ML080710412: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:Duke JAMES R. MORRIS, VICE PRESIDENT Energ Duke Energy Carolinas, LLC Carolinas Catawba Nuclear Station / CN01 VP 4800 Concord Road York, SC 29745 803-831-4251 803-831-3221 fax March 3, 2008 U.S. Nuclear Regulatory Commission ATTENTION:
{{#Wiki_filter:Duke                                                   JAMES R.MORRIS, VICE PRESIDENT Energ                                                 Duke Energy Carolinas,LLC Carolinas                                             Catawba Nuclear Station / CN01 VP 4800 Concord Road York, SC 29745 803-831-4251 803-831-3221 fax March 3,   2008 U.S. Nuclear Regulatory Commission ATTENTION:   Document Control Desk Washington, D.C. 20555-0001
Document Control Desk Washington, D.C. 20555-0001


==Subject:==
==Subject:==
Duke Power Company LLC d/b/a Duke Energy Carolinas, LLC.Catawba Nuclear Station Unit 2 Docket No.: 50-414 Core Operating Limits Report (COLR)Catawba Unit 2 Cycle 16, Revision 1 Attached, pursuant to Catawba Technical Specification 5.6.5, is an information copy of revision 1 of the Core Operating Limits Report for Catawba Unit 2 Cycle 16.This letter and attached COLR do not contain any new commitments.
Duke Power Company LLC d/b/a Duke Energy Carolinas, LLC.
Please direct any questions or concerns to Marc Sawicki at (803) 831-5191.Sincerely, James R. Morris Attachments 4orADD www. duke-energy.
Catawba Nuclear Station Unit 2 Docket No.: 50-414 Core Operating Limits Report (COLR)
corn U. S. Nuclear Regulatory Commission March 3, 2008 Page 2 xc: (w/att)Victor M. McCree (Acting), Region II Administrator U.S. Nuclear Regulatory Commission Sam Nunn Atlanta Federal Center, 23 T85 61 Forsyth St., SW Atlanta, GA 30303-8931 J. F. Stang, Jr., Senior Project Manager (CNS & MNS)U.S. Nuclear Regulatory Commission 11555 Rockville Pike Mail Stop 8 G9A Rockville, MD 20852-2738 A. T. Sabisch Senior Resident Inspector U.S. Nuclear Regulatory Commission Catawba Nuclear Station I;CNEI-0400-149 Page 1 of 32 Revision 1 Catawba Unit 2 Cycle 16 Core Operating Limits Report Revision 1 February 2008 Duke Power Company Date Prepared By: Checked By: Checked By: Approved By: 1~4 a/2I aozL?g:42 Lev a I QA Condition 1 The information presented in this report has been prepared and issued in accordance with Catawba Technical Specification 5.6.5.  
Catawba Unit 2 Cycle 16, Revision 1 Attached, pursuant to Catawba Technical Specification 5.6.5, is an information copy of revision 1 of the Core Operating Limits Report for Catawba Unit 2 Cycle 16.
.I I , CNEI-0400-149 Page 2 of 32 Revision 1 INSPECTION OF ENGINEERING INSTRUCTIONS keA~Inspection Waived By: Date: 2"za" cj (Sponsor)0I CATAWBA Inspection Waived MCE (Mechanical&
This letter and attached COLR do not contain any new commitments.
Civil) le- Inspected By/Date: RES (Electrical Only) L Inspected By/Date: RES (Reactor)
Please direct any questions or concerns to Marc Sawicki at (803) 831-5191.
L&. Inspected By/Date: MOD P"' Inspected By/Date: Other ( ) I] Inspected By/Date: OCONEE Inspection Waived MCE (Mechanical  
Sincerely, James R. Morris Attachments 4orADD www. duke-energy.corn
& Civil) 0 Inspected By/Date: RES (Electrical Only). 0 Inspected By/Date: RES (Reactor) 0 Inspected By/Date: MOD U Inspected By/Date: Other ( _) U Inspected By/Date: MCGUIRE Inspection Waived MCE (Mechanical  
 
& Civil) 0 Inspected By/Date: RES (Electrical Only) _ Inspected By/Date: RES (Reactor) 0 Inspected By/Date: MOD 2 Inspected By/Date: Other( _- Inspected By/Date:
U. S. Nuclear Regulatory Commission March 3, 2008 Page 2 xc:   (w/att)
1<CNEI-0400-149 Page 3 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Implementation Instructions for Revision 1 Revision Description and PIP Tracking Revision I of the Catawba Unit 2 Cycle 16 COLR contains limits-specific to the reload core and was revised to include limits specific for completion of the RCCA movement test prior to 2/27/2008.
Victor M. McCree (Acting), Region II Administrator U.S. Nuclear Regulatory Commission Sam Nunn Atlanta Federal Center, 23 T85 61 Forsyth St., SW Atlanta, GA 30303-8931 J. F. Stang, Jr., Senior Project Manager (CNS & MNS)
Revision 1 was initiated by PIP #C-08-00765.
U.S. Nuclear Regulatory Commission 11555 Rockville Pike Mail Stop 8 G9A Rockville, MD 20852-2738 A. T. Sabisch Senior Resident Inspector U.S. Nuclear Regulatory Commission Catawba Nuclear Station
 
I; CNEI-0400-149 Page 1 of 32 Revision 1 Catawba Unit 2 Cycle 16 Core Operating Limits Report Revision 1 February 2008 Duke Power Company Date Prepared By:
1~4 Checked By:                                             a/2I aozL?
Checked By:                                            g:42   Lev aI Approved By:
QA Condition 1 The information presented in this report has been prepared and issued in accordance with Catawba Technical Specification 5.6.5.
 
.I I, CNEI-0400-149 Page 2 of 32 Revision 1 INSPECTION OF ENGINEERING INSTRUCTIONS Inspection Waived By:         keA~                              Date: 2"za"   cj (Sponsor)           0I CATAWBA Inspection Waived MCE (Mechanical& Civil)               le-     Inspected By/Date:
RES (Electrical Only)                 L       Inspected By/Date:
RES (Reactor)                         L&. Inspected By/Date:
MOD                                   P"'     Inspected By/Date:
Other (                 )             I]     Inspected By/Date:
OCONEE Inspection Waived MCE (Mechanical & Civil)               0       Inspected By/Date:
RES (Electrical Only).                 0       Inspected By/Date:
RES (Reactor)                         0       Inspected By/Date:
MOD                                   U       Inspected By/Date:
Other ( _)                             U     Inspected By/Date:
MCGUIRE Inspection Waived MCE (Mechanical & Civil)               0       Inspected By/Date:
RES (Electrical Only)                   _     Inspected By/Date:
RES (Reactor)                         0       Inspected By/Date:
MOD                                     2     Inspected By/Date:
Other( _-                                     Inspected By/Date:
 
1<
CNEI-0400-149 Page 3 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Implementation Instructions for Revision 1 Revision Description and PIP Tracking Revision I of the Catawba Unit 2 Cycle 16 COLR contains limits-specific to the reload core and was revised to include limits specific for completion of the RCCA movement test prior to 2/27/2008. Revision 1 was initiated by PIP #C-08-00765.
Implementation Schedule Revision 1 maybecome effective immediately but must become effective prior to 2/27/2008.
Implementation Schedule Revision 1 maybecome effective immediately but must become effective prior to 2/27/2008.
TheCatawba Unit 2 Cycle 16 COLR will cease to. be effective during No MODE between Cycle 16 and 17.Data files to be Implemented No data files are transmitted as part of this document.
TheCatawba Unit 2 Cycle 16 COLR will cease to. be effective during No MODE between Cycle 16 and 17.
* V .CNEI-0400-149 Page 4 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report REVISION LOG Revision 0 1 Effective Date September 2007 February 2008.COLR C2C16 COLR rev. 0 C2C16 COLR rev. 1 Insertion/Deletion Instructions Remove Insert pages 1- 32, of rev 0 pages 1- 32 of rev 1 CNEI-0400-149 Page 5 of 32 Revision 1 Catawba 2 Cycle 16.Core Operating Limits Report 1.0 Core Operating Limits Report This Core Operating Limits Report (COLR) has been prepared in accordance with the requirements of Technical Specification 5.6.5. The Technical Specifications that reference this report are listed below: TS COLR COLR Section Technical Specifications j CQLR Parameter Section. Page 2.1.1 Reactor Core Safety Limits I RCS Temperature and Pressure 2.1 9.-..".....-.-.--.-.
Data files to be Implemented No data files are transmitted as part of this document.
ISafety Limits 3.1.1 Shutdown Margin Shutdown Margin 2.2 9 3.1.3 .Moderator Temperature Coefficient MTC ""2.3 11 3.1.4 1 Rod Group Alignment Limits Shutdown Margin 2.2 " 9 3.1.5 Shutdown Bank Insertion Limit Shutdown Margin 2.2 Rod Insertion Limits. 2.4 11.3.1.6 Control Bank Insertion Limit Shutdown Margin .2.2 9_____Rod Insertion Limits , 2.5_ _ 15 3.1.8. i PhysicsTestsExceptions  
* V.
.. Shutdown Margin _ 2.2 9 3.2.1 Heat Flux Hot ChannelFactor
CNEI-0400-149 Page 4 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report REVISION LOG Revision             Effective Date                 COLR 0                September 2007           C2C16 COLR rev. 0 1              February 2008.            C2C16 COLR rev. 1 Insertion/Deletion Instructions Remove                                               Insert pages 1- 32, of rev 0                               pages 1- 32 of rev 1
: 26. 15 AFD 2.8 .21 OTAT .2.9 24-Penalty Factors 2.6 15 3.2.2 Nuclear Enthalpy Rise Hot Channel FAH 2.7 20 Factor __ _ _Penalty Factors 1 2.7 20 3.2.3 Axial Flux Difference AFD 2.8 _ 21 3.3.1 Reactor Trip System Instrumentation 1: OTAT 2.9 24___ ._ iOPAT 2.9 24-3.3.9- Boron Dilution Mitigation System Reactor Makeup Water Flow Rate 2.10 26 3.4.1 RCS Pressure, Temperature and Flow RCS Pressure, Temperature and 2.11 26-limits.for DNB .Flow 3.5.1 Accumulators  
 
-Max and Min Boron Cone. 2.12 26 3.5.4 Refueling Water Storage Tank Max and Min Boron. Conc. 2.13 26.-3.715 .Spent Fuel Pool Boron Concentration Mi-n-Boron Concentration 2.14 .i 28 3.9.1 Refueling Operations  
CNEI-0400-149 Page 5 of 32 Revision 1 Catawba 2 Cycle 16.Core Operating Limits Report 1.0   Core Operating Limits Report This Core Operating Limits Report (COLR) has been prepared in accordance with the requirements of Technical Specification 5.6.5. The Technical Specifications that reference this report are listed below:
-Boron i Mm Boron Concentration 2.15 28 Concentration " _ __i 5.6.5 iCore Operating Limits Report Analytical Methods i.1 6 (COLR) _ _ _ _ _The Selected License Commitments that reference"this report are listed below: SLC, COLR Pcon Section Selected Licensing Commitment  
TS                                                                                         COLR j
-COLR Parameter Section Page 16.7-9.3 Standby Shutdown System Standby Makeup Pump Water 2.16 29 S ........ Supply " 16.9-11 Boration Systems -Borated Water .Borated.Water Volume and Conc. 2.17 29 i Source -Shutdown.  
COLR Section                 Technical Specifications                       CQLR Parameter         Section.     Page 2.1.1           Reactor Core Safety Limits                 I RCS Temperature and Pressure     2.1           9
.for BAT/RWST *__16.9-12, Boration Systems -Borated Water I Borated Water Volume and Conc. 2.18 30_ Source -Operating for BAT/RWST CNEI-0400-149 Page 6 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report 1.1 Analytical Methods The analytical methods used to determine core operating limits for parameters identified in Technical Specifications and previously reviewed and approved by the NRC are as follows.1. WCAP79272-P-A, "WESTINGHOUSE RELOAD SAFETY EVALUATION METHODOLOGY," (W-Proprietary).
                .-..
Revision 0 Report Date: July 1985 Not Used for C2C16 2. WCAP-10054-P-A, "Westinghouse Small Break ECCS Evaluation Model using the NOTRUMP Code, "(W Proprietary).
        ".....-.-.--.-.                                         ISafety Limits 3.1.1             Shutdown Margin                               Shutdown Margin                 2.2           9 3.1.3 .           Moderator Temperature Coefficient             MTC           ""2.3                           11 3.1.4         1 Rod Group Alignment Limits                     Shutdown Margin                 2.2 "         9 3.1.5             Shutdown Bank Insertion Limit                 Shutdown Margin                 2.2 Rod Insertion Limits.           2.4         11
Revision 0 Report Date: August 1985 3. WCAP-10266-P-A, "THE 198.1 VERSION OF WESTINGHOUSE EVALUATION MODEL USING BASH CODE", (W Proprietary).
    .3.1.6             Control Bank Insertion Limit                 Shutdown Margin .               2.2           9
Revision 2 Report Date: March 1987 Not Used for C2C16 4. WCAP-12945-P-A, Volume 1 and Volumes 2-5, "Code Qualification Document for Best-Estimate Loss of Coolant Analysis,'" (W. Proprietary).
_____Rod                                            Insertion Limits         , 2.5_ _       15 3.1.8.       i PhysicsTestsExceptions ..                       Shutdown Margin           _     2.2           9 3.2.1             Heat Flux Hot ChannelFactor                                                   26.           15 AFD                               2.8     . 21 OTAT                           .2.9         24
Revision:
                                                              -     Penalty Factors                   2.6         15 3.2.2             Nuclear Enthalpy Rise Hot Channel             FAH                               2.7         20 Factor __         _         _Penalty                 Factors               1 2.7           20 3.2.3             Axial Flux Difference                         AFD                               2.8 _       21 3.3.1             Reactor Trip System Instrumentation       1:OTAT                               2.9         24
Volume I (Revision
___              ._               iOPAT                               2.9         24
: 2) and Volumes 2-5 (Revision 1)ReportDate:
    -3.3.9-           Boron Dilution Mitigation System             Reactor Makeup Water Flow Rate   2.10         26 3.4.1           RCS Pressure, Temperature and Flow RCS Pressure, Temperature and               2.11         26
March 1998 5. BAW-10168P-A, "B&W Loss-of-Coolant Accident Evaluation Model for Recirculating Steam Generator Plants," (B&W Proprietary).
                  -   limits.for DNB                         .Flow 3.5.1             Accumulators                         -       Max and Min Boron Cone.         2.12         26 3.5.4           Refueling Water Storage Tank                   Max and Min Boron. Conc.         2.13         26.
Revision 1 SER Date: January 22, 1991 Revision 2 SER Dates: August 22, 1996 and November 26, 1996.Revision 3 SER Date: June 15, 1994.Not Used for C2C16 CNEI-0400-149 Page 7 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report 1.1 Analytical Methods (continued)
    -3.715 .           Spent Fuel Pool Boron Concentration           Mi-n-Boron Concentration         2.14     .i 28 3.9.1             Refueling Operations - Boron               i Mm Boron Concentration           2.15         28 Concentration           "                   _                 __i 5.6.5         iCore Operating Limits Report                     Analytical Methods               i.1         6 (COLR)                                       _      _     _       _ _
The Selected License Commitments that reference"this report are listed below:
SLC,                                                                       Pcon COLR Section           Selected Licensing Commitment                     -COLR Parameter         Section       Page 16.7-9.3         Standby Shutdown System                   Standby Makeup Pump Water         2.16         29 S . .......                 Supply         "
16.9-11         Boration Systems - Borated Water       . Borated.Water Volume and Conc. 2.17         29 iSource - Shutdown.               .       for BAT/RWST                             *__
16.9-12,         Boration Systems - Borated Water       I Borated Water Volume and Conc.     2.18         30
Source - Operating                       for BAT/RWST
 
