilestrengthatthedesigntemperature.
Forthepoolliner,thedefinition of'LoadingCondition,'ype andlocationof'stresscategory,'nd
'allowable stressrange'reperPart5,AppendixKoftheAISCCode.FatigueAnalysisandMethodology
-AcronymsEYoung'sModulusFyMaterialyieldstrengthHzHertz,Naturalfrequency incyclespersecondOBEOperating BasisEarthquake SSESafeShutdownEarthquake SaAlternating stressintensity SyMaterialyieldstrengthSuMaterialtensilestrengthU'Cumulative usagefactorOtheracronymsareexplained wheretheyfirstappear.Theearthquake stressesareincludedinthestressanalysis.
Thestructure isdesignedforfiveOperating BasisEarthquakes andoneSafeShutdownEarthquake (SRPSection3.7.3,II.2,NUREG-0800).
51.-1258768-01 GinnaSFPRe-racking Licensing ReportPage266
Reviewofthenaturalfrequencies ofthestructure indicates thatthemajorityofthestressesinthestructure willbeinducedduringlowfrequency excitation.
Thefrequency oftheracksloadedwithfuelassemblies rangesfrom7to26Hz(following table).Themajorityofrackfirstmodefrequencies arelessthan20Hz.Thefrequency oftheemptyrackrangesfrom24to72Hz.Beingofahighfrequency structures, theemptyrackswillbehavelikearigidstructure.
Loadedspentfuelstoragerackswillinducethemajorityofstresses.
Therefore, mostofthestressesinthestructure willbeinducedbyafrequency oflessthan20Hz.Foraconservative fatigueanalysis, thestresscyclesaretakenat20cyclespersecond.SpentFuelStorageRacks-FirstModeFrequency
- .'
- !::,:,':,::',,':Ra:;::,:;"::',:::;
":,:::;Niimb'er:;',..'-;':;:,-:;-;:,:~"',::,;::";-:,'Eiiip'ty',";R
$:;"::;::;:<<'I."I::.".'j,::IRacks;':With'4:::::',.';.:,;::.".;,:':
- '.!:,"~,
Con's'olidated:Fu'el!
I'",!:;::,;:
- iI':,'!I',~;I:;:;:;:l':i)<.Canisters
<<;::.I,::
':.'-l<<:;;:::I":
',::,';:East-.'..Wes't':.','-';Fr'equeiicy,'.:;-:".'.
,",';:.'.,::::N-':.
S;:.',":;::,':,:,::::::.:
'::;:::.::East'-':We'st',
~':,:Fieqii'eri'cy<<.,';;:::
<<lFi'equeiicy'~i:
<<::<<'%y'z4.:cN:":YY.
<<~;.<<'8Hz:"<<<<<<<<.
ji<<<<2;.F<<r<<equ<<e'ncy',.;;",;',".!East-'.West'::,'!:;Pre'quency'~:
- ~Fr'e'qu'ency
- 1to62A2B3A3B3C3D3E60.238.340.930.929.923.723.730.371.746.446.238.637.538.538.539.821.812.813.712.111.89.29.211.926.115.615.515.114.715.015.015.716.79.810.49.39.17.17.19.119.811.811.811.611.311.611.612.0Althoughearthquake motionscanbeexpectedtolastforadurationofminutes,thestrongmotionportionofashock,whichisofconcernforseismically designedstructures, isgenerally notlongerthanafewseconds.Ofmotionsbasedon60earthquakes ranginginmagnitude from5.0to8.0,thedurationofthestrongmotionportionoftheseearthquakes rangesfromabout1.5secondsformagnitude
5.0 toabout15secondsformagnitude
8.0.Theaveragedurationofthestrongmotionportion,however,isonlyabout2.2seconds.Tobesomewhatconservative, itwillbeassumedthatthedurationofthestrongmotionportionwillbe5secondsfortheOBEand20secondsfortheSSE.Whencomparedtothedurationofthestrongmotionrecordsofsuchearthquakes astheN-Scomponent ofthe1940ElCentroandtheN69Wcomponent ofthe1952Taft,thisassumeddurationofstrongmotionearthquake isconservative.
ThehighdensityfuelstorageracksaredesignedforfiveOBE'sandoneSSE.Numberofstresscycles=Numberofearthquakes xtimeinsecondforthestrongmotionearthquake xFundamental modeinHz.NumberofstresscyclesduringOBE=5x5x20=500cyclesNumberofstresscyclesduringSSE=1x20x20=400cycles.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage267 StorageRackFatigueAnalysis-PerSubsection NFoftheASMECode,nopeakstress.orfatigueevaluation isrequiredforClass3supports.
However,asaconservative
- approach, thepeakstressrange,fatigueevaluation, andcumulative damagearecalculated perSubsection NB-3222.4oftheCode.Therangeofprimaryplussecondary stressesislimitedtothelowerof2SyorSu,perASMECodeSectionIII,TableNF-3522(b)-1, Note5.Thematerialproperties oftherackmaterialaretabulated belowatdesigntemperature.
Thedesigntemperature ofthestoragerackis150'F.Thematerialproperties givenintheASMECodeSectionIII,AppendixI,areinterpolated togetproperties at150'F.SyksiSUksiElb/in~ASTMA-240Type304LASTMA-479Type304L23.1523.1563.168.127.9x10'7.9x10'heallowable rangeofprimaryplussecondary stress(lowerof2SyorSuatdesigntemperature) is46.3ksi.Alternating stressSa=~/i(StressRange):.Sa=/ix46.3
=23.15ksi Thestoragerackfatigueanalysisisperformed perASMECodeSectionIII,Subsection NB-3222.4.First,theeffectofelasticmodulus(E)isconsidered sincetheEforthefuelstorageracksisdifferent fromtheASMECodeSectionIII,FiguresI-9.2.1,andI-9.2.2.Theeffectofelasticmodulusisconsidered bymultiplying Sabytheratioofthemodulusofelasticity givenonthedesignfatiguecurvetothevalueofthemodulusofelasticity ofthefuelstorageracks.Sa=23.15x(28.3/27.9)Sa=23.48ksiInordertoensurethatthefatigueanalysisisconservative, astressconcentration factorof4isappliedtoSa.Therefore:
Sa=4(23.48ksi)=93.92ksiFigureI-9.2.1oftheASMECodeSectionIII(Reference 3.19)isusedtocalculate theallowable numberofcyclesatthegivenalternating stress.Thenumberofallowable cycleat93.92ksialternating stressis2000.Cumulative usagefactorU=nl/N1+n2/N2U=(500/2000)
+(400/2000)
U=0.25+0.20U=0.4551-1258768-01 GinnaSFPRe-racking Licensing ReportPage268 whereU=Cumulative usagefactornl=NumberofOBEstresscyclesNl=Allowable cyclesatOBESan2=NumberofSSEstresscyclesN2=Allowable cyclesatSSESaThecumulative usagefactorforthespentfuelstorageracksis0.45whichislessthanthelimitof1.0,sotheracksmeettherequirements oftheASMECodeSectionIII,Subsection NB-3222.4.
PoolLinerFatigueAnalysis-Thepoollinerfatigueanalysisisperformed perPart5,AppendixKoftheAISCCode-NinthEdition.Theallowable tensilestressforthelineris0.6Fy(Part5,ChapterD-1oftheAISCCode).Thetensilepropertyforthelinerat150'is:ASTMA-240Type304Stainless steelFy=27.5ksi(Appendix I,ASMESectionIII):.Allowable tensilestressis=0.6Fy=0.6x27.5=16.5ksiStressrange=2x16.5=33ksiThetotalnumberofOBE+SSEstresscycleis900.Thesestresscyclesarelowerthan20,000.Therefore, LoadCondition
¹1oftheTableA-K4.1(AISCCode)willbeapplicable tothepoolliner.Forthepoollinerweldedconnections, theStressCategoryBoftheTableA-K4.2(AISCCode)willbeapplicable.
ForLoadingCondition
¹1andStressCategoryB,theallowable stressrangeis49ksiforfatiguestrength, perTableA-K4.3oftheAISCCode.Sincethepoollinerstressrangeis33ksi,thepoollinermeetsthefatiguerequirements oftheAISCCode.Conclusion
-Rochester Gas&,Electric's R.'E.GinnaUnit1highdensityspentfuelstorageracksmeetthefatiguerequirements oftheASMECodeSectionIII,Subsection NB-3222.4, andthepoollinermeetsthefatiguerequirements oftheAISCCode,Section5,AppendixK.Allofthesehardwarehavemorethanadequatefatiguelife.3.5.3.1.12 RackBasePlateEvaluation Rack¹8(2B),whichisa9xl1rack,waschosenforthethermalstresscalculations sinceithasthelargestplanprojection (footprint).
Asaconsequence, thiswillproducethelargestthermalstressesduetothedifferential thermalgrowthduringthefaultedthermalaccident, Ta.Themaximumrackloadsgenerated duringaseismicevent(SSE)wereappliedtotheANSYS3Dsinglerackplatemodel.Thefuelloadconsisted ofconsolidated fuelcanisters (allcellsloaded),withthecoefficient offrictionequalto0.8.Thissetofconditions producedthemaximumloadsintherackstructure, andwasusedtoenvelopethemaximumbaseplatestressesforallthenewracks.Additional conservatism wasintroduced intotheanalysisbyconstraining alltheracklegs.Theloadsobtainedfromtherackfullpoolseismicanalysisweretakenasthemaximumvaluesforeachforceandmomentcomponent (whichgenerally donotachievetheirmaximumsatthesametimeinstant).
Theuseoftheindividual maximumvaluesassuresaconservative combination ofrackloads.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage269 Thehigheststressesinthebaseplateoccurinthevicinityofthesupports.
Thehighestloadedlegsarethecornerlegs,whicharesubjected tocompression duetotheverticalload(weight)andalsoduetothemaximumbendingaboutthetwohorizontal axes.Thethermally inducedstresses(section3.5.3.1.10)furtherincreasebaseplatecornerstresses.
ThebaseplatemembranestressisshowninFigure3.5-73,andFigure3.5-74showsthecorresponding membraneplusbendingstress.Theanalysisresultsforthebaseplatearesummarized inthetablebelow:::>>j~';'i::Lo'a'd':Coiiibi'nation
$,':,,:;>>IMax.",Stress,':[p'si]P,,:i":,,.",";,:;,,li>~~!':
'Allo'wable':
Stres's',
pepsi],i:;.::
D+L+E+To(LevelA)D+L+E+Ta(LevelB)D+L+E'+Ta (LevelD)membrane:
767*memb+bend:4,286*rangeofm+b:10,227membrane:
767*memb+bend:4,286~rangeofm+b:5,842membrane:
767memb+bend:4,286rangeofm+b:5,842membrane:
15,700memb+bend:
23,550rangeofm+b:46,300membrane:
20.881memb+bend:
31,322rangeofm+b:44,080membrane:
26,448memb+bend:
39,672rangeofm+b:44,080(*)SeismicstressesforLevelDarereportedsincetheyenvelopseismicOBEstresses51-1258768-01 GinnaSFPRe-racking Licensing ReportPage270 Figure3.5-73BasePlateMembraneStressContoursIIIl--II)IIIANSYS52JANI14412200.'llPLOTNO.INODALSOLUTION0'TEP<<1SOS~ITIME<<ISIIT(AVO)MX)DLEDMX~.015011SLIN054.044SMX<<IIISSSA~IISIT0~155.045O0211.14~D0242AISE<<541.14FQIIIAII0<<ITISITH~ISISIII0405445IIIIRO4ERsct(IIxt)IsssPNtosiss<<<<<<51-1258768-01 GinnaSFPRe-racking Licensing ReportPage271 Figure3.5-74BasePlateMemb.+Bend.StressContoursr-~Il--IIf-1iI-IIANSYS$2JAN$1~IT254040PLOTNO.1NODALSOLVT)ONSTES'1SDS~1TSSE1SINT)AYO)TOPDNXAN5011SNNs50$25SNXs$512SllXSW25$
A2)SSI4s002$D1050DIIIIE1I2IP22500s2002N2000Is$$10IIiROSERssI(115$)IsssIlsVsIsss053.5.3.1.13 SloshingThissectiondemonstrates compliance ofRochester Gas&Electric's GinnaspentfuelstoragerackswithStandardReviewPlan-NUREG-0800, Section3.8.4,AppendixD,Subsection (5),'sloshing water'equirements.
Thestandardstipulates thatthespentfuelassemblies shouldbeinasafeconfiguration throughearthquake including itssloshingeffects.BothseismicOBEandSSEconditions areevaluated forthesloshingeffects.Acceptance Criteria:
Thesafeconfiguration ofthespentfuelassemblies isvalidated byverifying:
a)Changeinhydrostatic pressureduetosloshing-impulsive forceisnegligible.
b)Heightofsloshingwavesissmallsuchthatthespentfuelrackswillremainsubmerged inspentfuelwateratalltimes.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage272 SloshingAnalysisNomenclature A,Maximumdisplacement ofW,dMaximumwater-surface displacement EBPExcluding BottomPressureIBPIncluding BottomPressuregAcceleration ofgravityhHeightofwatersurfaceabovethebottomofpoolhh,VerticaldistancefromthepoolbottomtoW,andW,respectively Onehalflengthofrectangular poolwallMBendingmomentoroverturning momentonhorizontal sectionofpoolatthebottomPP~Impulsive andconvective forces,respectively TPeriodofvibration 6Maximumhorizontal acceleration ofthegroundduringanearthquake WWeightoffluidinapoolW,Equivalent weightoffluidtoproducetheimpulsive forceP,onthepoolwallW,Equivalent oscillating weighttoproducetheconvective forceP,onpoolwallOAngular amplitude offreeoscillations atthewatersurfacepMassdensityoffluidCircular&equencyoffreevibration forthen~modeSloshing:
Themethodofcalculating seismically inducedfluidpressureandmaximumwavemotionhasbeendeveloped byHousner(TID-7024, Reference 3.27).Themethodappliestoaflatbottomed, vertically orientedtankofuniformrectangular section.Whenatankcontaining fluidofweightWisaccelerated inhorizontal direction, acertainportionofthefluidactsasifitwereasolidmassofweightW,inrigidcontactwithwallsandremainder weightW,willoscillate.
Assumingthetankmovesasarigidbody,bottomandwallswillundergothesameacceleration.
Theacceleration inducesoscillations ofthefluid,contributing additional dynamicpressureonthewallsandbottom.Themaximumamplitude, Aofthehorizontal excursion ofthemassdetermines theverticaldisplacement, d,ofthewatersurface,sloshheight.Bothimpulsive pressureandthesloshheightarecalculated.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage273 Impulsive Pressure:
pWaterSurface276'1.75" ConcreteE1236'"2L=457.5inE-W(2L=266.5N-S)usingequationF.47(Reference 3.27)P=p0h---(-)P3tanh(+3-)1h2hhWhere:p=62.4lb/ft~densityofwater6=horizontal acceleration (zeroperiodacceleration) 0.2gforhorizontal SSEh=276'13/4"-(236'"+linearthickness)
Neglecting linerthickness of1/4"h=40.3362L=EastWestlengthofpool=457.50"or38.125ft.L=19.1ft191047h40.33Impulsive Pressureaty=hP=x0.2gx40.331--f3tanh(Q3)62.4119.1g240.3351-1258768-01 GinnaSFPRe-racking Licensing ReportPage274
=435.9xtanh(0.8203)=435.9x(0.6752)=294.3Ib/fPor2psiThemaximumpressureonthewallis2psi.Thisreducestozeroatwatersurface.Thisisacceptable considering hydrostatic pressureduetoheightofwater40.33ftundernormalcondition.
MAXIMUMWATER-SURFACE DISPLACEMENT
-dUNDEROBE:=0.527Ã=0'27=0.249Fort/h=0.474
-tanh(1.58-)Equation6.5ofReference (3.27)hhx0.474xtanh()1.580.474EBP-Excluding bottomPressureonbottomhq=1hcosh(1.58-)-1h1.58-sinh(1.58-)hh=0.72cosh('-11.580.4741.58.1.580.474xsinh(-)0.47451-1258768-01 GinnaSFPRe-racking Licensing ReportPage275 Pt UsingEquation6.8(Reference 3.27)158gh(158jl1.58x32.2th15819.119.1=2.6569:.e=~2.6569=1.63cad/eecT2rr2rr-3.85secondsm1.63or5--'0.26Hz1.632rr2xrrFromOBEhorizontal responsespectraat0.25Hzat1/2%damping,thespectraacceleration is0.0588g's(derived&om0.08g'sRegulatory Guide1.60,horizontal spectra,References 3.10,and3.22).,spectraaccln0.0588x32.207]2.6569UsingEquation6.9ofReference 3.27e=1.58-tanh(1.58
-)A~e=1.58xtanh(1.58x'0.7140.3319.119.1=0.05858radian51-1258768-01 GinnaSFPRe-racking Licensing ReportPage276 UsingEquation6.11ofReference 3.27:1((8(X0.527lcoth(1.58-)0.527x19.1xcath(1.58x(40.3319.132.22.6569x0'5858x19.1=1.026ZtDuetosloshingduringOBEthewatersurfacewillriseandlowerby1.026feet.Thedistancefrompoolwaterleveltotopoffuelstorageracksisapproximately 25feet.Thisdepthissignificantly higherthanthesloshingwave(dgheight.Therefore, spentfuelwillremainsubmerged inthespentfuelpoolwaterthroughout theOBEevent.MAXIMUMWATERSURFACEDISPLACEMENT
-dUNDERSSE:Thefrequency ofsloshingisthesameasthatofOBE,i.e.,0.26Hz.FromSSEhorizontal responsespectraat0.25Hzat1/2%damping,thespectraacceleration is0.1471g's(derivedfrom0.2g'sRegulatory Guide1.60,horizontal spectra,References 3.11,and3.22).>Pectraa(=(=2n0.1471x32.2-17828ftQ)22.6569UsingEquation6.9ofReference 3.27e=1.58-tanh(1.58
-)A~=1.58x'anh(1.58x'1.782840.3319.119.1=0.1471radian51-1258768-01 GinnaSFPRe-racking Licensing ReportPage277 UsingEquation6.11ofReference 3.27:0.527$coth(1.58-)max0.527x19.1xcoth(1.58x'40.3319.132.22.6569x0.1471x19.1=3.054StDuringSSEeventthewatersurfacewillriseandlowerby3.054ft.Thedistancefrompoolwaterleveltotopoffuelstorageracksisapproximately 25feet.Thisdepthissignificantly higherthanthesloshingwave(dgheight.Therefore, spentfuelwillremainsubmerged inthespentfuelpoolwaterthroughout theSSEevent.SloshingSummary:Duringearthquake thepoolwaterwilloscillate withfrequency of0.26Hz(orwithaperiodof3.85seconds).
DuringOBEthewatersurfacewillrise1.026ft.aboveit'sundisturbed level.Duringpostulated OBEeventthewaterwillnotspillabovepoolwall.DuringSSEthewatersurfacewillriseandfall3.054ftfromit'sundisturbed level.DuringbothOBEandSSEevents,spentfuelwillremainsubmerged inthespentfuelpoolwater.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage278 llf.%l'llA~
3.5.3.1.14 SummaryofGapClosurefromFive(5)OBE'sPlusOne(1)SSE~Thecumulative movementoftherackswithinthepoolduetoacombination ofseismiceventsisaddressed inthissection.Atotaloffive(5)OBEeventsandone(1)SSEeventisaccounted for.Therelativeclosurebetweentheracksistabulated forbothEast-West andNorth-South directions.
Themaximumrackdisplacements occurwiththelowestcoefficient offrictionequalto0.2,andtherackscompletely loadedwithunconsolidated fuel.Thelowhydrodynamic couplingvaluesforunconsolidated fuel(versushigherhydrodynamic couplingfortheconsolidated fuel)combinedwiththemaximumfuelloadperrack(fullracks)causethemaximumdisplacements tooccur.Therefore, thetotalclosurecalculated fromthissectionistakenfromloadingcaseswithrackscompletely
.loadedwithunconsolidated fuelandcoefficients of&ictionequalto0.2.Thefinalpositionoftheracks(bothtranslations androtations) fortheOBEeventsiscombinedusingtheSRSSmethod.Thetime-history factorfortheOBEevents(1.12)isthenmultiplied bytheSRSSvalueforthe5OBEs.Thisprocessisappliedtobothdisplacements androtations.
ThemaximummotionsduringtheentireSSEevent(displacements atthetopoftheracks)werethenusedforSSE.Thetime-history factorof1.20wasusedfortheSSEevents.Forconservatism, allOBEfinalrelativedisplacements weretakenas"closure",
eventhoughmanywereactuallyshowingan"opening" betweenthetwobodies.Further,toaddtotheoverallconservatism, therelativelateraldisplacements duetorackrotations wereadditiveforeachrackrotation, regardless astotheactualrotations betweenthetwobodies.Forexample,forsmallanglesofrotation, withtworacksrotatingthesamedirection forsimilarangles,therelativegapbetweentwocornerswouldremainthesame.Alsotheeffectsofhigherhydrodynamic couplingbetweentwobodiesthathaveasmallergapbetweenthemduringsuccessive seismiceventsarenotaccounted for.Thenomenclature forthefollowing tablesareasfollows:WW=WestWall,NW=NorthWall,EW=EastWallandSW=SouthWall.Inconclusion, usingaconservative
- approach, noneoftheracksimpactwithanyotherrackorwiththewallsduringthecumulative effectsof5OBE'sand1SSE.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage279 MaximumGapClosurefor5OBE's+1SSE(WithPerimeter Racks)Horizontal East-West RelativeDisplacements (in)Table3.5-133RelativeDisp.DuetoEast-West Translation 1stRackWWWW12345566689101112132ndRack123456788910111213,EWEWEW1OBE0.01610.00570.00630'0790.01220.01040.02390.01110.01670.02160.01530'4190.00090.09880.03330.01260.10605OBE's0'3590.01270'1410.01770.02730.02330.05340.02480.03740.04840.03430.09370.00200.22090.07460.02820.23701.12X5OBE's0.04020.01420.01580.01980.03060.02610.05980.02780.04190.05420.03840.10490.00220.24740.08360.03160.26541SSE0.16800.19030.07310.09240.05920.06190.15950.20600.18440.21510.12300.27500.34730.17380.20760.13120.19911.2X1SSE0.20160.22840.08770.11090.07110.07430.19140'4720.22130.25810.14760.33000.41680.20860.24910.15740.2389TotalDisp.0.24180.24260.10350.13080.10170.10040.25120.27500'6320.31230.18600.43490.41900.45600.33270.18900.5044Table1stRack3.5-134RelativeEast-West Disp.Dueto2nd1.12XRack1OBE5OBE's5OBE's1SSERotation1.2XTotal1SSEDisp.WWWW1234556668910111213123456788910111213EWEWEW0.00890.01440.01230.01480.00550.00200.00280.00350.00300.01230.00320.01390.02790.00500.01240.01720.00330.01990.03220.02750.03310.01230.00450.00630.00780.00670.02750.00720.03110.06240.01120.02770.03850.00740.02230.03610.03080.03710.01380.00500.00700.00880.00750.03080.00800.03480.06990.01250.03110.04310.00830.02740'3080.04690.03570.04850.02750.04230.05100.04470.04470.04800.09890.07960.08440.07690'5760.05910.03290.03700.05630.04280.05820.03300.05080.06120.05360.05360.05760.11870.09550.10130.09230.06910.07090.05520'7300.08710.07990.07200.03800.05780.07000'6120.08440.06560.15350.16540.11380.12330.11220.079251-1258768-01 GinnaSFPRe-racking Licensing ReportPage280
>>0~'l MaximumGapClosurefor5OBE's+1SSE(WithPerimeter Racks)Horizontal North-South RelativeDisplacements (in)Table3.5-135RelativeDisp.DuetoNorth-South Translation 1stRackSW12SW34SW56SW78910SW1112132IldRack12NW34NW56NW78910NWll1213NW1OBE0.01180.05140.03960.01680.00280.01410.00010.02270.02260.00020.01970.03420.00780.00690.03330.03950.01330.00705OBE's0.03590.01270.01410.01770.02730.02330.05340.02480.03740.04840.03430.09370.00200.22090.07460.02820.23700.23701.12X5OBE's0.04020.01420.01580.01980.03060.02610.05980.02780'4190.05420.03840.10490.00220.24740.08360.03160.26540.26541SSE0.20100.09660.29530.15140.09820.16990.19070.07990.19320.33540'7160.09940.05360'4100.32050.04290.09690.13131.2X1SSE0.24120.11590.35440.18170.11780.20390.22880.09590.2318,0.40250.08600'1920.06430.16920.38460.05150.11630.1576TotalDisp.0.28140.13010.37020.20150.14840.23000.28860.12370.27370.45670.12440'2420.06650.41660.46820.08310.38170.4230Table1stRack3.5-136RelativeNorth-South Disp.Due2Ild1.12XRack1OBE5OBE's5OBE's1SSE1.2X1SSETotalDisp.toRotationSW12SW3SW56SW78910SW11121312NW34NW56NW78910NW111213NW0.00560.01470.00910.00220.00250'0030.00130.00220.00100.00110.00290.02330.02390.00240.01770.05210.03910.00480.01250.03290'2030.00490.00560.00070.00290.00490.00220.00250.00650.05210.05340.00540.03960.11650.08740.01070.01400.03680.02280.00550.00630.00080.00330.00550.00250'0280.00730.05840.05990.00600.04430.13050'9790.01200.01730.03680.01950.01230.01540.00310.01830'3260.01430.01820.04500.07080.08010.03610.10990.22510.19960.08440.02080.04420.02340'1480.01850.00370.02200.03910.01720.02180.05400.08500.09610.04330.13190.27010.23950.10130.03480~08100.04620.02030.02470.00450.02520'4460.01970.02460.06130.14330.15600.04930'7620.40060.33740.113351-1258768-01 GinnaSFPRe-racking Licensing ReportPage281
MaximumGapClosurefor5OBE's+1SSE(WithPerimeter Racks)Table3.5-137SummaryofEast-West RelativeDisp.SummaryofTotalNorth-South GapClosure(Translation andRotation) 1stRackWWWW12345566689101112132ndRack123456788910111213EWEWEWTotalTrans.Closure0.24180.24260.10350.13080.10170.10040.25120.27500'6320.31230.18600.43490.41900.45600.33270'8900.5044TotalRot.Closure0.05520.07300.08710.07990.07200.03800.05780.07000.06120.08440.06560.15350.16540.11380.12330.11220.0792TotalClosureBetween0.29700.31560.19060.21070.17360.13840.30900.34490.32430.39680.25160.58840.58440.56980.45600'0120.5835InitialGapBetweenRacks10.5009.7501.7501.2500.7500.6300.5500.5500.5503.3803.3800.7900.7900.7903.2703.2703.270FinalGapBetweenRacks10.2039.4341.5591.0390.5760.4920.2410.2050.2262.9833.1280.2020.2060.2202.8142.9692.686GapStatusOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenTable3.5-138SummaryofNorth-South RelativeDisp.1stRackSW12SW34SW56SW78910SW1112132ndRack12NW34NW56NW78910NW111213NWTotalTrans.Closure0.28140.13010.37020.20150.14840.23000.28860.12370.27370.45670.12440.22420.06650.41660.46820.08310.38170.4230Total"Rot.Closure0.03480.08100.04620'2030.02470.00450.02520.04460.01970.02460.06130.14330.15600.04930.17620.40060.33740.1133TotalClosureBetween0.31620.21110.41630.22180.17320.23440'1390.16830.29340.48130.18560.36750.22250.46590.64440'8370.71920.5363InitialGapBetweenRacks5.2500.5005.7506.0000.7504.7507.5000.7503.2507.0500.7900.7900.7901.72087.7400.7900.7901.720FinalGapBetweenRacks4.9340.2895.3345.7780.5774.5167.1860.5822.9576.5690.6040.4220.5681.25487.0960.3060.0711.184GapStatusOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpen51-1258768-01 GinnaSFPRe-racking Licensing ReportPage282 3.5.3.1.15 BoratedStainless SteelFunctionality Boratedstainless steel(BSS)isutilizedintheATEAspentfuelpoolrackdesignastheneutronabsorber.
BSSisanexcellent materialforuseinspentfuelpoolsandhasbeenusedinallofATEA'sracks.Whileitisaneffective neutronpoison,italsoexhibitshighcorrosion resistance intheboratedwaterenvironment ofthespentfuelpool.Italsoexhibitsgoodstructural properties instrengthandductility.
TheATEA-spent fuelrackdesignsutilizeBSSasaneutronabsorberonly,andisfunctionally designedasanon-structural component.
TheBSSplatesaredesignedtotransmitonlycompressive loadswithinthestructural framework oftheracks.Notensionorbendingloadsaretransmitted giventheinherentcell-to-cell gaps,thespecificbearingloadtransmission featuresbetweentheBSSandadjacentstructural cells,thecompliance oftheinterlocking featuresoftheBSSplates,andthecompliance ofthenon-fixity free-standing conditions oftheBSScellitself.Interlocking fingers(straight mortisesandtenons)machinedalongtheedgesoftheBSSplatesserveadualpurpose.Fourindividual BSS'plates areassembled toformasquaretubecellwithouttheuseofmechanical (i.e.,screwsorpins)orfusion(i.e.,weldoradhesive) joiningprocesses.
TheBSScellslidesinsidetherackframecellasaninterlocked unitduringfabrication.
Theinterlocking fingersaredesignedsuchthatsufficient clearances areprovidedtopermitthejointtorotateandslip.Thejointmitigates fuelassemblyimpactloadingwithintheBSScellwhilemaintaining properfingeroverlapandsufficient plateengagement.
Thedesigntolerances aresuchthataminimumengagement ofone-halfofaplatethickness isensured.Whilethedesignprovidescompliance forinternalloads,i.e.,fuelassemblyimpactloads,themortiseandtenonjointmaintains thesquarecellgeometrywhentransmitting loadsbetweenthestructural cells.Thetransmission oflateralloadswithintheATEAtype2A-Brackstructural frameisachievedthroughaseriesofbearingretainerplatesandcornertabsweldedtothestainless steelcells.Theretainerplatesalsoservetoaxiallyconstrain theBSScellwithinitsdesignated rackcell.LateralgapsbetweentheBSSandstainless steelintegralcellinadditiontothenon-fixity featuresoftheBSScellitselfservetomitigatebendingloadsintheBSSplates.Thetransmission oflateralloadsbetweentheATEAtype3A-Erackstructural frameandtheBSScellsisachievedthroughaseriesofstainless steel"bands"locatedatdiscreteaxiallocations alongthelengthoftheBSScells.Thebandisassembled astwopiecesfittingintomorticejointsontheBSSplatesandthenweldedtoeachothertoformanintegralbandaroundtheBSScell.Giventhe&eestanding boundaryconditions oftheBSScellandlateralgapsbetweenthebandsandadjacentstructural cells,rigidbodymotionisallowedwithnegligible bendingmomentsproducedintheBSScell.Transmission ofloadsareentirelybearinginnature.TheBSSplatesaresandwiched betweenthestainless steelstructural cellsfortheATEAtype4rackswiththetransmission ofloadsbeingbearinginnature.Anymomentloadsduetotype1rackimpactwouldbein-planeandresultinnegligible stresses.
Impactbetweenthetype4racksandthepoolwalldoesnotexist.Resultsfromtherackanalysesshowthatsubsequent rackframeloadsanddisplacements areinsufficient toloadtheBSScellinbendingortension.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage283 Dynamicloadingsweregenerated bycomputermodelsforthevariousrackdesigns.ThesemodelsincludedtheBSSplatesandthevariousrackcomponent masses.G-forceloadingsweregenerated atlocations wherethebearingretainerplatesaxiallyconstrain theBSSplateswithinthetype2stainless steelrackcellandalsoattherackbaseplateseatingsurfaceforthetype3racks.TheretainerplateweldsandrackbaseplatearedesignedtocarrythefullverticaldynamicloadingsfromtheBSSplates/cells
-tothestainless steelrackstructure.
Analysescontained intheSections3.5.3.1.2.5 and3.5.3.1.12 demonstrate theintegrity oftheretainerplateweldtabsandbaseplate respectively.
Lateralloadsandsubsequent momentsanddisplacements werealsogenerated fortherackcells.Resulting displacements weresmallandwithintheavailable designgaps.Inaddition, theBSSplatesoffer'very littleresistance duetoitslackofrestraint attheendsastheplatesareonlycapturedandnotfixed(weldedorpinned)totherackstructure.
Thein-planebending(acrossthewidthoftheplate)displacement duetoitsownmassisnegligible, andbowingalongtheplatelengthisprecluded bytheinterlocking fingerswithadjacentplates.ThermalStressesinBSSWhenafreshlydischarged fuelassemblyisstoredinaBoratedStainless Steel(BSS)cell,theBSSplatetemperature increases.
Thetemperature distribution isisotropic ineachsection,sothattheBSScellexpandsinanisotropic way(withoutstresses).
Theamountofexpansion, calculated inaveryconservative way(assuming asaturated boilingtemperature, 238.9'F,intheBSScellandonly120'FintheSScelloutside)canbeevaluated asfollows:WhereLateralExpansion:
=a(b,T)L=(8.872E-6)(238.9-120)(8.4)
=0.009in.<ExistingGap=0.016in.a=8.872E-6in/in/'Fat238.9'FL,=8.4in.(BSSwidth)VerticalExpansion:
=a(b,T)L,WhereL2=145.7in.(BSSheight)=(8.872E-6)(238.9-120)(145.7)
=0.154in.<ExistingGap=0.197in.Therefore, undernocircumstances willtheBSSbeconstrained bythesurrounding SScell.Further,anadditional gapexistsbetweenthenotchesintheBSSplatesduetolasercuttingduringthemanufacturing process.Therefore, theBSSplateswilladequately functionastheneutronattenuator andwillprovideasafeenvironment forstoringspentfuelandfreshnuclearfuelassemblies.
3.5.3.1.16 U.S.TooldtDieRackStructural Evaluation Racks1through6areresidentracksandwillbekeptinthenewpoolconfiguration.
ThoseracksarereferredasRacks1through6.ThoserackshavebeenlicensedintheRochester Gas&Electric's Ginnaspentfuelpool,NRCSERdatedNovember14,1984,Amendment 65toLicenseNo.DPR-18.Hereafter, thisisreferredas1985Licensing Basis.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage284
Thegapsinthenewconfiguration aredesignedsuchthatnewATEAracksdonotimpactU.S.ToolandDieracksundernormalandallseismicconditions.
However,duetohydrodynamic
- coupling, therewillbesomeloadtransferbetweenresidentandnewracks.Toestablish theseloads,thenewseismicanalysisincludesallracksinthepool,inthewholepoolmodel.Thenewseismicloadsaregenerated forbothresidentandnewracks.Tables3.5-139and-140providesummaryofseismicloadsonU.S.ToolandDieracks.Theloadsaresummarized fromnewanalysisandalso&om1985Licensing Basis.Reviewofthesetablesindicates thatthenewseismicloadsonU.S.ToolandDieracksandracksupportarelowerthantheoriginallicensing basis.ThisistrueforbothOBEandSSEconditions.
Therefore, thestressesintheU.S.ToolandDierackswillbelowerthanthe1985Licensing Basis.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage285 Table3.5-139SeismicLoadsonRacks1through6-attheBaseofRack',5>..U;S
'Toolgr,';:Die Analysis:,":$
'~:.'::l:::;::;41985:L'Icensing Ba'sis'.:-$
);.':.,:..,l,.;:".'Witho'iit Perime'ter'acks.:
..","::..,!::.',::
ij::With':Pei'im'eter,'Racks',',,::,':,,:
- .;.:"::';.;::Sta'i'idard co'nfIgu'ration",".:.:;:~;:.:.':;:::;.
- '.
- :.:,:':i:::.:'.,:",.Exte'nded'Corifigur'atIon~j:.
Operating BasisEarthquake
,,"'."lbs,'i::'!!,:'-;';,'.':,Ibs;:.:'::":;,';:;::.:i,'.;.I StandardFuelConsolidated FuelMixedFuel156,200153,000170,000160,200411,13343,97170,896451,146230,70039,99848,43628,89670,429253,875103,952443,31647,966254,084SafeShutdownEarthquake StandardFuelConsolidated FuelMixedFuel164,300231,500184,700239,300475,723565,56488,832126,000328,92085,776176,640558,60091,248122,074332,54380,999163,138555,54369,395110,225552,970Notes:1.2.3.Reportedresultswithperimeter racksareratioedfromanalysisresultstoreflectmaximum138fuelassemblies inRacks1through6.MaximumloadsamongRacks1through6arereported.
Emptyspacesintheabovetablemeans,theresultsfromothercaseenvelopes thisloadingconfiguration.
TheXdirection isEast,theYdirection isNorthandtheZdirection isvertical.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage286 Table3.5-140SeismicSupportPadLoadonRacks1through6LoadonEachPadi~j,.:,:'.:U-S';.;To'oi:::'4,:Di'e):,,:-,'"if'
-:=,",::
l',':;::.'::;:-'Aii'alysis.'::,':.'.","i,:':!.:;:W."i
';,"'1985'.':Liceiisin'g':Basjs",,"",'%"..5" NewjAiialysis,,::.',.;:~::-':,'::::"..'i
~-',~jWithou't'-Periiii'eter',."-:':,":.:
":S'tandard:
Config'uiation':
i;:,;::j.;,.":i'::'.>New',"An'aiysIs'-:
'".,",.';.".';,',
.":'i':,:::Exte'rided';Coiifigu'ratjo'n',:,:::;
yY~C,',~'5+','C',::;::Horimn41::~::
':;:;;::Ver'tical)::",.
';'Horig'oiital:::i::::,:Vertic'a1I:;
Operating BasisEarthquake
,'I","::,:-,:.V.er'tical>,".;,;
.;:g.;:,,';,.',gglbs'.-"..::,'!:.:
"':StandardFuelConsolidated Fuel115,432205,56724,584110,762225,573122,97622,81823,873114,145169,285MixedFuelSafeShutdownEarthquake 17,513118,426StandardFuel141,939237,86287,636193,44078,324172,761Consolidated Fuel151,144282,782103,596250,68076,601246,162MixedFuel52,086193,349Notes:1.Reportedresultswithperimeter racksareratioedfromanalysisresultstoreflectmaximum138fuelassemblies inRacks1through6.MaximumloadsamongRacks1through6arereported.
Emptyspacesintheabovetablemeans,theresultsfromothercaseenvelopes thisloadingconfiguration.
SummaryTheloadsandstressesintheU.S.ToolandDieracksarelowerthanthe1985Licensing Basis.Therefore, theU.S.ToolandDieracksmeetsthestructural acceptance criteria.
3.5.3.1.17 SpentFuelPoolandLinerStructural Evaluation Thissectiondemonstrates compliance ofRGEcEGinnaUnit1spentfuelpoolandpoollinerstructural integrity withtherequirements ofNUREG-0800, StandardReviewPlan3.8.4,AppendixDrequirements.
Thespentfuelpoolevaluation isbasedonaconservative interpretation oftheAmericanConcreteInstitute*s CodeRequirements forNuclearSafetyRelatedConcreteStructures ACI349-85(Reference 3.20).Thepoollinerevaluation isbasedonaconservative interpretation oftheAmericanInstitute ofSteelConstruction's BuildingCodeAISC-9thEdition(Reference 3.21).51-1258768-01 GinnaSFPRe-racking Licensing ReportPage287 C
Thedesignofnewhighdensitystorageracksissuchthatitpreserves theoriginallicensing basis(NRCSERdatedNovember14,1984),hereaflerreferredtoasthe1985licensing basis,forthespentfuelpoollinerandpoolconcrete.
ThenewATEAstorageracksare&eestandingracks,andtheyaresupported onthepoolflooronly.Thegapsbetweentherackandthepoolaredesignedsuchthatthenewracksdonotimposeanyadditional loadingsonthepoolwall.Theseconditions areverifiedthroughout theanalysis.
Thenewracksarehighdensitystorageracksandtheywillstoremorefuel.Thenumberofsupportlegsaredesignedsuchthatthenewracksdonotimposeanyhigherloadingtothepoollinerorthepoolconcrete.
Thisalsoverifiedduringanalysis.
Thesupportlegsarepositioned onthelinersuchthattheyareawayfromthelinerweldseams.Thepoolandthelinertemperatures arekeptthesameastheoriginaldesignbasis.Therefore, therearenoadditional thermalloadingsonthepoolortheliner.Thepoolwaterleveliskeptthesameastheoriginaldesignbasis.Therefore, therearenoadditional hydrostatic orhydrodynamic loadsonthepoolortheliner.Thisdesignrequires, only,verification ofbearingloadsonthelinerandconcrete.
Acceptance Criteria-SpentFuelPoolLinerThespentfuelpoollinerisdesignedtoAISCCode.Thestorageracksupportpadsaredesignedsuchthattheydonotrestonlinerweldseam.Thesupportpadsprimarily inducebearingloadsontheliner.TheredesignonlychangesfloorbearingloadsBearingAllowable 0.9FvPerAISCLinerFatigueAnalysisperAISC,AppendixKAcceptance Criteria-SpentFuelPoolConcreteThespentfuelpoolconcreteisdesignedperrequirements ACI349-85.Thestorageracksbeing&eestandingstructure, primarily inducesbearingloadonconcreteatsupportpadlocations.
Theredesignonlychangesfloorbearingloads.BearingAllowable
$(0.85f,)PerACI349,Section10.15~Demonstrate thattherearenorack-to-wall impactsPoolLinerEvaluation Thepoollinerbearingstressanalysisisperformed inSection3.5.3.1.9.1.2.
Table3.5-131presentstheresultsofthestressanalysis.
TheresultsindicatethatthereisalargemarginagainstAISCCodeallowable.
Section3.5.3.1.11 presentstheresultofthepoollinerfatigueanalysis.
Theresultsindicatethatthepoollinermeetsthefatiguerequirements oftheAISCCode,NinthEdition,Section5,AppendixK,andthelinerhasadequatefatiguelife.Therefore, thestructural integrity ofthelinerismaintained.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage288 SpentFuelPoolStructural Evaluation Thisverticalreactionistransferred directlydownwardtotheconcretethroughthelinerplate.Themaximumappliedconcretebearingstressesforallloadcombinations islessthan3,570psi.Themaximumbearingstressesandthecomparison ofmaximumbearingstressestoallowable arepresented inSection30.3.1.9.1.2, whichindicates anadequatemarginagainsttheACI349-85Code.Therefore, thestructural integrity ofthespentfuelpoolismaintained.
3.5.3.1.18 StuckFuelAssembly-UpliftForceThissectiondemonstrates compliance ofRochester Gas4Electric's GinnaspentfuelstoragerackswithStandardReviewPlan-NUREG-0800, Section3.8.4,AppendixD,'upwardforceontherackscausedbypostulated stuckfuelassembly'equirements.
Thestandardforthestuckfuelassemblycondition stipulates thatthespentfuelrackssodesignedandconstructed suchthat,ifmaximumupliftforceofthespentfuelcraneisapplied,thestressesintherackshouldbewithinserviceLevelBstressofASMESectionIII,Subsection NF(Reference 3.19).Twopostulated eventsareconsidered, namely:PCasel:AxialLoadofPCase2:LoadP45DegreesFromVerticalAcceptance Criteria:
TheStandardReviewPlan3.8.4,AppendixD(Reference 3.4)providestheloadcombination tobeconsidered andacceptable stresslimitsforthisloadcombination.
Theloadcombination perSRP3.8.4is:D+L+To+PfWhere:Disdeadweightload,thesearenegligible atthetopofrack.Lisliveload,thesearezerosincethereisnoliveloadToisnormalcondition thermalloadandisnegligible atthetopoftubePfisupwardforceontherackscausedbypostulated stuckfuelassembly.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage289 Theallowable stresslimitsaretheLevelBstresslimitsperASMESectionIII,Subsection NFforClass3component supports(Reference 3.19).TheselimitsperNF-3251andTableNF-3552(b)-1 are:Primarymembranestress1.33SPrimarymembraneplusbendingstress1.995SThestructural tubesarefabricated fromASTMA240Type304Lmaterial.
TheSvalueat150'fromASMESectionIII,AppendixI,TableI-7.2is15.7ksi(Reference 3.19).Therefore, theallowable stressforthiscondition are:Prim'arymembranestress1.33x15.7=20.881ksiPrimarymembraneplusbending1.995x15.7=31.322ksiStuckFuelAssembly-UpliftAnalysisTherearetwoone-tonhoistsonthefuelhandlingbridge.Oneextendsoneachsideofthebridge(EastandWest).Onlyonehoistisusedtoremoveastuckfuelassembly.
Therefore, thetotalupliftforceP=2,000lbsFuelcell-Structural TubeCrossSectionProperties:
Tubeoutsidedimension (2xc)Tubeinsidedimension Tubethickness
-tTubecrosssectionarea-ATubemomentofinertia-IType2andType4Racks8.2992in8.1417in0.0787in2.59in'9.17in'ype3Racks8.496in8.3386in0.0787in2.65in~31.29in4Foragivenload,thestressesintheType2(andType4)racktubeswillbehighest,duetolowercrosssectionproperties.
Thefollowing analysisisperformed forType2Rackstructural tubes,andtheresultswillbeapplicable toType3andtype4racksalso.Case1:VerticalUpliftForceTheverticalP=2,000lbforcewillproduceaxialstressinthetube.o~=Load/CrossSectionArea=P/A=2,000/2.59=772psi<20,881psi(Primarymembraneallowable 1.33Sat150')DesignFactor=[(Allowable
-Actual)/Actual)]x100=[(20,881-772)/772]x100=2,605%Largemargin51-1258768-01 GinnaSFPRe-racking Licensing ReportPage290 0II Case2:UpliftForce45DegreeFromVerticalAxisZhP~oooooooooo
~9.88inTheP=2,000lbisapplied45degreesfromvertical.
Fx=2,000xCos45'=1414.2lbFz=2,000xSin45'1414.2lbForbendingmoment,conservative momentuptothesecondtabisused,L=9.88inchBendingmomentM=Fx~L=1414.2x9.88=13,972in.lbHc0'elld13972x8.2992229.171,988psiFz1414.20546psiA259Membraneplusbendingstress=1,988+546=2,534psi<31,322psi,1.995Sfor304Lat150'51-1258768-01 GinnaSFPRe-racking Licensing ReportPage291
DesignFactor=[(Allowable
-Actual)/Actual)]x100=[(31,322-2,534)/2,534]x100=1,136%:.LargemarginTheweldstressesinthe(BSS)upperretainers arecalculated inSection3.5.3.1.2.
Thestressesinallother,hardwaree.g.,tabs,baseplate,tubetobaseplateweld,supportlegs,etc.,aremuchlowerthanthefueltubestressescalculated here.Conclusion:
Rochester GasEcElectric's GinnaUnit1highdensityspentfuelstorageracksmeetstheLevelBstresslimitsofASMESectionIII,Subsection NF,Class3component supportrequirements forstuckfuelassembly-maximumupliftforce.Thedesignhasminimummarginofsafetyof11.4againstallowable stress.3.5.3.1.19 StorageRackLiftingAnalysisThissectiondemonstrates compliance ofexistingRegion1residentWachterstorageracksandnewATEAstoragerackswithNUREG-0612 (Reference 3.16),heavyloadliftingrequirements.
ThestandardforNUREG-0612 heavyloadliftingrequirements stipulates thatthestructure tobeliftedbedesignedandconstructed suchthatithasaminimumspecified safetyfactortoprecludedropofstructure onanysafetyrelatedsystemorequipments atnuclearpowerplants.ExistingRegion1,threeWachterrackswillberemovedfromthespentfuelpoolandsevennewATEArackswillbeplacedinthespentfuelpool.Fourliftingpoints,atthebottomplate,areprovidedoneachrack.Theliftingpointsarediagonally acrossfromeachother.Eachliftingbeam-cable can'beattachedtodiagonally oppositeliftingpoint.Thisfacilitates eitherredundant ornon-redundant lifting.Thesinglefailureproof,30-tonauxiliary buildingcranewillbeusedtoliftresidentracks&omthespentfuelpoolandtoliftnewATEAracksintothespentfuelpool.Eachrackweighsmorethanonefuelassemblyplusthefuelhandlingtool.Forthisreason,theracksareclassified asheavyloadperNUREG-0612 criteria.
Analysisisperformed foreachracktoensurecompliance withtheliftingrequirements ofNUREG-0612.
Theliftingacceptance criteriais:51-1258768-01 GinnaSFPRe-racking Licensing ReportPage292
~~~
NUREG-0612 (ControlofHeavyLoadsatNuclearPowerPlants),Section5.1.6(Reference 3.16)SafetyFactorDesignCriteriaRedundant LiftNon-redundant Lift10UltimateUltimateTheliftingstressanalysisisperformed forexistingRegion1WachterstorageracksandthenewATEAstorageracks.Theresultsaresummarized inthefollowing table:;:,::,.;:Mate'rials':;of:;
jConstructiaii':;:
bv4x'.'c'~:,"~x;.~,~q';"k'
>Dry".;q%;eight",.:';;.','".;-','tress;,:'(,:,';
',iI~Mat'erial':Terisile I::';:;::,:I,,'.,g~',,'Stre'n'gth;-:i:::,::
':;,",:;.';::.::<<".',at.::1'5,0,:;.;Fj:;,
-'";:,,'>>';
- >.
- !,,Safety',.",','.;,:Su"/',:S
':;':..WachterRacks(Theserackswillberemovedfromthepool)TypeA3RackTypeBRackTypeCRack304SS304SS304SS31,36626,53323,4531,10596455073,00073,00073,0006676133ATEARacks(Theserackswillbeinstalled inthepool)Type2BRack*304LSS19,3414,78068,10014*StressesinRack2Benvelopes allothernewATEAracks.Stressesaredeveloped usingveryconservative pointloadapplication.
