ML19296A325

From kanterella
Revision as of 14:15, 1 February 2020 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Amend N12 to Psar.Includes Text Revisions,Reanalysis of LOCA & Miscellaneous Changes
ML19296A325
Person / Time
Site: New England Power
Issue date: 02/28/1979
From:
NEW ENGLAND POWER CO.
To:
Shared Package
ML19296A324 List:
References
NUDOCS 7903150346
Download: ML19296A325 (400)


Text

O Preliminary Safety Analysis Report NEP1&2 NEW ENGLAND POWER COMPANY EBRUARY 1979

NEP 1 & 2 Amendment N12 February 1979 AMENDMENT INSERTION INSTRUCTIONS These instructions provide the information necessary to properly update the NEP 1 & 2 PSAR to Amendment N12. The pages, tables and figures listed in the " Remove" column are to be removed from the PSAR and either destroyed or marked " superceded" and filed elsewhere. In those instances where a dash (--) is shown, no page exists to be removed. A "T" prefix denotes ' table and an "F" denotes a figure. The pages, tables and figures shown in che " Insert" column are to be inserted in the PSAR. Note that numbered vertical lines in the right margin on inserted pages identify those portions revised by this amendment.

These Amendment Insertion Instructions are to be placed in " Amendment History", DO NOT DISCARD.

VOLUME 1 TABLE OF CONTENTS Remove Insert vi vi vil vii CHAPTER 1 SECTION 1.1 1.1-2 1.1-2 Fl.2-1 Fl.2-1 CtlAPTER 2 CONTENTS 2.0-18 2.0-18 SECTION 2.1 2.1-10 2.1-10 2.1-11 2.1-11 T2.1-10 T2.1-10 SECTION 2.4 F2.4-1 F2.4-1 F2.4-1A F2.*-1A F2.4-7 F2.4-7 N12-1

NEP 1 & 2 Amendment N12 February 1979 VOLUME 2 9

TABLE OF CONTENTS Remove Insert vi vi vil vil SECTION 2.5 2.5-42 through 2.5-42 through 2.5-45 2.5-45 2.5-50 through 2.5-50 through 2.5-58 2.5-58 2.5-64 2.5-64 2.5-64a 2.5-64a F2.5-27 F2.5-27 F2.5-28 F2.5-28 F2.5-29 F2.5-29 F2.5-38 F2.5-38 F2.5-39 F2.5-39 F2.5-40 F2.5-40 F2.5-40A VOLUME 3 TABLE OF CONTENTS vi vi vil vii VOLUME 4 TABLE OF CONTENTS vi vi vii vii CHAPTER 3 SECTION 3.11 3.11-7 3.11-7 VOLUME 5 TABLE OF CONTENTS vi vi vil vii O

N12-2

NEP 1 & 2 Amendment N12 February 1979 CHAPTER 6 SECTION 6.2 Remove Insert 6.0-3 6.0-3 6.2-17 6.2-17 6.2-18 6.2-18 6.2-21b 6.2-21b T6.2-1 T6.2-1 T6.2-13B " Deleted" T6.2-13B T6.2-15 (Sheet 2) T6.2-15 (Sheet 2)

F6.2-15 F6.2-15 CHAPTL". 8 SECTION 8.2 8.2-3 8.2-3 VOLUME 6 TABLE OF CONTENTS vi vi vil vii CHAPTER 13 SECTION 13.1 F13.1-1 F13.1-1 F13.1-2 F13.1-2 SECTION 13.3 13.3-15a 13.3-15a VOLUME 7 TSBLE OF CONTENTS vi vi vil vii CHAPTER 15 CONTENTS 15.0-1 15.0-1 15.0-2 15.0-2 15.0-3 15.0-3 15.0-5 through 15.0-8 15.0-5 thro gh 15.0-8 N12-3

i NEP 1 & 2 Amendment N12 February 1979 O

CECTION 15.4 Remove Insert 15.4-la 15.4-la 15.4-lb 15.4-lb 15.4-Ic 15.4-Ic 15.4-Id 15.4-Id 1: .4-le 15.4-2 15.4-2 15.4-6 15.4-6 15.4-6a 15.4-6a T15.4-la T15.4-la T15.4-lb T15.4-lb " Deleted" T15.4-Ic T15.4-Ic T15.4-le T15.4-le T15.4-1f T15.4-lf F15.4.1-1A through F15.4.1-1 through F15.4.1-16 (62 Sheets) F15.4.1-16 (17 Sheets)

F15.4.1-17 F15.4.1-17 " Deleted" F15.4.1-18 F15.4.1-18 " Deleted" APPENDIX 15D Appendix 15D Tab (follows F15C-1 of Appendix 15C)

-- Appendix ISD Title Page T15D-1 T15D-2 T15D-3 T15D-4 T15D-5 F15D-1A through F15D-16 (62 Sheets)

CHAPTER 16 SECTION 16.3 16.3.6-1 16.3.6-1 CilAPTER 17 SECTION 17.1 17.1-5 17.1-5 O

N12-4

NEP 1 & 2 Amendment N12 February 1979 VOLUME 8 TABLE OF CONTENTS Remove Insert vi vi vil vii TAB S6 S6-36 S6-36 S6-36A TS6.36-1 (2 Sheets)

VOLUME 9 TABLE OF CONTENTS vi vi vil vii TAB - REQUESTS AND RESPONSES R-iii R-lii R-iv R-iv R-vi R-vi TAB 2.3 R2.3-25 R2.3-25 T372.39-1/T372.39-2 through T372.39-26 (Sheet 2 of 2)

(64 sheets)

F372.39-1 through F372.39-15 TAB 3 R3-3/R3-4 R3-3/R3-4 R3-9/R3-10 R3-11/R3-12 T222.1-1 (Sheet 1 of 2)/

T222.1-1 (Sheet 2 of 2)

(follows R3-12)

T222.1-2/T222.2-1 T222.4-1 F222.1-1 through F222.1-8 (follows T222.4-1)

N12-5

NEP 1 & 2 Amendment N12 February 1979 O

VOLUME 10 Remove Insert With this amendment (N12), the Requests and Responses Section will be divided between Volume 9 and a new Volume 10. Insert into the Volume 10 binder the clear acetate sheets (2), title page, Table of Contents tab, and Table of Contents pages i through vii.

Move to Volume 10 all pages beginning with Tab 4 through Page Nil-5 of the Amendment N11 " Amendment Insertion Instructions", placing them behind page vii of the Table of Contents. Then proceed with the insertion instructions for Volume 10 as outlined below.

TAB 6 R6-15/R6-16 R6-15/R6-16 R6-16a R6-17/R6-18 R6-17/R6-18 R6-19/R6-20 R6-19/R6-20 R6-20a R6-21/R6-22 R6-21/R6-22 T022.10-1/T022.10-2 T022.10-1/T022.10-2 through T022.10-26/T022.10-27 through T022.10-33 (19 Sheets) (26 Sheets)

F022.10-1 through F022.10-1 through F022.10-ll F022.10-11 F022.10-13 through F022.10-13 through F022.10-17 F022.10-17 F022.10-24 through F022.10-24 through F022.10-29 F022.10-29 F022.10-32 F022.10-32 F022.10-34 F022.10-34 F022.10-35 F022.10-35A through F022.10-35C F022.10-36 F022.10-36 F022.10-37 F022.10-37 F022.10-42A F022.10-44 F022.10-44 F022.10-47 through F022.10-47 through F022.10-51 F022.10-51 F022.10-52 F022.10-52A through F022.10-52C F022.10-59 through F022.10-68 O

N12-6

NEP 1 & 2 Amendment N12 February 1979 TAB 7 Remove Insert R7-15/R7-16 R7-15/R7-16 R7-20a R7-20a

-- F030.9-1

-- F030.9-2 TAB 8 R8-28a/R8-28b R8-28a/R8-28b R8-29/R8-30 R8-29/R8-29a R8-29b/R8-29c R8-29d/R8-30 R8-31/R8-32 R8-31/R8-31a R8-32 TAB 9 R9-13/R9-14 R9-13/R9-14 TAB 10 R10-3 R10-3/R10-4 R10-5/R10-6 R10-7/R10-8 TAB - PSAR PAGE LISTING 1/2 1/2 3/4 3/4 7/8 7/8 9/10 9/10 21/22 21/22 23/24 23/24 25/26 25/26 31/32 31/32 33/34 33/34 35/36 35/36 37/38 37/38 41/42 41/42 43/44 43/44 45/46 45/46 47/48 47/48 49/50 49/50 51/52 N12-7

NEP 1 & 2 Amendment N12 February 1979 O

TAB - AMENDMENT HISTORY Remove Insert Insert PSAR Amendment N11 transmittal letter (page N11-0) in front of page N11-1.

Insert PSAR Amendment N12 insertion instructions (these sheets), pages N12-1 through N12-8, behind page Nil-5.

O O

N12-8

NEP 1 & 2 Amendment N12 February 1979 TABLE OF CONTErdTS (Continued)

VOLUME 6 (Continued) l Chap te r Title Page No.

13.4 Review and Audit 13.4-1 13.5 Plant Procedures 13,5-1 13.6 Plant Records 13.6-1 13.7 Industrial Security 13.7-1 Appendix 1.' A Rhode Island Faclear Accident or Incident Plan VOLUME 7 14 INITIAL TESTS AND OPERATION 14.1 Test Program 14.1-1 l

15 ACCIDENT ANALYSES O 15.1 Condition I - Normal Operation and Operational Transients 15.1-1 15.2 Condition II - Faults of Moderate Frequency 15.2-1 15.3 Condition III - Infrequent Fault 15.3-1 15.4 Conditicn IV - Limiting Faults 15.4-1 Appendices l

15B Sumary of Parameters Used for Evaluating 1*iB-1 Radiological Effects of Accidents 15C Summary of Parameters Used for an Evaluation of 15C-1 Potential Reactor Containment Leakage to the Con-tainment Penetration Area (CPA)

ISD Major Reactor Coolant System Pipe Ruptures (Loss of 15D-1 Coolant Accident) - Generic Sensitivity Study Results 16 TECHNICAL SPECIFICATIONS No2 16.1 Definitions 16.1-1 16.2 Safety Limits and Limiting Safety Sfstem

(~ Settings 16.2.1-1 vi

NEP 1 & 2 Amendment N12 February 1979 TABLE OF CONTENTS (Continued)

VOLUME 7 (Continued) l Chapte r Title Page No.

16.3 Limiting Conditions for Operation 16.3.1-1 16.4 Surveillance Requirements 16.4.1-1 16.5 Design Features 16.5.1-1 16.6 Administrative Controls 16.6.1-1 17 QUALITY ASSURANCE 17.1 Quality Assurance - Yankee Atomic Electric Company 17.1-1 17.2 Quality Assurance - L 'ed Engineers and Constructors 17.2-1 17.3 Quality Assurance - Westinghouse 17.3-1 VOLUME 8 l

SUPPLEMENTAL INFORMATION (AEC Questions / Responses)

VOLUME 9 REQUEST AND RESPONSES Tab 1 through Tab 3 VOLUNE 10 N1 REQUEST AND RESPONSES Tab 4 througt Tab 17 PSAR PAGE LISTING AMENDMENT HISTORY vii

Amendment N12 NEP 1 & 2 February 1979 Station. Each reactor is housed in a steel-lined reinforced concrete primary containment structure. The containment structure was designed by United Engineers & Constructors Inc.

Each unit will be initially operated at core power levels up to and including 3411 megawatts thermal (MWt). This corresponds to a nuclear steam supply system (NSSS) thermal output of 3425 }Mt and a corresponding gross electrical power output of 1194 FMe. The engineered safety features have been evaluated at a design rating of 3579 MWt.

The scheduled completion date for construction of Unit Number 1 is July, 1987; its scheduled commercial operating date is November, 1987. The scheduled completion date for construction of Unit Number 2 is July, 1989; its scheduled commercial operating date is November, 1989. y,q 1.1.2 Organization of contents Replicated portions of the Preliminary Safety Analysis Report (PSAR), including text and figures, are denoted by blue pages and comply, as a rinimum, to Revi-sion 1 to the Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, issued by the Atomic Energy Commission in October, 1972. The only changes made to the original Seabrook pages are plant name changes in the text and the addition of NEP 1 & 2 in the upper right corner of each page. The only change made to replicate Figures is the addition of NEP 1 & 2 in the title block to the right of the Figure number.

Minor changes to the replicated plant PSAR (including text and Figures) are appropriately identified and printed on green pages. Minor changes are generally descriptive in nature and have no effect on the safety related portion of the PSAR. Page changes are identified by a vertical bar in the right hand margin of the page alongside the affected line(s), and SB 1 & 2 is replaced at the top of the page by NEP 1 & 2.

Changes to Figures are highlighted by lightly shading the af fected portion of the Figure and adding a note which details the change (s). The Seabrook title is re-placed by the NEP title in the block. Figures which have been substantially re-drawn for NEP 1 & 2 wil; be shown on a while page without shading. Changes made to Figures that were not redrawn are shown by lightly shaded areas on white pages and the Seabrook title is replaced with the NEP title.

Approval for replicating the Seabrook design was received in a USNRC letter (B. C. Rusche to J. E. Tribble, dated November 3,1975), which also identified six categories of safety issues that are to be addressed in the NEP 1 & 2 PSAR.

Accordingly, all changes from the Seabrook PSAR are identified by PSAR Section, page number and safety issue Category, and are included as Appendix 2C of the NEP 1 & 2 PSAR.

Both site-related and Applicant-related portions of the PSAR, whenever possible, comply wich the format and content of the proposed Revision 2 to the Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, dated September 1975. These portions of the PSAR, as well as pages where significant revisions to the text have been made, are denoted by white pages. Revisions to Seabrook pages for the NEP 1 & 2 PSAR are identified by a vertical bar in the right hand margin adjacent to the line(s) which have been modified, and So 1 & 2's replaced by NEP 1 & 2 at the top of the page. White pages without any bar indicate substantial rewrite.

1.1-2

x A' '

\

t\

\ s'

\\ NY g q

\

z llIQL '

/ ,f x' % '9'bb ll;l, c. '* ,

w%~~~  ::, %

x x x g, ,

, l' N.

  1. , ,&.m ;t'q~~

.g,, y e ,., x'; \-

N;k,

+.,.

- i f ,

, *;; ~ ,y.g n, , a'l.':~::::~

\

hy

~e s,:~.> .

,,*e *'1 , ,

d N

c.og '

x '** y,,kh .

'y m

' f?'y.rg oig, f/

g m

s &, ,,

~ ,4 *7 f

,e ,'

/

4

,,, &,jl,I.o *5

.,. , /

es s -

Cr s ~~') g l

'6

!vl,l,,l,Nf*>fi,f:z,q, 4c m' w / , f**A p , fe,,,

'e

/w

, ~

- 's ?lc '

j' ' ,

4.c, , _jI s &

e# ip, Q; '

\ ,

\ '

o S; Ab L-~ k,,,,

t;;;,,,

c i

t i

\

r

e A .

N\ '

s l$YY,g

,, '$ss  %,

s'.-

a Nr

' x\ ,h '

!,/ , ~ ' 4 [9 hb))/< x

\ .

  • o' .

I  %,.

,/ /' jij' e

t~

//

l-1 nlj r-l'- ,,._,,

ll Il  ! !L j f i

'j/,lyl_*l ti l I

, ll? .

l l l{ r m l

~+ 1

' ; .{ '

~ ./ _ j 1 .k .

,I 4

9 't, O 10 0  ??O 500

  • /,,

. y -

\ SCALE IN FEET AMENDMEN f N12 FEBRUARY 1979 n

NEW ENGLAND POWER COMPANY NEP 1&2 PLOT PLAN Preliminary Safety Analysis Report FIG.1.2-1 NEP 1&2

NEP 1 & 2 Amendment N12 February 1979 FIGURES (cont d)

Figure No. Title 2.5-37 1/2 Safe Shutdown Earthquake - Vertical Design Response Spectra 2.5-38 Excavation and Finish Grade Plan 2.5-39 Excavation and Finish Grade Sections 1-1 and 2-2 2.5-40 Excavation and Finish Grade Sections 3-3, 4-4 and 5-5 2.5-40A Typical Section Through Slurry Wall 2.5-41 Static Lateral Earth Pressure N 12.

2.5-42 Residual Magnetic Anomaly Map e

2.0-18

NEP 1 6 2 Amendment N12 February 1979 is expected to consist primarily of single year-round residences constructed by individuals. Recreation is expected to continue to be an important land use in southern Rhode Island, particularly along the coast and within state parks and conservation areas. This development will be guided by the appropriate state agencies working with the town officials.

With the exception of the development, proposed by the Applicant, of the Charlestown Naval Auxiliary Landing Field, no major industrial expansion plans were identified within five miles of the proposed site. The absence of such plans has been attributed to lack of support facilities.

Based on these considerations, it is expected that some growth in the transient population will occur, although the magnitude of this increase cannot be accurately defined. Ibst of this growth within the five-mile radius ot the site is expected to be assaciated with seasonal land use.

Although, as stated above, no projections for seasonal populations were obtained, it seems reasonable to assume that the increase should be related to the growth in the permanent population of the surrounding area. Thus, as a first approximation, the growth in the seasonal segment has been estimated as the same as that for the permanent population in the area within 50 miles of the site. On this basis, the projected growth in transient population between 1975 and 2020 is estimated at 50 percent.

2.1.3.4 Low Population Zone The low population zone for the NEP 1 & 2 site has been defined as the area included in a circle with a radius of 1.5 miles, with the reactors at the center.

One of the appropriate protective measures that could be taken on behalf of the general public in the unlikely event of a major accident is evacuation of all or part of the low population zone. Evacuation of the public from the vicinity of the NEP 1 & 2 site is highly unlikely and is never expected to be necessary during the life of the plant. This s ubj ec t is treated in Section 13.3. The transportation network is discussed fully in that section.

Figure 2.1-14 is a topographical map which shows the low population zone (radius - 1.5 miles) divided into sixteen 22- degree segments, each centered on one of the 16 cardinal compass points. Table 2.1-8 lists the estimated permanent population for 1975 and 1984 and for ten-year periods between 1980 and 2020 for each segment with the low population zone. The population estimates for the area within the 1-mile radius are identien1 to those included in Table 2.1-1 and were derived in the same manner as is described in Subsection 2.1.3.1. The population estimates within the 1 to 1.5 mile radii of the site were also derived f rom aerial photographs. The distribution was then made by counting houses f rom the aerial photos, subtracting the seasonal units, and assigning an average household o. upancy to the remaining units. There will be no permanent resident within ..e site boundary. The total estimated 1975 permanent population within the low population zone is 259. I Ns 1.

2.1-10

NEP 1 & 2 Amendment N12 February 1979 The t ransient population withir. the low population zone is principally associated with seasonc.1 and recreational activity. The current seasonal resident population within the low population zone is estimated at about 693. Figure 2.1-15 shows the distribution of the seasonal resident population within the low population 7one. Figure 2.1-16 shows the peak transient population within the low population zone. This distribution includes the seasonal resident group as well as the population associated with hotels / motels, c ampg ro und s , beaches and other recreational facilities.

The locations of these seasonal facilities are indicated on Tablea 2.1-2 through 2.1-4. As stated in Subsection 2.1.3.3, these numbers represent maximum estilaated populations based on the capacities of the various facilities.

The locations of schools and-hospitals and related facilities to a distance of ten mt.es from the site are indicated in Tables 2.1-6 and 2.1-7. As indicated, only one facility, a small nursing home, is located within the low population zone. There are no prisons within five miles of the site.

In summary, the total estimated current population within the low population zone is about 259 for much of the year. This population increases by about 3,400 during the s meer months.

Ah 2.

Table 2.1-8 shows the urojected resident population distribution, by segment, within the lov population zone, for the years 1980 through 2020.

The basis for these projections are the same as that described in Subsection 2.1.3.1. The estimated 2020 peak transient population within the low population zone is estimated at about 5,100. The basis for this estimate 1s contained in Subsection 2.1.3.3. 0l81 The low population zone for the NEp 1 & 2 site has been selected on the basis of the population distribution, which is considered to be of reasonable size from the standpoint of evacuation, and the requirements of 10CFR100. The doses from the various accidents postulated for the station are within the reference values of 10CFR100 and the relationship between the low population zone radius and the population center distance is satisfactory as discussed in Subsection 2.1.3.5.

2.1.3.5 Population Center The municipality containing more than 25,000 residents nearest to the NEP 1 & 2 site is currently Newport, Rhode Island. Newport, with a 1970 population of 34,562, is located approximately 18 miles east-northeast from the station at its nearest boundary. The population of Newport decreased to about 30,000 in 1974 due to the reduction of the Naval operations. Moderate growth of the population of Newport is projected over the estimated life of the plant.

The adjoining areas of Westerly Center, Rhode Island and l'awca t u ck ,

Connecticut, situated approximately 7-1/2 miles west of the site, may eventually qualify as a new population center. With a combined 1970 population of 18,900, the Wes terly Center-Pawcatuck population is p roj ected 2.1-11

NEP 1 & 2 Amendment N12 February 1979 TABLE 2.1-10 CUMULATIVE RESIDENT PLUS WEIGilTED TRANSIENT POPULATION DENSITY Density (Persons Per Square Mile)

Distance (Miles) 1984 Population 2020 Population 0- 1 63 139 0- 2 248 344 0- 3 227 302 0- 4 163 222 0- 5 125 174 0 - 10 190 258 0 - 20 173 244 0 - 30 247 338 0 - 40 301 395 0 - 50 279 369

m i :E h m

!' 5 z5 EXISTING GROUNDWATER h ?5 LEVEL 3

$ "M

< um EXISTING GRADE 5- g 4

h 5 st/ sif e  ; EXISTING OVERBURDEN l :-

3 z V

N:l_

-

s.

3dr.s hf[' '.

T! i N h.tC4 3 $5N. ~

h$il '

ISLORRY WAL.L U 1:

1 o

BOTTOM OF EARTH 5' N.

  • EXC AVATION U

\ / #

}@$

ya r. _,

3:Wh I< Y/4%Y/6 Y/XAY/A Y/ANY/A C$ ROCX IG>

g; BOTTOM OF ROCK NOT TO SCALE ig EXCAVATION Y/XAY/A z pz I AE

- ag e ga

~ =E z

GH 32

~

NEP 1 & 2 Amendment N12 February 1979 TABLE OF CONTENTS (Continued)

I

\~' VOLUME 6 (Continued) l Chapte r Title Page No.

13.4 Review and Audit 13.4-1 13.5 Plant Procedures 13.5-1 13.6 Plant Records 13.6-1 13.7 Intustrial Security 13.7-1 Appendix 13 A Rhode Island Nuclear Accident or Incident Plan VOLUMF 7 14 INITIAL TESTS AND OPERATION 14.1 Test Program 14.1-1 15 ACCIDENT ANALYSES

(

! s 15.1 Condition I - Normal Operation and Operational Transients 15.1-1 15.2 Condition II - Faults of Moderate Frequency 15.2-1 15.3 Condition III - Infrequent Fault 15.3-1 15.4 Condition IV - Limiting Faults 15.4-1 Appendices l

15B Sunmary of Parameters Used for Evaluating 15B-1 Radiological Ef fects of Accidents 15C Sunmary of Parameters Used for an Evaluation of 15C-1 Potential Reactor Containment Leakage to the Con-tainment Penetration Area (CPA)

ISD Major Reactor Coolant System Pipe Ruptures (Loss of 15D-1 Coolant Accident) - Generic Sensitivity Study Results 16 TECHNICAL SPECIFICATIONS Nlt 16.1 Definitions 16.1-1 16.2 Safety Limits and Limiting Safety System

(-- Settings 16.2.1-1 vi

NEP 1 & 2 Amendment N12 February 1979 TABLE OF CONTENTS (Continued)

VOLUME 7 (Continued) l Chapter Title Page No.

16.3 Limiting Conditions for Operation 16.3.1-1 16.4 Surveillance Requirements 16.4.1-1 16.5 Design Features 16.5.1-1 16.6 Administrative Controls 16.6.1-1 17 QUALITY ASSURANCE 17.1 Quality Assurance - Yankee Atomic Electric Company 17.1-1 17.2 Quality Assurance - United Engineers and Constructors 17.2-1 17.3 Quality Assurance - Westinghouse 17.3-1 VOLUME 8 SUPPLDIENTAL INFORMATION (AEC Questions / Responses)

VOLUME 9 REQUEST AND RESPONSES Tab 1 through Tab 3 VOLUME 10 N1 RE_ QUEST AND RESPONSES Tab 4 through Tab 17 PSAR PAGE LISTING

__A_MENDMENT HISTORY vii

NEP 1 & 2 Amendment N12 February 1979 TABLE OF CONTENTS (Continued) i VOIUME 6 (Continued) l Chapte r Title Page No.

13.4 Review and Audit 13.4-1 13.5 Plant Procedures 13.5-1 13.6 Plant Records 13.6-1 13.7 Industrial Security 13.7-1 Appendix 13 A Rhode Island Nuclear Accident or Incident Plan gg VOLUME 7 14 INITIAL TESTS AND OPERATION 14.1 Test Program 14.1-1 1

15 ACCIDENT ANALYSES NS 15.1 Condition 1 - Normal Operation and Operational Transients 15.1-1 15.2 Condition II - Faults of Moderate Frequency 15.2-1 15.3 Condition III - Infrequent Fault 15.3-1 15.4 Condition IV - Limiting Faults 15.4-1 Appendices l

15B Summary of Parameters Used for Evaluating 15B-1 Radiological Effects of Accidents 15C S:mmary of Parameters Used for an Evaluation of 15C-1 Potential Reactor Containment Leakage to the Con-tainment Penetration Area (CPA)

ISD Major Reactor Coolant System Pipe Ruptures (Loss of 15D-1 Coolant Accident) - Generic Sensitivity Study Results 16 TECHNICAL SPECIFICATIONS N82 16.1 Definitions 16.1-1 16.2 Safety Limits and Limiting safety System 16.2.1-1 Settings vi

NEP 1 & 2 Amendment N12 February 1979

(

~

TABLE OF CONTENIS (Continued)

VOLUME 7 (Continued) l Title Page No.

Chapter 16.3 Limiting Conditions for Operation 16.3.1-1 16.4 Surveillance Requirements 16.4.1-1 16.5 Design Features 16.5.1-1 16.6 Administrative Controls 16.6.1-1 17 QUALITY ASSURANCE 17.1 Quality Assurance - Yankee Atomic Electric Company 17.1-1 17.2 Quality Assurance - United Engineers and Constructors 17.2-1 17.3 Quality Assurance - Westinghouse 17.3-1

,[

VOLUME 8 l

SUPPLDiENTAL INFORMATION (AEC Questions / Responses)

VOLUME 9 REQUEST AND RESPONSES Tab 1 through Tab 3 VOLUME 10 N1 REQUEST AND RESPONSES Tab 4 through Tab 17 PSAR PAGE LISTING AMENDMENT HISTORY _ All vii

NEP 1 & 2 Amendment N12

! February 1979 to the sump without any re-evagaration or further absorption of heat from the containment atmosphere. This model predicts a maximum amount of conden-sation and, consequently, a higher temperature transient than the " equilibrium-model" which assumes no dir2ct condensation due to heat transfer to sinks, while the amount of condensate is estimated on t'.m basis of thermodynamic equilibrium condition in the containment atmosphere after allowing heat transfer to sinks with no associated mass transfer. Figurc 3.11-5 compares the containment temperature transients predicted by these two models.

3.11.5.6 The accidents listed in Table 3.11-3 were analyzed in conjunction with the SAF's discussed in Subsection 3.11.5.1. Table 3.11-4 summarizes the results for the pertinent cases which allow a conclusion to be drawn in regard to the maximum peak containment pressure and maximum peak containment atmosphere temperature due to an MSLB accident.

Double-Ended Ruptures:

At any particular power level, the larger the double-ended break, the higher the peak pressure. Wh ile the peak pressure occurs at the spray actuation time for small breaks, it occurs at the steam generator dryout time for full-size breaks. Among the SAF's considered, the failure of the main steam l isolation valve nearest to the faulted steam generator results in a longer uit reverse flow and hence a higher peak pressure regardless of the break size or power level. The analysis shows that the maximum peak pressure due to a guillotine break results from a full-size break at 30% power (Accident #9),

with a failure in the nearest main steam isolation velve (SAF #2). The peak containment atmosphere temperature always occurs at the spray actuation time regardless of the break area, power level, and SAF combinations. It is higher for smaller breaks at any particular power level as the later actuation of sprays, due to a slowar pressure rise, more than offsets the slower increase in the containment atmosphere temperature. Also, it appears that the peak atmosphere temperature increases with the power level for same size of double-ended break.

Split Ruptures:

The containment pretoure transients for both the split and double-ended rup-tures of all break sizes at the hot shutdown condition show a peak at the spray actuation time and a second peak at the steam generator dryout time.

It is noted, however, that the maximum peak pressure due to any split rupture analyzed is lower than that due to Accident #9 with SAF #2, mentioned above.

The peak containment atmosphere temperature always occurs at the spray actu-ation time as in the double-ended breaks. The peak atmosphere temperature, for a given power level, does not seem to be significantly affected by a SAF.

The steam generator dryout time, however, varies with a SAF and is always longer than the spray actuation time. The maximum peak containment atmosphere temperature was found to result from a 0.908 ft2 split apture at 70% lower (Accident #8). This maximum value is higher than that due to any double-ended break considered.

aus 3.11-7

NEP 1 6 2 Amendment N12 February 1979 TABLE OF CONTENTS (Continued)

VOLUME 6 (Continued) l Chapter Title Page Nc.

13.4 Review and Audit 13.4-1 13.5 Plant ProceJures 13.5-1 13.6 Plant Records 13.6-1 13.7 Industrial Security 13.7-1 Appendix 13 A Rhode Island Nuclear Accident or Incident Plan g3 VOLUME 7 14 INITIAL TESTS AND OPERATION 14.1 Test Program 14.1-1 l

15 ACC1bdNT ANALYSES O 15,1 Condition I - Normal Operation and Operational Transients 15.1-1 15.2 Condition II - Faults of Moderate Frequer.cy 15.2-1 15.3 Condition III - Infrequent Fault 15.3-1 15.4 Condition IV - Limiting Faults 15.4-1 Appendices l

15B Sumary of Parameters Used for Evaluating 15B-1 Radiological Effects of Accidents 15C Surnary of Parameterr. Used for an Evaluation of 15C-1 Potential Reactor Containment Leakage to the Con-tainment Penetration Area (CPA)

ISD Major Reactor Coolant System Pipe Ruptures (Loss of 15D-1 Coolant Accident) - Generic Sensitivity Study Results 16 TECllNICAL SPECIFICATIONS N UI 16.1 Definitions 16.1-1

( 16.2 Safety Limits and Limiting Safety System Settings 16.2.1-1 vi

NEP 1 & 2 Amendment N12 February 1979 TABLE OF CONTENTS (Continued)

VOLUME 7_ (Continued) l Chapte r Title Py e No.

16.3 Limiting Conditions for Operation 16.3.1-1 16.4 Surveillance Requirements 16.4.1-1 16.5 Design Features 16.5.1-1 16.6 Administrative Controls 16.6.1-1 17 QUALITY A_SSURANCE 17.1 Quality Assurance - Yankee Atomic Electric Company 17.1-1 17.2 quality Assurance - United Engineers and Constructors 17.2-1 17.3 Quality Assurance - Wescinghouse 17.3-1 VOLUME 8 SUPPLDiENTAL INFORMATION (AEC Questions / Responses)

VOLUME 9 REQUEST AND RESPONSES Tab 1 through Tab 3 VOLUME 10 N1 REQUEST AND RESPONSES Tab 4 through Tab 17 PSAR PAGE LISTING AMENDMENT HISTORY All

\

vii

NEP 1 & 2 Amendment N12 February 1979 k CHAPTER 6 ENGINEERED SAFETY FEATURES TABLES Table No. Title 6.2-1 General containment Information 6.2-2 Double-Ended Pum.p Suction, LOCA Event Chronology 6.2-3 Blowdown-Energy Sources 6.2-4 Mass and Energy Addition Table, Double-Ended Pump Suction Guillotine Rupture, Max. SI Flow, No Froth 6.2-5 Mass and Energy Addition Table. 0.6 Doubic-Ended Pump Suction Guillotine Rupture (Maximum Safety Injection) 6.2-6 Mass and Energy Addition Table, 3 Ft Split, Pump Suction Rupture (Maximum Safety Injection) 6.2-7 Mass and Energy Addition Table, Double-Ended Hot ueg Guillotine Rupture (Maximum Safety Injection) 6.2-8 Mass and Energy Addition Table, Double-Ended Cold Leg Guillotine Rupture (Maximum Safety Injection) 6.2-9 Containment Data At Pressure Peak 6.2-10 Structural Heat Sinks and Material Data 6.2-11a Double-Ended Pump Suction Guillotine, Max. SI, No Froth 6.2-11b Double-Ended Pump Suction Guillotine, Min. SI, No Froth 6.2-12 Containment Safety Systems 6.2-13a Deleted 6.2-13B Mass and Energy Release Rates for Subcompartment Analysis (Hot Leg, Double-Ended Guillotine)

A/IL 6.2-14 Deleted 6.2-14A Deleted 6.2-14B Deleted Het C

i 6.0-3

NEP 1 & 2 Amendment N12 February 1979 6.2.2 Containment Heat Removal Sys tem The containment is maintained below design pressure following a loss ;f coolant accident (LOCA) by the parallel act ion of the emergency core cooling system (ECCS) and the containment spray system (CSS) as active heat removal systems ,

and by passive heat sinks such as structural components . The ECCS is discussed in Section 6.3 of RESAR-3. A discussion of the CSS, and a discussion of the inter-relationship of tha two sys tems to remove heat f rom the containment , is contained in this section. Passive heat sinks sudi as the containment liner and other structures are described in Subsection 6.2.1. Each reactor unit has its own CSS cnd ECCS. No component ; are shared.

6.2.2.1 Design Bas is The ECCS and the CSS are designed to remove the energ) associated with the reac-tor coolant blowdown, stored energy in the core, structures and pressure boundary components following a LOCA in order to prevent containment pressure f rom ex-ceeding design pressure.

As discussed in Subsection 6.2.1 the containment design basis accident occurs for a double ended pumn suction line rupture and maximum safety injection.

Only minimum containment spray capacity is used for heat re moval .

The containment energy removal rate is sufficient to reduce containment pres-sure such that leakage is reduced to one-half of the design leakage within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> af ter the LOCA. The design leakage value is 0.10% of the containment air l mass per day.

Both the ECCS and the CSS systems are divided into two identical subsystems, each independent of the other and fully redundant. Failure of a single active component will not cause the loss of more than half of either system's 200%

' eat removal capacity provided.

The refueling water storage tank (RWST) is designed to contain 475,000 gallons l of borated water. This tank is designed to supply the refueling water, con- A"1 tainment spray, and the emergency core cooling sys tems . The RWST capacity is based on refueling requirements and will supply the safety injection, the charging, the residual 1. eat removal and the containment spray pumps for at least 20 minutes during the injection phase of a design base accident. Margin is proviced to allow time for the operator to t ransfer the systems to the re-circulation mode. Analysis is based upon a minimum of 350,000 gallons of water being availabic for injection. A steam heating supply system is pro-vided to protect against freezing. Tank temperature is indicated locally and alarmed in the main control room.

The spray additive tank supplies sodium hydroxide solution to the mixing chamber of the RWST during the injection phase of a LOCA. The tank is sized to provide the total quantity of chemical and at flow rates necessary to control the spray and sump pil within specified limits. A steam heating system is provided to protect against freezing. Tank temperature is indicated locally and alarmed in the main control room.

6.2-17

NEP 1 6 2 Amendment N12 February 1979 6.2.2.2 System Design The emergency core cooling system upon receipt of a safety injection signal pumps water f rom the RWST to the reactor coolant system. The containment spray system is actuated by a containment spray actuation signal (CSAS) which is initiated by a high pressure (20 psig) in the containment. The containment spray system will pump water from the RWST to the spray nozzles located high in the containment building. The RWST contains 475,000 gallons of borated l water (1900 ppm boron) at a maximum temperature of 88 F, and provides c mling A41 for a minimum of 20 minutes af ter DBLOCA. Upon a low level alarm from the RWST (approximately 350,000 gallons removed) the operator will transfer the suctions of the emergency core cooling system and the containment spray sys-tem to the containacnt sump.

The ficw diagrams of the ECCS and CSS are shown in Figures 6.3-1 and 6.2-15 respectively. The Emergency Core Cooling System Process Flow Diagram, Figure 6.3-2, supercedes the RESAR-3 Process Flow Diagram, Figure 6.3-la.

Figure 6.3-3, Engineered Safety Features Flow Diagram is a composite of all the safety systems. The valves are shown in their open position, so that the same diagram can be us(d to represent all modes of operation. Design para-meters for CSS components are found in Table 6.2-15. Refer to RESAR-3 Section 7.3 for instrumentation and control of these systems,

a. Component Description The descript ion of the RHR pumps and the RHR heat exchanger is given in Sections 5. 5 and 6.3 of RES AR-3.

(1) Sprav Additive Tank This t ank is moun ted ad j acent to the RWST and drains by gravity into the RWST mixing chamber. Steam heaters are provided to prevent f reezing or precipi tat ion during cold weather. The ratio of the spray addi t ive tank area t o t he RWST area is such that the initial spray pH is maintaincd approximately 10.5. The tank is sized to provide the amount of sodium hyd roxide solu-tion to insure that the final sump pH will be between 9.0 and 9.5, for the various reactor coolant conditions.

(2) Containment Spray Pumps The containment spray pumps are horizontal centrifugal pumps selected to supply the design spray flow rate at containment design p ressure . The pumps are designed to take suction f rom the containment sump at the most limiting NPSH condition (at-mospheric pressure and T = 212 F) and pump it back into the con tainme n t . Design pump discharge pressure takes into account con tainme nt pressure, elevation head to the highest nozzle, and piping frictional losses. The pump internals are made of aus tenitic s tainless s teel .

( 3) Con t ai nme n t Spray Heat Exchan ge rs The containment spray heat exchangers are shell and tube type heat exchangers with spray flow in the tube side and component cooling water on the shell side. They are sized such that one 6.2-18

NEP 1 & 2 Amendment N12 February 1979 For the design basis break, the 25.3 psin containment spray actuation signal set point is exceeded in 8.5 seconds. Allowing an additional 1 sec. for instrument and control logic delay, the actuation logic will call for a L"1 signal to open the spray systems valves withia 9.5 seconds after the I

""1 accident occurs. The emergency power will be vailable from an onsite diesel generator to these valves at 12 seconds, at which time the valve action starts.

Allowing 20 seconds for valve - stroking time, the valve will be full open at 32 seconds. These valves are full open before the pump is at full speed.

The containment spray water will be distributed over the operating floor at elevation 25' and wil. then be directed to one of three different flow paths to l the containment sunp. Water holdup is minimized by grated floors and adequate N6 openings in compartment walls and shiciding to allow passage of water to the recirculation sumps.

1) The operating floor has 3520 ft2 of grating which will pass the spray l directly to the lower floor at elevation O'-0". Spray that impacts 45 and collects on the solid Elevation to the grated floor areas.

floor at thiselevationwill{reelydrain O'-0" has 1270 ft of grating l which will allow the water draining from above drain to elevation -26' 45 where the spray will drain to the recirculation sump.

2) The steam generator shielding extends above the operating floor to elevation 32 ft. The top of these shielded cubicles is open to collect spray. However, this path is open to elevation -26 ft and the spray will drain directly to the sump.
3) There are openings in the reactor operating floor for the refueling canal, reactor internals laydown and access to the reactor head region. Eventually, all spray impacting this area will drain to the annular region between the reactor vessel and concrete shielding.

This area is not sealed-of f during normal plant operation. Low eleva-l tion portions of the refueling canal (See Figure 1.2-6 of the PSAR) wg will drain to the -26' elevation by two valves in series, normally open, but both closed during refueling.

Water which ove rf lows into the reactor cavity will drain into the reactor neutron detector and flux maping equipment cubicles. These cubicles will retain a total of 15,178 ft 3 before reaching the elvation -26', where openings exist to allow drainage to the recirculation sump.

Adequate openings have been provided in the missile shield walls to allow free passage of water at elevation -26' to the recirculation sump.

The total trapped volume of spray water is 15,178 f t3 This is significantly less than 43,500 ft3 of water supplied from the RWST.

The changeover f rom the injection mode to the recirculation mode during a LOCA is described in the Westinghouse RESAR-3, Sections 6.3.2.2.2 and 6.3.2.2.3. Tne information available to the operator to guide him in making the decision to transfer and the justification for the assumption tr.at no single failure will prevent the transfer to the recirculation mode are also contained in the RESAR. In RESAR-3, the containment spray pumps are not mentioned but are treated exactly like the RHR pumps during the changeover.

6.2-21b

NEP 1 6 2 Amendment N12 February 1979 TABLE 6.2-1 GENERAL CONTAINMENT INFORMATION I. General A. Design Pressure, psig 50.7 B. Design Temperature, F 296 C. Free Volume, ft 2.715 x 106 D. Design Leak Rate, % mass / Day 0.10 l II. Initial Conditions A. Reactor Coolant System

1. Reactor Power Level 3650.6 MW(t)
2. Average Coolant Temperature 592.7 r
3. Mass of Reactor Coolant System Liquid, Ibm 492,269
4. Mass of Paactor Coolant System Steam, Iba 12,370 6
5. Liquid Plus Steam Energy, Btu 302.3 x 10 B. Containment
1. Pressure, psig .5
2. Inside Temperature, F 123 [
3. Outside Temperature, F 90
4. Relative Humidity, % 90
5. Service Water Temperature, F 80
6. Refueling Water Temperature, F 88 C. Stored Water
1. Refueling Water Storage Tank * (gsl) 350,000 min.
2. Total Free Vol ume , Four Accumulators, ft 3 3,800 nominal
  • 475,000 gal capacity Ull

SB 1 & 2 NEP 1 6 2 Amendment N12 February 1979

, TABLE 6.2-13B MASS AND "NERGY RELEASE RATES FOR SUBCOMPARTMENT ANALYSIS *

(HOT LEC, DOUBLE-ENDED GUILLOTINE)

Time Mass Flow Rate Enthalpy (Sec) (Lbm/sec) (Btu /lbm)

0. .10450E+05 .64982E+03

.25000E-02 .91703E+05 .64753E+03

.50200E-02 .84988E+05 .64566E+03

.75100E-02 .75133EM5 .64544E+03

.10020E-01 .75119E+05 .64599E+03

.15020E-01 .77537E+05 .64688E+03

.20010E-01 .78927E+05 .64645E+03

. 25010 E-0 '. .88132E+05 .64664E+03

.30030E-01 .81103E+05 .64679E+03

.40020E-01 .82348E+05 .64697E+03

.50020E-01 .82701E+05 .64732E+03

.60030E-01 .84280E+05 .64837E+03

.70020E-01 .85667E+05 .64869E+03

.80010E-01 .88843E+05 .64846E+03

.90020E-01 .90627E+05 .64792E+03

.10008E+00 .91697E+05 .64719E+03

.11010E+00 .91541E+05 .64637E+03

.12002 E+00 .87897E+05 .64586E+03

.13016E+00 .85579 E+05 .64556EM3

.14013E+00 .84019 E+05 .64529E+03

.15014E+00 .82848E+05 .64494E+03

.17519EM 0 .81204E+05 .64390E+03

.20002E+00 .80497E+05 .64243E+03

.22502E+00 .79895E+05 .64081E+03

.25022E+00 . 78592E+05 .63926E+03

.27520E+00 .77486E+05 .63779E+03

.30018E+00 . 7572',E+05 .63627E+03

.40024E+00 .74072E+05 .63123E+03

.50024E+00 .72274E+05 .62729E+03

.60028E+00 .70846E+05 .62469E+03

.70037EMO .69656E+05 .62329E+03

.80016EMO .68426E+05 .62281E+03

.90014E+00 .67177E+05 .62291E+03

.10001E+01 .65068E+05 .62346E+03

.12002E+01 .63922E+05 .62555E+03

.14003E+01 .61869 E+05 .62771E+03

.16001E+01 .59508E+05 .62995E+03

.18009E+01 .55965Ee5 .63175E+03

.20000E+01 .54354E+05 .63458EM3 ns1

(

  • Includes 10% margin

NEP 1 & 2 Amendment N12 February 1979 TABLE 6.2-15 (Sheet 2)

Ref ueling Water Storage Tank Quantity 1 Capacity 475,000 gal l v n.

bbterial Austenitic stainless steel Type Vertical cylinder Design code ASME III, Class 2 ANSI h-18.2 safety class Cla 2 Concentration of baron 1900 ppm boron Maximum temperature 88 F Operating pressure Atmospheric Containment Spray Heat Exchanger Quantity 2 Type Shell and tube Design codes:

Tube side ASSE III, Class 2 Shell side ASME III, Clas s 3 ANSI N-18.2 cafety class:

Shell side 3 Tube side 2 Material:

Shell side Carbon steel Tube side Austenitic stainless steel Design pressure:

Shell side 150 psig Tube side 300 psig Design temperature:

Shell side 200 F Tube side 300 F

g o

.1 l;i r. q u s. <

I. j<..t 2 w

  • t . , - %w o. @J .
s. \ 1 8. 6a *t O; 4

C l l's " '4'@'

l'%

'l 5

. .- ... m

.M

!l !NY)~

-W

+ _'

g ..w.

i. m. = e--

L!*f.r*y,d 5cas a

,+=. m .e

_ _ _ ..g. @

]

.m  % q.s

, . 3

. .. 6 'I '" .U' (7)

If'* p r* 54*3' G.

rM' d, ,;.3 } , +

r- 4 4 - .

I ]!{ . . pi .J4 Q '.

s** '

,;-g >.

f rj D i 'gtta t

as

.. . *9 ..r* .-


1,

,A s

e

.e t

, f .+cw;. . ,

u.

4b p-J

, :i=i1,

,t.,:i m

s.

x %.gI

_ n' s w. - *#

%.,li i-n.

. . i a't.

r

  1. y n 'tiii l T_

ri L4  ; '

N- 91- 'W*g:

e h$ M=~i w g u je-l K,Es h>j)i 2i! A 'l; -

n.

+ 0 g >d - '

<a s 4

y'y + 3. J. .

,w

a. jsu .

MM:,..bo n ,w _I p .3+---- ,j

_7 . 'lG =% ~ 1_:..

' s d;._yl- '-- M3- 's ;

,.- .;, , ,

s, ,;, ' i

.- c - -

l i y -:.1 ywl .a-- _

j:e.[t.

s; l-j .u. r- .:

. d~ ,. rt ,d'_ .

9 L m ,_ , ,<

,, 5 -

at

> m -s i l

i .

.-' F T

  • g} 1]  ! -4* ;j y '-- ' -  :

_. q

q;q ,j pI I l ls, l'! l ;p'h! <, $

! j:b t p ,ly ,1 gl 7 <( .]

i i is t. .

E j'hi?a['-
  • if

- (Ig t, I .h J . I

- At! + i' *s].swn. , I d sf.p' 3 -

i g tig: '

cn {J UT_f E ! )

vm & a !,

d3 a r-r i, l 2>

e.' ;I. r %,,,.,r rrsa j

-.,l, rz

- i C p'

- 3-g 2 ti

i. ,e j

i - 3 t s

j h.II'

.p)f J 's e.if" ';g l cf)lb}'

i

~

2

_. g

,e s ,;. . p .. p : .

.. + n .5;1..!3.dg r._ .

g _.. , ,;

g h,,y z

. .it.g **,n* ..g N. j! E.!.! '

+

y ..b. E'b , .Q I

-,y}, f n .. t . -

8c

. L > . g. -

  • , ' I" 4 I .i k ek

.+ . t ,

O C

[ j ' i F'gs

f~ [". } - 1"y .

! g, '

~~

~ ;~ -~~~~- + ~t'

. ,=c' '-

m ,,, . w. ~.s.;. .f .

y t s'1. t._.

3 z ts 3 r * " ;;,*

3 , g

.~.f a- ,,

  • --g., 44 =

< $ Ag%.- .g ev ens .

.~*>e + L}b _LSf. geny " *- .'r n < V * '

z.. .

, 3 +. 3 r.

~ . . - - , . . . .

_4

'P* ** .e ,

.' * ,.,t**

~ 3, 4 IO a

I

'p **. Ti r [ (l q,-

"if 5= 3 *' 'l ,

y- ,s{ , s grf }: ,7

=' p>

y , ,

- . . . .pt. * -

.. w..e m m n m , -

m @ .  ::

U.M_-a., . . ."J~

3 j'iiiinlij'!!!!;!H -. .-

9 -

.~; , - 9 L d.igis i l i. e. s l 33 i t .t 1,1, i i '3_. .t. .+4 l, +e_- ci i -L._

,n - __ v_

_ . _ _ ._. ._ m sj ]) eg-. n.

-)8 n ag j;#l

  • q -f8 I 1 , f
  • c 2 o e ,'

'.a l  :

. I t.1,I -i i h f: .i.

3 s

s g'

t  ;;  ::-

,, I M.
o j u, r i, 's  %

. 2 i .- i . .i.2 .. d

,, z sr.- .E n ace 1 .

',3,b,4m

. ,. g H 52 g, c.

.- .t t.j h. .r. .

c' I -

A. {

gi (t 4 ED l + d [, s k $cs  !

gs - A

$$ 1t' -A 25 C4 i ip 4 2 Q h 7 gg 3

- m 2 s xl p .O . . v

~.

ff se ,a

  • G j ~!;g w[w) '

1 s:

f.

<m ,

I I

-2, ft

.!i

r?

d.l.-

p .

~

YARD W

.m. x hh il r&&B p- -

eaiwARv Auxiliary DuiLDi

'>i i .- _E_

s'~-

, sm .sf -

e .

l h-. l _ c s se .s r-

-Q g4 'A h s..

l Q 4 3 Tf , /W s,...,..

- ~ wi>'

,m m i l 7 N j,.

u e. h. h-dh ft a s l,A 1

aa

, [,

  • k_4(4  !'_ ' 4 hgM@ Qp (g,)(ny, Q: ijM _; ; ; _

~T (s Fij9WV M%iac Ull'1LA E*

r..M. S h l 'l g p

(@t L4lp/-~s. r e,rur.s s-s

%v *

3 c cet,,. 'it, rwwA t - o,. e, ,c .

t"A cs p "' t e f. < u,~ e n s. s, . ,.m sur ', aas s . r rw- . 9':lp'

e y
' , . - -' . .E.{

a l')wp, r

---w' te

  • t Llh J,i av.1w + s

+g +-

a "S,h.ll! se-.a

..t s

c. 4 M.eu*. l sw .vg ] {f, u,+g s

=

L. . T i

..,. . . . .Q 9 tz "V

@ %TlI' m ,. .anq,wm)

Fw.:.-

~*"I

. f',# T.'..3 S L

- > $. , g. ...3..~.

t m -a w <-. .a um w ,

Jm& - '

I)t n*" r

. <6 } -

.1,3 2 , [' 3 $dt.: - ' c n.c.T,;.v- . x>

, c r- ,. ts i e wu l

  • a , .l j m  :-c a.es'

. m , . ., y _

l*a 1 f b- 4 m,...,.

3 ag; , .

'9 rw , 4 i m,,s ys.ru. i

..a

.t "4 a ., . . su >

, Gw" "^ >

T..

  • n i s e.

', ,[h ' 4__/ cf,i,4,9 de-is* v4 . _ t u ..

el 7 m

  • u,......,r,
i. . . , . < . .

,9 $ SS8f t f (6..u  %>dal e.: - 'a i e

  • a. . + . ' # 3 . u, 4 m3 2 .s ' t  ; g t ,,,, ,x e>

M t . ' ed may;4 4 kV d.e so.r.x rw

' LO.us_J I 4"

... _ %y kL --

iU.C? N' &

lqyp

% m. g,s,.e

, ,*,,, w>

..uo u , ,yj $ 'i am a _

b*fN n d d Fw1 M.,. w 7

  • - :u. t oca r
. v l t s~ a sos a i .

i2 -

l,

' M, 9 ,

'- +'t Ng TF s . -

  1. 5dY !E

,t .e.r.a o

S teaspossv tc . .

.v.vt, c.u.a.o.t.e.t.re . ..

. ste sene is e i T 7

. w .. . s ..

Is

'l

    • sara'f f ,u..e4 e

<=e ca menee m.e% e,us.t. mfd

.af. e e.te.st oef c sm l' -g aauia3 -

sessane smest es as.was epw ot.i.s e s av ue fD as ho Y . T rel'9910sk 4 us as eT 4EJutES sossste vu clscAS Ta e6vts et Lata'comav.,st ' ** * " '#,'U *'3 g V l r h ce ,g 14-eM.1 4

.=s ..=so...( p k.

ge7

  • AV1 er++ sh ."7M[

Ast; , . - 65-

.e_ .-

w (c=r.p.6c yi;~

c.

e. , , I-

, r, r;, f <& < e.

1 c < ei I y see. pu .

, g g y ,,g g ba8 f : n.ina a _ . _ _ _ _ = . -_ .

I.rE SYSTEM WEFtX FOR TMtS DIA23

!s css uunstste_*'hH.2 .

FDR_FLCw 9tELt1 Fir (sct w4*M SEE Fv.; ittLet NEW ENGLAND F NEP Prelimmary Safet

,s, 4 outsitt -.' ie si.siec

/ w " '+e w m wcursinuctunt lcosmwNT staucTupt fw nr

' u11P '

l '

, . .. .-- mt russu

, s. s.w. . ..s -=

M

. 4 j

i. as y; , ,s , a. .io .,

.- . -r

- -- ** n f.* r ,..  ! ='

. _ e , . ;._., , '; s g- .,...o.-

.*na*

  • P N^ l-; .  ; ,";*
  • w , ,' y7 . c),

i .x, ", ..

i 4- . ,

u .. . u~

..il f; v / ,,.,, g ,

T .go . g

.a s

[..+, . c. .

, , m. . .., g, ,4,,e

=s

. , . . .4c t,..-

,,...../ .

+..

m, ,

g.. c .~ w na .n.

wiui.  !

l;

%.t (, e4

~

. .4,

. t y. , I l .

{

+.~.i . ll

.aw w. .

~-=*

L ..; .]wI 7t 1 ,.

l

<T .a ..d.,' ' .

u,,_, . . . . . , r="..*.

vas  ;,4 1fs

'*y..e .y

,,,, ,,,.J a's

= .

sc . Ac -.2..u..

, , _  ;

e- ~mo ,

w ~ ,. y .-.,, ,

-f.

3 N . f.4 3.- ',.l.

. = .

g l

- . m s c.-- . . ~ . ... . . .

    • ..* ** 1m n . , @ 4, ms- 1 >>a,1-. . .

b 2 Av '

'e,,c t.. . '

m

; ,

~

v.

? :

m , n-r . a.

., 5 ,

v.

, .4 . - - - , - u g

. y uw

. u.y"

< : , .; G .., }.,;y

  • " , ' , "r. ;.w c;y
  • uw -+ m. v.,

.- ., . = ., ,

.' Pwr, * .w. - 1 a ***

i 4 .~y @n. .c wt . ~

a.

R[f_*M

. . . . . i

_"'*  : ',' I H-h. * ' ' ~ p && g .y -s

                                                           , --._                           ig, p.6n+ . ....                                                sa.,t.v.~Les a z, ,                        - .,in           .
    <                 Nt -                                                                    g . . . .g 9 ,.
   .                                     . .; p, ,.                      ._                 ._ __ _

7 g . . -.,,.t*O,4

  .i.                                       '
                                                    .;                                   f..

m , e . 'v. ws ,m t_ . .. . w,u.u,...-, g ga?p . m . . -., -

 .uv                                                           1>              .                   o , . ... w % . . .  .
         .,                              %r   "* 3
                                                         .2    !.

a......w....... Y,rs'9.4 ,Q o...........o.

                                                               !g
                   , , , , , _ ,                  ;                  _

e ,~ ., m .. - . . ~ m a ! $, e .. . ., a

.j;' 4 .
                                                  ,            .;                                  e ..,u..

e om. D.~.. m n < asp .- n w.<r e , . .. . . . s . . og ,,,,,,,,.,v.M. o , . . . . . s s4 i o. m m.,.

             . ,.. w.,.                     i ,/,,. , ,,, ,

1 e. I e io ea..es . .au.m s a e. 3 omm. .n.um e. . e.m o c=e m.

                                                                                                   <3 a cv. sm .x= ms s..u.                                    u.-. ..."

AMENDMENT N12 FEBRUARY 1979 OWER COMPANY CONTAINMENT SPRAY SYSTEM 1&2 P&l DI AGRAM Analysis Report FIG. 6.2-15 l I NEP 1 &2

NEP 1&2 Amendment N12 February 1979 ast The design bases and scparation criteria of the substation SF6 gas insulation systems include the following:

1. There is no gas interconnection between circuits.
2. All SF6 insulated installations are divided into logical gas systems to provide the largest practical gas reservoirs for least sensitivity to leaks. A typical gas system would include the three phase bus connections between two circuit breakers, extending to the point of connection to a transformer or to an overhead line.
3. The individual gas systems are subdivided by gas barrier insulators and bypass valves to permit optimum installation, maintenance, and leak detection procedures.
4. Each circuit breaker and each circuit forms a separate gas insulated system which is individually monitored as a 3-phase system. A pressure gauge, ter..perature gauge , and gas density relay with alarm contacts are counted adjacent to the section being monitored.
5. The SF6gs insulated systems are desie.ned with spacings such that they can withstand 1.5 times the maximum operating voltage with as little as one atmosphere (o psig' of SF 6*

Alli The 345 kV switching substation is connect ed alth underground gas-insulated bus directly to the high voltage bushings of the generator ste>-up transformers (GSUs) located at an outside we.11 of the power plant as shown in Figure 8.2-5. The SF6 bus from the transformers to the substation will consist of seven phases for the two generators including one spare bus. The spare bus can be used for either NEP 1 or NEP 2 through a series of switches as shown on Figure 8.2-6 in the event of a failure on any phase. The design criteria are that the bus connections for NEP 1 and 2 from generator step-up transformers ' 1s) to the switchyard are to be run underground and are to be kept p. .cally separated. The generator for each unit is rated 1,393 MVA, 25kV, 60 Hz, 0.90 power factor, 3-phase, 1,800 rpm, and is hydrogen cooled with a liquid cooled stator. A forced cooled, isolated phase bus duct is used to connect each generator to its associated transformers. The turbine generator details are given in Section 10.2. Each generator is connected to the 345 kV buses through three single-phase generator step-up transformers (G sus ) . The generator s tep-up transf ormers are single-phase, outdoor type, oil filled, rated at 460 MVA, FOA, and are located adjacent to the turbine building as shown in Figure 8.2-8. They are delta connected on the primary (low voltage) side and wye connected on the secondary (high voltage) side. Two half-size unit auxiliary transformers (UATs) for each unit are connected by taps on the isolated phase bus duct connecting the generator to the CSU transformers. Each unit auxiliary transformer is three-phase, three-winding , outdoor type, oil-filled, class OA/FA/FOA, with delta connected 25 kV primary windJrv 8.2-3

NEP 1 4 2 Amendment N12 February 1979 TABLE OF CONTENTS (Continued) (' VOLUME 6 (Continued) l Title Page No. Chapte r Review and Audit 13.4-1 13.4 Plant Procedures 13.5-1 13.5 Plant Records 13.6-1 13.6 Industrial Security 13.7-1 13.7 Appendix 13 A Rhode Island Nuclear Accident or Incident Plan g VOLUME 7 14 INITIAL TESTS AND OPERATION 14.1 Test Program 14.1-1 1 U 15 ACCIDENT ANALYSES 15.1 Condition I - Normal Operation and Operational Transients 15.1-1 15.2 Condition II - Faults of Moderate Frequency 15.2-1 15.3 Condition III - Infrequent Fault 15.3-1 15.4 Condition IV - Limiting Faults 15.4-1 Appendices _ g Sumary ot Parameters Used for Evaluating 15B-1 ISB Radiologica- Effects of Accidents Sumary of Parameters Used for an Evaluation of 15C-1 15C Potential Reactor Containment Leakage to the Con-tainment Penetration Area (CPA) ISD Major Reactor Coolant System Pipe Ruptures (Loss of 15D-1 Coolant Accident) - Generic Sensitivity Study Results Ns2 16 TECHNICAL SPECIFICATIONS 16.1 Definitions 16.1-1 16.2.1-1 ( 16.2 Safety Limits and Limiting Safety System Settings vi

NEP 1 & 2 Amendment N12 February 1979 i TABLE OF CONTENTS (Continued) VOLUME 7 (Continued) l Chapter Title Page No. 16.3 Limiting Conditions for Operation 16.3.1-1 16.4 Surveillance Requirements 16.4.1-1 16.5 Design Features 16.5.1-1 16.6 Administrative Controls 16.6.1-1 17 QUALITY ASSURANCE 17.1 Quality Assurance - Yankee Atomic Electric Company 17.1-1 17.2 Quality Assurance - United Engineers and Constructors 17.2-1 17.3 Quality Assurance - Westinghouse 17.3-1 ( VOLUME 8 SUPPLDfENTAL INFORMATION (AEC Questions / Responses) VOLUME 9 REQUEST AND RESPONSES Tab 1 through Tab 3' VOLUME 10 N1 REQUEST AND RESPONSES Tab 4 through Tab 17 PSAR PAGE LISTING AMENDMENT HISTORY C All2. vii

NEW ENGLAND POWER CO. EXECUTIVE VICE PRESIDENT J.R.STEVENS NEP 1 & 2 YANKEE ATOMIC ELECTRIC CO. VICE PRESIDENTS PROJECT MANAGER J. HARRINGTON W. P. JOHNSON I I I YANKEE ATOMIC ELECTRIC CO. I MANAGER OF PROJECTS

                      !                                     A.M. SHEPARD I

l L _ _. _ q l NEP 1 & 2 PROJECT ENGINEERING MANAGER J. DEVINCENTIS NEP 1 & 2 ASSISTANT PROJECT MANAGER PROJECT ENGINEER S. R. MILLER S.C.DORET TECHNICAL REPORTING RESPONSIBILITY

      ------- ADMINISTRATIVE REPORTING RESPONSIBILITY NEW ENGLAND POWER SERVICE CO. (NEPSCO) IS AN AFFILIATED SERVICE COMPANY ORGANIZED AND OPERATED PURSUANT TO THE PUBLIC UTILITY HOLDING COMPANY ACT OF 1935.

AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY NEW ENGLAND POWER COMPANY NEP 1&2 YANKEE ATOMIC ELECTRIC COMPANY Preliminary Safety Analysis Report FIG 131-1 NEP 1&2

R L FITZiE R A6C PEE S!OE N T JF MAMOW J OE # 9 J SLLLW AN J E T a.69tE m rM wr N w:E PCES DENT f rN ANc < AL "'II S CC N5. JVf A & 'NE GE PA00 & ENG G & v;CE F4(S CENT PLANNING Pwa su V ATiCN SE4WC E S ENWRON A5 F A:45 ' rmma A TE Pt AN H V ' A u ? .4 y

  • t A PLUW E f GP $ ASP R O tMELOW J - W ALSH 8 * "2' CI N 0 ptc v(.4 -

KE PEE s. CENT *M'3* V PK 0 Nf rSCO C JN%VER & l'.F r; veCE Pcf 5 ?E NT ENv'4 NV5 NT A. M F F4F S r.f N' S biC PSE S CENT WCE .PAE S*CE N ses.c F s AF ' A.4 s CwF s E N i NE E A Pt A NNrN.3PV.R Sut+L Y CODPr?R ATE PL ANP

  • EMPLOYED BV NEW ENGLAND POWER SERVICE COMPANY. AN AFFILIATE OF NEW ENGLAND POWER COMPANY NEW ENGLAND POWER SERVICE COMPANY IS A MUTUAL SERV'CE COMPANY ORGANIZEC PURSUANT TO THE PUBLIC UTILITY HOLD 6NG COMPANY ACT OF 1935. AND PROviDES SERvlCES TO NEW ENGL AND POWER COMPANY AT COST IN ACCORDANCE WITH THE PUBLIC UTILITV HOLDING COMPANY ACT AND THE RULES AND REOULATIONS OF T;4E SECURITIES AND EXCHANGE COMuiSSsON THEREUNDER f r>.C
  • ONa t L NE S 06 Au f worv' Y

- - - ==== - A DM'*4,S'h A T'st L tNE S C4 A U THORIT V

a NEW ENGLAND POWER CO. YANKEE ATOMIC ELECTRIC CO.

              ,          ,                                                                                   r I

I I I J A ST E = ENS ' N " EXEC wP ' ' gy %iCLE AR PHO.*f CT

                                                                                                                             'E' b

I I u a ev.NF

                    .         0,-E ., Nu o .

l -

                                                                                                             .E      A,         .

NEDSCO St P MES P ,. M . A S>NG ap , N , VK E P54f S*Df NT L g 3 Ag ,( y vp t s,g g e, N:3 C.nf C TOR OF RA'E 5 I I J Hama.NG'CN A %# SeEPARD T f> > WV J g g, . c A C a AC Ast W .) y,;L[A ' ppCsEC T M ANAGE R MANAGER  : M CTm' MGA OF NUCLE A A or Q 4 MANAr,F_A 'F E *n 'HL N'M

                               'NF O4M A Y KW         N[ 5 1 gy          PHOwE C TS                           #'ON ~" #                . :N           '             '

i l 0 I I I J OEviNCE NTiS D E M0 'G V o n s' paCJECT ENGiNEEA NG y,qaggp , WANAGER I. " QA MAN 4

                                                      %ppig7                                                   G5 f 6'<a          t. Na I

i SA V'L L E P 5 C PG+ET

                           #3       "
                                 ,j,q.            PAOJECT ENGJNEER a                                                                    NEW ENGLAND POWER COMPANY PROJE
    \                                                                               NEP 1&2 Preliminary Safety Analysis Report F IG . 13.1 -2

4 1 1 1 4 i * '. t 64 A .* ANT

                                             .'F ksi! %. f N T f Ns, *.I E h        'e &
                                               .ib f F. A     +
'N                   Gi U (34.J' E 1 A;                  F ,f i C v. f A N A . [ 8-            MANA ga j -'   T     F4A',{

N. , F A 4 f N 2N5i 'a 6 A+ ,E; + N EN (8 AN A ,{ G4 AMENDMENT N12 FEBRUARY 1979 s s T ORGANIZATION CHART  ! NEP 1&2

D NEW ENGLAND POWER CO YANKEE ATOMIC E LECTRIC CO m 4 F W I I I I N k b$ kb k k ** g p p vl*4u 1 NI g, 4 at b 4 its ihme_1 i ^d I m....~ l < . . . . ~ . . . au t 6'Mv, t " N' W 6- ae emi * . me

                                         ***YP6'*                                                                          g g s4.g ,      ,e me UdEN WM N                ( $ ,,4L eso, f).Mt (f s
  • fD fea t t
                                                                                                                                                                                                           ~. . - .-_.

Pa $ 4 41 I f8'est N. 4 m.*s6 aessesse4 a ,eq M4 q.gs l a J 'i

  • 0N9 'N #M.a*e, 4,9 e A.Am e . Vu 6 6 be esse.'i A ttunhave te Mahm F A a Te*

m

  • m 4 4 . e as ( y a wan.4= of a e e4 eeswe N as ee ,
                                 +hei -88EeAA' ION            pge y g g j           4)ee. . . t 1                           (sa. ' re    (f...e,        f t .M 6 4+% e We%A eF i         wa%At.g en
                                                                                                                                                       '~~

I i l I L I l [ < . _ ,, . . . , . . . _ .

                                                       -t---->                                                                 . . ...                                             .. ... . . . . . . .

A' 9 *'ti MA%A __ ft a g g,,g

                                                              %4 afa&$

ut-t M 4'*' n 4e ,a M A%As E 88 '9 41 5 I

                                  ,      .eo a               , ,. 3.,,

Ayp% f a%f Fee 30 i 64%Aut *e AMENDMENT N12 FEBRUARY 1979 NEW LNGL AND POWL H COMPANY PROJECT ORGANIZATION CHART NLP 1&2 Prehmenar y Lt.t, Asial,s.s He po t FIG 13 1. 7 NEP 1 &2

NEP 1&2 Amendment N12 February 1979 carryint; capability (given in PSAR Table 13.3-8). Vehicl e loading is demand, and evacuation route carrying capability is capacity. From the ratio of demand-to-capacity for a particular evacuation route, the elapsed time required to move vehicles through that route due to traffic capacity limitations is obtained, ao Capacity is defined by roadway characteristics, n, 13.3-15a

NEP 1 & 2 Amendment N12 February 1979 TABLE OF CONTENTS (Continued) VOLUME 6 (Continued) l Chapter Title Page No. 13.4 Review and Audit 13.4-1 13.5 Plant Procedures 13.5-1 13.6 Plant Records 13.6-1 13.7 Industrial Security 13.7-1 Appendix 13 A dhode Island Nuclear Accident or Incident Plan 3 VOLUME 7 14 INITIAL TESTS AND OPERATION 14.1 Test Program 14.1-1 l 15 ACCIDENT ANALYSES NS 15.1 Condition I - Normal Operation and Operational Transients 15.1-1 15.2 Condition II - Faults of Moderate Frequency 15.2-1 15.3 Condition III - Infrequent Fault 15.3-1 15.4 Condition IV - Limiting Faults 15.4-1 Appendices l 15B Summary of Parameters Used for Evaluating 15B-1 Radiological Effects of Accidents 15C Summary of Parameters Used for an Evaluation of 15C-1 Potential Reactor Containment Leakage to the Con-tainment Penetration Area (CPA) ISD Major Reactor Coolant System Pipe Ruptures (Loss of 15D-1 Coolant Accident) - Generic Sensitivity Study Results 16 TECHNICAL SPECIFICATIONS Net 16.1 Definitions 16.1-1 16.2 Safety Limits and Limiting Safety System 16.2.1-1 Settings vi

NEP 1 & 2 Amendment N12 February 1979 TABLE OF CONTENTS (Continued) VOLUME 7 (Continued) l Chapter Title Page No. 16.3 Limiting Conditions for Operation 16.3.1-1 16.4 Surveillance Requitcments 16.4.1-1 16.5 Design Features 16.5.1-1 16.6 Administrative Controls 16.6.1-1 17 QUALITY ASSURANCE 17.1 Quality Assurance - Yankee Atomic Electric Company 17.1-1 17.2 Quality Assurance - United Engineers and Constructors 17.2-1 47.3 Quality Assurance - Westinghouse 17.3-1 VOLUME 8 I SUPPLDiENTAL INFORMATION (AEC Questions / Responses) VOLUNE 9 REQUEST AND RESPONSES Tab 1 through Tab 3 VOLUME 10 REQUEST AND RESPONSES Tab 4 through Tab 17 PSAR PAGE LISTING AMENDMENT HISTORY Ah2. vii

NEP 1 & 2 Amendment N12 February 1979 CHAPTER 15 ACCIDENT ANALYSIS CONTENTS Page No. 15.1 CONDITION I - NORMAL OPERATION AND OPERATIONAL TRANSIENTS 15.1-1 15.2 CONDITION II - FAULTS OF MODERATE FREQUENCY 15.2-1 15.2.8 Loss of Normal Feedwater 15.2-1 15.2.9 Loss of Off-Site Power to the Station Auxiliaries (Station Blackout) 15.2-1 15.2.9.1 Identifica*. ion of Causes and Accident Description 15.2-1 15.2.9.2 Analyses cf Effects and Consequences 15.2-1 15.3 CONDITION III - INFREQUENT FAULT 15.3-1 15.3.1 Loss of Reactor Coolant From Small Ruptured Pipes or From Cracks in Large Pipes Which Actuates Emergency Core Cooling System 15.3-1 15.3.2 Postulated Radioactive Releases Due to Liquid-Containing Tank Failures 15.3-Sa AJIO 15.3.2.1 Identification of Causes 15.3-5a 15.3.2.2 Method of Analysis 15.3-Sa 15.3.5 Waste Gas Decay Tank Rupture 15.3-6 15.3.5.1 i.ccident Description 15.3-6 15.3.5.2 Method of Analysis 15.3-6 15.3.8 Control Room Uninhabitability 15.3-9 15.3.8.1 Identi'f earion of Causes 15.3-9 15.3.8.2 Evaluations 15.3-9 15.4 CONDITION IV - LIMITING FAULTS 15.4-1 15.4.1 Maj or Reactor Coolant System Pipe Ruptures (Loss of Coolant Accident) 15.4-1 15.4.1.1 Thermal Analyses 15.4-1 15.4.1.2 Hydrogen Producelon and Accueulation 15.4-le 15.4.1.3 Radiological Evaluation 15.4-le 15.4.1.4 Post Accident Hydrogen Venting Analysis 15.4-4 A.l(7-15.0-1

NEP 1 & 2 Amendment N12 February 1979 CONTENTS (Continued) P, age No. 15.4.3.1 Accident Description 15.4-11 15.4.3.2 Analysis of Effects and Consequences 15.4-11 15.4.3.3 Conclusions 15.4-12 15.4.5 Fuel Handling Accident 15.4-14 15.4.5.1 Identification of Causes 15.4-14 15.4.5.2 Analysis of Effects and Consequences 15.4-14 15.4.5.3 Conclusions 15.4-15 15.4.6 Rupture of a Control Rod Drive Mechanism Housing (Rod Cluster Control Assembly Ejection) 15.4-17 15.4.6.1 Identification of Causes and Accident Description 15.4-17 15.4.6.2 Analysis of Effects and Consequences 15.4-17 15.4.6.3 Conclusions 15.4-19 Appendices l 15B Summary of Parameters Used for Evaluating Radiological Effects of Accidents 15B-1 ISC Summary of Parametero Used for Evaluation of Potential Reactor Containment Leakage to the Containment Penetration Area (CPA) 15C-1 ISD Major Reactor Coolant System Pipe Ruptures (Loss of Coolant Accidenc) - Generic Sensitivity Study Results 15D-1 ws1 15.0-2

                                                          ^*"" ""' "

NEP 1 & 2 February 1979 CHAPTER 15, ACCIDENT ANALYSIS TABLES Table No. Title 15.2-1 Steam Generator Secondary Liquid Concentrations for the Station Blackout Accident, Conservative Analysis 15.2-2 Environmental Release from Station Blackout Accident 15.2-3 Doses from Station Blackout Accident 15.3-la Small Break, Time Sequence of Events

15. 3-lb Small Break, Results and Calculation 15.3.1-Ic Concentrations of Selected Isotopes  !

wio 15.3-2 Carbon Decay Tank Inventories - 2 Units 15.3-3 Waste Gas System Failure - Realistic Case 15.3-4 Doses From Waste Gas Tank Rupture Accident 15.4-la Large Break - Analysis Input and Results 15.4-lb Deleted l 15.4-Ic Large Break, Time Sequence of Events 15.4-Id Large Break, Containment Data - NEP t'ontainment 15.4-le Reflood Mass and Energy Release - DECLG (C = 0.6) D 15.4-If Spilling Accumulator Mass and dnergy Release - DECLG (C D ~

                       ~)                                                    hML 15.4-2    Core and Gap Activ'. ties 15.4-3    Environmental Releases from the Loss of Coolant Accident 15.4-3a   Doses from Loss of Coolant Accident 15.4-4    Environmental Releases f rom Post-LOCA Hydrogen Venting 15.4-5    Doses from Post-LOCA Hydrogen Venting 15.4-6    Activity Released to Atmosphere from Steam Line Break -

Realistic Case 15.0- 3

NEP 1 & 2 Amendment N12 February 1979 CHAPTER 15 Af_CIDEWT ANALYSIS FIGURES 15.3.1-1 Safety Injection Flow Rate 15.3.1-2 RCS Depressurization Transient (4-inch) 15.3.1-3 Core Mixture Height (4-fach) 15.3.1-4 Clad Temperature Transient (4-in ch) 15.3.1-5 Steam Flow (4-inch) 15.3.1-6 Rod Film Coef ficient (4-iiich) 15.3.1-7 Hot Spot Fluid Temperature (4-inch) 15.3.1-8 Core Power 15.3.1-9a RCS Depressurization Transient (3-inch) 15.3.1-9b RCS Depressurization Transient (6-inch) 15.3.1-10a Core Mixture Height (3-inch) 15.3.1-10b Core Mixture Height (6-inch) 15.3.1-11a Clad Temperature Transient (3-inch) 15.3.1-11b Clad Temperature Transient (6-in ch) 15.4.1-1 Fluid Quality - DECLG (C D ~

  • 15.4.1-2 Mass Velocity.- DECLG (CD" '

as1 Nib 15.0-5

NEP 1 & 2 Amendment N12 February 1979 FIGURES (Cont'd) 15.4.1-3 Heat Transfer Coefficient - DECLC (CD"

  • 15.4.1-4 Core Pressure - DECLC (C D
                                    = 0.6) 15.4.1-5 Break Flow Rate - DECLG (CD"
  • 15.4.1-6 Core Pressure Drop - DECLC (C D
                                         ~
  • 15.4.1-7 Peak Clad Temperature - DECLG (C ~
  • D 15.4.1-8 Fluid Temperature (J = 0.6)

D 15.4.1-9 Core Flow - Top and Bottom - DECLG (CD"

  • wet hitO 15.0-6

NEP 1 & 2 Amendment N12 February 1979 FIGURES (Cont'd) 15.4.1-10A Reflood Transient - Water Levels - Dl"LG (CD"

  • 15.4.1-10B Reflood Transient - Inlet Velocity - DECLG (CD" "

15.4.1-11 Accumulator Flow (Blowdown) - DECLC (CD" 15.4.1-12 Pumped ECCS Flow (Reflood) - DECLG (C ~ ~ D 15.4.1-13

  • Containment Pressure - DECLG (CD" 15.4.1-14 Core Power Transient - DECLG (CD"
  • wie d'1 15.0-7

NEP 1 & 2 Amendment N12 February 1979 FIGURES (C Nt'd) 15.4.1-15 Break Energy Released to Containment 15.4.1-16 Containc:ent Wall Condensing fleat Transfer Coefficient 15.4.1-17 Deleted 15.4.1-18 Deleted AJt: uar 15.0-8

NEP 1&2 Amendment N12 February 1979 9 hen the reactor coolant system pressure falls below 600 psia, the accumulators begin to inject borated water. The conservative assumption is made that accumulator water injected bypasses the core and goes out through the break until the termination of bypass. The conservatism is again consistent with Appendix K of 10 CFR Part 50. 15.4.1.1 Thermal Analysis

a. Westinghouse Parformance Criteria for Emergency Core Cooling System The reactor is designed to withstand thermal effects caused by a LOCA, including the double-ended severance of the largest reactor coolant system pipe. The reactor core and internals, together with the emergency core cooling system, are designed so that the reactor can be safely shut down and the essential heat transfer geometry of the core preserved following the accident.

The emergency core cooling system, even when operating during the injection mode with the most severe single active failure, is designed to meet the Acceptance Criteria.

b. Method of Thermal Analysis The description of the various aspects of the LOCA analysis is given in Reference (2). This document describes the major phenomena modeled, the interf aces among the computer codes, and features of the codes maintain compliance with the Acceptance Criteria. The individual codes which com-prise the W ECCS evaluatina model are described in detail in References (3) through (6), along with the code modifications specified in References (7) through (9) . The containment parameters used in the containment analysis N'1 code, Reference (6), to determine the emergency core cooling system back-pressure are presented in Table 15.4-ld. l un d The analysis presented here was performed using the February, 1978 version of the Westinghouce Evaluation Model. This version includes the modifications delineated in References (10) through (13).

The analysis in this section was performed with the urper head fluid tempera-ture equal to the reactor coolant system cold leg fluid temperature. The upper head fluid temperature has been made equal to the cold leg temperature by increasing the upper head cooling flow (Reference (14)). us2 NIO 15.4-la

NEP 1 & 2 Amendment N12 February 1979 The analysis was performed using a containment which has iaternal steel and l concrete structural heat sinks which conform to the guidelines of Branch d81 Technical Position CSB 6-1. The containment initial conditions of 90 F and 14.7 psia are representative 1y low values anticipated during normal full power operation. The initial rela-tive humidity was conservatively assumed to be 99 percent. l Net The condensing heat transfer coefficient used for heat transfer to the steel containment structutes is given in Figure 15.4.1-16. The cont inment sump temperature does not af fec t the analysis because the n et maximum peak cladding temperature occurs prior to initiation of the recircu-lation mode for containment spray system. The mass and energy releases used in the containment backpressure calculation are presented in Table 15.4-le. Attached in Appendix 15D are the results of a sensitivity study for a typical four loop plant with 17 x 17 fuel and the upper head fluid at cold leg temperature. Th is sensitivity study was performed to determine the limiting break size using the February 1978 version of the Westinghouse ECCS evaluation model, which incor-porates a correction to the clad metal-water heat of reaction calculation. The results of this generic sensitivity study show that the limiting break far West-inghouse plants of this type is a double ended cold leg guillotine with a dis-charge ccefficient of 0.6. Minor differences between the New England Power units and the generic analysis will not shift the worst break. IIence the 0.6 DECLG is presented as the limiting break along with a generic sensitivity spectrum.

c. Results The analysis of the loss of coolant accident is performed at 102 percent of the licensed core power rating. The peak linear power and total core power used in the analysis are given in Table 15.4-la. Since there is margin between the value of peak linear power density used in this analysis and the value of the peak linear power density expected during plant operation, the peak clad temperature calculated in this analysis is greater than the maximum clad temperature expected to exist.

Table 15.4-Ic presents the time sequence of events for various events throughout the accident transient. Table 15.4-la presents selected input values and results from the hot fuel rod thermal transient calculation. For these results, the hot spot is defined as the location of maximum clad temperatures. This location is specified in Table 15.4-la. The location is indicated in feet, which represents the elevation above the bottom of the active fuel stack. an o M L 15.4-lb

NEP 1 & 2 Amendment N12 February 1979 Table 15.4-Id presents a summary of the various containment systems parameters and structural parameters which were used as input to the COCO computer code (6) used in this analysis. Tables 15.4-le and 15.4-lf present reflood mass and energy releases to the containment, and the broken loop accumulator mass and energy release to the containment, respectively. Figures 15.4.1-1 through 15.4.1-16 pre s er.t the transients for the principal parameters. The following items are noted: Figures 15.4.1-1 The following quantities are presented at the clad burst through 15.4.1-3 location and at the hot spot (location of maximum clad temperature), both on the hottest fuel rod (hot rod): M

  • 2-
a. Fluid quality
b. Mass velocity
c. Heat transfer coefficient The heat transfer coef ficient shown is calculated by the LOCA IV Code.

Figures 15.4.1-4 The system pressure shown is the calculated pressure through 15.4.1-6 in the core. The flow rate out the break is plotted as the sum of both ends for the guillotine break cases. The 487 core pressure drop shown is taken as the pressure just before the core inlet minus the pressure just beyond the core outlet. Figures 15.4.1-7 These figures show the hot spot clad temperature transient through 15.4.1-9 and the clad temperature transient at the burst location. The fluid temperature shown is also for the hot spot and N7 burst location. The core flow (top and bottom) is also shown. Figures 15.4.1-10A These figures present the core reflood transient. and 15.4.1-10B Figures 15.4.1-11 These figures show the emergency core cooling system flow. and 15.4.1-12 As described earlier, the accumulator delivery during blowdown is discarded until the end of bypass is calcu- wi1 lated. Accumulator flow, however, is established in refill-reflood calculations. The accumulator flow assumed is the sum of that injected in the intact cold legs. Figure 15.4.1-13 This figure shows the containment pressure transient. l uso m1 15.4-Ic

NEP 1&2 Amendment N12 February 1979 Figure 15.4.1-14 This figure shows the core power transient. Figure 15.4.1-15 This figure shows the break energy released to the containment during blowdown. Figure 15.4.1-16 This figure provides the containment wall condensing heat transfer coefficient. wiq The clad temperature analysis is based on a total peaking factor of 2.3?. The hot spot netal water reaction reached is 5.34 percent, which is well l below the embrittlement limit of 17 percent, as required by 10 CFR Part ' " ' 50.46. In addition, the total core metal water reaction is less than 0.3 percent for all breaks as compared with the 1 percent criterion of 10 CFR Part 50.46. The results of several sensitivity studies are reported in Reference (15). l These results are for conditions which are not limiting in nature and y,2 hence are reported on a generic basis. Conclusions - Thermal Analysis For breaks up to and including the double-ended severance of a reactor coolant pipe, the emergency core cooling system will meet the Acceptance Criteria as presented in 10 CFR PART 50.46 Reference (1). That is:

a. The calculated peak fuel element clad temperature does not exceed 2200 F based on a total core peaking factor of 2.32.
b. The amount of fuel element cladding that reacts chemically with d'1 water or steam does not exceed 1 percent of the total amount of Zircaloy in the reactor.
c. The clad temperature transient is terminated at a time when the core geometry is still amenable to cooling. The cladding oxidation limits of 17 percent are not exceeded during or after quenching.
d. The core temperature is reduced and decay heat is removed for an extended period of time, as required by the long-lived radioactivity remaining in the core.

410 15.4-Id

NEP 1 & 2 Amendmeat N12 September 1978 15.4.1.2 Ilydrogen Production and Accumulation Refer to RESAR-3 (4-loop, without loop stop valves), Subsection 15.4.1.2. 15.4.1.3 Radiological Ev11uation 15.4.1.3.1 Spray Removal Analysis The containment spray system is described in Section 6.2. The ef fectiveness of the containment spray system has been evaluated usin;; a two region model which assumes that 83% of the containment volume is reached by the sprayed solution. Mixing between the sprayed and unsprayed region is assumed to occur at a rate of 15,000 cfm (this corresponds to a mixing rate ( Amix) = 2 hr-I from the unsprayed region),

a. Conservative Case U 3 2-Several f actors need to br considered when assessing the iodine removal effectivenss of the containment spray system during a LOCA. These factors include the geometrical configuration of the spray system and the containment, the physical conditions inside the containment during a LOCA, the behaviors of spray drops, the rates of iodine mass t rans fer in the system, and the ef fects of chemical reactiona in the spray solution. In order to conservatively evaluate tne removal of iodines by the containment spray system, taking the above f ac to rs into consideration, the "DL-1" model as described in WASH-1329* is used in this analysis.

For elemental iodines, the removal rate is 6 bd h F fm fC Xe = VdU Where he = elemental iodine removal rate, hr-Ud = overall deposition velocity, cm/sec h = spray fall height, ft F = spray flow rate, ft3/hr t! = containment volume, ft 3 d = drop diameter, cm U = drop terminal velocity, ft/sec f = correction f actor for containment mixing f = coalescence factor c

  • WASH-1329, "A Review of Mathematical Models Spray Removal of Fission products in Reactor Containment Vessels", US AEC ( 19 7 3) .

15.4-le

NEP 1&2 Amendment N12 February 1979 For NEP 1 & 2, the design parameters are h = 134 ft. I F = 3000 gpm = 2.406 x 10 ft /hr Ull V = 2.7125 x 106 ft 3 The other parameters , as sugges ted in WAS11-1329 for the conservative analysis, are ud = 5.15 cm/sec d = 1500 microns = 0.15 cm U = 517.8 cm/s ec = 17.0 ft/sec fm = 0.88 f c = 0.88

                                                                      -1 Thus, the elemental iodine removal rate is calculated to be 11. 2 h r     .             l Ui2 The conservative analysis assumes that the elemental iodine removal rate is 10 hr-1     No further removal of elemental iodine is assumed when the contain-ment structure concentration reaches 1% of its initial level. This level is reached approximately 55 minutes after spray actuation.                         NI The removal rate of particulate iodine by the spray system is as follows, 3 h Eg F e     2dV Where   hw= particulate iodine removal rate constant, hr -l h   =  spray f all heigh t, ft E y=   total collection efficiency of particulate iodines of a single drop F                           3
                       =  spray flow rate, ft /hr d   =  drop diameter, ft V   =

3 containment volume, ft For NEP 1 & 2 , the parameters , as ob tained via the methodology outlined in WASil-1329, are h = 134 ft l E = 1.5 x 10~ All2. F = 2.406 x 10 ft /hr d = 4.92 x 10-3 ft V = 2.715 x 106 gr And A;= 0.54 hr~1 l Ut 2. The conservative analysis assumes a particulate iodine removal rate of 0.49 h r-I . No removal of organic iodine by the spray system is assumed. A/S 15.4-2

NEP 1&2 Amendment N12 February 1979 TABLE 15.4-la LARGE BREAK - ANALYSIS INPUT AND RESULTS Quantities in the calculations: Licensed core power rating .02% of 3411 MWt Total core peaking factor 2.32 Peak linear power 102% of 12.63 kw/ft Accumulator water volume 850 cubic feet per tank Accumulator pressure 600 psia Number of Safety Injection Pumps Operating 3 Steam Generator Tube Plugging Level 0 percent (uniform) Fuel Parameters - Cycle 1 Regior. - All Results DECLG, C = 0.6 D Peak clad temperature ( F) 2105.0 Location (feet) 7.5 Maximum local clad / water teaction (%) 5.34 Location (feet) 7.5 Total core clad / water reaction (%) <0.3 Hot rod burst time (seconds) 26.9 Location (feet) 6.0 wet

NEP 1 & 2 Amendment N12 February 1979 15.4.1 References

1. " Acceptance Criteria for Emergency Core Cooling Systems for Light Water Cooled Nuclear Power Reactors," 10 CFR Part 50.46 and Appendix K of 10 CFR Part 50. Federal Register, Volune 39, Number 3, January 4, 1974.
2. Bordelon, F. M., Massie, H. W. and Zordan, T. A., " Westinghouse ECCS Evaluation Model - Summary," WCAP-8339, July, 1974.
3. Bordelon, F. M., et al. , " SATAN-VI Program: Comprehensive Space-Time l Dependent Analysis of Loss of Coolant," WCAP-8302, June, 1974 v.1 (Proprietary) and WCAP-8306, June, 1974 (Non-Proprietary).
4. Bordelon, F. M., et al., "LOCTA-IV Program: Loss of Coolant Transient Analysis," WCAP-8301, June, 1974 (Proprietary) and WCAP-8305, June, 1974 (Non-Proprietary). ,
5. Kelly, R. D., et al., " Calculational Model for Core Reflooding After a Loss of Coolant Accident (WREFLOOD Code)," WCAP-8170, June, 1974 (Proprietary) and WCAP-8171, June, 1974 (Non-Proprietary).
6. Bordelon, F. M. and Murphy, E. T., " Containment Pressure Analysis Code (COCO) ," WCAP-8327, June, 1974 (Proprietary) and WCAP-8326, June, 1974 (Non-Proprietary).
7. Bordelon, F. M. , et al. , " Westinghouse ECCS Evaluation Model -

Supplementary Information," WCAP-8471-P-A, June, 1975, (Proprietary) and WCAP-8472-A, June, 1975 (Non-Proprietary).

8. " Westinghouse ECCS Evaluation Model - October 1975 Version," WCAP-8622, November 1975 (Proprietary) and WCAP-8623, November 1975 (Non-Proprietary).
9. Letter from C. Eicheldinger of Westinghouse Electric Corporation to D. B. Vassallo of the Nuclear Regulatory Commission, Letter Number NS-CE-924, Dated January 23, 1976.
10. Kelly, R. D., Thompson, C. M., et al., " Westinghouse Emergency Core Cooling System Evaluation Model for Analyzing Large LOCA's during Operation with On. Loop Out of Service for Plants Without Loop Isolation Valves. WCAP-9166, February 1978.
11. Eicheldinger, C., " Westinghouse ECCS Evaluation Model, February 1978 Version," WCAP-9220-P-A (Proprietary Version), WCAP-9221-P-A (Non-Proprietary Version), February 1978.

uit Mio 15.4-6

NEP 1&2 Amendment N12 February 1979

12. Letter f rom T. M. Anderson of Westinghouse Electric Corporation to John Stolz of the Nuclear Regulatory Commission, letter number NS-TMA-1981, November 1, 1978.
13. Letter from T. M. Anderson of Westinghouse Electric Corporation to R. L. Tedesco of the Nuclear Regulatory Commission, letter number NS-TMA-2014, December 11, 1978.
14. Letter from T. M. Anderson of Westinghouse Electric Corporation to John Stolz of the Nuclear Regulatory Commission, letter number NS-TMA-2030, January 1979.
15. Salvatori, R., " Westinghouse ECCS - Plant Sensitivity Studies," Nio WCAP-8340, July, 1975 (Proprietary) and WCAP-8356, July 1974 (Non-Proprietary).

wat 15.4-6a

NEP 1 & 2 Amendment N12 February 1979 TABLE 15.4-lb HAS BEEN DELETED

NEP 1 & 2 Amendment N12 February 1919 TABI E 15.4-Ic LARGE BREAK - TIME SEQUENCE OF EVENTS Event Occurrence Time (Seconds) DECLG, C = 0.6 D Accident Initiation 0.0 Reactor Trip Signal 0.832 Safety Injection Signal 1.25 Start Accumulator Injection 15.70 End of ECC Bypass 26.25 End of Blowdown 28.82 Bottom of Core Recovery 40.08 Accumulators E=pty 49.58 Start Pumped ECC Injection 26.25 nit

NEP 1 & 2 Amendment N12 February 1979 TABLE 15.4-le REFLOOD MASS AND ENERGY RELEASE DECLG (CD"

                                   * }

Time (sec) Mass Flow (lbm/sec) Energy Release (BTU /sec) 40.08 0.0 0.0 40.73 0.0256 33.4092 40.930 0.0257 33.3046 41.23 0.0258 33.618 45.018 33.9001 44333.14 53.18 303.3 189903.4 66.78 358.34 198918.8 83.58 376.21 197930.3 102.38 386.56 193680.3 122.78 394.02 188441.88 5 167.58 406.35 176620.87 218.38 417.92 163455.28 276.78 429.96 149110.84 346.48 443.73 133461.71 un1

 )

NEP 1&2 Amendment N12 February 1979 TABLE 15.4-1f SPILLING ACCUMULATOR MASS AND ENERGY RELEASE DECLG (C D *

  • Time Mass Flow Energy Release (sec) (1bm/sec) (BTU /sec) 0.0 2940.7 175328.6 1.0 2761.2 164625.9 2.0 ,

2613.0 155791.8 3' 3.0 2487.6 148314.8 4.0 2379.6 141874.6 5.0 2285.0 136233.0 6.0 2201.2 131237.6 7.0 2125.8 126745.5 8.0 2057.6 122676.6 9.0 1995.4 118966.0 10.0 1938.2 115559.3 11.0 1885.5 112417.6 12.0 18 36.9 109518.3 13.0 1791.9 106833.5 14.0 1749.9 104334.2 15.0 1710.8 102003.1 16.0 1674.6 99844.1 17.0 1641.2 97853.7 18.0 1610.5 96019.7 19.0 1581.9 94316.8 20.0 1555.2 92721.2 21.0 1529.8 91209.1 22.0 1505.9 89781.8 23.0 1483.2 88429.2

  ,.0                   1461.6                      87142.6 25.0                     1440.9                      85909.4 wiq
                                         ,                                    O'0001 00'006 00 008 OO'OOL l

00'009 00'009 00'00# 00 OOE 00'002 i q 00'001 000'06 000'08 OOO'OL 000'09 000'09 OOO'OV OOO'OE g 000'02 g o , o N Z 000'01 W 0000'6 12

                             %                                              0000'8 y y                                            OOOO 'L  y 3                                          0000'9 -

0000'9

                             )

r 0000'# OOO O 'E 7 us 0000'2 m 0000'1 i '4 OOO6'O xx OOO9'O OOOL'O xg OOO9'O OOO9'O 000#'O OOOE 'O OOO2'O O O O O O O O O O O O o o o O C O O O T N O N D N o o o O (1N3083d) Ginld JO AillVnD AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY NEP 1&2 FLUID QUALITY - DECLG (CD : 0 6) Prehmmary Safety Analysis Report FIG. 15.4.1 -1 NEP 1 &2

I O'0001

                                     --                '                               00'006
                                                                            ,          00'008 O O '00L 00'009 00'OOG OO'00V s 00'OOE
                                                   ,                                   00'002 1

00'001

                                   '                                                   000'06
                                                     "                                000'08 OOO 'OL 000'09 000'OG 000'OV OOO'OE G i

O Z 000'02 O W w 000'01 3

                                  '              (                                    0000'6 F-
                                                 '                                    0000'8
                                               /                                      OOOO'L 0000'9 0000'G 0000'V
                                            )

0000'E 0000'2 "O to N kp OOOO'I

                                  '       '                                           OOO6'O l'       '                                             0009'O

_O 000L'O

                            / I#              O 0009'O l      l OOOG'O 000V'O 000EO OOO2'O O                                                                                   000l'O O               O               O                                      O         O O               O                                      O         O O               o                                 O o                                      O         O k               9                 O                    9         k' (03S-Ld/87) All0013A SSVW                              '

AMENDMENT N'2 FEBRUARY 1979 NEW ENGLAND POWER COMPANY NEP 1&2 MASS VELOCITY - DECLG (C D 0@ Prehminary Safety Analysis Report FIG . 15. 4.1 -2 NEP 1&2

29L d3N 0- L P S L Old 120dag sisAt ruy Alagr$ AJeuti.uriald (9'O : 00) 07030 - IN3lOldd3OO U3dSNVU11V3H z9L d3N ANVdWO3 H3 mod ONV7DN3 M3N siel ABVilud3J ELN IN3 WON 3WV O 2 HEAT TRANSFER COEFFICIENT (BTU /FT -HR- F)

                         -     N O

u *"PN**5 8 8O8$$$$85O $ $O$$$$$$5 O O O 000000 O O O OO OO O ~O O 000000 g g g 800000 0 @ O O 000000 O O O 000009 O O O OwoOO O O O = OwO O.0

                                                                                   , f
                                                                       -    -_l
                                                        --== = q ;
                                                                    ..    =  ~

W M%

                                    *%Q   %

s 50.000  ? [ i

                                                 \
                                           \
                                             \ -

100.00 E O m O

            ^

W & 3-m -9 O N O w z O  % o ' b l

                                                       //

150.00 b r 200.00 0 250.00

000'09 000' otr 000'OE

                                                                       .' f          <n O

z

                                                                      ,              o-O d

w 2 o 5 H a5 000'02 2 o F V O m r 000'01 o o 00 c o o o o c o o o o o o o o o N O 9 9 O (VlSd) 380SS38d AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWEG COMPANY NEP 1&2 CORE PRESSURE - DECLG (C D Preliminary Safety Analysis Report FIG. 15.4.1 -4 NEP 1&2

m i E I.00E+05 3 m 5- z o 2 r-2 Pm$

     % ,0 7.50E+04 2

3 gwGm y 5.00E+04 E- n m o

  • r m

j g G 2.50E+04 ~

             <     w e

N

                   $                     . ./

0.0 3: o J LL m a x -2.50E+04 a f, O w CC m cn I $ -5.00E + 04 1 x v' m b E , 3 -7.50E+04 - e m I a m

                      -l.00E+05 o o    o                o p                         d                        @ o o O                              o    8              o o o z                                     d    d                  Q m

a -

                                            ~              N @ O
          ,,    yk                          TIME (SECONDS) o U

mz

 @      ~       I O N

Cg D 3 m 4Z4 I en

000'09 000 Ok 000'OE r 5o Z 8

                                               -                                    W i

w 3 \a [ H r 000'02 s I i

                                           \

f j 000'01 l l f

                                             ~

O'O 8 @ o O o o O o o O o o o o o o o

     .           0             N         o             N         O      h t

I l 1 (ISd) dO80 380SS38d 3800 AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY NEP 1&2 CORE PRESSURE DROP - DECLG (C D Preliminary Safety Analysis Report FIG. 15.4.1 -6 NEP 1&2

00'092 00'002

                                        /

4 00'091 a O Z

                                        -8                                   o o
                       .3               e                                    a s
                   + J
                 <                                                           W p

00'001

                       /                                            000'09 c

o D O'O o o o @ 8 8 8 8 o o 2 @ 9 9 3 o (do) 008 10H'3801VB 3d W31 30V83Av OV10 AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY NEP 1&2 PEAK CLAD TEMPERATURE - DECLG D(C - 6) Preliminary Safety ^ nal sis Report FIG. 15. 4.1 -7 NEP 1&2

00'093 y 7 00'002 i

                                                  -o O
                                    -O.
                                     ,;            m 4

00'091

                                    /           /,

so z o O w

                                                                <               w E

H 00'001 I 4 q 000'09 I

                                          >   m
                                               =>

I W 00 9 O O 9 o O O O 8 0 8 @ O o o o o N b 0 N 9 0 0 $ o (Jo) 3801V83dW31 Gin 7J ^ FEBRUARY 19 NEW ENGLAND POWER COMPANY NEP 1&2 FLUID TEMPERATURE - DECLG (C;, = 0 6) Preliminary Safety Ar.alysis Report FIG.15 4.1-8 NEP 1&2

000'09 000'0V 000'OE I E a l z o O

                                               >                                     d 3                                     E 2

F-OCO'02 At 000'01 0

                                              %1 o

2 is, 8 O o o o o o O o o o o o 8 N 8 8 8 8 8 u m o N in N 1 3 $ (03S/87) 31V8M0ld-Z AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY NEP 1 &2 CORE FLOW - TOP AND BOTTOM - DECLG 'CD 0 6) Prehminary Safety Analysis Report FIG. 15.4.1 -9 NEP 1&2

00'009 00'00# L 00'00E G e o w 2 8 o w 8 w 3 2 e 3: o w o 0 2 O - h 00'002

                           /
                      /

00'001 o o o O'O o o o o o o o o o o o o o o o o 6 o o o o o o m N O N o o o o g 6 m o (13)l3A37 d31VM AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY REFLOOD TRANSIENT - DECLG (C NEP 1&2 D DOWNCOMER AND CORE WATER LEVELS Preliminary Safety Analysis Report FIG. 15.4.1 - 10A NEP 1&2

00'009 00'00k 00'009 a O Z O O W W 3 1-00'002 00'001

                                   /

o O'O o o o o o o o g O o o o o o o o o o o o o o o o o o m o N o a N h _ _ - - o o o O (33S/NI) 31V8 0007j AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY NEP 1&2 REFLOOD TRANSIENT - DECLG (CD : 0 6) CORE INLET VELOCITY Prelimmary Safety Analysis Repo;t FIG. 15.4.1 - 10B NEP 1&?

000'09 000'09 000'OE 3 o Z 8 W 3 W b H 000'02 N 000'01 4 0*O O O O C: O W O O O C; U O o O C: O O O O Ci O co e v N o (03S/8'l)MOl:1 801Vln,'N000V AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY NEP 1&2 ACCUMULATOR FLOW (9 LOWDOWN) - DECLG(C Preliminary Safety Analysis Report D= 6) FIG. 15.4.1 -11 NEP 1&2

O O v O O i to I l l l m CO O 2 O O O O kJ N CO v Lij 2_ H O O_ O N O O W v N O ( 03S /t 13 ) Mold AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY NEP 1&2 PUMPED ECCS FLOW (REFLOOD) - DECLG (C D 06) Preliminary Safety Analysis Report F IG. 15.4.1 -12 NEP 1&2

O O T I O c I O O r0 O c N m C/) O Z O O W 2e w 2 F O D I - O O l O o i/

           /
                  /

O w e N O m o e N O m W T N O ro to FO r0 N N N N N - - - - - (VISd ) 380SS38d 1N3WNIV1NO3 AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY NEP 1&2 CONTAINMENT PRESSURE - DECLG (C D 04 Prelimmary Cafety Analysis Heport FIG. 15.4.1 -13 NEP 1&2

000'09 000'0V 000'OE G o z o O to

                                                                         ?

H 000'02 000'01 o o C'O o o o o o a o o o O @ @ @ o 6 6 6 6 O (Od /d) 83M0d AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY NEP 1&2 CORE POWER TRANSIENT - DECLG (CD:04 Preliminary Safety Analysis Report FIG . 15.4.1 - 14 NEP 1&2

000'09 - 000' Ok 000' OE , I m 9 8

                                  /                                         W m

2 000'02 1

                             /                                      000'01 N

l O'O s N s s N f O O O O O w a a a a 8 8 8 o 8 8 8 c rd - O -. rd tri (03S/019) A083N3 >ld388 "

                                                                            ^ FEBRUARY 19 Nhv ENGLAND POWER COMPANY NEP 1&2                              BREAK ENERGY RELEASED TO CONTAINMENT Prehminary Safety Analysis Report FI G . 15.4.1 - 15            NEP 1&2

E9L d3N 9L-LYSL 'Old Isodag sisAleuy A;a}es Aieuiunlaid 1N310ldd3OO U3dSNVU1 ETL d3N IV3H DNISN3GNOO T1VM IN3WNIVINOO ANVdWO3 U3 mod GNVlDN3 M3N 6i6LAUVOUB3d EL N IN3 WON 3WV CONTAINMENT WALL HEAT TRANSFER COEFFICIENT ( BTU /HR-FT2_op )

                       -.       ~         u       s       w          m            ~        w O        O         O      O        O          O            O        O O        O        O         O      O        O          O            O        O O

O / sO _y a m n mO OO O Z O V) O u O O u O O O O

NEP 1&2 Amendment N12 February 1979 FIGURE 15.4.1-17 IIAS BEEN DELETED

NEP 1 & 2 Amendment N12 February 1979 FIGURE 15.4.1-18 IIAS BEEN DELETED

NEP 1 & 2 Amendment N12 February 1979 APPENDIX ISD Major Reactor Coolant System Pipe Ruptures (Loss of Coolant Accident) Generi, Sensitivity Study Results

TABLE 15D-1 LARGE BREAK - TIME SEQUENCE OF EVENTS Event Occurrence Time (Seconds) DECLG, C = 1.0 DECLG, CD = 0.8 DECLG, C = 0.6 DECLC, C = 0.4 D D D Accident Initiation 0.0 0.0 0.0 0.0 Reactor Trip Signal 0.793 0.802 0.815 0.841 Safety Injection Signal 1.05 1.15 1.32 1.65 z m Start Accumulator Injec tion 12.8 13.5 15.6 20.4 m w End of ECC Bypass 23.49 23.72 25.52 33.65 End of Blowdown 24.73 25.43 28.65 37.66 Bottom of Core Recovery 36.83 37.03 39.07 47.68 Accumulators Empty 47.02 47.65 49.88 56.91

f. k 2 R.