CNEI-0400-149 Page 6 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report 1.1 Analytical Methods The analytical methods used to determine core operating limits for parameters identified in Technical Specifications and previously reviewed and approved by the NRC are as follows.
: 1. WCAP79272-P-A, "WESTINGHOUSE RELOAD SAFETY EVALUATION METHODOLOGY," (W-Proprietary).
Revision 0 Report Date: July 1985 Not Used for C2C16
: 2. WCAP-10054-P-A, "Westinghouse Small Break ECCS Evaluation Model using the NOTRUMP Code, "(W Proprietary).
Revision 0 Report Date: August 1985
: 3. WCAP-10266-P-A, "THE 198.1 VERSION OF WESTINGHOUSE EVALUATION MODEL USING BASH CODE", (W Proprietary).
Revision 2 Report Date: March 1987 Not Used for C2C16
: 4. WCAP-12945-P-A, Volume 1 and Volumes 2-5, "Code Qualification Document for Best-Estimate Loss of Coolant Analysis,'" (W. Proprietary).
Revision: Volume I (Revision 2) and Volumes 2-5 (Revision 1)
ReportDate: March 1998
: 5. BAW-10168P-A, "B&W Loss-of-Coolant Accident Evaluation Model for Recirculating Steam Generator Plants," (B&W Proprietary).
Revision 1 SER Date: January 22, 1991 Revision 2 SER Dates: August 22, 1996 and November 26, 1996.
Revision 3 SER Date: June 15, 1994.
Not Used for C2C16
 
CNEI-0400-149 Page 7 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report 1.1 Analytical Methods (continued)
: 6. DPC-NE-3000PA, 'Thermal-Hydraulic Transient.Analysis Methodology," (DPC Proprietary).
: 6. DPC-NE-3000PA, 'Thermal-Hydraulic Transient.Analysis Methodology," (DPC Proprietary).
Revision 3 SER Date:. September 24, 2003 7. DPC-NE-3001PA, "Multidimensional Reactor Transients and Safety Analysis Physics Parameter Methodology," (DPC Proprietary).
Revision 3 SER Date:. September 24, 2003
Revision 0 Report Date: November 15, 1991, republished December 2000 8. DPC-NE-3002A, "UFSAR Chapter 15 System Transient Analysis Methodology".
: 7. DPC-NE-3001PA, "Multidimensional Reactor Transients and Safety Analysis Physics Parameter Methodology," (DPC Proprietary).
Revision 4 SER Date: April 6, 2001 9. DPC-NE-2004P-A, 1"Duke Power Company McGuire and Catawba Nuclear Stations Core Thermal-Hydraulic Methodology using VIPRE-01," (DPC Proprietary).
Revision 0 Report Date: November 15, 1991, republished December 2000
Revision 1 SER Date: February 20, 1997 10. DPC-NE-2005P-A, "Thermal Hydraulic Statistical Core Design Methodology," (DPC Proprietary).
: 8. DPC-NE-3002A, "UFSAR Chapter 15 System Transient Analysis Methodology".
Revision 3 SER Date: September 16, 2002 11. DPC-NE-2008P-A, "Fuel Mechanical Reload Analysis Methodology Using TACO3," (DPC Proprietary).
Revision 4 SER Date: April 6, 2001
Revision 0 SER Date: April 3, 1995 Not Used for. C2C16.12. DPC-NE-2009-P-A, "Westinghouse Fuel Transition Report," (DPC Proprietary).
: 9. DPC-NE-2004P-A, 1"Duke Power Company McGuire and Catawba Nuclear Stations Core Thermal-Hydraulic Methodology using VIPRE-01," (DPC Proprietary).
Revision 2 SER Date: December 18, 2002 13. DPC-NIE-1004A, "Nuclear Design Methodology Using CASMO-3/SIMULATE-3P.".
Revision 1 SER Date: February 20, 1997
Revision I SER Date: April 26, 1996 Not Used for C2C16 CNEI-0400-149 Page 8 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report 1.1 Analytical Methods (continued)
: 10. DPC-NE-2005P-A, "Thermal Hydraulic Statistical Core Design Methodology," (DPC Proprietary).
: 14. DPC-NF-2010A, "Duke Power Company McGuire Nuclear Station Catawba Nuclear Station Nuclear Physics Methodology for Reload Design." Revision 2 SER Date: June 24, 2003 15. DPC-NE-201 IPA, "Duke Power Company NuclearDesign Methodology for Core Operating Limits of Westinghouse Reactors;" (DPC Proprietary).
Revision 3 SER Date: September 16, 2002
Revision 1..SER Date: October 1, 2002.16. DPC-NE-1005-P-A, "Nuclear Design Methodology Using CASMO-4 / SIMULATE-3 MOX", (DPC Proprietary).
: 11. DPC-NE-2008P-A, "Fuel Mechanical Reload Analysis Methodology Using TACO3," (DPC Proprietary).
Revision 0 SER Date: August 20; 2004 17. BAW-1023 1P-A, "COPERNIC Fuel Rod Design Computer Code" (Framatome ANP Proprietary)
Revision 0 SER Date: April 3, 1995 Not Used for. C2C16.
Revision 1 SER Date: January 14, 2004 Not Used for C2C16 CNEI-0400-149 Page 9 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.0 Operating Limits The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections.
: 12. DPC-NE-2009-P-A, "Westinghouse Fuel Transition Report," (DPC Proprietary).
These limits have been developed using NRC approved methodologies specified in Section 1.1.2.1 Reactor Core Safety Limits (TS 2.1.1)The Reactor Core Safety Limits are shown in Figure 1.2.2 Shutdown Margin -SDM (TS 3.1.1, TS 3.1.4, TS 3.1.5, TS 3.1.6, TS 3.1.8)2.2.1 For TS 3.1.1, shutdown margin shall be greater than or equal to 1.3% AK/K in mode 2with Keff < 1.0 and in modes 3 and4.2.2.2 For TS 3.1.1, shutdown margin shall be greater than or equal to 1.0% AK/K in mode 5.2.2.3 For TS 3.1.4, shutdown margin shall be greater than or equal to 1.3% AK/K in mode I and mode 2.2.2.4 For TS 3.1.5, shutdown margin shall be greater than or equal to 1.3% AK/K in mode 1 and mode 2 with any control bank not fully inserted.2.2.5 For TS 3.1.6, shutdown.margin shall be greater than or equal to 1.3% AK/K in mode I and mode 2 with Keff > 1.0.2.2.6* For TS 3.1.8, shutdown margin shall be greater than or equal to 1.3% AK/K in mode 2 during Physics Testing.
Revision 2 SER Date: December 18, 2002
CNEI-0400-149 Page 10 of 32 Revision I Catawba.2 Cycle 16 Core Operating Limits Report Figure 1 Reactor Core Safety Limits Four Loops in Operation 670 DO NOT OPERATE IN THIS AREA 660 '_'650 .6000 .. .630 02280 psia (9 620 ___610 _____600 _____590 _____ACCEPTABLE OPERATION 580 I _ _ _ _0.0 0.2 0.4 0.6 0.8 1.0. 1.2 Fraction of Rated Thermal Power '
: 13. DPC-NIE-1004A, "Nuclear Design Methodology Using CASMO-3/SIMULATE-3P.".
CNEI-0400-149 Page II of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.3 Moderator Temperature Coefficient  
Revision I SER Date: April 26, 1996 Not Used for C2C16
-MTC (TS 3.1.3)2.3.1 The Moderator Temperature Coefficient (MTC) Limits are: The MTC shall be less positive than the upper limits shown in Figure 2. The BOC, ARO, HZP MTC shall be less positive than 0.7E-04 AK/K/&deg;F.The EOC, ARO, RTP MTC shall be less negative than the -4.3E-04 AK/K/IF lower MTC limit.2.3.2 The 300 ppm MTC Surveillance Limit is: The measured 300 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to -3.65E-04 AK/K/&deg;F.2.3.3 The 60 PPM MTC Surveillance Limit is: The 60 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to-4.125E-04 AK/KI 0 F.Where: BOC = Beginning of Cycle (bumup corresponding to most positive MTC)EOC = End of Cycle ARO = All Rods Out HZP = Hot Zero Thermal Power RTP = Rated Thermal Power PPM -Parts per million (Boron)2.4 Shutdown Bank Insertion Limit (TS 3.1.5)2.4.1 Each shutdown bank shall be withdrawn to at least 222 steps except under the special conditions listed-below.
 
Shutdown banks are withdrawn in sequence and with no overlap.Special conditions Shutdown Banks C, D, and E can be inserted to 212 steps withdrawn individually with the following restrictions.
CNEI-0400-149 Page 8 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report 1.1 Analytical Methods (continued)
* The cycle average burnup must be between 100.5 and 102.5 EFPD* Steady state operation near 100%FP prior to entering special conditions CNEI-0400-149 Page 12 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report Figure 2 Moderator Temperature Coefficient Upper Limit Versus Power Level 1.0 W W Z W0.9 -0.8 -0.7 0.6 -Unacceptable Operation 0 C?0.5 --0.4 -0.3 0.2-0.1 Acceptable Operation 0.0 I I 0 10 20 30 40 50 60 70 80 90 100 Percent.of Rated Thermal Power NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits.Refer to the Unit 2 ROD manual for details.
: 14. DPC-NF-2010A, "Duke Power Company McGuire Nuclear Station Catawba Nuclear Station Nuclear Physics Methodology for Reload Design."
CNEI-0400-149 Page 13 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Figure 3 Control Bank Insertion Limits Versus Percent Rated Thermal Power Fully Withdrawn (Maximum = 231)(29.6%, 231)(80.0%, 231)231 220 200 180 160 140.120 100.2 80 , 60 40'Fully Withdrawn.(Minimum =222)'Control Bank B (0%, 163)(10,6)-
Revision 2 SER Date: June 24, 2003
Control Bank C Control Bank D (0%, 47) (300, 0)(30%, 0)20 0 0 10 20 30 40 50 60 70 80 90 100 Percent of Rated Thermal Power The Rod Insertion Limits (RIL) for Control Bank D (CD), Control Bank C (CC), and Control Bank B (CB) can becalculated by: Bank CD RIL= 2.3(P)-69
: 15. DPC-NE-201 IPA, "Duke Power Company NuclearDesign Methodology for Core Operating Limits of Westinghouse Reactors;" (DPC Proprietary).
{30< P51O0}0.Bank CC RIL 2.3(P)+ 47 {0:< P 80}Bank CB RIL =2.3(P)+ 163 .{0 < P 29.6}where P = %Rated Thermal Power NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits.Refer to the Unit 2 ROD manual for details.Anytime the shutdown banks are inserted below 222 steps withdrawn control bank D insertion is limited to 200 steps withdrawn (see Section 2.4.1 special conditions)
Revision 1..
CNEI-0400-149 Page 14 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report Table 1 Control Bank Withdrawal Steps and Sequence Fully Withdrawn at 222 Steps Control Control Control Control Bank A Bank B Bank C Bank D 0 Start 0 0 0 116 0 Start 0 0 222 Stop 106 0 0 222 116 0 Start 0 222 222 Stop 106 0 222 222 116 .0 Start 222 222 222 Stop 106 Fully Withdrawn at 224 Steps Control Control Control Control BankA, BankB BankC BanklD Fully Withdrawn at 223 Steps Control Control' Control Control Bank A Bank B Bank C Bank D 0 Start 0 0 0 116 0 Start 0 0 223 Stop ' 07 0 0 223 116 0 Start 0 223 223 Stop 107 0* 223 223 116 0 Start 223 223 223 Stop 107 Fully Withdrawn at 225 Steps Control Control Control Control Bank A Bank B Bank C Bank D, 0 Start 0 0 0 116, 0 Start 0 0 225 Stop' 109 0 0 225 116 0 Start 0 225 225 Stop 109 0 225 225 116 0 Start 225 225 225 Stop 109 Fully Withdrawn at 227 Steps Control Control Control Control Bank A Bank B. Bank C Bank D 0 Start. 0 0 0 116 0 Start 0 0 224 Stop 108. 0 0 224 116 -0 Start 0 224 224 Stop 108
SER Date: October 1, 2002.
* 0..224 224 " 1.16 0 Start 224 224 224 Stop. 108 Fully Withdrawn at 226 Steps Control Control .Control Control Bank A Bank B Bank C Bank D 0 Start 0 0 0 116 0Start 0.* 0 226 Stop 110 0 0 226 116 0 Start 0 226 226 Stop 110 0 226 226 116 0 Start 226 226 226 Stop 110 Fully Withdrawn at 228 Steps Control Control Control Control Bank A Bank'B Bank C Bank D 0 Start 0 0 0 116 0 Start 0 0 228 Stop 112'. 0 01 228 116. .Start 0 228 228 Stop 112 *0 228 228 116. 0 Start 228 228 .228 Stop 112 0 Start 0 0 0 116 0 Start 0 0 227 Stop 111 ' .0 0 227 116 0 Start 0 227 2 2 7 Stop 111 0 227 227 116 0 Start 227 .227 227 Stop IlI Fully Withdrawn at229 Steps Control Control Control Control BankAX Bank B Bank C Bank D 0 Start 0 "0 0 116 0 Start 0 0 229 Stop 113. 0 0 229 116' 0 Start 0 229 229 Stop 113 0 229 229 116 0 Start 229 .. 229 229 Stop, 113 Fully Withdrawn at 230 Steps Control
: 16. DPC-NE-1005-P-A, "Nuclear Design Methodology Using CASMO-4 / SIMULATE-3 MOX", (DPC Proprietary).
* Control Control Control Bank A Bank B Bank C Bank D 0 Start 0 0 0 116 0 Start 0' 0 230 Stop 114 0 0 230 116 0 Start 0 230 230 Stop 114 0 230 230 116 ,O Start 230 230 230 Stop 114 Fully Withdrawn at 231 Steps Control Control Control Control Bank A Bank B Bank C Bank D 0 Start 0 0 0 116 0 Start 0 0 231 Stop 115 0 0 231 116 0 Start 0 231' 231 Stop 115 0 231 231 116 0 Start 231 231 , 231 Stop 1.15,  
Revision 0 SER Date: August 20; 2004
.11 .CNEI-0400-149 Page 15 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report 2.5 Control Bank Insertion Limits (TS 3.1.6)2.5.1 Control banks shall be within the insertion, sequence, and overlap limits shown in Figure 3. Specific control bank withdrawal and overlap limits as a function of the fully withdrawn position are shown in Table 1.2.6 Heat Flux Hot Channel Factor -FQ(X,Y,Z) (TS 3.2.1)2.6.1 FQ(X,YZ) steady-state limits are defined by the following relationships:
: 17. BAW-1023 1P-A, "COPERNIC Fuel Rod Design Computer Code" (Framatome ANP Proprietary)
F rP*K(Z)/P.
Revision 1 SER Date: January 14, 2004 Not Used for C2C16
for P > 0.5 F RTP *K(Z)/0.5 for P < 0.5 where, P = (Thermal Power)/(Rated Power)Note: The measured FQ(X,Y,Z).
 
