ML17334A814: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:1~REGULATOR'r INFORMATION DISTRIBUTION SYSTEM (RIDS)'ACCESSION NB/8009050167, DOC~DATE e 84/08/23 NOTARIZED!
{{#Wiki_filter:1 ~
"'O DOCKET¹FACIL:50 315 Donald C~Cook Nuclear Power Pl anti Unf t 1, Indiana-8 05000315 AUTH~NAMEAUTHOR AFFILIATION ALEXICHiM~P.Indiana L Michigan Electric Co.RECIP, NAME RECIPIENT AFFILIATION 05000315>>SUBJECT!Application for amend to License OPR 58 revising Tech Specs to extend fuel peak pellet burnup L increase FQ value limit in fuels Fee paido DISTRIBUTION CODE: A001D COPIES.RECEIVED:LTR g'ENCL SIZE:~3 Qs~fly&TITLE: OR Submittal!
REGULATOR'r INFORMATION DISTRIBUTION SYSTEM                         (RIDS)
General Distribution NayES.P><~P4f get oc OL i 1 0/25/74,',.
'ACCESSION NB/       8009050167,                     DOC ~ DATE e 84/08/23       NOTARIZED!"'O           DOCKET &#xb9; FACIL:50 315 Donald                     C ~ Cook Nuclear     Power   Pl anti Unf t 1, Indiana-     8 05000315 AUTH ~ NAME    AUTHOR AFFILIATION ALEXICHiM~ P.             Indiana             L Michigan     Electric   Co.
'XTERNALS ACRS NRC POR NTIS 09 02 REC I'P-I:.EN,T ID COOg/NAME NRR ORBi BC 01 INTERNAL: ADM/LFMB NRR/DE/MTEB NRR/OL/ORAB NRR/OS I/RAB RGN3 COPIES LTTR ENCL 7 7 1 0 1 1 1*0 1-1 1 1 6 6 1 1 1 ELO/HDS3.NRR/DL DIR N-4ETB EG FI E 00 1 0 1'1 1 1 1 1~LPDR NSIC 03 05<<1 1'1 RECIPIENT COPIES ID CODE/NAME LTTR ENCL>>~4ww tC TOTAL NUMBER OF COPIES REQUIRED: LTTR 26 ENCL 23 E E K I~lf'K)$1", t K ll V Kg ll y V'.V>>~~It)i j VI t" q<<l K ll Kl INDIANA&MICHIGAN ELECTRIC COMPANY P.O.BOX 16631 COLUMBUS, OHIO 43216 August 23, 1984 AEP: NRC: 0745M Donald C.Cook Nuclear Plant Unit No.1 Docket No.50-315 License No.DPR-58 TECHNICAL SPECIFICATION CHANGE REQUESTS Mr.Harold R.Denton, Director Office of Nuclear Reactor Regulation U.S.Nuclear Regulatory Commission Washington, D.C.20555
RECIP, NAME                 RECIPIENT AFFILIATION SUBJECT!     Application for amend to License OPR 58 revising Tech Specs to extend fuel peak pellet burnup L increase FQ value limit in fuels     Fee             paido Qs~ fly&
DISTRIBUTION CODE: A001D                         COPIES .RECEIVED:LTR g'         ENCL     SIZE:~ 3 TITLE:   OR   Submittal! General Distribution NayES   .P>< P4f      ~
get   oc                                                   05000315 OL i 1 0/25/74,',.                                                                                 >>
REC I'P-I:.EN,T                   COPIES              RECIPIENT            COPIES ID COOg/NAME                         LTTR ENCL          ID CODE/NAME          LTTR ENCL>>
NRR ORBi BC                     01       7      7 INTERNAL: ADM/LFMB                                     1      0      ELO/HDS3.                1      0 NRR/DE/MTEB                               1      1      NRR/DL DIR                1    '1 NRR/OL/ORAB                               1    *0      N        -  4ETB        1      1 NRR/OS   I/RAB                           1-     1         EG FI   E       00     1     1 ~
RGN3                                      1      1
                                  'XTERNALS ACRS                            09      6      6      LPDR              03    1     1 NRC POR                        02      1     1       NSIC               05<<         '1 NTIS                                            1
                                                                                            ~4ww tC TOTAL NUMBER OF COPIES                       REQUIRED: LTTR       26   ENCL     23


==Dear Mr.Denton:==
E E  lf K