Start Pumped ECC Injection 26.05 26.15 26.32 26.65 48 xg Gz 3G

TABLE 15D-2 LARGE BREAK - ANALYSIS INPUT AND RESULTS Quantities in the Calculations: Licensed core power rating 102% of 3411 MWt Total core peaking f ac tor 2.32 Peak linear power 102% of 12.63 kW/f t Accumulatsr water volume 850 cubic feet per tank Accumulator pressure 600 psia f Number of Safety Injection Pumps Operating 3 Steam Generator Tube Plugging Level O percent z m Fuel Parameters - Cycle 1 Region 1 " Results DECLG, C g = 1.0 DECLC, Cg = 0.8 yGCLC, Cg = 0.6 _DECLC, C = 0.4 Peak clad tempera ture ( F) 1969.2 1945.22 2010.72 1577.8 Location (feet) 7.5 7.5 7.5 7.5 Maximum local clad /wa ter reaction (%) 3.4 3.08 3.92 0.72 Location (feet) 7.5 7.5 7.5 7.5 ?y oo e E. ua Total core cla-]/wa ter reaction (%) <0.3 <0.3 <0.3 E{

                                                                                                      'O.3   5z 2C Hot rod burst time (seconds)             26.2                 29.0                   27.5              NA Location (feet)                6.0                  6.0                    6.0              NA

NEP 1 & 2 Amendment N12 February 1979 TABLE 15D-3 (Sheet 1 of 2) CONTAINMENT DATA 6 3 Net Free Volume , 3.063 x 10 ft Initial Conditions Pre ss ure 14.7 psia Tempera ture 90 F RMST Temperature 40 F Outside Tempera ture 0 F Spray System Number of Pumps Operating 3 Maximum Spray System Flow Rate 13,600 gpm Actuation Time 34 sec. Structural Heat sinks Slab Slab Material Surface Number Description Material Thickness (ft) Area, ft 1 Containment Carbon Steel 0.0417 29,487 Dome Concrete 2.4583 2 Containment Carbon Steel 0.0313 84,091 Shell Concrete 4.4687 3 Internal Conc re te 4.27 198,763.5 Conc re te

NEP 1 & 2 Amendment N12 February 1979 TABLE 15D-3 (Sheet 2 of 2) CONTAlf0fENT DATA Slab Slab Material Surface Nucber Description Material Thickness (ft) _ Area, ft 4-17 Struc tura l Carbon Steel 0.00125 1,078,360. Steel 0.0263 4,338.05 0.03983 7,477.66 0.04858 2,520.82 0.0625 753.28

                                  ,     0.0833              2,061.96 0.125               3,374.0 0.15917             3,239.25 0.2033              6,819.36 0.250                  963.64 0.500               7,012.0 0.750                  730.0 1.500                1,287.0 0.710                1,152.1 18-20  Foundation Mat Concrete             6.5               3,012.0 and Sump     Carbon Steel         0.0208 Conc re te         12.0 Conc re te           2.5                8,798.0 Carbon Steel         0.0208 Concrete            12.0 Carbon Steel         0.016258          4,086.9

NEP 1 & 2 Amendment N12 February 1979 TABLE 15D-4 REFLOOD MASS AND ENERGY RELEASE FOR DECLG BREAK, CD = 0.6 ( LIMITING CASE) Time Mass Flow Energy Release (sec) (1bm/sec) (BTU /sec x 10-4) 39.065 0.0 0.0 39.715 0.02339 0.003058 44.102 35.4 4.62843 51.877 284.03 20.0446 64.477 344 .37 20.9330 80.077 364.21 20.7635 97.477 375.12 20.3484 116.277 383.1 19.84934 157.677 396.15 18.73467 204.177 408.07 17.5102 257.377 420.65 16.0652

NEP 1 & 2 Amendment N12 February 1979 TABLE 15D-5 SPILLING ACCUMULATOR MASS AND ENERGY RELEASE FOR THE DECLG BREAK, C = 0.6 (LIMITING CASE) D Time Mass Flow Energy Release (sec) (Ibm /sec) (BTU /sec) 0.000 2923.1 174279.4 1.010 2746.0 163719.1 2.010 2599.9 155010.6 3.010 2476.0 147623.6 4.010 2368.8 141229.7 5.010 2274.3 135597.8 6.010 2190.3 130586.6 7.010 2114.4 126061.6 8.010 2v4;.4 121949.2 9.010 1982.3 118186.3 10.010 1924.1 114720.5 11.010 1870.4 111515.7 12.010 y 18 20. 6 108548.7 13.010 1774.4 105793.8 14.010 1731.3 103225.4 15.010 1691.1 100825.1 16.010 1653.7 98593.8 17.010 1619.1 96535.3 18.010 1587.3 94640.2 19.010 1557.8 92880.9 20.010 1530.1 91226.4 21.010 1503.9 89664.1 22.010 1479.2 88191.5 23.010 1455.8 86795.8 24.010 1433.5 85468.5 25.010 1412.3 84205.6

NEP 1 & 2 Amendment N12 February 1979 O'0001 00006 00008 00001 00~O09 00'009 00'00 > OO'OOE L0 002 4

        '                                        00'001 00006 00008 00001 00009 000 09 OOO'Ok 000OE 000'02   y V                   ~O                                2 1                       0000g
      ,   C                                     0000'6   -

00008 LJ 00001 llE 0000'9 s 0000G 0000'# OOOOE 0000 2 N N s ' 0000'l O O O6'O 0008O OOOf0 OOO9'O OOOG'O OOOk'O OOOE'O OOO2'O o o o o MD o o o o O o O $ @ O v ~ o n o ~ o o o (IN3383d) OlnlJ JO All IVnD FLUID QUALITY - DECLG (C = 1.0) FIC. 15D-1A

NEP 1 & 2 Amendment N12 February 1979

                                                - O'0001 00 006 00'008 00 001 00'00; 00 009 00 OOk 00'00C 00 002 4

00'001 000 06 000 08 OOO'OL 000'09 000'09 OOO'Ok OOO'OE

                     -                              000'02 O   ._            g                                     _

Q

            -                                       000'01 2 0000 ~ 6 O 0000'8 O W OOOO'L 0000 9  -

OOOO'G W 2 O OO O'k - OOOO'E 0000'2

              .x X                                  0000'I OOO6'O N                            OOO8'O N                         OOOL'O N                  COO 9'O OOOG 'O OOOk'O OOOC'O 0002~0 i            I g O     O         O            O        O o*ro O     O         O           O         o O o     O         O            O o                                       o          O N     O                     O         N
 -     -         O           o'        o=         O (IN30hl3d)01013 30 AlnVn0 FLUID QUALITY - DECLG (C    =

0.8) FIC. 15D-]B

NEP 1 & 2 Amendment N12 February 1979 O'0001 O O 006 0O'008 00 00L 00009 00 009 00 OOk OOOOE 00'002 4 OO 001 00006 000 08 OOO 'O L 000'09 000 09 OOO'Ok O O O'O E 000 02 M g z

       '                                                         O O

W 000 0 t D 0000 6

          '                                            0000 8    W OOOO'l    s g                                           00009      p 0000'G 0000
  • V OOOO'E 0000'2
                          'O O

w

             . f' O
                    '  'f ,                          0000'l OOO6'O

( x

                                  -(\

l O O O8'O OOOL'O 0009~O O O O 9'O OOOV'O OOOE'O OOO2'O o o o o o 0001O O O o o O o o o o o c o o o O N O N o N [ - o o o (IN3 383d ) 01073 JO Ailltf nD FLUID QUALITY - DECLC (C D *

  • FIC. ISD-lC

NEP 1 & 2 Amendment N12 February 1979 O'0001 00 006 00 009

                                              .00001 00 009 OO OOG 00 OOV 00OOE 00 002 1

00 00s t oO '06 30009 OOO'OL 00009 000 O G 000 Ok p 000OE 00002 ~ o Z

                    ^ .3                               O OOO'O f
                 ~%                           0000'6 $
                            %                 0000'8 w y                00002 s

[O 0000

/ \ OOOO V
                               -O OOOO'E o,

0000 2 P

          ~D P-0000'l N                       0006O 0008O OOOL'O 00090 OOO9'O OO O V'O OOOE'O 0002O o

0001O @ 8 o o o o o T o N 8 8 8 g o ~ ~ o P- o m o o o (IN3383d ) Gim3 30 A.LnV00 FLUID QUALITY - DECLG (CD"

  • FIC. 15D-lD

NEP 1 & 2 Amendment N12 February 1979 O'000i 00'006 00 000 00 004 00'009 00'009 00'009 00 OOE 00002 00'001 O00'06 00009 000'0L C 90'09 000'O9 OOO'Ok OOO'OE 000'02 - 8 A 5 000'01 w

                                -                     89881      $
                       ,                              0000'4     W 0000 9     d f                                  OOOO'S 0000'#

( O O O O'E 0000'2

                         -o O              Q D              D 0000t
 ~~             ,'

OOO 6'O O O O 8'O

                              '                       OOOL O OO O 9 'O l                 l-OOOG'O 000>0 O O O E'O 0002O OOOl'O 8    8 8       8      o                 8     g      g o o       Q      O            8    o o                                  o          o      o 0 0       0                   0    8,    6      9 n

(33Sg1J /87 ) AllDO13A SSVVi HASS VELOCITY - DECLG (C D

                                                                   = 1.0)

FIG. 15D-2A

NEP 1 & 2 Amendment N12 February 1979 O'0001 00'006 00'008 00004 00'009 00'009 OO'OOV 00'002 00'002 00'001

 .                                                        000'06 i                            000'08
                             <                            000'0L
                             ,                            000'09 000'09 OOO'OV OOO'OE n

000'02 $ z 8 000'01E

            '                   ,                         Ov00'6
  • 7 0000'8 W j 0000'L 3 y 0000'9 F j 0000'9 0000'#

k OOOO^E

                         )                                0000'2
                 ~o               -@

to < ta O } OOOO'l

                  , , '/      ,            ;

OOO6'O OOOB'O OOOL O

               /      /
             /      7                                     COO 9'O OOO9'O OOOV'O OOOE'O OOO2 'O OOOl'O O                o            o             O O   8       6               o             o'            d m   m       9                             o             @'

(03s 313/el) AllOOlu ssvW MASS VELOCITY - DECLG (C

  • D FIG. 15D-2B

NEP 1 & 2 Amendment N12 February 1979 0~0001 30 006 30'008 00'00L 00'009' 00'009 00' 00b 00'00E 00'002

                           ,                      00'001 000'06 000'08
                           '                     000'OL 000'09 000 09 000'0V 000'OE 000'02 E
                         )

000'01 0000 6y 88881 W g 0000'9 I j 0000'9 0000'b 0000'E

                   \                             0000'2 0000'l
         ,   '/                                  8888:8
       ,     1                                    000L'O
     ,     ,                                     0009'O 000904 000k'O .

000E'O 0002'O 8 8 g g 8 O O O O O O k k O O O {' (03S gl.d/81) All0013A SSW1 MASS VELOCITY - DECLC (C

  • D FIG. 15D-2C

NEP 1 & 2 Amendment N12 February 1979 O'0001 00006 00'008 00'004 00'009 00'009 00'00k 00'00E 00'002

                                  )

00'001 000'06 000'08

                                   ,                     OOO'OL
                                   ,                    000'09
                                   ,                    000'09 000'OV 000'0E 000'02 g 5

o

  • 000'01 d
                             ,'                         0000'6 -

0000'9 u; f r OOOO'L 2

                   <                                    0000'9 F

( 0000'S 0000'k

                       )                                0000'E

_ j 00002 m ,/ N

                       'o o

N N

               )

_ 0000'l vr // 8888:8 000f0

           //                                           OOO9'O 0009'O 000V'O 000E'O 0002'O o n                                                      0001'0 o -

o o o o o o d U d O 8 o o m m 9 o @ (33S 21dl'TI)^1ICO'l3^ SSVW MASS VELOCITY - DECLG (C ^g

                                                                     = 0.4 )

FIG. 15D-2D

NEP 1 & 2 Amendment N12 February 1979 3 00'092 00002 ll l

                                       \                                 oo osi q

G O z 8

                                         ,                                       w 2

s i 00001 ( C s

                                   .r o

i j o

                                                  \
                                             )/                         000.J

(, 1 s N N

                                   ~

V

             ~l    b                                                    o'O 888888 8 8 8      8 "888 8                 888mo 8 o8           8      8 8                                              ggg       o      o 8 8s    sa       euss e a a              ma s                         o

( d e-8H 213 /019) IN313tJ3303 833SNV81 IV3H HEAT TRANSFER COEFFICIENT - DECLC (CD" FIG. 15D-3A

NEP 1 6 2 Amendment N12 February 1979 oo'osa 00'002 h oo'osi u) o z o w ul 4 w 3 s t 00 001 C ( " 9 7

                                       .c       -

O \ o o \ 4

                                              )Y                      ooo os

( sy 2N

                                -  .- -                             I
                   <d       I g.o O00000 0 O     O     C000000 O      O    0000000 O           O     O 0000000 O      O     0000000 O      O    0000000 O           O     O 0000000 O      O     0000000 O      O    0000000 O           O     O 0000000 O      O                    O    C'JOOO O O O        O     O
 -meNo o t n m        0000000'
                      -mese  o, On m          meseo, n m            -

( d.-8H 213 /018 )1N31Dl33303 83dSNv81 IV3H HEAT TRANSFER COEFFICIENT - DECLGD(C = 0.8) FIG. 15D-3B

NEP 1 & 2 Amendment N12 February 1979 00 092 00'002 ll i

                                     \
                                        \\                               00~0G1 v) o z

8 w w 2 I 00'001

                                                       -o N

i ) b $ O , e

                                                .                        000 09
                                          \ ,\     '

r% ____ l g >

                                 -~
                            ~
r
               ~'

OO ococco o oc ocoo o o o o o oooooo o oooooo oo oo o ococoo o o o o occoooo oo o oooooo o o o o ooocoo o o o ooooooo ooocoooo o oo o

                     ' woc q no no cocooo o           o                                                    o emkDe v n         N                       o0000o cen o, , o     m n      -

( 3.- 8 H 213/019)IN313tJJ303 833SNV81 IV3H HEAT TRANSFER COEFFICIENT - DECLG (C FIG. 15D-3C D"

  • NEP 1 & 2 Amendment N12 February 1979 00'092
                                  ,                                      00'002 s
                                    \

l 00'0G1 so T z o  ; s o D \ s \ o W 1 e L_+1 -o N W 2 p I 1 s 00'001 g 9

                                                    \

u Q

                                              ~

h 000'09 __;_2-c

                            \
                        ,  l_>

I I O'O 888888 8 8 g888888 0oo00 o o o 88 g888888 8 8 g o66o606 o 6 00000 o o o o o0 000 o ocoooco -mmswcw no o 0o6600o 6 ~o Ymmsu,o o N 9mwnwo e n enon (do-8H gid/018)1N310ldd300 83dSNV81 IV3H HEAT TRANSFER COEFFICIENT - DECI.G (C = 0,4 ) FIC. 15D-3D

NEP 1 6 2 Amendment N12 February 1979 000'92 1 4 4 000'02 000'91 E O z o 0 W 0. 0 I / $ 000'01 f o co 0000'9

               /

_/ o O o o o o o O O O o o o O O o m" N 9 9 O o (VISd)380SS38d CORE PRESSURE - DECLG (C D

                                                      =

1.0) FIC. 15D-4A

NEP 1 & 2 Amendment N12 February 1979 000'09

                                               ' 000'Ok 000'0E E

o z O t u a W ct O S w 2

  • I 1

v F-000'02 l F-000 Oi C O 00 o O O O O O O O O O o o O O O O N N o g ] O (visd)38nss38d CORE PRESSURE - DECLC (C

  • D FIG. 15D-4B

' NEP 1 & 2 leendment N12 February 1979 000'09 000'01 OOO'OE 1 g

                                             ,'         O z

8 a. o w F- g e >- [ 000'02 F-F- o co e 000'01 l O o o O'O o o 8 g o o o o o o O o o N 2

  • 9 o (visa) 38nssaad CORE PRESSURE - DECLG D(C = 0.6)

FIG. 15D-4C

NEP 1 6 2 Amendment N12 February 1979 000'09 000' OV

                                      <f i     000' OE G

I e 8 u Q-Y P 2 e ~ I o

                        /               000'02 F
                  /                     000'01 o                                       O' O O    o          o      o g

8 8 8 8 o o 2 e e 9

 ~

s o (visa) asnss38d CORE PRESSURE - DECLG D(C = 0.4) FIG. 15D-4D

NEP 1 & 2 Arendment N12 February 1979 000'92 I T 000'02 k 000' G I E o z o O w w E H 000'0!

             /
           /

0000'9

  !                                             O'O
  • e e e e e c
o. c o o
   $  $    $             i     ?     9       0

$ O O o O W W W o

  • O C o 8 8 @ $

s- * ~ N 6 s' (03S/87) Mold >Iv38g BREAK FLOW RATE - DECLG D(C = 1.0) FIC. 15D-5A

NEP 1 & 2 Amendment N12 February 1979 000'09 000'Ok 000'OE vi 9 5

                 /                                       C w

w 000'02 I i 000'01 o e e e e e e 0'O o i W ?  ? 9 9 9 9  ? w u w w w w w 0 O o o o o o o o o

o. R C
  • 9 o o s o cu o cu o s ._.

I 1 1 I (33S/el)M073 Mv388 BREAK FI.0W RATE - DECLG D(C = 0.8) FIC. 15D-5B

NEP 1 & 2 Amendment N12 February 1979 000'09 000'Ok 000'OE f G a z O O W 2 p

                />                              000'02 000'01 o e
    / e   e            e     e       e      O 0'O O O    O   o+           o+    o+      o      O

+ + + + + W W W W W W W O o O O O O O O O O o_ o o O o O o O N o a m o s' -- 1 I i I (cas/el)m073 wase BREAK FLOW RATE - DECLG (C

  • D FIG. 15D-5C

NEP 1 & 2 Amendment N12 February 1979 000'09 l 1 000'O# ( 000' OE E O z 8 u s 000'O3 j

                     /

000'01

                   )
          /

o

  • e
  • O'O O 0 o 0 e e e c
 +        +                     0    O      O        O O

O O O N'

  • N O Q N o N _

(03S/87) MO 1:1 >iV3N8 BREAK FLOW RATE - DECLG (C D FIG. ISD-SD

NEP 1 & 2 Amendment N12 February 1979 000'G2 I 000'02 1 5 000'91 G o Z O O U) s E c-000'0! I 0000'9 0'O 8 8 8 8 O O O 8 8 O O O O O (visa)dosa 38nss38d 3800 CORE PRESSURE DROP - DECLG (C

  • D FIG. 15D-6A

NEP 1 & 2 Amendment N12 February 1979 000'09 OOO'Ok OOO'OE G Q Z o P U LU Ltl E F-000'02 000'01 I-c 4

                   ~

o O'O 8 o o o o o o o o O o o o o o o o o N o O igj o o o' o N N O N I I t (ISd) dO80 380SS38d 3800 CORE PRESSURE DROP - DECLG (C

  • D FIG. 15 D-6 B

NEP 1 & 2 Amendment N12 February 1979 000'09 000'Ok 000'OC. ( 5 o Z o O w

                   >                                       8 W

3 F f 000'02 m 0 l 000'01

                  ~

o O'O o o o o o o o o o o o o o o o o o o O o o o o

                                                ~

N O N N o o o N I 1 (VISd)dO80 380SS38d 3800 CORE PRESSURE DROP - DECI.G (C g = 0.6) FIG. 15D-6C

NEP 1 & 2 Amendment N12 February 1979 300'09 000'Ok f y 000'OE G Q Z O O La b s 000'02 000'01 I o O'O O O O O O O O O O o O o O O o o o o N O y ], p (ISd)dO80 38nss38d 3800 CORE PRESSURE DROP - DECLG (C D FIG. 15D-6D

NEP 1 & 2 Amendment N12 February 1979 00'092 i 00'002 00'091

          ,                                                      G
 ~@                         ~O                                   S O                                   O B-.                         d                                   O m

b r 00'001 000'09 N O'O O O O O O O O O O O O O O o ~ 8

       ~           8_          8_

O o O uo) 38niva3aW31 aov83Av av 10 PEAK CLAD TEMPERATURE - DECLC (C D

                                                                   =
                                                                     .0)

FIG. 15D-7A

NEP 1 & 2 Amendment N12 February 1979 00'092 00'002 00'091 0 m b Z o O 4 U

                      -8                                  2 e                                  r 00'001 000'09 TA O   o          o          o           o o   O          o          o                     o o   o          o          o           o N   8
  • 9 8 (Jo) 38niv83dW3130V83Av avlo PEtK CLAD TEMPERATURE - DECLG (Cp =

0.8) FIG. 15D-7B

NEP 1 & 2 Amendment N12 February 1979 00'092 g r 00'002 00'091 o - 9 o s z e o w o 2 w r 00'001

               )                                     000'09 o     O 0~0 o          o          o O     o                                O
 @     O          O          h          o          O
 ~     2          e          e          a          o (ao)38niv83dW31 aov83Av avla PEAK CLAD TEMPERATURE - DECLG (C FIG. 15D-7C D"
  • NEP 1 & 2 Amendment N12 February 1979 00'092 00'002 00'091 E

o z 9 o 0

                   -o                                     w C

3

             .      s                                     s 00'001 L
       'o N

000'09 O O o o o O o O o ~ a e e s o (.do) 3801V83dW3130V83AV OV70 PEAK CLAD TEMPERATURE - DECLG (C g =0.4) FIG. 15D-7D

NEP 1 & 2 Amendment N12 February 1979 l00'092

                                                     '00'002
                 -s       /           /~8o 6

L__ , 4- J N N 00 091 E O z o o DJ w 3 F 00'001 1 4 4 000 09 k %mk J

                &= #

O o o o o o o 00 o O O 8 o o o o o o o o o o o o O N b N 9 R @ o (do) 3801V83dW31010 7.4 FLUID TEMPERATURE - DECLC p(C = 1.0) FIC. ISD-8A

NEP 1 & 2 Amendment N12 February 1979 00'092 1 00'002 _o - to o N o W \ d N 0 0'o 91 E o Z o O La 8' to 3 F-00'001 4 1 000'09

                \m \     m_  s A

e AL . O o o o o o o o o o o O o o o O @ o @ 8 o N b 9 N 9 0 0 $ 0 (Jo) 3801v83dW31 alnlJ FLUID TEMPERATURE - DECLC (C

  • D FIG. 15D-8B

NEP 1 & 2 Amendment N12 February 1979 00 0%:

                     'o b

00'002

                        /            /W  o O

N

  • 00'091 E

o z o a w w 2_ H 00'001 4 000'09 I

        .<=r h,o     -

a O o O O'O o o @ 8 8 8 O o O o o o o o o

  • o
  • o N $_ $_ $__ 0__ s o N (ao) 380 J VB3dW31- 010~ld FLUID TEMPERATURE - DECLG (C
  • D FIG. 15D-8C

NEP 1 & 2 Amendment N12 February 1979 00'092 00'002 N s U 0 N N 00'091 3 o z o w w 3 H 00'001 1 1 000'09

                                   )

o Q q o q o Q o o o o o o o o o o g o o o o o o o o b

  • N 9 N
  • N

( 3.138n1V83dvd31 01n73 FLUID TEMPERATURE - DECLC D(C = 0.4) FIG. ISD-8D

NEP 1 & 2 Amendment N12 February 1979 000'92 I I 4 000'02 4

                       , 1 1

1 1 000~ 91 o z O w w 3 F-00001

                /                                    0000'9 1

O e d ti

     -                     m O O     O          O             O         O       O O O     O         d                        o       o O O     O                                  o       o o O     c                        0         o       o C     N                       N s                                          o,      N, (33S/81) 31V8 M073-2 CORE FI.OW - TOP AND BOTTOM - DECLG (C     =

1.0) FIC. 15D-9A

NEP 1 6 2 Amendment N12 February 1979 000'09 OOO~OV 000'OE E Q z O P O I w

                     ,  l                                    0 W

2

                           ;                         000'02 E

w 000'01 O b d s: O F-F- O CD O O'O O O O O O O O O O O O O O O O O O O O O O O h O N O g g g i (33S/97) 31V8M0ld-Z CORE FLOW - TOP AND Borf0M - DECI.C (CD " n*8} FIG. 15D-98

NEP 1 & 2 Amendment N12 February 1979 000'09 OOO'OV OOO'OE f G a z 8

                      >                                W 3                                E H

000'02 0- -e 4, 000'01 N ' l o b . m o o o o o o O o o o o o o o o o o o o (cas/el) 31v8MO7a-Z CORE FLOW - TOP AND BOTTOM - DECLGD(C = 0.6) FIG. 15D-9C

NEP 1 & 2 Amendment N12 February 1979 000'09 000'Ob

                         ;
                          ;                        000'OE t

a S o 0- _U w 3 d H 000'02 ks 8 H s o W

       '                      N w

o cn

                   '=                              000* Ol 4      '

4 X/ I .__5 O O O'O o o o o o O o o o o o O o to N o O x 8 o 8 e I ss (33s/al) 31vamola -z _ CORE FLOW - TOP AND B0fTOM - DECLG (C D

                                                              = 0.4 )

FIG. 15D-9D

zmm e. N rop $mn" 5" e enE nx ~*y* oOoo

                                                        - oO.ooY o9ooN
                                 -                               )

S D R N

      . E                                                    O M                                                    C O                                                    E
      . C                                                    S N              E                                     (

W R E O O D C IM T o9ooN

          \

go o9 [

                                                   )

0 O.o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 7. 5 2 5 0 5 0 2 1 1 0 7 1 1 5 2

              $ a_w>Wa xwg$

xm? , aw 8h9^Sex$$

                                          >   3 ,sxm
                                                  = Era  E>Mx,n rTm
                                            ]F :ai E >

i s 20.000 17.500 15.000

        -                                              \     DOWNCOMER i--

u_

          ; 12.500 w
        >                                                                              z w                                                                              m J                                                                            m e 10.000                                                                       ~

w e 3 CORE N 7.5000 I -' 2? k! o a 5.0000 / h 2 P5o@ 2 5000 / -R* $mM' i e [ c7 $ oe s 0.0 i E 2; o mde O o o o o o E E. oa m o o o o o "o m- o o o d d e

 ,0 o                                      o               o                  o o 6 o
                                                                                    *E 7                                         -

m m e M" o gz TIME (SECONDS) *" Eo a v

NEP 1 6 2 Amendment N12 February 1979 00'00 G 00'OOtr 00'00E m O z x o

    . W                                                   U s                                                   W b               y                                   $

z z w O b o H 00'002

        /
   .4' 00'001 O o    o     o       o       o      o      o           0 o o    o     o       o       o      o      o o

o C o e o o o o o o h d N O c o e g _ s e g (1J )l3A37 831WA REFLOOD TRANSIENT - DECLC (C

  • D DOWNCOMER AND CORE WATER LEVELS FIC. 15D-10C

NEP 1 & 2 Amendment N12 February 1979 00'009 OO'OOk OO'OO E u) O 2 m O W u 2 W O u) U - Z W W 3 T g O O O U V 00'002 D

         /

W 00'001 P O O O O'O O O O O O O O O O O O O O O o O o O O O O g O 6 N' d N O D O D m -. - - - s g m (13)l3A37 831VM REFLOOD TRANSIENT - DECLC (C

  • D DOWNCOMER AND CORE WATER LEVELS FIG. 15 D- 10 D

NEP 1 & 2 Amendment N12 February 1979 00'009 OO'OOb 00'007 w O Z O U L1J U) 5 2 s 00'002 00'001

   -= .

O O O O O 00 O O O o O O O O O o o o O C O O O o O o O O N O N o g g g

           ~

N - - - O O~ O (03S/!!!) 31V8 00073 REFLOOD TRANSIENT - DECLG (C

  • D CORE INLET VELOCITY FIG. 15D-10E

NEP 1 6 2 Amendment N12 February 1979 00'009 i 00 OOk OO~OOE en O z O w e w 2 F-00'002 00'001 O O O O O O O O O O o O O O o o o= O o o o O o o g O O N o N Q o N. m m -- O (; o (33S / NI ) 31V8 00073 REFI.00D TRANSIENT - DECl,G (C = 0.8) D CORE INLET VELOCITY FIG. 15D-10F

NEP 1 6 2 Amendment N12 February 1979 00'009 OO'OOV 00'00E 3 O Z o Ls1 o LAJ t 00'002 00'001 o o o o o o O'O o o O o o o o o o o o o o o o o o o o o N S o O N

o. .

O N m - - - - o o o (33S/NI ) 31VB 0007.3 REFLOOD TRANSIENT - DECLG D(C = 0.6) CORE INLET VELOCITY FIG. 15D-10G

NEP 1 & 2 Amendment N12 February 1979 00'00 G l OO'OOV 00'00E o 2 o O G 2 s 00'002 00'001

     /

o o o o o o 0'O o o o o q o o o o o o o o e o e o o o g O N o Q h N o m N - - - o o o ( D3S / NI)31V8 00073 REFLOOD TRANSIENT - DECLG (C

  • D CORE INLET VELOCITY FIC. 15 D- 10li

NEP 1 & 2 Amendment N12 February 1979 000'92

          /

00C'02 ( 1 000'9i x N 8 u w E s 0 0 0'0 1 0000'9 o o o o O'O o 8 8 8 8 o o o o o D D 4 N ( '33S / 97 ) M01_4 801VlDWD33v ACCUMULATOR FLOW (BLOWDOWN) - DECLC (C = 1.0) D FIG. 15D-11A

NEP 1 & 2 Amendment N12 February 1979 000 09 OOO'O k OOO'OE G o 5 8

          /                                             e ur 2_

r 000 2 t 000'01 o o O'O o o o o o o o o 8 m 8 8 e 8 e m 033S/ 81)Mol.4 UOlv70Wn33v ACCUMULATOR Fl.0W (BLOWDOWN) - DECLG (C

  • D FIC. ISD-llB

NEP 1 & 2 Amendment N12 February 1979 000'09 000 Otr 000'OE u, O 8 M us E N 000'02 3 000'01 o o o o o o 6 o o 6 o o o o o o o o CD Q T N ('33s/'87 i Mold 801v Innn33v ACCUMUI.ATO!t FI.OW ( BI.OWDOWN ) - DECLGD(G = 0.6) FIG. ISD-llc

NEP 1 & 2 Amendment N12 February 1979 000'09 - O O O'O tr 1 1 OOO'OE 3 0 z o O w 3 N 000'02 000'01 9 O O O o O'O o O o o o O O o o O O o o e W v N ('33S/~87) Mold 801V 10WO33V ACCUMULATOR FLOW (BI,0WDOWN) - DECLGp(C = 0.4) FIG. 15D-llD

NEP 1 & 2 Amendment N12 February 1979 O O O O to 8 O Z O O OW O u) N ~ W

                                                      ?

r O 9 O N O m D q N O (33S/t id) Mold PL?! PED ECCS FLOW (REFLOOD) - DECLG (C D

                                                           = 1.0)

FIG. ISD-12A

NEP 1 & 2 Amendment N12 February 1979 8 e O O to b O Z O O o O y N m v 2 I O 9 O N O m e e N O (33S/t 13)M07J PletPED ECCS FLOW (REFLOOD) - DECLG (C

  • D FIG. 15D-12B

12 10 8 U Lil l

       <n
       &        I                                z F- e     f                                @

E E - sC 3 I P O bJ

   ,y   J O

Q 4

   ,            i E            I x

M m l 5g, 2 F l w8 1 ?a Mi O g O 10 0 200 300 400 $,km n Ey TIME (SECONDS)

  ]                                           Qs" f                                            -
                                              @Z ll                                        @ t
  .o b

NEP 1 & 2 Amendment N12 February 1979 O o 4 o o to di o Z o o oW om~ N W 3 O 9 o N O D D # m o (33S/g 13 ) MO 13 PUMPED ECCS FLOW (REFLOOD) - DECLC (C

  • 0.4)

FIG. 15D-12D

NEP 1 & 2 Amendment N12 February 1979 30.0 '-- I_ , g _ - o 20.0

~
                                          ;

I b '. i,'

                                            ~

to __ - __ _. - - \ g ___ _ _

                                                                                     /                 __    -                                  -

{ _

                                                                                                                                    \_           _        _

- - - / \ s 2 ._ _

E ._ _
                                                                                                                                                \      .

k10.0 F - Y f - O _ . i _._ - - - l _ - - e _ . 0.0

          -l                                       o                                            1                                2                               3 10                                     10                                             10                               10                              10 TIME (SECONDS)

CONTAINMENT PRESSURE - DECI.G (C p = 1.0) FIC. 15D-13A

NEP 1 6 2 Amendment N12 February 1979 30.0 h w M _ + + e M

  • m y e - .
  • N d "

m m i. w Sumbi _ _ 6 *

  • w _ se e e e 6 6I _ N * "

em.. ie m _ _ _ m _- M ^ * m W * "

  • mi _

20.0 o J \

                                                                        )            -      -      -                   -      --

g _ _

                                                                       /                                      x        _    .. _

$ .__ _ ._ _ / _ . _ _ _ g __ _. _ _ _ . _ _ _ W __ _. _ _ _ - t_ _ E

.._. _
                                                           / .                       _    _

X, _ . W _ . !10.0 \ a / _ . g _ _ f_ _ . _. _ o i _ . - l . .. ..

                                        /        _     _                                                                        _

l -- -

          -l                              o                                    i                                2                            3 10                               10                                 10                                 10                           10 TIME (SECONDS)

CONTAINMENT PRESSURE - DECLCD(C = 0. 0 FIC. 15D-13B

NEP 1 & 2 Amendment N12 February 1979 30.0 - 20.0 / \ 3 I

                                                                                                                    \                    _   _

G __ ._ _ -

                                                                                 /                   ._      _                                      _

m . . b __. - _- __ _ _ - _ _ w \ 7 g ,_. . _ _ .. _ _.

                                                                                                                                   \

g _ _ -.

                                                                          /                 _        _

4 _ g _ _._ _ Z 10.0 - - 7

S t- . __ __ _ _ _ _

o _. -

                              /
                   ,   d       _     .
         ~

l0' 10 3 10 ' 10 10 TIME (SECONDS) CONTAINMENT PRESSURE - DECLG (C ' D FIG. 15D-13C

NEP 1 & 2 Amendment N12 February 1979 30.0 . 3 / L 20.0 j , N o

          ~~
              ~        ~

l ', [}. e c/ \ ' \

                                              ~~J:                _

r , x z N [ E /_ \ E / \ s __ _ 510.0 o

                                          /

J -

                                     /
                                   /
                                /
                              /                   -
                            /
                          /
                 /                                   -

0.0 10~' 0 2 3 10 10' 10 10 TIME (SECONDS) CONTAINMENT PRESSURE - DECLG (C = 0.4) FIG. 15D-13D

NEP 1 & 2 Amendment N12 February 1979 000'92 000'02 000'91 tn O Z O w w r 000'01 OOOO'S o o o o o o o o o o o O'O O O O O O O D w q N O o O O (Od/d ) 83 mod CORE POWER TRANSIENT - DECLG (C = 1.0) FIG. 15D-14A

NEP 1 6 2 Amendment N12 February 1979 000'09 000'Ok 000'02 G a Z 8 w b w r 000'02 000'01

   ~

O O'O O o o o o O o o O O O o o o O O D w q N d d d O O (Od/d) 83M0d CORE POWER TRANSIENT - DECLG (C D

                                                 =

0.8) FIG. 15D-14B

                                                                                                                                                                                                                                                                                                                         .Le#

e

  • 1
                                                                                                                         ; ,'
                                                                               . ('1 ,
                                                                                                                                                                                      ~ . , '

w) .:

                                                                                                                                                   -j . 6, ~d'k ,- * ' g I
                                                                                                                                                                                           ~
                                                                                                                                                                                         ? ,                         y                          .
                                                                                                                                                                                                                                                          )
                                                                                                                                                                                                                    ,N\ / [-.
                                                                            ;                                                                                                                                                                       .
                                            ., s .

o <l , c+. . i r . ;_ w- . _ . . ,3

                                                                                                                                                                                                     ~
                                                                                                                                                                                                                                                                                                         -;
                                                                                      , ,,,8     7                            ,-y. +-P . m n . ** n                                                                                                  J
a. x ,':,
                                                                                       "#.                                                                                                                           .\ *W                                                                                g
                                                         ,,,)
                                                                                       ;                              f..             .
                                                                                                                                                                     #et A
                                                                                                                                                                    ~<=.'t'I        :              --Y
                                                                                                                                                                                                                \                '
                                                                                                                                                                                                                                                                          ,                         .,e'        g         @I
                                                                                 ,/

y.' p,. j Q"g, - 4 g>. "-e>. N I. ,/ y{1u g ,,. ,,f, n1 .W m ,. , . . . . t ; ..

                                                                                                                                                                                                                                                                                                   < ; ,z
                                                                                                                                                                                                                                                                                                < .> s s

5e ,> ' y-

                          ,?f                            -
                                                                      ,                                  '[                     - /<                                   N                       hh                                     i
                                                                   .~.

W/~Q

                 ., / 4                                               p                                      ; .3                                                                                                                                                                        ,

y ..+.,. ' 7: , y' 7 - ;, *, , yn%: n m

                                                                                        .=                                                                                                                                                                          ",
     '        '/f/                                 ', ,
                                                                                  . ~ * - ,,                     *                                             ..                                           y .~. ,xt
                                                                                                                                                                                                            -~g                             '. $                                                 +;
                                                                                                                                                                                                                                                                                                          ~,
                                                                                                                                                                                                                                                                                                                          .m
                                                                      ,>*';. ~                                                                                                                                                                                                  '
                  ',l
                                                                                                                                                                           s.,f]% %: ,f g n .'                                                                                 <    !      s=    ^2 *
 ;                     __ <                    ,

F. .

                                                                                                                                                                                                                                                                                       ~

i x e , .- r + h

         ,    ...;.'
                                                                                            /, .'                                  \

for .w x, ,, . ,('smt .' a'

                                                                                                                                                                                                                                                                                   's \
                                                                                                                                                                                                                                                                                                                  .j t . , t:Jr QcX.                                                                             ~                                          9 g
                '.i a        *
                                  , j 
                                              \

w

                                                                                                                                                                                                                        'g e qi.
                                                                                                                                                                                                                                                                                     %. \, : <, . \..
    ,I         \                . ,                                                     .f+                                                               .j              ,

4 y

                                                                                                                                                                                                                                       ,4,                   '

b. z., ,s:

                                                                                                                                                                                                     .. ,                                                 i r                              ,
s. ~

i e i P, , ,, *

  • f ] -
                                                                                   / /                                                                                                                                                                                                 .._                          .

y g.~

                                      - "/. j,f                           ,

f s- ~. e 4' ( * *

                                                   - a'\                 ',
                                                                                                                                                                                       */

vy ,

                                                                                                                                                                                                                                              , , +y%>            . , .,c. .

rP , , 1 - r .. ~\ <

                                                             !                                         ,         _ , ,                               ap' ;';                             ,I ts            ,
                                                                                                                                                                                                                                 ~
                                                                                                                                                                                                                                  '                   ~/
  • A
                %< j, ^ ; /                                                                                                                                                                                                                   N , 4, ~. ' *
                                                                                         ^ ..- . . .                        .,
                                                                                               ;; :l                              n                                                                          N' a,                                                            ,

NO s s

                                                                                                                                                                       qx .,.                               ,         , .
                                                                                                                                                                                                                                                                                            /*f

{ .. g , g ,

                        +                                                                                                                                                                                                                     .

I l.dfr';), ' j! 4 # (*, 4# * # g N ros ru ' .

                                                                                                                                                                                                       ' x',                                ,
                                                                                                                                                                                                                                             /                           r d.

4 cove

                                                                   .A g
                                                                                                                                                                                                            ',_                     ~. ! ~; '
                                                                                                                                                                                         *                             .w"
                                                                                                                                                                                                                        .p8,                                   ',

er+<pE r p(wo

                                                                                                    /                 ~
                                                                                                                                 .'                                                                                                                               '\
                          ,                                                      c                                                      ,,                                                   ,
                                                                                                                                                                                                             -.,s[,y, ,                                           .-

z v r$ 4 x.;~A gl37 .w

                                     <             .c'
                                                                                                     ?                  , p-                  '-

s y; i 4

    /                                                               .,,,
  • I "'

(')

                                                                                                                                                                                                          $s
                                                                                                                ,,g
                                                                                                                                                                                                                                                                                                                  /-W wx~wm x

y) , $ .m

                                                                                                                                                                                                                                                                                                                          ?

f(

                                                                                                                                                   'J                                   J                                                                                                                             ,.

T

                                                                                        ,e.o x
                                                                                                                                                                                                                                      ,~                            6 ' w t<

p, s e

                                                                                                                                                                                                                                                                ,- % g( .                   - eE h, \                                             ,.

k "C ,

                                                                                                                                                                                               ,j                                             \.                     /                           g f                          -        d. N                                                                                .a
                                                                                                                                                                                                                %g ,Qi                                            '
                                                                                                                                                                                                                                                                                                          '/ '

F==> f,, ~S I

                                                                                                                                                                                                                                                                                                   /

b - yw /

                                                                                                                                     ;%< /*
                                                                                                                                                                                                                                               -g se              !                                                         '
                                                                                                                ,f
                                                                    ~ s, c'      ./
                                                                                                                   ',y r
s
            . , ~ -                                            ,                            >,
                                                                                                          /

/ f

                                             ., -. /,
                             .' .,4,,

f l w, ** y

 -x        '#1
                                                                          'do                                                                                              &                                               (                                                    ,$
,-,.                       {,,,

B. 5 s 0 E

  • 5
                           ;                                                *                                           ;
'N 4: h MS 4
4. N ca -

t,, gj - ~1, r- JT 6 w 2% o 000

       }nh
           ))     .i
                                                                   -- .o - - c .,sn~c caaa
                                                                   - zo - rus-to maa
                                                                   -             ma t t a t ie,[

p

                        \ . '"#
                        -                                          r _ a _ a, . _ a..            .<a,,

x y- er a se r t w.c 2 a i a ,,s =* 4.c = wm . AMENDMENT N12 FEBRUARY 1979 == NEW ENGLAND POWER COMPANY NEP 1&2 TOPOGRAPHIC MAP FINISHED CONTOURS Prehminary Safety Analysis Report FIG. 2.41 NEP 1 &2

_., ~.,--.- i, s.

f^_f' - rf // \ j'

-; ry l T .r ~~ //'o 55;r /**g(/?,

. - ' g s O

                                                                         ~                *
                                                      ,g
                             %-t                  n lj
                                                                 \L.              ~7 r--
                                                                                       ~'
                                                                                                     .1
                                                                                       = ,_ - - -                    .

m, %r 3 fj N .

                  ~ g,
                     -,',' N O4' ~ N -
                                                       \
                                                               //                             __
                                                               /
 ,              -                ~                                                        a
                                                       \\

Q izm ' \\ l/ l /

                                                        \L I
       '( {$          -

I . 29 o x (pgj, - D

,/,
   ,                                 ji a
                                                                 /4)
                                                                                               ~ ~

, a 4_ i N- R s im h Ib b ('/ ., i _L _l

  1. /'g N *hg '

g4-5527f' Djlfg sk r N' %x_g/w;j-Q-/ x ' ll

                                         .i q.

w ~> .

pfhh(l"

~4 ,g tf a - m 2. , LT:"% Q s M

               -43 ns
;} b' t O'N;RL?*
                                                   ,f
                                                       , ,,,4 m d            d                  '

3 ,x 4 x x Qf h f i, v i

                                      ??

_[ - N k??NS, ,h& If. /8 "'* .

 )       \
             ,      - >y~r=n                       /
                                                     /
                                             /.
\/hNk'       N P                    N 4/A                       rb',

PR us -

                                                %k x         %enj&~

y, N n-xN+, a " a*'5 o ' i

                                  \\
                                                          "[

v6C 11 , n v ,

                                                                         ,an         m
                                         ', N                                k;             h        W hh                              YJ F
                      ;  Jt, m oh44A                                  w1
                                                                                        *ma y             !;     '\x

(( > h " I

                -gI b                             ls,,           X        "'\.                 a

( j\ ? i o

                                                          'b g

xx g , s N., g,x.g-s x

                                                                                         ' ' c w b/
                                ;           x                       %>2 Q,,

c'9lW

                        ?

pb f :nw:, '2 "//

                    )
                      /
                             ',                                                   s e'           I;y
                                                                                                          ;

G N r y N 000# $ sx - -

                                                                                             'N j        l l\\                                     g.

u 3"" 3/ > _>i J 'tw-A Y la 1

                                                                            ,I N

e

j- Q't. ~I' _! f . ... p_\ ..' s

                                         , r~~t- ,' y        _
                                         ~
                                      ' ;rrz.,-.
                                                                                                                              /
                                                                                                                        /

O

                                                                                                             -,./
                                                  //
       /                                         //
                                                '                                                              *])

t

                                       ./

3A00 H3.LSOd r s Hd'#Yf 'n' N

                         'Ad 'hf     4     %                                            .
            ,j[Zr'                               h p
        -~

f, --

                                           , '7                                      \
      )         f~         -9                                                           \\ ' \

p C _ 'e \

              --C       f a       p//                                                      l
                                                                                                   ): ,

p? 7t #. r Z,- // // r v-- p / -

    ,          =~ .4\
                   *:p*" \\                                                  y
                                                                                 ,p               ...

w == -  % .'l

                                                                     'n        l ll       I O

H

                                                                         . ,s
                                                                                          -0 1^                                                                .

c' \} l

                                                                                   \,                     --

m<o s -: ( ( f[h s -

                                                                                                ),

m ;,

                                                                                                           ;.,-. . - -        _;
                                                                                                                               . _ 7

r m.

                                                                  %=
                                                                                                   \
                                                                                                  -36._ -

op

                                           \

g jn v -

                                                                                                     ,4 .

l e y ,\

                                                                 <-y g                  Q                        tt*y                   f
                       \
  • a = 0.= d) /

~ s

                                                         \            #

n - ,

                          \\                                     f
                                                        \g
           ~

L

                 \\,i s

g s

                                          ~=3 Ns            g u-                             //

w .

                    ..          t                               ,e                                  >/

hf k

n.- - 1. ;
                                                   ,?        %
                                                                '"\
                                                                      \

s af,2 y x- .a 's

                                                                          ;      ,
+ 'e
                  \                                      ,

Jp F1L .x_

                                                                                    ; c . _ ,. e ,j
                          %s.                                          s ;+ y . m~

e

i 24n/

( - L., T[/,%.,Q g4 w 4 f g ; y c 5C A sy%232 m3 8 .- 7~ y g i 4

'q,  % %.,> ,

c+ h'c . ' "

                                                             .N
                                                         / '( /
 +,// )\

Ow fj.us(s' 7 e# b /

                                                                                                                           ;

th,. l' c-t o s,oco N w

                                                                                                          \\                         1
                                                                                  +'                       O
    !!      4
                                          '\         g N
                                              ,A       t          x@          s I/)f
                     -i ~ ~ /                                                                           N ff N,,
                                                                 'k" ;'\'sq eq                                       ,
                   ^%_s                f"                          ' ',' "s' \ '            /,v l e~h ff

_ff N "\ ( fx ) s \ - //

  • _/ '[ N

[ s

q d
                                                                                                          >  b'b
                       ;"

ygg y, / { .. o- [ &&'\ 8'"] ? M > \\ jc y

              ;
                \\
                   \      f-                           d$,                  1 unoner eono k.

t o r,ooo N h

                                                                        ~' 1 7
                       \\
                        "sh k\
                              \\
                                     )/ }
                               #     I  ,

SCA IN Pa 7

  \\
  • i NEW ENGLAND POWER COMPANY
            'W                                                                                                         NEP 1&2 Preliminary Safety Analysis Report

f# , d ' !! e a E\\S r d hf

                               . hos.ooo n l)

O

/\ \              '

/l f~tc If N 7I ,

                 '%_).
/(

r- ~, b/~ fj L E QE Np.

    /, ' es                                       ~20
                                                     - ExtS7tNG SqAng FINISHED G,?ADE
                                        ***    - -..           wa7sa tin, i

T POND r '

                                     -;

fj?4+ POINT -. M soo AMENDMENT N12 FEBRUARY 1979 NEW ENG ND POWER COMPANY TOPOGRAPHIC MAP - FINISHED CONTOURS Preliminary Safety Analysis Report NEP 1&2 FIG. 2.4-1 A

N

                                   ;

O

                                   \
                                                                                 \..-

s'

                                              /
                                                               . . -    J j<\    '

s

                                                                                     // /
                                 }s                                         '*

x ., ~/

                                                                                  , /,/

(N/,/ I..  %-(,J$s

                          ~

w Ag h'd .- m. , <yr py- b . h

                                                                                                ~
                                                  ' :'yv<A.
                                                         / n y)       x ; ) .%;wg 2..,a w '#,sw,  /
                                                                                 \*rJ.\  s
                                                                              \h'/j p             \\

N'% 9

                                                                                                ^
                                                                                 - . ~, "
                                                                                      , .s b 6+'  i SI C 'lOM ROPt , #8      8            -
  , . 3,     fi .       +

3 3 8a 29 0 5 3 8e le 0 4 4 34 340 9 5 4i at O

   . . ei     to o

( f* t , 9 9 Ie t..

3. .

30 0 3 so 10 te 30 0 ps et 3e to O st it ae at O 5 lv

                                                                                                        /

w 3L '

                                                                                                            /

' 'fk )wD'c*;  % x. - f w- ,/j ' ' 'N,, \1 gA ,-,, r..

                                     , ,                    %Q~ -

l R,' ' ,'G > W

                                                                                             'W           ~,a J

T(, ,

                                                                .,s
                                                                            ')                            %                                   <o 7 ~,                               ,

van .. -

               /.,                               'st' ' )                  Ng/

gg ; (/,/*,*W

                                                                                                   ~ ~ K ,r)
  ,,'                                                / *c,                                                               -
                                                                                                ,n s.s-
                                         ;                   %                   '
<                                                  <,*                        .-                              N s'      s e, %,., %,%g                                    / xxx' g        x

. . , - ,/ , ,/ % * , / w ,,

                                                                                   %,v'\j      f%) j)u. j?'l

> , '/ y -? ' d, r,S ,.+ . ,, j ,' \ _',' , .';%., . ll '~e----

         ~'
  /. %                                  i      ,/,Y,                        ,
                                                                                         > ,/' ") ll,I!' I ~N

< s,' .'r. ~ i y-A 7 k %'s,I,' g:[ > ',h:-- - y' !! -

                                                                                                 /

d n 'm N . . x ss N'Mvz,,*. / _

                                                                                               /#ys:/ /

g N -l l . N.. - y ,,.l,/ / , [

                                                                                                                        \               '
                                                                                                                                    /

5 > &' s / \[ / N h P N// ',(p' ,ir) s NNN ,, f a /

          \                    .,                                                              y                       $'s Sf M ( M [
*k
    \
            }g k'/

0-[A I

                                                                                                            \
                                                                                                                               \ .
                                                                                                                                   'N
                                                                                                                                     \

ks 1 [ [ 's .

                                                                                                                                       \x
            .                                                                                                                               ~'.)
                                                                                                                                                                                '3

[~ - ., v

                    '}

n ,' .._ / _ _ -

                                                                                                                                                   " '!: 4em, ,d':

( A AMENDMENT N12 L/ FEBRUARY 1979 NEW ENGLAND POWER COMPANY NEP 1&2 WAVE PROTECTION STONE REVETMENT Prehminary Safety Analy.'s Report FIG. 2.4-7 NE? 1&2

NEP 1 & 2 Amendment N12 February 1979 000'09 OOO'OV 000'OE I 5 o Z O O w 2 000'02 l 000'01 I f O'O o N N N N N c  ?  ?  ?  ?  ? O W *W W W W o O O O O O O O O O O O d - - p o (03s/n18) A083N3 MV389 BREAK ENERGY RELEASED TO CONTAINMENT - DECLG (C = 0.6) FIG. 15D-IS Y

NEP 1 6 2 Amendment N12 February 1979 000'09 g 000'Gk 000OE

                                               '5 O

5 S e w b r

 ~

000'02 000'01 O o o O'O O o o O o O o O o O O o O O w w q m d o o d O (Od/d) 83M0d CORE POWER TRANSIENT - DECLGD(C = 0.6) FIG. 15D-14C

NEP 1 6 2 Amendment N12 February 1979 000'09 000'Ob 000' OE G a Z O O W w b r 000'02 000'01 O 00 O O O O O O O O O O O O O O O O m 9 e m O O O O O (Od/d)83M0d CORE POWER TRANSIENT - DECLC (C = 0.4) FIG. 15D-14D

NEP 1 & 2 Amendment N12 February 1979 TABLE OF CONTENTS (Continued) VOLUME 6 (Continued) l Chapte r Title Page No. 13.4 Review and Audit 13.4-1 13.5 Plant Procedures 13.5-1 13.6 Pl ant Records 13.6-1 13.7 Industrial Security 13.7-1 Appendix 13 A Rhode Island Nuclear Accident or Incident Plan g3 VOLUME 7 14 INITIAL TESTS AND OPERATION 14.1 Test Program 14.1-1 1 15 ACCIDENT ANALYSES ND 15.1 Condition I - Normal Operation and Operational Transients 15.1-1 15.2 Condition II - Faults of Moderate Frequency 15.2-1 15.3 Condition III - Infrequent Fault 15.3-1 15.4 Conditi a IV - Limiting Faults 15.4-1 Appendices l 15B Summary of Parameters Used for Evaluating 15B-1 Radiological Effects of Accidents 15C Summary of Parameters Used for an Evaluation of 15C-1 Potential Reactor Containment Leakage to the Con-tainment Penetration Area (CPA) 15D Major Reactor Coolant System Pipe Ruptures (Lc.s of 15D-1 Coolant Accident) - Generic Sensitivity Study Results 16 TECHNICAL SPECIFICATIONS Ni2 16.1 Definitions 16.1-1 16.2 Safety Limits and Limiting Safety Syatem 16.2.1-1 Settings vi

NEP 1 & 2 Amendment N12 February 1979 TABLE OF CONTENIS (Continued) VOLUME 7 (Continued) l Chapter Title Page No. 16.3 Limiting Conditions for Operation 16.3.1-1 16.4 Surveillance Requirements 16.4.1-1 16.5 Design Features 16.5.1-1 16.6 Administrative Controls 16.6.1-1 17 OUALITY ASSURANCE 17.1 Quality Assurance - Yankee Atomic Electric Company 17.1-1 17.2 Quality Assurance - United Engineers and Constructors 17.2-1 17.3 Quality Assurance - Westinghouse 17.3-1 VOLUME 8 SUPPLDiENTAL INFORMATION (AEC Questions / Responses) VOLUME 9 REQUEST AND RESPONSES Tab 1 throur,h Tab 3 VOLUME 10 N1 REQUEST AND RESPONSES Tab 4 thrnW7(; Tab 17 PSARPAGELIMsyi AMENDMEN C1. .i ' . Alll v11

NEP 1 & 2 Amendment N12 February 1979 significant groundwater flow can occur through zones of weathered rock and through bedrock joint and fracture systems. For a more complete description of groundwater conditions in the site area, see Subsections 2.4.13.1 and 2.4.13.2.

i. Description of Man's Activities at the site There have been no mining activities or petroleum recovery at the site.

In addition, there have been no known activities in the region which will adversely affect the site. The only withdrawal of fluids at the site has been the pumping of groundwater during the operation of the former U.S. Naval Facility. This activity is discussed in Subsection 2.4.13 (Groundwate r) . 2.5.2 Vibratory Ground Motion The region within 200 miles of the site is characterized by earthquakes of low to moderate magnitude and intensity. Modified Mercalli Intensity is used in this report to estimate the vibratory ground motion at the Charlestown site. The largest earthquake that has occurred in the Southeastern New England Tectonic Province, containing the site, has been VI(MM) . The maximum earthquake for the site is intensity VII(MM), based on activity in the cdj acent Central New England Tectonic Province. The Safe Shutdown Earthquake for the site has been chosen to be 0.15g, and the Operating Basis Earthquake taken to be 1/2 the Safe Shutdown Earthquake or 0.075g. 2.5.2.1 Seismicity

a. Historical Record There are two measures of the strength of an earthquake:

intensity c.nd magnitude (see Table 2.5-4, Glossary of Terms) . Intensity is used in this report because most of the existing data for the area are in terms of intensity, and because intensity is related to building damage and anomalous ground conditions. Furthermore, intensities can frequently be assigned to newly discovered historical events on the basis of observations found in newspaper and diary accounts. , Historical records of earthquakes date b,ck over 300 years to the earliest colonial settlements in 1627; these accounts must be carefully evaluated. Historical reports, especially the earlier ones, sometimes have located an earthquake epicenter at a population center because of a lack of information f rom the less populeted, but correct, epicentral location. Proper evaluation of historical earthquake data also requires a 2.5-42

NEP 1 6 2 Amendment N12 February 1979 consideration of building and chimney construction practices in use at the time of a given event, since the assignment of intensities from intensity VI to VIII on the Modified Mercalli Scale (Table 2.5-5) is dependent on the extent of damage to chimneys. Obviously, a poorly built colonial chimney would suf fer more damage than a chimney of more modern construction. In addition to these factors, the desirability of access to water power and navigable waters resulted in the location of many early structures along river banks and at the moutha of rivers. Frequently the foundations for such structures were placed on river silts and alluvial deposits, many of which are notably poor foundation soils, subject to failure and which may amplify ground motion during earthquake ' vibrations. >J PL Accordingly, the use of historic intensity information in seismicity analysis forms a conservative data base when applied to a structure to be placed on good foundation materials.

b. Instrumental Detection Capability Seismic instrumentation was first installed in the northeastern United States in the early 1900's. Many of the early s tations wore either part of the Jesuit seismological network, such as Fordham University and Boston College (Weston Observatory); or operated by Harvard University, University of Vermont or Colby College.

w i t. Early inst rumental locations consis ted of two- or three-s tation solutions for some of the moderate local events. One of the first earthquakes located instrumentally was in the vicinity of Cape Ann, Massachusetts, on January 7,1925. Local events, some felt and others not felt, have been instrumentally identified since the late 1930's. The current network of seismograph stations in the northeastern United States is capable of locating any earthquake of magnitude 4.0 (ML= local magnitude) and most carthquakes of magnitude 3.0 within the 200-mile radius of the site. Seismograph stations currently in operation in the northeastern United States include the following stations of the World-Wide Standardized Seismographic Station Network: Weston, Massachusetts (Weston Observatory-Boston College); State College, Pennsylvania (Pennsylvania State University); and Ogdensburg, New Jersey (Lamont-Doherty Observatory-Columbia University) . Other stations in operation in the northeastern United States include: Forge Village, Oak Ridge, and Gloucester, Massachusetts (Massachusetts Institute of Technology); Avery Point, Brookfield Center, Haddam, Talcott Mountain, and Chaplin, Connecticut (University of Connecticut); A11agash, Caribou, East Machias, and Fulo, Fbine - Berlin and Hanover, New Hampshire - and Fall 2.5-43

NEP 1 & 2 Amendment N12 February 1979 River, Massachusetts (Weston Observatory); and Middlebury, Ve rmont . The Vermont station is part of a 25-station New York State network operated by Lamont-Doherty Observatory (Columbia University) which includes a clustering of stations in the northern New Jersey area, a station in Troy, New York (Rensselaer Polytechnic Institute), and additional stations in northeastern and western New York State. Seismograph stations are also located in Canada at Ottawa, Ontario; Montreal and Seven Falls, Quebec; and Halifax, Nova Scotia. These stations are operated by the Dominion observatory of Canada. Prior to the establishment of the University of Connecticut seismic network in 1972, and because of the small size of the southern New England earthqaakes, almost all of the instrumentally determined epicenters in southeastern New England were based on a single station's recordings. All of the Rhode Island epicentral locations were dependent on felt reports and their accuracy is estimated to be on the order of 10.25 degrees, with the largest uncertainty in the east-west direction since the nearest seismographic station was to the north at Weston Obse rva to ry. In northern New England, within the area of the Weston Observatory scismic network, the maximum accuracy of epicentral locations (dependent on the magnitude of the event, and the number of stations recording the event) is 0.1 degrees. The Weston Observatory network has been in operation from 1962 to the present.

c. Seismicity Listing The seismicity of the area within 200 miles of the site is represented on the Epicenter Map, Figure 2.5-27. This figure shows the epicentral location of earthquakes of intensity IV(MM) or greater for which epicenters could be determined and instrumentally located epicenters with magnitudes greater than 3.0. Earthquakes of intensity IV and greater outside of New England are listed in Table 2.5-6. Table 2.5-6a includes New England earth-quakes within the region 41 N to 46 N and 68 W to 74 W based on all available data for earthquakes reported within the block compiled from various sources, including letters, diaries, newspaper accounts, reports of weather observers, and data published by the United States Coast and Geodetic Survey and others. Table 2.5-6a also contains felt reports of earthquakes for which insufficient data exist to determine an epicentral intensity or an epicentral location. These isolated felt reports are listed according to the location of the felt reports.

N a t. 2.5-44

NEP 1 & 2 Amendment N12 February 1979 2.5.2.2 Geologic Structures and Tectonic Activity

a. General The site region encompasses a large segment of the northern Appalachian Mountains. Hundreds of millions of years of erosion have reduced these mountains to a fraction of their former height, and epirogenic movements have caused the sub-mergence and burial of much of the region on the east.

Nevertheless, the episodes of Paleozoic orogenesis have left their mark. Exposures of the root zone in New England and adjacent areas permit a reconstruction of the Paleozoic tectonics and history of the region. For a detailed discussion of the tectonics and geologic history of the region, refer to Subsections 2.5.1.1.c and 2.5.1.1.d. Five significantly different Paleozoic tectonic provinces can be defined, within the site region, on the basis of (1) the style and degree of deformation, (2) the age of the basement rock, (3) the ages of the Paleozoic orogenies or other tectonic movements, and (4) the distribution of crustal blocks or plates) as inferred from gravity and other studies. These provinces are shown on Figures 2.5-28 and 2.5-29, and are, from east to west, the Southeastern New England Platform (site province), the New England-Maritime province, the Northern Valley and Ridge, the Appalachian Plateau and the Adirondack Uplift. Although the tectonic contrasts among these provinces are considerable, they are alike insofar as they formed in sit response to ancient (Precambrian and Paleozoic) stress patterns. Superimposed on two of these provinces, is the post-orogenic emplacement of the White Mountain Plutonic-Volcanic Series y,g during the Mosozoic Era. With respect to Paleozoic orogenesis, this feature is a tectonic overprint. It is herein referred to as the White Mountain Plutonic Series (Figures 2.5-28 and 2.5-29). a,7 All of the " tectonic provinces" described herein are defined according to their gross tectonic (geologic) characteristics, in compliance with 10CFR Part 100, Appendix A. The conclusions are in general agreement with those of Bird and Dewey (1970) . and Rodgers (1970). Although Rodgers' generalized map shows most of New England as an extension of the Piedmont Plateau of the southern Appalachians, he clearly points out the correlation between the fold belts of New England and individual southern Appalachian " provinces". The seismotectonic map of Hadley and Devine (1974) defines provinces similar to those shown on Rodgers' generalized map. Concentrations of seismic activity are located in the region, and some discussion will be directed to this in later paragraphs. 2.5-50

NEP 1 & 2 Amendment N12 February 1979 The numbers used to identify earthquakes in Table 2.5-7 correspond to the Weston Geophysical master list of events for the northeastern United States from which the data were compiled. Wat The assigned intensities of some earthquakes fall between whole units of the Modified Mercalli Intensity Scale, e.g., IV-V(FD1) . The convention adopted in this report is to consider such events as being the higher of the two intensities for purposes of discussion in the text and representation on the figures.

d. Regional Seismicity The site and the adjacent ocean area are in an area of low seismicity, relative to the surrounding region (Epicentral Map, Figure 2.5-27). Concentrations of earthquake epicenters within 200 miles of the site are located in the south central Connecticut area, the Cape Ann region in northeastern Massachusetts, the Ossipee and southern New Hampshire region, and the northern New Jersey-southeastern New York area. The Narragansett Bay and the Hudson River Valley are regions of dispersed minor seismicity.

Instrumentally located epicenters, Figure 2.5-27, generally have the same areal distribution as historical data. Outside the 200-mile area, a number of strong earthquakes have occurred at various locations along the St. Lawrence River Valley extending from LaMalbaie on the northeast to Montreal, and then westward along the Ottawa River Valley toward Ottawa, Ontario. Areas exhibiting a concentration of earthquake epicenters within 200 miles of the site are shown on Figure 2.5-27 and discussed below. (1) Narragansett Bay, Rhode Island Earthquake epicenters with a maximum intensity of V(FD1) have been located in the Narragansett Bay region of Rhode Island and adjacent portions of southeastern Massachusetts. The intensity at the site from any Narragansett Bay event has not exceeded IV(MM). (2) South Central Connecticut This area has experienced a number of lightly to moderately felt earthquakes, most of which have been centered about the East Haddan-Moodus area. The largest earthquake in this area took place on May 16, 1791 (Number 248), 2.5-45

NEP 1 & 2 Amendment N12 February 1979

b. Southeastern New England Platform (Site Province)

The site is situated in the southern part of the land area of the southeastern New England Platform. The Platform is generally characterized by a Late Precambrian crystalline basement complex supporting supracrustal Carboniferous and older basins, and having a low metamorphic grade and a pattern of fairly localized north-trending faulting of Late Paleozoic or Triassic age. The youngest known tectonic structures in the province are the Late Paleozoic-Triassic faults and the mafic dikes of Early Triassic age. No capable faults have been identified in the province. There are no meaningful data by which the present stress regime can be deduced. The Platform is similar to Late Precambrian rocks of the Avalon Peninsula of Newfoundland (Rodgers, 1972), and is widely considered to be a piece of the Paleo-African contin-ental plate welded to North America during a Paleozoic col-lision and then stranded during the opening of the modern Atlantic Ocean (beginning in the Mesozoic). Consistent with the concept of a stable African craton, the linear magnetic and Bouguer gravity patterns (Figures 2.5-31 and 2.5-30, respectively) indicative of folding and faulting in the Appala-cian provinces to the west are not found in the Southeastern New England Province. Similarly, Kane and Others (1972b) suggest a Precambrian age for the basement underlying the Gulf of Maine. They report a major gradient along the Maine Coast separating the high regional gravity values offshore from the gravity manima to the west and conclude that it represents the juncture between two discrete crustal blocks or plates in near isostatic equilibrium. They further conclude, based in part on work by Wilson (1962) and Webb (1968), that a major transcurrent offset separates the Gulf of Maine from the Appalachian region to the northwest. Stewart (Zeitz and Zen, 1973) points out how several apparent geologic anomalies are accounted for by a right-lateral transcurrent displacement of about 112 miles along this boundary. The distribution of earthquake epicenters in the province (Figure 2.5-28) is generally diffuse and of low frequency. Some epicenters are located in southeastern Rhode Island, toward the southern end of the Carboniferous Narragansett Basin, where the basin rocks have locally been deformed by late Paleozoic polyphase deformation and up to staurolite-grade metamorphism, while other epicenters are located in u i t. 2.5-51

NEP 1 & 2 Amendment N12 February 1979 Connecticut, where a northwest-trending structural pattern is transected by a northeast-trending Mesozoic mafic dike zone and cut off by the northeast-trending fault boundary of the province. From Figure 2.5-28, it appears that some of the historical activity near New York City (with maximum Inten-sity VII) occurred near the southwesterly projection of the boundary of the province.

c. New England-Maritime Province For purposes of this PSAR, we have referred to the New England-Maritime province as a single tectonic province, although, clearly, it is not. Whether or not it is considered as a single province has no effect upon the site, since there are clusters of seismic activity within this province which, of themselves, can be related to tectonic provinces, and others which have been related to tectonic structure (Boston Edison Company, Pilgrim II PSAR, 1976).

The New England-Maritime province is generally characterized by a systematic pattern of north- to northeast-trending Paleo-zoic foldbelts, faults, and granitic intrusives, transected in the eastern New Hampshire region by a north-northwesterly-elongate clustering of central complex plutons of Mesozoic age, and in central Massachusetts and Connecticut by a north-trending rift basin containing Juro-Triassic continental sedi-ments and volcanic flows. The youngest known tectonic struc-tures in the province are mafic plutons of Middle Cretaceous age, dated at about 110 to 120 million years. No capable faults have been identified in the province. There are no definitive data by which the present stress regime can be deduced. The distribution of earthquake epicenters in the province is not uniform; there is a marked tendency for epicenters to cluster:

1. in southwest-central Maine where a southeast-trending Paleozoic foldbelt is intersected and cut off by a southwest-trending, post-metamorphic fault system;
2. in central New Hampshire where five Mesozoic central complex plutons are enclosed by an apparent collapsed caldera structure, and to the south where geologic structures and aeromagnetic patterns trend north-westerly, transverse to the regional northeasterly fabric of the province; N r 1.

2.5-52

NEP 1 & 2 Amendment N12 February 1979

3. in northeastern Massachusetts where a zone of extreme fault deformation of late Paleozoic age marks the boundary of the New England Province with the South-eastern Platform, and where a cylindrical mafic pluton of apparent Mesozoic age has intruded this fault complex in its offshore extension north of Cape Ann;
4. in central Connecticut where the Juro-friassic rocks are closely faulted and a northwest-trending structural pattern to the south is cut off by the southwest-trending fault boundary of the province, and in southwestern Connecticut and southeasternmost New York along the projection of that boundary.
d. Northern Valley and Ridec The Northern Valley and Ridge province is characterized by the folded and thrust-faulted structural system of the Appalachian Mountains. The prominent geomorphic and northeasterly-trending.

tectonic features are reflected by parallel or subparallel ridges and valleys. The province consists of rocks that range from Precambrian to Juro-Triassic in age. The Great Valley is due to the weakness of the Cambro-Ordovidian limestones and shales, while the ridges are composed of very resistant Middle and Upper Paleozoic sandstones and conglomerates. Two classic theories have been advanced for the origin of the structures: (1) deformation was essentially in the underlying basement and reflected in the overlying sediments; and (2) deformation is largely confined to the sedimentary rocks. The youngest known tectonic structures in the province are basic dikes of Mesozoic age (Rodgers, 1970), and extensional faults of Triassic age. No capable faults have been identified in the province. From several focal mechunism solutions, it appears that the present maximum compressive stress direction is largely uniform and trends east-southeast or west-northwest (Aggarwal, 1977). The distribution of earthquake epicenters in the province is generally diffuse and infrequent, and of only modest frequency with a maximum epicentral Intensity VI(FN). There is a tendency for epicenters to cluster in one location within the province area, in the vicinity of the Ramapo fault, bordering the Triassic basin in northern New Jersey. The highest event is Intensity VI. g,g 2.5-53

                             "EP 1 & 2                       Amendment N12 February 1979
e. Appalachian Plateau The Appalachian Plateau province is characterized by a broad, gently synclinal basin containing rocks which range from Cambrian to Permian in age (to the south). The nearly flat-lying sedimentary rocks rest on a peneplained surface of Precambrian crystalline rocks. The province has two sub-divisions, the Allegheny Plateau on the north and the Cumberland Plateau on the south.

The youngest known tectonf: structures in the province are mafic dikes of Mesozoic age. Basically, historical seismicity suggests that this region is aseismic,

f. Adirondack Uplift The Adirondack Mountains province is characterized by a Pre-cambrian basement of the Grenville-age metamorphic rocks intruded by various types of plutonic rocks. The Adirondacks have persisted as a structural high throughout a great portion of geologic time and represent an ancient mountain root system which has been periodically uplifted as erosion gradually reduced the super-incumbent load. DeWard (1967) estimated that the crystalline rocks exposed in tiv Adirondacks have been uplifted as much as 19 to 22 miles. The Paleozoic rocks thicken in all directions away from the circular outcrop of the Adirondacks. The youngest known major tectonic structures in the province are a system of faults that radiate from the Precambrian rocks of the Adirondack uplift and can be traced several miles into the onlapping Lower Paleozoic sedimentary rocks; they were active during the latest tensional phases of the Taconic orogeny (at least 435 million years ago), and in the Hudson Valley sector, active during the Acadian orogeny (at least 350 million years ago). No capable faults have been identified in the province. Limited local stress data have been obtained from microcarthquake studies (Sbar et al, 1972; Anderson and Fletcher, 1976) in the Blue Mountain area, but are inadequate for an understanding of the present regional stress regime of the province. Isachsen (1975) reports 2 mm/yr of apparently aseismic tectonic arching in the eastern Adirondacks, measured between 1955 and 1973.
g. White Mountain Plutonic-Volcanic Province d'T Plaeozoic orogenesis in the region was characterized by compres-sional deformation and mountain building believed to be associated with the closing of a proto-Atlantic Ocean and subsequent O' continental collision. The Mesozoic Era marked a change to tensional stresses, leading to rifting and separation of the 2.5-54

NEP 1&2 Amendment N12 February 1979 continents. The principal geologic results of Triassic tec-tonism are the development of rift basins and the widespread intrusion of basalt dikes. Because these tensional features are found throughout moet of the site region, it would not be appropriate or meaningful in the context of the present analysis to define a discrete tectonic province based on these considera-tions. Nevertheless, this regional extensional regime must have widely " erased" the compressional stresses imposed by Paleozoic orogenesis. Another prominent tectonic episode which followed and over-printed the effects of Paleozoic orogenesis was the emplacement of the magmas of the White Mountain Plutonic Series along a restricted " belt" trending generally north-northwest from the Maine-New Hampshire seacoast into northern New Hampshire, trens-verse to the ancient structural grain of the Appalachians. The Ascutney and Cuttingsville Stocks of southern Vermont are also members of this series. The exposed plutons are composed princi-pally of granites, quartz syenites, syenites, and alkalic rocks, and are found in association with very thick accumulations of their extrusive equivalents. Rocks of this series are dis-tinguished from other rocks in the region on the basis of (1) age, (2) diversity of rock types, (3) mineralogy, (4) presence of ring dikes, and (5) suggested mode of emplacement. Billings (1956) recognized that these were post-orogenic rocks and assigned them a Mississippian age. Radiometric dating, however, has shown that the igneous activity began in and continued intermittently throughout the Mesozoic Era. The distribution of earthquake epicenters of the highest intensity in the region has been correlated with certain plutons of the White Mountain Plutonic Series which are charac-terized as cylindrical in form and Mafic in compcsition (Boston Edison Company, Pilgrim II PSAR; 1977). These plutons, near Ossipee, New Hampshire, and just offshore to the north of Cape Ann, Massachusetts, have also been characterized as being enclosed in post-orogenic fault complexes of deep crustal extent. The largest New England earthquake, at Cape Ann in 1755, has been correlated with a tectonic structure, the Cape Ann pluton, in a thrust fault complex (Boston Edison Company, Pilgrim Unit II PSAR, 1976), or with a broader tectonic structure encompassing the White Mountain Mesozoic pluton series (Boston Edison Company, Pilgrim Unit II SER, NRC position, 1976), or with a restricted tectonic province, i.e., the northeastern Massachusetts thrust fault complex (Boston Edison Company, Pilgrim Unit II SER, U.S.G.S. position, 1976). 9il 2.5-55

NEP 1 & 2 Amendment N12 February 1979 Similarly, two large earthquakes near Ossipee, New Hampshire in 1940, and other nearby activity, have been associated specifically with the Ossipee pluton and fault structures (Boston Edison Company, Filgrim Unit II PSAR, 1976), or with the White Mountain plutons in general (Boston Edison Company, Pilgrim Unit II SER, 1976). In the area of southern New York State, in the Northern Valley and Ridge provinces, some earthquake activity has been associated with the Ramapo fault or fault system (Sykes, Indian Point Testimony, 1976; Aggarwal, 1977). The Lake George earthquake of 1931 is associated with the southern half of the Adirondack uplift as a tectonic province. The possibility exists that this event, as well as some other smaller activity apparently located around the periphery of the province, could be related stresses associated with the periodic uplifting. The earthquake of highest inter.sity in the southeastern New England Platform (the site province) not correlated with tectonic structure is the Intensity V-VI (FDO earthquake of August 8, 1847, near Harwich, Massachusetts, approximately 130 km (82 miles) east-northeast of the site. The earthquake of highest intensity in the region not correlated with tectonic structure is the Intensity VI-VII (100 event of May 16, 1791, near East Haddam, Connecticut, about 72 km (45 miles) west-northwest of the site. This event is located essentially on the boundary between the Southeastern Platform and the adjacent New England-Maritime Province. For conservatism, this event may be considered as controlling the determination of the SSE at the NEP 1 and 2 site. No capable faults have been identified anywhere within the site region. ait 2.5.2.3 Correlation of Earthquake Activity with Geologic Structures or Tectonic Provinces The site is located within the Southeaste New England Platform Tectonic provin.e (Subsection 2.5.2.2), characterized by its low frequency and low intensity historical seismicity. The earthquake of highest intensity in the Southeastern Platform not correlated with tectonic structure is the Intensity V-VI(MM) earthquake of August 8, 1847, near Harwich, Massachusetts, approximately 130 km (82 miles) east-northeast of the site. The earthquake of highest intensity in the region not correlated with tectonic structure is the Intensity VI-VII(FDO event of May 16, 1791, near East Haddam, Connecticut, about 72 km (45 miles) west-northwest of the site. This event is located essentially on the boundary between the Southeastern Platform and the adjacent New England-Maritime tectonic province. For conservatism, this event may be considered as controlling the determination of the SSE at the NEP 1 & 2 site. Jo L 2.5-56

NEP 1 & 2 Amendment N12 February 1979 The New England-Maritime tectonic province is a broad north- to northeast-trending region in which the distribution of historical and instrumentally-detected carthquake epicenters is characterized by a pattern showing discrete epicenter groups or clusters of commonly low-intensity seismicity separated by wide areas in which earthquake occurrence is minimal to absent. Most of the earthquakes which have been recorded in the province have occurred within groups in central Maine (beyond 200 miles to the northeast); west-central Maine; south-central New Hampshire; northeastern Massachusetts; and central to southwestern Connecticut to the New York City area. The earthquakes of highest intensity in this region not correlated with structure are the Intensity VI-VII(MM) event near East Haddam, Connecticut, May 16, 1791; and three Intensity VII(MM) events in the New York City area, more than 210 km (130 miles) west-southwest of the site, on December 18, 1737, August 10, 1884, and June 1, 1927. The White Mountain Plutonic Series intrusive bodies occur in an area of younger tectonic activity superimposed across the older tectonic provinces of the region. This province contains 29% of the earthquake activity within 200 miles of the site, and the majority of significant activity in northern New England. The epicenters of highest historical intensity in the region (Cape Ann, Massachusetts, Intensity VIII(MM) in 1755, and Intensity VII(MM) in 1727; Ossipee Mountains, New Hampshire, two Intensity VII(FSO events in 1940) are correlated with specific geologic structures: the tangential association of cylindrical Mecozoic mafic plutons of the White Mountain plutonic series with post-metamorphic faults having cr"stal dimensions. The association of these structures with anomalous ismicity relates to the condition that within the regional stress field, compressive stress tends to localize at the boundary of the cylindrical pluton. Based on the reported felt areas, the Intensity VII(MM) 1940 Ossipee earthquakes were similar in magnitude to the Cape Ann 1753 event. The seismic activity in the Northern Valley and Ridge tectonic province is characterized by a north-trending distribution of events of Intensity VI(FDO and smaller. The proximity of microcarthquakes, together with the eartb uake history of the area, suggested to Page et al (1968) that minor seismic activity is currently associated with the Ramapo fault system in northern New Jersey and southeastern New York, about 210 km (130 miles) west of the site. No other structural correlations to earthquake activity have been recognized in this province. The Appalachian Plateau tectonic province is essentially aseismic, a s t. 2.5-57

NEP 1 & 2 Amendment N12 February 1979 Seismic activity in the Adirondack Uplift tectonic province tende to show a spatial distribution of small events near the outer edge of the province, and a clustering of microcarthquake activity in the central part near Blue Mountain Lake, New York. A seismic network has been installed in the Blue Mountain Lake area, but has not, to date, established any well-defined carthquake-fault relationships. The earthquake of highest historical intensity in the province is an Intensity VII(MM) event which occurred near Lake George, New York, on April 20, 1931. was 2.5.2.4 Maximum Earthquake Potential Except for the Southeastern New England Province, all of the tectonic provincer within 200 miles of the site have had at least Intensity VII(MM) earthquakes randomly located within each province. (For conservatism, the East Haddam, Connecticut, Intensity VI-VII (MM) earthquake will be discussed as an Intensity VII (MM).) The nearest of these provinces to the site is the Central New England Province whose border is 40 miles from the site. Because of the proximity of this adjacent province to the site, no attenuation is considered and the Intensity VII(FD0 from this source, at the site, will be larger than the earthquake potential from the site province itself (Intensity VI(BDO maximum). The only larger activity that has occurred in the 200-mile region about the site has been the Intensity VIII(MM), 1755 Cape Ann event. The closest approach to the site of this event with its associated province and/or structure is approximately 100 miles (Boston Edison Company, Pilgrim II PSAR and NRC SER). The earthquake intensity-attenuation data applicable to this area, Appendix 2L, indicate that an Intensity VIII(FDI) earthquake, 100 miles from the site, will result in an Intensity V(MM) at the site. 2.5-58

NEP 1&2 Amendment N12 February 1979 Existing overburden material together with selected onsite or offsite borrow material will be employed to raise the existing site grade to the final plant grade shown on Figures 2.5-39, and 2.5-40. These materials consist of clean widely graded sonds and gravels. This fill material will not be used to support any safety-related structures, systems or components.

b. Dewatering and Excavation A dewatering system will be required for the excavation of overburden and rock below the existing water table. Applicant has evaluated several types of dewatering systems, including a well point system and a slurry wall system, and has concluded, based on the information presently available, that the slurry wall is the optimum system for this site and is the proposed method of dewatering. The proposed slurry wall is shown in plan on Figure 2.5-38 and in section on Figures 2.5-39, 2.5-40 and 2.5-40A.

The wall will be constructed using conventional excavating equipment such as backhoes and bulldozers. A trench will first be excavated to bedrock through a bentonite slurry which will maintain the stability of the trench walls. Bentonite is a fine grained, naturally occurring clay material which swells to form a dense slurry when mixed with water. The bentonite material is nearly impervious to groundwater flow and therefore does not allow water to flow across the wall. Two methods can be used to form the watertight cutoff wall: 1) The material excavated from the trench may be mixed with bentonite clay slurry and returned to the trench, displacing the bentonite water mixture,

2) cement can be added to the bentonite clay slurry which would set up in the trench, requiring no backfill operation. In either case, a permanent groundwater cutoff wall is formed that is virtually imperme-able. The use of the bentonite clay water slurry effectively seals and separates the surrounding groundwater source from the proposed excavated area. Groundwater within the confines of the slurry wall will be removed during excavation of the overburden without affecting the level of the groundwater outside of the slurry wall.

ull The dewatering will not cause any changes in the bedrock characteristics. Bedrock excavations will be accomplished by controlled blasting in a manner consistent with acceptable construction practices and in accordance with applicable local, state and federal regulations. The blasting will be monitored to assure no damage to l the rock at or below the foundation level. Dental excavation into Nio bedrock will be accomplished with pneumatic hammers as required. If severely weathered material is encountered at the fcundation N9 level it will be removed. All rock foundations will then be inspected and evaluated to confirm competency. The inspection will be made by a geologist or engineer l who is familiar with the foundation design criteria and the geologic "'o and engineering properties of the rock mass. The inspection will include an examination and evaluation of the physical characteristics of the rock mass such as the pattern and distribution of jointing and the amount and degree of weathering. 2.5-64 "'

NEP 1&2 Amendment N12 February 1979 As part of chis inspection and evaluation, seismic compressional wave velocity measurements will be made at the foundation level of Seismic Category I structures. The bedrock will be considered competent if the average compressional wave velocity over the rock surface is 10,000 ft./sec. or greater. The minimum compressional wave velocity in fractured or weathered areas will be at least 7000 ft./sec. Wio Excavation for Seismic Category I structures will be mapped and any unusual features will be reviewed by geology and seismalogy consultants and reported to the Regulatory Staff prior to being covered over by construction operations. Due to the nature of the bedrock, granite and gneiss, no degradation of the exposed rock will take place during construction or as a result of exposure. With the exception of the seismic shear wave velocity measurements and the mapped excavations for Seismic Category I Structures, there will no formal safety-related quality control programs associated with either the dewatering or excavation process. tbpped excavations will be subject to appropriate quality cc. trol and quality assurance to insure the accuracy of recorded data. There will be no measures employed to measure foundation rebound or heave since the foundation materials are not subject to large heave or rebound,

c. Backfill An engineered fill, as shown on Figures 2.5-39 and 2.5-40, will be placed over the site area to raise existing grade to final 2.5-64a

NEP 1 & 2 Amendment N12 February 1979 1000 E E N [ 900 e i D H o'1Q 3 H Z w 5 700 E LL W O O e 600 w f LL M Z f 500 H W I o 400 z M Z W O g 300 O J J 3: 200 V Z W 2 10 0 8

                \K O

O 50 10 0 15 0 200 250 300 TIME (SECONDS) CONTAINMENT WALL CONDENSING IIEAT TRANSFER COEFFICIENT - DECLG D(C = 0.6) FIG. 1SD-16

NEP 162 Amendment N12 February 1979 16.3.6 Engineered Safety Features Applicabil' c: Applies to the operating status of the engineered safety features. Objective: To define the conditions under which engineered safety feature components must be operable. Specification: A. The following equipment must be operable whenever the reactor is made critical.

1. The refueling water storage tank and the spray chemical addition tank filled and available in accordance with Technical Specification 16.3.7.
2. Four accumulator tanks set for automatic initiation.

Each accumulator tank shall contain a minimum of 850 cubic feet of water borated to a minimum con-centration of 1900 ppn boron and pressurized to y gt 600 psig minimum with nitrogen.

3. One operable engineered safeguards train consisting of the following components, with valves aligned and locked in the position required, with controls set for automatic initiation where appropriate and with pumps powered from an engineered safeguard b us .

(a) One RHR heat exchanger. (b) Two primary service water pumps. (c) Two primary component cooling pumps with one of its heat exchangers. (d) One RHR pump with its RHR heat exchanger. (e) One safety injection pump. (f) One containment spray pump with its containment spray heat exchanger. (g) One charging pump. (h) One emergency feedwater pump. (i) One emergency diesel generator. (j) One containment penetration area exhaust fan with l its filter. 16.3.6-1

NEP 1 & 2 Amendment N12 February 1979 including those involving internal and inter-company interfaces, the approvals of documents, and other matters requiring coordination or exp edi ting . Technical details are discussed on a day-to-day basis by YAEC design, quality and construction engineers with their contractor counte rpa r ts . The Project Engineering Manager is informed of items of significance discussed by design, construction, or quality engineers and formalizes in writing all questions, answers, position, conclusions, and agreemen ts . He is responsible for maintaining project logs, drawings, specifications and files covering YAEC engineering reviews. He has the authority to order that engineering and procurement activities be stopped at the principle contractors. The Project Engineering Manager is assisted l by an Assis tant Project Manager and a staff of Project Engineers. The 1 l Engineering Managers , the Manager of Operations, the Construction Manager, M6 uit as well as the Quality Assurance Manager perform their respective functions 49 independent anu not under the direct supervision of the Project Engineering Manager and his staff. The Project Engineering Manager shall ensure the reporting of significant deficiencies as detailed in Section 17.1.15. 39 Consultants retained by YAEC or NEP as necessary to supplement the work of the YAEC quality assurance organization are required to comply with this Program. Their work will be reviewed on a continuing basis by the YAEC individual responsible for their scope of work. The quality assurance organizations of companies performing quality related activities covered by this program are required to be structured such that they have the required authority and organizational freedom to identify quality problems; to initiate, recommend, or provide solutions; to verify implementation of solutions; and stop work or control further processing, use, or installation of a nonconforming item or unsatisfactory condition until proper dispositioning has occurred. The personnel performing quality assurance activities are independent of the individual or group responsible for performing the activity. The UE&C organization is described in Topical Report No. UEC-TR-001-1. The WNES organization is described in the Westinghouse NES Divisions Quality Assurance Plan (WCAP-8370). The interface between YAEC and UE&C and WNES is shown in Figure 17.1-2. The YAEC Quality Assurance Manager has direct communication with the Westinghouse Product Assurance Manager and the UE&C Reliability and Quality Assurance Manager regarding quality-related activities. YAEC reviews and concurs with all quality-related procedures, programs, plants, etc.: that are generated by the AE (UESC). YAEC reviews and concurs with the Westinghouse Product Assurance Manual and reviews department procedures in the process of auditing Westinghouse performance. 17.1-5

NEP 1 & 2 Amendment N12 February 1979 TABLE OF CONTENTS (Continued) VOLUME 6 (Continued) l Chapter Title Page No. 13.4 Review and Audit 13.4-1 13.5 Plant Procedures 13.5-1 13.6 Plant Records 13.6-1 13.7 Industrial Security 13.7-1 Appendix 13 A Rhode Island Nuclear Accident or Incident Plan gg VOLUME 7 14 INITIAL TESTS AND OPERATION 14.1 Test Program 14.1-1 1 15 ACCIDENT ANALYSES MS 15.1 Condition I - Normal Operation and Operational Transients 15.1-1 15.2 Condition II - Faults of Moderate Frequency 15.2-1 15.3 Condition III - Infrequent Fault 15.3-1 15.4 Condition IV - Limi"ing Faults 15.4-1 Appendices [ ISB Sunnary of Parameters Used for Evaluating 15B-1 Radiological Effects of Accidents 15C Swanary of Parameters Used for an Evaluation of 15C-1 Potential Reactor Containment Leakage to the Con-tainment Penetration Area (CPA) ISD Major Reactor Coolant System Pipe Ruptures (Loss of 15D-1 Coolant Accident) - Generic Sensitivity Study Results 16 TECHNICAL SPECIFICATIONS N87 16.1 Definitions 16.1-1 16.2 Safety Limits and LLaiting Safety System 16.2.1-1 Settings vi

NEP 1 & 2 Amendment N12 February 1979 TABLE OF CONTENTS (Continued) VOLUME 7 (Continued) l Chapter Title Page No. 16.3 Limiting Conditions for Operation 16.3.1-1 16.4 Surveillance Requirements 16.4.1-1 16.5 Design Features 16.5.1-1 16.6 Administrative Controls 16.6.1-1 17 QUALITY ASSURANCE 17.1 Quality Assurance - Yankee Atouic Electric Company 17.1-1 17.2 Quality Assurance - United Engineers and Constructors 17.2-1 17.3 Quality Assurance - Westinghouse 17.3-1 VOLUME 8 SUPPLDIENTAL INFORMATION (AEC Questions / Responses) VOLUME 9 REQUEST AND RESPONSES Tab 1 through Tab 3 VOLUME 10 N1 REQUEST AND RESPONSES Tab 4 through Tab 17 PSAR PAGE LISTING AMENDKENT HISTORY All2. v11

NEP 1 6 2 Amendment N12 February 1979 no Question 6. 36 Compare calculated peak subcompartment differential pressures to the design capability of each compartment. Note that it is current s ta f f opinion that at least a 40% margin should be available between the highest calculated differential pressure and the design capability of the compartment. Answer 6.36 In response to RAI 022.10, comprehensive pressurization analyses were performed for the principal subcompartments within the containment for postulated primary coolant pipe ruptures. The NEP calculated peak subcompartment differential pressures are based on the Seabrook final design configuration of the subcompartments/ piping / component supports and other input parameters. The nodalization schemes of the analytical model for each subcompartment were verified by sensitivity studies that included increasing the number of nodes until the loads due to the calculated peak pressures converged to small resultant changes. The peak nodal pressures were maximized by varying loss coefficients to insure conservative differential pressures in the nodes removed from the break node. The verification of the analytical model by sensitivity studies, resulted in a much higher number of nodes and required a different regionat breakdown than that of the earlier analytical model used for the Seabrook CP stage analysis. Therefore, the corresponding regions of the earlier and later analytical models are not bounded by the same elevations. A comparisq of the calculated maximum peak differential pressures is given in Table j .36-1.

                                                                                        ~i t Nst S6-36

NEP 1 & 2 Amendment N12 February 1979 Since the NEP 1 & 2 subcompartment pressurization analyses are based on the Seabrook final design and utilize more sophisticated analytical modeling techniques, the NEF 1 & 2 subcompcrtments shall be designed to pressures greater than the calculated peak differential pressures presented in response to RAI 022.10. The tninimum dif ferential design pressures are shown in Table S6.36-1. NsT S6-36A

TABLE S6.36-1 (Sheet 1 of 2) COMPARTMENT CALCULATED PEAK DIFFERENTIAL PRESSURES AND CORRESPONDING DESIGN PRESSURES SUBCOMPARDfENT SEABROOK CP STAGE NEP CP STAGE & SEABROOK OL STAGE Region Peak /1P Min. Design Region Nodes PeaktSP iin . Design (psi) Pressure (psi) Pressure (psi) (Psi) 35 53.8 60 Upper si 36 45.4 60 " Nozzle 63.5 88.9* 37 to 43 ~ (max.) 33.9 (max.) 60 w 1 135.1 235 Nozzle 2,3,4,7 & 8 REACTOR CAVITY Mid 48.4 67.7* 108.1 (max.) 116 5&6 91.9 (max. ) 93 (max.) 10 to 18 44.8 (max.) 50 Support 19 to 27 42.0 (max. ) 45 Bottom 1.1 1.5* Lover 28 to 33 22.8 (max.) 25 (max.) s' @ ag 58-These Seabrook CP Stage minimum design values reflect the 407. margin. E$"

                                                                                                                     "'T hk $

eo

TABLE S6.36-1 (Sheet 2 of 2) SUBCOMPARTMENT SEABROOK CP STACE NEP CP STAGE AND SEABROOK OL STAGE Region PeakOP Min. Dasign Region Nodes Peak 6P Min. Design (psi) Pressure (psi) (psi) Pressure (psi) n** EL (-) 13 '-1" 1 79.7 80 to STEAM CENERATOR All 15.2 21.3* H C H gt g,) 7, ,7,, 2, 4, & 5 31. 2,(max . ) 41 (max.) C , 3 rn 70.0 70 N Other 6 to 18 20.9 (max. ) 26

  • w EL 23'-S" to 1 to 14 PRESSURIZER All 7.5 10.5* '

(max.) EL O'-0" to 15 to 21 9.4 (max . ) 12 EL 23'-8" 27 to 30

                                                                                                                             $N
 **   These Seabrook CP Stage minimum design values reficct the 407. margin.                                                 ss The nodal identification numbers. correspond to the nodalization scheme for the hot Icg break.                         E S' (See Figure 022.10-34). The superscript                                                                                O$"

the controlling break for that node volume. associated with a nodal identification number signifies - and 'C' the cold leg break. The superscript 'll' indicates the hot leg break *$ mq cN

NEP 1 & 2 Amendment N12 February 1979 TABLE OF CONTENTS (Continued) VOLUME 6 (Continued) l Chapter Title Page No. 13.4 Review and Audit 13.4-1 13.5 Plant Procedures 13.5-1 13.6 Plant Records 13.6-1 13.7 Industrial Security 13.7-1 Appendix 13 A Rhode Island Nuclear Accident or Incident Plan g3 VOLUME / 14 INITIAL TESTS AND OPERATION 14.1 Test Program 14.1-1 1 15 ACCIDENT ANALYSES U 15.1 Condition I - Normal Operation and Operational Transients 15.1-1 15.2 Condition II - Faults of Moderate Frequency 15.2-1 15.3 Condition III - Infrequent Fault 15.3-1 15.4 Condition IV - Limiting Faults 15.4-1 Appendices l 15B Summary of Parameters Used for Evaluating 15B-1 Radiological Effects of Accidents 15C Summary of Parameters Used for an Evaluation of 15C-1 Potential Reactor Containment Leakage to the Con-tainment Penetration Area (CPA) 15D Major Reactor Coolant System Pipe Ruptures (Loss of 15D-1 Coolant Accident) - Generic Sensitivity Study Results 16 TECHNICAL SPECIFICATIONS Nt2 16.1 Definitions 16.1-1 16.2 Safety Limits and Limiting Safety System 16.2.1-1 Settings vi

NEP 1 & 2 Amendment N12 February 1979 TABLE OF CONTENTS (Continued) VOLUME 7 (Continued) l Chap te r Title Page No. 16.3 Limiting Conditions for Operation 16.3.1-1 16.4 Surveillance Requirements 16.4.1-1 16.5 Design Features 16.5.1-1 16.6 Administrative Controls 16.6.1-1 17 QUALITY ASSURANCE 17.1 Quality Assurance - Yankee Atomic Electric Company 17.1-1 17.2 Quality Assurance - United Engineers and Constructors 17.2-1 17.3 Quality Assurance - Westinghouse 17.3-1 VOLUME 3 SUPPLDf ENTA'. INFORMATION_ (AEC Questions /Responsas) VOLUME 9 REQUEST AND RESPONSES Tab 1 through Tab 3 VOLUME 10 N1 REQUEST AND RESPONSES Tab 4 through Tab 17 PSAR PAGE LISTING AMENDMENT HISTORY Alll vii

NEP 1 6 2 Amendment N12 September 1978 REQUESTS AND RESPONSES INDEX BY PSAR SECTION PSAR Section RAI No. Page PS AR Section RAI No. Page 2.5.2.3 360.12 R2.5-27 5.2 121.1 RS-1 360.15 R2.5-27 212.1 RS-2 2.5.,2.4 360.16 R2.5-14 6.2 020.1 R6-1 2.5.4 362.3 R2.5-38a 022.1 R6-6 362.4 R2.5-38a 022.2 R6-6 362.5 R2.5-39 022.3 R6-3 362.7 R 2. 5-40 022.4 R6-3 362.8 R 2 . 5 -41 022.5 R6-3 022.6 R6-4 2.5.5 362.1 R2.5-13 022.7 R6-5 022.8 R6-6 2.5.6 362.2 R2.5-13 022.10 R6-13 362.6 R2.5-39 022.13 R6-7 022.14 R6-12 2.5.7 360.17 R2.5-13 312.5 R6-1 312.17 R6-8b App. 2B 360.4 R2B-1 6.4 312.3 R6-2 App. 2C /, 00 . 2 R2C-1 312.4 R6 2 312.18 R6-8b App. 2H 360.7 R2H-! 6.5 010.4 R6-9 3.0 005.1 R3- 1 005.2 R3-2 7.0 030.2 R7-1 005.3 R3-2 030.3 R7-2 030.7 R7-16 3.3 372.30 R3-1 030.8 R7-27 372.31 R3-1 372.32 R3-1 7.1 030.6 R7-17 3.7 130.1 R3-2 7.2 030.11 R7-21 130.5 R3-3 030.)3 R7-22 130.6 R3-4 030.14 R7-23 3.8 130.2 R3-2 7.3 030.4 R7-2 130.3 R3-3 030.5 R7-4 130.4 R3-3 7.4 030.9 R7-19 3.11 022.11 R3-5 7.5 030.15 R7-24 022.12 R3-7 030.10 R3-5 7.6 030.12 R7-26 040.38 R3-4 222.1 R3-9 8.0 030.1 R8-1 222.2 R3-9 040.15 R8-14 222.3 R3-10 040.19 R8-17 222.4 R3-11 040.28 R8-18 040.29 R8-19 4.4 221.1 R4-1 040.33 R8-20 221.2 R4-2 040.35 R8-22 040.42 R8-27 R-iii

NEP 1 & 2 Amendment N12 September 1978 REQUESTS AND RESPONSES INDEX BY PSAR SECTION PSAR Section RAI No. Pag PS AR Sec t ion RAI No. Page 8.1 040.1 R8-2 11.2.1/11.3.1 321.1 Rll-1 040.34 R8-21 8.2 040.2 R8-3 040.3 RS-4 13.1 422.1 R13-1 040.4 R8-5 422.2 R13-1 040.5 R8-5 422.3 R13-26 040.6 R8-6 422.4 R13-26 040.7 R8-7 422.5 R13-26 040.8 R8-8 422.6 R13-27 040.9 R8-3 422.7 R13-27 040.10 R8-10 R13-27 422.8 040.11 R8-10 R8-11 422.9 R13-39 040.12 422.10 R13-39 040.13 R8-11 040.14 R8-13 040.16 R8-15 13.2 441.1 R13-36 040.17 R8-16 441.2 R13-37 040.18 R8-17 441.3 R13-37 040.20 R8-18 441.4 R13-38 040.36 R8-22 040.37 R8-24 13.3 432.1 R13-28 040.40 R8-26 432.2 R13-29 432.3 R13-32 8.3 040.21 R8-18 432.4 R13-33 040.31 R8-19 432.5 R13-33 040.39 R8-25 432.6 R13-29

        ~

432.7 R13-34 9.2 010.1 R9-1 432.8 R13-34 010.3 R9-3 432.9 R13-30 010.5 R9-10 432.10 R13-30 010.7 R9-14 432.11 R13-30 371.06 R9-7 432.12 R13-31 432.13 R13-38 432.14 R13-35 440.1 R13-31 9.5 010.2 R9-3 442.1 R13-32 010.2a R9-9 .42.2 R13-32 040.22 R9-4 040.23 R9-5 14.0 423.1 R14-1 040.24 R9-5 040.27 R9-5 14.1 423.2 R14-1 040.30 R9-6 423.3 R14-3 040.32 R9-6 423.4 R14-3 040.41 R9-15 423.5 R14-4 423.6 R14-6 10.0 121.3 R10-3 423.7 R14-4 423.8 R14-5 10.1 010.6 R10-2 423.9 R14-5 423-1G R14-7 10.2 049.25 R10-1 040.26 R10-1 15.0 210.1 R15-1 121.2 R10-1 321.2 R15-2 312.10 R10-2 022.16 R15-20 R-iv

NEP 1 & 2 Amendment S12 September 1978 REQUEST AND RESPONSE NUMERICAL INDEX RAI Page RAI Page RAI Page 005.1 R3-1 040.6 R8-5 221.1 R4-1 005.2 R3-2 C10.7 R8-6 221.2 R4-2 005.3 R3-2 040.8 R8-7 040.9 R8-8 222.1 R3-9 010.1 R9-1 040.10 R8-10 222.2 R3-9 010.2 R9-3 040.11 R8-10 222.3 R3-10 010.2a R9-9 040.12 R8-11 222.4 R3-11 010.3 R9-3 040.13 R8-11 010.4 R6-9 040.14 R8-13 312.1 R2.1-1 010.5 R9-10 040.15 R8-14 312.2 R2.1-2 010.6 R10-2 040.16 R8-15 312.3 R6-2 010.7 R9-14 040.17 R8-16 312.4 R6-2 040.18 R8-17 312.5 R6-1 020.1 R6-1 040.19 R8-17 312.6 R15-1 040.20 R8-18 312.7 R2.1-2 022.1 R6-6 040.21 RS-18 312.8 R2.1-5 022,2 R6-6 040.22 R9-4 312.9 040.23 R9-5 R2.1-3 022,3 R6-3 312.10 R10-2 022.4 R6-3 040.24 R9-5 312.I1 R2.2-1 022.5 R6-3 040.25, R10-1 312.12 R2.2-2 022.6 R6-4 040.26 R10-1 312.13 R15-16 040.27 R9-5 312.14 R15-13 022.7 R6-5 022.8 R6-6 40.28 R8-18 312.15 R2.1-6 022.9 R15-5 040.29 R8-19 312.16 R2.1-7 022.10 R6-13 040.30 R9-6 312.17 R6-8b 022.11 R3-5 040.31 R8-19 312.18 R6-8b 022.12 R3-7 040.32 R9-6 312.19 R15-16 022.13 R6-7 040.33 R8-20 022.14 R6-12 040.34 R8-21 321.1 R11-1 022.15 R16-1 040.35 R8-22 321.2 R15-2 022.16 R15-20 040.36 R8-22 022.17 R15-18 040.37 R8-24 331.1 R2.1-4 040.38 R3-4 331.2 R12.1 030.1 R8-1 040.39 R8-25 030.2 R7-1 040.40 R8-26 360.1 R2.5-1 030.3 R7-2 040.41 R9-15 360.2 R2.5-1 030.4 R7-2 040.42 R8-27 360.3 R2.5-18 030.5 R7-4 040.43 R8-29 360.4 R2.5-21 030.6 R7-17 360.5 R2.5-23 030.7 R7-16 121.1 RS-1 360.6 R2.5-23 030.8 R7-27 121.2 R10-1 360.7 R211-1 030.9 R7-19 121.3 R10-3 360.8 R2.5-25 030.10 R3-5 360.9 R2B-1 030.11 R7-21 130.1 R3-2 360.10 R2.5-25 030.12 R7-26 130.2 R3-2 360.11 R2.5-2 030.13 R7-22 130.3 R3-3 360.12 R2.5-27 029.14 R7-23 130.4 R3-3 360.13 R2.5-8 030.15 R7-24 130.5 R3 -3 360.14 R2.5-13 130.6 R3-4 360.15 R2.5-27 040.1 R8-2 360.16 R2.5-14 04 0. 2 R8-3 210.1 R15-1 360.17 R2.5-13 040.3 R8-3 360.18 R2.5-28 040.4 R8-4 212.1 R5-2 360.19 R2.5-29 04 0.5 R8-5 212.2 R15-6 360.20 R2.5-30 R-vi

NEP 1 & 2 Amendment N12 February 1979 RAI 372.39 (2.3.3) The one year of meteorological data collected at the NEP 162 site and presented to the NRC consisted of a 5 month period (July - November 1974) combined with a 7 month period (covering December 1976 - June 1977 and provided to the NRC on magnetic tape in August 1977) to form a composite annual cycle. From this data set, short term and long term X/Q values and D/Q values will be calculated for the NEP 162 site. In order to verify the representativeness of the com-posite year, we will require that a 12 consecutive month period of onsite data also be submitted. As you have already collected data for the 7 consecutive month period December 1976 - June 1977, submittal of the one year period cov-ering December 1976 - November 1977 would be acceptable. Hourly data should be submitted on magnetic tape as soon as they are available with summaries provided in the PSAR at a later date. The summaries of the 12 consecutive month period should consist of at least the following: (1) Seasonal . w annual wind roses in graphical form for all three wind levels. (2) Seasonal and annual frequencies of 6T 191'-33, nd 6T 300'-33' (3) Seasonal and annual joint frequency of wind direction and speed (33-ft and 191-ft levels) by atomspheric stability (based on AT 191'-33' ' (4) Data recovery for all measured parameters. Comparisons of these data should be made with concurrent data collected at appropriate offsite collection stations and also with the composite one year period of onsite data. Please indicate when the 12 consecutive month period will be available to the NRC.

Response

A magnetic tape of twelve (12) consecutive months, November 1976 through October 1977, of hourly on-site data was submitted to the NRC on March 19, 1978. The appropriate data summaries and analyses are presented in Tables 372.39-1 through 372.39-26 and Figures 372.39-1 through 372.39-15. NG e t. R2.3-25

NEP 1 & 2 Amendment N12 February 1979 TABLE 172.39-1 33 FT. WIND DIRECTION FREQUENCY DISTRIBUTION NEP 1 & 2 SITE DATA (DEC. 76 - NOV. 77) Wind frequency Direction (Percenti N 5.5 NNE 4.8 NE 5.3 ENE 3.4 E 2.7 ESE 2.8 SE 2.5 SSE 2.7 S 3.3 SSW 7.4 SW 13.4 WSW 8.9 W 8.9 WNW 10.8 NW 10.5 NNW 7.4 ALL 100.0 M ll.