shall be increased by 3% .to account for manufacturing tolerances and 5% to account for measurement uncertainty when comparing against the LCO limits. The manufacturing tolerance and measurement uncertainty are implicitly included in the FQ surveillance limits as defined in COLR Sections 2.6.5 and 2.6.6.2.6.2 F R 2.60 x K(BU)-Q 2.6.3 K(Z) is the normalized FQ(X,Y,Z) as a function of core height. K(Z) for Westinghouse RFA fuel is provided in Figure 4.2.6.4 K(BU) is the normalized FQ(X,Y,Z) as a function of burnup. K(BU) for Westinghouse RFA fuel is 1.0 at all burnups.The following parameters are required for core monitoring per the Surveillance Requirements of Technical Specification 3.2.1: FQ(X,Y,Z)
CNEI-0400-149 Page 9 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.0 Operating Limits The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using NRC approved methodologies specified in Section 1.1.
MQ(X,Y,Z)2.6.5 [FQ(X,Y,Z)]OP UMT
2.1 Reactor Core Safety Limits (TS 2.1.1)
The Reactor Core Safety Limits are shown in Figure 1.
2.2 Shutdown Margin - SDM (TS 3.1.1, TS 3.1.4, TS 3.1.5, TS 3.1.6, TS 3.1.8) 2.2.1   For TS 3.1.1, shutdown margin shall be greater than or equal to 1.3% AK/K in mode 2with Keff < 1.0 and in modes 3 and4.
2.2.2   For TS 3.1.1, shutdown margin shall be greater than or equal to 1.0% AK/K in mode 5.
2.2.3   For TS 3.1.4, shutdown margin shall be greater than or equal to 1.3% AK/K in mode I and mode 2.
2.2.4   For TS 3.1.5, shutdown margin shall be greater than or equal to 1.3% AK/K in mode 1 and mode 2 with any control bank not fully inserted.
2.2.5   For TS 3.1.6, shutdown.margin shall be greater than or equal to 1.3% AK/K in mode I and mode 2 with Keff > 1.0.
2.2.6* For TS 3.1.8, shutdown margin shall be greater than or equal to 1.3% AK/K in mode 2 during Physics Testing.
 
CNEI-0400-149 Page 10 of 32 Revision I Catawba.2 Cycle 16 Core Operating Limits Report Figure 1 Reactor Core Safety Limits Four Loops in Operation 670 DO NOT OPERATE IN THIS AREA 660                                   '_'
650                                                                                 .
02280                                psia (9 620    6000     .                   ..                               ___
610                                                      _____
630 600                                                    _____
590                                                                    _____
ACCEPTABLE OPERATION 580                         I                                   _ _     _     _
0.0     0.2         0.4           0.6         0.8           1.0.             1.2 Fraction of Rated Thermal Power '
 
CNEI-0400-149 Page II of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.3 Moderator Temperature Coefficient - MTC (TS 3.1.3) 2.3.1   The Moderator Temperature Coefficient (MTC) Limits are:
The MTC shall be less positive than the upper limits shown in Figure 2. The BOC, ARO, HZP MTC shall be less positive than 0.7E-04 AK/K/&deg;F.
The EOC, ARO, RTP MTC shall be less negative than the -4.3E-04 AK/K/IF lower MTC limit.
2.3.2   The 300 ppm MTC Surveillance Limit is:
The measured 300 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to -3.65E-04 AK/K/&deg;F.
2.3.3   The 60 PPM MTC Surveillance Limit is:
The 60 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to
            -4.125E-04 AK/KI 0F.
Where:         BOC = Beginning of Cycle (bumup corresponding to most positive MTC)
EOC = End of Cycle ARO =   All Rods Out HZP =   Hot Zero Thermal Power RTP =   Rated Thermal Power PPM -   Parts per million (Boron) 2.4 Shutdown Bank Insertion Limit (TS 3.1.5) 2.4.1   Each shutdown bank shall be withdrawn to at least 222 steps except under the special conditions listed-below. Shutdown banks are withdrawn in sequence and with no overlap.
Special conditions Shutdown Banks C, D, and E can be inserted to 212 steps withdrawn individually with the following restrictions.
* The cycle average burnup must be between 100.5 and 102.5 EFPD
* Steady state operation near 100%FP prior to entering special conditions
 
CNEI-0400-149 Page 12 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report Figure 2 Moderator Temperature Coefficient Upper Limit Versus Power Level 1.0 0.9 -
Unacceptable Operation 0.8   -
0.7 W
0.6 0        -
W      0.5 --
Q.*
Z  C? 0.4   -             Acceptable Operation 0.3 W
0.2-0.1 0.0                 I                       I 0     10   20     30     40     50 60     70     80     90     100 Percent.of Rated Thermal Power NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits.
Refer to the Unit 2 ROD manual for details.
 
CNEI-0400-149 Page 13 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Figure 3 Control Bank Insertion Limits Versus Percent Rated Thermal Power Fully Withdrawn (Maximum = 231)         (29.6%, 231)                                           (80.0%, 231) 231 220                                                 'Fully Withdrawn.
(Minimum =222)'
200 Control Bank B 180 160    (0%, 163)(10,6)-
140.
Control Bank C
"* 120 100
.2  80                                                                      Control Bank D
  ,  60 40      (0%, 47)           (300, 0) 20 (30%, 0) 0 0           10       20         30         40         50       60       70       80         90     100 Percent of Rated Thermal Power The Rod Insertion Limits (RIL) for Control Bank D (CD), Control Bank C (CC), and Control Bank B (CB) can becalculated by:
Bank CD RIL= 2.3(P)-69 {30< P51O0}0.
Bank CC RIL 2.3(P)+ 47 {0:< P* 80}
Bank CB RIL =2.3(P)+ 163 .{0 < P* 29.6}
where P = %Rated Thermal Power NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits.
Refer to the Unit 2 ROD manual for details.
Anytime the shutdown banks are inserted below 222 steps withdrawn control bank D insertion is limited to 200 steps withdrawn (see Section 2.4.1 special conditions)
 
CNEI-0400-149 Page 14 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report Table 1 Control Bank Withdrawal Steps and Sequence Fully Withdrawn at 222 Steps                      Fully Withdrawn at 223 Steps Control Control Control Control                  Control      Control'    Control  Control Bank A Bank B Bank C Bank D                      Bank A      Bank B      Bank C    Bank D 0 Start       0           0         0         0 Start           0         0        0 116      0 Start        0          0            116        0 Start        0        0 222 Stop     106           0         0        223 Stop          ' 07        0        0 222       116       0 Start       0            223            116      0 Start    0 222     222 Stop       106         0            223        223 Stop        107      0 222       222         116   .0 Start
* 223            223        116    0 Start 222       222     222 Stop       106           223            223    223 Stop      107 Fully Withdrawn at 225 Steps Fully Withdrawn at 224 Steps Control Control Control Control                  Control      Control    Control  Control BankA, BankB BankC BanklD                         Bank A       Bank B     Bank C   Bank D, 0 Start.      0           0         0         0 Start           0         0       0 116     0 Start       0          0           116,       0 Start         0       0 224 Stop      108.        0         0         225 Stop'         109         0        0 224        116      -0 Start      0           225             116     0 Start     0 224    224 Stop      108
* 0            225       225 Stop       109       0
.. 224      224        " 1.16    0 Start        225           225         116   0 Start 224      224      224 Stop.      108          225           225   225 Stop     109 Fully Withdrawn at 226 Steps                      Fully Withdrawn at 227 Steps Control Control . Control Control                Control Control          Control   Control Bank A       Bank B Bank C Bank D                Bank A        Bank B. Bank C       Bank D 0 Start       0           0         0         0 Start           0           0      0 116      0Start        0.*        0           116         0 Start         0      0 226 Stop       110          0         0         227 Stop           111 '  . 0      0 226       116      0 Start      0            227            116      0 Start    0 22 226    226 Stop       110         0           227            7 Stop      111      0 226       226          116     0 Start         227            227        116    0 Start 226      226     226 Stop       110           227          .227    227 Stop     IlI Fully Withdrawn at 228 Steps                      Fully Withdrawn at229 Steps Control Control Control Control                  Control Control          Control  Control Bank A Bank'B           Bank C Bank D             BankAX        Bank B    Bank C    Bank D 0 Start      0          0          0          0 Start           0       "0         0 116     0 Start       0         0           116        0 Start        0        0 228 Stop       112'.       0         01       229 Stop          113.        0        0 228       116. .     Start       0            229            116'    0 Start    0 228     228 Stop       112       *0            229        229 Stop        113      0 228       228         116. 0 Start        229            229        116    0 Start 228       228   . 228 Stop       112           229      .. 229      229 Stop,    113 Fully Withdrawn at 230 Steps                      Fully Withdrawn at 231 Steps Control
* Control Control Control                Control       Control     Control   Control Bank A Bank B Bank C Bank D                      Bank A      Bank B     Bank C   Bank D 0 Start       0           0         0         0 Start           0         0       0 116      0 Start        0'        0           116         0 Start         0       0 230 Stop      114          0          0        231 Stop           115        0        0 230        116       0 Start       0            231            116      0 Start     0 230    230 Stop       114         0           231'      231 Stop       115      0 230       230         116     ,OStart          231            231        116  0 Start 230       230     230 Stop       114           231            231 ,  231 Stop    1.15,
 
. 11 .
CNEI-0400-149 Page 15 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report 2.5 Control Bank Insertion Limits (TS 3.1.6) 2.5.1  Control banks shall be within the insertion, sequence, and overlap limits shown in Figure 3. Specific control bank withdrawal and overlap limits as a function of the fully withdrawn position are shown in Table 1.
2.6 Heat Flux Hot Channel Factor - FQ(X,Y,Z) (TS 3.2.1) 2.6.1 FQ(X,YZ) steady-state limits are defined by the following relationships:
F rP*K(Z)/P.             for P > 0.5 F RTP *K(Z)/0.5         for P < 0.5 where, P = (Thermal Power)/(Rated Power)
Note: The measured FQ(X,Y,Z). shall be increased by 3% .to account for manufacturing tolerances and 5% to account for measurement uncertainty when comparing against the LCO limits. The manufacturing tolerance and measurement uncertainty are implicitly included in the FQ surveillance limits as defined in COLR Sections 2.6.5 and 2.6.6.
2.6.2   F-QR    2.60 x K(BU) 2.6.3   K(Z) is the normalized FQ(X,Y,Z) as a function of core height.           K(Z) for Westinghouse RFA fuel is provided in Figure 4.
2.6.4   K(BU) is the normalized FQ(X,Y,Z) as a function of burnup. K(BU) for Westinghouse RFA fuel is 1.0 at all burnups.
The following parameters are required for core monitoring per the Surveillance Requirements of Technical Specification 3.2.1:
FQ(X,Y,Z)     MQ(X,Y,Z) 2.6.5   [FQ(X,Y,Z)]OP         UMT
* MT
* MT
* TILT where:[Q .(X,Y,Z)]&deg;P Cycle dependent maximum allowable design peaking factor that ensures that the FQ(X,Y,Z)
* TILT where:
LOCA limitis not exceeded for operation within.the.AFD, RIL, and QPTR limits.
[Q .(X,Y,Z)]&deg;P       Cycle dependent maximum allowable design peaking factor that ensures that the FQ(X,Y,Z) LOCA limitis not exceeded for operation within.the.AFD, RIL, and QPTR limits.
CNEI-0400-149 Page 16 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report F OP QF (X,Y,Z)] includes allowances for calculational and measuremenV uncertainties.
 
F(,YZ =M(X,Y,Z) =Design power distribution for FQ. FQD.(X,Y,Z) is provided in Appendix Table A-I for normal operating conditions and in.Appendix Table A-4 for power escalation testing during initial startup operation.
CNEI-0400-149 Page 16 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report F   OP QF (X,Y,Z)]   includes allowances for calculational and measuremenV uncertainties.
Margin remaining in core location X,Y,Z to the LOCA limit in the transient power distribution.
                    =
MQ(X,Y,Z) is. provided in..Appendix Table A-I for normal operating conditions and in.Appendix Table A-4 for power escalation testing during..initial startup operation.
F(,YZ           Design power distribution for FQ. FQD.(X,Y,Z) is provided in Appendix Table A-I for normal operating conditions and in
UMT = Total Peak Measurement Uncertainty. (UMT = 1.05)MT " Engineering Hot Channel Factor. (MT = 1.03)TILT Peaking penalty that accounts for allowable quadrant power tilt ratio of 1.02. (TILT = 1.035)2.6.6 [FPQ(X,Y,Z)I RS =FIQ (X,YZ)
                        .Appendix Table A-4 for power escalation testing during initial M(X,Y,Z)  =
* Mc(X,Y,Z)UMT
startup operation.
Margin remaining in core location X,Y,Z to the LOCA limit in the transient power distribution. MQ(X,Y,Z) is. provided in..
Appendix Table A-I for normal operating conditions and in
                        .Appendix Table A-4 for power escalation testing during..initial startup operation.
UMT =       Total Peak Measurement Uncertainty. (UMT = 1.05)
MT "     Engineering Hot Channel Factor. (MT = 1.03)
TILT       Peaking penalty that accounts for allowable quadrant power tilt ratio of 1.02. (TILT = 1.035)
FIQ (X,YZ)
* Mc(X,Y,Z) 2.6.6 [FPQ(X,Y,Z)I RS =
UMT
* MT
* MT
* TILT where:[-F&#xfd;(X,Y,Z)]RPS Cycle dependent maximum allowable design peaking factor that ensures that the FQ(X,Yz) Centerline Fuel Melt (CFM)limit is not exceeded for operation within the.AFD, RIL, and QPTR limits. [F6(X,Y,Z)]RPS1includes allowances for calculational and measurement uncertainties.
* TILT where:
Design power distributions for-FQ. FQ(XY,Z) is provided in Appendix Table A-1 for normal operating conditions and in Appendix Table A-4 for power escalation testing during initial startup operations.
[-F&#xfd;(X,Y,Z)]RPS     Cycle dependent maximum allowable design peaking factor that ensures that the FQ(X,Yz) Centerline Fuel Melt (CFM) limit is not exceeded for operation within the.AFD, RIL, and QPTR limits. [F6(X,Y,Z)]RPS1includes allowances for calculational and measurement uncertainties.
FQ(X,Y,Z)=
FQ(X,Y,Z)=      Design power distributions for-FQ. FQ(XY,Z) is provided in Appendix Table A-1 for normal operating conditions and in Appendix Table A-4 for power escalation testing during initial startup operations.
Mc(X,Y,Z)  
Mc(X,Y,Z) =       Margin remaining to the CFM limit in core location X,Y,Z from the transient power distribution. Mc(X,Y,Z) is provided in Appendix Table A-2 for normal operating conditions and in Appendix Table A-5 for power escalation testing during initial startup operations.
= Margin remaining to the CFM limit in core location X,Y,Z from the transient power distribution.
 
