ML18067A784

From kanterella
Revision as of 19:09, 25 April 2019 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
CPC Palisades Plant,Reactor Building Job 5935,Seismic Analysis.
ML18067A784
Person / Time
Site: Palisades Entergy icon.png
Issue date: 06/30/1969
From:
AFFILIATION NOT ASSIGNED
To:
NRC
Shared Package
ML18067A780 List:
References
NUDOCS 9711240246
Download: ML18067A784 (41)


Text

CONSUMERS POWER COMPANY PALISADES PLANT, REACTOR BUILDING JOB NO. 5935 SEISMIC ANALYSIS JUNE 1969 Civil Engineering Department Power & Industrial Division Bechtel Engineering Corporation San Francisco, California 81593427 ABSTRACT This report presents the results of the seismic analysis of the Palisades Nuclear Power Plant, containment building and concrete internal floor and wall systems. Unless changes occur in the earthquake criteria or data for the building and soil conditions, the results are final and are to be used in aseismic design. -

  • Section 1.0 2.0 3.0 A B c D E F CONTENTS Title Introduction Results Method of Analysis Appendicies Moments, Shears, Accelerations, and Displacements Spectrum Response Curves for Equipment Mass Model Properties Frequencies and Mode Shapes Spectrum Curves for Earthquake Spectrum Response Calculations References Page 1. 4 -5 A-1
  • B-1 .*. C-1
  • D-1 E-1. F-1
  • *

1.0 INTRODUCTION

This report presents the results of the seismic analyses ed on the Palisades Nuclear Power Plant, for the reactor building and concrete internal wall and floor systems .. The results should be utilized for the purpose of providing aseismic design of the structural system and Class I equipment.

Essentially the design of the outer structure of the building consists of post-tensioned concrete.

A brief description of the arrangement is as follows: a cylindrical, reinforced concrete containment with a circular dome; the structure rests on a cular concrete slab. The internal system is comprised of a work of floors and walls interconnected in a cellular fashion and formed of reinforced This system rests on the base slab of the reactor building and is considered to be independent of the reactor building with the exception of the base connection.

The building system is resting on a soil providing an elastic

  • foundation.

The pieces of equipment of significant mass values are considered as concentrated masses at the appropriate elevation in the internal system. For the purposes of the seismic analyses a mathematical model is constructed consisting of lumped masses and stiffness coefficients.

A brief sketch of the building and a superimposed outline of the model is shown on figure 1, Page 3. The reactor building is subjected analytically to a design quake of O.lOg (g.=unit acceleration of gravity) and a maximum credible earthquake of 0.20g. The results of the analyses are discussed in section 2.0 in the form of internal forces and metric behavior.

The methods utilized are presented in section 3.0 with a discussion of how the seismic analysis is conducted

.... In Appendix A are presented the resulting moments, shears, placements, and accelerations.

These results are summarized onto graphs. For the seismic of Class I equipment located inside the *

  • building, spectrum response curves are provided in Appendix B. eluded is a description of how to use. the curves. A summary of the mass model values is shown in Appendix C. The results of analyzing the model for natural frequencies and mode shapes are presented in Appendix D. The mode shapes are plotted and labeled to show how the structure vibrates at its various natural frequencies. 0 *o . . ., 1,,*t :.. * ..l The spectrum response curves which are assumed for the earthquake environment at the site are shown in Appendix E. The calculations of the spectral response of the model are presented in Appendix F. Damping values of the various materials and the calculations for an appropriate combination to a single value per mode are also presented in this Appendix.

I JO *051 l

  • 6-6B . "--:** ,{ .. : ... : CALCULATION SHEET SIGNATU RE__.1__1

....... .... T1::.....

__ _ DATE_...,.._

__ _

  • TITLE PA t, ,A JOB NO. S9 -...5E r <. ..H .IC-,.1"1,*!/A.l

<r1 .S".!.( SHEET NO. __ _ c I 11 **G.ZZ I

/<EPKE<EA/

r4 "F RV/(..t)J1V4 .A/V.d

'** * .,,,.' **; *1" ,,; , .. ,' 2.0 RESULTS The results of the seismic analyses are presented in Appendix A in the form of graphs showing internal forces and geometric havior. First are presented the results due to the design quake, followed by the maximum credible earthquake.

In each case are presented in order, separate graphs of elevation versus bending moment, shear, acceleration, and displacement.

The shear across the base slab is presented below the shear diagram. These graphs are shown on figure 2 thru 9, pages A-1 thru A-8. The resulting displacement plots show that the gaps provided between the containment structure and internal systems, and tween the con_tainment structure and auxiliary building are not crossed during the specified seismic excitation .

  • * * : .! *.' *'"'.:-!*. . *; ::,.:i 3.0 METHOD OF ANALYSIS The methods used in conducting the seismic analysis consist essentially of five steps. The first step involves the mulation of a mathematical model, The natural frequencies and *mode shapes of the model are determined during the second step. Appropriate damping values are selected in the third step upon evaluation of the materials and mode shapes. The fourth step is the appropriate description of the earthquake.

The response of the structure to the earthquake is determined in the fifth step. The mathematical model of the structure is constructed in terms of lumped masses and stiffness coefficients.

At appropriate locations within the building, points are chosen to lump the weights of the structure.