NEP 1 6 2 Amendment N12 February 1979 c_J q e - A e G-M e-e H O te G1 e.2 e c e 4 e ce

                                                                                                                                              ,e e       n O      &

my te re H en H e4 m m.e e re m -g m e .g m n a 5

e. OO OO OO e-e O OO OO OO OO OO OO OO OO OO OO OO OO e4 N

O. e O OO OO OO Om on o r', OO OO OO OO OO OO OO OO OO OO O re & en OO OO OO O@ OO OO OO OO OO OO OO OO OO OO OO OO O f%f & 2 OO OO OO O@ OO OO OO OO OO OO OO OO OO OO OO OO O N IP M OO OO OO O (P OO OO OO OO OO OO OO OO OO OO OO OO O N P N OO OO OO O@ OO OO OO OO OO OO OO OO OO OO OO OO O N @

                          ==    00       OO      ee O     O@       OO       OO      OO     OO    OO     OO     OO      OO     OO     OO      OO       OO     we N                          O        @

eie O OO OO O@ OO OO OO OO OO OO OO OO OO OO OO OO OO O N P IP b s's gn @ OO 00 == @ O@ OO OO OO OO OO OO OO OO OO OO OO OO 5 == @ P se e OO OO O EP OF OO OO OO OO OO OO OO OO *e o OO se O OO N O e J -e @ p O O M> Pe ** =e O e wZ 4 P. OO 00 -e @ O@ DO OO DO OO OO OO OO DO OO 00 =e o OO N y e ce e @ O O Z l W (L e OO OO Oe me @ OO OO OO OO OO OO *= O OO ee O OO OO OO M b ic se e e O O e MN > we ** H 2 l y , led eft OO OO Oe ** (P OO OO OO OO OO OO =e O OO se e OO OP ase O W & gg u -= e e e IP O m NN a ee M

                                                                                                                   .O=
   ,            ma g     AO         &    3 W        MO       wo      Oe       ce       OO       OO      C O    00    00    00      00      NO     D9     OO      09      NO       e
          %r         3 **            '3      O       @        @                                                    O      O       (P             9        O h

O Z O O ** -e == == ** Qg E E g g 4 he M OO OO Oe Oe OO OO OO OO OO OO OO ** tP we 9 OO MP 09 W W b< e* O O @ @ e p e p ,,,,) tr3 d es we .Oe gQ OO E u 4 W O EN wo 00 Oe we 00 00 00 OO OO No NO 09 *F NO 09 ** O b MM oo una *e O O & F O O 9 9 O P & se y p p p es .= se we se Qw *

  • g > me == ==@ OO 3e O P= 0O *e O OO OO OO ==@ Me O@ fts e oO OO .* e e W W3 ** (P O @ @ O (P @ P D O @ F O taa 3 == ee **

ZN M taa P4 & EL O O (P se O Ne O P= OO O (P ee O OO OO O EP se e O (P Oe Wt O M& ee e W

     *3 Q O         we        @        O       (P       @                @       O                    P      (P     (P      (P     O       D        9  **

2 ee we e*

  • e6 O O ** @ N@ O (P 8%s P= O P= MO .* dr O@ NO OO N er Wt e Ne Ne As e ee Ne e
                     >              @        @       @        @        O       P       @      Q             @      @      @       @      F       @        p  N ese On     a    u                                                 **                     ee W     taa  taA mZ         m    aa         Ne       M@      ee 4     -e em    O .e-    Oe      -e @   OM    OO     O@     M P=    N ar  Ne       ** e art P=     M P=    e m           I
                .3 O

7 & (P P @ @ @ @ IP ** iP (P (P (P (P P M 2

                          >     ee >=    Oe      an e     881 e as P=       ** C    Oe    Ne     OO     4@     P. O    Me    N P=     4e     P= 4    Me e O                  &        @       @        @        &       (P      @      @             (P == (P      (P      @      @       (P       GP en s=

m e 4 e Ne 34 03 Me es e Ne N P. Mo P= P= e =* P= P= @4 44 4@ P= Nt N e @ @ @ F F IP (P @ O 9 == (P (P @ (P @ F P= 1 ** I 3 til P= @ P P= aN ** 3 trl M M P= f%s P= est @ es e e en We Me o eft O trt e Af ON e M @ @ @ @ @ @ @ @ @ P Ne we *@ *@ WP w@ N t., u G til f%s O p89 @@ WM 889 @ O@ P= trt N8t8 P= e P= M eN eN 38% 88% Wt N P. e ee s84 E ** (P ** GP e @ e .* @ @ (P (P -*@ Me se @ f%I @ M@ *e e =e e s86 tab N WB 089 f%f ett N@ ** @ P= 8'e ee == 4 8%s @ ee f%f == 4 P= e se W est G ea N3 W3 P= N P=

               **              ** O     Af e ** W            @         e ** e ** e        **IP   f%s
  • Ne W Pm 4e ni e Ge 3e Ne e M est 3

tad N 8%s O ee O@ N@ P= @ N P= e@ @ s8t @ e8t OO M til Oe EP @ tFl 3 ** M @N f%s (L eft e

  • P= 3 P= NO **P= f%s P= **P* f%f e Me P= e &4 P=>= 4 P= P P= P= P= W P= p P=

E O we O P= **P= 175 GP Lft @ 3 J =e @ P- J NN P= 3 eo art to ee P= O ON e art O4 N ee a89 til ** wrt & 4 P= a P= oft P= 4 ee we e Oa O4 N tit ** 4 N trl =* In trl WD ftf

               >               -e       N.* ett **                                               *e    #%g     As      N     N       N       N       we      est U                                                                                                                                             N taa         F   2        es.s    taa      taJ      tad      taa     tea    ama    M      E       E      E      E      E       E        E      J 2          O              F      E         E                M       M      WD           M       WB      e             E       E       E       4 eo        eo             2                tad               Ise            M            W3              E             E               E       h O         *=

0 W h O taJ 2 EE se se E O

NEP 1 & 2 Amendment N12 February 1979

                                                                                                                                                                              .e4 4     4       &        v4       m        w>      O        &       O       &       7         +       m        eo       eo      4 ne h

of. 4 m 4 en O e4 en ee 4 A D + 4 h & D H e-e M ee ee M ce ce se e-e P4 m e M e M e4 4 O m H E OO OO OO OO OO OO OO OO OO -e O OO OO OO OO OO cs o e4 re O O ee ne N OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO O F4 O O e-4 ee o OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO O e4 O. e-O

                                                                                                                                                                     .4 m    OO       OO      OO        OO       OO      OO       OO      OO      OO      OO       OO       OO      OO       OO       OO     OO       O N                                                                                     O                                                  O we                                                 ee 3   OO       OO      OO        OO       OO      OO       OO      OO      OO      OO       OO       OO      OO       OO       OO    OO        O N                                                                                     O                                                  O se                                                 we M    OO       OO       OO       OO       OO      OO       OO      OO      OO      OO       OO       OO      OO       OO       OO    OO        O N                                                                                     O                                                  O se                                                  se N    OO       OO      OO        OO       OO      OO       OO     OO       OO     OO        OO       -e O    OO       -o o    OO     OO        N N                                                                                     3                 O                 O             O se                we                se             se
                            ==   OO       OO       OO       OG       GO      OO       OO     OO       OO      OO       OO       OO      we O     OO       OO    OO        we N                                                                                     O                O        O        O              O
       >                                                                                                         ee                ce       ee       se             we M^                   O    OO       OO      == 0      OO       OO      OO       OO     OO       OO      OO       OO      OO      NO        OO      OO     OO        M N               N                                                                                     O                O        O        O              O N                                         .O.                                                        .e                se       ee       we             ce
       .3      *
                   >        e    OO       OO      Oe        OO       OO      OO       OO     OO       OO     OO        OO      OO      O@        OO      OO     OO        O M$ ?        h        a                         p                                                           O                O        @        O              O m                                                                                             ao                ee                ee             we yO             a g    Z      m        e    OO       00      mp        OO       OO      OO       OO     30      00      OO        C0      mo      m@        OO      OO     DO        M e        **                        P                                                          Q                 O        9        O              O Y     l      4                                                                                            m                 m                 a              m W           e oo H@

(f) N O m h

                            *e OO      *e #
                                                            == 0 O

OO OO OO OO OO OO O OO =*

  • O@
                                                                                                                                                 =* O O
                                                                                                                                                         ** O O
                                                                                                                                                                ** O O

e n g  % .* .e .e .e e 0 e N 4 OO OO Oe O& OO OO OO OO OO OO ee O OO ** O OD we O 09 m O Z W Q

                            -e                        @         @                                                O                 @        P        9      O       @

m y w e.= .O* .e e As u N a a e OO 00 .e e De OO OO Oo OO OO OO 00 -e e O@ Oe De Op N V ** N Z eis n @ @ O O P p p p p M Q & M " " W M H p O' = 0O OO -e P- -e GO OO OO OO OO OO .= O O@ -e e .e

  • Ne -e e e e e e.J GQ O<

W g ia as g a O

                                                                                                                 -e       .O e

e e e e e g g M M OO OO ee oe OO ee o OO OO OO OO **@ O@ Oe ** p e9 OF e g W r m e e c w e e g O O P e e e a H u ** ** H *e g g h g N we O we o O4 OE OO ** p OO OO OO OO ==@ we @ Ne ND we e O9 O O es , =* O O P P & O P @ P & @ @ == Z D g ** se me M r .e g wg ** O@ **@ so e -e e OO Oe oO OO OO NO G& N9 =* O Oe We ** P W 60 Mg se p 7 7 P P O P P @ P @ P se o e ** H e=4 3 (W L O e De Me O P- OO Oc OO Qu OO ND Ne Ne eh .e e ce Ne e ca. g u, -e e e a e e e e @ e e e e N w 3 ** 3 g Z a e. e Ne Ne o se NN OO ** e oO .e O == 0 -e e eb Nh Me oe N art Ne e

      -            w u                *      *        *        *
  • 3 0 * * * * * *
  • N ew ** m EG 3 ,,e e oe Oh 4 om Oe == O Nk *= 0 0@ == @ Ne @e P= h N Ift W P* 9 trt MN 4 2 0 ' # #
  • 3 * # @ ' ' ' @ ' ' ' * *
                                                                                         ==

0 h es e == b NO Ne M@ -e 4 **@ == @ O9 M P= NM o tit N3 3e t# N O4 P-

                   >                  e      p        &        P        e       e        e       9        e      9     -e @    *e @         D        9      &       D    trl 2

e 3 e .e h Ne se g Ne oe gc pe qe ,e @ @4 OO 3N P= 3 eW @O e@ @ 3 P @ F @ 2 @ @ 9 9 O ** p -e @ & P 3 @ @ e M

                           @     3 e      e@     @k        @N       ett 4   == N     O 3     3@      Me               O@

ens 9 @ e P 9 @ & & 7 3 3S @ *e e est Oh .e== m u @ *e @ NS ** S ** @ e Ne .e e e89 2 on tas 4 P= 3 4 ** eM ee ON = = *

  • Rfl 3 N ** ** 4 **@ e4 3 P* b ** 4N 4 p h. **

o-M

                                             @        e        e    .e p    .o @         p       e        p . &  e    e8% N   Ne      Ne       NO       Ne     N.e e    M
                  *e                                                                                                                                                    N M        M    eO       eE      N P-      e *e    NN       -= N    NO      *e &            4N        e ==

til O h e @O eO O4 hN =e T ** @ -e S ** b e =* e *e e we 2 en S ** G Ne MN M Pm Ne WG NO w Ift P= Pm

                 %                                                                                                                                                      M N    Oe       N2      ee       ett # 86         NN       eO      Ne       ep 7             =9 h     Nh     Ne         =e Pm tit .*

NN

                                                                                                            == M      oO      ea      @N       Pm ==    4 ee   4 =e     e
                                                                   -e Pm            Ne      M Pm    e81 Pm  tft P=    4e      til 4   4 P=     4 >=     P= 4   4 Pm     e 3

eo e

e. .*-e == e @e eO N P- trl
  • Pi. 4 trt o a eM oa eO eN u O e e@ 44 ee e eft 4m e@ @@ e trt 43 h@

ett om art O ee .e eaa ** 59 eft h oft

                                                                                                                                               & I#t
                                                                                                                                               *e 2@     ** 4     e T                                                                                                                                      **     *e       P*

me F F W tima enJ tea se nas taA nna M a a a a u a R O 3 2 2 2 M M M .3

                          =              2 M         e       M                Z        Z      Z        <t Ina              tee              M               M                  E               E O        **                                                                                                                                   2        h 1        u                                                                                                                                             O ee       enJ                                                                                                                                           >=

E E me O

NEP 1 6 2 Amendment N12 February 1979 2

                         ,J     r        e     O       s      m        .c      r       7     m     e      og       in      ce      a      o         m       &

4 4A N m f4 e-4 C 7 f m to e4 @ IA @ 40 4 ke -e ee e n e a a CO.e e m 4 m m m en m a m 4 OO & O OO OO OO OO OO OO OO OO OO OO OO OO OO OO ** e O ce o e e O OO O+ *A O OO OO OO OO OO OO OO OO OO OO OO OO OO M e & O e

                         &     OO     O+       om      OO     OO       OO      OO     OO     OO    OO     OO       OO      OO      OO     ce O      C0      -e re                @       7 0.-e e

e e a en OO O@ OO ** O OO OO OO OO OO OO OO OO DO OO OO DO se 69 @ @ O O se ce

J OO O@ O& O@ OO OO OO OO OO OO OO OO OO OO OO OO O N @ @ @ O ee M OO O& O@ OO OO OO OO OO OO OO OO OO OO OO OO OO O N @ @ @ O
                                                                                                                                            -e N     00     OP      se &     O@    OO        OO     OO      OO    OO    OO     OO       OO      OO      OO     OO        OO     **

N @ @ & O ee

                         -     OO     OO       O.      O@     OO       00     OO      DO    DO    OO     OO       OO       OO     DO     CO        OO     O
         ^               N                 &       2      O                                                                                  O b                                                                                                                                  es b

O OO O@ OC OO OO OO OO OO OO OO OO OO OO OO OO OO O e N @ @ @ O f.O > O , OO O@ Oe O@ OO OO OO OO OO OO NO OO n, O OO NO OO e NZ e e & O O O o > e e e Z

  • y l 6 OO O@ es e se @ OO OO OO OO OO OO *e @ OO we & OO NP OO 4 9 A ** @ @ @ @ @ @

f.h D e 4 H b e b OO O@ Oe .e e OO OO OO OO OO OO Oe OO Oe .o O Me OO @ l M e -e e e e e e O e @ of, e O == M e Wo 4y a 2 e ** O O@ Oe Os OO OO OO OO OO OO OP NO O@ OO Oe OO M g g

  • O & & e @ O e O e b Zv $

O G laa @ O@ O@ Oe O& OO OO OO OO OO OO we @ =* O ** @ ee O == @ OO in HM U es @ @ @ @ @ O @ O & W HH m - - A J o *C *a e o O@ O@ Oe Oe oO OO OO OO OO OO O@ es e -e e Oe Oe OO N y yg - @ & @ @ @ @ @ g @ @ H HW z QH N

               <o    g M
                         =o 3@

O

                                      -e &

P Oe (* Oe OO OO OO OO OO ** O O

                                                                                                         -o @

O@ N@ Ne As O O O

                                                                                                                                                          *e w

Qg M ee ee Z H o bdu, na O@ Oe

                                               .e a Oe OO       OO     OO      OO    OO      ee
                                                                                                         -e e in e Ne O@
                                                                                                                                         .e b O@

bE > w

         .c <-

e D 4@ Me se b Oe OO OO OO OO OO we @ we e Ne ** e O@ we h N@ d H e.e I e. *we e * @ @ @ @ @ @ @ @ @ @ @ es f.se W # A E *,a O On O@ Me se m ** O .* O NO OO ** e @e @h ee -e & Me Oe e oW 0 ., - @ @ & @ O O

                                                                              .* O O      O           @       @        @       @       @     @          @  N OZ                                                              e       e     **     **

r9 k i

                 .] g @        == k   ee @     -e 3    Ob     == 9     -e @   O@      OE    == O  Oe     Oh      @4       Mb      Ad 9   N4        @G     M
                    ,              O       @       @      @       @       @       @      @      O    @       @        J       @       @  me &          D  M T    >                                                                          ==

88 U

               'e y     e      ce e   O en    MM       Mh     ** e    Af @    N@      O 80  O@    Ne     =* k    o86 @    N4     Me      e Ma      @4      **

1 2 @ @ @ @ @ @ @ @ @ @ "@ @ @ @ "@ @ @ i- O'* P- #4 es @ M= 68 3 Oe -e e .e> Oe est O -* h eM e4 to to eb b@ ap to a 8 @ @ @ @ @ @ @ @ @ @ @ -@ @ @ e @ e (I e M f%f we 4 7C M 88t Me 40 @ 8% 4 ** . .h ee in .* @O 4. @@ 8i b MM M e @ @ O & @ @ @ @ @ @ @ ** @ @ @ =* O @ @ I' I

                ~3      @     @O      4 88%   f%I @    @ ee  4@       ip **   #86 M   3h    @4    ep M   NO      6e       af Af  4M      @M        ttt N  N M                    @       @       e      @       @       @      @       @     @     @   NP      se e ** @            @  -* 6      ** @    8 86 ua U          T     46    hp @     44      hh     eN ee            4O      @ Af  P81 O in O   en U    Pm f%8   ** @   4 se    Me        @e     tp E                 *e        e       S      e       &       G      @       @     @  -o @   Af e    Ne       NO     ** @    *e b      == 6   @

taA we e-M #8% ee we # @@ JN 889 @ @e we a ee ee @N 8%f a @4 4%8 M to b 68 3 ed e N

              *e               ** P6 =e e     we k     ** e  we e         k   -e e       S  -e e  -e e   @h      e P-     881 e  t'l e   16 h      Mk     @

M M 2 148 N ON O@ @& @ ** o8% en b 3 4 J @@ 4 4 3N P J h e. M't 4 4h &O N4 na E Ne Nh me a Nk Rf N -e 6 -e> **P- Nh 3h en e f*- e e Pe eb b4 46 4 4 4 2 O ee 40 s #89 > **t S 46 == @4 h 3 > ep == e- en a ns e an e e8s e86 ee ae **@ e se e e-* W J e op eJ @@ 4# 66 @ en to @ In N in @T 44 e3 e I#1 O In W #8% == 4 In t- we we eo fis ** -e U .ee tas 2 2 ts.3 naJ taa tea taJ W tsJ M E E E E E E E J T 3 7 2 # M M M M M M 2 2 2 4

             **         **            E               taJ             taa            M            M               E               E                Z      h O          >                                                                                                                                 0 U                                                                                                                                 >=

O tad Z GE

             *e         me E         O

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-5 33 FT. MONTHLY AVERAGE TEMPERATURE NEP 1 & 2 SITE DATA (DEC. 76 - NOV. 77) Average Month Ignga r a t tirgdm Dec 28.0 Jan 21.0 Feb 29.1 Mar 39.0 Apr 45.8 May 56.4 Jun 62.9 Jul 69.8 Aug 69.3 Sep 62.8 Oct 52.9 Nov 45.6 12-Month Average 48.6 Mil

TABLE 372.39-6 DIURNAL VARIATION OF 33 FT. TEMPERATURE NEP 1 & 2 SITE DATA (DEC. 76 - NOV. 77) Time or -------------------------------------------- Averscr_ie-r, 4ta., t ri--------------------------------------------- - I. AL d'a .l.E. 11 Lf.i d l ML_il 2LIdl Mhll Mll JJl 77 AG ll 5PD 77 CEL E hcY 77 Ann 2al 010u 26.9 20.3 27.4 3b.8 42.7 54.7 60.2 66.4 67.0 60.9 50.8 43.9 46.6 0200 46.2 16.6 2b.9 3b.4 42.4 52.4 59.8 65.5 0300 25.6 4b.2 66.5 50.5 50.4 43.5 45.8 lb.2 35.5 41.7 51.6 59.1 65.0 b5.9 59.9 49.8 43.5 45.3 0400 25.0 17.7 25.7 35.1 40.9 51.5 58.5 65.1 65.4 49.1 050u 24.0 17.2 25.3 35.0 59.7 43.4 44.8 0000 40.5 50.7 57.9 64.5 64.9 59.3 48.6 43.0 44.3 24.3 16.5 25.1 J4.7 *0.0 50.1 57.6 64.3 0700 34.7 64.6 5b.7 48.2 43.0 44.0 24.5 16.3 45.0 39.8 51.2 59.0 65.o c4.8 5b.4 48.0 42.9 44.2 g, ed 060' 25.0 10.2 45.0 35.1 42.6 54.s bl.4 66.7 090u 66.2 59.7 48.6 43.3 45.6 N 25.5 10.5 26.3 37.s 45.7 57.1 63.3 70.6 69.3 62.2 50.9 44.1 47 5 1000 47.5 le.b 28.0 31.o p. 110u 47.5 59.0 64.7 72.2 71.1 64.1 54.0 45.7 4 4 29.3 21.1 49.5 41.v 48.3 60.2 65.8 73.2 72.2 56.1

  • 1200 29.8 22.e 30.9 65.4 47.4 'J7 1300 30,7 41.9 49.4 60.7 b6.2 73.3 72.7 66.1 57.1 48.3 St.7 ra 24.u 32.0 43.0 50.e bl.7 b6.7 73.8 73.2 1400 31.2 25.c 66.2 57.5 48.0 $2.7 32.7 43.s 51.0 61.7 b7.1 74.2 73.3 66.5 57.9 48.3 52.6 1500 31.9 25.e 32.9 43.1 51.1 61.4 66.0 74.1 73.5 16no 32.0 26.3 86.1 57.8 48.8 52.9 33.2 43.5 51.1 60.9 67.2 74.1 72.9 65.9 57.7 48.5 53.0 1700 31.0 26.2 33.2 42.9 50.7 bu.7 67.0 73.9 72.8 1900 30.9 24,9 65.9 57.4 48.1 52.6 32.8 42.3 50.0 60.s b6.4 73.2 72.4 65.3 55.9 47.2 51.9 1900 30.2 24.1 31.7 40.9 49.5 59.3 65.6 72.6 71.3 2000 b4.2 55.6 46.6 50.9 29.5 23.3 30.9 40.0 47.0 57.7 b4.2 71.6 70.1 63.6 53.9 45.4 49.9 2100 28.9 22.7 30.3 39.1 45.5 50.4 62.9 69.9 2200 28.2 22.3 49.4 69.0 62.9 53.0 45.s 48.6 38.6 44.5 55.b 61.9 6b.9 68.3 62.3 52.2 45.3 2400 27.6 28.H 48.2 21.4 37.e 43.9 54.7 bl.2 67.6 67.6 61.8 51.3 44.9 47.4 2400 27.0 20.5 48.3 37.5 43.4 54.0 60.6 67.3 67.1 50.7 61.3 44.4 46.9 hl 11.

ars y C 9 7m M D C CL D B M C

                                                                                                                                               %D rv w

u >-

                                                                                                                                               @ A3 e                                                               O                                                               9

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-7 MONTHLY AVERAGE OF DEW POINT TEMPERATURE NEP 1 & 2 SITE DATA (DEC. 76 - NOV. 77) Average Dew Point Montn Ignoerature foF1 Dec 16.7 Jan 10.1 Feb 20.0 Mar 29.6 Apr 32.5 May 44.9 Jun 55.6 Jul 62.7 Aug 64.0 Sep $6.8 Oct 45.0 Nov 38.1 12-Month Average 39.7 All2.

TABLE 372.39-8 DIt'RNAL VARI ATION OF DEW POINT TEMPERATURE NEP 1 & 2 SITE DATA (DEC. 76 - NOV. 77) Time or --------------------------------------- Av race nem n,tne tercerature r ri.........------------------------------- D a v _, Dec 7h 2 0. 22 Feb 72 g,ad Atr 17 Mas 77 . fun 72 ,f u l 77 Aua 77 Sec 77 Oct 77 ti c y .77 A.::gula.L 0100 0200 15.7 16.5 9.2 8.5 19.4 19.5 29.6 29.5 32.6 32.6 46.2 45.5 55.4 55.2 62.6 62.2 64.0 63 57.3 56.8 45.1 44.5 37.9 38.2 39.9 39.4 ll m 0300 16.3 6.R 19.2 29.2 32.4 44.3 54.9 61.9 63.5 56.5 44.1 38.1 39.2 ,, 0400 15.7 8.5 19.4 2e.8 32.1 43.2 54.7 62.2 63.0 56.4 44.1 37.9 38.9 0500 15.4 8.4 19.3 29.3 32.3 42.6 54.6 62.0 62.6 56.3 44.0 38.1 38.7 D' 0600 15.4 8.4 19.2 2e.9 32.4 42.7 54.2 61.8 62.3 56.1 44.0 38.2 38.7 pa 0700 25.9 8.4 18.9 2o.7 32.4 43.5 54.9 62.3 62.4 55.6 44.1 37.7 38.8 0800 16.5 8.4 19.0 2o.e 33.0 43.6 55.6 63.3 63.5 55.9 44.3 37.7 39.2 0900 17.0 0.5 19.5 29.2 31.9 43.9 55.8 63.2 64.3 56.4 44.9 38.4 39.5 1000 17.2 9.2 19.8 29.5 31.9 44.0 55.7 62.7 64.5 56.2 45.6 38.7 39.6 1100 16.2 9.9 19.9 29.6 31.4 44.6 56.0 62.5 64.3 56.8 45.5 38.7 39.5 1200 15.7 lu.1 20.0 29.9 31.4 44.2 55.9 62.s 64.3 56.5 45.0 37.6 39.6 1300 15.0 10.1 20.2 30.1 31.1 44.5 56.1 62.9 64.5 56.0 44.9 36.6 39.7 14r0 16.1 10.6 20.1 29.9 31.3 44.6 56.3 63.1 64.7 56.5 45.0 36.6 39.0 1500 17.2 11.1 20.5 30.2 32.1 45.2 56.2 63.3 64.4 56.6 45.1 37.4 40.0 1600 17.4 12.2 21.0 29.o 32.1 45.3 55.5 62.6 64.7 57.0 44.9 37.4 40.2 1700 17.5 12.3 20.5 29.5 32.7 45.5 55.6 62.7 64.7 57.0 45.5 30.2 40.2 1000 17.4 11.4 20.7 29.5 33.0 45.3 55.8 62.2 64.6 57.0 45.7 38.4 40.2 1900 18.3 12.3 20.7 29.e 33.4 45.5 56.0 62.8 64.5 57.9 45.6 38.6 40.6 2000 18.2 11.9 21.3 3o.1 33.3 46.0 $6.1 63.2 64.6 57.9 45.6 38.8 40.7 2100 18.0 11.5 20.9 30.3 33.5 46.4 56.3 63.0 64.4 57.9 45.9 38.4 40.6 m> 2200 17.7 11.0 20.5 30.3 33.4 46.6 56.3 63.3 64.3 57.9 45.6 38.4 40.5 mB 2300 17.2 10.3 10.0 3v.0 33.3 47.0 56.3 62.9 64.2 57.6 45.3 38.6 40.3 E[ $ 2400 16.8 9.6 19.9 3v.0 33.4 46.9 55.9 62.9 64.0 57.3 44.9 38.5 40.0 c o. mD Ell'l. M e morv w

                                                                                                                                                       @Z w-50 N O                                                           O                                                                         O

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-9 33 FT. TEMPERATURE - DEU POINT DIFFERENCE DISTRIBUTION NEP 1 L 2 SITE DATA (DEC. 76 - NOV. 77) AfD TEMP .......... DEWPOINT nEPRFSSinN (DEG F) .......... OEG F 0 TO 1 2 Tr 3 o Tn 6 7 TC 10 GR 10 ALL 20 CR LFSS 12 31 79 15A 039 710 1 4 .o 1.A 5.1 A.3 P1 TF 75 a 15 cm 65 171 300 0 .2 4 .* 7.0 3.5 76 TF 30 00 31 6a At 791 467

                                                                              ~

5 .a 7 .o 2.9 5.4 31 70 39 70 109 10A lan 200 671

                   .A       1.3         1.1         1.6        P.A           7.A 36 Tr do            Ao        95         107         1P5        305           707 9      1.1         9.7         1.5        3.5           A.?

01 70 05 167 109 111 115 260 76A 1.0 1.3 1.1 1.3 3.1 8.9 a6 TC 50 103 109 146 135 216 700 1.2 1.3 1.7 1.6 7.5 e.P 51 Tn 55 99 211 171 1c0 200 AP1 1.1 , P.4 7.6 1.6 P.3 9.5 56 70 60 180 113 15i 173 193 763 7.1 1.3 1.A 1.a 7.7 A.o 61 70 65 703 127 131 96 235 794 P.a 1.5 1.5 1.1 p.7 9.7 66 70 70 P40 220 15A tot 251 1614 2.A 7.6 1.A 1.6 2.9 11.A 71 TO 75 100 130 128 73 170 600 1.2 1.5 1.4 8 7.n 7.1 76 70 P0 0 d 61 73 79 P17 0.0 .0 7 8 4 P.5 At TO MS 0 0 o 17 44 56 0.0 0.0 0.6 .1 5 6 86 OR pnRE o o A 0 a a 0.0 0.0 0.6 0.0 .0 '. 0 ALL NR8 1306 1308 Iq50 1c77 3070 8670 ptRCFNT 15.2 15.2 16.0 17.1 35.6 100.0 A760 NRS FYAMINED 98'c PERCENT DATA RECOVERY v it

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-10 6 PRECIPITATION AMOUNTS NEP 1 & 2 SITE DATA AND PROVIDENCE, R.I. (DEC. 76 - NOV. 77) _1g 1 EIgr,1gitation finches Month 111.EM_2_s11.g Providen Dec 1.6 3.5 Jan 1.7 3.9 Feb 1.5 2.9 Mar 3.3 5.6 Apr 2.6 3.4 May 2.4 3.4 Jun 4.5 3.9 Jul 1.5 2.0 Aug 7.0 2.1 Sep 4.0 5.6 Oct 4.9 6.9 Nov 1.7 3.2 12-Month Total 36.8 46.5 9

TABLE 372.39-11 DIRECTIONAL FREQUENCY OF HOURLY AVERAGED PRECIPITATION NEP 1 & 2 SITE DATA (DEC. 76 - NOV. 77) aNstat p=LCIp!?ailuN TUTsLS (12 =LNThb) O ! a f t l 10 *. 5ELTu85 M0uaLY FwtCIP, asit % . '. t *t t4E F LSE St SSE 5 SS. Sa aSa a a%a sa === aLL (INCaES/"tLaJ SECTORS 0.u1=0 e2 e t i, 2t 11 4 7 e e 7 5 14 6 5 2 e 1 it? 0 . 0 2 - 0 .1 *> to 17 32 3= 21 19 la le le 13 22 le e 5 4 15 262 0.11-0.25 1 e a It 13 5 e e e 4 11 2 1 o o 2 65 v.26-u.50 1 1 3 3 e 2 u 1 1 2 3 0 u 1 0 0 22 0.51*1.00 v ' c D t- 0 0 0 v 0 2 1 0 0 0 0 3 1.ul=2.40 0 L v v v b c o t 4 2 0 0 0 0 0 2 ., wT 2.00 v t a v 9 0 e L 4 0 o u u o 0 0 0 Eri TUTat 6' n E C . =vt's le 3e 63 ew a7 33 2e 31 At 2u Sv 25 6 11 6 23 e91 N Tofat PaEC, a-i. 2.77v 3.179 250 2.a10 1.51s 2.09 ' 2. t. 3 0 1.910 7.600 1.610 650 5eu (INCatS1

                        .*7"               a. lev  4.

320 1.030 36.780 h.112. e PJ

                                                                                                                                             'rs >

ca Cf e M l3 C Q. U B nc MU tw e I

                                                                                                                                             %w
                                                                                                                                             @ PO

TABLE 372.39-12 STABILITY CLASS FREQUENCY DISTRIBUTION NEP 1 & 2 SITE DATA (DEC. 76 - NOV. 77) 191'-33'__Qglu T Frecuencv_1F,grcent) Stability Winter Spring Summer Autumn Annual Clan __ Dec 76-Feb 77 Mar 77-gy,_12 u n_ll-Agg_ll ER2_ll gy J Dec 76-Nov 77 A 6.3 13.2 17.7 5.9 10.7 B 5.4 5.2 5.3 3.7 4.9 C 4.5 4.3 5.5 3.8 4.5 z D 44.5 28.4 30.7 25.0 32.3 $ E 25.7 28.2 29.4 37.5 30.2 - F 7.3 10.0 G 7.7 9.4 8.7 e 6.3 10.2 9.4 8.9 8.7 w 300'-33' Delta _I_Ereauencv (Egrcent) Stability Wititer Spring S u mnie r Autumn Annual Class _,_ Dec 76-Feb 77 Lu,_ m ug_22 Jun_77-Agg,22 dgg_77-[igy,_ll Dec 76-Nov 77 A 0.3 2.9 1.6 0.6 1.4 B 1.8 4.3 4.1 1.8 3.0 m> C 5.1 5.4 7.6 5.0 D 52.4 35.2 5.8 $R 33.3 39.7 40.1 21 E 28.5 30.1 37.2 37.0 33.1 4@ F 6.9 G 4.9 14.2 8.6 10.3 10.0 xg 6.0 7.6 5.5 6.5 Gz M t 2. y-O O O

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-13 191-33 FT. INVERSION PERSISTENCE

SUMMARY

NEP 1 & 2 SITE DATA (DEC. 76 - NOV. 77) DURATION NUMBER OF PERCENT (HOURS) OBSERVATIONS PROBABILITY 1 112 24.72 2 47 35.10 3 32 42.16 4 29 46.57 5 19 52.76 6 21 57,40 7 23 62.47 8 17 66.23 9 20 70.64 to 20 75.06 11 17 78.81 12 26 84.55 i T- 21 89.18 14 15 92.49 15 11 94.92 16 14 98.01 17 7 99.56 18 0 99.56 19 0 99.56 20 0 99.56 21 0 99.56 22 0 99.56 23 0 99.56 24 0 99.56 25 0 99.56 26 1 99.78 27 0 99.78 28 0 99.78 29 0 99.78 30 1 100.00 THE LONGEST INVERSION LASTED 30 HOURS OF THE LONGEST INVERSIONS NUMBER 1 STARTED 23 HOURS IN10 DAY 102 THIRD COLUMN DEFINES THE PERCENT PROBABILITY THAT IF AN INVERSION OCCURS, ITS DURATION WILL BE LESS THAN THE NUMBER OF HOURS SPECIFIED M 12.

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-14 (Sheet 1 of 40) JOINT FREQUENCY DISTRIBUTION OF 33 FT. WIND DIRECTION AND WIND SPEED BY STABILITY CLASS NEP 1 & 2 SITE DATA (DEC. 76 - NOV. 77) WINTER (DEC 76eFEB 77) 33.0 FT nIND DATA STABILITY CLASS A CLASS FREGUENCY (PERCENT)

  • 6.34 WIND DISTRIBu?!ON

SUMMARY

(PERCENT FREQUENCY) w!ND SPEED (MILES / HOUR) DIR. CALM C=3 47 8=12 13 18 19=20 GT 24 TOTAL N 0.00 0.00 0.00 1.48 0.00 0.00 0.00 1.48 NNE 0.00 0.00 0.00 2.22 0.00 0.00 0.00 2.22 NE 0.00 0.00 0.00 2.96 0.00 0.00 0.00 2.96 ENE 0.00 0.00 1,48 74 0,00 0.00 0.00 2.22 E 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ESE 0.00 0.00 2.22 0.00 0,00 0.00 0.00 2.22 SE 0.00 0.00 0.00 74 0.00 0.00 0.00 74 SSE 0.00 0.0c 0.00 0.00 0.00 0.00 0.00 0.00 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SSW 0.00 0.00 0.00 74 74 0.00 0.00 1,48 SW 0.00 0.00 74 7.41 4.44 74 0.00 13.33 nSW 0.00 0.00 0.00 0.00 2.22 2.96 0.00 5.19 W 0.00 0.00 74 2.22 6.67 5.97 74 16.30 WNW 0.00 0.00 74 5.93 11.11 5.19 1.48 24.44 HW 0.00 0.00 0.00 8.15 8.89 74 74 18.52 NNW 0.00 0.00 4.44 4.44 0.00 0.00 0.00 8.89 TOTAL 0.00 0.00 10.37 37.04 34.07 15.56 2.96 100.00 NUMBER OF OBSERVATIONS a 135 Ca CALM (n!ND SPEED LESS THAN OR EQUAL TO - 50 MPH ) N12.

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-14 (Sheet 2 of 40) MINTER (DEC 76-FE6 77) 33.0 FT WIND DATA STABILITY CLASS B CLASS FREuuENCY (PERCENT) e I 5.36 aIND DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY) w!ND SPEED (MILES / HOUR) DIR. CALM C=3 4-7 6-12 13 18 19 24 GT 24 TOTAL N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NNE 0.00 0.00 0.00 88 0.00 0.00 0.00 88 NE 0.00 0.00 88 3.51 0.00 0.00 0.00 4.39 ENE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 E 0.00 0.00 88 0.00 0.00 0.00 0.00 88 ESE 0.00 0.00 88 0.00 0.00 0.00 0.00 88 SE 0.00 0.00 88 0.00 0.00 0.00 0.00 .88 SSE 0.00 0.00 88 1.75 0.00 0.00 0.00 2.63 S 0.00 0.00 0.00 1.75 .E8 0.00 0.00 2.63 SSN 0.00 0.00 88 88 0.00 0.00 0.00 1.75 Sw 0.00 0.00 88 2.63 3.51 0.00 0.00 7.02 WSW 0.00 0.00 0.00 6.14 3.51 88 0.00 10.53 M 0.00 0.00 2.63 1.75 16.67 88 0.00 21.93 WNW 0.00 0.00 2.63 8.77 9.65 1.75 88 23.68 NW 0.00 0.00 4.39 5.26 8.77 88 0.00 19.30 NNW 0.00 0.00 0.00 1.75 88 0.00 0.00 2 '; " TOTAL 0.00 0.00 15.79 35.09 43.86 4.39 88 100.00 NUMBER OF UBSERVATIONS a 114 Cs CALH (MIND SPEED LESS THAN OR EQUAL TO 50 MPH ) Mll

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-14 O (Sheet 3 of 40) w!NTER (DEC 76=FEB 77) 33.0 FT n!ND DATA STABILITY CLASS C CLASS FREQUENCY (PERCENT) = 4.46 nIND DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY) WIND SPEED (MILES / HOUR) DIR. CALM C=3 4=7 8 12 13 18 19-24 GT 24 TOTAL N 0.00 0.00 1.05 2.11 1.05 0.00 0.00 4.21 NNE 0.00 0.00 1.05 1.05 0.00 0.00 0.00 2.11 NE 0.00 0.00 1.05 3.16 0.00 0.00 0.00 4.21 ENE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 E 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ESE 0.00 0.00 1.05 0.00 0.00 0.00 0.00 1.05 SE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SSE u.00 0.00 0.00 0.00 1.05 0.00 0.00 1.05 3 0.00 0.00 0.00 2.11 1.05 0.00 0.00 3.16 SSW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SN 0.00 1.05 0.00 7.37 2.11 0.00 0.00 10.53 WSW 0.00 0.00 0.00 2.11 3,16 2.11 0.00 7.37 w 0.00 0.00 2.11 3.16 lt,53 2.11 0.00 17.60 WNM 0.00 0,00 3.16 h.32 la.53 2.11 1.05 23.16 NN 0.00 0.00 6.32 7.37 3.16 2.11 0.00 18.95 NNM 0.00 1.05 0.00 5.26 0.00 0.00 0.00 6.32 TOTAL 0.00 2.11 15.79 40.00 32.63 8.42 1.05 100.00 NUMBER OF UBSERVATIONS s 95 Cm CALM (alND SPEED LESS THAN OR EQUAL TO .50 MPH ) UsL

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-14 (Sheet 4 of 40) w!NTER (DEC 76.FEB 77) 33.0 FT WIND DATA STABILITY CLASS D CLASS FREQUENCY (PERCENT) = 44.50 w!NO DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY) nIND SPEED (MILES / HOUR) DIR. CALM C=3 4=7 8=12 13-18 19=20 GT 24 TOTAL N 0.00 32 53 74 11 0.00 0.00 1.69 NNE 0.00 .53 1.06 1.27 0.00 0.00 0.00 2.85 NE 0.00 52 1.06 1.90 0.00 0.00 0.00 3.27 ENE 0.00 .11 53 1.90 74 0.00 0.00 3.27 E 0.00 0.00 21 1.16 11 53 0.00 2.01 E8E 0.00 0.00 21 32 11 0.00 0.00 63 SE 0.00 0.00 0.00 63 11 0.00 0.00 74 SSE 0.00 .11 .21 11 21 0.00 0.00 63 3 0.00 21 42 42 21 0.00 0.00 1.27 SSW 0.00 .21 95 74 21 .11 0.00 2.22 Sn 0.00 .11 42 2.22 2.32 84 0.00 5.91 WSW 0.00 0.00 84 4.33 5.60 2.75 1.06 14.57 w 0.00 11 2.22 7.39 5.39 1.06 0.00 16.16 WNw 0.00 21 2.64 10.35 8.34 2.01 0.00 23.55 Nw 0.00 21 1.58 7.92 4.22 1.69 42 16.05 NNM 0.00 63 1.48 2.43 63 0.00 0.00 5.17 TOTAL 0.00 3.06 14.36 43.82 28.30 8.98 1.48 100.00 NUMBER OF OBSERVATIONS e 947 Cs CALM (WIND SPEED LESS THAN OR EQUAL TO .50 HPH ) A1:1

NEP 1 6 2 Amendment N12 February 1979 O TABLE 372.39-14 (Sheet 5 of 40) WINTER (DEC 76=FEB 77) 33.0 FT MIND DATA STABILITY CLASS E CLASS FREQUENCY (PERCENT) a 25.70 MIND DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY) HIND SPEED (MILE 8/ HOUR) DIR. CALM C=3 4-7 6-12 13 18 19 24 GT 24 TOTAL N 0.00 1,46 73 0.00 0.00 0.00 0.00 2.19 NNE 0.00 37 1.28 91 0.00 0.00 0.00 2.56 NE 0.00 .73 1.65 2.38 18 0.00 0.00 4.94 ENE 0.00 91 1.10 .18 0.00 0.00 0.00 2,19 lh E 0.00 73 1.46 73 55 0.00 0.00 3.47 ESE 0.00 73 55 0.00 37 18 0.00 1.83 SE 0.00 .18 37 1.10 73 0.00 0.00 2.38 SSE 0.00 .37 .18 0.00 18 1.28 18 2.19 8 0.00 73 91 37 0.00 0.00 0.00 2.01 SSW 0.00 .73 73 1.10 18 0.00 0.00 2.74 Sa 0.00 1.10 3.84 7.68 2.38 73 0.00 15.72 WSh 0.00 1.65 4.39 6.22 1.65 91 18 14.99 W 0.00 91 7.13 5.12 91 0.00 0.00 14.08 nNw 0.00 91 7.86 5.67 0.00 0.00 18 14.63 Na 0.00 91 4.57 4.02 91 18 0.00 10.60 NNw 0.00 .55 2.74 .18 0.00 0.00 0.00 3.47 TOTAL 0.00 12.98 39.49 35.65 8.04 3.29 55 100.00 NUMBER OF OBSERVATIONS s 547 Cs CALM (nIND SPEED LESS THAN OR EQUAL -TO .50 MPH ) Mit

NEP 1 6 2 Amendment N12 February 1979 TAllLE 372.39-14 [ Sheet 6 of 40T WINTER (DEC 76 FER 77) 33.0 FT WIND DATA STABILITY CLASS F CLASS FREQUENCY (PERCENT) a 7.28

                  *IND DISTRIBUTION 

SUMMARY

(PERCENT FREQUENCY) h!ND SPEED (MILES / HOUR) DIR. CALM C.3 47 8 12 13 18 19 24 GT 24 TOTAL N 0.00 7.10 5.81 0.00 0.00 0.00 0.00 12.90 NNE 0.00 3.23 1,29 0.00 0.00 0.00 0.00 4.52 NE 0.00 1.94 5.16 0.00 0.00 0.00 0.00 7.10 ENE 0.00 1.29 0.00 u.00 0.00 0.00 0.00 1,29 E 0.00 1.90 1.9a 0.00 0.00 0.00 0.00 3.87 E8E 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SE 0.00 .65 0.00 65 65 65 0.00 2.58 S8E 0.00 2.58 0.00 0.00 1.29 0.00 0.c0 3.87 3 0.00 .65 1.29 1.29 1.29 0.00 0.00 4.52 38W 0.00 u.52 65 0.00 0.00 0.00 0.00 5.16 Sw 0.00 3.23 8.39 1.29 0.00 0.00 0.00 12.90

 >8N        0.00     3.23    3.23         65     0.00    0.00     0.00        7.10 W       0.00     1.94    8.39      0.00      0.00    0.00     0.00       10.32 WNW        0.00     1.9a    9.03      3.23      0.00    0.00     0.00       14.19 NW        0.00     1.29    2.58      0.00      0.00    0.00     0.00        3.87 NNW        0.00     1.29    3.87         65     0.00    0.00     0.00        5.81 TOTAL       0.00    36.77    51.61      7.7a      3.23      65     0.00      100.00 NUMBER OF OBSERVATIONS e         155 Cs CALM (w!ND SPEED LESS THAN OR EQUAL TO            50   MPH )

Mll

NEP 1 & 2 Amendment N12 February 1979 O TABLE 372.39-14 TSheet 7 of 40) MINTER (DEC 76=FEB 77) 33.0 FT WIND DATA STABILITY CLASS G CLASS FREQUENCY (PERCENT) a 6.34 WIND DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY) WINO SPEED (MILES / HOUR) DIR. CALM C=3 4=7 8=12 13 18 19=24 GT 24 TOTAL N 0.00 8.89 28.15 0.00 0.00 0.00 0.00 37.04 NNE 0.00 74 2.96 0.00 0.00 0.00 0.00 3.70 NE 0.00 0.00 1.u8 0.00 0.00 0.00 0.00 1.08 ENE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 E 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ESE 0.00 .74 0.00 0.00 0.00 0.00 0.00 74 SE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SSE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SSN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sh 0.00 4.40 74 0.00 0.00 0.00 0.00 5.19 aSW 0.00 .74 0.00 0.00 0.00 0.00 0.00 74 w 0.00 3.70 3.70 0.00 0.00 0.00 0.00 7.41 WNw 0.00 2.96 2.96 0.00 0.00 0.00 0.00 5.93 Nw 0.00 7.41 7.41 0.00 0.00 0.00 0.00 14.81 NNm 0.00 8.89 14.07 0.00 0.00 0.00 0.00 22.96 TOTAL 0.00 38.52 61.48 0.00 0.00 0.00 0.00 100.00 g NUMBER OF OBSERVATIUNS a 135 Ca CALM (w!ND SPEED LE35 THAN OH EQUAL TO .50 MPH ) Mll

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-14 TSheet 8 of 40) WINTER (DEC 76=FEB 77) 33.0 FT WIND DATA STABILITY CLASS ALL CLASS FREQUENCY (PERCENT) a 100.00 w!ND DISTNIBUTION

SUMMARY

(PERCENT FREQUENCY) WIND SPEED (HILES/ HOUR) DIR. CALH C=3 4=7 8=12 13 18 19=24 GT 24 TOTAL N 0.00 1.60 2.68 52 09 0.00 0.00 4.89 NNE 0.00 61 1.13 1.03 0.00 0.00 0.00 2.77 NE 0.00 47 1.c6 1.97 05 0.00 0.00 3.95 ENE 0.00 38 61 98 33 0.00 0.00 2.26 E 0.00 33 66 70 19 23 0.00 2.11 E8E 0.00 .23 47 .'4 s te 05 0.00 1.03 SE 0.00 09 .14  :&- d 05 0.00 1.22 SSE 0.00 .33 .19 .14 ..? .33 05 1.32 S 0.00 .33 52 56 28 0.00 0.00 1.69 SSw 0.00 61 70 70 19 05 0.00 2.26 Sw 0.00 89 1.93 3.99 2.21 61 0.C0 9.63 MSN 0.00 70 1.74 3.99 3.38 1,79 52 12.12 w 0.00 66 3.95 4.98 4.42 99 05 15.04 wNW 0.00 66 4.37 7.42 5.00 1,41 23 19.50 NW 0.00 89 3.05 5.69 3.20 99 23 14.14 NNW 0.00 1.13 2.62 1,79 33 0.00 0.00 6.06 TOTAL 0.00 9.92 26.at 35.2a 20.66 6.48 1.08 100.00 NUMBEN UF OBSERVATIONS = 2128 Cs CALH (w!ND 3 PEED LESS THAN OR EQUAL TO .50 HPH ) MIL

NEP 1 & 2 Amend ent N12 February 1979 O TABLE 372.39-14 (Sheet 9 of 40) SPRING (MAR 77-MAY 77) 33.0 FT HIND DATA STABILITY CLASS A CLASS FREuuENCY (PEWCENT) s 13.18 nIND DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY) w!ND SPEED (MILES / HOUR) DIR. CALM C=3 47 8-12 13-18 19-24 GT 24 TOTAL N 0.00 0.00 37 2.24 0.00 0.00 0.00 2.61 NNE 0.00 0.00 .37 1.87 0.00 0.00 0.00 2.24 NE 0.00 0.00 .37 2.61 1.12 0.00 0.00 4.10 ENE 0.00 0.00 37 37 0.00 0.00 0.00 75 E 0.00 0.00 37 2.61 0.00 0.00 0.00 2.99 ESE 0.00 0.00 3.3e 2.o1 0.00 0.00 0.00 5.97 SE 0.00 0.00 75 2.99 0.00 0.00 0.00 3.73 SSE 0.00 0.00 37 1.12 0.00 0.00 0.00 1.49 3 0.00 0.00 1.12 1.87 37 0.00 0.00 3.36 SSn 0.00 0.00 37 13.81 1.87 0.00 0.00 16.04 SW 0.00 0.00 0.00 4.85 8.21 4.48 0.00 17.54 WSM 0.00 0.00 37 0.00 75 1,49 0.00 2.61 w 0.00 0.00 0.00 *

                                      . 00       37   0.00     0.00           37 WNW      0.00    0.00     0.00      2.61     d.21    3.73     0.00       14.55 NW      0.00    0.00     0.00      2.61     8.96    2.99     0.00       14.55 NNW      0.00    0.00     0.00      3.36     3.73    0.00     0.00        7.09 TOTAL      0.00    0.00     8.21    45.52     33.58   12.69     0.00     100.00 NUMBER UF OBSERVATIONS a       268 Ca CALM (nIND SPEED LESS THAN ON EuuAL TO         50   MPH )

M11.

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-14 (Sheet 10 of 40) SPRING (MAR 77-MAY 77) 33.0 FT WIND DATA STABILITY CLASS B CLASS FREQUENCY (DERCENT) a 5.16 n!ND DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY) WIND SPEED (MILES /MOUR) DIR. CALM C=3 4=7 8-12 13-18 19-24 GT 24 TOTAL N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NNE 0.00 0.00 95 1.90 0.00 0.00 0.00 2.86 NE 0.00 0.00 1.90 1.90 0.00 0.00 0.00 3.81 ENE 0.00 0.00 0.00 95 0.00 0.00 0.00 95 E 0.00 0.00 0.00 1.90 0.00 0.00 0.00 1.90 ESE 0.00 0.00 1.90 1.90 0.00 0.00 0.00 3.81 SE 0.00 0.00 3.81 95 0.00 0,00 0.00 4.76 SSE 0.00 0.00 95 1.90 0,00 0.00 0.00 2.86 3 0,00 0.00 95 3,61 0,00 0.00 0.00 4.76 SSa 0.00 0.00 4.76 6.67 95 0.00 0.00 12.38 Sa 0.00 0.00 0.00 4.76 6.67 0.00 0.00 11.43 WSW 0.00 0.00 0.00 0.00 1.90 95 95 3.81 w 0.00 0.00 0.00 2.86 2,86 0,00 0.00 5.71 WNw 0,00 0.00 95 4.76 9.52 4.76 0.00 20.00 Nw 0.00 0.00 0.00 1.90 7,62 3.81 0.00 13.33 NNW 0.00 0.00 2.86 95 2.86 95 0.00 7.62 TOTAL 0.00 0.00 19.05 37.14 32.38 10.48 95 100.00 NUMBER OF OBSERVATIONS a 105 Cs CALM (aIND SPEED LESS THAN OR EQUAL TO 50 MPM ) Mit

NEP 1 6 2 Amendment N12 February 1979 O TABLE 372.39-14 (Sheet 11 of 40) SPRING (MAR 77.MAY 77) 33.0 FT WIND DATA STABILITY CLASS C CLASS FREQUENCY (PERCENT) s 4.28 WIND DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY) WIND SPEED (MILES /HUUR) DIR. CALK

                      .=3    4=7       8 12    13=18  19-24    GT 24        70Tal N       0.00    0.00     2.30      3.45     0.00    0.00     0.00        5.75 NNE        0.00    0.00     0.00      2.30     0.u0    0.00     0.00        2.30 NE        0.00    0.00     0.00      1.15     1.15    0.00     0.00        2.30 ENE        0.00    0.00     1.15      0.00     0.00    0.00     0.00        1.15 E       0.00    v.00     2.30      0.00     0.00    v.00     0.00        2.30 ESE        0.00    0.00     5.75      0.00     0.00    0.00     0.00        5.75 SE        0.00    0.00     3.45      1.15     0.00    0,00     0.00        4.60 SSE        0.00   0.00      2.30      1.15     0.00    0.00     0.00        3.45 3       0.00   0.00      2.30      3.45     0.00    0.00     0.00        5.75 SSW        0.00   0.00      6.90      5.75     0.00    0.00     0.00       12.64 SW        0.00   0.00      1.15      4.60     4.60    0.00     0.00       10.34 wSM       0.00    0.00      1.15      3.45     2.30    2.30     0.00        9.20 a      0.00    0.00      0.00      1.15     4.60    0.00     0.00        5.75 NNw       0.00    0.00      0.00      4.60     4.60    1.15     0.00       10.34 Nw       0.00    0.00      2.30      2.30     5.75    3.45     0.00       13.79 NNW       0.00    0.00      0.00      1.15     3.45    0.00     0.00        4.60 TOTAL       0.00    0.00     31.03    35.63    26.44     6.90     0.00      100.00 NUMBER OF OBSERVATIONS a          87 Ca CALM (w!ND SPEED LESS THAN OR EQUAL TO           50   MPH )

Ai rt

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-14 (Sheet 12 of 40) SPRING (MAR 77=MAY 77) 33.0 FT WIND DATA STABILITY. CLASS 0 CLASS FREQUENCY (PERCENT) a 28.38

                 =IND DISTHIBUTION 

SUMMARY

(PERCENT FREQUENCY) w!ND SPEED (MILES /MOUW) DIR. 0 ALM C=3 4-7 8 12 13 18 19-24 GT 24 TOTAL N 0.00 .35 1.21 69 1.56 0.00 0.00 3.81 NNE U.00 0.00 1,39 2.e0 52 0.00 0.00 4.51 NE 0.00 0.00 1.39 3.64 52 0.00 0.00 5.55 ENE 0.00 0.00 1.21 2.77 1.04 35 17 5.55 E 0.00 .17 1.56 2.00 1.21 52 0.00 6.07 ESE 0.00 87 1.39 87 17 0.00 0.00 3.29 SE 0.00 .35 1.39 0.00 0.00 0.00 0.00 1.73 SSE 0.00 52 1.04 69 0.00 0.00 0.00 2.25 3 0.00 .35 1.39 1.21 17 0.00 0.00 3.12 SSN 0.00 .35 4.33 1.56 52 0.00 0.00 6.76 SM 0.00 .35 1.91 5.72 1.91 0.00 0.00 9.88 WSa 0.00 .52 1.21 1.56 2.77 69 0.00 6.76 W 0.00 69 1.91 2.25 4.39 17 0.00 6.41 WNM 0.00 .17 52 4.68 5.55 87 0.00 11.79 NM 0.00 0.'00 17 5.55 5.55 2.60 .17 14.04 NNW 0.00 0.00 52 3.51 3.47 69 0.00 8.49 TOTAL 0.00 4.68 22.53 40.21 26.34 5.89 35 100.00 NUMBER OF OBSERVATIONS a 577 Cs CALM (WIND SPEED LESS THAN OR EQUAL TO .50 MPH ) u it

NEP 1 & 2 Amendment N12 February 1979 O TABLE 372.39-14 (Sheet 13 of 40) SPRING (MAR 77-MAY 77) 33.0 FT HIND DATA STABILITY CLASS E CLASS FREQUENCY (PERCENT) s 28.18 WIND DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY) HIND SPEED (MILES /MOUR) DIR. CALM C-3 4-7 6-12 13-18 19-24 GT 24 TOTAL N 0,00 52 52 87 35 0.00 0.00 2.27 NNE 0.00 17 2.27 1.75 0.00 0.00 0.00 4.19 NE 0.00 .35 2.27 70 35 0.00 0.00 3.66 ENE 0.00 .87 1.40 70 87 0.00 0.00 3.84 lh E 0.00 52 2.09 70 87 0.00 0.00 4.19 ESE 0.00 87 1.05 87 0.00 0.00 0.00 2.79 SE 0.00 70 70 17 35 0.00 0.00 1.92 SSE 0.00 70 1.75 17 17 0.00 0.00 2.79 8 0.00 1.22 2.79 52 35 0.00 0.00 4.89 SSw 0.00 1.57 4.71 1.40 35 0.00 0.00 8.03 SH 0.00 1.40 8.38 5.06 1.22 0.00 0.00 16.06 nSn 0.00 1.40 5.41 3.14 2.97 1.05 0,00 13.96 W 0.00 87 S.06 2.79 0.00 0.00 0.00 8.73 wNW 0.00 .17 4.36 3.32 17 0.00 0.00 8.03 Nw 0.00 .17 1.57 4.01 1.75 17 0.00 7.68 NNw 0.00 .17 2.79 3,14 70 17 0.00 6.98 TOTAL 0.00 11.69 47.12 29.32 10.47 1.40 0.00 100.00 NUMBER OF OBSERVATIONS a 573. Cs CALM (w!ND SPEED LESS THAN OR EQUAL TO .50 MPH ) N 12-

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-14 (Sheet 14 of 40) SPRING (MAR 77-MAY 77) 33.0 FT WIND DATA STABILITY CLASS F CLASS FREQUENCY (PERCENT) a 10.58 WIND DISTRIBUTION

SUMMARY

(PERCENT FHEQUENCY) WIND SPEED (MILES /MUUW) DIR. CALM C=3 4=7 8-12 13=18 19 24 GT 24 TOTAL N 0.00 1.86 1.86 0.00 0.00 0.00 0.00 3.72 NNE 0.00 1.86 5.58 0.00 0.00 0.00 0.00 7.44 NE 0.00 2.79 1.40 0.00 0.00 0.00 0.00 4.19 ENE u.00 1.40 1.40 0.00 0.00 0.00 0.00 2.79 E 0.00 47 93 0.00 0.00 0.00 0.00 1.40 ESE 0.00 47 1.40 0.00 0.00 0.00 0.00 1.86 SE 0.00 93 0.00 93 2.79 0.00 0.00 4.05 SSE U.00 1.40 47 47 1.86 0.00 0.00 4.19 3 0.00 93 93 47 93 0.00 0.00 3.26 SSW 0.00 1.40 6.51 93 0.00 0.00 0.00 8.84 SW 0.00 2.79 12.09 6.05 0.00 0.00 0.00 20.93 M8w 0.00 1.86 4.65 1.86 0.00 0.00 0.00 8.37 W 0.00 2.33 7.44 93 0.00 0.00 0.00 10.70 MNw 0.00 93 4.19 47 0.00 0.00 0.00 5.58 NW 0.00 1.40 4.19 0.00 0.00 0.00 0.00 5.58 NNw 0.00 47 5.12 93 0.00 0.00 0.00 6.51 TOTAL 0.00 23.26 58.14 13.02 5.58 0.00 0.00 100.00 NUMBER OF OBSERVATIONS a 215 Ca CALM (WIND 8 PEED LESS THAN OR EQUAL TO .50 MPH ) ui2.

NEP 1 & 2 Amendment N12 February 1979 O TABLE 372.39-14 (Sheet 15 of 40) SPRING (MAR 77-MAY 77) 33.0 FT WIND DATA STABILITY CLASS G CLASS FREQUENCY (PERCENT) a 10.23 w!ND DISTRI8UTION

SUMMARY

(PERCENT FREQUENCY) WIND SPEED (MILES / HOUR) DIR. CALM C=3 4=7 8-12 13-18 19-24 GT 24 TOTAL N 0.00 3.85 12.50 0.00 0.00 0.00 0.00 16.35 NNE 0.00 1.92 4.81 48 0.00 0.00 0.00 7.21 NE 0.00 96 48 0.00 0.00 0.00 0.00 1,44 ENE 0.00 1.44 48 0.00 0.00 0.00 0.00 1.92 h E 0.00 1.92 48 0.00 0.00 0.00 0.00 2.40 ESE 0.00 96 0.00 0.00 0.00 0.00 0.00 96 SE 0.00 0.90 0.00 0.00 48 0.00 0.00 48 SSE 0.00 2.40 0.00 0.00 0.00 0.00 0.00 2.40 S 0.00 1,44 0.00 0.00 0.00 0.00 0.00 1.44 SSN 0.00 2.88 1.92 0.00 0.00 0.00 0.00 4.81 Sa 0.00 7.21 1.92 48 0.00 0.00 0.00 9.62 NSW 0.00 48 96 0.00 0.00 0.00 0.00 1.44 W 0.00 4.33 3.37 48 0.00 0.00 0.00 8.17 WNN 0.00 2.40 4.81 1.92 0.00 0.00 0.00 9.13 Nw 0.00 4.81 5.77 48 0.00 0.00 0.00 11.06 NNw 0.00. 5.77 12.02 3.37 0.00 0.00 0.00 21.15 TOTAL 0.00 42.79 49.52 7.21 48 0.00 0.00 100.00 NUMBER UF OBSERVATIONS a 208 Ca CALM (h!ND SPEED LESS THAN OR EQUAL JO .50 MPH ) Nil

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-14 (Sheet 16 of 40) SPRING (MAR 77-MAY 77) 33.0 FT WIND DATA STABILITY CLASS ALL CL ASS FNEQUENCY (PERCENT) a 100.00 MIND DISIRIBUTION

SUMMARY

(PERCENT FREQUENCY) WIND SPEED (MILES / HOUR) DIR. CALM C-3 4-7 8-12 13-18 19-20 GT 24 TOTAL N 0.00 84 2.12 89 .Sa 0.00 0.00 4.38 NNE 0.00 44 2.21 1.72 15 0.00 0.00 4.53 NE 0.00 49 1.38 1,72 .ua 0.00 0.00 4.03 ENE 0.00 .54 1.03 1.08 5u .10 05 3.34 E 0.00 .c4 1.33 1.38 59 .15 0.00 3.89 ESE 0.00 64 1.62 93 05 0.00 0.00 3.25 SE 0.0C .39 1.03 64 .us 0.00 0.00 2.51 SSE 0.00 74 1.03 .59 25 0.00 0.00 2.61 S u.00 .69 1.57 1.13 30 0.00 0.00 3.69 SSN 0.00 98 4.03 3.34 50 0.00 0.00 8.90 SW 0.00 1.52 4.43 4.82 2.51 .59 0.00 13.87 MSW 0.00 79 2.56 1,67 1.92 84 05 7.82 W 0.00 1.13 3.10 1.77 79 05 0.00 6.8a WNW 0.00 4a 2.36 3.30 3.39 1.03 0.00 10.53 Nw 0.00 69 1.62 3,30 3.89 1.52 05 11.07 NNw 0.00 69 2.85 2.95 1.97 .30 0.00 8.76 TOTAL 0.00 11.46 34.28 31.23 18.30 4.57 15 100.00 NUMBER OF OBSERVATIONS s 2033. Ca CALM (WIND SPEED LESS THAN OR EQUAL TO .50 MPH ) M 12.

NEP 1 & 2 Amendment N12 February 1979 O TABLE 372.39-14 (Sheet 17 of 40) SUMMER (JUN 77=AUG 77) 33.0 FT WIND DATA STABILITY CLASS A CLASS FREQUENCY (PERCENT) a 17.71 w!ND DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY) WIND SPEED (MILES / HOUR) DIR. CALM C=3 4=7 8-12 13 18 19-24 GT 24 TOTAL N 0.00 0.00 1.12 56 0.00 0.00 0.00 1.68 NNE 0.00 28 1.12 28 0.00 56 0.00 2.23 NE 0.00 0.00 56 56 0.00 0.00 0.00 1.12 ENE 0.00 0.00 28 28 0.00 0.20 0.00 56 E 0.00 0.00 56 84 0.00 0.00 0.00 1.40 ESE 0.00 0.00 3.35 8u 0,00 0.00 0,00 4,19 SE 0.00 0.00 3.63 1.40 0.00 0.00 0.00 5.03 SSE 0.00 0.00 1.96 1,68 0.00 0.00 0.00 3.63 3 0.00 0.00 1.96 2.51 0.00 0.00 0.00 4.47 SSW 0.00 0.00 1.96 22.07 84 0.00 0.00 24.86 Sn 0.00 0.00 1.96 20.95 7.82 0.00 0.00 30.73 nSn 0.00 0.00 0.00 .56 1.96 0.00 0.00 2.51 a 0.00 0.00 .28 .28 0.00 0.00 0.00 .56 WNw 0.00 0.00 0.00 1.96 56 0.00 0.00 2.51 kW 0.00 0.00 1.12 3.35 4.47 0.00 0.00 8.94 NNm 0.00 0.00 56 4.75 28 0.00 0.00 5.59 TOTAL 0.00 .28 20.39 62.85 15.92 56 0.00 100.00 NUMBER OF OBSERVATIONS a 358, Cu CALM (w!ND SPEED LESS THAN OR EQUAL TO .50 MPH ) Nil

NEP 1 & 2 Amendment N12 February 1979 TABLE 37?.39-14 (Sheet 18 of 40) SUMMER (JUN 77-AUG 77) 33.0 FT HIND DATA STABILITY CLASS B CLASS FREQUENCY (PERCENT) = 5.29 w!ND DISTRIBUTION

SUMMARY

(PERCENT FREWUENCY) MIND SPEED (MILES / HOUR) DIR. CALM C=3 4-7 8 12 13 18 19-24 GT 24 TOTAL N 0.00 0.00 3.74 0.00 0.00 0.00 0.00 3.74 NNE 0.00 0.00 1.87 0.00 0.00 0.00 0.00 1.87 NE 0.00 0.00 1.87 93 0.00 0.00 0.00 2.80 ENE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 E 0.00 0.00 93 0.00 0.00 0.00 0.00 93 ESE 0.00 0.00 1.87 0.00 0.00 0.00 0.00 1.87 SE 0.00 0.00 4.67 0.00 0.00 0.00 0.00 4.67 SSE 0.00 0.00 5.61 4.67 0.00 0.00 0.00 10.28 3 0.00 0.00 6.54 5.e1 '0.00 0.00 0.00 12.15 SSN 0.00 0.00 4.67 13.08 0.00 0.00 0.00 17.76 Sw 0.00 0.00 2.80 11.21 1.87 0.00 0.00 15.89 W8W 0.00 0.00 93 1.87 1.87 0.00 0.00 4.67 W 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 wNd 0.00 0.00 2.80 2.80 93 0.00 0.00 6.54 NM 0.00 0.00 1.87 3.74 2.80 0.00 0.00 8,41 NNw 0.00 0.00 2.80 4.67 93 0.00 0.00 8.41 TOTAL 0.00 0.00 42.99 48.60 8.41 0.00 0.00 100.00 NUMBER UF OBSERVATIONS a 107 Cs CALM (h!ND SPEED LESS THAN OR EQUAL TO .50 MPH ) MIL

NEP 1 & 2 Amendment N12 February 1979 O TABLE 372.39-14 (Sheet 19 of 40) SUMMER (JUN 77=AUG 77) 33.0 FT WINO DATA STABILITY CLASS C CLASS FREQUENCY (PERCENT) a 5.54 WIND DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY) WIND SPEED (MILES / HOUR) DIR. CALM C=3 4=7 8=12 13 18 19=24 GT 24 TOTAL N 0.00 0.00 1.79 1,79 0.00 0.00 0.00 3.57 NNE 0.00 0.00 89 89 0.00 0.00 0.00 1.79 NE 0.00 89 89 89 0,00 0.00 0.00 2.68 ENE 0.00 0.00 1,79 0.00 0.00 0.00 0.00 1.79 E 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ESE 0.00 0.00 2.68 0.00 0.00 0.00 0.00 2.68 SE 0.00 .89 2.68 0.00 0.00 0.00 0.00 3.57 SSE 0.00 89 89 2.68 0.00 0.00 0.00 4.46 S 0.00 89 2.68 1,79 0.00 0.00 0.00 S.36 SSn 0.00 0.00 6.93 7.14 0.00 0.00 0.00 16.07 Sh 0.00 0.00 3.57 17,86 1,79 0.00 0.00 23.21

 >Sa      0.00    0.00     3.57     2.68       89     0.00     0.00       7.14 m      0.00    0.00     6.25       89     0.00     0.00     0.00       7.14 wNw      0.00      89     1.79     4.46     0.00     0.00     0.00       7.14 Nw      0.00    0.00     0.00     6.25     0.00     0.00     0.00       6.25 NNw      0.00    0.00     d.68     2.68     1,79     0.00     0.00       7.14 TO(AL      0.00    u.46   41.07    50.00      4.46     0.00     0.00     100.00 NUMBER OF UBSERVATIONS a      112 Cs CALM (>IND SPEED LESS THaN OR EQUAL TO        .50   MPH )

MIL

NEP 1 & 2 Amendment N12 February 1979 TABLt 372.39-14 (Sheet 20 of 40) SUMMER (JUN 77-AUG 77) 33.0 FT WIND DATA STABILITY CLASS 0 CLASS FREQUENCY (PERCENT) a 24.98 w!ND DISTRIBUTION

SUMMARY

(PERCENT FREuuENCY)

                              *IND SPEED (MILES / HOUR)

DIR, CALM C=3 4=7 6-12 13-18 19-24 GT 24 TUTAL N 0.00 0.00 1.19 1,39 1.39 0.00 0.00 3.96 NNE 0.00 40 1.39 40 0.00 59 0.00 2.77 NE 0.00 79 1.98 20 0.00 0.00 0.00 2.97 ENE 0.00 40 40 0.00 0.00 0.00 0.00 79 E 0.00 40 99 0.00 0.00 0.00 0.00 1.39 ESE 0.00 59 2.18 40 0.00 U.00 0.00 3.17 SE 0.00 20 1,58 0.00 0.00 0.00 0.00 1.78 SSE U.00 0.00 1.39 59 0.00 0.00 0.00 1.98 3 0.00 20 4.36 2.18 0.00 0.00 0.00 6.73 SSW 0.00 99 10.69 4.95 99 0.00 0.00 17.62 Sw 0.00 1.19 7.33 15.64 1.19 40 0.00 25.74

 >Sw        0.00    0.00    5.94       3.56        20    0.00      0.00        9.70 W       0.00      40    2.38       1,39      0.00    0.00      0.00        4.16 WNH        0.00      20     1.98      2.38      0.00    0.00      0.00        4.55 Nw        0.00      20     1.98      5.35        40    0.00      0.00        7.92 NNW       0.00     0.00     1.19      2.18      1,39    0.00      0.00        4.75 TOTAL       3.00     5.94   46.93      40.59      5.54      99      0.00      100.00 NUMBER OF OBSERVATIONS a         505 Cs CALM (WIND SPEED LESS THAN OR EQUAL TO           .50    MPH )

Nil

NEP 1 & 2 Amendment N12 February 1979 O TABLE 372.39-14 (Sheet 21 of 40) 8UMMER (JUN 77=AUG 77) 33.0 FT WIND DATA STABILITY CLASS E CLASS FREQUENCY (PERCENT)

  • 29.43 MIND DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY) w!ND SPEED (MILES / HOUR) DIR. CALM C=3 4=7 8-12 13-18 19-24 GT 24 TOTAL N 0.00 .17 1.51 67 0.00 0.00 0.00 2.35 NNE 0.00 8u 67 .17 0.00 0.00 0.00 1.68 NE 0.00 .50 1,3a 0.00 0.00 0.00 0.00 1.85 ENE U.00 2.18 67 0.00 0.00 0.00 0.00 2.86 E 0.00 1.51 84 0.00 0.00 0.00 0.00 2.35 ESE 0.00 1.68 84 0.00 0.00 0.00 0.00 2.52 SE 0.00 1.34 1.18 0.00 0.00 0.00 0.00 2.52 SSE 0.00 2.02 1.85 67 3u 0.00 0.00 4.87 3 0.00 84 3.70 2.02 0.00 0.00 0.00 6.55 SSw 0.00 1.68 7.73 1.51 17 0.00 0.00 11.09 SW u.00 2.52 10.08 5.38 1.18 0.00 0.00 19.16

 *Sa      0.00     1.51     6.74      3.70     0.00    0.00     0.00       13.95 M      0.00     1.68     6.72        84     0.00    0.00     0.00        9.24 MNW      0.00       30     4.37      1.01     0.00    0.00     0.00        5.71 Nw      0.00      .17     3.36      3.03        17   0.00     0.00        6.72 NNw      0.00       34     4.03      2.18     0.00    0.00     0.00        6.55 TOTAL      0.00    19.33   57.65     21.18      1.85    0.00     0.00     100.00   g NUMBER OF OBSERVATIONS a        595 Cs CALM (nIND SPEED LESS THAN OR EQUAL .TO         50   MPH )

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-14 (Sheet 22 of 40) SUMMER (JUN 77-AUG 77) 33.0 FT WIND DATA STABILITY CLASS F CLASS FREQUENCY (PERCENT) a 7.67 MINO DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY) WIND SPEED (MILES / HOUR) OIR. CALM C-3 47 8-12 13 18 19 24 GT 24 TOTAL N 0.00 .65 5.81 65 0.00 0.00 0.00 7.10 NNE 0.00 2.50 2.58 0.00 0.00 0.00 0.00 5.16 NE 0.00 5.16 1.29 0.00 0.00 0.00 0.00 6.45 ql f ENE 0.00 1.29 1.94 0.00 0.00 0.00 0.00 3.23 E 0.00 1,29 0.00 0.00 0.00 0.00 0.00 1.29 ESE 0.00 1.94 0.00 0.00 0.00 0.00 0.00 1.94 SE 0.00 1.94 65 0.00 0.00 0.00 0.00 2.58 SSE 0.00 1.29 0.00 0.00 0.00 0.00 0.00 1.29 3 0.00 1.94 U 00 0.00 0.00 0.00 0.00 1.94 Saw 0.00 3.23 1.29 0.00 0.00 0.00 0.00 4.52 SW 0.00 6.45 1,29 0.00 0.00 0.00 0.00 7.74 WSW 0.00 5.81 3.23 65 0.00 0.00 0.00 9.68 W 0.00 5.16 4.52 1.94 0.00 0.00 0.00 11.61 WNw 0.00 2.58 4.52 65 0.00 0.00 0.00 7.74 Nw 0.00 1.94 11.61 1.94 0.00 0.00 0.00 15.48 NNW 0.00 1.29 7.74 3.23 0.00 0.00 0.00 12.26 TOTAL 0.00 44.52 GS.45 9.03 0.00 0.00 0.00 100.00 NUMBER OF OB8ERVATIONS a 155 Cs CALM (w1ND SPEED LESS THAN OR EQUAL TO .50 MPH )

NEP 1 & 2 Amendment N12 February 1979 O TABLE 372.39-14 (Sheet 23 of 40) SUMMER (JUN 77-AUG 77) 33.0 FT WIND DATA STABILITY CLASS G CLASS FREQUENCY (PERCENT) = 9,40 WIND DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY) WIND SPEED (MILES / HOUR) DIR. CALM C=3 4=7 8-12 13 18 19-24 GT 24 TOTAL N 0.00 3.68 30.53 1.05 0.00 0.00 0.00 35.26 NNE 0.00 5.26 10.53 0.00 0.00 0.00 0.00 15.79 NE 0.00 2.11 2.11 0.00 0.00 0.00 0.00 4.21 ENE 0.00 .53 53 0.00 0.00 0.00 0.00 1.05 l gg E 0.00 53 0.00 0.00 0.00 0.00 0.00 53 ESE 0.00 53 0.00 0.00 0.00 0.00 0.00 53 SE 0.00 53 0.00 0.00 0.00 0.00 0.00 53 SSE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SSw 0.00 1.05 0.00 0.00 0.00 0.00 0.00 1.05 Sn 0.00 0.00 1.58 0.00 0.00 0.00 0.00 1.58 H5w 0.00 53 0.00 0.00 0.00 0.00 0.00 53 w 0.00 0.00 1.05 0.00 0.00 0.00 0.00 1.05 nNw 0.00 1.58 2.11 2.11 0.00 0.00 0.00 5.79 Nw 0.00 1.58 3.16 0.00 0.00 0.00 0.00 4.74 NNw 0.00 4.21 17.37 5.79 0.00 0.00 0.00 27.37 TOTAL 0.00 22.11 65.95 8.95 0.00 0.00 0.00 100.00 NUMBER UF OBSERVATIONS a 190 Ca CALM (w1ND SPEED LESS THAN OR EQUAL YO 50 MPH ) ru n.

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-14 (Sheet 24 of 40) SUMMER (JUN 77eAUG 77) 33.0 FT WIND DATA STABILITY CLASS ALL CLASS FREQUENCY (PERCENT) a 100.00 WIND DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY) WIND SPEED (MILES /MUUR) DIR. CALM C-3 4-7 8-12 13 18 19-24 GT 24 TOTAL N 0.00 45 4.55 89 35 0.00 0.00 6.23 NNE 0.00 1.09 2,08 25 0.00 25 0.00 3.66 NE 0.00 99 1,43 25 0.00 0.00 0.00 2.67 ENE 0.00 89 64 05 0.00 0.00 0.00 1,58 E 0.00 69 64 15 0.00 0.00 0.00 1,48 ESE 0.00 84 1,63 25 0.00 0.00 0.00 2.72 SE 0.00 09 1.83 25 0.00 0.00 0.00 2.77 SSE 0.00 74 1.58 1.04 10 0.00 0.00 3.46 8 0.00 49 3.02 1.98 0.00 0.00 0.00 5.49 SSw 0.00 1.09 6.13 6.68 45 0.00 0.00 14.34 Sw 0.00 1.53 5.74 10.78 2.23 .10 0,00 20.38 nSw 0.00 94 4.55 2.37 54 0.00 0.00 8.41 w 0.00 99 3.41 84 0.00 0.00 0.00 5.24 WNw 0.00 54 2.57 1.88 15 0.00 0.00 5.14 Nw 0.00 40 2.97 3.51 1.09 0.00 0.00 7.96 NNh 0.00 59 4.10 3.21 54 0.00 0.00 8.46 TOTAL 0.00 12.96 46.88 34,37 5.44 35 0.00 100.00 NUMBEH UF OBSERVATIUN3 a 2022 Cu CALM (MIND SPEED LESS IMAN OR EQUAL TO .50 MPH ) A.>t2.

NEP 1 & 2 Amendment N12 February 1979 O TABLE 372.39-14 (Sheet 25 of 40) AUTUMN (SEP 77=NOV 77) 33.0 F1 h!ND DATA STABILITY CLASS A CLASS FNEQUENCY (PERCENT) a 5.89

                >IND DISTRIRUTION 

SUMMARY

(PERCENT FREQUENCY) MIND SPEED (MILES / HOUR) DIR. CALM C-3 4-7 8-12 13-18 19 24 GT 24 TOTAL N 0.00 0.00 63 2.48 0.00 0.00 0.00 3.31 NNE 0.00 0.00 1.e5 4.13 83 0.00 0.00 6.61 NE 0.00 0.00 a.13 2.48 c.96 0.00 0.00 11.57 ENE 0.00 0.00 3.31 1.e5 0.00 0.00 0.00 4.96 E 0.00 0.00 0.00 83 0.00 0.00 0.00 83 ESE 0.00 0.00 4.96 3.31 0.00 0.00 0.00 8.26 SE 0.00 0.00 3.31 3.31 0.00 0.00 0.00 6.61 SSE 0.00 0.00 1.65 3.31 0.00 0.00 0.00 4.96 S 0.00 0.00 83 0.00 83 0.00 0.00 1.65 SSw 0.00 0.00 83 7 uu 83 0.00 0.00 9.09 SW 0.00 0.00 83 17.36 2.48 0.00 0.00 20.66 MSN 0.00 0.00 0.00 83 3.31 0.00 0.00 4.13 w 0.00 0.00 0.00 1.65 0.00 0.00 0.00 1.65 WNm 0.00 0.00 0.00 1.65 1.65 0.00 0.00 3.31 NW 0.00 0.00 0.00 2.48 4.13 0.00 0.00 6.61 NNW 0.00 0.00 1.65 3.31 63 0.00 0.00 5.79 TOTAL 0.00 0.0^ 23.97 56.20 19.83 0.00 0.00 100.00 NUMBER OF OBSERVATIONS a 121 0 Ca CALM (WIND SPEED LESS THAN OR EQUAL TO .50 MPH ) Uit

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-14 (Sheet 26 of 40) AUTUMN (SEP 77 N0v 77) 33.0 FT WIND DATA STABILITY CLASS H CLASS PREO.ENCY (PEHCENT) = 3.70 aIND DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY) aINO SPEED (MILES / Hour) DIR. CALM C-3 4-7 8-12 13-16 19-24 GT 24 TOTAL N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NNE 0.00 0.00 3.95 2.63 0.00 0.00 0.00 6.58 NE 0.00 0.00 3.95 2.63 0'0 0.00 0.00 6.58 ENE 0.00 0.00 1.32 1.32 0.00 0.00 0.00 2.63 E 0.00 0.00 2.63 0.00 0.00 0.00 0.00 2.63 ESE 0.00 0.00 0.00 2.63 0.00 0.00 0.00 2.63 SE 0.00 0.00 0.00 1.32 0.00 0.00 0.00 1.3E SSE 0.00 0.00 2.63 0.00 0.00 0.00 0.00 2.63 3 0.00 0.00 0.00 2.63 0.00 0.00 0.00 2.63 SSN 0.00 0.00 9.21 2.63 0.00 0.00 0.00 11.84 Sa 0.00 0.00 0.00 14.47 1,32 0.00 0.00 15.79 NSh 0.00 0.00 1.32 3.95 5.26 2.63 1.32 14.47 W 0.00 0.00 1.32 0.00 1,32 1.32 0.00 3.95 WNw 0.00 0.00 1.32 3.95 3.95 0.00 0.00 9.21 NW 0.00 0.00 3.95 5.26 3.95 1.32 0,00 14.47 NNM 0.00 0.00 0.00 2.63 0.00 0.00 0.00 2.63 TOTAL 0.00 0.00 31.58 46.05 15.79 5.26 1,32 100.00 NUMBER UF OBSERVATIONS a 76 Cs CALM (WIND SPEED LESS THAN OR EQUAL TO .50 MPH ) uin

NEP 1 & 2 Amendment N12 February 1979 O TABLE 372.39-14 (Sheet 27 of 40) AUTUMN (SEP 77=NOV 77) 33.0 FT WIND DATA STABILITY CLASS C CLASS FREQUENCY (PERCENT) e 3.84 WIND DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY) MIND SPEED (MILES / HOUR) DIR. CALM C=3 4-7 8-12 13-18 19-24 GT 24 TOTAL N 0.00 0.00 0.00 2.53 0.00 0.00 0.00 2.53 NNE 0.00 0.00 1.27 1.27 0.00 0.00 0.00 2.53 NE 0.00 0.00 2.53 0.00 2.53 0.00 0.00 5.06 ENE 0.00 0.00 0.00 2.53 0.00 0.00 0.00 2.53 h E 0.00 0.00 2.53 1.27 0.00 0.00 0.00 3.50 ESE 0,00 0.00 1.27 1.27 0.00 0.00 0.00 2.53 3E 0.00 0.00 6.33 0.00 1.27 0.00 0.00 7.59 SSE 0.00 2.53 1.27 1.27 0.00 0.00 0.00 5.06 S 0.00 0.00 2.53 1.27 1.27 0.00 0.00 5.06 SSn 0.00 0.00 3.80 1.27 0.00 0.00 0.00 5.06 Sn 0.00 0.00 1.27 3.80 1.27 0.00 0.00 6.33 aSW 0.00 0.00 0.00 5.06 1.27 1.27 0.00 7.59 a 0.00 0.00 1.27 2.53 2.53 1.27 0.00 7.59 WNW 0.00 0.00 1.27 3.80 3.80 0.00 0.00 8.86 Nw 0.00 0.00 7.59 e.33 1.27 0.00 0.00 15.19 NNM 0.00 0.00 7.59 5.06 0.00 0.00 0.00 12.66 TOTAL 0.00 2.53 40.51 39.24 15.19 2.53 0.00 100.00 NUMBEW UF OBSERVAT!UNS a 79, Cs CALM (WIND SPEED LESS THAN OR Equal TO 50 MPH ) M l2.

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-14 (Sheet 28 of 40) AUTUMN (SEP 77=NOV 77) 33.0 Fi HIND DATA STABILITY CLASS D CLASS FREuutNCY (PERCENT) a 30.74 WIND DISIWibuTION

SUMMARY

(PERCENT FREQUENCY) aIND SPEED (MILES / HOUR) DIR. CALM C-3 4-7 8-12 13-18 19=24 GT 24 TOTAL N 0.00 0.00 1.u2 63 16 0.00 0.00 2.22 NNE 0.00 32 2.53 4.75 1.11 0.00 0.00 8.70 NE 0.00 32 a.75 6.80 1.90 79 0.00 14.56 ENE 0.00 .16 1.27 4.75 3.80 0.00 0.00 9.97 E 0.00 .16 79 1.11 1.27 0.00 0.00 3.32 ESE 0.00 63 3.32 1.11 32 0.00 0.00 5.38 SE 0.00 79 2.53 1.11 0.00 0.00 0.00 4.43 SSE 0.00 0.00 1.27 .u7 32 0.00 0.00 2,06 3 0.00 .16 1.11 79 16 0.00 0.00 2.22 SSW 0.00 .32 95 79 32 0.00 0.00 2.37 Sa 0.00 .16 2.37 a.11 32 1.11 0.00 8.07 MSa 0.00 .16 1.74 3,16 1.74 95 0.00 7.75 W 0.00 .16 1.27 2.69 3.96 1.27 0.00 9.34 WNM 0.00 32 2.22 5.06 1.11 16 0.00 8.86 NH 0.00 .16 1.42 3.64 2.06 0.00 0.00 7.28 NNa 0.00 0.00 1.58 1.90 0.00 0.00 0.00 3.48 TOTAL 0.00 3.80 30.54 42.88 18.51 4.27 0.00 100.00 NUMBER OF OBSERVATIONS a 632 Cs CALM (MIND SPEED LESS THAN OR EQUAL TO 50 MPH ) AJ12.

NEP 1 & 2 Amendment N12 February 1979 O TABLE 372.39-14 (Sheet 29 of 40) AUTUMN (SEP 77.NOV 77) 33.0 FT MIND DATA STABILITY CLASS E CLASS FREQUENCY (PERCENT) s 37.55 WIND DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY)

                            *IND SPEED (MILES / HOUR)

DIR. CALM C=3 4=7 8=12 13=18 19 24 GT 24 TOTAL N 0.00 1.04 1,68 39 0.00 0.00 0.00 3.11 NNE 0.00 52 4.02 1.30 13 0.00 0.00 5.96 NE 0.00 1.04 6.99 91 26 0.00 0.00 9.20 ENE 0.00 65 1.81 2.46 78 0.00 0.00 5.70 E 0.00 26 1.42 2.20 91 13 0.00 4.92 ESE 0.00 1.17 1.08 1.55 26 0.00 0.00 4.66 SE 0.00 78 1.55 91 13 .13 0.00 3.50 SSE 0.00 .39 1.17 65 1.30 .39 0.00 3.89 3 0.00 65 91 .39 78 65 0.00 3.37 SSn 0.00 .52 1.30 2.20 78 26 0.00 5.05 Sa 0.00 .39 3.50 6.87 2.07 52 0.00 13.34 WSn 0.00 52 4.15 2.98 39 0.00 0.00 8.03 m 0.00 65 3.37 4.53 1.30 0.00 0.00 9.84 nNa 0.00 39 4.40 2.46 39 0.00 0.00 7.64 Na 0.00 .13 4.02 2.85 52 0.00 0.00 7.51 NNW 0.00 .39 2.85 1.04 0.00 0.00 0.00 4.27 TOTAL 0.00 9.46 44.62 33.68 9.97 2.07 0.00 100.00 NUMHER OF OBSERVATIONS e 772 0 Cs CALM (nIND SPEED LESS THaN OW EQUAL TO ' .50 MPH ) uit

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-14 (Sheet 30 of 40) AUTUMN (SEP 77=NOV 77) 33.0 FT WIND DATA STABILITY CLASS F CLASS FREQUENCY (PERCENT) a 9 Ga w!ND DISTRIBUT!UN

SUMMARY

(PERCENT FREQUENCY) aIND SPEED (MILES / HOUR) DIR. CALM C-3 4-7 8 12 13 18 19-24 GT 24 TOTAL N 0.00 3.61 8.76 52 0.00 0.00 0.00 12.89 NNE 0.00 2,06 5.67 0.00 0.00 0.00 0.00 7.73 NE 0.00 5.15 4.64 0.00 0.00 0.00 0.00 9.79 ENE 0.00 2.58 1,55 0.00 0.00 0.00 0.00 4.12 E 0.00 2.58 0.00 0.00 0.00 0.00 0.00 2.58 ESE 0.00 52 0.00 0.00 0.00 0.00 0.00 52 SE 0.00 1.55 1.03 0.00 0.00 0.00 0.00 2.58 SSE 0.00 3.09 0.00 3.09 0.00 0.00 0.00 6.19 S 0.00 2,06 52 0.00 0.00 0.00 0.00 2.58 SSw 0.00 2.06 2,06 0.00 0.00 52 0.00 4.64 SW 0.00 2.06 2.06 0.00 0.00 0.00 0.00 4.12 WSm 0.00 52 3.09 52 0.00 0.00 0.00 4.12 M 0.00 1.55 4.64 0.00 0.00 0.00 0.00 6.19 WNW 0.00 0.00 5.67 0.00 0.00 0.00 0.00 5.67 NM 0.00 2,06 10.31 0.00 0.00 0.00 0.00 12.37 NNF 0.00 1.55 10.82 1,55 0.00 0.00 0.00 13.92 TOTAL 0.00 32.99 60.82 5.67 0.00 52 0.00 100.00 NUMBER OF OBSERVATIONS a 194 Ca CALH (WIND SPEED LESS THAN OR EQUAL TO .50 MPH ) A> I 2.

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-14 O (Sheet 31 of 40) AUTUMN (SEP 77 NOV 77) 33.0 FT WIND DATA STABILITY CLASS G CLASS FREQUENCY (PERCENT) a 8.85 WIND DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY) w!ND SPEED (MILES / HOUR) DIR, CALM C=3 47 8-12 13 18 19 24 GT 24 TOTAL N 0.00 5.49 28.57 0.00 0.00 0.00 0.00 34.07 NNE 0.00 8.79 13.7a 0,00 0,00 0.00 0,00 22.53 NE 0.00 2.20 2.20 0.00 0.00 0.00 0.00 4.40 ENE 0.00 1.10 55 0.00 0.00 0.00 0.00 1.65 E 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ESE 0.00 1.10 0.00 0.00 0.00 0.00 0.00 1.10 SE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SSE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SSw 0.00 0.00 .55 0.00 0.00 0.00 0.00 .55 Sn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 wSW 0.00 1.10 0.00 0.00 0.00 0.00 0.00 1.10 a 0.00 55 2.75 0.00 0.00 0.00 0.00 3.30 wNw 0.00 .55 4.95 0.00 0.00 0.00 0.00 5.49 Nw 0.00 2.20 7.69 55 0.00 0.00 0.00 10.44 NNw 0.00 2.20 9.89 3,30 0.00 0.00 0.00 15.38 TOTAL 0.00 25.27 70.88 3.85 0.00 0.00 0.00 100.00 NUMBER OF OBSERVATIONS a 182 Ca CALM (WIND SPEED LESS THAN OR EQUAL TO .50 MPH ) IU l2_

NEP 1 6 2 Amendment N12 February 1979 TABLE 372.39-14 (Sheet 32 of 40) AUTUMN (SEP 77eNOV 77) 33.0 FT WIND DATA STABILITY CLASS ALL CLASS FREGUENCY (PERCENT) a 100.00 aIND 01STRIBUTIUN

SUMMARY

(PERCENT FREQUENCY) aIND SPEED (MILES /HUUR) DIR. CALM C-3 4-7 8-12 13-18 19-24 GT 24 TOTAL N 0.00 1.22 , 4.47 63 05 0.00 0.00 6.37 NNE 0.00 1.26 4.33 2.33 44 0.00 0.00 8.37 NE 0.00 1.17 S.20 2 e8 1.07 24 0.00 10.36 ENE 0.00 63 1,51 2.63 1.46 0.00 0.00 6.23 E 0.00 30 97 1.26 73 05 0.00 3.40 ESE 0.00 78 1.99 1.26 19 0.00 0.00 4.23 SE 0.00 68 1.90 92 10 05 0.00 3.65 SSE 0.00 54 1.07 92 58 15 0.00 3.26 8 0.00 49 88 54 44 24 0.00 2.58 SSW 0.00 49 1,56 1.65 44 15 0.00 4.2S SW 0.00 39 2.33 5.54 1.12 54 0.00 9.92 MSw 0.00 .39 2.43 2.53 1.12 44 05 6.96 M 0.00 49 2.43 2.72 1.85 49 0.00 7.98 WNW 0.00 .29 3.40 2.87 88 05 0.00 7.49 Nw 0.00 49 4.04 2.82 1.26 05 0.00 8.66 NNh 0.00 49 3.84 1.90 05 0.00 0.00 6.27 TOTAL 0.00 10.17 42.36 33.22 11.77 2.43 05 100.00 NUMBER OF OBSERVATIONS a 2056 Cs CALM (h!ND SPEED LESS THAN OR EQUAL TO .50 MPH ) U:2.

NEP 1 6 2 Arendment N12 February 1979 O TABLE 372.39-14 (Sheet 33 of 40) ANNUAL (DEC 76-NOV 77' 33.0 FT WIND DATA STABILITY CLASS A CLASS FREQUENCY (PERCENT) = 10.71 w!ND DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY) WIND SPEED (k1LES/HOUH) DIR. CALM C-3 4-7 6-12 13 18 19-24 GT 24 TUTAL N u.00 0.00 68 1,47 0.00 0.00 0.ou d.15 NNE 0.00 11 79 1.59 11 23 0.00 2.83 NE c 00 0.00 91 1,61 1.02 0.00 a.uu 3.74 ENE u 00 U 00 91 57 u.uo 0.00 0.00 1,47 E 0.00 0.00 34 1.25 v uu u 00 0.00 1.59 ESE u.00 0.00 3,40 1,59 0.v0 u.00 0.00 u 99 SE u.00 0.00 d.15 2.u4 0.00 0.u0 0.00 4.20 SSE 0.00 0.00 1.13 1.u7 v.uo 0.00 0.00 2.61 5 v.uu u.00 1.25 1,59 23 0.u0 0.00 3.06 SSa v.00 v.Ou 1.92 lu 29 1.13 v 00 0.09 16.44 Sa v.00 0.00 1.02 13.49 n.e9 1 u7 u.uu 2d.ee aSa e.uu 0.00 11 34 1.et 91 0.0u 3.17

  • 0.uu o.00 23 .e6 1.13 41 ,11 3.oe aNa v 00 0.00 11 2.72 4.e5 1.93 23 9.64 Na v 00 0.00 45 3.Fu o.46 1.u2 11 11,79 NNa v.9u 0.00 1.13 4.J6 1.36 0.u0 0.00 6.58 TOTAL o.00 11 15.65 52.72 24.o0 o.we 45 100.00 ll NUMBER OF UHSEwvATIONs = 862.

C: CALM taIND SPEED LES5 IHAN UH tGual TO .50 MPn ) M n.

NEP 1 6 2 Amendment N12 February 1979 TABLE 372.39-1-4 (Sheet 34 of 40) ANNUAL (DEC 76-Nov 77) 33.0 FT WIND DATA SIAHILITY CLAb5 8 CLASS EMEuutNCY (PERCENT) = 4.86 aINO DISikleuT10N SUMMAWf (PEWCENT FHEuuENCY)

                              *INO SPEED (MILES /HUUk) 014        CALM    C-3       4-1        6-12    13-16    19-24   GT 24        1UTAL N      0.00    0.00      1.00       0.00      0.00    0.v0     0.00        1.00 NNE       u.00    0.00      1.44       1.d4      0.00    0.00     0.00        d.74 NE       0.00    0.00      1.99       2.d4      0.00    0.00     0.00        4.23 ENt       0.00    0.00       .d5        .50      0.00    0.00     0.0u          75 E      u.00    0.00      1.00         50      0.00    0.00     0 u0        1.49 ESE       V.00    0.00      1.J4       1.00      0.00    0.00     0,00        2.24 SE       u 00    0.00      d.49        .50      u.00    0.00     0.00        d.99 SSE       0.00    0.00      d.49       2.24      0.00    0.00     0.00        4.73 S      o 00    u,00      1.99       3.46        25    0.00     0.00        5.72 SSa       0.00    0.00      4.48       S.97        25    0.00     0.00       10.70 Sa       0.00    0.00      1.00       7.71      3.48    0.00     0.00       12.19 aSn       0.00    v.00       .50       2.99      2.99    1.00        50       7.96 a      0.00    0.00      1.00       1.24      5.72      50     0.00        6.46 WNa       0.00    0.00      1.99       5.22      0.22    1.74        25      15.42 Na       0.00    0.00      2.49       3.98      5.97    1.49     0.00       13.93 NNa       0.00    0.00      1.49       2.49      1.24     .25     0.00        5.47 TOTAL       0.00    0.00     26.87     41.29     26.12     4.98        75     100.00 NUMBER OF OBSERVATIONS a          402 Cs CALM (w!ND SPEED LESS THAN OR EQUAL TO            .50   MPH )

AJ12_

NEP 1 & 2 Amendment N12 February 1979 O TABLE 372.39-14 (Sheet 35 of 40) ANNUAL (DEC 76-NOV 77) 33.0 FT alND DATA STABILITY CLASS C CLAUS PREuuENCY (PERCENT) a 4.53 nIND DISTRIBUTION

SUMMARY

(PERCENT FREuutNCY) aIND SPEED (MILES / HOUR) DIR. CALM C=3 4=7 8-12 13=18 19-24 GT 24 TOTAL N 0.00 0.00 1.34 2.41 27 0.00 0.00 4.u2 NNE u.00 0.00 60 1.34 v 00 U.00 0.00 2.14 NE u.uu .27 1.07 1.34 60 0.00 0.00 3.49 ENE u.00 0.00 80 54 0.00 0.00 0.00 1.34 ll E u.00 0.00 1.07 27 0.00 0.00 0.00 1.34 ESE 0.00 0.00 2.68 27 0.00 0.00 0.00 2.95 SE 0.0u .27 d.95 27 27 v.u0 0.0u 3.75 SSE u.uo .o0 1.07 1.34 27 0.00 0.00 3.49 S 0.00 .27 1.68 2.14 54 u.00 0.00 4.83 SSa 0.00 0.00 5.09 3.75 0.00 0.00 0.00 e.65 Sa u.00 .27 1.61 9.12 2.41 0.00 0.u0 13.uo aSa 0.00 v.00 1.34 3.d2 1,68 1.34 0 uo 1.77 a u 00 0.00 2.06 1.66 4.29 60 0.00 9.65 aNa u.00 .27 1.61 4.63 4.56 60 21 12.33 Na 0.u0 0.00 3.75 5.o3 2.41 1.34 0.00 13.14 NNa 0.00 .27 2.41 3.49 1.34 0.00 0.0u 7.51

  • 0TAL v.00 2.41 32.17 41.62 19.u3 4.29 27 100.00 NUMBER OF 06SERVATIONS : 373.

Ca CALM (alND SPEED LESb IHAN Uk Euual Tu .50 MPH ) Ost

NEP 1 & 2 Amendment N12 February 1979 TABLE 2.39-14 (Sheet 36 of 40) ANNUAL (DEC 76-Nov 77) 33.0 FT WINO DATA STABILIlY CLASS D CL ASS F REQUENCY (PERCENT) a 32.30 WIND DISTRIBUTION

SUMMARY

(PERCENT FREuuENCV) nIND SPEED (MILES /HUUR) DIR. CALM C-3 4-7 8-12 13-18 19-24 GT 24 TUTAL N 0.00 .19 1.01 83 68 0.00 9.00 2.71 NNE u.00 .34 1.54 2.22 38 11 0.00 4.58 NE u.00 34 2.18 3.12 56 .19 0.00 e.39 ENE U.00 .15 63 2.41 1.39 08 04 4.69 E 0.00 .15 79 1.24 .o0 30 0.uu 3.08 ESE u.00 45 1.56 .bu .15 0.00 0.v0 2.o2 SE o.00 .30 1.20 49 .v4 v.90 0 uu 2.03 SSE v.00 .15 .Be 41 45 v.uo 0.00 1.56 8 0.00 .23 1.54 1.01 15 0.00 0.00 2.93 SSa v.00 41 3.53 1.73 45 .o4 0.00 c.16 Sa u.00 .38 2.52 5.96 1,$u 64 0.00 11.uS aSa 0.00 .15 2.10 3.31 3.ou 1.35 36 10.33 a 0.00 .30 1.95 4.02 3.16 71 0.00 10.15 nNw v.oo .23 1.95 6.35 4.43 94 0.vu 13.90 N* 0.00 15 1.32 5.90 3.27 1.16 .19 11.99 NNw o 00 .23 1.24 2.56 1.24 .15 0.00 5.ut TOTAL u.00 4.13 26.16 42.20 21.23 5.67 60 10u.00 NUMeER UF U8SERVATIONS c 2661. Cs CALM (aIND SPEED LESb THAN UR EQUAL TU .50 MPk ) Elit

NEP 1 & 2 Amendment N12 February 1979 O TABLE 372.39-14 (Sheet 37 of 40) ANNUAL (DEC 76-NOV 77) 33.0 F1 aIND DATA STABILITY CLASS E CLA6S FREuuENCY (PEkCENT) = 30.19 aINO DISTRIHUTION

SUMMARY

(PERCENT FREuuENCY) WIND SPEED (MILES /MOUR) DIR. CALM C-3 4-7 6-12 13 18 19-24 GT 24 TOTAL N 0.00 80 1.17 48 08 0.00 0.00 2.53 NNE 0.00 48 2.21 1.05 04 0.00 0.00 3.78 NE U.00 68 3.38 97 20 0.00 0.00 5.t3 ENE 0.00 1.13 1,29 97 44 0.00 0.00 3.62 E u 00 72 1.45 1.01 60 .u4 0.00 3.b2 ESE v.00 1.13 1.09 68 16 04 0.00 3.10 SE u 00 76 1.01 56 28 .u4 0.00 d.e5 SSE u.00 .8u 1.25 40 56 40 ,04 3.50 3 0.00 .e4 2.01 60 32 20 0.00 4.1H SSa 0.00 1.00 3.50 1,61 40 0% 0.00 6.67 SW 0.00 1.29 6.27 6.27 1,73 32 0.00 15.e8 WSW u.00 1.21 5.59 3.90 1.17 44 04 12.34 a u 00 1.01 5.39 3.38 60 0.00 0.00 10.37 kNa 0.00 44 5.15 3.02 16 0.00 04 8.61 Na 0.00 .32 3.42 3.42 80 06 0.00 6.v4 NNn 0.00 .36 3.10 1,61 16 04 0.00 5.27 TUTAL 0.00 13.11 47.25 30.12 7.72 1.69 1d 100.00 NUMBER UF UBSERVATIONS a 2487 Cm CALM (WIND SPEED LESS THAN OR EQUAL 10 .50 MPH ) U12.

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-14 (Sheet 38 of 40) ANNUAL (DEC 76-NOV 77) 33.0 F1 w1ND DATA STABILITY CLASS F CLASS FREQUENCY (PERCENT) = 8.73 MIND DISTRIBUTION

SUMMARY

(PERCENT FREuutNCV) aINO SPEED (MILES /HUUH) DIR. CALM C-3 4-7 8-12 13-18 19-24 GT 24 TUTAL N 0.00 3.20 5.42 28 0.00 0.00 0.00 6.90 NNE 0.00 2.36 4.03 0.00 0.00 0.00 0.00 6.40 NE 0.00 3.76 3.06 0.00 0.00 0.00 0.00 6.62 ENE U.00 1,67 1.25 0.00 0.00 0.00 0.00 2.92 E 0.00 1.53 70 0.00 0.00 0.00 0 u0 2.23 ESE 0.00 70 42 0.00 0.00 0.00 0.00 1.11 SE 0.00 1.25 42 42 97 14 0.00 3.20 SSL u.00 2.09 .14 97 63 0.00 0.00 4.03 3 0.00 1.39 70 42 56 0.00 0.00 3.06 SSa 0,00 2.64 2.92 28 0.00 .14 0.00 5.96 Sn u 00 3.48 6.26 2.09 v.00 0.00 0.00 11.62 WSn 0.00 2.64 3.62 97 0.00 0.00 0.09 7.23 a 0.00 2.64 6.26 70 0.00 0.00 0.00 9.60 wNa 0.00 1.25 5.70 97 0.00 0.00 0.00 7.93 Nw 0.00 1.67 7.09 42 0.00 0.00 0.00 9.18 NNw 0.00 1.11 6.95 1.53 0.00 0.00 0.00 9.60 TOTAL u.00 33.38 54.94 9.04 2.36 28 0.00 100.00 NUMBER UF UdSEkVATIUNS 719 Cs CALM (nIND SPEtu LESS THAN Uk EQUAL TO .50 MPH ) LJ 11.

NEP 1 & 2 Amendment N12 February 1979 O TABLE 372.39-14 (Sheet 39 of 40) ANNUAL (DEC 76-NOV 77) 33.0 Fi WINO DATA STABILily CLASS r. CL ASS F WEuutNCY (PERCENT) = a.66 d!ND DISTRIBUTION

SUMMARY

(PtRCENT FREuuENCY) dINO SPEE0 (MILES /MOUR) DIR. CALM L-3 u-7 6-12 13-18 19-24 GT du TUTat N 0.00 5.17 24.34 28 0.00 0.00 0.00 29.79 NNE 0.00 4.34 o.25 .14 0.u0 0.00 0.00 12.73 NL 0.00 1.no 1,54 0.00 0.00 0.00 0.00 2.94 ENE u.00 .e4 .u2 0.00 0.00 0.00 0.00 1.2d k E 0.00 70 14 0.00 0.00 0.00 6.00 .e4 ESE 0.00 6a 0.00 0.00 0.00 0.00 0.00 64 SE 0.00 .14 0.00 0.00 14 0.00 0.00 .28 SSE 0.00 .70 0.00 0.00 0.00 u.00 0.0c 70 3 0.00 42 0.00 0.00 0.00 0.00 0.00 42 SSn 0.00 1.12 70 0.00 0.00 0.00 0.00 1.62 Sd 0.00 2.94 1.12 .14 0.00 0.00 0.00 4.20 MSn 0.00 70 28 0.00 0.00 0.00 0.00 98 a 0.00 2.10 2.66 .14 0.00 0.00 0.00 4.90 nNn 0.00 1.82 3.78 1.12 0.00 0.00 0.00 6.71 Nn 0.C0 3.78 5.87 28 0.00 0.00 0.00 9.93 NNw 0.00 5.03 13.29 3.36 0.00 0.00 0.00 21.68 TOTAL 0.00 32.03 62.38 5.45 .14 0.00 0.00 100.00 NUMBER OF OBSERVATIONS a 715 Ca CALM (w!ND SPEED LESS THAN OR EQUAL TO 50 MPH ) Ul2.