Mc(X,Y,Z) is provided in Appendix Table A-2 for normal operating conditions and in Appendix Table A-5 for power escalation testing during initial startup operations.
CNEI-0400- 149 Page 17 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report UMT       Measurement Uncertainty (UMT = 1.05)
CNEI-0400-149 Page 17 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report UMT Measurement Uncertainty (UMT = 1.05)MT Engineering Hot Channel Factor (MT = 1.03)TILT Peaking penalty that accounts for allowable quadrant power tilt ratio of 1.02. (TILT = 1.035)2.6.7 KSLOPE = 0.0725 where: KSLOPE = the adjustment to the K 1 value from OTAT trip setpoint required to k L RPS compensate for each 1%. that Ff (X,Y,Z) exceeds [F Q (X,Y,Z)J .2.6.8 FQ(X,Y,Z)
MT       Engineering Hot Channel Factor (MT = 1.03)
Penalty Factors. for Technical Specification Surveillances 3.2.1.2 and 3.2.1.3 are provided in Table 2.
TILT       Peaking penalty that accounts for allowable quadrant power tilt ratio of 1.02. (TILT = 1.035) 2.6.7 KSLOPE = 0.0725 where:
CNEI-0400-149 Page 18 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report Figure 4 K(Z), Normalized FQ(X,Y,Z) as a Function of Core Height for RFA Fuel 1.200 1.000 0.800 No.6oo0 0.400 (0.0, 1.00) .(4.0, 1.00)* .(12.0, 0.9615)(4.0, 0.9615)Core Height (ft) K(Z).0.0 1.0000< 4.0 1.0000> 4.0 .0.9615 12.0 0-9615 0.200 -0.000 0.0 2.0 4.0 6.0 Core Height (ft)8.0 10.0 12.0 CNEI-0400-149 Page 19 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report Table 2-FQ(X,Y,Z) and FtH(X,Y) Penalty Factors For Tech Spec Surveillances 3.2.1.2, 3.2.1.3 and 3.2.2.2 Burnup (EFPD)4 12 25 50 75 100 125.150 175 200 225 250 275 300 325 350 375 400 425 447 456 471 486 FQ(X,Y,Z)Penalty Factor(%)2.00 2.00 2.00 2.00 2.00 2.00 2.10 2.00 2.00 2.00-9 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 FAH(X,Y)Penalty Factor (%)2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Note: Linear interpolation is adequate for intermediate cycle bumups.All cycle burnups outside therange of thetable shall use a 2%-penalty factor for both FQ(X,Y,Z) and FAH(X,Y) for compliance with the Tech Spec Surveillances 3.2.1.2, 3.2.1.3 and 3.2.2.2.
KSLOPE = the adjustment to the K1 value from OTAT trip setpoint required to L
CNEI-0400-149 Page 20 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.7 Nuclear Enthalpy Rise Hot Channel Factor -FAH(X,Y) (TS 3.2.2)The FAH steady-state limits referred to in Technical Specification 3.2.2 are defined by the following relationship.
k         RPS compensate for each 1%. that Ff (X,Y,Z) exceeds [FQ (X,Y,Z)J       .
2.7.1 [FkH (X,y)]LCO=
2.6.8 FQ(X,Y,Z) Penalty Factors. for Technical Specification Surveillances 3.2.1.2 and 3.2.1.3 are provided in Table 2.
MARP (X,Y)* 1.0+ RR (1.0 -P where:[FkL (X, y)]LCO is defined as the steady-state, maximum allowed radial peak and includes allowances for calculation/measurement uncertainty.
 
MARP(X,Y)  
CNEI-0400-149 Page 18 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report Figure 4 K(Z), Normalized FQ(X,Y,Z) as a Function of Core Height for RFA Fuel 1.200 (0.0, 1.00)           .(4.0, 1.00)                           * .       (12.0, 0.9615) 1.000 (4.0, 0.9615) 0.800 No.6oo0 0.400 Core Height (ft)       K(Z)
=Cycle-specific operating limit Maximum Allowable Radial Peaks.: MARP(X,Y) radial peaking limits are provided in Table 3.= Thermal Power Rated Thermal Power RRH =Thermal Power reduction required-to compensate for each 1% that the measured radial peak, FL (X,Y), exceeds the limit.(RRH =3.34, 0.0 < P < 1.0)The following parameters are required for core monitoring per the Surveillance requirements of Technical Specification 3.2.2.SSURV FL (X, Y)
                        .0.0       1.0000 0.200 -            < 4.0         1.0000
* Ma,, (X, Y)2.7.2 [F6Ll (X,Y)] = T UMR
                      > 4.0     . 0.9615 12.0       0-9615 0.000 0.0                 2.0           4.0               6.0           8.0 10.0             12.0 Core Height (ft)
* TILT where: I SURV[FL (X,Y) I Cycle dependent maximum allowable design peaking factor that ensures that the FAH(X,Y) limit is not exceeded for operation within the AFD, RIL, and QPTR limits.FL [ (X,y)SU'v includes allowances for calculational and FA r (X,Y)=measurement uncertainty.
 
D "" Design power distribution for FAH" FAH (X,Y) is provided in Appendix Table A-3 for normal operation and in Appendix Table A-6 for power escalation testing during initial startup operation.
CNEI-0400-149 Page 19 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report Table 2
                  -FQ(X,Y,Z) and FtH(X,Y) Penalty Factors For Tech Spec Surveillances 3.2.1.2, 3.2.1.3 and 3.2.2.2 Burnup                   FQ(X,Y,Z)                 FAH(X,Y)
(EFPD)              Penalty Factor(%)        Penalty Factor (%)
4                      2.00                     2.00 12                      2.00                     2.00 25                      2.00                     2.00 50                      2.00                      2.00 75                      2.00                     2.00 100 2.00                     2.00 125.                      2.10                      2.00 150                      2.00                     2.00 175                      2.00                     2.00 200                      2.00                     2.00 225              -9      2.00                     2.00 250                      2.00                     2.00 275                      2.00                     2.00 300                      2.00                     2.00 325                      2.00                     2.00 350                      2.00                     2.00 375                      2.00                     2.00 400                      2.00                     2.00 425                      2.00                     2.00 447                      2.00                     2.00 456                      2.00                     2.00 471                      2.00                     2.00 486                      2.00                     2.00 Note: Linear interpolation is adequate for intermediate cycle bumups.
All cycle burnups outside therange of thetable shall use a 2%
      -penalty factor for both FQ(X,Y,Z) and FAH(X,Y) for compliance with the Tech Spec Surveillances 3.2.1.2, 3.2.1.3 and 3.2.2.2.
 
CNEI-0400- 149 Page 20 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.7 Nuclear Enthalpy Rise Hot Channel Factor - FAH(X,Y) (TS 3.2.2)
The FAH steady-state limits referred to in Technical Specification 3.2.2 are defined by the following relationship.
2.7.1   [FkH (X,y)]LCO= MARP (X,Y)*             1.0+ RR     (1.0 - P where:
[FkL (X, y)]LCO is defined as the steady-state, maximum allowed radial peak and includes allowances for calculation/measurement uncertainty.
MARP(X,Y) =             Cycle-specific operating limit Maximum Allowable Radial Peaks.: MARP(X,Y) radial peaking limits are provided in Table 3.
                =     Thermal Power Rated Thermal Power RRH =Thermal Power reduction required-to compensate for each 1% that the measured radial peak, FL (X,Y), exceeds the limit.
(RRH =3.34, 0.0 < P < 1.0)
The following parameters are required for core monitoring per the Surveillance requirements of Technical Specification 3.2.2.
SSURV       FL (X, Y)
* Ma,, (X, Y) 2.7.2   [F6Ll (X,Y)]         =         UMR
* TTILT where:
I   SURV
[FL (X,Y) I             Cycle dependent maximum allowable design peaking factor that ensures that the FAH(X,Y) limit is not exceeded for operation within the AFD, RIL, and QPTR limits.
FL[ (X,y)SU'v includes allowances for calculational and measurement uncertainty.              D ""
in FA r (X,Y)=       Design power distribution for FAH" FAH (X,Y) is provided Appendix Table A-3 for normal operation and in Appendix Table A-6 for power escalation testing during initial startup operation.
 
CNEI-0400-149 Page 21 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report MAH(XY) =Themargin remaining in core location X,Y relative to the Operational DNB limits in the transient power distribution.
CNEI-0400-149 Page 21 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report MAH(XY) =Themargin remaining in core location X,Y relative to the Operational DNB limits in the transient power distribution.
MAH(X,Y) is provided in Appendix Table A-3 for normal operation and in Appendix Table A-6 for power escalation testing during initial startup operation.
MAH(X,Y) is provided in Appendix Table A-3 for normal operation and in Appendix Table A-6 for power escalation testing during initial startup operation.
UMR Uncertainty value for measured radial peaks. UMIR.is set to 1.0 since a factor of 1.04 is implicitly included.
UMR       Uncertainty value for measured radial peaks. UMIR.is set to 1.0 since a factor of 1.04 is implicitly included. in the variable MAH(XY).
in the variable MAH(XY).TILT =Peaking penalty that accounts for allowable quadrant power* tilt ratio of 1.02. (TILT= 1.035)2.7.3 RRH = 3.34 where: RRH Thermal Power reduction required to compensate for each 1% that the measured radial peak, FA (X,Y) exceeds its limit. (0 < P < 1.0)2.7.4 TRH = 0.04 where: TRH= Reduction in OTAT K 1 setpoint required to compensate for each 1% that the measured radial peak, FAH(X,Y) exceeds its limit.2.7.5 F&H(X,Y) Penalty Factors for Technical Specification Surveillance 3.2.2.2 are provided in Table 2. .2.8 Axial Flux Difference  
TILT =Peaking penalty that accounts for allowable quadrant power
-AFD (TS 3.2.3)2.8.1 The Axial Flux Difference (AFD).Limits are provided in Figure 5.
                              *tilt ratio of 1.02. (TILT= 1.035) 2.7.3 RRH = 3.34 where:
CNEI-0400-149 Page 22 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Table 3 Maximum Allowable Radial Peaks (MARPS)RFA Fuel MARPs 100% Full Power Axial Peak Core Height (ft)1.05 1.1 1.2 1.3 1.4 1.5
RRH     Thermal Power reduction required to compensate for each 1% that the measured radial peak, FA (X,Y) exceeds its limit. (0 < P < 1.0) 2.7.4 TRH = 0.04 where:
* 1.6 1.7 1.8 1.9 2.1. 3.0 3.25 0.12 1.20 2.4C 3.6C 4.8C 6.00 7.2C 8.4C 9.6C 10.8C 11.40 1.8092 1.8553 1.9489 1.9953: 1.8102 *1.854 1.9401 .1.9953 1.8093 1.8525 1.9312 1.9779 1.8098 1.8514 1.9204 1.9641 1.8097 1.8514 1.9058 1.9449 1.8097 1.8514 .1:8921 1.9212 1.807 1.8438 1,8716 1.893 1.8073 1.8319 1.8452" 1.8571 1.8072 1.8102 1.8093 1.7913 1.798 1.7868 1.7611 1.7163 1.7892 1.7652 1.725 1.6645 1.9741 1.9741 1.9741 1.9741 1.9741.1.9455 1.8872 1.8156 1.7375 1. 6538 1.6057 2.1073.2.1073 2.0735 2.0495 2.0059 1.9336 1.8723 1.795 1.71.82 1.6315 1.5826 2.0498 2.009 1.9333 1.8625 1L778 2.0191 1.9775 1.9009 1.8306 1.7852 1.9953. 1.9519 1.876 1.8054 1.732 1.9656 1.9258' 1.8524 1.7855 1.6996 1.9441 1.9233 1.8538 1.7836 1.6714 1.8798 1.8625. 1.8024 1.7472 1.6705 1.8094 -1.7866 1.7332 1.6812 1.5982 1.7359 1.7089 1.6544 .1.601 1.5127 1.6572 1.6347 1.5808 1.5301 1.4444 1.5743 1.5573 1.5088 1.4624 1.3832 1.5289 1.5098 "1.4637 1.4218 1.3458 1.3151 1.2461 1.3007 1.2235 1,4633 1.4616 1.4675 1.3874 1.2987 1.2579 1.3293 1.2602 1.2871 1.2195 1.2182 1.1578 1.1431 1.0914 1.1009 .1.047 1.067- "1.0142 CNEI-0400-149 Page 23 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Figure 5 Percent of Rated Thermal Power Versus Percent Axial Flux Difference Limits 0.0-t=F--50 30 10 0 10 20 30 40 50 Axial Flux Difference
TRH=     Reduction in OTAT K1 setpoint required to compensate for each 1% that the measured radial peak, FAH(X,Y) exceeds its limit.
(% Delta I)NOTE: Compliance with Technical Specification 3.2.1 may require more restrictive AFD limits. Refer to the Unit 2 ROD manual for operational AFD limits.
2.7.5 F&H(X,Y) Penalty Factors for Technical Specification Surveillance 3.2.2.2 are provided in Table 2.           .
CNEI-0400-149 Page 24 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.9 Reactor Trip System Instrumentation Setpoints (TS 3.3.1) Table 3.3.1-1 2.9.1 Overtemperature AT Setpoint Parameter Values Parameter Nominal Value Nominal Tavg at RTP Nominal RCS Operating Pressure Overtemperature AT reactor trip setpoint Overtemperature AT reactor trip heatup setpoint penalty coefficient Overtemperature AT reactor trip depressurization setpoint penalty coefficient Time constants utilized in the. lead-lag compensator for AT Time constant utilized in the lag compensator for AT Time constants utilized in the. lead-lag compensator for- Tavg Time constant utilized in the measured Tavg lag compensator f(AI) "positive" breakpoint fl(AI). "negative" breakpoint fl(AI) "positive' slope fl(AI) '.'negative" slope T'< 590.8 OF P' = 2235 psig KI = 1.1953 K2 = 0.03163/&deg;F' K3 = 0.001414/psi T1 = 8 sec.T2 = 3 sec.T3 = 0 sec.'4 = 22 sec.'C 5 = 4 sec.'6 =0 sec.-3.0 %AI=N/A "-L525 %AT0/ %AI=N/A*The fl(AI) negative breakpoints and slopes for OTATare less restrictive than the OPAT f 2 (AI) negative breakpoint and slope. Therefore, during a transient which challenges the negative imbalance limits the OPAT f 2 (AI).limits will result in a reactor trip before the OTAT fl(AI) limits are reached..
2.8 Axial Flux Difference - AFD (TS 3.2.3) 2.8.1 The Axial Flux Difference (AFD).Limits are provided in Figure 5.
This makes implementation of an OTAT fl(AI) negative breakpoint and slope unnecessary.
 