AnadequatemarginexistsforliftingexistingRegion1WachterstorageracksandnewATEAstorageracksforeitherredundant ornon-redundant lifting.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage293
3.5.3.2AccidentConditions Mechanical AccidentEvaluation Thissectiondemonstrates compliance withRG&E'sGinnaspentfuelstoragesystemwiththeStandardReviewPlan-NUREG-0800, AppendixD,hypothetical accidentcondition requirements.
Thestandards forhypothetical accidentconditions stipulate thatthespentfuelstoragesystembesodesignedandconstructed suchthat,ifitissubjecttothespecified accidentconditions, spentfuelassemblies shouldremaininsafeconfiguration.
Thismeans,a)theoff-siteradiation doseshouldbewithinregulatory limit;andb)thefuelshouldremainsubcritical.
Themajorhypothetical accidentconditions evaluated are:a)b)c)d)e)FuelassemblydropduringfuelhandlinginthespentfuelpoolSpentfuelpoolcanalgatedropSpentfuelpoolstoragerackdropTornadomissileimpactSpentfuelcaskdropSeveralofthesehypothetical conditions areeliminated byadministrative procedure and/orbytheuseofasingle-failure proofliftingsystem.Assessment ofotherconditions wasperformed bystructural analysis.
Wellprovenclassical methodswereusedintheperformance oftheseanalyses.
Detailedinformation supporting theseanalysesarepresented here.3.5.3.2.1 Methodology andAssumptions Thebasisfortheseanalysesisanequatingofthekineticenergyofthefallingmissileatimpactwiththeelasticandplasticstrainenergy;i.e.,anenergybalance.Theevaluation ofthevariousaccidents wasbasedupontheconservative assumption thatunderstress&omauniformverticalload,thestructural tubeswillreachcompressive yieldusingareducedeffective tubearea.Inordertojudgethereasonableness ofmethodology, tworesultsshouldbeestablished; namelyductility factorandtotaldeformation.
Theductility factorisdefinedastheratiooftotalstraintoplasticstrain.Thetotaldeformation iscalculated directly&omtheenergybalance.Theelasticandplasticstrainsarebaseduponthedeformations andtheheightofthetargetstructure.
Thegreatertheheightofthetargetstructure, thelesserwillbetheplasticstrain.Thetargetstructure isselectedasthatportionoftheracksabovetheboratedstainless steel.Therefore, thecalculated plasticstrainsandhenceductility factorsareveryconservative.
Fordropsontothetopsurfaceoftheracks,thecheckerboard patternmeansthatthenumberofstructural tubesisaboutonehalfofthenumberofstoragecells.Asthedroppedobjectimpactsthetopoftheracks,theaffectedtubesyield.However,theeffectdoesnotremainlocalized andwillspreadtothesurrounding tubesthroughthestronginterconnection providedbytheweldedconnecting tabs.Theassumption ofthespreading ofloadonlytoimmediately adjacenttubesisveryconservative.
Suf5cient interconnecting tabsareusedtopreventgeneralorlocalelasticbuckling51-1258768-01 GinnaSFPLicensing Re-rackReportPage294 ofthetubes.Thisdesignprovidesforcapacitytoaccommodate thevariousdropaccidents.
Theextentofcompressive yieldwasdetermined aftercompletion ofthevariousloaddrops.Thestressvaluesforbucklingweredetermined andfoundtobesufficiently high.Thehydrodynamic effectshavebeenneglected intheaccidentdropanalysestoprovideconservative results.Inaddition, nobenefitistakenfordeformation orenergyabsorption ofthefallingobject.3.5.3.2.2 Acceptance CriteriaThestandards forthehypothetical accidentconditions stipulate thatthespentfuelstoragesystembedesignedandconstructed suchthat,ifitissubjecttothespecified accidentconditions, spentfuelassemblies shouldremaininsafeconfiguration.
Thismeans,a)theoff-siteradiation doseshouldbewithinregulatory limit;andb)thefuelshouldremainsubcritical.
Thishasbeenverifiedbyconfirming functioncapability ofspentfuelstorageracksandthespentfuelpoolasfollows:StraightDeepDropThefallingfuelassemblyisstopp'edpriortoimpinging uponthefuelpoolfloorliner.StraightDeepDropOntoSupportLegTheloadtransmitted totheconcretewillnotresultincrushingofconcretesoastopreventanuncontrollable leakinthepool.ShallowDropsandTornadoMissileImpactTheacceptance criteriafortopofrackimpactsarethattherequiredinelastic deformation mustbelessthan10%ofthelengthofthedeforming structural mechanism andthattheductility factorremainslessthan20(perTable4-4ofReference 3.32).Theductility factorof20asalimithasbeenacceptedbyNRCStaffinreviewofBechtelTopicalReport,BC-TOP-9A, Revision2,September 1974.Significant distortion ofthecellswillbelimitedtothefootprint ofimpactandtheadjacentfuelcells.3.5.3.2.3 FuelAssemblyDropAnalysisForhypothetical fuelassemblydrops,fourcaseswereexamined:
a)Straightdeepdropthroughcell.b)Sameasabove,exceptasupportlegispresentatthebaseofthecell.c)Shallowdropinwhichadroppedassemblystrikesthetopofarackandfallsflatontopoftherack.d)Shallowdropinwhichadroppedassemblystrikesthetopofarackinaverticalposition.
Unconsolidated, fuelassemblydropswereevaluated fortheconditions outlinedabove.Thecanistercontaining consolidated fuel(weighing 2,638lb)isconsidered heavyloadperNUREG-0612 criteriaandwillbetransported withinspentfuelpoolusingaspecialtoolsuspended fromasinglefailureproofauxiliary buildingcrane.Inasafetyevaluation reportdatedDecember31,1984theNRCStaffreviewedandapprovedmodifications totheauxiliary buildingcraneinordertomeetthecranesingle-failure criteriaofNUREG-0612 andNUREG-0554.
Therefore, handlingofconsolidated fuelwillbeperformed inaccordance withtheguidelines ofNUREG-0612 withregardtolimitingthechanceofunacceptable heavyloaddrop(reference "NRCStaffSafetyEvaluation Supporting 51-1258768-01 GinnaSFPLicensing Re-rackReportPage295 Amendment 12toFacilityOperating LicenseNo.DPR-18,RG&EGinna,Docket50-244,"datedDecember16,1988).DesignParameters forFuelAssemblyDropAnalyses:
Therequirements oftheaccidentarethatafuelassembly, alongwiththehandlingtool,dropsfromanoperating height.WeightsWeightinairWeightinwater14501307~24Total17741591FuelAssemblywithcontrolcomponents FuelhandlingtoolMaximumfuelassemblyheightaboveracksduringfuelhandling12inchHeightofthefuelassembly160inchFordeepdrops,thedropheight(160+12)Forshallowdrops,thedropheight172inch12inch304LStainless Steelmaterialproperties at150'(fromASMESectionIII,AppendixI)Young'sModulusE=27.9x10'b/in'ield strengthS=23,150psior23.15ksiUltimateStrengthS=68,100psior68.1ksi3.5.3.2.3.1 FuelAssembly-StraightDeepDropForthishypothetical accidentdropofthefuelassemblydeepdroptwocaseswereanalyzed.
Thefirstisthedropthroughthecellandimpacting onthebottomplateremotefromanysupportlegs.Thesecondcaseisthedeepdropinsidethroughthefuelcellcontaining thesupportleg.Thefollowing appliesequallytoType2,Type3andType4racksforbothofthesedrops.Weightoffuelassembly+
weightofhandlingtool=1,591lbsor1.591kipsDropheight172inchBottomplatethickness 1.18inch3.5.3.2.3.1.1 FuelAssemblyFallsThroughCelltoBasePlateImpactEnergy:IE=WxdIE=1.591x172=273.652in-kips51-1258768-01 GinnaSFPLicensing Re-rackReportPage296 ah~
Type2andType3RacksThedropinthemiddlebetweensupportlegswillproducemaximumdeformation oftherack.Ineffect,atwo-wayslabdevelops.
Theapproximate spacingofadjacentsupportlegsis4xpitchof9.2323fortype3racks(-37inches).TheType3rackislimiting, becausethemaximumspacingbetweenthesupportlegsisintheType3Rack.Theresultspresented belowwillenvelopeType2racks.3737'ieldLinesTVP.SupportLegDuring172inchfuelassemblydropimpact,theweldsconnecting thetubetothebaseplatewillfail.Thebaseplatewilldetachfromthecellsina37"x37"region.The37"x37"platewillhavesupportatthefourlegsandalsowillhaveasupportfromremaining plate.Thismeanstheedgeswillhavefixedsupport.Forconservatism, theenergyabsorbedinbreakingweldsisneglected.
Allkineticenergyisabsorbedinformingplastichingesofthe1.18inchthickbottomplate.Theplastichingelinesareshowninabovefigure.ForfullyplastichingeofaplateM,,=(ot'/4MpL=8.059in-kips/in whereMpLPlasticMomentt=1.18inches,thickness ofthebottomplateo=23.15ksiat150'for304LStainless SteelFora37"x37"twowayflatplate.P=16mp=128.9kipsFullyFlasticLoadExternalenergy=InternalenergyWd=P551-1258768-01 GinnaSFPLicensing Re-rackReportPage297 5=273.652/128.9=2.12inch<13.7inch:.O.K.Where13.7isthedistancebetweenthebottomplateandthepoolliner.Therefore, thedeformedplatewillnotimpactthepoolliner.b=-8whereb=37inches28=0.1146radians(t/2)8dcndgb/4BendingStrain6>,z=0.007wheret=thickness ofplate1.18inchL=b/4therewillbefourplasticmomentsinlengthb,L=b/4b=37inchspacingbetweensupportlegsFor2.12inchdeformation ofbottomplate,thefallingobjectorthebottomplatewillnotimpactthepoolliner.ASTMSpecification A240-93a,Table2specifies aminimumelongation of40%forType304Lstainless steelmaterial.
Thetype304Lmaterialisductileandhasadequatemargintoaccommodate 0.007strainduringfuelassemblydrop.Amajorconservatism istoneglecttheenergyrequiredtofailallthebaseweldsina37"x37"areaofbaseplate.51-1258768-01 GinnaSFPLicensing Re-rackReportPage298 l~-,~
Type4RacksAdropinthemiddlebetweensupportlegswillproducemaximumdeformation oftherack.Thespacingofadjacentsupportlegsis5xpitchof8.43forType4racks(L=42.15inches).0ML-MPgsarshbovefigure.Forfullyplastichingeofthebaseplate(TCrossSection)During172inchfuelassemblydropimpact,theweldsconnecting thetubetothebaseplatewillfail.Thebaseplatewilldetach&omthecells.The42.15"platewillhavesupportatthetwolegs.Thismeanstheedgeswillhavefixedsupport.Forconservatism, theenergyabsorbedinbreakingweldsisneglected.
Allkineticenergyisabsorbedinformingplastichingesofthe1.18inchthickbottomplatewith1.97inchthickweb.Thebaseplatewith1.97inchthickwebformsaTcrosssectionbeam.Thelastichin elineeowninaMpiZ0>whereZistheplasticsectionofmodulus.Z=34.15in'orfullyplastichingeofaplateM,=34.15oMpi=ZG>=790.5725in-kipswhereo=23.15ksiat150'for304LStainless SteelForasimplysupported beam:-5=ZM8=2M86=(L/2)8PL=8Mi51-1258768-01 GinnaSFPLicensing Re-rackReportPage299 Loadsrequiredtoformfullyplastichinge:P=150.05KipsEquatingInternalStrainEnergytotheKineticEnergyExternalenergy=Internalenergy.Wd=P5273.652=150.0555=273.652/150.05=1.82inch<7.8inch:.O.K.Where7.8"isthedistancebetweenthebottomwebandthepoolliner.Therefore, thedeformedbeamwillnotimpactthepoolliner.5=-8whereL=42.15inches28=6-b8=0.0864radianscoLengthL/4BendingStrain6>,<=0.0342wherec=4.165"distancebetweenneutralaxisandoutermost fibreLength=L/4sincetherewillbefourplasticmomentsinbetweensupports,:.
Length=L/4L=42.15inchspacingbetweensupportlegsFor1.82inchdeformation ofbottomplate,thefallingobjectorthebottomplatewillnotimpactthepoolliner.ASTMSpecification A240-93a,Table2specifies aminimumelongation of40%forType304Lstainless steelmaterial.
TheType304Lmaterialisductileandhasadequatemargintoaccommodate 0.0342strainduringfuelassemblydrop.Amajorconservatism istoneglecttheenergyrequiredtofailthebaseweldsbetweenfuelcellandbottomplate.51-1258768-01 GinnaSFPLicensing Re-rackReportPage300 444%44IE.'I...0%.l44,~\*Ct,akrs~tIj"444'r 3.5.3.2.3.1.2 FuelAssemblyDropsintoCellandStrikesSupportLegForthishypothetical fuelassemblydeepdrop,thefuelassemblydropsthroughthefuelcellontothesupportleg.
Theexternalenergyatthepointofcontact:Wh=1.591x172=273.652in-kipsAtthisenergy,thesupportlegfemalethreadswillshearfirst.Thefemalethreadsarein304Lstainless steeltube,whereasthemalethreadsareinhighstrengthASTM-A564 Type630stainless steel.Thetensilestrengthof304Ltubebarmaterialis68.1ksi,whereasforthe630precipitation hardenedsteelis140ksi.Therefore, thefemalethreadswillstripfirst.Qp~rdw'>re CylinderThreadedRodNeckdownPortionSupportpadhhLee+304LSSA564,Type630A564,Type630F304L~a~g'68.1ksi14014063.25Shearareaofinternalthreads:(FromMachinery's
- Handbook, 23rdEdition,page1279)An=3.1416xnxLexDs;[(1/2n)+0.57735(Ds;-Eng]wheren=numberofthreadsperinch,forM80x6threadsn=6mmor4.23threads/inch Le=lengthofthreadengagement, 40mmor1.57inchDs;=minimummajordiameterofexternalthreads,79.32mmor3.123inchEs=maximumpitchdiameterofinternalthread,76.478mmor3.011inchSubstituting An=11.915inUltimateshearstrengthofthefemalethreads:Pu=(Su/2)xAn=405.7kipswhereSu=68.1ksifor304Lstainless steelat150'Afterstripping thefemalethreads,therackbottomplatewillprovidesupportandalsoabsorbtheimpactenergy.Forconservative evaluation, allremaining energyofthedropisusedtocalculate theimpactloadwherethecylindrical portionofthefemalesupportlegimpactsthebottombearingpadandneglectstheenergyabsorbedinthebottomplate.51-1258768-01 GinnaSFPLicensing Re-rackReportPage301
Energyofthedrop=Wh=1.591x172=273.652in-kipsEnergyconsumedinshearingthreads=95.747in-kipsRemaining energyforimpacttothebearingpadis=273.652-95.747=177.905in-kipsThisenergyisconverted togetinitialvelocity=(1/2)mV'gainonlytheweightofthefuelassembly(1.591kips)isusedtogetmaximumvelocityaftershearingthreads.177.905=(1/2)(1.591/386.4)
V:.V'86,414(in/sec)'he supportlegwilltravel36mmbeforeitimpactsthebearingpad.Forconservative impact,thetargetisconsidered rigidandthevelocityafterimpactisconsidered zero.TheinitialvelocityofVo=~86,414in/secandVf=0.0,s=36mm,andusingconstantdeceleration:
2864142s362x25.4-30,485in/secOR-79gsTheimpactloadis=Wxdeceleration
=1.591x79=125.7kips.Thisimpactloadislowerthantheloadrequiredtoshearfemalethreads(405.7kips).Forthiscasetheinelastic strainenergyisconfinedtotheMSOx6threadedportionofthesupportleg.Themaximumloadimpartedtothespentfuelpoolfloorislimitedtoultimatestrengthofthethreadedportionofthelegandis405.7kips.Duetolimitedmechanism forinelastic energyabsorption, thesupportlegfemalethreadswillfail.Theloadimpartedtothefloorwillpassthroughthestainless steelliner.Thestressesinthereinforced concretefloorarecalculated usingBoussinesq's solution(Reference 3.35),wherePisequaltothemaximumforcetransferred throughthesupportlegstothefloor.UsingtheBoussinesq
- solution, themaximumconcretecompressive stressisatpointC.51-1258768-01 GinnaSFPLicensing Re-rackReportPage302 icC%~F4P0Va PCAAtpointCr=0t=0.25"poollinerthickness z=bearingpaddiameter+2t=6.6929+2x0.25=7.1929in23(2y2)2A=108.36in'oncrete Compressive Stress=P/A=3,744psi<4,462.5psi:.O.K.whereconcreteallowable stressis4,462.5psiforaccidental impactloadfor3Dconfinedconcrete.
Fornormalcondition, concreteallowable bearingstress=$(0.85)fc(perACI349-85,section10.15)Foraccidentcondition withimpactload,allowable compressive stress=$(0.85)fcx2xDIFwhere:$=0.7persection9.3ofACI349-85Fc=3,000psiminimumstrength28dayscuredconcreteDIF=1.25DynamicimpactfactorforhighstrainrateperTableC-1ofACI349-85:.concreteallowable stress=0.7x0.85x3,000x2x1.25=4,462.5psi51-1258768-01 GinnaSFPLicensing Re-rackReportPage303 Inaddition, theconcreteCodeACI349-85,Section9.2.6statesthat"whenconsidering theseconcentrated loads,localsectionstrengths andstressesmaybeexceededprovidedtherewillbenolossofintendedfunctionofanysafetyrelatedsystems."
Since3footthickreinforced concretespentfuelpoolfloorissupported onhardrockandiscompletely
- confined, thelocalized spallingof,concrete willnotjeopardize thesafetyfunctionofthepool.Theindications arethat,atdistancebelowthesupportpadequaltothediameterofthesupportpad(6.6929"),
thestressesarebelowallowable stresses.
Theconcretedirectlyunderthesupportpadisalocalcondition withthree-dimensional confinement and,therefore, willnotbedamagedbythe.impactload.3.5.3.2.3.2 FuelAssembly-ShallowDropsForthishypothetical accidentdropofthefuelassembly, shallowdrops,twocaseswereanalyzed.
Theacceptance criteriafortopofrackimpactsarethattherequiredinelastic deformation mustbelessthan10%ofthelengthofthedeforming structural mechanism andthattheductility factorremainslessthan20.Fordropsontothetopsoftheracks,themathematical modelconsistsofaverticalprismatic memberwithaheightequaltothedistancefromthetopoftheracktothetopoftheboratedstainless steel.Becauseinelastic responseisconfinedtothisupperregion,thevaluescalculated forinelastic strainandductility factorsareconservative.
Iftheentirerackweretobeconsidered, theductility factorswouldbereduced.Thenumberoftubesconsidered inthismodelisthenumberoftubesdirectlyimpactedplusthenumberoftubesimmediately adjacent.
Duetothestronginterconnection betweentubes,thisassumption isconservative.
Asthedroppedobjectimpactsthetopoftheracks,theaffectedtubesyield;however,theeffectdoesnotremainlocalized.
Itwillspreadtothesurrounding tubesthroughthestronginterconnection providedbytheweldedconnecting tabs.Theassumption ofthespreading ofloadonlytoimmediately adjacenttubesisconservative.
Firstbucklingstrengthofthestructural tubeiscalculated.
Fromthisitwillbeinvestigated whetherthestructural tubebucklingoccursinelasticorplasticrange.EulerBucklingofStructural TubeBetweenConnection TabPlates$=clearlengthbetweenpitchofthetabsI=crosssectionmomentofinertiaofthestructural tubeA=crosssectionareaofthestructural tubeE=Young'sModulusofthetubematerialat150'F51-1258768-01 GinnaSFPLicensing Re-rackReportPage304 EI7P0APRackfggei~itchA~nI4E2Type2Type3Type449.2949.2948.232.592.652.5929.1731.2929.1727.9x10',277 27.9x10',338 27.9x101333Since0iswellabovetheyieldstress,theaboveresultsindicates thatbucklingwillnotoccurintheelasticrange.3.5.3.2.3.2.1 FlatImpactonTopInterface oftheRacksForthishypothetical
- accident, thefuelassemblywithhandlingtoolisdropped&om12inchesabovetherack,thefuelassemblyimpactsthetopoftherackandfallsflatontopoftherack.Forthiscaseitisassumedthatthefuelassemblyisdroppedvertically ontothetopoftherack.Afterinitially strikingthetopoftherack,thefuelassemblyandhandlinggearrotatesandfallsflatontopoftheracks.Thetotalkineticenergydelivered tothetopoftheracksislittlediminished duetotheinitialstrike.Thisisduetothefactthatthelinearkineticenergyisconverted totherotational kineticenergybymeansofacoupleequaltotheweightandinertialforceofthefuelrodtimesthehorizontal component ofthedistancebetweenthecenterofgravityofthefallingfuelassemblyandthepointofinitialstrikeuponthetopoftheracks.Thekineticenergyatimpact=Wxdwhere:Weightofthefuelassemblyandthetoolis1,591lb.Thedropheightforshallowdropis12inch+halfheightoffuelassemblyd=12+(160/2)=92inchKineticenergyatimpact=Wxd=1591x92=146,372in-lbPitchoffuelcells:Type2RackType3RackType4Rack8.43inch9.23inch8.43inchForalltheaccidentanalysespresented inthissection,thetotalnumberoftubesconsidered intheanalysisisthatcontained withinthefootprint oftheimpactedarea,plusthetubesthatareimmediately adjacent.
Thelengthoffuelassemblyis160inchorapproximately 18pitch.Fornewracks,everyothercellisastructural tube.Therefore, initially aminimumof9structural tubeswill51-1258768-01 GinnaSFPLicensing Re-rackReportPage305
\1~+I beimpacted.
Theother9adjacentstructural tubeswillalsoabsorbimpactenergy.Soeffectively, 2x9or18structural tubeswillparticipate inabsorbing impactenergy.Thetop10inchportion,abovetheboratedstainless steelportionofthetube,willabsorbenergy.TheType2rackstructural tubeshavetheminimumcrosssectionarea,andwillhavethelargestdeformation duringfueldropaccident.
Thefollowing calculations wereperformed forType2racks.However,theresultsenvelopeallthreetypeofracks.A,tr-effective crosssectionareafor18structural tubes.A,ft=2.59x18=46.62in~Thetop10inchesofthetube,abovetheboratedstainless steel,willabsorballenergy.Therefore, h=10inch2hbElasticStrainEnergy=-0-2=4,478in-lbvEoffTheelasticstrainenergyabsorbedislessthanthetotaldropenergy.Therefore, therewillbesomeinelastic deformation.
Totaldropenergy=Elasticstrainenergy+Inelastic strainenergy146,372=4,478+Inelastic strainenergy:.Inelastic strainenergy=146,372-4,478=141,894in-lbInelastic StrainEnergy=0he,A,<=141,894in-lbe;=0.01310e=-"=0.00083elE6=(6t+6,)(10)=(0.00083+0.0131)(10)
=0.14in~ct+6000083+0131DunilityFacior-16.8G,t.00083Ductility factor=16.8<20:.O.K.3.5.3.2.3.2.2 End-OnImpactDuringanend-onimpacthypothetical
- accident, thefuelassemblywithhandlingtoolisdropped&om12inchesabovetherack,andthefuelassemblyimpactsthetopoftherackvertically.
51-1258768-01 GinnaSFPLicensing Re-rackReportPage306 ThedropenergyWxdis1591x12=19,100in-lbwhereW=1,591lb(weightofthefuelassemblyandthetool)Thedropheightis12inches.Foralltheaccidentanalysespresented inthissection,thetotalnumberoftubesconsidered intheanalysisisthatcontained withinthefootprint oftheimpactedarea,plusthetubesthatareimmediately adjacent.
Initialcontactwillengagetwostructural tubes.However,duetointerconnection betweenthetubes,atotalof8tubeswillabsorbimpactenergy.TheType2rackstructural tubeshavetheminimumcrosssectionarea,andwillhavethelargestdeformation duringafueldropaccident.
Thefollowing calculations wereperformed forType2racks.However,theresultsenvelopeallthreetypeofracks.A,tr-effective crosssectionareafor8structural tubes.A,tt=2.59x8=20.72in~Thetop10inchesofthetube,abovetheboratedstainless steel,willabsorballenergy.Therefore, h=10inch1zhElasticStrainEnergy=-o-2=1,990in-lb2'ETheelasticstrainenergyabsorbedislessthanthetotaldropenergy.Therefore, therewillbesomeinelastic deformation.
Totaldropenergy=Elasticstrainenergy+Inelastic strainenergy19,100=1,990+Inelastic strainenergy:.Inelastic strainenergy=19,100-1,990=17,110in-lbInelastic StrainEnergy=0hF,2<=17,110in-lbe;=0.003570e=-~=0.000835=(6t+6,)(10)=(0.00083+0.00357)(10)
=0.044in~,t+~t,0.00083+.00357Ductility Factor=.00083Ductility factor=5.3<20:.O.K.51-1258768-01 GinnaSFPLicensing Re-rackReportPage307
~'
3.53.2.4TornadoMissileImpactAtornadomissileimpactonthestoragerackswasconsidered.
Designvaluesfortornadowindspeedandmissilecharacteristics arethoseestablished inNUREG-0800, StandardReviewPlan3.5.1.4(revision 2,July1981).Themissileischaracterized asa1490poundwoodpole,35feetinlengthwithadiameterof13.5inches.Atornadowindvelocityof132mph(59meter/per second)isconsidered perGinnaUFSAR,Section3.5.2.1.Theimpactenergywhenthemissilehitsthestorageracksiscalculated inRG8cELettertoNRCdatedJanuary18,1984,DocketNo50-244(Reference 3.39)andissummarized below:VerticalkineticenergyatimpactHorizontal kineticenergyatimpact79,000ft-lb8,800ft-IbTheverticalmissileimpactproducesthelargestdeformation oftheracks.Therackdeformation duetohorizontal missileimpactwillbelowerthantheverticalimpact.Bothoftheseimpactareevaluated inthefollowing section.Theacceptance criteriafortopofrackimpactsarethattherequiredinelastic deformation mustbelessthan10%ofthelengthofthedeforming structural mechanism andthattheductility factorremainslessthan20.VerticalMissileImpactThewoodenpolediameteris13.5inches.Thediagonaldimensions ofstructural tubesis11.74inchesforType2andType4racks,and12.02inchforType3Racks.Therefore, asaminimumtwostructural tubeswillbeimpactedbyaverticalimpact.Fordropsontothetopsoftheracks,themathematical modelconsistsofaverticalprismatic memberwithaheightequaltothefulllengthofthefueltube.Thenumberoftubesconsidered inthismodelisthenumberoftubesdirectlyimpactedplusthenumberoftubesimmediately adjacent.
Duetothestronginterconnection betweentubes,thisassumption isconservative.
Asthedroppedobjectimpactsthetopoftheracks,theaffectedtubesyield;however,theeffect'does notremainlocalized.
Itwillspreadtothesurrounding tubesthroughthestronginterconnection providedbytheweldedconnecting tabs.Theassumption ofthespreading ofloadonlytoimmediately adjacenttubesisveryconservative.
Theverticalimpactenergyis79,000ft-ibor948,000in-lbInitialcontactwillengagetwostructural tubes.However,duetointerconnection betweenthetubes,atotalof8structural tubeswillabsorbimpactenergy.TheType2rackstructural tubeshavetheminimumcrosssectionarea,andwillhavelargestdeformation duringamissileimpact.Thefollowing calculations wereperformed forType2racks.However,theresultsenvelopeallthreetypesofracks.A,~-effective crosssectionareafor8structural tubes.A,a=2.59x8=20.72in'1-1258768-01 GinnaSFPLicensing Re-rackReportPage308 Thewoodenpolewillsplitonimpact.Alsothewoodisagoodenergyabsorber.
However,theenergyabsorbedinthewoodenpoleisneglected asaconservatism.
Theimpactwillbeofalongduration; forthatreason,theentirelengthofthefueltube(158.5inch)willabsorbtheimpactenergy.Therefore, h=158.5inch1zhElasticStrainEnergy=-0-2=31,542in-lbyEoffTheelasticstrainenergyabsorbedislessthanthetotalkineticenergy.Therefore, therewillbesomeinelastic deformation.
Totalmissileimpactenergy=Elasticstrainenergy+Inelastic strainenergy948,000=31,542+Inelastic strainenergy:.Inelastic strainenergy=948,000-31,542=916,458in-lbInelastic StrainEnergy=0hF,A,<=916,458in-lbe;=0.012106=-=0.00083clE5=(6,>+6,)(10)=(0.00083+0.0121)(158.5)
=2.05inct+i,0.00083+.0121Ductility Factor=.00083Ductility factor=15.6<20:.O.K.Horizontal MissileImpactThehorizontal kineticenergyofthemissileimpactis8,800ft-lb.Thisimpactenergyismuchlessthantheverticalmissileimpact.Inaddition, duetothelengthofthepolebeing35feet,thelargenumberofstructural tubeswillabsorbtheimpactenergy.Forthisreason,therackdeformation andductility factorduetohorizontal missileimpactwillbelessthanthoseoftheverticalmissileimpact.51-1258768-01 GinnaSFPLicensing Re-rackReportPage309
~1 3.5.3.2.5 GateDropThegateseparating thespentfuelstoragepoolfromthecaskloadingpitislocatedontheeastendofthespentfuelstoragepool.Thegateisapproximately 28'ongand2'.5"wide.Thegateweighsapproximately 2100pounds.Thecanalgateisconsidered aheavyloadperNUREG-0612 criteria.
Thegatehandlingprocedures willbechangedsuchthatitwillbeliftedwithinthespentfuelpoolusingaspecialtoolsuspended
&omasingle-failureproofauxiliary buildingcrane.Inasafetyevaluation reportdatedDecember31,1984,theNRCStaFreviewedandapprovedmodifications totheauxiliary buildingcraneinordertomeetthecranesingle-failure criteriaofNUREG-0612 andNUREG-0554.
Therefore, handlingofthecanalgatewillbeperformed inaccordance withthe.guidelines ofNUREG-0612 withregardtolimitingthechanceofunacceptable heavyloaddrop.3.5.3.2.6 RackDropsTheliftinganalysisoftherackswasperformed toqualifytherackstoliftingcriteriaofNUREG-0612.Section3.5.3.1.19 providesresultsoftheliftinganalysis.
Theresultsindicateadequatemarginagainstliftingbyeitheraredundant ornon-redundant liftsystem.Theinstallation procedures willprecludemovingarackoverapreviously installed rack.Rackswillbeliftedinthevicinityofthespentfuelpoolusingsingle-failure proofcraneandliftingattachments.
Thiswillprecluderackdropanalysis.
However,theanalysisisperformed toverifystructural strengthofthedesigntowithstand rackdrops.Ifarackdropstothefloor,themaximumtotalforcewouldbelimitedtothecrushstrengthoftheracks.Thecrushstrengthofracksisprovidedinthissection.Duringrackdrops,mostoftheenergywillbeabsorbedinthecrushingofracks.Therefore, rackbucklingandcrushstrengtharecalculated first..EulerBucklingofStructural TubeBetweenConnection TabPlatesEarliercalculation forEuler'sbucklingofthestructural tubeshasshownthatforallthreetyperacks,the0ismuchmorehigherthantheo.Therefore, thetubeswillnotbuckleasabeamintheelasticrange.51-1258768-01 GinnaSFPLicensing Re-rackReportPage310 OverallRackBucklingEImAL)WhereL,=effective lengthforbuckling, 2xheightofracks=2x158.5=317inchA=crosssectionareaofstructural membersinarackI=crosssectionmomentofinertiaofrackstructural membersE=Young'sModulus=27.9x10'b/in'or 304LSSat150'F(Note:LowestofEast-West orNorth-South properties aretaken)RACKXKl~e2A2B3A3B3C3D3E4ALn2113.9129.592.782.166.266.284.825.9lnorthsouth 443,79164,00932,72625,99812,07912,07926,0082921,0541,35496786850050084031Alloftheseoarehigherthantheotherefore, rackswillnotbuckleinbeammodeinelasticrange.LocalPlateBucklingCrushstrengthofeachrackisbasedupontheeffective area,reducedforbucklingtimesthecompressiveyield.
Thisrepresents fullmobilizationofallthecellsofthcrack.
Thejustification forthisisbaseduponcompressive yieldofthecellswithoutgeneralelasticbuckling.
Reference 3.37-Blodgettpp.2.12-4through9.Type2andType4Rackst7P(4)(27900) 0.07870=9.43ksi12(1-v)b12(1-0.3)8.14wheret=tubewallthickness
=0.0787inb=insidedimension ofstructural tube=8.14inE,=4(Reference 3.37,Blodgett) 51-1258768-01 GinnaSFPLicensing Re-rackReportPage311
~~~*
Type3Racksoo,=8.982ksi,usingt=0.0787inandb=8.34inCrushStrength1)Crushstrengthbaseduponeffective crushareaandyieldstrengthofmaterial.
2)Elasticbucklingofindividual tubesortherackasawholeisprecluded.
Usingconservative assumptions:
o+aycrwhereA=totalcross-sectional areaofthestructural tubewhereo=yieldstress=23.15ksifor304Lstainless steel150'A=totalcrosssectional areaofthetubes.A,ff=effective areaoftubes,reducedtoaccountforlocalbuckling, Note,Type2Racks-'0.704A,~Type3Racks-'0.694A.nMethodology andModelsThemathematical modelfordeveloping therackcrushstrengthisthatofuniformcompressive yieldunderauniformappliedloadatthetopshowninthefollowing sketch.51-1258768-01 GinnaSFPLicensing Re-rackReportPage312 CrushStrengthModelUNIFORMLOADElASTIC+INELASTICDEFORMATION MEMBERWITHAREA~SumofAREA(ceIlsf Crushstrengthofeachrackisbasedupontheeffective area,reducedforbucklingtimesthecompressive yield.Thisrepresents fullmobilization ofallthecellsoftherack.Thejustification forthisisbaseduponcompressive yieldofthecellswithoutgeneralelasticbuckling.
51-1258768-01 GinnaSFPLicensing Re-rackReportPage313
Theshallowdropwasexaminedanditwasfoundthatwithductility factorlessthan20anddeformation lessthanoneinch,thedistortion ofthecellswouldbeconfinedtotheportionofcellsabovetheboratedstainless steel,andhence,notaffecttheKfactorusedinthecriticality analysis.
Theconservatism usedinthemechanical accidentanalysesforvariousdropsindicatethat,minordistortion oftherackislimitedinthevicinityoftheimpactarea.Thereisnogrossdeformation oftherackawayRomtheimpactarea.Individual hypothetical accidentcasesaresummarized below.IFuelAssembly-StraightDeepDropThekineticenergyofthefallingfuelassemblyissuchthatitcanbeexpectedthatthebottomplateoftherackswillbeseparated Romthebottomofthecellsduetofailureofthewelds(bottomplatetocell).Thebottomplatewouldbesupported bythesupportlegs,locatednominally at37"oncenterforType2andType3racks.Itisfoundthatthebottomplatewouldyieldanddeform,deflecting about2.12"withthefuelassemblyimpacting atthemidpointbetweensupportlegs.ForType4racks,thebottomplatewouldyieldanddeform,deflecting about1.82"withfuelassemblyimpacting, approximately, atthemidpointbetweensupportlegs.Therefore, itisconcluded thatthiswouldnotresultinanydistresstothespentfuelpoolfloor.FuelAssembly-StraightDeepDropontoSupportLegForthiscasetheinelastic strainenergyisconfinedtotheM80x6threadedportionofthesupportleg.Themaximumloadimpartedtothespentfuelpoolfloorislimitedtoultimatestrengthofthethreadedportionofthelegandis405.7kips.Duetolimitedmechanism forinelastic energyabsorption, thesupportlegfemalethreadswillfail.Theloadimpartedtothefloorwillpassthroughthestainless steelliner.Thestressesinthereinforced concretefloorarecalculated usingBoussinesq's solution(Reference 3.35).Theindications arethat,atdistancebelowthesupportpadequaltothediameterofthesupportpad(6.6929"),
thestressesarebelowallowable stresses.
Theconcretedirectlyunderthesupportpadisalocalcondition withthree-dimensional confinement and,therefore, willnotbedamagedbytheimpactload.Themaximumdeformation ofthebottomplatewillbe1.42inches(36mm)afterfemalethreadsarestripped.
FuelAssembly-ShallowDropsForthiscaseitwasassumedthatthefuelassemblyisdroppedvertically ontothetopoftherack.Afterinitially strikingthetopoftherack,thefuelassemblyandhandlinggearrotatesandfallsflatontopoftheracks.Thetotalkineticenergydelivered tothetopoftheracksislittlediminished duetotheinitialstrike.Thisisduetothefactthatthelinearkineticenergyisconverted totherotational kineticenergybymeansofacoupleequaltotheweightandinertialforceofthefuelrodtimesthehorizontal component ofthedistancebetweenthecenterofgravityofthefallingfuelassemblyandthepointofinitialstrikeuponthetopoftheracks.Theresultsoftheanalysisindicatethatdistortion ofcellswillbelimitedtotheportionofthecellsabovethetopoftheboratedstainless steel.Theductility factorislessthan20forbothshallowdropsandthemaximumdeformation ofthetopoftherackis0.14inches.51-1258768-01 GinnaSFPLicensing Re-rackReportPage315 Theresultsoftheanalysisindicatethatdistortion ofthecellswillbelimitedtotheportionofthecellsabovethetopoftheboratedstainless steel.~c~de1Inelastic StrainShLdÃKDuctility
~FactrTotalDeformation
~~nc>~e)F.A.,ShallowDrop,0.0131FlatImpact16.80.14F.A.,ShallowDrop,0.00357End-onImpact5.30.044TornadoMissileImpactVerticalandhorizontal tornadomissileimpactswereconsidered.
Thewoodenpolemissileisdroppedontopoftheracks.Considering theimpactenergyandthefootprint oftheimpactamongverticalandhorizontal impact,theverticalimpactcausesthehighestdeformation andhighestductility factorfortheracks.Theresultsindicatethatthedistortion ofthecellwillbelimitedtothefootprint areaandadjacentfuelcells.Thedeformation ofthetopoftheimpactedfuelcellwillbe2.05inchesandductility factorofstructural tubeswillbelimitedto15.6.GateDrop,RackDropandCaskDropTheconsolidated fuel,poolcanalgate,storageracksandthespentfuelshippingcaskareconsidered heavyloadsperNUREG-0612.
Therewillbeadministrative controlformovementofthesehardwareinthespentfuelpoolarea.Alsotheywillbeliftedusingasingle-failure proofcraneandasingle-failure proofliftingsystem.Handlingofthesehardwareinthespentfuelpoolareawillbeperformed inaccordance withtheguidelines ofNUREG-0612 withregardtolimitingthechanceofunacceptable heavyloaddrop.Reference 3.23,NRCStaffsafetyevaluation reportprovidesexclusion ofheavyloaddropsmeetingthesecriteria.
3.5.3.2.9 LossofSpentFuelPoolCoolingDifferential Temperature InducedLoads-AbnormalCondition (T,)Thisthermalcondition isproducedwhenthepoolwaterbulktemperature increases duetolossofartificial cooling.Thepoollinertemperature iskeptthesameasthenormaloperating temperature togenerateconservative stressesintherack.Themostconservative analysisoftherackwouldthenbetoassumethatthebottomsofthelegsoftherackremainintheiroriginalpositions andthattheuniformtemperature oftherackitselfhasreachedtoaccidentcondition temperature.
Themaximumloadingwouldthusbecausedbytheconstraint atthebottomsofthelegsandtheuniformthermalgrowthintherack.Section3.5.3.1.10 presentstheanalysisandresultsoftherackthermalanalysisunderabnormalcondition (Tg.Theresultsindicateadequatemarginexistsinthestoragerackstoaccommodate differential temperature inducedloadduetolossofartificial cooling.51-1258768-01 GinnaSFPLicensing Re-rackReportPage316 3.5.3.3Tabulation ofResultsTable3.5-141ResultsofSupportLegStresses4;.',;::.,'-:-::-::,.:::;:,':.:::;::lCombinatioii's':,:.';:;.-',,;i!:;:;:"::::::,Oil':,":'-:!
- .
- ..:,.Str'ess';(ps'i);:::;;;i';;::,'-::.';:,:,:::Stxess';.(psi)'.';::;.:.;::":';:-:')
Fact'or',"(':/)';'i<
D+LevelAPrimMembranemPrimaryMembrane+
Bendingm+PbD+L+EevelBPrimMembranemPrimaryMembrane+
Bendingm+PbAveraeShearStressD+L+E'vel DPrimMembranemPrimaryMembrane+
Bendingm+PbAveraeShearStressWelds:D+EevelAD+E+TaevelBD+E'+TaevelDBaseMetal:D+EevelAD+E+TaevelBD+E'+Ta(LevelD)6,15616,9956,15616,9952,1097,65124,6403,30611,67711,73318,3028,2578,29712,94215,70023,55020,88031,3229,42026,44839,67228,12321,00027,93029,4009,26011,72528,123155.038.6239.284.3346.7245.661.0750.779.8138.060.612.141.3117.3Notes:L-Liveloadiszero.DesignFactor(%)=[(Allowable
-Actual)/Actual]x10051-1258768-01 GinnaSFPLicensing Re-rackReportPage317 Table3.5-142ResultsofConcreteStresses:5::,":-'::,:i'::~5ii'."':::,;::':Combiri'a'tion's':',:-.'"..:.:":'I::::i'i"',.;;'::'::::.
";.:',-j:
Str'ess'."'(p'si)'~ji,:<',::
-,',"~Str'ess (psi).';I:-',.:"::.
'::,:,,.'::ll Factor,,"(/o)',::;:,.
IMaximumSlabBearinBoussinesq's Solution5207793,5703,570586.5358.2D+EMaximumSlabBearinBoussinesq's Solution1,2071,8113,5703,570195.897.1D+E'aximumSlabBearinBoussinesq's Solution1,5012,2513,5703,570137.858.523Notes:Concrete's bearingallowable
=$(0.85)fc'0.70(0.85)3000 psi*2'3,570psi1.SinceAreaofconcrete>>areaofpad=md'/4=35.18in,bearingallowable isincreased byfactorof2perReference 3.5.2.2.2.1.
L-LiveloadiszeroT,-Thermalloadiszeroforconcrete.
Table3.5-143ResultsofSpentFuelPoolLinerStressesD+L+ELinerBearinStressD+L+E'iner BearingStress1,2071,50123,40023,4001838.71459.051-1258768-01 GinnaSFPLicensing Re-rackReportPage318 Table3.5-144ResultsofTabStresses',-:.::-:-';-'i:.:::,::j'~'-'~!7;::::,Coiiibin'aeons)'::.':.:'"::.~j.':::;"::.::::.:,::::-;
jjI:::Str'es's(jsi);:"-::;:::;'.':,':
i'~;.:,".;":Sf'r'es's,(psi)')',"";!,:,;.:.:~
I,';::::;:Fac't'o'r'::,(/0)'.'-:.:.
'+L+E+ToevelAPrimMembranePmPrimaryMembrane+BendinPm+Pb)RangeofPrimary+SecondAveraePrimShearStressWeldStressilletWeldShearPrimaryMembrane+Bendinm+PbRangeofPrimary+SecondD+L+E+TaevelBPrimMembranePmPrimaryMembrane+Bendinm+PbRangeofPrimary+SecondAveraePrimShearStressWeldStressilletWeldShearPrimaryMembrane+Bendinm+PbRangeofPrimary+Second6605,75915,6154,0216,3089,65919,5156605,75915,5624,0216,3089,65919,46215,70023,55046,3009,42021,00021,00046,30020,88131,32244,0809,42027,93027,93044,080LareLarge196134232117137LareLarge18313434318912651-1258768-01 GinnaSFPLicensing Re-rackReportPage319
'.:;:.::4.'::i>::,:.'.":'.,':,';:.
Coinbiii'ations'::.'4@j'":"::.';%~'::i
':;;<<~,'":,:;Str'es's':(jsi),'i",;:,':"')
'.':.Str'ess'(nisi)';,':"::,
D+L+E'+Ta evelDPrimMembranemPrimaryMembrane+BendinPm+PbRangeofPrimary+SecondAveraePrimShearStressWeldStressilletWeldShearPrimaryMembrane+BendinPm+PbRangeofPrimary+Second1,16210,14819,9517,76811,26216,91626,71926,44839,67244,08028,12329,40029,40044,080Lare291120262161746551-1258768-01 GinnaSFPLicensing Re-rackReportPage320
Table3.5-145ResultsofTubeStressesD+L+E+ToevelAPrimMembranemPrimaryMembrane+BendinPm+PbRangeofPrimary+SecondAveraeShearStressD+L+E+TaevelBPrimMembranemPrimaryMembrane+Bendinm+PbRangeofPrimary+SecondAveraeShearStressD+L+To+PevelBPrimMembranemPrimaryMembrane+Bendinm+PbRangeofPrimary+SecondD+L+E'+TaevelDPrimMembranemPrimaryMembrane+Bendinm+PbRangeofPrimary+SecondAveraeShearStress4,5434,87214,7281,2654,5434,87214,6751,2655,4437,20517,0086,9797,20217,005126515,70023,55046,3009,42020,88131,32244,0809,42020,88131,32244,08026,44839,67244,0809420:;:Ij:;:.,'"I'acfor,."..(%)
~"."ll246383214Lare360542200Lare283334159279450159Lare51-1258768-01 GinnaSFPLicensing Re-rackReportPage321 4~w~,'
Tube-to-Base PlateFilletWeld',:::"'.;:.'"Allo'wable';.;,,::",,:::,"'".;:,.:::,".":,":.",,':Desig'ri':.::,::;:;::i:,::
,.:"::,St'r'ess',(p'si);::::,::,:,:,,':;;:,':;;:I.,'.,:
Fa'ctor'.'(%)
-'.,D+L+E+To(LevelA)D+LIE+Ta(LevelB)D+L+E'+Ta(LevelD)BaseMetalWeldBaseMetalWeldBaseMetalWeld11,95716,57511,95716,57520,65229,96946,30046,30044,08044,08044,08044,08028717926816611347Table3.5-146ResultsofBasePlateStressesD+L+E+T0evelAI:-'.,':;!
- '::.:Maximu'iii:.,",,:::.':i
- ":,,j,
Str'ess::.'(psi)"',"',","
4!.:::iAllowable,.:'::':..".-::::,'NY.'::",:;:::,:,'9esig'n'-':."':':'.:;:
- >",,"Stres's(p'si)';','::'-.";:':,,':,;;:::;!;=':.;:
Factor.,"'(
fo)'-:."',;:::!I PrimMembranemPrimaryMembrane+
BendingPm+PbRangeofPrimary+Secondary Stress7674,28610,22715,70023,55046,300LareLarge353D+L+E+TaevelBPrimMembranemPrimaryMembrane+
Bendingm+PbRangeofPrimary+Secondary StressD+L+E'+TaevelDPrimMembranePmPrimaryMembrane+
Bendingm+PbRangeofPrimary+Secondary Stress7674,2865,8427674,2865,84220,88131,32244,08026,44839,67244,080LareLargeLargeLareLargeLarge51-1258768-01 GinnaSFPLicensing Re-rackReportPage322 3.5.3.4Discussion ofResultsandSignificance TheanalysisanddesignoftheGinnaSpentFuelStorageRacksprovideassurances thattherackswillperformthefunctions asrequired.
Theassemblyofstructural tubescreatesasufficiently stiffandstrongrackstructure.
Theassociated inter-rack connections andweldingprovidethenecessary strengthandstiflness toaccommodate alloftherackloadingconditions.
Inaddition, alargenumberofsupportlegsprovideforawidedistribution offorceandreactions andadequatestructural margins.Thevariousloadingsandresulting consequences wereexaminedindetailbymeansofnonlinear dynamicanalysis.
Oneofthemajorloadingeffectsistheimpactoffuelassemblies againstthecellwalls.Whiletheimpacteffectisofveryshortduration, itenhancesthepotential forslidingandtipping.Consequential impacteffectswereanalyzed; namelytheimpactofsupportlegsuponthespentfuelpoolfloorduringtipping.Giventheevaluated seismicevents,thechangesinthefinalpositionoftheracksaresmallascomparedtotheinitialpositionpriortotheseismicevent.Theeffectoftippingissuchthatnonetchangeofpositionresults.Theonlychangesinpositionresult&omsliding;however,theresultsofthe3Dwholepoolmulti-rack analysesandthe3Dsinglerackmodelstudiesindicatelittlenetchangeinthegapsbetweenracks.Themaximumclosureofgapsissuchthatnosignificant changesinthegapsresultduringanysingleseismicevent.Furthermore, thecombinedgapclosuresresulting fromacombination of5OBE'sand1SSEshowthattherearenorack-to-rack orrack-to-wall impacts.Theconservatisms inherentinthecriteriaandmethodology indicatethattherackshavesufficiently largemarginsasshownbycomparisons ofcalculated andallowable stresses.
Detailedresultsarefoundinsections3.5.3.1and3.5.3.2,whichprovidetheresultsofthenormalcondition andaccidentcondition evaluations respectively.
Section3.5.3.3providesatabulation ofallresults.3.5.3.5Conclusion Itisshownthatthespentfuelstoragesystemstructures atRG&E'sR.E.GinnaUnit1arerobustandthattheyprovidesafestorageofspentfuelunderanyofthenormal,upsetorhypothetical accidentconditions.