NEP 1 6 2 Amendment N12 February 1979 TABLE 372.39-14 (Sheet 40 of 40) ANNUAL (DEC 76-NOV 77) 33.0 FT nIND DATA STABILITY CLASS ALL CLASS FREQUENCY (PEHCENTS s 100.00

                    *INO DISTRIBUTION 

SUMMARY

(PERCENT FREuuENCY) WIND SPEED (MILES /HUUR) DIR. CALM C=3 4=7 3-12 13 18 19-24 GT 24 TUTAL N 0.00 1.03 3.45 73 25 0.00 0.00 5.46 NNE 0.00 .85 2.43 1.34 15 06 0.00 4.82 NE 0.00 78 2.37 1,66 39 06 0.00 5.26 ENE 0.00 61 95 1.18 58 02 01 3.35 E 0.00 46 90 87 38 11 0.00 2.72 ESE 0.00 62 1.42 64 10 01 0.00 2.79 SL 0.00 46 1.21 62 21 02 0.00 2.52 SSE 0.00 .58 96 67 30 12 01 2.65 3 0.00 .50 1.46 1.04 25 06 0.00 3.34 SSN 0.00 79 3.07 3.06 40 05 0.00 7.37 Sn 0.00 1.08 3.58 6.25 2.01 46 0.00 13.39 wSW 0.00 .70 2.80 2.66 1.76 78 16 8.86 a 0.00 81 3.23 2.61 1.80 .39 01 6.85 WNw 0.00 49 3.19 3.91 2.49 63 06 10.77 NW U . 0 'J 62 2.93 3.85 2.39 64 07 10.50 NNW 0.00 .73 3,40 2.45 72 07 0.00 7.37 TOTAL 0.00 11.11 37.36 33.54 14.16 3.50 33 100.00 NUMBER OF OBSERVATIONS a 8239 Os CALM (WIND SPEED LESS THAN OR EQUAL TO .50 MPH ) Just

NEP 1 & 2 Amendment N12 February 1979 O TABLE 372.39-15 (Sheet 1 of 40) JOINT FREQUENCY DISTRIBUTION OF 191 FT. WIND DIRECTION AND WIND SPEED BY STABILITY CLASS NEP 1 & 2 SITE DATA (DEC. 76 - NOV. 77) WIN T ER ( DEC.76.F E B .77 ) 191 O F T. WIN D L,ATA STABILITY CLASS A CL ASS F HEQUENCY (PERCENT) = 6.34 w!ND nl51W16ui!UN SUMMAkV (PERCENT FHEuutNCY) nIND SPEED (MILES /MOUk) DIR. CALM C-3 4-7 6-12 13-1R 19-24 GT 24 TUTAL N 0.00 0.00 0.00 3.70 0.00 0.00 0.00 3.70 NNE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NE 0.00 0.00 0.00 2.22 d.22 0.00 0.00 4,44 ENE U.00 0.00 74 2.22 0.00 0.00 0.00 2.96 E u.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ESE 0.00 0.00 1,48 74 u.00 0.00 0.00 2.22 SE 0.00 0.00 v.00 0.00 0.00 0.00 0.00 0.00 SSE 0.00 0.00 0.00 0.00 74 0.00 0.00 74 S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SSa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sw v.00 0.00 0.00 74 4.44 1,48 1,46 8.15 nSn 0.00 0.00 0.00 2.22 2.96 2.96 1.46 9.63 a 0.00 0.00 0.00 74 2.22 2.22 3.70 8.89 WNW 0.00 0.00 74 74 4,44 10.37 4.44 20.74 Na 0.00 0.00 0.00 5.19 13.33 5.19 3.70 27.41 NNd 0.00 0.00 74 5.19 4.44 74 0.00 11.11 TOTAL 0.00 0.00 3.70 23.70 34.81 22.96 14.61 100.00 NUMBER OF OBSERVATIONS = 135 Cs CALM (WIND SPEED LESS THAN OR EQUAL TO .50 MPH ) A>l2_

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-15 (Sheet 2 of 40) WINT ER (DEC. 76- FEB. 7 7) 191.0 FT. WIND D AT A STABILITY CLASS B CLASS FREQUENCY (PERCENT) s 5.35 WIND DISTRIBUTION

SUMMARY

(PEHCENT FHEWUENCY)

                                  *IND SPEED (MILES /Houd)

DIR. CALM C-3 4-1 6-12 13-18 19-24 GT 24 TUTAL N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NNE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NE 0.00 0.00 u.00 2.63 2.63 0.00 0.00 5.26 ENE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 t 0.00 0.00 0.00 88 0.00 0.00 0.00 88 ESE G.00 0.00 68 o 00 0.00 0.00 0.00 88 SE o.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SSE u.00 0.00 0.00 1.75 0.00 0.00 0.00 1.75 S 0.00 0.00 .de 68 1.75 68 0.00 4.39 SSd 0.00 0.00 68 86 0.00 u 00 0.00 1.75 Sa 0.00 0.00 0.00 2.o3 66 1.75 0.00 5.26 wSw v 00 0.00 .o8 3.51 1.75 3.51 65 10.53 a 0.00 0.00 88 88 6.10 10.53 86 19.30 MNw 0.00 0.U0 1.75 5.26 4.39 4.39 1.75 17.54 Nw 0.00 0.00 3.51 1.75 11.40 9.oS 1.75 28.07 NNw 0.00 0.00 1.75 68 .h6 48 0.00 4.39 TOTAL o 00 0.00 11.40 21.93 29.82 31.3 5.20 100.00 NUMBEW UF UBSEEvailONS z 114 Cs CALM (=IND SPEED LLSS THAN QN EQUAL TO 50 MPH ) U ll.

NEP 1 6 2 Amendment N12 February 1979 O TABliE 372.39-15 (Sheet 3 of 40) WINTER (DEC 76-FEB 77) 191.0 F T . WIN D D ATA STABILITY CLASS C CLASS FREQUENCY (PERCENT) a 4.46 alNO U1SIWlHuTION

SUMMARY

(PtRCENT FREQUENCY) alND SPEED (MILES /HOUk) DIR. CALM C-3 4-7 8-12 13-14 19-24 GT 24 TUTAL N 0.00 0.00 1.05 0.00 4.21 0.00 0.00 S.26 NNE 0.00 0.00 0.00 1.05 1.05 1.05 0.00 3.16 NE 0.00 0.00 0.00 2.11 1.u5 0.00 0.00 3.16 ENE 0.00 0.00 1.05 u.00 0.00 u 00 0.00 1.05 E 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ESE 0.00 0.00 1.05 0.00 0.00 0.00 0.00 1.05 SE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SSE o.00 0.00 0.00 0.00 0.00 1.05 0.00 1.05 S 0.00 0.00 0.00 2.11 0.00 0.00 0.00 2.11 SSW 0.00 0.00 u.00 0.00 0.00 1.uS 0.00 1.05 Sn 0.00 0.u0 0.00 3.16 2.11 1.05 0.00 6.32 MSn 0.00 0.00 1.05 1.05 3.16 3.16 0.00 8.42 h 0.00 0.00 1.05 2.11 4.21 9.47 0.00 16.8a MNW 0.00 0.00 2.11 1.05 3.16 e.32 4.21 16.84 NW 0.00 0.00 4.21 6.32 11.58 2.11 2.11 26.32 NNn 0.00 0.00 3.16 0.00 4.21 0.00 0.00 7.37 TOTAL 0.00 0.00 14.74 18.95 34.74 25.26 6.32 100.00 NUMBER UF UBSERVATIONS s 95 Cs CALM (WIND SPEED LtSS THAN OR equal TO 50 MPH ) O JL112.

NEP 1 6 2 Amendment N12 February 1979 TABLE 372.39-15 (Sheet 4 of 40) WINTER (DEC 76. F E B.77) 1910 FT. WIND DATA STABILITY CLASS 0 CLASS FREQUENCY (PERCENT) a 44.46 alND 01ST418UTION

SUMMARY

(PERCENT FHEQUENCY) aIND JPEED (MILES /HOUW) DIR. CALM C-3 4-7 6-12 13-1A 19-24 bT 24 TUTAL N 0.00 0.00 .53 84 74 11 0.00 2.22 NNE 0.00 .11 42 42 1.16 0 u0 0.00 2.11 NE 0.00 0.00 .21 1.80 1.90 0.00 0.00 3.91 ENE u 00 .11 u.00 .11 1.37 1.80 0.00 3.38 E 0.00 0.00 0.0n .11 64 74 42 2.11 ESE u.00 0.00 v.00 .11 32 42 0.00 64 SE 0.00 0.00 0.00 0.00 32 32 0.00 63 SSE u.00 0.00 .21 11 0,00 v.00 11 42 S u 00 0.00 0.00 32 21 0.00 11 63 SSa v.00 0.00 .11 95 21 32 32 1.90 Sa 0.00 0.00 v.00 63 1.5H 1.37 1.06 4.65 WSa 0.00 0.00 21 .e4 3.06 2.53 2.32 6.98 a 0.00 .21 32 2.c4 6.24 4.96 2.22 16.59 MNa 0.00 .32 95 3.27 6.45 4.75 1.06 18.e0 NW 0.00 .11 1.27 4.75 10.45 5.00 2.43 24.60 NN= 0.00 v.00 84 1.48 3,06 .53 32 6.23 TOTAL u.00 84 5.07 18.37 41.92 23.us 10.35 100.00 NUMBER UF UBSERvaTIUNS a 947 Cs CALM (aIND SPEED LESS THAN Ok EQUAL TO 50 MPH ) 12 : 1

NEP 1 & 2 Amendment N12 February 1979 O TABLE 372.39-15 (Sheet 5 of 40) WINT E R (DEC.76- FE B. 7 7) 1910 FT. WIND DATA STABILITY CLASS E CLASS FREQUENCY (PERCENT) a 25.77 a!ND DISTh18UTION

SUMMARY

(PERCENT FREuuENCY) WIND SPEED (MILLS / HOUR) DIR. CALM C=3 4-7 6-12 13-1A 19-24 GT 24 TUTAL N 0.00 0.00 0.00 73 0.00 0.00 0.00 73 NNE u.00 .55 u 00 0.00 55 18 0.00 1.28 NE 0.00 .18 36 73 2.19 .55 0.00 4.01 ENE 0.00 0.00 0.00 1.09 2.00 0.00 0.00 3.10 E 0.00 0.00 36 55 55 36 0.00 1.82 ESE 0.00 0.00 55 36 55 18 91 2.55 SE 0.00 .13 55 .36 73 .36 75 2.91 SSE u.00 0.00 36 .18 0.00 0.00 2.00 2.55 3 0.00 0.00 .55 55 36 .18 16 1.82 SSa 0.00 0.00 55 1.46 36 91 16 3.46 Sa 0.00 0.00 .1M 1.ba 4.19 2.00 1.6u 9,65 aSa 0.00 0.00 1.09 3.63 5.65 2.91 1.64 15.12 a 0.00 0.00 2.19 4.74 7.63 73 18 15.66 nNn 0.00 0.00 1.28 e.19 5.e5 .18 16 13.48 Na 0.00 0.00 1.e4 7.63 e.01 .55 16 16.21 NNn 0.00 55 73 3.28 1.09 v.00 0.00 5.65 TOTAL 0.00 1.ua 10.38 33.52 37.70 9.11 7.63 100.00 NUMBER UF UbSERVAi!ONS = 549 Ca CALM (aIND SPEED Ltsb THAN Ok EQUAL TO .50 MPH ) MIL

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-15 (Sheet 6 of 40) WINT ER (DEC 76-FEB. 77) 1910 F T. WIND DATA STABILITY CLASS F CLA58 FHEUUENCY (PENCENT) a 7.26 aIND 01SikIBUT10N

SUMMARY

(PERCENT FWEuuENCY)

                                  *IND SPEED (M1LES/MuhR)

DIR. CALM t.3 u.7 8 12 13 16 19 24 GT 24 TOTAL N 0.00 0.00 1,29 1,29 0.00 65 0.00 3.23 NNE 0.00 o.00 1,29 65 1.9u u.oo 0.00 3.87 NE u 00 0.00 0.00 65 65 0.00 0.00 1.29 ENE v.00 0.00 1.29 1.94 1,29 v 00 0.00 4,52 E v.00 1.29 1,29 1.29 0.09 u.00 3.00 3.67 ESE 0.00 0.00 .oS 0.00 0.00 0.00 0.00 65 SE v.00 0.06 65 1.29 0.00 0.00 0.00 1.94 SSE 0.00 0.00 0.00 1.29 0.00 0.00 1.94 3.23 S u,00 0.00 0.00 65 0.00 0.00 3.23 3.67 SSa 0.00 65 0.00 1.29 65 65 0.00 3.23 Sa 0.00 1.29 1.94 3.23 65 0.00 0.00 7.10 MSn 0.00 0.00 5.16 7.10 2.54 0.00 0.00 14.64 w 0.00 65 7.10 6.45 3.23 v.00 0.00 17.42 nNn 0.00 0.00 2.58 5.61 2.56 u.00 0.00 10.97 Na 0.00 0.00 3.67 3.23 4.52 0.00 0.00 11.61 NNa 0.00 0.00 3.23 3.23 1.94 0.00 0.00 8.39 TOTAL 0.00 3.67 30.32 39.35 20.00 1.29 5.16 100.00 NUMBER OF OBSERVATIONS s 155 Cs CALM (w1ND SPEED LESS THAN OR EQUAL TO *

                                                            .50   HPH )

AJ12.

NEP 1 & 2 Amendment N12 February 1979 O TABLE 372.39-15 WINTER (DEC 76-FEB 77) 191.0 FT WIND DATA STABILITY CLASS G CLASS FREQUENCY (PERCENT) = 6.34 WINO DISIH18UTION

SUMMARY

(PERCENT FREQUENCY)

                                "IND SPEED (MILES /MUUR)

DIR. CALM C-3 4=7 6 12 13 18 19-24 GT 24 TUTAL N U.00 2.22 2.22 2.96 6.60 74 0.00 17.04 NNE 0.00 0.00 2.96 2.22 0.00 0.00 0.00 5.19 NE 0.00 0.00 14 0.00 1.48 0.00 0.00 2.22 ENE 0.00 v 00 74 0.00 0.00 0.00 0.00 74 E 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ESE 0.00 v.00 v.00 0.00 0.00 0.00 0.00 0.00 SE U.00 74 0.00 7a 0.00 v.00 0.00 1,48 SSE 0.00 74 1.48 0.00 0.00 0.00 0.00 2.22 S u.00 0.00 d.96 74 u.00 0.00 0.00 3.70 SSa u.00 1.4M 74 2.96 0.00 0.00 0.00 5.19 Sa 0.00 .fu 1.4M 2.22 0.00 u.00 0.00 4.44

 *Sd         0.00     1.4H     2.96       9.e3     0.00     0.00      0.00       14.07 a       u.00      0.00     5.93       M.69     1.48     0.00      0.u0       16.30 aNa                   .74     2.96       2.96    2.96      0.00 0.00                                                      0.00        9.63 Na        U.00      0.00     4.44       5.93        74    0.00      0.00       11.11 NNa        u 00      u.00     3.70       2.96     0.00     0.00      0.00        6.67 TOTAL        0.00      6.15    33.33     42.22    15.56         74     0.00      100.00 NUMHER UF UBSEkvaTIUNS :            135 Cs CALM (nIND SPEED LESS THAN OR EQUAL TO              .50    MPM )

O UtL

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-15 (Sheet 8 of 40) WIN T ER ( DEC.76 - F E B.77 ) 191.0 F T WIND D ATA STABILIIY CLASS ALL CLASS FHEuutNLY (PENCENT) s 100.00

                         =JNO DISidl8UT10N SuaMARY (PEECENT FHEuuENCY) aIND SPEED (MILES /Huuw)

DIR. CALM C-3 4-7 o-12 13-18 19-24 GT 24 TOTAL N u.00 14 52 1.08 1.u8 .14 U.00 2.96 NNE 0.00 .19 47 42 65 09 0.00 2.02 NE 0.00 05 23 1.41 1.8A .14 0.00 3.71 ENE 0.00 .uS .23 61 1.22 60 0.00 2.91 E U.00 09 19 33 52 42 19 1.74 ESE u 00 0.00 38 .19 28 .23 23 1.31 SE 0.00 09 .14 23 33 .23 19 1.27 SSE 0.00 05 .26 28 05 .uS 70 1.41 S 0.00 0.00 .38 5? 28 09 33 1.e0 SSa 0.00 .14 .28 1.13 23 47 .19 2.44 S* u.00 .lu 2d 1.41 2.25 1.36 99 6.43 aSa 0.00 .u9 1.03 2.86 3.43 2.39 1.o0 11.41 a 0.00 .14 1.69 3.e2 6.67 3.52 1.31 16.95

 *Na          0.00             .19     1.36      4.04      6,24   3.33       1.08       16.24 Nw          0.00               05    1.92      5.45      8.54   3.57       1.55       21.08 NNa          0.00             .14     1.31      2.30      2.30       33         14      6.53 TOTAL          0.00           1.55     10.75     25.87     36.15  17.18       8.50      100.00 NUMBEW UF OBSERVATIONS a                  2130 Cs CALM (nIND SPEED LESS THAN OR EQUAL TO                      50    MPH )                  g g_

NEP 1 & 2 Amendment N12 February 1979 O TABLE 372.39-15 (Sheet 9 of 40) SPR:NG ( M AR. 77- MAY 77) 191.0 FT WWD D AT A STABILITY CLASS A CLAbS FREQUENCY (PERCENT) = 13.18 aIND DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY) a!ND SPEED (MILES /MOUn) DIR. CALM C-5 4-7 8-12 13-16 19-24 GT 24 TOTAL N 0.00 0.00 0.00 1.67 1.12 0.00 0.00 2.99 NNE U.00 0.00 0.00 0.00 37 0.00 0.00 .37 NE 0.00 0.00 37 1.12 2.o1 37 0.00 4.48 ENE 0.00 0.00 0.00 75 75 37 0.00 1,67 E 0.00 0.00 0.00 75 37 0.00 0.00 1.12 ESE 0.00 0.00 37 2.99 1,49 37 0.00 5.22 SE 0.00 0.00 37 4.65 37 0.00 0.00 5.60 SSE o.00 0.00 37 1.12 37 0.00 0.00 1.87 3 0.00 0.00 0.00 1.12 1,49 0.00 0.00 2.61 SS* o.oo 0.00 37 3.36 4.65 .37 0.00 6.96 Sa 0.00 0.00 0.00 2.99 e.72 37 0.00 10.07

 *Sa          0.00        0.00     0.00      1.87     4.65       5.97      2.99       15.67 a         0.00        0.00      .37      0.00     0.00       1.12      1.12        2.61 aNa          0.00        0.00     0.00      0.00     1,49       0.00      0.00        1.49 Na          0.00        0.00     0.00         37   11.19      6.34       2.61       20.52 NNa         0.00         0.00     0.00      1.12     4.48  ,

6.72 2.24 14.55 TOTAL 0.00 0.00 2.24 24.25 42.54 22.01 8.90 100.00 NUMBER OF 06SL4 Val!UNS = 268 Ca CALM (alfD SPEED LESS THAN OR EQUAL TO .50 MPH ) u it

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-15 (Sheet 10 of 40) SPRING ( M AR.77- MAY 77) 191 O F T. WIND DATA STABILIlY CLASS B CLA58 FREQUENCY (PEHCENT) = 5.16

                      *IND DISTRIHUTION 

SUMMARY

(PERCENT FHEuuENCY) alND SPEED (MILES /HulW) OIR. CALM C-3 4-7 8-12 13-18 19-24 GT 24 TUTAL N 0.00 0.00 0.00 1.90 0.00 95 0.00 2.86 NNE 0.00 0.00 0.00 0.00 95 0.00 0.00 95 NE 0.00 0.00 95 2.66 95 95 0.00 5.71 ENE 0.00 0.00 u.00 95 0.00 0.00 0.00 95 E 0.00 0.00 0.00 0.00 95 0.00 0.00 95 ESE 0.00 0.00 95 95 1.90 95 0.00 4.76 SE 0.00 0.00 2.86 95 0.00 0.00 0.00 3.81 SSE 0.00 0.00 95 1.90 95 0.00 0.00 3.61 S 0.00 0.00 95 2.86 0.00 0.00 0.00 3.81 SSa 0.00 0.00 95 2.66 1.90 0.00 0,00 5.71 SW U.00 0.00 0.00 3.81 3.81 0.00 0.00 7.62 nSn 0.00 0.00 0.00 95 7.62 1.90 0.00 10.48 a 0.00 0.00 0.00 95 3.81 1.90 1.90 8.57 WNa 0.00 0.00 0.00 1.90 2.66 95 0.00 5.71 Na 0.00 0.00 0.00 1.90 10.48 7.62 1.90 21.90 NNn 0.00 0.00 95 1.90 95 d.86 5.71 12.38 TOTAL 0.00 0.00 8.57 26.67 37.14 16.10 9.52 100.00 NUMBER UF OBSERVATIONS a 105 Cu CALM (w1ND SPEED LESS THAN OR EQUAL TO 50 MPH )

                                                                                      .U 11.

NEP ' ;2 Amendment N12 February 1979 O TABLE 372.39-15 (Sheet 11 of 40) SPRING ( MAR.77. MAY 77) 191.0 FT. WIND D ATA STABILITY CLASS C CL ASS F REubENCY (PERCENT) = 4.28 w!ND DisTRIHUTION

SUMMARY

(PERCENT FREQUENCY) alNO SPEED (MILES / HOUR) DIR. CALM C-3 4-7 6-12 13 18 19-24 GT 24 TUTAL N 0.00 0.00 0.00 1.15 0.00 0.00 0.00 1.15 NNE u.00 0.00 0.00 1.15 3.45 v.00 0.00 4.60 NE 0.00 0.00 0.00 1.15 1.15 1.15 0.00 3.45 ENE 0.00 0.00 0.00 0.00 1.15 0.00 0.00 1.15 E 0.00 0.00 2.30 0.00 0.00 0.00 0.00 2.30 ESE 0.00 0.00 0.00 1.15 0.uo 0.00 0,00 1.15 SE U.00 0.00 4.60 1.15 0.00 0.00 0.00 5.75 SSE u.00 0.00 4.60 1.15 0.00 0.00 0.00 5.75 3 0.00 0.00 1.15 0.00 1.15 0.00 0.00 2.30 SSa 0,00 0.00 4.6u 2.30 0.00 0.00 0.00 6.90 Sa 0.00 0.u0 2.30 6.90 1.15 u 00 0.00 10.34 aba 0.00 0.00 0.00 2.30 e 90 0.00 0.00 9.20 a 0.00 0.00 0.00 3.45 2.30 4.00 0.00 10.34 aNa 0.00 v.00 0.u0 3.45 4.60 1.15 1.15 10.34 Na 0.00 0.00 0.00 2.30 4.00 2.30 0.00 9.20 NNa 0.00 0.00 1.15 1.15 4 bu 5.75 3.45 16.09 TOTAL U.00 0.00 20.69 28.74 31.03 14.94 4.60 100.00 NUMHEN UF UbSERVATIUNb = 87 Cs CALM (alND SPEED LESS INAN Uk EQUAL TU .50 MPH ) A.)ll_

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-15 (Sheet 12 or' 40) SPRING (MAR.77-MAY 77) 1910 FT. WIND DATA STABILITY CLASS D CLA5S FREQUENCY (PERCENT) = 28.36 alNo n151wlHUTION

SUMMARY

(PERCENT FREuuENCY) alND SPEED (MILES /HUUW) DIH. LALM C-3 4-7 8-12 13-ta 19-24 GT 24 TOTAL N o.00 .17 52 69 67 1.21 1.21 4.6A NNE u.00 .17 35 2,08 1.21 .35 52 4.68 NE 0.00 0.00 .17 69 3.47 67 0.00 5.20 ENE 0.vu u.00 52 69 1.91 52 0.00 3.64 E 0.00 .17 52 87 2.25 .35 17 4.33 ESE u.ou .35 1.21 1.39 1.21 2.43 69 7.28 SE 0.00 .35 87 0.00 .17 0.00 0.00 1.39 SSE 0.00 0.04 69 0.00 52 v.90 0.00 1.21 S 0.00 .17 1.73 1.04 17 0.00 0.00 3.12 SSa 0.00 0.00 1.56 1.21 69 35 17 3.99 Sa 0.00 .35 1.39 3.12 1.56 .35 0.00 6.76 aSa 0.00 0.00 1.56 3.29 2,08 1.73 0.00 6.67 a 0.00 .17 35 1.21 2.43 2.25 35 6.76 nNa 0.00 .17 52 1.21 2.43 1.21 52 6.07 Na 0.00 .17 35 2.95 6.93 5.03 1.04 16.46 NNw 0.00 0.00 .17 1.21 6.50 3.64 4.16 15.77 TUTAL 0.00 2.25 12.u8 21,66 34.40 20.28 8.84 100.00 NUMBER OF UBSERVA110NS = 577 Ca CALM (nIND SPEED LESS THAN UR EQUAL TO .50 MPH ) IL2 s 2.

NEP 1 & 2 Amendment N12 February 1979 O TABLE 372.39-15 (Sheet 13 of 40) SPRING ( MAR. 77 - M A( 77 ) 191,0 FT WIND DATA

  $TABILITY CLASS              E             CLASS FREQUENCY (PEHCENT) a      28.18 nIND DISTkibuTION 

SUMMARY

(PERCENT FHEQUENCY) aIND SPEED (MILES /Muuk) DIR. CALM C-3 4-7 e=12 13 18 19-24 GT 24 TUTAL N 0.00 0.00 .17 1.40 1.92 .52 70 4.71 NNE 0.00 0.00 0.00 1.05 1.40 0.00 52 2.97 NE 0.00 0.00 1.05 1.05 1,57 0.00 0.00 3.66 ENE V.00 v.00 .17 1.92 17 .35 35 2.97 E u.uo 0.00 67 1.22 87 .35 35 3.66 ESE u.00 u.00 1.22 70 52 67 52 3.84 SE u.00 .17 1.22 87 70 u.00 .35 3.32 SSE 0.00 .17 .52 17 17 0.00 0.00 1.uS S 0.00 v.00 35 1.05 52 .35 35 2.62 SSa 0.u0 .35 1,57 1.75 35 .35 35 4.71 Sa 0.00 .35 2.4a 4.54 1.40 1.22 .17 10.12 aSa 0.00 .35 2.27 5.93 3,14 2.62 17 14.49 a 0.00 0.00 1.40 4.69 3.66 2.09 17 12.22 nNa u.00 0.00 1.05 3.e6 2.44 67 70 6.73 Na 0.00 .17 52 4.19 5.06 17 0.00 10.12 NNa 0.00 0.00 52 3.06 5.41 1.05 17 10.62 TOTAL 0.00 1.57 15.36 38.05 29.32 10.82 4.69 100.00 NUMBER UF ObSERVAiluNS = 573 Cs CALM (aIND SPEED LESS THAN Od EQUAL TO 50 MPW ) A)l1

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-15 (Sheet 14 of 40) SPRING ( M AR.77. MAY 77) 19 t O FT. WIND DATA STABILIlY CLASS F CLASS FREGUtNCY (PERCENT) = 10.56 aINO tilsiwleuT10N

SUMMARY

(PERCENT FREUUENCY)

                                     *lNo SPEED ("ILES/eUUH) 014            CALM      C-3        4-7        8-12    13-18    19-24     GT 24       TUTAL N                              1.40 0.00     0.00                  1.86        43    0.00      0.00        u.19 NNE            0.00     0.00          47         93       47    0.00      0.00        1.66 NE           0.00     0.00          95         47       93    0.00      0.00        2.33 ENE            u.00     0,00        .u7       3.72     0.00     0.00      0.00        4.10 E         0.00         47      0.00       0.00      .u7     0.00      0.00           93 ESE           0.00      0.00          93      1 uu     0.00     0.00         41       2.79 SE                       93         47                           93 0.00                            0.00        47              2.79        5.58 SSE           0.00      0.00       0.00       0.00        47       47     3.26        4.19 3                      47      c.33       0.00 v.00                                     0.00        47     0.00        3.26 SSa           0.00         47      d.79         47     0.00     0.00      0.00        3.72 Sa          0.00      v.00          47      3.72     0.00     0.00      0.00        4.19 wSa           0.00      0.00       3.2n      10.70     u.65       93      0.00      19.53 w         0.00      0.00       0.00      12.09     6.98       47      0.00      19.53 MNw           0.00      0.00       1.66       5.12     1,66     0.00      0.00        6.64 Nn           0.00      0.00       0.00       3.26     1.86     0.00      0.00        5.12 NNw           0.00      0.00       1.40       3.72     4.65     0.00      0.00        9.77 TOTAL           0.00      2.33      16.74     47.44     23.72     3.26      6.51     100.00 NUMBER UF OBSERVATIONb z                 215 C     CALM (aIND SPEED LESS THAN OR EQUAL TO                .50    MPH )

1)12.

NEP 1 & 2 Amendment N12 February 1979 O TABLE 372.39-15 (Sheet 15 of 40) S PR ING ( M AR. 7 7- M AY 7 7 ) 191.0 FT. WIND DATA STABILIiv CLASS G CLASS FREQUENCY (PERCENT) a 10.23 w!ND OlSIRIBUTION

SUMMARY

(PERCENT FHEuuENCV)

                                           *IND SPEED (MILES / HOUR)

DIR. CALM C.3 47 6 12 13 18 19 24 GT 24 TUTAL N 0.00 96 96 3.37 3.85 0.00 0 . 0 'J 9.13 NNE o 00 .uo 48 1.44 1.92 0.00 0.00 4.33 NE 0.00 0.00 96 96 0.00 v.00 0.00 1.92 ENE 0.00 0.00 1.92 96 1.44 0.00 0.00 4.33 E 0.00 96 48 1,44 0.00 0.00 0.00 2.88 ll ESE 0.00 .ue .u8 48 0.00 0.00 0.00 1.44 SE 0.00 0.00 .ue 0.00 0.00 0.00 48 96 SSE 0.00 96 0.00 0.00 0.00 0.00 0.00 96 3 0.00 4M o.00 0.00 0.00 0.00 0.00 48 SS* 0.00 0.00 96 u.00 0.u0 u.00 0.00 96 Sa 0.00 48 96 4h o.00 0.00 0.00 1.92

 *Sa            0.00               98    3.37        5.29     0.00      0.00     0.00         9.62 a          0.00           0.00      5.77       11.06        9h       48     0.00        18.27 WNn            0.00           0.00      1.92        9.13     2.88        48     0.00        14.42 Nd           0.00                        96       7.21 0.00                           6 e5     0.00      0.00        16.63 NNa            0.00                     4.61        4.33 0.00                           2.40     0.00      0.00        11.54 TOTAL            0.00           5.77     23.56      no.15     23.08        96        48     100.00 NUMBER OF OBSERVATIONS s                      208, h

Ca CALM (w!ND SPEED Lk S5 THAN ON EuuAL TO .50 MPH ) AJ11.

NEF 1 6 2 Amendment N12 February 1979 TABLE 372.39-15 (Sheet 16 of 40) SPRING ( M A R. 7 7 - M AY 7 7) 191.0 F T. WIND DATA STAHILIly CLASS ALL clads FHEuuENLY (PEWCENT) = 100.00 a!NC DislWIHUTION

SUMMARY

(PERCENT FkEUUENCY) alND SPEED ( M ILE S/Mut* ) DIR. CALM C-3 u-7 8 12 13 18 19 24 GT 24 TOTAL N U.00 .15 44 1.52 1,43 54 54 4.62 NNE u.00 10 20 1.16 1.23 10 30 3.10 NL u.Ou 0.00 .54 98 2,07 .39 0.00 3.98 ENE 0.00 u.co 44 1.36 89 30 10 3.10 E u.uu .20 .54 84 1.03 20 15 2.95 ESE u.ou 15 93 1.26 79 1.03 39 4.57 SE o.00 .25 1.08 98 34 10 44 3.20 SSE u.00 .15 64 .34 ,34 .oS 34 1.87 3 v.u0 .15 93 .o9 44 .15 10 2.66 SSa u.00 .15 1.57 1,57 1.03 25 15 4.72 Sa 0.00 .25 1.33 3.49 1.97 49 05 7.58 aSa 0.00 .20 1.77 4.67 3.30 2.21 44 12.59 a 0.00 05 1.13 4.33 2.85 1.77 39 10.53 aNa u.00 05 64 3.10 2.41 ,74 39 7.53 Na 0.00 .10 .34 3.34 6.69 2.60 74 14.02 NNa 0.00 0.00 93 2.51 4.97 2.61 1.97 12.99 TOTAL 0.00 1.92 13.67 32.42 31.78 13.72 6.49 100.00 NUMBER UF UdSEkvATIUNS a 2033 Ca CALM (aIND SPEED LtSS THAN UR EQUAL TO .50 MPH ) g ,.

NEP 1 & 2 Amendment N12 February 1979 TABUE 372.39-15 9 (Sheet 17 of 40) SU M ME R ( JO N. 7 7- AU G. 7 7) 191.0 F T. WIND DATA STABILITY CLASS a CLA3S FREuutNCY (PEHCENT) = 17.92 w!ND DISTH18UTION SUMMARf (PERCENT FREuuENCf) aIND SPEED (*lLES/MOUd) DIR. CALM C-3 4-7 6-12 13-18 19-24 GT 24 TOTAL N 0.00 0.00 00 0.00 30 0.00 0.00 90 NNE 0.00 0.00 00 90 60 0.00 0.00 2.11 NE 0.00 0.00 v.00 0.00 0.00 u 00 0.00 0.00 ENE 0.00 0.00 0.00 90 0.00 0.00 0.00 90 E 0.00 0.00 30 1.51 1.20 0.00 0.00 3.01 ESE 0.00 0.00 .30 2.71 0.00 0.00 0.00 3.01 SE 0.00 0.00 .oo 2.71 0.00 0.00 0.00 3.31 SSE 0.00 0.00 0.00 3.31 30 0.00 0.00 3.61 S u.00 u 00 30 u.52 1.61 0.00 0.00 6.63 SSa 0.00 0.00 .30 13.25 6.13 1.51 0.00 23.60 Sa v.00 0.00 .30 9.94 19,68 3.01 0.00 33.13 aSa 0.00 0.00 0.00 0.00 90 0.00 0.00 90 a v.00 0.00 0.00 60 30 0.00 0.00 90 aNa 0.00 0.00 0.00 90 3.61 90 0.00 5.42 Na 0.00 0.00 90 1.20 3.31 90 0.00 6.33 NNa 0.00 0.00 .oo 1.51 3.92 0.00 0.00 6.02 TOTAL 0.00 0.00 4.82 43.98 44.88 o.33 0.00 100.00 NUMBER OF 06SERVATIuNS 332 Cu CALM (aIND SPEED LESS THaN UH EQUAL TO .50 MPH ) A)ll.

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-15 (Sheet 18 of 40) S UM ME R ( JUN. 77- AUG 77) 196.0 FT. WIND DATA STABILIly CLASS h CLASS FREQUENCY (PERCENT) a 5,34 aIND nlSiw1HUTION

SUMMARY

(PLHCENT FwEuuENCY) alND bPEED (MILES /HUUR) DIR. CALM C-3 a.7 8 12 toets 19 24 GT du TOTAL N 0.00 0.00 0.00 3.03 0.00 0.00 0.00 3.03 NNE 0.00 0. v i' 1.01 0.00 1.01 0.00 0.00 2.02 NE 0.00 0.00 1.01 1.01 0.00 0.00 0.00 d.02 ENE v.00 0 en 1.01 v.00 0.00 0 vu 0.00 1.01 E 0.00 0.00 0.00 1.u1 0.00 v.00 0.00 1.01 ESE 0.00 0.00 1.01 0.00 0.00 0.00 0.00 1.01 SE 0.00 0.00 3.03 2.02 0.00 0.00 0.00 5.05 SSE 0.00 ".00 2.02 4.04 3.u3 0.00 0.00 9.09 3 0.00 0.00 1.01 7.07 1.01 0.00 0.00 9.09 SSa 0.00 0.00 2 u2 12.12 6.06 0.00 0.00 20.20 Sa 0.00 0.00 2.02 9.09 5.05 2.u2 0.00 18.18 WSa 0.00 0.00 0.00 3.03 0.00 0.00 0.00 3.03 a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 WNa 0.00 0.00 3.03 1.01 4.04 2.02 0.00 10.10 Na 0.00 0.00 2.02 2.02 3.03 2.02 0.00 9.09 NNa 0.00 u.00 1.01 5.05 0.00 0.00 0.00 6.06 TOTAL 0.00 0.00 20.20 50.51 23.23 6.06 0.00 100.00 NUMBER OF U6 SERV 4 TIONd a 99 Cs CALM (w1NO SPEED LES5 THAN OR EQUAL TO 50 MPH ) A.) ll.

NEP 1 & 2 Amendment N12 February 1979 O TABLE 372.39-15 (Sheet 19 of 40) S UM ME R (JUN.77-AUG.7 7) l91.0 FT. WIND DATA STABILITY CLASS C CLASS FREGUENCY (PERCENT) = 5.18 aIND DISlHIBUTION

SUMMARY

(PERCENT FREuuENCY) alNU SPEED (MILES /HOUN) DIR. CALM C-3 4-7 e-12 13-1e 19-24 GT 24 TUTAL N U.00 0.00 0.00 3.13 1.04 0.U0 0.00 4.17 NNE 0.00 0.00 0.00 1.04 v.00 0.00 0.00 1.04 NE u.00 0.00 d.0M 0.00 1.04 0.00 0.00 3.13 ENE 0.00 0.00 1 u4 0.00 0.u0 0.00 0.00 1.04 E u 00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ESE U.00 0.00 2.08 1.04 0.00 0.00 0.00 3.13 SE u.00 v.00 0.00 1.04 0.00 0.00 0.00 1.04 SSE u.00 0.00 0.00 u.17 1.o4 0.00 0.00 5.21 S 0.00 2.08 2.08 4.17 2.08 0.00 0.00 10.42 SS= 0.00 0.00 2,08 10.u2 5.21 0.00 0.00 17.71 Sa u.00 0.00 d 06 9.36 e.25 2.08 0.00 19.79 aSa u.00 0.00 a.17 1.04 3,13 u.00 0.00 8.33 a 0.00 1.04 3.13 1.04 0.00 0.00 0.00 5.21 aNa u.00 0.00 0.00 4.17 2.08 0.00 0.00 6.25 Na U.00 5.21 0.00 0.00 5.21 0.00 0.00 10.42 NNa 0.00  ;.Ou 1.04 0.00 1.04 0.00 0.00 3.13 TOTAL u 00 3.13 19.79 46.67 26.13 2.08 0.00 100.00 NUwdER OF Ud5ENVATIONS 3 96, Cs CALM (aIND SPEED LtSS THAN OR EQUAL TO 50 MPH ) uni

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-15 (Sheet 20 of 40) SU MME R ( J UN.77- A UG.7 7 ) 19 L O FT. WING DATA STABILITY CLASS 0 CL ASS FRE QUENC Y (PERCENT) s 24.82 alNo CISiwihuTION

SUMMARY

(PEACENT FHEuuENCY) alND SPEED (MILES /Muuk) DIR, CALM C=3 47 e=12 13 1@ 19 24 GT 24 TUTAL N 0.00 .22 43 .22 43 1,74 87 3.91 NNE 0.00 0.00 43 87 22 0.00 0.00 1.52 NE 0.00 .22 .M7 67 0.00 0.00 0.00 1.96 ENE 0.00 0.00 65 22 u,00 0.00 0.00 67 E 0.00 .?? .22 43 0.00 0.00 0.00 67 ESE 0.00 .22 43 2.17 .e5 0.00 0.00 3.48 SE 0.00 v.00 87 65 22 0.00 0.00 1.74 SSE 0.00 0.00 43 1.09 1.09 22 0.00 2.83 S 0.00 0.00 67 S.22 2.61 0.00 43 9.13 SSa 0.00 .22 2.17 o.52 5.87 87 1.09 16.74 S= u.00 65 3.91 11.30 9.13 1.74 22 26.96 mSa 0.00 .22 3.48 2.17 3.26 0.00 0.00 9.13 w 0.00 0.00 1.96 1.52 87 0.00 0.00 4.35 dNa 0.00 0.00 87 3.04 1.30 0.00 0.00 5.22 Na 0.00 0.00 0.00 3.26 4.35 22 0.00 7.63 NNa 0.00 22 .22 43 1.70 87 0.00 3.48 TOTAL 0.00 2,17 17.83 40.00 31.74 S.e5 2.61 100.00 NUM8ER OF UdSERVATIONS a 460 Cs CALN (nIND SPEED LESS THAN OH EQUAL TO .50 MPH ) Ott

NEP 1 & 2 Amendment N12 February 1979 O TAllLE 372.39-15 (Sheet 21 of 40) SUMMER (JUN.7 7. AUG.7 7 ) 191. 0 F T . WIND D AT A STABILITY CLASS F CLASS FREGUENCY (PERCENT) : 30.92 a l t.0 DISIRIHUTION

SUMMARY

(PEWCENT FREuuENCY) alNo $PtEO (MILES /Huuk) DIR. CALM c-3 u-7 8-12 13-18 19-24 GT 24 TOTAL N 0.00 0.00 52 70 67 0.00 0.00 2.09 NNE 0.00 .35 35 .17 35 0.00 0.00 1.22 NE 0.00 .17 0.00 1.57 .17 0.00 0.00 1.92 ENE u.00 .17 70 35 0.00 0.00 0.00 1.22 E 0.00 0.00 .35 52 0.00 0.00 0.00 87 ESE 0.00 1.65 1.92 35 ,17 ",uo 0.00 3.49 SE 0.00 0.00 35 1.22 52 0 , 0.00 2.09 SSE 0.00 .17 35 1.22 35 87 17 3.14 3 0.00 .35 1.22 1.05 1.22 1.22 0.00 5.06 SSa 0.00 .35 2.62 5.06 2.44 70 35 11.52 Sa 0.00 .70 4.71 12.39 6.46 70 .35 25.31 WSn 0.00 .17 2.o2 6.63 3.64 . 00 0,00 13.26 a 0.00 .17 2.27 4.89 87 0.0, 0.00 8.20 aNW U.00 .35 1.57 3.64 2.62 0.00 0.^0 8.38 Na 0.00 .17 .87 2.62 3.32 17 0.00 7.16 NNa 0.00 .35 35 2.09 2.27 0.00 3.00 5.06 TOTAL 0,00 4.54 20.77 44.68 25.48 3.66 67 100.00 NUMBER OF OBSERVATIONS a 573, Ca CALM (WIND SPEE0 LESS THAN OR EQUAL TO .50 MPH ) Uit

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-15 (Sheet 22 of 40) SUMMER ( JUN 77 AUG.77) 191.0 F7. WIND D ATA STAB!LliY CLASS F CLASS FREQUENCY (PEHCENT) a 7.34 aIND DISIRIHUTION

SUMMARY

(PERCENT FREuuLNCY) WIND SPEED (MILES / HOUR) DIN. CALM C-3 4-7 6-12 13 18 19-24 GT 24 TOTAL N 0.00 74 0.00 74 3.68 0.00 0.00 5.15 NNE 0.00 0.00 74 v.00 1.47 0.00 0.00 2.21 NE 0.00 0.00 74 0.00 0.00 0.00 0.00 7c ENE 0.00 0.co ,74 0.00 0.00 v.00 0.00 74 E 0.00 1.47 2.21 2.21 0.00 0.00 0.00 S.88 ESE u 00 0.00 2.21 0.00 0.00 v.uo 0.00 2.21 SE V.00 0.00 0.00 0.00 0.00 v.00 0.00 0.00 SSE 0.00 v.00 0.00 0.u0 0.00 v.00 0.vu 0.00 3 0.00 v.00 0.00 u.00 0.00 0.00 0.00 0.00 SSa 0.00 1.u7 1.47 1,47 0.00 v.00 0.00 4.41 Sa 0.00 74 6.09 12.50 0.00 0.00 0.00 21.32 WSa 0.00 74 1,47 7.35 2.94 74 0.00 13.24 a u.00 1.47 1.47 2.21 74 74 0.00 6.62 aNa 0.00 0.00 2.94 e.62 5.88 74 0.00 16.18 NW 0.00 0.00 74 4.41 5.15 0.00 0.00 10.29 NNa 0.00 7a 74 2.94 6.e2 0.00 0.00 11.03 TOTAL u 00 7.35 23.53 40.44 dh 47 d.21 0.00 100.00 NUMBEN UF 08 SERV 4TIONs = 13o. Ca CALM (aIND SPEED LESS THAN UH Equal TO .50 MPH ) UIL

NEP 1 & 2 Amendment N12 February 1979 O TABLE 372. 39-15 (Sheet 23 of 40) SUMMER (JUPL 77- AUG 77) 1910 F T WIND DATA STABILITY CLASS G CLASS FREQUENCY (PERCENT) a 8.47 n!ND DISTRIBUTION

SUMMARY

(PERCENT FREWUENCY)

                                *1No SPEED (MILES /HUUk)

DIR. CALM C-3 4-7 6-12 13-18 19-24 GT 24 TOTAL N 0.00 0.00 64 1,91 9.55 64 0.00 12.74 NNE 0.00 0.00 1.27 1.91 1,91 U.u0 0.00 5.10 NE 0.00 0.00 64 1.27 1,91 0.00 0.00 3.82 ENE 0.00 0.00 0.00 3.18 64 0.00 0.00 3.82 E 0.00 0.00 1.27 64 0.00 0.00 0.00 1.91 h ESE 0.00 0.00 1.91 1.27 0.00 0.00 0.00 3.18 SE U.00 64 64 0.00 0.00 0.00 0.00 1.27 SSE 0.00 0.00 64 0.00 0.00 0.00 0.00 64 S 0.00 64 1.91 0.00 0.00 0.00 0.00 2.55 SSa 0.00 64 3.82 .ou 0.u0 0.00 0.00 5.10 Sa 0.00 .ou 3.16 64 64 0.00 0.00 5.10 nSa 0.00 0.00 4.40 1.27 0.00 0.00 0.00 5.73 a 0.00 0.00 1.91 1.27 3.18 0.00 0.00 6.37 aNa u.00 0.00 0.00 6.92 1.27 64 0.00 10.83 Nm u.00 0.00 3.le o.37 1,91 0.00 0.00 11.46 NNa 0.00 0.00 1.27 4.46 14.01 64 0.00 20.38 TOTAL 0.00 2.55 do.75 33.76 35.03 1.91 0.00 100.00 NUMBER OF OBSEkvailuNb = 157 Ca CALM (*IND SPEED LESS THAN OR EQUAL TU .50 MPH ) U ll.

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-15 (Sheet 24 of 40) SUMM E R ( JUN 77. AUG.7 7 ) 1910 FT. WIND D ATA STABILITY CLASS ALL CLASS FkEuutNCY (PEWCENT) = 100.00 a!ND DISiw1HUTION

SUMMARY

(PERLENT FHEUUENCY) alND SPEED (MILE S/Huum) DIR. CALM C-3 4-7 8-12 13-16 19-24 GT 24 107AL N 0.00 .11 43 .el 1.57 49 22 3.62 NNE U.00 .11 54 .o5 59 0.00 0.00 1.89 NE 0.00 11 49 6h 27 0.00 0.00 1.73 ENE 0.00 05 54 59 05 0.00 0.00 1.24 E U.00 .16 49 61 22 0.00 0.00 1.67 ESE U.00 .36 1.24 1.30 22 0.00 0.00 3.13 SE 0.00 05 65 1.19 22 0.00 0.00 2.10 SSE 0.00 05 .38 1.o7 65 32 .u5 3.13 S 0.00 .27 97 3.02 1.51 .38 11 6.26 SSa 0.00 .32 2.05 6.91 4.37 70 38 14.73 Sa 0.00 49 3.56 10.36 8.u7 1.40 16 24.45 aSa 0.00 .16 2.37 3.45 2.54 05 0.00 8.58 a 0.00 .22 1.62 2.32 66 .uS 0.00 5.07 MNa 0.00 .11 1.08 3.o2 2.64 .38 0.00 7.83 Na 0.00 05 66 3.08 3.67 .38 0.00 8.04 NNa 0.00 .22 54 1.94 3.56 27 0.00 6.53 701AL 0.00 2.86 17.61 42.58 31.41 4.43 92 100.00 NUMBEN UF OBSERVATIONS : 1853 Ca CALM (*IND SPEED LESS THAN OR EQUAL TO 50 MPH ) U 11.

NEP 1 & 2 Amendment N12 Februcry 1979 TABLE 372.39-15 9 (Sheet 25 of 40) AUTUMN ( SEP 77.NOV.77 ) 191.0 F T. WIND DATA STABlL!fy CLASS A CLASS FREQUENCY (PERCENT) a 5.96 alND DISINIBUTION

SUMMARY

(PERCENT FREWUENCY) alND SPEED (MILES / HOUR) D!R. CALM C=3 4=7 8-12 13-18 19-24 GT 24 TUTAL N 0.00 0.00 79 U.00 1.57 0.00 0.00 2.36 NNE 9.00 0.uo u.ou 2.36 3.94 1.57 0.00 7.67 NE u.00 0.00 1.57 3.94 2.36 3.15 0.00 11.02 ENE 0.00 0.00 1,57 1.57 u.00 v.00 0.00 3.15 E u.00 0.00 0.00 0.00 79 0.00 0.00 79 h ESE 0.00 0.00 79 7.e7 79 0.00 0.00 9.45 SE 0.00 0.00 0.00 4.72 0.00 79 0.00 5.51 SSE 0.00 v.00 0.00 3.15 79 v.00 0.00 3.94 S u 00 0.00 0.00 79 0.00 79 0,00 1.57 SSa 0.00 0,00 0.00 6.30 1.57 79 0.00 6.66 Sa 0.00 0.00 0.00 5.51 12.60 5.51 0.00 23.62 WSa v.00 0.00 U uo 1.57 v uc 79 0.00 2.36 a 0.00 0.00 0.00 79 1.57 U.00 0.00 2.36

 *Nw           u.00      0.00     v 00       0.00      1,57    2.36      0.00        3.94 Nd           0.00     0.00      0.00          79    5.51     0.00      0.00        6.30 NNa           o.00     0.00      0.00       3.94     3.15     0.00      0.00        7.09 TOTAL           u.00     0.00      4.72     43.31     36.22    15.75      0.00     100.00 NUMBER UF UeSERVAI!UNS a               127 C: CALM (alND SPEED LLSb THAN OR EWuAL TO                 .50    MPs )

A.>l L

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-15 (Sheet 26 of 40) AUTU MN ( SEP. 77- NOV.77 ) 191.0 F T. WIN D D ATA STACILITY CLASS b CLA58 FHFuuENLY (PEkCENT) a 3.85 aIND DISiwlHuTION SUMMA 4Y (PERCENT FREQUENCY)

                                    *IND SPEED (MILES /HOUW)

DIR. CALM C-3 4-7 6 12 13-18 19-24 GT 24 TUTAL N 0.00 0.00 1.22 0.00 0.00 0.00 0.00 1.22 NNE 0.00 0.00 d 44 0.00 2.44 0.00 0.00 4.68 NE 0.00 0.00 0.00 4.68 2,44 0.00 0.00 7.32 ENE u 00 0.00 1.22 1.22 0.u0 0.00 0.00 2.44 E 0.00 v.00 0.00 1.22 0.00 0.00 0.00 1.22 ESE u 00 0.00 0,00 0,00 2,44 u.00 0.00 2.44 SE 0.00 0.00 1.22 0.00 1,22 n 00 0.00 2.44 SSE o.00 0.00 1.22 0.00 v.00 0.00 0.00 1.22 S 0.00 0.00 0.00 1.22 2.44 0.00 0.00 3.66 SSa 0.00 0.00 3.66 e.10 0.00 0.00 0.00 9.76 Sa 0.00 u.00 0.00 7.32 6.54 2.44 0.00 16.29 WSn 0.00 0.00 0.00 0.00 3.66 3.06 4.66 12.20 a 0.00 u.00 1.22 0.00 2.44 0.00 0.00 3.66 aNa 0.00 0.00 1.22 3.66 4.88 3.e6 0.00 13.41 Na 0.00 0.00 2.44 1.22 6.10 1.22 0.00 10.98 NNa 0.00 0.00 0.00 4.86 0.00 0.00 0.00 4.68 TOTAL 0.00 0.00 15.65 31.71 36.59 10.98 4.66 100.00 NUMBER UF U6SERVATIONS a 82. Ca CALM (alND SPEED LESS THAN OR EQUAL TO .50 MPH ) AJ ll

NEP 1 6 2 Amendment N12 February 1979 TABLE 372.39-15 (Sheet 27 of 40) AUTUMN ( SEP 77. NOV. 77) 191.0 FT. WIND DATA SIAHIL11Y CLASS C CLASS FREcutNCY (PERCENT) s 3,90 w]NO DISik1HUTION SUMMAkY (PERCENT FREQUENCV) alND SPEED (HILES/HuuR) OIR. CALH (=3 47 8 12 13 18 14=24 GT 24 TOTAL N u.00 9.00 0.00 1.20 2.41 0.00 0.00 3.61 NNE 0.00 v.oo u.00 1.20 1.20 1.00 0.00 2.41 NE U.00 0.00 1.20 3.61 0.00 2.41 0.00 7.23 ENE u.uo v.00 0.00 0.00 1.do u.00 0.00 1.20 E 0.00 u.on o.00 2.ul v.00 0.00 0.00 2.41 ESE 0.00 0.90 2.ul u.00 1,2o o.00 0.00 3.61 SE 0.00 0.00 2.41 2.41 0.00 0.00 0.00 4.62 SSE u 00 0.00 1.20 1.20 0.00 1.20 0.00 5.e1 S 0.00 0.00 3.61 2.41 0.00 v 00 1.20 7.23 SSd 0.00 0.00 d.41 1.20 1.2c u.oo 0.00 4.82 Sa 0.00 0.00 0.00 1.d0 3.61 0.00 1.20 6.02 WSa 0.00 0.00 1.20 0.u0 e.02 2.41 0.00 9.64 a 0.00 0.00 1.20 1.20 3.e1 3.61 0.00 9.64 aNa 0.00 4.82 0.00 0.00 2.41 0.00 0.00 7.23 Nw 0.00 0.00 3.61 4.82 6.02 1.20 0.00 15.66 NNw 0.00 0.00 e.02 2.41 2.41 0.00 0.00 10.04 TOTAL 0.00 0.00 25.30 30.12 3' 33 10,64 2.41 100.00 NUMBER UF UbSEkvATIONS a 83 Cs CALM (nIND SPEED LESS THAN OR EQUAL TO 50 HRH ) lk

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-15 (Sheet 28 of 40) AUTUMN ( SEP. 77- NOV 77) 191.0 FT. WIND DATA STABILITY CLASS 0 CLA33 FREQUENCY (PERCENT) a 30.42 RIND 01sialduTION

SUMMARY

(PERCENT FNEuuENCY) aIND SPEED (MILES / HOUR) DIR. CALM C=3 47 8-12 13-18 19-24 GT 24 TOTAL N 0.00 .15 .15 1.oS 1.23 u 00 0.00 3.40 NNE 0.00 0.00 46 d.47 3.40 1,39 0.00 7.72 NE 0.00 0.00 .3i 5.56 5.Mo 1.39 2.47 15.59 ENE 0.00 0.00 31 77 2.47 2.16 2.01 7.72 E 0.00 .15 93 93 .uo 1.uS 77 4.32 ESE U.00 .31 1.06 1,39 1.39 0.u0 .35 4.32 SE u.00 62 93 1.u8 1.0A 0.00 0.00 3.70 3SE 0.00 .15 .31 1.08 31 .31 .15 2.31 3 u.00 .15 46 46 62 .15 15 2.01 SSa 0.00 .15 .15 .77 77 62 .15 2.62 Sn 0.00 .15 .u6 2.93 2.78 93 d.10 9.41 nSn 0.00 .15 77 2.16 3.09 1.70 31 6.18 a u.00 0.00 .31 2.01 2.31 3.09 1.23 8.95 nNd 0.00 .15 62 3.66 4.4A .31 0.00 9.41 Na 0.00 .15 46 2.o2 3.09 46 0.00 6.79 NNa U.00 .ed 1.85 u.00 0.00 1.uA 0.00 3.55 TOTAL 0.00 2.31 6.33 31.79 34.ut 13.5H 9.57 100.00 NUMBER OF OBSEkVAlfuNS = 648 Cs CALM (aIND SPEE0 LES5 THaN Ud EQUAL TO 50 MPH ) AJ 11

NEP 1 & 2 Amendment N12 February 1979 O TABLE 372.39-)5 (Sheet 29 of 46) AU TUMN (SEP 77-NOV.77) 191.0 FT. WIND DATA STABILITY CLASS E CLASS &WEuutNCY (PENCENT) a 37.61 WINO DISTRIhu110N SUMMAWY (PERCENT FRFuuENCY) alND SPEEn (MILES /HUUw) DIR. CALM C-3 4-1 6-12 13-13 19-24 GT 24 TOTAL N 0.00 0.00 .e2 1.12 1.37 0.00 0.00 3.12 NNE 0.00 .12 .37 2.50 2.12 12 0.00 5.24 NE 0.00 0.00 87 5.24 2.37 37 0.00 8.66 ENE v.00 0.00 50 1.00 2.12 67 75 5.24 E 0.00 0.00 .50 1.50 1.25 1.25 50 4.99 Ese e.ee .,, .., 1.25 1.3, .Se 12 4.12 till St 0.00 .25 62 .o2 1.12 .d5 25 3.12 SSE U.00 .37 37 75 50 .12 1.50 3.62 S o.00 .32 57 .37 25 .25 1.37 2.75 SSa 0.00 .25 .37 87 1.62 1.75 1.75 6.62 Sa 0.00 .12 1.00 2.62 5.e2 1.75 1.75 12.86 dSa 0.00 .25 1.25 3.00 4.12 1.25 0.00 9.86

  • 0.00 0.u0 1.25 2.25 4.12 62 0.00 8.24 WNa 0.00 .12 1.62 4.49 3.62 .25 0.00 10.11 Na 0.00 0.00 .12 2.62 4.20 50 0.00 7.09 NNa 0.00 0.00 87 2.00 87 0.00 0.00 3.75 TOTAL 0.00 1.87 11.36 32.21 36.70 9.86 7.99 100.00 NUMBER UF UBSERVATIllNS a 801 Ca CALM (alND SPEED LESS THAN OR EQUAL TO .50 MPH )

O AJ 11

hTP 1 & 2 Amendment N12 February 1979 TABLE 372.39-15 (Sheet 30 of 40) AUTUMN ( SER 77- NOV.77) 191.0 FT. WIND DATA STABILITY CLASS F CLASS FHEQUENCY (PEHCENT) = 0.53

                      *IND DISTRIBUTION 

SUMMARY

(PERCENT FREuuENCY) WIND SPEED (MILES /HUUk) DIR. CALM C-3 u-7 e-12 13-16 19-24 GT 24 TOTAL N 0,00 0.00 0.00 0.00 6.40 0.00 0.00 6.40 NNE 0.00 v.00 0.00 99 3.94 0.00 0.00 4.93 NE u.00 49 1.48 2 ub 99 0.00 0.00 5.42 ENE 0.0u 49 0.00 2.46 u.00 0.00 0.00 2.96 E u.00 0.00 49 99 0.00 0.00 0.00 1.48 ESE 0.00 .u9 1.97 49 0.00 v.uo 0.00 2.96 SE 0.00 99 49 0.00 0,00 .u9 0.00 1.97 SSE u.00 0.00 .u9 .u9 0.00 99 1.97 3.94 S o.00 99 .uv 49 u.00 0 u0 0.00 1.97 SSa u.00 .u9 v 00 3.94 1.97 c 00 ,u9 e.90 Sa o.uo 99 d.9e u.93 1.97 u.00 0.00 10.8a wSa 0.00 .u9 99 1.97 2.46 0.00 0.00 5.91

  • U.00 1.97 .u9 3.94 2.96 0.00 0.0u 9.36 wNw o.ou 0.00 49 10.30 99 u.uo 0.00 11.62 Na 0.00 49 99 8.37 3,45 0.00 0.00 13.30 NNa 0.00 .u9 } u8 u.43 3.45 v.00 0.00 9.65 TOTAL 0.00 6.37 12.61 ca.31 28,57 1 u8 2.46 100.00 NUMMER OF UMSERVallONS : 203 Cs CALM (aIND SPEED LESS THAN 04 EQUAL IU .Su MPH )

L)I2.

NEP 1 & 2 Amendment N12 February 1979 O TABLE 372. 39-15 (Sheet 31 of 40) AU TU MN ( S E P 7 7 - NOV. 7 7 ) 191.0 FT. WIND DATA STABILITY CLASS G CLASS FREut ,Y (PERCENT) a 8.73 WINO DISTMlHUTION

SUMMARY

(PERCENT F W E Q Ufi N C Y ) WINO SPEED (MILES /HOUk) DIR. LALM C-3 4-7 8-12 13-18 19-24 GT 24 TUTAL N 0.00 0.00 54 2.15 2.15 54 0.00 5.38 NNE U.00 0.00 0.00 2,15 10.22 0.00 0.00 12.37 NE 0.00 0.00 3.76 2.69 1.08 0.00 0.00 7.53 ENE 0.00 0.00 1.08 2.69 0.00 0.00 0.00 3.76 E 0.00 1.06 3.23 2.69 0.00 0.00 0.00 6.99 ESE 0.00 .54 54 0.00 0.00 0.00 0.00 1.08 SE 0.00 1.61 4.64 0.00 0.00 0.00 0.00 6.45 SSE O.00 1.08 3.23 5u 0,00 0,00 0,00 4.84 3 0.00 0.00 0.00 54 0.00 0.00 0.00 54 SSn 0.00 0.00 1.61 1.08 54 0.00 0.00 3.23 Sm 0.00 0.00 2.15 2.15 54 0.00 0.00 4.e4 wSe 0.00 0.00 54 1.61 54 0.00 0.00 2.69 a 0.00 54 1.06 2.15 2.69 0.00 0.00 6.45 nNa 0.00 0.00 54 3.23 5.91 0.00 0.00 9.68 NW 0,00 0.00 1.06 6.06 1.61 0.00 0.00 10.75 NNn 0.00 0.00 1.06 5.91 5.38 1.08 0.00 13.44 TUTAL 0.00 4.64 25.27 37.63 30.65 1.61 0.00 100.00 NUMBEN UF UBSEEVAllVNS 3 166 C CALM (alND SPEED LESS IMAN Ow EQUAL 10 .50 MPH ) D il.

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-15 Gheet 32 of 40) AUTUMN (SER 77. NOV.77 ) 191.0 F T. WIND DATA STaBILIly CLASS ALL CLASS FREGUENCY (PERCENT) 100.00 alNo OISlHlHUTION SUMMAWY (PERCENT FwEuuENCy) a l t. 0 SPEED (MILES /Huuk) DIR. LALM C-3 47 6-12 13-la 19-24 GT 24 TOTAL N 0.00 .05 42 1.22 1,68 05 0.00 3.62 NNE 0.00 05 36 2.16 3.47 .So 0.00 e.e2 NE u.00 .05 1.03 4.o9 3.10 85 75 10.47 ENE U 00 05 .52 1.22 1.60 99 69 5.26 E u.00 .14 40 1.31 66 .oo 42 4.13 ESE 0.00 . 2 6- 94 1.41 1.13 .19 09 4.04 SE 0.00 .52 1.13 94 80 .19 09 3.66 SSE 0.00 .28 .oo 94 33 26 60 3.d9 3 0.00 .19 47 .56 38 .19 61 2.39 SSN 0.00 .10 56 1.69 1.22 89 75 5.31 Sa 0.00 .19 99 3,19 4.41 1.36 1.36 11.50 wSa 0.00 .19 .o9 2.21 3.15 1.27 26 7.98 a 0.00 .25 60 2.11 3.10 1.31 36 7.93 WNa 0.00 09 94 4.46 3.71 47 0.00 9.67 NW 0.00 09 61 3.57 3.o0 42 0.00 8.50 NNa 0.00 05 99 2.77 1.74 09 0.00 5.63 TOTAL 0.00 2.e3 12.11 34.46 34.46 9.91 6.43 100.00 NUMBER OF USSERVA1}UNS a 2130 Ca CALM (*IND SPEED LtSS THAN OR EQUAL *TO .50 MPH ) A)l2.

NEP 1 & 2 Amendment N12 February 1979 O TABLE 372.39-15 (Sheet 33 of 40) ANNUAL ( DEC. 76 - NOV 77) 1910 FT WIND DATA 8TAHIL!!Y CLASS & CLA35 <aEt;UtNCY f P E H L t' r: 1 ) = 10.56 al~o 01siwleu11uN SUM *A4r (PEkCENT F-EwUtNCf) alNi> 3PEEu (MILES /Muuw) DIN. CALM C-3 4-7 a-12 13-1M 19-24 67 24 TOTAL o.v0 't . 6 o 35 1.16 70 0.00 0.00 2.20 NNE o.uo 0.00 23 70 93 25 o,uu d.v9 Nt o.uo 0.00 .35 1.dx 1.51 56 0.00 3.71 ENe v.00 v.oo .35 , . i t- 23 12 n 00 1.66 u..u s ESE _.e., 0.00 e . e ,. 0.00

                                 .,e 5e        3.?5 6,        .,o 54 e.oe
                                                                     .12       0.00
                                                                                          ,.o2 4.52 SF       v.ov        u.co       35        3.25           12        .12       0.00       3.oT SSE       1.90        0.00      .12        d.>o           46      0.00        0.00       2.o7 S      o.ou        u.o(        12       2.20        1.to         .12       0.ov       3.60 334       v.oo        u.00      .23        1,68        5.10          61       o.uv      13.23 S*       O.00        o.vo      .12        5.ob       12.30       d.32           23     20.65
 *Sa       0.u0        0.00     0.00        1.16        2.32       d.44        1.le       7.08 a      0.00        0.00        12           46         70         7o          93      2.90 MNa       0.uu        o.00      .12            46      2.7M       2.32           70      e.38 Na       u.00        0.00       35        1.51        7.co        3.13       1.39      14.04 NNa       o.00        0.00        35       2.32        u.ob       2.20         ,70       9.63 TOTAL       0.00        u.00     3.63      34.57        41.30      15.20        5.10     100.00 NU"HER OF tiHSERVATTONS :             362 Cs CALM (alND SPEED LESS THAN Ow Euual TO                       50    MPa )

A)l1

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-15 (Sheet 34 of 40) A NNU A L ( DEC. 76- NOV. 77) 191 O F T. WIND DATA ST461LIIY LLASS 4 CLASS FWEuutNCY (PEWCENT) = 4.91 also DISI*1HUTitN SUPMAWY (PEWCEr.T F d E uut edC Y ) a l ra u SPtt0 (MILES /Huuw) DIR. CALM C-3 4-7 6-12 13-16 19-44 GI du TUTAL N U.00 0.00 .d5 1.25 0.00 .d5 v.00 1.75 NNE 0.00 0.00 75 0.00 1.90 v.oo 0.00 1.75 NE 0.00 0.00 50 d.75 1.50 .25 0.0u 5.00 ENE o.00 0.00 50 50 0.uo 0.00 v.ou 1.00 E o.00 e.oo c.co 75 25 v.v0 0.00 1.00 ESE o.0e v.00 75 .25 1.00 25 v.vu d.25 SE o.uo u.oo 1.75 75 .25 v.co v.00 d.79 SSE o.oo v.ou 1.vo 2.00 1.00 0.00 U.ru 4.40 S 0.00 0.90 75 3.0u 1.25 25 0.00 5.45 SSa o.00 0.uc 1.75 5.25 2.00 0.00 u.vu 9.t0 Sa o.vu u.00 .50 5 S0 4.25 1.50 v.00 11.79 aSa 0.00 u.vo .d5 2 vu 3.25 2.25 1.d5 9 vo a 0.00 0.00 .50 .50 3,25 3.50 15 6.50

 =N4          0,JO        U.00      1.50       3.00      4.vo     d.75        50      11.75
t. . o.ou o.00 d.vo 1.75 e.uc 5.50 1.00 16.25 NNw 0.00 0.00 1.00 3.00 .$o 1.00 1.50 7.00 TOTAL 0.vu u.oe 13.15 32.25 31.50 17.50 5.0v 100.00 NUMot < UF uestmvalloNd = uve.

C: CALu (WIND SPE E!. LtSS I n A r. OM t 4t?J L ,10 40 MPH 3 AJ12_

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-15 O (Sheet 35 of 40) ANNU AL ( DEC. 76 - NOV. 7 7) 191.0 F T. WIND D ATA STABILITY CLASS C CLASS FREvutNCY (PENCLNT) = 4.43 w1ND DistwIeuTION SueARf (9twCENT FwEuuENCY) alND SPEFD (MILES /HUUR) DIR. CALM C-3 4-7 o-12 13-18 19-24 GT 24 TUTAL N 0.00 v.oo 28 1,39 1.90 0.00 0.v0 3.60 NNE 0.00 0.00 0.00 1.!! 1.30 .28 0,00 2.77 NL 0.u0 0.00 63 1.66 83 .e3 0.00 4.16 ENt u.00 0.00 55 0.00 55 v 00 9.00 1.11 L 0.00 v.00 55 55 e.uo v.uo 9.00 1.11 LSE u.ou v.0" 1.39 .55 28 0.o0 v.vu 2.22 SE J.00 U.00 1.ce 1.11 0.00 0.00 0.u0 2.77 SSE o.00 0.ub 1.34 1.6o 26 .55 0.00 3.68 S v.00 .55 1.oo 2.22 .e3 v.uo 2d 5.54 SSa 0.u0 0.00 2.22 3.ne 1.06 .28 v.00 1.7n Sa 0.00 e.00 1.11 5.26 3.32 .a3 .de Iv.co nSa 0.00 U.00 1.66 1.11 4.71 1.39 u,0v 6.66 a 0.00 .2A 1.39 1.94 2.*9 4.43 0.ov 1o.53

 =Na           0.00       0.00     .55      3.32      3 v5    1.94      1.39       lu.25 Na           o.00       0.00    1.9u      4.71      6.93    1,39         55      15.51 NNw           o.00       0.00    2.77       1.11     3.05    1.39         63       9.10 TOTAL           a.00           63 19.94     31.30     31.30   13.30      3.32      100.00 e.u M E N l'F ueSLRvaTTOsd =           3el.

Cm CAL" (alND SPELD LESb IHaN Uk twvat to .C, MPH ) A>l2.

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-15 (Sheet 36 of 40) ANNU A L( DEC. 7 6- NOV. 7 7 ) 191.0 F T. WIND DATA S1A6fLITY LLASS i) CLAoS FwEdutoCY ( F ~. n C t r ' ) = 32.31 alND D I S 1 H l e v i l(lo

SUMMARY

(PERCENT FMEuutNCY) alNu SPt t o (MILES /Muum) DIR. CALM C-3 4-1 4-12 13-18 19-24 f1 d4 TOTAL N 0.u0 11 42 95 .oa .et 42 3.34 NNE O.00 .UP 42 1,37 1.5o .u2 11 3.95 NE 0.00 .oo 34 2.32 2.89 53 01 6.77 ENE v.ou 94 .30 42 1.52 1.29 49 4.07 E e.00 11 36 .55 41 61 3e 2.93 ESE , ou .14 .o1 1.06 .e4 .nd 19 3.57 S E. 0.00 .23 57 3" .de 11 U.vu 1.75 SSE 0.00 .04 3x .uw ,38 .11 00 1.4A S 0.00 .o8 .oS l.17 72 ,vu 15 3.00 SSo v.00 .u8 .e0 1.9u 1.4u 49 3o 5.11 Sa v.00 .23 1.10 3.o1 3.19 1.10 45 lu.la

 >Sn          0.00           06      1.22          1.40      2.89    1.71            91       c.74 a         U 00          .11         61         1.98      4.e2    3.04        1.10        11.13 MNn          U.00         .19          76         2.93      4.90   2.05             49      11.32 NW          U 00            11       .oS         3.57      6.Mo    3.27        1.10        15.50 NNa          0.00         .vu          53         1.33      3.12    1.lu        1.c3         7.18 TOTAL          u.00        1.75       9.73         2o.18   36.o6    17.21         6.47      10u.00 NUMBER UF UdSERVATIONb =                 2632.

Cs CALM (WIND SPEEP LESS 1HAN Ok EGUAL ID

  • 5u MPH )

AJ 12.

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-15 O (Sheet 37 of 40) AN NUA L ( DEC. 7 6- NOV.77) 19 8.0 F T. WIND DATA STABILITY CLASS E CLAD 3 FHEUUENCY (PERCENT) : 30.64 aINO DISiklHUTION

SUMMARY

(PERCENT FRE90ENCf) alNO SPEEu (MILES /HilVR) DIR. CALM C-3 4-7 H-12 13-16 19-24 GT 24 TUTAL 4 0.00 0.00 36 1.00 1.06 .12 .lo 2.72 NNE o.uo 24 .20 1.08 1,29 .ue 12 2.92 NE 0.00 08 .co 2.44 1.e4 24 0.00 5.01 ENE o.00 .o4 .36 1.06 1.16 .36 3d 3.33 E 9.00 0.00 .52 1.00 72 56 .d4 3,04 ESs e.ee .3, ,.e4 .,2 72 .de 3o 3.s, till SE o.00 .th 66 7o . e ts .16 52 2.68 SSE u.00 .29 40 60 .d8 .24 9e d.68 d v.00 .12 .oo 72 .So .ue .So 3.04 SSa o.uv .24 1.20 d.lo 1.du 1.00 7o 6.61 Sa 0.00 .2e 2.00 S.vo 4.53 1.u4 1.04 14.38 wSa u.00 .20 1.lo 4.o9 4.17 1.e4 40 12.66 a v.0u 04 1.12 u.v1 4.09 .nu .u6 10.78 dNa 0.00 .12 3.57 32 1.40 4.53 .du 10.14 Na 0.00 .o8 72 4.13 4.61 .36 04 4.94 NNa 0.00 .20 .ou 2.oS d.48 .24 04 e.09 TOTAL o.ou 2.32 14.22 36.70 32.65 6.49 5.o1 tou 00 NUMstH OF USSERyallut.$ a 2496 C: CALM (alND SPEto LES5 IMaN ud tuvat To 50 New ) O 1)lt

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-15 (Sheet 38 of 40) AN N UAL (DEC. 76- NOV 7 7 ) 191.0 F T. WIND DATA STA61LIlv CLASS F CL A 38 k HEl.tIENC Y (PENCENT) : A.70 nINn OISTRISutlON SU*HARY (PERCFNT FREubEntf) alNO SPtE D ( MIL E S / Hut'W ) DIR. CALM C=3 4=7 d-12 13-1M 19-24 GT 24 TUTAL N o,no 14 71 99 2.n2 14 0.00 c.oo NNt 0.00 v On 56 71 1.97 U.00 U.00 3.24 NE v 00 14 45 .v9 71 o.00 0.00 2.6A ENE o.00 14 .56 <./o 2E 0.00 0.0u 3.24 E 0.00 71 . ri 5 99 14 v.00 c uv 2.6A ESE 0.00 .lu 1.41 56 v.uo 0.00 14 2.26 St o.00 .58 42 28 14 42 85 2.oa SSE 0.00 0.00 .lu 42 14 .ud 1.97 3.10 S 9.00 42 65 .26 v.00 .lu ,11 2.uo SSa 0.00 71 1.13 1.o3 71 14 .14 *.65 Sa o.00 71 d.96 5.c4 71 9.00 0 u0 10.01 aSa o.00 28 2.oe o.77 3.24 42 0.00 13.40 a v.00 99 1.97 o.63 3.61 2H 0.uu 13.68

 >Nw         o 00      0.00     1.e3        7.05      2.54        .lu      v.oo       11,57 N4         v.00        .14    1.27        4.94      3.53       0.00      0.00        9 e7 NNW         V 0V        .28    1.69        3.67      4.09       0.00      0.00        9.73 TOTAL         u.00      5.36    19.89       04.01     24.82       2.12      3.61      100.00 N ij M B E R UF U6SERvATIONS =        709 Ca CALM (MIND SPEED LESS THAN UR EGUAL .TU                  .Sv    MPH )

AJ 1"L

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-15 O (Sheet 39 of 40) ANNUAL ( DEC. 76 NOV. 7 7) 191.0 FT. WI ND DATA SIAalLIIT CLASS 1. CLAs3 F k E ul'E"L Y (PEWCtNT) = 8.we alND I;ISiwlHUilUo SU'MAwf (ALWCENT F a Eisut* c y )

  • I r. D SPEF0 (MILES /Muuw)

DIN. LALr c.3 u-7 e.12 13-18 19-24 GI 24 TOTAL

    '1       0.00         73     1.02        2.o2     5.o9          44     v.ou       10.50 NNE         o.uv          15    1.92        1.90     3./9       0.00      o.uv        6.85 NE         o.00      0.00      1.31        1.31     1.31       0.00      v.00        3.94 ENE         o.00      0.00      1.02        1.75        58      0.00      0.00        3.35 E        u.ou        .53     1.31        1.31     0.00       0.00      0.00        3.21 e.E         e.e4        .2       .,3         ... e.ee       e.oe      <, . e .     ....       till SE         0.09         73     1.6u         .15     0.00       0.00           15     2.o2 SSE         v.00       .71      1.31         .15     0.00       0.00      0.00        2.19 3        0.00         29     1.02         .29     0.00       0.00      0.00        1.60 SSa         o.00       .uu      1.75        1.02        15      v.00      v.oo        3.35 Sa         u.00         44     1.90        1.31        29      0.00      v.vu        3.94 ASa         0.00       .56      2.77        4.23        15      0.e0      0.00        7.73 a        0.00       .15      3 o4        S.98     2.0a        .15      0.0v       11.95 HNa         u.00       .15      1.31        o.27     3.35          29     e.00       11.37 Na         0.00      0.00     2.19         7.00     3.e4       0.00      0.00       12.83 NNm         v 00      0.00     2.77         4.52     S,39          44     0.00       13.12 TOTAL         0.00      5.25    26.66        40.23    26.38       1.31        .13     100.00 NUMBER UF UBSERvaTIONS a               666 Cs CALM (aIND SPEED LESS THAN OR EQUAL TO                   .50    MPH )

O A>t1.

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-15 (Sheet 40 of 40) ANN U AL( DEC. 76 - NOV 77 ) 191. O FT. WIND DATA STABILITY CLASS ALL CLASS FREuuENCY (PERCENT) = 1u0.00 aINO DIS 1RieuTION SUM *AdY (PERCENT FREQUENCY) aIND SPEE0 (MILES /MUUR) DIR. CALM C-3 4-7 6-12 13-18 19-24 GT d4 TUTAL N U.00 .11 45 1.17 1.49 .29 16 3.70 NNE 0.00 11 39 1.12 1,57 20 07 3.46 NE 0.00 05 58 d.04 1.o8 36 20 5.u9 ENE 0.00 0a 43 46 97 54 .de 3.19 E e.00 .15 50 62 61 . 57 40 2.65 ESE 0.u0 .20 66 1.v3 61 37 .16 3.25 SE 0.00 .23 76 .o2 .u3 .la .15 2.57 SSE 0.00 .14 49 79 33 17 44 d.41 S u.00 .15 66 1.19 .e3 .do 29 3.13 SSa v.00 .Re 1.08 2.70 1.63 5A .37 o.56 Sa v.00 .26 1.47 4.43 c.lo 1.15 .oo 12.1u aSa 0.00 .18 1.49 3.2e 5.12 1.52 .eu 10.18 a v.00 .16 1.30 3.11 3.46 1.12 54 10.29 aNa v.00 .11 1.ve 3.d2 3.e1 1.26 3e lu.u3

e. t 0.00 07 95 3.a9 5.73 1.e3 59 13.06 NNa e.UU .le 46 2.39 3.11 .e2 .53 7.91 TOTAL v.00 d.22 13.4d 33.55 33.Su 11.51 5.73 100.00 Nuhotw UF tsHbEh v a f IUNS = alu6 C: CALM (aIND SPEED LtSS THAN Uk ELUAL TO .50 MPs )

fJ ll

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-16 O (Sheet 1 of 8) JOINT FREQUENCY DISTRIBUTION OF 300 FT. WIND DIRECTION AND WIND SPEED BY STABILITY CLASS NEP 1 & 2 SITE DATA (DEC. 76 - NOV. 77) ANNU AL ( DEC. 7 6 - t0V.77 ) 300.0 FT. WIND DATA STABILITY CLA88 A CLASS FREQUENCY (PERCENT) a 1.36 WIND DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY) MIND SPEED (MILE 8/ HOUR) DIR. CALM C=3 4=7 8=12 13-18 19=20 GT 24 TOTAL N 0.00 0.00 0.00 1.74 87 87 0.00 3.48 NNE 0.00 0.00 0.00 0.00 67 0.00 0.00 87 NE 0.00 0.00 0.00 87 3.48 5.22 0.00 9.57 ENE 0.00 0.00 0.00 0.00 1.74 1,74 0.00 3.48 E 0.00 0.00 0.00 0.00 2.61 0.00 0.00 2.61 ESE 0.00 0.00 0.00 9.57 2.61 0.00 0.00 12.17 SE 0.00 0.00 0.00 6.09 0.00 0.00 0.00 6.09 SSE 0.00 0.00 0.00 87 1.74 0.00 0.00 2.61 S 0.00 0.00 0.00 87 '0.00 0.00 0.00 87 SSw 0.00 0.00 0.00 87 7.83 87 0.00 9.57 Sa 0.00 0.00 0.00 87 9.57 2.61 4.35 17.39 nSM 0.00 0.00 0.00 0.00 87 e.09 6.09 13.04 W 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 WNN 0.00 0.00 0.00 0.00 1,74 0.00 0.00 1.74 Nw 0.00 0.00 0.00 0.00 6.96 1.74 0.00 8.70 NNW 0.00 0.00 0.00 87 2.61 4.35 0.00 7.83 TOTAL 0.00 0.00 0.00 22.61 43.48 23.48 10.43 100.00 NUMBER UF UBSERVATIONS = 115 Cs CALM (w!NO SPEED LESS THAN OR EQUAL TO .50 MPH )

                                                                                              /U n_

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-16 (Sheet 2 of 8) ANNUAL ( DtC. 76- NOV.77) 300 0 FT. WIND DATA STABILITY CLASS 8 CLASS FREQUENCY (PEHCENT) s 3.01 nIND DISTRIBUTION

SUMMARY

(PERCENT FREuutNCY) WINO SPEED (MILLS /HOUH) DIR. CALM C-3 4-7 8-12 13-18 19-24 GT 24 TOTAL N 0.00 0.v0 0.00 1.97 2.36 1.18 0.00 5.51 NNE 0.00 0.00 0.00 0.00 1.57 0.00 0.00 1.57 NE 0.00 0.00 0.00 39 1.18 1.57 0.00 3.15 ENE 0.00 0.00 0.00 79 39 0.00 0.00 1.18 E U.0u 0.00 0.00 1.57 0.00 0.00 0.00 1.57 ESE 0.00 0.00 39 2.36 79 0.00 0.00 3.54 SE 0.00 0.00 0.00 3.94 0.00 0.u0 0.00 3.94 SSE 0.00 0.00 0.00 2.36 79 0.00 0.00 3.15 3 0.00 0.00 39 39 39 0.00 0.00 1.18 SSa 0.00 0.00 0.00 2.76 3.54 39 0.00 6.69 Sa 0.00 0.00 39 2.76 7.48 3.15 1.57 15.35 MSN 0.00 0.00 0.00 1.18 5.12 5.51 1.57 13.39 W 0.00 0.00 0.00 0.00 39 0.00 1.16 1.57 MNW 0.00 0.00 0.00 0.00 3.54 79 2.36 6.69 Nm 0.00 0.00 0.00 1.18 8.27 8.27 3.94 21.65 NNH 0.00 0.00 39 1.57 5.51 1.97 39 9.84 TOTAL 0.00 0.00 1.57 23.23 41.34 22.83 11.02 100.00 NUMBER UF OB8ERVATIONS a 254 Ca CALM (WIND SPEED LE88 THAN OR EQUAL TO .50 MPH ) fun

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-16 O (Sheet 3 of 8) AN NUAL ( DEC.76-NOV.7 7) 3 00 0 F T. WIND DATA STABILITY CLASS C CLASS FREQUENCY (PERCENT) a 5.77 WIND DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY) WIND SPEED (MILES / HOUR) DIR. CALM C=3 4=7 8-12 13-18 19-24 GT 24 TOTAL N 0.00 0.00 82 2.66 82 0.00 20 4.51 NNE 0.00 0.00 0.00 82 1.02 0.00 20 2.05 NE 0.00 0.00 20 1.64 82 61 0.00 3.28 ENE 0.00 0.00 61 82 41 0.00 20 2.05 E 0.00 0.00 20 61 82 0.00 0.00 1.64 ESE U.00 0.00 41 41 82 0.00 0.00 1,64 SE 0.00 0.00 82 1,64 0.00 0.00 0.00 2.46 SSE 0.00 0.00 0.00 1.23 0.00 0.00 0.00 1.23 S 0.00 0.00 0.00 2.05 20 0.00 0.00 2.25 SSn 0.00 0.00 0.00 4.51 3.69 .20 20 8.61 SM 0.00 0.00 0.00 4.10 4.30 2.46 1.02 11.89 WSn 0.00 0.00 0.00 1.64 7.17 3.69 82 13.32 w 0.00 0.00 0.00 82 1,64 2.46 2.25 7.17 MNa 0.00 0.00 20 1.02 4.30 4.71 1.64 11.89 Nw 0.00 0.00 82 2.66 8.61 4.51 3.28 19.88 NNw 0.00 0.00 41 1.84 2.25 1.64 0.00 6.15 TOTAL 0.00 0.00 4.51 28.48 36.89 20.29 9.84 100.00 NUM3ER OF OBSERVATIONS a 488 Cs CALM (wlND SPEED LESS THAN OR EQUAL TO .50 MPH ) U n_

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-16 (Sheet 4 of 8) ANNU A L ( DEC. 76. NOV.77) 300 0 F T. WIND DATA STABILITY CLASS 0 CL ASS FREQUENCY (PEHCENT) a 40.14 aIND DISTHI8UTION

SUMMARY

(PERCENT FREQUENCY) MIND SPEED (MILES /HOUW) DIR. CALM C=3 4=7 6-12 13-18 19-24 GT 24 TUTAL N 0.00 06 47 1.30 1.30 .59 44 4.16 NNE 0.00 09 .29 97 1,74 .53 44 4.07 NE 0.00 0.00 29 1.50 2.56 91 53 5.61 ENE 0.00 0.00 41 65 1.41 1.36 1.06 4.89 E 0.00 .12 38 47 65 83 80 3.45 ESE 0.00 .12 41 80 47 44 50 2.74 SE 0.00 0.00 65 .53 .53 27 03 2.00 SSE 0.00 .18 41 .56 21 06 06 1.47 3 0.00 06 77 97 47 .18 12 2.56 SSW 0.00 03 77 1.62 1.24 .56 .35 4.57 Sw 0.00 06 65 2.06 3.54 1.74 65 8.90 WSW 0.00 0.00 74 2.33 4.86 2.42 1.30 11.64 w 0.00 .12 68 1.53 2.83 3.30 1.83 10.29 WNw 0.00 .12 68 1.27 3.42 2.65 1.12 9.25 NW 0.00 06 65 2.80 6.45 3.98 2.59 16.53 NNw 0.00 .03 50 1.18 3.09 2.24 62 7.66 TOTAL 0.00 1.03 8.96 20.54 34.98 22.05 12.44 100.00 NUMBER OF OBSERVATIONS a 3393 Ca CALM (WIND SPEED LESS THAN OR EQUAL.TO 50 MPH ) Ull.

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-16 9 (Sheet 5 of 8) ANNUAL ( DEC. 76. NOV. 77 ) 300.0 F T. WIN D DATA STABILITY CLASS E CLASS FREQUENCY (PERCENT) a 33,13 WIND DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY) nIND SPEED (MILES / HOUR) DIR. CALM C=3 4=7 6-12 13=18 19-24 GT 24 TUTAL N 0.00 .11 25 75 1.54 46 07 3.18 NNE 0.00 04 21 32 68 36 0.00 1.61 NE 0.00 0.00 .11 71 1.64 43 04 2.93 ENE 0.00 04 .25 93 1,79 50 07 3.57 E 0.00 .07 25 96 1.00 61 11 3.00 ESE 0.00 .25 .e8 96 46 29 50 3.14 SE 0.00 .11 71 68 82 25 25 2.62 SSE 0.00 07 32 57 50 .18 93 2.57 3 0.00 .11 43 82 50 50 1,29 3.64 SSN 0.00 .25 .36 1.25 1.43 1.04 57 4.89 Sn 0.00 .25 1.11 3.64 5.71 2.54 2.04 15.29 nan 0.00 .25 1.11 4.89 7.25 3.36 1.39 18.25 d 0.00 .14 66 2.71 4.07 2.39 32 10.50 MNn 0.00 04 64 2.25 4.64 64 07 6.29 Nn 0.00 .11 68 2.50 6.00 1,43 04 10.75 NNW 0.00 .04 .36 1.32 3.04 71 11 5.57 TOTAL 0.00 1.86 8.32 25.29 41.07 15.68 7.79 100.00 NUMBER UF OBSERVATIONS s 2800 } Ca CALM (nIND SPEED LESS THAN OR EQUAL TO .50 MPH ) 1u :2.

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-16 (Sheet 6 of 8) ANNUAL ( DEC 76 NOV 77) 300.0 F T. WIND DATA STABILITY CLASS F CLASS FHEuuENCY (PERCENT) a 10.04 WIND DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY) nIND SPEED (MILES / HOUR) DIR. CALM Ce3 4-7 8-12 13-18 19-24 G T 24 TUTAL N 0.00 .24 1.16 1.65 3.53 1.88 0.00 8.48 NNE 0.00 .12 35 71 94 2.47 0.00 4.59 NE 0.00 .35 .35 47 94 71 12 2.94 ENE 0.00 0.00 24 1.06 71 12 71 2.63 E 0.00 .12 .12 94 62 0.00 0.00 2.00 ESE 0.00 .12 71 47 24 0.00 12 1.65 SE 0.00 .24 82 59 0.00 .12 .12 1.68 SSE 0.00 .12 59 .35 24 .24 71 2.24 S 0.00 .24 1.18 71 24 24 1.30 3.89 SSw 0.00 .35 71 1.41 59 24 1.06 4.36 Sh 0.00 .24 82 2.94 3.30 47 0.00 7.77 MSW 0.00 .24 2.00 5.54 6.48 1.88 59 16.73 w 0.00 24 82 5.06 5.77 2.00 24 14.13 WNw 0.00 .24 .71 2.12 3.18 59 0.00 6.8f NW 0.00 0.00 71 3.06 5.30 1.30 0.00 10.37 NNW 0.00 0.00 1.06 2.71 4.12 1.41 0.00 9.31 TOTAL 0.00 2.83 12.37 29.80 36.40 13.66 4.95 100.00 NUMBER OF OBSERVATIONS s 849 Cs CALM (MIND SPEED LESS THAN OR EQUAL TO -

                                                          .50    MPH )

A> l2.

NEP 1 & 2 Amendment N12 February 1979 O TABLE 372.39-16 (Sheet 7 of 8) ANNUAL ( DEC. 76- NOV. 77 ) 300.0 F T. WI N D D ATA STABILITY CLASS G CLASS FREQUENCY (PERCENT) = 6.54 MIND DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY) WIND SPEED (MILES / HOUR) DIR. CALM C-3 4-7 8-12 13-18 19-24 GT 24 TOTAL N 0.00 0.00 1.08 1.81 4.70 2.53 0.00 10.13 NNE 0.00 .18 0.00 1.27 1.27 2.35 0.00 5.06 NE 0.00 .18 54 1.08 4.70 1.45 16 8.14 ENE 0.00 .36 54 1.27 1.27 .18 0.00 3.62 E 0.00 0.00 90 72 90 0.00 0.00 2.53 E8E 0.00 .18 72 90 0.00 0.00 0.00 1.81 SE 0.00 .36 90 0.00 0.00 0.00 0.00 1.27 SSE 0.00 0.00 1,81 0.00 0.00 0.00 90 2.71 S 0.00 .36 2.35 1.45 0.00 0.00 0.00 4.16 SSW 0.00 0.00 1.27 2.71 .18 0.00 0.00 4.16 SW 0.00 .18 1.27 2.35 .Su 0.00 0.00 4.34 WSM 0.00 .18 1.27 2.89 3.80 0.00 0.00 8.14 W 0.00 .36 2.17 3.98 3.07 1.27 18 11.03 WNW 0.00 .18 90 3.07 2.53 2.71 0.00 9.40 NW 0.00 .36 1.08 3.98 3.80 1.81 0.00 11.03 NNW 0.00 .18 72 4.88 3.98 2.71 0.00 12.48 TOTAL 0.00 3.07 17.54 32.37 30.74 15.01 1.27 100.00 NUMBER OF OBSERVATIONS a 553 Ce CALM (WIND SPEED LESS THAN OR EQUAL TO .50 MPH ) A.J n_

NEP 1 & 2 Amendment N12 February 1979 TABLE 372.39-16 (Sheet 8 of 8) ANNU AL (DEC. 76- NOV. 7 7) 300.0 FT. WIND DATA STABILITY CLASS ALL CLASS FREQUENCY (PERCENT) a 100.00 WIND DISTRIBUTION

SUMMARY

(PERCENT FREQUENCY) WIND SPEED (MILES / HOUR) DIR. CALM C-3 4=7 8-12 13-18 19-24 GT 24 TOTAL N 0.00 .08 51 1.29 1,82 79 21 4.71 NNE 0.00 07 22 70 1.22 73 19 3.14 NE 0.00 05 24 1.08 2.11 63 25 4.54 ENE 0.00 04 .34 83 1.37 76 53 3.87 E 0.00 08 .32 73 90 53 35 2.92 ESE 0.00 .15 54 97 47 .27 38 2.79 SE 0.00 .08 69 79 49 20 11 2.35 SSE 0.00 .11 45 60 32 .11 46 2.05 S 0.00 11 73 97 40 26 69 3.08 SSw 0.00 .13 58 1.74 1.47 63 45 4.99 SW 0.00 .14 89 2.82 4.28 1,86 1.10 11.09 wSn 0.00 12 95 3.43 5.83 2.73 1.dd 14.28 w 0.00 .14 78 2.33 3.37 2.54 1.04 10.21 WNw 0.00 .09 63 1.73 3.77 1.81 64 6.67 NW 0.00 .08 .67 2.71 6.20 2.85 1.36 13.68 NNW 0.00 0c .51 1.67 3.25 1.67 30 7.43 TOTAL 0.00 1.51 9.05 24.38 37.28 18.58 9.19 100.00 NUMBER UF UBSERVATIONS a 8452 Ca CALM (nIND SPEED LESS THAN OR EQUAL TO .50 MPH ) u n.

TABLE 372.39-17 (Sheet 1 of 6) SECTOR DEPENDENT ACCIDENT DILUTION FACTORS FOR THE EXCLUSION RADIUS (649.2 METERS) CROUND LEVEL RELEASE NEP 1 & 2 SITE DATA (DEC. 76 - NOV. 77) Hourly Averages for the 1 Hour Accident Meteorology DISTANCE prACEN7' GRCUND-LEVEL ~~CHT/0 tSEC7"31 Ga wwa twi7tr7str/=31--- SECTrp (PETFRS) AnINT fpLtlME CENTERLINF MODEL) (SFCTCP AVFRaGF "CnEl 3

                             ~
t. e>40.7 on.6a~ t '. 6 6 3 P E-0 5 -- ~ ~- 3U 25EE -

ME e40.7 *s.7A P.4154F-on 4.3901E-o; AF eo9.? 47.n7 3.37AaE-Oc 5.I175E-n; 2 FAF 64o,2 46.47 P.1622E-04

                                                                            - ~ ~ -
                                                                                          ~ ~-'T o o 5 4 E - 0 9~ ~ ~-
                                                                                                                         ~

m F eco.? 06.47 3.0372E-04 4.lol3E-05 ESF euo.? 07.16 3.1083F-00 3.5566E=ns ~ SE 800.2 47.07 3.&2ALF-04 c ono3AE-ns e SSF mao.? c5.7A 3.3PAAE-no c.ca57F=cE N S e40.7 on.?S T.3361F=04 4.636SE-05 SS* e44.7 o3.51 T.331AE-04

                                                                                    ~ ~

a;51onE-nM S* 600.? oa.os P.8657E-04 4.572PE-05 aS. eso.2 40.67 7.226PF=ou 3,co75E-05

  • auo.) an,5, ,,4117r-04 ~3.4401F-PE
    ***         eco.?     sa.at                        t.667pE-0U                               4.n365F-o%
       ..       evo,7     a7.sp                        1.628EE=oc                               T.3Ta7E-nE N*.c        acc.?     sa.10                        1.AotAE-04                               c'Sca6E-n4 CRTTTCAL SFCTro                                         3,37p4F-04                               s.1175E-n5 Ull IN eo C  C.

48 mo e~ O O O

TABLE 372.39-17 (Sheet 2 of 6) 2 Hour Averages for the I to 2 Hour Accident Meteorology DTSTANCE PFRCENT GurUNO-LEVEL ~ CHI /C (SEC/=31 GA**A tMf7C tSEC/"31 SECTCQ f>ETERS) DOINT f PL UE C E N T E RL I NE NCDE L ) (SECTOR AVECAGE = 0 D E t. ) N 600.7 00.60 ~ t . 0 0 a c E- 0 3--~~ F.26U3E-n5

     **F        aco.P        os.7A                          1.c776E=nc                                      P.8190E=n5
       *; F     6n0.2        07.e?                          7.200nE-no                                      3.1176E-os ENE        640.2        96.07                          1.4187E=na
                                                                                             ~~~ ~  -- ~~
2. 5 4 6 2 E - 0 5 E 6a0.2 c6.47 1.695PE=0c 2.7910E-65 ESE Aco,P 97.16 2.0387E=na 2.5n70E-65 m SE 640.2 07.n; p.13 nae-na -7,$t3pF=ns N SSF Aco.P c5.76 P.m761E=nd 2.P10?F=09 ""

5 600.2 ca.2m P 7917F=no 3. c T n 1 F.~ n s e SSW Aco.7 CT.51 7.5651E-no - 2.9956E=n3 w S* 640.? 00.05 1.A6TTE-no 2.9ac1E-05 RW eno.7 00.67 1.3741E-nu 2.6n45E-65 a Ano.2 mA.51 1.1729E-nc p.ats5E=ns

      *.        eco,p        an at                          o.%;poE-n5                                      P.53mSE-n%

e, 1.npoTE-nu eno.2 a7.67 2.67 ace-n5 N** 600.7 ma.1o 1.336cF=nc  ?.6796E=n3 CRITICAL RFCTro 2.A761E=nu 3.43n1E=n; Ull to h R8 8& Q9" oo

TABLE 372.39-17 (Sheet 3 of 6) 8 Hour Averages for the 2 to 8 Hour Accident Meteorology nfSTANCE OFACENT GACUND= LEVEL CHI /O CSEC/"3) ~~GAw"a CHI 7c rSEC/=31 SFCTOR (WE7EAS) ACIN7 fpLUWF CENTEALINF MCDEL) (SECTO9 AVE 9 AGE MODEL) k huo,P 90.60 3.A61aF=05 ~ ~ ~ -~7 91 13 E = 6 6 ' NNF Aco.P c5.76 5.9736E=n5 1.171nE=05 AF 640.? 07.67 1.n?03E=ca 1.661cF=0E FtF 6a9.P 96.47 6.729aF=05 1.2170F=05~ F 6a9.2 e6.a7 8.A091E=05 1.3001F=0E ESF 649.? 07.16 7.9723F=05 1.1726E=ns z SF 6co.7 o7.07 1.1001E=na 1.3T60F=05 y SSF boo.? c5.76 1.5c20E=na 1.5399E=05 5 buo.? on.pa 1.657prena 1.PM7AE=c% " SS* An9.? 93.51 0.A?19E=05 1.3176t=ns N Sh 649 ? ca.0% 7.ac3cF=n5 1.310PE=os WSm ea9 ? 00,67 5.359aE=05 9.1432F=06

         .      Ano.;           an.51                      a.973PF-n5                        9.1aa6F=n6 wka         *co.;           ma.as                      m 5717r ns                        1,1a5nF=o5
      *. a      suo.?           a7.67                      a.aso7E=n5                        0.c?61E=0A N '. a      600.2           88.19                      5.726AF=05                        9.1c53E=n6 CRITTCal SFCTCA                                             1.6572Fand                        1.AA76F=n5 AJ1L m>

T 2L 4a ma w e~ O O O

TABLE 372.39-17 (Sheet 4 of 6) 24 Hour Averages for the 8 to 24 Hour Accident Meteorology DTSTANCE PERCENT GRCUND. LEVEL CM T /C ~ C S E C /= 3 3- ---c a *> a -cm ! / c-- ( S E C i=1) SECTro (*FTERS) POIN7 (SECTna AVERAGE *CDEL) (SECTOR AVERAGE *CnFL1 800.2 on.64 1.15a1E.05

                                                                                                           ~~~- T.Fiinr.n6 NkF                ego.2              09.7A                        1.465?F=05                                6.8400E 06 NF               640.2              07.77                        3.nP17E nS                                 1.006nt.ns ENF                649.2              06.d7                        1.R21RE.n5                                6.2 cone.n6 F              600.7              06.07                       P.4n11E n5                                 7.2725E.06 FSE                h40.2              07.1n                       2.144AE n5                                 7.192r' n h                     $

5 SE Aco.? 07.^7 7.9AcoE.05 '7. n c As .nA sSF n'Jo.2 CE.7A 3. P T 7 0 F. . n 5 m,1mpec.06 - 5 649.? ca.2R c.71?oF 05 c.776TE no e SSr 600.2 93.91 2.4579E 05 6.3an7E.06 w S. a 'i o . ? co.05  ?.a35AE.05 7.192nE.nh mS. ano.? on.o7 1.5099F=09 5.onP7E.06

  • aco.P 4A.55 1.174aE.n5 3.op7oE.06
      **..              e20.2               aA.at                       1.sotoF.05                                 a.7476F. 06 900.7               a7.67                       1.1079F.05                                 1.P431E no NN.               nao.?               A8.1o                       1.to?AF.05                                 c.cn%9f.ne C W I T f r r. t SErvru                                                  n.2tpoF.69                                  1.006nE-ns Ult m>

2E

                                                                                                                                                =n r1 (D V, O Gz aG

TABLE 372.39-17 (Sheet 5 of 6) 96 Hour Averages for the 1 to 4 Day Accident Meteorology s AWMrtMT/C t3EC7M31---

                      ~

bI$7ANCE ~ ~FFWCEWT~ -~ ~~GACUNDi. LEVEL CHT/Q 05Et7F31 BEC70R (>ETERS) ROIN7 (SECTOR AVERAGE N00EL) (SECTOR AVERAGE MODEL)

                                          ~~ ~ ~ ~         ~~

A 6c9.2 0 0 . 6'd ~~c . A 3 5 8 E = 0 6-~ ~ FT7936EEU6 NNE 6a0.2 c5.76 1.0575E=05 3.7177E=06 NE 649.2 07.67 1.7606E=05 5.3772E=06 649.2 06.07

                                                ~

ENE 8.~ 9 2 0 2 E = 0 6 - - - - - - ~ 3 . !'M U B E= 0 6-E 6c9.2 96.47 1.1310E=05 3.ec33E=06 ESE 649.2 97,10 1.2957E=05 4.c663E=06 2 649.2 97.02 1.3a2PE=05'

                                                                                              ~

3;77PTE=n6-----

                                                                                                     ~ ~ ~ ~ ~

8E @ SSE ha9.2 c5.76 1.4660E=05 3.7aOSE=06 - S 6u9.2 94.28 2.0850E=05 ~~ u.8c30E=06 "

                               '03.51
                                                                                                        ~ ~ ~ ~

S8W 6co,2 ~1.1797E=05 --~~ ~ 37 27 5 5 E = 0 6 ~ -~ SW 640.7 90.09 9.7286E=06 3.0787E=06

    >Sw         640.2           90.67                              6.1379E=06                                            2.27cQE=06 6ao.2                                              5.133aE=06 m                         AA.51                                                                                   'I;6'462E=06~ --

WNw 640.2 aA.81 6.1091E=ne 1.8746E=n6 Nw 640.2 A7.67 0.7175E=n6 1.e2u6E=ns NN> 649.2 AS.19 4.5735E=06 ~~1.6905E=06 CRITICAL SEttno 2.0850E=05 5.3772E=06 Ull EI s8 8& 08" O O O

TABLE 272.39-17 (Sheet 6 of 6) 720 Hour Averages for the 4 to 30 Day Accident Meteorology

  ~ ~ - -
                   ~ D T $ Y A NC F~ ---                 PERCENT                      GRUUND=tEVEL- CHT70- r3EC7*3)                   G AwM A TMi7MS!C7M31-SEC70R         (>ETERS)                             00!NT                          (SECTOR AVERAGE MODEL)                     (SECTOR AVERACE MODEL)

_ __ .--_ . _.__ g , . ______ -

                                                                                                                                                       ,g NAE           649.2                              os.7A                                 5.3738E=ne                                  2.1530E=06 NE          649.2                              97.67                                 8.95c9E=06                                  3.0AADE=n6
        .ENE'           649.2'~
                                                 ~ ~ ~~ ~ ~ C 6 7 4 7 ~ ~~- --                   STs701E=06                                  ti459tE=06 E       ba9.2                              96.47                                 7.5006E=06                                  2,7303E=06 ESF           649.2                              97.1n                                 7.5300E=06                                  2,7236E=06                    =

SF 600 ?