Between these locations properties are calculated for moments of inertia, cross sectional areas, effective shear areas, and lengths. The source for this mation is presented in reference l, As the building rests on soil, appropriate properties are listed on page C-2. These properties are utilized to obtain soil stiffness coefficients

  • as obtained from reference
2. The properties of the model are utilized in an IBM computer program, STRESS, along with unit loads to obtain the flexibility coefficients of the at the mass locations . The natural frequencies and mode shapes or tne are obtained by a Bechtel computer program, CE617. This program utilizes the flexibility coefficients and lumped weights of *the model. The flexibility coefficients are formulated into a matrix and inverted to form a stiffness matrix. The program then uses the technique of diagonalization by successive rotations to obtain the natural frequencies and mode shapes *. The results are shown in Appendix D, on pages D-1 thru D-4. Damping values for the .structural system are selected based upon evaluation of the materials and mode shapes. Appropriate damping values of individual materials are presented in reference 4 and restated on page F-1. Evaluation of the mode shapes makes ible the selection of damping values to be*associated with each mode. Both the first and the second mode indicate activity of the soil. The first mode shows the soil to be contributing to a rocking effect and some translation of the building and the concrete internals.

The second mode indicates rocking and a large amount of translation in the soil. The higher modes show mainly flexure of the structure with some translation in the soil. The calculations for proportionally combining the damping values of the structure and soil are shown on pages F-1 and F-5 * -s-

  • * .... ,' ; : . '*.*** .. ::,_ In determining the response of the building to the earthquake, the spectrum response technique is utilized.

For this tech-nique the earthquake is described by a spectrum response curve presented in Appendix E, pages E-1 and E-2. Curves are provided for both the design and maximum credible earthquake.

From the curves, acceleration levels are determined as associated with the natural frequency and damping value of each mode.. These accelerat.ion levels are tabulated on page F-5. The standard spectrum response technique uses these values to determine inertial forces, shears, moments, and displacements per mode. These results are then combined on the basis of the square root of the sum of the squares to obtain the structural response.

The process is accomplished by a Bechtel computer program, CE641. Samples of the individual calculations are shown in Appendix F, page F-6 thru F-8. The spectrum response curves for equipment inside the building are generated by the time history technique of seismic analysis.

The sample earthquake utilized is that recorded at Taft, California, 1952. Essentially the curves are generated by applying the recorded earthquake to a single degree of freedom system, for which is varied the values for damping and.natural frequency.

Some averaging of the curves is provided to smooth out the erratic response of the earthquake's random behavior.

At the high frequency end of the curve, the acceleration levels converge to the value of the. location inside the buildi_ng.

Additional information regarding the curves is presented in Appendix B.

  • The digital computer program, CE617 and CE641, are proprietary within the Bechtel Engineering Corporation

...... : APPENDIX A MOMENTS, SHEARS, ACCELERATIONS AND DISPLACEMENTS 110 *0:11J1 e-ee CALCULATION SHEET SIGNATU RE __ L)="'-"-'

___ _ CATE ____ _

JOB NO. * ,;_9 ..1 f SUBJECT __

____ c_r...._ ____________

_ SHEET NO. __ _ \) \) '4J

  • 7t5 -.----------.

.34.33 7ZI. G.83.7. £2.32.

,5t,67 . S9o'.. __ ..__ _______ ---4 $,,EAR.

bE--.S'/<3N EA1::.TH4uA I<!.£ /CJ%'

eC9

/700 2.1310 $

IA.I St.A ________ .. ,,_ -*-*-------

-*-.---..----

A-I I JO I 0, I J I &-68 CALCULATION SHEET SIG NA TUR E___,L).;,.,/,J....t-.

-..J..ko_,_.,.._S:...._.1'-"<'._,,.:J

___ _ DATE ____ _

  • TITLE /31L1<.4LleS SUBJECT
  • 5PE.(TA.-'Lld' tf?E<.f?. /'I . " '

< 4J 9& ZS.' " ,

/S"o, "zo" /l-Z* JOB NO. £;9<'<:;" SHEET NO. __ _ . ffoM&Nr Ll.e...S"/<:5"#

EA.eT#tpt:-1"'1.<'£

/ 0 /:

ACcELE.L:A C,49-1 0 93,

£-V

  • Gii' .

Git* CJ! e.c c-J f51 I. "? c.' C1' r:Jc1* n'? , (;60 .. 0 5'L.'CR'? 't "-' ,

' O/ Y n i>'P;? N'!) 11 .S.Y{7 !Td0'?3Ar'Y_?

902' 'ON .1.33HS 5.r 6 ..1 *oN sor 3.1.VQ .l33 H s N 0 l.l VI n ::n v:> ., .... , ........ . :*.:.:: *-911-il 0[1 130 1os1 J' &-ee CALCULATION SHEET SIGNATURE_.._/)__.._o#-U

__ ......

DATE ____ _ I 72.1.lS J::'

I Q I .l!f.. , .Oz.3(;. . ()/$G. . ()082..£ ! 0()513 b 1-f CEHEA./'r JOB NO. 59 JS: SHEET NO. __ _

E..vvc!"voff ,1 G-N £...erHq,uA k'£ /0 ?'; GRGUA14 T/<',J &'l'J' .0/5() If zz.' , C/4.3 &c'-I

  • t:>(;; 74>tJ s-9o'
  • 00 s 18 ( .&""r) a'J c*) ""' ;..') ... D A 130 105131 &-118 ., '. : .. .'.::::; '1**-: CALCULATION SHEET : **' * .... '. SIGNATURE..-/)__,_, __._ko""'-=o-""$"'-.LK-....,._"J

___ _

  • TITLE /?A; l.,(A i),F < SUBJECT A--.s-e 0,, -9057 <J 'O 9eaB OATE ____ _ JOB NO ..