Thedesignandsupporting analysesofthehighdensityfreestandingstorageracksindicatethatthespentfuelandtheconsolidated fuelcanistercanbestoredsafelyinthenewATEAdesignedracks.Duringtheseismicevents,impactswilloccurontheracksduetotheimpactsofthefuelassemblies orcanisters aswellastheimpactsoftheracklegsonthefloorduringtipping.TheanalysesshowduringOBEorSSEseismicevents,therearenorack-to-rack orrack-to-wall impacts.Theracksthemselves areveryrigidstructures, capableofresisting largeloads.Thefactthattheracksare&eetoslidehastwosignificant effects;1)thelateralforcesaretherebylimited,and2)theslidingdissipates energy.Thetippingoftheracksislimitedbytherestoring momentduetotheweightoftherack,thefuel,andthecontained water.Thehydrodynamic couplingisalsoarestorative force.Theeffectofthewatercouplingisalsoanenergydissipator.
Thehydrodynamic 51-1258768-01 GinnaSFPLicensing Re-rackReportPage323 V
pressures developinordertoforcewater&omaclosinggap.Thevibratory natureofseismicevents,whileresulting inamplified loading,alsoresultsinrapidloadreversals.
Thefreestandingcharacteristics oftheracksandthehy'drodynamic couplingareveryeffective inresponding totherapidloadreversals.
StressesinthenewATEAracksandintheexistingU.S.Tool&Dieracks,poollinerandspentfuelpoolarebelowallowable.
Thedeformations ofthishardwarearewithinallowable limits.Also,theresultsshowtheruggedness ofthespentfuelrackdesign.Thestructural evaluation presented hereshowsthattheRGkE'sGinnaUnit1spentfuelstoragesystemmeetsallapplicable structural criteriatomaintainasubcritical arrayforthespentfuelandkeepradiation exposurewithinfederallimits.Theanalysisofthespentfuelstoragesystemdemonstrates thatthestructure satisfies therequirements ofPart50ofTitle10oftheCodeofFederalRegulations.
Resultsoftheanalysisshowthedesignsatisfies thestatutory requirements forlicensing.
3.5.3.6Anticipated ImpactonOperations ofR.E.GinnaNuclearPlantTheracksarestructurally designedtoprovidestorageforspentfuelassemblies orconsolidated fuelcanisters withoutrestriction.
Bothspentfuelorconsolidated fuelcanisters canbesafelystoredinanyoftherackswithoutrestrictions.
Thehighdensityspentfuelstorageracksare&eestanding; hence&eetoslideortipwithoutracktorackimpactsunderseismicevents.Boththeoldandnewracksdonotimpactthewallsofthespentfuelpoolunderanyofthenormal,abnormalandfaultedconditions.
Theseconditions includeseismicOBEandSSEconditions.
Duringseismicevents,loadsfromtheracksupportsontothespentfuelstoragepoolfioorarewithintheallowable concretebearingstresses.
Thelineritselfwillnotbesubjecttoanysignificant loadsduetoanyslidingoftheracks.Underthehypothetical accidentdropofafuelassemblyortornadomissileimpact,minordistortion oftherackswilloccur.Theserackdistortions arelimitedtothefootprintareaoftheimpactandfuelcellinthevicinityoftheimpactarea.Therewillbenogrossdistortions oftheracksoranyadverseeffectsupontheplantstructures orequipment.
Fortheconsolidated fuelcanister, poolcanalgateandspentfuelshippingcask,administrative procedures willrequireliAingthishardwareusingNUREG-0612, singlefailureproofcraneandsinglefailureproofliftingandriggingsystem.Also,duringtheremovaloftheoldracksandduringtheinstallation ofthenewracks,thatmovementoverthespentfuelpoolshallbeperformed usingsinglefailureproofliftsystem.Insummary,thefunctioning oftheracksunderthespecified loading,orevents,willhavenodetrimental consequences tothespentfuelpoolorplantoperation.
51-1258768-01 GinnaSFPLicensing Re-rackReportPage324 3.
63.1REFERENCES
NUREG-0800, StandardReviewPlan,Section3.5.1.4,"MissileGenerated byNaturalPhenomena,"
U.S.NuclearRegulatory Commission, Revision2,July1981.3.2NUREG-0800, StandardReviewPlan,Section3.7.1,"SeismicDesignParameters,"
U.S.NuclearRegulatory Commission, Revision2,August1989.3.3NUREG-0800, StandardReviewPlan,Section3.7.3,"SeismicSubsystem Analysis,"
U.S.NuclearRegulatory Commission, Revision2,August1989.3.4NUREG-0800, StandardReviewPlan,Section3.8.4,AppendixD,"Technical PositiononSpentFuelPoolRacks,"Revision1,July1981.3.5NUREG-0800, StandardReviewPlan,Section3.8.5,"Foundations,"
U.S.NuclearRegulatory Commission, Revision1,July1981.3.6NUREG-0800, StandardReviewPlan,Section9.1.2,"SpentFuelStorage,"
U.S.NuclearRegulatory Commission, Revision3,July1981~3.7OTPosition, "ReviewandAcceptance ofSpentFuelStorageandHandlingApplications,"
datedApril14,1978andthemodifications tothisdocumentdatedJanuary18,1979,U.S.NuclearRegulatory Commission.
3.8U.S.NRCRegulatory Guide1.13,"SpentFuelStorageFacilityDesignBasis,"Revision1,December19753.9U.S.NRCRegulatory Guide1.29,"SeismicDesignClassification,"
Revision3,September 19783.10U.S.NRCRegulatory Guide1.60,"DesignResponseSpectraforSeismicDesignofNuclearPowerPlants,"Revision1,December1973.3.11U.S.NRCRegulatory Guide1.61,"DampingValuesforSeismicDesignofNuclearPowerPlants,"Revision0,October1973.3.12U.S.NRCRegulatory Guide1.92,"Combining ModalResponses andSpatialComponents inSeismicResponseAnalysis,"
Revision1,February1976.3.13U.S.NRCRegulatory Guide1.117,"TornadoDesignClassification,"
Revision1,April1978.3.143.15U.S.NRCRegulatory Guide1.124,"ServiceLimitsandLoadingCombinations forClassILinearTypeComponents Supports,"
Revision1,January1978.U.S.NRCRegulatory Guide1.142,"Safety-Related ConcreteStructures forNuclearPowerPlants,"Revision1,October1981.51-1258768-01 GinnaSFPLicensing Re-rackReportPage325 3.16NUREG-0612, "ControlofHeavyLoadsatNuclearPowerPlant,"U.S.NRC,July1980.3.17NUREG-0554, "Single-Failure-Proof CranesforNuclearPowerPlants,"U.S.NRC,May1979.3.18ANSI-57.2-1983, "DesignRequirements forLightWaterReactorSpentFuelStorageFacilities atNuclearPowerPlants."3.19AmericanSocietyofMechanical Engineers, BoilerandPressureVesselCode,SectionIII,'989Edition.3.20ACI349-85,"CodeRequirements forNuclearSafetyRelatedConcreteStructures,"
AmericanConcreteInstitute, 1985.3.21AISC-1989, "ManualofSteelConstruction
-Part5,Specification andCodes,"AmericanInstitute ofSteelConstruction, 9thEdition,1989.3.22UpdatedFinalSafetyAnalysisReport,"Rochester Gas&Electric, R.E.GinnaNuclearPowerPlant,Docket50-244"Revision13-1,July1996.3.23NRC-SafetyEvaluation bytheOfficeofNuclearReactorRegulation Supporting Amendment 12toFacilityOperating LicenseNo.DPR-18,Rochester Gas&ElectricCorp.,R.E.GinnaNuclearPowerPlant,DocketNo50-244,datedDecember16,1985.3.24NRCLettertoRG&E-Mr.KoberdatedNovember14,1984.SafetyEvaluation ReporttoAmendment No.65"Increase oftheSpentFuelStorageCapacity,"
LicenseNo.DPR-18,DocketNo.50-244.3.25U.S.Tool&DieInc.,"SeismicAnalysisSpentFuelStorageRacksModifiedto100%StorageDensityinRegion2,"ReportNo.8369-00-0013,"
Revision1,March1,1984.3.26U.S.Tool&DieInc.,"Mechanical
- Analysis, SpentFuelStorageRacksModifiedto100%StorageCapacityinRegion2,"ReportNo.8369-00-0014, Revision2,September 1984.3.27"NuclearReactorsandEarthquakes,"
TID-7024, USAtomicEnergyCommission, August1963.3.28WeldingResearchCouncilBulletinNumber151,"FurtherTheoretical Treatment ofPerforated PlateswithSquarePenetration Patterns,"
W.J.O'Donnell, June1970.3.29DOE/RW-0184, Characteristic ofSpentFuel,High-Level Waste,andOtherRadioactive WasteWhichMayRequireLongTermIsolation,"
December1987.3.30EPRINP-6159,"AnAssessment ofBoraflexPerformance inSpent-Nuclear-Fuel StorageRacks,"ElectricPowerResearchInstitute, December1988.51-1258768-01 GinnaSFPLicensing Re-rackReportPage326 3.31EPRITR-100784, "BoratedStainless SteelApplication inSpentFuelStorageRacks,"ElectricPowerResearchInstitute, June1992.3.32BechtelTopicalReport"DesignofStructures ForMissileImpact,"BC-TOP-9A, Revision2,September 1974.3.33MarksHandbook, "Standard HandbookforMechanical Engineers,"
SeventhEdition,McGrawHillBookCompany.3.34Oberg,E.Etal,"Machinery's Handbook,"
23rdEdition,Industrial PressInc.,NewYork,19903.353.36,idEChi,TiINd~ii*,hl~-Hill~Y.,1970.n'enDi,5thEdition,ShigleyandMischke,McGraw-Hill, N.Y.,1989,pp.735and751.3.371edtructureO.W.Blodgett, JamesF.LincolnArcWeldingFoundation, Cleveland, OH,1991.3.38Singh-1990, "Structural Evaluation ofOnsiteSpentFuelStorage:RecentDevelopments,"
S.Singh,et.Al.,Proceedings oftheThirdSymposium, Orlando,Florida,December1990.NorthCarolinaStateUniversity, Raleigh,NC27695,ppV/4-1throughV/4-18.3.39LetterfromJohnE.Maier,RG&Eto'Harold R.Denton,USNRC,"Application forAmendment toOperating License,"
Docket50-244,January18,1984.3.40ANSYS,Engineering AnalysesSystemUser'sManual,Version5.2,1995.3.41SIMQKE-"AProgramforArtificial MotionGeneration,"
Department ofCivilEngineering, Massachusetts Institute ofTechnology, November1976.3.421965.e'nFlhVc,E.F.Bruhn,Tri-State OffsetPrinting, 3.43ASMECodeCaseN-510-1,"BoratedStainless SteelforClassCSCoreSupportStructures andClass1Component
- Supports, SectionIII,Division1,"December12,1994.51-1258768-01 GinnaSFPLicensing Re-rackReportPage327
4.0 CRITICALITY
EVALUATION
4.1INTRODUCTION
TworegionscomprisethespentfuelstorageracksfortheR.E.GinnaNuclearPowerStation.Region1maintains amaximumk,~~s0.95forfreshfuelwithnominalenrichments upto5.0wt%~'U.Thisisaccomplished byacombination ofabsorberfluxMps,acheckerboard offreshandhighlyburnedassemblies, andIntegrated FuelBurnableAbsorber(IFBA)creditfor&eshassemblies
.withnominalenrichments above4.0wt%~'U.Region2maintains the0.95criticality criterion byusingfixedabsorberplatesandburnupcredit.Thisregionaccommodates nominalinitialenrichments upto5.0wt%~'U,withanassociated minimumburnupof47.25GWd/mtU.Loadingcurvesrelatingtherequiredburnuptotheinitialenrichment ofthespentfuelassemblies governplacement ofspentfuelintoeitherregion.TheKENOV.aMonteCarloprogramdetermines KforbothRegion1and2usingstoragerackmodelswithunborated wateratnominalpooltemperatures.
KincludesthesumoftheKENOV.acalculated k,ir,theKENOV.abias,penalties relatedtofabrication tolerance uncertainties, andstatistically combineduncertainties relatedtotheseparameters.
ThissumensuresthatKwillbelessthanorequalto0.95witha95%probability ata95%confidence level.Evaluations ofthereactivity effectsofabnormalandaccidentconditions ensurethattheseconditions alsosatisfythiscriticality criterion underthedoublecontinency principle.
Thecriticality safetyanalysesfortheGinnaUnit1storageracksconformtoapplicable codesandstandards
""'.Theresultsoftheanalysesshowthatthecombination offixedabsorbers andburnupcreditinherentinthedesignsenablesboththeRegion1andRegion2rackstosatisfythecriticality safetycriterion, i.e.,Ks0.95.Asummaryoftheburnuprequirements forloadingfuelineitherregionisprovidedbelow.Thelimitingaccidentcondition isamisplaced assemblyinRegion2.Thecriticality criterion issatisfied forthis,andanyotherabnormaleventbyaminimumsolubleboronconcentration inthestoragepoolcoolantof450ppmduringfuelmovement.
4.1.1Region1NormalCondition Aboratedstainless steelrack,Type3,comprises Region1.Thisregionaccommodates fuelwithinitialenrichments upto4.0wt%~'U(nominal) foreitherfreshfuelwithoutIFBAorupto5.0wt%~'U(nominal) withappropriate IFBAloadings.
Freshassemblies mustbestoredinacheckerboard arrangement sothat&eshfuelisnotdirectlyadjacenttootherfreshfuel.Thepositions adjacenttothefreshfuel,i.e.,withflatsurfacesfacingeachother,mustbefilledwithfuelwithaburnupappropriate toitsinitialenrichment, orleftempty.Therelationship betweentheburnupandinitialenrichment isdefinedbyaburnupversusenrichment, orloading,curve.Thereisafurtherphysicalrestriction onfuelassemblyloadinginRegion1inadditiontotheloadingcurveduetotherackdesign.Asdescribed inSection1.3.1,lead-infunnelsareprovidedforthecellsthatacceptfreshfuelassemblies.
Thecellswithoutafunnelmayonlycontainspentfuel.Figure4.1-1illustrates theburnupversusinitialenrichment loadingcurveforspentfuelinRegion1.Figure4.1-3illustrates allowable loadingarrangements for&eshfuelassemblies andspentfuelassemblies withenrichments andburnupsinareasAandBofFigure4.1-1.Theburnuprequirements, including a5%burnup'measurement'ncertainty, aretabulated inTable4.1-1.Table4.1-3liststhecalculated k,ffvalues51-1258768-01 GinnaSFPRe-racking Licensing ReportPage328
fromtheKENOV.acalculation andKwhichincludesallbiasesanduncertainties forRegion1fornormalconditions.
Theseresultsarebasedupona&eshWestinghouse Optimized FuelAssembly(OFA)storedadjacenttoaWestinghouse Standardassembly.
TheWestinghouse OFAassemblyismostreactivefor&eshfuelwhiletheWestinghouse Standardassemblyismostreactiveforburnedfuelsatisfying theloadingcurveforRegion1.Consolidated fuelcanisters arealsoboundedbytheseassemblies andthusmustconformtothesameloadingcurve.4.1.2Region2NormalCondition ThetightpitchoftheRegion2cellsrequiresburnupcreditandfixedabsorbers tosatisfythe'riticality criterion.
Threerackcellconfigurations compriseRegion2(seeFigure4.3-1).Type1cellsaretheBoraflexcellsthatformRegion2fortheexistinglicense.TworacksofType2cells,containing boratedstainless steel(BSS)absorberplates,havebeenaddedtoincreasethecapacityofRegion2.Thecapacitycanbeincreased inthefuturebytheadditionofType4racksonthenorthandsouthfacesoftheType1rackconfiguration, (seeFigure4.3-1).ThistypealsocontainsBSSabsorberplates.Figure4.1-2showstheburnupversusinitialenrichment curvesforRegion2,aswellastheinventory offuelasof06/09/96intheGinnastoragepool.Figure4.1-4illustrates allowable loadingarrangements forassemblies withenrichments andburnupsinareasA,,AB,andCofFigure4.1-2.Table4.1-2liststherequiredburnupvalues.Thecentral,solidcurveisthebasecurveforstorageinRegion2foralltyperacks.Itisbasedupontherequirements oftheBoraflexrack,Type1,withanassumedamountofBoraflexdegradation/shrinkage.
Whilenosignificant degradation hasbeenshown,oranticipated, intheGinnaBoraflexracks,asignificant marginhasbeenincludedinthisanalysistomitigateeffects&ompossibledegradation/shrinkage inthefuture.Figure4.1-2illustrates thatthemajorityofthefuelcurrently storedinRegion2fallsabovethecurve.Thedashedupperandlowercurvesprescribe acheckerboardpatternofloadingburnedfueltoaccommodate thoseassemblies thatfallbelowthebasecurve.Assemblies withburnupsabovethebasecurve,A1andA2maybeplaceddirectlyadjacenttoeachother,i.e.,flatsurfacesfacingeachother.Assemblies belowthecurveinareaBshallonlybeplacedadjacenttoassemblies
&omareaAl,orawaterhole.Theyshallnotbedirectlyadjacenttoeachother.Assemblies inareaCshallbestoredeitheradjacenttowaterholesorinRegion1.Foranominal5.0wt%"'Uassembly, thebaselinerequiresaminimumburnupof47.25GWd/mtU.Thisincludesa5%uncertainty associated withthemeasurement oftheassemblyburnup.Table4.1-4listsKENOV.acalculated reactivity valuesforRegion2normalconditions.
TheseresultsareforaWestinghouse 14x14Standardfuelassemblydesign.ThisfueltypeboundstheotherassemblydesignsatGinnawithacceptable burnupsforstorageinRegion2.Consolidated containers arealsoboundedbythisdesignandmaybestoredinRegion2governedbytheloadingcurve.4.1.3AbnormalConditions Theanalysisevaluates theabnormalandaccidentconditions listedbelow.Theseconditions aresubjecttotheDoubleContingency Principle46 whichallowsconsideration ofthesolubleboroninthepoolwater.Allowance forsolubleboronmitigates anyreactivity increaseandallowsthestorageracktosatisfythecriticality criterion.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage329 "1~~
Abnormaloraccidentconditions considerseveraldroppedassemblyscenarios, misloading anassembly, andseismically inducedconditions, Droppedassemblyaccidents includeanassemblydroppedontopoftherack(T-boneorshallowdrop),outsidetherack(sidedrop),andthrougharackcell(deepdrop).Themisloading
- accident, i.e.,storageofafuelassemblyinviolation oftheadministrative
- controls, isboundedbyassumingthemisloaded assemblyisfreshwithanenrichment of4wt%"'U.TheboundingaccidentforRegions1and2isamisloaded assemblyintheBoraflexrackofRegion2.Theb,kforthisaccidentisabout0.05.Assumingasolubleboronconcentration of450ppminthepoolwaterprovidessufficient margintomitigateanyreactivity increases fromthis,orother,credibleaccidents.
ANSUANS-57.2",
Section6.4.2.1.3, liststhecredibleabnormaloccurrences thatmustbeconsidered forcriticality safetyanalyses.
ThoselistedabovereflectthecredibleaccidentfortheGinnastoragepool,i.e.,shallowdrop,deepdrop,sidedrop,misloaded
- assembly, andhorizontal movementofracksduetoseismicevents.Thefollowing occurrences specified inANSI/ANS-57.2 werenotconsidered:
1.TippingofthestoragerackwasnotanalyzedbecausetheGinnastoragerackfitstightlyintothepool.2.Astuckfuelassemblywithacraneproviding anuplifting forceisconstrued tomeanthattheassemblyhangsupduetocontactbetweentheassemblyandtherackstructural material.
Thestructural analysisofthiseventindicates nodamagetotheracks(Section3.5.3.1.18).
Thus,thereisnoimpactoncriticality safety.Theonlysignificant objectsthatcouldfallintooronthespentfuelrackotherthanafuelassemblyisthespentfuelhandlingbridgeandthepoolgate.Thespentfuelhandlingbridgeisrestrained toSeismicClassIrailsbySeismicClassIrestraints topreventitfromjumpingthetracksintheeventofanearthquake.
SeismicClassIanchorsretainthewinchmechanism onthefuelhandlingbridgefloor.Redundancy isprovidedonthegateliftingmechanism toprecludeagatedropaccident.
Thus,thereisnoimpactoncriticality safety.Norotatingequipment isinthevicinityofthespentfuelpool.Thus,missilesgenerated bythefailureofrotatingmachinery arenotpertinent.
Naturalphenomena, i.e.,atornadomissile,hasbeenanalyzed(Section3.5.3.2.4).
Thereisminimaldamagetothetopofthestorageracks.However,fuelwithintherackmaybedamaged.Thisdamagemaycauseradiological releasesandbowinginthefuel.However,thedamagewillnothaveasignificant impactonthecriticality safetyofthestorageracks.4.2ANALYTICAL METHODSThissectiondescribes themethodsusedtoensurethecriticality safetyoftheGinnastorageracks.Thebaseanalysismethodology employstheSCALE4.2codesystem"withKENOV.a.CASMO-3"supplements SCALE4.2forevaluation oftolerance effectsandgeneration ofspentfuelisotopics.
Thesemethodsprovidethebasisforgenerating theburnupversusenrichment curvesthatgovernloadingoffuelintothestorageracks.Integrated intotheRegion2curvesistheconsideration ofBoraflexdegradation inrackType1.Abriefdiscussion oftheseitemsinvolvedingenerating theloadingcurveisprovidedinthissection.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage330 4.2.1Criticality AnalysisMethodology TheKENOV.aMonteCarloprogmmcalculates theabsolutereactivities forthevariousstoragerackconfigurations.
Allanalysesusetherevised44groupcrosssectionset4'.Thiscrosssectionsetisprocessed bytheCSh.SroutinesofSCALE4.2.Thissystemofcodeshasbeenverifiedwithextensive in-housebenchmarks againstcriticalconfigurations directlyapplicable tospentfuelstoragepoolstorageanalyses.
Thebenchmark caseshavebeenchosentodemonstrate theapplicability oftheSCALE4.2system'iththe44groupcrosssectionlibrarytospentfuelstoragerackanalyses.
Aseriesof37criticalconfigurations closelymodelingstoragerackconfigurations havebeenanalyzed.
Theseexperiments spanarangeoffuelenrichments, assembly/pin
- spacings, andmaterials interspersed betweenthefuelarraysapplicable totheBoraflexandBSSracksevaluated inthisanalysis.
Additionally, twelvemixed-oxide criticalconfigurations havebeenexaminedtoverifycalculations forburnupcredit,i.e.,inclusion ofplutonium effects.Adescription ofthebenchmark casesandacompletediscussion ofresultsisprovidedinSection4.4.1.Theresultsfromthebenchmark calculations indicated nodiscernable trendrelativetoenrichment, pinpitch,fuelrodsize,orfuelcomposition.
However,theydosuggestatrendofincreasing biasasafunctionofthespacingbetweentheedgesofthefuelarrays.Thisisfurtherinfluenced bythematerials insertedintothespacebetweentheedges.TheRegion1rackshaveaspacingofabout3.7cm(1.45")betweentheedgesoffuelassemblies centeredintherackcells.TheKENOV.abiasthatcorresponds tothisspacing,including BSSandSSabsorberplateeffects,is-0.0070+0.0009b,k.Theedge-to-edge spacingbetweenfuelassemblies inRegion2isabout1.64cm(0.646").
TheKENOV.abiasassociated withthisspacingis0.0056+0.0009hk.AsnotedinSection4.4.1,independent benchmark calculations presented intheInternational HandbookofEvaluated Criticality SafetyBenchmark verifythistrendfortypicalassemblyedge-to-edge spacingsfortightlatticestorageracks.4.2.2Tolerance Evaluation/Burnup IsotopicGeneration withCASMO-3Theanalysisconsiders nominaldimensions formodelingboththestorageracksandthefuelassemblies.
Toensureamarginofsafety,thereactivity effectscausedbypotential variations fromthenominaland/orconditions assumedintheanalysismustbefactoredintotheanalysis.
TheCASMO-3programdetermines tolerance andmoderator temperature effects,aswellas,burnup'sotopics.
CASMO-3isamultigrouptwo-dimensional transport theoryprogramdeveloped forburnupcalculations onLightWaterReactor(LWR)fuelassemblies orsimplepincells.Thecodehandlesageometryconsisting ofcylindrical fuelrodsofvaryingcomposition inaninfinitesquarepitcharray.Thiscapability allowstheevaluation offuelassemblytypedifferences, fuelassemblyfabrication tolerances, e.g.,enrichment, pelletdiameters, etc.,androdconsolidation effects.Typicalfuel-storage-rack modelingcapabilities allowevaluation ofrackfabrication tolerances andmoderator temperature effectsinthestoragepool.Inadditiontoitsuseforsensitivity studies,CASMO-3providesdepletion dataforburnupcreditevaluations.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage331 Theapplication ofburnupcreditusesreactivity equivalence offuelassemblies definedinaninitialenrichment versusburnupcurve.Thisallowsatighterpitchforstorageoffuelassemblies withoutrestrictive limitsonenrichment.
Analternative application ofreactivity equivalencing isthedetermination ofacurverelatinginitialenrichment versusthenumberofIFBArodsforanassembly.
FortheGinnastoragerackssuchacurveisdefinedforfuelwithnominalinitialenrichments above4.0wt%.Similartotheburnupversusenrichment curve,anassemblyIFBArodversusenrichment curveprovidesequivalency withanunroddedassembly.
CASMO-3isusedtogeneratethiscurvefortheoptimalburnuppointforIFBAassemblies tobestoredintheGinnastorageracks.4.2.3BurnupCreditMethodology Typically, aburnupcreditanalysisappliesauniform,averageburnupdistribution overtheentirelengthoftheassembly.
However,auniformdistribution mayunderestimate theburnupatthecenteroftheassemblywhileoverestimating theburnupatthetopandbottom.Toadequately utilizeburnupcredit,anestimateofthereactivity effectsoftheaxialburnupdistribution relativetoauniformdistribution mustbedetermined andappropriately appliedtotheresults.Alternatively, theexplicitaxialdistribution canbemodeledintheKENOV.acalculation toremovetheneedforapplication ofanaxialburnuppenalty.ThisanalysisusesthelattermethodandisbaseduponabestestimateofaxialburnupshapesandfueVmoderator temperatures fortheGinnaplant.TheGinnaspentfuelrackscontainsthreeprimarytypesof14x14fuelassemblies:
theWestinghouse
- Standard, theExxonStandard, andtheWestinghouse OFAassemblies.
Thelattergenerally haveaxialblankets(currently rangingfromnaturaltoabout2.6wt%~'U)andvaryingnumbersofIFBArods.Theolder,Standardassemblies contained neitheraxialblanketsnorIFBArods.Analytical axialburnupprofileswereobtained&omRGEforseveralOFAandStandardassemblies forvariousenrichment andburnupranges.Fromtheseshapes,bestestimates fortheburnupprofilesforburnuprangesfrom10to20,20to30,30to40,and40to50GWd/mtUwerechosen.The23-nodeanalytical profileswerereducedtosevenaxialzones:theburnupforthethreeupperandthreelowerzonesaretotopandbottomthreenodalpointswhilethecentralzonerepresents anaverageofthe17centralnodalpointsoftheanalytical profile.Suchasevenzonemodelhasbeenshowntobeareasonable approximation tomoreaxialnodes'".Foreachburnuprangethesevenzonedistribution isnormalized to1toenablegeneration ofanaxialshapeforanaverageburnupbyasimplemultiplicative process.CASMO-3generates theisotopicconcentrations foreachsegmentoftheaxialprofile.Thesegmentconcentrations areinfluenced bytheaxialfuelandmoderator temperature distributions thateffecttheplutonium buildupoccurring duringdepletion.
Ahighermoderator temperature causesspectral"hardening" (ashiftoftheneutronenergyspectrumtohigherenergyvalues)whichincreases conversion of'Pu&om~'U.Additionally, higherfueltemperatures causeDopplerbroadening ofthe'Uresonance structure, alsoincreasing
~Puproduction.
Typicalcoreaverageaxialmoderator andfueltemperature profileswereobtained&omRGEandusedintheCASMO-3depletions forthegeneration ofisotopics forKENOV.a.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage332 ToreducetheamountofdatatransferbetweenCASMO-3andKENOV.a,onlyselectedactinideisotopes('Un'UmUmPu~Pu"Pu)'andequilibrium'"
Sm(xenonandiodineareeliminated inbothrackmodels)atshutdown(nodecayconsidered) areexplicitly considered intheanalysis.
Theotherisotopesarerepresented byanequivalent
'Bconcentration.
CASMO-3isusedtodetermine theequivalency.
Section4.4.2providesanadditional description ofthemethodology andliststheisotopicconcentrations forthebasecalculations.
TheabilityofCASMO-3topredictisotopics hasbeenillustrated byacomparison betweenCASMO-3predicted andthemeasuredisotopicvaluesfortheYANKEEROWEPowerPlantCoresI,II,andIV3.AheratioofU,+U,~U,~PuPuPu,andPutotheinitial~Uconcentra-tionwascomparedforthemeasuredandCASMO-3predicted results.TheCASMO-3predictions wereshowntobewellwithinthestatistical variations ofthemeasuredvalues.Noobservedbiasisseenforanyisotopeexcept'PuwithCASMO-3consistently underpredicting themeasuredvaluesbyabout9%.Since"'Puisnotanimportant contributor tok,thiseffectisnegligible forthisanalysis.
Basedontheseresults,itisconcluded thattheuncertainty ofCASMO-3predicted isotopics isboundedbytheconservative methodology andtheapplication ofa5.0%burnupuncertainty.
4.2.4BoraflexDegradation/Shrinkage Methodology Recentindustry-wide blackness testingofBorafiexpanelsatotherreactorstoragesiteshasindicated shrinkage andgapformation intheBoraflexabsorbersheets.'Additional industryexperience withthematerialhasshowndegradation, i.e.,lossofthepolymermaterial, inthesheets.Theeffectsofboththedegradation andtheshrinkage ofBoraflexintheType1racksofRegion2areevaluated andfactoredintothegeneration oftheloadingcurvesforRegion2.Thepreviouslicensing reportforRegion2oftheGinnaracks'"evaluated theeffectsofa4%shrinkage anda4"gap.Thiswasconsidered aconservative assumption supported bygenericstudiesforrackgeometries'".
Recentblackness testingatotherstoragepoolshasindicated gapsrangingfrom9"to12"inlength.OtherlossofBoraflexintothespentfuelpoolhasalsobeenpostulated recently.
Thefollowing assumptions andmethodologies areusedtoevaluatetheeffectsofbothoftheselossmechanisms onthereactivity ofthestorageracks:Baseduponthemostrecentindication ofa12"gap,anequivalent shrinkage, 8.3%basedupona144"Boraflexplate,orgapisassumed.Fortheshrinkage evaluation, itisassumedthattheshrinkage isuniformoverthelengthandwidthoftheplate.Thusanequalgapformsatthetopandbottom,andateithersideoftheplate,i.e.,4.15%ofthedimension ateachedge.Nodensitychangeismadetotheremaining absorbermaterialtoreflecttheshrinkage.
KENOV.aevaluates theshrinkage reactivity effects.2.Thegapevaluation examinedasingle12"gapoverthelengthoftheplatewithan8.3%shrinkage overthewidth.Themodelassumesthatthelocationofthegapisrandomlydistributed oneachplateofthecell.Toprovideareasonable model,anarrayof16rackcellsismodeledwitheachofthe32absorberplates(2platespercell)randomlyassigneda12"gap.Appropriate boundaryconditions provideaninfinitearrayofthisrack.Themodelassumesa144"fuelzonewitha144"absorberplate.However,foradditional conservatism, thegapsarelimitedtothecentral132inchesofthecellstosimulatethemostreactiveregionwhenaxialreflector fuelisused.Waterreplacestheabsorbermaterialinthegapwithno51-1258768-01 GinnaSFPRe-racking Licensing ReportPage333 whenaxialreflector fuelisused.Waterreplacestheabsorbermaterialinthegapwithnodensitymodification oftheremaining absorbermaterial.
Theevaluation usesKENOV.atoassessgappingreactivity effects.AdetailedCASMO-3modeloftheBoraflexrackevaluates thereactivity effectsofthepotential degradation oftheabsorbermaterial.
Thisdegradation modelreducesthethickness oftheabsorbermaterialinthecell.Theevaluation examinesvariousdegradedconfigurations toprovideaboundingassessment oftheeffect.Theseconfigurations includereplacement oftheabsorberwithwater,reduction ofthedensityoftheabsorbermaterialby.theassumedboronloss,andahomogeneous mixtureofdegradedabsorberandwaterintheabsorberregion.Anevaluation oftherequiredboronconcentration inthepoolwatertocompensate forvaryingamountsofdegradation isalsoprovided.
Nosignificant degradation and/orshrinkage isanticipated intheGinnaracks.Indeed,fuelloadingpractices forRegion2atGinna""shouldreducedamagetotheabsorbermaterial.
Howevertoaddressanypotential absorberloss,thegeneration oftheloadingcurveforRegion2forRackType1includesallowances forBoraflexdegradations.
AsixteencellinfiniteKENOV.amodelwithbotha12"gap,including 8.3%shrinkage onthewidth,andreduction oftheabsorberthickness by50%providesthegeometrical basisfortheallowances.
Thus,aconservative marginisprovidedtoaccommodate acombination ofpotential gappinganddegradation beyondthatcurrently experienced intheindustry.
ThisiswellbeyondthatexpectedfortheGinnastoragerack.4.3CRITICALITY ANALYSESThespentfuelracksaredividedintotwoadministratively controlled regions(seeFigure4.3-1).Region1isdesignedtoaccommodate afullcoreoff-loadofassemblies.
Thus,itmustbeabletostoreassemblies rangingfromzerotoveryhighburnups.Thisregioncomprises 5modularracksofaboratedstainless steelrackdesigndesignated asrackType3.RackType3combinesafluxtrapwithacheckerboard patternof&eshandburnedfueltoinsurecriticality safety.Region2providesthebulkofthestorageforburnedfuelassemblies.
Itconsistsofthreeracktypes:Type1istheBoraflexdesigncurrently licensed; Type2isa&eestanding, BSSabsorberplaterackdesign;Type4,alsoaBSSdesign,isasinglerowdesignthatmaybeattachedtothenorthandsouthfacesoftheBoraflexrackregionforadditional storageinthefuture.Section1.3providesadescription ofthenewracktypestobeplacedintheGinnastoragepool.Figure1.1-1illustrates thegeneralarrangement ofracktypesinthepool.Section4.3.1describes thebaseinputparameters foralltheanalyses.
Section4.3.2describes theevaluation ofthereactivity effectsduetomanufacturing tolerances fortherackandfuelassemblies, aswellasuncertainties relatedtostorageoffuelintheracks,i.e.,fuelassemblytype,fuelassemblyposition, boraflexdegradation/shrinkage, andcoolanttemperature effect.Sections4.3.3and4.3.4discusstheanalysisfornormalconditions forRegions1and2.Thisisfollowedbyadiscussion oftheevaluation oftheinterface effectsbetweenracktypesinSection4.3.5.Section4.3.6describes theaccidentcondition evaluation.
Theresultsoftheseanalysesarediscussed inSections4.3.7.Section4.3.8discusses storageofconsolidated fuelcontainers inthestorageracks.Finally,Section4.3.9relatestheresultsoftheanalysestotheacceptance criteriaforcriticality safety.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage334 4.3.1InputParameters Thissectionliststheinputparameters usedintheanalysisofthestorageracks.Thisincludesfuelassemblydimensions, rackdimensions, andmaterialspecifications.
4.3.1.1FuelAssemblyDescription Threebasicfuelassemblies arestoredintheGinnaspentfuelstorageracks:Westinghouse Standardassemblies, ExxonStandardassemblies, andWestinghouse OFAassemblies.
Table4.3-1showsthesignificant specifications anddimensions fortheseassemblies.
Nodimensions areprovidedforintermediate spacergridsandendfittingssincetheseitemsarenotmodeledintheCASMO-3or'ENOV.acalculations.
Thecriticality analysisusesthenominaldimensions ofthefuelassemblycomponents todetermine k,a,Tolerances areevaluated andincludedinthedetermination ofKthatiscomparedtothe0.95criticality safetycriterion.
Inadditiontoanintactfuelassembly, thereactivity ofconsolidation containers containing fuelrodsfromuptotwoassemblies isevaluated.
Table4.3-2providesinformation onthestructure oftheconsolidated containers.
4.3.1.2SpentFuelStorageRackDimensions AsketchoftheGinnastoragerackisprovidedinFigure4.3-1.Thisshowsthearrangements ofthevariousracktypestoformRegions1and2.Region1consistsoffivemodules,orracks,ofrackType3.Rack3Econtainsfivecellswiththecellinternaldimension enlargedtoaccommodate severelybowedordamagedfuelassemblies.
Tables4.3-3aand4.3-3bprovidethedimensions significant tothecriticality analysis.
Asillustrated inFigure4.3-1,Region2initially willbeformedwithrackType1,theexistingBoraflexracks,andType2racks2Aand2B.Analysisisalsoprovidedforperipheral racks,Type4,thatmaybeaddedtothenorthandsouthfacesofrackType1(seeFigure4.3-1).Type4rackswillbeaddedifadditional storageisrequiredinthefuture.Thesignificant dimensions fortheseracktypesareprovidedinTables4.3-4through4.3-6.Thesetablesformthebasesfortheanalytical modelsdescribed inalatersection.Nominalvaluesareusedprimarily intheevaluation ofk,iiandtheeffectsoftolerances areincludedtodetermine K4.3.1.3MaterialSpecifications Tables4.3-7and4.3-8providetheregionmaterialcompositions andnumberdensities usedinthemodels.Thefirsttableliststhenon-fuelmaterials.
Thesecondtableprovidesthefuelnumberdensities fortheanalyzedfreshfuelenrichments andtheburnupisotopics forfuelwithaninitialenrichment of5wt%~'Uburnedto45GWd/mtU,theupperpointfortheburnupversusenrichment curves.Section4.4.2containstheisotopicnumberdensities forotherinitialenrichments andlimitingburnupsusedintheanalysis.
4.3.2Tolerance/Uncertainty Evaluation Thefuelracktolerance resultsaredescribed inSection4.3.2.1.Section4.3.2.2describes penalties associated withoff-center fuelplacement whileanevaluation ofthecoolanttemperature effectonrackreactivity isprovidedinSection4.3.2.3.Tolerance penalties associated withthefuelassemblydesign,enrichment, andtheoretical densityaredescribed inSection4.3.2.4.Section4.3.2.5discusses 51-1258768-01 GinnaSFPRe-racking Licensing ReportPage335 0l thereactivity differences amongthethreefuelassemblytypes.Asummaryofthetolerances, uncertainties, andbiasesappliedtotheKENOV.aresultsisprovidedinSection4.3.2.6.Table4.3-12summarizes thetolerance, uncertainty, andbiasvaluesfromthisevaluation.
Additionally, theKENOV.abias,discussed inSection4.4.1,isincludedinthistableforcompleteness.
4.3.2.1FuelRackTolerance AnalysisMethodology Thetolerance penalties associated withthedifferent rackdesignsareobtainedwiththeCASMO-3computercode.RackTypes2,3,and,specifically, thecellsfordamagedfuelassemblies inrack3Eareevaluated usingamodelof4rackcellsinCASMO-3.Periodicboundaryconditions areusedto'rovideaninfiniterackmodel.Thesemodelscloselyapproximate therackconfigurations sketchedinFigures4.3-2and4.3-6.Suchmodelsarenecessary toevaluatethealternating celltypesinthese.RackType1ismodeledasaninfinitearrayofBorafiexcells(Figure4.3-5).TheType4rackevaluation divergesfromthatoftheothers.Sinceitisonlyonecellwide,itismodeledasinfiniteinonedirection.
DuetothelargewatergapsbetweentheType4racks,thepoolwall,andtheType1racks(Figure4.3-1),geometrylimitations inCASMO-3precludeeitherincluding theType1racksorthepoolwallinthemodel.However,sincetheprimarycontribution tothetolerance penalty,asobservedfortheotherracktypes,isthewatergapbetweentheType4cells,modelingonlytheType4rackissufficient andprovidesarelatively smalltolerance penalty.Theboundingtolerances foreachracktypearelistedinTable4.3-12.Notethatthedamagedcellsofrack3E(Figure4.3-4)willbenotbedistinguished fromtheotherType3cellssincetheyaremorelimitingandonlyalimitednumberofType3Ecellsareplacedalongtheouteredgerack3E.4.3.2.2Off-Center FuelAssemblyAnalysisTheoff-'center studyevaluates thereactivity effectsoffuelassemblymovementwithintherackcellbyplacingassemblies inacornerofthecell.Thisresultsinanunevendistribution ofwaterbetweentheouteredgeoftheassemblyandthecanandplacesassemblies closertogetherwhichmayincreasereactivity.
Duetolimitations inCASMO-3,theassemblies canonlybearrangedingroupsoffour(exceptforrackType4).Largeroff-'center groupings requiretheuseofKENOV.aforevaluation.
Basedonpreviouscalculations withKENOV.aandCASMO-3thereactivity effect&omoff-center assemblyspacingisnotsignificant.
Thisisillustrated inthelistingtheoff-'center penaltyforeachracktypeinTable4.3-12.4.3.2.3StoragePoolCoolantTemperature EffectsTherackanalyseswereperformed foranominalpooltemperature of68'F(293'K).Anevaluation ofthereactivity changesassociated withtemperature variations aroundthisnominalvaluewasperformed withCASMO-3.Theevaluation examinedthetemperature rangefrom50to212'Ftocoverbothcredible'cooldown'nd
'heatup'vents inthespentfuelpool.Thereactivity increases fromabout0.001to0.002hkasthetemperature isloweredfrom68'Fto50'F,depending uponracktype,seeTable4.3-12.Forallracktypesthereactivity decreases asthepooltemperature israised.Forthisevaluation, pooltemperature decreases toabout50'Fareconsidered crediblesoapenaltyistakenonlyfortheb,kincreasefrom68to50'F.Pooltemperatures below50'Farenotconsidered credibleandrepresent anaccidentcondition coveredbythedoublecontingency principle.
Fortemperatures below50'F,thereactivity changeislessthan+0.0002 LHcforanyracktype.Suchsmallreactivity changesareeasilycoveredbytheeffectofthe450ppmminimumboronconcentration inthepoolwater.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage336 4.3.2.4FuelAssemblyMechanical Tolerances Thissectionaddresses thereactivity effectsduetomanufacturing tolerances onthevariousdimensions ofthe14x14pinfuelassemblytypes.ThemajorassemblytypesaretheExxonStandard, theWestinghouse
- Standard, andtheWestinghouse OFAfuelassembly.
Thevariables examinedaredimensional changesofthefuelpelletdiameter, thepelletcladdingIDandOD,theguidetubeandinstrument tubeIDandODvalues,thefueltheoretical density,andtheenrichment.
Thesepenalties aredetermined withtheCASMO-3code.Boundingpenalties areobtainedforassemblycomponent partsbyvaryingthecomponent dimension overtheallowable tolerance range.Thestatistically combinedtolerance penaltyforthefuelpellet,guidetube,instrument tube,andfuelcladdingis.reportedforconvenience foreachassembly.
Thefuelpelletenrichment andtheoretical densitypenalties reportedseparately toillustrate thattheenrichments reportedfortheloadingrequirements areindeednominalvalues.Table4.3-9providesalistingofthefuelassemblytolerance penalties.
TheExxonassemblyisseentohavethelargesttolerance penaltyforbothmanufacturing andenrichment variations whiletheWestinghouse OFAassemblyshowsthelargestpenaltyrelatedtothevariation intheoretical density.Astatistical combination oftheindividual resultsshowsthattheExxonassemblypenaltyboundstheotherassemblies.
Thus,thepenaltyforthisassemblyisusedinthedetermination ofKandincorporated intothesummaryTable4.3-124.3.2.5MostReactiveFuelTypeThreebasictypesofintactfuelplustwelveleadtestassemblies arestoredintheGinnarack.Inadditiontotheintactassemblies, thereareseveralconsolidated fuelcontainers currently intherack.Thus,theevaluation ofthereactivity ofdifferent fueltypeslogically isdividedintotwoareas:intactfuelandconsolidated fuel.Theevaluation ofthesefueltypesisdiscussed inthissection.4.3.2.5.1 IntactFuelAssemblies ACASMO-3evaluation ofthereactivity ofeachfuelassemblyinaracktypeconfiguration isperformed forthetwotypesofWestinghouse assemblies andtheExxonassembly.
Table4.3-10liststhereactivity differences betweentheassemblies asafunctionofburnupforaninfinitearrayofrackType1cells.TheWestinghouse OFAassemblyisseentobethemostreactiveforfreshfuelfornormalreactorenrichments, whiletheWestinghouse Standardassemblyisthemostreactiveforfuelwithburnupsaboveabout12GWd/mtU.TheExxonassemblyisboundedbythetwoWestinghouse assemblies.
Aseparatestudyforlowenrichments, i.e.,about1.95wt%,showedtheWestinghouse Standardassemblytobemostreactiveevenwhenmesh(theenrichment issimilartothatforburnedassemblies).
TheseresultswerefactoredintothefinalKENOV.arackanalysestoprovidethemostreactiveconditions byappropriate useofthemostreactivefuelinthemodels.Thus,nopenaltyisrequiredtocorrectforfuelassemblytype.Inadditiontothethreebasictypesoffuelassemblies, 12LeadTestAssemblies arealsostoredinthespentfuelrack.TheyaretwoeachofB&WandExxonStandardassemblydesigns,fourExxonAnnularPelletdesigns,andfourWestinghouse Standardmixed-oxide designs.CASMO-3evaluations oftheseassemblies showedthattheirreactivities areboundedbythatoftheWestinghouse Standardassembly.
Thus,theyaresubjecttothesamerestrictions astheWestinghouse Standardassembly.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage337 y
4.3.2.5.2 Consolidated FuelContainers KENOV.aisusedtoevaluatethereactivity oftheconsolidation containers forbothnormalandabnormalconditions.
Forthenormalcondition, anevaluation ismadeoftheintactcontainers inthestorageracks.Theevaluation examines&eshfuelenrichments of1.6and2.22wt%"'Uatstoragepooltemperatures,
-68'F,foreachmajortypefuelassembly.
Thecontainer modelincludesonlytheouterwallsofthecontainer withdimensions boundedbyTable4.3-2.Thereactivity worthoftheinnerplateisalsoassessedintheevaluation.
Thereactivity ofthecontainer isoptimized withaseriesofcasesvaryingboththenumberofpinsandthepinpitch.Theevaluation examinesstorageofonlyconsolidation containers inarackoracombination ofintactfuelassemblies andcontainers.
Theaccidentcaseconsiders alossofcontainment ofthecontainer thatallowsthefuelpinstospillintothestoragepool.Forconvenience, a19x19arrayofpins(361)isexamined(3morethanavailable inafullcontainer).
Thepitchofthearrayisoptimized toprovideaboundingaccidentcondition.
Inadditiontheeffectoftheminimumconcentration ofsolubleboroninthepoolwater,450ppm,isdetermined.
Thisevaluation, forboththenormalandabnormalconditions, ensurethatthestorageofconsolidation canisters satisfies thecriticality safetycriterion forbothfullandpartially filledcontainers.
4.3.2.6SummaryofBiases,Penalties, andUncertainties inAnalysisThecalculated k,irfromKENOV.aresultsmustbeadjustedtoaccountformethodology biasand,penalties anduncertainties associated withdifferences betweenthecalculational modelandvariations inkeyparameters ofthemodel.Themethodology biasisdiscussed inSection4.2.1.Manufacturing tolerance uncertainties andpenalties arediscussed inSection4.3.2,asareotheruncertainties associated withthechoiceofparameters factoredintothemodels.Thesebiases,penalties, anduncertainties aresummarized inTable4.3-12forthefourracktypes.Anadditional uncertainty relativetotheselfshielding of"BinBoraflex""
isalsoincludedintherackType1summary.Thelastrowliststheapproximate adjustment factortoobtainKobtainedfromtheadditiveandstatistical combinations ofthesevalues.Anestimateoftheprojected calculational uncertainty basedupononemillionneutronhistories, 0.0007,isassumedtoobtainthisfactor.4.3.3Region1AnalysisRegion1(rackType3)storesspentand&eshfuelinacheckerboard pattern.AllinteriorRegion1cellsareformedbyfourboratedstainless steelsheets(seeSection1.3.1foradetaileddescription).
Eachcellcontaining aspentassemblyalsocontainsastainless steelcasingwhichsurrounds theboratedstainless steelplates.Table4.3-3aliststhedimensions oftherackcellthatareexplicitly modeledwithKENOV.a.Basedupontheevaluations forthemostreactiveassembly(Section4.3.2.5),
aWestinghouse.
OFAassemblyrepresents theboundingfreshassemblywhileaWestinghouse Standardboundsthespentassemblies.
Adiscussion ofthegeometrical modelandtheburnupcreditmethodology forRegion1isprovidedinthissection.4.3.3.1Region1GeometryModelsThebaseKENOV.amodelrepresents aninfiniterackarrayinthex-yplane.Theaxialdimension includesanactivefuellengthof144"(365.76cm)witha12"(30.48cm)topandbottomwaterrefiector.
Thestructure ofthecells,fourBSSrackcells(twowithandtwowithouttheSScasings),
areexplicitly modeledinthex-yplane.Periodicboundaryconditions ontheouterfacesofthefourcombinedcellmodelsgenerateaninfinitex-yarrayofRegion1cells.Figure4.3-2illustrates thebasemodelwithtwofreshOFAassemblies andtwospentStandardassemblies.