                                       ~-~~
                                                        ~~c7;n r- ~------           --"'-

T.6373E=06- I.8759E*06 @ SSE 640.2 95.76 A.4127E=06 2.2570E=0e 5 649.2 oc.Pa 0.4757E=n6 2.206cE=06 6co.2 ~Q3.51~ "

          $ 3 'a                                                            ~~~~~-~-~ -~ - Ti6396E=UB                                        Fit 816E=06 Sa          644.2                              90.0$                                 A.3661E=06                                  2.8016E=06                    N aS*           6c9.2                              00,67                                 2.5007E=06                                  9,0187E=07
               'a' 649.2                              mR.51                          - ~ ~ ~ 2. 5 7 8 P E = 0 6 ~-- ' - - - -~~   --9T 225 5 f = 0 7 - ~~-

aN- eco.2 mA.at 2.9762E=06 1.0720E=n6 N- eco.p a7.op 2.1651E=06 8.335AF=n? u.a 609.2 ap 10- 2.2809E=06 ~~ -- --~~'-~ 8 ; 5 6 3 7 F = 0 7 - ~ CGITICAL SECTre 9.4757F=06 3.0880E=06 IL7 tL EN l8 s& Oe" eo

TABLE 372.39-18 (Sheet 1 of 6) SECTOR DEPENDENT ACCIDENT DILUTION FACTORS FOR THE LOW POPULATION ZONE (2413.5 METERS) GROUND LEVEL RELEASE NEP 1 & 2 S7TE DATA (DEC. 76 - NOV. 77) Hourly Averages for the 1 Hour Accident Meteorology DISTANCE PEHCENT GROUND-LEVEL CHI /W (SEC/M3) GAMMA CNI/W (SEC/M3) SECTUW ("ETEN3) PUINT (PLUME CENTERLINE MOOLL) (StCTOR AVtRAGE MODEL) N 2413.5 90.04 3.5399t-05 8.0166E=06 NNE 2413.5 95.76 5.7331E-05 9.3315E-06 2 NE 2*13.5 97.67 6.0238E-05 1.0965E-05 m ENE 2413.5 90.47 5.0843E-05 6.3644E-06 E 2413.5 90.47 7.2583E-05 8.6320E-06 " ESE 2413.5 97 10 6.6356E-05 7.4617E-06

  • SE 2413.5 97.02 6.0765E-05 6.5271E=06 N S S S. 2413.5 95.7e 8.6728E-05 9.2517E-06 5 2.13.5 94 2R 8.6227E-05 9.3999E-06 Sba 2a13.5 93.51 6.5871E-05 9.4236E-06 Sa 2413.5 94.05 7.0845E-05 9.6655E-06 asa 2413.5 90.e7 5.0525E-05 8.6061E-06 a 2413.5 86.51 4.17e8E-05 6.1005E-06 asa 2u13.5 8e.41 3.4335E-05 8.6361E-06 Na 2a13.3 87.o2 3.0375t-05 7.1746E-06 NNa 2413.5 86.19 4.0214L-05 9.7468E-06 CRITICAL SEC70m 8.e728E-05 1.0965E-05 AJtt
                                                                                                        ?N XB s&

aen CZ aC O O O

TABLE 372.39-18 (Sheet 2 of 6) 2 Hour Averages for the 1 to 2 Hour Accident Meteorology DIS 14NCE PEkLtNT GROUND-LEVEL CMI/G (SEC/M3) GAMMA CMI/G (SEC/M3) CE.rud ("E TE 4 5 ) PulNT (PLUME CENTERLINE MUCELI  ! SECTOR AVEHAGE MODEL) N 2413.2 90.e4 2.2597E-05 4.8072E-06 NNE 2413.5 95.1% 3.4717t-05 6.0482E-06 at 2u13.5 91.e7 5.4453E=u5 6.6155E-06 E9E 2413.5 90.47 3.d639t=05 5.4411E-06 E 2u13.5 90.47 4.1169E-05 5.8483E-ob Z ESE 2413.5 97.10 4.7418E-05 5.2580E-06 $ SE 2413.5 9/.02 5.4103E-05 5.2545E-06 r. SSE 2413.5 95.76 6.6215E-05 5.719et-06 , S 2*13.5 94.28 6.9242E-05 7.0216E=06 bba dwt3.5 93.51 " 6.4965t-05 6.2530E-06 Sa 2413.5 94.v5 4.3973E-05 6.d511E-06

     =Sa        d413.5             90.67                       3.2040E-05                   5.2801E-06 a       2413.5             66.51                       2.6119E-05                   5.1388E-06 aNa        2413.5             eb.61                       2.0367t=05                   5.1833E-06 Na        Pu!3.5             87.02                       2.2498t=05                   5.4103E-06 NNa        2413.5             86.19                       2.6662E-05                   5.2495E-06 CRITICAL SECT 0m                                                6.9242E=05                   7.0216E-06 U ll_

EN i; E& Q8" o~

TABLE 372.39-18 (Sheet 3 of 6) 8 Hour Averages for the 2 to 8 Hour Accident Meteorology DISTa'CE FENLENT GROUND-LEVEL CMI/G (SEC/N3) GAMMA CHI /G (SEC/M3) SECTOW ("E'Ek$) POINT (PLUME CENTERLINE MODEL) (SECTOR AVERAGE MODEE) N 2413.5 90.64 e.2265E-06 1.6811E-06 NNE 2413.5 95.76 1.4067E-05 2.4469E-06 NE 2413.5 97.o7 2.2729E-05 3.5381E-06 Ei E 2413.5 90.47 1.4095E-05 2.e020E-06 E 2413.5 90.47 1.9153E-05 2.9038E-06 z ESE 2413.5 97.10 1.8077E-05 2.4271E-06 y SE 2413.5 97.02 2.5749E-05 2.71e7E-06 " SSE 2413.5 05.76 3.5167E-05 3.1721E-06

  • 5 c i3.L 94.28 4.1771E-05 3.9658E-06 Sdn 2413.5 93.51 2.4416E-05 2.6728E-06 N Sa 2u13.5 94 05 1.7778t-05 2.7376E-06
     *Sa       2413.5        90.67                       1.2316E-05                  1.9316E-06 a     2413.5        86.51                       1.1623E-05                  1.9260E=v6
     *Na       2u13.5        8e.81                       1.2178E-05                  2.4464E-06 ha       2413.5        67.62                       9.9482E-06                  1.9278E-06 "Ne       2413.5        Be+19                       1.1619E-05                  1.9237E=06 CRITICAL SECTOR                                           4.1771E=u5                  3.9658E-06 UIL EN sa E&

O9" O O O

TABLE 372.39-18 (Sheet 4 of 6) 24 Hour Averages for the 8 to 24 Hour /.ccident Meteorclogy eISTA4LE HEMCENT GROUND-LEVEL CHI /W (SLC/m3) SELT0= (*ETE4b) PcINT GA"MA CHI /G (SEC/M3) (SECTOR AVERAGE MODEL) (SECTOR AVERAGE MODEL) N 2w13.5 9u.64 1.5770E-u6 ta E 2w13.5 05.76 8.1482E-07 2.6790E-06 1.3788E-06 NE 2w13.5 91.o7 4.1599E-06 2.1070E-06 ENE 2u13.5 96.47 2.5810E-06 1.3194E-06 t 2413.5 90.47 3.1180E-06 1.4960E-06 ESE 2413.5 97 10 2.8949E-06 1.4536E-06 2 5E 2=13.5 07.02 3.1757E-u6 dat /413.5 95.76 1.4140E-ue E 3.9126E-06 1.6622E-06 3 2u13.3 94 28 4.e560E-06 1.9926E-06 dda 2413.5 93.51 2.7895E-06 1.2922E-06 ba 2413.5 94.05 3.3052E-06 " ada 2413.5 90 67 1.4633E-06 2.0621E-06 1.0306E-06 2u13.5 86.51 1.590SE-06 a ta a 2413.5 6.2024E-07 P5.81 2.1506E-06 9.4923E-07 re a 2=13.5 67.62 1.6996E-u6 6.0496E-07 sua 2413.5 68 19 1.7585E-06 9.1286t-07 CRITICAL SECTU- 4.6560E-06 2.1070E=06 AllL 5N Xe E& Oe" e~

TABLE 172.39-18 (Sheet 5 of 6) 96 Hour Averages for the I to 4 Day Accident Meteorology uISTANCE PEMCENT GWUUNO-LEVEL CHI /W (SEC/m3) GAMMA CNI/G (SEC/M3) SECTOW (METE =5) POINT (SECTOR AVERAGE m0 DEL) (SECTOR AVERAGE MODEL) A 2415.5 90.bu 6.e598E-07 3.4654E-07 NNE 2u13.5 95.76 1.5208E-06 7.5075E-07 NE 2413.5 97.67 2.3142E-06 1.1013E-06 ENE 2413.5 9e.47 1.2772E-06 6.5008E-07 E 2413.5 96.47 1.5137E-06 7.6232E-07 ESE 2413.5 97.10 1.7245E-06 9.0193E-07 g-SE 2413.5 97.02 1.7104E-06 7.6400E-07 m SSE 2413.5 95.76 1.7082E-06 7.5157E-07 -- S 2413.5 94 2P 2.4716E-06 9.9211E-07 ,

     $be       2413.5           93.51                       1.3718E-06                 6.6295E-07              y Sa      2u13.5           94.05                       1.3487E-06                 6.5016E=07 aba       2u13.5           90.67                       8.5457E-07                 4.4615E-07 a    2413.5           86.5.                       6.9634E-07                 3.4218E-07 aNa       2u13.5           ed.el                       8.3867E-07                 3.6633E-07 Na      2413.5           87.62                       6.3313E-07                 3.1764E-07 N r. a    2413.5           88 19                       6.6230E-07                 3.4418E-07 CRITICAL SECTUk                                              2.4716E-06                 1.1013E-06 JL111.
                                                                                                            ?U T3 El
                                                                                        - -                 03" e~

O O O

TABLE 372.39-18 (Sheet 6 of 6) 720 llour Averages for the 4 to 30 Day Accident Meteorology DISTANCE PENCENT GROUND-LEVEL CHI /J (SEC/m3) GAM *A Cnt/G (SEC/M3) SECTOR (

  • E T E 4 f. ) POINT (3ECTUR AVERAGE MUDEL) (SECTOw AVERAGE N00EL)

N 2u13.5 9u.e4 3.3264E-07 1.8295t-07 NNE 2413.5 95.7e 7.3925E-07 4.1199E-07 NE 2413.5 91.e7 1.1721E-oo e.0548E-07 ENE 2413.5 96.47 7.9484E-07 4.0917E-07 E 2413.5 96.u7 1.0137E-06 5.3790E-07 EsE 2413.5 97.10 1.0321E-06 5.4624E-07 $ SE 2413.5 97.02 7.0425E-07 3.6038E-07 " SSE 2413.5 95.78 1.0113E-06 4.4667E-07 - S 2el3.5 94.28 1.1199E-06 4.e112E-07 e Sba 2413.5 93.51 9.1652E-O' 4.1666E-07 w Sa 2413.5 94.05 1.1724E-On 5.9366E*07 aSa 2413.5 90.67 3.6103E.07 1.9095E-07 a 2413.5 86.51 3.7238E-07 1.9191E-07 aNa 2ai3.5 86.61 4.1110E-07 2.1103E-07 Na 2413.5 Hl.62 3.1912E-07 1.6762E-07 NNm 2413.5 ee.19 a.2467E-V7 1.6697E-07 CRITICAL SECTOR 1.1724E-06 6.0548E-07 U l ?_ E$

                                                                                                                          ?;

11 i a3" eo

TABLE 372.39-19 DILUTION FACTOR ESTIMATES (SEC/M ) AT THE EXCLUSION RADIUS (649.2 METERS) IN SECTORS WITH THE HIGHEST ACCIDENT CHI /Q VALUES FOR SELECT TIME INTERVALS NEP 1 & 2 SITE DATA (DEC. 76 - NOV. 77) CONSERVATIVE ESTIMATE REALISTIC ESTIMATE TIME CRITICAL DILUTION PROBABILITY CRITICAL DILUTION PROBABILITY INTERVAL SECTOR FACTOR a LEVEL _ SFCTOR FACTOR LEVEL 0-) Hour NE 3.38xl T 4 2.33% S 2.37x10 -4 50.00% 1-2 Ilour SSE 2.88x10 ~4 4.24% S ' 13x10~' 50.00% [

                                          -0 2-8 Ilour             S            1.66x10          5.72%              S         3.51x10 -5       30.00%
                                          -5 8-24 Hour             S           4.21xlO           5.72%              S         9.04x10 -6        50.00%

l-4 Days S 2.09x10 -5 5.72% NE 4.53x10 -6 50.00% 4-30 Days S 9.48x10 -6 5.72% NE 5.20x10 -6 50.00% ^The conservative dilution factor estimates were obtained f rom a probability level of 5% weighed by the percent of time the wind flow was into the sector of interest (

Reference:

NRC Draft p Regulatory Guide I.XXX, September 23, 1977). gg Afit gg 48

                                                                                                                *E Gz aG e                                                      O                                                 O

j TABLE 372.39-20 DILUTION FACTOR ESTIMATES (SEC/M ) AT THE LOW POPULATION ZONE (2413.5 METERS) IN SECTORS WITH THE HIGilEST ACCIDENT CHI /Q VALUES FOR SELECT TIME INTERVALS NEP 1 & 2 SITE DATA (DEC. 76 - NOV. 77) CONSERVATIVE ESTIMATE REALISTIC ESTIMATE TIME CRITICAL DILUTION PROBABILITY CRITIC AL DILLTT ION PROBABILITY INTERVAL $LCTOR FACTOR LEVEI^_ SECTOR FACTOR LEVEL 0-1 r.our SSE 8.87x10-5 4.24% S 5.61x10-5 50.00% @ l-2 Hour S 6.92x10-5 5.72% S 3.15x10-5 50.00% c " 2-8 Ilour S 4.18x10 ' 5.72% S 8.37x10'6 50.00% 8-24 Hour S 4.86x10 -6 5.72% S 1.16x10-6 50.00% l-4 Days S 2.47x10 -6 5.72% NE 6.33x10-7 50.00% 4-30 Days NE 1.17x10-6 2.33% NE 7.I1x10-7 50.00% SW 1.17x10-6 5.95% aThe conservative dilution factor estimates were obtained from a probability level of 5% weighed by the percent of time the /iind flow was into the sector of interest. (

Reference:

NRC Draft 2$ Regulatory Guide I.XXX, September 23, 1977). E'@ Ull. gg 0s"

TABLE 372.39-21 (Sheet 1 of 2) ANNUAL GROUND-LEVEL AVERAGE CHI /Q (SEC/M ) BEFORE DEPLETION (SPLIT-H MODEL) PRIMARY VENT STACK RELEASE, SECTOR AVERAGE MODEL NEP 1 & 2 SITE DATA (DEC. 76 - NOV. 77) L'

  • N*I'd NO. OlslaNCE FROM RELEASE POINT (MILES)

SLCT0* OuS ,25 ,50 75 1.00 1.50 2.00 2.50 3.00 a 255 5.700E-07 2.281E-07 1.448E-07 1.098t-07 7.632E=08 6.368E=08 4.824E=08 4.320E=08 NE 534 1.255E-06 4.878E-07 2.915E-07 2.078E=07 (E 989 1.292E=07 1.376E=07 1.075E=07 8.767E=08 2.485E-oe 9.095E-07 5.335E-07 3.763E-07 2.355E-07 1.673E-07 1.474E=07 1.468E-07 ENE 62" Mtk 2.386E-06 8.038E-07 4.531E-07 3.155E-07 1.915E-07 1.363E=07 1.069E=07 8.582E=08 t 2.642E-06 9.055E-07 5.024E-07 3.426E=07 2.013E=07 1.413E-07 1.075E-07 8.588E=08 E st 850 2.718E-06 9.149E-07 6e 5.077t-07 3.475E-07 2.058E=u7 1.450E=07 1.103E=07 8.792E=08 lo64 3.308E-Oe 1.112E-06 6.090E-07 4.099E-07 2.348E=07 1.618E=07 1.211E=07 9.546E=08 SSF 644 2.26ME=0M 7.331E-07 5.949t-07 2.659E-07 1.543E-07 1.084E=07 8.248E=08 6.581E=O8 2 S 301 1.290t=06 4.083E-07 2.175E-07 1.453E-07 5Sa 2A2 1.114E=0h 3.629E-07 1.978E-07 1.344E-07 8.a03E=08 7.947E-08 5.950E=08 4.542E=08 3.629E=08 y Sa 5.646E=08 4.308E=08 3.435E=08 415 1.193E-06 4.167E-07 2.357E-07 1.625E-07 9.674E-08 6.794E=08 5.146E-08 4.084E=08

   -Sa        260  8.410E-07    2.656t=07       1.576E-07      1.070E-07      6.246E-08  4.373E=0B
  • 21e 3.420E=08 2.725E=08 5.612E-07 2.0a0E-07 1.181E-07 8.242E-08 5.545E-08 5.100E=08 4.263E=0S 3.66SE=08 N aNa 265 5.876E-07 2.199E-07 1.309t-07 1.130E-07 8.149E-08 6.425E=08 5.10BE-08 N- 200 4.082E=08 u.95et-07 1.951E-07 1.108t-07 9.561E-08 7.635E-08 5.545E-08 4.310E=08 3.519E=08 NN- 19e 4.593E-07 1.796E-07 1.0HAE-07 8.709t-08 7.992E-03 5.649E-08 4.302E-08 4.009E-08 e- . I sb "N. DISTANCE Fan" WE Lt ASL PDIN1 (MILES)

SLC b

  • Ukd 3.50 a.50 5.00 7.50 4.00 10.00 15.00 20.00 N 255 3.691t=09 3.514E=08 2.80et-08 2.421E-08 1.456E-08 9.803E=09 5.657E=09 3.85&E ^9
  %J         STu  7,35n_ ee Nt       4a9 6.393E-bH      5.412t-06       4.667E-08      2.7o5E-08  1.866E=08  1.078E=08  7.339L-.'

1.313t-o7 1.082t-07 a,122E=od 7.64nE-08 4.479E-08 3.016E-08 1.738E=08 1.182E=ce eE A2m 7.QuoF=ok 8.744E-06 ;9E=u8 7 7.507E-08 4.381E-08 2.983E=08 1.749E-08 1.203E=08 F H3n 7.984E-08 6.768F-oa 5.c o 'E-0 8 5.151f-08 3.152E=o8 2.223E-08 1.354E-08 9.568E=09 ?y Fbf 550 7.252E=o8 6.15eE-06 5.267E-08 SF Io6a 7.607E-04 6.So3E-08 4.624E-08 4.906E=0A 2.799E-08 2.932E-Da 1.959E=ue 1.182E=08 8.309E=09 gg 5.626t-08 2.038E-08 1.220E=08 8.546E=09 =a S St ouw 5.44nE-08 4.616F-08 3.991E-08 3.505E-08 2.145E=08 1.517E-08 9.308E-09 6.612E=09 $@ 5 501 3.002E-uA 2.550E-u8 2.20AE-08 1.942E-08 1.197t-08 8.513E-09 6.432E=09 4.568E=09 xS SO 2ad 2.63ut-08 2.398E-08 2.069E-08 1.613L-08 1.098E=08 7.700E=u9 4.663E=09 3.285E=09 - Sa uns 3.35eF-0A 2,830E-08 2.431E=08 2.122E=08 1.271E=u8 8.821E=09 5.259E=09 $5 3.672E=09

  *Sa        26v  2.419E-im    2.274E-08      1.955t-08       1. 913 E - 0 8 1.129E-08  7.777E=09  4.606E-09  3.192E=09     *"

a die 3. 6 64E -o* 3.280E-va 2.799E-08 2.431E-08 1.426E-08 1.025E-08 6.042E=09 4.261E=09

  -La        265  4.2w1E-08    3.519E=0A      3.092E-05       2.661E-08      1.517E-08  1.047E-08  6.044E=09  4.116E=09 Na       209  4.32Ht-08    3.e27E-08      3.316E=08       2.870E-08      1.747E-08  1.192E-08  6.988E-09  4.802E=09 AN-        196  3.494F=o*    3.915E-08     2.550E-08        2.198E=0A      1.255E-08  8.A00E-09  5.041E=09  3.461E=09 unt O                                                        O                                             O

TABLE 372.39-21 (Sheet 2 of 2) on.t.tso *#, DISTANCF FRFw RFLEASF PDIN7 (MILES) AFCTro ilu M 25.no 30 n0 35,00 40.00 45.00 50.00 o 255 2.7A7F=n9 p.27;E=09 1.8 39 F = 09 1.55AE=09 1.3c7E=09 1.182E=09

   **F      534   9.190F=09   c .14 7F = 09  3.ul0F=09      2.908E=09         2.518E=09 2.211E=09 AF     9A9   M.487F=n9   A.761E=09      5.57AE=09      c.721E=09         c.079E=09 1.575E=09 6*F .

dpA 9.064F=09 7.746F=n9 6.0?PF=09 5.106F=09 4.415E=09 3.878F=09 F ale 7.37AE=09 m .91 o E-t 4 4.911E=09 a.053E=09 4.207E=09 3.937E=09 F SF ACO 6,344F=e)9 G,10AF=09 d.29?F=09 3.626E=09 3.155F=09 2.783E=09 sf 10*4 6.%13F=00 c.23AE=09 4.3%7F=09 3.713E=09 3.230E=04 2.PcPE=09 2 SsF eau 9.oA7s=o9 a.12nE=n4 3.cu?F=09  ;.952F=09 2.577F=09 2.280E=09 q S Int T.914E=09 P.Hu9E=09  ?.380F*09 P.043F =09 1.783E=09 1.577F=09 ~ ss, Pap 7.EA7 Fan 4 7.149E=09 1.791F=09 1.529E=n9 1.33PE=09 1.175E=09 *

s. uts 7.HP9F=o9 p.407E=n9 7.072E=09 1. 7 5 9 E '- 0 9 1.525E=09 1.300E=09
   . s .-   76"   7.414F=no   1 Q33F =09      1.601F=09     1.360F=09         1.17AF=09 1.035F=09         N
  • pis 1.190F=c4 p.95AE=09 7.11AF=09 1.79AE=09 1.59PE=09 1.3s9E=09
   .,       26E   3.039F=09   p.a1Af=n9       1.992F=09     1.68cE=09         1.455E=09 1.275E=09
         ,  pa9   3.510F=no   p.83pF=09      7.350F=09      1.99AE=09         1.733E=09 1.52SE=09 ts.       1Ge  p.52%F=q9   2.oP6t=09       1.m87F*09     1.032F=09         1.243F=09 1.09cF=09 U ll_

EN Ka 8& 4a" w e~

TABLE 372.39-22 (Sheet 1 of 2) ANNUAL GROUND-LEVEL AVERAGE CHI /Q (SEC/M ) AFTER DEPLETION (MET. AND ATOMIC ENERGY 1968 DEPLETION MODEL) PRIMARY VENT STACV RELEASE, SECTOR AVERAGE MODEL NEP 1 & 2 SITE DATA (DEC. 76 - NOV. 77) 00aNWIND NO. SECTOR DISTANCE FRUm RELEASE POINT (MILES) OBS 25 .50 75 1.00 1.50 2.00 2.50 3.00 N 255 5.393E-07 2.148E-07 1.363E-07 1.032E-07 7.175E-08 5.995E-08 4.513E-08 4.032E-08 NNE 53u 1.190E-06 4.597E-07 2.736E-07 1.947E-07 1,206E-07 NE 1.300E-07 1.009E-07 8.178E-08 989 2.350E-06 8.509E-07 4.959E-07 3.485E-07 2.174E-07 1.536E-07 1.356E-07 1.352E-07 ENE 82R 2.224E=06 7.368E-07 4.114E-07 2.849E-07 1.716E-07 1.213E-07 9.462E-08 7.537E-08 E 838 2.485E-06 8.252E-07 4.531E=u7 3.068E-07 1.785E-07 ESE 1.240E-07 9.347E-08 7.399E-08 850 2.517E-06 8.332E-07 4.579E-07 3.115E-07 1.829E-07 1.276E-07 9.612E-06 7.587E-05 SE 1064 3.077E-06 1.018E-06 5.513E-07 3.683E-07 2.085E-07 1.419E-u7 1.050E=07 8.186E-08 z SSE 644 2.077E-06 6.581E-07 3.503E-07 2.341E-07 1.342E-07 9.310E-u8 6.995E-08 5.518E=08 S 301 1.162E-06 3.595E-07 1.890E-07 @ SSa 1.253E-07 7.153E-08 4.986E-08 3.749E-08 2.955E-08 282 1.015E-06 3.241E-07 1.74BE-07 1.181E-07 6.922E-08 - Sa 415 4.859E-08 3.662E-08 2.885E-08 1.116E-06 3.639E-07 2.153E-07 1.418E-07 8.734E-08 6.062E-08 4.567E-08 3.593E-08 " aSa 260 7.795E-07 2.603E-07 1.421E-07 9.577E-08 5.536E-UA 3.A35E-Oe 2.961E-Oe 2.353E-08 N a 21o 5.241E-07 1.883E=07 1.083E-07 7.522E-08 5.068E-u8 4.718E-08 265 3.941E-08 3.383E-08 aNa 5.558E-07 2.059E-07 1.219E-07 1.061E-07 7.683E-OR 6.nsnE-08 4.786E-08 3.799E-08 NW 209 4.652E-u7 1.624E-07 1.088E-07 8.939E-08 7.20eE-08 5.208E-08 NNa 196 1.668E-07 4.027E-08 3.271E-08 4.306E-07 1.011E-07 8.104E-08 7.564E-08 5.315E-08 4.023E-08 3.747E-08 00aNaIND No. DISTANCE FROM RELFASE POINT (MILES) SECit:w oas 3.50 4.50 5.00 4.ov 7.50 10.00 15.00 20.00 N 255 3.610E-08 3.046E-08 2.558E-08 2.188E-vA 1.208E-08 7.653E-09 3.192E-09 1.929E-09 NNE 534 6.791E-08 5.661E-08 4.91RE-08 4.205E-08 2.336E-06 1.453F=08 7.157E-09 4.308E-09 nE 989 1.193E-07 9.727E-08 8.116E-06 6.906E-08 3.716E-08 2.3ebE-u8 1.257E-08 7.880E-09 ENE 826 6.987E-08 5.888E=08 6.571E-08 6.543E-08 3.601E-u8 2.323F=08 1.231E-US 7.697E-09 E 836 6.918E-08 5.829E-0A m> 4.996E-08 4.151E-08 2.560E-08 1.737E-VM 9.821E-09 6.465E-09 FSE 850 6.199E-08 5.196E-0M 4.437E-u8 3.849E-08 2.230E-06 1.499E-oe e.394E-(4 5.514E-09 m a SE 1064 6.625E=uA 5.514E-08 4.681E-08 4.043E-uR 2.313E-96 1.54cE=ue 8.577E-09 5.623E-09 5I SSE 644 4.5112-08 3.787E-oe 3.240E-0B 2.817E-08 1.644E=u8 1.112E=0A 6.282E=09 4.144E-09 Q$ S 301 2.413E-08 2.023E-08 1.730E-08 1.504t=08 8.778E-09 5.944E-09 4.263E=09 2.78 5E-09 " S3a 282 2.353E-0A 1.969E-08 1.679E-08 1.455E=uA _ 415 6.381E-v9 5.6v5E-09 3.109f=09 2.027E-09 ez Sa 2.928E-08 2.448E-06 2.066E-08 1.806E-08 1.041E-ve 6.973E-09 3.884E-09 2.557E-09 2C aSa 260 2.UB7E-08 1.967E=08 1.676E-08 1.63RE-08 9.21oE-v9 6.955E-09 3.276E-09 2.065E-09

     -     216  3.575E-08   3.005E-08    2.542E-08      2.168E-08   1.225E-06    R.276E=09 aNa      265  3.928E-08 4.406E-09  2.454E-09 3.231E-08    2.806E-08      2.392E=u8   1.304E-0A    8.431E-09  3.917E-09  2,435E-09 Na      209  4.052E-08   3.370E-08    3.050E-08      2.617E-08                8.216E=o9 NNa 1.489f-uS               4.115E-00  2.034E-09 196  3.239E-06   2.760E-08    2.310E-08      1.971E-08   1.068E-08    6.283E=u0  2.945E-09  1.543E-09 A>I2 e                                                  O                                               G

TABLE 372.39-22 (Sheet 2 of 2) ro.3- , ta r .r, risTaNCE Fwr* EFLFASF onINT (>ILES1 cfrTrc # us 25.00 in.on 35.00 40.00 45.00 50.00

  • psc 1.71PF=o9 c.n94t=1n e . 0 6 7 F - 10 5.542E=10 c.513E-10 3.720E=10
  • v5 4to 2.A77F-ao 1.79pE=o9 1.187F=no 1.100F-no A.904F-10 7.311E-in
     =5        oso  4.110F=oo  1.77HF=00        2.904s=09          2.116F=09    1.71AE=09 1.410E=09 FsF         *2C  %.296F=no  t.aknF-00        p.Ao vF-no         7.P65E-no    1.813E=no 1,a77E-09 5     *ta  a.*22F=o9  s.6H4E=no        2.72nE=n9          7.25 3E = 0c 1.A61E=09 1.26nE=09
   > SS        -So  3.QUQF=49  7.9hsF.no        2 , 3 (4 c F . 0 9 1,APAF=09    1.556F=09 1.301E=09      Z cs       insa  u.r'?7E-"4 t.n5nE-no        P.306E-no          1.934E=09    1.597E=09 1.339E=09      @

sst moa 2.073r-o4 p .2% nF -00 1.765F-09 1 u21E=09 1.170E-Oo 9.778E=10 r. s in, t.ceuF-n9 5.n6TE=09 1.128F=09 A.QP3E-10 7.212E=1n 5.92nE=10 , ss. pu2 1.c9ps-19 5.1s7E-no 9.nc3F=to 7.196F 10 5.AAcE=1n c.887E=10 " sm uts 1.aser.no 1.52s5 00 1.la9F=09 9.521F*10 7.8n5E=10 6.097E=10 est pan 1.uSTF=09 1.n7AE=no 8.261E=10 6.519E=10 5.265E-10 c.321E=10

         . Pts  1.679F-oo  c.os1E-in        6.11AF-10          a.A3cE-In    3.A52E-10 3.129E-10 pac  1.634F-n4  1. n 61 F .n o   a.16cF.16          6,cecF.10    5.P77E=10 d.372E-10
         ,     pro  1.3neF-co  c.c55F.10        7 ta7E=10          5.59aE=10    c.500E-10 3.688E=10 ss.         toA  o.E7aF=to  5.90At=1n        5.33ap.1c          c.197F-10    3.39aE=1n 2.796E=10 ML m>

h nu GW W 9 E$

TABLE 372.39-23 (Sheet 1 of 2) ANNUAL AVERACE DEPOSITION RATES (1/M ) (DEPLETED CHI /Q* DEPLETED VELOCITY MODEL) PRIMARY VENT STACK RELEASE, SECTOR AVERAGE MODEL NEP 1 & 2 SITE DATA (DEC. 76 - NOV. 77) 00aNaIND NO. 0; STANCE FROM RELEASE POINT (MILES) SECTOR 083 25 50 75 1.00 1.50 2.00 2.50 3.00 N 255 4.462E-09 1.6855 09 1.010E-09 7.197E-10 4.456E.10 3.288E=10 2.401E-10 1.979E-10 NNE 534 9.530E 09 3.009E=v9 2.103E-09 1.452E-09 8.481E-10 7.319E-10 5.467E-10 4.304E=10 NE 989 1.960E-08 7.078E=04 4.058E-09 P.778E-09 1.6316-09 1.109E-09 9.010E=10 8.049E-10 ENE 828 1.879E-08 6.233E=09 3.421E-09 2.306E-09 1.314t=09 8.912E-10 6.698E-10 5.230E-10 E 838 2.125E=08 7.114E-09 3.861E-09 2.560E=u9 1.424E-09 9.546E-10 7.001E=10 5.428E=10 ESE 850 2.077E-08 6.861E-09 3.713E-09 2.470E-09 1.386E-09 9.367E-10 6.902E-10 5.362E=10 SE 1064 2.655E-08 8.774E=09 4.700E-09 3.091E-09 1.693E=09 1.124E-09 8.178E-10 6.292E-10 SSE 644 1.754E=08 2.923E-09 1.918E-09 1.058E-09 7.128E-10 5.555E-09 5.239E-10 4.062E-10 $ S 301 1.012E-08 3.131E-09 1.629E-09 1.060E-09 5.822E-10 3.947E-10 2.907E-10 2.253E.10 N SSa 282 8.411E-09 2.684E-09 1.428E-09 9.418E-10 5.237E-10 3.543E-10 2.603E-10 2.014E-10 - Sa 415 9.105E-09 3.137E.09 1.736E-09 1.165E-09 6.583E-10 4.440L-10 3.259E-10 2.521E 10 e WSa 260 6.869E-09 2.337E-09 1.271E-09 8.392E-10 4.624E-10 3.082E=10 2.293E=10 1.771E=10 y a 216 4.351E-09 1.565E-09 8.853E-10 5.976E-10 3.624E-10 2.865E-10 2.226E=10 1.808E-10 aNa 265 4.441E-09 1.617E-09 9.278E=10 7.058E-10 4.388E 10 3.luSE-10 2.371E-10 1.841E-10 Nr 209 3.612E-09 1.333E-09 7.656E-10 5.717E-10 3.827E-10 2.610E-10 1.935E-10 1.519E-10 NNa 196 4.199E-09 1.502E-09 8.653E-10 6.275E-10 4.348E-10 2.911E-10 2.131E=10 1.790E=10 00aNaIND NC. DISTANCE FROM RELEASE POINT (MILES) StCTOW ORS 3.50 4.00 4.50 5.00 7.50 10.00 15.00 20.00 N 255 1.6ebt-10 1.381E-10 1.154E-10 9.827E-11 5.303E-11 3.375E-11 1.558E-11 9.718E.12 NNE 534 3.500E-10 2.948E-10 2,466E-10 2.103E-10 1.149E 10 7.225E=11 3.657E-11 2.250E-11 NF 969 6.737E-10 5.491E-10 4.575E-10 3.889t=10 2.087E-10 1.341E-10 7.088E-11 4.472E=11 t NE A?8 4.575E-10 1.805E-10 3.808E-10 3.550E-10 1.930E-10 1.242E-10 6.565E-11 4.121t-11 E M36 4.746t 'O 3.944E 10 3.341E-10 2.861E 10 1.641E-10 1.091E-10 6.0085-11 3.899E-11  ?$ ESE 850 4.327E-In 3.592E-10 3.041E-10 2.621E-10 1.486E-10 9.847E-11 5.413E-11 3.516E-11 SE 1064 5.039E-10 4.15eE-10 3.505E-10 (@ 3.009E-;0 1.6M9E-10 1.113E-10 6.07sE-11 3.947E-11 ca SSE e44 3.274E-10 2.716E-10 2.301E-10 1.983E-10 1.124E-10 7.456E-11 u.102E-11 2.660E=11 $@ S 301 1.814E-10 1.503E-10 1 272E-10 1.096E-10 6.163L-11 4.000E-11 2.538E=11 1.609E-11

  • S S3a 282 1.619E-in 1.339E-10 1.1I1E-10 -

5,441E-11 3.570E-11 1.929E-11 9.719t- 1.233E-11 ~ z Sa 415 2.027E-10 1.677E-10 1.416E-10 1.217E . 6.839E-11 4.506E-11 2.458E-11 1.595E-11 w-aSa 260 1.493E-10 1.330E-10 1.122E-10 1.044E-1 5.7e45-11 3.747E-11 1.998E=11 1.264E 11 *" a 216 1.697E-10 1.405E-10 1.179E-10 1.008E-1 .533E-11 3.642E-11 1.924E=11 1.108E-11 aNa 265 1.716E-10 1.404E-10 1.197E-10 1.018E-ir '.517E-11 3.541E-11 1.709E-11 1.071E-11 Na 209 1.527E-10 1.257E-10 1.094E-10 9.339E-11 3.lu1E-11 2.994E-11 1.536E-11 8.555E 12 NNa 196 1.234E-10 1.481E-10 1.031E-10 8.777E-11 4.748E-11  ?.896E-11 1.437E-11 6.277E-12 Ull. O O O

TABLE 372.39-23 (Sheet 2 of 2) r n.o x 7( r or, nTSTANCE FACM 4FLFASE pnIN7 (wfLES) SFCtr% rm s 25.09 3n.00 35.00 40.00 45.00 50.00

        =
             );5  6.1PAF*12   a.57;E-17          3.555E=12  2.A46E=12 2.338E=12 1.954E=12
    *=r      514  1.397E=11   9.527E=17          7.424F=12  5.960E=12 4.882E=12 c.07cE=12
       .c    9h9  2.8 pef =11 p.10aE-11          1.636F=11  1.245E=11 1.021F=11 8.51cE 12 kNF      Spa  7.kS1F=11   2.10?E=11          1.591F=11  1.25cf-11 1.01cE=11 A.333E=12 F    a*A  7.7e5F=11   P.c7EE-11          1.615E=11  1.323E=11 1.0ABE=11 7.797E=12 rss      ara  2,cQ9F=11   1.AA2E-11          1.471F=11  1.1A1F=11 9.713E=12 A.111E=12 p.1PPE-11 9F    10e4  7 Aler-11                      1.66cr=11  1.su1E=11 1.10?E=11 9.280E=12         N sse      nno  1.H*es-11   1.016E=11          1.103F=11  A.A39E' 2 7.PuBE=12 6.039E=12         -

c To1 6.256F=12 c.905F=12 3.937E=12 1.1teF-11 a . P D I E = 12 3.213E=12 m

    $s,      ?RP  A 446F-1P   *.719F~1P          5.179F=12  4.165E-12 3.33cE=12 2.752E=12         y
      $. ut;  i.145F=11   9.117F=12          7.1n1E=12  5.686E 12 4.665E=12 3.888E=12
    ,c,           H.787F=17                                           3.196E=12 760              6.501F*17          4.995F=12  3.947E=12           2.630E=12 718  7.n19E-17   n.99EE-17          1.196F-12  2.661E=12 2.153E=12 1.772E=12
   ..        /A5  7.1406-17   4 QPtE=17          3.819E=17  1.052F=17 2.503F=12 2.087F=12
        ,    709  %.481F=17   a.nknF-17          1.11PF~12  2.468F-17 2.010F-12 1.666E=17
s. , 196 5.714F-17 t.a4EE-17 2.968F=17 7.355E=12 1.918E=12 1.589E=17 Alli EI Ta 5W Ge" eo

TABLE 372.39-24 (Sheet 1 of 2) ANNUAL GROUND-LEVEL AVERAGE CHI /Q (SEC/M ) BEFORE DEPLETION (SPLIT-H MODEL) TURBINE BUILDINC RELEASE, SECTOR AVERAGE MODEL NEP 1 & 2 SITE DATA (DEC. 76 - NOV. 77) 00mNmIND NO. SECTOR DISTANCE FR(IM RELEASE POINT (MILES) OBS .25 50 75 1.00 1.50 2.00 2.50 3.00 N 275 3.384E-06 1.135E-06 6.202E=07 4.117t=07 2.252E-07 1.478E-07 1.069E-07 8.240E-08 NNE 607 6.593E-ob 2.213E-06 1.204E-06 7.977E-07 4.365E-07 2.875E-07 1103 2.086E-07 1.610E-07 NE 1.115E-05 3.666E-06 1.986E-06 1.314E-u6 7.196t-07 4.762E-07 3.471E-07 2.689E-07 ENE 730 7.117E-06 2.367E=06 1.296E-06 8.605E-07 4.702E-07 3.060E-07 2.228E-07 1.719E-07 E 729 8.640E-06 2.798E-06 1.501E-06 9.883E-07 5.382E-07 3.559E-07 2.596E-07 2.012E-07 ESE 887 8.265E-06 2.685E-06 1.431E-06 9.352E,07 5.046E-07 3.333E-07 2.429E-07 1.880E-07 SE 865 8.944E-06 2.820E-06 1.475E-06 9.585E-07 5.170E-07 3.449E-07 2.536E-07 1.973E-07 z SSE 607 1.060E-05 3.212E-06 S 450 1.273E=; 3.772E=0e 1.643E-06 1.054E-OL 5.656E-07 3.849E-07 2.877E-07 2.262E-07 y 1.900E-06 1.211t-06 6.498E-07 4.475E=o7 3.377E-07 2.671E-07 SSa 397 8.238E-06 2.523E-06 1.298E-06 8.382E=07 4.524E-07 ~ Sa 433 3.067E=07 2.264E-07 1.792E-07 6.235E-06 2.000E=06 1.061E-06 7.007E-07 3.835E-07 2.541E-07 1.855E-07 1.439E=07 " aSa 276 3.763E-06 1.229E-06 6.640E-07 4.390E-07 2.397E-07 1.562E=u7 1.151E-07 8.909E-08 N

  • 224 3.107E-06 1.020E-06 5.540E-07 3.674E-07 2.013E-u7 1.327E-07 9.646E-08 7.464E-08 mNa 230 3.404E-06 1.128E-06 6.122E-07 4.020E-07 2.176E=u7 1.433E-07 Na 1.042E-07 8.046E=08 206 2.834E-06 9.407E-07 5.109E-07 3.405E-07 1.872E-07 1.228E-07 8.878E-06 6.843E-08 NNa 218 3.50SE-06 1.122E-06 5.998E-07 3.989E-u7 2.201E-07 1.459E-u7 1.065E-07 8.268E-08 00a*aINO NO. 01 STANCE FEOM RELEASE POINT (*ILES)

SECiua URS 3.50 4.00 4.50 5.00 7.50 10.00 15.00 20.00 N 275 6.613E-08 5.ub4E=ua 4.619E-08 3.976f=08 2.272E-08 1.535E-08 607 8.860E-09 6.036E-09 NNE 1.293E-07 1.071E-07 9.055E-08 7.803E-08 4.470E=o9 3.023E-08 1.747E-0A 1.191E-08 NE 1103 2.167E-07 1.799E-07 1.525E-07 1.316E-07 7,592t-08 5.168E-0a 730 3.018E-06 2.071E-08 ENE 1.360E-07 1.142E-07 9.642E-08 R.300E-05 4.750E=u8 3.218E-08 1.865E-08 1.274E-08 y> E 729 1.623E-07 1.348E-07 1.143E-07 9.861E-08 5.7d4E=u6 1.911t-08 2.297E-08 1.583E-08 gy ESE 887 1.514E-07 1.257E-07 9.211E-08 1.066t-07 5.332E-08 3.638E-Oe 2.133E-08 1.470E-08 m a SE 865 1.597E-07 1.332E-07 1.134E=o7 9.840E-08 5.764E-06 3.967E-08 2.358E-08 1.638E-08 E@ SSE 607 1.847E-07 1.551E-07 1.331F=07 1.162E-07 6.926E-08 4.A31E-06 450 2.934E-08 2.061E-08 Q@ 5 2.191E-07 1.646E-07 1.592E-07 1.395E-07 6.400F=0B 5.899E-08 3.619E-08 2.556E-08 SSa 397 1.460E-07 1.224E-07 1.049E-07 5.435E-08 3.760E-06 Sa 433 9.146E-08 2.283E-08 1.598E-08 ez 1.161E-07 9.653E=u8 A.199E-08 7.093E-08 4.128t-06 2.826E=u8 1.662E-08 1.146E-03 $C aSa 276 7.176E-08 5.954E-04 5.044E-nB 4.354E-08 2.51*E-06 1.714E=ue 1.002E-08 6.884E=09 a 224 6.010E-vA 4.985E-08 4.220E-08 3.641E-08 2.098E-06 1.427E-u8 8.326E-09 5.709E-09 aNa 230 6.471t-0A 5.361E-08 4.536t-08 3.911E-08 2.245E-06 1.523E-uB 8.862E-09 6.071E-09 Na 208 5.493E-08 4.544E-08 NNa 3.838E-08 3.305E-08 1.892E-08 1.260E-08 7.397E-09 5.044E-09 218 6.676E-08 5.551E-06 4.713E-08 4.076t-0A 2.36et-u6 1.A19E-08 9.520E-09 6.557E=09 A> u. O O O

NEP 1 & 2 Amendment N12 February 1979 4 e C0 0 0000 000 00000 0 0 C ococcoCOCCCCCCC C 0 $ 3 9 3 3 $ $ 3 8 3 3 5 9 3 5

  • wwwWwwWWWWWWWwww C COO 60b e m e t CfLMb4
         @    CWCh@eE *NbbCOO 30 E. CCOCbMCEMeebOOC e e e e . . e e o            ..e      o e e e ef t963@bE@@Ne                            e e    N 000 0000 000000000 C    CC ocOCC CoC CCC COO O     3 3 3 3 3 3 3 3 g 9 3 3 $ $ 3 D
  • WWWWmWWWWWWWWWWW W bhWWe QVVOWT9Cb bG U Ob e ubbe etOE Omt O E-e e 40bFeOOOe UCebM e o e e e o e e o . . . . e e o Nub Groth&euNNNe N e

m W

     -        00 0 000 0 0E 00 00 00 0 wC       OOCC C OCCCC ocC CC C A C       8 8 8 6 h e 8 6 B B S S S B B B w
  • wwwaWWWWWWWWWWww G LwfE 6444NLC aN34W F 3 EAttb o4 CG CQC6CJ #

2 GEON4 Nom e CEE M(Cb

     >           e e o e e e e e e e o e o e e e O        NUE FC4bOebQNNNNN a

w W 00100 0 0E E 0 0000 0 0 t o CC CC C C C C C C CCC C CC 4 ^ wC 8 0 t B 8 8 0 9 0 8 8 8 0 0 0 0 N N J e wWa wWwwwmwwwWWLW I wf C6 C C K w eVmWe& f Q V. O w 4 m 40 -USNE 4ece cCONG ] O

      ,       0e 4. C. N. .4 eM N. C. M  . .A. b. O E. O. c    A m  N g     U        NWe t' b b E e -E @MANAM M     G M k W 0 4     4        00 3 000 0EE 0 00 00 0 0 A     U C      C O CC C CC C CCOC C C C C

< *W zo a e a e e e a aa e 8 a a e e a H *

  • a wwaa . u.a. w w w m w w W
      > =     E a e nC nnvnC habvCu Om        40 A4 MW6bO 4 CNO b 44
     *~       WG h V' & 1 O N V             4. O e MfGO L          e e e e e e e e o e o e o e e e Y 4 *60 G U            e v 0 L G Y Y nY O 0 4 O G A a G E & O@ @ O O O C    C C O C O C C C C C OOC C C C C    8 8 4 4 S 5 5 8 8 0 8 4 9 0 9 8
  • Wa u wa um awa mwk Wh k
          @    e ma e ME A 4, n O C 4 e                  O RF h   E O h 20 C 2 6 t e nb Lb & C 4 Ld d       e e hlO NLe hM CO
                 = e e e e o e e e e e o e o e e 4K
  • O w e v e e e t @ 3 O f3 em Vhwc3 yy ncp y, x0 cxx LT F C C F RE 4 cv0 Fb nFC e
: h4=b b 5 L 44 W G %hhhn c
      / 2 e -      a   a' u wk a n a V.          4 4 4 J 4       9 3 s Y         d a   s     DdV          V3 0V        6 4    /
      /   L.'      d     w     u     #      W. 4      +     4 4 4 00' c

TABLE 372.39-25 (Sheet 1 of 2) ANNUAL GROUND-LEVEL AVERAGE CHI /Q (SEC/M ) AFTER DEPLETION (MET. AND ATOMIC ENERGY 1968 DEPLETION MODEL) TURBINE BUILDING RELEASE, SECTOR AVERAGE MODEL NEP 1 & 2 SITE DATA (DEC. 76 - NOV. 77) 00aNalND NO. SECTU4 045 DIS 7aNCE FROM HELEast PJINT (*ILES)

                            .25           .50                7E              1.00             1.50           2.00              2.50          3.00
        **   275    3.lett-06       1.042E-06     5.628 E =o 7       3.693t-07        1.979E-u7       1.274E-07        9.co8E-08        6.883E-08 NNE      607    6.142E-06       2.b29E-u6      1.091E-06         7.150E-07        3.e35E-07       2.461E-07        1.771E-07        1.346E-07 NE    1163    1.u31E-05       3.329t-06      1.761E-06 ENE      7TU 1.165E=06        6.243E-07       4.040E-07        2.89eE-07        2.207E-07 6.641t-OS       2.170E-06      1.172E=oe         7.669E-07 729    7.952E -0 6 4.lo9E-07       2.640t-07        1.876E-07        1.424E-07 E

2.525E-06 1.335E-06 A.66 0E -0 7 4.617E-07 2.986E-07 2.134E-u7 1.e24E-07 F SE eH7 7.613t-oe 7.425E-06 R$5 8.143E-ob 1.274t-u6 A .223E -0 7 4.335t-u7 2.801E.07 2.000E-07 1.519E-07 SE 2.509E-06 1.292E-06 8.265t-07 4.359L-07 2.838E-07 2.040E-07 1.555E-07 SSE 607 9.437E-06 2.775!-u6 1.392E-06 8.790t-07 6 450

4. 58 7 E -0 7 3.035E-07 2.200E-07 1.695E-07 $

1,119E-0% 3.202E-06 1. 5 7 7 E -0 6 9. M 79E-0 7 5.la1E-v7 3.436E-07 2.521E-07 1.942E-07 N SS- 397 7.364E u6 Sa P.193t-u6 1.108E-ub 7.047L-u7 5.701E-07 2.441E-07 1. 7 71 E -0 7 1.357E-07 ~ 433 5.733t-06 1.M02E-06 9.421L-07 6.140E-07 3.280t-07 aSa 276 2.125E-07 1.520E-07 1.157E-07 m

                   %. 4 76E -06     1.114E-06     5.935E-07          3.875f-v7        2.06HE=u7       1. 3 3
  • E -0 7 9.531E-08 7.247E-08 w a 224 2.878L-06 9.277E-07 4.971E-07 3.256t-07 a' a 230 1.744E-07 1.126E-07 8.037E-u8 6.114E-08 3.156E-oh 1.028f-u6 5.505E-07 3. 5 7 3 E -v 7 1.69at-u7 1.223E-07 A.728E-08 6.631E-08 Na 206 2.651t=06 S.656E-07 4.644E=v7 3. 0 5eE -07 1.646E=u7 1.000E-07 7.541E-08 5.724E-08 7Na 21* 3.233E-v6 1.015E-u6 5. 350E -0 7 3. 513F = 0 7 1.a95E-07 1.229f-07 8.A00E-08 6.711E-08 man-IND No. u! STANCE F M IM WELEA$t WUINT ( "' I L E S )

SECTu' oks 3.5o 4.50 4.00 4.00 7.5o 10.00 15.00 20.00 275 5.uuSt-ad 4.4426-08 3.703E-Oo 3.148F=o6 1.?voE=uM c.6 ro? 1,uSAE-c7 8,705E=0" 1.091t-OH 5.744L-09 3.609E-09 7.26AE-oe 6.16 3E -v 4 3.345t-0* 2.14aE-oa 1.11oE-09 7.094E-09 1163 1. 7 51 t -v 7 1.432E=o7 1.196E=u7 1.01Af=07 f ,t 73u 5.510t-09 5.540F=08 1.H62E-06 1.165E-08 1.1 d 7 E - o 7 9.190E=oH 7.655E-06 a. 5 0 4F -u E 3.509F-98 2.255t-08 1.169E-08 7.480L-09 t 779 1.2e7t-07 1.oS1F-07 8.776E-08 7.4 NAE-08 F St 837 4.034L-0" /.567f=08 1.355E-06 8.437E=09 y$ 1.203E-c7 9 M21E-08 8.197E-oe e.974t-OR 3.768t-06 2.415EauA 1.263E-46 7.878E-09 SE 665 1.234t-07 8.451E-08 {g Sat 1.o10t-07 7.204E-04 3.901E-ve 2.499t-08 1. 3 0 3 E - 0 8 8.061E-09 ca e07 1.353E-07 9.332E-06 S usu 1.55at-o7 1.111E-07 1.280E-07 1. 0 7 7 t -0 7 7.97et-04 4.32nE-v6 4.999E-oM 2.759t-08 1.42.t-ve 8.633E-09 $$ SSa 9.222f-uR 3.166E=oA 1.o5)i-r3 9.749E-09 x% 397 1. 0 6 2F -0 7 H.679t-oe 7,451E-08 6.365E-ta sa 443

3. 4 4 9 E -0 8 2.2out-oS 1.137E-OH 6.911E-09 g7 0.171t-ca 7.497E-08 6.264t-GA 5.335E-oa 2.691t-uh 1.d55t-u3 9.702E-09 6.031E-09 u-a5* 276 5.7uot-04 4.667t-u8 3.910t-OH 1.326E-oh 1.797F-08 1.153E=v8 6.046E-09 3.773t-09 224 u.S44E-0* 3.957E-08 3.301E-38 P.80aE -c A 1.517E-oM 9. 74 3E -09
  *Na       230                    4.285E-06 5.119E-09        3.200E-09 5.25ef-v8                      4.574E-va          5.039E-cA        1.640L-04       1.052t=08        5.531E-09        3.46eE-09 sa c.a PoM   4.5 5 0F -v a    3.697t-oA     3.083t=08          2.622t-vM        1.41eE-UR       9.1dit-09        4.812E=09        3.030E=09 218   5.3285-os        4.36nt-v6     3.644E-08          5.lo5f-uA        1.6Aut=06       1.0"3E=us        5.698E-09        3.555E=u9 UIL e                                                                9                                                               9

TABLE 372.39-25 (Sheet 2 of 2) ttO*Na1NP Nr. OTSTANCF FRCa RFtFASF POTNT (wllES) SECTru nas ps,na in.on 35.no 40.00 c5,00 50.06

  • 775 P.43cF=n9 1.806E=n9 1.393E=09 1.107E=09 9.01*E=10 7.c70F=10 NAF 607 U.505F=99 1.41PF=n9 2.635E=0Q  ?.006E=00 1.71nE=99 1.419E=0C NF 11n3 7.e70F=oo m.AsmE=00 c.336E =09 3.423E=00 2.773E=09 2.285E=09 EnF 730 5.101E=oQ t.841E=09  ?.956E=n4 2.301E=no 1.00?F=00 1.571E=00 F 77o 5.79aF=nq o.PuaF=oc 3 ?T3E=no 2.537E=no 7.002F=00 1.672E=09 F SF Ma7 5.c27F=09 1.081F=09 3.042E=09  ?.305E=no 1.93cE=09 1.590E=09 ss 464 5.490F=o9 h.00pE=09 3.036E=n9 2.364E=09 1.ag3F=09 1.5ccE=no SSF An7 5.763E=09 c.nocE=no 3.n2PF=n9 2.307E=no 1.80?E=09 1.436E=09 $N s uso 8 . ri n o F = 0 9 h.c77E=no 3.245F=n9 2.c?cE=0C 1.85cF=0C 1.c45E=00 SSa 347 4.623F-oo T.PC6E=09 2.44cF=09 1.866E=0C 1.ue2E=09 1.le7E=00 -

S. 433 4.15 4 F = 0 9 t.0?TF=09 P.?Q8E=09 1.799E=no 1.ca5E=09 1.1A1E=00 e

   *S*    77e 2.tG8F=0C          1.907E=09    1.457E=n9  1.tc6E=00     0.743E=10 7.584E=1n            y e  Pau 7.1AcF=oo          1.cosE =nQ   1.??AF=09  9.682E=10     7.BPPF-10 6.036E=10
   *N.    ?30 2.326F=0Q          1.7??E=04    1.3?6E=09  1.052E=09     8.563E=1n 7.09nE=10 Na   ?nn 2.opHF=o9          1.50aE=04    1.166F=oc  9.??6E=16     7.56*E=10 6.778E-10
   'N. 218 7.384F=no          5.75sE=o9    1.34nF=0A  1.053E=00     8.08BF-10 6.06nE=10 JLJ l'L mN s8 E&

08 eo

TABLE 372.39-26 (Sheet 1 of 2) ANNUAL AVERAGE DEPOSITION RATES (1/M ) (DEPLETED CHI /Q* DEPLETED VELOCITY MODEL) TURBINE BUILDING RELEASE, SECTOR AVERAGE MODEL NEP 1 & 2 SITE DATA (DEC. 76 - NOV. 77) 00aNd!ND NO. DISTANCE FROM RELEASE POINT (MILES) SECTOR 08S 25 50 75 1.00 1.50 2.00 2.50 3.00 N 275 9.149E=09 3.103E-09 1.695E-09 1.111E-09 5.932t-10 3.808E-10 2.702E-10 2.047E-10 NNE 607 1.861E-08 6.385E-09 3.491E-09 2.293E-09 1.232E-09 7.958E-10 5.673E-10 4.306E=10 NE 1103 3.683E-08 1.244E-08 6.792E-09 4.460E-09 2.393E-09 1.545E-09 1.102E-09 8.369E-10 ENE 730 2.553E-08 8.582E-09 4.665E-09 3.042E-09 1.610L-09 1.028E-09 7.267E-10 5.491E-10 E 729 2.748E-08 9.012E=09 4.813E-09 3.122E=09 1.648E-09 1.057E-09 7.508E-10 5.684E-10 ESE 887 3.064E-08 1.002E-08 5.293E-09 3.408E-09 1.785E-09 1.144E-09 8.118E-10 6.134E-10 SE 865 3.139E-08 1.001E-08 5.227E-09 3.358t=09 1.759t=09 1.133E=09 8.080E-10 6.123E-10 SSE 607 3.051E-08 9.133E-09 4.621E=09 2.931E-04 1.531E-09 1.006E-09 7.289E-10 5.576E-10 $ 45u 3.014E-08 N S 8.700E-09 4.297E-09 2.690E-09 1.396L-09 9.306E-10 6.815E-10 5.242E-10 SS* 397 1.972E-08 6.025E-09 3.083E-09 1.964E-09 1.028E-09 6.734E-10 4.861E-10 3.710E-10 - Sa 433 1.-.5E-08 5.264E-09 2.794E-09 1.815L-09 9.608E-10 6.175E-10 4.388E-10 3.322E-10 m

  *3a     276 1.003E-08 3.393E-09     1.828E-09     1.189E=U9    6.263E-10       4.020E-10 2.845E-10      2.147E-10      m a    224 8.122E-09 2.735E-09     1.491t=09     9.740E-10    5.174L-10       3.318t=10 2.353E 10      1.781E-10
  *N*     230 7.269E-09 2.449t-09     1.331E-09     8.664E-10    4.592E-10       2.947E-10 2.092E-10      1.584E-10 Na     208 6.836E=09 2.273E-09     1.228E-09     8.071t-10    4.331t-10       2.765E-10 1.979E-10      1.501E-10 NNa     218 7.837E-09 2.573E-09     1.387E-09     9.117E-10    4.899E-10       3.158E-10 2.250E-10      1.711E-10 00aNa!ND   NO.            0!STANCF FROM WELEASE POINT (MILES)

SEC TilH 085 3.50 4.00 4.50 5.00 7.50 10.00 15.00 20.00 275 1.616E-10 1.317E-10 1.097E-10 9.313E-11 5.020E-11 3.224E-11 1.702E-11 1.076t-11 NNF 607 3.407E-10 2.781E-10 2.320E-10 1.974E-10 1. 0 6 6 E - 10 6.866E-11 3. 6 31 E - 11 2.29bE-11 NF 1103 ^;67tE-10 E.409E-10 4.512E-10 3.837E-10 2.075t-10 1.335t-10 7.069E-11 4.470E=11 ENE 730 4.330E-10 3.5226-10 2.928E-10 2.4e4E-10 1.337E-1J P.579E-11 4.525E-11 2.864E-11 E 729 4.46aE-10 3.656E-10 3.045t-10 2.566t=10 1.394t-10 A.934E-11 4.689E-11 2.945E-11 2$ ESE 887 4.838E-10 3.940E-10 3.282E-10 2.7e9E-10 1.506t-10 9.655E-11 5.069E-11 3.195E-11 665 3.949E-10 3.295E-10 2.604E-10 l@ SE 4.841E-10 1.517E-10 9.734E-11 5.109E-11 3.208E-11 Ea SSE 607 4.439E-10 3.641E-10 3.053E-10 2.607E-10 1.412t-10 9.03uE-11 4.664E-11 2.867E-11  ; 2 S 450 4.190E-10 3.446E-10 2.899E-10 2.461E-10 1,34uE 10 8.561E-11 4.363E-11 2.626E-11 *E SSa 397 2.949E-10 2.415E-10 2.022E-10 1.725t=10 9.332E-11 5.963E-11 3.086E-11 1.890E-11 g2 Sa 433 2.624E-10 2.139E-10 1.782E-10 1.515E-10 8.18 6 E - 11 5.250t-11 2.753E-11 1.728E-11 w-aSa 276 1.691E-10 1.375E 10 1.144E-10 *" 9.702E-11 5.218E-11 3.337E-11 1.745E-11 1.096E-11 a 224 1.406E-10 1.145E-10 9.525E-11 8.086E-11 4.351E-11 2.789E-11 1.466E-11 9.232E-12 aNa 230 1.251E-10 1.019E-10 8.486E-11 7.209E-11 3.889E-11 2.499E-11 1.322E-11 8.383E-12 N* 208 1.187E-10 9.679E-11 8.068E-11 6.859E-11 3.708L-11 2.365E-11 1.262E-11 7.988E-12 NNa dio 1.355E-10 1.107E-10 9.233E-11 7.854t-11 4.248E-11 2.735E-11 1.448E-11 9.133E-12 bit O O O

TABLE 372.39-26 (Sheet 2 of 2) on-N-TNC NC. Dis 7aNCE FGC* DEt'ASF POIN7 ("ILE5) SEC7CP CAS 25.00 36.00 15.00 40.00 45.00 Sn.no

  • 275 7.111E*1P E.377E-12 c.191F=12 3.3PCE 12 2.73PF=17 2.28AE=17 AAF 607 1.u15F-11 1.06%E 11 8.301F-12 6.722E-17 5.55cE-12 c.667E=17 NF 1103 2.A39E-11 2.1PoE-11 1.65PF-11 1.32GE=11 1.087E=11 0.0P1E.12 ENE 73n 7.003F-11 5.u9aE-11 1.154E-11 9.756E-17 7.595F-17 6.315E-17 F 779 P.044F-11 1. 913 E - 11 1.165F-11 0.Pauf-17 7.524E-1? 6.228E*17 ESE 887 7.PP9E-11 1.6SoE-11 1.?F0F-11 1.n?0E-11 8.3a3F-17 6.942E-17 SE A6% P.??uF-11 1.6csE-11 1.767F-11 1.nn5E-11 8.1ASE-17 6.784E-1? Z SSF 6n7 1.933F-11 1.390E-11 1.000F-11 P.073F-1? 6.3a9E*17 5.12PE 17 E S 450 1. 7 3 n F - 11 1.71TE-11 8.836E-12 6.620E-17 5.096F-17 3.99cE-17 -

55= 107 1.277F-11 0.19%E 17 6.AQPF-17 5.32cE.12 c.220F=12 3.cn9E*17 , Sw 431 1.19AF-11 A.e5PE.17 e.816F-12 5.403F-17 c.193F-12 3.634E-12 "

  *S. 276 7.617F-1P       5.64cF-17      c.35aF-1?  3.460E-17   7.821F-17 P.130E-17
     . 2Pa 6.700F-IP       c.676E-17      3.617F-12  P.PA1F-12   P.35cE-12 1.955E-17
  .N. 210 5.573F-17       4.185E-17      3.77nE-17  7.631E-17   2.171f-17 1.821E-12 6     Pn8 5.Pu3E-12       1.936E-17      3.063F-12  P.457E-1;   2.071E-12 1.690E=17 NNm    718 6.659F=17       c.51cE-17      3.co6F-12  P.787E-17   P.27CE-12 1.894E=17 lust
                                                                                            ?N se 5&

08" e~

N N%t ,-

                                      '"                            NNE
                              '\

NW NE 15 %

                /                  -              %
                                                                                              <~-

5

                                     /                      \
                                                                \

W- O.O E k \

  \                          \                                                                /

WSW

    \-                                                  \                                     ESE
                                                             \
                                                               \

SW SE SSW SSE S 05-3 8-12 19-24 MPH

                   <05           4-7              13-18             >24 AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY                                            33 FT. WIND ROSE NEP 1&2                                                WINTER (DEC. 76 - FEB. 77)

Preliminary Safety Analysis Report FIG. 372.39-1 NEP 1 &2

i NNa p p' NNE

                                          -            ~~

3 Nw NE l N WNW

                  'N

[ y 15 %

                            //              -~                   '
                                                                   -              ,o
                          /                               s
                               /                                       ,

w I o.o - E N

               /
    /

WSW ESE X SW \ SE SSW SSE S 05-3 8-12 19-24 MPH

                   = 0. 5          4-7            13 -18             >24 AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY                                              33 FT. WIND ROSE NEP 1 &2                                                 SPRING (MAR. 77 - MAY 77)

Prehm: nary Safety Analvs;s Report FIG. 372 39-2 NEP 1&2

N NN n , - 4NE

                         ,/\

NW N' s

                                                                               'N N E s

WNW 15 % ENE 5 W

                                    /        00                                                 E
                                      \-                     N
                 -            \                           N               N WSW                                                    \                                     ESE s                   \
              \          \                                \
              ~\'

N N N x '

                                                                 \

SE

                        'N/SSW
                                                                   \/SE S

05-3 8-12 19-24 MPH 405 4-7 i3-18 >24 AMFNDMENT N12 FEBF.dARY 1979 NEW ENGLAND POWER COMPANY 33 FT. WIND ROSE NEP 1 &2 SUMMER (JUN. 77 - AUG. 77) Preliminary Safety Analysis Report FIG. 372.39-3 NEP 1&2

N

                                           '            N NNA                                         P. E
                       /                                      .

NW i,  ; \ NE s

                        'N /
                               /[        .

D wnw / f 15 % ENE

                          /                     -
                                                       's Ns\

w

                     ~

[/ / 0.0 N

                                                                                \                     E
                                      \                             l
                                        \                         /
                                \                             's
      /                                                       \

WSW' ESE

                                                                 \
e. s
                                                                      \                N eE N               x                       -x SSW                                        SSE S

O5-3 8-12 19-24 MPH

                        <05           4-7              13 -18             >24 AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY                                                33 FT. WIND ROSE NEP 1&2                                                   AUTUMN (SEP. 77 - NOV. 77)

Preliminary Safety Analysis Report FIG. 372.39-4 NEP 1&2

N

                                                     ~

f.N N NNE f\ N

                                      /

NW j \ \NE

                \
                  'x [ ,
                                                                         \

WNW

                    /
                     /                                                                                15 %

ENE

                                                                                       /

l / N l I I O.0

                                                                        \

E W

                                                                                \
                                                            \.
                                                                   'N ESE WSW'                                          N                   \
                                                                    \
                                                                      \

SW

                                                                          \                    SE SSW                                               SSE S

05-3 8-12 19-24 MPH

                 <05            4-7              13 -18                   >24 AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY                                                       33 FT. WIND ROSE NEP 1 &7                                                      ANNUAL (DEC. 76 - NOV. 77)

Preliminary Safety Analysis Report FIG. 372,39-5 .4EP 1&2 l

N NNW JNE [\ '

                                      /
                                                ~
                                                         ~

N

                                                                       /'

15 %

          /
                ///    -
                                                             /        ',
                                                                                          ,c fI                /                                              s

[ 00

                                                                   '(                                      E x
                                      \              -                      s b     \
           -                                                 \
   >                           /                               \
                             '                                                                         ESE WSW
                    /                                                \'

SW \ \ s

                                                                                         'N    SE
                                                                           \/
                              /

SSW SE S 05-3 8-12 19-2 4 MPH

                    <05            4-7                13-18                324 AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY                                                     191 FT. WIND ROSE s            NEP 1&2                                                        WINTER (CEC. 76 - FEB. 77)

Prehm: nary Safety Analys.s Report FIG. 372.39-6 NEP 1&2

N

                                                        ~

N '. N NNE

                                   ,/                     - - - - - - - - .

NW ['N NE

                                                           ' ~

[ \

                                         /

ONN

                      /          f f
                                                                                                          '/

Ib

  • W-i

( l - 0.0

                                                                       $h' 0                    ,
                                                                                                                         -E j

WSW x w \s

                                                                                                    ~
                                     /

j s ESE

                                                                                  'y i               \

S \ / \ E

                                \                                                         \
                                   \

SSNx_ SSE S 05-3 8-12 19-24 MPH 405 4-7 I3-18 >24 AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POV.ER COMPANY NEP 1&2 191 FT. WIND ROSE SPRING (MAR. 77 - MAY 77) Pr eliminar y Safety Analysis Report FIG. 372.39-7 NEP 1&2

N

                                                  ~'

NNA p.~~ NNE "w~ NW N NE N N E E

                                                             /

5 de I h W ) 0.0 - - E

                   \              \                                   i
                            \                                             x
                    \
                                    \
                              \            ~                 N WSW .
     -                            x                  - \
                                                         \                N                             ESE
                                                            \
                        \                     .

x \ \ s

              \

x \ x SE

                                                                           \
                                 'N                                          \

SS SSE S O S- 3 8-12 19 24 MPH

                  <05           4-7              13 .;8                      >24 AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY                                                       191 FT. WIND ROSE NEP 1&2                                                         SUMMER (JUN. 77 - AUG. 77)

Prehminary Safety Analysis Report FIG. 372.39-8 NEP 1&2

N

                                             ^ "

N s ,*, . t F

                     ,  /'                           2                      ,/         N
                                 /

NW q NE N ' j -x x , N

                              ,'             y-t m                                  N /

V ,/, i ANA / / 15 %

            #                                                                                             ENE

[ j N O

                                              /                 N          \5 N l

I ' l ' W l - I l 0.0

                                                                        \           \      i                  E
                         \                 \                                        ~                       i g
                            \
                                   \                    -              \
    \ /                        \                                \          \                               ESE WSW                                                      -
         \>\('

SW N

                            s.

x/s M

                                                                              '\
                                                                                 \

SE SSW  % y' SSE S 05-3 8-12 19-2 4 MPH

                       < 0. 5            4-7              13-18                   >24 AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY                                                        191 FT. WIND ROSE NEP 1&2                                                          AUTUMN (SEP. 77 - NOV. 77)

Preliminar y Safety AnaNsis Report FIG. 372.39-9 NEP 1&2 l

to s t;,y N NE NW y \ \ NE

              's f                                        k          'N[

wNw / 15 % x ENE [ / K~ N

                                                                                     'o
                                     /

w4 --g - 00 - E

                                  \                                    l
                                    \                             / N N
                                         \
                                                           .\
                                                           \
    /
          /
                \      \          \                          \

WSW  %#\ ESE

                                                                                \
                                                                  \

y'Nx, SW

                's      x x                       u               \

RE

                                                                                         ~

SSW 'N SSE S 05 3 8-12 19-24 MPH

                   <05           4-7                 '3-18               >24 AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND PO'.'v E R COMP,. 4Y                                         191 FT. WIND ROSE NEP 1&2                                                     ANNUAL (DEC. 76 - NOV. 77)

Prehminary Safety Analysis Report FIG. 372 39-10 NEP 1&2

N NNW [ NNE [ ' N WNW -

                /

e - -- x ~' 15 % ENE 5

                                                               \
                                                                  \

W @ O .0  % E

                                           \                  s
                                       \
   \.

WSW

                               /                  #
                                                                     'N ESE
                          /
                     !                                           \

SW \ \ yx SE SSW N S j SSE 05-3 0-12 19-2 4 MPH

                       <05           47              13 18                >24 AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY                                               300 FT. WIND ROSE NEP 1&2                                                   WINTER (DEC. 76 - FEB. 77)

Preliminary Safety Analysis Report FIG. 372.39-11 NEP 1 &2

N NNW JNE

                           /-
                                    /                                           ,

NE NW 4

                   //            /

[$ % WNW ENE fl [ s

                                    /             ~
                                                                \

W M O.0 E

                                                       \      \
                                                        \                                       ESE WSW
                  /                                          \
                                                               \

eW x \ ,~ N[ SSW N S SSE C5-3 8-12 19 24 MPH

                   <05           47              13 18                ,24 AMENOMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY                                              300 FT. WIND ROSE NEP 1&2                                                   SPRING (MAR. 77 - MAY 77)

Prehminary Safety Analysis Report FIG. 372.39-12 NEP 1&2

N NNN

                                        '                             NE
                               \ '
                                                                   /          s NW
                                   \                                               NE
                 \

x WNW N X/- /

                                           -                                                15 %

ENE 5 W 0.0 E N I WSW ESE Sh

                                                            \
               \                                                 \                  SE SSW N                                     SSE S

05-3 8-12 19-2 4 MPH

                    <05             4-7           13-18              >24 AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY                                           300 FT. WIND ROSE NEP 1 &2                                              SUMMER (JUN. 77 - AUG. 77)

Preliminary Safety Analysis Report FIG. 372.39-13 NEP 1&2

N 4 -- .

                                      -~~

bb t- - % l 'N. -.s NW i N NE N 'N. s / l

                                                                                         }

WNW / I 15 %

                                      '[-                                                       10
                                            /                 N                5
                                                                   \

W I I I w-l/ O.O

                                                                      \          \'                               E
                \      \\\                                          /
                 \                              ~                   \

WSW

    ;/                                      /                  \         \                             N
                              ,                                  \                                           ESE
                                                                    \                       [

SW \ / \ SE

                                                                          \              /

_ g s/ SSW y j/ SSE S 05-3 8-12 19-24 MPH

                       < o.S           4-7              13-18                  >24 AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY                                                      300 FT. WIND ROSE NEP 1&2                                                      AUTUMN (SEP. 77 - NOV. 77)

Preliminary Safety Analysis Report FIG. 372.39-14 NEP 1&2

                                                       ~
                                \                         N
                                                                           /         \

NW t [ NE N 's

                                                                                     's
                                          /

WNW , 15 %

                           ,!       /

l l ,o

                         /
                                                                      \
                                                                                                 )

w - 0.0 E

                                                                    /

W3w \ 9 \ \

                                                                 \\                                     ESE
      \\              -
                                                                    \
             'N                   /                                     \.                    se
                  \                                                         \

NN S 05-3 8-12 19-24 MPH

                    <05           4-7                13 -18                  >24 AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY                                                    300 FT. WIND ROSE NEP 1 &2                                                      ANNU AL (DEC. 76 - NOV. 77)

Preliminary Safety Analysis Report FIG. 372 39-15 NEP 1 &2

NEP 1 & 2 Amendment N3 June 1977 various Construction Specifications generated by the Engineer (UE&C). YAEC Q. A. personnel review these construction specifications during the review and comment cycle to assure that the required provisions are in the specifications. YAEC also performs audits and/or surveillance activities to assure impleme n t a t io n. RAI 130.3 (3.8.1) Several closure walls have been added which appear to join the containment wall. What provisions have been made to permit the relative movement of these walls and the containment and prevent collision?

Response

The closure walls and the containment wall will be separated by compressible material to permit relative movement between the adjacent structures. These joints are sized on the basis of maximum relative displacement between the adjacent structures derived from seismic analyses. RAL 130.4 (3.8.4.5) In the paragraph headed " Deformation" you indicate that the relative deformations of the structures could cause physical contact. Indicate how your design procedures incorporate the loads generated by these contacts and how you prevent damage as a result of these contacts.

Response

The adjacent structures will be separated by compressible material to permit relative movement. Therefore, there will be no physical contact between adjacent structures. RAI 130.5 (3.7.1) The time histories used in the analysis of NEP 1 and 2 should be statistically independent. Provide evidence that the time histories are statistically independent.

Response

The maximum collinear responses due to the three orthogonal component motions (two horizontal and one vertical) will be combined by the square root of the sum of the squares rule to derive the maximum resultant response of interest. Therefore, the issue of statistical independence of the component motion time histories is not relevant. This is in accordance with Regulatory Guide 1.92 and SRP 3.7.2. R3-3

NEP 162 Amendment N12 February 1979 RAI 130.6 (3.7.1) 9 Provide a statement which defines where the time histories you have provided will be applied to NEP 1 and 2. If not applied at the foundation level, outline your method for producing the time histories used in the analysis.

Response

Time histories for NEP 1 and 2 will be applied at the foundation level. RAI 040. 38 ( 3. I1) Possible submergence of electrical equipment within containment as a resu t of LOCA has been identified by the Staff as a significant sa fe ty l issue. It is being specifically addressed in all CP and OL reviews, and in ECCS reviews of operating plants, in order to assure that Class lE equipment is adequately qualified. It falls within Category F of Mr. Rusche's letter of November 3,1975, and is therefore an appropriate matter for review on NEP 1 & 2. Section 3.11 does not address the potential for submergency of electrical equipment within the containment as a result of an accident. State whether your equipment qualification programs will include submergence and why.

Response

Where possible, electrical equipment in the containment structure will be located above the flood level of -20'-8". Where it is not possible to do l so, one of the following steps will be used to bring the equipment in com- A)l1 pliance with the intent of the staff position.

1. Class IE equipment required for safe shutdown and post accident monitor-ing located below the flood level will be qualified for operation while submerged. Associated equipment will be qualified where practical or
  • the lack of such qualification will be justified by steps 2 or 3.
2. Equipment used for maintenance only, such as lighting transformers and panels, will be deenergized during normal plant operation and therefore, will not pose any hazard to safety related equipment.
3. Associated non vital instrumentation and signal circuits, that are not qualified, will be justified by analysis to assure that failure of these circuits will not have any adverse effect on safe shutdown of the plant or mitigation of the consequences of a design basis event. If the lack of c,ualification cannot be justified by analysis, the equipment will be qualified or relocated.

Nil 9 R3-4

NEP 1 & 2 Amendment N12 February 1979 RAI 222.1 (3.11.5) The calculational methods used to generate the mass and energy release data in Westinghouse Standard 12.2 assume liquid entrainment from the break. These methods have not been approved by the NRC. Provide analyses of the double-ended steam line break as a function of power level assuming no liquid entrainment from the break. Provide the mass and energy release data as a function of time and also the containment pressure and temperature as c function of time. Failure of a main steam isolation valve should be assumed since this is identified as the most severe single failure in Table 3.22-4 o f the PS AR.

Response

The containment MSLB accident analyses were performed for full double-ended breaks for power levels of 102%, 70%, 30% and hot shutdown conditions with concurrent single active failure of a main steam isolation valve. The non-entrainment mass and energy release data used in this analysis were forwarded to the NRC staf f by New England Power Company by letter NRC-N-87 dated 8/8/78. The acceptability of the Westinghouse liquid entrainment model is currently under review by the NRC Staff. These analyses supplement the analyses presented in PSAR Section 3.11.5. The resulting containment pressure and temperature responses are illustrated in Figures 222.1-1 through 222.1-8, Containment Heat Sinks for Fbin Steam Line Break analysis are presented in Tabic 222.1-1. The higher enthalpies of the non-entrainment blowdowns used in the containment temperature transient analysis for the double-ended 55LB accidents result in higher peak containment atmospheric temperatures. However, reduced reverse flow resulting from the use of the actual main steam isolation valve flow area (21.0 in. bore) in the current FELB accident analysis with non-entrainment blowdown yielded lower peak pressures inside the containment. In the previous analysis of the double-ended MSLB accidents with liquid entrainment blowdown, the main steam isolation valve flow area was conservatively assumed to be the same as the flow area of the loop pipe (27.92 in dia.). A comparison of peak pressures and atmospheric temperatures due to the double-ended MSLB accidents using liquid entrainment and non-entrainment blowdowns for various power levels is given in Table 222.1-2. The maximum peak containment atmospheric t empe ra t ure is still associated with the previously analyzed split MSLB accident at 70Z power level using non-entrainment blowdown, as given in pSAR TabJ e 3.11-4. RAI 222.2 (3.11.5) The mass and energy release data in Westinghouse Standard 12.2 make certain assumptions for operation of the steam and feedwater systems which may differ f rom those of your plant. Provide a table giving the comparison of the following information for the Westinghouse Standard and NEP. as2 R3-9

NEP 162 Amendment N12 February 1979 O (a) Unisolated mass in the feedwater lines with and without feedwater isolation valve failure. (b) Unisolated mass in the steam and turbine systems with and without steam line isolation valve failure. (c) bbin and auxiliary feedwater flow rate and time of isolation. (d) Feedwater flow through the pumps that reaches the affected steam generator before isolation.

Response

The assumptions used in Westinghouse Standard 12.2 regarding the steam and feedwater systems have been presented in Table 222.2-1 for comparison with the actual BOP information for NEP. RAI 222.3 (3.11.5) Provide justification for the flow through the main and auxiliary feedwater pumps for NEP by considering the ef fects of flow diversion on the af fected steam generator and increased pump flow resulting from reduced discharge pressure.

Response

In estimating the flow through the main feed pumps and to the broken loop steam generators following a MSLB, the following conservative assumptions were made: (a) Prior to receipt of an isolation sigaal the main feedwater control valve in the fau ted loop is fully open. i (b) The control valves in the intact loops maintain their initial flow until an isolation signal is received. (c) No credit is taken for flow reduction through the feedwater control valve in the broken loop prior to complete closure. (d) The back pressure in the f aulmed steam generator at the isolation time, giver in Westinghouse mass and energy release tables, has been used from che bet; inning up to the isolation t ime. (e) The numbers of main feed pumps operating at plant levels of 102%, 70%, 30% and hot shut-dawn conditions are 3, 3, 2 and 1, respec.ively. The pumps are assumed to be operating at their maximum speed. a i 2. O k3-10

NEP 1&2 Amendment N12 February 1979 On the basis of the above assumptions the maximum flow to the broken loop steam generator is obtained as 2,200 lbm/sec for any power level. wever, for the estimation of mass and enecgy releases 2,466 lbm/sec flow was conservatively used for all power levels. Emergency Feedwater Pumps The estimations of the flow through the Emergency Feedwater Pump and to the broken loop steam generator were based on the following: (a) The pumps are operating at their maximum speed. (b) The pressure in the broken loop steam generator ic atmospheric. (c) The maximum flow through any emergency feedwater loop is limited to 33 lbm/sec by a regulating valve installed in each of the four loops. (d) In addition to the regulating valve, each emergency feedwater loop has a flow limiting orifice. In case of a single active failure of the regulating valve on the emergency feedwater loop feeding the broken loop steam generator, the flow limiting orifice will limit the emergency feedwater flow to a maximum of 104 lbm/sec. Therefore, the maximum flows in the broken loop steam generator are 104 and 33 lbm/sec, with and without the single active failure of the regulating valve. The Emergency Feedwater flow of 33 lbm/see to the broken loop steam generator was used in the MSLB accidents with the single active failure of main steam isolation valve closure. RAI 222.4 (3.11.5) Justify any modifications to t'.t_ mass ard energy release tablas in Westinghouse Standard 12.2 and provide the revised tables for the break sizes producing the highest containment temperature and pressure.

Response

The blowdown transients were developed from the mass and energy release data for the non-entrainment blowdown as Strnished by Westinghouse (referenced in response to RAI 222.1). According to the Westinghouse Standard 12.2, for full DE breaks, the reverse flow blowdown transient is comprised of initial piping blowdown followed by the reverse flow from the intact steam generator until the time of isolation. The reverse flow blowdown transients, developed for the four cases analy in response to RAI 222.1, are conservative in that they include, in ac on to the initial piping blowdown and reverse flow from the steam gene.ator, the post isolation piping blowdown from the unisolated steam piping. The revetae flow blowdown transient for the full DE MSLB accident at 102% power level, with a concurrent single --tive failure of the MSIV, is presented in Table 222.4-1. y,t R3-ll

NEP 1&2 Amendment N12 February 1979 The breakdown of the main steam isolation valves (MSIV's) and turbine stop O valves (TSV's) closing times for a full DE break at 102% power level, given below, shows that the T5V's are already closed at the time of the intact loops' isolation. Therefore, following the isolation, only the remaining steam in the unisolated piping continues to blowdown into the containment. No additional mass and energy from the turbine side are released into the containment. MSIV's Isolation Time: Time steam line iso]ation set point 0.5 second is reached (Table IV-1, H Stand. 12.2) Instrument response time 2.5 seconds Signal processing delay 2.5 seconds Maximum MSIV's closing time 5.0 seconds TOTAL 10.5 seconds TSV's Closing Time: Time steam line isolation /S.I. set point 0.5 second is reached (Table VI-1, H Stand. 12.2) Instrument response time 2.5 seconds Signal processing delay 2.5 seconds Maximum TSV's closing time 0.2 second TOTAL 5.7 seconds AJiL 9 R3-12

NEP 1 6 2 Amendment N12 February 1979 TABLE 222.1-1 (Sheet 1 of 2) STRUCTURAL HEAT SINKS AND MATERIAL DATA HEAT SINK MATERIAL AREA (ft ) THICKNESS (in.) Containment Cylinder Steel-lined concrete 63,774 Paint 0.008 Carbon steel 3/8 Air gap 1/16 Concrete 54 Containe;nt Dome Steel-line concrete 30,788 Paint 0.008 Carbon steel 1/2 Air gap 1/16 Concrete 42 Miscellaneous Concrete Heat sink #3 Painted concrete 5,900 Paint 0.008 Concrete 12 Heat sink #4 Unlined concrete 12,559 Concrete 24 Heat sink #5 Painted concrete 8,3E2 Paint 0.008 Concrete 36 Heat sink #6 Unpainted concrete 6,747 Concrete 36 Heat sink #7 Unlined concrete 53,688 Concrete 48 Heat sink #8 SS-lined refueling 7,157 canal Stainless steel 1/4 Concrete 48 Miscellaneous Steel Heat sink #9 Galvanized duct & trays 67,654 Steel 0.0875 Heat sink #10 Painted steel structures 61,085 Paint 0.008 Steel .538 ust

NEP 1 & 2 Amendment N12 February 1979 TABLE.222.1-1 O (Sheet 2 of 2) HEAT SINK MATERIAL AREA (ft ) THICKNESS (in.) Misec11aneous Steel (cont'd) Heat Sink #11 Polar crane & tracks 19,920 Paint 0.008 Carbon steel .717 Heat sink #12 Equipment steels 5,960 Paint 0.008 Steel 1.12 Containment Floor Painted concrete 11,642 Paint 0.008 Concrete 48 Steel liner 1/4 Concrete 108 Containment Sump Painted concrete 884 Paint 0.008 Concrete 108 MATERIAL DATA MATERIAL CONDUCTIVITY VOLUMEHEgTCAPACITY (Btu /hr-ft- F) _ (Btu /ft - F) Paint 6.0 36.05 Carbon Steel 26.0 54.0 Stainless Steel 9.3 56.0 Air Gap 0.0184 0.0173 Concrete 0.83 29.0 NOTE: The heat sink data of Table 222.1-1 were used solely in the MSLB accident analyses, ait 9

NEP 1 6 2 Amendment N12 February 1979 TABLE 222.1-2 COMPARISON OF PEAK PRESSURES AND ATMOSPHERIC TEMPERATURES DUE TO DOUBLE-ENDED MSLB ACCIDENTS USING LIQUID ENTRAINMENT AND NON-ENTRAINMENT BLOWDOWNS LIQUID ENTRAINMENT NON-ENTRAINMENT POWSR LEVEL BLOWDOWN BLOWDOWN (%) PRESSURE TEMPERATURE PRESSURE TEMPERATURE (psig) (F) (psig) (F) 102 35.3 285 33.4 378 70 35.9 282 32.4 371 30 37.1 275 33.0 369 Hot Shutdown 36.2 274 32.1 367 NOTE: The main steam isolation valve flow areas correspon/_ing to 27.92 in. and 21.0 in. internal diameters were used with liquid entrainment and non-entrainment blowdowns. Nd

NEP 1 & 2 Amendment N12 February 1979 TABLE 222.2-1 O COMPARISON OF WESTINGHOUSE STANDARD 12.2 ASSUMPTIONS AND NEP BOP INFORMATION PARAMETER H STANDARD 12.2 NEP A. UNISOLATED MASS IN FEEDWATER LINE (1bm) i) With FWIV Failure 41,730 26,264 ii) Without FWIV Failure

  • 6,792 B. UNISOLATED MASS IN STEAM AND TURBINE SYSTEM (1btr) i) With MSIV Failure
  • 21,607 ii) Without MSIV Failure
  • 2,101 C. MAIN FEEDWATER i) Flow Rate (Ibm /sec) 3,675* 2,466 ii) Time of Isolation (sec)
  • 6.5(I) 7 , 6.8 3)

D. EMERGENCY FEEDWATER O i) Flow Rate (Ibm /sec) 210+ 33 ii) Time of Isolation (sec)

  • 60 E. FEEDWATER FLOW INTO AFFECTED STEAM GENERATOR BEFORE ISOLATION (1bm)
  • 16,029(1) ,

17,262(2) , 16,769(3)

  • Not given in W Standard 12.2

+ Refer to New England Power Company letter NRC-N-87 dated 8/8/78. (1) At 102% and 70% power level (2) At 30% power level (3) At hot shutdown condition nez O

NEP 1 & 2 Amendment N12 February 1979 TABLE 222.4-1 REVERSE MASS / ENERGY RELEASED FOLLOWING A FULL DE MSLB ACCIDENT (DRY STEAM, 102% POWER LEVEL AND A CONCURRENT SINGLE ACTIVE FAILURE OF MSIV) TIME FLOW RATE ENTHALPY (Secs) (Lbs/sec) (Btu /Lbm) 0.0 8704 1193.5 3.20 8704 1193.5 4.20 4607 1196.5 5.20 4210 1198.6 6.20 3891 1200.2 1.20 3630 1201.3 8.20 3475 1201.3 9.20 3349 1201.9 10.20 3285 1202.5 10.50 3266 1202.5 11.0 3077 1202.5 12.0 2700 1202.5 13.0 2322 1202.5 14.0 1944 1202.5 15.0 1567 1202.5 16.0 1189 1202.5 17.0 812 1202.5 18.0 434 1202.5 19.0 56 1202.5 19.15 0 1202.5 A>l2.

ro rh Ir0

                                                                           !-,r i

i um I reJ l

                                                                              "a r~

t" r," ~ l* I F.m o 8 -r uJ CO

                                                                             -m
                                                                           .      uJ l      E rea w

l~O L. Lcn Le

                                                                             -n C

F

                                                                               ,r r'
                                                                             -ea
                                                                            ;

o A e s . . 1 0"0S 0 07 0'OE 0'C0 0'0: 00

                               'DISd) 38 DSS 3bd AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY                                CONTAINMENT PRESSURE TRANSIENT NEP 1&2                                 (FULL DE RUPTURE,102% POWER LEVEL, NON-ENTRAINMENT BLOWDOWN)

Preliminary Safety Analys.is Report FIG. 222.1 - 1 NEP 1&2

     "emz                                 "YNyg O3 eam h<a> 2 @ *! 51y     ~ ~

Es8yW 42mE2 - >2 A2m1z$

     "<523g                        -

o ' mmc 4cCm mO E Cm_ ow mmz

     'm5>d #C >2mogmi 42mKENZon -                                      <35,OO mmng o295m 2E O

ma .5g$aQ 49r$m 3 Ft tJ'Y&LjTtgLF 3 '1-QL J obo L , J L

                  ~S.o            Coo,o J                 cno an   o         Oogo            mio n  o       "     o 1 -
                                         -        - _ _.   - - -   _._     - ~ ..::          :    T 0-2i 37 47   -

57 6s 71 8T 9T 1l 0' O T I 2 M E [ 3i S E

             . 4i C
             )   5T 6T  -

7T 8T ~ 9T - 1 J 0* 2T - 3i ^ 4T - O 5T ~

                    ~

6I 71 8 7

re r

                                                                            'e r
                                                                            'A r-l b

i

                                                                            ;-m
                                                                            'N p

i I

                                                                              "O L-Y'e' r

L& I_a _o - c L, a.>

                                                                           !     w i     -

F, w i I r fN -

                                                                           ;
                                                                          ,o L-ro no
                                                                          'n r

i re

                                                          \               Lo
                                                           \              ;

rm l i rN

                                                                   \
                                                                      \
                                                                         .c c cs            c or            o et     c c;              c:        22 (CISei 33PSS3bd AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY                          CONTAINMENT PRESSURE TRANSIENT NEP 1&2                                 (FULL DE RUPTURE, 70% POWER LEVEL, Prehminary Safety Analys.is Report                  NON-ENTRAINMENT BLOWDOWN)

FIG. 222.1-3 NEP 1&2

i e o

 ?. m                -

2 ~ o. R O o _ 25 P mz ,o w 0 g

 ? wg E

om o_

 $                     m -

w g - m 2 7 tt. g 5 - 3 2 e - td o a - o-m LL] cr -

                  ~3        -

m >^ c3 - 5 (r - g _o cc o-m N gg to c2 _ z rH Q Y b O P? T' z oz gj ml mK m >- u - z2 2 . -

   -C 2o H             0 -
   >-H                o -
   -Cm                c4 -

z2 Eme m' m o 2~m ~ Hoy

      #                    ~

r,y m c3 OO I U - 7M i -- - ~ ~ z - i i 3 ~ ~7- T T T1 m $$m Om2 H n>

                      '!'      '1- 0-- ---- 27 ~ -~~- 4 T5- -670 3 -'-      7 7 T T T]9 1 0 2'  3 4 5 6 7 8 9 l1 ()2          2 3     4 5 67a s r>     Br                                                                 TIf1E (SEC1 O

z g Si 29 m fil EO u 'rz mE

        -   <g m-0 _Z.
               ~

rm f r* l' ^ l,

                                                                                   -m l

Lo i

                                                                                    'b W

L c, bC

                                                                                 -r-
                                                                                 -e
                                                                                 -x     -

L' uJ Fv LJ

                                                                                 -m o

E

                                                                                 -OJ    -

W i l l-CD

                                                                                - c,
                                                                                -m pr-b La I

ew

                                                                 \           :
                                                                             ~m p

I pe;

                                                                             ;

i l lb I 1 I g I I 4 I C 05 C'C7 C CE C'CC C C'. C' [ v' .i ^bc e: OO3CJ.u' _ ci- v_ u AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY CONTA:NMENT PRESSURE TRANSIENT NEP 1&2 (FULL DE RUPTURE, ^^% POWER LEVEL, Prehminary Safety Andysis Report NON-ENTRAINMENT BLOWDOWN) FIG. 222.1-5 NEP 1 &2

                                                                          -w
                                                                          -W
                                                                          -e
                                                                          -a u,
                                                                          -m
                                                                          -rJ N

a t~ r* _en

                                                                          -e
                                                                          -o    -

o

                                                                            , o CO
                                                                          -m ua r
                                                                          -OJ  W
                                                                          ~

a

                                                                          -o
                                                                          -D
                                                                          -n re m

r' I bm i

                                                                          -~
                                                                        ,O i,  ,      .
                                                               ,        ,~

c cce c cst  : cce  ; es: c cc: c s: (d 03G) 2 80 m S E 3 c k'31 AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY CONTAINMENT TEMPERATURE TRANSIENT NEP 1&2 (FULL DE RUPTURE, 30% POWER LEVEL. NON-ENTRAINMENT BLOWDOWN) Preliminary Safety Analysis Report FIG. 222.1-6 NEP 1&2

re

                                                                           -r-ro he H

L I _r, e I

                                                                           !b L-La F=  r r-
                                                                             -e
                                                                             -x   -

u F- o LO _m I i

                                                                           *CJ    ~
                                                                                  ~

b fo-e

                                                                             -r-
                                                                             -e
                                                                              -x
                                                                               ~
                                                              \

sm woJ i C G i

es  : c> c ca  : cc c.c- c.c fCI9d, 2bnSS2bc AMENDMENT N12 FEBRUARY 1979 NE.V ENGLAND POWER COMPANY CONTAINMENT PRESSURE TRANSIENT NEP 1 &2 (FULL DE RUPTURE, HOT-SHUT-DOWN, NON-ENTRAINMENT BLOWDOWN)

Preliminary Safety Analysis Report FIG. 222.1-7 NEP 1&2

F* r" Fe i I" i Fm

                                                                                      -e.

e w i

                                                                                     -o
                                                                                     -n
                                                                                     -w
                                                                                      -a    ~

u

                                                                                      -, w to
                                                                                      -m L;

E

                                                                                      -ea -

f-- o I

                                                                                   -o Ln
                                                                                      -e
                                                                                      -x t- "

i Len i l l

                                                                                     >= OJ I

1' C0

       ;    - > ..     ,

i

                                                                              .     .' ~

C 007 0 CSE 0 CCE 0 CSC 0 CC2 0 CS: r ( -J r7o a. W i.' 7 vmr.i a. : u o. ., 'vv Vou> _vi AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY CONTAINMENT TEMPERATURE TRANSIENT NEF 1&2 (FULL DE RUPTURE, HOT-SHUT-DOWN, NON-ENTRAINMENT BLOWDOWN) Preliminary Safety Analysis Report FIG. 222.1-0 NEP 1&2

Preliminary Safety Analysis Report NEP1&2 NEW ENGLAND POWER COR.1PANY

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10-32 (Sheet 4 of 5) THE COORDINATE SYSTER IS RIG'HT-HAND CARTESIAN WITH THE POSITIVE Y-AXIS C O-L IN E AR WITH THE BROKEN LEG DIRECTED RADIALLY OUTWARD FROM THE VESSEL AND THE POSITIVE Z-AXIS DIRECTED VERTICALLY UPWARD THROUGH THE VESSEL CENTERLINE NODE 34 Y,e9EA= 0.000 50 FT X-MOMENT ARM =-24.113 FT Z-MGMENT ARM = -0.000 FT X- K w E A = 0.000 SG FT Y-MOM EN T -A RM =-24.113 FT Z-MOMENT ARM = 8.375 FT Z- A R E A = 220.351 SQ FT Y-MOMENT ARM = -0.000 FT X-MOMENT ARMS -0.000 FT 35 Y-AREA = -8.484 SQ FT X-MOMENT ARM = 3.573 FT Z-MOMENT ARM = 0. FT X-AREAS -0.000 SQ FT Y-MOMENT ARM = 3.573 FT Z-MOMENT ARM = 7.503 FT Z- A R E A = 0. SQ FT Y-MGMENT ARM = 0. FT X-MOMENT ARM =' O. FT 36 Y-AREA = -8.484 SQ FT X-MOMENT ARM = 4.885 FT Z-MOMENT ARM = 0. FT X-AREA = -0.000 SQ FT Y-MOMENT ARM = 4.885 FT Z-MOMENT ARM = 7.803 FT Z-AREA = 3.499 SQ FT Y-MOMENT ARM = 0'.000 FT X-MOMENT ARM = 26.649 FT 37 Y-AREA = -5.999 SQ FT X-MUMENT ARM = 3.573 FT Z-MOMENT ARM = 5.518 FT X- A R E A= -5.999 SQ FT Y-MO M E NT ARMS 3.573 FT Z-MOMENT ARM = 5.518 FT Z-AREA = 0. SQ FT Y-MOMENT ARM = 0. FT X-MOMENT ARMS 0. FT 38 Y- A R E A = -5.999 SQ FT X-MOMENT ARM = 4.885 FT Z-MOMENT ARM = 5.518 FT X- A R E A= -5.999 SQ FT Y-MOMENT ARM = 4.5H5 FT Z-MOMYhT ARMa 3.315 F1 Z-AREA = 3.499 SQ FT Y- M O ME NT ARM = 1E.843 FT X-MOMENT ARM = 18.843 FT 39 Y-AREA = -0.000 SQ FT 1-MOMENT ARM = 4.229 FT Z-MOMENT ARM = /.6U3 FI X-AREA = -16.969 SQ FT Y-MOMENT ARM = 4.229 FT Z-MOMENT ARM = 0.000 FT Z-AREA = _ 3.499 SG FT Y-MOMENT ARM = 26.649 FT X-MOMENT ARM = 0.000 FT 40 Y-AREA = 40.960 SQ FT X-MOMENT ARM = 4.229 FT Z-MOMENT ARM = 0.000 FT X-AREA = -0.000 SQ FT Y-MOMENT ARM = 4.229 FT Z-MOMENT A R M = -3. 2 3 2 FT Z-AREA = 10.498 SQ FT Y-MOMENT ARM = 0.00J FT X-MOMENT ARM =-Zl.**) FT 41 Y-AREA = 0.000 SQ Fr X-MOMENT ARM = 4.229 FT Z-MOMENT ARM = -7.803 FT X-AREA = 16.969 SQ FT Y-66 MENT A fM = 4.229 FT I;HOMENT AMM -U.UUU ri Z-AREA = 3.499 SQ FT Y-MJMENT ARM =-26.649 FT X-MOMENT ARM = -0.000 FT ~T2 Y-AREA = -5.999 50 FT X-MOMENT ARM = 3.573 FT Z-KUMENT Agn= -3.31o F. X-AREA = 5.999 SQ FT Y-MOMENT ARM = 3.573 FT Z-MOMENT ARM = 5.518 FT Z-AREA = 0. SQ FT Y-MOMENT ARM = 0. FT X-MOMENT ARM = 0. FT 43 Y-AREA = -5.999 50 FT X-MOMENT ARMS 4.885 FT Z-MOMENT ARM = -5.518 FT X-AREA = 5.999 SQ FT Y-MOMENT ARM = 4.885 FT 2-MOMENT ARM = 5.518 FT Z-AREA = 3.499 SQ FT Y-ModYNT 4RM=-15.543 FT X-MOMENT ARM = lo.543 e4 44 Y- A R E A = -10.853 SQ FT X-MOMENT ARM =

                                             ~

6.333 FT Z-MOMENT ARM = 0. FT X- A R E A = -0.000 SQ FT Y-MOMENY ARM 2 6.333 FT ~7;MONENT ARM = 5.4/6 FT Z- A R E A= 0. SQ FT Y-MOMENT ARM = 0. FT X-MOMENT ARMm O. FT Ut

        .. U a

p, o o

          .A 4>
                                                   //                 +

\gyffx

          ~

tk k@y W,3

 '%, s%j7 9                                         /4 V V                  imies ev <u,1iOs TEST TARGET (MT-3) te 2

l.0 ,

                                              '21 n22 33 its 1.1  .

N 1.25 i.4 g 4 6" > MICROCOPY RESOLUTION TEST CH ART Q

;?f?%,,,                                           ? 4,

+; $,//>// sp% Jgb d ~~f s% .' h .-gt gt j

6 s, sq%m %g ,,y; 4, 14 p Ve#W ,,Aee emuA1,Om %eV' t TEST TARGET (MT-3) 1.0 2

                                ': ,', B2 l.l  L " llii!M M

l.25 1.4 I.6

  • 6" >

MICROCOPY RESOLUTION TEST CH ART ll

 ;??

t , v y%//, +e?(Osp O

         //;      -

f . n&

                                                  &, +
                                                    ;gv

NEP 1 & 2 Amendment N12 Febnnary 1979 TABLE 022.10-32 O (Sheet 5 of 5) THE COORDINATE SYSTER IS RIGHI-HAND CARTESIAN WlTH THE POSITIVE Y-AXIS C O-L IN E AR WITH THE 3ROKEN' LEG OIRECTED RADIALLY O U.TW A R D FROM THE VESSM AND THE POSITIVE Z-AXIS DIRECTED VERTICALLY UPWARD THROUGH THE VESSEL CEditRLINE NODE 45 Y-AREA = -7.674 SE FT K-MOMENT ARMS 6.333 FT Z-MOMENT ARM =- 5.852 FT X-AREAx -7.6 74 54 FT Y-MOMENT ARM = 6.333 FT Z-MOMENT ARM = 5.852 FT Z-AREA = 0. SG FT Y-MOMENT ARM = 0. FT X-MOMENT ARMS g. FT~~ 46 Y-AREA = 26.202 SQ FT X-MOMENT ARM = 6.333 FT Z-MOMENT ARM = -0.000 FT X- A R E A= -0.000.SQ FT Y-MOMENT ARM =- 6.JJJ FT Z-MOMENT ARM = 3.425 FT Z- A RE A = 0. SG-FT Y-MOMENT ARM = 0. FT X-MOMENT ARM = 0. FT 47 Y-AR4A= -7.674 SQ FT x-MOMENT ARM = 6.333 FT Z-MOMENT ARM = -3.6b4 FT X-AREA = 7.674 SQ FT Y-MOMENT ARM = 6.333 FT Z-MOMENT ARM = 5.852 FT Z-AREA = 0. SQ FT Y-MOMENT ARM = 0. FT X-MOMENT ARM = 0. FT 48 Y-AREA = 0.000 34 ' FT X-MOMENT A RM=- 7.123- FT Z-MOMENT ARM = -0.000 FT T-AREA = 0 300,5G FT Y-MOMENT A RM= 7.123 FT Z-MOMENT ARM = 8.958 FT Z-AREA =-252.099 SQ FT Y-MOMENT ARM = 0.000 FT X-MOMENT ARMS U.UUU FT 49 Y-AREA = 0. SQ FT X-MOMENT ARM = 0. FT Z-MOMENT ARM = 0. FT X-AREA = 0. SG FT Y-MOMENT ARMS Q. FT Z-MOMENT A R Ma U. PI Z- A R E A= Q. SQ TT Y-MOMENT-ARM = Q. FT X-MOMENT ARMm Q. FT ont O

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10-33 PEAK NODAL DIFFERENTI AL PRE 5]SURE AND TIME OF OCCURRENCE HOT LEG BREAK-49 NODES REACTOR CAVITY ANALYSIS NODE FEAK DIF7ERENTIAL PRESSURE (PSID) TIME (sec) 1 101.0 .017 2 61.1 .019 3 88.4 .017 4 60.5 .019 5 67.1 .019 6 52.8 .019 7 60.5 .019 8 61.1 .019 9 52.8 .019 10 32.3 .040 11 23.9 .044 12 16.6 .058 13 13.2 .059 14 11.9 .064 15 13.1 .059 16 16.6 .056 17 23.7 .041 18 32.1 .041 19 30.2 .023 20 29.4 .023 21 19.3 .037 22 19.8 .034 23 19.2 .055 24 13.6 .059 25 19.7 .038 26 30.1 .041 27 29.3 .023 28 15.1 .070 29 11.3 .068 30 10.3 .077 31 14.7 .068 32 11.2 .073 33 14.7 .073 35 42,7 .019 36 32.6 .020 37 23.9 .040 38 21.2 .041 39 12.9 .064 40 11.1 .064 41 12.9 .061 42 23.7 .041 43 21.0 .041 44 19.7 .020 45 14.8 .040 46 ~7.7 .059 47 14.7 .041

                                                                          ~,4

l

                                                                                        .l        '                '    I ze                                                                                                                             -

Ni h au N

                                                                                                                                          \

T2 as . ,, , . .

4. *l4 3% ,', ytyy i I

( ( ,i . l. s'

                            .Q                -

a f .} 4

                        * .,gj           ,                           .j !        e l                                                                         >-

5

  • to
s. .

< e s.. -M I' ll 1 ' i l[IN~ E;E u 8.36 4 F '.a.

                                  , ;*.ML.
                                                                                                        -I                                                                     N ;, ',
                     . ~  ' : l!I                                                       3 45'g
          ~

r L i,' 725 g

                                                                                                      -,,) 7                                                              lh,'~-
   ,        +          ..,. 4.y.';1
                              . . .                                                                           m                        ,.

l i-e e fts., A o ,, >

  ; ;            *
                                   --- - r                              cota etc                                                i l ' _3              7~_"                           -

y.".-.. . _X,g i 4 y

  ;:             a                                                                                                                                                             5                     -
                                                                                                                                  / ~.or
                                                                                                                                       ' E6 i i, =
        ,                                                                                                                      I s

g % + f r-..b_l l/ l/ f 2 ~ t

  • N) i
                                                                                                                              )                               ,

6'iijfjni

                                                                                                                                                                                %;p.Q Y
             '                                                                                                                    ' ! lv

[c= ' b.'Y[' lh i N [:,b?" o 9,m S o > 74.

                                         .-                 W    {: !ll       '

l s 4

                                                                                                                                         .i "e

gi i i

                                                                                                                                                                          $p... ~

h V.j Nl'I 1 444 5 " ,, p..,= ~! , . //SR m, n'~

   ,      +                                     ,                                                                                             i*,                        ly:;-

4 M K4+:'4':. gQ  : V.s O

l. e!! r..? 77,','! , v. ',

l  ?;$l~

                                                            " H' A 8 d'4 k                              =                               Ish ~;.
  • 76 s] l ' i'
 =                                                                                                                                                         :r
                                                          ". ).;.T.]
                                                                                , 8.38 R                                                .             .g E                                                                          '
                                                          < .i
                                                                 **?Q                                                                        :.          **)
 ,                                                                                                        i                                  n
                                                                          ;                                                                                4.

eg! .;ill n e,,7 3 *,  ; d s i4-t' 1 al

  • k.v. h !-  ;

D h 4 f:..J g

                                                                                                                                                 ', v, .'.'2 u                                                            '1 ,        ;

i ,

          ,                                                                                                I                                               g
 }        ,                                                  9.';y,i I                                     '

7

                                                                                                                                                         , j' 1
                                                          - ? .hi                                                                             ,
        ,                                          ,e,  4.                                                 l                                             ~
         ~,                             ....'#.T. , * *,g,"- - .. h
                                                               .                                                                          / I -. #5,4'.'gh,4*,

2,r.-. 4

                                                                                                           !                        ./

al2 I s i

                                                                                                                                                                          ,*.5 i                                                                                                           ,d
  • i l' l 4
                                  $ . .; i
                                    ~ .yj i
                                                                                              ~

g 7 l.i

                                                                                                    ~~}
                                                                                                      -l t

AMENDMENT N12 I FEBRUARY 1979 NEW ENGLAND POWER COMPANY SECTIONAL VIEW OF REACTOR CAVITY NEP 1&2 REGION ELEVATIONS - COORDINATE AXES Preliminary Safety Analysis Report FIG. 022.10-1 NEP 1&2

m'

                                                                           'I^
                                                           .A<                         w..
                                             ,   ge,     -[      4e                    fgh
                                   /4 Patman . # l                                    '?                        as ,<

c.a$ <; *i a *'M .- 3 p ;'a.... . . [* .~8!

                                                    , . ., . ~ - %,

{dV ,', h. . l t a [ L,h//

                                                                                                                 .t,/

g.