.:?5 SHEET NO. __ _ S.vE"911ii?

bvcL.(;)P&

£Q. 2a% Gt2ouA.Jt:J 7.£%

,. I S9<:1 .___ ___ __,

130 *0,1 l *&-ea rt!J SIGNATURE J). d_.:;. K.T CALCULATION SHEET ',* DATE ____ _ TITLE 4 DE.r JOB NO .

SUBJ

__

___________

_ SHEET NO. __ _ I c;.

hYE,(.aPE hA )('I C12£.l:).

G Q. 0RCt.IN.0 ACCcLE;;2AJ7vN 7.-!:3 ./J4h'P/A)G, A-to m Cl' c.o (,.J N ')oz* .;;02* L12* ':JN . ?7"P" oz <<:!?:? . p ..:Td';::>

  • ")( y hi' (}, of,_7 ?o? Cl') '"7 ?d 0 7.7 /1 tv3 ('>'?/ ..L p.--.773?? /7' l-V * /'!"?/ .J. v ;y .77 ,3';)';) v ., e>2. t1'S 681' 5t."80? I' I 0 I * -

"" '\ '--5Z'IZL ______ .___, 5'L "ON .l.33HS

.....

.... -1:i3 rs n , --5-£-6-5-*oN eor -----------------------..)'..,...E'__,..V.,.,Pr7"<"">

7 7"""'1..,-;PC/.,..--,-

31.l.11. 3.l.VO .L33HS NOll.vin::nv::>

1 lO I 051 J 1 IHl8 . ' **"** .. ** . . -,.: .. CALCULATION SHEET ' ' .. '**' SIGNATURE___./)"""-..;...'

-"-/d,....>o...;:;;c_.$.._.JC......,.7

___ _ DATE ____ _

....

___________________

_ JOB NO. 5935 ,5:PEcTguH*

6=-::p I . ----* **--------

7z1.z<;.'

  • . C)S.S/ .

I , GA:e.7!;.

A-8 SHEET NO. __ _ . 41>717

/74 x.

ca. 20%

7.£ % ./JA.h'PEA/<il 649.------. oz c; 9 .0176' APPENDIX B SPECTRUM RESPONSE CURVES FOR EQUIPMENT

  • .. * *. :_ .. : .. : ! -:***. . ...
  • B Spectrum Response Curves are presented for the Palisades Nuclear Power Plant, reactor building and concrete internal floor and wall systems. The curves are to be used for the seiimic design of Class I equipment at various locations witl"\in the reactor building.

The curves are provided as a by-product for the seismic analyses conducted on the building.

In generating the curves the time history technique of seismic analysis *is utilized.

As such, some averaging of the resulting values is employed.

The sample earthquake utilized is. that recorded at Taft,* California, 1952. The curves are generated with respect to the design earthquake yalue of Q.lQg. For condw:...ting seismic: analyses of equipment with respect to the maximum credible earthquake-,.--ute

  • ortne **---curve are -fC> be
    • --*-.. .... . *-* . . In utilizing the curves, one of the following procedures is to be utilized.

(1) Equipment must be pre-analyzed as rigid or flexible.

If the equipment is rigid, with a natural frequency of 30 cycles per second or greater, then the g level at the high frequency end of the curve is to be applied to the equipment.

This g level corresponds to the value at the appropriate elevation for the building acceleration curve shown on figure 4 pa_g_e (2) If the equipment is flexible then its natural frequencies and damping values must be determined.

The appropriate spectrum curve -is then selected based upon the location of the equipment and associated damping. From the curve, acceleration levels are selected corresponding to the natural frequencies of the equipment.

  • These acceleration levels are to be used for the seismic analyses.

For equipment with intermediate values of damping or at locations in between those specified, apply linear interpolation between. the curves. (3) In lieu of the previous two approaches an alternate can be used when the equipment is not reviewed as rigid or flex-ible. Use the maximum acceleration peak of the appropriate trum curve. This can be considered as an equivalent static sis and is extremely conservative.

A brief sketch of the reactor building with a superimposed seismic . model is on fig.l p3ge B-19. Appropriate elevations are also shown. For the seismic design of equipment to resist the horizontal action of an earthquake, curves are presented for numerous locations throughout the structure.

These curves are identified with respect to the points of figure 11 page c-4. The horizontal axis is in g's ratioed to the acceleration of gravity. The top of the curves are identified for point number and the associated fraction of critical damping

  • B-1
  • ... :: *' ; l,.,.. .. I' .. ,, ...... For the seismic design of equipment to resist the vertical action of an earthquake one curve is presented after the previous curves. This curve is to be used at all locations.

The acceleration values from the curve are to be reduced to two thirds. of the indicated values by the user. Additional curves can be provided upon request;.