Theaxial51-1258768-01 GinnaSFPRe-racking Licensing ReportPage338 t
representation oftheinfinitemodelisshowninFigure4.3-3.Notethatthisrackhaslead-infunnelsinthecellswithoutSScasingstofacilitate loadingofoff-loaded fuel.Freshfuelmustonlybeplacedinthesecells,notinthosewithSScasings(andwithoutlead-infunnels)andaresomodeled.Reversing thepositions increases thereactivity ofthisregionbyabout0.2%bk.4.3.3.2BurnupCreditTheapplication ofburnupcreditrequiresmorecalculations thanthetypicalmeshfuelanalysis.
Thereactivity effectofthefollowing itemsmustbeevaluated andfactoredintotheanalysis:
Operating historyincluding fuelandmoderator temperature, Axialburnupdistributions asafunctionofburnup,andMeasuredburnupuncertainty.
Theseitemscontribute totheresidualreactivity oftheburnedfuel,especially fortheaxialdistribution.
ForaRegion2typerackwhichcontainsburnedfueladjacenttoburnedfuel,consideration oftheaxialburnupdistribution isnecessary toadequately definetheloadingcurve.However,foracheckerboard of&eshandburnedfuel,thefreshfuelcompletely dominates thesystem'sreactivity.
Thus,consideration ofauniformaverageburnupshapeforthecheckerboardedspentfuelisallthatisrequired.
Thisisillustrated inSection4.4.2.Thefollowing methodology describes thestepstocalculate theburnupversusenrichment curveforRegion1.ACASMO-3hot-full-power depletion withcoreaveragefuelandmoderator temperatures isperformed todetermine theisotopicconcentrations fortheaverageburnupofanassembly.
AsecondCASMO-3calculation providesthebasek;,forafuelassemblywithallisotopesforracktemperature conditions (notethatxenonandiodineareremoved)atshutdown.
AthirdCASMO-3rackmodelcalculates thek;~withonlytheshutdownfuelpinconcentrations of"0,~'U,'U,"'U,~'Pu,"'Pu,"'Pu,and'"Sm(xenonandiodineareeliminated inbothmodels).Asmallamountof"Bisaddedtothefuelpinuntilthek;fromthesecondCASMO-3calculation agreeswiththatofthefirst.Inthismanner,theadded'simulates theneutronabsorption oftheisotopesnotpresentintheKENOV.amodel.Theseconcentrations areinsertedintheKENOV.amodelandk,a.calculated.
Ifthek,~isnotsatisfactory, theburnupischangedandtheentireprocessrepeateduntilatargetKofabout0.94isobtained.
Thisisthenrepeatedforadditional enrichment values.Theburnup/enrichment pairsprovidethepointstodefineapolynomial fittotheburnupversusenrichment curveofFigure4.1-1thatgenerates thevaluesinTable4.1-1.Basedupontheconservatism inherentinthemodelandthepenalties applied,theproximity tothe0.95criticality limitisjustified.
4.3.4Region2AnalysisRegion2consistsofrackTypes1,2,and4.Type1istheexistingBoraflexrackwhichcontain840cellsina30x28array.TheType2racks(seeFigure1.1-1)consistoftwoboratedstainless steel(BSS)racks,rack2A(8x11array)andrack2B(9x11array).Type4racksconsistofsixindividual racksof10cellseach(Figure1.3-13)andareattachedtoNorthandSouthfacesoftheType1racks.AninfinitemodelofeachoftheTypes1and2racksprovidestheevaluation fortheseracks.Thesinglerowdimension, andpositioning oftheType4rackprecludeanindividual analysisofthisrack.Theevaluation forthisrackiscombinedintoamodelcontaining bothrackTypes1aild2.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage339 58wPk 4.3.4.1Region2GeometryModelsIndividual infinite(inx-yplane)rackmodelsareusedforrackTypes1and2.Theevaluation ofType4requiresconsideration ofinteractions withType1toadequately evaluatethereactivity ofthisracktype.Sinceacombination ofracktypesisrequired, amodelisdeveloped thatexaminesalltheRegion2racktypestogetherfortheevaluation ofType4.Inallcases,theuseoftheWestinghouse Standardassemblyprovidesboundingresultsforspentfuelinthisregion.4.3.4.1.1 RackType1-BoraflexRackTheBoraflexrackcontainsonlyasinglecellconfiguration.
Amodelofthiscellwascreatedandcombinedintoamulti-cell arraywithperiodicboundaryconditions tocreateaninfinitearrayinx-yextent(seeFigure4.3-5).TheaxialmodelissimilartothatforRegion1,asillustrated inFigure4.3-3.Thenominaldimensions listedinTable4.3-4wereusedintheexplicitmodelofthisrack.AsnotedinSection4.2.4asignificant amountofBoraflexdegradation isincludedinthemodel.Themodelcontainsa16x16arrayofcellswithBoraflexpanelseachcontaining arandomlydistributed 12"axialgap,a8%widthshrinkage, anda50%reduction intheplatethickness.
Anominalrackmodelwithoutdegradation providesameasureofthereactivity changeobtained&omthisdegradedmodel.4.3.4.1.2 RackType2-BoratedStainless SteelRackTheBSSrackscontaintwocelltypes.Onetypeismanufactured Rom3mm,boratedstainless-steel plates(SS304B7),andtheotherconsistsofa2mm,unborated stainless-steel can(SS304L).
Figures1.3-8and1.3-12provideillustrative drawingsforthisracktype.Thetwobasiccellsarefabricated intoacheckerboard patternwithanominal2.32mmwatergaplocatedbetweencellsinthex-ydirections.
Themodelofthe2x2arrayofthetwodifferent cellsusesaperiodicboundarycondition tocreateaninfinitearrayinthex-yplane(seeFigure4.3-6).4.3.4.1.3 Region2CombinedModelforRackType4Evaluation RackType4(Figure1.3-13)issimilarindesigntorackType2.However,therearesomenotabledifferences.
Thistypeconsistsofonlyasinglerowofcellswitharelatively largewatergapbetweenrackType4andeitherrackType1orthepoolwall(seeFigure1.1-1).Thelargewatergapsallowstheabsorbercellstobefabricated withBSSplatesonlybetweenadjacentType4cells,i.e.,intheeast-west direction.
Basedonthesinglerowconfiguration, thistypecanbeadequately analyzedonlyincombination withtheadjacentType1rack.Acombinedmodelwasdeveloped fortheinterface effectevaluations (Section4.3.5)forTypes1,2and4,i.e.,thesouthfaceofType1(seeFigure4.3-7).Itwasusedfortheevaluation ofthisrack.ThesouthfaceofType1waschosensincethisfacedoesnotcontainBoraflex.
ThislackofBoraflexfacingtheType4rackmakesthismorereactivethanthenorthface.Inclusion ofType2allowsagoodassessment ofthetotalreactivity ofRegion2.Thebaseinterface modelisdescribed inSection4.3.5.Modifications tothismodelweremadetoimplement thedegradedBoraflexmodelintotheType1model.Thus,abounding, geometrical modelofRegion2iscontained inthisevaluation.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage340
\V 4.3.4.2Region2LoadingCurveGeneration Asmentioned aboveforRegion1,theapplication ofburnupcreditrequiresseveralbasiccalculational steps:1)determine appropriate axialpowershapesasafunctionofburnup,2)determine axialintervals tobemodeled,andgenerateburnupisotopics andcrosssectionsfortheseburnupintervals, 3)integrate operating historydataintothemodeldirectlyorthroughappropriate penalties tobeappliedtothefinalresults,and4)iterateonburnupforaseriesofenrichments todevelopanacceptable burnupversusenrichment curveforthestoragerackdesign.Forarackcontaining completely burnedfuelaxialeffectsaresignificant andmustbeassessed.
Thissectionprovidesabriefdescription ofthemethodology fortheburnupcreditanalysis.
DetailsforthesestepsareprovidedinSection4.4.2.Thismethodology forburnupcreditisverysimilartothatacceptedbytheU.S.NuclearRegulatory Commission4.I0,4.is,4.>6 4.3.4.2.1 BaseBurnupvsEnrichment CurveGeneration Generation oftheburnupversusenrichment curveincludesconsideration ofaxialburnupeffectsandfuelirradiation conditions.
Thisinformation isusedtoobtaintheisotopicconcentrations oftheburnedfuelfortheanalysis.
Abriefdescription ofthisprocessisprovidedinthissection.Axialprofilesaredetermined forselectedaverageburnupvaluesfromthreedimensional fuelcycledesigndatafortheGinnareactor.Theseprofilesarethencollapsed intothesevenaxialsegmentsusedintheKENOV.amodel.Thetopandbottomthreesegmentsareexactlythesameburnups,andspacings, ofthe3Dfuelcycledesigncalculations.
Thecenterburnupsegmentisadjustedtobalancetheaverageassemblyburnuptothedesiredburnupvaluewhenweightedwiththeburnupsattheendsoftheassembly.
Previousstudieshaveshownthatthesevenaxialzonemodelprovidesresultsequivalent toa15axialsegmentmodel'"whichnearlyduplicates thenodesinthefuelcycledesignanalysis.
ACASMO-3hot-full-power depletion isperformed todetermine theisotopicconcentrations ineachaxialsegmentattheappropriate burnupandfuelandmoderator temperature.
AsecondCASMO-3calculation providesthebasek;~forafuelassemblywithallisotopesfortheracktemperature condition atshutdown.
AthirdCASMO-3rackmodelcalculates the~withonlytheshutdownfuelpinconcentrations of'60nsU,+U,+U,+Pu,Pu,'Pu,and'm(xenonandiodineareeliminated inbothrackCASMO-2calculation).
Asmallamountof'isaddedtothefuelpinuntilthesecondCASMO-3k;~agrees withthefirst.Inthismanner,theadded"Bsimulates theneutronabsorption oftheisotopesnotpresentintheKENOV.amodel.Togeneratethecurve,aniteration processisusedtodetermine theminimumburnuptogiveatargetk,ff,about0.94forthiscase.Iffortheinitialburnup,theKENOV.aisnotsatisfactory, theburnupischanged,andtheentireprocessrepeatedforagivenburnupprofile.Thismethodisrepeatedforseveralenrichments toobtaintheburnup/enrichment pairsfortheloadingcurveinFigure4.1-2.Apolynomial isfittotheburnupversusenrichment curveofFigure4.1-2toallowgeneration ofthepointsinTable4.1-2.Basedupontheconservatism inherentinthemodel,theuseofboundingaxialprofiles, andthepenalties applied,theproximity tothe0.95criticality limitisjustified.
4.3.4.3Generation oftheLoadingCurveforAbnormalAssemblies Figure4.1-2definestheburnupversusenrichment requirements fortheRegion2storageracks.Fuellocatedabovethebasecurve,areasAlandA2,canbeloadedanywhereinRegion2nexttofuelwithburnupsabovethebaseline.Mostoftheburnedfuelassemblies currently residingintheracks51-1258768-01 GinnaSFPRe-racking Licensing ReportPage341 0
(diamonds inFigure4.1-2)fallinareasAlorA2.Toallowflexibility, andtoprecludefillingtheRegion1rackwithlowerburnedassemblies, evaluations aremadetodetermine theadministrative controlstoloadfuelassemblies fallingbelowthecurveinFigure4.1-2.Theseevaluations examinetwoclassesoffuelassemblies belowthebasecurve:thosewithaverageburnupwithinaspecified burnuprangebelowtheburnupversusenrichment curvelimit,areaB,andthosewithburnupbelowthisrange,areaC.Theanalysisdevelopssecondary curvestoallowstorageofthoseassemblies withburnups(Figure4.1-2)uptoabout15%belowthenormalcurve,definedasareaB.Following theaboveprocedure forthenormalcurve,anadministrative loadingschemeisdeveloped thatreliesonthetwosecondary curvesinFigure4.1-2(theupperandlowerboundarylines).Theintercept ofthepolynomial fittothebasecurveisadjustedtofitaburnuppoint10%belowthebasecurveat5.0wt%"'Unominalenrichment.
Thisvalueisfurtherreduced5%toaccountformeasuredburnupuncertainty togiveatotalvalueof(0.9)(0.95)
=0.855belowthe5.0wt%enrichment curvevalue.Thiscurvehasthesameslopeasthebasecurve.Baseduponthislowercurve,CASMO-3rackcalculations generatetheupperboundarypolynomial line.Thisisdonewitharackmodelcontaining fourcellsthatcheckerboardthelowerlinefuelwithestimated valuesontheupperlinefor5.0wt%"'Ufuel.Theburnupfortheupperlineisadjusteduntilthek;,ofthemodelequalsthatforthebaseline.Oncetheburnupisdefined,theintercept ofthebaselinepolynomial isadjustedtofitthispoint.Thus,theuppercurvealsohasthesameslopeasthebasecurve.Itisnotedthatforlowerburnups,theburnupsinareaBmaybesignificantly lowerthan10%ofthenominalcurve.Theabovecalculations defineachecker-board loadingscheme.AreaBassemblies withburnupsabovethelowerburnupboundarymustbeloadeddirectlyadjacent(inacheckerboardpattern)toareaAlassemblies withburnupsabovetheupperburnupboundaryline.Anotheracceptable loadingpatternforthesefuelassemblies isalternating rowsofA1andBassemblies.
IftheBfuelisplacedontheoutsideedgeofaracknearthepoolwall,A1fuelmustbeplaceddirectlyadjacenttoitintherack.KENOV.acalculations atseveralenrichments verifythevalidityoftheadditional curves.Fuelwithburnupsandenrichments belowthelowerboundaryline,designated areaCfuel,requireanalternate loadingschemeforstorageintheRegion2fuelracks.ThelimitingareaCfuelassemblyisfreshfuelatanominalenrichment of4.0wt%~'U.AKENOV.acalculation forthiscondition usestwo4.0wt%"'Ufreshfuelassemblies diagonally oppositeeachotherinacheckerboardpatternwithtwowaterlocations (noassemblies).
Thus,theuseofwaterholesadjacenttofuelwillsatisfytheloadingcriteriaforanyenrichment/burnup combination.
Thisarrangement maybeusedinplaceofstoringfuelbelowthelineinRegion1.4.3.5Interface EffectsTheinteraction betweenRegions1and2,i.e.,interface effects,isalsoexamined, aswellasthatbetweentheBoraflexracksandBSSracksinRegion2.Threeareasoftheracksinthepoolweremodeledtoassesstheseeffects.TheareasofinterestasshowninFigure4.3-7are:1.Interfaces between(1)racks3Cand2Band(2)racks2Band3E.2.Interfaces betweenracks1,4F,and3A.3.Interfaces betweenracks1,4C,and2A.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage342
Figures4.3-8,4.3-9,and4.3-10showsketchesofeachmodel.ThesameKENOV.ageometrymodelswereidentical fortheexamination ofthe2B/3Cinterface andthe2B/3Einterface.
Theonlydifference wasthepositionofaspikeintheneutronstartingdistributions attheinterface ofinterest.
Asimilarstarttypeapplication wasappliedtomodels2and3listedabovefortheotherinterfaces.
Ineachmodel,sufficient
- concrete, 19.7"(50cm),andwater,12"(30.48cm) ismodeledtoadequately represent reflective surfaces.
4.3.6AccidentAnalysisTheaccidentanalysesexaminethefollowing assemblydropconditions foreachregion:anassemblydroppedhorizontally ontopofrackTypes2and3andanassemblydroppedvertically besideracks2Band3E.ForbothRegions1and2,theeffectofamisplaced assemblywasalsoexaminedtoensurecriticality safety.Foraseismicevent,thereduction intherackTypes2and3rack-to-rack separation distancewasexamined.
Theseaccidents areextremely improbable, andanyassociated reactivity increasecanbemitigated bythesolubleboroninthepoolwater.Aspartofthisanalysis, thereactivity effectofthesolubleboroninthewaterwasevaluated todetermine thereactivity marginsfortheaccidentconditions.
TheKENOV.aaccidentmodelsarebasedontheinfinite, orfinitebasemodelsforbothregions.Onlymodifications necessary todescribetheaccidentcondition aremadetothebasemodels.Thisallowsassessment oftheimpactoftheaccidentbyexamining thereactivity difference betweentheresultsfromnormalandaccidentmodels.4.3.6.1Region1AssemblyDropAnalysesRegion1assemblydropanalysesincludetheT-bone(shallowdrop),sidedrop,anddeepdropaccidents.
Thefollowing paragraphs describethemodelsforeachaccident.
TheT-boneaccidentisaclassofshallow-drop accidents inwhichthedroppedassemblyisassumedtolayhorizontally atoptherack(seeFigure4.3-11).Thedroppedassemblyisrepresented asafullassemblyinboththexandydirections.
Periodicboundaryconditions ontherightandbottomfacesapproximate adroppedassemblyatthecenterofa24x24cellrackregion.Therackdeformation fromthedroppedassemblyisnegligible (Section3.5.3.2.3.2.1).
However,forconservatism, themodelplacesthedroppedassemblyindirectcontactwiththetopoftheactivefuelregionoftheassemblies intherack,i.e.,theuppernozzlesareneglected.
Thisprovidesaboundingaccidentscenario.
Forareference casethesamemodelisusedwiththedroppedassemblyreplacedwithwater.Thedifference betweenthek,ffoftheaccidentandthereference caseprovidesthereactivity increaseoftheaccident.
TheT-bonemodelboundstheothershallow-drop
- accident, theverticaldrop,inwhichthedroppedassemblyfallsintoastoragespaceandimpactsuponthetopofastoredassemblybutremainsvertically abovetheassembly.
Sincetheupperandlowerendfitting dimensions willmaintainatleasta4"(10.16cm)gapbetweentheactivefuelregions,theaccidentislessreactivethanthemodeledT-boneaccident.
Anyreactivity effects&omtheminorbowingthatmayresultinthestoredassemblyduetotheimpactwillbenegligible relativetothemarginobtainedfromthesolubleboroninthepoolwater.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage343 I
TheRegion1side-drop modelrequiredmodification totherackType3finitemodel(Figure4.3-4)inthatthesouthwest cornercellofrack3Ewasremovedandreplacedwitha&eshassemblyimmediately nexttoracks3Eand2B(seeFigure4.3-12).Thisconfiguration isnotconsidered
- possible, butisusedforconservatism.
Thisistheonlylocationthatexistswhereanassemblycanbevertically droppedandhavefuelontwoadjacentfaceswithoutanabsorbermaterialbetweenthedroppedassemblyandthoseintheracks.Baseduponthisconsideration itisalsothemostreactiveconfiguration forasidedropaccident.
Asecondcasewiththedroppedassemblyreplacedwithwaterprovidesthebasecasefordetermination ofthereactivity increaseduetotheaccident.
Thedeep-drop accidentconsiders afuelassemblydroppedintoarackcell(seeFigure4.3-13).Theassemblyisassumedtoimpactthebottomplateoftherackwhichissupported bypadsonabout37"(94cm)centers.Itisassumedthatanassemblydropsatthecenterofasectionanddeformstherackbaseplatetothemaximumdetermined fromthestructural
- analyses, 2.12"(Section3.5.3.2.3.1.1).
Thus,thedropcausesaconcavedepression intheplate,withassemblies positioned alongthecurvedsurface,Figure4.3-13.Duetothecomplexity ofexplicitly modelingtheaccidentcondition, aboundinganalysisisused.Theanalysisassumedallfuelassemblies intherackweredisplaced 3.2"(8.13cm)belowthebottomoftherack.Thehkfromabasemodelisdetermined aswellastheminimumboronconcentration poolwaterneededtoreducethesystembelowthe0.95limit.Notethatduetothesimilarity inconstruction ofrackTypes2,3,and4,theresultsfromtheType3rackboundsthosefromTypes2and4.Themisplaced assemblyaccidentassumesthatduringloadinganassemblyisplacedinalocationthatviolatestheloadingcurverequirements.
Theaccidentmodelassumesthatafresh4.0wt%"Ufuelassemblyisplacedintoaspentracklocationbetweenfour&eshassemblies (seeFigure4.3-14)intheRegion1finitemodel.Themodelfocusestheneutronstartingdistribution intothemisplaced assemblytoensurethattheassemblyisadequately sampled.Theresultofthismodelisthencomparedwiththatofthenormalcondition, finitemodeltoassesstheb,keffectofthemisplaced assembly.
4.3.6.2Region2AssemblyDropAnalysesFouraccidents wereexaminedfortheRegion2racks:theT-boneonrackType2,sidedrop,misplaced
- assembly, anddeepdropintoastoragecell.Theaccidentmodelsassumedthattherackcontained thehighestallowable
&eshfuelenrichment.
Thedroppedassemblyisassumedtobefresh4.0wt%'Ufuel.Theuseofthemaximumenrichment providesaboundingaccidentanalysiswithrespecttofuelloadings.
ThemodelfortheRegion2T-boneaccidentissimilartothatforRegion1.ForRegion2,rackType2wasusedfortheaccidentmodelsinceinanormalcondition itisslightlymorereactivethatType1.Figure4.3-11providesasketchofthemodelwiththedroppedassemblylayinghorizontally acrossthetopoftherack.Theb,kisdetermined fromtheresultsfromcaseswithandwithoutthedroppedassembly.
Theside-drop accidentforRegion2hasalreadybeenconsidered inthatusedforRegion1.Thedroppedassemblyispositioned adjacenttorackType3ofRegion1andType2ofRegion2(Figure4.3-12).Asnotedinthediscussion fortheRegion1accident, thisisaboundinganalysisandanindividual assessment fortheotherracktypesofRegion2isunnecessary.
IfrackType4isinstalled 51-1258768-01 GinnaSFPRe-racking Licensing ReportPage344 0'llq?,"<<.-
inthepool(Figure4.3-1),thereisinsufficient spacetoplaceanassemblybetweentherackandthepoolwall.However,priortoitsinstallation, thereissufficient roomforadroppedassemblytolodgebetweenthewallandrackType1.ThisagainisboundedbytheanalysisforthedroppedassemblylocatedinthecornerofTypes2and3.TheworstcaseforrackType1isadroponthesouthsideofthearraywhichdoesnotcontainBoraflexontheoutersurface.Thisisequivalent totheassemblydroppedadjacenttotheType2rackcellwhichalsodoesnotcontainBSS-.Thus,onlyasinglelayerofstainless steelseparates theassemblies.
Thestainless steelintheType1rackisabout0.01"(0.0254cm)thickerthantheType2.Duetothemildabsorption ofthestainless steel,thiswillreducetheeffectofthedropintheType1rack.Inaddition, basedupontheresultsfromtheType2and3sidedrop(Table4.3-13),theeffectisminimalandalowlevelofsolubleboronreducesmaintains k,~withinacceptable limits.Amisplaced assemblymodelwascreatedforrackTypes1and2similartothatforRegion1.Ineachmodela4.0wt%~'UfuelassemblyisplacedeitherintotheBoraflexcellofrackType1(seeFigure4.3-15),orintothestainless steelcellofrackType2.Themisplaced assemblyisplacedinalocationtoprovideaboundingreactivity increase.
Bothmodelsfocusthestartingneutronsintothemisplaced assembly.
TheBoraflexrackmodelincludesBoraflexdegradation andassumesthatthemisplaced assemblyisplacedinthemostreactivecheckerboardlocationofspentfuelassemblies.
Themodelassumesaninfinitearrayof144cellswitha4wt%~'UOFAassemblynearthecenterofthearray.Theresultsofthesemodelsarethencomparedwiththoseofthefinitegeometrymodelstoassessthehkeffectofthemisplaced assembly.
Thedeformation duetothedeepdropaccidentforrackTypes2and4isequivalent tothatforrackType3(Figure4.3-13).Thus,they,arecoveredbythatanalysis.
RackType1hasbeenfabricated differently
&omtheType2,3,and4racks.Ratherthanasinglebaseplateacrossthebottomofeachrack,individual platesareweldedatthebottomofeachcelltosupportthefuelassembly.
Thus,underthehypothetical dropaccident(Figure4.3-16),itisassumedthatthebottomweldsbreak.Thiswillallowamaximumof14"(35.56cm)oftheassemblytobeexposedbelowtherack.Duetotheuniqueconstruction ofeachcell,thereisnodamage,ordeformation, insurrounding cells.Twotypesoffuelassemblies canbeconsidered forthisaccident.
Foraspentassemblythatcanbestoredinthecellinwhichitisdropped,thepostaccidentcondition isequivalent toapartially insertedassemblyduringloadingandresultsinnoimpactoncriticality safety.Similarly forafresh4.0wt%~'Ufuelassembly, thisaccidentisboundedbythemisplaced assemblyaccident.
Theportionofthedroppedassemblyinthecellisequivalent toamisplaced assemblyandisboundedbythatevaluation.
The14"(35.56cm)displacement belowtherackisequivalent theportionofanassemblythatprotrudes
&omtherackduringinsertion.
Thisportionisessentially isolatedfromtheassemblies intherackandthusdoesnotaffectthereactivity oftherack.Thus,sincethisaccidentcondition isboundedbythemisplaced assemblyaccident; theminimumsolubleboronconcentration inthepoolissufficient tooffsetanyreactivity increase.
4.3.6.3SeismicAnalysisThestructural analysisfortheseismicaccidentindicates thattherewillbenoimpactsbetweenadjacentracksorbetweentheracksandthepoolwalls(Section3.5.3.1.14).
Thus,thereisnomechanism forsignificant permanent rackdeformations ineitherrackregion.Theanalysisshowsthatduringtheworstseismicevent,thegapsbetweentherackswillalwaysbegreaterthan0.071"(0.18cm),seeTable3.5-137and3.5-138columnlabeled'FinalGapBetweenRacks'.Thisincludes51-1258768-01 GinnaSFPRe-racking Licensing ReportPage345 r
bothlateralmovementandmomentary swayingoftherackduringtheseismicevent.Thus,thereis'nophysicalcontactbetweenadjacentracks.Basedupontheseresults,anevaluation ofthereactivity effectofrackmovementwasmadeforRegions1and2andfortheinterfaces betweentheseregions.Thespecificmodelsfortheseismiceventsarediscussed below.4.3.6.3.1 Region1SeismicAnalysisTheRegion1basedplatesnormallyarespaced0.79"(2.0cm)apart(seeFigure3.5-36),approximately maintaining therackcellpitch.Fortheseismicanalysis, itisassumedthateachrackType3baseplatetouchesthatoftheadjacentrack.ThegeometrymodelfortheRegion1seismicmodelisidentical toRegion1interface modelsketchedinFigure4.3-7,exceptthatthenominalwatergapsbetweenthebaseplatesarereducedtozerowidth,i.e.thebaseplatesaretouching.
Theb,keffectoftheRegion1seismiceventisdetermined fromthedifference betweenthenominalwatergapmodelandthemodelwithoutwatergapsbetweenthebaseplates.4.3.6.3.2 Region2SeismicAnalysisAsinRegion1,theseismiceventmaycausethefreestandingRegion2rackstoshiA,onerelativetotheother,suchthatthebaseplatesmaytoucheachother.Thisaccidenthasnoeffectonthecurrentcriticality
- analysis, sinceaninfinitearrayofcellsisconsidered withoutinter-rack spacings.
Thus,thebasemodelisidentical toaseismicmodel.Soeveniftheracksmovedirectlyadjacenttoeachotherorifthecansswayandtouchatthetopwithoutrackmovement, theresulting geometryisnomorelimitingthantheinfinitelattice.Thisisverifiedfurtherbytheexplicitinterface modelsforRegion1and2inthenextsection.4.3.6.3.3 Interface RegionSeismicAnalysisTheseismiceventisassumedtomovealltherackssothattheirbaseplatesaretouching.
ThiswasmodeledfortheType1,2,and3racks.ForType4amoresevereresultwasmodeled.ThismodelassumedthattheType4rackswerecompressed untiltheytouchedtheedgesoftheType1racks.=Alltheseconditions arebeyondtheseismicconditions projected bythestructural analysesinSection3.5.3.1.14.
Attheinterface betweenthetworegions,theseismiceventisassumedtoreducethespacingbetweenRegions1and2.Thecombinedinterface modelisusedwithareducedspacingbetweentheregionsof0.004"(0.01cm).Again,thisboundsanyactualcalculated minimumgapof0.071"(0.18cm),whichreducestheseparation betweencellsfrom1.57"(4.0cm)to0.85"(2.17cm).Thedifference betweentheresultsoftheseismicandthebaseinterface modelsdetermine thehkoftheevent.Aswiththeinterface models,thesizeoftheracksrequiresanexamination ofselectedportionsoftheracks(seeFigure4.3-7).Thefirstevaluation examinedtheType2and3movement.
Theevaluation seismiceffectsontheType1racks,weredividedintoeffectsforTypes1,2A,and4C,i.e.,thesouthfaceoftherack,andthenorthface,Types1,3A,and4F.Thesouthfaceisexpectedtoshowthehighestincreaseinreactivity becauseofthelackofBoraflexonthesouthfaceoftheType1rack.4.3.7SummaryofResultsThissectionliststheresults&omthevariousanalysesfortheGinnastorageracks.Theyshowthattherackssatisfythe0.95criticality safetycriterion forbothnormalandabnormalconditions.
Thebasesforthisconclusion areprovidedinthissection.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage346 4.3.7.1Analytical ResultsforRegion1Theresultsforthenormalcondition ofRegion1arelistedinTable4.1-3whichprovidesthecalculated k,ifandthemaximumk,Kasafunctionofburnupandenrichment.
Accidentcondition reactivities aresummarized inTable4.3-13.Abriefdiscussion oftheseresultsisgiveninthissection.4.3.7.1.1 NormalCondition ResultsEachmodelusedinthisanalysisprovidesacalculated k,baseduponnominaldimensions.
Thus,theeffectsofvariations aroundthenominalandbiasesmustbecombinedwiththecalculated k,atodetermine maximumK-effective (Kg.Table4.3-12summarizes theRegion1penalties, uncertainties, andbiasesthatareusedtoobtainK.Kiscalculated forRegion1asfollows:<=>,g+~>+~>+
(1763*~,)'+(1 763*0hI)'+(0,)'here, b,kb;hk<cObi~0~0iisthecalculated kfromKENOV.a;istheKENOV.amethodology bias;isthesumofpenalties forpooltemperature andoff-center placement; istheKENOV.astatistical uncertainty ink,ff,istheuncertainty intheKENOV.amethodology bias;isthesumoftolerance uncertainties.
TheRegion1analysesconsidered fresh4.0wt%"'Ufuelcheckerboardedwithspentfuel.Thespentfuelburnupversusenrichment curveillustrated inFigure4.1-1specifies theminimumburnupversusenrichment fortheloadingspentfueladjacenttofreshassemblies inthisregion.Thetargetofusedtogeneratethecurvewasapproximately 0.92toprovideaKofabout0.94.TheKENOV.aresultsareshowninTable4.1-3.Theseresultsarebasedupon1,000,000 neutronhistories(1000 batchesof1003neutrons),
asareallKENOV.aresults.Asseen,thehighestKforanyenrichment is0.943withamargintothelimitof0.0081.ThisverifiesthattheRegion1rackssatisfythecriticality safetycriterion forfreshfuelwithanominalenrichment lesss4.0wt%"'U.TheminimumburnupvalueslistedinTable4.1-3arethosethatprovidethedesiredk,ir&omKENOV.a.However,theloadingofassemblies intherackisbasedupon'measured'urnups fromtheplantcomputer.
Toaccountfortheuncertainty inthemeasuredburnup,thecalculated burnupsusedintheloadingcurveareincreased by5%.The5%valueisbaseduponthefluxmapmeasurement uncertainty oftheincoredetectors'"
andissimilartotheuncertainty ofotherWestinghouse plants""'".Sinceburnupistheintegrated powerovertime,thepoweruncertainty limitsthemaximumuncertainty inburnuptolessthan4%fortheintegrated powerand5%forthelocalpower.Thus,a5%valuehasbeenconservatively selectedfortheuncertainty oftheassemblyaveragemeasuredburnup.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage347 s~.+~C'O'.'E-4!'
4.3.7.1.2 BurnupVersusEnrichment CurveApolynomial curveisgenerated toalloweasydetermination oftheburnuplimitatagivennominalenrichment basedonthedatapointsinTable4.1-3.Amultipleregression analysisisperformed ontheenrichment/burnup points,andathirdorderpolynomial isdetermined.
Theresulting polynomial curvethatdifferentiates RegionAfromRegionBinFigure4.1-1is:y=-53.570547+38.06359x
-7.81411x'+0.692842x'here xisnominalenrichment inwt%"UandyisintermsofeitherMWd/kgUorGWd/mtU.Baseduponthispolynomial, theminimumburnupforfuelwithanominalenrichment of4.0wt%"'Uis28GWd/mtU.FortheloadingcurveandTable4.1-1,thisvalueismultiplied by1.05toaccountfortheburnupmeasurement uncertainty.
Thus,forfuelwithanominalenrichment of5.0wt%'Ufuel,aminimumburnupof29.4GWd/mtUisrequiredforthespentfueltobeloadedinRegion1.Table4.1-1liststheacceptable burnupsversusenrichments basedupontheabovepolynomial fittoverifiedpointsatenrichments of2.22,3,4,and5wt%.4.3.7.1.3 IFBARodRequirements Thepreviouslicensing analysis'"
usedtheconceptofreactivity equivalencing forstorageoffuelassemblies withnominalenrichments greaterthan4.0wt%~'UintheRegion1racks.Thisconcept,baseduponthereactivity decreaseassociated withtheadditionofIntegralFuelBurnableAbsorbers, isretainedforfuelwithnominalenrichments greaterthan4.0wt%"'U.TheIFBAanalysisperformed forthepreviouslicensing reportwasnotrepeatedinitsentirety.
However,CASMO-3calculations wereperformed toverifythattheIFBArequirements specified inthatanalysisremainvalidfortheBSSracksofRegion1.Similarly, thekreference criticality reactivity pointwasverifiedas1.458forfreshfuelinGinnacoregeometrywithanominalenrichment of4.0wt%~'U.Thus,theresults,andappropriate useoftheresults&omthepreviousanalysisremainsapplicable tostorageoffuelassemblies withnominalenrichments greaterthan4.0wt%"UintheRegion1racks.Forcompleteness, theappropriate IFBAsectionsofthepreviouslicensing documentarelistedinSection4.4.3.4.3.7.1.4 AccidentConditions Theresultsfortheanalysisoftheassemblydropaccidents, i.e.,T-bone,misplaced
- assembly, sidedropanddeepdrop,arediscussed inthissection.Inaddition, theresults&omtheseismiceventareprovidedforallracktypes.a)AssemblyDropAccidents
-TheRegion1assemblydropanalysesincludetheT-bone,sidedrop,deepdrop(ordropthrough)accidents, andthemisplaced assembly.
Table4.3-13summarizes theresultsfromtheseanalyses.
TheT-boneaccidenthasaminimaleffectonreactivity, i.e.,withinthestatistical uncertainty ofthecases,eventhoughitisaveryconservative model.Themisloading ofa4wt%'Ufreshassemblybetweenfouradjacentassemblies showsonlyasmallreactivity
- increase, about1%b,k.Thedeepdropaccidentwithmaximumexpecteddeformation ofthebaseplateshowsessentially nochangeinreactivity.
Thedroppingofanassemblyinthecasklaydownarea(Figure4.3-12),inthecornerbetweenracks3Eand2B,showsthelargestincreaseforadroppedassembly, about4%hk.Sinceapplication ofthesolubleboroncreditisallowedbythedouble51-1258768-01 GinnaSFPRe-racking Licensing ReportPage348 1141*4,~<<4 contingency principle, 300ppmboronwasaddedtothewaterinthemodel.Thisreducedthereactivity about2%hkbelowthebasecase,orabout6%h,kbelowtheaccidentvalue.Thus,asmallconcentration ofboroninthepoolwater,<300ppm,easilycompensates forthereactivity fromanyoftheseaccidents.
b)SeismicConditions
-Asdiscussed inSection4.3.6.3,theseismiceventisassumedtohavemovedalltherackssothattheirbaseplatesaretouching.
ThiswasmodeledfortheType1,2,and3racks.ForType4amoresevereresultwasmodeled.ThismodelassumedthattheType4rackswerecompressed untiltheytouchedtheedgesoftheType1racks.Alltheseconditions arebeyond.thepost-event conditions projected bythestructural analysesinSection3.5.3.1.14.
TheresultsoftheanalysesarelistedinTable4.3-15.Thefirstevaluation examinedtheType2and3movement.
Theaccidentresultsinabouta0.4%hkincreaseinreactivity overthenormalcondition.
DuetothenumberofType1racksinRegion2,theevaluation ofseismiceffectsontheType1racksexaminedonlyportionsofRegion1(seeFigure4.3-7).TheeffectonType1,andracks2Aand4C,i.e.,thesouthfaceoftherack,andType1andracks3Aand4F,thenorthface,wereconsidered individually.
Thesouthface,asexpected, showedthehighestincrease, about1%hk.ThiswasexpectedduetolackofBoraflexonthesouthfaceoftheType1rack.Thenorthfaceshowedanincreaseequivalent tothatforTypes2and3alone,about0.4%hk.Duetothesmallchangeinreactivity associated withthisaccident, the300ppmsolubleboronrequiredtocovertheside-drop accidentismorethansufficient tocovertheseismiceventeffects.4.3.7.2Analytical ResultsforRegion2TheRegion2analysisrequiresamorein-depthdiscussion sinceburnupcreditismoreextensively appliedinRegion2.Theresultsforthenormalconditions arediscussed inSection4.3.7.2.1.
Development oftheburnupversusenrichment curveisaddressed inSection4.3.7.2.2.
Adiscussion
- oftheauxiliary curvesthatallowtheloadingofabnormalassemblies isprovidedinSection4.3.7.2.3.
Finallyaccidentcondition resultsarerelatedinSection4.3.7.2.4.
4.3.7.2.1 Analytical ResultsforNormalConditions Eachmodelusedinthisanalysisprovidesacalculated k,irbaseduponnominaldimensions.
Thus,adjustments aremadetothecalculated k,~toobtainthemaximumk,a(Kg.Table4.3-12summarizes theRegion2uncertainties, penalties, andbiasesandcombinestheindividual valuestoprovidetheoveralladjustment asafunctionofracktype.Thesevaluesarethenappliedtothek,a.calculated byKENOV.aasfollows:IC,=k,~+6kb,+6k,+
(1.763+0,)
+(1.763+ob,)
+(oI)51-1258768-01 GinnaSFPRe-racking Licensing ReportPage349
~~I where,8kb;b,kOcObi~o~oiisthecalculated kfromKENOV.a;istheKENOV.amethodology bias;isthesumofpenalties forpooltemperature, "Bself-shielding, andoff-center placement; istheKENOV.astatistical uncertainty ink,a;istheuncertainty intheKENOV.amethodology bias;isthesumoftolerance uncertainties.
Asdiscussed inSection4.4.2.4,asignificant amountofBoraflexdegradation, i.e.,bothgappingandlossofthickness, areincludedinthebasemodelfortheType1rack(providing ahkmarginof0.048,seeSection4.4.2.4).
Tofacilitate themanagement oftheloadingoftherack,asingleloadingcurveforallthreeracktypesisdesired.Thus,theloadingcurveforType1isbounding.
Thisrackrepresents thebasemodelthatisusedtogeneratetheloadingcurve.Subsequently, theapplication ofthiscurvetoTypes2and4willvalidatetheconservatism ofasingleloadingcurveforallracktypesinRegion2.Theburnupversusenrichment curveforRegion2isillustrated inFigure4.1-2.Itspecifies theminimumburnupversusenrichment forloadingspentfuelinthisregion.Thetargetk,ausedtogeneratethecurvewasabout0.93toprovideagofabout0.94.TheresultsoftheKENOV.acalculations areshowninTable4.1-4foralltheracktypescomprising Region2.Asseen,thehighestKforanyenrichment is0.946withamargintothelimitof0.004.ThisverifiesthattheRegion2rackssatisfythecriticality safetycriterion.
AlsorecallthatthevaluesfortheType4rackresult&omafinitemodelthatcombinesallthreetypesinRegion1andrepresents themorereactivesouthface.Thiscombination showsthattheinfinitemodelsusedtogeneratetheresultsforTypes2and3providesanadditional marginintheresultsoverthatfromamoreexplicitfinitemodel.4.3.7.2.2 BaseBurnupVersusEnrichment CurveAswithRegion1,apolynomial curveisgenerated forRegion2toalloweasydetermination oftheburnuplimitatagivenenrichment.
ForRegion2,thebasecurvefitsthedatapointsfromtheType1resultsinTable4.1-4.Amultipleregression analysisisperformed ontheenrichment/burnup points,andathirdorderpolynomial isdetermined.
Theresulting polynomial curvethatdiQerentiates regionsA1andA2fromregionsBandCinFigure4.1-2is:y=-27.058824+17.69608x
-0.41176x'0.04902x'here xisthenominalenrichment inwt%'UandyisintermsofeitherMwd/KgUorGWd/mtU.Baseduponthispolynomial, theminimumburnupforfuelwithanominalenrichment of5.0wt%"Uis45GWd/mtU.FortheloadingcurveorTable4.1-2,thisvalueismultiplied by1.05toaccountfortheburnupmeasurement uncertainty.
Thus,forfuelwithanominalenrichment of5.0wt%"'Ufuel,aminimumburnupof47.25GWd/mtUisrequiredforthespentfueltobeloadedinRegion1.Table4.1-2liststheacceptable baseminimumburnupsversusnominalenrichments
&omtheabovepolynomial fittoverifiedpointsatnominalenrichments of1.6,3,4,and5wt%.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage350 4.3.7.2.3 LoadingCurveforAbnormally BurnedAssemblies Figure4.1-2showsthebaselinecurveandallassemblies thatarecurrently storedintheGinnastoragerack.Asnotedmostassemblies haveburnupsabovetheloadingcurve,areasAlandA2.However,someassemblies donotmeettheminimumburnuprequirements.
Thiscondition istheresultofaccommodating asignificant amountofBoraflexdegradation intothemodels.Withoutthisdegradation model,allassemblies wouldsatisfythecurvefortheBoraflexrack,asisnotedinthecurrentlicense.However,withtheBoraflexdegradation allassemblies donotmeettheloadingrequirements.
Theseassemblies canbeloadedintoRegion2withmorerestrictive administrative controls.
Anauxiliary setofloadingcurvesisobtainedforassemblies s10%belowthebasecurve,'efinedbyareaB.Theseassemblies mustbeloadedinacheckerboardarrangement withfuelassemblies withburnupsabovetheuppercurve,inareaAl.Thesecurvesaredefinedbythefollowing polynomials:
y,=-33.584697
+17.69608x
-0.41176x'0.04902x'=
-19.565780+17.69608x
-0.41176x'0.04902x'here, y,istheequationofthelowerlinedefiningthelowerlimitofareaB,andyistheequationoftheupperlinedefiningthelowerlimitofareaAl.TheselinesarebasedupontheKENOV.aresultsforstorageoffuelwithanominalenrichment of5.0wt%~'Uwithburnupsat38.5and55.2GWd/mtUinacheckerboardarrangement inrackType1.Table4.1-4liststheKforthispoint.Thisvaluewasobtainedbyapplyinganaxialcorrection factortothecasethatwasevaluated forauniformaxialshape,seeSection4.4.2.Thepolynomial fitwasgenerated basedupontheconstants ofthebasecurvewiththeintercept chosentopassthroughtherequired5wt%'Uupperandlowerburnuppoints.Pointsat3and4wt%"Uwereevaluated toverifytheconservatism ofthiscurve.Forthe3and4wt%"Uenrichments, upper/lower burnupsof18/25and29.1/40GWd/mtUwereassumedinthecalculation, respectively.
Theseburnupsarewithintheupperandlowercurves,i.e.,requiring upper/lower burnupsof15.2/29.9 and28.8/43.5 GWd/mtUfor3and4wt%,respectively.
Thek,ffvaluesforthechosenburnupswere0.92840and0.90950,respectively.
Bothvaluessatisfythecriticality criterion withallfactorsincluded.
Thus,eventhoughtheupperburnupisinareaA2,thecriticality criterion ismet.Thisshowsthatthereisconservatism builtintothepolynomial.
4.3.7.2.4 ResultsforAccidentConditions Theresultsfortheaccidents considered forRegion2arelistedinTable4.3-14.TheseincludetheT-boneandmisplaced assemblyanalysisforrackType2andthemisplaced assemblyanddeepdropaccidentforType1.Theside-drop accidentforallracktypesisboundedbythatlistedinTable4.3-13forthedropintothecornerofracks2Band3E(Figure4.3-12).ThedeepdropaccidentforTypes2and4areequivalent tothatforType3sincethebaseplatesareofsimilarconstruction andwillexperience thesamedamageforthisaccident.
Duetothefabrication similarity betweenrackTypes2and4,theaccidentresultsforthesetworackswillbeequivalent.
Sincethereactivity increases areminimal,anindividual evaluation forType4isnotnecessary.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage351 AreviewofTable4.3-14showsthatthereactivity changesfortheType2andType4racksarelessthan1%ddcforallthedropaccidents.
'ThissmallchangeiswithintherangeofthatforType1andeasilycoveredby450ppmsolubleboron.TheType1rackmisplaced assemblygivesareactivity increaselargertothatoftheside-drop accident.
Themisplaced freshassembly, seeFigure4.3-15,isassumedtoreplaceanA1assemblyarrangedinacheckerboardpatternwithassemblies
&omareaB.Thisistheboundingmisplaced accidentcondition forthisregion.Aminimumsolubleboronconcentration of450ppmreducesthereactivity toabout2%hkbelowthereactivity ofthenormalcondition.
Thus,asmallamountofsolubleboronadequately negatesthereactivity increasefromthisoranyotheraccidentcondition.
4.3.SFuelRodConsolidation Thestoragerackscurrently containseveralconsolidated fuelcontainers andaredesignedtoaccommodate additional fuelconsolidation inthefuture.Figure4.3-17providesasketchoftheconsolidation canisterwithdimensions baseduponTable4.3-2.Thestorageofthesecontainers wasevaluated withaseriesofKENOV.acalculations forbothnormalandabnormalconditions.
Theresultsofthesecalculations confirmthecriticality safetyofstorageofconsolidation containers inthestorageracks.Theevaluation oftheconsolidation canisters wasmadewithmodifications ofthebasicKENOV.arackmodels.Themodifications involvedreplacing spentfuelassemblies ineachoftherackregionswithamodeloftheconsolidation canister.
Thebasecanistermodelassumedonlyasquarestainless steelcanwithanoutersquaredimension of8.02"(20.371cm) andawallthickness of0.089"(0.2261cm).Thesedimensions includetolerance values,seeTable4.3-2,toprovidethelargestinteriordimension forthecontainer, 7.842"(19.919cm).Thisdimension willprovidethelargestpitchforthefuelrodsinthecontainer andthusoptimizethereactivity.
Thebasecanistermodelcontained 144"(356.76cm)fuelrodswithoutaxialblanketsorintegralabsorbers.
ForRegion1,fresh2.22wt%~'Urodswereplacedinthecontainer, whileforRegion2,1.6wt%~'Urodsweremodeled.Theoptimumreactivity ofthecontainer ineachtyperackwasthenobtainedwithaseriesofKENOV.acasesbyvaryingboththenumberandpitchoftherodsinthecontainer model.Table4.3-11liststheoptimized resultsofthisevaluation forRacktypes1,2,and3~Thesimilarity betweenrackTypes2and4obviatedtheneedforanevaluation fortheType4rack.Theresultslistedin Table4.3-11 forRackType1showthatfor1.6wt%"Urodsthecriticality criterion issatisfied fortheoptimized container witheither196rodsfromaWestinghouse standardassemblyor225rodsfromaWestinghouse OFAassembly.
Theseresultsarebasedupontherackmodelwithboraflexdegradation.
TheseresultsdifferRomthepreviousanalysis'"
forthisrackintworespects.
First,theyshowthattherearenorestrictions onthenumberofrodsthatcanbeplacedinthecontainer.
Second,theoptimized arraysizeis196forStandardand225forOFArodsinthisanalysisfor1.6wt%'Urods,andwas169forStandardrodsat1.85wt%and196forOFArodsat1.95wt%inthepreviousanalysis.
Theoptimization ofrodsisdependent uponboththeconfiguration inwhichtherodsareplacedandupontheenrichment oftherods.ForRackType1theenrichment istheprimarycauseforthedifferences.
Thiswasverifiedbyrepeating thecalculations withtheconditions usedinthepreviousanalysiswhichshowedagreement essentially withinthestatistical uncertainty ofKENOV.a.Anadditional evaluation wasmadetoassesstheeffectofthecenterplateinthisrack.Thecenterplatewasaddedtothemodelbetweenthecenterpinsinthecontainer (forthearraywithanoddnumberofpins,itwasplacedtoonesideofthecenter51-1258768-01 GinnaSFPRe-racking Licensing ReportPage352 C
ofthecontainer).
Nore-optimization wasmadeforthisconfiguration, howeverduetothethinnessoftheplate,itisjudgeditwillnotsignificantly effecttheoptimization parameters.
Theinsertion ofthecenterplatereducedKbyabout2.7%hkforboththeOFAandStandardassemblies.
Thus,thereissignificant conservatism inthemodels.TheRackType2resultsinTable4.3-11aresimilartothoseofRackType1relativetotheoptimumpitch.ThelowerKvaluesreflecttheconservatism inherentinthisrack.Thisconservatism isbaseduponburnupversusenrichment curvesbaseduponadegradedRackType1modelthatisappliedtoRackType2.TheRackType3resultsinTable4.3-11illustrate theeffectofthe'onfiguration inwhichthecontainer isplaced.TheRackType3configuration causestheoptimumnumberofOFArodstopeakat196ratherthan225rods.BothRackType2and3resultsshowthatthecriticality criterion issatisfied withoutmodelingthecenterplate.Additional marginexistsduetothepresenceofthecenterplate.Theseresultsindicatethatfornormalconditions, thecriticality condition issatisfied forstorageofconsolidation containers inlocations forintactspentassemblies.