                                                                                                                           /
                                                                                                                            /
                                                                                                                                                /

N y .,F,,~.*Q ,*4 . a.a N

                                                                                          *%'. J.~,3 , .g..y                    j
                                                                                                                                  /
                                                                                                                                            \

R$ e I,.lg g ,s i N b , ,/ 7 N wor tro A' , g b A / o 8, ^: . s f.;' '? 7 + e. 4# samorm caour

    '- * . , g',,, '/                                                  h       .                                     \\                  '\i h

o / "

                                                                                                                        \                    Eik       ,4. ,
8. $ ,N. s' \

i ' w@;-) m . .-

    . N             ll        l                                                                               n                        I,i           ,
n. ll ,
                                                                                                                                       ,I q/

6

      ,    *)pf.s \          g                                                                                                        /

m.:.y ,

                                                                               .                       .           [/ ,/ :j M/ , o. e v   ,

TI, C 6 N

                                         'N
                                                                                                               /                     /$7
                                                                                                          ,/                        .-* !/
                                 \
                                                                               ;'vN Y'                               'x 'g
      \                                                                                                                                     *
                                       's
        'qqy j'u ..

p = . . 5,bs N \ s.' /

                                                                                                            ,                                      v i

j3.n .

                                      ; .-~ - b.y:q                            ,\      ,;aQ'r.n.,v.

x

                                                             *3
                                                                                                                    ' %N                  '

J T.W i  % iR 8 N >5* Ku , D <9- .

                                                           ,Y          ,
                       )                                                                              A E S TRAW T

( ,t sa ns c, ~ e . .<-<.* touw.y sPAcro)

                                                                               .v
                                                                    **- 4 0 0' ~

AMENDMENT N12 FEBRUARY 19.') NEW ENGLAND POWER COMPANY HEACTnR CAVITY PLAN VIEW AT NOZZLE ELEVATION NEP 1&2 COORDINATE AXES Preliminary Safety Analysis Report FIG. 022.10-2 NEP 1&2

   ?      b i      E 5      m k

a r-p 2$ 2I ccmeARTMZ2r!8 DFSCRTFTToM j 'a 1-6 Nozzle Region y

      "o                                                          7 - 10                      support Regton yeE                            20
   ,      m E ""                                                         11 - 12                     Cavity Lower Region 5-     o 13                     Sottom of Reactor Cavity a      @           gg           ,g          g E      A                                                      14 - 17                     Cavity Upper Region a      z
          #                                                      18 - 19                        Flange Region 16       15     14    17       16 20                        Reactor Pool Area 21                            Containment 4          3    2     I 6    5        4 3                                                       Break occurs in Node 1.

O o u

         "                      l  7 Connections not shown exist between Nodes 1 thru 6 and M        5        9        8            10       9 Node 21. Consult Figure 22.10-1 for Region Elevations and
-        o                                            -
?
"     om O$                                                Coordinate Axes Orientation.

og 12 Il 12 r -4 Ox U O

      >5 13 DM Z

OZ

      -4 o                        21 rO                                     '

z

=
      $b ms m-     ,e 95 x2 gg 3            2 0 w        5 O   h5m o

m 32~ SZ _.. em

Z m m *g C mPARTMUTS Drscurrrios

e. :E 1 - 10 Nogale Region z l
 =      0                                                                                                         support Reston 2                                            35                                       11 - 17 g

(mg a m 18 - 22 23 Cavity Lower Region Bottom of Reactor Cavity E 33 32 34 33 3 31 24 - 30 Cavity Upper Region ga

 ~ " "                                                                                 31 - 34                     Flange Region x      o                                     25                                          35                     Reactcr Pool Area m      O, q                 28     27          26              30          29     28               36                       Containment o      y
 ;
  • 24

_ kf ff _ Break occurs in Node 1. 6

  • 4 3 2 1 :C 9 8 7 6
               ,,             _             _     __           __             Connections not shown exist between Nodes 1 thru 10 and Node 36. Consult Figure 22.10-1 for Region Elevations and m                           l "'                ll              16 5        ca                                                                    Coordinate Axes Orientation.

g $ 15 15 m - o 1,. - a 14 12 9

  • om om r- m U

20 18 22 M m 00 21 21 h 19

     >5 D

x ~! 98 22 r-2 g my > 36

     'D 4  mg 95 zz ag

, 2 0 N E h5 r AI mz E$

49 m b N 4; ccMPAATvsvrs trsem m iew 3 m 5 2 1 - 18 Nozzle Region

     %      O
    ;[*E z O

u H a5 H " H 47 H 4e 1 2' ' 28 - 33 Cavity Lower Region E - 34 Bottom of Reactor Cavity

      >2 8' m
                                          -1 3:          H        n         H 43 F                                           35 - 43                      Cavity Upper Region 2                                                                                                  4 C,
    .;;- N I           4T         30-                                                            41
r. 44 - 47 Flange Region g ,, _

o si 33 4 x g 48 Reactor Pool Area

            >                                                                                                                   49                             Containment 2     2                                                6     S     9 2
                                                              -NI/-      8      le,       17    IC Break occurs in Node 1.

Connections not shown exist between Node 1 and Node 49. 14 13 12 ll 10 i 15 14 between Nodes 10 through 18 and Node 49, and between

                                                            ~" / ~\T
                                                                          ~

Node 29 and Node 32. Consult Figure 22.10-1 for Region __/ _ Elevations and Coordinate Axes Orientation. m 4 3 7 g l _ _ _ _ h_ o Z . 3 O 2i 19 26 23 u o O* 24 24 w Om a$

         ,- a        -

f 22 2C 27 25 Bo gs -1 si t-f 18 H  : F

         $$                  29                                                                     32 M

Z io Z O. 40 rO Z b 34

=        ms      >
'                                                                     l a-3   ,e
-        >O    mm                                                  49 go XZ    $y e  c  c M           o o
               >m T

m 4Z 4

               $Z s --

ON

8

                                                                                        ?.

e O www . .a taww n L 3 L3 l') n N OOO zzz ain en n

        .4 -. -                                                                          o o

0 +: + "2 8 _O. . O.

                                                                                        ~'

d 8 o n e w f e , g w x (> H o o O _S i O _d. N 8

                                                                                        -T o   <1-         2 0

00'09'I 00' Oil 00 ' 0Z' t 00'Od! 00'dG 00'd9 00'dr 00'd2 00 0' AMENDMENT N12 (VISd)3BnSS3Hd FEBRUARY 1979 SENSITIVITY STUDY NEW ENGLAND POWER COMPANY CIRCUMFERENTIAL PRESSURE AT TIME OF NEP 1&2 PEAK BREAK NODE PRESSURE Preliminary Safety nnalysis Report

                                                                                ^

FIG. 022.10-24 N EP 1 & 2

8

                                                                                           -8 wom                                                                                 8 L*J L:J h3 (30 0                                                                              _e8 OOO zzz o us m                                                                       o
        - - . ~                                                                             c O +1 +                                                                            9, 8
                                                                                            <a 8

_c3 0

                                                                                  , r      -a       _

v 8 5

                                                                                           -;       p at a

D (a W o LJ 8 0

                                                                                           -4 8

N

                                                                                           ~~T
o. o 8

E CO* 09'I CC*0i! 00 05: 00*0d! CC*d6 CC*d9 00*dt 00*dZ 00*0 AMENDMENT N12 (VISd) 3 BOSS 3Bd FEBRUARY 1979 SENSITIVITY STUDY NEW ENGLAND POWER COMPANY VERTICAL PRESSURE PROFILE AT TIME NEP 1&2 OF PEAK BREAK NODE PRESSURE Prehminary Safety Analysis Report FIG. 022.10-25 NEP 1&2

                                                                                         'o s~

en

                                                                                        -e www L*JLDtu                                                                           -r-C3C3C3 ooo                                                                               ~*

zzz O LO 0)

          -.                                                                            -v>

0++ -w

                                                                                        -m t4 A

e, ^

                                                                                          'o r*

8 w v

                                                                                        -m
                                                                                        -o      k F-
                                                                                        -r-
                                                                                        -w
                                                                                        -e
                                                                                        -w
                                                                                        -m
                                                                                        -c4 m
                                                                                          'o 00 d6       00*dL      00 d9       CC*d3    00' d's   00 dE       CD dZ    00*d:      00 0 (SdI'A01)33B033SIM30lS                          AMENDMENT N12 FEBRUARY 1979 SENSITIVITY STUDY NEW ENGLAND POWER COMPANY                                      TRANSIENT FORCES (Fx)

NEP 1&2 ON STEAM GENERATOR Preliminary Safety Analysis Report FIG. 022.10-26 NEP 1&2

                                                                                         'o s
                                                                                        -m
                                                                                        -e v>uitn www                                                                              _r-C3 C3 C3 aoa                                                                              _e zzz U$$

_ ~* e<+ _,

                                                                                        -m
                                                                                        -fJ 1
                                                                                         =
                                                                                          'o C

w _~ $

                                                                                        -m      w
                                                                                        -m      ~
                                                                                        -n
                                                                                        -w
                                                                                        -m
                                                                                         -m
                                                                                         -N
                                                                                           'o 00*dE       00*dC      00*iz       00*dZ    00*di    00*d!         00*s      00*t     00*C (13-SdIl 0I)

E $1N3HOW AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY TRANSIENT O ENTS ON STEAM NEP 1&2 GENERATOR (Y-MOMENT) HOT LEG BREAK Preliminary Safety Analysis Report FIG. 022.10-27 NEP 1&2

em 0; f l -o 2

                                                                    .                   i i                          !

17 O

                                                           \\     I
                                                                                         ~~
                                                                                         -m
                                                                                         -e
                                                                                         -n
                                                                                         -e
                                                                                         -a q> n
                                       ;
                                                                                         -n 1                       -m  _
                                                                     \                       u w

Y(J

                                                                        \ \

s u_: r

                                                                                             ~
                                                                          \          l 'l lC H~

ro -e

                                                                                        -n
                                                                                        -e t-
  • l C
F' o 1 rm

?EO4XO+N>MM i e Cr - cu co e to ua r- co cn a _m r o u 7 O

                ,               i         i             i                  i --      i 0*00:             C'09       0 09         C 07               0 03        0'O AMENDMENT N12.

(SISd) 38nSS38d FEBRUARY 1979 NEW ENGLAND POWER COMPANY TRANSIENT PRESSURE RESPONSE IN NEP 1&2 STEAM GENERATOR COMPARTMENT FOLLOWING HOT-LEG RUPTURE Preliminary Safety Analysis Report FIG. 022.10-28 NEP 1&2

m

                                                                                         -~

( -. g

                                                                                         -en
                                                                                         -e
                                                                                         -n i

e i <- n-o um ~ I, o i w La w - e r

                                                                                    ) ~o ~ -
                                                                                         -m
                                                                                         -o
                                                                                        -b
                                                                                        -w
                                                                                        -e

+ -, z w

                                                                                         ~"

E E O 4 X 0 4- N >- X x CC - N CO v a W N O CD -~ m o L' e b~ I i i i o or o se o os a sz o az ^o si AMENDMENT N12 (dI3d} 3Mfl333hd FEBRUARY 1979 NEW ENGLAND POWER COMPANY TRANSIENT PRESSURE RESPONSE IN NEP 1&2 STEAM GENERATOR COMPARTMENT FOLLOWING HOT-LEG RUPTURE Preliminary Safety Analysis Report FIG. 022.10-29 NEP 1&2

r" i hN I M i ff 1 o { tj L-

                                                                                 )                     hm
                                                                                                       ^ew
                                                                                                       ^

o , l i* Y m -a en

                                                                                 \'\                     -m   ,

u w cn HJ m

t.c i r m'c- -

i wm

                                                                                                         -w
                                                                                                         -b
                                                                                                         -w rc l
*z E] O +1 X O 4- N > N( M uJ                                                                                                       -m r cn cn al cn cn cn cn cn cn cn
,--.-4                  ----

e CE O O O O O O O O O O -u awwwwwwwwww r O U - N m T LO O

  • N V O
                                                                                                           'o i                i                 i           i               i C 00             0 09             0 09         0 Ot             0 02             00       0 00-
                                                                                                ^MENDMENT N12

[ISd) 380SS38d ildI1N383ddIG FEBRUARY 1979 NEW ENGLAND POWER COMPANY DIFFERENTIAL PRESSURE TRANSIENT FOLLOWING NEP 1&2 HOT LEG RUPTURE IN STEAM GENERATOR COMPARTMENT Preliminary Safety Analysis Report ~ FIG. 022.10-52 NEP 1&2

A 9 k o

  • O l l T- $9$ 0 h yD d  ? c c 3
 'l 0                                        ,                                 3 50 0

8%) h dd & 9 d9 I 24 04 k- } DI [ l ts ,l _' h% Qt kV. ed ll , F / iN,,/ 1 1 s e' /) - N 9 o W 9 E . - s - - [ ,4-

                                        /       -

s o a o 0 - ~ ~ h *o* A f l n /

                      .N. *        , Xl D                es k                   M 4     W, A,            ts/             o.
  • p n Z w.

d i Q a e di 4 O j 4 Y 9 Y r

                                     /

s * * >Y2 -l N ,I 9 W xw i O k W t l f

             '        I

() IV y{ EC h  % 2 y o i O. Ak U

                                                 %              O                                   0 9
                                                 @              T                                   'g h                   Y           T U

t $ , >- Sh0? a 43

     <g                                        ,.
                                                 $ $q "

J M~

                                                                                   }0s o-2a           ,

1 8.$ pc ,a a~ 5 @ a$ e e 9 a! w a

                                                  \                   %            O4                                     Y                       Q o3                                                       -
                                                                     &             un                               a4                             +

u ~E w v y4s ,- u y >

                                                       \        >k   c             en                    .                           ,

n-

                                 ~/,f i

k

                                                  %\          d      4                                                      O         Q
                                                                                                        's'A N M/            1.

(5 S .&'t; ~, h *{g l 'y $$f m

                                                              ~S
                                   \
                                                         %            y              /           4 /       y                         -
                                       \ l        \

k f g 'f I ( Q

                   *                                                                                                   <          59        4      Q 9 G" T ,y,eb                                 y     2i e\s                                  < p [.         .

t y gsu\ < ' <a y ca . o J u_. ._

   .'                        .o                   'e                                ' y-   n,f%

r 0

                      , p% e l

m, y o2 sm g%% c vV Q_ E9  % 44 AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY 19 - NODE S.G. COMPARTMENT ANALYSIS NEP 1&2 IDENTIFICATION OF WALLS INTERFACING WITH NODES 1 THROUGH 5 Preliminary Safety Analysis Report FIG. 022.10-34 NEP 1&2

                                                                                       *b s
                                                                                       -m e
                                                                                       -c~

e e

                                                                                        .m 4J
                                                                                           'o s
                                                                                        -m 4

o e 4)

                                                                                        -w
                                                                                        -m     n u

w s, D O

                                                                                        , e=
                                                                                        -m h

V e 4 e

                                                                                          #4
                                                                                            'o 00 dB     00 di.      00'09       00 dS     CO*dt    00
  • 0 f. 00 01 00*d: 00'O (SdI'A OI) 331103 AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY TRANSIENT FORCE (Fx) ON STEAM GENERATOR NEP 1&2 HOT LEG BREAK Prehminary Safety Analysis Report FIG. 022.10-35A NEP 1&2

b f we be

                                                                                           -r-
                                                                                           -e
                                                                                           -e r"'
                                                                                           -u 9

o 9 e 4  ? o O 0 -m l -e 0 -e.

                                                                                           ~

ro I u w w

                                                                                         .       I 4                                  'r.

y [

                                                        \                                ,

e i

                                                             \

I

                                                                 )                       io I

H*~ r re i f' F= T.a y~ l i i  ! O W Od t I?

                                                             '                   '        Lo -

00 d> CO ti CC $2 0C

  • 9':
                                                /

CO S 00*O CO*s- 00*9i- OC* L (SdD 01) 33803 AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY TRANSIENT FORCE (Fy) ON STEAM GENERATOR NEP 1&2 HOT LEG BREAK Preliminary Safety Arialysis Report FIG. 022.10-35B l NEP 1&2

b

                                                                                         -o e
                                                                                          -r -
                                                                                          -e e
                                                                                          -m Al
                                                                                           'o P
  • C
                                                                                          ~*

e 9 l f" o

                                                                                          .e d

m ( U

                                     /                                                         5 H

m t

                                                                                           ?

o _~ ro P F. l m m

                                                                                           ?

o 00 Ci9 00'055 OC OS't 00*CO't 00*DdE 00

  • 0t'Z CO*05' 00'06 00*O (SdDI) 33B03 IJIldn AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY TRANSIENT FORCE (Fz) ON STEAM GENERATOR NEP 1&2 HOT LEG BREAK Preliminary Safety Analysis Report FIG. 022.10-35C NEP 1&2

b s o

                                                                                       -4D
                                                                                       -r-e c,

44 4 4 i 0 C  ? o k # e -cn l 4 C -r-

                                                \                                      -e i
                                                  \

c e i - m c Y

                                                                                        -r a p
                                                                                         ?

O l # o

  • 4
                                                                                        -r-
                                                                                        -e
                                                                                        -e e                                         -m
                                                                                         -c 4
                                                                                           'o CC'di      00 M        00 S 00 4      00*O 00 i-     00 d-   00*d-    W (id-SdI'A 01)     IN3HOW                                    DM NT N E                                        AMygUARy,9 NEW ENGLAND POWER COMPANY                             TRANSIENT MOMENT (Mx) ON STEAM GENERATOR NEP 1&2                                                    HOT LEG BREAK Preliminary Safety Analysis Report fig. 022.10-36                 NEP 1&2
                                                                                        "o 4
                                                                                      ~@

F

                                                                                       -r M
                                                                          .            =f J i

l'o

                                                                      #               r F

v  ?

                                                                    )

Y',

                                                                                      -        n
                                                                    \                 I S

E i

                                                                                      &J       W
                                                                                      ;c A

V m (* ' e P 1, L 9 m I i 1

                                                                                        !'e -

co h co 6z oc t'z co c': co s': Oc z: s cc ~' (id-SdDI 0I) g SIN 3 WOW AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY TRANSIENT MOMENT (My) ON ETEAM GENERATOR NEP 1&2 HOT LEG BREAK Preliminary Safety Analysis Report FIG. 022.10-37 NEP 1&2

                  "6         "6 1

I, "6

                 /                  1 1           7      /

1 5 "0 1 r 6

                         -      -   0 1
                                           "                                              e 4
                       '3    '0       - /                                                is
                 '6    6     5             3                                              r 5                  '3                           " .                      u L    L      4      6    "0      8"       0-     6                 s
           ,,    L E

E E L 3" s e 1 o o o E '7 '5 3 '2 6 - r 1 t t 3 2 2 2 P l,. t o i

                                                                                '8
                            "        t     L    L       L                               f E            "6   6              E    !

E L t L o c "6 i 1 E E E s E /1 / i / 5 "4

                                   /       t o   'o t       t o

o u o t s O 7 t 3 t t t e 1 6 0 1 6 "0

                                               "                " -3                    W-8       "0       6 "0       h
                       *-                        -       -        -               -     t     t
                '0     6    3'     '7     '5   3'      2' 6       8                 u     n 5      5    4      3      2    2       2       1               'O        o     e             .

S m 9 L L L L L L L L t L n E E E E E E E E E E e m -r mo o s u o m mo m m o o m om

                                                                         ,o      o     l min  t a           d N

o r r r r r r r r r o o F F F F F F F , F V C n i s r u

          ,                                                                                                 c c
          .                                                                                                 o 1                 6             0    4      0       6       8      0                             k
          .                 2      6      1    1      3       1       i      2                              a 1      2      -      -      -    - -7                                        2              e
          .                 ;                                   -       -       -

3 '/ 1 5 7 9 2 2 r i 1 2 1 i 1 B c 6 6 0 4 0 2 1 1 3 6 1 8 0 1 2 Ag 5 tg 5 kl 9 ( 3 1 k/ 9 l.- i 2 2

                                                                                                       )

2 I

                                                                                                      )

2 2 4 tg k( (I 2 k 8 2 4 8 1 2 5 1 7 1 19 3 3 7 l 7 2 l 2 1 2 yL zo5zH ~ m$msm4 . 2ms

m g [3x nOEsz @ zoom TmA$xQmN oO%>fE9a zm'.*~ z8>CN -

mi9 Ea* E- 'i

                                                                           '~Q 8NL ! m>                        zmem

O

                                                                                      .<j wwa                                                                               a td!d LJ

_N C3C3C) r-C)C)C) 7z

      -mm                                                                               o
      - ~cJ                                                                             r3 s.

C *1 + ~' E} m -y o

                                                    ;                                   U
                                                                                       ~$

W n

                                         !l
                                          "                                            _a " , ,

b "r. U-R$ _.; u; mg 2 l 'N

                                                        \

l

x C

_g 8 o -6 0 a CC d5 CO d) CC dy CO'dE OC c't 00*dZ CO d2 00 di CD 0t' AMENDMENT N12 (VISd) 3 ERCS 3Bd FEBRUARY 1979 NEW ENGLAND POWER COMPANY VERTICAL PRESSURE PROFILE PASSING THROUGH BREAK NODE NEP 1&2 PRESSURIZER COMPARTMENT Prehminary Safety Analysis Report , FIG. 022.10-44 NEP 1&2

a

                                                                                            ~

r-m ll. -m

                                                                                         -N
                                                                                         -m f   ,
                                .,                                                       -o j
                                                                                         -m
                                                                                         -OJ
                                                                                           ;

o

                                                                                         -m
                                                                                         -m
                                                                                         -N
                                                                                         -e -
                                                                          )              -m u
                                                                                         -, w o

_m r

                                                                                          -~ %

El v o

                                                                                          -m
                                                                                          -e
                                                                                          -N
                                                                                          -e
                                                                                          -m
=

W C E O +J X i> 4- N > '#N -m e [, ~ CJ v LD (.O CO CD--~ o N (D

-                                                                                          -es a

u 7 1 0 I i I i i h c ct c se c ce c sc c cc c s: AMENDMENT N12 (bISd1 38nSS38d FEBRUARY 1979 NEW ENGLAND POWER COMPANY PRESSURE TRANSIENTS IN PRESSURIZER COMPARTMENT FOLLOWING NEP 1&2 SPRAY LINE RUPTURE Preliminary Safety Analysis Peport FIG. 022.10-47 NEP 1&2

C0f1P AR T f1E NT y

        "                      13   3 i-     m 14  G) 5      2 16   A 3      ?          o X

La m Z> o- 18

     ,oz           v 2      ,                      22    s
     -O 5*3                           24    +
     ~m E      g          a           25    Z 5          m-          26    Y                                                      -

N

 !      >          M                                                                                 u o
29 X 5

30 X o-a-

              ~    g-

, m 5 n-

              ~

8 I w ? in x oE D O N- - -

                                                                                                   -w om                                                                             -

(n g m m agg w 4'!R e c r Co a- o -- Z $_ _ m .,, a ~

                                                       /-
    $PE z    Eo[im m

' ,E o

m_55 -

                                                    -A                     .
          !! E9                                                                           4 $ $ i a 6110 E r  0 1 3              4 5 6 is6110~*             i $ 6 7 6 6110-'

E 5 A 5 E 3 ~ g T I f1E I SE C ] 55

             .m

O _~

                           '                                                                         -c) f                        -o
                                                                          +                          -e 4
                                                                                                     -w
                                                                                                     -w
                                                                                                     -m
                                                                                                     -N 7

O _~ c)

                                                                                                     -D
                                                                                                     -(D  -
                                                                                                     -m U u.J
                                                                                                     -v   (D m
                                                                                >                    -m E

l -cJ 3 N

                                                                                                       'O
                                                                                                     -c)
                                                                                                     -D
                                                                                                     -D

-seaxo+N>MN < _m LU ~* ENNNNNNNNNN F-- N N N N N N N N N N Cd m CEOOOOOOOOOO Q t-- H F-- H 1-- H H F-- H H E -a O U - LD CD CD N CO (D LD (D Q

                  -* ~ ~ N N N                                                                        ,
                                                                                                       'O 1                  I             i          6                  i       "."

0 93 0 02 0 S! 0 0! 0S 00 0 S-AMENDMENT N12 (ISd) 380SS38d 18IIN383dJIO FEBRUARY 1979 NEW ENGLAND POWER COMPANY DIFFERENTIAL PRESSURE TRANSIENTS IN PRESSURIZER COMPARTMENT NEP 1&2 FOLLOWING SPRAY LINE RUT' JRE Preliminary Safet/ Analysis Report FIG. 022.10-49 N t: P 1&2

b ip

                                                                                          -  m
                                                                                          -n
                                                                                          -e-
                                                                                          -e
                                                                                          -e
                                                                                          -w
                                                                                          -n
                                                                                          -ta
                                                                                            'o r
                                                                                         -m
                                                                                         -e
                                                                                         -n
                                                                                         -e
                                                                                         -m n

O tu

                                                                                         -n    (f) id
                                                                                         .o    2_.-

H

                                                  '                                         o
                                                                                         - en
                                                                                         -e
                                                                                         -e.
                                                                                         -n
                                                                                        -n
                                                                                        -n
                                                                                        -ra
                                                                                          ?

O LO ' N. C D S'E C C ' 'IC CC C'; C C ' 9' I CO*it CC 8 CO*I CC 0 (id-dlM 01Z ) IN3 WOW AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY NEP 1&2 TRANSIENT MOMENT ON PRESSURIZER (Y-MOMENT) Preliminary Safety Analysis port FIG. 022.10-50 NEP 1&2

b , o e e 4

                                                                                        +
                                             /

Il m m _b r

                                               )                                       @
                                                                                       -4D
                                                                                       +
                                                                                       -=   -

O en w 2 P m

                                                                                        ~

b r-

                                                                                       +

m m b

                                                                                         ~

co it- co a'z - co iz- co dz- coit- co it- co s-00 ,_ 'co o ( 1.3 -dl >l 301 ) IN3 W OW AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY NEP 1&2 TRANSIENT MOMENT ON PRESSURIZER (X-MOMENT) Preliminary Safety Analysis Report FIG. 022.10-51 NEP 1&2

b q#

                                                                                      -m
                                                                                      -m
                                                                                      -r~
                                                                                     ~D 0
                                                                                     -e
                                                                                     -m l    -tJ
                                                                                       'o r

o -m o r-

                                                                                     -D O
                                                                                     -w w

U)

                                                                                    -m LLJ E_
                                                                                    -ea   >

t O e r4

                                                                                    -m
                                                                                    -o
                                                                                    -r -
                                                                                    -D
                                                                                     -u7
                                                                                    -m
                                                                                    -t)
                                                                                     ?

O CO 09'I 00*Oi! OC*Od! 00'0d! 00 d5 00 d9 00 d> 00 d2 C'O AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY A OEE ON MESSNER MORCE) NEP 1&2 Preliminary Safety Analysis Report FIG. 022.10-52A NEP 1&2

b g e

                                                                                       -ce
                                                           }

I

                                                                                       -c-4
                                                                                       -st'
                                                                                       -w m

d)

                                                                                        ~

b s

                                                              )                       @
                                                                                      -O
                                                                                      -e M
                                                                                         ,  n O

W m M W

                                                                                      -u    2 I

b r 4 -cn

                                                                                      -e
                                                                                      -r-
                                                                                      -e e

m

                                                                                      -4 w
                                                                                       ?

O C C ' C 9'I CC'ONI CC'Od! CC Od! CC d6 CC d9 00'd) 00'dC 0"C D (Sdl>I) 30803 AMENDMENT N1. FEBRUARY 1979 NEW ENGLAND POWER COMPANY NEP 1&2 TRANSIENT FORCE ON PRESSURlZER (Y-FORCE) Preliminary Safety Analysis Report FIG. 022.10-528 NEP 1&2

b x

                                                                                            -m
                                                                                           -e
                                                                                            -r-
                                                                                            -e d
                                                                                            -m s
                                                                                           -m
                                                                                           -n
                                                                                            ~b r
                                                                                           -m
                                                                                           -e
                                                                                           -r-
                                                                                           -e
                                                                                           -m
                                                                                           -,   n O

W

                                                                                           -m   U)

W

                                                                                           -n 2

I-

                                                                                           ~

b s

                                                                                          -m
                                                                                          -e
                                                                                          -r-
                                                                                          -e
                                                                                          -m
                                                                                          -m
                                                                                          -n Y

o 0 0 0Z'E - 00'0B'Z - 00'Oiz - 00*OdZ - 00 ' 09'!- 00

  • Oil - 00
  • d9 - 00* dt - 00'0

( Sdl>l) 33803 AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY TRANSIENT VERTICAL FORCE ON PRESSURIZER NEP 1&2 (Z-FORCE) Preliminary Safety Analysis Report FIG. 022.10-52C NEP 1&2

8 9

                                                                                         ~

WWM o www a OOO .o OOO N ZZZ c

        ==(,0 m         O                                                                o NMv             @

o e<+ 1 = A

                                                                               .iM-o y                                                                o 88 o

o "U e M o

                                                                              +1         o p                                                               .o un u

O $ M

                                                                                        ~S    h B

8

                                                                                         @    4:

t

                                                                                              =

d> b S

                                                                                        .3 o
                                                                        "  M             9
                                                                                        .E, 4H-8 E
                                                                                        -T w>          e R

E

                                                                                        -7 00-      @

O co oit co oit co cit co cdt co se co o's co c% co dz co o' (yISd) M SS31Id AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY REACTOR CAVITY SENSITIVITY STUDY NEP 1&2 CIRCUMFERENTIAL PRESSURE PROFILE AT THE TIME OF PEAK BREAK NODE PRESSURE - HOT LEG BREAK Preliminary Safety Analysis Report FIG. 022.10-59 NEP 1&2

8 4 v3 us u) o WWW coa .N C00 ~ ZZZ

         --(D CD NMT O

e<+ -o

                                                                  -        J o                    O
                                                                                        .;

n el lI o

                                                                                        "9o W

Z

                                                 .1          o d

w e H 9 6

                                                             ~
                                                                                        .;       a o<'                             $

N o o 9 = r e w 8 w 4 2

                                                                                        .-       :a i     s
                                                                           ,w-d
                                                                                          ,      a O
                                                                                        . E.

8 o en cf 8

                                                                                        -b o

8 i co os't co oit co cit co co'r oc ds co ds 00 0) co az co-@ (VISd) TdflSSTdd AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POW 5ER COMPANY REACTOR CAVITY SENSITIVITY STUDY NEP 1&2 VERTICAL PRESSURE PROFILE AT THE TIME OF PEAK BREAK PRESSURE - HOT LEG BREAK Preliminary Safety Analysis Report FIG. C22.10-60 NEP 1&2

b

                                                                                 .e a
                                                                                 -e mee wwuJ                                                                       e oco
      - m e, Nmw                                                             y
  • O <3 +

e

                                                                                 -n
                                                                                 +

E

                                                                                 ?

E w

                                                                                 -e
                                                                                 -r~
                                                                                 =40 n
                                                                                 +
                                                                                 'b cc 55-    co 6E - oc
  • st - '0c 69 - oc'ss - oc st- oc'st - oc st- oc si (sarx 00 23aca AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY REACTOR CAVITY SENSITIVITY ANALYSIS NEP 1&2 TRANSIENT Y-FORCE ON REACTOR VESSEL Preliminary Safety Analysis Report FIG. 022.10-61 NEP 1&2
                                                                                           'O r
                                                                                         -e
                                                                                         -e v)U)u3 WWW                                                                             +

CCC C00 Zz "*

         ~

Nm o

  • e<+ >
                                                                                        -m
                                                                                        +

C "o e m a b

                                                                                       -e~
                                                                                       .e 4

Y~

                                                                                       -m m
                                                                                        'O 00* 0s:- 00
  • 0t Z - 00 0"I - 00 091 - 00' 0Z !- 0C 09- CO* 0t- 00'0 - 00'0i-(del-J.I OI) LN2HDR AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY REACTOR CAVITY SENSITIVITY ANALYSIS NEP 1&2 TRANSIENT X-MOMENT ON REACTOR VESSEL ,

Preliminary Safety Analysis Report # FIG. 022.10-62 NEP 1&2

O a o WWW Www o oao o aoo N zzz

            -. u3 c1                                                                               o Nnv                                                                                    o 04+                                                                                   -
                                                                          -c    e                 S E

2 w i 8 o

                                                                   +1 O

o - o v0 W a C o o F-ow

                                                                                               'd I F-0 S
                                                                   -3%                           O E

o-l 8

                                                                                               -7
                                                                        &    o-o o

O

                                                                                              ~7 oo                     8 N

7 00*0d! 00 Oil 00 051 00'Od! 00'd9 00 d9 00*dt 00*d2 00'0' AMENDMENT N12 (VISd) 3 BASS 3Bd FEBRUARY 1979 NEW ENGLAND POWER COMPANY REACTOR CAVITY SENSITIVITY STUDY NEP 1&2 CIRCUMFERENTIAL PRESSURE PROFILE AT TIME OF PEAK BREAK NODE PRESSURE Preliminary Safety Analysis Report COLD LEG BREAK FIG. 022.10-6 NEP 1&2

S

                                                                                             -5 unn en                                                                               a to ta w coa                                                                                .N coo                                                                                  ~

ZZZ

          ~ w ai N94 S

e4+ . o o S

                                                         -      o o

S

                                                                                            ~o al 4)

S _ J, *^- LL til  % SS tu

                                                                                            'n' S

4>%W 3f S 2.a S S 00 Odi

                                               .#                                           5 00
  • 0 t'! 00 051 00 Odi 00 08 00 d9 00 dt 00 d2 00 O' (VISd)3HASS3Bd AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY REACTOR CAVITY SENSITIVITY STUDY VERTICAL PRESSURE PROFILE AT THE TIME WHEN NEP 1&2 THE BREAK NODE REACHES PEAK PRESSURE Preliminary Safety Analysis Report ^

FIG. 022.C-7 NEP 1&2

                                                                                           'o s-*

e e mmm 000

                                                                                          +

zzz e

         -w en CJ M V                                                                           '#

ip o 04+ o

                                          /
                                                                                         -G 1

d x o

                                       '                                                       w r
                                                                                          'o
  • N *E ,-.

e s

                                                                                         -t-N e

A4 e o co os't co oit co oit 00 odt oc de co de oc d> co dz oc o AMENDMENT N12 (SdiX OI) 33B03 FEBRUARY 1979 NEW ENGLAND POWER COMPANY REACTOR CAVITY SENSITIVITY ANALYSIS TRANSIENT NEP 1&2 X-FORCE ON REACTOR VESSEL COLD LEG BREAK Prehminary Safety Analysis Report FIG. 022.10-8 NEP 1&2

                                                                                          'o s
                                                                                         -m mmm www                                                                             +

coo 000 zzz _e

         ~ m en NmW                                                                             -m 9

e<+ ll

                                                                                         -w
                                                                                         -m 44 O

w r o$

                                                                                        -m E
                                                                                        -- ?
                                                                                        -t-l
                                                                                        -w
                                                                                        -m 4
                                                                                        -m
                                                                                        -~
                                                                                         'o 00 0d2     00*0i2      00*Od3     00*0d!     00*0d!      00*d6    00*dt     00*O    00*0t-AMENDMENT N12 (id-dlX OI) SIN 3 WOW                            FEBRUARY 1979 NEW ENGLAND POWER COMPANY                         REACTOR CAVITY SENSITIVITY ANALYSIS TRANSIENT NEP 1&2                                         Y-MOMENT ON REACTOR VESSEL COLD LEG BREAK Preliminary Safety Analysis Report FIG. 022.10-9                   NEP 1&2

r o [/ 0I j i -m I

                                                                                               -r-
                                                                                               -e do                n-y9                                                -LO

_m t t _a

                                                                               \                    -

s

                                                                                \                   w of a u; r

m-

                                                                                               -t~
                                                                                  ,        d
                                                                                               -D
                                                                                               - LO i
                                                                                               -w r                                                                                               _m z

w U EJ O 4 X 0 4- N > 'n N O' _a 1 O

  ~ N m LD O ~ m v CD O
                   ~~~~~N O

U 7 L l l l 1 l 0 092 0 003 0*09: 0 00! 0 0S 0*C AMENDMENT N12 (6ISd) 380SS38d FEBRUARY 1979 NEW ENGLAND POWER COMPANY TRANSIENT PRESSURE RE',PONSES NEP 1&2 49 NODE REACTOR CAVITY ANALYSIS COLD LEG BREAK Preliminary Safety Analysis Report FIG. 022.10-10 NEP 1&2

COMPARTMENT y z 28 0 m a E 30 0 3 m g 9 34 A l

  @ mZ zs         8_
                 ~

35 X E' , 38 e p ;8m 3'a v Z 5"" 40 x n a. m 8, o_ w 44 Y j

  ~

g 45 X 48 Z

            ^O
            " a_

m a o_ o _ a W o

                                                                               '       N o      e -.4 Q'     '

N 5! O 5E-D V m?R LLJ O *I z Of O>H . Oh O E85

     $95 gsm
                     ~

l.- .- _/ 1 --

                                                                              =~

z 30s

       >g                                                                            .

m Z O T hz

       <g yy o

- mm -

                                           '          I   i        '    '   I    i i   i 9cn  GZ O                       A 3 3 3          3             8 1

e7 eg 10-* e' o gg 10-3 c 3 4 5 6 7 8 s 1 0-2 2 3 4 s 5

            <2 TIME (SEC) em

mW Ww ao oo  ; zz o z~ D cn mn / -m

                                                                                       -en WW                                                                           4 UU mm oo                                                                           -m Ls LL.

I 1 X >( -m O4 )

                                                                                       -m
                                                                                       -m U
                                        \                                              7 o$  _

s

                                                                                       -o $ -
                                                                                       -m w
                                                                                      -e
                                                                                      -m
                                                                                      -w m
                                                                                      -m
                                                                                      ?

O 00 09'I 00*Oi! 00 Oi! 00*Od! 00'09 00*$9 00 dt 00*d2 00 0 AMENDMENT N12 (SdIM OI) 33tf0J FEBRUARY 1979 NEW ENCLAND POWER COMPANY TRANSIENT FORCES ON NEP 1&2 REACTOR VESSEL COLD LEG BREAK Preliminary Safety Analysis Report FIG. 022.10-13 NEP 1&2

o o

  ,         z           d i.

s 3 m 5- 2 e o 0 Y-FORCE 36 NODES z9 8 A Y-FORCE 49 NODES Tm ,o z d_

                        =

_t

  > W 3    <

O B m E* M x n o, . s O

  ?        E v         'o o
  ;

Z o 4 0 o- .

                                            ~
                                                 ^
                                                          ^ M'b -   : -A
              ^
              <n      o.

o CL. *_ m x e - v O o d o 9 s 8 m i' 5 5 o

           -4         o=

x 0x> 0 Omz r- > $2

  • OOm m Oh 8 -

ODm o m <m x 8. x$O m

     >m z     *I@O             o m           z          o.

' mh S m m N- ' 9 ; 5 I O~' c3 z 10-s 2 3 4 6 4 e ma 2' 3' 4' 5' 6' 7' 9' 9' IO-' y ggm TIME (SEC) xZ

               -< --t Gz OG

mm Ww OO oo 7 zz O em cn v *

                                                                                      -4D WW                                                                              -r-UU tr E oo                                                                             -*

LL Lt. 1 I NN ~0

                                                          \

04

                                                                                      -m
                                                                                      -ca u

w r o$ W

                                                                                      -cn r
                                                                                      -en [
                                                                                      -c-
                                                                                      -m
                                                                                      -m
                                                                                      -m m

se

                                                                                       'o 00*0di    00*0i!     00 021      00*0dl    00*d9    00*d9        00 dt    00*dZ     00*0 AMENDMENT N12 (gdp) 333OJ                                     FEBRUARY 1979 NEW ENGLAND POWER COMPANY                                     TRANSIENT FORCES ON NEP 1&2                                              REACTOR VESSEL COLD LEG BREAK Preliminary Safety Analysis Report FIG. 022.10-15                    NEP 1&2

wm WW OO oc zz -'o (o cn to w -m ZZ < , WW o rr p oo 1 -w rr -' 1 I q)

       >< Y                o                                                                -w 04                  0 0                                                               -w O

al) 4

  • D
                                                                                           -N r  i oi                                                                      o w

r O$

                                                                                           -m N d l
                                                                                           -m [
                                                                                           +
                                                                                           -e
                                                                                           -(t)
                                                                                           -w Il
                                                                                           .m i
                                                                                           -u 7

o 00 d8 00*dt 00 O 00*0i- 00 00'- 00'0Zi- 00 09t'- 00 00d- 00*0>Z-AMENDMENT N12 (13-dI'A OI) IN3HOW FEBRUARY 1979 NEW ENGLAND POWER COMPANY TRANSIENT MOMENTS ON NEP 1&2 REACTOR VESSEL COLD LEG BREAK Prehminary Safety Analysis Report FIG. 022.10-16 NEP 1&2

v>(n ww ao SS r O (D O m4 ~@

                                                                                        -m WH bb rr oo                                                                             -e rr I i
         >->-                                                                           -w 04
                                                                                        -en
                                                                                        -N N

b w r os w

                                                                                       -m z
                                                                                       -m ;
                                                                                       -r-
                                                                                       -D
                                                                                       -m
                                                                                       -w o
                                                                                       -en
                                                                                       -CJ em
                                                                                        'o 00*OdC     00 Oi2      00 OdC     00*Odl,   00 Od!       00 dB    00 dt' 00*O   00 0>-

AMENDMENT N12 (L4-dI'A DI) IN3HOW FEBRUARY 1979 NEW ENGLAND POWER COMPANY NEP 1&2 TRANSIENT MOMENTS ON REACTOR VESSEL COLD LEG BREAK Preliminary Safety Analysis Report FIG. 022.10-17 NEP 1&2

a

                                                                                                                             -(11
                                                                                                                             -w t .
                                                                                                                             -<o
                                                                                                       .L.- nl  r
                                                                                                                             - u, 4
                                                                                         \                                   -~

I a\ 1 r _c,

                                                                                                         \
                                                                                                                  \                  -,

o o

                                                                                                                             ?      w r                             L3

_ -4

                                                                                                             /              -m      W
                                                                                                                            -m      -
                                                                                                                                    "~
                                                                                              ,      ,       (       n
                                                                                                                            +
                                                                                                                            -<a
                                                                                                                     .         u,
                                                                                               )

i

                                                                                                                               -y b
                                                                                                                            -M z                                                                          ,

u; r p E) O 4 X O 4- N >- n' N i Cr'

                                                                                                                            -ca T

Q- ~ CQ cr) LD O ~ m 7 C' C3

                    ~ . ~ ~ -. rg                                           x e._

CJ s

                                                                                \

LJ \ l

                                                                                       \\                                    *
                                                                                                                              'CJ
                 - _ . . . . - - . . . - . . . . -                                                                             ~

3---....- e C'C9C C C02 C C;! C 00: C-CS C'C (d19dJ 3M09S]Md AMENDMENT N12 r,CH C; 031 In: 10 3anidna 111AU: aC105 3b C h ?N 3 FEBRUARY 1979 NEW ENGLAND POWER COMPANY TRANSIENT PRESSURE RESPONSE NEP 1&2 49 NODE REACTOR CAVITY ANALYSIS HOT LEG BREAK Preliminary Safety Analysis Report FIG. 022.10-63 NEP 1&2

7 o _cn _m I -n _m yr t>: _a i

                                                              \                \

x _m

                                                                                                       '\

t

                                                                                  ,               +                    rL:             _a
                                                                                      \

x, q ,

                                                                                         's                    %
                            \                                                           \
                                                                                          \
                                                                         \s s                                                     x                x                               o ,
                                                                                \                               N y                    c,a J) s b                                   o '_

s , __- s 's _ c, tu

                                                                                              's'x        N
                                                                                                               's                      _m E

H g

                                                                                                              'x    '\

4 .' l _n r

                                                                                                .                                       m s                                          s N                                                                       [

N, l .., H x 'N s m z to U El O +] X O N r ME M tr'

                                                                                                                                       -a 7

g 03 C3 'T tO CJ Cn c3 v tn 03

y. Nmmmmm-rrvr
                                                                                                                        ,            =

c3 1 o T C3

                                                                                                                                        ~

_.-gg_ C~09 C-OS 0~0P 0'GE O 02 0'CI (U1Sa1 BBDSS]Bd AMENDMENT N12

                              ' ,4 CON  6 7 31 AC;. ;0 Janid.19 All353 bC13blb C h JN ,

NEW ENGLAND POWER COMPANY TRANSIENT PRESSURE RESPOP:SE NEP 1&2 49 NODE REACTOR CAVITY ANALYSIS HOT LEG BREAK Preliminary Safety Analysis Report FIG. 022.10-64 NEP 1&2

C G ( ,' , P N E l

                             ;

oOE1C_rrr- c F E uJ a._H r 9 el W d - Fo rC

                                                         -             )

E J mi E ni N

                         }

N Fo- 7)C E

                                                                                  )

ar G O y L S a NA E N

                         ]

d 0 0 ; N Fo 7lC

                                                         -                        J+

D Ha mC X f e P f 3 O l t 4 - ) y P ,r 1 O 9 Fo rU 9 1 A 0 9 ~ n & EW a 0 - ) i ] 0 yl s si 2 R C C

                    ' h      C         -
                                              -   )    Fo vO
                                                                       )

O d 0 h R e M 1

                     ~

C ; N3 Fo rG

                                                         -             )

p P 1 o r t A N i t

                ;

l dl

                           ~

0O

                                             )         Fo rC
                                                       -               )           -

Y X C L 4 0 1

                                             )rD       Fo rU
                                                                       )

I - - 1 N C rr Fa rO

                                                                       )          M 0

t ] C C oN '

                                  ;

x s ] ', x F > _

                        ]                                  s                    /

I 1 s 1 G. 0 3 o d l

                                                     \                            /                                     N s

J

                ;

2 [ 2 a ] 1 D C 0 I F

                .c                                                                                        '
                                                                                                                                             )
  -        F  F              C                                                        '
                                                                                                      )

6 5 OE w j l' 3 LR a 4 I NL E c i X T ON s H WT I h 2 1 x s i E N' A a \ i 7 RGL  : _ ( \( Il t E P N W C AH R O E C y

                                         ';;
                                                             \
                                                                                                 \. y\     k T TS                  0    y                                     '                   ,

4 OL S R EU C GRE AR . N VU TR T P I T A 0 E Y U P N A C RIS FM . 1 EE EE ' 7_ I! I BN ~ - N

- o',

Y - - - c ,- r c a & RD a,

                                                                                                              - Oa _- a L       t t T

U

                                                               ;                   m                n<              i                     a    m v n       D  - m0 1 o

2 AM .. R E HwEu muo-Y N T a a . a 1 9N 71 92

7 rd we uJuJ :2 OS

          ==
  • f*

c1e

/*

vm

                                                      'e-04                                    y
                                                      !L
                                              >       F 1      e 1

8-Wu fD Q$ Ne t_- e L

                                                      .E i

n E

                                                      -s 5
                                                      -a       <

IP co s: ces co c'a ac zt co s oc ? cc ,- c:: a- cc :f-saIM AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY TRANSIENT FORCES (Fx) ON REACTOR VESSEL NEP 1&2 HOT LEG BREAK Prtl inary Safety Analysis Report FIG. 022.10-66 NEP 1&2

                                                                      "b (n ta wW                                                             o
         =z 9                                ~5 j

e, e wm I m f o 64 ~d 7

                                                                       ~5 5
                                                                      -a 8

g "d u

                                                                     !    m o
                                                                      ."g N.
                                                 \.
                                                                          ~
                                                                      -ko
                                                    .t
                                                  /                     -

3 m

                                                                        =
                                                                      ~
                                              \
                                                                      ~

8 aE co oft co co'r co os co os co or co er co if co od- co of-SdIM AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY TRANSIENT FORCES (Fz) ON REACTOR VESSEL NEP 1&2 HOT LEG BREAK Preliminary Safety Analysis Report FIG. 022.10-67 NEP 1&2

NEP 1 & 2 TABLE OF CONTENTS (Continued) l VOLUME 4 (Continued) Title Page No. Chapter 3.11 Environcental Design of Mechanical and Electrical Equipment  ? 11-1 4 REACTOR 4.1 Summary Description 4.1-1 4.2 Mechanical Design 4.2-1 4.3 Nuclear Design 4.3-1 4.4 Thermal and Hydraulic Design 4.4-1 5 REACTOR COOLANT SYSTEM . 5.1 St amary Description 5.1-1 5.2 Integrity of Reactor Coolant Pressure Boundary 5.2-1 5.3 Thermal Hydraulic System Design 5.3-1 5.4 Reactor Vessel and Appurtenances 5.4-1 5.5 Component and Subsystem Design 5.5-1 5.6 Instrumentation Requirements 5.6-1 VOLUME 5 l 6 ENGINEERED SAFETY FEATURES 6.1 General 6.1-1 6.2 Containment Systems 6.2-1 6.3 Emergency Core Cooling System 6.3-1 6.4 Habitability System 6.4-1 6.5 Emergency Feedwater System 6.5-1 iii

NEP 1 & 2 TABLE OF CW TENTS (Continued) VOLUME 5 (Continued) l Title Page No. Chapter 7 INSTRUMENTATION AND CONTROLS 7.1 Introduction 7.1-1 7.2 Reactor Trip System 7.2-1 7.3 Engineered Safety Features Actuation System 7.3-1 7.4 Systems Required for Safe Shutdown 7.4-1 7.5 Safety Related Display Information 7.5-1 7.6 All Other Systems Required for Safety 7.6-1 7.7 Control Systems 7.7-1 8 ELECTRIC POWER 8.1 Introduction 8.1-1 8.2 Offsite Power System 8.2-1 8.3 Onsite Power Systems 8.3-1 9 AUXILIA?.Y SYSTEMS Fuel Storage and Handling 9.1-1 9.1 9.2-1 9.2 Water Systens 9.3 Process Auxiliaries 9.3-1 9.4 Air Condit.oning, Heating, Cooling and Ventilation Systems 9.4-1 9.5 Other Auxiliary Systems 9.5-1 iv

NEP 1 & 2 TABLE OF CONTENTS (Continued) VOLUME 6 l Chapter Title Page No. 10 STEAM AND POWER CONVERSION SYSTEM 10.1 Summary Description 10.1-1 10.2 Turbine-Generator 10.2-1 10.3 Main Steam Supply System 10. 3-1 10.4 Other Features of Steam and Power Conversion Systems 10.4-1 11 RADIOACTIVE WASTE MANAGEMENT 11.1 Source Terms 11.1-1 11.2 Liquid Waste System 11.2-1 11.3 Gaseous Waste Systems 11.3-1 11.4 Process and Effluent Radiological Monitoring Systems 11.4-1 11.5 Solid Waste System 11.5-1 11.6 Offsite Radiolog1 cal Monitoring Program 11.6-1 12 RADIATION PR0rfECTION 12.1 Shielding 12.1-1 12.2 Ventilation 12.2-1 12.3 Health Physics Program 12.3-1 APPENDIX 12A Summary of Study for the Determination of Containment Atmosphere Isotopic Concentrations 12A-1 13 CONDUCT OF OPERATIONS 13.1 Organizational Structure 13.1-1 13.2 Training Program 13.2-1 13.3 Emergency Planning 13.3-1 v

NEP 1 & 2 Amendment N12 February 1979 TABLE OF CONTENTS (Continued) VOLUME 6 (Continued) l Chapter Title Page No. 13.4 Review and Audit 13.4-1 13.5 Plant Procedures 13.5-1 13.6 Plant Records 13.6-1 13.7 Industrial Security 13.7-1 Appendix 13 A Rhode Island Nuclear Accident or Incident Plan gg VOLUME 7 14 INITIAL TESTS AND OPERATION 14.1 Test Program 14.1-1 1 15 ACCIDENT ANALYSES U 15.1 Condition I - Normal Operation and Operational Transients 15.1-1 15.2 Condition II - Faults of Moderate Frequency 15.2-1 15.3 Condition III - Infrequent Fault 15.3-1 15.4 Condition IV - Limiting Faults 15.4-1 Appendices l 15B Summary of Parameters Used for Evaluating 15B-1 Radiological Effects of Accidents 15C Summary of Parameters Used for an Evaluation of 15C-1 Potential Reactor Containment Leakage to the Con-tainment Penetratf.an Area (CPA) ISD Major Reactor Coolant System Pipe Ruptures (Loss of 15D-1 Coolant Accident) - Generic Sensitivity Study Results 16 ZECIINICAL SPECIFICATIONS N'T 16.1 Definitions ,5.1-1 16.2 Safety Limits and Limiting Safety System 16.2.1-1 Settings vi

NEP 1 & 2 Amendment N12 February 1979 TABLE OF CONTE}rrS (Continued) VOLUME 7 (Continued) l Chap te r Title Page No. 16.3 Limiting Conditions for Operatis n 16.3.1-1 16.4 Surveillance Requirements 16.4.1-1 16.5 Design Features 16.5.1-1 16.6 Administrative Controls 16.6.1-1 17 QUALITY ASSURANCE 1~-i Quality Assurance - Yankee Atomic Electric Company 17.1-1 17.2 Quality Assurance - United Engineers and Constructors 17.2-1 17.3 Quality Assurance - Westinghouse 17.3-1 VOLUME 8 l SUPPLDIENTAL INFORMATION (AEC Que=tions/ Responses) VOLUNE 9 REQUEST AND RESPONSES i Tab 1 through Tab 3 VOLUME 10 N1 REQUEST AND RESPONSES Tab 4 tSvough Tab 17 PSAR PAGE LISTING AMENDMENT HISTORY All2. v tt

NEp 1 5 2 Amendment N12 February 1979 These analyses are preliminary; detailed results, methods, loading combinations and summaries of the qualification of supports will be presented in the FSAR. Postulated break locations and type for the primary coolant loop are based on " Pipe Breaks for the LOCA Analysis of the Westinghouse Primary Coolant Loop,'lCAP-8082". .iccordingly, no pipe ruptures were postulated in the primary shield wall penetrations. The responses to the specific requests for additional information for individual compartments are provided in the following sections: l Nd 022.10.1 Reactor Cavity 022.10.1.1 The results of the pressurization analysis of the reactor cavity compartment are presented in Sections 022.10.1.7 thro ugh 022.10.1.10. 022.10.1.2 The cold leg break and hot leg break, evaluated for the reactor cavity pressurization, were postulated as double ended and located at the inlet and outlet nozzles of the reactor vessel respectively. The ccid leg as well as hot leg pipe whip restraints are designed to limit the post break displacement of the pipe. The pipe whip restraints are located inside the pipe penetration and outside t'e primary shield wall. The effective break area for each of the cold leg and hot leg was determined to be less than 144 sq. in. Both the cold leg break and hot leg break were evaluated for the determination of transient pressures on the reactor cavity compartment structures and forces ar.d moments on the reactor vessel supports. Based on calculated peak nodal pressures and forces and moments on the reactor vessel supports, discussed in Sections 022.10.1.8 and 022.10.1.9, the cold leg break was determined to be the limiting case. Therefore, the evaluation of both the compartment structural design and component supports design are based on the cold leg break. 022.10.1.3 The mass and energy release rates used in the reactor cavity pressurization analysis for the cold and hot leg breaks are presented in Tables 022.10-1 and 022.10-28. 022.10.1.4 The sectional and plan views of the reactor cavity compartment, including the principal dimensions and the coordinate system, are shown in Figures 022.10-1 and 022.10-2. The schematic drawing of 49-node compartment nodalization, used in the reactor cavity pressurization analysis for both the colo leg break and hot leg break, is shown in Figure 022.10-5. g,q R6-15

NEP 1 & 2 Amendment N12 February 1979 022.10.1.5 Tables 022.10-2 and 022.10-29 present the net free volumes of each node and Tables 022.10-3 and 022.10-30 show the interconnecting flew paths, L/A ratios and loss-coefficients for the cold leg break and hot leg break respectively. The loss coef ficients were broken up into components and evaluated on the basis of the respective flow paths. The components of the loss coef ficients consisting of more than one component are shown in Tables 022.10-4 and 022.10-31 for the cold leg break and hot leg break respectively. 022.10.1.6 In order to determine the minimum number of nodal volumes required to conservatively predict the loads, a nodalization sensitivity study was performed for both the cold leg break and hot leg break. On the basis of the sensitivity studies the 49-node model was selected for the cold leg break as well as the hot leg break analysis. Three basic nodalization schemes, considered in the sensitivity study for each break, are described below. The three nodalization schemes are shown in Figures 022.10-3, 022.10-4 and 022.10-5. In the 21-node scheme, the nozzle area was divided into 6 nodes and 5 vertical regions were considered along the height of the reactor vessel. In the 36-node analysis, the nozzle area was divided into 10 nodes and 8 vertical regions were considered. In the 49-node scncu e, the nozzle area was divided into 18 nodes and 10 vertical regions were considered. The pressure profiles for the aforementioned nodalization schemee around the reactor vessel at the nozzle elevation and at the instant the break node reaches peak pressure, are shown in Figures 022.10-6 and 022.10-59. The profiles show good convergence. Figures 022.10-7 and 022.10-60 show similar pressure profiles along the vertical axes through the break nodes. The profiles show a close agreement. The time dependent forces and moments acting on the reactor vessel, derived from the 21-node, 36-node and 49-node schemes, are presented in Figures 022.10-8 and 022.10-9 for the cold leg break and Figures 022.10-61 and 022.10-62 for the hot leg break. The force and moment transients predicted by the three nodalization schemes are remarkably similar. The peak forces and moments presented in Section 022.10.1.9 are conservatively selected from the results of the 49-node scheme as well as the 36-node scheme. In the determination of the tree volumes and the vent areas, ng credit was taken for any removal of insulation, w1 R6-16

NEP 1 & 2 Amendment N12 February 1979 022.10.1.7 Figures 022.10-10 and 022.10-11 (cold leg break), and Figures 022.10-63 and 022.10-64 (ho*_ leg break) show the pressure responses in various nodes of the 49-node model. The nodal differential pressure responses across the primary shield wall are illustrated in Figures 022.10-12 and 022.10-65 for the cold leg break and the hot leg break respectively. 022.10.1.8 The calculated peak nodal dif ferential pressures and their times of occurrence, are given in Tables 022.10-6 and 022.10-33 for the cold leg break and the hot leg break respectively. The peak pressures in these nodes were maximized by varying the loss-coefficients so that the differential pressures in regions removed from the break location are conservatively estimated. Also, for the determination of the design loads, the peak pressures in all the nodes were assumed to cccur simultaneously. 022.10.1.9 The transient forces and moments acting on the reactor vessel are presented in Figures 022.10-8, 022.10-9 and 022.10-13 through 022.10-17 for the cold leg break and in Figures 022.10-61, 022.10-62 and 022.10-66 through 022.10-68 for the hot leg break. The coordinate system used is illustrated in Figures 022.10-1 and 022.10-2. The peak forces (F1) and moments (M1) are as follows: Cold Leg Break: Fx = -1110 Kips Mg= -214 Kip f t. F= -15 Kips M = 2068 Kip ft. Y y F= 112 Kips M= 0 z z Hot Leg Break F= X 13 Kips M = -2029 Kip ft. X F = -984 Kips M= -176 Kip ft. Y Y F= 74 Kips M= 0 z z M11 R6-16a

NEP 1 & 2 Amendment N12 February 1979 022.10.1.10 The projected areas (i.e., areas on the' reactor vessel occupied by a particular node and projected on x-y, y-z, and z-x planes as illustrated in Figure 022.10-1 and 022.10-2) and moment arms used to calculate various components of forces and moments are presented in Table 022.10-5, for the cold leg break and Table 022.10-32 for the hot leg break. All reactor coolant system (RCS) supports are designed for "'t concurrent loadings from deadweight, pressure, postulated pipe ruptures in the RCS, as identified in PSAR Subsection 5.2.1.10 and the safe shutdown earthquake. Included under the considerations for pipe rupture loads are the ef fects of RCS hydraulic loads, jet impingement, thrust, and asymmetric pressure on the supported components. The pipe rupture analysis which is performed for the reactor vessel support loads includes non-axisymmetric pressure distri-bution on the internals as well as on the vessel exterior walls. A detailed dynamic model of the reactor vessel and internals is prepared which includes the stiffnesses of the reactor vessel supports and the attached piping. Ilydraulic forces are developed in the internals for the break at the reactor vessel nozzle; these forces are characterized by time dependent forcing functions on the vessel and the core barrel. In the derivations of these forcing functions, the fluid-structure (or hydroclastic) inter-action in the downcomer region between the barrel and the vessel is taken into account. The break at the vessel nozzle also allows an asymmetric pressure distribution, and a subsequent force on the side of the vessel is calculated on a time history basis for these asymmetric loads. As a result of the pipe break, loop mechanical loads are also applied to the vessel. The loads from these three sources, the internal reactions, reactor cavity pressure loads, and the loop mechanical forces are applied simultaneously in a non-linear, elastic, dynamic time history analysis on the model of the vessel, supports and internals. The results of this analysis are the dynamic loads or the reactor vessel supports and vessel time history displacements. The maximum loads are combined with other applicable loads such as seismic and deadweight and applied statically to the vessel support structure. 022.10.2 Steam Generator Compartment 022.10.2.1 The pressure transients in the steam generator compartment following postulated hot-leg and cold-leg ruptures are provided in Section 022.10.2.7. A/tt R6-17

NEP 1 & 2 Amendment N11 May 1978 022.10.2.2 A double-ended rupture in the hot-leg within the steam generator compartment is the most severe for the design of the steam generator supports, and was evaluated for both the compartment structural as well as component support design. For the determination of compartment structural design pressure, the pressure transients, due to a double-ended rupture in both the cold-leg as well as the hot-leg, were evaluated. 022.10.2.3 The mass and energy release rates from double-ended ruptures in the hot-leg and cold-leg used in analysis are presented in Tables 022.10-7 and 022.10-8. 022.10.2.4 Figures 022.10-18A and 01 2.10-18B show sectional views of a steam generator compartment. Plan drawings at various elevations are provided in Figures 022.10-19A through 022.10-19D, which include principal dimensions. Figures 022.10-22 and 022.10-23 show the nodalizaitons used for the hot-leg and cold-leg ruptures. 022.10.2.5 The net free volume of the nodes are given in Tables 022.10-9 and 022.10-10 for the hot-leg and cold-leg analysis. Tables 022.10-11 and 022.10-12 present the vent flow areas, L/A ratios, and vent loss-coefficients. The components for loss-coefficients, consisting of more than one component, are provided in Table 022.10-13 for the hot-leg rupture. 022.10.2.6 A nodalization sensitivity study was performed to determine the minimum number of nodes required to conservatively predict the loads for the hot-leg rupture. Three nodalization schemes used for the sensitivity study are illustrated in Figure 022.10-20 through 022.10-22. In the 10-node scheme, the break region is divided into 2 nodes and the steam generator compartment is divided into 5 vertical regions. In the 15-node scheme, the break region is divided into 5 nodes and each of the nodes below the break region is further sub-divided into 2 nodes. In the 19-node scheme, each of the nodes above the break region is subdivided into 2 nodes. The nodes in each case are selected so as to maximize the loads on the steam generator. In the 19-node scheme for the cold-leg rupture, (Figure 022.10-23), the nodes were rearranged with respect to the break location. Alll O R6-18

NEP 1 & 2 Amendment N12 February 1979 The pressure profiles, around the steam generator at the hot-leg nozzle elevation at the instant the break node reaches peak pressure, are shown in Figure 022.10-24. Figure 022.10-25 illustrates a vertical pressure profile through the break node. Figure 022.10-26 shcws the transient sidewise forces for various nodalization schemes. Figure 022.10-27 presents the transient moments. The moments and forces for the 15-node and 19-node schemes are very close and this indicates that modeling of a larger number of nodes will not effect a significant change in the results. In the determination of the free volumes and the vent areas, no credit was taken for any removal of insulation. 022.10.2.7 The pressure responses in various nodes used in the 19-node scheme are provided in Figures 022.10-28 and 022.10-29 for the hot-leg rupture and in Figures 022.10-30 and 022.10-31 for the cold-leg rupture. The differential pressure responses across the compartment walls are given in Figures 022.10-32 and 022.10-33. The peak differential pressures and the times of peak pressura are summarized in Tables 022.10-14 and 022.10-15 for the hot-leg and cold-leg ruptures, respectively. 022.10.2.8 The steam generator subcompartment plan views at the break region (i.e., elevation (-) 13'-1" to elevation (-) l'-7"), showing the regional nodal arrangement and interfacing wall identification for the cold leg break and the hot leg break pressurization analysis, are presented in Figure 022.10-34. In the break region, the walls A, B, and C see higher pressure loads because the interfacing nodes are in the vicinity of the hot leg break node. The peak differential pressures nn the wall segments of various regions of the subcompartment for both the hot leg and and the cold leg break are presented in Table 022.10-16. The envelope differential pressures, also presented in Table 022.10-16, were derived from the corresponding maximum peak dif-ferential pressures and formed the basis for determining the design pressures for the various regions of the subcompartment. The calcu-lated peak differential pressures and minimum design pressures are presented in Table S6.36-1. 022.10.2.9 The time dependent forces and moments acting on the steam generator following the hot leg break are presented in Figures 022.10-35A through 022.10-35C, 022.10-36 and 022.10-37. The coordinate system, used in calculating moments and forces, is righthand cartesian system with the positive x-axis co-linear with the broken leg directed radially outwards from the steam generator and the positive z-axis directed vertically upwards through the steam generator centerline. The angle 9 is measured counterclockwise from the x-axis. The peak forces (F i) and moments (M 1) for the hot leg break are: Fx = -634.2 kips  ; M = -794 kip ft A> li x Fy = 32.8 kips , My= -16,252 kip ft Fz = 450.7 kips  ; Mz= 0 was R6-19

NEP 1 & 2 Amendment N12 February 1979 022.10.2.10 The projected areas (areas on the steam generator occupied by a particular node projected on x y, y-z and z-x planes are described in Section 022.10.2.9) and moment arms used to cal-culate various components of forces and moments are provided in Table 022.10-17. 022.10.3 Pressurizer Compartment 022.10.3.1 The pressurizer subcompartment pressurization, due to a rupture in the spray line, results in loadings on the compartment structures and pressurizer supports. The pressure transients are presented in detail in Section 022.10.3.7. 022.10.3.2 Several double-ended ruptures ir the spray line at various locations were evaluated to determine the design loads on the pressurizer supports and also on the compartment structures. The double-ended spray line break at elevation 29'-0" was determined to result in the most severe pressure loads both on the compartment walls and the pressurizer supports. The results of the sensitivity study and the pressurizer compartment pressurization analysis presented in Section 022.10.3 are based on a full double-ended break in the spray line at elevation 29'-0". 022.10.3.3 The mass and energy releases following a double-ended guillotine rupture used in the analysis are provided in Table 022.10-18. 022.10.3.4 Figure 022.10-38 shows a sectional view of the pressurizer N'T compartment. Figures 022.10-39A through 022.10-39E show the plan views of the pressurizer compartment at various elevations and include the principal dimensions. A .nensitivity study was performed, as discussed in Section 022.10.3.6, and it was determined that the 26-node scheme was adequate for conservatively predicting the pressure loads on the compartment walls and the component supports. The 26-node scheme was modified by subdividing the region from El. 22'-0" to El. 25'-0" into two regions (i.e., El. 22'-0" to El. 23'-8" and El 23'-8" to El. 25'-0") to reflect the latest plant design. The 30-node nodalization scheme, presented in Figure 022.10-42A, was used for the compartment pressurization analysis. All input data and results presented in Tables 022.10-19 through 022.10-24 and Figu.2s 022.10-47 through 022.10-52C are based on the 30-node scheme, wit O R6-20

NEP 1 & 2 Amendment N12 February 1979 022.10.3.5 Table 022.10-19 provides the net free volumes of each node. The interconnecting flowpath areas, L/A ratios and vent loss-coefficients are given in Table 022.10-20. The components of the vent loss-coefficients consisting of more than one canponent are presented in Table 022.10-21. 022.10.3.6 A nodalization sensitivity study was performed to determine the minimum number of nodes required to conservatively predict the loads. Figures 022.10-2r through 022.10-42 illustrate various nodalization scheme: ;onsidered for the sensitivity study. In the ll-node scheme, the break region was divided into two nodes and the whole compartment divided into 5 vertical regions. In the 16-node scheme, the break region was divided into 4 nodes and the compartment divided into 7 vertical regions. In the 26-node scheme, the compartment was divided into 9 vertical regions. R6-20a

NEP 1 & 2 Amendment N12 February 1979 The horizontal pressure profiles for these nodalizations around the pressurizer at a break clevation (El. 29'-0") and at the l time the break node of each nodalizatica reaches peak pressure, ygg are shown in Figure 022.10-43. The angle "TilETA" is measured counter-clockwise from x-axis. The vertical pressure profile passing through the same break node is shown in Figure 022.10-44. The horizontal and vertical profiles show good convergence. The transient forces and moments acting on the pressurizer were calculated for all the nodalization schemes and are presented in Figures 022.10-45 and 022.10-46. The moments and forces predicted by these nodalization schemes are in close agreement, and this suggests the adequacy of the 26-node scheme. The nodal free volumes and vent areas were conservatively calculated assuming the insulation remains intact. 022.10.3.7 Figures 022.10-47 and 022.10-48 illustrate the pressure trans-ients in the pressurizer compartment using 30-node scheme. l Figure 022.10-49 shows the differential pressures on the was compartment structures. 022.10.3.8 For the conservative estimation of the differential pressures on the compartment walls at different elevations, a number of possible break locations and appropriate loss-coefficients were considered. The estimated peak differential pressures for various regions are presented in Table 022.10-23. The design pressure of the wall of the pressurizer compartment is based on the peak calculated cifferential pressures at various regions. Table 022.10-22 presents the differential pressures at various nodes due to a break at elevation 29'-0". Table 022.10-23 summarizes the peak differential p ressures on the walls at various elevations. 022.10.3.9 The most severe transient forces and moments resulting from the break at elevation 29'-0", acting on the pressurizer are presented in Figures 022.10-50 through 022.10-52C. The coordinate system used is shown in Figures 022.10-38 and 022.10-39D. The u2 angle 9 is measured counter-clockwise from the x-axis. The maximum forces (F ) and moments (M f

                                                 ) are as follows:

F = 72 kips  ; M = -1,856 kip-ft F* = 65 kips  ; M* = 2,230 kip-ft FY= -253 kips  ; MY= 0 z z Nt1 d/ll R6-21

NEP 1 & 2 Amendment N11 May 1978 022.10.3.10 The projected areas (areas on the pressurizer occupied by a particular node and projected on x y, y-z and z-x planes as described in Section 022.10.3.9) and moment arms used to cal-culate various components of forces and moments are presented in Table 022.10-24. 022.10.4 Presaurizer Skirt Cavity 022.10.4.1 A rupture in the surge line results in cavity pre surization and uplift force on the pressurizer. The cavity pressure transients following surge line rupture are presented in Section 022.10.4.7. 022.10.4.2 A double-ended rupture in the surge line at the nozzle was considered to be the most severe for the cavity structures and also ior the pressurizer supports. 022.10.4.3 The mass and energy releases following the double-ended rupture in surge line are provided in Table 022.10-25 022.10.4.4 The plan and section views of the pressurizer skirt cavity, including principal dimensions, are shown in Figure 022.10-53 and 022.10-53A. The nodalization used for the analysis is shown in Figure 022.10-55. 022.10.4.5 The net nodal free volumes are given in Table 022.10-26. The O vent areas, L/A ratios and loss-coefficients are presented in Table 022.10-27. 022.10.4.6 A nodalization sensitivity study was performed to conservatively predict the cavity pressure transients. Two nodalizations were considered and are illustrated in Figures 022.10-54 and 022.10-55. In the 5-node model, the volume underneath the pressurizer up to El. (-) 5'-11" was taken as the break node. In the 6-node model, the break node consisted of the volume up to El. O'-0" only. Any refinement of nodalization below El. (-) 5'-11" will not effect the pressure in the skirt cavity because a choked flow is established at the exit of the skirt cavity. The cavity pressure response for the two nodalizations are illustrated in Figure 022.10-56 and Figure 022.10-57. The peak pressures in two nodalizations are within 37, even though the break node in the 6-node model is about half of the break node volume in the 5-node model. Therefore, further division of the break node is not expected to yield cavity pressures significantly higher than those in the 6-node model. Nil e R6-22

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10-1 MASS AND ENERGY RELEASE RATES 2 144 in COLD LEG BREAK - REACTOR CAVITY COMPARTMENT l Ah2. Time (sec) Mass Rate (lb/sec) Enthalpy (Btu /lb) 0.00000 0.0000000E+0 561.32 0.00250 1.3586147E+4 561.32 0.00500 1.7940995E+4 561.34 0.00752 2.0648819E+4 561.34 0.01001 2.2913458E+4 561.12 0.01251 2.4062034E+4 560.79 0.01501 2.3856512E+4 560.12 0.01751 2.6598904E+4 560.59 0.02003 2.7096058E+4 560.15 0.02507 2.6171937E+4 559.06 0.03005 2.6676953E+4 558.72 0.04508 2.9015063E+4 558.75 0.06003 2.8188576E+4 557.96 0.07005 2.6934059E+4 557.39 0.07759 2.7520339E+4 557.66 0.08255 2.7153041E+4 557.46 0.08502 2.6724728E+4 557.27 0.08761 2.6197717E+4 557.06 0.09002 2.5681851E+4 556.86 0.10013 2.4419910E+4 556.43 0.10500 2.4365128E+4 556.47 0.12010 2.5466453E+4 557.00 0.12513 2.5567152E+4 557.03 0.12761 2.5523285E+4 557.00 0.14509 2.4165958E+4 556.44 0.15762 2.3909192E+4 556.39 0.16764 2.3386045E+4 556.22 0.17261 2.3337016E+4 556.23 0.19013 2.3871936E+4 556.51 0.21005 2.4480973E+4 556.71 0.22754 2.4059667E+4 556.50 0.25261 2.4353615E+4 556.65 0.28006 2.3438152E+4 556.28 0.31011 2.4303098E+4 556.65 0.32507 2.4117832E+4 556.53 0.34000 2.4048690E+4 556.50 0.35002 2.4103796E+4 556.53 0.37000 2.3971003E+4 556.47 0.39003 2.3926500E+4 556.45 0.42760 2.4173080E+4 556.54 0.47015 2.4007389E+4 556.45 0.50009 2.4280483E+4 556.57 0.60006 2.4159685E+4 556.51 0.70012 2.4273260E+4 556.56 0.82001 2.4318677E+4 556.58 0.87001 2.4345149E+4 556.59 0.98005 2,4379731E+4 556.61 2.00002 2.4006998E+4 557.16 an

NEP 1 & 2 Amendment N12 February 1979 O TABLE 022.10-2 NODAL VOLUMES - 49 NODE REACTOR CAVITY ANAT,YSIS COLD LEG BREAK NODE VOLUME (CUalC FEET) 1 5.600 2_ 30.920 3 14.170 4 7.090 5 14.170 o 7.090 7 7.090 6 30.920 Y 7.0VO 10 62.060 11 62.060 12 65.820 13 131.o40 14 252.000 15 127.880 16 65.620 17 65.870 18 65.820 19 35.910 20 28.730 21 35.910 22 43.100 73 35.910 24 172.400 25 43.100 26 35.910 27 28.730 28 6.900 29 14.490 30 20.6Y0 31 6.900 32 34.490 33 6.900 34 3180.100 35 40.580 36 40.580 37 40.580 38 40.580 39 81.160 40 243.480 41 81.160 42 4C.580 43 40.580 44 39.620 45 39.620 46 198.120 47 39.620 48 43058.600 49 2710000.000 Nil

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10-3 (Sheet 1 of 3) INTERN 0DAL CHARACTERISTICS - 49 NODE REACTOR CAVITY ANALYSIS No COLD LEC BREAK mt PATH FLOW AREA (SQ FT) L/A RATIO (1/FT) LOSS COEFFICIENT 1, 2 15.2000 0.2000 0.00d3 1, 3 15.5000 0.1590 0.0066 1, 5 15.5000 0.1590 0.0066 1, 8 15.2000 0.2000 0.0083 1,49 3.9200 1.5740 1.7840 2, 4 7.7300 0.3180 0.0066 2, 6 7.7300 0.3180 0.0066 2,10 15.2000 0.2000 0.0083 3, 4 3.4900 0.8730 0.0083 3, 7 3.4900 0.8730 0.0083 3,19 2.9900 0.2450 0.2670 3,26 2.9900 0.2450 0.2870 4,10 3.4900 0.8730 0.0063 4,19 2.9900 0.2450 0.2870 5, 6 3.4900 0.8730 0.0083 5, 9 3.4900 0.6730 0.0083 5,35 15.5000 0.0720 U.0030 6,10 3.4900 0.8730 0.0083 6,35 7.7300 0.1440 0.0030 7, 8 7.7300 0.3180 0.0066 7,16 3.4900 0.8730 0.0083 7,2e 2.9900 0.2450 0.2870 8, 9 7.7300 0.3180 0.0066 8,18 15.2000 0.2000 9.0083 9,18 3.4900 0.8730 0.0083 9,35 7.7300 0.1440 0.0030 10,11 22.2000 0.1d30 0.3080 10,19 5.9800 C.2820 0.2940 10,37 15.5000 0.2310 0.0096 10,49 1.9600 3.1400 1.7840 11,12 22.2000 0.1830 0.0110 11,19 2.9900 0.5640 0.2940 11,21 2.9900 0.5640 0.2940 11,37 15.5000 0.2310 0.0096 11,49 1.9600 3.1400 1.7840 12,13 22.2000 0.2750 0.2940 12,21 5.9800 0.2620 0.2940 12,39 15.5000 0.2730 0.0110 12,49 1.5800 3.1200 1.8140 13,14 22.2000 0.3660 0.3100 13,21 5.9800 0.2820 0.2940 13,24 5.9800 0.5610 0.3030 13,39 15.5000 0.2730 0.0110 13,40 15.5000 0.2730 0.0110 13,49 3.1700 1.5740 1.8140 14,15 22.2000 0.3660 0.3300 14,24 23.9300 0.1400 0.3030 14,40 61.8000 0.0660 0.0110 14,49 7.4600 0.7800 1.7910 us t

NEP 1 6 2 Amendment N12 February 1979 O TABLE 022.10-3 (Sheet 2 of 3) INTERN 0DAL CHARACTERISTICS - 49 NODE REACTOR CAVITY ANALYSIS COLD LEG BREAK Cl PATH FLOW AREA (SQ FT) L/A R A T IO(1/ F T) LOSS COEFFICIENT d ' '1 15,16 22.2000 0.2750 0.2940 15,23 5.9800 0.2320 0.2940 15,24 5.9800 0.5610 0.3030 15,40 15.5000 0.2730 0.0110 15,41 15.5000 0.2730 0.0110 15,49 3.5400 1.5740 1.8000 16,17 22.2000 0.1830 0.0110 16,23 5.9800 0.2d20 0.2940 16,41 15.5000 0.2730 0.0110 16,49 1.5800 3.1200 1.8140 17,18 22.2000 0.1830 0.2880 17,2 2.9900 0.5640 0.2940 17,26 2.9900 0.5c40 0.2940 17,42 15.5000 0.2310 0.0096 17,49 1.5800 3.1200 1.8140 18,26 5.9800 0.2620 0.2940 18,42 15.5000 0.2310 0.0096 18,49 1.5800 3.1400 1.8140 19,20 12.4360 0.1860 0.0169 19,21 3.9630 2.2900 0.0650 19,22 3.1090 0.7440 0.0169 19,26 3.9630 2.2900 0.0650 20,22 3.9630 2.2900 0.0650 20,27 3.9630 1.8320 0.0520 20,28 0.4125 7.7360 0.8450 20,31 0.4125 7.7380 0.8450 21,22 15.5450 0.1488 0.0169 21,24 3.9630 3.8d90 0.1130 22,24 3.9630 4.1220 0.1190 22,29 0.8250 7.6440 1.4970 22,31 0.4125 7.7360 0.'8450 23,24 3.9630 3.8690 0.1130 23,25 15.5450 0.1468 0.0169 23,26 3.9630 2.2900 0.0650 24,25 3.9630 4.1220 0.1190 24,29 1.2380 5.1580 1.6900 24,32 1.2380 5.1560 1.6900 25,26 3.1090 0 '440 0.0169 25,27 3.9630 10 0 0.0650 '5,32 0.8250 7.6440 1.4970

.5,33           0.4125                  7.73o0                 0.8450 26,27           12.4360                  0.1d60                 0.0169 27,28            0.4125                  7.7380                 0.8450 27,33            0.4125                  7.7360                 0.8450 28,30            0.8250                  7.5500                 1.3040 28,31            1.0390                  6.4000                 0.9370 28,33            1.0390                  6.4000                 U.9370 29,30            1.0390                 17.6000                 2.5780 29,31            1.0390                 11.2000                 1.6410 29,32            2.0760                  7.9900                 2.3440 Nil

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10-3 (Sheet 3 of 3) INTERN 0DAL CHARACTERISTICS - 49 NODE REACTOR CAVITY ANALYSIS COLD LEC BREAK wie Ni1 PATH FLOW AR E A(SQ FT) L/A RATIO (1/FT) LOSS COEFFICIENT 29,34 2.0625 3.0200 2.3040 30,31 0.8250 7.5500 1.30/.0 30,32 1.0390 17.6000 2.5780 30,33 0.8250 7.5500 1.3040 30,34 2.4750 1.2580 1.6520 52,33 1.0380 11.2000 1.6410 52,34 2.0625 3.0200 2.3040

$4,49            1o5.4000                  0.1028                2.0112 35,36             30.9200                  0.0420                0.0036 35,37              4.9900                   1.6280               0.0220 35,42              4.9900                  1.6260                0.0220 36,38               4.9900                  1.6280                0.0220 56 , 4 3           4.9700                   1.6280               0.0220 36,44             25.0600                  0.0530                0.0895 37,38             30.9200                  0.0420                0.0036 37,39               4.9900                  1.6280                0.0220 38,39              4.9900                   1.6280               0.0220 38,45              25.0600                  0.0530                0.0895 39,4U               9.9900                  1.6270                0.0440 59,46              25.0600                  0.0740                0.0914 40,41               9.9900                  1.6270                0.0440 40,4o              75.2000                  0.0250                0.0914 41,42               4.9900                  1.6280                0.0220 41,43               4.9900                  1.6280                0.0220 41,46              25.0600                  0.0740                0.0914 42,43              30.9200                  0.0420                0.0036 43,47              25.0600                  0.0530                0.0895 44,45               4.8200                  1.6860                0.0290 44,47               4.6200                  1.6860                0.0290 44,48              25.0600                  0.0330                1.0030 45,46               4.8200                  5.0580                0.0870 45,46              25.0600                  0.0330                1.0030 46,47               4.8200                  5.0560                0.0670 46,4F            125.3000                   0.0066                1.0030 47,48              25.0600                  0.0330                1.0030 48,49           1564.0000                   0.0086                1.0057 Nil

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10-4 O (Sheet 1 of 2) LOSS COEFFICIENTS CONSISTING OF MORE TilAN ONE COMPONENT N il Loss Coefficients apply at the flow areas listed in Tables 022.10-3, 6 30 l nsa Path K K K K K-total friction contraction expansion piping 1,49 1.784 .334 .450 1.000 - 3,19 .287 .010 .276 .001 - 3,26 .287 .010 .276 .001 - 4,19 .287 .010 .276 .001 - 7,26 .287 .010 .276 .001 - 10,11 .308 .011 - -

                                                                                          .297 10,19        .294                  .017                .276           .001               -

10,49 1.784 .334 .450 1.000 - 11,19 .294 .017 .276 .001 - 11,21 .294 .017 .276 .001 - 11,49 1.784 .334 .450 1.000 - 12,13 .294 .017 - -

                                                                                         .277 12,21        .294                 .017                .276           .001               -

12,49 1.814 .334 .450 1.000 - 13,14 .310 .033 - -

                                                                                         .277 13,21       .294                  .017                .276           .001               -

13,24 .303 .026 .276 .001 - 13,49 1.814 .334 .450 1.000 - 14,15 .330 .033 - -

                                                                                        .297 14,24       .303                  .026                .276           .001               -

14,49 l.791 .341 .450 1.000 - 15,16 .294 .017 - -

                                                                                        .277 15,23       .294                  .017                .276           .001               -

15,24 .303 .026 .276 .001 - 15,49 1.800 .350 .450 1.000 - 16,23 .294 .017 .276 .001 - 16,49 1.814 .334 .450 1.000 - 17,18 .288 .011 - -

                                                                                        .277 17,23       .294                  .017                .276           .001              -

17,26 .294 .017 .276 .001 - 17,49 1.814 .334 .450 1.000 - Nfl

NEP 1 6 2 Amendment N12 February 1979 TABLE 022.10-4 (Sheet 2 of 2) NH LOSS COEFFICIENTS CONSISTING OF MORE THAN ONE COMPONENT Not Path K g ,y K fg gg K K K gg o raction expansion 18,26 .294 .017 .276 .001 - 18,49 1.814 .334 .450 1.000 - 20,28 .845 .425 .420 - - 20,31 .845 .425 .420 - - 22,29 1.497 1.077 .420 - - 22,31 .845 .425 .420 - - 24,29 1.690 1.270 .420 - - 24,32 1.690 1.270 .420 - - 25,32 1.497 1.077 .420 - - 25,33 .845 .425 .420 - - 27,28 .845 .425 .420 - - 27,33 .845 .425 .420 - - 29,34 2.304 1.304 - 1.000 - 30,34 1.652 .652 - 1.000 - 32,34 2.304 1.304 - 1.000 - 34,49 2.0112 .0112 - 1.000 1.000 36,44 .0895 .0045 .085 - - 38,45 .0895 .0045 .085 - - 39,46 .0914 .0064 .085 - - 40,46 .0194 .0064 .085 - - 41,46 .0914 .0064 .085 - - 43,47 .0895 .0045 .085 - - 44,48 1.003 .003 - 1.000 - 45,48 1.003 .003 - 1.000 - 46,48 1.003 .003 - 1.000 - 47,48 1.003 .003 - 1.000 - 48,49 1.0057 .0057 - 1.000 - so

NEP 1 & 2 Amendment N12 February 1979 O TABLE 022.10-5 (Sheet 1 of 5) NODAL PROJECTED AREAS AND MOMENT ARMS - 49 NODES REACTOR CAVITY ANALYSIS COLD LEG BREAK mt THE COO RD INATE SYST E M IS R IG HT-H AN D CARTESIAN WITH THE POSITIVE X- AX I S C O-LIN E AR LITH THE 3 ROK E N LEG DIRECTED RADIALLY OUTWARD FROM THE V ES S E L AND THE POS IT IVE Z- AX IS DIRECTED VERTICALLY UPWARD THROUGH THE VE SSEL CENTERLINE NO CE 1 X-AREA = -4 .587 SQ FT Y-MOMENT ARF = 0. FT Z-MOMENT ARM = 0 FT Y-AREA = -0.000 50 FT X-MOMENT ARF = 0. FT Z-*0 PENT ARM = 8.284 FT Z- A RE A = 0. SQ FT X-MOMENT ARM = 0. FT Y-F0FE4T ARM: 0. FT 2 X-AGEA= - 6 .3 38 SQ FT Y-FOMENT ARM = 0. FT Z-F0FENT ARM: 2.440 FT Y- A RE A = -1 .923 50 FT X-MOMENT ARM = 0. FT Z-FOMENT ARM = 8.043 FT Z-ASEA = 0. SG FT X-MOMENT ADF= 0. FT Y-F0FENT ARM = 0 FT 3 X- A FE A = -3.C22 SQ FT Y-FOMENT ARF = 2.458 FT Z-FOMENT ARM = 0. FT Y-AREA = -0.000 SG FT X-MOMENT ARM = 2.458 FT Z-M0FENT ARM = 8.284 FT Z-AREA = 0. SG FT X-MOMENT ARV= C. FT Y-MOFENT ARM = 0. FT 4 X- A RE A = -1 .453 50 FT Y-FOME NT ARM = 2.453 FT Z-FOMENT ARM = 2.440 FT Y-AREA = -0.441 SG FT X-MOMENT ARM: 2.458 FT Z-MOMENT ARM = 8.043 FT Z- A RE A = 0. 50 FT X-MOMENT ARM C. FT Y-FOMENT ARM: O. FT 5 X- A R E A = - 3.022 SQ FT Y-FOMENT ARM = -2.458 FT Z-F0FENT ARM = 0. FT f- A RE A = -0.000 SQ FT X-MOMENT AkM= -2.458 FT Z-MOMENT ARMS 8.284 FT Z- A RE A = 0. 50 FT X-MOMENT ARM = C. FT Y-FOMENT ARM: 0. FT c X- A RE A = -1.453 50 FT Y-FOMENT ARM = -2.458 FT Z-F0 MENT ARM = 2.440 FT Y-AFEA= - 0 .4 41 SQ FT X-MOMENT ARM = -2.458 FT Z - M O P. E N T ARM = 8.043 FT Z- A GE A = 0. SQ FT X-MOMENT ARP= C. FT Y-MOFENT ARM = 0. FT 7 X-AREA = -1 .4 53 SQ FT Y-F0 MENT ARM = 2.458 FT Z-MOMENT ARM = -2.440 FT Y-AREA = 0 .441 SG FT X-MOMENT ARM: 2.458 FT Z-M0FENT ARM = 8.043 FT Z-AREA = 0. SQ FT X-F0 MENT ARM = 0. FT Y-F0 MENT ARM = 0. FT 8 X-AGEA= -6 .338 SQ F1 Y-POMENT ARM = C. FT Z-FOMENT ARM = -2.440 FT Y-AREA = 1 .923 SG FT X-MONE NT ARM = 0. FT Z-M0 MENT ARM = 8.043 FT Z-AGEA= 0. SG FT X-F0 MENT ARM = 0. FT Y-F0 PENT ARM = 0. FT 9 X-ASEA = - 1 .4 53 SQ FT Y-FOMENT ARM = -2.458 FT Z-#0FENT ARM = -2.440 FT Y- A RE A = 0 .441 SG FT X-MOMENT ARM: -2.458 FT Z-MOMENT ARM = 8.043 FT Z- A RE A= 0. SQ FT X ~0 MENT ARM: C. FT Y-P0 MENT ARM = 0. FT 10 X- A SE A= -12.402 SG FT Y-MOMENT ARM = 0. FT Z-FCMENT ARM = 4.602 FT Y-AREA = -8.286 SQ FT X-MOMENT ARM = 0. FT Z-MOMENT ARM: 6.888 FT Z-AEEA= 0. SG FT X-MOMENT ARM = 0. FT Y-POMENT ARM = 0. FT 11 X-AREA = -8 .286 SQ FT Y-POMENT ARM = 0. FT Z-FOMENT ARM = 6.888 FT Y- A RE A = -12.4 02 SQ FT X-MOMENT ARM = 0. FT Z-MOMENT ARM = 4.602 FT Z- A RE A = 0. SG FT X-MOMENT ARM = C. FT Y-P0 MEN T A RM= 0. FT Nil

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10- 5 (Sheet 2 of 5) NODAL PROJECTED LREAS AND MOMENT ARMS - 49 NODES REACTOR CAVITY ANALYSIS COLD LEG BREAK

                                           .                                                        Nt1 THE COCEDINATE SY ST E M IS R IG HT-H AN D C AR TE S I AN W IT H THE POSITIVE X- AXI S C O-L IN E AR WITH THE 3 ROK EN LEG DIRECTED RADIALLY OUTWARD FROM THE V ESS EL AND TH E POS IT IVE Z- AX IS DIRECTED VERTICALLY UPWARD THROUGH THE VE SSE L CENTERLINE NO CE 12    X- A RE A = -2.837 SG FT     Y-MOMENT ARM =     0.      FT   Z-F0FENT ARM =       8.125 FT Y- A RE A = -14.263 SQ FT    X-MOMENT ARM =     0.      FT   Z-M0 MENT ARM:       1.616 FT Z- A RE A=   0.        50 FT X-MOMENT ARM =     0.      FT   Y-FOMENT ARM:        O.      FT 13    X- A RE A = 10.917 SG FT     Y-F0 MENT ARM =    0.      FT   Z-F0FENT ARM:        7.209 FT Y-AREA = -26.355 SQ FT       X-FOMENT ARM:      C.      FT   Z-MOMENT ARM = -2.986 FT Z-AREA =     0.        SG FT X-MOMENT ARM:      0.      FT   Y-FOMENT ARM =       0.      FT 14    X-AREA = 53.750 50 FT        Y-FOMENT ARM =     0.      FT   Z-FOMENT ARM =       C.007 FT Y-AREA = - 0 .000 SQ FT      X-MOMENT ARM:      0.      FT   Z-MOMENT ARM = -5.972 FT Z- A RE A =   0.       50 FT X-MOMENT ARM =     0.      FT   Y-FOMENT ARM =       0.      FT 15    X- A RE A = 11.058 SQ FT     Y-FOMENT ARM =     C.      FT   Z-FOMENT ARM = -7.209 FT Y-AREA = 26.696 SG FT        X-MOFE NT ARM =    0.      FT   Z-MOMENT ARM = -2.986 FT Z-AREA =      0.       SQ FT X-MOMENT ARM =     0.      FT   Y-MOMENT ARM =       0.      FT 16    X-AREA = - 2 .837 50 FT      Y-FOMENT ARM =     0.      FT   Z - F 0f> = N T ARM = -8.125 FT Y-AREA = 14.263 SG FT        X-MOME NT ARM =    0.      FT   Z-MOFENT ARM =       1.616 FT Z-AREA =      0.       SQ FT X-M0 MENT ARM =    0.      FT   Y-F0FENT ARM = 0.            FT 17    X-AREA =    -8.080 SQ FT     Y-FOMENT ARM =     0.      FT   Z-MOMENT ARM = -6.888 FT Y-AREA =    12.092 SQ FT     X-F0FE NT ARM =    0.      FT   Z-MOMENT ARM =       4.602 FT Z-AREA =      0.       50 FT X-MOMENT ARM =     0.      FT   Y-FOMENT ARM =       0.      FT 18    X- A FE A = -12.092 SQ FT    Y-FOMENT ARM =     0.      FT   Z-FOMENT ARM = -4.602 FT Y- A RE A =   8.080 50 FT    X-M0 MENT ARM =    0.      FT   Z-MOMENT ARM =       6.888 FT Z-AREA =      0.       SQ FT X-FOMENT ARM =     0.      FT   Y-FOMENT ARM =       0.      FT 19    X-AREA = -16.103 SQ F1       Y-FOMENT ARM = -4.073 FT        Z-MOMENT ARM =       3.482 FT Y-AREA =    -8.607 SQ FT     X-MOVENT ARM = -4. 07 3 F T     Z-MOMENT ARM =       6.514 FT Z-AREA =     0 .586 SQ FT    X-MOMENT ARM = 11.961 FT        Y-FOMENT ARM: 22.378 FT 20    X- A RE A = -13.695 SG FT    Y-FOMENT ARM = -6.385 FT        Z-F0FENT ARM =       2.961 FT Y- A RE A = -5.673 SG FT     X-MOMENT 11M:    -6. 38 5 F T   Z-MOMENT ARM =       7.149 FT Z-AREA =     0.        50 FT X-FOMENT ARM =     0.      FT   Y-FOM EN T A RM=     0.      FT 21    X- A RE A = -1 .790 SQ FT    Y-FOMENT ARM = -4.073 FT        Z-F0FENT ARM =       7.351 FT Y- A R E A = -i d .171 SQ FT X-MOMENT ARM = -4.07 3 F T      Z-MOMENT ARM =       0.724 FT Z- A RE A=   0.586 SG FT     X-MOMENT ARM = 2 5.2 5 2 F T    Y-NOMENT ARM =       2.487 FT 22    X- A RE A = -4.193 SQ FT     Y-MOMENT ARM = - 6. 3 8 5 F T   Z-FOMENT ARM =       6.830 FT Y-AREA = -21.106 SQ FT       X-MOME NT ARM =  -6. 38 5 F T   Z-MOMENT ARM =       1.359 FT 2-AREA =     0.        SQ FT X-FOMENT ARM =     0.      FT   Y-MOMENT ARM =       0.      FT gg

NEP 1 & 2 Amendment N12 February 1979 O TABLE 022.10-5 (Sheet 3 of 5) NODAL PROJECTED AREAS AND MOMENT ARMS - 49 NODES REACTOR CAVITY ANALYSIS COLD LEG BREAK

                                                                                                    +1 THE CCCEDINATE SY ST E M IS R IG HT-H AN O C AR TE S I AN W IT H THE POSITIVE X- AXI S C O-L IN E AR KITH THE 3 ROK E N LEG DIR E CT E D RADIALLY OUTWARD FROM THE V ES S EL AND THE PO S IT ItE Z- A X IS DIRECTED VERTICALLi UPWARD THROUGH THE VESSEL CENTERLINE NODE 23   X- A RE A = -1.790 SQ FT      Y-M0 MENT ARM = -4.073 FT       Z-FONENT ARM = -7.351 FT Y-AREA =    18.171 SG FT      X-FOMENT ARM: -4.073 FT         Z-F0FENT ARM =       0.724 FT Z-AREA =     0.586 50 FT      X-MOMENT A7 M=- 2 5. 2 5 2 F T  Y MOMENT ARM =       2.487 FT 24   X- A RE A = 71.572 SG FT      Y-FOMENT ARM: -5.229 FT         Z-MOMENT ARM =       C.000 FT Y-AEEA'     -0.000 50 FT      X-F0FENT ARF = -5.229 FT        Z-MOMENT ARM = -3.205 FT Z-AEEAe      1 .407 SG FT     X-MOME(T ARM =     0.00C FT     Y-F0FENT ARM =-20.721 FT 25   X- A RE A   -4 .198 SQ FT     Y-F0 MENT ARM = -6.385 FT       Z-FOMENT ARM = -6.83C FT Y-AREA =    21.106 SG FT      X-PCMENT ARM = -6.385 FT        Z-MOMENT ARM =       1.359 FT Z- A GE A =  0.       50 FT   X-MOMENT ARM =     0        FT  Y-MOFENT ARM =       0.      FT 26   X-AREA = -16.103 SG FT        Y-F0FE NT ARF = -4.073 FT       Z-MOMENT ARMS -3.482 FT Y-AEEA=      8.607 50 FT      X-F0FE NT ARM: -4.073 FT        Z-F0FENT ARM:        6.514 FT Z- A RE A=   0.586 SG FT      X-M0 MENT ARM =-11.961 FT       Y-MOMENT ARM = 22.378 FT 27   X-AREA = -13.695 SQ FT        Y-FOMENT ARM = -6. 3 8 5 F T    Z-MOMF" r ARM = -2.961 FT Y-AFEA=      5.673 SG FT      X-F0FENT ARF = -6.38 5 FT       Z -F 0 5 t '  ARM =  7.149 FT Z-AREA =     0.       SQ FT   X-MOMENT ARM =     C.       FT  Y-FOP E: T ARM =     0.      FT 28   X- A RE A = -39.928 SQ FT     Y-F0 MENT ARM =-10.656 FT       Z-MOFENT ARM =       0.      FT Y-AFEA= -C .000 ;Q F1         x-PCME NT ARM =-10.656 FT       Z-FOMENT ARM:        7.737 FT Z- A EE A =  0.       SG FT   X-MOMENT ARM =     0.       FT  Y-P0FENT ARM =       0.      FT 29   X- A RE A = 96.394 SG FT      Y-FOME NT ARM =-13.7?* FT       Z-F0 MENT A"M-       3.869 FT Y- A FE A =-14 4. 263 SQ FT   X-FOMENT ARM =-13.771 FT        Z - F 6.1 C N . ARM = -2.585 FT Z- A FE A =  0.       50 FT   X-MOMENT ARM:      C.       FT  Y-F0FENT ARM = 0.            FT 30   X- A RE A = -96.394 SG FT     Y-MOMENT A R M=-16. 8 8 5 FT    Z-F0FENT ARF =       0.      FT Y- A SE A=  -0.000 SG FT      X-FOMENT ARM =-16.885 FT        Z-F0FENT ARM =       3.205 FT Z- A RE A=   0.       SG FT   X-MOME NT ARM =    C.       FT  Y-FOMENT ARM =       0.      FT 31   X- A FE A = -28.233 S0 FT     Y- FOME NT ARM =-1C.656 FT      Z-FOMENT ARM =       5.471 FT Y-AGEA= -28.233 SG FT         X-w0FE NT ARF =-10.656 FT       Z-MOFENT ARM =       5.471 FT Z-AFEA       O.       SG FT   X-MOMENT ARM =     0.       FT  Y-FOMENT ARM =       0.      FT 32   X- A RE A = 96.396 SG FT      Y-F0FE NT ARM =-13.771 FT       Z-F0FENT ARM: -3.869 FT Y-AFEA= 144.267 SQ FT         X-MOFENT A R F =-13. 7 71 FT    Z-F0FENT ARM = -2.585 FT Z-AEEA=      0.       50 FT   X-MOMENT ARM =     C.       FT  Y-MOMENT ARM =       0.      FT 33   X- A RE A = -28.233 SQ FT     Y-FOMENT ARM =-1C.656 FT        Z-FOMENT ARM: -5.471 FT Y-AGEA:     28.233 SG FT      X-F0FE NT ARF =-1C.656 FT       Z-F0FENT ARM = 5.471 FT Z-AREA =     0.       SG FT   X-MOMENT ARM =     C.       FT  Y-FOMENT ARM =       0.      FT wat

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10-5 (Sheet 4 of 5) NODAL PROJECTED AREAS AND MOMENT ARMS - 49 NODES REACTOR CAVITY ANALYSIS COLD LEG BREAK "" m1 THE COCRDINATE SYSTEM I S R IG HT-H AN D CARTESIAN WITH THE POSITIVE X-AXIS C O-LIN E AR WITH THE 3 ROK EN LEG DI RE CT E D RADIiLLY OUTWARD FROM THE V ESS EL AND THE POS IT IVE Z- AXIS DIRECTED VERTICALLY UPWARD THROUGH THE VESSEL CENTERLINE NO CE 34 X-AFEA= 0.000 50 FT Y-P0FENT ARM =-24.113 FT Z-MOFENT ARM = -C.000 FT Y- A EE A = 0.000 SQ FT X-MOMENT A R M=- 2 4.113 FT Z-FOMENT ARM = 8.375 FT Z- A RE A =~ 220.353 SQ FT X-MOMENT ARM = -0.00C FT Y-MOMENT ARM = -0.000 FT 35 X-AFEA= - 8 .484 SQ FT Y-MOMENT ARM = 3.573 FT Z-F0FENT ARM = 0. FT Y- A EE A = -0.000 SQ FT X-FOMENT ARM = 3.573 FT Z-MOFtNT ARM = 7.803 FT Z- A RE A = 0. SG FT X-MOMENT ARM = 0. FT Y-MOMEN T A RM = 0. FT 36 X- A RE A = -8.484 SQ FT Y-MCMENT ARMr 4.885 FT Z-FOMENT ARM = 0. FT Y- A GE A= - 0.000 SG FT Y-MOMENT ARM = 4.885 FT Z-FOMENT ARM = 7.803 FT Z- A RE A = 3.499 SQ FT X-MOMENT ARM = 0.00C FT Y-MOMENT A RM = 2 6.649 FT 37 X-AREA -5.999 50 FT Y-MOMENT ARM = 3.573 FT Z-FOMENT ARM: 5.518 FT Y- A RE A = -5.999 SQ FT X-FOMENT ARM = 3.573 FT Z-MOMENT ARM = 5.518 FT Z- A RE A = 0. SQ FT X-MOMENT ARM = 0. FT Y-MOVENT ARM = 0. FT 38 X-AREA = -5.999 SQ FT Y-MOMENT ARM: 4.88 5 FT Z-MOMENT ARM = 5.518 FT Y- A GE A: -5.999 SQ FT X-FOMENT ARM = 4.88 5 ri Z-MOFENT ARM = 5.518 FT Z- A RE A = 3.499 SG FT X-MOMENT ARM = 18.943 FT Y-MONENT ARM = 18.843 FT 39 X-AGEA= -0.000 SQ FT Y-F0 PENT ARM = 4.229 FT Z-FORENT ARM = 7.803 FT Y~ A FE A = -16.969 SG FT X-FOMENT ARM: 4.229 FT Z-MOFENT ARM = 0.000 FT Z- A RE A = 3.499 SQ FT X-MOMENT ARM = 26.649 FT Y-MOMENT ARM = 0.000 FT 40 X-AGEA: 40.966 SG FT Y-MCMENT ARM = 4.229 FT Z-F0FENT ARM 0.000 FT Y- # EE A = -0.C00 SQ FT X-F0 MENT ARM = 4.229 FT Z-MOMENT ARM = -3.232 FT Z-AREA = 10.498 SQ FT X-F0 MENT ARM: 0.000 FT Y -MO M E N T A R M =- 21. 44 5 FT 41 X-AGEA= 0.000 SQ FT Y-FOMENT A R M :- 4.229 FT Z-F0FENT ARM = -7.803 FT Y- A GE A = 16.969 SG FT X-FOMENT ARM = 4.229 FT Z-M0 PENT ARM = -C.000 FT Z-AREA = 3.499 50 FT X-MOMENT AR M =-2 6. 64 9 FT Y-MOMENT ARM = -0.000 FT 42 X-AGEA= -5.999 SG FT Y-FCMENT ARM: 3.573 FT Z-FOMENT ARM = -5.518 FT Y- A SE A = 5.999 SQ FT X-MOMENT ARM: 3.573 FT Z-MONENT ARM = 5.518 FT Z- A RE A = 0. 50 FT X-MOMENT ARM = 0. FT Y-MOMENT ARM = 0. FT 43 X-AGEA: -5 .999 SG FT Y-FOMENT ARF = 4.88 5 FT Z-F0FENT ARM = -5.518 FT Y- A FE A = 5.999 SQ FT X-F0 MENT ARM: 4.885 FT Z-M0FENT ARMu 5.518 FT Z-AFEA= 3 .499 SQ FT X-MOMENT A R M=- 18. 84 3 FT Y-F0 PENT ARM: 18.843 FT 44 "-AGE 4= -10.853 50 FT Y-MGMENT ARM: 6.333 FT Z-FOMENT ARM = 0. FT Y- A GE A = -0.000 50 FT X-MOMENT ARM: 6.333 FT Z-MOMENT ARM = 8.276 FT Z- A FE A = 0. SQ FT X-MOMENT ARM = 0. FT Y-MOMEN T A RM = 0. FT 4:1

NEP 1 6 2 Amendment N12 February 1979 O TABLE 022.10-5 (Sheet 5 of 5) NODAL PROJECTED AREAS AND MOMEilT ARMS - 49 NODES REACTOR CAVI'li ANALYSIS w it C( LD LEG BREAK u.s THE COCEDIhATE S Y ST E M IS RIGHT-HAND C ARTE SI AN W IT H THE POSITIVE X- AX I S CO -L IN E AR KITH THE 8ROKEN LEG DI R E CT E D RADIALLY OUTWARD FROM THE V ESS EL AND TH E PO S IT IVE Z- AXIS DIRECTED VERTICALLY UPWARD THROUGH THE VESSEL CENTERLINE NO DE 45 X-AREA = - 7.674 SQ FT Y-MOMENT ARM = 6.333 FT Z-MOMENT ARM = 5.852 FT Y- A RE A = - 7.674 SQ FT X-MOMENT ARM = 6.333 FT Z-MOM EN T A RM= 5.852 FT Z- A RE A = 0. SQ FT X-M0 MENT ARM = 0. FT Y-MOMENT ARM = 0. FT 46 X- A RE A = 26.202 SQ FT Y-MOMENT ARM 6.333 FT Z-MOMENT ARM = -C.000 FT Y- A RE A = -0.000 SQ FT X-POMENT ARM = 6.333 FT Z-MOMENT ARM: 3.428 FT Z- A RE A = 0. SQ FT X-MOMENT ARM: O. FT Y-MOM EN T A RM = 0. FT 47 X-AREA = - 7.674 SQ FT Y-MOMENT ARM = 6.333 FT Z-MOMENT ARM = -5.852 FT Y-AREA: 7.674 SG FT X-MOMENT ARM = 6.333 FT Z-M0 MENT ARM = 5.852 FT 2-AREA = 0. SG FT X-MOMENT ARM: 0. FT Y-MOMENT ARM = 0. FT 48 X- A RE A = 0.000 50 FT Y-MOMENT ARM = 7.123 F Z-MOMEN T A RM= -C.000 FT Y- A RE A = 0.000 SQ FT X-MOMENT ARM = 7.123 FT Z-MOMENT ARM = 8.958 FT Z- A RE A =-2 5 2.099 SQ FT X-MOMENT ARM = 0. 0 0 C FT Y-MOMENT ARM = 0.000 FT 49 X- A RE A = 0. SG FT Y-M0 MENT ARM = 0. FT Z-P0 MENT ARM = 0. FT Y - A RE A = 0 SQ FT X-MOMENT ARM = 0. FT Z-MOM EN T A RM = 0. FT Z- A RE A = 0. SG FT X-MOMENT ARM = 0. FT Y-MOMENT ARM = 0. FT Ntl O