By this letter and its attachments, we request changes to the Technical Specifications for the Donald C.Cook Nuclear Plant Unit No.1.The proposed revised Technical Specification pages are contained in Attachment A.The reasons for the proposed changes to the Technical Specif'ications, and the Justifications that the changes do not involve significant hazards considerations, are contained in Attachments B and C to this letter.The changes described in Attachment B involve extending the peak pellet burnup in fuel supplied by Exxon Nuclear Company from 42,200 MWD/MTU (42.2%0)/KG)to 48,000 MWD/MTU (48.0 MWD/KG).These changes are supported by a LOCA Analysis and additional information regarding mechanical design, which was sent to you directly by Exxon Nuclear Company with letter JCC:113:84, dated August 21, 1984.The current burnup limit is expected to be reached on November 30, 1984.Without this burnup extension, we would be unable to continue operation of Cycle 8 because of the requirements of Technical Specification Section 3.2.2.The changes proposed in Attachment C and supported by Attachment D involve an increase in the F limit in fuel supplied by Westinghouse f'rom 1.97 to 2.10.It should be noted that part of this analysis is based on use of the BART code, which has not been previously used for the Donald C.Cook Nuclear Plant, Unit 1~These proposed changes have been reviewed by the Plant Nuolear Safety Review Committee (PNSRC)and will be reviewed by the Nuclear Safety and Design Review Committee (NSDRC)at their next regularly scheduled meeting.In compliance with the requirements of 10 CFR 50.91(b)(1), a copy of'his letter and its attachments have been transmitted to Mr.R.C.Callen of the Michigan Public Service Commission.
ll
8409050167 840823 PDR ADOCK 050003l5 F'.PDR k,'I'I II 0 Mr.Harold R.Denton AEP: NRC: 0745M Pursuant to 10 CFR 170.12, we have enclosed a check in the amount of$150.00 as payment for the application fee for the proposed amount.This document has been prepared following Corporate procedures which incorporate a reasonable set of controls to insure its accuracy and completeness prior to signature by the undersigned.
                        'K I
Very truly yours, M.Ale ich Vice Preeidect 4 t I, c h,'\Ir h 0 I~*I" ,h l, Jt.>I h,'j h h I I I~c hr Mr.Harold R.Denton~\3 AEP: NRC:0745M Attachments:
                            )
A.Proposed Revised Technical Specifications Pages for D.C.Cook Unit 1.B.Reasons for the extension of the peak pellet burnup allowed in fuel supplied by Exxon Nuclear Company and Justification that the changes do not involve significant hazards considerations.
                              ~
C.Reasons for the increase in F~for fuel supplied by Westinghouse.
V
D."D.C.Cook Unit 1 3411 MWt Large Break LOCA Analysis", Westinghouse Electric Corporation, June, 1984.cc: John E.Dolan W.G.Smith, Jr.-Bridgman R.C.Callen G.Charnoff E.R.Swanson, NRC Resident Inspector-Bridgman
                              $ 1",
~E'""~~l J~~~)a c E.*~3 k...>Z I J$0~')1 t~~)hP I 4 Mr.Harold R.Denton AEP: NRC: 0745M Attachment D"D.C.Cook Unit 1 3411 MWt Large Break LOCA Analysis", Westinghouse Electric Corporation, June, 1983.>>'This document has been piepared by Westinghouse Electric Corporation in a format foi eventual inclusion in the Donald C;Cook Nuolear Plant FSAR.Although this is~o intended for that purpose at this time, the format has been retained for convenience.
Kg t K ll y
14.3.1.1 Major LOCA Analyses Applicable to Westinghouse Fuel Identification of Causes and Fre uenc Classification-A loss-of-coolant accident (LOCA)is the result of a pipe rupture of the RCS pressure boundary.For the analyses reported here, a major pipe break (large break)is defined as a rupture with a total cross-sectional area equal to or greater than 1.0 ft.This event is considered an 2 ANS Condition IV event, a,limiting fault, in that it is not expected to occur during the lifetime of D.C.Cook Unit 1, but is postulated as a conservative design basis.The Acceptance Criteria for the LOCA are described in 10 CFR 50.46 (30 CFR 50.46 and Aopendix K of 10 CFR 50 1974)as follows: 1.The calculated peak fuel element clad temperature is below the requirement of 2,200'F.2, The amount of fuel element cladding that reac;s chemically with water or steam does not exceed 1 percent of:he total amount of 2ircaloy in the reac or.3.The clad temoerature transient is terminated at a time when the core aeometry is still amenable to cooling.The locali-ed cladding oxidation limit of 17 percent is not exceeded d ring or af er quenching.