Theanalysisexaminedthemaximumfreshfuelenrichment allowedbytheburnupversusenrichment curveforeachregion.Baseduponthereactivity equivalency ofthesecurves,spentfuelrodswithenrichment andburnuppairsintheacceptable areasofthesecurvescanfillthecontainers andsatisfythecriticality criterion.
Theabnormalcondition considers alltherodsspillingfromtheconsolidation container intothestoragepool.Toboundtheaccidentcondition, itisassumedthattherodsformintoanoptimized squarearrayinthestoragepool.A19x19arrayofrodsismodeledthatprovidesa361-rodarraytoboundthemaximumnumberofrodsthatcanbestoredinthecontainer, 358.Theevaluation considers arraysofboth1.6and2.22wt%"'Urods.CASMO-3calculations determined theoptimumpitchfortheseenrichments atabout1.95cmand2.05cm,respectively forthe1.6and2.22wt%"'Urodsinasquarearray.Thisoptimized arrayof144"(365.76cm)longfuelrodswasmodeledwithKENOV.awithaninfinitewaterreflector todetermine thek,irofthearrayforbothenrichments.
Forthe1.6wt%~'Urods,KENOV.aobtainedak,~+1oof0.87510+0.00059,wellbelowthe0.95limit.For2.22wt%"'Urods,thek,~+10was0.97697+0.00059inunborated waterand0.80706+0.00056withamoderator boronconcentration of450ppm.Theminimalconcentration ofboroninthemoderator significantly reducesthereactivity ofthisaccident.
Basedupontheseresults,withtheminimumboronconcentration of450ppm,thesafetycriterion issatisfied forthefuelrodsthatsatisfythespentfuelburnupversusenrichment curvesforeitherRegion1or2.4.3.9Acceptance CriteriaforCriticality Thiscriticality analysisevaluates Westinghouse-OFA
&eshfuelandWestinghouse StandardfuelintheRegion1and2racksoftheR.E.Ginna NuclearPowerPlant.Amaximumnominalenrichment of4.0wt%~'U&eshfuelisjustified forRegion1.Freshfuelenrichments above4.0wt%'Utoanominal5.0wt%~'Uareallowedwithanappropriate numberofIFBArodsloadedintheassemblies.
Thisisaccomplished byacheckerboardloadingplanwithspentfuelloadedaccording tothecurveinFigure4.1-1.ForRegion2,initialenrichments uptoanominal5.0wt%~'Umaybeloadedaccording totheloadingcurveillustrated inFigure4.1-2.Bothnormalandaccidentconditions havebeenevaluated forthesetworegions.Theaccidents considered are:51-1258768-01 GinnaSFPRe-racking Licensing ReportPage353 1.Adroppedassemblyontop,beside,andintotheracks.2.Rackmovements forRegion1,2,andtheinterface betweenRegions1and2.3.Amisplaced assemblyforRegions1and2.Theanalysisfurtherdemonstrates thatthecriticality criterion isnotaffectedbytheinteraction ofRegion1and2racksundernormalconditions.
Burnupisusedasamechanism tocontrolthereactivity oftheRegion1andRegion2storageracks.ForRegion1,anominalenrichment of5.0wt%~'Urequiresaminimumburnupof29.4GWd/mtUtobeloadedinacheckerboardpatternwith&eshfuelwithreactivities lessthanorequaltothatfornominal4.0wt%"'UfuelwithnoIFBArods.TheRegion2racksrequireaminimumburnupof47.25GWd/mtUforanominalenrichment limitof5.0wt%~'U.Thevaluesusedtodetermine theminimumburnupasafunctionofinitialenrichment accountfortheeffectofmanufacturing andfuelassemblytolerance effectsonreactivity.
Inaddition, thetabulated minimumburnupslistedinTables4.1-1and4.1-2includeaburnup'measurement'ncertainty of5%.Theevaluation ofconsolidated fuelcontainers demonstrates thatthecontainers maybestoredanywhereinRegions1and2following theloadingrequirements ofthatofthemostrestrictive rodintheconsolidated container.
Thisappliestoeithercompletely filled,358rods,orpartially filledcontainers.
4.4SUPPLEMENTARY INFORMATION Thissectionprovidesadditional discussions abouttheevaluation oftheKENOV.abiasandtheprocedure followedtogeneratetheburnupversusenrichment curves.Section4.4.1describes thecomparison betweenKENOV.aandexperimental resultsandtheevaluation oftrendsinthecomparison.
Adescription ofthefacetsinvolvedwithgenerating theloadingcurvesincluding anillustration oftheaxialshapeeffectisprovidedinSection4.4.2.4.4.1KENOV.aBiasTheKENOV.abiasisevaluated inthissection.Anexamination oflightwaterreactorcriticalexperiments forlow-enriched
~'Ulatticesindicates atrendinthebiasrelatedtotheseparation distancebetweenassemblies.
Atotaloffifty-seven criticallightwatermoderated, low-enriched fuelconfigurations areevaluated withKENOV.aandthe44groupcrosssectionlibrary.Atrendofincreased biaswiththeseparation distancebetweenfuelarraysisnoted(seeFigure4.4-1)suchthatthebiasreachesamaximumb,kof-0.0087+0.0026(1.7630uncertainty) witha2.576"(6.543cm)spacingbetweenthefuelarrays(Table4.4-1).BaseduponthistrendthebiasesforRegion1andRegion2asrelatedtotheseparation distanceoftheedgesoftheassemblies intheracksare-0.0070+0.00096,k forRegion1(1.46"or3.7cmseparation) and-0.0056+0.0009hkforRegion2(0.65"or1.64cmseparation),
seeTable4.4-1.Abriefdescription ofthecriticalexperiments, determination ofthebias,andvalidation ofthetrendisprovidedinthissection.4.4.1.1CriticalExperiments Atotaloffifty-seven criticalexperiments wasevaluated withKENOV.atodetermine thebiasinherentinitsmethodology.
Allexperiments wereconducted tosimulatelow-enriched, light-water reactorfuelarraysinstoragepoolconfigurations.
ThisincludesbothUO,andmixedoxidefuelcompositions.
Theexperiments containuraniumenrichments
&omabout2.3to5.7andplutonium 51-1258768-01 GinnaSFPRe-racking Licensing ReportPage354 enrichments Rom2to6wt%.Rackgeometryissimulated withvariations onfuelarrayspacingsandwithinterspersed absorbermaterials betweenthearrays.Thus,alltheseexperiments aredirectlyapplicable torackanalyses.
Theexperiments havebeendividedintofoursets.Thefirstexaminesasetoftwenty-one criticalconfigurations'erformed specifically forracksimulation forasinglefuelenrichment.
Thesecondisaseriesofsixteenadditional UO,criticals"'overing arangeofenrichments andconditions.
Thethirdisasetoftwelvemixedoxidecriticals""
thatareincludedtosupportanalysisofspentfuel.Thelastsetcomprises eightotherUOicriticalconfigurations thathavebeenapprovedforaninternational database'~.ThislastsetincludesresultsfromtheMCNPMonteCarlocode"'ndKENOV.awiththe27groupcrosssectionset.Theseothercalculations
'rovideanindependent verification oftheresultsandtrendsforthe44groupKENOV.aresults.Thefirstsetofbenchmark casesare21experiments representing closeproximity waterstorageofLWRfuel.Thefuelenrichment fortheseexperiments is2.459wt%.Theconfigurations examinedtheeQectsoffuelarrayspacing,solubleboroninthemoderator, andinterspersed absorbers betweenfuelarrays.Theabsorbers includedB4Crods,stainless steelsheets,andboratedaluminumsheetswithfourdifFerent boronconcentrations.
Theseexperiments spanthegeneralrangeofapplicability forstoragerackcalculations andthusformthebasesetforthebiasdetermination.
Table4.4-1liststhecalculated andexperimental k,irvaluesplusthebiasforthisseriesofexperiments.
Forthegroupasawhole,theaveragebiasisabout-0.0056withastandarddeviation ofabout0.0024.However,examination ofthebiasasafunctionofspacingindicates atrendinthedata.Figure4.4-2providesaplotofthebiasasafunctionofseparation distancebetweenfuelarrays.Thedataplottedincludesbothwatergapsandcaseswithinterspersed absorbermaterials, i.e.,B4Crodsandstainless steelandboratedaluminumsheets.Thetrendofincreasing biasisapparentinallcases.Thetrendappearstoindicatethatthebiaswillcontinuetoincreaseasthespacingincreases.
However,eventually thefuelarrayswillbeisolatedfromeachotherandthebiasisexpectedtoreturntothezerospacingvalue.TheInternational Handbookcasesdiscussed latershowthisbehaviorforthewatergapbias.Thelargestbiasoccursforspacingsbetween6and7centimeters andthenreturnstoavalueclosetothebiasatthezerospacingforaspacingofabout12cm.Dataforinterspersed absorbers isbeingreviewedandisnotavailable atthistime.However,exainining thesparsedata&omtheseexperiments, seemstoindicatethatthespacingforthelargestbiasisdependent upontheamountofabsorberpresent.Thehighertheamountofabsorbermaterial, thesmallerthespacingfortheminimuminthebias.Thisismosteasilyseenbyreviewing theB4Crodcaseswhichcontainalargeamountofabsorberandcomparing thesewiththevariousboratedaluminumsheetcases.Notethatthedatafor0.4wt%'Uboratedaluminumissuspectduetothelargeuncertainty intheboroncontentofthesheets.Italsoappearsthatthemagnitude ofthebiasdecreases astheabsorberincreases.
Thevariation ofthespacingforthebiasminimumandbiasmagnitude withtheabsorbercontentseemsreasonable, sincethesematerials increasetheisolation offuelarraysandtendtoreducethespacingrequiredforfullisolation.
ThesetrendswillbefactoredintothebiasesappliedtotheGinnastoragerackanalyses.
Thenexttwosetsofbenchmark comparisons wereperformed towidentherangeofapplicability ofthecalculations.
TheUO,criticalexperiments coverawiderrangeofenrichments andsomeadditional absorbermaterials.
TheKENOV.abiasforthesesetsislistedinTable4.4-2.Sincetherewaslittlespacingvariation inthesecases,theaveragebiasis-0.0023+0.0025,indicating essentially nobias.Notrendisnotedrelativetoenrichment inthesecases.Themixedoxidecriticals 51-1258768-01 GinnaSFPRe-racking Licensing ReportPage355
~~.t comparisons, Table4.4-3,provideabiasrelativetoplutonium infuelrodsthatisapplicable toburnupcredit.Thecasesprimarily variedthelatticepitchandtheeffectofboroninthemoderator.
Noobvioustrendsarenotedandtheaveragebiasofthesetis-0.0023+0.0033.Thus,thesecasesextendthebenchmarks tovariousenrichments andfuelmixtureswithoutanyindication ofbiastrendsrelativetotheseparameters.
TheB&Wcriticaldataprovidesagoodsetforbench-marking methodologies forrackcalculations.
However,thedatastopsataspacingwithalargebiasanddoesnotillustrate theexpectedreduction inthebiasasthespacingcontinues toincrease.
ThedataobtainedfromtheInternational Handbook."'upplies severalspacingpointsbeyondthosefromB&Wforwaterbetweenthefuelarrays.Inaddition, itprovidescomparisons ofresultsfromotheranalysismethodologies.
Thisdataenablesverification oftheexpectedtrendforlargerspacings.
Additionally, itprovidesindependent verification ofthecalculational techniques.
Table4.4-4providestheresults&omtheHandbookandthosecalculated withKENOV.ausingthe44groupcrosssectionset.TheHandbookcriticalexperiments haveacriticalk,~of0.9998.Resultsareprovidedfroma)KENOV.awiththe27groupsSCALEset,andb)MCNPwiththecontinuous energycrosssectionset.Figure4.4-2illustrates thetrendsinthedataofTable4.4-4.Thefigureshowssubstantial agreement forthetrendwiththeedge-to-edge spacingamongthedifferent methods.However,theabsolutebiasesdiffer.TheMCNPresults,withacontinuous energyset,givethesmallestbias,aswouldbeexpectedfromthecrosssectionrepresentation.
The44groupsetgivesintermediate resultsbothfortheHandbookbenchmarks andfortheB&Wexperiments.
The27groupsethasthelargestbiaswhichillustrates therationale forthemigration tothe44groupsetforcriticality analyses.
Thefigureshowsavalleyinthebiasforspacingsbetweensixandeightcentimeters.
Asexpectedthebiasdecreases asthespacingincreases beyondthisrangeandseemstobeapproaching thezerospacingbias.Figure4.4-3showsplotsofthe44groupKENOV.aresultsandaleastsquarefitofthedata.Thefitcurveclearlyindicates thetrendofthedatawithavalleyaroundeightcentimeters andareturntothezerospacingbiasasthespacingincreases beyondthevalley.Thistrendwillbeconsidered forthebiasesappliedtotheRegion1and2storageracks.TheabsorbermaterialinbothRegion1andthereplacement racksinRegion2isboratedstainless steel.Theminimumboroncontentinthestainless steelis1.7wt%.TheabsorbermaterialintheType1rackisBoraflexwithaboroncontentofabout34wt%boron.The"BarealdensityoftheBSSplatesrange&omabout0.006to0.007g/cm',
theBoraflexsheetisabout0.02g/cm,andthatoftheboratedaluminumplatesusedintheexperiment fromabout0.0008to0.01g/cm.Thus,theabsorbercontentoftheBSSandBoraflexiswithin,ornear,therangeoftheexperimental plates.Inadditiontotheboron,thestainless steelintheBSSplatesservesasamildabsorber.
Thebiasassociated withstainless steelplateswasalsoevaluated withtheexperimental configurations.
Ratherthantrytorelatethebiastoaspecificabsorberdensity,theaverageofthebiasesfortheinterspersed B-AlandSSsheetsisobtainedateachspacingintervalandaleastsquarefitgenerated toallowestimation ofthebiasesfortheRegions1and2spacings.
Areviewofthedataindicated thatconsideration ofonlytheB-Alsheetsprovidedthelargestbias,forconservatism theaveragesusedfortheleastsquaresfitonlyincludedthesedata.Thefittingequationis:I51-1258768-01 GinnaSFPRe-racking Licensing ReportPage356 where,y=-0.00348-0.00003s+0.00027s'0.00152s' isthebias,and sisthespacingincentimeters.
Theedge-to-edge spacingbetweencenteredassemblies inRegion1isabout1.46"(3.68cm)andinRegion2thespacingisabout0.65"(1.64cm).Basedontheabovepolynomial thebiasforRegion1is-0.0070hkandforRegion2,-0.0056b,k.Themaximumstandarddeviation intheaveragevalueatthenearestexperimental pointstotheactualspacingsistakenastheuncertainty inthebias,0.0009inthiscase.Thesevalueswillbeusedtoincludetheuncertainty intheKENOV.amethodology intothecriticality safetyevaluation oftheGinnastorageracks.4.4.1.2CASMO-3/KENO V.aBenchmarks Toprovideassurance thatCASMO-3isconsistent withKENOV.a,itisbenchmarked againstKENOV.aforselectedcriticalconfigurations.
CASMO-3isatwo-dimensional codethatallowsanexplicitmodelofafuelregioninthex-ydirection withtheimplicitreflective boundaryconditions ontheoutersurfaces.
Thus,CASMO-3doesnothavethegeometrical capability toadequately modelthecriticalexperiment directly.
Thus,anindirectbenchmark isnecessary.
Thisindirectbenchmark isderivedbymodifying severalcriticalconfigurations intoafuelregionthatcanbemodeledbothbyCASMO-3andKENOV.a.Theseconfigurations providethedesiredbenchmark betweenKENOV.aandCASMO-3,andindirectly, withcriticalexperiments.
Thecomparisons betweenCASMO-3andKENOV.aforRegion1and2rackmodelsalsoanindependent verification oftheKENOV.aabsoluteresults.Sixcriticalarrangements'~
arechosenforthiscomparison fromthebenchmark casesdescribed intheprevioussection.Table4A-5liststheconfigurations andsignificant information abouttheselectedcases.Table4.4-6providestheresults&omCASMO-3andKENOV.a.TheseresultsshowthatthebiasbetweenCASMO-3andKENOV.aisgenerally similartotheKENOV.abiasobtained&omthecriticalexperiments.
TheCASMO-3/KENO V.adifferences exhibitaboutthesametrendsastheKENOV.abias.ThelastcolumninTable4.4-6liststhesumofK,ir,thebias,andtheuncertainty togiveK.Asnotedthisvalueisgenerally slightlygreaterthantheCASMO-3value.Thecomparisons betweenCASMO-3andKENOV.aforRegion1and2rackmodelsalsoserveasabenchmark, aswellasanindependent verification oftheKENOV.aabsoluteresults.Thecomparison isshowninTable4.4-7andagainshowsexcellent agreement betweenthetwocodes.AlthoughtheKENOV.ak,~valueslightlyunderestimates theCASMO-3result,application oftheKENObiasanduncertainties providesthemaximumk,irwhich exceedstheCASMO-3result.SinceallabsolutevaluesquotedforKENOV.afortheanalysishavethebiasapplied,conservative resultsareobtainedbyuseofKENOV.aratherthanCASMO-3values.4.4.1.3KENOV.aInfinitetoFiniteModelComparison Thebaseanalysesusemodelsoftheracksthatareinfiniteinthex-ydirection.
Duetothesizeoftherackregionsthisisgenerally agoodassumption withsomeconservatism.
Table4.4-8whichliststhehkbetweentheinfiniteandfinitemodelsforeachrack.TheresultforrackType1illustrates the51-1258768-01 GinnaSFPRe-racking Licensing ReportPage357 k4 slightconservatism inthemodelforaregularrackarray.RackTypes2and3donothaveBSSplatesinthecellsthatfacethepoolwallsandcreateasmallerstorageregionthanType1.Thus,thiscomparison wasperformed toensurethattheinfinitemodelisindeedconservative relativetoanactualfinitemodel.TheresultsinTable4.4-8showthatthisisthecaseevenwiththeBSSremoved&omtheedges.Thiscomparison showsabouta0.5%b,kconservatism inthemodelsfortheBSSracks.4.4.2BurnupCreditMethodology Typically aburnupcreditanalysisusesauniform,averageburnupdistribution overtheentirelength'ftheassembly.
Thisdistribution underestimates theburnupatthecenteroftheassemblyandoverestimates theburnupatthetopandbottom.Toadequately utilizeburnupcredittheaxialeffectsmustbeunderstood.
Thisrequiresthatanestimateofthereactivity effectsoftheaxialburnupdistribution relativetoauniformdistribution mustbedetermined andappropriately appliedtotheresults.Alternatively, theexplicitaxialdistribution canbemodeledintheKENOV.acalculation.
Thisremovestheneedforapplication ofanaxialburnuppenalty.Thisanalysisusesthelattermethodwhichisdescribed inthissection.Thisincludesadescription oftheassumptions usedtogenerateboththeaxialburnupprofileandthenumberdensities fortheaxialsegments.
Thismethodology forburnupcreditisverysimilartothatalreadyacceptedbytheU.S.NuclearRegulatory Commission4.'0,4.i3,4.i6 4.4.2.1AxialProfileGeneration
.Theaxialeffectshavebeenfoundtovarywiththeamountofburnup.
Indeedintherange&omabout10to20GWd/mtU,theuseofauniformaxialshapeprovidesconservative results.Also,forstorageoffreshfueladjacenttoburnedfuel,theuseofauniformaxialburnupshapeisconservative.
However,&omabout20to50GWd/mtU,theaxialburnupshapehasasignificant effect.Toprovideanestimateoftheeffecttypicalaxialburnupshapeswereobtained&omseveralirradiated assemblies oftheGinnaNuclearPowerPlant,seeTable4.4-9.ThesecoveredbothOFAandStandardassemblies withburnupsranging&om10toabout48GWd/mtU.Theselectedassemblies coveredarangeofenrichments, axialblanketenrichments, corepositions, anddifferent cycles.Thebulkofthedatarepresented Westinghouse OFAassemblies withaxialblanketsfromlatercyclessincetheseare,andwillbe,themostnumerousassemblies.
However,data&omanANFassemblyofStandardWestinghouse designwasalsoexamined.
Thisassemblydidnothaveaxialblanketsandtheaxialshapesfromthisassemblywerechosenasrepresentative, andboundingforaxialblanketed fuel.Figures4.4-4through4.4-7showacomparison ofthenormalized shapesfortheexaminedassemblies.
Theshapeswerebrokeninto10GWd/mtUranges&om10to50GWd/mtU.Areviewofthefiguresshowthecurvesareverysimilarovereachregion.TheOFAassemblies withnaturaluraniumblanketsshowhigherburnupsinallnodesexceptthetopandbottomtwonodeswhichcontainaxialblankets.
Assembly'E60'ontains a2.6wt%~'Ublanketandshowslowerburnupinthecentralregionthantheassemblies withblanketsofnaturalenrichments.
Thenon-blanket assembly'Q16'lsoshowsalowercentralburnupespecially intheimportant topandbottomthreenodes.Theaxialshapefromthisassemblywaschosentoprovidetheaxialeffectsforthisreason,i.e.,thelowerburnupsinthelowerandupperthreenodes.Notethatwhilethenaturaluraniumblanketshavelowerburnupsintheoutertwonodes,theseareblanketzonesthatareessentially deadrelativetorackreactivity.
Thus,theycanbeignored.The2.6wt%"'Uassemblydoeshaveslightlylowerburnupinthebottomnodeinthe10to20GWd/mtUrange.However,inthenexttwolowernodesandthethreetopnodesitislessthanthenon-blanket assembly.
Thisbehaviorisignoredfor51-1258768-01 GinnaSFPRe-racking Licensing ReportPage358 tworeasons:first,thetopnodesprovidethemostreactivity duetoirradiation temperature effects,andsecond,inthisregiontheaxialeQectsareminimalornonexistent.
Thus,theaxialprofiledataRomassembly'Q16'aschosenasrepresentative ofthetypicalburnupprofilefortheGinnacore.Table4.4-10liststherelativeaxialprofileobtained&omtypicalfuelcycleanalysesforthisassemblyasafunctionofend-of-cycle burnup.Figure4.4-8providesaplotoftheabsoluteburnupasafunctionofheightforeachcycleofirradiation andFigure4.4-9showstherelativedistribution.
Apreviousanalysisshowedthataseven-zone axialmodelwassufFicient torepresent theaxialeffects'".
Thismodelexplicitly represents theburnupinthetopandbottomthreenodesofthe.twenty-three analytical nodes.Thecentral17nodesareaveragedtogethertoprovideasinglecentralzone.Thecentralzoneaveragevaluemaybemodifiedslightlytomaintaintherelativeburnupequalto1.0ifthesumofallsevenzonesdoesnotequal1.0.Thismaintains thedesiredaverageburnupassociated withtheshape.Figure4.4-10illustrates thesevennodemodelforthe40/50GWd/mtUburnuprange.NotethattheKENOV.amodelassumesa144"activefuelheightwhilemostofthepastandcurrentfuelhadaheightofabout141".Toaccommodate theaddedheight,theextralengthisaddedtothecentralportionofthecurve,asnotedbythegapatthecenterofthesevenzoneshapeinFigure4.4-10.Similarsevenzonemodelsareobtainedfortheotherburnupranges.Table4.4-11liststherelativeaxialshapesforeachrangeinthesevenzonemodelwiththemidpointheightofeachnode.FortheanalysisforRegion2,burnupsof21,34,and45GWd/mtUwererequiredfor3,4and5wt%~'Uinitialenrichments.
Theshapesfortheseburnupsarejusttheproductoftherelativedistribution timestheaverageburnup.Table4.4-12liststhezoneburnupvaluesfortheburnupsexaminedinthisanalysis.
Theseburnupsareusedtoobtainthenuclideconcentrations ineachzone.4.4.2.2AxialProfileIsotopicConcentration Generation CASMO-3generates theisotopicconcentrations foreachsegmentoftheaxialprofile.Theaxialfuelandmoderator temperature distributions influence theplutonium buildupthatoccursasafunctionofdepletion.
Ahighermoderator temperature causesspectral"hardening" (ashiftoftheneutronenergyspectrumtohigherenergyvalues)whichincreases conversion of~'Uto~'Pu.Additionally, higherfueltemperatures causeDopplerbroadening ofthe"'Uresonance structure, alsoincreasing
"'Puproduction.
Tocapturethiseffect,mid-cycle averageaxialmoderator andfueltemperature profileswereobtainedfortheGinnacore.Thesedatawereusedtoapproximate theaveragetemperature dataforthesevenaxialzonesinthemodel.Inaddition, sincetheaxialburnupprofilerepresents acumulative axialpowerdistribution, therelativeaxialburnupvalueswereusedtoobtaintheaveragepowerineachzone.Duetothesimilarity intheprofiles, the40-50GWd/mtUrangeburnupprofilewasusedtoobtainthepowerdistribution thatwasusedforallranges.Thetemperature dataandthepowerdataareusedbyCASMO-3todepletethefueltothedesiredburnupforeachinitialenrichment andeachaxialzone.Table4.4-13liststhesevenzonedatafor3.0wt%"'Uinitialenrichment andanaverageburnupof21GWd/mtU.ThefirsttableliststheinputdatafortheCASMO-3calculations.
Thesecondsetoftablesprovidesthenuclideconcentrations inforeachzoneintermsofatoms/barn-cm.
ThisdatawasuseddirectlyinKENOV.afortheevaluation atthisenrichment andburnup.Similardatafor4.0wt%/34GWd/mtUand5.0wt%/45GWd/mtUislistedinTables4.4-14and4.4-15.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage359 Theisotopicconcentration datawasobtainedbythefollowing procedure.
ACASMO-3hotfullpowerdepletion isperformed todetermine theisotopics foreachaxialsegmentattheappropriate burnup,fuelandmoderator temperature.
Thesecalculations areforStandardfuelassemblies withoutIFBArods.ACASMO-3calculation providesthebasek;,forafuelassemblywiththeshutdownisotopesatrackconditions.
AsecondCASMO-3rackmodelcalculates thek;withonlytheshutdownfuelpelletconcentrations of"0,'U,"'U,'U,Pu,"'Pu,"'Pu,and'"Sm(xenonandiodineareeliminated inbothrackmodels).Previousanalyseshaveshownthattheuseofshutdownisotopics withoutxenonessentially providesthemaximumreactivity afterirradiation.
Itprovidesconservative valueswhendecaygreaterthanaboutsevenmonthsisconsidered.
Asmallamountof"BisaddedtothefuelpinuntilthesecondCASMO-3modelk;,agreeswiththefirst.Tables4.4-13through4.4-15listtheconcentrations withthe"Bequivalent.
Inthismanner,theadded"Bsimulates theneutronabsorption ofthedeletedisotopesfortheKENOV.amodel.Asimilarprocessisusedtogeneratetheisotopicconcentrations forthecasesthatuseauniformassemblyaverageburnup,e.g.,fortheRegion1analysis.
Tables4.4-16and4.4-17listdataforassemblyaverageburnups.Table4.4-16providestheconcentrations forcasesusedtoprovidetheauxiliary linesfortheRegion2curveat5wt%.Thesecurvesallowstorageof5wt%'Uinitialenrichment assemblies withburnupsof38.5and52.2GWd/mtUadjacenttoeachother.Notethatforthesecurvesauniformdistribution wasused.However,itwascorrected withtheaxialshapefactorappropriate totheburnuprangediscussed inthenextsection.Table4.4-17providestheisotopicconcentrations fortheaverageburnupsrequiredfortheRegion1checkerboardedburnedfuel.4.4.2.3AxialReactivity EffectsTheaxialburnupshapesareintegrated intothemodelsforRegion2andthustheeffectsareexplicitly considered intheresults.However,itisinstructive toevaluatethemagnitude oftheeffect.Inaddition, thisevaluation illustrates thatthenumberofhistories anddistribution oftheneutronstarttypesaresufficient to'see'heeffect.Table44-18liststheresultsoftheevaluation foreachracktype.Theaxialburnupdistribution usedtodetermine thebaselinefortheRegion2loadingcurveisusedforthisevaluation.
Asnoted&omthetable,alltheRegion2rackshaveaboutthesameaxialeffect.Notethatforthe3.0wt%~'Uenrichment at21GWd/mtUburnup,theaxialeffectisalmostnil,i.e.,withinstatistical uncertainty.
Thus,thevaluesmaybeplusorminus.Thiseffectvarieswithburnupandranges&omabout2%hkforthe40-50GWd/mtUrangetoabout0.0%b,kforabout21GWd/mtUrange.Reviewing therackType1resultsinTable4.4-18,whichshowsboththedegradedandthenormalcondition oftherack,theeffectisrelatively insensitive totheabsorbermaterialintherack.Duetothemagnitude ofthedifferences, itisapparentthatthestatistics oftheKENOV.acasesarerecognizing thedifferent axialzonesandtheirimportance.
TheRegion1,rackType3resultsshowanegativehkofabout0.5%.Thisconfirmstheassertion thatforafresh/burned combination, a'uniformaxialdistribution providesconservative results.However,asisapparentforRegion2theeffectissignificant andmustbefactoredintothefinalk,ireitherimplicitly, asisdonehere,orbyalargermargintothe0.95safetylimit.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage360 4\
4.4.2.4BoraflexDegradation ModelMarginTheloadingcurvesforrackType1andRegion2includemarginforpotential Boraflexdegradation.
Table4.4-19liststheresultsofanassessment ofthemarginintheBoraflexdegradation model.Theuniformaxialshapecases&omTable4.4-18forrackType1withandwithoutthedegradedmodelarecompared.
Thetableshowsthatthedegradedmodelprovidesabkmarginof0.048overthenormalcondition model.Thus,thereisapproximately a5%marginintheloadingcurvesforRegion2toaccommodate potential Boraflexloss.4.4.3Westinghouse IFBADocumentation Thefollowing discussion oftheIFBAcreditwasobtainedRomthepreviouslicensing submittal'".
TheresultshavebeenverifiedwiththeCASMO-3codeandremainunchanged forthecurrentanalysis.
Thisverification alsoincludedverification oftheinfinitemultiplication factorequivalencing.
Thetextthatfollowshasbeenextracted withoutchangefromthepreviouslicensing report.Table7andFigure8citedinthetextareappendedtotheendofthetext,asarereferences.
IFBACreditReactivity Equivulencing "Storageoffuelassemblies withnominalenrichments greaterthan4.0wloUintheRegionIspentfuelstorageracksisachievable bymeansoftheconceptofreactivity equivalencing.
Theconceptofreactivity equivalencing ispredicated uponthereactivity decreaseassociated withtheadditionofIntegral FuelBurnableAbsorbers (IFBA)".IFBAsconsistofneutronabsorbing materialappliedasathinZrBzcoatingontheoutsideoftheUO~fuelpellet.Asaresult,theneutronabsorbing materialisanon-removable orintegralpartofthefuelassemblyonceitismanufactured.
"Twoanalytical techniques areusedtoestablish thecriticality criteriaforthestorageofIFBAfuelinthefuelstoragerackThefirstmethodusesreactivity equivalencing toestablish thepoisonmaterialloadingrequiredtomeetthecriticality limits.Thepoisonmaterialconsidered inthisanalysisisazirconium diboridegrBQcoatingmanufactured byWestinghouse.
Thesecondmethodusesthefuelassemblyinfinitemultiplication factortoestablish areference reactivity.
Thereference reactivity pointiscomparedtothefuelassemblypeakreactivity todetermine itsacceptability forstorageinthefuelracks."4.2.1IFBARequirement Determination "Aseriesofreactivity calculations areperformed togenerateasetofIFBArodnumberversusenrichment orderedpairswhichallyieldtheequivalent K>whenthefuelisstoredintheRegion1spentfuelracks.Thefollowing assumptions wereusedfortheIFBArodassemblies inthePHOENIXmodels:
1.Thefuelassemblyparameters relevanttothecriticality analysisarebasedontheWestinghouse 14X14OFAdesign(seeTableI...forfuelparameters).
[editor'note:Table1isfullyreproduced inTable4.3-1].2.Thefuelassemblyismodeledatitsmostreaci'ive pointinlife.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage361 gl*Il~W 3.Thefuelpelletsaremodeledassumingnominalvaluesfortheoretical densityanddishingPaction.4.Nocreditistakenforanynaturalenrichment orreducedenrichment axialblankets.
5.NocreditistakenforanyU'iorUi6inthefuel.6..Nocreditistakenforanyspacergridsorspacersleeves.TheIFBAabsorbermaterialisazirconium diboride(ZrBJcoatingonthefuelpellet.EachIFBArodhasanominalpoisonmaterialloadingof1.67milligrams B'erinch,whichistheminimumstandardloadingofferedbyWestinghouse for14x14OFAfuelassemblies.
8.TheIFBAB'oadingisreducedby5percenttoconservatively accountformanufacturing tolerances andthenbyanadditional 10%toconservatively modelaminimumpoisonlengthof92inches.9.Themoderator ispurewater(noboron)atatemperature of68'Fwithadensityof1.0gmlcmi.10.Thearrayisinfiniteinlateral(xandy)andaxial(vertical) extent.Thisprecludes anyneutronleakagePom thearray."Figure8[ed.note:Figure8isfullyreproduced attheendofthistext]...showstheconstantK>contourgenerated fortheRegion1spentfuelracks.Notetheendpointat0IFBArodswherethenominalenrichment is4.0w/oandat64(IX)IFBArodswherethenominalenrichment is5.0w/o.Theinterpretation oftheendpointdataisasfollows:thereactivity ofthefuelrackarraywhenfilledwithfuelassemblies enrichedtoanominal5.0w/oU'itheachcontaining 64(1.0X)IFBArodsisequivalent tothereactivity oftherackwhenfilledwithfuelassemblies enrichedtoanominal4.0w/oandcontaining noIFBAs.ThedatainFigure8...isalsoprovidedonTable7[ed.note:Table7isfullyreproduced attheendofthistext]...forthe1.0X1.5Xand2.0XIFBArods."Itisimportant torecognize thatthecurveinFigure8...isbasedonreactivity
'equivalence calculations forthespecificenrichment andIFBAcombinati onsinactualrackgeometry(andnotjustonsimplecomparisons ofindividual fuelassemblyinfinitemultiplication factors).
Inthisway,theenvironment ofthestoragerackanditsinfluence onassemblyreactivity isimplicitly considered.
"TheIFBArequirements ofFigure8...weredeveloped basedonthestandardIFBApatternsusedbyWestinghouse.
However,sincetheworthofindividual IFBArodscanchangedepending onpositionwithintheassembly(duetolocalvariations inthermalflux),studieswereperformed toevaluatethiseffectandaconservative reactivity marginwasincludedin thedevelopment oftheIFBArequirement toaccountforthisegect.ThisassuresthattheIFBArequirement remainsvalidatintermediate enrichments wherestandardIFBA51-1258768-01 GinnaSFPRe-racking Licensing ReportPage362 C'I patternsmaynotbeavailable.
Inaddition, toconservatively accountforcalculational uncertainties, theIFBArequirements ofFigure8...alsoincludeaconservatism ofapproximately 10%onthetotalnumberofIFBArodsatthe5.0w/oend(i.e.,about6extraIFBArodsfora5.0w/ofuelassembly).
"Additional IFBAcreditcalculations wereperformed toexaminethereactivity effectsofhigherIFBAlinearB"loadings(1.5Xand2.0X).Thesecalculations confirmthatassemblyreactivity remainsconstantprovidedthenetB'aterial perassemblyispreserved.
Therefore, withhigherIFBAB'oadings, therequirednumberofIFBArodsperassembly'anbereducedbytheratioofthehigherloadingtothenominal1.0Xloading.
Forexample,using2.0XIFBAin5.0w/ofuelassemblies allowsareduction intheIFBArodrequirement Pom64IFBArodsperassemblyto32IFBArodsperassembly(64dividedbytheratio2.0X/1.0X).
"4.2.2InfiniteMultiplication Factov"Theinfinitemultiplication factor,Kisusedasareference criticality reactivity point,andoffersanalternative methodfor determining theacceptability offuelassemblystorageintheRegionIspentfuelracks.Thereference Kisdetermined foranominalfresh4.0w/ofuelassembly.
"ThefuelassemblyKcalculations areperformed usingtheWestinghouse licensedcoredesigncodePHOENIX-Pin~.
Thefollowing assumptions wereusedtodeveloptheinfinitemultiplication factormodel:The8'estinghouse 14x14OFAfuelassemblywasanalyzed(seeTable1[ed.note:Table43-1]....
forparameters).
Thefuelassemblyismodeledatitsmostreactivepointinlifeandnocreditistakenforanydiscreteburnableabsorbers intheassembly.
2.Allfuelrodscontainuraniumdioxideatanominalenrichment of4.0w/oUovertheentirelengthofeachrod.3.Thefuelarraymodelisbasedonaunitassemblyconfiguration (infinite inthelateralandaxialextent)inGinnareactorgeometry(norack).4.Themoderator ispurewater(noboron)atatemperature of68'Fwithadensityof1.0gmlcm'."Calculation oftheinfinitemultiplication factorforthe8'estinghouse 14x14OFAfuelassemblyintheGinnacoregeometryresultedinareference Kof1.458.Thisincludesa1%dKreactivity biastoconservatively accountforcalculational uncertainties.
Thisbiasisconsistent withthestandardconservatism includedintheGinnacoredesignrefueling shutdownmargincalculations.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage363 "ForIFBAcredit,all14x14fuelassemblies placedintheRegionIspentfuelracksmustcomplywiththeenrichment-IFBA requirements ofFigure8...orhaveareference Klessorequalto1.458.Bymeetingeitheroftheseconditions, themaximumrackreactivity willthenbelessthan0.95,...""BibliogrupIIy 11.Nguyen,T.Q.et.al.,"Qualification ofthePHOENIX-P/ANC NuclearDesignSystemforPressurized 8'aterReactorCores,"%CAP-I1596-P-A, June1988PVestinghouse Proprietary).
15.Davidson, SL.,et.al,"VANTAGE5FuelAssemblyReference CoreReport,AddendumI,"8'CAP-10444-P-A, March1986."51-1258768-01 GinnaSFPRe-racking Licensing ReportPage364
Table7GinnaRegion1SpentFuelRackIFBARequirement NominalEnrichment (wlo)4.04'.55.01.0X(1.67 mgJin)IFBARodsinAssembly32I.SX(2.51 mgKin)IFBARodsinAssembly242.0X(3.34 mgPin)IFBARodsinAssembly163251-1258768-01 GinnaSFPRe-racking Licensing ReportPage365
Figure8GinnaRegionISpentFuelRackIFBARequirement 5030CC201.0XIFBALoading1.5XIFBALoading2.0XIFBALoading1044.142434.44.54.64.74.84.95NominalUEnrichment, Wt%[ed.note:Endofmaterialfromreference 4.13]51-1258768-01 GinnaSFPRe-racking Licensing ReportPage366
4.
54.1REFERENCES
ANSUANS57.2-1983,"DesignRequirements forLightWaterReactorSpentFuelStorageFacilities atNuclearPowerPlants,"approvedOctober1983.4.2AmericanNationalStandard, "Validation ofCalculational MethodsforNuclearSafetyC'IllySfty,"~NIN4.3NRCStandardReviewPlanNUREG-0800, SRP9.1.2,"SpentFuelStorage,"
Rev.3,July1981.4.4USNRCPositionPaper-"OTPositionforReviewandHandlingApplication,"
April14,1978,revisedJanuary18,1979.4.5USNRCReg.Guide1.13,"SpentFuelStorageFacilities DesignBasis,"ProposedRev.2,published Dec.1981.(Provides supplementary information relativetoANS57.2)4.6ANSIN16.1-1975, "American NationalStandardforNuclearCriticality SafetyinOperations withFissionable Materials OutsideReactors."
4.7'SCALE4.2,ModularCodeSystemforPerforming Standardized ComputerAnalysesforLicensing Evaluation,"
NUIT/CR-0200, Revision4,November1993,OakRidgeNationalLaboratory.
4.8"CASMO-3, AFuelAssemblyBurnupProgram,"
STUDSVIK/NFA-89/3, November1989,StudsvikofAmericaInc.4.9'SCALE4.3,ModularCodeSystemforPerforming Standardized ComputerAnalysesforLicensing Evaluation forWorkstations andPersonalComputers,"
Volume3,SectionM4,NUREG/CR-0200, Revision5,September 1995,OakRidgeNationalLaboratory.
(NotetherevisedlibraryreleasedinMay1996wasusedfortheanalysis).
4.10Docket50-302,FloridaPowerCorporation, Letter&omP.M.Beard,FPC,"UpdatesShoolyEvaluation andReplacesAttachment 3withaNonproprietary VersionofReportBAW-2209, Rev1.'CrystalRiverUnit3SpentFuelStoragePoolBCriticality Analysis,'er discussions withNRCreFPC950126Application,"
March9,1995.Note:BAW-2209, R01(95/02/28) iscontained inDoc.83104,pp091-171.4.11R.J.Nodvik,"Evaluation ofMassSpectrometric andRadiochemical AnalysisofYankeeCore1SpentFuel,"WCAP-6068, March1966,Westinghouse ElectricCorporation, Pittsburgh, PA15230.4.12R.JNodvik,etal,"Supplementary ReportonEvaluation ofMassSpectrometric andRadiochemical AnalysisofYankeeCore1SpentFuel,Including IsotopesofElementsThoriumThroughCurium,"WCAP-6086, August1969,Westinghouse ElectricCorporation, Pittsburgh, PA15230.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage367
4.13"Criticality AnalysisofTheR.E.GinnaNuclearPowerPlantFreshandSpentFuelRacks,andConsolidated RodStorageCanisters,"
datedJune1994,Attachment AofLetterR.C.Mecredy,RGE,toA.R.Johnson,NRC,
Subject:
"Technical Specification Improvement Program,"
Rochester Gas&Electric, DocketNo.50-244,May5,1995.4.14"AnAssessment ofBoraflexPerformance inSpent-Nuclear-Fuel StorageRacks,"K.LinquestandD.E.Kline,NP-6159,ElectricPowerResearchInstitute, December1988.4.15LetterR.C.Mecredy,RGE,toG.Vissing,US.NRC,"Response toNRCGenericLetter96-.04,datedJune26,1996;
Subject:
BoraflexDegradation inSpentFuelPoolStorageRacks,"R.E.GinnaNuclearPowerPlant,October24,1996.4.16"Amendment No.181ToFacilityOperation LicenseNo.NPF-3(TACNo.M86933),"
DocketNo.50-346,LetterUSNuclearRegulatory Commission toToledoEdisonCo.,November19,1993.(Approval ofanenrichment increasefortheDavisBesseNuclearPowerStation,Unit1spentfuelstoragepool).4.17GinnaTechnical Specifications, SectionSR3.2.1.1,PageB.3.2-6,Amendment 65.4.18"Sequoyah NuclearPlant(SQN)-RequestforLicenseAmendment toTechnical Specifications (TS)-Spent-Fuel PoolStorageCapacityIncrease,"
DocketNumbers50-327and50-328,4/27/92.4.19"NorthAnnaPowerStation,UnitNo.1,Technical Specifications,"
DocketNo.50-338,Amendment No.178,3/94.4.20BAW-1484-7, "Critical Experiments Supporting CloseProximity WaterStorageofPowerReactorFuel,"N.M.Baldwin,etal.,July1979.4.21TheUO,Criticals Datawereobtainedfromthefollowing:
4.21a.S.R.Bierman,etal.,"Critical Separation BetweenSubcritical Clustersof2.35wt%~'UEnrichedUO,RodsinWaterwithFixedNeutronPoisons,"
PNL-2438, BattellePacificNorthwest Laboratories, October1977.4.21b.S.R.Bierman,etal.,"Critical Separation BetweenSubcritical Clustersof4.31wt%'UEnrichedUO~RodsinWaterwithFixedNeutronPoisons,"
NUREG/CR-0073 (PNL-2615),
BattellePacificNorthwest Laboratories, March1978.4.21c.S.R.Biermanetal.,"Criticality Experiments withSubcritical Clustersof2.35wt%and4.31wt%~'UEnrichedUO,RodsinWaterwithUraniumorLeadReflecting Walls,"NUREG/CR-0796 (PNL-2827),
PacificNorthwest Laboratory, April1979.4.21d.R.I.SmithandG.J.Konzek,"CleanCriticalExperiment Benchmarks forPlutonium RecycleinLWRs,"EPRINP-196,VolsIandII,ElectricPowerResearchInstitute, April1976andSeptember 1978.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage368 F4s' 4.21e.E.G.Tayloretal.,"SaxtonPlutonium ProgramCriticalExperiments fortheSaxtonPartialPlutonium Core,"WCAP-3385-54, Westinghouse ElectricCorp.,AtomicPowerDivision, December1965.4.22TheMixedOxideCriticals Datawereobtainedfromthefollowing:
4.22a.R.I.SmithandG.J.Konzek,"CleanCriticalExperiment Benchmarks forPlutonium RecycleinLWRs,"EPRINP-196,VolsIandII,ElectricPowerResearchInstitute, April1976andSeptember 1978.4.22b.E.G.Tayloretal.,"SaxtonPlutonium ProgramCriticalExperiments fortheSaxtonPartialPlutonium Core,"WCAP-3385-54, Westinghouse ElectricCorp.,AtomicPowerDivision, December1965.4.22c.S.R.Bierman,etal.,"Criticality Experiments withLowEnrichedUO,FuelRodsinWaterContaining Dissolved Gadolinium, PNL-4976, BattellePacificNorthwest Laboratory, February1984.N4.23"International HandbookofEvaluated Criticality SafetyBenchmark Experiments,"
VolumeIV,LEU-COMP-THERM-002, "LowEnrichedUraniumSystems,Water-Moderated U(4.31)O, FuelRodsIn2.54-CmSquare-Pitched Arrays,"NEA/NSC/DOC(95)03/IV, NuclearEnergyAgency,Paris.4.24"MCNP4,MonteCarloN-Particle Transport CodeSystem,"usingContinuous EnergyENDF/B-Vcrosssections.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage369 Table4.1-1Polynomial Generated forSpentFuelBurnupvsEnrichment Requirements fortheRegion1Racksal!+t/~":+~U,':.':.~i.;".'i.";:
I:;;ll,:,>:Miiiiiiiui'ii":Bumiip
':'::;;;;:,!,:.:;:-:::'(NomInal)
'::::::::;:":::;:!":::::
.."::".-:,::;:.:.,".:,-..:,:,::;.,:~GWd/mtU:,',:;:;;:,::",:,::,:,,:,~>,
- .-':::::::::!IIutiaj:'.Wt~/o':;23~V:::-':":.'i'-".',
- ;:;::;.".:':!':,:::::'I(No'minal)':;.:'~$
.:;::',:::::.';::i-',,:"":
'::,":,':.::MIniinuIri",Bu'rii'up',".,':,.,,;,:
- ~
- ;::;::;:".
"'.".;;:,::.,'j,;',GWd/iiitV,.':::;::::;.,:,;::;.'":,"";:;:
2.222.32.42.52.62.72.82.93.03.13.23.33.43.53.60.001.122.473.754.996.177.308.399.4510.4711.4712.4313.3814.3215.243.63.73.83.94.04.14.24.34.44.54.64.74.8495.015.2416.1517.0717.9818.9019.8320.7821.7422.7323.7524.7925.8827.0128.1829.4051-1258768-01 GinnaSFPRe-racking Licensing ReportPage370
Table4.1-2Polynomial Generated BurnupvsEnrichment Requirements fortheRegion2Racks;:..::';:':Initial',-',::;:,:'::,':
- ,';,%to/o';,~'.;~U
.oiiiin'al
:;::.:,'.:':::.'.:.:Bas'e':.:',.'.:,'".:'..'.".':::::.',::'::,':Upp'er'".,";::j',::
>,",,.:;.',".,Low'e'r,':;;"::,'".::,:
.'::."::,:i:,:"'.-:"',.':Miiiimuiii:::Buiiiup',::.,'GWdImtUIgj,:',i
:;,::":;::,;:,'Imtial,"-,,".
"'WtN'"U"'"!.oiniiial'.:5
,j.';::;-'::;Uppe'r:'.':,,".i';':
-'::::.:,:L"over':;i:::
I',:,'.-'.I'!
Miiiimum'::Biiriiu'p,'":;GWd/mtU';:;'.