Test data may be utilized in lieu of performing a dynamic ysis. Such data may originate from information such as dynamic environments encountered in equipment transportation or actual dynamic tests . B-2 ACCEU:RATJ:'J vs F.'IE!;urncY(c;?S)

POJIH = 1 !)Al1PING

  • 0.020 --,-.. **--. 0.1 (l,2 o.4 o,6 l.O 2.0 4.o 6,o 10. 20. 4o, 100. "
1. ?.60
  • 1.110
  • o.9tio
  • 0, lil J
  • C, ot-C * *o. s 1 o
  • 0,360 *
  • i 0.210 * --i
  • 0.060 * **2*:? * *2*2w***2

,. .. -0,090 * * * * .. * * ** * * ** ,,. , IZ ". '* ....... .............................................. .................. ................... ....... . 0.1 0.2 \J,4 o.6 1.0 2.0 4;0 6,o 10, 20,

  • 4o, 60, 100
  • FREQl (CPS) I ,. , * * * * * * * * * * * * * * * *
  • 1,260 1.110 o,96!1 0,660 0,060 **O, 090
  • S?Ecrnu1*11_j) vs POINT ;:: 2 .OAHPltHa 0,020 0.1 i;,2 0,4 o,6 1.0 2.0 4.0 6,C 10, 20, 40, 60, 10C, *
  • I e I t 1 I + 1 I 1 1 1 + 1 I e 't 1 I + I 1 + 1
  • I + 1 + + I 1 e 1 ' I t 1 I
  • t t t I t 1' t I t t t I ... t t .* t + I
  • t +. t t I t : f t t t
  • I t I t I
  • I t t
  • I I ... I * ;
  • t
  • t ** 1,260
  • w 1.110
  • 0.960
  • I . ..
  • 0.810 *
  • 0,660 + 0,510
  • 0
  • 0.360 * ) 0.210. *' *---'!+-* , !Ofi 0,060 * \ \_ \ . I\ ... \ .
  • 2 . -0.090
  • _:f7 1 I<. . . ' + I I I I I I I I I + I I
  • I I + I I I + t I +. I I + .. + I + I +
  • t I I I I t I I I ... f I I I f + I I I .. t I + I t
  • t
  • I + I * + I I I f t t I t I
  • I f t I t
  • t I I i' t I 4 I f + f + I
  • t ** 0,1 0.2 0,4 0.6 l.C 2.0 -4,0 6,Q 10, 20, 40, 60, 100,
  • FREQUJ *-* * * * * , ' ' * * * * ' * * , * * * * . . * * *
  • 1,260 0,810 0,660 0,510 0,210 0,060 *0,090 CJ) '----t!) -z 0 ..; H µ:i ...:I µ:i u u ..:x: < :--. z ":'*-c \ K ..... --'-0 ::r:

.t.CCEL!:RATJJ:J VS POINT :i 5 UAMPIMG 1: 0,020 . 0 , l 0 , 2 0., 'I iJ o (> 11 Q 2 I Q 4 t Q 6 t Q 10 I 2 0 1 4 Qt 6 QI 1QQ1 . . . . . ' . .. *

  • I
  • t e t I t + f I
  • e t *
  • t * + t t + t 1 + l. + t + I +. t t t t t .t t t t 6 t t t *t t. I t t + t I + t t t t + I+ I ** t f I 't t I t I t + t I t I , 1 + t I I. I t ... I I+ I+ t'. I ** 1.290 + 1.140 + Q,990 *
  • 0.840 * * *
  • 0 '69(1
  • 0,540 + 0,390 * \ r;J. '_) ** 0. ;;>.; 0 * ** **
  • I I 2 *
  • t .. 0,090 + .. . -----.. 41*2**' 0:i -*\ *J. )* I. , -o '(i60 .+

' + I t t I I t t t + t I I I t + t I I +

  • t + I I 'f> I + t + I ++.I ; I t I I I I
  • I I t t I .. I I ... I ... t t I 'fo I + I + + I I t I I I I + ** -I I ... 1" I
  • t I
  • I ; *
  • I * ** 0,1 0.2 o,4 o.6 i.o
  • 2,0 . . 4,0 6,t 10, 20, 40, 60, 100, CJ?S) * *
  • I * * * * * * * * * *
  • 1,290 0,690 0,390 0,240 0,090 **O ,060 ti.I t!) z 0 H E-4 C::J ..:I. IJl u u < ..:I < I -E-4 -z OJ 0 N H P::* Q .... (

ACCELERATION SPECTHUHCG>

VS fREOUENCYCCPS)

POINT 6. DAMPING

  • 0,020 0,1 . . 0,2 o,4 o,6 1.0 _ 6;o 10,, ..
  • 20, 40,_ *.
  • 0,630 * ' 'f 0,555
  • 0,480
  • y *, *; i 0,405 * "i *; .
  • 0,330
  • y * .
  • 0,255 *

\( /"\ ' _,. :1. _, ** * *

  • I

\I t' *I * * * * * *** * . . . . I ' --*-*----,---*****


**-

  • . , I ' ' O 555 ---**c--*-*--*-. . Cl) , ' .. , * * . *-****-, . * * *-*---'
  • I -p ' * ' .... * . z c . H a ,48o E--< *---*--2---

i::l ..:I M a,4os u () ..:I Z I 2 0,330 ..,.. __ -----ll:: . 5 0 0

  • 25 * -:i:: -. o,uo &,, . /lJ1 -*---*--D,105 I "/J":"-\t. Cv * (.
  • 0,030 I . * ...