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10-6 PEAK NODAL DIFFERENTIAL PRESSURES AND TIMES OF PEAKS COLD LEC BREAK - 49 NODE REACTOR CAVITY ANAL . 3IS Nd Peak Differential Node Pressure (psid) Time of Peak (sec) 1 135.1 .046 2 89.1 .050 3 108.1 .047 4 77.5 .052 5 91.9 .047 6 70.6 .050 7 77.4 .052 8 79.1 .050 9 70.6 .050 10 44.5 .059 11 33.8 .064 12 24.9 .089 13 20.5 .094 14 19.1 .094 15 20.6 .097 16 25.0 .086 17 34.2 .062

*S
 .                           44.8                       .059 19                           41.9                       .064 20                           40.7                       .065 21                           28.1                       .086 22                           28.7                       .086 23                           28.2                       .088 24                           21.0                       .094 25                           28.8                       .088 26                           42.0                       .062 27                           40.8                       .067 28                           22.8                       .098 29                           22.8                       .100 30                           22.8                       .100 31                           22.8                       .100 32                           22.8                       .100 33                           22.8                       .100 35                           58.8                       .050 36                           45.4                       .053 37                           33.6                       .062 38                           30.2                       .064 39                           20.3                       .089 40                           18.1                       .095 41                           20.3                       .089 42                            33.9                       .064 43                           30.4                       .064 44                           28.3                       .055 45                           22.0                       .036 46                           13.6                       .095                   l 47                           22.1                       .058               y y't

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10-7 O MASS AND ENERGY RELEASE RATE FULL D.E. HOT LEG BREAK - STEAM GENERATOR COMPARTMENT Time (sec) Mass Rate (lb/sec) Enthalpy (Btu /lb) 0.00000 1.0450000E+4 649.82 0.00250 9.1702623E+4 647.53 0.00502 8.4987827E+4 645.66 0.00751 7.5122240E+4 645.44 0.01002 7.5118821E+4 645.99 0.01502 7.7537193E+4 646.88 0.02001 7.8926657E+4 646.45 0.02501 8.8132282E+4 646.64 0.03003 8.1103000E+4 646.79 0.04002 8.2347995E+4 6 ':6.97 0.05002 8.2700645E+4 L'6.32 0.06003 8.4280315E+4 648.37 0.07002 8.5667429E+4 648.69 0.08001 8.8843083E+4 648.46 0.09002 9.0626674E+4 647.92 0.10008 9.1697001E+4 647.19 0.11010 9.1541335E+4 646.37 0.12002 8.7897019E+4 645.37 0.13016 8.5579263E+4 645.56 0.14013 8.4018877E+4 645.29 0.15014 8.2847574E+4 644.94 0.17519 8.1203618E+4 643.90 0.20002 8.0496818E+4 642.43 0.22502 7.9895429E+4 640.81 0.25022 7.8591574E+4 639.26 0.27520 7.7486381E+4 637.79 0.30018 7.5725683E+4 636.27 0.40024 7.4071956Et4 631.23 0.50024 7.2273965E+4 627.29 0.60028 7.0846250E+4 624.69 0.70037 6.9655953E+4 623.29 0.80016 6.8426399E+4 622.81 0.90014 6.7177304E+4 622.91 1.00009 6.5067983E+4 623.46 1.40030 6.1869308E+4 627.71 1.20022 6.3921631E+4 625.55 1.60014 5.9508198E+4 629.95 1.80083 5.5964962E+4 631.75 2.00032 5.4354119E+4 634.58 wo

NEP 1 5 2 Amendment N12 February 1979 TABLE 022.10-8 MASS AND ENERGY RELEASE RATES FULL D.E. COLD LEG BREAK - STEAM GENERATOR COMPARTMENT l

                                                                           ~,1 cime (sec)             Mass Rate (1b/sec)       Enthalpy (Btu /lb) 0.000                  1.045E4                    258.51 0.0025                 6.529E4                    553.64 0.0050                 6.905E4                    553.40 0.0075                 C.625E4                    553.03 0.01                   6.270E4                    552.76 0.015                  6.005E4                    553.05 0.02                   6.153E4                    553.27 0.025                  6.252E4                    553.37 0.03                   6.330E4                    553.51 0.04                   6.476E4                    553.81 0.05                   6.790E4                    554.71 0.06                   9.296E4                    555.49 0.07                  9,474E4                     555.30 0.08                  9.610E4                     555.35 0.09                  9.793E4                     555.47 0.10                  9.809E4                     555.50 0.11                  9.928E4                     555.49 0.12                  9.979E4                     555.53 0.13                  1.009E5                     555.62 0.14                  1.017ES                     555.70 0.15                  1.018E5                     555.75 0.175                  1.022E5                     555.96 0.20                   1.010E5                     555.86 0.25                   1.017E5                     555.95 0.30                   1.002E5                     555.91 0.35                   1.010E5                     556.00 0.4                    9.910E4                     555.86 0.45                   9.007E4                     555.98 0.5                    9.826E4                     556.01 0 55                   9.797E4                     556.15 Ntl

NEP 1 & 2 Amendment N12 February 1979 FABLE 022.10-9 NODAL VOLUMES - 19 NODE S.G. COMPARTMENT - HOT-LEG TJ0DE VOLUME (CUBIC FEET) 1 870.200 2 701.100 3 415.500 4 657.300 5 492.900 6 1666.300 7 516.800 8 696.000 9 1271.200 10 1274.300 11 501.800 12 1274.300 13 571.800 14 608.20C 15 392.500 16 204.7CO 17 277.200 18 9959.600 ~,s 19 2700000.000 Nil O

NEP 1 6 2 Amendment N11 May 1978 TABLE 022.10-10 NODAL VOLUMES - 19 NODE SG COMPARTMENT - COLD-LEG NODE VOLUME (CUBIC FEET) 1 685.800 2 533.600 3 830.000 4 723.400 5 477.500 6 516.800 7 696,,000 8 1271.200 9 1666.300 10 723.500 11 1158.500 12 723.500 13 1158.500 14 342.170 15 682.800 16 199.660 , 17 300.670 18 9959.600 19 2700000.000 un

NEP 1&2 Amendment N12 February 1979 TABLE 022.10-11 INTERN 0DAL CllARACTERISTICS - 19 NODE S.G. COMPARTMENT HOT-LEG PATH FLOW AREA (SQ FT) L/A R ATIO(1/ FT) LOSS COEFFICIENT 1, 2 '34.1000 0.0835 0.1530 1, 5 101.3000 0.0890 0.1970 1, 6 53.1000 0.2230 0.0200 1, 9 47.1000 0.411C 0.0700 1,10 63.8000 0.1370 0.0990 l 1,19 35.4000 0.0720 1.0042 "'t 2, 3 68.5000 0.1670 0.0870 2, 6 72.0000 0.1810 0.0300 , 2,10 17.8000 0.2500 0.4830 1 2,15 128.2000 0.0218 0.0034 wit 3, 4 52.1000 0.1400 0.0880 3, 7 45.1000 0.3210 0.0900 3,11 10.6000 0.3510 0.6280 l 3,18 68.1000 0.0590 0.0080 'a t 4, 5 J1.2000 0.1060 0.1900 4, p 56.8000 0.221C 0.005C 4,11 33.4000 C.2100 0.232C l 4,19 25.4000 0.1370 1.3660 *4 5, 9 50.0000 0.2350 0.1100 5,10 26.9000 0.2530 0.2,640 5,19 l 89.7000 0.0160 1.0042 wi4 6, 7 78.7000 0.1180 0.1890 6, 9 138.2000 0.0530 0.1560 6,18 142.7000 0.0350 0.0022 7, 8 90.3000 0.1240 0.1570 7,18 69.2000 0.0580 0.0160-8, 9 125.8000 0.1230 0.2090 8,19 32.7000 0.1140 1.3530 9,19 126.2000 0.0450 1.0042 10,11 48.3000 0.1290 0.3640 10,12 143.8000 0.0640 0.0033 10,18 113.8000 0.0980 0.0165 wit 10,19 108.0000 0.0980 1.0043 11,13 84.9800 0.1380 0.0280 I 11,78 59.5000 0.1660 0 0313 11,17 56.0000 0.1660 '. 2770 12,13 48.3000 0.1290 0.3640 12,14 111.0000 0.0570 0.1140 12,18 113.8000 0.0980 0.0165 was 12,19 75.4000 0.0980 1.0043 13,15 60.5000 0.1070 0.0230 l 13,18 59.5000 0.1660

  • 0.0313 13,19 31.5000 1660 1.3620 14,15 29.5300 0.3370 0.1700 14,16 34.7000 0.0550 0.3930 15,17 63.5000 0.0610 0.1080 16,17 8.7170 0.6480 o "640 16,19 69.0000 0.0300 1.0084 17,19 60.5000 0.0220_____.__ 1.0084 18,79 327.2000 0.0590 "'T 1.0590 Mil

NEP 1 6 2 Amendment N11 May 1978 TABLE 022.10-12 INTERN 0DAL CHARACTERISTICS - 19 NODE S G COMPARTMENT COLDLEG PATH FLOW AREA (SQ FT) L/A RATIO (1/FT) LOSS COEFFICIENT 1, 2 64.6000 0.1590 0.1200 1, 5 81.6000 0.1840 0.2360 1, 6 19.1000 0.6020 0.0950 1, 9 30.3000 0.3520 0.0850 1,10 4.9000 0.2390 1.1280 1,18 149.9000 0.0080 1.0000 2, 3 66.700; 0.1200 0.1350 2, 6 66.7000 0.5300 0.0030

 ?,   7          ?4.6000                   0.5750                0.0990 2,10              7.3400                  0.2900                0.9000 2,11              5.0600                  1.1960                0.3950 3, 4            59.4CCO                   0.1600                0.1280 3,.7            44.4000                   0.3330                0.1120 3, 8            28.1000                   0.4530                0.0210 3,11            41.1000         ,         0.1640                0.2650 3,19            70.?000                   0.?630                1.3160 4,  5          117.3000                   0.1070                0.2860 4,  8           66.9000                   0.2240                0.1220 4,  9           26.5000                   0.5450                0.1480 4,11            67.6000                   0.1680                0.0610 4,19            87.2000                   0.0600                1.0042 5,  9           60.8000                   0.2360                0.1410 5,10            24.6000                   0.3430                0.2100 5,18            43.6000                   0.0470                0.0034 6,  7           90.3000                   0.1240                0.1570 6,   9           78.7000                   0.1180                0.1890 6,18             69.2000                   0.0580                0.0160 7, 8            125.8000                   0.1230                0.2090 7,19            32.7000                   0.1140                1.3530 8, 9            138.2000                   0.0530                0.1560 8,19            126.2000                   0.0450                1.0042 9,18            142.7000                   0.0350                0.0022 10,11             72.0500                   0.0990                0.2000 10,12             80.0200                   0.1130                0.0200 10,18            173.3000                   0.0690                0.0500 11,13            128.0000                   0.0710                0.0110 11,19             92.1300                   0.0350                1.0500 12,13             72.0500                   0.0990                0.2000 12,14             49.9000                   0.1000                0.2150 12,18            173.3000                   0.0690                0.0500 13,15            121.6000                   0.0570                0.0290 13,19             92.1300                   0.0350                1.0500 14,15             52.5800                   0.2060                0.2570 14,16             13.6100                   0.0750                0.9460 15,17             47.5400                   0.0430                0.4830 16,17             31.3100                   0.3690                0.0950 16,19             42.5500                   0.0260                1.0070 17,19             92.0000                   0.0210                1.0047 18,19            327.2000                   0.0590                1.0590 ao

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10-13 O (Sheet 1 of 2) LOSS COEFFICIENTSx CONSISTING OF MORE THAN ONE COMPONENT l wid STEAM GENERATOR COMPARTMENT

     " ^

exnansion contraction friction total 1, 2 .145 .008 .153 1, 5 .181 .016 .197 1, 6 .02 .02 1, 9 .05 .02 .07 1, 10 .019 .07 .01 .099 l 1, 19 1.0 .004 1.004 Net 2, 3 .051 .036 .087 2, 6 .023 .007 .03 2, 10 .148 .319 .016 .483 l 2, 18 .003 .003 wit 3, 4 .06 .028 .088 3, 7 .04 .025 .025 .09 3, 11 .285 .312 .031 .628 l 3, 18 .008 .008 des 4, 5 .182 .007 .189 4, 8 .005 .005 4, 11 .031 .183 .018 .232 l 4, 19 1.0 .348 .018 1.366 wis 5, 9 .103 .007 .11 5, 10 .083 .167 .014 .264 l 5, 19 .004 1.004 Nit 6, 7 .186 .003 .189 6, 9 .156 .156 6, 18 .002 .002 7, 8 .07 .08 .007 .157 7, 18 .012 .012 8, 9 .077 .129 .003 .209 8, 19 1.0 .334 .019 1.353 9, 19 '1.0 .004 1.004 10, 11 .144 .206 .014 .364 l 10, 12 .008 .008 Ni1 10, 18 .0122 .004 .016 10, 19 1.0 .004 1.004 11, 13 .028 .028 l 11, 18 .031 .031 Nit 11, 19 1.0 .245 .031 1.27

  • Loss coefficients correspond to flow areas in Table 022.10-11 l wie "'i

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10-13 (Sheet 2 of 2) Flow Path K expansion contraction friction K , ,1 12, 13 .144 .206 .014 .364 12, 14 .097 .008 .114 12, 18 .012 .004 .016 wit 12, 19 1.0 .004 1.004 13, 15 .023 .023 13, 18 .031 .031 l y,, 13, 19 1.0 .331 .031 1.362 14, 15 -

              .0187           .139         .012     ,170 14, 16        .163            .212        .018      .393 15, 17        .037            .05         .021      .108 16, 17          313           ,239         .012     .564 16, 19       1.0                           .008    1.008            uit 17, 19       1.0                          .008     1.008             l o,e 18, 19       1.0                          .059     1.059 as s

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10-14 PEAK NODAL DIFFERENTIAL PRESSURES AND TIME OF PEAKS HOT LEG BREAK - 19 NODE S.G. COMPARTMENT wit NODE PEAK DIFFERENTIAL PRESSURE (psid) TDfE OF PEAK PRESSURE (sec) 1 79.7 0.007 2 26.3 0.015 3 15.3 0.121 4 15'.3 0.115 5 25.9 0.012 l 6 16.2 0.117 7 15.0 0.117 8 15.2 0.117 9 15.9 0.117 10 11.2 0.121 11 11.85 0.048 12 10.76 0.045 13 10.42 0.129 14 9.95 0.048 15 8.54 0.132 16 2.28 0.024 17 4.42 0.138 18 13.25 0.036 u,a ~,4 O

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10-15 PEAK NODAL DIFFERENTIAL PRESSURES AND TIME OF PEAKS COLD LEG BREAK -- 19 NODE S.C. COMPARTMENT mt Node Peak Differential Pressure (psid) Time of Peak Pressure (sec) 1 70.0 0.183 2 31.2 0.189 3 18.4 0.267 4 18.0 0.276 5 23.9 0.273 6 20.9 0.273 7 18.8 0.279 8 18.0 0.285 9 20.7 0.271 10 20.1 0.270 11 15.2 0.273 12 19.6 0.264 13 14.5 0.267 14 16.1 0.273 15 14.4 0.273 16 1.61 0.375 una 17 1.9 0.375 18 20.4 0.279 un

NEP 1 6 2 Amendment N12 February 1979 TABLE 022.10-16 O PEAK DIFFERENTIAL PRESSURES FOR VARIOUS REGIONS OF STEAM GENERATOR COMPARTMENT WALLS

                        +

Vertical Wall Peak Differential Pressure (psid) Envelope Pressure Region Se g=en t Hot-Leg Cold-Leg (psid) El(-)26'-0" A 16'.2 20.7 21.0 to B 16.2 20.7 21.0 El (-) 13 ' -1" C 15.9 18.0 21.0 D 15.2 18.8 21.0 E 15.0 20.9 21.0 F 11.0 20.4 21.0 El(-)13'-1" A 26.3 23.9 27.0 to B 79.7 18.0 80.0 El(-)1'-7" C 25.9 18.4 26.0 D 15.3 31.2 32.0 E 15.3 70.0 70.0 F 11.0 20.4 21.0 El(-)1'-7" A 11.2 20.1 21.0 to B 11.2 20.1 21.0 El 7'-5 " C 11.2 15.2 21.0 D 11.9 15.2 21.0 E 11.9 20.1 21.0 F 13.3 20.4 21.0 El 7'-5 " A 10.8 19.6 20.0 to B 10.8 19.6 20.0 El 16'-6" C 10.8 14.5 20.0 D 10.4 14.5 20.0 E 10.4 19.6 20.0 F 13.3 20.4 21.0 El 16'-6" A 10.0 16.1 17.0 to B 10.0 16.1 17.0 El 21'-11 3/4" C 10.0 14.4 17.0 D 8.5 14.4 17.0 E 8.5 16.1 17.0 F 13.3 20.4 21.0 El 21'-11 3/4" A 2.3 1.6 5.0 to B 2.3 1.9 5.0 El 25'-6" C 2.3 1.9 5.0 D 4.4 1.9 5.0 E 4.4 1.6 5.0 F 13.3 20.4 2 '. 0

  • See Figure 22.10-34
                                                                                         ~ ..

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10-17 NODAL PROJECTED AREAS AND MOMENT ARMS - 19 NODE STEAM CENERATOR ANALYSIS 1 x- AR E A = -37.360 50 FT Y-MOME NT ARM = 21.310 FT Z-MOMEN T ARM = -0.000 F T Y-AREA = 0.000 5Q FT x-POME NT ARM = 21.310 FT Z-M0 MENT ARM = 5.212 FT Z- AR E A = 24.748 50 FT x-P0 MENT ARM = 0.000 FT Y-MOMENT ARMS -4.377 FT l u,4 2 x-ARE4= -18.680 SQ FT Y- MOME NT ARM = 21.310 FT Z-MOMENT ARM- -4.514 FT Y- A R E A = 32. 3 5 4 .S Q FT x- P0ME NT ARMS 21.310 FT Z-MOMEN T ARM = 2.606 FT Z- AR E A = 24.748 50 FT x- P0 ME NT ARM = 3.790 FT Y-MOMENT ARMS - 2.18 8 F T l w i"L 3 x-AREA = 37.360 50 FT Y-MOMENT ARM = 21.310 FT Z-MOMENT ARMS -3.009 FT Y- A R E A = 37.360 $0 FT x-v0ME NT ARM = 21.310 FT Z-MOMENT ARM = -3.009 ri i Z-AREA = 37.122 50 FT x-P0 MENT ARMS 2.918 FT Y - M O P E N T' A R M = 2.918 F T l m,e 4 x-AREA = 37.360 $Q FT Y- M0ME NT ARM = 21.310 FT Z-MOMENT ARM = 3.009 FT Y- A R E A = - 37. 360 $0 FT x- MOME NT ARMS 21.310 FT Z-MOMENT ARMS -3.009 FT Z-AREA = 37.122 50 FT x- MOME NT ARMS -2.918 FT Y-MOMENT ARM = 2.918 FT l u , .t 5 x-ARE4= -18.680 50 FT Y-M0 MENT ARMS 21.310 FT Z-MOMEN T ARM = 4.513 F T Y- A R E A = - 32 .354 50 FT x-PONENT ARMS 21.310 FT Z-MOMENT ARM = 2.606 FT i 2- A R E A = 24.748 $Q FT x-POMENT ARM = -3.790 FT Y-MOMENT ARMS -2.188 FT I nil # 10 x- A R E A =-108. 82 3 S Q FT Y- MOME N T ARMS 28.938 FT Z-MOMENT ARM = 0. FT Y- A R E A = 0.000 50 FT x- PCME N T ARM = 28.938 FT Z-MOMENT ARMS -0.000 F T Z- A R E A = - 17. 35 6 50 FT x-POMENT ARN= -0.000 FT Y-M 0 ME N T A R M s 4.110 FT l m,r 11 x-AREA = 108. 82 3 $ Q FT Y- MOME N T ARMS 28.938 FT Z-MOMENT ARM = 0. FT Y- A R E A = -0.000 5Q FT I-POMENT AR Ms 28.938 FT Z-MOPENY ARM = - 0.000 F T Z-AREA = -17.356 50 FT x- POME NT ARM = 0.000 FT Y-MOMEN T ARM = -4.110 FT l us1 12 x-AREA =-108.823 50 FT Y- MOME NT ARMS 37.979 FT Z-MOMENT ARMS 0. FT Y- A R E A = 0.000 sQ FT x-POME NT ARM = 37.979 FT Z-MOMEN T ARM = -0.000 F T Z- A R E A = 0. S0 FT x-MOMENT ARMS 0 FT Y-MONENT ARM = 0. FT 13 x- A R E A = 108.82 3 5 o FT Y-M CME NT ARM = 37.979 FT Z-M0 MENT AR4= 0. FT Y-AREA = -0.000 s c FT x-P0 MENT AR M= 37.979 FT Z-MOMEN T ARM s -0.000 F T 2- A R E A = 0. 5 o FT x-MOME NT ARM = 0. FT Y-M0 PENT ARMS 0. FT 14 x- AR E A = -65.94 5 S Q FT Y-M0ME NT ARM = 45.239 FT Z-M0 MEN T ARMS 3. FT Y- A R E A = 0.000 sQ FT x-P0ME NT ARMS 45.239 FT Z-M0 PEN T ARM = -0.000 F T Z- AR E A = 0.- 50 FT x-P0ME NT ARM = 0. FT Y-MOMENT ARM = 0. FT 15 x-AREA = 65.945 50 FT Y-M0ME NT ARMS 45.239 FT Z-MOM EN T ARM = 0. FT Y-AREA = -0.000 s c FT x-MOMENT ARMS 45.239 FT Z-M0FENT ARMS - 0.000 F T Z-AREA = 0. SQ FT x- PO ME NT ARMS 0. FT Y-M0 FEN T ARMS 0. FT 16 x-AREA = - 42.379 $Q FT Y-MOME NT ARMS 49.739 FT Z-MOPENT ARMS 0. FT Y- A R E 4 = 0.000 $Q FT x-MOMENT AR Mu 49.739 FT Z-MOMENT ARM = -0.000 F T Z-AREA = 0. 50 FT x-POME NT ARMS 0. FT Y-MOMEN T ARM = 0. FT 17 x- AR E A = 42.379 5 o FT Y-MOMENT ARMS 49.739 FT Z-MOMENT ARM = 0. FT Y- A R E A = -0.000 50 FT x-M0 MENT ARM = 49.739 FT Z-MOMENT ARM = -0.000 F1 Z- A R E A = 0. 5C FT x-MOMENT ARM = 0 FT Y-M0 MENT ARM = 0. FT 19 x-AREA = 0.000 $Q FT Y-MOME NT ARMS 68.678 FT Z -M 0 M E N T ARM = -0.000 FT Y- A R E A = 0.000 sQ FT x-MOME NT ARM = 68.678 FT Z-MOMEN T ARM = 6.018 FT Z- A R E A =-113. 77 7 S Q FT x-MOME N T AR M= -0.000 FT Y-MOMENT ARM = -0.000 FT N se

NEP 1 6 2 Amendment N11 May 1978 O TABLE 022.10-18 MASS AND ENERGY RELEASE RATES FOLLOWING SPRAY LINE RUPTURE Time (sec) Mass Rate (lb/sec) Enthalpy (Btu /lb) 0.00000 0.0 611.71

  .00502                    5756.7                          611.71
  .01002                    5615.6                         611.65
  .02003                    6046.9                         607.30
  .03004                    6377.2                          604.57
  .04002                    6514.4                          603.09
  .05005                    6255.2                         603.74
  .06003                    6325.0                         602.99
  .07006                    6345.5                          602.60
  .08003                    6287.3                          602.63
  .09001                    6040.9                          603.77
  .10002                    6273.6                          602.47
  .11510                    6520.5                          601.18
  .20010                    6057.1                          603.29
  .30004                    5925.2                          604.01
  .34000                    5884.1                          604.24
  .35027                    5901.4                          604.12
  .37001                    5858.6                          604.35
  .38001                    5828.3                          604.53
  .40002                    5902.6                          604.07
  .41010                    5928.7                          603.90
  .43002                    5845.8                          604.38
  .45755                    5785.9                          604.73
  .47751                    5795.2                          604.65
  .51009                    5749.2                          604.88
  .55000                    5797.0                          604.52
  .65003                    5717.6                          604.86
  .70010                    5736.6                          604.64
  .81021                    5684.6                          604.78
  .85000                    5699.4                          604.60
  .90008                    5683.0                          604.62
  .94003                    5662.9                          604.68 1.00005                    5671.7                          604.51 2.00000                    5535.8                          604.06 uns O

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10-19 NODAL VOLUMES - 30 NODE PRESSURIZER COMPARTMENT SPRAY LINE BREAK N s7 N00E VOLUME (CUBIC FEET) 1 781.190 2 923.590 3 50.560 4 50.000 5 239.900 6 213.750 7 100.240 8 100.240 9 487.530 10 431.100 11 10.300 12 10.300 13 11.550 14 13.690 15 270.120 m2 16 116.890 17 695.400 18 576.420 19 672.000 20 591.690 21 1077.000 22 2700000.000 23 50.560 24 50.000 25 239.900 26 213.750 27 13.120 28 13.120 29 14.690 30 17.370 ai, Net

NEP 1 & 2 Amendment N12 February 1979 TABI.E 022.10-20 (Sheet 1 of 2) INTERN 0DAL CHARACTERISTICS - 30 NODE PRESSURIZER COMPARTMENT not PATH FLOW AREA (SQ FT) L/A RATIO (1/FT) LOSS COEFFICIENT 1, 2 141.1600 0.0489 0.0310 1,23 7.3200 0.6620 0.2010 1,24 7.3200 0.6620 0.2010 1,25 23.2800 0.1460 0.4520 1,26 18.8600 0.1460 0.4520 2,22 40.0000 0.0487 1.3820 3, 4 6.9600 0.1400 0.0100 3, 6 6.1800 0.1240 0.6360 3, 7 7.9800 1.1780 0.0620 3,23 7.9800 0.7880 0.0200 4, 5 6.7900 0.1240 0.6360 4, 3 7.9800 1.1780 4,24 0.0620_ 7.9800 0.7880 0.0200 5, 6 35.3500 0.1080 0.0100 5, 9 38.8000 0.2450 0.0160 5,25 38.8000 0.1620 0.0100-6,10 34.3000 0.2760 0.0160 6,26 34.3000 0.1830 0.0100 7, 8 13.5600 - 0.0700 0.0100 7,10 13.5600 0.0620 0.6360 7,11 8.4900 0.8700 0.0790 l 3, 9 13.5600 0.0620 0.6360 N'2 8,12 8.4900 0.8700 0.0790 l 7,10 71.2200 0.0540 0.0100 "'2 9,13 9.4270 0.2380 0.3720-~ 10,14 11.0400 0.2470 0.3720 11,12 0.9630 5.3100 0.1620 11,14 0.9630 4.6600 0.1620 11,27 5.2900 0.1920 0.3300 12,13 0.9630 5.0300 0.1620 12,28 5.2900 0.1920 0.3300 13,14 0.9630 4.3700 0.1620 13,29 6.2400 0.1720 0.2850 14,30 7.8500 0.1450 0.2320 15,16 10.1200 0.4450 0.4180 w,q 15,17 49.1000 0.1060 0.2020 15,21 10.0800 0.6330 0.4740-~ 15,27 8.4900 0.2450 0.3470 15,23 8.4900 0.2000 0.5240 16,13 15.6200 0.1780 0.3230 wit 16,29 9.4270 0.3870 0.0450 16,30 11.0400 0.3290 0.0450 17,18 36.6000 0.1460 0.4890 d'4 17,19 81.4600 0.1000 0.0270 17,21 15.6100 0.4340 0.4830 17,22 64.3400 0.0880 1.0020 18,20 73.1100 0.0960 0.0270 18,22 39.1900 0.1388 1.0020 19,20 36.6000 0.1460 0.4890 wo

NEP 1 & 2 Amendment N12 February 1979 9 TABLE 022.10-20 (Sheet 2 of 2) PATH FLOW AREA (SQ FT) L/A RATIO (1/FT) LOSS COEFFICIENT 19,21 15.6100 0.4340 0.4830 19,22 64.3400 0.0880 1.0020 20,22 39.1900 0.1388 1.0020 21,22 78.8400 0.0850 1.0020 23,24 6.9800 0.1400 0.0100 23,26 6.1800 0.1240 0.6360 24,25 6.7900 0.1240 0.6360 25,26 35.3500 0.1080 0.0100 27,28 1.2690 4.1800 0.1620 27,30 1.2690 3.6600 0.1620 28,29 1.2690 3.9500 0.1620 29,30 1.7690 3.4300 0.1620 wii wit

NEP 1 6 2 Amendment N12 February 1979 TABLE 022.10-21 O (Sheet 1 of 2) l LOSS COEFFICIENTS CONSISTING OF MORE THAN ONE COMPONENT d'4 PRESSURIZER COMPARTMENT l was Flowpath K t0t,7 K friction contraction expansion 1,23 .201 .033 .168 - 1,24 .201 .033 .168 - 1,25 .452 .012 .245 0.195 1,26 .452 .010 .245 0.193 2,22 1.382 .013 .369 1.00 3,6 .636 .064 .120 .452 4,5 .636 .064 .120 .452 7,10 .636 .064 .120 .452 8,9 .636 .064 .120 .452 9,13 .381 .us6 , .345 - 10,14 .381 .032 .349 - 11,14 .162 .094 -

                                                                   .068 11,15           .453           .031                 -
                                                                   .422 12,15           .453           .036                -
                                                                   .427 15,16          .418            .02              .272              .126 15,17          .202            .023                -
                                                                  .179 15,21          .474            .022             .302              .150 16,18          .823            .042                -
                                                                  .781 17,18          .489            .024             .181              .284 17,21          .483            .03              .327              .126 17,22         1.002            .002                -

1.00 18,22 1.002 .002 - 1.00 19,20 .489 .024 .181 .284 19,21 .483 .03 .327 .126 19,22 1.002 .002 - 1.00 20,22 1.002 .002 - 1.00 21,22 1.002 .002 - 1.00 23,26 .636 .064 -

                                                                 .572 24,25           .636            .064               -
                                                                 .572      j wir

NEP 1 & 2 Amendment N12 February 1979 TABLE 012.10-21 (Sheet 2 ,f 2) 9" total friction contraction expansion 11,27 .330 .019 .170 .141 12,28 .330 .019 .170 .141 13,29 .285 .019 .152 .114 14,30 .232 .019 .130 .083 1,2 .031 .017 -

                                          .014 N s'L

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10-2? O PEAK NODAL DIFFERENTIAL PRESSURE AND TIME OF PEAK PRESSURIZER COMPARTMENT _ l wis Node

  • Peak Differential Pressure (psid) Time of Peak (sec) __,

1 16.89 0.475 2 16.53 0.437 3 20.46 0.407 4 20.43 0.432 5 20.92 0.424 6 20.98 0.452 7 20 ^t 0.442 8 20.80 0.435 9 22.36 0.435 10 21.77 0.444 11 19.01 0.442 12 18.90 0.435 13 19.04 0.437 14 18.58 0.477 15 1.25 0.482 16 5.70 0.475 17 0.17 0.487 18 0.36 0.472 19 0.35 0.525 70 0.46 0.462 21 0.08 0.487 23 19.73 0.354 24 20.50 0.354 25 20.14 0.427 26 20.15 0.427 27 8.44 0.442 28 8.53 0.445 29 9.25 0.477 30 9.39 0.477

  • These nodes correspond to Figure 22.10- 42A .

ws eJ t t O

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10-23 MAXIMUM PEAK DIFFERENTIAL PRESSURES FOR VARIOUS REGIONS OF PRESSURIZER COMPARTMENT Wall Region Peak Differential Pressure (psid) From EL O'-0" to EL 16'-6" 0.46 From EL 16'-6" to EL 22'-0" 5.7 From EL 22'-0" to EL 23'-8" 9.39 Frcs EL 23'-8" to EL 25'-0" 19.04 From EL 25'-0" to 63'-0" 22.36 Na4

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10-24 (Sheet 1 of 3) NODAL PROJECTED AREAS AND MOMENT ARMS - 30 NODE PRESSURIZER ANALYSIS ms NO CE 1 X- A RE A = 0.000 SQ FT Y-MOMENT ARM = 5 3. 34 C FT Z-F0FENT ARM = -0.000 FT Y- A RE A = 0.000 SQ FT X-N0 MENT ARM = 5 3. 3 4 C F T Z-POMENT ARM = 4.166 FT Z- A RE A= -54.524 SG FT X-MOMENT ARM = 0.00C FT Y-FOMENT ARM: 0.000 FT 23 X- A RE A= -26.162 SG FT Y-FOMENT ARM = 46.930 FT Z-P0 MENT ARM = 2.083 FT Y- A RE A = -26.162 SQ FT X-MOMENT ARd= 4 6. 9 8 0 F T Z-MOMENT ARM = 2.083 FT Z- A RE A = 0. SQ FT X-MOMENT ANM= 0. FT Y-F0 PENT ARM = 0. FT 24 X- A RE A = 26.162 SQ FT Y-FOMENT ARM = 46.98C FT Z-MOMENT ARM = 2.083 FT Y-AREA = -26.162 50 FT X-MOMENT ARM = 46.98C FT Z-MOPENT ARM = -2.083 FT Z- A RE A = 0. SQ FT X-MOMENT iRM= 0. FT Y-MOMENT ARM = 0. FI 25 X- A RE A = 26.162 SQ FT Y-FOMENT ARM = 46.98C FT Z-MOMENT ARM = -2.083 FT Y-AREA = 26.162 SQ FT X-MOMENT ARM = 46.980 FT Z-MOMENT A. 9 M = -2.083 FT Z-AREA = 0. SG FT X-MOMENT ARM = 0. FT t-F0FENT ARM = 0. FT 26 X-AREA = -26.162 SQ FT Y-FOMENT ARM = 46.98C FT Z-M0 PENT ARM = -2.083 F '. Y-AHEA= 26.162 SG FT X-MOMENT ARM = 4 6.98 0 F T Z-MONENT ARM = 2.083 FT Z- A RE A = 0. SG FT X-MOMENT ARM = 0. FT Y-MOMENT ARM = 0. FT 3 X- A RE A = -26.162 SQ FT Y-POMENT ARM = 40.70C FT Z-P0 MENT ARM = 2.083 FT Y- A RE A = -26.162 SQ FT X-MOMENT ARM = 40.70C FT Z-MOMENT ARM = 2.083 FT Z- A RE A = 0. SQ FT X-FOMENT ARM = 0. FT Y-MOMENT ARM = 0. FT 4 X-AREA = 26.162 SG FT Y-MOMENT ARM = 40.700 FT Z-MONENT ARM = 2.083 FT Y-AREA = -26.162 SQ FT X-MOMENT ARM = 40.700 FT Z-F0 PENT ARM = -2.083 FT Z-AREA = 0. SQ FT X-MOMENT ARM = 0. FT Y-F0FENT ARM = 0. FT 5 X-AREA = 26.162 SQ FT Y-MOMENT ARM = 40.700 FT Z-MOMENT A RM = -2.083 FT Y- A RE A = 26.162 50 FT X-FOMENT ARM = 40.70C FT Z-MOMENT ARM = -2.083 FT Z-AREA = 0. SQ FT X-MOMENT ARM = 0. FT Y-MOMENT ARM = 0. FT 6 X-AREA = -26.162 SQ FT Y-MOMENT ARM = 40.700 FT Z-MOMENT ARM = -2.083 FT Y- A RE A= 26.162 50 FT X-FOMENT ARM = 40.700 FT Z-MOMENT ARM = 2.083 FT Z-AREA = 0. SG FT X-MOMENT ARM = 0. FT Y-M0FENT ARM = 0. FT 7 X-AREA = -52.325 SQ FT Y-MOMENT ARM = 31.280 FT Z-MOMENT ARM = 2.083 FT Y- A RE A = -5 2.325 SQ FT X-MOMENT ARM = 31.280 FT Z-MOMENT ARM = 2.083 FT Z-AREA = 0. SQ FT X-MOMENT ARM = 0. FT Y-MOFENT ARM = 0. FT 8 X-AREA = 52.325 SQ FT Y-FJMENT ARM = 31. 28 0 F T Z-MOMENT ARM = 2.083 FT Y-AREA = -52.325 SQ FT X-FOMENT ARM = 31.28C FT Z-MOMENT ARM. -2.083 FT Z-AREA = 0. SQ FT X-MOMENT ARM = 0 FT Y-MOMENT ARM = 0. FT wo

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10-24 NODE (Sheet 2 of 3) l w.s 9 x-AREA = 52.325 SQ FT Y-MO*EnT ARM = 31. 280 FT Z-MOMENT ARM = -2.063 FT Y-AREA = 52.325 SG FT X-MOMENT ARM = 31.280 FT Z-MOMENT ARM = -2.033 FT Z-AREA = 0. 50 FT X-MDMENT ARM = 0. FT Y-MOMENT ARM = 0. FT 10 X-AREA = -52.325 53 FT Y-MOMENT ARM = 31.230 FT Z '4 0 M E N T ARM = -2.083 FT Y-AREA = 52.325 SG FT X-MOMENT ARM = 31.230 FT Z-MOMENT ARM = 2.033 FT Z-AREA = 0. 53 FT X-MOMENT ARM = 0. FT Y-MOMENT ARM = 0. FT 11 X-AREA = -5.541 SQ FT Y-MOMENT ARM = 24.330 FT Z-MOMENT ARM = 2.083 FT Y-AREA = -5.541 SQ FT X-MOMENT ARM = 24.330 FT Z-MOMENT ARM = 2.033 FT Z-AREA = 0. SG FT X-MOMENT A R '4 = 0. FT Y-MOMENT ARM = 0. FT 12 x-AREA = 5. 5' 1 SQ FT Y-MOMENT ARM = 24.330 FT Z-MOMENT ARM = 2.033 FT Y-AREA = -5.5(1 SQ FT X-MOMENT ARM = 24.330 FT Z-AREA = Z-MOMENT ARM = -2.083 FT

0. SQ FT X-MOMENT ARM = 0. FT Y-MOMENT ARM = 0. FT 13 X-AREA = 5.541 SG FT Y-MOMENT ARM = 24.330 FT Z - M O M F. N T ARM = -2.083 FT Y-AREA = 5.541 SG FT X-MOMENT ARM = 24.330 FT Z-=0 MENT ARM = -2.033 FT Z-AREA = 0. SQ FT X-MOMENT ARM = 0. FT Y-MOMENT ARM = 0. FT 14 X-AREA = -5.541 SG FT Y-MOMENT ARM = 24.330 FT Z-MOMENT ARM. -2.083 FT Y-AREA = 5.541 SG FT X-MOMENT ARM = 24.330 FT Z-MOMENT ARM = 2.083 FT Z-AREA = 0. 50 FT X-MOMENT ARM = 0. FT Y-MOMENT ARM = 0. F7 Nel 15 X-AREA = -0.000 . FT Y-MOMENT ARM = 19.250 FT Z-MOMENT ARM = 0.000 FT Y-AREA = -45.826 Sw FT X-MOMENT ARM ='19.250 FT Z-MOMENT ARM = 0.- FT Z-AREA = 0. SQ FT X-MOMENT ARM = 0. FT Y-MOMENT ARM = 0. FT 16 X- A RE A = 0.000 SQ FT Y-MOMENT ARM = 19.250 FT Z-FOMENT ARM = -0.000 FT Y-ASEA = 45.826 SG FT X-P0 MENT ARM = 19. 2 5 C FT Z-MOMENT ARM = 0. FT Z-AEEA: P. SQ FT X-MOMENT ARM = 0. FT Y-MOVENT ARM = 0. FT 17 X- A EE A = 0.000 SQ FT Y-MOMENT ARM = 12.375 FT Z-MOFENT ARM = 0.000 FT Y- A SE A = -58.739 SQ F1 X-MOMENT ARM = 12.375 FT Z-F0 PENT ARM = 0. FT Z- A RE A = 0. SQ FT X-MOMENT ARMS 0. 'T Y-MOMENT ARM = 0. FT 1 X-AFEA= 0.000 SQ FT Y-P0 MENT ARM = 12.375 FT Z- M0M EN T ARM = -0.000 FT Y-AFEA= 68.739 SQ FT X-FOMENT ARM = 12.375 FT Z-FOMENT ARM = 0. FT Z- A RE A= 0. SQ FT X-MOMENT ARM = 0. FT Y-MOMENT A RM = 0. FT 19 X- A RE A = -0.000 SG FT Y-MCME NT ARM: 4.125 FT Z-M0 MENT ARM = 0.000 FT Y- A EE A = 68.739 S0 F1 X-F0FENT ARM = 4.125 FT Z-MOMENT ARM = 0. FT Z- A RE A = 0. S0 FT X-MOMENT ARM = 0. FT Y-MOMENT ARM = 0. FT 20 X-AREA = 0.000 SQ FT Y-MOMENT ARM = 4.125 FT Y- A RE A: 68.739 SG FT Z-MOMENT ARM = -C.000 FT X-FOMENT ARM = 4.125 FT Z-MOFENT ARM = 0. FT Z-AGEA= 0. 50 FT X-MOMENT ARM: O. FT Y-MOMENT ARM = 0. FT Nel

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10-24 (Sheet 3 of 3) 27 X-AREA = -6.957 SG FT Y-MOMENT ARM = 22.830 FT Z-MOMEf.T ARM = 2.083 FT Y-AREA = -6.957 SQ FT X-MOMENT AR*= 22.830 FT Z-M0 MENT ARM: 2.063 FT Z-AREA = 0. SQ FT X-MOMENT ARM = 0. FT Y-MOMENT ARM = 0. FT 28 X-AREA = 6.957 SQ FT Y-MOMENT ARM = 22.830 FT Z-MOMENT ARM = 2.083 FT Y-AREA = -6.957 SQ FT X-MOMENT ARM = 22.830 FT Z-MOMENT AR4= .2.083 FT Z-AREA = 0. SQ FT X-MOMENT ARM = 0. FT $-MOMENT ARM = 0. FT 20 X-AREA = 6.957 SQ FT Y-MOMENT ARM = 22.830 FT Z-MOMENT ARM = -2.033 FT Y-AREA = 6.957 SQ FT X-MGMENT ARM = 22.830 FT Z-MOMENT ARM = -2.083 FT Z-AREA = 0. SQ FT X-MOMENT A R t4 = 0. FT Y-MOMENT ARM = 0. FT 30 X-AREA = -6.957 SQ FT Y-MOMENT ARM = 22.830 FT Z *0 MENT ARM = -2.083 FT Y-AREA = 6.957 SQ FT X-MOMENT ARM = 22.830 FT Z-MOMENT ARMS 2.083 FT Z-AREA = 0. SQ FT X-MOMENT ARM = 0. FT Y-MOMENT ARM = 0. FT N u 'L O O

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10-25 MASS AND ENERGY RELEASE RATE SURGE LINE DOUBLE ENDED BREAK l

                                                               ~,,.

Time (sec) Mass Rate (lb/sec) Enthalpy (Btu /lb) 0.0 0.0 705.37

  .001              8.661E3                 705.37
  .01011             1.365E4                705.19
  .01501             1.468E4                705.07
  .02011             1.522E4                704.89
  .02511             1.544E4                704.68
  .03007            1.546E4                 704.43
  .03513             1.536E4                704.15
  .04012            1.519E4                 703.88
  .045              1.498E4                 703.64
  .05012            1.475E4                 703.44
 .05513             1.453E4                 703.3
 .06011             1.433E4                 703.24
 .0651              1.417E4                 703.24
 .07009             1.403E4                 703.29
 .07506             1.394E4                 703.37
 .08008             1.389E4                 703.46
 .08525             1.386E4                 703.54
 .09013             1.385E4                 703.6
 .0951              1.386E4                 703.63
 .10009             1.388E4                 703.63
 .15005             1.382E4    ,            703.04
 .20014             1.348E4                 701.91 wo

NEP 1 & 2 Amendment Nll May 1978 O TABLE 022.10-26 NODAL VOLUMES - 6 NODE PRESSURIZER SKIRT SURGE LINE Node Volume (Cubic Feet) 1 128.7 2 1262.8 3 181.1 4 121.6 5 2.70 x 106 6 166.0 0

NEP 1 & 2 Amendment N11 May 1978 TABLE 022.10-27 INTERN 0DAL CHARACTERISTICS - 6 NODE PRESSURIZER SKIRT SURGE LINE Path Flow Area (Sq. Ft.) L/A Ratio (1/Ft.) Loss Coefficient 1,2 21.75 .323 .42 1,6 22.86 .213 .129 2,3 13.93 .504 .466 2,4 12.17 .209 .987 2,5 193.70 .033 .528 3,5 13.93 .47 1.065 4,5 30.40 .263 1.0 AIEA 5,6 0.26 .20 2.77 W wil

NEP 1 & 2 Amendment N12 February 1979 O TABLE 022.10-28 MASS AND ENERGY RELEASE RATES 150 IN HOT LEG BREAK - REACTOR CAVITY COMPARTMENT TIME (sec) MASS RATE (1bm/sec) ENTilALPY (Bru/lbm) O. O. 650.26 0.00200 1.155E+4 650.04 0.00501 1.153E+4 649.54 0.00800 1.508E+4 649.76 0.01001 1.793E+4 650.25 0.01203 1.809E+4 649.94 0.01503 2.144EM 650.60 0.01701 2.132E44 650.22 0.02001 1. 930EM 649.24 0.02501 1.830E+4 648.78 0.03001 1.966E+4 649.65 0.04502 1.903E+4 648.56 0.06005 1,84 2E+4 648.24 0.07014 1.800E+4 648.07 0.07704 1.758E+4 647.94 0.08200 1. 739E+ 4 647.91 0.08504 1.723E+4 647.86 0.08701 1.70SE+4 647.81 0.09005 1.681E+4 647.74 0.10003 1.610E+4 647.58 0.10509 1.590E+4 647.55 0.12001 1.571E+4 647.50 0.12502 1.546E+4 647.40 0.13000 1.508E+4 647.27 0.14500 1.380E+4 646.96 0.15510 1.365E+4 646.98 0.16502 1.329E+4 646.92 0.17507 1.306E+4 646.91 0.19007 1.281E+4 646.91 0.21010 1.209E+4 646.77 0.23001 1.161E+4 646.71 0.25009 1.153E+4 646.69 0.28019 1.150E+4 646.75 0.31004 1.163EM 646.83 0.32007 1.158E+4 646.82 0.34017 1.155E+4 646.78 0.35013_ 1.155E+4 646.79 0.37015 1.155E+4 646.79 0.39012 1.15 2E44 646.75 0.42003 1.153E+4 646.80 0.47023 1.156E+4 646.78 0.50004 1.153E+4 646.75 0.60010 1.153E+4 646.75 0.70019 1.151E+4 646.77 0.82046 1.1495+4 646.75 0.67031 1.14SE+4 646.70 0.98033 1.147E+4 646.76 2.00006 1.132E+4 648.64 N I 'l

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10-29 NODAL VOLUMES - 49 NODE REACTOR CAVITY ANALYSIS HOT LFG BREM< NODE VOLUME (cu. ft.) 1 13.120 2 30.920 3 14.17E 4 7.090 5 14.170 6 7.0 90 7 7.0 90 8 30.920 9 7.0 90 10 65.820 11 65.820 12 62.060 13 124.120 14 259.520 15 127.880 16 62.06') 17 62.060 18 _ 62.0c0 19 35.910 20 28.730 21 35.910 22 43.100 23 35.910 24 172.400 25 43.100 26 35.010 27 28.730 28 6.900 29 34.490 C ~' 2 0. 6 90 31 6.,900 32 34.490 33 6.9CO 34 3180.700 35 40.580 36 40.580 37 40.580 38 40.580 39 81.160 40 243.480 41 81.1 60 42 40.520 43 40.580 44 39.620 45 39.620 46 198.120 47 39.620 48 43058.607-49 2710000.000 g

NEP , & 2 Amendment N12 February 1979 TABLE 022.10-30 (Sheet 1 of 3) INTERNCDAL CliARACTERISTICS - 49 NODE REACTOR CAVITY ANALYSIS Il0T LEt BREAK P ATH FLOW AR EA ( SQ FT ) L ,' A R ATI O(1/F T) LOSS COEFFICIENT 1, 2 15.2000 0.2000 0.0083 1, 3 15.5000 0.1593 0.0066 1, 5 15.5000 0.1590 0.0066 1, 8 15.2000 0.2000 0.0083 1 ,49 3.1600 1.5740 1.7840 2, 4 7.7300 0.31 80 0.0066 2, 6 7.7300 0.3180 0.0066 2,10 15.2000 0.2000 0.0083 3, 4 3.4900 0.8730 0.0083 3, 7 3.4900 0.8730 0.0083 3,19 2.9900 0.24 50 0.2870 3,26 2.9900 C.2450 0.2870 4,10 3.4900 0.8733

                                                                     ~

0.0083 4,19 2.9900 0.2450 0.2870 5, 6 3.4900 0.8730 0.0083 5, 9 3.4900 0.8730 5,35 0.0083

15. 5 00 0~ C.0720 0.0030 6,10 3.4900 0.8730 0.0083 6,35 7.7300 C.14 40 0.0030 7, 8 7.7300 0.31 80 0.0066 7,18 3.4900 0.8730 0.0083 7,26 2.9900 0.2450 0.2R7D 8, 9 7.7300 0.3180 0.0066 8,18 15.2000 0.2000 c.0083 9,18 3.4900 C.8730 0.0083 9,35 7.7300 ~~ 0.1440 0.0030 10 ,11 22.2000 0.1830 0.2880 10,19 5.9800 0.2820 0.2940 10 ,37 15.5000 0.2310 0.0096 10,4s 1.5800 3.1400 1.734u 11,12 22.2000 C.1830 0.0110 11,10 2.9900 C. 56 40 0.2040 11,21 2.9900 C.5640 0.294U 11 ,37 15.5000 0.2310 0.0096 11,49 1.5800 3.1403 1.7840 TG13 22.2000 0.2750 C.3140 12,21 5.9800 0.2820 0.2940 12,39 15.5000 0.2730 0.0110 12 ,49 1.9600 3.1200 1.8140 13 ,14 22.2000 0.3660 0.j300 13 ,21 5.9800 0.2820 0.2040 13,24 5.9800 C.5610 0.3030 13,30 15.5000 C. 27 33 0.0110 13,40 15.5000 0.2730 0.0110 13,49 3.9200 1.5740 1.8140 14,15 22.2000 C. 36 60 0.3100 14 ,26 23.9300 0.1400 0.3030 14,40 61.8000 0.0683 0.0110 14,49 6.7000 0.7803 1.7910 ll)11

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10-30 (Sheet 2 of 3) A AT H FLOW AREA (SQ FT) L/A RATIO (1/F T) LOSS COEFFICIENT 15,16 22.2000 0.2750 0.3140 15,23 5.9800 0.2820 0.2040 15,24 5.9800 0.5610 0.3030 15,40 15.5000 C.2730 0.0110 _15,41 11.5000 0.2730 0.0110 3.5400 15,49 1.5740 1.8000 16,17 22.2000 0.1830 0.0110 16,23 5.9800 0.2820 0.2940 16 ,41 15.5000 0.2730 0.0110 16,49 1.9600 3.1200 1.8140 17,18 22.2000 0.1830 0.3080 17,23 2.990d 0.5640 0.2940 17,26 2.9900 0.5640 0.2940 17,42 15.5000 0.2310 , 0.0096 17,40 1.9600 3.1200 1.5140 18,26 5.9800 0.2820 0.2940 18,42 15.5000 0.2310 0.0096 18,49 1.9600 3.1400 1.8140 19,20 12.4360 0.1860 0.0169 19,21 3.9630 2.2900 0.0650 19,22 3.1090 0.7440 0.0169 19,26 3.9630 2.2900 0.0650 20,22 1.9630 2.,2900 0.0650 20,27 3.9630 1.3320 0.0520 20,28 0.4125 7.7380 0.8450 20,31 0.4125 7.7380 0.8450 21 ,22 15.5450 C.14 88 0.0169 21 ,24 3.9630 3.8890 0.1130 22 ,24 3.9630 4.1220 0.1190 22,29 0.8250 7.6440 1.4970 22,31 0.4125 7.7380 0.8450 ~23,24 3.9630 3.8890 0.1130 23 ,25 15.5450 0.1482 0.0169 23,26 3.9630 2.2900 0.0650 24 ,25 3.9630 4.1220 0.1190 24,29 1.2380 5.1580 1.6900 24,32 1.2380 5.1580 1.6900 25,26 3.1090 0.7440 0.0169 25 ,27 3.9630 2.2900 0.0650 25,32 0.8250 7.6440 1.4970 25,33 0.4125 7. 73 80 0.8450 26,27 12.4360 C.18o0 0.0169 27,28 0.4125 7.7380 0.8450 27,33 0.4125 7.7380 L'. 84 5 0 28,30 0.8250 7.5500 .3040 28,31 1.0390 6.4003 0.9370 28,33 1.0390 6.4000 0.0370 u s1.

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10-30 (Sheet 3 of 3) P AT H FLOW AREA (SQ FT) L/A R A T10( 1/ F T) LOSS COEFFICTENT 29,30 1.0390 17.6000 2.5780 29,31 1.0300 11.2000 1.6410 29,32 2.0780 7.9900 2.3440 29 ,34 2.0625 3.0200 2.3040 30,31 0.8250 7.5500 1.3040 30 ,32 1.0390 17.6000 2.5780 30,33 0.8250 7.5500 1.3040 _30 ,34 2.4750 1.2580 1.6520 32,33 1.0380 1 1.20 0C 1.6410 32,34 2.0625 3.0200 2.3040 34,49 165.4000 0.1028 2.0112 35,36 30.9200 0.0420 0.0036 35,37 4.9900 1.6280 0.0220 35,42 4.9900 1.6280 0.0220 36,38 4.9900 1.62 80 0.0220 36 ,43 /. 9900 1.62 8') 0.0220 36 ,44 25.0600 C.0530 0.0895 37,38 30.9200 0.0420 0.0036 37,39 4.9900 1.6280 0.0220 38 ,39 4.9900 1.6280 0.0220 38,45 25.0600 0.0530 0.0895 39,40 9.9900 1.6270 0.0440 39 ,46 25.0600 0.0740 0. 091 4 40,41 9.9900 1.62 70 0.0440 40,46 75.2000 0.0250 0.0914 41 ,42 4.9900 1.62 80 0.0220 41 ,43 4.9900 1.6280" 0.0220 41 ,46 25.0600 0.0740 0.0914 42 ,43 30.9200 C. 04 20 0.0036 43,47 25.0600 0.0530 0.0895 44 ,45 4.8200 1.68 60 0.0290 44,47 4.8200 1.6860 0.0290 44,48 25.0600 0.0330 1.0030 45,46 4.8200 5.05 80 0.0870 45,48 25.0600 0.0330 1.0030 46,47 4.8200 5.0550 U.us/U 46,48 125.3000 C.0066 1.0030 47,48 25.0600 0.0330 1.0030 48,49 1564.0000 0.0056 1.UU37 U11 0

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10-31 LOSS COEFFICIENTS CONSISTING OF MORE THAN ONE COMPONENT Loss Coefficients apply at the flow areas list.:d in Table 22.10-30. Loss coefficient components identical to those in Table 22.10-4 are not repeated. A to ta _, friction pining 10,11 .288 .011 .277 12,13 .314 .017 .297 13,14 .330 .033 .297 14,15 .310 ,033 .277 15,16 .314 .017 .297 17,18 .308 .011 .297 Allt

NEP 1 & 2 Amendment N12 Ft ruary 1979 TABLE 022.10-32 O (Sheet 1 of 5) NODAL PROJECTED AREAS AND M0 MENT ARMS - 49 NODE REACTOR CAVITY ANALYSIS HOT LEG BREAK THE COORDINATE SYSTEM IS RIGHT-HAND CARTESIAN WITH THE POSITIVE Y-AXI! CO-LINEAR WITH THE BROKEN LEG DIRECTED RADIALLY OUTWARD FROM THE VESSEL AND THE POS IT IV E Z-AXIS DIRECTED VERTICALLY UPWARD THROUGH THE VESSEL CENTERLINE NODE 1 Y- A R E A= -3.862 SG FT X-MOM EN T A R M=- D. FT Z-MOMENT ARM = 0. FT X-AREA = -0.000 SQ FT Y-MOMENT ARM = 0. FT Z-MOMENT ARMS 8.284 FT Z-AREA = 0. 50 FT Y-MOMENT ARM = 0. rT X-MOMENT ARM = 0. FT 2 Y-AREA = -6.338 SQ FT X-MOMENT ARM = 0. FT Z-MOMENT ARM = 2.440 FT

- A R E A = -1.92.3 SQ FT Y-MOMENT ARM = a. FT Z-MOMENT ARMS 5.04.5 FT Z-AREA = 0. SG FT Y-MOMENT ARM = 0. FT X-MOMENT ARMS Q. FT 3 Y-AREA = -3.022 SG FT X-MOMENT ARM = 2.458 FT Z-HOMENT ARM. O. FT X-AREA = -0.000 SQ FT Y-MOMENT ARM = 2.458 FT Z-MOMENT ARMS 8.284 FT Z- A RE L4 0. SQ FT Y-MOMENT ARM = 0. FT X-MOMENT ARM = 0. FT 4 Y-AREA = -1.453 SG FT X-MOMENT ARM = 2.458 FT Z-MOMENT ARM = 2.440 FT X-AREA = -0.441 SQ FT Y-MOMENT ARM = 2.458 FT 2-MOMENT ARM = 8.043 FT Z-AREA = 0. SQ FT Y-MOMENT ARM = 0. FT X-MOMENT ARMS 0. FT 5 Y-AREA = -3.022 SQ FT X-MOVENT A R M= -2.4 5 8 FT Z-MOMENT ARM = 0. FT X-AREA = -0.000 50 FT. Y-MOMENT ARM = -2.458 FT Z-ff0~M EN T ARM = 5.254 FT Z-AREA = 0. SQ FT Y-MOME NT A R M= 0. FT X-MOMENT ARMS O. FT 6 Y-AREA = -1.453 SQ FT X-MOMENT ARM = -2.458 FT I-MOMENT ARM = 4.44U FT X- A RE A= -0.441 SQ FT Y-MOMENT ARM = -2.458 FT Z-MOMENT ARM = 8.043 FT Z-AREA = 0. SQ FT Y-MOMENT ARM = 0. FT X-MOMENT ARM = 0. FT 7 Y- A R E A = -1.453 SQ FT X-M0 MENT ARM = 2.458 FT Z-MOMENT ARM = -2.440 FT X- A R E A = 0.441 SQ FT Y-MOMENT ARM = 2.458 FT Z-MOMENT ARM = 8.043 FT Z-AREA = 0. SQ FT Y-MOMENT ARM = 0. FT X-MOMENT ARM = 0. FT 8 Y-AREA = -6.338 SG FT X-MOMENT ARM = 0. FT Z-MOMENT ARM = -2.440 FT X- A R E A = 1.923 SQ FT Y-MOMENT ARM = 0. FT Z-MGhENT ARMS 5.U43 FT Z-AREA = 0. SQ FT Y- M O M E N T ARH= 0. FT X-MOMENT ARM = 0. FT 9 Y-AREA = -1.453 50 FT X-MOMENT ARMS -2.455 FT Z-MOMENT ARM = -4.4*U FI X-AREA = 0.441 SQ FT Y-MOMENT ARM = -2.458 FT Z-MOMENT ARM. 8.043 FT Z-AREA = 0. SG FT Y-MOMENT ARM = 0. FT X-MOMENT ARM = 0. FT 10 Y-AREA = -12.119 SQ FT X-MOMENT ARM = 0. FT Z-MOMENT ARM = 4.602 FT X-AREA = -8.098 SQ FT Y-MOMENT ARM = 0. FT Z-MOMENT ARM = 6.888 FT ..

Z-A4;A= 0. SQ FT Y-MOMENT ARM = 0. FT X-{0 MENT ARM = U. Fi 11 Y-AREA = -8.098 SQ FT X-MOMENT ARM = 0. FT Z-MOMENT ARM = 6.888 FT X- A RE A= -12.119 SQ FT Y-M0 MENT ARM = 0. FT Z-MOMENT ARM = 4.604 FT Z-AREA = 0. SQ FT Y-MOMENT ARM = 0. FT X-MOMENT. ARM = 0. FT AM 2.

NEP 1 6 2 Amendment N12 February 1979 TABLE 022.10-32 (Sheet 2 of 5) THE COORDIN AT E SYSTEM' IS RIGHT-HAND CARTESIAN WITH THE POSITIVE Y-AXIS CO-LINEAR WITH THE BROKEN LEG DIRECTED RADIALLY 0UTWARD FROM THE VESSEL AND THE POSITIVE Z-AXIS DIRECTED VERTICALLY UPWARD THROUGH THE VE55EL CENTERLINE NODE

12. Y-AREA = -2.916 3.Q FT t-MGMENT ARM = 0.. FT 2-MOMENT ARn= 8.125 FT X-AREA = -14.661 SQ FT' Y-MO M E N T A R M= 0 '. FT Z-MOMENT ARM = 1.616.FT Z-AREA = 0. SQ FT Y-MOMENT ARMS 0. FT X-MOMENT ARM = U. er 13 Y-AREA = 11.221 SQ FT X-MOMENT ARM = 0. FT Z-MOMENT ARM = 7.209 FT X-AREA = -27.090.SQ FT Y-MOMENT ATM= De FT Z-MOMENT A RM = -4.Y56 FI Z-AREA = 0. SQ FT Y-MOMENT ARM = 0. FT X-MOMENT ARM = 0. FT 14 Y-AREA = 53.165 SQ FT X-MOMENT ARM = 0. FT Z-MOMENT ARM = U.UUU FT X-AREA = -0.000 SQ FT Y-MOMENT ARM = 0. FT Z-MOMENT ARM = -5.972 FT Z-AREA = 0. SQ FT Y-MOMENT ARM = 0. FT X-MOMENT ARM = 0. FT 15 Y- A R E A= 11.080 SG FT X-MOMENT ARM = 0. FT 2-M0 MENT ARM = -7.209 FT X-AREA = 26.750 S4 FT 'Y-MOMENT ARM = 0. FT 2-MOMENT ARM = -2.986 FT Z-AREA = 0. SQ FT Y-MONENT ARM = 0. FT X-MOMENT ARM = U. er 16 Y- A RE A= -2.916 SQ FT X-MOMENT ARM = 0. FT Z-MOMENT A R M = -8.12 5 FT X-AREA = 14.661 SQ FT Y-M O M E N T ARN= 0. FT Z-MDMENT ANM= 1.010 P1 Z- A RE A= 0.. SQ FT Y-MOMENT A R M= 0. FT X-MOMENT ARM = 0. FT 17 Y-AREA = -8.305 SQ FT X-MOMENT ARM = 0. FT Z-MOMENI AHM= -0.556 PI X-AREA = 12.429 SQ FT Y-MOMENT ARM = 0. FT Z-M O M E N T ARM = 4.602 FT Z-AREh= 0. 50 FT Y-MOMENT ARM = 0. FT X-MOMENT ARM = 0. FT 18 Y-AREA = -12.429 50 FT X-MOMENT ARMS D. FT 2-MOMENT ARM = -4.602 FT X-AREA = 8.305 SQ FT Y-MOMENT ARM = 0. FT 2-M0 MENT ARM = 6.888 FT Z-AREA = 0 SG FT Y-MOMUfT ATh= U. FI x-MumkNi AkM= u. ti 19 Y-AREA = -16 103 SQ FT X-MOMENT ARM = -4.073 FT Z-MOMENT ARM = 3.482 FT X- A R E A = -5 60/ SQ FT Y- FMMUT ATM= -4. U ( 3 eI 4-MOMtN3 AMM= 0.)1* ei Z- A RE A = 0.586 SQ FT Y-MOMENT A R M= 11.961 FT J-MOMENT ARM = 22.378 FT 70 Y-AREA = -13 695 SQ FT X-MOMENT ARM = -6.35) tI Z-MDMLN6 AMMu 4.y01 r4 X-AREA = -5 673 SQ FT Y-MOMENT ARM = -6.385 FT Z-MOMENT ARMS 7.149 FT Z-AREA = 0, SQ FT Y-MOME N T A R M= 0. FT X-MOMENT ARM = 0. FT 21 Y- A R E A = -1.790 SQ FT X-MGMENT ARM = -4.073 FT Z-MOMENT ARM = 7.3 51 FT X- A R E A= -18.171 SQ FT Y-MOM E N T A R M= -4.0 73 FT 2-MOMENT ARM = 0.724 FT Z-AREA = 0 566 SQ FT Y-MOMENT ARM = 43.4)d FI x-MDMtNI AdM= 4. d. 6 / ti 22 Y-AREA = -4.198 SQ FT X-MOMENT ARMS -6.385 FT Z-MOMENT ARM = 6.830 FT X-AREA = -21.106 SQ FT Y-HOMU N RM= -c.35) FT Z - M CTM E N 4 AHM= 1. .) 3 y iI 2-AREA = 0 .. SG FT Y-MOMENT ARM = 0. FT X-MOMENT ARM = 0. FT A>s

NEP 1 & 2 Amendment N12 February 1979 TABLE 022.10-32

                                       ' Sheet 3 of 5)

THE CO O RD IN AT E ' SYSTEM- IS' RIGHT-H AND CARTESIAN WITH THE POSITIVE Y-AXIS C O-L IN E AR WITH THE BROKEN LEG DIRECTED RADIALLY OUTWARD FROM THE VESSEL AND THE POSITIVE Z-AXIS DIRECTED VERTICALLY UPWARD THROUGH THE VE55EL CENTERLINE N006 23 Y-AREA = -1.790 SG FT X-MGMENT ARM = -4.07T FT Z-MOMENT ARMa -7.351 FT X-AREA = 18.17T SQ FT Y-MOM ENT A RM= -4.07 3' FT Z-MOMENT. ARM = 0.724 FT Z-AREA = 0.586 SQ FT Y-MOMENT ARM =-25.252 FT X-MOMENT ARMS 4.467 FF 24 Y-AREA = 71.572 SQ FT X-MOMENT ARM = -5.229 FT Z-MOMENT ARM = 0.000 FT

   -X-AREA =     -0.000 SQ FT     Y-MOM EN T A RMs -5.229 FT     Z-MOMENT ARM = -3.dUS FT Z-AREA =      1.407 33 FT     Y-MOMENT ARM =     0.000 FT    X-MOMENT ARMS-20.721 FT 25   Y-AREA =     -4.198 SQ FT     X-MOMENT ARMS -6.385 FT        Z-MOMENT ARM = -6.63U FT X-AREA =     21.106 SQ FT     Y-MOMENT ARM = -6.365 FT       l-MOMENT ARM =    1.359 FT Z-AREA =      0.      SQ FT   Y-MOMENT ARM =     0.       FT X-MOMENT ARM =    0.      FT 26   Y- A RE A= -16.103 SQ' FT     X-MOMENT ARM = -4.073 FT       Z-MOMENT ARh= -3.482 FT X-AREA =      B.607 SQ FT     Y-NOMENT ARM = -4.073 FT       Z-MOMENT ARKu 6.514 FT Z-AREA =      0.586 SQ FT     Y-MOMENT ARM =-ll.961 FT       X-MOMENT ARM = 44.3/5 FT 27   Y-AREA = -13.695 SQ FT        X-MOMENT A R M= -6.38 5 FT     Z-MOMENT ARM = -2.961 FT X-AREA =      5.673 SQ FT--~Y-MOMENT A R M= -6.33 5 FT       Z-MGMENT ' ARM 2  /.14Y FI Z- A R E A=   0.     'S Q FT  Y-MOMENT ARM =     0.       FT X-MOMENT ARMS     0. FT 28   Y- A RE A=  -39.928 SQ FT     X-MOMENT ARM =-10.656 FT       Z-MOMENT ARM:     U.      F4 X-AREA =     -0.000 SQ FT ~

Y-MOMENT ARM =-10.656 FT Z-MGMENT ARM = 7.737 F' Z-AREA = 0. So FT Y-MOMENT ARh= 0. FT X-MOMENT ARM = 0. Fr 29 Y- A RE A= 96.394 SQ FT X-MO M EN T A R M=-13.771 FT Z-MOMENT ARM = 3.809 FT X-AREA =-144.263'SQ FT Y-MOMENT ARM =-13.777 FT Z-MOMENT ARM = -2.585 FT Z- AR E A= 0. SQ FT Y-MOMENT ARM = 0. rT X-MOMENT ARMa U. FI 30 Y-AREA = -96.394 SQ FT X-MOMENT ARM =-16.885 FT Z-MOMENT ARM = 0. FT X- A R E A= -0.000 SQ FT Y-MOMENT ARM =-16.385 FT Z-MFMENT ARM: 3.du) eI Z-AREA = 0. 34 FT t-MOMENT ARM = 0. FT X-MOMENT ARM = 0. FT 31 Y-AREA = -28.233 SQ FT X-MOMENT ARMa-lU.663~II Z-MGMENT ANM= ).*(1 ei X-AREA = -28.233 SQ FT Y-MOMENT ARM =-10.656 FT Z-MOMENT ARM = 5.471 FT Z-AREA = 0. SQ FT Y-MOMENT ARM = 0. FT X-MOMENT ARM = 0. FT 32 Y-AREA = 96.396 SQ FT X-MOMENT A R M =-13.7 71 FT Z-MOMENT ARM = -3.869 FT X-AREA = 144.267 SQ FT Y-MOMENT ARM =-13.771 FT I-MOMENT ARM = -2.585 FT Z-AREA = 0. SQ FT Y-MOMENT ARM = 0. FT X-MOMENT ARM = U. ei 33 Y-AREA = -28.233 SQ FT X-MOMENT ARM =-10.656 FT Z-MOMENT ARM = -5.471 FT X-AREA = 28.233 So FT Y-M O MYWT IR M =-10. 6 5 6 FT ZIM0 KENT ARMS ).4/T FT Z-AREA = 0. SQ FT Y-MOMENT ARM = 0. FT X-MOMENT ARMS 0. FT Da.

NEP 1 & 2 NEW ENGIAND POWER CCEPA_NY l PRELIMINARY SAFETY ANALYSIS REPORT TABLE OF CONTENTS VOLUME 1 Chapter Title Page No. 1 INTRODUCTION AND GENERAL DESCRIPTION OF PLAhf 1.1 Introduction 1.1-1 1.2 General Plant Description 1.2-1 1.3 Comparison Table 1.3-1 1,4-1 1.4 Identification of Agents and Contractors 1.5 Requirements for Further Technical Information 1.5-1 1.6 Material Incorporated by Reference 1.6-1 2 SITE CHARACTERISTICS 2.1 Geography and Demography 2.1-1 2.2 Nearby Industrial, Transportation, and Military Facilities 2.2-1 2.3 Meteorology 2.3-1 2.4 Hydrologic Engineering 2.4-1 VOLUME 2 2 2.5 Geology and Seismology 2.5-1 l Appendices 2A Re'.its of Field and Laboratory Tests 2B Marine Geophysical Survey, New Shoreham Fault 2C Compendium of Changes From the Base Plant PSAR 2D Ings of Test Borings and Piezometers i

NEP 1 & 2 TABLE OF CONIDITS (cont'd) VOLUME 3 l Chapter Title Page No. Appendices 2E Plant-Site Test Pits, and Associated Field Density Tests and Laboratory Tests 2F Seismic Survey 2G Investigation of Ashway Fault 2H Investigation of Exposed Faults 2I Interpretation of Magnetic Anomalies over the Former Naval Air Base near Charlestown, R.I. 2J A reevaluation of the Intensity of the East Haddam, Connecticut Earthquake of May 16, 1791 2K Earthquakes Which Have Affected the Site Area With A Modified Mercalli Intensity of IV (MH) or Greater 2L Earthquake Intensity Attenuation 2M Report on Mechanical Properties of Rock Specimens VOLUME 4 l 3 DESIGN CRITERIA-STRUCTURES, COMPONENTS, EQUIPMENT AND SYSTENS 3.1 Conformance to AEC General Design Criteria 3.1-1 3.2 Classification of Structures, Components 3.2-1 3.3 Wind and Tornado Design Criteria 3.3-1 3.4 Water Level (Flood) Design 3.4-1 3.5 Missile Protection Criteria 3.5-1 3.6 Protection Against Dynamic Effects Associated with the Postulated Rupture of Piping 3.6-1 3.7 Seismic Design 3.7-1 3.8 Design of Category I Structures 3.8-1 3.9 Mechanical Systems and Components 3.9-1 3.10 Seismic Design of Category I Instrumentation and Electrical Equipment 3.10-1 11

D

                                                                 ~.~
                                                               -d
            $$                                                   3 88                                         *
            =z
            .m                                         ( .f  -

WR

                                                              <  en o

OA N 0lE a Fd 5 5 l 8 hd

                                                            .. g
                                                            'a
                                                                ==
                                                                "s o
                                                            -r S

f 4 5

                                                          +
                                                          ) >
                                                          , ,8 co ciz- co ocz- co cit- oc cit-    cc aa-      co os-   co d'         co ci    ac os 1.d -d I M AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY NEP 1&2                      TRANSIENT MOMENTS (My) ON REACTOR VESSEL HOT LEG BREAK Preliminary Safety Analysis Report FIG. 022.10-68                        NEP 1&2

NEP 1 & 2 Amendment N4 Augus t 1977 slave relay will not be overridden; however, the redundant devices in the redundant train would be operational and would perform the required safety function. Interlocking prevents the blocking of the output f rom more than one output relay in one protection train at a time. Also, interlocking between the outputs of the trains by means of a test auxiliary relay in each ESFAS (safeguards) test cabinet is provided to prevent continuity testing of the final actuated devices (which are blocked dering this test) in both trains simultaneously. Isolation between the redundant ESFAS test cabinets is furnished through the coil to contact isolation provided by the test auxiliary relay that leaves the cabinet and is run in a bundle to a terminal strip separate from wiring associated with the cabinet wiring. Therefore, the redundant device associated with the protection train not under tes t will be available in the event protective action is required. Thus, the independence of redundant protection systems in the NSSS ESFAS test cabinets of the redundant trains is p reserved. The Request for Additional Information refers to WCAP 7705 which describes on-the-line testing of the Engineered Safety Features Actuation System in a typical, as-designed Westinghouse PWR Plant. Westinghouse and the Staff agreed that it is not possible to adequately cover the subject of on-line testing in a topical report because such a report has generic application. The above response not only addresses the specific requests for seven items of additional information, but we believe it is sufficiently comp rehensive to address the additional matters which were questioned by the Staff in connection with WCAP 7705. R7-15

NEP 1 & 2 Amendment N12 February 1979 RAI 030.7 During our review of NEP 1, 2 we noted that for the RCP underfrequency and undervoltage trip inputs to the RTS the base plant applicant had not committed to meeting the criteria specified in BTP 26 for RTS inputs. At the time of the Seabrook review these trips were identified as " Anticipatory" and the branch position on trip inputs was not fully developed. Subsequently these trips were found to be required for safety and BTP 26 was developed. This request therefore falls into Category F of Mr. Rusche's letter of November 3, 1975 to Mr. J. E. Tribble of NEPCO and therefore is appropriate at the CP stage of licensing for NEP 1 and 2. The Reactor Coolant Pump bus underfrequency and undervoltage trip inputs to the RTS are not within the scope of supply of the NSSS contract; however, Branch Technical Position 26 (EICSB) states that all trip input to the RTS must be designed to meet all protection system criteria. Provide in the PSAR appropriate material describing how these trips will meet these criteria including descriptions of location, environmental and seismic qualification.

Response

The Reactor Coolant Pump Bus Underfrequency and Undervoltage Trip Inputs to tue Reactor Protection System will conform to the rr ,uirements of the IEEE Standard 279-1971. These trips will take input . rom the load side of the breakers for the 13.8 KV reactor coolant pump motors. One undervoltage and underf requency signal is taken from each reactor coolant pump breaker on bus 1 for input to the reactor trip system. Similarly, an undervoltage and underf requency signal is taken from each reactor coolant pump breaker on bus 2 for input to the reactor trip system. Thus, the reactor trip system receives one undervoltage and one underfrequency signal for each Channel. r/7 The sensors (potential transformers), and the associated underfrequency and undervoltage relays and timers corresponding to RCP 1 and 3 are located in the 4160 volt class lE switchgear bus E5; similarly for RCP 2 and 4, they are located in the 4160 volt class 1E switchgear bus E6. These sensors, relays and timers which provide input to the RPS, will be seismically and environmentally qualified as part of the Class IE switchgear qualification program (See Table 3.11-1, Sheet 5). All2. O R7- 16

NEP 1 & 2 Amendment N12 February 1979 F. Operation of the RSS related controls will be controlled thru key lock selector switches. Keys will be administratively controlled. G. RSS controls will be uniquely identified to permit ease of operation. H. The RSS design has been optimized to pe cit rapid and timely remote shutdown by the plant operating staf f. 1111e the design is based on the Maine Yankee System, improvements are provided based upon input from actual operating experience and other design refinements. Afg I. Typical Logic and Control diagrams for the Remote Safe Shutdown controls are presented in Figures 030.9-1 and 030.9-2. l All J. R7-20a

CESCRIPTION OF LOGIC SYMBOLS r ag c C 15 FRESENT IF A OR B 15 PRESENT B --+ D p F IS PRESEF T IF 0 AND E ARE PRESENT E - W IS PRESEb T 5 G IS NOT PRESENT C 0 DENOTES DIGITAL POINT IN COMPUTER UA DENOTES OlGITAL INPUT TO COMPUTER FOR ANNUNCIATION CN CRT CS-7414 -4 :OPEN  ? $$-7414: REMOTE  ? ENERGtIE SOLENotO VALVE FY-7414 TO CPEN VALVE. Vl85 CS -7414 -2 : OPEN  ?- 55-74l4: LOCAL  ? UA

                                                                $5-744 !N LOCAL POSN.

VALVE Vl85 : OPEN  ? AT LOCAL PANEL CP-iOS A AT REMOTE PANEL MCB-CF V ALVE VISS : CLOSED AT LOC AL PANEL CP-lOSA AT REMOTE PANEL MCB-CF REMOT

                                                        ' ' , '                           REMOTE       g V - 185                                         V-iS5                             g' I

OPEN CLOSE g CPEN CLOSE s f f 2 POSN, V AIP,TAINED nEYLOCK WITH nEY 2 POSN. MAINTAINED 2 POSN. MAINT AINEO REMOVABLE IN BOTH POSNS. CS-7414 -1 CS -7414 - 2 ss 14i4 AT REMOTE PANEL MCt3-CF AT LOCAL PANEL CP-IC8 A AT LCC AL PANE L C P-iC6 A AMENDMENT N12 FEBRUARY 1979 TYPICAL REMOTE SAFE SHUTDOWN NEW ENGLAND POWER COMPANY GlC OIA@AM NEP 1&2 (PRELIMINARY) Preliminary Safety Analysis Report FIG. 030.9-1 NEP 1&2

S_S CP-lOBA 1 i TYPICAL REMOTE _ __ _ EAFE SHUTDOWN ____ 7h4 MC,B-LOGIC DIAGRAM -2 CP-LOSA vF i 6 I i

                             !       i l       i I       I I       I I       I I       I M A.S.

l 1 l I N I I D 74l4 l IR-4 I

                             ;          ew R EGEN E R ATIV E TO PRESSURIZER ,               '----f 2       F.C.

4

  • RC-E-iO
                 '                      P' '                                HEAT EXCHANGER V 185                                      E-2 u

TO OTHER USERS NOT E S : 1-MCB = MAIN CONTROL BOARD LOCATED IN MAIN CONTPOL ROOM 2- CF = CF SEC. TION 3-CP-lOSAsSAFE SHUTDOWN PANEL FOR TRAIN A LOCATED IN THE SWITCHGEAR ROOM *A" 4-IR-4 = LOCAL INSTRUMENT RACK AMENDMENT N12 FEBRUARY 1979 NEW ENGLAND POWER COMPANY TYPICAL REMOTE SAFE SHUTDOWN NEP 1&2 CONTROL LOOP DIAGRAM Preliminars Safety Analysis Report FIG. 030 9-2 NEP 1&2

NEP 1 & 2 Amendment Nll May 1978

1) Installation, Inspection and Testing Control:

Mecsures shall be established as outlined below for control of in-sta11ation, inspection and testing activities to verify conformance to specified requirements. Recognized engineering practices will be utilized under supervision to assure that equipment shall be located, installed, assembled, connected and tested in accordance with the following, as applicable: (a) Latest approved for construction drawings (b) Manufacturers instructions (c) Installation specifications and procedures The above information will be supplemented by written procedures if required. The written procedures would include the requirements for testing and inspection and acceptance criteria. Manufacturers' service engineer will be called to assist and super-vise the installation as necessary. Prior to installation, equipment will be visually inspected to verify that it has not been degraded during handling and storage and for verification of specification requirements. Measurements and test readings will be taken as applicable to verify the conditions of the equipment. A record of these test readings will be prepared including the name(s) of the person (s) performing the test and the type of test equipment used. Inspections shall be conducted during installation to verify quality and correctness of installation and workmanship. Repairs and/or corrections will be made where necessary. For sig-nificant repairs, a record will be kept of each repair or correction performed, and the equipment will be retested to verify that the deficiency has been corrected. Such test reports will become a part of the repair record package. Tests performed during installation shall include the following as necessary:

1) Continuity tests and insulation reisistance tests as required.
2) Tests to verify correct nolarity and correct direction of rotation.
3) Component testing to assure operating integrity.

NIC R8-28a

NEP 1 & 2 Amendment N12 February 1979 Inspections shall be performed to verify that protective measures are taken to prevent damage as a result of adjacent construction activities. Surveillance points will be established for testing or for installa-tion functions at the engineers discretion. Records which show compliance with these requirements will be made l available to the Owner for storage along with other records. A> 8 2-

2) Preoperational and Initial Start up Testing After the equipment has been installed and inspected, preoperational testing will be performed to verify that the equipment will perform satisfactorily in its expected operating configurations or modes.

Testing could include demonstration of proper operation of initiating devices, correct logic and set points, proper operation of equipment protective devices that could shut down or defeat the operation or functioning of such devices. Testing will verify correct assignment of d-c power sources to each protective relay system and it will also ascertain that each relay system can perform its intended protective function independently of the other, and that failure of one system will not affect the proper operation of the other system. Written procedures will be prepared as required. The written procedures will include the requirements for testing and acceptance criteria. Where necessary, manufacturers' service engineer will be called to assist and supervise the testing. Records will be made available to the owner for storage along with other records.

3) Periodic On-site Testing In general, frequency of testing will be based on industry experience with similar equipment, and manufacturers recommendations.

Primary and backup protective relays will be inspected periodically to verify their calibration and settings. Functional testing of breakers will be performed individually or in selected groups as and when transmission system conditions permit their removal from service. No O R8-28b

NEP 1&2 Amendment N12 February 1979 RAI 040.43 (8.0) We nave completed our evaluation of the responses to our request for additional information regarding the susceptability of your design with regard to: (a) Sustained degraded voltage conditions at the off-site power source; and (b) Interaction of the off-site and on-site emergency power system. In this regard, we have developed the following staff positions for use in the review of plants in the CP and OL stage of review. These positions are essentially identical to the positions taken in the evaluation of operating plants in this regard. The positions are based on staff evaluation of the responses to generic information requests from licensees of operating plants and other related information, and on the applicable General Design Criteria, as discussed in subsequent paragraphs and in Issue No. 10 of NUREG-0138. We require that your design meet these positions. Describe your design and how it meets these positions; provide appropriate technical analyses to support any non-conformance. a7 POSITIONS (1) Position 1: Second Level of Under-or-Over Voltage Protection with a Time Delay. We require that a second level of voltage protection for the onsite power system be provided and that this second level of voltage protection shall satisfy the following criteria: a) The selection of voltage and time set points shall be determined from an analysis of the voltage requirements of the safety-related loads at all onsite sys tem dis tribution levels ; b) The voltage protection shall include coincidence logic to preclude spurious trips of the of fsite power source; c) The time delay selected shall be based on the following conditions: (1) The allowable time delay, including margin, shall not exceed the maximum time delay that is assumed in the FSAR accident analyses; (2) The time delay shall minimize the effect of short duration disturbances from reducing the availability of the offsite power source (s); and R8-29 ggg

NE2 1 & 2 Amendment N1? February 1979 (3) The allowable time duration of a degraded voltage condition at all distribution system levels shall not result in f ailure of safety sys tems or components; d) The voltage sensors shall automatically initiate the disconnection of of fsite power sources whenever the voltage set point and time delay limits have been exceeded; e) The voltage sensors shall be designed to satisfy the applicable requirements of IEEE Std. 279-1971, " Criteria for Protection Systems f or Nuclear Power Generating Stations"; and f) The Technical Specifications (see Enclosure) for model Technical Specifications) shall include limiting condition for operation, surveillance requirements, trip set points with mininum and maximum limits, and allowable values for the second-level voltage protection sensors and associated time delay devices. General Design Criterion 17 (GDC 17) " Electric Power Systems", of Appendix A, " General Design Criteria for Nuclear Power Plants," of 10 CFR Part 50 requires: (a) two physically independent circuits from the offsite transmission network (although one of these circuits may be a delayed access circuit, one circuit mus t be automatically available within a few seconds following a loss-of-coolant accident); (b) redundant onsite a.c. power supplies; and (c) redundant d.c. powe r supplies. GDC-17 f urthe r requires that the safety function of each a.c. system (assuming the other sys tem is not functioning) shall be to provide sufficient capacity and capability to assure that: (a) specified acceptable fuel design limits and the design conditions for the reactor coolant pressure boundary are not exceeded as a result of anticipated operational occurrences; and (b) the core is cooled and containment integrity and other vital functions are maintained during any of the postulated accidents. Exis ting undervoltage nonitors automatically perf orm the required function of switching from offsite power, the preferred power source, to the redundant onsite power sources when the monitored voltage degrades to a level of between 50 to 70 percent of the nominal rated tafety bus voltage. This is usually accomplished after a one-half to one second time delay. These undervoltage monitors are designed to f- ction on a complet. loss of the of fsite power source. The of fsite power system is the common source which normally supplies power to the redundant safeq -related buses. Any transient or sustained degradation of this common source will be reflected onto the onsite system's safety-related buses.

                                                                            ~it O

R8-29a

NEP 1 & 2 Amendment N12 February 1979 A sustained degradation of the of fsite power system's voltage could result in the loss of capability of the redundant safety loads, their control circuitry, and the associated electrical components required f or performing safety functions. The operating procedures and guidelines utilized by electric utilities and their interconnected cooperative organizations minimize the probability for the above conditions to occur. However, since degradation of an of fsite power sys tem that could lead to or cause the failure of redundant safety-related electrical equipment is unacceptable, we require the additional safety margins associated with implementation of the protective measures detailed above. (2) Position 2: Interaction of Onsite Power Sources with Load Shed Feature We require that the current sys tem designs automatically prevent load shedding of the emergency buses once the onsite sources are supplying power to all sequenced loads on the emergency buses. The design shall also include the capability of the load shedding feature to be automatically reinstated if ohe onsite source supply breakers are tripped. The automatic bypass and reinstatement feature shall be verified during the periodic testing identified in Position 3. In the event an adequate basis can be provided for retaining the load shed feature when loads are energized by the onsite power system, we will require that the setpoint value in the Technical Specifications, which is currently specified as "... equal to or greater than. . ." be amended to specify a value having maximum and minimum limits. The licensees' bases for the setpoints and limits selected must be documented. GDC 17 requires that provisions be included to minimize the probability of losing electric power from any of the remaining supplies as a result of or coincident with the loss of power generated by the nuclear power unit, the loss of power from the transmission network, or the loss of power from the onsite electric power supplies. The functional safety requirement of the " loss-of-of fsite power sensors" is to detect the loss of voltage on the offsite (pre fe rred) power system and to initiate the necessary actions required to t ransfer the safety-related buses to the onsite sys tem. The load shedding feature, which is required to function prior to connecting the onsite power sources to their respective buses can adversely interact with the onsite power sources if the load shedding feature is not bypassed af ter it has performed its required function. The load shed feature should also be reinstated to allow it to perform its function if the onsite sources are interrupted and are subsequently required to be reconnected to their respective buses. Ni1 P.8-29b

NEP 1 & 2 Amendment N12 February 1979 (3) Position 3: Onsite Power Source Testing We require that the Technical Specifications include a test requirement to demonstrate the full functional operability and independence of the onsite power sources at leas t once per 18 months during shutdown. The Technical Specifications shall include a requirement for tests: (1) simulating loss of offsite power; (2) simulating loss of of fsite power in conjunction with a safety feature actuation signal; and (11 simulating interruption and subsequent reconnection of onsite power sources to their respective buses. Proper operation shall be determined by: a) Verifying that on loss of offsite power the emergency buses have been de-energized and that the loads have been shed from the emergency buses in accordance with design requirements, b) Verifying that on loss of of fsite power the diesel generators start on the autostart signal, the emergency buses are energized with permanently connected loads, the auto-connected shutdown loads are energized through the load sequencer, and the system operates for five minutes while the generators are loaded with the shutdown loads. c) Verifying that on safety features actuation signal (without loss of of fsite power) the diesel generators start on the autostart signal and eperate on standby for five minutes. d) Verifying that on loss of offsite power in conjunction with a safety features actuation signal the diesel generators start on the autostart signal, the emergency buses are energized with permanently connected loads , the auto-connected emergency (accident) loads are energized through the load sequencer, and the system operates for five minutes while the generators are loaded with the emergency loads. e) Verifying that en interruption of the onsite s;urces the loads are shed from the emergency buses in accordance with design requirements and that subsequent loading of the onsite sources is through the load sequencer. GDC 17 requires that provisions be included to minimize the probability of losing electric power from any one of the remaining supplies as a result of or coincident with the loss of power generated by the nuclear power unit, the loss of power from the transmission network, or the loss of power from the onsite electric power supplies. The tes ting requirements identified in Position 3 will demonstrate the capability of the onsite power system to perform its required function. The tes ts will also identify undesirable interaction between the of fsite and onsite emergency power systems. as1 R8-29c

NEP 1 & 2 Amendment N12 February 1979 (4) Position 4: Optimization of Transformers Tap Settings The voltage levels at the safety-related buses should be optimized for the full load and minimum load conditions that are expected throughout the anticipated range of voltage variations of the offsite power source by appropriate adjus tment of the voltage tap settings of the intervening transformers. We require that the adequacy of the design in tnis regard be verified by actual measurement, and by correlation of measured values with analysis results. Provide a description of the method for making this verification; before initial reactor power operation, provide the documentation required to es tablish that this verification has been accomplished.

Response

Position 1 The applicant agrees to meet all provisions of the staff position. wit R8-29d

NEP 1 & 2 Amendment N12 February 1979 Though our design has been modified to comply with the staff position, we do not believe that there are adequate technical bases for the staff position. Compliance with this position results in degradation of overall nuclear plant safety and violates General Design Criterion 17. We feel there has been a gross over-reaction on the NRC's part to the problems and solutions concerning degraded off-site power. The staff positions reflect a total lack of sophistication in understanding interconnected electric systems. Various methods are employed as outlined below to verify the adequacy of du the plant and overall sys tem design. The susceptability of the electrical transmission grid system to sustained degraded grid voltage conditions is determined by steady state load flow studies. Based on such studies (refer to responses to RAI 040.12 and 040.13), the engineered safety feature buses and all other plant auxiliary electrical sys tems are designed to operate properly within the maximum determined steady state grid voltage variation of 3 percent. PSAR Section 8.2.2 describes the additional transmission facilities required to be operational before start-up of NEP 1 and 2 to assure that the conditions assumed in transient stability studies and steady state load flow s tudies are met. These facilities will be completed prior to reactor operation in accordance with the schedule of in-service dates as described in Sec tion 8. 2.1.1 of the PS AR. To provide on-going assurance that the transmission system voltage levels will be adequate, REMVEC (Rhode Island, Eas tern Massachuse tts , Vermont Energy Control), dispatchers run daily steady state load flow studies to verify that adequate generation and transmission f acilities are available to meet the required electrical load for that day and to maintain aystem voltage within the limits nientioned above in the event of an unexpected loss of a transmission line or generation source. These daily studies are also used to ensure that any necessary operating restrictions required to assure system stability are identified and observed. The ef fects on steady state load flows and transient stability of future planned changes in transmission system grid configuration and/or generation, are under continuous assessment by the planning branch of New England Pvver Pool. Complete studies of the ef fects of such changes on the system as a whole as well as at specific locations such as NEP 1 and 2 are made prior to the changes being accomplished. Met The NRC has placed emphasis on the effectiveness of a time delayed under/over-voltage relay to monitor, and react to various conditions in a very complex interconnected grid. The staff has failed to acknowledge that: (a) General Design Criteria 17 calls for provisions for minimizing the probability of losing electric power from the off-site source. Regulatory Guide 1.93 recognizes that the off-site source has a higher availability than the on-site source. In view of these two facts, it would therefore appear both irresponsible and short-sighted to automatically disconnect this high reliability source and connect one of lower reliability, when in fact, the system might be undergoing a transient under or overvoltage condition for a time period that barely exceeds the allowable time delay for automatic disconnection of the off-site source. Het R8-31

NEP 1 & 2 Amendment N12 February 1979 Only manual disconnection of the off-site source by the station operator would be appropriate to satisfy the requirements of GDC-17. This manual disconnection would take place after an evaluation of the situation and an assessment of the risks involved. (b) By automatically initiating disconnection of off-site power sources when the over or undervoltage setpoints have been reached, the main generator will aslo tr,ip due to loss of station auxiliaries. (c) Continued operation under degraded conditions may actually be advisable in the interests of overall plant safety. Disconnection of off-site power (and the main generator), when the unit is on-line, may result in total collapse ot the grid; with subsequent loss of off-site power to all other nuclear power stations that may be connected to the grid. Regulatory Guide 1.93 supports this philosophy by stating: "Under certain conditions, it may be safer to continue operation at full or reduced power for a limited time than to effect an immediate shutdown on the loss of some of the required electric power sources. Such decisions should be based on an evaluation that balances the risks associated with immediate shutdown against those associated with continued operation." Clearly, the premise here is that time should be allowed for continued operation to enhance the safety of the imminent shutdown. For example, the dispatcher could take system-wide actions to restore the system voltage, increase generation at other plants, or shed selected loads to ensure that the shutdown does not cause grid instability. Mil 9 R8-31a

NEP 1 & 2 Amendment N11 May 1978 (d) Under extreme operating circumstances the system load dispatcher may take action that results in high or low voltage. However, this action may be imperative to che reliability, continuous operation and survival of the power system. (e) In times of natural disaster or other emergeicy, the system load dispatcher may take action that results in high or low voltage. This action may be required to select and implement the best available combinations of generation and transmission to maintain system preservation. (f) Communication between the load dispatcher and the station operacor enables the operator to anticipate system disturbances, and take appropriate action to safeguard the nuclear facility. (g) Following a major disturbance, a power system experiences large fluctuations in frequency and voltage, and heavy loadings on the transmission system. Any additional abnormalities, such as loss of a generating unit, may lead to cascading and total collapse of the system. Position 2 uni Our design fully complies with this pocition. ano R8-32

NEP 1 & 2 Amendment NIO March 1978 In view of these factors, 10 minutes is a conservative and appropriate operator response time for this event during normal operation. The reactor coolant pump motor thrust bearing 3 are discussed in RESAR-3 Subsection 5.5.1. 3.4. It states that even "if (high temperature) indications are ignored, and the bearing proceeds to f ailure, the low melting point of Babbitt metal on the pad surfaces ensures that no sudden seizure of the bearing occurs. In this event the motor continues to drive, as it has sufficient reserve capacity to operate even under such conditions. Iloweve r , it demands excessive currents and at some stage is shutdown because of high current demand." Furthermore, even if seizure is postulated, it is highly unlikely that both reactor coolant pumps would fail by shaft seizure simultaneously. It is most likely that one would fail before the other causing a reactor trip. Failure of the second pump, if it did occur, would occur sometime af ter the trip. In mimmary, since (1) testing performed by Westinghouse has demonstrated that the reactor coolant pumps are capable of operation for a 10 minute component cooling water flow interruption of the oil coolers without damage to the pumps, and (2) because 10 minutes is a conservative and appropriate operator response time for this event during normal operation, and (3) because a reactor coolant pump motor bearing f ailure will not cause pump seizure and (4) because it is highly unlikely that even if seizure is postulated, both pumps would seize simultaneously, therefore the present design for NEP 1 and 2 is acceptable. 88 llowever, because of the current NRC requirement for extended operation; i.e., longer than 30 minutes, with no credit for operator action, we will either: ( 1) modify our design to ensure that: (a) a single active failure will not result in fuel damage or damage to the reactor coolant system pressure boundary, and (b) that excessive fuel damage or a breach of the reactor coolant pressure boundary will not occur as a result of a moderate energy leakage crack or an accident that is initiated from a failure in the component cooling water system piping concurrent with a single active failure; or Safety grade instrumentation consistent with the criteria for the protection system will be provided to initiate automatic protection of the plant, if required. (2) qualify the reactor coolant pump for extended operation by use of a program, including testing. This program is being developed by Westinghouse and will be formally submitted to the NRC Staff for review and acceptance. Assuming the pump requalification program is successful, instrumentation will be provided to detect the loss of component cooling water to the reactor coolant pumps and to alarm the operator in the control room. The qualification require-ments for the equipment within this detection and alarm system will be the same as those imposed on the plant safety grade instrumentation. NEP reserves the right to re-evaluate this commitment should the current staff position be altered. R9-13

NEP 1 6 2 Amendment N12 February 1979 RAl 010.7 (RSP) (9. 2. 5) Your response to our previous request 010.3 is not acceptable. We pointed out that your ultimate heat sink design does not satisfy the guidance provided in Regulatory Guide 1.27 in that your present design does not provide for a 30-day supply of water in the cooling tower basin. Regulatory Guide 1.27 states that a capacity of less than 30 days may be acceptable if it can be demonstrated that replenishment can be effected to assure the continuous capability of the sink to perform its safety f unct ions , taking into account the availability of replenishment equipment and limitations that may be imposed on " Freedom of Movement" following an accident. You have interpreted this to mean that portable pumps and fire hoses constitute an assured make up capability. We do not agree with your interpretation of Regulatory Guide 1.27. It is our position that you must modify your design to provide for a 30-day supply of water in the cooling tower basin or provide a permanently installed Quality Group C, seismic Category I makeup system to the ultimate heat sink. The makeup system should also be capable of operating without offsite power and in the event of a single failure.

Response

The base plant ultimate heat sink complex is being replicated for NEP 1 & 2. The design basis, system description and safety evaluation of the ultimate heat sink inlcuding compliance with Regulatory Guide 1.27 are presented below and in PSAR subsection 9.2.5. as The NEP ultimate heat sink cooling tower is designed to comply with Regulatory Guide 1,27, Rev. 1, March, 1974. A 30-day cooling water supply is assured through both the thermal performance capability of the cooling tower and an adequate make-up water storage capacity supplemented by other make-up water sources itemized below:

1. The Atlantic Ocean - This source is considered always available as the geology of the site as presented in Section 2.5 of the PSAR indicates stability during the postulated natural phenomena discussed in Regulatory Guide 1.27.
2. Ninigret Pond - This source is supplied by the Atlantic Ocean through a breachway. fhe normal volume of this pond is approximately 2,2 x 10 gal, which is many times the 7 to 30 day make-up volume (approx. 10,5 x 106 gal) required by the cooling towers. Thus, natural phenomena discussed in Regulatory Guide 1.27 as potential source of damage to the breachway would not be expected to diminish the water supply below that required.
3. The On-Site Fire Pond and On-Site Wells - The natural pond contains 5 x 106 gallons of water and the wells, used to supply make-up to the portable water demineralizer, have a normal capacity of 200 gpm. These sources are located near each other and the combination of these sources is suf ficient to supply the required make-up for the 7-30 day period. Bo th the pond and the well system are not designed to withstand the ef fects l of the design basis earthquakes. Ull ws o _

NEP 1&2 Amendment N12 February 1979 General fluid dynamic codes in the public domain such as RELAP IV, LIQT, WHAM, and similar programs capable of developing fluid dynamic forcing functions associated with a given initiating event are used. The water hammer forces are evaluated ')y using either a dynamic approach, where a complete force time history is developed, or an upper bound static approach where the dynamic nature of the problem is accounted for statically with an appropriate dynamic load factor. All system piping, with significant water hammer, are stress analyzed for loads caused by water hammer in accordance with applicable codes (i.e., ASME Boiler and Pressure Vessel Code, Section III, Division 1, and American National Standard Code for Pressure Piping ANSI B 31.1). (3) A test program to determine the characteristics of water hammer internal to the preheat steam generator and to identify the conditions under which it might occur is underway. The results of this test program will be provided in the FSAR. Also, see response to RAI 010.4. N6 RAI 121.3 (10.0) c. Present in the NEP 1 and 2 PSAR an evaluation of your design relative to the following criteria and provide justification for any areas of deviation from the recommendations: Regulatory Guide 1.99 " Effects of Residual Elements on Predicted Radiation Damage to Reactor Vessel Materials" A> L2. Regulatory Guide 1.100 " Seismic Qualification of Electrical Equipment for Nuclear Power Plants" Regulatory Guide 1.124 " Service Limits and Loading Combinations for Class 1 Linear Type Component Supports" Regulatory Guide 1.130 " Design Limits and Loading Combinations for Class 1 Plate and Shell Type Component Supports" Regulatory Guide 1.121 " Bases for Plugging Degrated PWR Steam Generator Tubes"

Response

NEP 1 & 2 Design is in conformance with the criteria described in RG 1.99, RC 1.100 and RG 1.121. Uto Regulatory Guide 1.130 - Design limits and Loading Combinations for Class 1 Plate-and-Shell Type Component Supports (Revision 0, For Comment, July 1977)

1. Westinghouse will use the latest revision of Code Case 1644 as approved by Regulatory Guide 1.85.

U l2. R10-3

NEP 1 & 2 Amendment N12 February 1979

2. Paragraph B.1 states that increases are not allowed for bolted O

connections for emergency and faulted conditions. The Westinghouse position is that it is reasonable to allow an increase in the limits for bolted connections for these conditions. Further justification concerning this position caa be found in Item 1 of the discussion on Regulatory Guide 1.124,

3. Paragraphs C.3, C.4(a), and C.b(a) state that the allowable buckling strength should be calculated using a design margin of 2 for flat plates and 3 for shells for normal, upset, and emergency conditions.

In the design of plate-type supports, member compressive axial loads shall be limited per the requirements of Paragraph C.3 for normal upset, and emergency conditions. There are no Class 2 shell-type suoports in the Westinghouse NSSS.

4. In Paragraph C. 7, the inclusion of the upset plant condition in his load combination is inappropriate. The upset plant conditions are properly considered in paragraph C.4.
3. Paragraph C.7(a) references the criterion presented in F-1370(c),

which states "... loads should not exceed 0.67 times the critical ouckling strength of the support...". In the design of plate-type component supports, member compressive axial loads should be limited to 0.67 times the crit ical buckling strength. If, as a result of more detailed evaluation of the supports the member compressive axial loads can be shown to safely exceed 0.67 times the critical buckling strength for the faulted condition, verification of the support functional adequacy will be documented and submitted to the NRC for review. The member compressive axial loads will not exceed 0.67 times the critical buckling strength without NRC acceptance. The Westinghouse NSSS has no Class 1 shell-type supports.

6. The method described in paragraph C.7(b) of the Regulatory Guide is overly conservative and inconsistent with the stress limits presented in Appendix F. Westinghouse will use the provisions of F-1370(d) to determine service level D allowable loads for supports designed by the load rating method.
7. The criteria pertaining to the design limits and loading combinations used for other Class 1 component supports will be evaluated as the NEP 1 6 2 design progresses and will be discussed in the FSAR.

Nd O R10-4

NEP 1 & 2 Amendment N12 February 1979 Regulatory Guide 1.124 - Service Limits and Loading Combinations for Class 1 Linear Type Component Supports (January 1978, Itevision 1) Discussion

1. The Regulatory Guide states in paragraph B.l(b): " Allowable service limits for bolted connections are derived from tensile and shear r css limits and their non-linear interaction; they also change with the size of the bolt. For this reason, the increases permitted by NF-3231.1, XVII-2110(a), and F-1370(a) of Section 111 are not directly applicable to allowable shear stresses and allowable stresses for bolts and bolted connections", and in paragraph C.4: "This increase of level A or B service limits doer not apply to limits for bolted connections."

As noted above, the increase in bolt allowable stress under emergency and faulted conditions is not permitted. Westinghouse believes that the present ASME Code rules are adequate for bolted connections. This position is based on the following: It is recognized af ter extensive experimental work by several researchers that the interaction curve between the shear and tension stress in bolts is more closely represented by an ellipse and not a line. This has been clearly recognized by the ASNE. Code Case 1644-6 specifies stress limits for bolts and represents this tension / shear relationship as a non-linear interaction equation (incorporated into ASME III Appendix XVII via the Winter 77 Addenda) and has a built-in safety factor that ranges between 2 and 3 (depending on whether the bolt load is predominantly tension or shear) based on the actual strength of the bolt as uctermined by test (Ref:

    " Guide to Design Criteria of Bolted and Riveted Joints," Fisher and Struik, copyright 1974, John Wiley and Sons, Page 54).