':1.141.21.31.41.51.61.71.81.92.02.0152.12.22.32.42.52.62.72.82.93.00.001.673.334.986.616.858.229.8311.4112.9814.5316.0717.5919.1020.5822.050.001.042.774.486.187.879.5411.2012.8514A814.7216.0917.6919.2820.8522.4023.9425.4626.9628.4529.920.001.372.974.566.137.689.2210.7412.2413.7315.203.03.13.23.33.43.53.63.73.83.94.04.14.2'4.3444.54.64.74.84.95.022.0523.5024.9326.3527.7429.1230.4731.8133.1334.4235.7036.9538.1939.4040.5941.7642.9044.0245.1246.2047.2529.9231.3732.8034.2135.6136.9938.3439.6841.0042.2943.5744.8246.0647.2748.4649.6250.7751.8952.9954.0755.1215.2016.6518.0819.4920.8922.2723.6224.9626.2827.5728.8530.1031.3432.5533.7434.9036.0537.1738.2739.3540.4051-1258768-01 GinnaSFPRe-racking Licensing ReportPage371 I'%4*Qll't
&0%1I' Table4.1-3KENOV.aRegion1(RackType3)ResultsofBurnupvsEnrichment Calculations 4wt%fresh/2.22 wt%at0GWd/mtU4wt%fresh/3wt%at9GWd/mtU4wt%fresh/4wt%at18GWd/mtU4wt%fresh/5wt%at28GWd/mtU:.-'.,:::,:;:...":,:,:.,'::,Calculated
':.',,;,""::,:",'>.'-;i-'".-:
0.919770.000720.918770.000690.921440.000700.919900.000680.941590.940580.943260.94171::Margin'-.To,':::
',"i:G.'95,':'hkjj 0.008410.009420.006740.00829a)K,iscalculated withtheformulalistedinSection4.3.7.1.1, i.e.,wherethevaluesforb,k;,hk,o,ando,areobtainedfromTable4.3-12.Forexample,theK,forthe2.22wt%assemblyinrackType3isE=0.91977+0.00701+0.00133
+(1.763+0.00072)
+(1.763+0.0009)+(0.01332)
=0.9415951-1258768-01 GinnaSFPRe-racking Licensing ReportPage372
Table4.1-4KENOV.aRegion2(RackTypes1,2,&4)ResultsofBurnupvsEnrichment Calculations RackTe1StandardAsss5wt%at45GWd/mtU,axial model,deradedrackmodel4wt%at34GWd/mtU,axialmodel,deradedrackmodel3wt%at21GWd/mtU,axialmodel,deradedrackmodel5wt%at38.8checkerboarded with5wt%at55.2GWd/mtU,dededrackmodel,corrected toaxialmodel1.6wt%freshfuel,deradedrackmodel4.0wt%freshfuelcheckerboardedwithwaterholes RackTe2StandardAsss5wt%at45GWd/mtUaxialmodel4wt%at34GWd/mtUaxialmodel3wt%at21GWd/mtUaxialmodel1.6wt%freshfuelRackTe4StandardAsss5wt%at45GWd/mtUaxialmodel,degradedType1rackmodel4wt%at34GWd/mtUaxialmodel,degradedType1rackmodel3wt%at21GWd/mtUaxialmodel,degradedType1rackmodelfresh1.6wt%fuelderadedTe1rackmodel",I",:,-:Il'Calciilat'ed:'::;':::!;;:::.",:.".:
0.930910.000590.928060.000610.920990.000580.928980.000560.923110.000780.919510.000580.916290.000570.909140.000570.912650.000540.917180.000600.915110.000600.907510.00057'I0.910770.00059<<::Margiii; 0:95:I'M0.948170.001830.945320.004680.938240.011760.943750.006250.946230.003770.940420.009580.935000.015000.931780.018220.924630.025370.928130.021870.931900.018100.929830.020170.927780.022220.925480.02452a)K,iscalculated withtheformulalistedinSection4.3.7.2.1, i.e.,E=>,ff+~>gI+~>,+
(1763*<,)'+(1.763*~(,I)'+(<g,I)'here thevaluesforb,g;,hk,o;,ando,areobtainedfromTable4.3-12.Forexample,theK,forrackType.1at5wt%at45Gwd/mtUisE=0.93091+0.00561+0.00358
+(1.763+0.00059)
+(1.763+0.0009)+(0.00784)
=0.9481751-1258768-01 GinnaSFPRe-racking Licensing ReportPage373 Table4.3-1FuelAssemblyParameters Rods/Assy GuideTubes/Assy Instrument Tubes/Assy IHMWt,Kg/assyRodPitch,inPelletOD,inPelletDensity,%TDMaxEnrichment, wt%noIFBAswithIFBAsPelletDishFactor,%ActiveFuelLgth,inCladOD,inCladThickness, inCladMaterialGuideTubeOD,inGTThickness, inGTMaterialInst.TubeOD,inITThickness, inITMaterialIFBANumber/Assy BoronLoading,mg/in17916370-374.5 0.5560.3565+0.0008 95+2.04.0+0.051.187+2.0 141-1440.424+0.0025 0.030+0.0025 Zirc-40.524+0.005 0.015+0.0055 Zirc-40.424+0.005 0.039+0.004 Zirc-417916383-3980.5560.3669+0.0008 95+2.04.(H:0.05 1.187+2.0 141-1440.42&0.0025 0.0243+0.0025 Zirc-40.53&0.005 0.017+0.0055 SS'.42&0.005 0.024(H:0.004 SS~jj'~",'::,""",;::.:;:,',;,w;:oFAI':':::'";'4~
17916349-356.5 0.5560.3444+0.0008 95+2.04.0+0.055.0~0.051.1926+2.0 141-1440.400+0.0025 0.0243+0.0025 Zirc-40.528+0.005 0.019+0.0055 Zirc-40.399+0.005 0.0235+0.004 Zirc-40-641.67-3.34a)Modeledconservatively asZirc-451-1258768-01 GinnaSFPRe-racking Licensing ReportPage374
~.-~~3 Table4.3-2Consolidation CanisterSpecifications Outersquaredimension, inWallthickness, inHeight,inIncluding Lidsattop/bottom WithoutLidsattop/bottom Canisterlidheight,in-top/bottom Materialofconstruction BodyLidsDividerPlateDividerPlateThickness, inCenteredWithin,inLength,inMaxrods/container 8.0(H:0.02 0.093+0.004 168+0.06156I/4+0.0657/8SS304SS304SS3040.093+0.004 1/321535/16+0.06 2x17951-1258768-01 GinnaSFPRe-racking Licensing ReportPage375
Table4.3-3aRegion1,RackType3CellDimensions CellPitch,cm(in)CellID,cm(in)WallThickness, cm(in)SS304LBSSNominalgap,cm(in)/min Peripheral rowBSSsupportBeltplatewidth,cm(in)SSthickness, cm(in)BSSParameters BSSdensity,g/ccBoroncontent,wt%"Bwt%innaturalboronPlatelength,in23.45+0.2(9.2323) 20.68+0.2/-0.1 (8.1418)0.2(H:0.018(0.0787) 0.25+0.05/-0.0(0.0984) 2.07(0.815)/1.95 min'.8(0.3228) 0.20+0.018(0.0787) 7.73-7.781.7min18.14145.723.4520.680.200.252.070.80.207.731.718.14144.0a)Aminimumtolerance of1.85cmisassumedfortheanalysistoprovideadditional marginfortheType3rack.Table4.3-3bRegion1,RackType3DamagedFuelCellDimensions
'i:':"-"'l%:iii:::i:i:::;"'~$
":c:"vii:DescI'I fton';:"."~xiii"'.":.g":i':""%j'ij.~i~gpjp CellPitch,cm(in)CellID,cm(in)WallThickness, cm(in)SS304LBSSNominalGap,cm(in)/minimum BetweendamagedcellsBetweendamaged/normal cellsBSSParameters BSSdensity,g/ccBoroncontent,wt%'OBwt%innaturalboronPlatelength,in'::."::.":.kl~-':::-":i':.!":.'.:'.'::'::i."";:
lDest'ri:::Dimen's'tons"':.",!.'!.,'::i:.::::::::::::,':':>.,'4k~>'.::!,:'j:.;l 23.45+0.2(9.2323) 22.1+0.2/-0.1(8.701) 0.&0.018(0.0787) 0.30+0.05/-0.0(0.1181) 0.55(0.2165)/
0.43min1.36(0.5354)/1.13 min7.73-7.781.7min18.14145.751-1258768-01 GinnaSFPRe-racking Licensing ReportPage376 Table4.3-4Region2,RackType1CellDimensions k>'.::.YFlDe'si
'n::::Dimeiision's"':!'!>':.'-..-,'-':
l':::iModel'Diiiiensio'n's.'-."
CellPitch,inCellID(withoutpoisons),
inWallThickness, inWallMaterialSSPoisonsupportsheetthickness, inCellIDwithpoison,inBoraflexPoison,length,inwidth,inthickness, in'SelfShielding BiasMin"Bcontent,g/cm'.43+0.06/-0.0 8.25+0.06/-0.0, square0.09+0.004SS-3040.062+0.0038.113144+1/167.625+0.06250.075+0.007+0.00140.0208.438.250.09SS-3040.0628.113144'.33'.038'.020 a)Boraflexshrinkage/degradation modelincludesa12"gapinlengthrandomlypositioned, withinthecentral132"oftheplate,a8%widthshrinkage, anda50%lossinthickness.
Table4.3-5Region2,RackType2CellDimensions
','~","::i."::.;-;:~,':
-';:".g::::,::.:::!;<,"'..Des'cri" tion'I'!!".i.,%<i'.".'ell Pitch,cm(in)CellID,cm(in)WallThickness, cm(in)SS304LBSSNominalGap,cm(in)/minimum BSSParameters BSSdensity,g/ccBoroncontent,wt%"BWt%innaturalboronPlatelength,in21.41&0.2(8.43) 20.68+0.2/-0.1(8.1418) 0.2+0.018(0.0787) 0.3+0.05/-0.0(0.1181) 0.232(0.0913)/0.15 min7.73-7.78'.7min18.14145.7:"Model';Dimensions!
21.41220.680.20.30.2327.731.718.14144.051-1258768-01 GinnaSFPRe-racking Licensing ReportPage377 Table4.3-6Region2,RackType4CellDimensions CellPitch,cm(in)CellID,cm(in)WallThickness, cm(in)SS304LBSSNominalgapthickness, cm(in)betweenType4cells(nominal/min) betweenType4andrackType1betweenType4andpoolwallBSSParameters BSSdensity,g/ccBoroncontent,wt%"BWt%innaturalboronPlatelength,in21.412+0.2(8.43) 20.68+0.2/-0.1 (8.1418)0.2&0.018(0.08) 0.25+0.05/-0.0(0.10) 0.082(0.03228)/0.03 min3.0(1.18) min13.334(5.25) min7.73-7.781.7min18.14145.721.41220.680.20.250.0823.013.3347.731.718.14144.051-1258768-01 GinnaSFPRe-racking Licensing ReportPage378 Table4.3-7MaterialCompositions forNon-FuelRegionsMaterialCompositions forStainless SteelSS304L(p=S.Og/cc)~lei~nCrMnFeNiW'.1800.0200.7200.080RQdkK11.66779E-2 1.75387E-36.21117E-2 6.56661E-3 MaterialCompositions forBoratedStainless SS304B6(p=7.73g/cc)P~lemggCrMnFeNiBWeihtFraci0.1800.0200.6630.1200.017Qgg/~c1.61151E-2 1.69468E-35526419E-2 9.51448E-3 7.31794E-3 MaterialCompositions forZircaloy-4 (p=6.56g/cc)Qlem~efZlSnFeCrWehFracti0.98290.01400.00210.0010ggDL/~c4.25652E-2 4.65903E-4 1.48550E-4 7.59770E-S
~lem~rgHlOBIlBC0SiMaterialCompositions forBoraflex(p=1.7g/cc)eihr0.0300.06180.27510.1900.2200.22323.04701E-2 6.31428E-3 2.55761E-2 1.61945E-21.40812E-28.13601E-3 MaterialCompositions forWaterandConcreteKENOV.aStandardCompositions
@T=293'KDensityofWater=1.0g/cc51-1258768-01 GinnaSFPRe-racking Licensing ReportPage379 00~'all!
Table4.3-8FuelMaterialNumberDensities KENOV.aFreshFuelStandardComposition Parameters Wt%"'U1.62.224.0AxialBurnupRegionNumberDensities for5.0Wt%InitialEnrichment FuelAt45GWd/mtVAverageBurnup,Atom/b-cm
>>j';::,,'L'evel
'j':21.9736.6045.116.5805E-04 4.2226E-04 3.1547E-04 4.6040E-02 9.1978E-05 4.6040E-02 1.2979E-04 4.6040E-02 1.4412E-04 2.1400E-02 1.1504E-07 2.1136E-021.1678E-07 2.0952E-02 1.1550E-07 49.152.7799E-04 42.123.6395E-04 33.554.6717E-04 4.6040E-021.4937E-044.6040E-02 1.3988E-044.6040E-02 1.2524E-04 2.0864E-02 1.2008E-072.1002E-02 1.3026E-07 2.1176E-02 1.2931E-07Averae20.11456.9888E-043.2281E-04 4.6040E-02 8.6650E-05 4.6040E-02 1.4409E-04 2.1431E-02 1.2438E-072.0958E-021.2364E-07
- ,,'
- L'ev'el;::.':,'.
- '.,'3'u'r'n'u'p
':.:":;::
- .':::i:.".:::.,'::i,~,',P'u.:::.."".:,,','i:;'::;,'vera e21.9736.6045.1149.1542.1233.5520.11451.1721E-04 1.3755E-04 1.4105E-04 1.4550E-04 1.4988E-041.4418E-041.1854E-04 1.4492E-04 2.5577E-05 4.5800E-05 5.5424E-05 6.0421E-055.4273E-054.4430E-052.3898E-05 5.6043E-051.3166E-05 2.7853E-053.4953E-053.8844E-05 3.4922E-052.7446E-051.2260E-05 3.6072E-05 1.4923E-052.3099E-05 2.6417E-05 2.8880E-05 2.6902E-05 2.2480E-05 1.4145E-053.2281E-0451-1258768-01 GinnaSFPRe-racking Licensing ReportPage380
'llh Table4.3-9AssemblyTolerance Penalties (hk))Manu'facturin'g,,',;
-'";','.':Th'eor'e'tical::.;-:
'..'9IEiirichment,'"",:;:i'::>
.',.";';.
St'a'tis'tie'al.':.",-"
'!a'0.'05,ivt%'ihE::.'.
-'9'Combiii'ation Westinghouse OFAWestinghouse StandardExxonStandard0.002660.003030.003030.002930.002660.002790.004190.004080.004130.005760.005740.00583Table4.3-10Reactivity Uncertainty Associated WithFuelAssemblyType,;"j:;'."'jP;:.,'.
~PCASlVlO
'3jk-'irifiriity.'.fo',
a!'4'.%t%Asse'mbty"',in'..Rack'Ty'pe.:1 01020301.131641.044050.968540.898111.121001.034290.958160.886291.134481.045840.963850.88318Table4.3-11Consolidation Container Results,::ee,':Fuel'::As';.',:,I>':
RackType11.61.6196225StandardOFA0.927650.925340.000580.000540.944900.94259RackType21.61.6196225StandardOFA0.915380.911960.000580.000570.930870.92745RackType32.222.22196196StandardOFA0.923070.921690.000740.000720.944890.9435151-1258768-01 GinnaSFPRe-racking Licensing ReportPage381 J
Table4.3-12SummaryofRackTypeUncertainties, Penalties, AndCredits:.:;:.:.Region:
'.",:..':'iType'3::,:.::.:,'::,'-":,r,-:"..Type.il~,::,:;::j>
'::.,:,'P;::;Typ'e'.2:::,~-.:';)
";'.,7'~Typ'e 4-'.::i'::,
Methodolo BiasdkCalculational Penalties b,k-KENO.V.aBias44Grou0.007010.005610.005610.00561Penalties:
PoolTemperature Penalty(50to212'F),0.00133BoraflexB10SelfShielding Penalty0.00000AssyOff-Center Placement Penalty~I~-sumofenalties0.001330.002180.002070.002070.001400.000000.00000KHHHmKQKQQKQEHQ0.003580.002070.00290Total=hk.
+b,0.008340.009190.007680.00851Tolerance Uncertainties andStatistical Uncertainties Tolerance Uncertainties:
FuelAssyManufacturing Tolerance 0.005830.005830.005830.00583RackFabrication Tolerance KEJ2EQJHKl4EQM4H59M'-sumoftolerance uncertainties 0.013320.007840.007580.00590o-Calculational Uncertain o.-Methodolo BiasUncertaint TotalStatisticall Combined0.000700.000700.000900.000900.013480.008090.000700.000900.007840.000700.000900.00624Totalad'ustment to0.021820.017280.015520.01475a)Baseduponatypicalsigmaof0.0007for1,000,000 neutronhistories forKENOV.acases.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage382
Table4.3-13Region1,RackType3,DroppedAssemblyAccidentResultsRackTe3T-boneRackType3Misplaced assemblyRackTe3DeeDroAccidentRackTe2/3SideDroSideDrowith300mBoron0.0017&0.00180.0114+0.00150.0008&0.00180.0393+0.0016-0.0222+0.0017Table4.3-14Region2,RackTypes1,2,&,4,DroppedAssemblyAccidentResultsRackTe2T-boneRackTe2MislacedAssemblRacksTe28'c4DeeDroAccident'ack Te1MislacedAssembl-LowerCurveRackTe1MislacedAss,450mBoron,BaseRackTe1DeeDroAccident0.0079+0.00150.0097+0.00150.0008+0.00180.0469&0.0013-0.0196&0.00140.0469+0.0013a)SameasdeepdropforrackType3sincebaseplatecontruction issimilar.b)BoundedbytheRackType1misplaced assemblyaccident.
Table4.3-15SeismicEventAccidentResultsRackTes2and3RackTes1,2A,8'c4CRackTypes1,3A,8c4F0.0043+0.00260.0085+0.00260.004560.002651-1258768-01 GinnaSFPRe-racking Licensing ReportPage383
Table4.4-1KENOV.aBIASvsSeparation DistanceMLA008O';:;;Case':;,'"
- .','.
- Coie
- '::Spacirig,'"i,:;::;:1B4C'""".
- .".-,",.Pins:;-;-.';
';"Bor'oii'-':
.',P.lates'.'..'.;:::::,',;::;;:,.;.',';;"
Calculated';"',':;
-'::>>.'=':.',.";
Experiin'ental:":;:;:;-;
1012131415161718192021VlVIIvniXIXIIXnlXIVXvXVIXvnXvniXIXQ.QO1.643.274.914.916.544.911.643.271.641.641.643.273.271.643.274.9108464643434001037764000000143514217159239512148719763432072NoneSSSS1.614%B/AL 1257%B/AL0401%B/AL0.401%B/AL 0.242%B/AL0.242%B/AL 0.100%B/AL 0.100%B/AL 0.100%B/AL 0.99650.99820.99960.99520.99591.00660.99461.00150.99430.99500.99560.99370.99490.99420.99060.98920.99320.99290.99550.99420.99180.00101.00020.00050.00061.00010.00050.00061.00000.00060.00100.99990.00060.00101.00000.00070.00101.00970.00120.00090.99980.00090.00101.00830.00120.00071.00300.00090.00061.00010.00090.00061.00000.00060.00061.00000.00070.00101.00000.00100.00101.0001;0;00100.00090.9998'.00140.00091.00010.00190.00041.00000.00100.00041.00020.00110.00041.00020.00100.00051.00030.00110.00050.99970.0015-0.0037-0.0019-0.0004-0.0047-0.0041-0.0031-0.0052-0.0068-0.0087-0.0051-0.0044-0.0063-0.0051-0.0059-0.0092-0.0109-0.0068-0.0073-0.0047-0.0061-0.0079AveraeStandardDeviation 0.99540.00381.00100.00?7-0.0056Q.0024 gtAgOO:.':Case',.'::,-:.
(Ca'se"ID.":;;::,
Table4.4-2Additional UO,CriticalExperiment Comparisons
- ,;.':-.';;:;;,'".i'-';-.Calc'ulafe'd'.,;:":-::,::.,::.;.'.,;
j:-':-'.'Bias";..':,'~
O1012131415162438x052438x172438x282615x142615x232615x313314a3314be196u6neru615beru75eru75be196u87ceru87bsaxu56saxu792NoAbsorberPlatesBoralAbsoberPlatesStainless SteelAbsorberPlatesStainless SteelAbsorberPlatesCadmiumAbsorberPlatesBoralAbsoberPlates0.226cmBoraflexAbsorberPlates0.452cmBoraflexAbsorberPlates0.615"Pitch0.615"Pitch0.750"Pitch0.750"Pitch0.870"Pitch0.870"Pitch2LatticePitches,SS Clad,0.56"Pitch2LatticePitches,SS Clad,0.792"PitchAverae=StandardDeviation
=2.352.352.354.314.314.314.314.312.352.352.352.352.352.355.745.7400000000046405680286000.99680.99610.99580.99790.99950.99871.00271.00160.99510.99470.99430.99860.99760.99990.99500.9988.99770.00250.00090.00090.00100.00110.00110.00110.00110.00110.00100.00100.00100.00080.00090.00080.00110.00B1--0.0032-0.0039-0.0042-0.0021-0.0005-0.00130.0027'.0016
-0.0049-0.0053-0.0057-0.0014-0.0024-0.0001-0.0050-0.0012--0.00230.0025 Table4.4-3MixedOxideCriticalExperiment Comparisons 4chQO,:::;.:,:Ci'se.,'::.:..:-:,'",
",;;:";:,Ca'se'."ID;:;:::;::,::;:;;,
',-:',:;-:."',
-:,:;:.";::;";-,',Case.
Desciiption':,',",'::;-:,"i'-';:;k,,:"::;::i."',"';::;"::::,':,::;:.::.-::;:
- So'r'o'n'piii';-,,:.::-':::".,::::.Calc'iilated';",:::,',"',:
O1012eri70uneri70beri87uneri87beri99uneri99bsaxton52saxton56saxtn56bsaxtn792saxtn735saxtn104UO2/Pu02SuareLattice,0.700"PitchUO2/Pu02SuareLattice,0.700"PitchUO2/Pu02SuareLattice,0.870"Pitch2UO2/Pu02SuareLattice,0.870"PitchUO2/Pu02SuareLattice,0.990"PitchUO2/Pu02SuareLattice,0.990"Pitch2UO2/Pu02SuareLattice,0.52"Pitch6.6UO2/Pu02SuareLattice,0.56"Pitch6.6UO2/Pu02SuareLattice,0.56"Pitch6.6UO2/Pu02SuareLattice,0.792"Pitch6.6UO2/Pu02SuareLattice,0.735"Pitch6.6UO2/Pu02SuareLattice,1.04"Pitch6.6AveraeStandardDeviation 0681010900767003370000.99690.00111.00080.00101.00180.00111.00830.00091.00510.00091.00720.00091.00010.00110.99930.00111.00060.00001.00310.00111.00100.00121.00360.00111.00230.0033-0.00310.00110.00080.00100.00180.00110.00830.00090.00510.00090.00720.00090.00010.0011-0.00070.00110.00060.00000.00310.00110.00100.00120.00360001'10.00230.0033 Table4.4-4International HandbookCriticalExperiments 8poa'cIii'g'::Between':
- ';;Fu'ei
- A'rr'ay's','",.".'i',
04.466.397.578.018.4110.0511.9201.6364.9076.54;:.",::"hk::KENO,,':;V;.'a,':,.
.-::27,,:',Gro'uop.'Cr'o'ss',:
- j'hajj;':Sections,:;;:~P'~i'.,'j
-0.0084-0.0079-0.0108-0.0092-0.0067-0.0110-0.0036-0.0094';::':::.::::jii:MOPi;::::;:::;:::::,'"""<'."",'Co'ri't'iniih'u's",':;".'"i
-0.0011-0.0030-0.0028-0.0077-0.0043-0.0042-0.0006-0.0021.':-;.';j::.'Hanodb'ook-;::::":'.,';,
-,:';"i!.'-:;:i Criticais.'I:','.',,.::
-0.0039-0.0048-0.0072-0.0068-0.0040-0.0060-0.0042-0.0042:."!8'&%.'Cr'itic'als.'0.0019
-0.0004-0.0051-0.0087.";:,:-'j:-:.'":,KErNO.:IV,:
aI"':.,44.';.Gr'up".,Cr'oss::,.:':.';.'..'"..:;-;
Table4.4-5CASMO-3/KENO V.aBenchmark Configurations
- ~'
- ,::::;;-:.::::;Core",;:;::.,';;::,;:
,'i!Mod)To'mph:::,:!:,.',:j:':,,:;tiprPM
',Bo'roii'i::5
'".'j;,;.",.".','n::::.',:.".::,,"::,':.,';-",'.aaj';
':;,",,',i,,':';;
IXXIIIXVIXII1.6366.541.6363.2724.9073.272A1,1.614wt%BAl,0.401wt%BAl,0.100wt%BSS18.017.520.017.516.526.07640151217221751-1258768-01 GinnaSFPRe-racking Licensing ReportPage387 Table4.4-6CASMO-3/KENO V.aInfiniteArrayBenchmark Comparison IX',"CA'SMO.
3)1.122991.07976'",.':KENO'V.."'a:;,.'j~~
- .~";.CA'SMO.-',3;.p.'..
1.07214+0.00059-0.007621.11758+0.00048-0.00541!:KENO'.'V."a.:,;,
':'~.c",:
,.Bias"'-':
<.";,'0.00045
-0.00874',"'.:K'EN'O':V,".a-,'-".--
UlSQ,'.1.1202361.096324XIIIXVIXXIXII1.104061.099091.091511.106431.09490+0.000631.09040+0.000611.08473&0.000601.09701+0.00058-0.00926-0.00869-0.00678-0.00942-0.00509-0.01086-0.00787-0.006081.1035811.1049401.0957871.105645a)Kisthesumofk;<,thebias,and1.763timesthesumofthesquaresoftheuncertainies associated withthebiasandk;,.Table4.4-7CASMO-3/KENO V.aInfiniteArrayBenchmark Comparison Rack:j;,Typ'e;",'.".
'::,.'CA'SMO.-".3!
i';,'gj4;.>'a'rÃy'i~",.;':,
.";",',;",,';'."~,"R"',::"-';:,:+:;'1'a:-.:,";:j,:,-'y:::
4jCASMO-'.3
.KENO:::.V..:a-.;;~
';::lA'.:;.':Bia's::;::.';.':.":.','j
';,,:KENO,'::V.
a",(-,TelTe2Te30.865480.86614+0.000540.000660.903560.89964+0.00053-0.003920.918940.91060&0.00073-0.00834-0.0056-0.0056-0.00790.873590.907080.92054a)Kisthesumofk;,thebias,and1.763timesthesumofthesquaresoftheuncertainies associated withthebiasandk;.Table4.4-8KENOV.aInfinitetoFiniteModelComparison 5<.'haik::
irifiiiite':.fiiiit'e
',';::;:';k':,':5'5!'.::.:::.'."i:::.'1'o:
~::,':!'::i~-::::".::::::)8::,i RackType1RackType2BSSonEdgeofFiniteModelNoBSSonEdgeofFiniteModelRackType3BSSonEdgeofFiniteModelNoBSSonEdgeofFiniteModel0.00320.004390.006450.006610.009750.00080.00080.00080.00100.001051-1258768-01 GinnaSFPRe-racking Licensing ReportPage388
Table4.4-9GinnaFuelAssemblies UsedforAxialShapeEvaluation
?<'::<'pj'(c'<@jX<<<:
'&'<<."><'<q.'%?Ã'j%'.?.';?'<<P
?,',.':.i'?i'<?<g$"-'.;'P<<."<R0'<'?<<'""<<<
<F>>~'<'0<<)j'v'(hoFuel"Asse'mbl
".<ID'i;'::,';,:
':.-::."~i:::::.":'.":,"A.':T
""eÃ~;::::,;.'<!'::<.-';:,!FPP.';-:'.",::i:?
'cle:,ki%~5";:
","::":.:,<:;
- ."Sur'riu";-':.GYVd/mtU
':A62A62A62A62D77D77D77C63C63C63C63C56C56C56C56E60E60Q16Q16Q16Q16OFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketANFStd,NoBlktANFStd,NoBlktANFStd,NoBlktANFStd,NoBlkt21222326242526232425262324252625261415161715.1927.2133.9748.4812.9627.8744.1112.8827.0839.6745.0314.2227.6232.3037.5115.6534.4210.7223.0133.5344.8451-1258768-01 GinnaSFPRe-racking Licensing ReportPage389
Table4.4-10RelativeAxialShapesforTypicalNon-Axial BlanketStandardFuelAssemblies
- -
- 8:::.:;Ass',";;Burnu
"':,:GWd/mtU='.:.",:,":.:'::~i:
- A's's"..JD,'8i;C"'cle.of-
- Ir'r'adiatio'n,=.'..;
hi"ii!10i71'5'.>i'l:
""$23'.011!=':!3::,".':!33".'526'.i,::
- '::i'4'4i844'"">'<
1'6";:'.,"1'4~:;
16..:"::15,16::::'l6':.Q1'6.'::C
'.::17;"'-:-;:-';
No'de':;:,:::';:.'.'",::,;
.:Heigh't,:.iii:
".Mrdpt,,:in'~
I::-;:::::;;::',::.-::.;'::,;'::;:;:.';!4~,
j;.",.'-..:<:.':,::;.:","'j:::
Relativ'e':3ui nu'pW-:.-'..,".:."::::,:-.':;.I.:::;:i'i,'!..':i.,::';;,;:;':,
101213141516171819202122236.1512.3018.4524.6030.7536.9043.0549.2055.3561.5067.6573.8079.9586.1092.2598.40104.55110.70116.85123.00129.15135.30141.453.0759.22515.37521.52527.67533.82539.97546.12552.27558.42564.57570.72576.87583.02589.17595.325101.475107.625113.775119.925126.075132.225138.3750.4909010.4857240.8065330.8136110.9876811.0009561.0743821.0843081.1123661.1177261.1270181.1289381.1307511.1306771.1300981.1283731.1272981.124681.1234721.1203771.1198321.1160311.1159121.1116421.1120861.1073831.1076991.1028641.102941.098171.0971541.0925641.0886611.0846121.0743821.0718791.047971.047760.9971071.0002170.8985530.9038720.7132990.7146580.4151190.413150.4727080.4881810.8067770.8133750.9977931.002521.0826221.0811261.1166261.1069491.12808.1.113705 1.1298691.1138391.1276021.1114981.1240231.1085541.1199671.1055441.115911.1026671.1118531.0998351~1080361.0972931.1040981.0947731.0999221.0921641.0950311.0893991.0878721.085141.076061.0778481.0529141.0620151.0061441.0251760.9096220.9360670.7174130.7456520A094730.44679351-1258768-01 GinnaSFPRe-racking Licensing ReportPage390
Table4.4-11RelativeAxialShapesfortheSevenZoneAxialModel::,'>2.NOde:;:.".:
Height','::in",.::
Height::::cm:
- ';:~"-:":i'A'ss':.'::Burnu","':.GWd/mtU;=,,"!~~)i
'A'ss",.:'I54"'::,'cle'of:Irr'adiafion',.=.:,'::
;::;~10!715::'::::-'i;:;5;:!23!OXX:.:gA'.
k':,":33526I~":::;.:
.".,".'.",."44'.844:.;
16:.'."1'4I'6'::';:15::!':.
6',:..i6'.':::
1'6'::'.I17:;.::,:,';:;'::!,-:.'.15 15.6210.4910.4860.4730.48812.3031.2420.8070.8140.8070.81318.4546.863125.55318.897131.70334.518137.85350.139144.00365.7600.7130.7150.415OA130.9881.0011.0991.0980.8990.9040.9981.0990.9100.7170.4091.0031.0920.9360.7460.447Table4.4-12AxialBurnupShapesfortheRegion2LoadingCurve,I'Ass';RaitialEiirichiiie'nt,"'::Wt%:i'=.--,;";:;:I:::,':>"':
- ~'
- :,';:::::'.;:::!
As's"Biirnu"'$GWd/mtU:,.=;::.',::..-::-'.'-:;i:
i~",;21';00',>";!::;:::;:-'"::;34 00;;;:i.';':::
':-'::>~'45.'00'.":-':.:
- ",::Node!:::,.'::'~,:::,:;::Height:,::;:'.in Heigh't,c'm'::';::::,'I:::,"'.":::.";:Node;Burnup",::,,GWd/mtU,',:::.:,:,:::,I:;:::,";:I 6.1515.62110.2016.07.21.9712.331.24217.0927.4336.6018.4546.86321.0233.9245.11125.55131.7318.89723.0637.3749.15334.51818.9830.9342.12137.85144350.13915.01365.768.6824.3933.5513.9220.1151-1258768-01 GinnaSFPRe-racking Licensing ReportPage391 k'<<>>,
Table4.4-13Irradiation InputDataandIsotopicConcentrations for3Wt/oInitialEnrichment Fuelat21GWd/mtUBurnupInRegion2:;,,',.",Upp'pe'r',":,.,'.':
';.,::::;:;Ij::..',".::,::;;.::,':.i,'"',::,:"~:..::;.j::j;::;:::i:
- "'Fuel:-;:I.".":~i';:::;::
- <.".".':Moderator.,:,",::
Xo'ne',:Bi'irnu'p',"':,Teiii je'r'atiir'e,":
Temp1era'tur'e,""
- ,CASMO-3
- "
- ":'Xou'e'::Po'w'er',':;.-:,';:.'-:.':,W/gU:;:i;:.'.,'i 15.62131.24246.863318.897334.518350.139365.76010.2017.0921.0223.0618.9815.018.68805.94867.05928.16932.57887.60829.27770.94557.70558.16558.35574.28590.85591.59592.0715.5241625.8653331.8801334.7321929.7669423.7117214.20803AxialBurnupRegionNumberDensities, Atom/b-cm
- ",:;::,';;:Lev'el;;:,'::,":;:,;;
- ,,'
- Bur'ri'u'p,","".
G%d/m'tU, 10.204.6345E-04 17.093.4726E-04 21.022.9213E-0423.062.6977E-04 18.983.2605E-04 15.013.8452E-04 4.6040E-024.6040E-024.6040E-02 4.6040E-02 4.6040E-02 4.6040E-02 4.0905E-056.0203E-056.8757E-05 7.2601E-05 6.4526E-055.5108E-05 2.1987E-02 2.1827E-02 2.1713E-02 2.1666E-02 2.1765E-022.1878E-02
"'."""",',siii""""
'""'.0831E-OS7.8726E-08 8.1832E-08 8.6537E-08 8.8019E-OS 8.3143E-OSAverae8.68214.9549E-04 2.9541E-044.6040E-02 4.6040E-02 3.6081E-05 6.8760E-05 2.2025E-022.1725E-02 7.3739E-OS8.4910E-OS
'>,'='Le'vel,:":;::::,",.'7.09 21.021.0171E-04 1.0928E-04 23.061.1414E-04 18.981.1053E-0415.011.0065E-04 8.687.4853E-05.-':Biirnu'p;"'-":;;:
- GWdlmtU) 10.207.9185E-051.3750E-052.6739E-05 3.3917E-05 3.7909E-05 3.1282E-05 2.3841E-05 1.1527E-05 5.1063E-061.3023E-05 1.7595E-052.0480E-05 1.6341E-05 1.1271E-05 4.0172E-066.4851E-06 1.0251E-05 1.2369E-05 1.3609E-05 1.1580E-05 9.3555E-06 5.7635E-06Averae211.1108E-04 3.4359E-05 1.8077E-05 1.2496E-0551-1258768-01 GinnaSFPRe-racking Licensing ReportPage392
~I Table4.4-14Irradiation InputDataandIsotopicConcentrations for4Wt/oInitialEnrichment Fuelat34GWd/mtUBurnupinRegion215.62131.24246.863318.897334.518350.139365.76016.0727.4333.9237.3730.9324.3913.92':33:';.~j;.:Fuel.~>~":"~~>
Te'iiijer'ature,"'05.94 867.05928.16932.57887.60829.27770.94<,'.:Mo'deratorj';
ITein'p'eratur'e'57.70 558.16558.35574.28590.85591.59592.07I'::::."CASMO 3'::::;:
IZoi'ie':Poive'r,":
I.:','"';;W/gV 15.5241625.8653331.8801334.7321929.7669423.7117214.20803AxialBurnupRegionNumberDensities, Atom/b-cm
'.:,'!'.:'L'evel'::'-:,,"',;"'vera e,,:Biirriup',":,;",:
';.GWd/mtU.::
16.0727.4333.9237.3730.9324.3913.92345.6255E-04 4.6040E-02 6.5780E-05 2.1690E-02 3.7849E-04 4.6040E-02 9.5834E-05 2.1467E-02 2.9530E-04 4.6040E-02 1.0780E-04 2.1312E-02 2.6207E-04 4.6040E-02 1.1286E-04 2.1237E-02 3.4179E-04 4.6040E-02 1.0278E-04 2.1371E-02 4.3079E-04 4.6040E-02 8.9221E-05 2.1526E-02 6.0756E-04 4.6040E-02 5.9153E-052.1732E-02 2.9901E-04 4.6040E-02 1.0802E-04 2.1319E-02 9.3550E-OS 9.9113E-OS 1.0033E-071.0513E-071.1147E-07 1.0842E-079.9625E-08 1.0478E-07
<<i;,'L'ev'el";i:,':,-'""!
Averaeturnup~".;',',GWd/mtU;,';
16.0727.4333.9237.3730.9324.3913.9234.:,;@9Pu.:.:.;,'...,.,;,,';.+40Puw,,',;,.:.:
.;:,.j:;241Pug,,:I(;g,.",,;~:~:IOB;,
$:;Q.1.0013E-042.0203E-05 9.2139E-061.0533E-05 1.2273E-04 3.8390E-OS 2.1475E-05 1.6809E-05 1.2814E-04 4.7397E-05 2.7845E-052.0217E-OS 1.3283E-045.2374E-05 3.1720E-05 2.2295E-051.3354E-04 4.4857E-05 2.6875F051.9272E-05 1.2503E-04 3.4904E-05 1.9731E-051.5624E-05 9.7316E-05 1.7494E-05 7.6889E-06 9.5098E-06 1.3104E-04 4.8234E-05 2.8681E-05 2.0526E-05 51-1258768-01 GinnaSFPRe-racking Licensing ReportPage393
- f.
Table4.4-16IsotopicConcentrations forFuelforRegion2AuxilaryCurves,Atom/b-cm Enrichmeiit,"
i"'",,::::,::i:,:%t:;,':lo):,":':-:,'j.'.0 5.04.04.03.03.0y'sunup~.",.".".
i'GWdlm'tUI':I 52.238.840.029.125.018.02.4763E-044.6040E-02 1.5282E-04 2.0832E-02 4.0229E-04 4.6040E-02 1.3335E-04 2.1066E-02 2.3482E-04 4.6040E-02 1.1638E-042.1211E-02 3.5997E-04 4.6040E-02 9.9148E-05 2.1403E-022.4699E-04 4.6040E-02 7.6063E-05 2.1651E-02 3.3627E-04 4.6040E-02 6.2279E-05 2.1778E-02
- !"'149Sm,-
g'.1451E-07 1.2873E-071.0064E-07 1.0839E-078.4683E-088.4126E-08 5.05.04.04.03.03.052.238.840.029.125.018.06.3354E-05 4.8842E-05 1.3277E-04 1.2770E-04 1.1583E-04 1.0576E-04 4.0144E-05 3.0860E-055.5454E-05 4.1271E-05 4.1120E-05 2.8949E-05 1.4439E-041.4294E-04 3.3446E-05 2.4286E-05 2.2419E-05 1.4549E-053.1155E-05 2.4623E-052.3452E-05 1.8037E-051.2589E-05 9.8012E-06 Table4.4-17AverageIsotopicConcentrations forRegion1LoadingCurve,Atom/b-cm 3.04.05.0'i:;";BuDlUp~',:.,'-,"
- ,GWd/mtU;
- ,:;::
18284.8608E-04 5.2911E-04 5.5621E-04 4.6040E-02 4.6040E-02 4.6040E-02 3.6932E-05 2.1930E-02 7.1679E-05 2.1582E-02 1.0952E-04 2.1231E-027.5148E-05 1.0825E-071.3556E-07 3.04.05.018281.1790E-05 4.1949E-06 7.6900E-08 2.3888E-05 1.1999E-05 1.0873E-04 3.4759E-05 2.0835E-051.3291E-046.0879E-06 1.2043E-051.8966E-05 51-1258768-01 GinnaSFPRe-racking Licensing ReportPage395 4
Table4.4-19Evaluation ofMarginProvidedbytheBorafiexDegradation ModelforRackType1""""'~@""':
"'Calciilated"'"i-"'-"::"'-"::-"""'
'.::;:~,k":"~+::to:;-'
wt%at45GWd/mtUderadedrackmodel5wt%at45GWd/mtUnominalrackmodel4wt%at34GWd/mtUderadedrackmodel4wt%at34GWd/mtUnominalrackmodel3wt%at21GWd/mtUderadedrackmodel3wt%at21GWd/mtUnominalrackmodel0.910800.862580.911880.864320.923970.874950.000510.0482+o.00070.000530.000510.047660.00080.000560.000520.0490+0.00080.0005551-1258768-01 GinnaSFPRe-racking Licensing ReportPage397 Figure4.1-1Region1SpentFuelBurnupvsEnrichment CurveRegion1SpentFuelBurnupVersusEnrichment Curve60000500004000030000200001000000.511.522.533.54455NominalInitialEnrichment, Wt%51-1258768-01 GinnaSFPRe-racking Licensing ReportPage398 Figure4.1-2Region2BurnupvsEnrichment CurveRegion2BurnupVersusEnrichment Curve60000500004000030000AssysInReeks~-Base-.W--Minus10/o--R--Plus 10%20000100001234NominalInitialEnrichment,wt%51-1258768-01 GinnaSFPRe-racking Licensing ReportPage399 Figure4.1-3SketchofAllowable LoadingConfigurations forRegion1FB4-'AorEmpty4:AorEmpty4A,B,F,orEmptyCellWithIntegralLead-inFunnelCellWithoutIntegralLead-inFunnelF=FreshFuelAssembly.
A=FuelAssemblywithBurnupandEnrichment inAreaAofFigure4.1-1.B=FuelAssemblywithBurnupandEnrichment inAreaBofFigure4.1-1.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage400 Figure4.1-4SketchofAllowable LoadingConfigurations forRegion2A,A4A>>A~,B,orEmpty4A>>Az,orEmpty4A,orEmpty4EmptyA,=FuelAssemblywithBurnupandEnrichment inAreaA,ofFigure4.1-2.A,=FuelAssemblywithBurnupandEnrichment inAreaA,ofFigure4.1-2.BFuelAssemblywithBurnupandEnrichment inAreaBofFigure4.1-2.C=FuelAssemblywithBurnupandEnrichment inAreaCofFigure4.1-2.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage401
'
Figure4.3-1GiiinaSpentFuelPoolConfiguration RackType4Region2Region14D4ARackType14B4F4CRackTe3Racks3A,3B,3C,R3DRack3ERack~Te2Racks2A82Bpoolwall-concreteRackType4caskareaL,51-1258768-01 GinnaSFPRe-racking Licensing ReportPage402 Figure4.3-2-Region1Type3BaseCellStructure forInfiniteModel9i88558c23.45cm9.232"'+Ire's4"""'blQFuelAssemblyModerator QBoratedSS-304ggSS3042345cm(9.232")$".j."f25'i4514gpN-":1$.7:9.::c'm
.f4248':
):::2.07cm(0.815")51-1258768-01 GinnaSFPRe-racking Licensing ReportPage403
~~~
Figure4.3-3AxialProfileofFiniteAndInfiniteBaseModelsWaterAdatblanket12'(30ABcm)Fuelassemblycell44'(365.76 cm)AxtatblanketWater12'(30ABcm)51-1258768-01 GinnaSFPRe-racking Licensing ReportPage404 Figure4.3-4Region1-RackType3FiniteModel3A10x7Elev.10xj(Less8ForElevatorArea)VoidBoundary3Ciox53D10x52Bllx93E10x7DamagedFuelCells(5Cells)2Allx8CASKAAirrorBoundary51-1258768-01 GinnaSFPRe-racking Licensing ReportPage405
Figure4.3-5Region2BoraflexRack(Type1)-KENOV.aModel0.062+.003/-.003 0.075+.007/-.007 0.09+.004/-.004 (SS-304)0.075+.007/-.007 Orlglaofarray8.25+.06/-.00 0.5///////////
8.25+.06/-.00 8.43+.06/-.00 7.625'/-.0025 8.113rr.113'.43
+.06/-.00 6oraflaxSS-304QziSS-30451-1258768-01 GinnaSFPRe-racking Licensing ReportPage406 Figure4.3-6Region2BoratedStainless Steel(Type2)Racks-KENOV.aModel-W[Q-0.091"(.232cm)&g8.14"(20.68cm)0.12"-(0.3cm)0.079"(0.2cm)PoolWater8.43"(21.412cm)IUBorstedStainless SpentptteiSSSteelAssembly51-1258768-01 GinnaSFPRe-racking Licensing ReportPage407 Jl.~IW)
Figure4.3-7AreasModeledtoExamineInterface EffectsbetweenRackTypesandRegionsRackType4D-4FRakType3RackType1AreasModeledRackType2RackType3RackType4A-4Cpoolwall-concreteL,51-1258768-01 GinnaSFPRe-racking Licensing ReportPage408 Figure4.3-8KENOV.aModelUsedtoExamineInterface Effectsbetween(I)RackTypes3Cdk,2B,and(2)RackTypes2B&3E3Alox7Elcv.Ioxj(Less8ForElevatorArea)VoidBoundary3CIox5I3Dlox52BIlx93E)ioxDamagedFuelCells2AIlx8ASKAA5>4+'(.irrorBoundaryNeutronStartPointsatI&2and34,451-1258768-01 GinnaSFPRe-racking Licensing ReportPage409 I
Figure4.3-9KENOV.aModelUsedtoExamineInterface EffectsbetweenRackTypes1,4F,and3Apoolwall-concrotoRackTpo4F-10x1C3j2RackTypo110x83A10x7water51-1258768-01 GinnaSFPRe-racking Licensing ReportPage410
Figure4.3-10KENOV.aModelUsedtoExamineInterface EffectsbetweenRackTypes1,4C,and2ARackType110x8ackType4C-10x1322A11x8poolwall-concreteL,51-1258768-01 GinnaSFPRe-racking Licensing ReportPage411
Figure4.3-11KENOV.aShallowDropAccidentModelsT-BoneAccidentDroppedFuelAssemblyActiveFuelRegion~~VerticalDropAccidentDroppedFuelAssembly~ReckCells'1-1258768-01 GinnaSFPRe-racking Licensing ReportPage412
~h1a/
Figure4.3-12KENOV.aSideDropAccidentModelRack2BRack3EIRegion1BSSReplacedbySSOnOuterFacesRegion2DroppedFuelAssemblyBSSCellCaskLaydownArea51-1258768-01 GinnaSFPRe-racking Licensing ReportPage413 0I Figure4.3-13KENOV.aDeepDropAccidentModelforRackTypes2,3,and4RackCells~Displaced FuelAssemblyHypothetical BasePlateDeformation 2.12"Displacement RackTypes2,3,dk,4DeepDropDeformedModel51-1258768-01 GinnaSFPRe-racking Licensing ReportPage414 Figure4.3-14KENOV.aRegion1Misplaced AssemblyModelMisplaced A.ssembly t%FreAWt%Fresh4Wt%Fresh4Wt%reshWt%FreshWt%FreshWt%Fresh4Wt%'4'.,r',."ash Fresh4Wt%Fresh4Wt%FreshWt%Fresh4Wt%FreshRegion1RackType351-1258768-01 GinnaSFPRe-racking Licensing ReportPage415 Figure4.3-15KENOV.aRegion2Misplaced AssemblyModelMisplaced AssemblyAlBAlB'lBABAlBAlBAlBAlBAlBA1BAlRegion2RackTypej.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage416 Figure4.3-16KENOV.aRackType1DeepDropAccidentModelDroppedAssembly]4tlScntFuelPoolFloorDeepDropDeformation ForRackType151-1258768-01 GinnaSFPRe-racking Licensing ReportPage417 Figure4.3-17SketchofConsolidation CanisterIIOuterSquareDimension, 20.34+0.0508cm(8.00+0.02")FuelRodPitch16~6086SQi'i8586"0Q~'QQSIS6Q)!)PlateThickness, 0.236+0.0102cm0.093&0.004")51-1258768-01 GinnaSFPRe-racking Licensing ReportPage418
'N Figure4.4-1KENOV.aResultsforB&%Criticals forSpacingVariations 44GroupBlcWCriticalExperiments Spacing/Interspersed AbsorberBiasEvaluation O.lll4A02W.OOZC04J044.005A4.000hoQ~vvarefba0.1~ba02-"9"baOAbaU/1.0-~..ee-I-b4oAverage4.0104.012O.i1.02.03.04.0Spacing,cm5.07.051-1258768-01 GinnaSFPRe-racking Licensing ReportPage419 Figure4.4-2ResultsforWaterSpacingExperiments fromKENOV.a27and44GroupandMCNPContinuous GroupCrossSectionsWaterGapComparisons BetweenDifferent CodesEcCrossSections0.0004.002~4.000o1%4nlCl~~4.006c0l~14~I~27Bnmk~-MCNPCont60FCIBnmk~<<20~~40BWBnmk4.000.0104.012FuelClusterSpacing,cm1251-1258768-01 GinnaSFPRe-racking Licensing ReportPage420
~%-~~~4~,n Figure4.4-3LeastSquaresFitThroughResultsBOWInterspersed AbsorberExperiments KENOV.aBiasAsAFunctionofSpacingBetweenAssemblies, WaterFilled0.0010.000'.A.0014.0024.003014.004Aco~Wgz.oos4.000<.007e.000'/,yr/1II~//I/////r/'DBK-AverageBWCrrt~-----.Avg+
Dev~-----Avg-Dev.009SpacingBetweenFuelArrays,cm101251-1258768-01 GinnaSFPRe-racking Licensing ReportPage421 Figure4.4-4TypicalGinnaAxialBurnupShapesforBurnupsbetween10and20G%d/mtUBurnupRange10to20G%D/MTUC4a~(L6~IV~A62Cy2l~09Cy23~C56Cy&~q16Cy14~E60Cy25~D77Cy2420NodeHeight,in12014051-1258768-01 GinnaSFPRe-racking Licensing ReportPage422
'P'4I~
Figure4.4-5TypicalGinnaAxialBurnupShapesforBurnupsbetween20and30GWd/mtUBurnupRange,20to30GWD/lCIU1.008gplL6~%4CP~QI6Cyl5~A62Cy22~D77Cy25~C56Cy24~CQCy24OA020.02040NodeHeight,in12051-1258768-01 GinnaSFPRe-racking Licensing ReportPage423 Figure4.4-6TypicalGinnaAxialBurnupShapesforBurnupsbebveen30and40GWd/mtUBurnupRange,30to40GWD/MTU1.00.8C,Le0,6Cv0)~A62Cy23~Q16Cy16~C63Cy2$~CS6Cy26-26E60Cy26~CS62S0A0.0204060$0NodeHeight,in10012014051-1258768-01 GinnaSFPRe-racking Licensing ReportPage424 I~t~
Figure4.4-7TypicalGinnaAxialBurnupShapesforBurnupsbetween40and50GWd/mtU1.0Lc~06~WCCY)~gl6('Pl7~A62Cy24~053Cy26~D77Cy26ILO0206080100NodeHeight,in51-1258768-01 GinnaSFPRe-racking Licensing ReportPage425 Figure4.4-SNon-Axial BlanketShapesUsedforAnalysisNon-Bhnket FuelAssmblyBurnupShapesC20000~QI6Cy14~Q16Cy15~Q16Cy16~Q16Cy171000020AssyHeight,in12014051-1258768-01 GinnaSFPRe-racking Licensing ReportPage426 Figure4.4-9RelativeNon-Blanket AxialShapesUsedinAnalysisMativeShapesForNon-AxialBhnhet Fuel1.0~QI6+14-6-Q16+15~Q16@16~Q16Ot'7aoNodeHei,+In14051-1258768-01 GinnaSFPRe-racking Licensing ReportPage427 Figure4.4-10Illustration ofSevenZoneRepresentation SevenZoneModelFor40to50GWD/MTURange1.20.80~0.6~A4l23NodeShape~ScveaZoaeModelOA0.220406000100120AxialHeight14016051-1258768-01 GinnaSFPRe-racking Licensing ReportPage428 5.0THECAL-HYDRAULIC EVALUATION
5.1INTRODUCTION
Rochester Gas&ElectricCo.isexpanding thespentfuelstoragecapacityatitsGinnaplantthroughinstallation ofhighdensitystorageracksinthespentfuelstoragepool.Thepoolcapacitywillbeincreased intwophases.Theinitialphasewillincreasethepoolstoragecapacityby305locations withtheinstallation ofATEAType2and3racks.Thesecondphase,ifimplemented byRG&E,willincreasethecapacitybyanadditional 48storagelocations withtheinstallation ofATEAType4racks.Asdiscussed inSection1.1,thepooltotalstoragecapacityofthespentfuelpoolwillbeincreased
&omitspresentcapacityof1016toatotalof1369locations withtheimplementation of'othphases1and2.Theincreased storagecapacityofthespentfuelpoolwillresultinincreased decayheatloads.TheefFectoftheincreased decayheatonthethermalperformance ofthespentfuelpoolwasdetermined forthefinalspentfuelpoolconfiguration (bothphase1and2)atthemaximumcapacity.