V'.V>>
4.The core remains amenable to cooling during and after:he break.5.The core temperature is reduced and decay heat is removed for an'I'''..'xtended period of time, as required by he long-lived"radioactivity".
                                                ~ ~
remaining in the core.
It
These criteria were established to provide significant margin in emergency core cooling system (ECCS)performance following a LOCA.WASH-1400 (USNRC 1975)presents a recent study in regards to the probability of occurrence of RCS pipe ruptures.Se uence of Events and S stems 0 erations Should a major break occur, depressurizaton of the RCS results in a pressure decrease in the pressurizer.
                                                        )i j VI t" q<<l K ll Kl
The reactor trip signal subsequently occurs when the pressurizer low pressure trip setpoint is reached'.A safety injection signal is generated wnen the appropriate setpoint is reached.These countermeasures will limit the consequences of the accident in two ways: 1.Reactor trip and borated water injection supplement void formation in causing rapid reduction of power to a residual level corresponding to fission product decay heat.However, no credit is taken in the LOCA analysis for the boron content of the injection water.In addition, the insertion of contr".'.rods to shut down the reactor is neglected in the large break analysis.2.Injection of borated water provides for heat transfer rrom the core and prevents excessive clad temperatures.
Oescr ation of Large Break Loss-of-Coolant Accident Transient The sequence of events following a large break LOCA is p".esen ed in Table 14.3.1-6.
Before the break occurs, the unit is in an equilibrium condition; that is, the heat generated in the core is being removed via the secondary system.Ouring blowdown, heat from fission product decay', hot internals and the vessel, continues to be transferred to the reactor coolant.At the beginning of the blowdown phase, the entire RCS contains subcooled liquid which transfers heat from the core by forced convection with some fully developed nucleate boiling.After the break develops, the time to departure from nucleate boiling is calculated, consistent with Appendix K of 10 CFR 50.('hereafter the core heat transfer is (1)unstable, with both nucleate boiling and film boiling occurring.
As the core becomes uncovered, both turbulent and laminar forced convection and radiation are considered as core heat transfer mechanisms.
The heat transfer between the RCS and the secondary system may be in either direction, depending on the relative temperatures.
In the case of continued heat addition to the secondary system, the secondary system pressure increases and the main steam safety valves may actuate to limit the pressure.makeup water to the secondary side is automatically provided by the emergency feedwater.system.The safety injection signal ac uates a feedwater isolation signal which isoiaies normal feedwater flow by closing the main feedwater isolation valves, and also initiates emergency feedwater flow by starting the emergency feedwater pumps.The secondary flow aids in the reduction of RCS pressure.'>)hen the RCS depressurizes to 600 psiz, the accumulators begin to inject borated water into the reactor coolant loops.The conservative assumption is made that accumulator water injec ed bypasses the core and goes out through the break until the termination of bypass.This conservatism is again consistent with Appendix K of 10CFRSO.Since loss of offsite power (LOOP)is assumed, the RCPs are assumed to trip at the inception of'the accident.'The e'ffects of'ump coastdown are i'nc'luded
'n the blowdown analysis.The blowdown phase of the transient ends when the RCS pressure (initially assumed at 2280 psia)falls to a value approaching that of the containment atmosphere.
Prior to or at the end of the blowdown, the


mechanisms that are responsible for the emergency core cooling water injected into the RCS bypassing the core are calculated not to be effective.
INDIANA & MICHIGAN ELECTRIC COMPANY P.O. BOX 16631 COLUMBUS, OHIO 43216 August 23, 1984 AEP: NRC: 0745M Donald C. Cook Nuclear Plant Unit No.         1 Docket No. 50-315 License No. DPR-58 TECHNICAL SPECIFICATION CHANGE REQUESTS Mr. Harold R. Denton, Director Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, D. C. 20555
At this time (called end-of-bypass) refill of the reactor vessel lower plenum begins.Refill is completed when emergency core cooling water has filled the lower plenum of the reactor vessel, which is bounded by the bottom of the fuel rods (called bottom of core recovery time).The reflood phase of the transient is defined as the time period lasting from the end-of-refill until the reactor vessel has been filled with water to the extent that the core temperature rise has been terminated.
From the latter stage of blowdown and then the beginning-of-reflood, the safety injection accumulator tanks rapidly discharge borated cooling water into the RCS, contributing to the filling of the reactor vessel downcomer.