.. * . l * * * * * * * * * . . ** -*

0.1 0,2 0,4 0,6 1;0 4,0 610 10, 20, 40, 60, FREQUE (CPS) tgt*r.GC:t:3 ACCELERATION SPECTHUHCGl VS fREOUENCYCCPSl POINT : 7 DAMPING 0,020 0,1 . . 0,2 0,4 0,6 1;0 2,0 . 4;0 10,, .. 20. 40, 69;, ,190;

.. 0,880

  • 0,780 *
  • 0,680
  • 0,580
  • 0,480 * ., ;* .. 0,380 * ' 0. 280 ** *; 0,180
  • I *
  • ti \ *
  • I ' \ ** \ \
  • I I I '\L . *-. . . . . * * * .. --.... * * ** * ! I *--*. .. --0,880 . I -* 0,780 .. 0,680 I --I . --*---* --' * , , ..... ----,------** . .----

0,480

  • o;Jao I -------* I.
  • 0,280 0,180 CJ) -(!) -z 0 H 8 .ir:::: -

Ii:! *....:i Ii:! '-' "-. I ic::._co ...:I < 8 z 0 N H .. --i:e* -0 . -*::r:---*

w.L_ --*-I

.. -.. l.. * *-------, . -_) -I l 1 : ., ,,'-\ --'>

  • 0,080 * *,. -0,020
  • v '-') \ ... _ \_ .::,..... , .. i":-' -r. ... ... ..*.....*...*..*.

....*.... *...*..*.

.; *.* ** 0,1 0,2 o,4 0,6 1;0 2.0 4;0 6;0 10, 40, 60, FREQUEN PS) I
  • I -,
  • I 0 1 080 .;.o ;020 -----------------
  • -*

!;;>l'(;T;j1Jl'.(!il v:.;

POWT ;;: 1 2.n 4,o 6,o 10. :JA111'ING

20. 0,050 4Q, 60. 100. 1).1 (1,2 u.4 u." 1.0 +*'I' et I',+* It' t *
  • t *+'I+ t t +. + t + t ++ t
  • t I t.1. t a,*+ I It t t I+ It+'+ I+ I++ t t It t ,* t t t +,It t I. t t I *1 t *1 +t +I++ 0,h90 *
  • 0,615 *
  • 0,54(1
  • 0,4165
  • 0.390 *
  • 0 *. 315 *
  • 0. ::!4 0
  • 0, 165 + --0,1)15 + I t I I t I I * + I I t t t .. 1 t 1 + t t + t t + t + t + t + + t .t t t t t t t t + t t t t t + I t I
  • I t + I I + I +I + t + ... I I I I t 'I t
  • t f I I t. ,*I t
  • I+ t ;
  • I+ I. I ** 0.1 0.2 o.*; c;,_6 1,iJ
  • 2.0 4,o 6,o 10, 20, 40, 60, 100; FRE( (CPS) * ' * ' * * ' * * ' * * ' . ,,\ ' * '
  • 0,690 0,615 0;540 0,390 0,315 0;240 0,165 ,t, 0,090 0,015 (/) (.!) z 0 H 8 µ:i ..:i u u < ..:i Gj < 8 I z m 0 N H p::: 0 ::::: *\ ., '/ I *I'

VS rRE'1UEtiGYCCf 1 51 POINT :: Z DAMPING i; 0,050 'J.1 0.2 o.-. o,6 1.IJ 2.0 4,0 6,o* 10, 20, 40, 60, 100, . .. * * ' *** * **** ' ** ..... +. '* .........

' * ' ** *, *********.****

t. .....................
* **** ' ****** 't. ' **** **** 0,690 . *--* **-. *-*
  • 0. 61 !> +
  • 0, !><O *
  • 0. 4.65 + 0,390 * * *
  • 0,240 * *--

-0,165 *

  • 0. 09'i + .. +* 0,015 + ....... .................. -t:***************

.. ***+ .....*...*..*..*.*.*.**.. ....*.....*...*..*.

0.1 0,2 o * .; o,6 1.0 2.0 4,.0 6,o 10, 20, 4o, 60, FREQt. (CPS) * '

  • I I ** * * * * * * * * * * * .. , I ,{jl . * * '
  • 0,6911 ti) t!) z* 0,465 0 H 8 Cii i::l H J9o u u i< 0 ,315 H 6\ < 8 I z 0 N H 0:: 0,240 0 -.... 0,165 0,090 0,015 ACC!:LE:IHTIJN S?c;cr:Hit*

vs POINT .. s UAMt>ING

  • 0,050 0.1 (',2 o,.: r,.6 l,Q 2.0 4,0 6,0 101 20, 40, 60, 100, +I e f I I I I I I+ I I I 1* I. I I I+* I+ I f. I. I.*+. I I It. I f I I. f ff I I. I I I 1° I I+ I I**,+ I+ I++ I I: I* It. If I It. It t ** I. f + t. .. ,* 0, 6:.SO *
  • 0,5':i5 *
  • Q,4d0
  • Q,40'.:i +
  • 0.330 +
  • 0. 2':i!.> .
  • 0, 1 tlO * ...
  • 2 0.105 + o. o:rn
  • + 1 t I 1 1 I I t t. 1 t 1 t 1 + ' 1 1 + ' I + 1 I + I +I 't I + + I I I I I 1 .. 1 I" f +
  • I I .t I. I t I. I I+ f I + I + I+ I.+ I I I I I f I I
  • I t I t I+ t I t +*, I+ t + t +I ** c;,1 iJ,2 O,'i 0,6 1.0 2,0 4,0 6,0 10 1 *20, 40, 60 1 100 1
  • FREC (CPS) * , t * * *
  • t
  • t *
  • I. 'YI * '1 I *
  • 0 !:i55 0,480 0,405 0,330 0,255 0,180 I ,< i '*: 0,105 0,030 ..o,045