Therequiredreactorhold-time basedonconservative assumptions forthefullcoredischarge schedulewasdetermined usingtheexistingheatremovalcapability ofthespentfuelheatexchangers.
Poolheatupratesatthemaximumpoolcapacitywerecalculated accounting forthedisplaced watervolume.Localfluidconditions andmaximumcladtemperature atthemostlimitinglocationinthepoolwereverifiedasacceptable.
RG&Emayelecttoutilizefuelconsolidation asafuturemeansofincreasing thespentfuelpoolstoragecapacityoverthepresentdesign.Localfluidconditions forthelimitinglocationinthespentfuelstoragepool,conservatively determined fornormalstorage,weredemonstrated asboundingcomparedtothoseforconsolidated fuelcanisters positioned throughout thespentfuelpool.Thefollowing analysesforthethermal-hydraulic qualification ofthespentfuelstoragepoolwereperformed fortheATEAType2,3and4racks:Calculation ofSpentFuelDecayHeatLoads~BulkPoolHeatUpRate(uponlossofpoolcooling)~LocalPoolThermalEvaluations Calculation oflocalfluidandfuelcladtemperatures Assessment offlowblockageonlocalfluidconditions Assessment ofgammaheatingonthefluidconditions intheinter-canister gaps~ImpactofPoolRe-racking onFuelConsolidation LimitsTheresultsoftheseevaluations demonstrating theacceptable thermal-hydraulic performance oftheGinnaspentfuelpoolwithincreased storagecapacityfollow.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage429 0
5.2CRITERIAThethermal-hydraulic analyseswereperformed inaccordance withtherequirements andguidelines setforthinthefollowing:
OTPositionforReviewandAcceptance ofSpentFuelStorageandHandlingApplications, DatedApril14,1978andrevisedJanuary18,1979,(Ref.5.2.1),NUREG-0800 StandardReviewPlan9.1.3,Revision1(July1981)andStandardReviewPlan9.2.5,Revision2(July1981),(Ref.5.2.2),~A.G.Croft,RI-ev'deVeeinneleide,ORNL-5621,(Ref.5.2.3).
eaThethermal-hydraulic criteriaincludethefollowing:
~Bulkpooldoesnotexceed150'FunderanySFPloadingcriteriaLocalboilingdoesnotoccurinthehotassemblyexceptforthecondition ofacompleteinletflowblockageMaximumcladtemperature remainsbelowsaturation forallnon-flowblockagecasesAdequatecoolingforconsolidated fuelcanisters isprovidedwiththeincreased poolstoragecapacity5.3ASSUMPTIONS Themaximumbulkfluidandcladtemperatures fortheGinnaspentfuelstoragepoolwerecalculated withthefollowing conservative assumptions:
Maximized decayheatloadasaresultofboundingfuelenrichment, boundingburn-upandboundingnumberofassemblies discharged totheSFP,Instantaneous discharge ofthefueltothespentfuelpoolafleraminimumreactorshutdowntimeof100hours~Localhotchannelpeakingfactor,F"~=1.75,usedforpeakingforthehotfuelassembly~Minimumwatervolumeaccounting forfullpoolstoragecapacityusedforthecalculation ofthebulkpoolheat-uprate5.4DISCUSSION OFSPENTFUELCOOLINGTheexistingspentfuelcoolingsystemattheGinnaplantconsistsofthreecoolingloops.Theprimaryloop(loop2)ismadeupofspentfuelpumpB,spentfuelpoolheatexchanger Bandpiping.Thebackuploopsincludeinstalled loop1withspentfuelpoolpumpA,spentfuelpoolheatexchanger Aandpiping,andskid-mounted loop3withskid-mounted spentfuelpoolpump,spentfuelpoolstandbyheatexchanger, pipingandhoses.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage430 Loop2isdesignedtomaintainthespentfuelpoolwaterbelow150'Fwithadesignbasisheatloadof16x10'tu/hr associated withaservicewatertemperature of80'F.Loop1andloop3areeachdesignedtoremove7.93x10'tu/hr withapooltemperature of150'Fandservicewaterat80'F.Operatedinparallel, theyarecapableofremovingthedesignbasisheatload.ThesourceofservicewaterfortheSFPheatexchangers isLakeOntario.Nomodifications totheexistingSFPcoolingsystemareplannedasaresultoftheinstallation oftheATEAracks.Theavailability ofthreepumps,threeheatexchangers andassociated parallelflowpathsintheGinnaSFPSystemprovidesadequateprotection againstanypostulated singlefailures.
Therefore, redundancy existsintheGinnaspentfuelpoolcoolingsystemto-ensure thatfullheatremovalcapability isavailable forthedesignbasisheatload.ServicewatertothespentfuelpoolcoolingsystemisprovidedbylakewatersuppliedbyLakeOntario.Sincethelakewatertemperature variesRomwintertosummer,thepotential heatremovalcapability oftheSFPcoolingsystemalsovaries.Withcoolerlakewatertemperature, theheatremovalcapability oftheSFPcoolingsystemincreases.
Therefore, thenecessary coreshutdownrequiredtoensurethattheSFPtemperature doesnotexceedits150'Flimitisafunctionoflakewatertemperature.
TherequiredcoreshutdowntimestopreventtheSFPfromexceeding the150'Flimitwereanalyzedforlakewatertemperatures of40'Fand60'Faswellasforthedesignlakewatertemperature of80'F.5.5SPENTFUELPOOLCAPACITYANDDISCHARGE SCENARIOS Thefollowing sectionssummarize thespentfuelpoolcapacityusedasacalculational baseandthedischarge scenarios forthenormalandfullcoreoffload.5.5.1SpentFuelPoolCapacityThedischarge scheduleisshowninTable5.5-1.Beginning in1997,abounding44assemblybatchdischarge schedulebasedonan18monthfuelcyclewasassumedthroughtheendofplantlife.Thedischarge schedulelistedinTable5.5-1resultsinatotalspentpoolinventory of1879intheyear2029.Thispostulated loadingschemeisconservative fordetermining themaximumGinnaspentfuelpoolheatloadsincethepresentGinnaoperating licenseexpiresintheyear2009.Additionally, the1879fuelassemblies assumedtobeloadedexceedsthe1369fuelassemblystoragelocations available inthepoolafterinstallation oftheATEATypes2,3and4racks.Theseextrafuelassemblies couldbeaccommodated byperforming fuelconsolidation.
Presently, theGinnafuelpoolincludes11fuelassemblies thathavebeenconsolidated andarestoredin8fuelassemblylocations.'dditionally, 2fuelassemblylocations arepresently beingused'tostorenon-fuelrelatedhardware.
5.5.2CoreOffloadScenarios Twocoreoffloadscenarios basedonthecoredischarge scheduleinTable5.5-1wereusedintheevaluation ofthespentfuelpool.5.5.2.1NormalDischarge ScenarioThenormalfuelstoragescenarioassumesthatonereloadbatchissequentially discharged fromthecoreuntilspaceremainsforonecoreoffload.Thenewlydischarged batchisassumedtohaveadecaytimeof100hoursandthepreviously discharged batchhasadecaytimeof18monthsconsistent withTable5.5-1.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage431 5.5.2.2FullCoreDischarge ScenarioForafullcoreoffload,onereloadbatchatatimeisdischarged fromthereactoruntilvacantlocations remaininthespentfuelstoragepoolforonebatchplusonefullcoreoffuel.Bothbeginning ofcycle(BOC)andendofcycle(EOC)scenarios wereinvestigated forthefullcoreoffload.FortheBOCscenario, theplantisassumedtooperatefor30dayspriortoshutdown.
Thedecayheatforthepreviously discharged batchisassumedtobethedecaytimeforthe30dayoperation plusthedecaytimeforthefullcorepriortodischarge totheSFP.Nocreditistakenforthedecaytimeassociated withtherefueling outagedurationforthepreviously discharged batch.FortheEOCscenario, thedecayheatforthepreviously discharged 44fuelassemblybatchisbasedonan18monthirradiation time.Forthedischarged fuelassemblies, showninTable5.5-1,noadditional decaytimedueoutagedurationwasconservatively assumedtomaximizethedecayheat.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage432 Table5.5-1GinnaSpentFuelPoolInventory (Actual&Projected)
N.,:'l,:',:Dischar'g'e.:;;::.:;':i::
Avera'g'e'Burri'uji
- ,
- ,",:Number, of',,'.::;:5,:".:;:;:::;.;::;::lDa'te':
.'","."::::::::
.",'.'WD/MT i':::,::::A'ssembf les':.".I'::-.:i!::Dec'a
".;',to'.9/18/2029;::.:.::,:
10/1/721/1/743/11/751/29/764/15/773/25/782/9/793/29/804/18/811/26/823/27/833/3/843/2/852/7/862/6/872/10/883/17/893/23/903/22/913/27/923/12/933/4/943/26/954/1/9610/20/973/7/999/15/003/17/029/16/033/15/059/21/063/19/089/18/093/15/119/15/12195722513524054250482883128579294293072131258322813520036714373423911939421402813811836995394734005744705423974151840674Pro:55000 Pro':55000 Pro':55000 Pro':55000 Pro':55000 Pro':55000 Pro':55000 Pro':55000 Pro':55000 Pro':55000 Pro':55000 70122437414140361519212831323336372937372737414444444444444444444444208062034919915195911914918805184841807017685174021697716635162711592915565151961479514424'4060136891333912982125951222311656111531059510047949989538398785373056762621251-1258768-01 GinnaSFPRe-racking Licensing ReportPage433 Table5.5-1GinnaSpentFuelPoolInventory (ActualandProjected)
Continued
',,':;;,.
DIsch'arge':,:I'vera'ge'Biiriiii'p
- i:".:.'."'Date:::::...':
'".::::.:.::,:::
D/M:~A'ssei'iibiics"::;::"::::4'5cca":to'9/f 8/2029:i:::..-"
'/15/149/15/153/15/179/15/183/15/209/15/213/15/239/15/243/15/269/15/273/15/299/18/29TBDTotalPro':55000 Pro':55000 Pro':55000 Pro':55000 Pro':55000 Pro':55000 Pro':55000 Pro:55000 Pro:55000 Pro':55000 Pro':55000 44444444444444444444441211879566651174570402134742925237918291283734187Note:Numberofassemblies discharged throughApril1996areactualassemblies discharged totheSFP.5.6DECAYHEATLOADThedecayheatloadsweredetermined withtheORIGEN2computercode(Ref.5.2.3).ORIGEN2hasbeensubmitted previously forasimilarapplication (Ref.5.6.1).Thecodeexplicitly solvesthecoupledisotopicproduction anddecayequations, properlyaccountsfortheheatproducedbyallactivation productsandmorethan100actinideisotopes, andrigorously accountsforneutronabsorption inthefissionproducts.
Whereasactivation productsproduceasmallfmctionofthedecayheatpower,theircontribution isincludedinthisanalysisforconservatism.
Acomparison betweenORIGEN2andASB9.2methodology isincludedinSection5.11.5.6.1FullCoreDecayHeatLoadForthisevaluation, thecorewasassumedtooperateat102%oftherated1520MWtcorepowerfor18monthcycles.Aconservative flatfullpowerhistorywasusedfortheentirecyclelength.Consequently, thereactorwasassumedtooperateat102%powerfortheentirecyclelengthwithnoreductions inpowerwhichnormallyoccurduringatypicalcycle.Nocreditwastakenfornuclidedecay(andcorresponding reduction indecayheat)duringoutageperiodsandduringfueltransfer(i.e.,theassembly, batch,orcoreoffloadwasassumedtooccurinstantaneously).
Themaximumheatloadresulting fromacoreoffloadwascalculated at100hoursafterreactorshutdown.
Toensurethatconservative decayheatswereobtained, thedecayheatforburnupsof15,17.5,and20GWD/MTUwerecalculated.
The20GWD/MTUburnupboundsthecyclelengthassociated withan18monthfuelcycle.Inaddition, ashortirradiation periodof30days,whichcorresponds toacycleburnupof1.1GWD/MTU,wasperformed toinvestigate poolheatloadsforaBOCcoreoffloadscenario.
Theresulting decayheatloadsafter100hoursofdecaywereexaminedandthemaximumvalue,whichoccurredafteraburnupof20GWD/MTU,wasusedinthisanalysis.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage434 5.6.2SingleFuelAssemblyDecayHeatLoadTheheatloadforasinglefuelassemblywasalsocomputed.
Bothaverageandpeakassemblyheatloadsarerequiredforanalysis.
Theheatloadwasbasedonaneighteenmonthcyclelengthand44fuelassemblybatchsizewasassumedforeachreloadoutage.Thepowerhistoryofanindividual fuelassemblyhasasignificant effectonthedecayheatprediction.
Typically,-fresh andonce-burned fuelwilloperateabovetheaverageassemblypower.Thisevaluation incorporated anassemblypeakingof1.35forfreshfuel,1.20foronce-burned and1.00fortwiceburnedfuel.Calculations utilizing thedecayheatloadforanaveragefuelassemblywerebasedona'peak'verage fuelassemblyoperating atanassemblyrelativepowerof1.35.Thiscorresponds toafreshfuelassemblyinthereactor.Thedecayheatloadforthis'peak'ssembly afterashutdowntimeof100hoursisgreaterthanthatforanassemblyoperating atthetruecoreaveragepower,i.e.,havinga1.00peakingfactor.Thehot,ordesign,fuelassemblydecayheatloadwasobtainedbyconservatively applyingthedesignenthalpyrisefactorfortheGinnacore,F"~>>=1.75,totheaverageassemblydecayheatload.5.7REQUIREDCOREDECAYTIMESThetechnical specification temperature limitfortheGinnaspentfuelstoragepoolis150'F.Thistemperature limitisachievedwiththeheatremovalcapability ofthepresentSFPheatexchangers.
TheSFPheatloadmustnotexceedtheheatremovalcapability oftheexistingSFPheatexchangers ata150'Fpooltemperature.
InordertomaintaintheSFPbulktemperature belowthetechnical specification limit,thefuelmustbeheldinthecoreforaminimumshutdowntimetoensurethatthetotalSFPheatloadislessthantheheatremovalcapability oftheexistingGinnaSFPcoolingsystem.Fuelmaynotbeoffloaded fromthecore,inanyevent,priortoaminimumshutdowntimeof100hoursthatisassumedfortheradiological consequence analysis.
Therequiredshutdowntimetomaintainthebulkpooltemperature lessthanthe150'Ftechnical specification limitwasdetermined forlaketemperatures of80'F,60'Fand40'F.5.7.1SingleBatchOffloadThedecayheatloadfora44fuelassemblybatchwasdetermined forbatchaverageburnupsof15,30,45and60GWD/MTU.Themaximumspentfuelpooldecayheatload,aftera100hourshutdowntime,is11.22x10'tu/hr.
Thisheatloadincludesthecontribution duetoallpreviously discharged batches,andoccurredforthe15GWD/MTUcase.Thecontribution duetoallpreviousdischarged batchesis3.56x10'tu/hr.
Notethat,ingeneral,thelongtermdecayheatloadtypically increases withincreasing burnup.However,the44assemblybatchmodeledhereutilizedconservative peakingfactorsof1.35foraburnupof0to20GWD/MTU,1.2foraburnupof20to36GWD/MTU,and1.0foraburnupof36to60GWD/MTU.Thismodelingofabatchyieldedaslightlyhigherdecayheatloadwith100hoursofdecayafterthe15GWD/MTUburnupthandidsubsequent burnupswiththeirreducedpeakingfactors.Thus,aconservative decayheatloadwasgenerated forthe44assemblybatch.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage435 Thesinglebatchcoreoffloadcanbeperformed aftertherequired100hourshutdowntimeassociated withtheradiological requirement.
Thetotalspentfuelpooldecayheatloadat100hoursiswellwithinthe16x10'tu/hr heatremovalcapability oftheSFPheatexchangers atthe80'Fmaximumlakewatertemperature.
Consequently, anormal1/3coreoffloadafter100hoursdecaywillneverresultintheSFPapproaching itsdesigntemperature limitof150'F.5.7.2FullCoreOffloadAfullcoreoffloadscenariowithafullinventory ofspentfuelassemblies (1879fuelassemblies assumingsomeconsolidated rodcanisters) resultsinthehighestpredicted decayheatloads.Acomparison ofdecayheatloadsforthefullcoreoffloadat30daysofoperation andforcoreaverageburnupsof15,17.5and20GWD/MTUshowedaconservative valuewascalculated forthe30daycoreoperation.
Thisisbecausetheonceandtwiceburnedfuelassemblies werenotdecayedforanycycleoutagetimebeforethefullcoreoffloadoutage.Forthe30daycoreoperation, thetotaldecayheatloadontheSFPafter100hoursis21.7MBtu/hr.Sincethisdecayheatloadexceedsthe16MBtu/hrdesignlimitheatremovalcapacityfor80'Flakewatertemperature, additional shutdownisrequiredbeforeinitiating thefullcoreoffloadatthedesignlaketemperature scenario.
Therequireddelaytimepriortocompleting thefullcoreoffloadisobtainedfromacomparison ofdecayheatloadagainsttheSFPheatexchanger heatremovalcapability forthevariouslakewatertemperatures toensurethatthe150'FSFPlimitisnotexceeded.
TherequiredcoredelaytimesensuringthattheSFPdesignlimittemperature of150'Fisnotexceededforthefullcoreoffloadscenariowithafullinventory ofspentfuelassemblies issummarized belowforlaketemperatures of40'F,60'Fand80'F:j"::.'.";:-;;.';:;.'::l.-',;:150,::>FjTech';':Sp'e'c';i'::;,':,:;:::,:.':X'll 40608024.620.416.021.720.416.0100hours132hours280hours5.8LOCALFUELBUNDLETHERMAL-HYDRAULICS ThespentfuelpoolatRG&E'sGinnaplant,showninFigure5.8-1,isdividedintotworegions.RegionIconsistsoffluxtyperacksandRegionIIconsistsofhigh-density typeracks.Twodifferent rackdesignsarecontained inRegionII.PartofRegionIIcontainsATEAType2boratedstainless steelracks;theremaining racksinRegionIIaretheexistingboraflexdesign(notremovedaspartofthepoolre-rack).
Theexistinghigh-density boraflexrackshaveATEAType4boratedstainless steelsiderackslocatedbetweenthemandthepoolwallinthegap.TheATEAsideracksarelocatedontheNorthandSouthwallsoftheSFP.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage436 Figure5.8-1SpentFuelPoolRemaining RocksAreRegion2~~~'~~~,,~:+ol:~.+r~irRegion1I~J~~~++nnrQtVAIORA/If>+++++++++++++++EXISPNGRACKS+++Thermal-Hydraulic Models++CASKAREA~4~~ie~icr'~~~~~~~3Thefollowing tableidentifies therackdesignsfoundintheGinnaSFP.3A,B,C,D,E ATEABSSFluxTrapATEABSSHighDensity2A,BExistingHighDensityBoraflex4Athrough4F(Type4aresideracks)ATEABSSHighDensity-BoratedStainless Steel-Letterdenotesaparticular arrayofcanisters onaspecificracktype.BSS3A,etc.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage437S.S.1NaturalCirculation intheSpentFuelPoolStorageCanisters Whenfuelassemblies offloaded fromthecoreareplacedinthespentfuelpoolintothecanisters, coolingoccursbynaturalcirculation.
Thedensitydifference betweenthehotfuelassemblies andthecoolerbulkpoolfluidresultinathermalhead.Pressuredropduetofrictional lossesinthedowncomer, resistances duetoracklevelingfeet,inlettothefuelcanisters, bundleskin&iction,fuelassembly(upperandlower)nozzlesandgridsandotherlossesintheflowpathbalancethisbuoyancyforce.
Thenaturalcirculation coolingisanalyzedtodemonstrate thatadequatecoolingoccursinthehottestfuelassemblyintheabsenceofinletandoutletflowblockages preventing localboilingandmaintaining thepeakcladtemperature belowsaturation.
Thehydraulic modelconsistsofarowoffuelassemblies extending fromthedowncomer walltothecenterofthepool.Thepoolwaterisassumedtoflowdownwardbetweentheperiphery ofthewalladjacenttotherackmodules,thenlaterally intheregionbetweentherackmodulebasesandthepoolfloor,thenupwardthroughthefuelassemblies (Figure5.8-2).Aconservative pool-rack gapgeometryisusedtomodelthedowncomer.
Thisisconservative becauseflowisassumedtocommunicate withthecanisters fromthedowncomer onlywhichismodelledasaflowpathonlyonerowwide.Inreality,flowreachesthecanisters fromotherdowncomer regionsbesidesthedowncomer segmentmodelled.
ForthelimitingRegionIlocation, theassemblypowerisforapeakaverageassemblyhavingapeakingfactorof1.35(freshfuel)andisfromthemostrecentlydischarged batchhaving100hoursofdecayfortheradiological requirement.
Thefuelassemblyaxialvariation ofpowerwasmodelledwitha1.55choppedcosineshape;theresultsagreedverycloselywiththoseobtainedusingauniformpowershape.Thesinglerowoffuelassemblies aremodelledinitially toestablish thepressuredropboundarycondition whichisthenimposedonthehotfuelassembly.
Allcanisters intherowareconservatively assumedtocontainafuelassemblywiththeminimumdecaytime.Aracklevelingfootisconservatively placedbeloweachofthefuelassemblies asanaddedresistance toflow.Inreality,arepresentative rowselectedforevaluation consistsofapproximately 12ormorefuelassemblies andhasatmost4or5supportfeet.Oncethepressuredropacrosstherowofaveragefuelassemblies iscalculated, thecalculation isrepeated.
Thepressuredropboundarycondition obtainedfromtherowofaveragefuelassemblies isimposedonthehottestfuelassemblyfortheregionbeinganalyzed.
ThehottestfuelassemblyhasapeakingfactorofF"~,=1.75.Aracklevelingfootisplacedunderthehighestpoweredassembly.
Theplacement oftheracklevelingfootunderthehotassemblyincreases thepressuredropacrosstheassemblyandminimizes theflowtothehottestassembly.
Theinlettemperature ofthewaterenteringthedowncomer andflowingintheregionbetweentherackbaseandpoolfloorisassumedtobeatthemaximumpoolbulktemperature of150'F.Minimumrack-to-wall dimensions inthedowncomer weremodelledinordertomaximizedowncomer resistance therebyminimizing fuelassemblyflow.Thefuelcladtemperature forthehottestfuelassemblywascalculated withaheattransfercoeQicient forfreeconvection.
Anadditional resistance of0.001ft~-hr-'F/Btu wasusedforpotential foulingonthefuelrods.DuetothevariouscanisterdesignspresentintheGinnaspentfuelpool,asinglecanister-type modelwasnotused.Thefinalpoolconfiguration, uponcompletion ofPhaseII,requiredtheapplication ofthreeseparatemodelstoanalyzethefollowing geometries:
RegionItype3racks,RegionIItype2racks,andRegionIIwiththeexistingboraflexandadjacenttype4sideracks.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage438 0
Eachofthemodelsfollowedthegeneralapproachdescribed above.Thecalculations wereperformed withFramatome CogemaFuel'sFSPLITcode(Ref.5.7.1).FSPLITisaPCbasedcodewhichcanbeusedforpressuredrop/flow solutions fornetworkswithwater,heavywater,incompressible fluids,orgasses.Thenetworkscanbeclosedlooporsimulated openloop.Forcedflowandnaturalcirculation problemscanbeanalyzedwithFSPLIT.TheFSPLITcodehasbeenpreviously usedsupporting licensing submittals.
Figure5.8-2NaturalCirculation FlowPathDowncomer RegionFuelCanisters FlowPath"SupportFoot5.8.2EffectsofGammaHeatingintheFluxTrapRegionsandInter-Canister GapsThenaturalcirculation inthefluxtrapregions(type3racks)andintercell gaps(type2racks)isdrivenbythepressuredropacrossthemajorflowpath.Waterentersthebottomofthecanisters andflowsupwardsintwoparallelpaths.Themajorflowpathisthroughthefuelassemblies andasecondary pathisinthegapsbetweencanistertypeswhereitisheatedbythegammaheatproducedinthestainless steel.Thisanalysisverifiestheabsenceoflocalized boilinginthesesecondary paths.5.8.2.1RegionIType3FluxTrapsWaterenterstheRegionIfluxtrapsthrougharectangular openingatthetopofthebaseplate.Itflowsupwardsintheregionbetweenthecanisters andexitsatthelevelofthetopofthecanisters asshowninFigure5.8-3.Thetopofeveryothertype3canisterhasaleadinedgewhichformsafunnelthatfacilitates theinsertion ofoffloaded fuelandwhicheffectively blocksasignificant partoftheexitflowareaalongthecanisterwidth.Thisconfiguration isshowninFigure1.3-4.Flowexitsthefluxtrapregionatthecornerintersections offourcanisters whicharenotobstructed bythefunnelfeatureandrejoinsthemainflow.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage439
Figure5.8-3FluxTrapRegionFuelCanisterFuelCanisterIMainFlowPathFluxTrapRegion1FluxTrapEntrance)~DiagramshowingtheflowpathintheType3RackFluxTrapRegion.5.8.2.2RegionIIType2Inter-Canister GapsForthetype2canisterinter-canister gap,waterentersanopeningbetweentheboratedstainless steelplateandthecanisterwallabovethebaseplateandflowsupwardapproximately 12feetandre-enters themainflowstreamthroughasimilargapatthetop(Figure5.8-4).Theboundaryconditions fortheflowintheinter-canister gaparethepressures wheretheflowentersthegapabovethebaseplateandatthetopwheretheflowexitsthegapandre-enters themainflowstream.Forbothgapconfigurations, allofthegammaheatproduction isdeposited inthegap.Thetotalwallthickness, including theboratedstainless steel,isusedtocalculate theheatproduction.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage440 Figure5.8-4RegionIIType2Inter-Canister Gapp3A08D0dI8QIp8KNIGapExit~5!3QtNQtpKN<II8liN8ptQeQType2GapEntrancMainFlowPathInter-Canister GapDiagramshowingflowpathinRackType2Inter-Canister Gap.5.S.3FlowBlockages Apartialflowblockageatthecelloutletwaspostulated withafuelassemblylyingontopoftherack.Thisconfiguration wasmodelledasablockageofapproximately 85%oftheexitflowareaofthehottestassemblylocatedoveraracklevelingfoottodemonstrate thatboilingwouldnotoccur.Acompleteinletblockageofthehottestassemblywasalsopostulated.
Usingacounterflow flooding,.correlation, itwasdemonstrated thatwaterwouldreplacetheexitingflowwhichwasassumedtobesteam.5.S.4NaturalCirculation intheConsolidated FuelCanisters Thenaturalcirculation inthe,consolidated fuelcanisters iscalculated inamannersimilartothatforthefuelcells.Theboundarycondition fortheflowthroughtheconsolidated canisters isobtainedfromthenaturalcirculation oftheaveragefuelassemblies.
Flowresistances arebasedonfuelrodsinaclosepacked51-1258768-01 GinnaSFPRe-racking Licensing ReportPage441 triangular latticeataconsolidation rateof2:1.Thisassumesthatthefuelrodsassociated withtwofuelassemblies arestoredinoneconsolidated canister; Theflowlossthroughtheconsolidated canisterisprimarily duetolaminar&ictionlossesalongtherodswhichwasdetermined tobeapproximately 50timesgreaterthancanisterinletandexitflowlosses.RG&Emay,atafuturedate,increasethestoragecapacityofthespentfuelpoolthroughfuelconsolidation.
Anevaluation wasperformed toascertain theaffectsofadditional fuelconsolidation activities onthethermal-hydraulic resultsforthehottestfuelassembly.
Theanalysis, inprincipal, isthesameasthatusedforthefuelassemblies.
Comparing totheRegionIresults,whichwerethermally limitingforthespentfuelpool,consolidated fuelcanisters wereplacedinthefuelassemblyrowpreviously modelledtoestablish thepressuredropboundarycondition forthehottestfuelassembly.
Anacceptable application ofconsolidated fuelcanisters ispossibleprovidedthecalculated pressuredropboundarycondition fromtherowoffuelassemblies usedforthehottestfuelassemblyremainslimiting.
Variousconfigurations ofconsolidated fuelcanisters wereinvestigated:
Fullrowofconsolidated canisters inRegionI,Singleconsolidated canisterinarowoffuelassemblies, Fullconsolidation (2:1)andpartialconsolidation (1:1).5.9SPENTFUELPOOLTHECAL-HYDRAULICS ANALYSISRESULTSTheresultsofthespentfuelthermal-hydraulic analysesperformed arediscussed inthissection.Thegeneralmethodology usedisdiscussed inSection5.8.Certainfeaturesoftheanalysismethodarerepeatedandexpandedinthediscussions ofthevariousanalysesforclarity.5.9.1RegionIwithType3ATEARacksTheATEAtype3rack,fluxtrapdesign,islocatedinRegionIoftheGinnaspentfuelpool(Figure5.8-1).Thisracktypewasconservatively modelledasasinglerowof12canisters extending fromtheNorthwallsouthward tothemiddleofthespentfuelpool(Figure5.8-1).Thethermal-hydraulic modelincludesracks3Aand3C;thesinglerow(type3canisters) endsattheinter-rack gapbetweenthetype3andATEAtype2rack.Theminimumdowncomer gapdimension, rack-to-pool wall,is1.80inches.Figure5.9-1showstheflowpath.Asinglecanisterwidthisusedforthewidthofthedowncomer channel.Frictional flowlossesinthedowncomer werebasedonturbulent flow.Turnlosses,contraction/expansion lossesattherackbasetowallandthroughthesupportfeetandbaseplatewerebasedonwellknownexpressions foundinreference 5.8.1.Thefuelassemblygridandnozzlepressuredroplosseswerebasedonthebehaviorofanorificeinthelaminarflowregime.Frictional lossduetothefuelrodandcanisterskinfrictionwascalculated assuminglaminarflowthroughthecanister.
Thetotalpressuredroplossofthefuelassemblywasobtainedbycombining thegridandnozzlelosseswiththefrictionloss.TheresultsforthehottestassemblyinaRegionItype3rackaresummarized inthefollowing table.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage442 Table5.9-1RegionIType3RackLocalPoolCoolingResults9',:!':.':'Ass'eiiibly,'.;.','-.:.:..:
',::';:.,'::::.':',;.';;.',.',";:":::r"..',.'::
Te'mperat'ur'e',(:F)'.;':;:;:::::,:::,.':::.'!:,:.:.'..:,:.',',".",;.,".
RegionIType31.75::;;::':;::.;:.':::;::j;.';:;(Ibiii/hr)'."';:;.:.,":-;,":,."
4260150."::.:::::,':.".:,,Outlet'.,':;
- ,';;
- ::.::;i'::Fluid":.i::;i 222;::;::;:;":P:eak.;:-:.";;::
';:"i'Clad;:;"
.";:232Saturation temperature atthetopoftherackis238.9'FbasedonaminimumSFPwaterheightof23feet'bove thetopoftheracks.Figure5.9-1NaturalCirculation FlowPath-Type3RackFuelCanister1FuelCanister2Downcomer RegionFuelCanisters FlowPathRackBaseSupportFootTootherFuelCanisters inrow(Resistance DuetoSupportFootPlacedUnderallCanisters inModel)5.9.2RegionIIwithType2ATRARacksTheATEAtype2rack,highdensitydesign,islocatedinRegionIIoftheGinnaspentfuelpool(Figure5.8-1).Thisracktypewasconservatively modelledasasinglerowof17canisters extending fromtheSouthwallnorthward tothemiddleofthespentfuelpool(Figure5.8-1).Thethermal-hydraulic modelincludesracks2Aand2B;thesinglerow(type2canisters) endsattheinter-rack gapbetweenthetype2andATEAtype3rack.Therowoffuelassemblies wasmodelledinasimilarmannerasdiscussed inSection5.8.1.Theminimumdowncomer gapdimension, rack-to-pool wall,is7.30inches.Asinglecanisterwidthisusedforthewidthofthedowncomer channel.51-1258768-01
'innaSFPRe-racking Licensing ReportPage443
'~I TheGinnaUFSARstatesthatpriortomovingfuelfromRegionItoRegionII,acoolingperiodof60daysmusthaveelapsed.Thedecayheatloadfora60daydecaytimewasusedforthethermal-hydraulic model.TheresultsforthehottestassemblyinaRegionIIType2racksaresummarized in'thefollowing table.Thepeakcladtemperature calculated inSection5.9.1forthetype3rackinRegionIboundstheresultsforaType2rack.Thisisprimarily duetothesignificantly lowerdecayheatresulting fromtheminimum60daydecaytimerequiredforassemblies locatedinRegionII.Table5.9-2RegionIIType2RackLocalPoolCoolingResults:,'-:.'"'A's'sembly',",",,":.
".'~'4)i;::,"-:!.':;(Ibiii/hi))i~.":,:;,-'.ii:.
':.'",.',,;,,;-',:;Inlet'.:.,;:!::i'j;::;::l:.'".;
ll-:.:;j-".::.,0'utletj',;;.,:-:;,'egion IIType21.753180150181Saturation temperature atthetopoftherackis238.9'FbasedonaminiinumSFPwaterheightof23feetabovethetopoftheracks.TheresultsreportedinSection5.8.1fortheRegionI,type3rackarebounding.
5.9.3RegionIIwithType4ATEASideRacksTheATEAtype4sideracksarelocatedalongtheNorthandSouthwallsoftheGinnaspentfuelstoragepoolinthepool-to-rack gapfortheexistingboraflexracks(Figure5.8-1).Thelargeexistinggapalongthesewalls,ranging&omapproximately 14to17inches,permitted theadditional storageusingthetype4racks.Theactualplacement oftheracksintothepooloccursuponcompletion ofPhaseII.Thethermal-hydraulic modelconsisted ofasinglerowof15canisters extending
&omtheNorthwallsouthward tothemiddleofthespentfuelpool(Figure5.8-1).Thethermal-hydraulic modelincludesasinglecanisterinrack4-4Fandarowof14canisters inoneoftheexistingboraflexracks.Therowoffuelassemblies wasmodelledinasimilarmannerasdiscussed inSection5.8.1.Thismodeldiffersslightlyduetothedifferences betweentheexistingrackdesignandtheATEAType4rackdesign.TheexistingboraflexrackshaveanI-beamaroundtheirperimeter supporting themainstructure whichresembles arectangular honeycomb.
SquareflowholesarelocatedintheI-beampermitting flowtotransverse
&omthedowncomer tocentralregionsofthepool.Thecanisterentranceflowholeinthebaseplateofthecanisters isvirtually identical forbothdesigns(3.37in.fortheATEAtype4and3.25in.minimumfortheexistingborafiexcanister).
ThepressurelossthroughtheI-beamwasmodelledasarestriction forflowtotheboraflexracks.ThelosscoeKcient forflowthroughtheI-beamissimilarinmagnitude tothatforflowthroughanATEAsupportfoot.Theminimumdowncomer gapdimension, rack-to-pool wall,is3.59inchesforthisanalysis.
Asinglecanisterwidthisusedforthewidthofthedowncomer channel.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage444 Becauseofdifferences ininletregionsoftherackdesigns,theboraflextypewasanalyzedinitially withtheminimumrack-to-wall gapdimension toobtainthepressuredropboundarycondition.
Theminimumdowncomer rack-to-wall gapdimension of3.59incheswasbasedonthepresenceofatype4canister.
Thecanisterpressuredropobtainedfortheboraflextypecanisterwasthenusedasaboundarycondition thatexistedacrosstheATEAType4rack.Thefuelassemblyflowrateandtemperature risefortheATEAType4rackwascalculated basedupontheassumedpressuredropboundarycondition.-
TheGinnaUFSARstatesthatpriortomovingfuel&omRegionItoRegionII,acoolingperiodof60daysmusthaveelapsed.Thedecayheatloadfora60daydecaytimewasusedforthethermal-hydraulic model.SincetheATEAtype4andboraflexrackdesignsbothhaveessentially equalflowareas(theboraflexisslightlylargerthantype4),theresultsobtainedfortheATEAType4rackareequallyapplicable tobothracktypes.TheATEAType4rackresultsaresummarized inthefollowing table.Table5.9-3RegionIIType44BoraflexRackLocalPoolCoolingResults';.;;'Asse'mbly,:,',:.':'.;
',:,:>'.""'Ass'embly",Flow.,",:.':,',":t
,:;::.;::;.:.,.;l:,'i:':i'(Ibmlhr).',:::::;.::',,::::::,;:;
-,':,~;:."-.:."~',:::,:;Te'mp'eratu'r'e,,'(',.F)'i:
';:;;":;:.':l~::;::i
'.".:~4;":::::.Inlet:::::!."::::
:':.Outlet
'"i""::RegionIIType4&Boraflex1.753600150177Saturation temperature atthetopoftherackis238.9'FbasedonaminimumSFPwaterheightof23feetabovethetopoftheracks.AswiththeATEAType2racks,theresultsreportedinSection5.8.1fortheRegionI,type3rackareboundingduetothelongerdecaytimeassociated withthefuelassemblies storedinRegionIIoftheGinnaspentfuelpool.5.9.4NaturalCirculation intheRegionIFluxTrapRegionThepressures obtainedfromtheRegionItype3averagefuelassemblies wereappliedastheboundarycondition toobtaintheflowintheRegionIfluxtraps.Thecirculation inthefluxtrapregionsisdrivenbythepressuredifferences inthefuelcellsbecausetheflowinthesemajorpathsismuchhigher.Thegammaheatingoccursinthestainless steelandwaterandisdeposited directlyintothefluxtrapregion.Fortheanalysisconfiguration described inSection5.8.2,thefollowing resultswereobtainedfortheRegionIfluxtraps.Thereportedflowiscontained inonegapbetweentwoadjacentcanisters inRegionI.Flow(pergap):38ibm/hrOutletTemperature:
221'F51-1258768-01 GinnaSFPRe-racking Licensing ReportPage445 5.9.5NaturalCirculation intheRegionIIInter-Canister GapsThepressures obtainedfromtheRegionIItype2averagefuelassemblies wereappliedastheboundarycondition toobtaintheflowintheRegionIIfluxtraps.Pressures wereselectedattheheightoftheinlettotheinter-canister gapabovethebaseplateandapproximately 12feetdownstream wheretheflow&omthegapsre-enters themainstreaminsidethecanister.
AswiththeRegionIfluxtraps,thecirculation intheinter-canister gapsisdrivenbythepressuredifferences inthefuelcellsbecausetheflowinthesemajorflowpathsismuchhigher.Thegammaheatingoccurring inthestainless steelandwaterisdeposited directlyintotheinter-canister gapregion.Fortheanalysisconfiguration described inSection5.8.2,thefollowing resultswereobtainedfortheRegionIIinter-canister gaps.Thereportedflowiscontained inonegapbetweentwoadjacentcanisters inRegionII.Flow(pergap):12Ibm/hrOutletTemperature:
184'F5.9.6TheEffectofFlowBlockageThepartialblockageofacanisteroutletwasanalyzedassumingadroppedfuelassemblywaslayingontopoftherack.Utilizing theconservative assumption thattheendflittingofthedroppedfuelassemblyobstructed theexitflowfromthehottestassemblyinRegionI,theexitflowareawasreducedbyapproximately 85%.Theresulting bulkfluidtemperature wasdetermined tobe233'Fwhichisbelowsaturation (238.9'F).
Thepeakcladtemperature fortheoutletblockageis244'F.Thepeakcladtemperature isslightlyabovethesaturation temperature.
Usinganucleation criterion
&omLahey(Ref.5.9.6),itwasshownthatbubblesmaybepresentonthecladdingsurfacebutthatlocalconditions wouldnotsupportbubblegrowth.Theheatfluxnecessary foractivenucleation isapproximately seventimesgreaterthanthehotfuelassemblyheatflux.Consequently, adequatecoolingofthecanisterisstillmaintained.
Thesecondscenariothatwasinvestigated wasthecompleteblockageofthefuelcanisterinlet.Thecompleteblockageofacanisterinletpreventsnaturalcirculation flow&omremovingthedecayheat.Intheeventofsuchablockage, evaporative coolingremovesthedecayheatfromthecanister.
Assumingsteamflowexistsinthehottestfuelassemblycanister(F"~=1.75),acounterflow floodingcorrelation ofWallisdemonstrated thattheliquidwaterenteringthecanisterwassufficient toreplenish theboil-offandpreventdry-out.Aslongastherequiredmassfluxofliquid(neededtomatchthesteamrate)islessthanthefloodinglimit,adequatecoolingoftheassemblyisassuredevenifthecanisterinletiscompletely obstructed.
Thecounter-current floodingcalculation wasperformed forminimumflowareasofone-half(0.139fl)andone-fourth (0.070fP)oftheminimumfuelassemblytuberegionflowarea.Theminimumtuberegionflowareais0.279ft'.Itwasconservatively assumedthatthefluidpressureatthefuelassemblyexitwasatmospheric andnocreditwastakenforsubcooling oftheliquidenteringthetopoftheassembly.
Theresultsindicated thatasafetymarginofover40existsattheone-halfareareduction andover7fortheone-fourth areareduction.
Thecladtemperature wascalculated tobeapproximately 10'Fabovethewatersaturation temperature.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage446
5.9.7NaturalCirculation intheConsolidated FuelCanisterTheevaluation ofcoolingtheconsolidated fuelcanisterisidentical inprinciple tothefuelassemblyanalysis.
Thedecayheatloadismuchlower,basedona5yeardecaytime.Thelocalpressures
&omtheRegionIaveragefuelassemblyanalysiswereappliedasboundaryconditions witharacklevelingfootplacedbelowtheconsolidated fuelcanister.
Theconsolidated fuelcanistercontained twofuelassemblies worthofrods.Decayheatforthisanalysiswasselectedbycomparing thedecayheatofpeakaveragefuelassemblies aftera5yeardecayhavingburnupsof15,30,45and60GWd/mtU.Thedecayheatforafuelassemblyhaving60GWd/mtUwasfoundtobeboundingandwasusedforthisevaluation.
Theresultfortheconsolidated fuelcanisterfollows:Flow:120ibm/hrOutletTemperature:
222'FPeakCladTemperature:
231'FRGB'ay,atafuturedate,increasethecapacityoftheGinnaspentfuelstoragepoolthroughconsolidation.
Thisevaluation assessedtheimpactofconsolidated fuelcanisters onthelocalpressureresults&omtheRegionIanalysis.
UsingtheRegionIthermal-hydraulic model,ananalysiswasperformed toobtainthepressuredropboundarycondition aswasdonefortherowofaveragefuelassemblies.
Consolidated fuelcanisters havingconsolidation ratesof2:1and1:1weremodelled.
Theresultsindicated thatbothconfigurations ofconsolidated fuelcanisters wouldresultinhigherlocalpressuredropsthanweredetermined fortherowoffuelassemblies.
Applyingtheselocalpressures acrossthehottestfuelassemblyasapressuredropboundarycondition wouldresultinincreased flowtothehottestassemblycomparedtothedesignresultsobtainedwiththefuelassemblies.
Theseevaluations indicatethethermal-hydraulic conditions determined withfuelassemblies inthefuelcanisters inbothRegionsIandIIremainboundingwithincreasing numbersofconsolidated fuelcanisters.
Withincreasing numbersofconsolidated fuelcanisters, additional flowwouldbedivertedtothehottestfuelassemblyresulting inreducedbulkfluidandcladtemperatures forthehottestassembly.
5.10LOSSOFTHESPENTFVELCOOLINGSYSTEMThespentfuelpooltemperature heat-upratehasbeendetermined foracompletelossofthespentfuelheatremovalsystem.Nocreditistakenforheatlossthroughthepoolwalls,evaporative coolingfromthepoolsurfaceorconvective coolingtotheambientair.Thethermalinertiaofthepoolwasdetermined bysummingthecontributions oftheracks,fuelassemblies, thenetpoolwatervolume,andtheSFPliner.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage447 Theheat-upratesarecalculated forthetimeittakesthepooltoheatfromthe150'Ftechnical specification limittemperature tothedesignlimitfortheSFP,180'F.Valuesarereportedforboththepoolconfiguration withfuelassemblies andforcompleteconsolidation.
Completeconsolidation placestwofuelassemblies inaconsolidated fuelcanisterplacedineverylocationofthespentfuelpool.Thetablesummarizes theheat-upratesforvaryingheatloadsasafunctionofthelakewatertemperature.
Backupheatremovalsystemsconsisting oftheoriginalSFPCSandtheportableskidmountedunitareavailable intheeventofafailureoftheprimarySFPCS.Theuseofthesebackupsystemsprovideheatuptimestoreachthe180'Fstructural integrity limittemperature greaterthanthoselistedinTable5.10-1.TheoriginalSFPCScanbemadeoperational in45minuteswhichisconsiderably lessthantheminimumtimeof3.4hourslistedinTable5.10-1forfullconsolidation withan80'Flakewatertemperature.
After45minutesofheatup,thepooltemperature wouldbe156.5'Fforaheatuprateof8.71'/hrforfullconsolidation.
Theincreaseinwatertemperature wouldthendropto4.4'F/hrafter45minutes.Anadditional 5.3hourswouldbeavailable forrepairortoplacetheskidmountedunitintooperation beforethepoolwatertemperature reaches180'F.Theadditional timeof5.3hoursisgreaterthanthe3hoursrequiredtobringtheskidmountedsystemintooperation.
Similarresultsareobtainedforlakewatertemperatures below80'F.Thus,adequatetimeandcoolingcapacityareavailable topreventtheSFPwatertemperature
&omreaching180'F.Table5.10-1LossofPoolCoolingandHeat-UpTime".,:.,".,::Pool':;Coiifiguration'!'::::'::,"';,-:::-:';;:ll ake'.".%ater@~,.'-".:
~),:::,'::
--,'"=:;-.';;:(Hours)':
::-'::.:
.-::';':'".-:;:;!
1:50;::F'"~;;:;1:80.':F.;-::ii.:'.;;",
Unconsolidated Unconsolidated Unconsolidated Consolidated Consolidated Consolidated 40608040608021.720.416.021.720.416.02.83.03.82.52.73.4Theheat-uprateforalakewatertemperature of40'FisbasedonthedecayheataAera100hourdecaytimebasedontheradiological requirement.
Theconsolidated poolconfiguration isforfullpoolconsolidation, i.e.,twospentfuelassemblies areconservatively placedinaconsolidated fuelcanisterinalllocations.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage448
5.11COMPARISON BETWEENORIGEN2RESULTSANDASB9-2METHODOLOGY ORIGEN2doesnotuseempirical-based methodstocalculate decayheatbuttracksthebuildupanddecayoftheindividual fissionproductswithinthereactorcoreduringoperation pndshutdown.
ORIGEN2alsoincludestheeffectofelementtransmutation fromneutroncapture,bothinfissileisotopesandfissionproducts.