CNEI-0400-149 Page 25 of 32 Revisionl1 Catawba 2 Cycle 16 Core Operating Limits Report 2.9.2 Overpower AT Setpoint Parameter Values Parameter Nominal Tavg at RTP Overpower AT reactor trip setpoint Overpower AT reactor trip penalty Overpower AT reactor trip heatup setpoint penalty coefficient Time, constants utilized in the lead-lag compensator for AT Time constant utilized in the lag compensator for AT Time constant utilized in the measured Tavg lag compensator Time constant utilized in the rate-lag controller for Tavg f 2 (AI) "positive" breakpoint f 2 (AI) "negative'!
CNEI-0400-149 Page 22 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Table 3 Maximum Allowable Radial Peaks (MARPS)
breakpoint f 2 (AI) "positive" slope f 2 (AI) "negative" slope Nominal Value T" < 590.8 'F K4 = 1.0.819.K 5 0.02 / 'F for increasing Tavg K 5 = 0.00 / 'F for decreasing Tavg.K 6 = 0.001291/OF for T > T" K6 = 0.0 i&deg;F for T < T"-1 8 sec.= 3 sec.3= 0 sec.-6= 0 sec.7: 10 sec.= 35.0 %AI=-35.0 %AI-7.0 %ATO %AI-7.0 %AT/ %AI i &#xfd; &#xfd;' j CNEI-0400-149 Page 26 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.10 Boron Dilution Mitigation System (TS 3.3.9)2.10.1 Reactor Makeup Water Pump flow rate limits: Applicable Mode Limit Mode 3 < 150 gpm Mode 4 or 5 < 70 gpm 2.11 RCS Pressure, Temperature and Flow Limits for DNB (TS 3.4.1)The RCS pressure, temperature and flow limits for DNB are shown in Table 4.2.12 Accumulators (TS 3.5.1)2.12.1 Boron concentration limits during modes 1 and 2, and mode 3 with RCS pressure>1000 psi: Parameter Limit Cold Leg Accumulator minimum boron concentration.
RFA Fuel MARPs 100% Full Power Core Height                                                    Axial Peak (ft) 1.05   1.1     1.2     1.3     1.4     1.5
2,500 ppm Cold Leg Accumulator maximum boron concentration.
* 1.6         1.7     1.8     1.9   2.1. 3.0       3.25 0.12 1.8092 1.8553  1.9489  1.9953:  1.9741  2.1073    2.0498    2.009  1.9333  1.8625 1L778  1.3151    1.2461 1.20  1.8102 *1.854 1.9401 .1.9953   1.9741 .2.1073    2.0191  1.9775  1.9009  1.8306 1.7852 1.3007    1.2235 2.4C  1.8093 1.8525  1.9312  1.9779  1.9741  2.0735    1.9953. 1.9519  1.876  1.8054  1.732 1,4633    1.4616 3.6C  1.8098 1.8514  1.9204  1.9641  1.9741  2.0495    1.9656  1.9258' 1.8524  1.7855 1.6996 1.4675    1.3874 1.9741 4.8C  1.8097 1.8514  1.9058  1.9449          2.0059    1.9441  1.9233  1.8538  1.7836 1.6714 1.2987    1.2579 6.00  1.8097 1.8514 .1:8921  1.9212  .1.9455  1.9336    1.8798  1.8625. 1.8024  1.7472 1.6705 1.3293    1.2602 7.2C  1.807 1.8438  1,8716    1.893  1.8872  1.8723    1.8094  -1.7866  1.7332  1.6812 1.5982 1.2871    1.2195 8.4C  1.8073 1.8319  1.8452"  1.8571  1.8156  1.795    1.7359   1.7089   1.6544 .1.601 1.5127 1.2182    1.1578 9.6C  1.8072 1.8102  1.8093  1.7913  1.7375  1.71.82  1.6572  1.6347  1.5808  1.5301 1.4444 1.1431    1.0914 10.8C  1.798 1.7868  1.7611  1.7163  1.6538  1.6315    1.5743  1.5573  1.5088  1.4624 1.3832 1.1009    .1.047 11.40  1.7892 1.7652  1.725  1.6645  1.6057  1.5826    1.5289  1.5098 "1.4637  1.4218 1.3458  1.067- "1.0142
3,075 ppm 2.13 Refueling Water Storage Tank -RWST (TS 3.5.4)2.13.1 Boron concentration limits during modes 1, 2, 3, and 4: Parameter Limit Refueling Water Storage Tank minimum boron 2,700 ppm concentration.
 
Refueling Water Storage Tank maximum boron 3,075 ppm concentration.
CNEI-0400-149 Page 23 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Figure 5 Percent of Rated Thermal Power Versus Percent Axial Flux Difference Limits 0
CNEI-0400-149 Page 27 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Table 4 Reactor Coolant System DNB Parameters No. Operable PARAMETER INDICATION CHANNELS, LIMITS 1. Indicated RCS Average Temperature meter 4 < 589.6 'F meter 3. < 589.3 OF computer 4 < 590.1 OF computer 3 < 589.9 &deg;F 2. Indicated Pressurizer Pressure meter 4 > 2219,8 psig meter 3 > 2222.1 psig computer 4 > 2215.8 psig computer 3 > 2217.5 psig 3. RCS Total Flow Rate > 390,000 gpm II CNEI-0400-149 Page 28 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.14 Spent Fuel Pool Boron Concentration (TS 3.7.15)2.14.1 Minimum boron concentration limit for the spent fuel pool. Applicable when fuel assemblies are stored in the spent fuel pool.Parameter Limit Spent fuel pool minimum boron concentration.
  .0
.2,700 ppm 2.15 Refueling Operations
  -t=
-Boron Concentration (TS 3.9.1)2.15.1. Minimum boron concentration limit for the filled portions of the Reactor Coolant System, refueling.
F-
canal, and refueling cavity for mode6 conditions.
        -50     -40    -30   -20      -10       0       10       20 30 40     50 Axial Flux Difference (% Delta I)
The minimum boron concentration limit and plant refueling procedures ensure that the Keff of the core will remain within the mode 6 reactivity requirement of Keff <0.95.Parameter Limit Minimum Boron concentration of the Reactor Coolant System, the refueling canal, and the refueling cavity.2,700 ppm CNEI-0400-149 Page 29 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.16 Standby Shutdown System -Standby Makeup Pump Water Supply -(SLC-16.7-9.3) 2.16.1 Minimum boron concentration limit for the spent fuel pool. Applicable for modes 1, 2, and 3.Parameter Limit Spent fuel pool minimum boron concentration for surveillance SLC-16.7-9.3.
NOTE: Compliance with Technical Specification 3.2.1 may require more restrictive AFD limits. Refer to the Unit 2 ROD manual for operational AFD limits.
2,700 ppm 2.17 Borated Water Source -Shutdown (SLC i6.9-11)2.17.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during Mode 4 with any RCS cold leg temperature
 
< 2100F, and Modes 5 and 6.Parameter Boric Acid Tank minimum boron concentration Volume of 7,000 ppm boric acid solution required to maintain SDM at 68 0 F Boric Acid Tank Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-11)Limit 7,000 ppm 2000 gallons 13,086 gallons (14.9%)NOTE: When cycle burnup is > 450 EFPD, Figure 6 may be used to determine the required Boric Acid Tank Minimum Level.Refueling Water Storage Tank minimum boron concentration Volur'me of 2,700 ppm boric acid solution required to maintain SDM at 68 T Refueling Water Storage Tank Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-11)2,700 ppm 7,000 gallons 48,500 gallons (8.7%)
CNEI-0400-149 Page 24 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.9   Reactor Trip System Instrumentation Setpoints (TS 3.3.1) Table 3.3.1-1 2.9.1     Overtemperature AT Setpoint Parameter Values Parameter                                   Nominal Value Nominal Tavg at RTP                                                   T'< 590.8 OF Nominal RCS Operating Pressure                                         P' = 2235 psig Overtemperature AT reactor trip setpoint                               KI = 1.1953 Overtemperature AT reactor trip heatup setpoint                       K2 = 0.03163/&deg;F' penalty coefficient Overtemperature AT reactor trip depressurization                     K3 = 0.001414/psi setpoint penalty coefficient Time constants utilized in the.lead-lag compensator                   T1 = 8 sec.
0 , CNEI-0400-149 Page 30 of 32 Revision I Catawba 2 Cycle 16 Core.Operating Limits Report 2.18 Borated Water Source -Operating (SLC 16.9-12)2.18.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during Modes 1, 2, and 3 and Mode 4 with all RCS cold leg temperatures
for AT                                                                 T2 = 3 sec.
> 210 0 F.Parameter Boric Acid Tank minimum boron concentration Volume of 7,000 ppm boric acid solution required to maintain SDM at 210'F Boric Acid Tank Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-12)Limit 7,000 ppm 13,500 gallons 25,200 gallons (45.80%)NOTE: When cycle burnup is > 450 EFPD, Figure 6 may be used to determine the required Boric Acid Tank Minimum Level.Refueling Water Storage Tank minimum boron concentration Volume of 2,700 ppm boric acid solution required to maintain SDM at 210'F Refueling Water Storage Tank Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-12)2,700 ppm 57,107 gallons 98,607 gallons.(22.0%)
Time constant utilized in the lag compensator for AT                   T3 = 0 sec.
0 p 1 CNEI-0400-149 Page 31 of 32 Revision 1 Catawba 2 Cycle 16.Core Operating Limits Report Figure 6 Boric Acid Storage Tank Indicated Level Versus Primary Coolant Boron Concentration (Valid When Cycle Burnup is > 450 EFPD)This figure includes additional volumes listed in SLC 16.9-11 and 16.9-12 50.0..- .R C S B o ro n ....Concentration BAT Level 40.0 i " (ppm) (%level)0 < 300 43.0 300o< 500 40.0 35.0 500<700 37.0-'' ,1,.. ____*___.700 < 1000 30.01000 <.1300 14.9'# '1300<2700 9.8 25.0 > 2700 9.8: Unacceptable" 20.0 Operation Acceptable Operation 15.0 i 10.0 : Ai&#xfd;A.. ON "k 0.0 ---0 200 400 600 800 1000 1200 .1400 1600 1800 2000 2200 2400 2600 Primary Coolant Boron Concentration (ppmb)
Time constants utilized in the. lead-lag compensator                   '4 = 22 sec.
CNEI-0400-149 Page 32 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Appendix A Power Distribution Monitoring Factors Appendix A contains power dis.tribution monitoring factors used in Technical Specification Surveillance.
for-Tavg
Due to the size of the monitoring factor data, Appendix A is-controlled electronically within Duke and is not included in the Duke internal copies of the COLR. The Catawba Reactor and Electrical Systems Engineering Section controls this information via computer fl~es and should be contacted if there is a*need to access, this information.
                                                                                'C5 = 4 sec.
Time constant utilized in the measured Tavg lag                       '6 =0 sec.
compensator f(AI) "positive" breakpoint                                             -  3.0 %AI fl(AI). "negative" breakpoint                                           =N/A      "
fl(AI) "positive' slope                                                 -  L525 %AT0/ %AI fl(AI) '.'negative" slope                                                 =N/A*
The fl(AI) negative breakpoints and slopes for OTATare less restrictive than the OPAT f2 (AI) negative breakpoint and slope. Therefore, during a transient which challenges the negative imbalance limits the OPAT f2(AI).limits will result in a reactor trip before the OTAT fl(AI) limits are reached.. This makes implementation of an OTAT fl(AI) negative breakpoint and slope unnecessary.
 
CNEI-0400-149 Page 25 of 32 Revisionl1 Catawba 2 Cycle 16 Core Operating Limits Report 2.9.2        Overpower AT Setpoint Parameter Values Parameter                      Nominal Value Nominal Tavg at RTP                                T" < 590.8 'F Overpower AT reactor trip setpoint                  K4 = 1.0.819 Overpower AT reactor trip penalty                  .K5    0.02 / 'F for increasing Tavg K 5 = 0.00 / 'F for decreasing Tavg.
Overpower AT reactor trip heatup setpoint           K 6 = 0.001291/OF for T > T" penalty coefficient                                 K6 = 0.0 i&deg;F for T < T" Time, constants utilized in the lead-lag           -1    8 sec.
compensator for AT                                       = 3 sec.
Time constant utilized in the lag                     3= 0 sec.
compensator for AT Time constant utilized in the measured Tavg         -6= 0 sec.
lag compensator Time constant utilized in the rate-lag                 7: 10 sec.
controller for Tavg f 2(AI) "positive" breakpoint                         = 35.0 %AI f 2(AI) "negative'! breakpoint                       =-35.0 %AI f 2(AI) "positive" slope                             -  7.0 %ATO %AI f 2(AI) "negative" slope                             -  7.0 %AT/ %AI
 
i &#xfd; &#xfd;' j CNEI-0400- 149 Page 26 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.10 Boron Dilution Mitigation System (TS 3.3.9) 2.10.1 Reactor Makeup Water Pump flow rate limits:
Applicable Mode            Limit Mode 3               < 150 gpm Mode 4 or 5            < 70 gpm 2.11 RCS Pressure, Temperature and Flow Limits for DNB          (TS 3.4.1)
The RCS pressure, temperature and flow limits for DNB are shown in Table 4.
2.12 Accumulators (TS 3.5.1) 2.12.1 Boron concentration limits during modes 1 and 2, and mode 3 with RCS pressure
                    >1000 psi:
Parameter                                  Limit Cold Leg Accumulator minimum boron concentration.               2,500 ppm Cold Leg Accumulator maximum boron concentration.                3,075 ppm 2.13 Refueling Water Storage Tank - RWST (TS 3.5.4) 2.13.1 Boron concentration limits during modes 1, 2, 3, and 4:
Parameter                                  Limit Refueling Water Storage Tank minimum boron                      2,700 ppm concentration.
Refueling Water Storage Tank maximum boron                      3,075 ppm concentration.
 