. -

SPECTHUMCGI VS F"REOUENCY<CPS>

POINT c; 6 ---DAMPING * ... 0,050 0.1 0,2 o,4 o,6 1.0 2.0 6;o 10, 20, 40, 60, 100; 0,430 * "

  • I O,J80 * + f t I t
  • I t t
  • t t ' t t
  • t I '
  • t I
  • t t
  • t * + +. I i. I ; t
  • I t t
  • I t t t t
  • t t
  • t I
  • t f
  • t t I
  • I
  • 4i t t t :* i I t *
  • I t t t t t I. I I ;
  • I. **

***'

-,----* O,JJO

  • I * . *-D,JJO *---* *-*** 1----0,280
  • I 0,230 * ., 0,180 * *
  • 0,130 * -,* o,oeo * ... O,OJO * : .. 0,020 * ' . . . . . . . . . . . . . . . . . . . . .........

0.1 0,2 o,4 o,6 1,0 2.0. 4,o 6;o 10, 20, 40, 60; 100; * , I ' . * * **

  • I .
  • 0,280 0,180 0;1Jo 0,000 0,030 *0,020 ---Cll ___ _ *....:i ==--o< E-t I . z en-.. o __ N H ll:'.: 0 :r:

ACCEL.ERATION SPECTRUM(G)

VS fREOiJENCYCCPS>

POINT c: 7 D/.MPING a. 0,050 ------*--* 0,1 .

  • 0,2 o,4 . 2;0 . 4,o 6;o 10,, .. 20, 4o, . 69*.
                      • -***************y*,t,+**i***i**'********************************************************** . 0 I 615 *. ' 0,540 * ' ' 0,465 * ' 0,390
  • 0,315
  • t 0,240
  • 0,165
  • 2 * * ** ** * * * * .. . ' * *-***---.

' t ' .. *-* ' *-*-*-* ' * * *-., ' *------*--** * '

  • I -. '
  • 0,54D 0,465 0,240 0,165 CJ) t!> z 0 **--** H l'.i.l t-1 -* l'.i.l tJ tJ t-1 r-r < -8 I z rv.. . o-L.U H tZ 0 II: *---, . ___ ___:_ _ _:_ __ + 0,090 .. . --*---0,015 -0,060
  • i * ... * ** . *2 **2 *2 *2.-.212>>.
  • .. * ' *-*--*------*----, --**** I ' * ' ,

0 090 *--. -:._ __ , _____ _ 0;015 ' -, ***--** ----*-***--** ' * * *0,060 . . . . . . . . . . . . . . ,

0.1 0,2 Q,4 0,6 1;0 2;0 4,0 6,Q 10, 20, 40, 60, 100; FREQUENCY "

SPECTHIJMCGl VS f'REQ:JENCY(Cf'Sl POINT 11 7 DAMPING c O,OOS 0,1 0.2 0,4 0,6 1.0 2;0 4,0 10, 20, 40, 60, 1,J80

  • 1,230
  • 1,080 *
  • 0,930
  • 0,780 * ... ... ..*.....*...*..*..*.*

....*.....*...*..*. ...... . *-**-*--------*--*

    • -******
  • '*:***-*******-
  • * * * * * * ....... ***--****--****-------------

I ** -*, -1,380 11080 ' . *-*. -. -, -*-, -*-* 0. 930 , I. . ' I.

  • 0,780 z 0 H ---8 w ...:i u U. ---...:i ..:::* 0,630 * * -------0,630

-* c N*** H . -... -.. *, 0,480 * ' 0,330 * *; 0,180 * ., " * * ' ** * * * * * * * * ** .. * . **----. .. ' ' .. 0,180 0 :r:: *-... I '9 + . * + . . . . . . . . * . . . * * . . . I ' t t 1 t t I 1 t ' I

  • I ' t I I t.' t +I t + t. 't. t. t 't I t t t t*t t t I t t. t t t. t t
  • I I
  • t t t
  • I +.I t t t t I t t
  • 6 f'" I,. t t ... t t. t I. t t. I. t. I ** * -' --------**----. 0.1 0,2 0,4 0,6 1.0 2.0 4,0 610 10, 20, 40, 60,.

FREQUENCY

'.. .1* . -ACCEl.ERATION SPECTRUM(G)

VS f"REDUENCYCCPS)

POINT :a 6

  • 0,005... -------*-***

i>,1 0,2 0,4 016 2;0 4;0 6,0 10, 20, 40, 60, 100; ... ... ..*.....*...*..*..

...*.....* ..*..*..*.*.*..*

..

...