BecauseORIGEN2performsarigorouscalculation ofdecayheat,itwasusedinthecalculations fordecay'eat inthisanalysis.
Toprovideadditional information, acomparison ofthefullcoredecayheatpowerresulting fromORIGEN2andthatresulting fromtheBranchTechnical PositionASB9-2foracoreoperating timeof15GWD/MTUisshownbelowforseveraltimesaftershutdown.
Table5.11-1Comparison betweenORIGEN2andASB9-2Resultsforafullcoreoffload(121FuelAssemblies, nopoolinventory) with15GWD/MTUburnup241006002400804150502351109491045537254411011.1321.0961.0821.006Thiscomparison showsthatforthetimeofinterestinthisanalysis, 100hours,thattheASB9-2methodpredictsthedecayheatforafullcoretobewithin10%ofORIGEN2.5.12REFERENCES 5.2.1OTPositionforReviewandAcceptance ofSpentFuelStorageandHandlingApplications, DatedApril14,1978,andrevisedJanuary18,1979.5.2.2NUREG-0800 StandardReviewPlan9.1.3,Revision1(July1981),andStandardReviewPlan9.2.5Revision2(July1981),(Ref.5.2).5.2.3A.G.Croff,2-evieeVeineak'deeeORNL-5621, (Ref.5.3).5.6.1P.L.Holman,et.al.,ewtraeRBAW-2095, November1989.(FCFinternaldocument).
c5.7.1FTIDocument32-1203121-01, "FSPLITCertification Analysis,"
September 1991.(CodeVerification) 51-1258768-01 GinnaSFPRe-racking Licensing ReportPage449 0
5.8.1HandbookofHydraulic Resistance, 2ndEdition,I.E.Idelchik, Hemisphere Publishing Corp.,1986.5.9.6TheThermal-Hydraulics ofaBoilingWaterNuclearReactor,2ndPrinting, R.T.Lahey,Jr.,andF.J.Moody,ANS/AECMonograph SeriesonNuclearScienceandTechnology Published bytheANS.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage450
6.0 RADIOLOGICAL
EVALVATION Theradiological safetyanalysis"'I wasperformed inaccordance withGeneralDesignCriteria61of10CFRPart50AppendixAI"Itoevaluatehypothetical accidents involving fueldamagetoRegions1and2anddoseratesduetotheincreased capacity.
Theanalysisaddressed:
(1)offsitedoseconsequences atthesiteboundary(EAB)andatthelowpopulation zone.boundary(LPZ)fromtheselimitinghypothetical
'accidents:
(a)rackdropaccident(b)caskdroportipaccident(c)gatedropaccident(d)consolidated canisterdropaccident(e)fuelhandlingaccident(f)tornadomissileaccident(2)doseratesatthesurfaceofthespentfuelpoolandthroughthepool'sconcretewallsforthepurposesofoccupational exposure.
Theanalysisalsoaddresses solidradwasteandgaseousreleases.
Fromthestandpoint ofoffsitedoses,theimportant aspectoftheproposedre-racking isthatthepoolwillcontinuetobedividedintotworegions,Region1whichrequiresfueltohavedecayedaminimumtimeof100hours,and(2)Region2whichrequiresfueltohavedecayedforaminimumtimeof60days.Thesetworegionsareillustrated inFigure6-1.Duetothetwoseparatedecaytimes,accidents occurring ineitherareacanhavevaryingradiological consequences.
6.1ACCEPTANCE CRITERIA6.1.1OffsiteDoseExposureReference offsitedosevaluesforevaluating hypothetical accidents involving fissionproductreleasesarespecified in10CFRPart100""andare25remtothewholebodyand300remtothethyroid&omiodineexposure.
Bothvaluesareapplicable totheexclusion areaboundary(EAB)andthelowpopulation zoneboundary(LPZ).Section15.7.4.oftheStandardReviewPlan"'I(SRP)specifies acceptance criteriaof25%of10CFRPart100guidelines'or postulated fuelhandlingaccidents.
However,theGinnaStationwasdesignedandbuiltpriortotheSRPandisnotrequiredtomeettheSRPlimits.Apreviousfuelhandlingaccidentanalysisshowedanoffsitedoseof96remthyroid""+'hich hasbeenpreviously acceptedbytheNRCasbeing"wellwithin"10CFRPart100limits.1Section15.7.4.IV statesthataplant'sfacilities areacceptable ifreasonable assurance isprovidedthatthecalculated offsiteradiological consequences ofapostulated fuelhandlingaccidentarewellwithinthe10CFRPart100exposureguidelines.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage451 6.1.2Occupational DoseExposureOccupational exposuredoselimitsarespecified in10CFRPart20~jandarefurthercontrolled byplantprocedures.
Therecommended doseratethatshallnotbeexceededinaccessible spacesadjacentthespentfuelpoolisgiveninANSVANS57.2~"jandis2.5mrem/hrtoanypersonsoccupying thosespaces.Therateisspecified forwhenthepoolisatitsdesignfuelinventory andattheminimumdesignwaterdepth.6.2OFFSITEDOSECONSEQUENCES Thefollowing sixhypothetical accidents potentially resulting inreleasesoffissionproductswereevaluated:
a)b)c)d)e)f)rackdropaccidentcaskdroportipaccidentgatedropaccidentconsolidated canisterdropaccidentfuelhandlingaccidenttornadomissileaccident6.2.1RackDropAccidentInstallation andremovaloftheracks(heavyloads)willrequireuseoftheauxiliary building's 30toncranehook,whichmeetsthesinglefailureproofrequirements ofNUREG-0612~
jforcarryingheavyloads(seeUFSARCh.9.1.4.3.1)"'".
Inaddition, duringthere-racking, installation andremovalprocedures willpreventtransport ofracksoverspentfuel.Thus,anaccidentinvolving thereleaseoffissionproductsfromarackdropaccidentisnotplausible, andtheoffsiteradiological doseconsequences neednotbedetermined forthisaccident.
6.2.2CaskDrop/TipAccidentInsertion andremovalofaspentfuelcaskwillbeconducted usingtheauxiliary building's 30toncranehook,whichmeetsthesinglefailureproofrequirements ofNUREG-0612 forcarryingheavy'oads(seeUFSARCh.9.1.4.3.1).
Inaddition, duringtheremovalandinsertion ofthecask,plantprocedures andcraneinterlocks willpreventtransport ofthecaskoverspentfuel.Thus,anaccidentinvolving thereleaseoffissionproductsfromacaskdroportipaccidentisnotplausible, andtheoffsiteradiological doseconsequences neednotbedetermined forthisaccident.
6.2.3GateDropAccidentTheexistingliftingmechanism forthespentfuelpoolgate(totransfercanal)isnotsinglefailureproof.However,RG&Ewillmodifytheliftingmechanism tomakeitsinglefailureproofinaccordance withNUREG-0612 topreventaccidental droppingofthegate,whichisconsidered aheavyload.Thisactionwillpreventpotential fueldamageandthesubsequent releaseoffissionproducts.
Thus,theoQsiteradiological doseconsequences neednotbedetermined forthisaccident.
6.2.4Consolidated CanisterDropAccidentAconsolidated canistercancontainallofthefuelrodsfromtwoassemblies andisconsidered aheavyloadperNUREG-0612 criteria.
Therewillbeadministrative controlformovementofthecanisters inthespentfuelpool.Thecanisters willbeliftedusingasingle-failure proofcraneanda51-1258768-01 GinnaSFPRe-racking Licensing ReportPage452 single-failure proofliftingsystemandwillbehandledinaccordance withtheguidelines onNUREG-0612withregardtolimitingthechanceofanunacceptable heavyloaddrop.Thisactionwillpreventpotential fueldamageandthesubsequent releaseoffissionproducts.
Thus,theoffsiteradiological doseconsequences neednotbedetermined forthisaccident.
6.2.5FuelHandlingAccidentThedosemodelsandmethodology forcalculating thethyroidandwhole-body dosesattheEABandLPZduetoafuelhandlingaccidentinsidetheauxiliary buildingaredescribed inSection15.7.3.2oftheUFSAR.Theproposedre-racking oftheGinnaSFPhasnotaffectedanyassumptions or'nputs(including sourceterms)usedinthefuelhandlingaccidentasdescribed intheUFSAR.TheheightoftheRegion1rackswillremainthesameasthosecurrently installed, andithasbeenshown(UFSAR15.7.3.1.4) thatifadroppedfuelassemblyimpactsastoredassembly, thefuelrodcladdingoftheimpactedassemblywouldnotfail.Therefore, thecurrentanalysisforthisaccidentasdocumented intheUFSARremainsvalidandapplicable.
Theoffsitedoseconsequences forafuelhandlingaccidentoccurring inthespentfuelpoolare:0-2hourthyroid0-2hourwholebody140.310.880.026.2.6TornadoMissileAccidentSinceRegion1racksaretobereplacedwithATEA-designed racks,theradiological doseconsequences ofthetornadomissileaccidentinRegion1mustbere-evaluated.
Thedosemodelsusedtocalculate theoffsitethyroidandwholebodydosesareidentical tothemodelsusedinthefuelhandlingaccidentanalysisinsidetheauxiliary building(seesection15.7.3.2oftheUFSAR).Thethyroiddosewascalculated usingthefollowing equation:
Dose(rem)
=PA-BDCFXIgIwhereA;=X/Q=BDCF;iodineactivity(Ci) releasedfromauxiliary buildingforisotopeIthe0-2houratmospheric dispersion factoratthesiteboundaryandthe0-8houratmospheric dispersion factoratthelowpopulation boundarybreathing rate(3.47x10~m'/sec)adultthyroidinhalation doseconversion factor(rem/Ci)foriodineisotopeITheexternalwholebodygammaradiation dosewascalculated usingthefollowing semi-infinite cloudequation:
XDose(rem)
=0.25gEI51-1258768-01 GinnaSFPRe-racking Licensing ReportPage453 where0.25EY;A;=X/Q=unitsconversion factor[(rad-m3-disintegration)/(Ci-MeV-sec)]
toconvert[(Ci-sec-MeV)/m']
torads(orremssincequalityfactoris1.0)averagegammarayenergy(MeV/disintegration) forisotopeInoblegasactivity(Ci)releasedfromtheauxiliary buildingthe0-2houratmospheric dispersion factoratthesiteboundaryandthe0-8houratmospheric dispersion factoratthelowpopulation boundaryNotethat0.25xEY;isthewholebodydoseconversion factor.Sincethepoolisdividedintotworegions,itispossiblethatthehypothetical tornadomissile,whichisconsidered tobea1,490lbwoodenpole,35ftinlengthand13.5inchesindiameter(seeUFSAR9.1.2.7),
couldimpactanddamagethefuelineitherregion.TheATEAracksarebeingdesignedtoreplacetheexistingRegion1racksandwillhavethesameheightasthecurrentRegion1racks.Ithasbeendetermined inaseparateanalysis(seeSection3ofthisreport)thattheresulting damagefromthestatedtornadomissiletotheATEA-designed rackswouldbetheassemblyofdirectimpactandimmediately adjacentassemblies foratotalofninedamagedassemblies.
SinceRegion1istocontainfreshlyoff-loaded fuelwithaminimumof100hoursofdecaywhereasRegion2'sminimumdecaytimeis60days,Region1damagewillprovidelimitingdoseconsequences.
FreshlyoF-loaded fuelistobestoredinacheckerboard pattern.Toensurethatfreshlyoff-loaded fuelisnotstoredinadjacentrackcells,theRegion1rackswillbeloadedinacheckerboard patternwithfuelfromRegion2beforeoff-loading freshfuel.Uponimpactfromthehypothetical tornadomissile,themaximumdamagetotheRegion1ATEArackswillbeninecellsornineassemblies.
Theworstcaseconfiguration wouldbefivefreshlyoff-loadedassemblies andfourRegion2assemblies.
Itwasconservatively assumedthatallassemblies hadapeakingfactorof1.2.Additional assumptions andinputsareshowninTable6A-1inAppendix6A.Theresulting offsitedoseconsequences areshownbelowinTable6.4-1.Forcomparison, thedoseconsequences resulting
&omthetornadomissileaccidentoccurring inRegion2anddamagingninefuelassemblies (seeUFSAR9.1.2.7)werealsocalculated andareshowninTable6.2-1.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage454 Table6.2-1OffsiteRadiological Consequences ofaHypothetical TornadoMissileAccidentTornadomissileaccidentinRegion1(100hrsdecay)0-2hourthyroid0-2hourwholebody400.19200.093TornadomissileaccidentinRegion2(60daysdecay)0-2hourthyroid0-2hourwholebody0.518.1E-40.254.0E-46.3OCCUPATIONAL EXPOSURETheGinnaStationRadiation Protection StaffandProcedures arecurrently adequateforsupporting thismajoroperation.
Theareasofpotential concernsaredocumented inprocedures.
Theseincludebutarelimitedto:theriskofsignificant airborneactivity, theprotection ofthediversandtheworkersfrominadvertent andunplanned exposures, andthedocumentation ofthedosefromthiscampaign.
Workwillbecontrolled bytheGinnaStationRWP,andtrackedusingtheautomated electronic dosimetry program.Thisallowsaveryrapidupdateoftheworker'sdosesaswellasthetotalperson-rem associated withthererack.Personnel trafficandequipment movementwillbemonitored andcontrolled tominimizecontamination andradioactive wastegeneration, andtoensurethattheworkisinkeepingwiththeALARAdoseminimization philosophy.
Diverswillhavemultipleelectronic andTLDdosimetry toensurethatcorrectmonitoring ofthedosesisachieved.
Tosupportthis,arearadiation monitorswillbeinstalled intothespentfuelpooltoanticipate anyradiological changes.Gaseousreleaseswillbemonitored atthepoolbyaContinuous AirMonitorwhichwillbeNobleGasandIodinecapable.Theplanteffluentradiation monitoring systemwillalsobeavailable tomonitortheseconditions.
GinnaStationperformed arerackin1984-1985 andthelessonslearnedwerereviewedandwillbeappliedtotheupcomingproject.Asaresult,weexpectthistoreducethetotalexposureassociated withthererackfrom14Person-Rem in1984-1985 toarangeof8to12Person-Rem in1998.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage455 Whileoffsitedoseconsequences arecalculated foraccidentscenarios, thereshouldbenosignificant releasestotheatmosphere orreceiving watersasaresultofthererack.Anyreleaseswhichdooccurshouldbewellwithintheregulatory limits.AlloftheRadiation Protection Professional StaffareBoardCertified bytheAmericanBoardofHealthPhysics(Parts1and2).Asaresult,theyhaveahighdegreeoftrainingandexperience todealwithdeveloping situations.
Duetotheproposedincreaseinspentfuelcapacity, thedoseratesattheoutersurfaceofeachconcretewallofthespentfuelpoolandthedoserateatthepoolsurfacewerecalculated.
Thespentfuelpoolwallthicknesses areshowninFigure6.2.Thedoserateswerecalculated usingthediscreteordinates transport codes,ANISN"'",
andDORT"'".ANISNisessentially aone-dimensional versionofthetwo-dimensional DORTcodeandgenerally yieldsslightlymoreconservative resultsthantheDORTcode.TheDORTcodewasusedtoverifytheANISNresults.Themacroscopic materialcrosssectionsweregenerated usingtheBUGLE-93""microscopic crosssectionlibrary.Thesourcetermsforbothcodesweregenerated basedupon:~>poolatfullcapacity~>fuelwithaburnupof60GWD/MTU~~fuelwith100hoursofdecay.Theresulting doseratesatlocations ofinterestareshowninTable6.3-1.Alldoseratesattheoutersurfacesaresmallwiththeexception ofthesouthwall,whichhasadoserateof101rem/hr.Thisdoserateisnotaconcern,however,sincethesouthwallfacesthegroundatelevations spanningtheheightsofthefuelassemblies.
Atelevations abovethefuel,theconcreteisnearlysixfeetthickandatthisoutersurfaceitbecomesthenorthwallofthedecontamination pit.Duringnormaloperations, personnel workinginthefuelstorageareaareexposedtoradiation fromthespentfuelpool.Operating experience hasshownthatthearearadiation doserates,whichoriginate primarily fromradionuclides inthepoolwater,aregenerally 1.0to2.0mrem/hr.Radionuclide concentrations typicalofthosefoundinpoolwaterareshowninTable6.3-2.Duringfuelreloadoperations, theconcentrations mightbeexpectedtoincreaseduetocruddepositsspallingRomspentfuelassemblies andtoactivities carriedintothepool&omtheprimarysystem.However,experience todatehasnotindicated amajorincreaseasaconsequence ofrefueling.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage456 eU
6.4SOLIDRADWASTKSpentresinsaregenerated bythespentfuelpoolpurification system.Thefrequency forchangingtheresinsisbetweentwotothreeyears.ThefloorofthespentfuelpoolwillbecleanedbeforeanyworkandaftereachoftheoldRegion1racksisremoved.Appropriate workpractices andthecleaningofthespentfuelpoolfloorwillreducethegeneration ofspentresinsbythepurification system.Itisnotpossibletoseparateouttheactivityofthespentfuelpoolresinfromtheresininthespentresintank.RecentresinactivityisshowninTable6.4-1.Operating experience afterthe1985modification indicates thattheincreased storagecapacitywillnotresultinasignificant changeingeneration ofsolidradwaste(disposal oftheexistingRegion1.racksimmediately afterthe.installation isdiscussed separately inSection6.6).Thereisnoexpectedadditional man-remburdenfromthesolidradwastegenerated duetotheincreased capacityofthespentfuelpool.Table6.4-1Radionuclide AnalysisReport-ResinActivity, fromtheSpentResinTanksNON-TRANSURANIC Co-58Cs-137Cs-134Co-60Mn-54C-14Tc-99I-129H-3Sr-90Ni-63Fe-55Sb-125pCi/gm4.6315.041.2913.831.011.27<LLD<LLD1.280.1327.7024.906.6951-1258768-01 GinnaSFPRe-racking Licensing ReportPage458 Table6.4-1Radionuclide AnalysisReport-ResinActivity, fromtheSpentResinTanksContinued TRANSURANIC Po-238P0-239,240PU-241Cm-242Cm-245/244 0.0140.0080.700.0190.020ResinVolume=14or0.4m'LD=lowestlevelofdetection 51-1258768-01 GinnaSFPRe-racking Licensing ReportPage459 6.5GASEOUSRELEASESTable6.5-1summarizes theauxiliary buildinggaseousreleasesin1994and1995.Nosignificant increases areexpectedasaresultofthereracking.
ThereisnowaytoseparateouttheSFPcontribution
&omthetotalexhausted
&omtheauxiliary building.
Table6.5-1GaseousReleasesfromtheAuxiliary BuildingI;::.'Radio'nuclide':,
Xe-133Xe-135I-131Kr-85mKr-87Kr-88I-133H-3Cs-137'.;-'..'.,':,-P)Cur'ies.::,>,:",:y',.'.21 x10'.631.30x10"1.62x10"3.73x10'.46x10~,Radio'aiiclide.'.-
Xe-133Xe-135I-131Kr-85mKr-87Kr-88I-133H-3Cs-137i'::;::;:>,.".,'.;,'Cii'r'ie's',;:,'::.":.":I.':,',
1.86x107.037.18x10~1.22x10~4.94x104.27x10Note:Itisnotpossibletosegregate theatmospheric releases&omthespentfuelpoolfromtheremainder oftheauxiliary building.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage460 6.6RACKDISPOSALDuringthemodification, threeWachterrackswillberemoved&omthespentfuelpool:TypeA3(31,366lbs),TypeB(26,533lbs),andTypeC(23,453lbs).TheoldRegion1rackswillbedecontaminated,
- packaged, andshippedbytrucktoafacilitylicensedfortheprocessing oflow-level radioactive waste.Shipmentofthespentfuelpoolrackstotheprocessing facilitywillmeetalltherequirements setforthbyapplicable Departments ofTransportation (FederalandState)andtheAmericanAssociation ofStateHighwayandTransportation Officials.
6R7CONCLUSIONS Ofthesixlimitinghypothetical accidents evaluated onlytwo,thefuelhandlingandtornadomissileaccidents, resultinthereleaseoffissionproductstotheenvironment.
Theoffsitethyroidandwholebodydosescalculated fortheexclusion areaboundaryandlowpopulation zoneboundaryarelessthantheacceptance criteria.
Therefore, itcanbeconcluded thatintheeventoftheseaccidents, theproposedre-racking oftheGinnaspentfuelpooldoesnotadversely affectthehealthandsafetyofthepublic.Theincreaseinstoragecapacitydoesnotadversely affectthedoseratesatthepoolsurfaceoratotherlocations ofinterestnorwillitadversely affectsolidradwasteproduction andgaseousreleasesfromtheauxiliary building.
6.8REFERENCES
6.132-1258146-00,
-acRinli,M.A.Rutherford.
6.232-1257240-00, erakeI',T.L.Lotz.33flllll,ddpI,Cd*fl'*IR3II,9dtlApp41A,~riteriala,4/30/93.6.4Title10,Chapter1,CodeofFederalRegulations, Part100,6.5NUEEG-0800, narRviwev'ewfe.LNRRd.,CPNRC,CAC31999.'4139193.I'frNuclr6.638-1247195-00, Rutherford.
veTI,M.A.Referenced transmittals are:(A)LetterfromJ.P..Ortiz(RG&E)toG.T.Fairburn(FTI),FR-96-013, datedJuly19,1996.
SUBJECT:
INPUTDATAFORTHERADIOLOGICAL SAFETYANALYSIS/DRAFTAISNO.51-1257365-00.
(B)Thisreference intentionally omitted.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage461 References Continued (C)Letter&omJ.P.Ortiz(RG&E)toG.T.Fairburn(FTI),FR-96-022, datedAugust19,1996.
SUBJECT:
ACTIONITEMMM-07/10/96-8.2/INPUT TOTHEMOSTRECENTCONTROLROOMDOSEANALYSIS.
6.7Title10,Chapter1,CodeofFederalRegulations, Part20,nrEy~gjgo3/31/95.tecain6.8ANSI/ANS57.2-1983, cil'.9NUREG-0612, euWacwPAmericanNuclearSociety,10/7/83.wrPln,U.S.NRC,July1980.6.10UpdatedFinalSafetyAnalysisReportforR.E.GinnaUnit1,DocketNo.50-244,currentthruRev.13-1, controlled copy01243,7/96.6.11ANISNBW-n-al'ee'ane,B&WVersionofANISN-WUser'sManual,NPGD-TM-491, Rev.8,Filepoint 2A4,FTILynchburg, VA,July1993.6.12BWNT-TM-107, ORIG,DORT-Twreterin(BWNTVersionofRSIC/ORNL CodeDORT),VA,Filepoint 2A4,FTI,Lynchburg, May1995.6.13BUGLE-93Brade'nV'nerh-ecii'vedte-VclerQuid,DLC-175,OakRidgeNationalLaboratory, OakRidge,April1994.6.14USAECReg.Guide1.25,eec'nAcciilin'Weac,3/23/72.elandlinicacilif6.15NUREG/CR-5009, emtheefedrnuFueliniewer~~c~.Baker,D.A.;Bailey, W.J.;Beyer,C.E.;
etal.BattelleMemorialInstitute, PacificNorthwest Laboratory, February1988.6.16International Commission onRadiological Protection Publication 30Supplement toPart1,ake'clidee,1980.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage462 Figure6-1OverviewofProposedRe-racking oftheGinnaSpentFuelPoolRackType4Region2Region14D4A4ERackType14B4F4C~RackT3Racks3A,3B,3C,83DRack3ERack~Te2Racks2A82BRackType4poowall-concretecaskareaLFigure6-2OverviewofSpentFuelPoolConcreteWallThicknesses N6ReionI294spentfuelcells6'I31~Reion21,075spentfuelcells3.5'askareaconcretewallstransfercanal51-1258768-01 GinnaSFPRe-racking Licensing ReportPage463
Appendix6AAssumptions andInputKeyassumptions andinputarepresented inthisappendixforthecalculation ofradiological doseconsequences forthetornadomissileaccident.
Table6A-1Assumptions andInputsUsedinDetermining OffsiteDosesDuetoTornadoMissileAccidentInsideAuxiliary Building.':.:,":;"',:;;;;>,.:::i:;:.:';:::A'ss'u'iiiptloii'o'r:.'Inpu'ti'i;::,:,:::,':;::,:;:,;::;'":."j "I::;:t:,::;:::;:,:.;Value;:.';:;,';:
,';;:,:::;:;.:,~,';~;::.;,:;::;:.'..;:;:,:,:,::::;I:;.:;t..~:Ba'sts
<for,',ValueNp",::;:.';<i':;:j'<Ie"'.j;v~gi;::.,'.:;
Core.power,MW~RadialpeakingfactorTotal¹ofrodsinassembly¹ofdamagedassemblies CoresourcetermsGapactivity,
%Minimumwaterdepthabovedamagedfuelassembly, ttPoolscrubbing factorelemental orgamcNGIodinechemicalspecies,%elemental organicFiltration Siteboundaryatmospheric dispersion factor,sec/m'owpopulation zoneboundaryatmospheric dispersion factor,sec/m'odine doseconversion factors(DCFs),rem/ciI-131I-132I-133I-134I-13515511.2179I&NG,10Kr-85,301-131,1223133II99.750.25Noneassumed6.0E-53.0E-51.07E66.29E31.81E51.07E33.14E41520plus2%uncertainty Conservative averagevaluefordamagedassemblies Consistent withcurrentFHanalysisSeesection3Iodineandnoblegasactivitydetermined withORIGEN2Reg.guide1.25;extendedburnupfactorappliedtoI-131perNUREG-5009""t Reg.guide1.25Reg.guide1.25-overalleffective decontamination factoris100.Iodinereleasedfromfueltopoolwater,Reg.Guide1.25.Table15.7-1ofUFSARICRP30~'51-1258768-01 GinnaSFPRe-racking Licensing ReportPage464
.:,.,"jj;:;,.N:.":::;,:;;.'gjjA'ssuinption;oi..':Input~~:~:-:;l,'g~.k.;,:
Breathing rate,m'/secFuelexposureforimpactedspentfuelassembly, MWD/MTUDesignmissileCooldowntimeforimpactedspentfuelassemblies:
Region1(RackType3)Region2(RackTypes2,3,&4)3.47EA60,0001490lbwoodenpole,35feetinlengthand13.5"indiameterwithaverticalvelocityof70lt/sec.100hrs60daysReg.guide1.25.Reference 6.6(A)UFSARCh.9.1.2.7UFSARCh.15.7.3.2&Ch.9.1.2Table6A-2TornadoMissileAccidentSourceTermsforRegion1(100HoursofDecay)NV;::,:.::'::.'Niiclide".'::'.:.":::.'.-:,"
."..':Rele'a'sed::foYAu'x!31d
iI-131I-132I-133I-134I-1351.78E+031.24E+031.54E+02Neliible1~11E-01Kr-83mKr-85mKr-85Kr-87Kr-88Neliible1.07E-021.28E+04NeliibleNeliibleXe-131mXe-133mXe-133Xe-135mXe-135Xe-1382.31E+035.31E+032.86E+051.77E+005.35E+02Neliible51-1258768-01 GinnaSFPRe-racking Licensing ReportPage465 Table6A-3TornadoMissileAccidentSourceTermsforRegion2(60DaysofDecay),','.<:.,:;..,':.:".3;::.
'.;::.:.>x j$;:p.;::::;.;;:
Activity(Ci):
- ';:,.':.:;":,.;:.i':,
- ,::I.":,":::N~
Nuclide!.:,."i::::::
Releas'e'd,to':Aux':'Bld
"'-131I-132I-133I-134I-1352.28E+011.61E-02NeliibleNeliibleNeliibleKr-83mKr-85mKr-85Kr-87Kr-88NeliibleNeliible1.55E+04NeliibleNeliibleXe-131mXe-133mXe-133Xe-135mXe-135Xe-1383.01E+021.84E-022.81E+02NeliibleNeliibleNeliible51-1258768-01 GinnaSFPRe-racking Licensing ReportPage466 Table6A-4DoseConversion Factors.-I-131I-132I-133I-134I-1351.07E+066.29E+031.81E+051.07E+033.14E+04Nh'ole'.3o'dyIDCF,.
- .<'.Reiii-"'.m'.ICi-"s'ec".',',
9.70E-025.59E-011.50E-016.48E-013.64E-01;:,'Eav'e'-:
.,'.0.392.240.602.591.46Kr-83mKr-85mKr-85'r-87Kr-881.10E-024.00E-025.75E-'04 1.98E-015.50E-010.0440.160.00230.792.2Xe-131mXe-133mXe-133Xe-135mXe-135Xe-1387.25E-045.00E-037.50E-031.08E-016.25E-022.80E-010.00290.020.030.430.251.12NotethatthewholebodyDCFsarecalculated bymultiplying theaverageenergyoftheemittedphotonsby0.25(seeSection6.2.6).51-1258768-01 GinnaSFPRe-racking Licensing ReportPage467
7.0 QUALITYASSURANCE
7.1DESCRIPTION OFSUPPLIER'S QUALITYASSURANCE PROGRAMFTIhasaQualityAssurance Programforproductsandservicesdesignated as'Safety-Related'nd as'Non-Safety Related'.
Thisprogramisintendedtocomplywiththerequirements of10CFR50,AppendixB(QualityAssurance CriteriaforNuclearPowerPlantsandFuelProcessing Plants)andtheapplicable requirements oftheASMEBoiler&PressureVesselCode,SectionIII,DivisionI.TheQualityAssurance Programisincompliance withANSIN45.2anditsapplicable daughterdocuments, andanyapplicable requirements inANSVASME, NQA-1whicharenotcoveredintheANSIN45.2Series.Theprogramalsoestablishes methodstomeetthequalityrequirements thatareimposedbycontracts withthecustomerorthat,intheabsenceofsuchprovisions, areimposedbytheProductLineManager.Thisprogramalsoprovidesfortheimplementation ofthecustomer-specific procedures whenrequiredbythecontract.
Thescopeofthisprogramcoversactivities beginning withtheauthorization toproceedundercustomercontractandextending throughthedeliveryofthefinalproduct.AttheoptionoftheProductLineManager,itmayalsobeappliedtoactivities performed priortotheinitiation ofthecontract.
ThisprogramhasbeenreviewedandapprovedbyRG&Eandhasbeenutilizedinperforming workinthepast.
Acontrolled copyoftheFTIQualityAssuranceManual(Doc.
No.56-1201212) ismaintained atRG&EbyG.R.Amsden,QualityAssurance.
7.2DESCRIPTION OFQUALITYASSURANCE PLANANDIMPLEMENTATION FTIisthePrimeContractor fordesign,licensing
- analysis, fabrication, andinstallation ofspentnuclearfuelstorageracks.FTIisteamedwithATEAfordesignandfabrication, andFCFforthelicensing analysis.
PeylaConstruction Management (PCM)willberesponsible fortheremovalanddisposaloftheoldracksandwillinstallthenewracks.ATEAisasubcontractor ofFTI,andFCFandPCMaresubcontractors toATEA.FTIisresponsible fortheoverallprojectcoordination andintegration oftheresources andtheteam.Allworkperformed ontheproject,whethertechnical oradministrative, willbeperformed inaccordance withFTI'sQualityAssurance Program(Doc.No.56-1201212).
Also,inaccordance withtheProjectManagement Plan(Doc.No.56-1257505) project-specific tasksperformed byFCFwillutilizetheFCFQualityAssurance Program(Doc.No.56-1177617);
project-specific tasksforATEAwillutilizetheATEAQualityAssurance Program(Rev.0,datedApril18,1995,asauditedandapprovedbyFTI;andproject-specific tasksperformed atGinnabyPCMwillbeperformed inaccordance withtheFIIQualityAssurance Program(Doc.No.56-1201212).
Technical documents fromRG&Eandotherorganizations willberetainedintheFTIRecordsCenterandwillbemaintained inaccordance withthecontractrequirements.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage468 TheATEAstorageracksarecategorized as'Safety-Related'roducts andassucharerequiredtomeetorcomplywiththerequirements of10CFR50,AppendixB.7.2.1Organization Authority andanorganization havebeenestablished underthisprojectandarecontained intheProjectManagement Manualnotedintheaboveparagraphs.
FTIretainstheresponsibility fortheoverallprogrameffectiveness including workthatisdelegated tosuppliers.
7.2.2QualityAssurance AQualityAssurance Programhasbeenestablished thatappliestoallactivities, productsandservicesperformed, procuredandrenderedonthisproject.FTIretainstheoverallresponsibility forestablishing andmaintaining theproject's QualityAssurance.
TheFTIQualityAssurance Programshallbeperformed inaccordance withFTIdocumentnumber56-1201212.
7.2.3DesignControlAdesigncontrolprogramhasbeenestablished fortheprojecttoprovideaprocesstocontroldesigndocuments.
Thesedataaffectthesafety-related productsandincludeforexample,butarenotlimitedto,designdrawings, inputforstressanalysis, thermalhydraulics, seismic,physics,radiation, computerprograms, materials, specifications, andsystemdescriptions.
Specifics ofthedesigncontrolprocesses aredescribed intheFTIorsubcontractors'uality Assurance ProgramManuals.7.2.4Procurement DocumentControlProcurement ofsafety-related productsandservicesarespecified inprocurement documents.
Productsandservicesareprovidedbyapprovedsuppliers.
7.2.5Instructions, Procedures, andDrawingsActivities affecting qualityofsafety-related productsandservicesareperformed inaccordance withdocumented instructions, procedures ordrawings, whichincludeappropriate quantitative andqualitative meansofverifying quality.Requiredactionsandresponsibilities forpreparation, review,approvalandcontrolofthesedocuments areestablished inprocedures andinstructions.
7.2.6DocumentControlMeasuresforthereview,approvalandissuanceofdocuments coveringsafety-related productsandservicesandtheirassociated changesareestablished internally toassuretechnical adequacyandtheinclusion ofqualitycontrolrequirements priortoimplementation.
ThesemeasuresincluderesponsibiTities forrequiredindependent reviewsbyqualified individuals including qualitypersonnel forreviewandconcurrence withrespecttoQualityAssurance-related aspectsofdocuments toassureacceptability.
Documentcontrolisappliedtodesign,procurement andmanufacturing documents including as-builtdocuments anddocuments relatingtocomputercodes,aswellasinstructions andprocedures.
7.2.7ControlofPurchased
- Material, Equipment, andServicesWhenspecified intheprocurement
- document, FTIprovidesforQualityAssurance surveillance ofsuppliers duringfabrication, inspection, testingandthereleaseofsafety-related productsandservices.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage469 Forcommercial
'ofF-the-shelf'tems, whicharetobeusedassafety-related productsandservices, butwhereaspecificQualityAssurance controlappropriate fornuclearapplications cannotbeimposedinapractical manner,areceiving inspection and/ortestsareperformed andshallmeettheacceptance criteria.
Theseinstructions aresubjecttothedocumentcontrolprovisions.
Priortoplacinganorderwithanew'upplier, anevaluation isconducted byQualityAssurance personnel andappropriate engineering and/orprocurement personnel.
Suchanevaluation mayincludeanauditandisconducted inaccordance withapplicable FTIand/ortheirsubcontractor's QualityAssurance Program.7.2.8Identification andControlofMaterials, Parts,andComponents Identification requirements areestablished inQualityAssurance programsandarespecified asnecessary intheprocurement documents forsafety-related productsandservices.
Identification andcontrolprocedures assurethatidentification ismaintained ontheitemoronrecordsthataretraceable totheitemtoprecludeuseofincorrect ordefective items.Identification ofitemscanbetracedtoappropriate documentation suchasdesigndocuments, procurement documents and/orinspection records.Identification ofitemsisverifiedanddocumented priortoreleaseoftheitemforfurtheruse.7.2.9ControlofSpecialProcesses Established procedures aremaintained toprovideappropriate controloverspecialprocesses forsafety-related productsandservices.
Theprocesses thatarecontrolled asspecialprocesses arethefollowing:
theprocesswheredirectinspection isimpossible ordisadvantageous; andprocesses wheretheresultsarehighlydependent onthecontroloftheprocessortheskilloftheoperator, orboth.Examplesoftheseprocesses arewelding,casting,andexplosive forming.Thespecialprocessprocedures andcertification ofqualified personnel aremaintained underdocumentcontrol.Specialprocesses areperformed byqualified personnel andaccomplished underprescribed procedural controls.
Recordedevidenceofverification ismaintained.
'I7.2.10Inspection Procedures areestablished thatcontrolmanufacturing activities ofsafety-related productsandservices.
Theseprocedures providecontrolfortheselection andidentification ofrequiredinspection inaqualityplanidentifying theinspections tobeperformed, theirlocationinthemanufacturing processandthemandatory
'HoldPoints'equired byvariousorganizations (i.e.,QualityAssurance, thecustomer).
Thisdocumentiseitherpreparedand/orapprovedbytheQualityAssurance organization havingtheresponsibility fortheitemtobeinspected.
7.2.11TestControlMeasuresareestablished tocontrolthetestingofsafety-related productsandservices.
Thesemeasuresincludeidentification ofrequiredtesting,development ofprocedures, ameansofassessing theadequacyoftesteditems,anddesignation ofresponsibility forperforming thevariousphasesofthetestingactivities.
Testsrequiredduringmanufacturing areidentified intheQualityPlanoftheitem.Themeasuresestablished forthecontrolofspecialprocesses includeaprovision foridentifying thenecessary qualification tests.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage470 Thetestresultsaredocumented, evaluated, andtheiracceptability determined byaqualified, responsible individual orgroup.Modifications, repairsandreplacements aretestedinaccordance withtheoriginaltestorappropriate alternatives.
Testprogramrequirements areincorporated asappropriated inpurchaseordersandwillbereflected intheQualityPlan.Suppliertestingactivities aresubjecttoauditingandmonitoring forcompliance duringthesurveillance activities.
7.2.12ControlofMeasuring andTestEquipment FTImaintains themeansofcontrolling measuring andtestequipment usedonsafety-related productsandservices.
Programsweredeveloped forconsidering suchattributes asinherentstability, purposeofuse,desiredaccuracy, andthedegreeofusage.Measuring andtestequipment areidentified andtraceable tothecalibration testdataandforotherrequireddocumentation.
Thecompletestatusofallitemsunderthecalibration systemincluding personalacceptance gages,isrecorded, maintained andcontrolled.
7.2.13Handling, Storage,andShippingProcedures areestablished tocontrolcleaning, packaging,
- shipping, storageandhandlingofsafety-relatedproductsandservices.
Whererequired, theseactivities areaccomplished byappropriately trainedpersonnel.
Theprocedures includethecontrolofcleaning,
- handling, storage,packaging, shippingandpreservation onmaterials, components, andsystemsinaccordance withdesignspecification requirements toprecludeunacceptable damage,loss,ordeterioration byenvironmental conditions.
Theidentification controlsincludeconsiderations foridentification ofinspection, use,personnel trainingandqualification,
- auditing, non-conformance, andotherappropriate requirements.
Theseprocedures maybeinvariousforms,suchasmanufacturing procedures, shippinginstructions,
- drawings, manufacturing routingsheets,cleaningspecifications, andprocedural trainingbooklets.
7.2.14Inspections, Tests,andOperating StatusProcedures areestablished toindicatetheinspection, testandoperating statusofsafety-related productsandservicesduringfabrication, installation andtesting.Theseprocedures controltheapplication andremovalofstatusindicators throughtheuseofinspection controlcards,shoptravelers, orotherdocuments.
Theseprocedures alsocontrolsequencechangesandtheidentification ofnon-conforming items.Theprocedures documentthesequenceofrequiredtests,inspections, andothersafety-related operations.
7.2.15Non-Conforming Materials, Parts,orComponents Procedures areestablished tocontroltheidentification, documentation, segregation, reviewanddisposition ofnon-conforming safety-related productsandservices.
Theyincludenotification ofaffectedorganizations ifdisposition isotherthanscrap.Theseprocedures identifyindividuals orgroupswhoareauthorized todisposeofandapprovenon-conformance anddescribethesegregation and/orcontrolofnon-conforming itemstopreventinadvertent use.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage471 Documentation identifies thenon-conforming items,describes thenon-conformance, thedisposition ofthenon-conformance, including reinspection requirements, andincludesdocumented approvalofthedisposition.
Whennon-conforming itemsarerepairedorotherwise madesuitablefortheirdesigneduse,theyareinspected andtestedinaccordance withtheoriginalinspection andtestrequirements oracceptable alternatives.
TheQualityAssurance Department isresponsible forthereviewandapprovalofdecisions proposedbyEngineering.
7.2.16Corrective ActionProcedures areestablished thatprovidecorrective actionsforsafety-related productsandservices.
Theseprocedures includetheinitiation anddocumentation ofcorrective actionstoprecluderecurrence ofsignificant conditions adversetoquality.Implementation ofcorrective actionisverifiedbyresponsible individuals ororganizations andisdocumented tocloseoutthecorrective action.Corrective actionprocessing involvesparticipation ofQualityAssurance.
Thesedecisions aredocumented.
Forsignificant conditions adversetoquality,thecauseandcorrective actionstakenaredocumented andreportedtomanagement forreview.Non-conformance reportsaregenerated.
Thesenon-conformance reportsarereviewedtodetermine theneedforcorrective actionandareanalyzedfortrends.Theresultsofthesetrendanalysesareprovidedtomanagement.
7.2.17AuditsProcedures areestablished thatprovideacomprehensive systemofQualityAssurance Programauditsofactivities affecting thequalityofsafety-related productsandservices.
Auditsareperformed byqualified auditpersonnel usingwrittenprocedures orchecklists designedtoprovideanobjective evaluation oftheQualityAssurance Programanditseffective implementation.
Auditsareplannedandconducted bythequalityorganization responsible foritsQualityAssurance Manual.Activities ofthequalityorganization itselfareauditedbyqualified auditorsassignedbytheGeneralManagement, havingnodirectresponsibilities intheareatobeaudited.Awrittenreportthatdocuments theauditresultsandcorrective actionispreparedbytheteamleaderanddistributed tothemanagement oftheorganization beingaudited.Thecorrective actionstobeproposedbytheorganization responsible forthefindingarereviewedbythe,qualityorganization orbytheteamleader(whenthequalityorganization wastheauditedarea).Verification ofcorrective action(including re-auditofdeficient areas,whereappropriate) isperformed anddocumented.
Provisions madeforpreparation, performance, reporting, andclosingoutofsuppliers'udits aresimilarandmeetthesamerequirements.
Auditschedules areimplemented inaccordance withtheQualityAssurance Manual.Theseauditsensurethatprocedures andactivities complywiththeoverallQualityAssurance Programandprovideacomprehensive independent verification andevaluation ofquality-related procedures andactivities.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage472 S.OENVIRONMENTAL COST/BENEFIT ASSESSMENT 8.1NEEDFORINCREASED STORAGECAPACITYTheU.S.Department ofEnergy(DOE)hasstatutory andcontractual obligations toacceptGinnaspentfuelbeginning ln1998.RG&E,inconsidering itscapacityneeds,assessedthattheDOEwouldnotbereadytoacceptspentfuelin1998.Thisassessment hasbeenconfirmed byrecentletterfromDOEdatedDecember17,1996,inwhichtheDOEnotifiedRG&Ethatitwillnotstartacceptance ofGinnaspentfuelin1998.EarlyinJanuary1997,theDOEreleasedadraftproposaloutlining athree-phase processforprivatefirmstoacceptandtransport wastefromcivilianreactors.
According totheproposal, therewouldbetwophasespriortooperation ofaFederalrepository.
Theestimated durationofthe.phasesisseveralyearsbeyond1998,subjecttotheDOEmeetingthescheduleforawardofthecontracts andCongressdesignating aFederalstoragesite.TheDOEproposal, anditsassociated uncertainties, furtherconfirmsRG&E'sneedforincreased storagecapacitybeyond1998toaccommodate theGinnaspentfuelpriortooperation oftheFederalrepository.
Table5.5-1showsthescheduleofrefueling outagestotheendoflicenseinSeptember 2009.Additional discharges wereconservatively incorporated beyondSeptember 2009forthepurposeofdetermining aboundingdecayheatload.Theboundingdecayheatloadisbasedonaninventory offuelrodsinthespentfuelpoolnottoexceedthenumberofrodscontained in1,879intactfuelassemblies (179fuelrods/assembly x1,879assemblies=336,341 fuelrods).Thecurrentspentfuelpoolinventory isasfollows:(a)782spentfuelassemblies (intact),
(b)8consolidated rodcanisters and2consolidated hardwarecanisters (from11intactfuelassemblies),
1fuelrodstoragebasket,(d)5storagelocations withnon-fuelcomponents, and(e)1storagelocationnotavailable forstorage,foratotalof799storagelocations beingoccupied.
Thecurrentlicensedcapacityis1,016fuelassemblies.
Projected spentfueldischarges areconservatively estimated at44spentfuelassemblies duringeachoftheprojected refueling outages.Basedonthecurrentinventory andprojected spentfueldischarges, Ginnalosesthecapability todischarge afull-coreintothespentfuelpoolinSeptember 2000.S.2ESTIMATED CONSTRUCTION COSTSTheconstruction costfortheproposedreracking, including engineering, escalation, andallowance forfundsusedduringconstruction isestimated at$6million.S.3ALTERNATIVES TOINCREASED STORAGECAPACITYFuelAssemblyConsolidation Fuelassemblyconsolidation involvesseparation ofthefuelrodsfromthefuelassemblyhardware(grids,guidetubes,andnozzles).
Thenuclearindustry, including RG&E,hasconducted severalprogramsoverseveralyearstodemonstrate thatrodscanbeconsolidated withuptoaratioof2to1(rods&omtwofuelassemblies arestoredinonecanister).
Rodconsolidation tothatratiohasbeendemonstrated tobeachievable.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage473 Utilities havealsoundertaken programstoconsolidate assemblyhardware.
Theprogramshavenotachievedthedesiredconsolidation rateof10:1(hardware fromtenfuelassemblies arestoredinonecanister).
Vendorshavedeveloped advancedconsolidation machinestoaddresslessonslearnedfromtheprograms.
Thesemachineshavenotbeendemonstrated yet.Atpresent,thereisadegreeofuncertainty withrespecttotheconsolidation rateofhardware.
Theeconomics ofconsolidation ishighlydependent ontheconsolidation ratesforfuelrodsandhardware.
Withadditional demonstiation
- programs, fuelconsolidation hasthepotential tobeastrongalternative tobuildinganIndependent StorageFacility(ISFSI).RG&EhaspreparedthisLicensing Reporttoallowfuturestorageofconsolidated spentfuelasanalternative toanISFSI.Atpresent,increasing thecapacityofthespentfuelpoolbyreracking isabetteralternative (lowercost,loweruncertainty).
Independent SpentFuelStorageFacility(ISFSI)Constructing anISFSItoincreasecapacityisnotcost-effective comparedwithincreasing capacitybyreracking thespentfuelpool.Thereisalargefixedcostforconstructing thefacilityandprocuring theancillary equipment forstoringalimitednumberofstoragecasks.Becauseofthisfixedcost,thecostoftheISFSIfortheequivalent numberofstoragelocations ismorethan3timesthecostperlocationofreracking thespentfuelpool.ShipmenttoanotherReactorSiteShipmentofspentfueltoothernon-RG&Ereactorsiteswouldrequireanincreaseinthestoragecapacityatthosesitestoaccommodate Ginnaspentfuelassemblies.
Additional capacityatnon-RG&EsiteswouldhavetobedesignedtostoreGinna14x14spentfuelassemblies.
Inaddition, utilities atthosesitesmaychargestoragefeesseparatefromthecostoftheincreased capacity.
Theproposedreracking isthemostcost-efFective ofallstoragealternatives toincreasecapacityattheGinnasite.Bymodifying thespentfuelpoolatGinna,therearenoadditional costsassociated withtransportation toanothersite,modifications toaccommodate 14x14assemblies, andpotential storagefees.OtherAlternatives Permanent shutdownofGinnabecauseoflackofstoragecapacityforspentfuelwasnotaviablealternative.
Thecostsofapermanent shutdownaresignificantly higherthanthecostofreracking thespentfuelpool.8.4COMMITMENT OFMATERIALRESOURCES Thematerialresources utilizedinthespentfuelreracking aredescribed inSection1.0.Theseincludeprimarily austenitic stainless steelasastructural materialandboratedstainless steelasaneutronabsorber.
Therequirement foraustenitic stainless steelforthereracking isanegligible amountofworldproduction.
Theproduction ofborated stainless steelcanbeaccommodated bymanufacturers intheU.S.,Austria,Germany,andtheCzechRepublic.
Levelsofproduction ofborated stainless steelcanbeadjustedtomeetsignificantly higherdemands.51-1258768-01 GinnaSFPRe-racking Licensing ReportPage474 Theadditional capacityinthespentfuelpooldoesnotresultinapermanent commitment ofwater,land,orairresources.
Theincreased capacitywillutilizetheexistingareaofthespentfuelpool.Theproposedadditional storagecapacityinthespentfuelpoolwillnotsignificantly foreclose thealternatives available withrespecttoanyotherlicensing actionsdesignedtoameliorate apossibleshortageofspentfuelstoragecapacity.
8.5HEATRELEASEDTOTHEENVIRONMENT Theheatremovalcapability ofthespentfuelpoolcoolingsystemwillremainunchanged asdiscussed inSection5.4.Afterashutdown, thefullcorewilldecayinthereactorvesselpriortomovementtothespentfuelpool.ThetotalheatloadRomthespentfuelassemblies, including afullcoredischarge, willremainwithinthelimitsoftheexistingspentfuelpoolcoolingsystem(Section5.4).Theheatreleasedtotheenvironment fromthismodification isboundedbyexistingheatloadsfromnormaloperation.
51-1258768-01 GinnaSFPRe-racking Licensing ReportPage475