The downcomer wa'ter elevation head provides the driving force required for the reflooding of the reactor core.The low head and high head safety injec ion pumps aid in the filling of the downcomer and subsequently supply water to maintain a full downcomer and complete the reflooding process.Cont'inued operation of the ECCS pumps supplies wa er during longterm cooling.Core temperatures have been reduced to longterm steady state levels associated with dissipation of residual heat generation.
After tne water level of the residual water s orage tank (RWST)reaches a minim m allowable value, coolant for long-tern cooling of the core is obtained by switching to the cold recirculation phase of opera ion, in which spilled borated wa er is drawn from the engineered safety ea ures (ESF)containment sumps by the low head safety injection (residual heat removal)pumps and returned to the RCS cold legs.The containment spray system continues to operate to further reduce containment pressure.r r.Approximately 24 hours'after initiation of the LOCA, the ECCS is realigned to supply water to the RCS hot legs in order to control the boric acid concentra-ion in the reactor vessel.
Core and S stem performance Mathematical Model: The requirements of an acceptable CCS evaluation model are presented in Appendix K of 10 CFR 50 (Federal Register 1974).(1)Large Break LOCA Evaluation Model The analysis of a large break LOCA transient is divided into three phases: (1)blowdown, (2)refill, and (3)ref lood.There are three distinct transients analyzed in each phase, including the thermal-hydraulic transient in the RCS, the pressure and temperature transient within the containment, and the fuel and clad temperature transient of the hottest fuel rod in the core.Based on these considerations, a system of interrelated computer codes has been developed for the analysis of the LOCA.A description of the various aspects of the LOCA analysis methodology is given by Bordelon, Massie, and 2ordan (1974).Tnis document (6)describes the major pnenomena modeled, the inter-.aces among the computer codes, and the features of the codes which ensure comoliance with the Acceptance Criteria.The SATAN-'ll, WREFLGO0, BART and LOCTA-IV codes, wnich are used in the LOCA analysis, are described in detail by Bordelon et al.(1974)('elly et al.(1974)';Young et al.(5)(9)(4)(1980);Bordelon and Murphy (1974)(';and Bordelon et al./~X (1974).Code modifications are specified in References 2, 7 and 13.These codes assess the core heat transfer geometry and determine if the core remains amenable to cooling throughout.and subsequent to the blowdown, refill, and reflood phases of the LOCA.The SATAN-V1 computer,~,'co'de'nalyzes the thermal-hydraul'ic;'transi'ent in'the RCS during blowdow'n and the WREFLOOO computer code calculates thi's transient during the refill and reflood phases to the accident.The LOTiC computer code, described by Hsieh and Raymund in 0
WCAP-8355 (1975)and WCAP-8345 (1974), calculates the containment (3)pressure transient.
The containment pressure transient is input to WREFLOOO for the purpose of calculating the reflood transient.
The LOCTA-IV computer code calculates the thermal transient of the hottest fuel rod during the three phases.The standard Pad Fuel Thermal Safety Model, described in Reference 15, generates the initial fuel rod conditions input to LOCTA-IV.SATAN-VI calculates the RCS pressure, enthalpy, density, and the mass and energy flow rates in the RCS, as well as steam generator energy transfer between the primary and secondary systems as a function of time during the blowdown phase of the LOCA.SATAN-VI also calculates the accumulator water mass and internal pressure and the pipe break mass and energy flow rates that are assumed to be vented to the containment during blowdown.At the end of the blowdown phase, these data are transferred to the WREFLOOD code.Also, at the end-of-blowdown, the mass and energy release rates during blowdown are input to the LOTIC code for use in the determination of the contai.",".ien pressure response during<<his first phase of the LOCA.Additiona', SATAN-VI outout data from the end-of-blowdown, including the core inlet flow rate and enthalpy, the core pressure, and the core power decay transi'ent, are input to the LOCTA-IV code.With input from the SATAN-VI code, WREFLOOO uses a system thermal-hydraulic model to determine the core flooding rate (".hat is, he rate at wnich coolant enters the bottom of'he core), he cool-ant pressure and"temperature, and the quench front height during the reflood phase of the LOCA.WREFLOOO also calculates the mass and energy flow addition to the containment through the break.WREFLOOO is also linked to the BART and LOCTA-IV codes.The heat transfer calculation for the I 7 II , average fuel channel in the hot assembly during the ref lood phase of the'~LOCA is performed by the BART'omputer code using a mechanistic (16)core heat transfer model.This information is then used by LOCTA-IV throughout the analysis of the LOCA transient to calculate the fuel clad temperature and metal-water reaction of the hottest rod in the core.