1.110

  • I
  • I

--***-. ------0,960 * -**--, , CJ .* o,e10 * ' I * ... .. . . -. 0,660 * *,*, ' o,510 * *; 0,360 * *

  • 0. 210 * .. * ** . * * *
  • 2 * *
  • I. * , p I I '

0,060 -0,090 -0,240 * **2* * ** y * +.

  • 0,1 0,2 o,4 o,6 i.o 2,0 4;0 10, 20, 40, 60,
  • FREQ (CPS) .... * *
  • I
  • 0,510 c: ' . ' \
  • *
  • I: *
  • ACCHE"n I,., SP["'"" (" vs "t "*CY<

CPS I PO r *r

  • 5 DAHPI NG * '. ocs '" .1.2 '" *** 1.a >.a *.a *** 10, 20, 40, *** 100 * . . . . . . . ; ..........

' ...............

' *' ... ; ..................

' ................................

. ; ..... . 1,A40
  • 1.640
  • 1. 440
  • 1,040
  • n. B<o
  • 0,640
  • 0,440 + . 0.240 * * * * * * *
  • 2 * * * ** * .. ** 2.-. . . .. . . . . .. . . . . .. . . . . . ..........

... . .. . . . . .. ; ..............................................

.; ..... . '" "*' '" a.* l.o 2.o *.a 6.o '"* 20, '"* *a, 100, FREQU (CPS) * ' * , * '
  • I
  • 1 .. *---... -* * ' * * * *
  • U) {!1 -z 0 H E-t 1,2co ti:i H ti:i u 1,040 u < >-l lf) < E--< -O,d40 z c N C!: Q -0,640

""LE" Tl'" s PEC 11! UJ:C GI vs F P.E OJE.C YI cP>> PO I"'

  • 2 D *** I NG
  • 0 ' 0 .. 0.1 0.2 o.< o.* i.o 2.0 4,0 **O 10.. . . 20. 40, *!*. l!O; * ****************************************************************************************************

2.250 * * ----*-* -* 2.oco

  • 1,750
  • 1.500
  • 1.250
  • 1.000 * ---* -------*-Q,7SO * ---*------*

---* .... -***. * * * * * * * * * ! * * * * * * ---*:-** __

o.5oo * ** 0. :>50* + . I. 0. * *

,4... ! ,. * * * * -0.250 * ..................................................

....................
...................
.; .... .. 0.1 u.2 o.* o.* l.O 2.0 4,o *** 10, 20, *o. 60. lOO. *,
  • V (CPS) --------------* *-2,250 1,75D '-Ul ,... CJ -
z 0 H IJl H IJl u 1,000 -* H -I 8 CI:):. :z; 0 o,750 N H 0 :t: Q,500 . .. o 250 ---------*-*

ACCFLERATION V3 FREUUENCY!CPS)

POtNl

  • 1 DAMPING
  • 0 1 005 c.1 0.2 O*" n,l'I 1.0 2.0 . 4,0 610 101 . 20. 40, 601 100, + f f f t ' t I t t + I I t t t +
  • f t + t t + t t + t + *
  • t + + f t I t I /. I t t
  • t I .t t t
  • I I t + I t + f I + t + I
  • I + + I I I : I I I t + I I I t .I + 0 I I + 0 I
  • I *, + : + I
  • I + + '*'"' . . . . . .. -2,000 * *' 1,750 *
  • 1.oco * .. 0,150 * * ** o,soo
  • 0,250
  • J .. QI . I. *
  • 2* *
  • I ..
  • I *
  • I *
  • I * ! ** ' * ' -0,250 * *

........*.....*...*..*.

0.1 o.4 o,6 1.0

  • 2.0 4,0 610 1a, 20. 401 601

__ .FF.EQl (CPS)

  • 11750 -Cl) t!> -
z 0 H 1,250 til H til U-1.000 u ,.:t H -.::: E-< ct)-z o,1so 0 N H o=: 0 :x:: 01500

-* -... o 1250 l-+-+-<f-+-l-1-1--i.---. ---l--+-l-11-1--1-+-------SEMI-LOGARITHMIC*

3 CYCLES X 70 DIVISIONS KEUFFEL & ESSER CO. MADE IN U.S.A. .46 5493


* -** -----.. -.

--1--* --+-!---!--+--*-----.._..__..

-__ ,_ --1-----. ,_....._i--.i.-... --.. -* ---. -t--'--i--1-\. 1-J--.J-.....

-* -* **I--1--** l--'-1:::

  • ..,.:::1....,=1- -I-_,_

* --*---*-1---:---* ---. ---* ---1--* -. ----*---. --*------_.....:._

___ -* ------1-__ ,_ 1-.i....,!ll---l-i-1-1-*-


1--,.::li t---1--1-1-1--1--t-l-H+l-I 4 I .. 1---Q 1----*: . *-*--=eo *=..=-:::::*-----1-1---1-1-,..1-0+-t--t-H-t-H l-+-.f----11-*

-'-:----*-=:.1:i

-r::'I -----,_ -------*-___ i.-.. *--* ----l--1--1---l-1------*------*--*----1-*----'---1-i----f-* __ ,_ **---.... !'-. I '! I J Ii 11! I *1 . I 4o. --£-1--

=.

.... ...

,\ .1.. .4-\. 'L' 4. \0. 1..0. I 100.