CNEI-0400-149 Page 27 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Table 4 Reactor Coolant System DNB Parameters No. Operable PARAMETER                  INDICATION    CHANNELS,       LIMITS
: 1. Indicated RCS Average Temperature    meter                4      < 589.6 'F meter                3.     < 589.3 OF computer            4     < 590.1 OF computer            3     < 589.9 &deg;F
: 2. Indicated Pressurizer Pressure        meter                4      > 2219,8 psig meter                3      > 2222.1 psig computer            4      > 2215.8 psig computer            3      > 2217.5 psig
: 3. RCS Total Flow Rate                                              > 390,000 gpm
 
*, II *'
CNEI-0400-149 Page 28 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.14 Spent Fuel Pool Boron Concentration (TS 3.7.15) 2.14.1 Minimum boron concentration limit for the spent fuel pool. Applicable when fuel assemblies are stored in the spent fuel pool.
Parameter                                    Limit Spent fuel pool minimum boron concentration.                    . 2,700 ppm 2.15 Refueling Operations - Boron Concentration (TS 3.9.1) 2.15.1. Minimum boron concentration limit for the filled portions of the Reactor Coolant System, refueling. canal, and refueling cavity for mode6 conditions. The minimum boron concentration limit and plant refueling procedures ensure that the Keff of the core will remain within the mode 6 reactivity requirement of Keff <
0.95.
Parameter                                   Limit Minimum Boron concentration of the Reactor Coolant                2,700 ppm System, the refueling canal, and the refueling cavity.
 
CNEI-0400-149 Page 29 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.16 Standby Shutdown System - Standby Makeup Pump Water Supply - (SLC-16.7-9.3) 2.16.1 Minimum boron concentration limit for the spent fuel pool. Applicable for modes 1, 2, and 3.
Parameter                                  Limit Spent fuel pool minimum boron concentration for                  2,700 ppm surveillance SLC-16.7-9.3.
2.17 Borated Water Source    -Shutdown    (SLC i6.9-11) 2.17.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during Mode 4 with any RCS cold leg temperature < 2100F, and Modes 5 and 6.
Parameter                                 Limit Boric Acid Tank minimum boron concentration                 7,000 ppm Volume of 7,000 ppm boric acid solution required          2000 gallons to maintain SDM at 68 0F Boric Acid Tank Minimum Shutdown Volume                  13,086 gallons (14.9%)
(Includes the additional volumes listed in SLC 16.9-11)
NOTE: When cycle burnup is > 450 EFPD, Figure 6 may be used to determine the required Boric Acid Tank Minimum Level.
Refueling Water Storage Tank minimum boron                  2,700 ppm concentration Volur'me of 2,700 ppm boric acid solution required         7,000 gallons to maintain SDM at 68 T Refueling Water Storage Tank Minimum                     48,500 gallons Shutdown Volume (Includes the additional                       (8.7%)
volumes listed in SLC 16.9-11)
 
0 ,
CNEI-0400-149 Page 30 of 32 Revision I Catawba 2 Cycle 16 Core.Operating Limits Report 2.18 Borated Water Source - Operating        (SLC 16.9-12) 2.18.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during Modes 1, 2, and 3 and Mode 4 with all RCS cold leg temperatures > 210 0 F.
Parameter                                Limit Boric Acid Tank minimum boron concentration                 7,000 ppm Volume of 7,000 ppm boric acid solution required         13,500 gallons to maintain SDM at 210'F Boric Acid Tank Minimum Shutdown Volume                   25,200 gallons (Includes the additional volumes listed in SLC               (45.80%)
16.9-12)
NOTE: When cycle burnup is > 450 EFPD, Figure 6 may be used to determine the required Boric Acid Tank Minimum Level.
Refueling Water Storage Tank minimum boron                  2,700 ppm concentration Volume of 2,700 ppm boric acid solution required          57,107 gallons to maintain SDM at 210'F Refueling Water Storage Tank Minimum                      98,607 gallons.
Shutdown Volume (Includes the additional                    (22.0%)
volumes listed in SLC 16.9-12)
 
0 p1 CNEI-0400-149 Page 31 of 32 Revision 1 Catawba 2 Cycle 16.Core Operating Limits Report Figure 6 Boric Acid Storage Tank Indicated Level Versus Primary Coolant Boron Concentration (Valid When Cycle Burnup is > 450 EFPD)
This figure includes additional volumes listed in SLC 16.9-11 and 16.9-12 50.0
                                                                      ..- .R C S  B o ro n                          ....
Concentration BAT Level 40.0                                                  i "              (ppm)            (%level) 0 < 300            43.0 300o< 500            40.0 35.0      -''    ,1,..                                             500<700
____*___.
37.0
      *"30.0                        *;"
700 < 1000            30.0 1000 <.1300          14.9
                                  '#                      '1300<2700                              9.8 25.0                                                                    > 2700              9.8
:  Unacceptable
    "  20.0          Operation                              Acceptable Operation 15.0                                                     i 10.0                                                                                                        :Ai&#xfd; "k    A..ON 0.0          -    --
0    200        400      600    800  1000    1200  . 1400 1600    1800    2000  2200    2400  2600 Primary Coolant Boron Concentration (ppmb)
 
CNEI-0400-149 Page 32 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Appendix A Power Distribution Monitoring Factors Appendix A contains power dis.tribution monitoring factors used in Technical Specification Surveillance. Due to the size of the monitoring factor data, Appendix A is-controlled electronically within Duke and is not included in the Duke internal copies of the COLR. The Catawba Reactor and Electrical Systems Engineering Section controls this information via computer fl~es and should be contacted if there is a*need to access, this information.
Appendix A is included in the COLR copy transmitted to the NRC.}}
Appendix A is included in the COLR copy transmitted to the NRC.}}

Revision as of 18:47, 14 November 2019

Core Operating Limits Report (Colr), Cycle 16, Revision 1
ML080710412
Person / Time
Site: Catawba Duke Energy icon.png
Issue date: 03/03/2008
From: Morris J
Duke Energy Carolinas, Duke Power Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
CNEI-0400-149, Rev 1
Download: ML080710412 (34)


Text

Duke JAMES R.MORRIS, VICE PRESIDENT Energ Duke Energy Carolinas,LLC Carolinas Catawba Nuclear Station / CN01 VP 4800 Concord Road York, SC 29745 803-831-4251 803-831-3221 fax March 3, 2008 U.S. Nuclear Regulatory Commission ATTENTION: Document Control Desk Washington, D.C. 20555-0001

Subject:

Duke Power Company LLC d/b/a Duke Energy Carolinas, LLC.

Catawba Nuclear Station Unit 2 Docket No.: 50-414 Core Operating Limits Report (COLR)

Catawba Unit 2 Cycle 16, Revision 1 Attached, pursuant to Catawba Technical Specification 5.6.5, is an information copy of revision 1 of the Core Operating Limits Report for Catawba Unit 2 Cycle 16.

This letter and attached COLR do not contain any new commitments.

Please direct any questions or concerns to Marc Sawicki at (803) 831-5191.

Sincerely, James R. Morris Attachments 4orADD www. duke-energy.corn

U. S. Nuclear Regulatory Commission March 3, 2008 Page 2 xc: (w/att)

Victor M. McCree (Acting), Region II Administrator U.S. Nuclear Regulatory Commission Sam Nunn Atlanta Federal Center, 23 T85 61 Forsyth St., SW Atlanta, GA 30303-8931 J. F. Stang, Jr., Senior Project Manager (CNS & MNS)

U.S. Nuclear Regulatory Commission 11555 Rockville Pike Mail Stop 8 G9A Rockville, MD 20852-2738 A. T. Sabisch Senior Resident Inspector U.S. Nuclear Regulatory Commission Catawba Nuclear Station

I; CNEI-0400-149 Page 1 of 32 Revision 1 Catawba Unit 2 Cycle 16 Core Operating Limits Report Revision 1 February 2008 Duke Power Company Date Prepared By:

1~4 Checked By: a/2I aozL?

Checked By: g:42 Lev aI Approved By:

QA Condition 1 The information presented in this report has been prepared and issued in accordance with Catawba Technical Specification 5.6.5.

.I I, CNEI-0400-149 Page 2 of 32 Revision 1 INSPECTION OF ENGINEERING INSTRUCTIONS Inspection Waived By: keA~ Date: 2"za" cj (Sponsor) 0I CATAWBA Inspection Waived MCE (Mechanical& Civil) le- Inspected By/Date:

RES (Electrical Only) L Inspected By/Date:

RES (Reactor) L&. Inspected By/Date:

MOD P"' Inspected By/Date:

Other ( ) I] Inspected By/Date:

OCONEE Inspection Waived MCE (Mechanical & Civil) 0 Inspected By/Date:

RES (Electrical Only). 0 Inspected By/Date:

RES (Reactor) 0 Inspected By/Date:

MOD U Inspected By/Date:

Other ( _) U Inspected By/Date:

MCGUIRE Inspection Waived MCE (Mechanical & Civil) 0 Inspected By/Date:

RES (Electrical Only) _ Inspected By/Date:

RES (Reactor) 0 Inspected By/Date:

MOD 2 Inspected By/Date:

Other( _- Inspected By/Date:

1<

CNEI-0400-149 Page 3 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Implementation Instructions for Revision 1 Revision Description and PIP Tracking Revision I of the Catawba Unit 2 Cycle 16 COLR contains limits-specific to the reload core and was revised to include limits specific for completion of the RCCA movement test prior to 2/27/2008. Revision 1 was initiated by PIP #C-08-00765.

Implementation Schedule Revision 1 maybecome effective immediately but must become effective prior to 2/27/2008.

TheCatawba Unit 2 Cycle 16 COLR will cease to. be effective during No MODE between Cycle 16 and 17.

Data files to be Implemented No data files are transmitted as part of this document.

  • V.

CNEI-0400-149 Page 4 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report REVISION LOG Revision Effective Date COLR 0 September 2007 C2C16 COLR rev. 0 1 February 2008. C2C16 COLR rev. 1 Insertion/Deletion Instructions Remove Insert pages 1- 32, of rev 0 pages 1- 32 of rev 1

CNEI-0400-149 Page 5 of 32 Revision 1 Catawba 2 Cycle 16.Core Operating Limits Report 1.0 Core Operating Limits Report This Core Operating Limits Report (COLR) has been prepared in accordance with the requirements of Technical Specification 5.6.5. The Technical Specifications that reference this report are listed below:

TS COLR j

COLR Section Technical Specifications CQLR Parameter Section. Page 2.1.1 Reactor Core Safety Limits I RCS Temperature and Pressure 2.1 9

.-..

".....-.-.--.-. ISafety Limits 3.1.1 Shutdown Margin Shutdown Margin 2.2 9 3.1.3 . Moderator Temperature Coefficient MTC ""2.3 11 3.1.4 1 Rod Group Alignment Limits Shutdown Margin 2.2 " 9 3.1.5 Shutdown Bank Insertion Limit Shutdown Margin 2.2 Rod Insertion Limits. 2.4 11

.3.1.6 Control Bank Insertion Limit Shutdown Margin . 2.2 9

_____Rod Insertion Limits , 2.5_ _ 15 3.1.8. i PhysicsTestsExceptions .. Shutdown Margin _ 2.2 9 3.2.1 Heat Flux Hot ChannelFactor 26. 15 AFD 2.8 . 21 OTAT .2.9 24

- Penalty Factors 2.6 15 3.2.2 Nuclear Enthalpy Rise Hot Channel FAH 2.7 20 Factor __ _ _Penalty Factors 1 2.7 20 3.2.3 Axial Flux Difference AFD 2.8 _ 21 3.3.1 Reactor Trip System Instrumentation 1:OTAT 2.9 24

___ ._ iOPAT 2.9 24

-3.3.9- Boron Dilution Mitigation System Reactor Makeup Water Flow Rate 2.10 26 3.4.1 RCS Pressure, Temperature and Flow RCS Pressure, Temperature and 2.11 26

- limits.for DNB .Flow 3.5.1 Accumulators - Max and Min Boron Cone. 2.12 26 3.5.4 Refueling Water Storage Tank Max and Min Boron. Conc. 2.13 26.

-3.715 . Spent Fuel Pool Boron Concentration Mi-n-Boron Concentration 2.14 .i 28 3.9.1 Refueling Operations - Boron i Mm Boron Concentration 2.15 28 Concentration " _ __i 5.6.5 iCore Operating Limits Report Analytical Methods i.1 6 (COLR) _ _ _ _ _

The Selected License Commitments that reference"this report are listed below:

SLC, Pcon COLR Section Selected Licensing Commitment -COLR Parameter Section Page 16.7-9.3 Standby Shutdown System Standby Makeup Pump Water 2.16 29 S . ....... Supply "

16.9-11 Boration Systems - Borated Water . Borated.Water Volume and Conc. 2.17 29 iSource - Shutdown. . for BAT/RWST *__

16.9-12, Boration Systems - Borated Water I Borated Water Volume and Conc. 2.18 30

_ Source - Operating for BAT/RWST

CNEI-0400-149 Page 6 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report 1.1 Analytical Methods The analytical methods used to determine core operating limits for parameters identified in Technical Specifications and previously reviewed and approved by the NRC are as follows.

1. WCAP79272-P-A, "WESTINGHOUSE RELOAD SAFETY EVALUATION METHODOLOGY," (W-Proprietary).

Revision 0 Report Date: July 1985 Not Used for C2C16

2. WCAP-10054-P-A, "Westinghouse Small Break ECCS Evaluation Model using the NOTRUMP Code, "(W Proprietary).

Revision 0 Report Date: August 1985

3. WCAP-10266-P-A, "THE 198.1 VERSION OF WESTINGHOUSE EVALUATION MODEL USING BASH CODE", (W Proprietary).

Revision 2 Report Date: March 1987 Not Used for C2C16

4. WCAP-12945-P-A, Volume 1 and Volumes 2-5, "Code Qualification Document for Best-Estimate Loss of Coolant Analysis,'" (W. Proprietary).

Revision: Volume I (Revision 2) and Volumes 2-5 (Revision 1)

ReportDate: March 1998

5. BAW-10168P-A, "B&W Loss-of-Coolant Accident Evaluation Model for Recirculating Steam Generator Plants," (B&W Proprietary).

Revision 1 SER Date: January 22, 1991 Revision 2 SER Dates: August 22, 1996 and November 26, 1996.

Revision 3 SER Date: June 15, 1994.

Not Used for C2C16

CNEI-0400-149 Page 7 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report 1.1 Analytical Methods (continued)

6. DPC-NE-3000PA, 'Thermal-Hydraulic Transient.Analysis Methodology," (DPC Proprietary).

Revision 3 SER Date:. September 24, 2003

7. DPC-NE-3001PA, "Multidimensional Reactor Transients and Safety Analysis Physics Parameter Methodology," (DPC Proprietary).

Revision 0 Report Date: November 15, 1991, republished December 2000

8. DPC-NE-3002A, "UFSAR Chapter 15 System Transient Analysis Methodology".

Revision 4 SER Date: April 6, 2001

9. DPC-NE-2004P-A, 1"Duke Power Company McGuire and Catawba Nuclear Stations Core Thermal-Hydraulic Methodology using VIPRE-01," (DPC Proprietary).

Revision 1 SER Date: February 20, 1997

10. DPC-NE-2005P-A, "Thermal Hydraulic Statistical Core Design Methodology," (DPC Proprietary).

Revision 3 SER Date: September 16, 2002

11. DPC-NE-2008P-A, "Fuel Mechanical Reload Analysis Methodology Using TACO3," (DPC Proprietary).

Revision 0 SER Date: April 3, 1995 Not Used for. C2C16.