Study of three interaction curves of allowable tension and shear stress oaaed on the ASME Code (cmergency condition allowables per XVII-2110 _ad faulted condition allowables per F-1370) and the ultimate tensile and shear strength of bolts (obtained f rom experimental work published by E. Chesson, J r. , N. L. Faustino. and W. H. Munse, "lligh Strength Bolts Subjected to Tension and Shear," Journa] of tne S tructural Division, Proceedings of the Amer;:an Society of Civil Engineers, October 1965, Pages 155-180) inc.icates that there is adequate safety margin between the emergency and faulted condition allowables and failure of the bolts. During their tests to determine the stcength and behavior characteristics of single high strength bolts subjected to various combinations of tension and shear (T-S), Chesson, et. al. used a total of 115 bolts to ASTM specification A325-61T and A354-Grade BC. wat R10-5

NEP 1 & 2 Amendment N12 February 1979 O The A325-61T, which is a medium carbon steel, had a yield point of 77,000 psi to 88,000 psi and ultimate strength of 105,000 psi to 120,000 psi, depending upon the bolt diameter. Tite A354-Grade BC, which is a heat treated carbon steel, had a yield point of 99,000 psi to 109,000 psi and ultimate strength from 115,000 psi to 125,000 psi, again depending upon the bolt diameter. Figure 3A-2 shows the interaction curves for T-S loads on SA325 bolts. Curve (1) represents the interaction relation (ellipse) permitted by Code Case 1644 (ASME III Appendix XVII Winter 77 Addenda) for service levels A, B and design condition. Curve (2) represents the interaction curve which considers the Code Case 1644 allowables and the increase permitted by XVII-2110(2) for service level C. Curve (3) represents the interaction curve which considers the Code Case 1644 cllowables and the increase permitted by F-1370(a) for service level D. Curve (3) is the upper limit of the allowable stresses. The design stress limits represented by Curves 1, 2, and 3 for A325 bolts are then compared against the ultimate strength of the bolts represented by Curve 4, which is based on Chesson's test results. The area between Curve 3 and Curve 4 is the safety margin between the maximum bolt stress under service level D and ninimum ultimate strength of the bolt. Factor of safety against failure for A325 bolts for various T-S ratios is shown in Figures 3A-3. The safety factor varies between a uinimum of 1.36 and a maximum of 2.29 depending upon the value of T-S ra t io . This is based upon the ultimate strength of the bolts from Chesson's test and the allowables obtained from Code Case 1644 and the increase peruitted by F-1370(a) for service le ve l D . Figure 3A-3 deuoustrates that there exists an adequate factor of safety for the couplete range of T-S loadings. From this study it is observed that: (1) For the emergency condition, the safety factor (racio of ultiuate strength to allowable stress) varies between a minimum of 1.63 and a maximum of 2.73 depending upon the actual tensile stress / shear stress (T/S) ratio on the bolt. (2) For the faulted condition, the safety factor varies between a minlaum of 1.36 to a maximum of 2.29, again depending upon actual T/S ratio on the bolt. It is thus reasonable to allow an increase in these limits for the emergency and faulted conditions.

                                                                             ~ it 9

R10-6

HEP 1 & 2 Amendment N12 February 1979 Based on the above discussion, for the emergency and faulted conditions, Westinghouse will use allowable bolt stresses specified in Code Case 1644-6, as increased according to the provisions of XVII-2110(a) and F-1370(a), respectively.

2. The increased design limit for the stress range identified in NF-3231.1(a) shall be limited to the smaller of 2 S y or Su unless otherwise justified by shakedown analysis.
3. In paragraphs B.5 and C 8 of the Regulatory Guide, Westinghouse takes exception to the requirement that systems whose safety-related function occurs during emergency or faulted plant conditions must meet level B limits. The reduction of allowable stresses to no greater than level B limits (which in reality are design 34 wits since design, level A and level B limits are the same for linear supports) for support structures in those sys tems with safety related functions occurring during emergency or faulted plant conditions is overly conservative. The primary concern is that the sys tem remains capable of performing its safety function. For active components, this is accomplished through the operability program as discussed in Section 3.9.2.4. In the case of Class 1 piping, maintaining the pipe stresses within level D limits assures that piping geometry is mair.tained and that required flow is not impeded (this is further discussed in the response to ques tion 110.34) . The selection of more restrictive stress limits for component supports is not necessary to assure the functional capability of the system.
4. Paragraph C.4 of the Regulatory Guide states: "However, all increases (i.e., those allowed by NF-3231.1(a), XVII-2110(a), and F-1370(a))

should always be limited by XVII-2110(b) of Section III". Paragraph XVII-2110(b) specifies that member compressive axial loads shall be limited to 2/3 of critical buckling. In the design of component supports, member compressive axial loads shall be limited to 0.67 times the critical buckling strength. If, as a result of more detailed evaluation of the supports the member compressive axial loads can be shown to safely exceed 0.67 times the critical buckling strength for the faulted condition, verification of the support functional adequacy will be documented and submitted to the NRC for review. The member compressive axial loads will not exceed 0.67 times the critical buckling strength without NRC acceptance. In no case shall the compressive load exceed 0.9 times the critical buckling s trength.

5. Paragraph C.4 of the Regulatory Guide states that increases in Level A or B service limits do not apply to limits for bolted connections. The Westinghouse design of component supports restricts the use of bolting material to the following applications: wis RIO- 7

NEP 1 & 2 Amendment N12 February 1979

a. Westinghouse design uses bolting predominantly in tension. Over-sized holes are generally provided and a mechanism other than the bolts is provided to take any shear loads. Shear or shear and tension interaction occur only in isolated locations;
b. Westinghouse bolts are limited to the following material: A490, SA-354, SA-325, and SA-540.
c. The diameters used range between 1/2" and 3".

These limitations on bolt usage are standard in the Westinghouse supports. We will limit tensile loads in the bolts to 0.7 Su, but not to exceed in any case 0.9 Sy. The allowables are taken at temperature. In those few cases where bolts are used in shear or tension and shear, ASME Code Appendix XVII - 2460 Requirements will apply with an increase factor that is defined in Regulatory Guide 1.124 or in Appendix F-1370, whichever is more restrictive. This provides an adequate margin of safety for the Westinghouse design. If future revisions to the bolting criteria in ASME Section III modify the Westinghouse criteria listed above, we will review the criteria at the time.

6. Paragraph C.6(a) of the Regulatory Guide appears confusing as to what stress limits may be increased for the emergency condition. Westinghouse will interpret this paragraph as follows: "The stress limits of XVII-2000 of Section III and Regulatory Position 3 increased according to the provisions of XVII-2110(a) of Section III and Regulatory Position 4, should not be exceeded for component supports designed by the linear elastic analysis method."
7. The method described in Paragraph C.7(b) of the Regulatory Guide is overly conservative and inconsistent with the stress limits presented in Appendix F. Westinghouse will use the provisions of F-1370(o) to determine service level D allowable loads for supports designed by the load rating method. If future revisions to Appendix F modify this criteria, it will be reviewed further. If the load rating method is used, further details of its implementation will be provided at that time.
8. The criteria pertaining to the design limits and loading combination used for other Class 1 component supports will be evaluated as the NEP 1 & 2 uesign progresses and will be discussed in the FSAR.

AM 2. O R10-8

NEP 1 & 2 Amendmant N12 February 1979 LISTING OF PSAR PAGES, TABLES AND FIGURES This tabulation provides the complete listing of all NEP 1 & 2 2SAR pages, tables and figures, through Amendment N12. In this tabulation, an "F" preceding the number on the "Page No." column indicates a figure, while a "T" indicates a Table. The letter "B" in the

 " Color" column indicates that the page color is Blue, a "G" indicates green and "W" indicates white. A dash in both the " Amend. No." and "Date" columns denotes original issue. The numbers in the " Amend. No." column prefixed with and "N"   refer to an NEP 1 & 2 PSAR amendment, while an unprefired number indicates a Seabrook amendment number. The letter "D" in the " Amend. No."

column indicates a deleted page, table or figure. Amend. Amend. Page No. Color No. Date Page No. Color No. Date ALL VOLUMES 1,2-1 W -- -- 1.2-1A W -- -- i G -- - 1.2-2 W N8 12/77 11 G -- -- 1.2-3 W -- -- iii G -- -- 1,2-4 B -- -- iv C - -- 1.2-5 W NS 12/77 v G -- -- 1.2-5A W N8 12/77 vi G N12 2/79 1.2-5B W N8 12/77 vii G N12 2/79 1.2-6 B -- -- 1.2-7 B -- -- VOLUME I 1.2-8 W -- -- 1.2-9 W -- -- Chanter 1 1.2-10 B N8 12/77 1,2-10A W N8 12/77 1.0-1 G N8 12/77 1.2-11 W -- -- 1.0-2 G -- -- F1.2-1 W N12 2/79 1.0-3 B -- -- F1.2-2 W -- -- 1.0-4 G -- -- F1.2-3 W - -- 1.0-5 B -- -- F1.2-4 W -- -- 1.0-6 B -- -- F1.2-5 W -- -- 1.0-7 G N8 12/77 F1.2-6 W -- - F1.2-7 B -- -- 1.1-1 W -- -- F1.2-8 W - -- 1.1-2 W N12 2/79 F1.2-9 W -- -- 1.1-3 W - -- F1.2-10A B - -- 1.1-4 W -- -- F1.2-10B B -- -- 1.1-5 W N4 8/77 F1.2-11 G -- -- F1.1-1 B -- -- F1.2-12 W -- --

NEP 1 & 2 Amendment N12 February 1979 LISTING OF PSAR PAGES, TABLES AND FIGURES O Amend. Amend. Page No. Color No. Date Page No. Color No. Date F1.2-13 W -- - T1.3-1(1) W N8 12/77 T1.3-1(2) W N8 12/77 F1.2-14 B - - F1.2-15 G -- -- T1.3-1(3) W N11 5/78 F1.2-16 G -- -- F1.2-17 B - -- 1.4-1 W -- -- F1.2-18 B -- -- 1.4-2 W - -- F1.2-19 B - -- T1.4-1 W - -- F1.2-20 B -- -- F1.2-21 B -- - 1.5-1 B - -- Fl.2-22 B -- -- 1.5-2 B -- -- F1.2-23 B -- -- F1.2-23A B -- -- 1.6-1 G -- -- F1.2-24 B - -- F1.2-25 W - -- Chapter 2 F1.2-26 G - -- F1.2-27 B - -- 2.0-1 G N3 6/77 F1.2-28 B - -- 2.0-2 G N10 3/78 F1.2-29 W - -- 2.0-3 G -- -- F1.2-30 W - -- 2.0-4 G -- -- F1.2-31 B -- -- 2.0-5 G -- -- F1.2-32 G - -- 2.0-6 G N? 6/77 F).2-33 W N8 12/77 2.0-7 G -- -- F. 2-34 W N8 12/77 2.0-8 G N10 3/78 F1.2-35 W N8 12/77 2.0-9 G N5 9/77 F1.2-36 B D -- 2.0-9a G N5 9/77 2.0-10 G N1 1/77 F1.2-37 B D -- F1.2-38 B -- -- 2.0-11 G N5 9/77 F1.2-39 W -- -- 2.0-11a G N3 6/77 F1.2-40 B D -- 2.0-12 G -- -- F1.2-41 W -- -- 2.0-13 G -- -- F1.2-42 G -- -- 2.0-14 G N10 3/78 F1.2-43 W N8 12/77 2.0-15 G N1 1/77 F1.2-44 W N8 12/77 2.0-16 G N2 3/77 F1.2-45 B N8 12/77 2.0-17 G N3 6/77 F1.2-46 W N8 12/77 2.0-18 G N12 2/79 F1.2-47 G D -- F1.2-48 W -- -- 2.1-1 W -- -- F1.2-49 W N8 12/77 2.1-2 W -- -- F1.2-50 W N8 12/77 2.1-3 W N11 5/78 2.1-4 W N1 1/77 1.3-1 W -- -- 2.1-5 W N10 3/78 2.1-6 3/78 - W N10 2 .1. - 7 W N10 3/78 2.1-8 W -- -- O NEP 1o 2 Amendment N12 February 1979 LISTING OF PSAR PAGES, TABLES AND FIGURES Amend. Amend. Page No. Color No. Date Page No. Color No. Date 2.1-9 W N9 1/78 F2.1-13 W N9 1/78 2.1-9a W N3 6/77 F2.1-14 W -- -- 2.1-9b W N3 6/77 F2.1-15 W -- -- 2.1-9c W N3 6/77 F2.1-16 W N9 1/78 2.1-10 W N12 2/79 F2.1-17 W N3 6/77 2.1-11 W N12 2/79 F2.1-18 W N3 6/77 2.1-12 W N1 1/77 2.1-13 W N5 9/77 2.2-1 W -- -- 2.1-14 W N3 6/77 2.2-2 W -- -- T2.1-1(1) W -- -- 2.2-3 W -- -- T2.1-1(2) W -- -- 2.2-4 W -- -- T2.1-1 ( 3) W -- -- 2.2-5 W -- -- T2.1-2 (1) W -- -- 2.2-6 W -- -- T2.1-2(2) W - -- 2.2-7 W - -- T2.1-3 W -- -- 2.2-8 W - - T2.1-4 W - -- 2.2-9 W - - T2.1-5 W -- -- 2.2-10 W - - T2.1-6 W -- -- 2.2-11 W -- -- Tz.1-7 W -- -- 2.2-12 W -- -- T2.1-8(1) W -- -- 2.2-13 W -- -- T2.1-8(2) W -- -- 2.2-14 W -- -- T2.1-8(3) W -- -- 2.2-15 W -- -- T2.1-9 W -- -- 2.2-16 W -- -- T2.1-10 W N12 2/79 2.2-17 W -- -- T2.1-11 W N3 6/77 2.2-18 W N9 1/78 T2.1-12 W N3 6/77 2.2-19 W -- -- T2.1-13 W N3 6/77 2.2-20 W N10 3/78 T2.1-14 (1) W N3 6/77 2.2-20a W N10 3/78 T2.1-14(2) W N3 6/77 2.2-21 W -- -- T2.1-14(3) W N3 6/77 2.2-22 W -- -- T2.1-14 (4) W N3 6/77 2.2-23 W -- -- T2.1-14(5) W N3 6/77 2.2-24 W - -- T2.1-14(6) W N3 6/77 2.2-25 W - -- T2.1-15 W N3 6/77 T2.2-1 W -- -- F2.1-1 W -- -- T2.2-2(1) W -- -- F2.2-2 W -- -- T2.2-2(2) W -- -- F2.1-3 W N3 6/77 T2.2-2(3) W -- - F2.1-4 W N3 6/77 T2.2-2(4) W -- -- F2.1-5 W -- -- T2.2-2(5) W -- -- F2.1-6 W - -- T2.2-2(6) W -- - F2.1-7 W -- -- T2.2-2(7) W - -- F2.1-8 W -- -- T2.2-2(8) W -- -- F2.1-9 W -- -- T2. 2-2 (9) W -- -- F2.1-10 W -- -- T2.2-3 W -- -- F2.1-11 W -- -- T2. 2-4 (1) W -- - F2.1-12 W -- -- T2.2-4(2) W -- -- T2. 2-5 (1) W -- -- NEP 1 6 2 Amendment N10 March 1978 LISTING OF PSAR PAGES, TABLES AND FIGURES Amend. Amend. Page No. Color No. Date Page No. Color No. Date T2.2-5(2) W -- -- 2.3-28 W N1 1/77 T2.2-6 W -- -- 2.3-29 W N1 1/77 T2.2-7 W -- -- 2.3-30 W N1 1/77 T2.2-8 W -- -- 2.3-31 W N1 1/77 T2.2-9 W -- -- 2.3-32 W N1 1/77 T2.2-10 W -- -- 2.3-33 W N1 1/77 T2.2-11 W -- -- 2.3-34 W N1 1/77 F2.2-1 W -- -- 2.3-35 W N1 1/77 F2.2-2 W N9 1/78 2.3-36 W N5 9/77 F2.2-3 W -- - 2.3-37 W N1 1/77 F2.2-4 W -- -- T2.3-1 W -- -- F2.2-5 W -- -- T2.3-1A W - -- F2.2-6 W -- -- T2.3-2 W - -- F2.2-7 W -- -- T2.3-3 W - -- F2.2-8 W - -- T2.3-4 W - -_ F2.2-9 W -- -- T2.3-5 W -- -- T2.3-Sa W N10 3/78 2.3-1 W __ __ T2.3-6 W N5 9/77 2.3-2 W NIO 3/73 W 9/77 1/77 T2. 3-7 (1) NS 2.3-2a W N1 9/77 2.3-3 W N1 1/77 T2.3-7(2) W N5 T2.3-7(3) W NS 9/77 2.3-4 W N1 1/77 9/77 2.3-5 W -- __ T2.3-7(4) W N5 T2.3-7(5) W NS 9/77 2.3-Sa W NIO 3/78 9/77 2.3-5b W NIO 3/78 T2.3-7(6) W NS T2.3-7(7) W N5 9/77 2.3-6 W N10 3/78 9/77 2.3-7 W NS 9/77 T2.3-7(8) W N5 T2. 3-7 (9) W N5 9/77 2.3-8 W N10 3/78 9/77 2.3-8a W NIO 3/78 T2.3-7(10) W N5 2.3-9 W NS 9/77 T2.3-7(ll) W NS 9/77 T2.3-7(12) W N5 9/77 2.3-10 W NS 9/77 9/77 2.3-10a W N5 9/77 T2.3-7(13) W N5 T2. 3-8 (1) W N3 9/77 2.3-11 W NS 9/77 9/77 2.3-12 W N5 9/77 T2.3-8(2) W N5 T2. 3-8 (3) W NS 9/77 2.3-13 W NS 9/77 9/77 2.3-14 W N5 9/77 T2.3-8(4) W N5 T2.3-8(5) W NS 9/77 2.3-15 W N5 9/77 9/77 2.3-16 W NS 9/77 T2.3-8(6) W N5 T2.3-8(7) W N5 9/77 2.3-16a W NS 9/77 9/77 1/77 T2.3-8(8) W NS 2.3-17 W N1 T2. 3-8 (9) W N5 9/77 2.3-18 W N1 1/77 9/77 2.3-19 W N1 1/77 T2.3-8(10) W NS T2.3-8(11) W N5 9/77 2.3-20 W N1 1/77 9/77 2.3-21 W N1 1/77 T2.3-8(12) W NS T2.3-8(13) W N5 9/77 2.3-22 W N1 1/77 W NS 9/77 1/77 T2. 3-9 (1) 2.3-23 W N1 W 9/77 1/77 T2. 3-9 (2) N5 2.3-24 W N1 9/77 2.3-25 W N1 1/77 T2.3-9(3) W NS T2.3-9(4) W N5 9/77 2.3-26 W N1 1/77 2.3-27 W N1 1/77 NEP 1 & 2 Amendment N12 February 1979 LISTING OF PSAR PAGES, TABLES AND FIGURES Amend. Amend. Page No. Color No. Date Page No. Color No. Date T2.4-5 (1) W -- -- 2.5-9 W -- -- T2.4-5(2) W -- -- 2.5-10 W -- -- T2. 4-6 (1) W -- -- 2.5-11 W -- -- T2. 4-6'( 2 ) W - -- 2.5-12 W -- -- T2.4-7 W -- -- 2.5-13 W - -- T2.4-8(1) W -- -- 2.5-14 W -- -- T2.4-8(2) W -- -- 2.5-15 W - -- T2.4-9 W - -- 2.5-16 W - -- T2.4-10(1) W -- -- 2.5-17 W -- -- T2.4-10(2) W - -- 2.5-18 W -- -- T2.4-10(3) W -- -- 2.5-19 W -- -- T2.4-10(4) W - -- 2.5-20 W -- -- T2.4-10(5) W -- -- 2.5-21 W -- -- T2.4-11 W -- -- 2.5-22 W -- -- T2.4-12 W -- -- 2.5-23 W - -- F2.4-1 W N12 2/79 2.5-24 W -- -- F2.4-1A W N12 2/79 2.5-25 W - -- F2.4-2 W -- -- 2.5-26 W - - F2.4-3 W - - 2.5-27 W - -- F2.4-4 W -- -- 2.5-28 W -- -- F2.4-5 W -- -- 2.5-29 W -- -- F2.4-6 W -- -- 2.5-30 W -- -- F2.4-7 W N12 2/79 2.5-31 W -- -- F2.4-8 W -- -- 2.5-32 W -- - F2.4-9 W - - 2.5-33 W - -- F2.4-10 W -- -- 2.5-34 W - -- F2.4-11 W - -- 2.5-35 W - -- F2.4-12 W -- -- 2.5-36 W -- -- F2. 4- 13 W - -- 2.5-37 W - -- F2.4-14 W - -- 2.5-38 W -- -- F2.4-15 W - -- 2.5-39 W -- -- F2.4-16 W N8 12/77 2.5-40 W - -- F2.4- 17 (1) W -- -- 2.5-41 W - -- F2.4-17(2) W - -- 2.5-42 W N12 2/79 F2.4-17(3) W -- -- 2.5-43 W N12 2/79 2.5-44 W N12 2/79 VOLUME 2 2.5-45 W N12 2/79 2.5-46 W -- -- 2.5-1 W -- -- 2.5-47 W -- -- 2.5-2 W - -- 2.5-48 W -- -- 2.5-3 W - -- 2.5-49 W -- -- 2.5-4 W - -- 2.5-50 W N12 2/79 2.5-5 W -- -- 2.5-51 W N12 2/79 2.5-6 W - -- 2.5-52 W N12 2/79 2.5-7 W - -- 2.5-53 W N12 2/79 2.5-8 W - - 2.5-54 W N12 2/79 NEP 1 6 2 Amendment N12 February 1979 LISTING OF PSAR PAGES, TABLES AND FIGURES O Amend.

  • nend .

Page No. Color No. Date Page No. Color No. Date 2.5-55 W N12 2/79 T2.5-1(15) W -- -- 2.5-56 W N12 2/79 T2.5-1(16) W -- -- 2.5-57 W N12 2/79 T2.5-1(17) W - -- 2.5-58 W N12 2/79 T2.5-1(18) W -- -- 2.5-59 W N1 1/77 T2.5-1(19) W - -- 2.5-60 W -- -- T2.5-1(20) W -- -- 2.5-61 W -- -- T2.5-1(21) W - -- 2.5-62 W -- -- T2.5-1(22) W - -- 2.5-63 W -- 2.5-64 W T2.5-1(23) W -- -- N12 2/79 2.5-64a W T2.5-1(24) W -- -- N12 2/79 2.5-65 T2.5-1(25) W - -- W -- -- T2.5-1(26) W -- -- 2.5-66 W -- -- 2.5-67 W - -- T2.5-1(27) W - __ 2.5-68 W T2.5-1(28) W -- __ N1 1/77 T2.5-1(29) W -- -- 2.5-69 W -- -- 2.5-70 W - -- T2.5-1(30) W - -- T2.5-1(31) W - -- 5]7 W - T2.5-1(32) W - -- 2.5-73 W - - T2.5-1(33) W - -- 2.5-74 W __ __ T2.5-1(34) W - -- 2.5-75 W - -- T2.5-1(35) W - -- 2.5-76 W -- - T2.5-1(36) W -- -- 2.5-77 W - -- T2.5-1(37) W - -- 2.5-78 W -- _ T2.5-1(38) W -- -- 2.5-79 W -- -- T2.5-1(39) W -- -- 2.5-80 W -- -- T2.5-1(40) W - -- 2.5-81 W - -- T2.5-2(1) W __ -- 2.5-82 W -- __ T2.5-2(2) W - __ 2.5-83 W -- -_ T2.5-2(3) W -- -- 2.5-84 W -- _ T2.5-3(1) W -- -_ 2.5-85 W - -_ T2.5-3(2) W -- -- 2.5-86 W -- __ T2.5-3(3) W -- -- 2.5-87 W N1 1/77 T2. 5-3 (4) W -- -- T2. 5-1 (1) W -- -- T2.5-4(1) W -- -- T2.5-1(2) W -- -- T2.5-4(2) W - -- T2.5-1(3) W -- -- T2.5-5(1) W -- -- T2.5-1(4) W - -- T2.5-5(2) W -- -- T2. 5-1 ( 5) W - -- T2.5-5(3) W -- - -- T2.5-1(6) W -- -- T2.5-6(1) W N5 9/77 T2. 5-1 ( 7) W - -- T2.5-6(2) W NS 9/77 T2.5-1(8) W - -- T2.5-6(3) W NS 9/77 T2.5-1(9) W - -- T2.5-6a . T2.5-1 (10) W -- -- (28 Sheets) W N5 9/77 T2.5-1(11) W -- -- T2.5-6'o W D ,9/77 T2.5-1(12) W __ __ T2.5-6c W D 9/77 T2.5-1(13) W - - T2.5-6d(1) W NS 9/77 T2.5-1(14) W -- -- NEP 162 Amendment N12 February 1979 LISTING OF PSAR PAGES, TABLES AND FIGURES Amend. Amend. Page No. Color No. Date Page No. Color No. Date T2.5-6d(2) W NS 9/77 F2.5-29 W N12 2/79 T2.5-6d(3) W NS 9/77 F2.5-30 W -- -- T2.5-6d(4) W N5 9/77 F2.5-31 W -- -- T2.5-6d(5) W N5 9/77 F2.5-31A W -- -- T2.5-7(1) W N5 9/77 F2.5-32 W -- -- T2.5-7(2) W N5 9/77 F2.5-33 W N1 1/77 T2. 5-7 ( 3) W NS 9/77 F2.5-34 W -- -- T2.5-8 W -- -- F2.5-35 W -- -- T2.5-9 W -- -- F2.5-36 W -- -- T2.5-10 W N2 3/,7 F2.5-37 W -- -- F2.5-1 W -- -- F2.5-38 W N12 2/79 F2.5-2 W -- -- F2.5-39 W N12 2/79 F2.5-3 W N1 1/77 F2.5-40 W N12 2/79 F2.5-4 W -- -- F2.5-40A W N12 2/79 F2.5-5(1) W -- -- F2.5-41 W -- -- F2.5-5(2) W -- -- F2.5-42 W -- -- F2.5-5(3) W -- -- APPENDIX 2A F2.5-6 W -- -- F2.5-7 W -- -- Title W -- -- F2.5-8 W -- -- Introduction W -- -- F2.5-9 W -- -- Crain Size W -- -- F2.5-9A W N2 3/77 F1 W -- -- F2.5-10 W -- -- F2 W -- -- F?.5-10A W N2 3/77 F3 W -- -- F2.5-11 W -- -- F4 W -- -- F2.5-12 W -- -- F5 W -- -- F2.5-13 W -- -- F6 W -- -- F2.5-14 W N8 12/77 F7 W _- _- F2.5-15 W -- -- F8 W -- -- F2.5-16 W -- -- F9 W _- -- F2.5-17 W N9 1/78 F10 W -- -- F2.5-18 W -- -- Fil W - -- F2.5-19 W -- -- F12 W -- -- F2.5-20 W N8 12/77 F13 W -- -- F2.5-21 W N8 12/77 Lab Perm F2.5-22 W -- -- Tests W -- -- F2.5-23 W -- -- Field Perm F2.5-24 W -- -- Tests W -- -- F2.5-25 W -- -- T1 W -- -- F2.5-26 W -- -- F2.5-27 W N12 2/79 APPENDIX 2B F2.5-27A W N3 6/77 F2.5-27B W N3 6/77 Title W N8 12/77 F2.5-27C W N3 6/77 W NIO 1 3/78 F2.5-27D W N3 6/77 2 W N10 3/78 F2.5-28 W N12 2/79 3 W NIO 3/78 4 W NIO 3/78 NEP 1 6 2 Amendment NIO March 1978 LISTING OF PSAR PAGES, TABLES AND FIGURES Amend. Amend. Page No. Color No. Date Page No. Color No. Date 5 W N10 3/78 B8 W N8 12/77 6 W N10 3/78 B9 W N8 12/77 7 W N10 3/78 B10 W N8 12/77 8 W N10 3/78 FB-1 W N8 12/77 9 W N10 3/78 FB-2 W N8 12/77 10 W NIO 3/78 FB 3 W N8 12/77 11 W N10 3/78 12 W NIO 3/78 APPENDIX 2C 13 W NIO 3/78 14 W NIO Title W 3/78 - __ 15 W NIO 3/78 2C-1 W N1 1/77 16 W N10 3/78 Comp. (1) W - __ 17 W N10 3/78 Comp. (2) W __ __ 18 W NIO 3/78 Comp. (3) W __ __ 19 W NIO 3/78 Comp. (4) W __ __ 20 W N10 3/78 Comp. (5) W - - 21 W NIO 3/78 Comp. (6) W __ __ 22 W NIO 3/78 Comp. (7) W N1 1/77 23 W N10 3/78 Comp. (8) W __ __ 24 W N10 3/78 Comp. (9) W - __ 25 W NIO 3/78 Comp. (10) W __ __ Table 1 ,W NIO 3/78 Comp. (11) W - __ Table 2 W N10 3/78 Comp. (12) W - __ Plate 1 W NIO 3/78 Comp. (13) W __ __ Plate 2 W N10 3/78 Comp. (14) W __ - Plate 3 W N10 3/78 Comp. (15) W __ - Plate 4 W N10 3/78 Comp. (16) W - - Plate 5 W N10 3/78 Comp. (17) W __ __ Plate 6 W N10 3/78 Comp. (18) W - __ Plate 7 W NIO 3/78 Plate 8 W NIO 3/78 APPENDIX 2D Plate 9 W N10 3/78 Plate 10 W N10 3/78 Title W __ __ Plate 11 W N10 3/78 Introduction W __ __ Plate 12 W N10 3/78 Exp. of Plate 13 W NIO 3/78 Terms (1) W __ __ Plate 14 W N10 3/78 Exp. of Terms (2) W - __ List of App. A - Abbrev. W - __ Al W N8 12/77 Soil Class A2 W N8 12/77 Chart W __ A3 W N8 12/77 Boring Logs W - A4 W N8 12/77 ^-I W -- - A-2 W __ __ App. B - A-3 W __ B1 W N8 12/77 A-4 W -- -- B2 W N8 12/77 A-5 W __ __

                                                                                           ~

B3 W N8 12/77 A-6 W __ __ B4 W N8 12/77 ^-7 W -- - B5 W N8 12/77 A-8 (1) W __ __ B6 W NS 12/77 A-8(2) W __ __ B7 W N8 12/77 Amendment N12 February 1979 LISTING OF PSAR PAGES, TABLES AND FIGURES Amend. Amend. Page No. Color No. Date Page No. Color No. Date 3.9-3 B -- -- T3.11-1(7) B N10 3/78 3.9-3A B -- -- T3.11-1(8) W N11 5/78 3.9-3B B -- -- T3.11-2 W N11 5/78 3.9-3C B -- -- T3.11-3 W N11 5/78 3.9-3D B -- -- T3.11-4 W N11 5/78 3.9-3E B -- -- F3.11-1 B D -- 3.9-4 B -- -- F3.11-2 B D -- 3.9-5 B -- -- F3.11-3 W N11 5/78 3.9-6 B -- -- F3.11-4 W N11 5/78 3.9-6A B -- -- F3.11-5 W N11 5/78 3.9-7 B -- -- F3.11-6 W N11 5/78 3.9-8 B -- -- F3.11-7 W N11 5/78 3.9-9 B -- -- F3.11-8 W N11 5/78 3.9-9A 4 -- -- F3.11-9 W N11 5/78 3.9-9B B -- -- 3.9-9C B -- -- Chapter 4 3.9-10 B -- -- T3.9-1 B -- -- 4.0-1 B -- -- T3.9-1A B -- -- T3.9-2 B -- -- 4.1-1 B -- -- T3.9-3 B -- -- Notes (1) B -- -- 4.2-1 B -- -- Notes (2) B -- -- 4.3-1 B -- -- 3.10-1 B -- -- 3.10-2 B -- -- 4.4-1 B -- -- 3.10-2A B -- -- 3.10-2B B -- -- Chapter 5 3.10-3 B -- -- 3.10-3A B -- -- 5.0-1 B -- -- 3.10-4 B - -- 5.0-2 B -- -- 3.10-5 B -- -- S.0-3 B -- -- 3.11-1 B -- -- 5.1-1 B -- -- 3.11-2 B -- -- F5.1-1(1) B -- -- 3.11-3 W N11 5/78 FS.1-1(2) B -- -- 3.11-4 W N11 5/78 F5.1- 1 ( 3) B -- -- 3.11-5 W N11 5/78 F5.1-1(4) B -- -- 3.11-6 W N11 5/78 FS.1-1(5) B - -- 3.11-7 W N12 2/79 F5.1-1 (6) B -- -- 3.11-8 W N11 5/78 F5.1-1(7) B -- -- 3.11-9 W N11 5/78 3.11-10 W N11 5/78 5.2-1 W N4 8/77 T3.11-1(1) W N11 5/78 5.2-2 B -- -- T3.11-1(2) B -- -- 5.2-3 B -- -- T3.11-1(3) B -- -- 5.2-4 B -- -- T3.11-1(4) G -- -- 5.2-5 B -- -- T3.11-1(5) B -- -- 5.2-6 B -- -- T3.11-1(6) B -- -- 5.2-7 B -- -- NEP 1 & 2 Amendment N12 February 1979 LISTING OF PSAR PAGES, TABLES AND FIGURES O Amend. Amend. Page No. Color No. Date Page No. Color No. Date 5.2-7A B -- -- VOLUME 5 5.2-8 B -- -- 5.2-9 B -- -- Chapter 6 5.2-10 B - - 5.2-11 B -- -- 6.0-1 G -- -- 5.2-12 B -- -- 6.0-2 B -- -- 5.2-13 B -- -- 6.0-3 G N12 2/79 5.2-14 B -- -- 6.0-3a G N9 1/78 5.2-15 B - -- 6.0-4 G N11 5/78 5.2-16 B -- -- 6.0-5 G N11 5/78 5.2-17 B -- -- 5.2-18 B -- -- 5.2-19 B -- -- 6.1-1 G N8 12/77 5.2-20 B -- -- 6.1-2 W -- -- 5.2-21 B -- -- 6.1-3 B -- -- 5.2-22 B - -- 5.2-23 B -- -- 6.2-1 G N8 12/77 5.2-24 W N4 8/77 6.2-2 B N8 12/77 5.2-25 W N4 8/77 6.2-3 B -- -- 5.2-26 W N4 8/77 6.2-4 W -- __ T5.2-1 B - -- 6.2-4A W -- _- T5.2-2 B -- -- 6.2-5 W -- -- F5.2-4 B -- -- 6.2-6 W -- -- F5.2-5 B -- -- 6.2-7 G -- -- 6.2-8 B -- -- 5.3-1 B -- -- 6.2-9 B - -- 6.2-10 B -- -- 5.4-1 B -- - 6.2-11 B -- -- 6.2-12 B -- -- 5.5-1 W N4 8/77 6.2-13 W N11 5/78 5.5-2 B -- -- 6.2-14 W N11 5/78 5.5-3 B -- -- 6.2-14a W N11 5/78 5.5-4 W -- -- 6.2-14b W N11 5/78 F5.5-4 B -- -- 6.2-15 W -- -- F5.5-5 B - -- 6.2-16 B -- -- F5.5-8 B - -- 6.2-16A W -- -- F5.5-9 B -- -- 6.2-16B G -- -- F5.5-10 B -- -- 6.2-17 W N12 2/79 F5.5-11 B -- -- 6.2-18 W N12 2/79 F5.5-12 B -- -- 6.2-19 B -- -- 6.2-19A B -- -- 5.6-1 B -- -- 6.2-19B B -- -- O NEP 162 Amendment N12 February 1979 LISTING OF PSAR PAGES, TABLES AND FIGURES Amend. Amend. Page No. Color No. Date Page No. Color No. Date 6.2-19C B -- -- T6.2-9 B -- -- 6.2-20 B -- -- T6.2-10(1) B -- -- 6.2-21 B -- -- T6.2-10(2) B - -- 6.2-21A B -- -- T6.2-11a B -- -- 6.2-21b W N12 2/79 T6.2-11b B -- -- 6.2-21C B -- -- T6.2-12 B -- -- 6.2-22 W N10 3/78 T6.2-13a W D 5/78 6.2-23 W N10 3/78 T6.2-13B B N12 2/79 6.2-24 G -- -- T6.2-14a W D 5/78 6.2-25 W N10 3/78 T6.2-14b W D 5/78 6.2-26 B -- -- T6.2-15(1) B -- -- 6.2-27 B -- -- T6.2-15(2) W N12 2/79 6.2-28 C -- -- T6.2-15a W NS 9/77 6.2-29 B -- -- T6.2-16(1) B -- -- 6.2-29a B N5 9/77 T6.2-16(2) B -- -- 6.2-29b G NS 9/77 T6.2-17 B -- -- 6.2-29C B -- -- T6.2-18(1) B -- -- 6.2-29D W -- -- T6.2-18(2) B -- -- 6.2-29E G -- -- T6.2-18(3) B -- -- 6.2-29f W N10 3/78 T6.2-18(4) B -- -- 6.2-29g W NIO 3/78 T6.2-19 B -- -- 6.2-30 B -- -- T6.2-20 W -- -- 6.2-31 B -- -- T6.2-21 B -- -- 6.2-32 B -- -- T6.2-22(1) W N9 1/78 6.2-32A 8 -- -- T6.2-22(2) U N10 3/78 6.2-33 G -- -- F6.2-1 B -- -- 6.2-33A B -- -- F6.2-2 P -- -- 6.2-34 B -- -- F6.2-3 B -- -- 6.2-34a W N10 3/78 F6.2-4(a) B -- -- 6.2-35 W NIO 3/78 F6.2-4(aa) B -- -- 6.2-35A B -- -- F6.2-4(b) B -- -- 6.2-35B G -- F6.2-4(c) B -- -- 6.2-35C B -- -- F6.2-4(d) B -- -- 6.2-36 B -- -- F6.2-4(e) B -- -- 6.2-37 B -- -- F6.2-5(a) B -- -- 6.2-38 B -- -- F6.2-5(b) B -- -- T6.2-1 W N12 2/79 F6.2-5(c) B -- -- T6.2-2 B -- -- F6.2-5(d) B -- -- T6.2-3 B -- -- F6.2-5(e) B -- -- T6.2-4 B -- -- F6.2-6 B -- -- T6.2-5 B -- -- F6.2-7 B -- -- T6.2-6 B -- -- F6.2-8 B -- -- T6.2-7 B -- -- T6.2-8 B -- -- NEP 1 6 2 Amendment N12 February 1979 LISTING OF PSAR PAGES, TABLES AND FIGURES O Amend. Amend. Page No. Color No. Date Page No. Color No. Date F6.2-9 B -- -- 6.4-1 B -- -- F6.2-10 B -- -- 6.4-2 G -- -- F6.2-11 W D 5/78 6.4-3 G N10 3/78 F6.2-12 W D 5/78 6.4-3A G -- -- F6.2-13 W D 5/78 6.4-4 B -- -- F6.2-14 W D -- T6.4-1(1) B - -- F6.2-14(a) W D 5/78 T6.4-1(2) B - -- F6.2-14(b) W D 5/78 F6.2-15 W N12 2/79 6.5-1 B -- -- F6.2-16 B -- -- 6.5-2 B -- -- F6.2-17(1) G -- -- 6.5-3 B -- -- F6. 2-17 (2) G -- -- F6.2-17(3) G -- -- Chapter 7 F6.2-17(4) G -- -- F6.2-17(5) G - - 7.0-1 B -- -- F6.2-17(6) G -- -- 7.0-2 G N10 3/78 F6.2-17(7) G -- -- F6.2-17(8) G -- -- 7.1-1 B -- -- F6.2-17(9) G - -- 7.1-2 B -- -- F6.2-17(10) G -- -- 7.1-3 B -- -- F6.2-17(11) G -- -- 7.1-4 B -- -- F6.2-17(12) G -- -- 7.1-5 B -- -- F6.2-18(a) G -- -- 7.1-6 B -- -- F6.2-18(B) W N5 9/77 F6.2-18(c) B -- -- 7.2-1 W N10 F6.2-19 B -- -- 3/78 F6.2-20 B - -- F7.2-1 W N10 3/78 F6.2-21 B -- -- F6.2-22 7.3-1 B -- -- B -- -- F6.2-23 B - -- 7.3-2 B - -- F6.2-24 B -- -- F6.2-25 B -- -- 7.4-1 B - - 7.4-2 B - -- 6.3-1 B -- -- F6.3-1(1) B -- -- 7.5-1 B -- - F6.3-1(2) B -- -- F6.3-1(3) B -- -- 7.6-1 B - -- F6.3-2(1) B -- -- F6.3-2(2) B -- -- 7.7-1 B - -- F6. 3-2 (3) B -- -- F6.3-3 B -- - Chapter 8 8.0-1 G N11 5/78 8.0-2 B -- -- O NEP 162 Amendment N12 February 1979 LISTING OF PSAR PAGES, TABLES AND FIGURES Amend. Amend. Page No. Color No. Date Page No. Color No. Date 8.0-3 G -- -- F8.2-12 W -- -- 8.0-4 G N1 1/77 F8.2-13 W -- -- 8.0-5 G -- -- F8.2-14 W - -- 8.0-6 G -- -- F8.2-15 W -- -- 8.1-1 W N3 6/77 F8.2-16 W -- -- 8.1-2 B -- __ F8.2-17 W -- -- 8.1-3 B -- -- F8.2-18 W -- -- 8.1-3A B -- -- F8.2-19 W - -- 8.1-4 B -- -- F8.2-20 W - -- 8.1-5 W N11 5/78 F8.2-21 W - -- 8.1-6 W N11 5/78 F8.2-22 W - -- 8.1-7 W N11 5/78 F8.2-23 W - -- 8.1-8 W N11 5/78 F8.2-24 W -- -- 8.1-9 W N11 5/78 F8.2-25 W -- -- T8.1-1(1) B N8 12/77 F8.2-26 W - -- T8.1-1(2) B -- -- F8.2-27 W - -- F8.1-1 W -- -- F8.2-28 W -- -- F8.1-2 W -- -- F8.2-29 W -- _- F8.2-30 W - -- 8.2-1 W N3 6/77 F8.2-31 W - -- 8.2-la W N11 5/78 F8.2-32 W - __ 8.2-lb - W N11 5/78 F8.2-33 W -- -- 8.2-2 W N11 5/78 F8.2-34 W - __ 8.2-2a W N11 5/78 F8.2-35 W -- -_ 8.2-2b W N11 5/78 F8.2-36 W - -- 8.2-3 W N12 2/79 8.3-1 B - -- 8.2-4 W N3 6/77 8.3-1A B N8 12/77 8.2-5 W N11 5/78 8.3-2 B N8 12/77 8.2-5a W N11 5/78 8.3-3 B - -- 8.2-5b W N11 5/78 8.3-4 B - -- 8.2-6 W - -- 8.3-4A B - -- 8.2-7 W N11 5/78 8.3-5 B -- -- 8.2-7a W N11 5/78 8.3-6 B -- -- 8.2-8 W N11 5/78 8.3-6A B - -- 8.2-9 W N11 5/78 8.3-7 B -- -- T8.2-1 W -- -- 8.3-7A B -- -- T8.2-2 W - -- 8.3-8 B - -- 8.3-8A B - -- F8.2-1 W N3 6/77 8/77 F8.2-2 W N3 6/77 8.3-9 W N4 8.3-10 B - -- F8.2-3 W N3 6/77 8.3-11 B - -- F8.2-4 W -- -- 12/77 F8.2-5 W N8 12/77 8.3-12 B N8 0* - - ~ F8.2-6 W N1 1/77 8.3-13A B - -- F8.2-7 W N3 6/77 8.3-14 B -- -- F8. 2-8 W -- -- 8.3-15 B D -- F8.2-9 W -- -- 8.3-16 B D - F8.2-10 W -- -- F8.2-11 W -- -- NEP 1 & 2 Amendment N9 January 1978 LISTING OF PSAR PAGES, TABLES AND FIGURES O Amend. Amend. Page No. Color No. Date Page No. No. Cclor. Date 8.3-17 B -- -- 9.1-3A B -- -- 8.3-18 B -- -- 9.1-4 B -- -- 8.3-19 B -- -- 9.1-5 B -- -- 8.3-20 B -- -- 9.1-6 B -- -- 8.3-21 B -- -- 9.1-7 B -- -- 8.3-21A B -- -- 9.1-8 B -- -- 8.3-22 B -- -- T9.1-1(1) B -- -- 8.3-23 B -- -- T9.1-1(2) B -- -- 8.3-24 B -- -- T9.1-2 (1) B -- -- 8.3-25 B -- -- T9.1-2(2) B - -- 8.3-26 B -- -- F9.1-1 B -- -- 8.3-27 B -- -- F9.1-2 B -- -- 8.3-28 B -- -- 8.3-28A B -- -- 9.2-1 W N8 12/77 8.3-29 B -- -- 9.2-2 B N8 12/77 8.3-30 B -- -- 9.2-3 B N8 12/77 8.3-31 B -- -- 9.2-4 B N8 12/77 T8.3-1 G N8 12/77 9.2-5 B -- -- T8.3-2 0 -- -- 9.2-5A G -- -- T8.3-3 G -- - 9.2-6 W N8 12/77 T8.3-4 B -- -- 9.2-7 B -- -- F8.3-1 W N8 12/77 9.2-8 B -- -- F8.3-2 W N8 12/77 9.2-9 B -- -- F8.3-3 B -- -- 9.2-10 B -- -- F8.3-4 W -- -- 9.2-11 B -- -- F8.3-5 G N8 12/77 9.2-12 W -- -- F8.3-6 G N8 12/77 9.2-13 G -- -- F8.3-7 B -- -- 9.2-13A W -- -- F8.3-8 G N8 12/77 9.2-14 B N8 12/77 9.2-15 B N8 12/77 Chapter 9 9.2-16 B N8 12/77 9.2-16A B N8 12/77 9.0-1 B N8 12/77 9.2-16B B N8 12/77 9.0-2 G N8 12/77 9.2-16C B N8 12/77 9.0-3 B -- -- 9.2-16D G N8 12/77 9.0-4 G -- -- 9.2-16E B N8 12/77 9.0-5 G -- -- 9.2-16F G N8 12/77 9.0-6 B -- -- 9.2-16G B N8 12/77 9.0-7 G -- -- 9.2-16H B N8 12/77 9.0-7A G - -- 9.2-17 W 9.0-8 G M8 12/77 N9 1/78 9.2-18 B -- -- 9.0-9 G -- -- 9.1-1 B -- -- 9.1-2 B -- -- 9.1-2A B -- -- 9.1-3 B -- -- NEP 1&2 Amendment N9 January 1978 LISTING OF PSAR PAGES, TABLES AND FIGURES Amend. Amend. Page No. Color No. Date Page No. Color No. Date 11.4-8 B -- -- T12.1-3 B -- -- 11.4-9 B -- -- T12.1-4 B -- -- 11.4-10 B -- -- T12.1-5 B -- -- T11.4-1 B -- -- F12.1-1 B -- -- T11.4-2 B -- -- F12.1-2 B -- -- T11.4-3 B -- -- F12.1-3 W -- -- F12.1-4 W -- -- 11.5-1 B -- -- F12.1-5 W -- -- 11.5-2 B -- -- F12.1-6 B -- -- 11.5-3 B -- -- F12.1-7 W -- -- 11.5-4 B -- -- F12.1-8 W -- -- 11.5-5 B -- -- F12.1-9 -- -- 11.5-6 B -- -- F12.1-10 B -- -- 11.5-7 G -- -- F12.1-11 G -- -- T11.5-1 B -- -- F12.1-12 G -- -- T11.5-2 W N8 12/77 F12.1-13 B - -- F11.5-1 B -- -- F12.1-14 B - -- F12.1-15 G -- -- 11.6-1 G -- -- F12.1-16 W N9 1/78 Chapter 12 12.2-1 B -- -- 12.2-2 W -- -- 12.0-1 B -- -- 12.2-3 B -- - 12.0-2 B -- -- 12.2-4 W -- -- 12.0-3 B -- -- 12.2-5 B -- -- 12.0-4 B -- -- 12.2-6 B -- -- 12.2-7 B -- -- 12.1-1 B -- -- 12.2-8 B -- -- 12.1-1A B -- -- 12.2-9 B -- -- 12.1-2 B -- -- 12.2-10 B -- -- 12.1-3 B -- -- 12.2-11 B -- -- 12.1-3A B -- -- 12.2-12 B -- -- 12.1-4 B -- -- 12.2-13 B -- -- 12.1-5 W -- -- T12.2-1 B -- -- 12.1-6 B -- -- T12.2-2 B -- -- 12.1-7 G -- -- T12.2-3(1) B -- -- 12.1-8 B -- -- T12.2-3(2) B -- -- 12.1-9 W -- -- T12.2-4 W -- -- 12.1-10 B -- -- T12.2-5 B -- -- 12.1-11 W -- -- T12.2-6 W -- -- T12.1-1 B -- -- T12.2-7 W -- -- T12.1-2 B -- -- T12.2-8 W -- -- NEP 1 & 2 Amendment N12 February 1979 LISTING OF PSAR PAGES, TABLES AND FIGURES O Amend. Amend. Page No. Color No. Date Page No. Color No. Date T12.2-9 W -- -- Chapter 13 T12.2-10 W -- -- T12.2-11 W -- -- 13.0-1 G -- -- T12.2-12 W -- -- 13.0-2 G N11 5/78 13.0-2a G N3 6/77 12.3-1 B -- -- 13.0-3 G -- -- 12.3-2 B -- -- 13.0-4 12.3-3 G N8 12/77 B -- -- 13.0-4a G N1 1/77 12.3-4 B -- -- 12.3-4A B -- -- 12.3-5 B -- -- 13.1-1 W N11 5/78 12.3-6 B -- -- 13.1-2 W N8 12/77 12.3-7 B -- -- 13.1-3 W N8 12/77 T12.3-1 B -- -- 13.1-4 W N8 12/77 F12. 3- 1 W N8 12/77 13.1-5 W N8 12/77 F12.3-2 B -- -- 13.1-6 W N8 12/77 13.1-7 W N8 12/77 Appendix 12A 13.1-8 W N8 12/77 13.1-9 W N8 12/77 Title B -- -- 13.1-9a W N9 1/78 12A-1 B -- -- 13.1-9b W N8 12/77 12A-2 B -- -- 13.1-10 W N8 12/77 12A-3 B -- -- 13.1-11 W N9 1/78 T12A-1 B -- -- 13.1-12 W N8 12/77 F12A-1 B -- -- 13.1-13 W N11 5/78 F12A-2 B -- -- 13.1-14 W -_ -- F12A-3 B -- -- 13.1-15 W Nll 5/78 F12A-4 B - -- F13.1-1 W N12 2/79 F12A-5 B - -- F13.1-2 W N12 2/79 F12A-6 B -- -- F13.1-3 W N8 12/77 F12A-7 B -- -- F13.1-4 W -- -- F12A-8 B -- -- F13.1-4a W N6 10/77 F12A-9 B -- -- F12A-10 B -- -- F12A-ll B -- -- F12 A-12 B -- -- F12A-13 B -- -- F12A-14 B -- -- F12A-15 B -- -- F12A-16 B -- -- F12A-17 B -- -- F12A-18 B - -- F12A-19 B -- -- NEP 162 Amendment N12 February 1979 LISTING OF PSAR PAGES, TABLES AND FIGURES Amend. Amend. Page No. Color No. Date Page No. Color No. Date F13.1-4A W N1 1/77 F13.3-3 W -- -- F13.3-4 W -- -- 13.2-1 B -- -- F13.3-5 W -- -- 13.2-1A G -- -- F13.3-6 W N5 9/77 13.2-1B B -- -- F13.3-7 W NS 9/77 13.2-2 B -- -- 13.2-3 B - -- 13.4-1 G -- -- F13.2-1 B -- -- 13.4-2 G -- -- 13.4-3 G - - 13.3-1 W -- -- 13.4-4 G -- -- 13.3-2 W -- -- 13.4-5 C -- -- 13.3-3 W -- -- 13.3-4 W -- -- 13.5-1 G N3 6/77 13.3-5 W -- -- 13.3-6 W -- -- 13.6-1 B -- -- 13.3-7 W N11 5/78 13.3-8 W N11 5/78 13.7-1 W -- -- 13.3-8a W N11 5/78 13.7-2 G -- -- 13.3-9 W N11 5/78 13.3-10 W -- -- Appendix 13A 13.3-11 W N11 5/78 13.3-11a W N11 5/78 Title W N3 6/77 13.3-12 W N11 5/78 Table of W N3 6/77 13.3-12a W N11 5/78 Contents 13.3-13 W N11 5/78 Annex C Title W N3 6/77 13.3-14 W N11 5/78 i W N3 6/77 13.3-15 W N11 5/78 11 W N3 6/77 13.3-15a W N12 2/79 iii W N3 6/77 13.3-16 W N11 5/78 C-1 W N3 6/77 T13.3-1(1) W -- -- C-2 W N3 6/77 T13.3-1(2) W -- -- C-3 W N3 6/77 T13.3-1(3) W -- -- C-4 W N3 6/77 T13.3-1(4) W -- -- C-5 W N3 6/77 T13.3-2 W -- -- C-6 W N3 6/77 T13.3-3(1) W -- -- C-7 W N3 6/77 T13.3-3(2) W -- -- C-8 W N3 6/77 T13.3-4(1) W -- -- C-9 W N3 6/77 T13.3-4(2) W -- -- C-10 W N3 6/77 T13.3-5 W -- -- C-1-1 W N3 6/77 T13.3-6 W -- -- C-2-1 W N3 6/77 T13.3-7(1) W -- -- C-2-2 W N3 6/77 T13.3-7(2) W -- -- C-3-1 W N3 6/77 T13.3-8(1) W -- -- C-4-1 W N3 6/77 T13.3-8(2) W -- -- C-4-2 W N3 6/77 T13.3-9(1) W -- -- C-5-1 W N3 6/77 T13.3-9(2) W -- -- C-6-1 W N3 6/77 F13.3-1 W -- -- C-6-2 W N3 6/77 F13.3-2 W -- -- C-6-3 W N3 6/77 NEP 162 Amendment N12 February 1979 LISTING OF PSAR PAGES, TABLES AND FIGURES O Amend. Amend. Page No. Color No. Date Page No. Color No. Date _ VOLUME 7 F15.3.1-1 B -- -- F15.3.1-2 B - -- Chapter 14 F15.3.1-3 B - -- F15.3.1-4 B - -- 14.0-1 W N3 6/77 F15.3.1-5 B - -- F15.3.1-6 B -- -- 14.1-1 W N1 1/77 F15.3.1-7 B - -- 14.1-2 W N1 1/77 F15.3.1-8 B - -- 14.1-3 W N3 6/77 F15.3.1-9a B -- -- F14.1-1 W N3 6/77 F15.3.1-9b B -- -- F14.1-2 W N3 6/77 F15. 3.1-10 a B - -- Chapter 15 F15.3.1-11a B - -- 15.0-1 G N12 2/79 F15.3.1-11b B - -- 15.0-1a G N10 3/78 15.0-2 G N12 2/79 15.4-1 W N10 3/78 15.0-3 G N12 2/79 15.4-la W N12 2/79 15.0-4 G N10 3/78 15.4-lb W N12 2/79 15.0-5 G N12 2/79 15.4-Ic W N12 2/79 15.0-6 G N12 2/79 15.4-1d W N12 2/79 15.0-7 G N12 2/79 15.4-le W N12 2/79 15.0-8 G N12 2/79 15.4-2 W N12 2/79 15.1-1 G - -- 15.4-3 W -- -- 15.2-1 B -- -- 15.4-3a W NS 9/77 15.2-2 W - -- 15.4-3b W N5 9/77 15.4-4 B -- -- 15.2-3 G -- -- T15.2-1 W -- -- 15.4-5 W -- -- T15.2-2 W -- -- 15.4-6 W N12 2/79 15.4-6a W N12 2/79 T15.2-3 W N5 9/77 15.4-7 G - -- 15.3-1 B - -- 15.4-8 W - -- 15.3-2 B -- __ 15.4-9 W -- -- 15.3-3 B - -- 15.4-10 G -- -- 15.3-4 B - -- 15.4-11 W -- - 15.3-5 B -- -_ 15.4-12 B -- -- ts t b W N10 3'78 15.4-13 G -- -- 5 - ,3 s n. y s ',0 g 1 -> *- l '* B ~ - s t w w x10 3 78 I13{ ', ".1613 G - -- IS. i o W -- -- g g,4_17 __ __ IS - I B ~~ -- W NS 9/77 15.4-18 15.1-8 G -- -- 15.4-18A G -- -- 15.3-9 B -- -- 15.4-19 B - -- T15.3.1-la B -- -- 15.4-20 G -- -- T15.3.1-lb B -- T15.4-la W N12 2/79 T15.3.1-Ic W N10 3/78 T15.4-lb W D 2/79 T15.3-2 W -- -- 2/79 T15.4-Ic W N12 T15.3-3 W - -- T15.4-1d W N10 3/78 T15.3-4 W N5 9/77 NEP 162 Amendment N12 February 1979 LISTING OF PSAR PAGES, TABLES AND FIGURES Amend. Amend. Page No. Color No. Date Page No. No. Color Date T15.4-le W N12 2/79 15B-5 B -- -- T15.4-1f W N12 2/79 T15B-1 W - -- T15.4-2 B -- -- T15.4-3 W NS 9/77 Appendix 15C T15.4-3a W NS 9/77 T15.4-4 W -- -- Title W -- T15.4-5 W N5 9/77 15C-1 W -- -- T15.4-6 W -- -- 15C-2 W -- -- T15.4-7 W -- -- 15C-3 W -- - T15.4-8 W -- -- 15C-4 W -- -- T15.4-9 W NS 9/77 15C-5 W -- -- T15.4-10 W -- -- 15C-6 W -- -- T15.4-11 W . N5 9/77 F15C-1 W - -- T15.4-12 B -- -- T15.4-13 B -- -- Appendix 15D T15.4-14 B -- -- T15.4-15 B -- -- Title W N12 2/79 T15.4-16 B -- -- T15D-1 W N12 2/79 T15.4-17 W N5 9/77 T15D-2 W N12 2/79 T15.4-18 W -- -- T15D-3(1) W N12 2/79 T15.4-19 W -- -- T15D-3(2) W N12 2/79 T15.4-20 B -- -- T15D-4 W N12 2/79 T15.4-21 W N5 9/77 T15D-5 W N12 2/79 i T15.4-22 B -- -- F15D-1A W N12 2/79 T15.4-23 W NS 9/77 F15D-1B W N12 2/79 F15.4.1-1 W N12 2/79 F15D-1C W N12 2/79 F15.4.1-2 W N12 2/79 F15D-1D W N12 2/79 F15.4.1-3 W N12 2/79 F15D-2A W N12 2/79 F15.4.1-4 W N12 2/)9 F15D-2B W N12 2/79 F15.4.1-5 W N12 2/79 F15D-2C W N12 2/79 F15.4.1-6 W N12 2/79 F15D-2D W N12 2/79 F15.4.1-7 W N12 2/79 F15D-3A W N12 2/79 F15.4.1-8 W N12 2/79 F15D-3B W N12 2/79 F15.4.1-9 W N12 2/79 F15D-3C W N12 2/79 F15.4.1-10A W N12 2/79 F15D-3D W N12 2/79 F15.4.1-10B W N12 2/79 F15D-4A 13 N12 2/79 F15.4.1-11 W N12 2/79 F15D-4B W N12 2/79 F15.4.1-12 W N12 2/79 F15D-4C W N12 2/79 F15.4.1-13 W N12 2/79 F15D-4D W N12 2/79 F15.4.1-14 W N12 2/79 F15D-5A W N12 2/79 F15.4.1-15 W N12 2/79 F15D-5B W N12 2/79 F15.4.1-16 W N12 2/79 F15D-5C W N12 2/79 F15.4.1-17 W D 2/79 F15D-5D W N12 2/79 F15.4.1-18 W D 2/79 F15D-6A W N12 2/79 F15D-6B W N12 2/79 Appendix 15B F15D-6C W N12 2/79 F15D-6D W N12 2/79 Title B -- -- F15D-7A W N12 2/79 15B-1 B -- -- F15D-7B W N12 2/79 15B-2 W NS 9/77 F15D-7C W N12 2/79 15B-3 W N5 9/77 F15D-7D W N12 2/79 15B-4 W NS 9/7) F15D-8A W N12 2/79 NEP 162 Amendment N12 February 1979 LISTING OF PSAR PAGES, TABLES AND FIGURES G Amend. Amend. Page No. Color No. Date Page No. Color No. Date F15D-8B W N12 2/79 16.2.1-5 B -- -- F15D-8C W N12 2/79 F16.2.1-1 L -- -- F15D-8D W N12 2/79 F15D-9A W N12 2/79 16.2.2-1 B -- -- F15D-9B W N12 2/79 16.2.2-2 B -- -- F15D-9C W N12 2/79 F16.2.2-1 B -- -- F15D-9D W N12 2/79 F16.2.2-2 B -- -- F15D-10A W N12 2/79 16.2.3-1 B -- -- F15D-10B W N12 2/79 F15D-10C W N12 2/79 16.3.1-1 B -- -- F15D-10D W N12 2/79 16.3.1-2 B -- -- F15D-10E W N12 2/79 16.3.2-1 W -- -- F15D-10F W N12 2/79 16.3.2-2 W -- -- F15D-10G W N12 2/79 16.3.3-1 B -- -- F15D-10ll W N12 2/79 16.3.3-2 B -- -- FISD-IIA W N12 2/79 16.3.4-1 W N7 11/77 F15D-llB W N12 2/79 16.3.4-2 B -- -- F15D-llc W N12 2/79 16.3.4-3 B -- -- F15D-IID W N12 2/79 16.3.4-4 B -- -- F15D-12A W N12 2/79 16.3.4-5 B -- -- F15D-12B W N12 2/79 16.3.4-6 B -- -- F15D-12C W N12 2/79 T16.3.4-1 B -- -- F15D-12D W N12 2/79 F16.3.4-1 B -- -- F15D-13A W N12 2/79 F16.3.4-2 B -- -- F15D-13B W N12 2/79 F16.3.4-3 8 __ -- F15D-13C W N12 2/79 F16.3.4-4 B -- -- F15D-13D W N12 2/79 16 3.5-1 B __ -- F15D-14A W N12 2/79 16.3.5-2 B __ -- F15D-14B W N12 2/79 16.3.6-1 W N12 2/79 F15D-14C W N12 2/79 16.3.6-2 B -- -- F15D-14D W N12 2/79 16.3.6-3 B -- __ F15D-15 W N12 2/79 16.3.6-4 B -_ -- F15D-16 W N12 2/79 16.3.7-1 B -- -- Chapter 16 16.3.8-1 B -_ -_ 16.3.8-2 B -- -- 16.0-1 B __ __ F16.3.8-1 B __ _- 16.0-2 B -- __ 16.3.9-1 B -- -- 16.0-3 B -- __ 16.3.9-2 B -- -- 16.0-4 B __ __ 16.3.9-3 B -- -- 16.0-5 B -- __ 16.3.9-4 8 _- -_ 16.3.9-5 B -- -- 16.1-1 B -- __ T16.3.9-1(1) B -- __ 16.1-2 3 _- __ T16.3.9-1(2) B -- -- 16.1-3 B -_ __ T16. 3.9-2 ( 1) B -- -- 16.1-4 B __ __ T16.3.9-2(2) B -- -_ T16.3.9-3(3) B -- -- 16.2.1-1 B -- _- T16.3.9-3 B -- -- 16.2.1-2 B -- _- 16.3.10-1 B -- -_ 16.2.1-3 B __ __ 16.3.10-2 B -- -- 16.2.1-4 B -_ __ 16.3.10-3 B -- -- 16.3.10-4 B -- -- NEP 1 & 2 Amendment N7 November 1977 LISTING OF PSAR PAGES, TABLES AND FIGURES Amend. Amend. Page No. Color No. Date Page No. Color No. Date 16.3.10-5 B -- -- 16.4.3-1 B -- "- 16.3.10-6 B -- -- 16.4.4-1 W -- -- 16.3.10-7 B -- -- 16.4.4-2 W N7 11/77 16.3.10-8 B -- -- 16.4.5-1 B -- -- 16.3.10-9 B -- -- 16.4.5-2 B -- -- 16.3.10-10 B -- -- 16.4.6-1 C -- -- F16.3.10-1 B -- -- 16.4.6-2 3 -- -- F16.3.10-2 B -- -- 16.4.6-3 B -- -- F16.3.10-3 B -- -- 16.4.6-4 B -- -- F16.3.10-4 B -- -- 16.4.7-1 B -- -- 16.3.11-1 W -- -- 16.4.7-2 B -- -- 16.3.11-2 B -- -- T16. 4. 7-1 (1) B -- -- 16.3.12-1 B -- -- 16.3.12-2 B -- -- T16.4.7-1(2) B -- -- 16.3.13-1 B -- -- T16.4. 7-1 (3) B -- -- 16.3.13-2 B -- -- T16.4.7-1(4) B -- -- 16.3.13-3 B -- -- T16.4.7-1(5) B -- -- 16.3.14-1 B -- -- T16.4. 7-1 ( 6) B -- -- 16.3.14-2 B - -- T16.4. 7-1 (7) B -- -- 16.3.14-3 B -- -- T16.4.7-1(8) B -- -- 16.4.8-1 W -- -- 16.3.15-1 B -- -- 16.4.8-2 W -- -- 16.3.16-1 W -- -- 16.3.16-2 W -- -- T16.4. 8-1 (1) W -- -- 16.3.16-3 W -- -- T16.4.8-1(2) W -- -- 16.3.16-4 B - -- 16.5.1-1 .W -- -- T16.3.16-1 16.5.2-1 W -- -- (1) B -- -- 16.5.2-2 W -- -- T16.3.16-1 16.5.2-3 B -- -- (2) B -- -- 16.5.3-1 B -- -- 16.3.17-1 W -- -- 16.5.3-2 B -- -- 16.3.17-2 B -- -- 16.5.4-1 B -- -- 16.3.17-3 W -- -- 16.3.17-4 G D -- 16.6.1-1 G -- -- T16.3.17-1 16.6.1-2 G -- -- (1) B -- -- T16.6.1-1 G -- -- T16.3.17-1 T16.6.1-2 B -- -- (2) B -- -- 16.6.2-1 G -- -- 16.3.18-1 B -- -- 16.6.2-2 G -- -- 16.3.18-2 B -- -- 16.6,2-3 G -- -- 16.6.2-4 B -- -- 16.4.1-1 B -- -- 16.6.2-5 G -- -- 16.4.1-2 B -- -- 16.6.2-6 G -- -- T16.4.1-1(1) B -- -- 16.6.3-1 G -- -- T16.4.1-1(2) B -- -- 16.6.4-1 G -- -- T16.4.1-2 B -- -- 16.6.5-1 G -- -- T16.4.1-3 B -- -- 16.6.6-1 B -- -- 16.4.2-1 B -- -- 16.6.7-1 B -- -- T16.4.2-1(1) B -- -- 16.6.7-2 B -- -- T16.4.2-1(2) B -- -- 16.6.7-3 B -- -- r16.4.2-2(1) B -- -- 16.6.7-4 B -- -- T16.4.2-2(2) B -- -- NEP 1 6 2 Amendment N12 February 1979 LISTING OF PSAR PAGES, TABLES AND FIGURES _ O Amend. Amend. Page No. Color No. Date Page No. Color No. Date 16.6.7-5 .B -- 17.1-27 W N6 10/77 16.6.7-6 B -- -- 17.1-28 W N6 10/77 T16.6.7-1 B - -- 17.1-29 W N6 T16.6.7-2 10/77 B -- -- 17.1-30 W N6 10/77 T16.6.7-3 B - -- 17.1-31 W T16.6.7-4 N6 10/77 B - -- 17.1-32 W N6 10/77 T16.6.7-5 B -- -- 17.1-33 W 16.6.8-1 N6 10/77 B -- -- 17.1-34 W N6 10/77 16.6.8-2 B -- 17.1-35 W 10/77 N6 16.6.8-3 B -- 17.1-36 W N6 10/77 T16.6.8-1(1) B -- -- 17.1-37 W N6 10/77 T16.6.8-1(2) B -- -- 17.1-38 W N10 3/78 Chapter 17 17.1-39 W N10 3/78 17.0-1 C N6 10/77 17.1-40 W N6 10/77 17.0-2 G -- -- 17.1-41 W N9 1/78 17.0-3 G N3 6/77 17.1-42 W N6 10/77 17.1-43 W N6 10/77 17.1-1 W N6 10/77 17.1-44 W N6 10/77 17.1-2 W N8 12/77 17.1-45 W N6 10/77 17.1-3 W N6 10/77 17.1-46 W N6 10/77 17.1-4 W N9 1/78 17.1-47 W N6 10/77 17.1-5 W N12 2/79 T17.1-1 W N8 12/77 17.1-6 W Nil /78 T17.1-2(1) W -- -- 17.1-7 W N11 5/78 T17.1-2(2) W N1 1/77 17.1-8 W N9 1/78 T17.1-3(1) W -- -- 17.1-8a W N6 10/77 T17.1-3(2) W -- -- 17.1-9 W N7 11/77 T17.1-3(3) W N8 12/77 17.1-10 W N6 10/77 T17.1-3(4) W -- -- 17.1-11 W N6 10/77 T17.1-3(5) W -- -- 17.1-12 W N6 10/77 T17.1-3(6) W -- -- 17.1-13 W N9 1/78 '217 1-3(7) W -- -- 17.1-14 W N6 10/77 T17.1-4 W -- -- 17.1-15 W NIO 3/78 T17.1-4a W N3 6/77 17.1-15a W N10 3/78 F17.1-1 D 17.1-16 W N6 10/77 F17.1-2 W N11 5/78 17.1-17 W N9 1/78 17.1-18 W N6 10/77 17.2-1 W N7 11/77 17.1-19 W N6 10/77 17.1-20 W N6 10/77 17.3-1 W N7 11/77 17.1-21 W N6 10/77 17.1-22 W N9 1/78 VOLUME 8_ 17.1-23 W N6 10/77 - 17.1-24 W Supplemental Information N6 10/77 17.1-25 W N6 10/77 17.1-26 W Title B -- -- N9 1/78

NEP 1&2 Amendment N12 February 1979 LISTING OF PSAR PAGES, TABLES AND FIGURES Amend. Amend. Page No. Color No. Date Page No. No. Color Date TSA6.3tJ(3) B -- -- S6-45 G -- -- TSAo.33-3(4) B -- -- S6-46 W -- -- TSA6.33-3(5) B -- -- S6-47 G -- -- TSA6.33-3(6) B -- -- S6-48 B -- -- TSA6. 33-4 (1) B -- -- S6-49 W -- -- TSA6.33-4(2) B -- -- S6-49A G -- -- TSA6.33-4(3) B -- -- TS6.50-1 G D -- TSA6.33-4(4) B -- -- TS6.50-2 G D -- TS A6. 33-4 (5) B -- -- FS6.50-1 G D -- TSA6.33-4(6) B -- -- FS6.50-2 G D -- TSA6.33-5(1) B -- -- S6-50 B -- - TSA6.33-5(2) B -- -- S6-51 B -- -- TSA6.33-5(3) B -- -- S6-52 W -- -- TSAo.33-5(4) B -- -- S6-53 B -- -- TSA6.33-5(5) B -- -- S6-54 B -- -- TSA6.33-5(6) B -- -- S6-55 B -- -- TS A6. 33-6 (1) B -- -- S6-56 B -- -- TSA6.33-6(2) B -- -- S6-56A B -- -- TSA6.33-6(3) B -- - S6-57 B -- -- TSA6.33-6(4) B -- -- FS 6. 63-1 B -- -- TS A6. 3 3-6 ( 5) B -- -- S6-58 B -- -- TSA6.33-6(6) B -- -- S6-59 B -- -- FS A6. 3 3-1 B -- -- TS6.66.1-1 B -- -- FSA6.33-2 B -- -- TS6.66.1-2 FSA6.33-3 B - -- (1) B - -- FSA6.33-4 B -- -- TS6.66.1-2 FSA6.33-5 B -- -- (2) B - -- FS A6. 3 3-6 B -- -- TS6.66.1-3 FS A6. 33-7 B -- -- (1) B -- -- S6-34 W N11 5/78 TS6.66.1-3 S6-35 W N11 5/78 (2) B -- -- S6-36 W N12 2/79 FS6.66-1 B -- -- S6-36A W N12 2/79 S6-60 B -- -- TS 6. 36- 1 (1) W N12 2/79 FS6.66.2-1 B - -- . TS6.36-1(2) W N12 2/79 FS 6. 66. 2-2 B -- -- S6-37 B -- -- FS6.66.2-3 B - -- S6-38 B -- -- S6-61 B -- -- S6-39 B -- -- S6-62 B - -- S6-40 B -- -- FS 6. 67-1 B - -- S6-41 B -- -- S6-63 B -- -- S6-42 B -- -- S6-64 G -- -- S6-43 B -- -- S6-65 B - -- TS6.44-1 B -- -- S6-44 B -- -- TS6.45 1 B - -- NEP 1 6 2 Amendment N8 December 1977 LISTING OF PSAR PAGES, TABLES AND FIGURES O Amend. Amend. Page No. Color No. Date Page No. Color No. Date S6-66 G -- -- Appendix A8.15 S6-67 G -- -- S6-68 G -- -- Title B - -- S6-69 B -- -- Attach C B -- -- S7-1 B -- -- (10 shts.) S7-2 B -- -- FS8.15-1 B -- -- S7-3 B -- -- FS8.15-2 B -- -- FS8.15-3 B - -- S7-4 B -- -- FS8.15-4 B -- -- S8-1 B -- -- y gg_7 _ __ 58-2 B -- -- S8-3 B -- -- S9-2 B N8 12/77 S8-4 B -- -- S9-3 B - -- S8-5 3 -- -- S9-4 B - -- SB-6 -- -- S9-5 B -- -- S8-7 B -- -- S9-6 B -- -- S8-8 G -- -- S9-7 W N3 6/77 S8-9 G -- - S9-8 B -- -- S8-10 G -- -- S9-9 B -- -- S8-11 G - -- S9-10 B - -- S8-12 G - -- S9-11 B -- -- S9-12 B -- -- S8-13 B -- -- S9-13 B -- -- S8-14 B -- -- 39_14 3 __ __ S8-15 B - -- S9-15 B -- -- S8-16 B -- -- S9-16 B -- -- S8-17 B -- -- S9-17 B -- -- S8-18 B -- -- S8-19 B -- -- S9-18 B N8 12/77 S8-20 TS9.24-1 B -- -- W N3 6/77 S8-21 G -- -- TS9.24-2 W -- -- FS9 -1 B -- -- S8-22 G - -- S9-18A B N8 12/77 S8-23 B -- -- S8-24 G -- -- S9-19 B N8 12/77 S8-25 G -- -- S9-20 B -- -- S0-21 B -- -- S8-26 G -- -- S8-26A G -- -- S9-22 B N8 12/77 S8-27 G -- -- S9-23 B -- -- S8-28 B -- -- S9-24 B -- -- S8-29 B -- -- S9-25 B -- -- S8-30 B -- -- S9-26 B -- - S8-31 B -- -- S9-27 G -- -- S8-32 B -- -- S9-28 B -- -- O NEP 16 2 Amendment N8 December 1977 LISTING OF PSAR PAGES, TABLES AND FIGURES Amend.

-       . Color    Nc.       Da e      Page No. Color             Date SIl-         W    NS          9/77 S9-30        B      N8        12/77         -

B -- -_ S9-31 B N8 12/77 S9-32 B _- __ S12-1 B -- __ S9-33 3 -- __ F12.1-1 B -- -- S9-34 B -- __ F12.1-2 B -- __ S9-35 G -- __ F12.1-3 B -- -_ S9-36 G __ __ S12-2 B _- -_ S9-37 W __ __ T12.2-1 7 __ __ S9-38 B N8 12/77 T12.2-2 B -- -- S9-39 B __ __ T12.2-3 B -- -_ S9-40 B N8 12/77 T12.2-4 B __ __ S9-41 B - __ T12.2-5 B -- _- S9-42 B __ __ S9-43 B - __ T12.2-6(1) B -- -- T12.2-6(2) B -- -- S9-44 B - __ T12.2-7 B -- __ S9-45 B __ __ T12.3-1 B __ __ S9-46 B -- -- T12.3-2 B _- __ S9-47 B -- __ S12-3 B -- __ S9-48 B - -_ S12-4 B -- -- S9-49 B -- __ S12-5 B __ __ S9-50 3 __ __ S12-6 B -- -- S9-51 G -- __ S12-6A B -- __ S9-52 B __ __ S12-7 B -- -- S9-53 8 __ __ S12-8 B -_ _ S12-9 B -- -_ S10-1 G -- __ S12-10 B _- __ S10-2 G -- __ S12-11 3 . __ S10-3 W __ __ S12-12 B __ __ A10.3-1 G -- __ S12-13 B _- __ A10.3-2 G __ __ S12-14 B __ __ S10.3-3 G -_ __ S12-15 B _- _ S10-4 B - __ S10-5 B -- __ S12-16 B -_ __ S10-6 B -- __ S12-17 B -- __ S10-7 B _- __ S12-18 B -- -- SA12.9-2-1 G D - S10-8 B _- __ S12-19 B -_ __ S10-9 B _- __ S12-20 B -_ _- S10-10 B - _ S12-21 B -- _ FS 10. 5-1 B -- _. S12-22 B -- _- S10-11 B - __ S12-23 B _ __ S10-12 B -- __ S12-24 B -- -- Sll-1 B -_ __ NEP 1 & 2 Amendment N12 February 1979 IdSTING OF PSAR PAGES, TABLES AND FIGURES Amend. Amend. Pap,e No. Color No. Date Page No. Color No. Date S12-25 B -- -- S12-26 B -- -- R-v W Nil 5/78

                                    ~

R-vi W N12 2/79 2-28 B -- R-vil W N9 1/78 S12-29 B -- -- S12-30 B -- -- R1-1 W N7 1/77 S12-31 B -- -- R2.1-1 W N1 1/77 S12-32 W -- -- R2.1-2 W N3 6/77 S12-33 W - -- R2.1-3 W N3 6/77 S12-34 B -- -- R2.1-4 W N3 6/77 S12-35 B -- -- R2.1-5 W N4 8/77 TS12.41-1 B -- -- R2.1-6 W Nll 5/78 TS12.41-2 B - - R2.1-7 W N9 1/78 TS12.41-3 B -- -- R2.1-8 W N9 1/78 S12-36 B -- -- R2.1-9 W N9 1/78 S12-37 B -- -- T312.9-1(1) W N3 6/77 T312.9-1(2) W N3 6/77 S13-1 W T312.9-1(3) W N3 6/77 S13-2 W -- -- S13-3 W -- -- R2.2-1 W S13-4 N10 3/78 B - -- R2.2-2 W NIO 3/78 S13-5 G -- -- S13-5A G -- -- R2.3-1 W N10 3/78 S13-6 G -- -- R2.3-2 W NIO 3/78 S13-7 G - -- R2.3-3 W N1 1/77 S13-8 G -- -- R2.3-4 W N1 1/77 TS13.9-1 R2.3-5 W N1 1/77 to R2.3-6 W N1 1/77 TS13.9-12 G D -- R2.3-7 W N1 1/77 FS 13. 9-1 R2.3-8 W N1 1/77 to R2.3-9 W N1 1/77 FS13.9-5 G D -- R2.3-10 W N10 3/78 R2.3-11 W N1 1/77 S15-1 B -- -- R2.3-12 W N1 1/77 S15-2 B -- -- R2.3-13 W N1 1/77 S15-3 B -- -- R2.3-14 W NIO 3/78 R2.3-15 W N1 1/77 S15-4 W -- -- R2.3-16 W N1 1/77 R2.3-17 W N1 1/77 S17-1 W -- -- R2.3-18 W N1 1/77 R2.3-19 W N3 6/77 . VOLUME 9 R2.3-20 W N3 6/77 Request and Responses R2.3-21 W N10 3/78 R-i W N7 11/77 R2.3-22 W N10 3/78 R-il W N9 1/78 R2.3-23 W N3 6/77 R-iii W N12 2/79 R2.3-24 W N3 6/77 R-iv W N12 2/79 R2.3-25 W N12 2/79 T372.04-1 W N1 1/77 T372.06-1(1) W N1 1/77 T372.06-1(2) W N1 1/77 T372.06-1(3) W N1 1/77 NEP 1&2 Amendment N7 November 1977 LISTING OF PSAR PAGES, TABLES AND FIGURES Amend. Amend. Page No. Color No. Date Page No. Color No. Date T372.06-1(4) W N1 1/77 T372.22-1(1) W N1 1/77 T372.06-1(5) W N1 1/77 T372.22-1(2) W N1 1/77 T372.06-1(6) W N1 1/77 T372.22-1(3) W N1 1/77 T372.06-1(7) W N1 1/77 T372.22-1(4) W N1 1/77 T372.06-1(8) W N1 1/77 T372.22-1(5) W N1 1/77 T372.06-1(9) W N1 1/77 T372.22-1(6) W N1 1/77 T372.06-1(10) W N1 1/77 T372. 22- 1 ( 7) W N1 1/77 T372.06-1(11) W N1 1/77 T372.22-1(8) W N1 1/77 T372.06-1(12) W N1 1/77 T372.22-2(1) W N1 1/77 T372.06-1(13) W N1 1/77 T372. 22-2 ( 2) W N1 1/77 T372. 06-2,(1) W N1 1/~. T372.22-2(3) W N1 1/77 T372.06-2(2) W N1 1/77 T372.22-2(4) W N1 1/77 T372.06-2(3) W N1 1/77 T372. 22-2 (5) W N1 1/77 T372.06-2(4) W N1 1/77 T372.22-2(6) W N1 1/77 T372.06-2(5) W N1 1/77 T372.22-2(7) W N1 1/77 T372.06-2(6) W N1 1/77 T372.22-2(8) W N1 1/77 T372.06-2(7) W N1 1/77 T372.22-3(1) W N1 1/77 T372.06-2(8) W N1 1/77 T372.22-3(2) W N1 1/77 T372.06-2(9) W N1 1/77 T372.22-3(3) W NL 1/77 T372.06-2(10) W N1 1/77 T372.22-3(4) W N1 1/77 T372.06-2(ll) W N1 1/77 T372.22-3(5) W N1 1/77 T372.06-2(12) W N1 1/77 T372.22-3(6) W N1 1/77 T372.06-2(13) W N1 1/77 T372.22-3(7) W N1 1/77 T372.06-3 W N1 1/77 T372.22-3(8) W N1 1/77 (91 shts) T372. 22-4 (1) W N1 1/77 T372.06-4 W N1 1/77 T372.22-4(2) N N1 1/77 (91 shts) T372.22-4(3) W N1 1/77 T372.06-5 W N1 1/77 T372.22-4(4) W N1 1/77 T372.06-6 W N1 1/77 T372.22-4(5) W N1 1/77 T372.06-7 W N1 1/77 T372.22-4(6) W N1 1/77 T372.06-8 W N1 1/77 T372.22-4(7) W N1 1/77 T372.06-9 W N1 1/77 T372.22-4(8) W N1 1/77 T372.07-1 W N1 1/77 T372.22-5(1) W N2 3/77 T372.07-2 W N1 1/77 T372.22-5(2) W N2 3/77 T372.07-3 W N1 1/77 T372.22-5(3) W N2 3/77 T372.07-4 W N1 1/77 T372.22-5(4) W N2 3/77 T372.07-5 W N1 1/77 T3 72. 22-5 (5) W N2 3/77 T372.17-1 W N1 1/77 T372.22-5(6) W N2 3/77 (1) T372.22-5(7) W N2 3/77 T372.17-1 W N1 1/77 T372.22-5(8) W N2 3/77 (2) T372.34-1 W N3 6/77 T372.17-1 W N1 1/77 (3) T372.17-1 W N1 1/77 (4) NEP 1 & 2 Amendment N12 February 1979 LISTING OF PSAR PAGES, TABLES AND FIGURES O Amend. Amend. Pare Na. Color No. Date Page No. Color No. Date T372.38-1 W N3 6/77 T372.39-14(35)W N12 2/79 T372.38-2 W N3 6/77 T372. 39-14 (36)W N12 2/79 T372.38-3 W N3 6/77 T372.39-14(37)W N12 2/79 T372.39-14(38)W N12 2/79 T372.39-1 W N12 2/79 T372. 39-14 (39)W N12 2/79 T372.39-2 W N12 2/79 T372.39-14(40)W N12 2/79 T372.39-3 W N12 2/79 T372.39-15(1) W N12 2/79 T372.39-4 W N12 2/79 T372.39-15(2) W N12 2/79 T372.39-5 W N12 2/79 T372.39-15(3) W N12 2/79 T372.39-6 W N12 2/79 T372.39-15(4) W N12 2/79 T372. 39 -7 W N12 2/79 T372.39-15(5) W N12 2/79 T372.39-8 W N12 2/79 T372.39-15(6) W N12 2/79 T372.39-9 W N12 2/79 T372.39-15(7) W N12 2/79 T372.39-10 W N12 2/79 T372.39-15(8) W N12 2/79 T372.39-11 W N12 2/79 N12 2/79 T372.39-15(9) W T372.39-12 W N12 2/79 T372.39-15(10)W N12 2/79 T372.39-13 W N12 2/79 N12 2/79 T372.39-15(11)W T372.39-14(1) W N12 2/79 T372.39-15(12)W N12 2/79 T372.39-14(2) W N12 2/79 T372.39-15(13)W N12 2/79 T372.39-14(3) W N12 2/79 T372.39-15(14)W N12 2/79 T372.39-14(4) W N12 2/79 T372.39-15(15)W N12 2/79 T372.39-14(5) W N12 2/79 T372.39-15(16)W N12 2/79 T372.39-14(6) W N12 2/79 T372.39-15(17)W N12 2/79 T372.39-14(7) W N12 2/79 T372.39-15(18)W N12 2/79 T3/2.39-14(8) W N12 2/79 T372.39-15(19)W N12 2/79 T372.39-14(9) W N12 2/79 T372.39-15(20)W N12 2/79 T372.39-14(10)W N12 2/79 T372.39-15(21)W N12 2/79 T372.39-14(11)W N12 2/79 T372.39-15(22)W N12 2/79 T372.39-14(12)W N12 2/79 T372.39-15(23)W N12 2/79 T372. 39-14 (13)W N12 2/79 T372.39-15(24)U N12 2/79 T372.39-14(14)W N12 2/79 T372.39-15(25)W N12 2/79 T372.39-14(15)W N12 2/79 T372.39-15(26)W N12 2/79 T372. 39-14 (16)W N12 2/79 T372.39-15(27)W N12 2/79 T372.39-14(17)W N12 2/79 T372.39-15(28)W N12 2/79 T372.39-14(18)W N12 2/79 T372. 39-15 (29)W N12 2/79 T372.39-14(19)W N12 2/79 T372.39-15(30)W N12 2/79 T372.39-14(20)W N12 2/79 T372.39-15(31)W N12 2/79 T372.39-14(21)W N12 2/79 T372.39-15(32)W N12 2/79 T372.39-14(22)W N12 2/79 T372. 39-15 (33)W N12 2/79 T372.39-14(23)W N12 2/79 T372.39-15(34)W N12 2/79 T372.39-14(24)W N12 2/19 T372.39-15(35)W N12 2/79 T372.39-14(25)W N12 2/79 2/79 T372.39-15(36)W N12 T372.39-14(26)W N12 2/79 T372.39-15(37)W N12 2/79 T372.39-14(27)W N12 2/79 N12 T372.39-15(38)W N12 2/79 T372.39-14(28)W 2/79 T372.39-15(39)W N12 2/79 T372.39-14(29)W N12 2/79 T372.39-15(40)W N12 2/79 T 37 2. 39-14 ( 30', . N12 2/79 T372.39-16(1) W N12 2/79 T372.39-14(31)W N12 2/79 T372.39-16(2) W N12 2/79 T372. 39-14 (32)W N12 2/79 N12 T372.39-16(3) W N12 2/79 T372.39-14(33)W 2/79 T372.39-16(4) W N12 2/79 T372.39-14(34)W N12 2/79 2/79 T372.39-16(5) W N12 NEP 1 & 2 Amendment N12 February 1979 LISTING OF PSAR PAGES, TABLES AND FIGURES Amend. Amend. Page No. Color No. Date Pap,e No. Color No. Date T372.39-16(6) W N12 2/79 R2.5-1 W N1 1/77 T372.39-16(7) W N12 2/79 R2.5-2 W N1 1/77 T372.39-16(8) W N12 2/79 R2.5-3 W N1 1/77 T372.39-17(1) W N12 2/79 R2.5-4 W N1 1/77 T372.39-17(2) W N12 2/79 R2.5-5 W N1 1/77 T372.39-17(3) W N12 2/79 R2.5-6 W N1 1/77 T372.39-17(4) W N12 2/79 R2.5-7 W N1 1/77 T372.39-17(5) W N12 2/79 R2.5-8 W N1 1/77 T372.39-17(6) W N12 2/79 R2.5-9 W N1 1/77 T372.39-18(1) W N12 2/79 R2.5-10 W N1 1/77 T372.39-18(2) W N12 2/79 R2.5-17 W N1 1/77 T372.39-18(3) W N12 2/79 R2.5-12 W N1 1/77 T372.39-18(4) W N12 2/79 R2.5-13 W N1 1/77 T372.39-18(5) W N12 2/79 R2.5-14 W N1 1/77 T372.39-18(6) W N12 2/79 R2.5-15 W N1 1/77 T372.39-19 W N12 2/79 R2.5-16 W N1 1/77 T372.39-20 W N12 2/79 R2.5-17 W N1 1/77 T372.39-21(1) W N12 2/79 R2. 5-18 W N2 3/77 T372.39-21(2) W N12 2/79 R2. 5-19 W N2 3/77 T372.39-22(1) W N12 2/79 R2.5-20 W N2 3/77 T372.39-22(2) W N12 2/79 R2.5-21 W NS 9/77 T372.39-23(1) W N12 2/79 R2.5-22 W NS 9/77 T372.39-23(2) W N12 2/79 R2.5-23 W N2 3/77 T372.39-24(1) W N12 2/79 R2.5-24 W N2 3/77 T372.39-24(2) W N12 2/79 R2.5-25 W N2 3/77 T372.39-25(1) W N12 2/79 R2.5-26 W N2 3/77 T372.39-25(2) W N12 2/79 R2.5-27 W N2 3/77 T372.39-26(1) V N12 2/79 R2.5-28 W N3 6/77 T372.39-26(2) W N12 7f79 R2.5-29 W N3 6/77 F372.39-1 W N12 z/79 R2.5-30 W N3 6/77 F372.39-2 W N12 2/79 R2.5-31 W N3 6/77 F372.39-3 W N12 2/79 R2.5-32 W N5 9/77 F372.39-4 W N12 2/79 R2.5-32a W NS 9/77 F372.39-5 W N12 2/79 R2.5-32b W N5 9/77 F372.39-6 W N12 2/79 R2.5-32c W NS 9/77 F372.39-7 W N12 2/79 R2.5-32d W N5 9/77 F372.39-8 W N12 2/79 R2.5-32e W NS 9/77 F372.39-9 W N12 2/79 R2.5-32f W N5 9/77 F372.39-10 W N12 2/79 R2.5-32g F N5 9/77 F372.39-ll W N12 2/79 R2.5-32h a' N5 9/77 F372.39-12 W N12 2/79 R2.5-33 W NS 9/77 F372.39-13 W N12 2/79 R2.5-34 W NS 9/77 F372.39-14 W N12 2/79 R2.5-35 W N3 6/77 F372.39-15 W N12 2/79 R2.5-36 W N5 9/77 R2.5-37 W N3 6/77 R2.4-1 W N1 1/77 R2.5-38 W N5 9/77 R2.4-2 W N6 10/77 R2.5-38a W N5 9/77 R2.4-3 W NS 12/77 R2.5-39 W N5 4/// R2.4-4 W N11 5/78 R2.5-40 W N5 9/77 R2.5-41 W N5 9/77 NEP 1 & 2 Amendment N12 February 1979 LISTING OF PSAR PAGES, TABLES AND FIGURES 9 Amend. Amend. Page No. Color No. Date Page No. Color No. Date R2.5-42 W NS 9/77 R211-5 W N1 1/77 R2.5-43 W N6 10/77 R2H-6 W N1 1/77 R2.5-44 W N6 10/77 R2H-7 W N1 1/77 R2.5-45 W N9 1/78 R2.5-46 R3-1 W N8 12/77 W N9 1/78 T360,11-1 W nl 1/77 R3-2 W N8 12/77 T360.11-2 W N1 1/77 R3-3 W N3 6/77 T360.16-1 R3-4 W N12 2/79 W N1 1/77 T360.16-2 W N1 1/77 R3-5 W N11 5/78 R3-6 W N11 5/78 T360.18-1 W N) 6/77 R3-7 W N11 5/78 T360.23-1(1) W N5 9/77 R3-8 W N11 5/78 T360.23-1(2) W NS 9/77 R3-9 W 12 2/79 T360.23-1(3) W NS 9/77 R3-10 W N12 2/79 T360. 23-1 (4) W N5 9/77 R3-ll W N12 2/79 T360.23-1(5) W N5 9/77 R3-12 W N12 2/79 T360.23-1(6) W NS 9/77 T222.1-1(1) W N12 2/79 T360.23-1(7) W N5 9/77 T222.1-1(2) W N12 2/79 T360.23-1(8) W NS 9/77 T222.. W N12 2/79 F360.3-1 W N2 3/77 T222.2-1 W N12 2/79 ~ F360.16-1 W N1 1/77 T222.4-1 W N12 2/79 F360.16-2 W N1 1/77 F222.1-1 W F360.16-3 N12 2/79 W N1 1/77 F222.1-2 W N12 2/79 F360.16-4 W N1 1/77 F222.1-3 W F360.16-5 W N12 2/79 N1 1/77 F222.1-4 W N12 2/79 F360.16-6 W N1 1/77 F222.1-5 W N12 2/79 F160.16-7 W N1 1/77 F222.1-6 W N12 2/79 F360.16-8 W N1 1/77 F222.1-7 W N12 2/79 F360.16-9 W N1 1/77 F222.1-8 W N12 2/79 F360.16-10 W N1 1/77 Vo 10 F360.16-11 W N1 1/77 F360,16-12 W N1 1/77 F360.16-13 W N1 1/77 R4-1 W N3 6/77 F360.16-14 W N1 1/77 R4-2 W N3 6/77 F360.16-15 W N1 1/77 F360.16-16 W N1 1/77 R5-1 W N3 6/77 F360.16-17 W N1 1/77 RS-2 W N4 8/77 F360.28-1 W N3 6/77 RS-3 W N4 8/77 F360.29-1 W N5 9/77 RS-4 W N4 8/77 R2B-1 W NP 3/77 R6-1 W N1 1/77 R6-2 W N1 1/77 R2C-1 W NJ 1//7 R6-3 W N10 3/78 R6- 4 W N10 3/78 R211-1 N1 1/77 R6-5 W N10 3/78 R211-2 U N1 1/77 R6-6 k NS 9/77 R211-3 W N1 1/77 R6-7 W N10 3/78 R211-4 W N1 1/77* R6-8 W N11 5/78 R6-8a W N11 5/78 R6-8b W N11 5/78 NEP 162 Amendment N12 February 1979 LISTING OF PSAR PAGES, TABLES AND FIGURES Amend. Amend. Page No. Color No. Date Page No. Color No. Date R6-9 W N7 11/77 T022.10-24(1) W N12 2/79 R6-10 W N7 11/77 T022.10-24(2) W N12 2/79 R6-11 W N10 3/78 T022.10-24(3) W N12 2/79 R6-12 W N10 3/78 T022.10-25 W N12 2/79 R6-13 W N11 5/78 T022.10-26 W N11 5/78 R6-14 W N11 5/78 R6-15 W N12 2/79 T022.10-28 W N12 2/79 R6-16 W N12 2/79 T022.10-29 W N12 2/79 R6-16a W N12 2/79 T022.10-30(1) W N12 2/79 R6-17 W N12 2/79 T022.10-30(2) W N12 2/79 R6-18 W N11 5/78 T022.10-30(3) W N12 2/79 R6-19 W N12 2/79 T022.10-31 W N12 2/79 R6-20 W N12 2/79 T022.10-32(1) W N12 2/79 R6-20a W N12 2/79 T022.10-32(2) W N12 2/79 R6-21 W N12 2/79 T022.10-32(3) W N12 2/79 R6-22 W N11 5/78 T022.10-32(4) W N12 2/79 R6-23 W N11 5/78 T022.10-32(5) W N12 2/79 T022.10-1 W N12 2/79 T022.10-33 W N12 2/79 _ T022.10-2 W N12 2/79 F022.10-1 W N12 2/79 T022.10-3(1) W N12 2/79 F022.10-2 W N12 2/79 T022.10-3(2) W N12 2/79 F022.10-3 W N12 2/79 T022.10-3(3) W N12 2/79 F022.10-4 W N12 2/79 T022.10-4(1) W N12 2/79 F022.10-5 W N12 2/79 T022.10-4(2) W N12 2/73 F022.10-6 W N12 2/79 T022.10-5(1) W N12 2/79 F022.10-7 W N12 2/79 T022.10-5(2) W N12 2/79 F022.10-8 W N12 2/79 T022.10-5(3) W N12 2/79 F022.10-9 W N12 2/79 T022.10-5(4) W N12 2/79 F022.10-10 W N12 2/79 T022.10-5(5) W N12 2/79 F022.10-11 W N12 2/79 T022.10-6 W N12 2/79 F022.10-12 W N11 5/78 T022.10-7 W N12 2/79 F022.10-13 W N12 2/79 T022.10-8 W N12 2/79 F022.10-14 W N12 2/79 T022.10-9 W N12 2/79 F022.10-15 W N12 2/79 T022.10-10 W N11 5/78 F022.10-16 W N12 2/79 T022.10-11 W N12 2/79 F022.10-17 W N12 2/79 T022.10-12 W N11 5/78 F022.10-18A W N11 5/78 T022.10-13(1) W N12 2/79 F022.10-18B W N11 5/78 T022.10-13(2) W N12 2/79 F022.10-19A W N11 5/78 T022.10-14 W N12 2/79 F022.10-19B W N11 5/78 T022.10-15 W N12 2/79 FL.2.10-19C W N11 5/78 T022.10-16 W N12 2/79 F022.10- 19D W N11 5/78 T022.10-17 W N12 2/79 F022.10-20 W N11 5/78 T022.10-18 W N11 5/78 F022.10-21 W N11 5/78 T022.10-19 W N12 2/79 F022.10-22 W N11 5/78 T022.10-20(1) W N12 2/79 F022.10-23 W Nil 5/78 T022.10 90(2) W N12 2/79 F022.10-24 W N12 2/79 T022.1G  :) W N12 2/79 F022.10-25 W N12 2/79 T022.10-21.2) W N12 2/79 F022.10-26 W N12 2/79 T022.10-22 W N12 2/79 TC22.10-23 W N12 2/79 NEP 1&2 Amendment N12 February 1979 I LISTING OF PSAR PAGES, TABLES AND FIGURES Amend. Amend. Page No. Color No. Date Page No. Color No. Date F022.10-27 W N12 2/79 F022.10-66 W N12 2/79 F022.10-28 W N12 2/79 F022.10-67 W N12 2/79 F022.10-29 W N12 2/79 F022.10-68 W N12 2/79 F022.10-30 W N11 5/78 F022.10-31 W N11 5/78 R7-1 W N1 1/77 F022.10-32 W N12 2/79 R7-2 W N3 6/77 F022.10-33 W N11 5/78 R7-3 W N3 6/77 F022.10-34 W N12 2/79 R7-4 W N4 8/77 F022.10-35A W N12 2/79 R7-5 W N11 5/78 F022.10-35B W N12 2/79 R7-6 W N4 8/77 F022.10-35C W N12 2/79 R7-7 W N11 5/78 F022.10-36 W N12 2/79 R7-8 W N4 8/77 F022.10-37 W N12 2/79 R7-9 W N11 5/78 F022.10-38 W Nll 5/78 R7-9a W N10 3/78 F022.10-39A W N11 5/78 R7-10 W N4 8/77 F022.10-39B W N11 5/78 R7-11 W N4 8/77 F022.10-39C W N11 5/78 R7-12 W N4 8/77 F022.lJ-39D W N11 5/78 R7-13 W N4 8/77 F022.10-39E W N11 5/78 R7-14 W N4 8/77 - F022.10-40 W N11 5/78 R7-15 W N4 8/77 F022.10-41 W N11 5/78 R7-16 W N12 2/79 F022.10-42 W N11 5/78 R7-17 W N10 3/78 F022.10-42A W N12 2/79 R7-17a W N10 3/78 F022.lu-43 W N11 5/78 R7-17b W N10 3/78 F022.10-44 W N12 2/79 R7-17c W N10 3/78 F022.10-45 W Nll 5/78 R7-17d W N11 5/78 F022.10-46 W N11 5/78 R7-17e W N10 3/78 F022.10-47 W N12 2/79 R7-17f W N10 3/78 F022.10-48 W N12 2/79 R7-18 W N11 5/78 F022.10-49 W N12 2/79 R7-19 W N11 5/78 F022.10-50 W N12 2/79 R7-20 W N10 3/78 F022.10-51 W N12 2/79 R7-20a W N12 2/79 F022.10-52A W N12 2/79 R7-21 W N11 5/78 F022.10-52B W N12 2/79 R7-22 W N10 3/78 F022.10-52C W N12 2/79 R7-23 W N7 11/77 F022.10-53 W N11 5/78 R7-24 W N10 3/78 F022.10-53A W N11 5/78 R7-25 W N10 3/78 F022.10-54 W N11 5/78 R7-26 W N7 11/77 F022.10-55 W N11 5/78 R7-27 W N10 3/78 F022.10-56 W N11 5/78 F030.5-1 W N4 8/77 F022.10-57 W N11 5/78 F030.8-1 W N10 3/78 F022.10-58 W N11 5/78 F030.9-1 W N12 2/79 F022.10-59 W N12 2/79 F030.9-2 W N12 2/79 F022.10-60 W N12 2/79 F030.14-1 W N7 11/77 F022.10-61 W N12 2/79 h F022.10-62 W N12 2/79 R8-1 W N8 12/77 F022.10-63 W N12 2/79 R8-2 W N3 6/77 F022.10-64 W N12 2/79 R8-3 W N3 6/77 F022.10-65 W N12 2/79 R8-4 W N3 6/77 R8-5 W N3 6/77 R8-6 W N3 6/77 NEP 1&2 Amendment N12 February 1979 LISTING Or' PSAR PAGES, TABLES AND FIGURES Amend. Amend. Page No. Color No. Date Page No. Color No. Date R8-7 W N11 5/78 R9-10 W N7 11/77 R8-8 W N11 5/78 R9-11 W N8 12/77 R8-9 W N11 5/78 R9-12 W N8 12/77 R8-10 W N11 5/78 R9-13 W N10 3/78 R8-11 W N11 5/78 R9-14 W N12 2/79 R8-12 W N4 8/77 R9-15 W N10 3/78 R8-13 W N11 5/78 R9-16 W N9 1/78 R8-14 W N11 5/78 F010.1-1 W N1 1/77 R8-15 W N3 6/77 F010.1-2 W N1 1/77 R8-16 W N11 5/78' F010.1-3 W N1 1/77 R8-17 W N11 5/78 F010.1-4 W R8-18 W N1 1/77 N3 6/77 F010.1-5 W N1 1/77 R8-19 W N8 12/77 R8-20 W N11 5/78 R10-1 W N3 6/77 R8-21 W N11 5/78 R10-2 W N8 12/77 R8-22 W N7 11/77 R10-3 W N12 2/79 R8-23 W N7 11/77 R10-4 W N12 2/79 R8-24 W N6 10/77 R10-5 W N12 2/79 R8-25 W N8 12/77 R10-6 W N12 2/79 l R8-26 W N11 5/78 R10-7 W N12 2/79 R8-27 W N7 11/77 R10-8 W N12 2/79 R8-28 W N11 5/78 R8-28a W N11 5/78 R11-1 W N1 1/77 RB-28b W N12 2/79 R8-28c W N11 5/78 R12-1 W N3 6/77 R8-29 W N12 2/79 R8-29a W N12 2/79 R13-1 W N8 12/77 R8-29b W N12 2/79 R13-2 W R8-29c N1 1/77 W N12 2/79 R13-3 W N1 1/77 R8-29d W N12 2/79 R13-4 W R8-30 N1 1/77 W N12 2/79 R13-5 W N1 1/77 R8-31 W N12 2/79 R13-6 W R8-31a N1 1/77 W N12 2/79 R13-7 W N8 12/77 R8-32 W N11 5/78 R13-8 W N8 12/77 R8-33 W N10 3/78 R13-9 W F040.39-1 W N8 12/77 N8 12/77 R13-10 W N1 1/77 R13-11 W N1 1/77 R9-1 W N1 1/77 R13-12 W N8 R9-2 W N8 12/77 12/77 R13-13 W N8 12/77 R9-3 W N8 12/77 R13-14 W R9-4 N1 1/77 W N8 12/77 R13-15 W N1 1/77 R9-5 W N3 6/77 R13-16 W N1 1/77 R9-6 W N3 6/77 R13-17 W N1 1/77 R9-7 W N8 12/77 R13-18 W N1 1/77 R9-8 W N10 3/78 R13-19 W N1 1/77 R9-9 W N8 12/77 R13-20 W N1 1/77 NEP 1 6 2 Amendment N12 February 1979 LISTING OF PSAR PAGES, TABLES AND FIGURES O Amend. Amend. Page No. Color No. Date Page No. Color No. Date R13-21 W N8 12/77 R15-20 W N10 3/78 R13-22 W N8 12/77 R15-21 W N10 3/78 R13-23 W N8 12/77 R13-24 W N8 12/77 R16-1 W N7 11/77 R13-25 W N1 1/77 R13-26 W R17-1 W N3 6/77 N6 10/77 R13-27 R17-2 W N3 6/77 W N11 5/78 R13-28 R17-3 W N3 6/77 W N11 5/78 R17-4 W N3 6/77 R13-29 W N11 5/78 R13-30 R17-5 W N3 6/77 W N11 5/78 R13-31 R17-6 W N10 3/78 W N11 5/78 R13-32 W R17-7 W N3 6/77 N11 5/78 R17-8 W NIO R13-33 W 3/78 N11 5/78 R17-9 W R13-34 W N11 5/78 N3 6/77 R13-35 R17-10 W N6 10/77 W N4 8/77 R13-36 W R17-11 W .: ., 10/77 N4 8/77 R13-37 W R17-12 W N6 10/77 N4 8/77 R13-38 W N5 9/77 R13-39 W N7 11/77 R14-1 W N3 6/77 R14-2 W N3 6/77 R14-3 W N3 6/77 R14-4 W N3 6/77 R14-5 W N3 6/77 R14-6 W N4 8/77 R14-7 W N7 11/77 R15-1 W N8 12/77 R15-2 W N10 3/78 R15-3 W N10 3/78 R15-4 W N10 3/78 R15-3 W N10 3/78 R15-6 W NIO 3/78 R15-7 W N10 3/78 R15-8 W N10 3/78 R15-9 W NIO 3/78 R15-10 W NIO 3/78 R15-11 W N10 3/78 R15-12 W N10 3/78 R15-13 W N4 8/77 R15-14 W N4 8/77 R15-15 W N4 8/77 R15-16 W N10 3/78 R15-17 W NIO 3/78 R15-18 W N10 3/78 R15-19 W N10 3/78 NEP 1 & 2 NUCLEAR PROJECT Of NEWENGLAND POWER COMPANY Telephone 617 3"9011 New England Electric System 20 Turnpike Rood, Westbcrough, Massachusetts 01581 May 17, 1978 NRC-N-73 Director of Nuclear Reactor Regulation United States Nuclear Regulatory Commission Washington, D.C. 20555 DOCKET NOS. STN 50-568 AND STN 50-569

Dear Sir:

Pursuant to the Atomic Energy Act of 1954, as amended, the Commission's Rules and Regulations issued thereunder, and the National Environmental Policy Act of 1969 as implemented by 10 CFR Part 51, New England Power Company (NEP) hereby submits 60 copies of Amendment Nll of the Preliminary Safety Analysis Report. The following information is included in Amendment Nll.

1) PSAR text revisions incorporating previously submitted responses to NRC staff's Request for Additional Information.
11) Miscellaneous changes resulting f rom meetings and discussions with h7C's staff.

iii) Miscellaneous and minor editorial changes. Respectfully submitted , NEW ENGLAND POWER COMPANY By N R. Stevens Executive Vice-President COMMONWEALTH OF MASSACHUSETTS)

                                       )ss.

COUNTY OF WORCESTER ) Personally appeared before me this /4 N day of N y , 1978, John R. Stevens, who, being duly sworn, did state that he is Executive Vice-President of New England Power Company, an applicant herein, that he is duly authorized to execute and file the foregoing amendment in the name and on behalf of New England Power Company, and that the statements in said application are t rue to the best of his knowledge and belief. Not'ary Public My Commission Expires: # /f/7/ Nll-0}}