1 . ,"\. t '-* '*'. p I' . * < *. ***

  • r *
  • I ?d:ii i

...... ;\,.1: .. r: __ _

    • f) $_&' It ,"\o '.* ... : :.J' ..... -**:*.: ... * .. ,_ .. 1ccntsu1cUHanun PDlN.t.:..iL

..... 4 DAJ!t.l.ND

  • a.oz.¥-_ _;._ ______________

_ 0.1 , o,z : .. ** o,4. .. ,1,0 .. z.o ....

..

  • . , .. 20, ... 401. * 100, -----** * . ........ ,

.. * ._._._,. ._.

1..t_...._.

.............. .. ,_,..,,_..

  • -'*'.A****--:---------

-' . *.** . -.*. .. . .. ;..._;* ; .. _ :--.*.. ' ___

__ ... :.* .. *

... _ .. .... '* , ---=l:::...

  • --------------

1.1410 *

  • ______ D.tlll..t

______ _ t , ___.. ---* -------------*-.

--* ---------. ----*-----------. --.. ---*------------l-------------*-***

-* **--* **--**--*-

-* -, 1---------------------------

....

_____ ,

' . . ------------


---'----** ----*-----. ----* --.** ------* ..........

  • --.IJ. tf(t f -----..:.--------------

* ------_,;,. ___ ------------*-.

  • ----: ::Cf
r.

i:.. n*¥. ----------------------------------------+--4----------------------4-------____:__*-=\:

0.1140 * . .* '*" . *' -*-4------


,-----------


*-*" ----------*** *' ----------*---

______ __, ----,. ----------.. * **

  • ________________________

r-

  • 1------f__.., ___ _ ----r---,\ ----------------------------------" *'
  • D
  • 01------.----------
  • --'------------

'----


****--*----_, *

  • ____ ..,o ... na._ ** _____________

-,----'<----------------

-.. ---****----__ ,..Jlt' r.:::w.:..

________ , __________________


*-*----*-

... -... ".zo * . * . 0.1** ------------..c----------------


*-*--* * * -----*-

... --** II.Itri . ' -0.060 * * *. -----------


... ***-*-----***-

--... ' * ***--. -------*--' I. t * ; .* *. :,'.I*.: .. * ..

..* .:' :. "!* ...* :* ...* *. * . . . : * .* * ... o\* ". *'***":**

..... .*** ' . ** ....... '; . . ...............

... -._**

................................. ,l:

    • . .:.:. ***** **

11,1 0,2 * * *:_o,* .. .-o.* _, 1-.0 2,0. *.o

  • o,o .. **o, '* .,:, . *20, 40 1 eo, 100 ..
  • r. "--------. .

' .*.... : . : :-\. i .. . . . : .: . . ... . ***.,'***

.. ------*--*



. ----------*--:--:-----*-

---

  • """--*L--*-*

--* I .. . ------.--------*---

    • ,' . : ...... ': * , Y"' 1.ea11 , .... . .=::::s . w * ... 1.1011 ..* -: ..... -*. *;-'*. ; ....... *
    • ---* __ _:_ .. *-*-. ' **. ..*. *--** **--------'----------

*-**-*-.

        • ---. . .. ----------'---**
  • :.* . -* ' -.. ----*----------

.. ----* -.:. ____ ---------**----------..:-.

-.-.-... ** --*-------* ----


*--.-**.

' ' .* . . .. . * .. * ... ----

_. ___ _! _____ !..*os

-. .. ----'--*---**-----*

.,...--* ----------

'

  • ____ , __ .... *.-* .. *: *: ::': ..... * .. *.: .... ... *. . .
  • --*---*-****----***

9"****-****

      • ----** ** ** *-_, 1. 200 *. ___ *. _. -*-* -* --------------------*---*
  • --* ----*--**----*-*-***--
  • 1.2;11 -----------*

--: \ _____ ------------

-


*. --*------1------------*--------

--* .... *--*--*-*-**-***

-*****-.. * *

  • 1.000-*. ---------*-
  • -*-..... **--*

** ---* --*--*--* -*----

l .. * **

..... ------------

-' :*. . *:. :: .. . ***--.. ,. 0.100 * "' ----**--*

--* ----'t-* y . _____ ___.._.:..___. . .'--'.-. -----*----------

--*---:*-., --...

  • a.en -*------.--* -* -*----* ---*-* '\ __ '"'"" _______

____ . _____ :_,_, ___

..... -----------. ' :.\ * * ..... o,tOO.-*.


*-.---


*-.. ------

  • __________

*---*----

0,400 * .. --**-*--. . . ---------*----------

--*--**-*-*----

  • ---*-**--* ____ . ____ .:; __ * . . -----:---'-

.. ---0.all.--. .

'* ... . .


* . t-------***-. -. *: .... , ... . ':.*.:.

..

.\ .. **. * --.-..:---:-

    • -* -: **--*-*-* -*-* ----*****

ENCLOSURE10 CONSUMERS ENERGY COMPANY PALISADES PLANT DOCKET 50-255 SQUG LETTER TO THE NRC DATED JUNE 11, 1997 Entitled SQUG RESPONSE TO NRC RAI ON LATERAL LOAD DUCTILITY EVALUATION OF CABLE TRAY SUPPORTS 2 Pages