12. DPC-NE-2009-P-A, "Westinghouse Fuel Transition Report," (DPC Proprietary).

Revision 2 SER Date: December 18, 2002

13. DPC-NIE-1004A, "Nuclear Design Methodology Using CASMO-3/SIMULATE-3P.".

Revision I SER Date: April 26, 1996 Not Used for C2C16

CNEI-0400-149 Page 8 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report 1.1 Analytical Methods (continued)

14. DPC-NF-2010A, "Duke Power Company McGuire Nuclear Station Catawba Nuclear Station Nuclear Physics Methodology for Reload Design."

Revision 2 SER Date: June 24, 2003

15. DPC-NE-201 IPA, "Duke Power Company NuclearDesign Methodology for Core Operating Limits of Westinghouse Reactors;" (DPC Proprietary).

Revision 1..

SER Date: October 1, 2002.

16. DPC-NE-1005-P-A, "Nuclear Design Methodology Using CASMO-4 / SIMULATE-3 MOX", (DPC Proprietary).

Revision 0 SER Date: August 20; 2004

17. BAW-1023 1P-A, "COPERNIC Fuel Rod Design Computer Code" (Framatome ANP Proprietary)

Revision 1 SER Date: January 14, 2004 Not Used for C2C16

CNEI-0400-149 Page 9 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.0 Operating Limits The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using NRC approved methodologies specified in Section 1.1.

2.1 Reactor Core Safety Limits (TS 2.1.1)

The Reactor Core Safety Limits are shown in Figure 1.

2.2 Shutdown Margin - SDM (TS 3.1.1, TS 3.1.4, TS 3.1.5, TS 3.1.6, TS 3.1.8) 2.2.1 For TS 3.1.1, shutdown margin shall be greater than or equal to 1.3% AK/K in mode 2with Keff < 1.0 and in modes 3 and4.

2.2.2 For TS 3.1.1, shutdown margin shall be greater than or equal to 1.0% AK/K in mode 5.

2.2.3 For TS 3.1.4, shutdown margin shall be greater than or equal to 1.3% AK/K in mode I and mode 2.

2.2.4 For TS 3.1.5, shutdown margin shall be greater than or equal to 1.3% AK/K in mode 1 and mode 2 with any control bank not fully inserted.

2.2.5 For TS 3.1.6, shutdown.margin shall be greater than or equal to 1.3% AK/K in mode I and mode 2 with Keff > 1.0.

2.2.6* For TS 3.1.8, shutdown margin shall be greater than or equal to 1.3% AK/K in mode 2 during Physics Testing.

CNEI-0400-149 Page 10 of 32 Revision I Catawba.2 Cycle 16 Core Operating Limits Report Figure 1 Reactor Core Safety Limits Four Loops in Operation 670 DO NOT OPERATE IN THIS AREA 660 '_'

650 .

02280 psia (9 620 6000 . .. ___

610 _____

630 600 _____

590 _____

ACCEPTABLE OPERATION 580 I _ _ _ _

0.0 0.2 0.4 0.6 0.8 1.0. 1.2 Fraction of Rated Thermal Power '

CNEI-0400-149 Page II of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.3 Moderator Temperature Coefficient - MTC (TS 3.1.3) 2.3.1 The Moderator Temperature Coefficient (MTC) Limits are:

The MTC shall be less positive than the upper limits shown in Figure 2. The BOC, ARO, HZP MTC shall be less positive than 0.7E-04 AK/K/°F.

The EOC, ARO, RTP MTC shall be less negative than the -4.3E-04 AK/K/IF lower MTC limit.

2.3.2 The 300 ppm MTC Surveillance Limit is:

The measured 300 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to -3.65E-04 AK/K/°F.

2.3.3 The 60 PPM MTC Surveillance Limit is:

The 60 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to

-4.125E-04 AK/KI 0F.

Where: BOC = Beginning of Cycle (bumup corresponding to most positive MTC)

EOC = End of Cycle ARO = All Rods Out HZP = Hot Zero Thermal Power RTP = Rated Thermal Power PPM - Parts per million (Boron) 2.4 Shutdown Bank Insertion Limit (TS 3.1.5) 2.4.1 Each shutdown bank shall be withdrawn to at least 222 steps except under the special conditions listed-below. Shutdown banks are withdrawn in sequence and with no overlap.

Special conditions Shutdown Banks C, D, and E can be inserted to 212 steps withdrawn individually with the following restrictions.

  • The cycle average burnup must be between 100.5 and 102.5 EFPD
  • Steady state operation near 100%FP prior to entering special conditions

CNEI-0400-149 Page 12 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report Figure 2 Moderator Temperature Coefficient Upper Limit Versus Power Level 1.0 0.9 -

Unacceptable Operation 0.8 -

0.7 W

0.6 0 -

W 0.5 --

Q.*

Z C? 0.4 - Acceptable Operation 0.3 W

0.2-0.1 0.0 I I 0 10 20 30 40 50 60 70 80 90 100 Percent.of Rated Thermal Power NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits.

Refer to the Unit 2 ROD manual for details.

CNEI-0400-149 Page 13 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Figure 3 Control Bank Insertion Limits Versus Percent Rated Thermal Power Fully Withdrawn (Maximum = 231) (29.6%, 231) (80.0%, 231) 231 220 'Fully Withdrawn.

(Minimum =222)'

200 Control Bank B 180 160 (0%, 163)(10,6)-

140.

Control Bank C

"* 120 100

.2 80 Control Bank D

, 60 40 (0%, 47) (300, 0) 20 (30%, 0) 0 0 10 20 30 40 50 60 70 80 90 100 Percent of Rated Thermal Power The Rod Insertion Limits (RIL) for Control Bank D (CD), Control Bank C (CC), and Control Bank B (CB) can becalculated by:

Bank CD RIL= 2.3(P)-69 {30< P51O0}0.

Bank CC RIL 2.3(P)+ 47 {0:< P* 80}

Bank CB RIL =2.3(P)+ 163 .{0 < P* 29.6}

where P = %Rated Thermal Power NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits.

Refer to the Unit 2 ROD manual for details.

Anytime the shutdown banks are inserted below 222 steps withdrawn control bank D insertion is limited to 200 steps withdrawn (see Section 2.4.1 special conditions)

CNEI-0400-149 Page 14 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report Table 1 Control Bank Withdrawal Steps and Sequence Fully Withdrawn at 222 Steps Fully Withdrawn at 223 Steps Control Control Control Control Control Control' Control Control Bank A Bank B Bank C Bank D Bank A Bank B Bank C Bank D 0 Start 0 0 0 0 Start 0 0 0 116 0 Start 0 0 116 0 Start 0 0 222 Stop 106 0 0 223 Stop ' 07 0 0 222 116 0 Start 0 223 116 0 Start 0 222 222 Stop 106 0 223 223 Stop 107 0 222 222 116 .0 Start

  • 223 223 116 0 Start 222 222 222 Stop 106 223 223 223 Stop 107 Fully Withdrawn at 225 Steps Fully Withdrawn at 224 Steps Control Control Control Control Control Control Control Control BankA, BankB BankC BanklD Bank A Bank B Bank C Bank D, 0 Start. 0 0 0 0 Start 0 0 0 116 0 Start 0 0 116, 0 Start 0 0 224 Stop 108. 0 0 225 Stop' 109 0 0 224 116 -0 Start 0 225 116 0 Start 0 224 224 Stop 108
  • 0 225 225 Stop 109 0

.. 224 224 " 1.16 0 Start 225 225 116 0 Start 224 224 224 Stop. 108 225 225 225 Stop 109 Fully Withdrawn at 226 Steps Fully Withdrawn at 227 Steps Control Control . Control Control Control Control Control Control Bank A Bank B Bank C Bank D Bank A Bank B. Bank C Bank D 0 Start 0 0 0 0 Start 0 0 0 116 0Start 0.* 0 116 0 Start 0 0 226 Stop 110 0 0 227 Stop 111 ' . 0 0 226 116 0 Start 0 227 116 0 Start 0 22 226 226 Stop 110 0 227 7 Stop 111 0 226 226 116 0 Start 227 227 116 0 Start 226 226 226 Stop 110 227 .227 227 Stop IlI Fully Withdrawn at 228 Steps Fully Withdrawn at229 Steps Control Control Control Control Control Control Control Control Bank A Bank'B Bank C Bank D BankAX Bank B Bank C Bank D 0 Start 0 0 0 0 Start 0 "0 0 116 0 Start 0 0 116 0 Start 0 0 228 Stop 112'. 0 01 229 Stop 113. 0 0 228 116. . Start 0 229 116' 0 Start 0 228 228 Stop 112 *0 229 229 Stop 113 0 228 228 116. 0 Start 229 229 116 0 Start 228 228 . 228 Stop 112 229 .. 229 229 Stop, 113 Fully Withdrawn at 230 Steps Fully Withdrawn at 231 Steps Control

  • Control Control Control Control Control Control Control Bank A Bank B Bank C Bank D Bank A Bank B Bank C Bank D 0 Start 0 0 0 0 Start 0 0 0 116 0 Start 0' 0 116 0 Start 0 0 230 Stop 114 0 0 231 Stop 115 0 0 230 116 0 Start 0 231 116 0 Start 0 230 230 Stop 114 0 231' 231 Stop 115 0 230 230 116 ,OStart 231 231 116 0 Start 230 230 230 Stop 114 231 231 , 231 Stop 1.15,

. 11 .

CNEI-0400-149 Page 15 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report 2.5 Control Bank Insertion Limits (TS 3.1.6) 2.5.1 Control banks shall be within the insertion, sequence, and overlap limits shown in Figure 3. Specific control bank withdrawal and overlap limits as a function of the fully withdrawn position are shown in Table 1.

2.6 Heat Flux Hot Channel Factor - FQ(X,Y,Z) (TS 3.2.1) 2.6.1 FQ(X,YZ) steady-state limits are defined by the following relationships:

F rP*K(Z)/P. for P > 0.5 F RTP *K(Z)/0.5 for P < 0.5 where, P = (Thermal Power)/(Rated Power)

Note: The measured FQ(X,Y,Z). shall be increased by 3% .to account for manufacturing tolerances and 5% to account for measurement uncertainty when comparing against the LCO limits. The manufacturing tolerance and measurement uncertainty are implicitly included in the FQ surveillance limits as defined in COLR Sections 2.6.5 and 2.6.6.

2.6.2 F-QR 2.60 x K(BU) 2.6.3 K(Z) is the normalized FQ(X,Y,Z) as a function of core height. K(Z) for Westinghouse RFA fuel is provided in Figure 4.

2.6.4 K(BU) is the normalized FQ(X,Y,Z) as a function of burnup. K(BU) for Westinghouse RFA fuel is 1.0 at all burnups.

The following parameters are required for core monitoring per the Surveillance Requirements of Technical Specification 3.2.1:

FQ(X,Y,Z) MQ(X,Y,Z) 2.6.5 [FQ(X,Y,Z)]OP UMT

  • TILT where:

[Q .(X,Y,Z)]°P Cycle dependent maximum allowable design peaking factor that ensures that the FQ(X,Y,Z) LOCA limitis not exceeded for operation within.the.AFD, RIL, and QPTR limits.

CNEI-0400-149 Page 16 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report F OP QF (X,Y,Z)] includes allowances for calculational and measuremenV uncertainties.

=

F(,YZ Design power distribution for FQ. FQD.(X,Y,Z) is provided in Appendix Table A-I for normal operating conditions and in

.Appendix Table A-4 for power escalation testing during initial M(X,Y,Z) =

startup operation.

Margin remaining in core location X,Y,Z to the LOCA limit in the transient power distribution. MQ(X,Y,Z) is. provided in..

Appendix Table A-I for normal operating conditions and in

.Appendix Table A-4 for power escalation testing during..initial startup operation.

UMT = Total Peak Measurement Uncertainty. (UMT = 1.05)

MT " Engineering Hot Channel Factor. (MT = 1.03)

TILT Peaking penalty that accounts for allowable quadrant power tilt ratio of 1.02. (TILT = 1.035)

FIQ (X,YZ)

  • Mc(X,Y,Z) 2.6.6 [FPQ(X,Y,Z)I RS =

UMT

  • TILT where:

[-Fý(X,Y,Z)]RPS Cycle dependent maximum allowable design peaking factor that ensures that the FQ(X,Yz) Centerline Fuel Melt (CFM) limit is not exceeded for operation within the.AFD, RIL, and QPTR limits. [F6(X,Y,Z)]RPS1includes allowances for calculational and measurement uncertainties.

FQ(X,Y,Z)= Design power distributions for-FQ. FQ(XY,Z) is provided in Appendix Table A-1 for normal operating conditions and in Appendix Table A-4 for power escalation testing during initial startup operations.

Mc(X,Y,Z) = Margin remaining to the CFM limit in core location X,Y,Z from the transient power distribution. Mc(X,Y,Z) is provided in Appendix Table A-2 for normal operating conditions and in Appendix Table A-5 for power escalation testing during initial startup operations.

CNEI-0400- 149 Page 17 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report UMT Measurement Uncertainty (UMT = 1.05)

MT Engineering Hot Channel Factor (MT = 1.03)

TILT Peaking penalty that accounts for allowable quadrant power tilt ratio of 1.02. (TILT = 1.035) 2.6.7 KSLOPE = 0.0725 where:

KSLOPE = the adjustment to the K1 value from OTAT trip setpoint required to L

k RPS compensate for each 1%. that Ff (X,Y,Z) exceeds [FQ (X,Y,Z)J .

2.6.8 FQ(X,Y,Z) Penalty Factors. for Technical Specification Surveillances 3.2.1.2 and 3.2.1.3 are provided in Table 2.

CNEI-0400-149 Page 18 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report Figure 4 K(Z), Normalized FQ(X,Y,Z) as a Function of Core Height for RFA Fuel 1.200 (0.0, 1.00) .(4.0, 1.00) * . (12.0, 0.9615) 1.000 (4.0, 0.9615) 0.800 No.6oo0 0.400 Core Height (ft) K(Z)

.0.0 1.0000 0.200 - < 4.0 1.0000

> 4.0 . 0.9615 12.0 0-9615 0.000 0.0 2.0 4.0 6.0 8.0 10.0 12.0 Core Height (ft)

CNEI-0400-149 Page 19 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report Table 2

-FQ(X,Y,Z) and FtH(X,Y) Penalty Factors For Tech Spec Surveillances 3.2.1.2, 3.2.1.3 and 3.2.2.2 Burnup FQ(X,Y,Z) FAH(X,Y)

(EFPD) Penalty Factor(%) Penalty Factor (%)

4 2.00 2.00 12 2.00 2.00 25 2.00 2.00 50 2.00 2.00 75 2.00 2.00 100 2.00 2.00 125. 2.10 2.00 150 2.00 2.00 175 2.00 2.00 200 2.00 2.00 225 -9 2.00 2.00 250 2.00 2.00 275 2.00 2.00 300 2.00 2.00 325 2.00 2.00 350 2.00 2.00 375 2.00 2.00 400 2.00 2.00 425 2.00 2.00 447 2.00 2.00 456 2.00 2.00 471 2.00 2.00 486 2.00 2.00 Note: Linear interpolation is adequate for intermediate cycle bumups.