The large break analysis was performed with the December 1981 version of (16)the Evaluation Model modified to incorporate the BART computer code.Input Parameters and Initial Conditions:
The analysis presented in, this section was performed with a reactor vessel upper head temperature equal to the RCS hot leg temperature.
The bases used o select the numerical values that are input parameters to the analysis have been conservatively determined from extensive sensitivity studies (Westinghouse 1974;Salvatori 1974 (12).~(11).Johnson, Hassle, and Thompson 1975).In addition, the requirements (8)of Appendix K regarding specific model'features were met by selecting models which provide a significant overall conservatism in the analysis.The assumptions which were made pertain to the conditions of the reactor and associated safety system equipment at the time that the LOCA occurs, and include such items as the core oeaking factors, the containment pressure, and the performance or the=CCS.Gecay heat generated throughout the transient is also conservatively calculated.
A meeting was held at:he Mestinghouse Licensing Office in Bethesda on Oecember 17, 1981 between members of the U.S.Nuclear Regulatory Commission and members of tne Mestinghouse Nuclear'Safety Oepartment to discuss the impac.of maximum safety injection on the large break ECCS analysis on a generic basis.Further discussion of this issue is provided in a letter from E.P.Rahe, Manager of Westinghouse Nuclear Safety Oepartment, to Robert L.Tedesco of the U.S.Nuclear Regulatory Commission.(, A brief description of this issue is given below.(14).,Mestihghause ECCS analyses currently:
assume.minimum s'afeguards for the~safety injection flow, which minimizes the amount of flow to the RCS by~assuming maximum injection line resistances, degraded ECCS pump performance, and the loss of one residual heat removal (QHR)pump as the most limiting single failure.This is the limiting single failure assumption when offsite power is unavailable for most Westinghouse
~~


plants.However, for some Westinghouse plants including 0.C.Cook Unit 1, the current nature of the Appendix K ECCS evaluation models is such that it may be more limiting to assume the maximum possible ECCS flow delivery.In that case, maximum safeguards which assume minimum injection line resistances, enhanced ECCS pump performance, and no single failure, result in the highest amount of flow delivered to the RCS.Current LOCA analysis for'the 0.C.Cook Unit 1 has demonstrated that, maximum safeguards assumptions result in he highest peak clad temperatur'e.
==Dear Mr. Denton:==
Therefore, the worst break for O.C.Cook (CO=0.6)was re-analyzed, assuming maximum safeguards.
Results: Based on the results of the LOCA sensitivity studies (Westinghouse 1974;Salvatori 1974;Johnson, Massie, and Thompson 1975)the limiting large break was found to be the double ended cold leg guillotine (OECLG).Therefore, only the OECLG break is considered in the large break ECCS performance analysis.Calculations were performed for a range of Moody break discharge coefficients.
The results of these calculations are summarized in Tables 14.3.1-5 and 14.3.1-6.The containment data used to generate the LOTIC backpressure transient are shown in Table 14.3.1-1.The mass and energy release data ror the minimum and maximum safeguards cases are shown in Tables 14.3.1-2 and 14.3.1-3 respectively.
Nitrogen release rates to the containment are given in Table 14.3.1-4.Figures 14.3.1-1 through 14:3.1-54.present the transients for the'I principal parameters
'for the break size's analyzed.The following items are noted:
Fi ures 14.3.1-1 throu h 14.3.1-12 The following quantities are presented at the clad burst location and at the hot spot (location of maximum clad temperature), both on the hottest fuel rod (hot rod): 1.fluid quality;2.mass velocity;3.heat transfer coefficient.
The heat transfer coefficient shown is calculated by the LOCTA-IV code.Fi ures 14.3.1-13 throu h 14.3.1-24 The system pressure shown is the calculated pressure in the core.The flow rate from the break is plotted as the sum of both ends for the guillotine break cases.The core pressure drop shown is from the lower plenum, near the core, to the upper plenum at the core outlet.Figures 14.3.1-25 throu h 14.3.1-36 These figures show the hot spot clad temperature transient and the clad temp rature transient at the burst location.The fluid emperature shown is also for the hot spot and burst location.The core flow (top and bottom)is also snown.Figures 14.3.1-37 These figures show he core rerlood transient.
through 14.3.1-44 Figures 14.3.1-45 throu h 14.3.1-52 These figures show the mergency Core Cooling System flow for all of the cases analyzed.As described earlier, the accumulator delivery during blowdown is discarded until the.end of bypass is calculated.