All cycle burnups outside therange of thetable shall use a 2%

-penalty factor for both FQ(X,Y,Z) and FAH(X,Y) for compliance with the Tech Spec Surveillances 3.2.1.2, 3.2.1.3 and 3.2.2.2.

CNEI-0400- 149 Page 20 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.7 Nuclear Enthalpy Rise Hot Channel Factor - FAH(X,Y) (TS 3.2.2)

The FAH steady-state limits referred to in Technical Specification 3.2.2 are defined by the following relationship.

2.7.1 [FkH (X,y)]LCO= MARP (X,Y)* 1.0+ RR (1.0 - P where:

[FkL (X, y)]LCO is defined as the steady-state, maximum allowed radial peak and includes allowances for calculation/measurement uncertainty.

MARP(X,Y) = Cycle-specific operating limit Maximum Allowable Radial Peaks.: MARP(X,Y) radial peaking limits are provided in Table 3.

= Thermal Power Rated Thermal Power RRH =Thermal Power reduction required-to compensate for each 1% that the measured radial peak, FL (X,Y), exceeds the limit.

(RRH =3.34, 0.0 < P < 1.0)

The following parameters are required for core monitoring per the Surveillance requirements of Technical Specification 3.2.2.

SSURV FL (X, Y)

  • Ma,, (X, Y) 2.7.2 [F6Ll (X,Y)] = UMR
  • TTILT where:

I SURV

[FL (X,Y) I Cycle dependent maximum allowable design peaking factor that ensures that the FAH(X,Y) limit is not exceeded for operation within the AFD, RIL, and QPTR limits.

FL[ (X,y)SU'v includes allowances for calculational and measurement uncertainty. D ""

in FA r (X,Y)= Design power distribution for FAH" FAH (X,Y) is provided Appendix Table A-3 for normal operation and in Appendix Table A-6 for power escalation testing during initial startup operation.

CNEI-0400-149 Page 21 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report MAH(XY) =Themargin remaining in core location X,Y relative to the Operational DNB limits in the transient power distribution.

MAH(X,Y) is provided in Appendix Table A-3 for normal operation and in Appendix Table A-6 for power escalation testing during initial startup operation.

UMR Uncertainty value for measured radial peaks. UMIR.is set to 1.0 since a factor of 1.04 is implicitly included. in the variable MAH(XY).

TILT =Peaking penalty that accounts for allowable quadrant power

  • tilt ratio of 1.02. (TILT= 1.035) 2.7.3 RRH = 3.34 where:

RRH Thermal Power reduction required to compensate for each 1% that the measured radial peak, FA (X,Y) exceeds its limit. (0 < P < 1.0) 2.7.4 TRH = 0.04 where:

TRH= Reduction in OTAT K1 setpoint required to compensate for each 1% that the measured radial peak, FAH(X,Y) exceeds its limit.

2.7.5 F&H(X,Y) Penalty Factors for Technical Specification Surveillance 3.2.2.2 are provided in Table 2. .

2.8 Axial Flux Difference - AFD (TS 3.2.3) 2.8.1 The Axial Flux Difference (AFD).Limits are provided in Figure 5.

CNEI-0400-149 Page 22 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Table 3 Maximum Allowable Radial Peaks (MARPS)

RFA Fuel MARPs 100% Full Power Core Height Axial Peak (ft) 1.05 1.1 1.2 1.3 1.4 1.5

  • 1.6 1.7 1.8 1.9 2.1. 3.0 3.25 0.12 1.8092 1.8553 1.9489 1.9953: 1.9741 2.1073 2.0498 2.009 1.9333 1.8625 1L778 1.3151 1.2461 1.20 1.8102 *1.854 1.9401 .1.9953 1.9741 .2.1073 2.0191 1.9775 1.9009 1.8306 1.7852 1.3007 1.2235 2.4C 1.8093 1.8525 1.9312 1.9779 1.9741 2.0735 1.9953. 1.9519 1.876 1.8054 1.732 1,4633 1.4616 3.6C 1.8098 1.8514 1.9204 1.9641 1.9741 2.0495 1.9656 1.9258' 1.8524 1.7855 1.6996 1.4675 1.3874 1.9741 4.8C 1.8097 1.8514 1.9058 1.9449 2.0059 1.9441 1.9233 1.8538 1.7836 1.6714 1.2987 1.2579 6.00 1.8097 1.8514 .1:8921 1.9212 .1.9455 1.9336 1.8798 1.8625. 1.8024 1.7472 1.6705 1.3293 1.2602 7.2C 1.807 1.8438 1,8716 1.893 1.8872 1.8723 1.8094 -1.7866 1.7332 1.6812 1.5982 1.2871 1.2195 8.4C 1.8073 1.8319 1.8452" 1.8571 1.8156 1.795 1.7359 1.7089 1.6544 .1.601 1.5127 1.2182 1.1578 9.6C 1.8072 1.8102 1.8093 1.7913 1.7375 1.71.82 1.6572 1.6347 1.5808 1.5301 1.4444 1.1431 1.0914 10.8C 1.798 1.7868 1.7611 1.7163 1.6538 1.6315 1.5743 1.5573 1.5088 1.4624 1.3832 1.1009 .1.047 11.40 1.7892 1.7652 1.725 1.6645 1.6057 1.5826 1.5289 1.5098 "1.4637 1.4218 1.3458 1.067- "1.0142

CNEI-0400-149 Page 23 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Figure 5 Percent of Rated Thermal Power Versus Percent Axial Flux Difference Limits 0

.0

-t=

F-

-50 -40 -30 -20 -10 0 10 20 30 40 50 Axial Flux Difference (% Delta I)

NOTE: Compliance with Technical Specification 3.2.1 may require more restrictive AFD limits. Refer to the Unit 2 ROD manual for operational AFD limits.

CNEI-0400-149 Page 24 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.9 Reactor Trip System Instrumentation Setpoints (TS 3.3.1) Table 3.3.1-1 2.9.1 Overtemperature AT Setpoint Parameter Values Parameter Nominal Value Nominal Tavg at RTP T'< 590.8 OF Nominal RCS Operating Pressure P' = 2235 psig Overtemperature AT reactor trip setpoint KI = 1.1953 Overtemperature AT reactor trip heatup setpoint K2 = 0.03163/°F' penalty coefficient Overtemperature AT reactor trip depressurization K3 = 0.001414/psi setpoint penalty coefficient Time constants utilized in the.lead-lag compensator T1 = 8 sec.

for AT T2 = 3 sec.

Time constant utilized in the lag compensator for AT T3 = 0 sec.

Time constants utilized in the. lead-lag compensator '4 = 22 sec.

for-Tavg

'C5 = 4 sec.

Time constant utilized in the measured Tavg lag '6 =0 sec.

compensator f(AI) "positive" breakpoint - 3.0 %AI fl(AI). "negative" breakpoint =N/A "

fl(AI) "positive' slope - L525 %AT0/ %AI fl(AI) '.'negative" slope =N/A*

The fl(AI) negative breakpoints and slopes for OTATare less restrictive than the OPAT f2 (AI) negative breakpoint and slope. Therefore, during a transient which challenges the negative imbalance limits the OPAT f2(AI).limits will result in a reactor trip before the OTAT fl(AI) limits are reached.. This makes implementation of an OTAT fl(AI) negative breakpoint and slope unnecessary.

CNEI-0400-149 Page 25 of 32 Revisionl1 Catawba 2 Cycle 16 Core Operating Limits Report 2.9.2 Overpower AT Setpoint Parameter Values Parameter Nominal Value Nominal Tavg at RTP T" < 590.8 'F Overpower AT reactor trip setpoint K4 = 1.0.819 Overpower AT reactor trip penalty .K5 0.02 / 'F for increasing Tavg K 5 = 0.00 / 'F for decreasing Tavg.

Overpower AT reactor trip heatup setpoint K 6 = 0.001291/OF for T > T" penalty coefficient K6 = 0.0 i°F for T < T" Time, constants utilized in the lead-lag -1 8 sec.

compensator for AT = 3 sec.

Time constant utilized in the lag 3= 0 sec.

compensator for AT Time constant utilized in the measured Tavg -6= 0 sec.

lag compensator Time constant utilized in the rate-lag 7: 10 sec.

controller for Tavg f 2(AI) "positive" breakpoint = 35.0 %AI f 2(AI) "negative'! breakpoint =-35.0 %AI f 2(AI) "positive" slope - 7.0 %ATO %AI f 2(AI) "negative" slope - 7.0 %AT/ %AI

i ý ý' j CNEI-0400- 149 Page 26 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.10 Boron Dilution Mitigation System (TS 3.3.9) 2.10.1 Reactor Makeup Water Pump flow rate limits:

Applicable Mode Limit Mode 3 < 150 gpm Mode 4 or 5 < 70 gpm 2.11 RCS Pressure, Temperature and Flow Limits for DNB (TS 3.4.1)

The RCS pressure, temperature and flow limits for DNB are shown in Table 4.

2.12 Accumulators (TS 3.5.1) 2.12.1 Boron concentration limits during modes 1 and 2, and mode 3 with RCS pressure

>1000 psi:

Parameter Limit Cold Leg Accumulator minimum boron concentration. 2,500 ppm Cold Leg Accumulator maximum boron concentration. 3,075 ppm 2.13 Refueling Water Storage Tank - RWST (TS 3.5.4) 2.13.1 Boron concentration limits during modes 1, 2, 3, and 4:

Parameter Limit Refueling Water Storage Tank minimum boron 2,700 ppm concentration.

Refueling Water Storage Tank maximum boron 3,075 ppm concentration.

CNEI-0400-149 Page 27 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Table 4 Reactor Coolant System DNB Parameters No. Operable PARAMETER INDICATION CHANNELS, LIMITS

1. Indicated RCS Average Temperature meter 4 < 589.6 'F meter 3. < 589.3 OF computer 4 < 590.1 OF computer 3 < 589.9 °F
2. Indicated Pressurizer Pressure meter 4 > 2219,8 psig meter 3 > 2222.1 psig computer 4 > 2215.8 psig computer 3 > 2217.5 psig
3. RCS Total Flow Rate > 390,000 gpm
  • , II *'

CNEI-0400-149 Page 28 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.14 Spent Fuel Pool Boron Concentration (TS 3.7.15) 2.14.1 Minimum boron concentration limit for the spent fuel pool. Applicable when fuel assemblies are stored in the spent fuel pool.

Parameter Limit Spent fuel pool minimum boron concentration. . 2,700 ppm 2.15 Refueling Operations - Boron Concentration (TS 3.9.1) 2.15.1. Minimum boron concentration limit for the filled portions of the Reactor Coolant System, refueling. canal, and refueling cavity for mode6 conditions. The minimum boron concentration limit and plant refueling procedures ensure that the Keff of the core will remain within the mode 6 reactivity requirement of Keff <

0.95.

Parameter Limit Minimum Boron concentration of the Reactor Coolant 2,700 ppm System, the refueling canal, and the refueling cavity.

CNEI-0400-149 Page 29 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.16 Standby Shutdown System - Standby Makeup Pump Water Supply - (SLC-16.7-9.3) 2.16.1 Minimum boron concentration limit for the spent fuel pool. Applicable for modes 1, 2, and 3.

Parameter Limit Spent fuel pool minimum boron concentration for 2,700 ppm surveillance SLC-16.7-9.3.

2.17 Borated Water Source -Shutdown (SLC i6.9-11) 2.17.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during Mode 4 with any RCS cold leg temperature < 2100F, and Modes 5 and 6.

Parameter Limit Boric Acid Tank minimum boron concentration 7,000 ppm Volume of 7,000 ppm boric acid solution required 2000 gallons to maintain SDM at 68 0F Boric Acid Tank Minimum Shutdown Volume 13,086 gallons (14.9%)

(Includes the additional volumes listed in SLC 16.9-11)

NOTE: When cycle burnup is > 450 EFPD, Figure 6 may be used to determine the required Boric Acid Tank Minimum Level.

Refueling Water Storage Tank minimum boron 2,700 ppm concentration Volur'me of 2,700 ppm boric acid solution required 7,000 gallons to maintain SDM at 68 T Refueling Water Storage Tank Minimum 48,500 gallons Shutdown Volume (Includes the additional (8.7%)

volumes listed in SLC 16.9-11)

0 ,

CNEI-0400-149 Page 30 of 32 Revision I Catawba 2 Cycle 16 Core.Operating Limits Report 2.18 Borated Water Source - Operating (SLC 16.9-12) 2.18.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during Modes 1, 2, and 3 and Mode 4 with all RCS cold leg temperatures > 210 0 F.

Parameter Limit Boric Acid Tank minimum boron concentration 7,000 ppm Volume of 7,000 ppm boric acid solution required 13,500 gallons to maintain SDM at 210'F Boric Acid Tank Minimum Shutdown Volume 25,200 gallons (Includes the additional volumes listed in SLC (45.80%)

16.9-12)

NOTE: When cycle burnup is > 450 EFPD, Figure 6 may be used to determine the required Boric Acid Tank Minimum Level.

Refueling Water Storage Tank minimum boron 2,700 ppm concentration Volume of 2,700 ppm boric acid solution required 57,107 gallons to maintain SDM at 210'F Refueling Water Storage Tank Minimum 98,607 gallons.

Shutdown Volume (Includes the additional (22.0%)

volumes listed in SLC 16.9-12)

0 p1 CNEI-0400-149 Page 31 of 32 Revision 1 Catawba 2 Cycle 16.Core Operating Limits Report Figure 6 Boric Acid Storage Tank Indicated Level Versus Primary Coolant Boron Concentration (Valid When Cycle Burnup is > 450 EFPD)

This figure includes additional volumes listed in SLC 16.9-11 and 16.9-12 50.0

..- .R C S B o ro n ....

Concentration BAT Level 40.0 i " (ppm) (%level) 0 < 300 43.0 300o< 500 40.0 35.0 - ,1,.. 500<700

____*___.

37.0

  • "30.0 *;"

700 < 1000 30.0 1000 <.1300 14.9

'# '1300<2700 9.8 25.0 > 2700 9.8

Unacceptable

" 20.0 Operation Acceptable Operation 15.0 i 10.0 :Aiý "k A..ON 0.0 - --

0 200 400 600 800 1000 1200 . 1400 1600 1800 2000 2200 2400 2600 Primary Coolant Boron Concentration (ppmb)

CNEI-0400-149 Page 32 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Appendix A Power Distribution Monitoring Factors Appendix A contains power dis.tribution monitoring factors used in Technical Specification Surveillance. Due to the size of the monitoring factor data, Appendix A is-controlled electronically within Duke and is not included in the Duke internal copies of the COLR. The Catawba Reactor and Electrical Systems Engineering Section controls this information via computer fl~es and should be contacted if there is a*need to access, this information.

Appendix A is included in the COLR copy transmitted to the NRC.