Accumulator
'flow:, however, is established in the refill and the reflood calculations.
The accumulator flow assumed is the sum of that injected in the intact cold legs.
Fi ures 14.3.1-53 throu h 14.3.1"54 The containment pressure transient used in the analysis is also provided for the minimum and maximum SI cases.Figures 14.3.1-55 and 14.3.1-60 These figures show the heat removal rates of the heat sinks found in the lower compartment and the heat removal by the lower containment drain, andthe heat removal by the sump and LC sprays (minimum and maximum SI cases).Fi ures 14.3.1-61 throu h 14.3.1-64 These figures show the temperature transients in both the upper and lower compartments of the containment and flow from the upper to lower compartments.
Total heat removal in the lower compartment is the sum of all the heat removal rates shown (for minimum and maximum SI cases).The maximum clad temperature calculated for a large break is 2163 F, which is less than the Acceptance Criteria limit of 2200~F.The maximum local metal-water reaction is 9.65,percent, which is well below the embrittlement limit.of 17 percent as required by 10 CFR 50.46.The:otal core metal-water reaction is less than 0.3 percent for all breaks, as compared with the 1 percent criterion of 10 CFR 50.46.The clad temperature transient is terminated at a time when the core geometry is still amenable to cooling.As a result, the core temperature will continue o drop and the ability to remove decay heat generated in the fuel for an extended period of time will be provided.10 References for Section 14.3.1.1 1."Acceptance Criteria for Emergency Core Cooling System for Light Water Cooled Nuclear Power Reactors," 10 CFR 50.46 and Appendix K of 10 CFR 50, Federal Re ister 1974, Volume 39, Number 3.2.Rahe, E.P.(Westinghouse), letter to J.R.Miller (USNRC);Letter No.NS-EPRS-2679, November 1982.3.Hsieh, T., and Raymund, M.,"Long Term Ice Condenser Containment LOTIC Code Supplement 1," WCAP-8355, Supplement 1, May 1975, WCAP-8345 (Proprietary), July 1974.4.Bordelon, F.M.et"al.,"LOCTA-IV Program: Loss-of-Coolant Transient Analysis," WCAP-8301 (Proprietary) and WCAP-8305 (Non-proprietary), 1974.5.Bordelon, F.M.et al.,"SATAN-VI Program: Comprehensive Space, Time Oependent Analysis of Loss-of-Coolant," WCAP-8302 (Proprietary) and WCAP-8306 (Non-proprietary), 1974.6.Bordelon, F.M.;Massie, H.W.;and 2ordan, T.A.,"Westinghouse ECCS Evaluation Model-Summa'ry," WCAP-8339, 1974.7.Rahe, E.P.,"Westinghouse ECCS Evaluation Model, 1981 Version," WCAP-9220-P-A (Proprietary Version), WCAP-9221-?-A (Non-proprie~ry version),.
Revision 1, 1981.8.Johnson, W.J.;Massie, H.W.;and Thompson, C.M.,"Westinghouse ECCS-Four Loop Plant (17x17)Sensitivity Studies," WCAP-8565-P-A (Propr'ietary) and WCAP-8566-A (Non-proprie't'ary), 1975.PP 9.Kelly, R.0.et al.,"Calculational Model for Core Ref looding After" a Lo'ss-of-Coolant Accident (WREFLOOO Code)," WCAP-8170 (Proprietary) and WCAP-8171 (Non-proprietary), 1974.
10 U.S.Nuclear Regulatory Commission 1975"Reactor Safety Study-An Assessment of Accident Risks in U.S.Commercial Nuclear Power Plants," WASH-1400, NUREG-75/014.
11.Salvatori, R.,"Westinghouse ECCS-Plant Sensitivity Studies," WCAP-8340 (Proprietary) and WCAP-8356 (Non-proprietary), 1974.12."Westinghouse ECCS-Evaluation Model Sensitivity Studies," WCAP-8341 (Proprietary) and WCAP-8342 (Non-proprietary), 1974.13.Bordelon, F.H., et al.,"Westinghouse ECCS Evaluation Model-Supplementary Information," WCAP-8471 (Proprietary) and WCAP-8472 (Non-proprietary), 1975;14.Rahe, E.P.(Westinghouse).
Letter to Robert L.Tedesco (USNRC), Letter No.NS-EPR-2538, Oecember 1981.15.Letter from J.F.Stoltz (NRC)to T.M.Anderson (Westinghouse);
subject: Review of WCAP-8720, Improved Ana'.ytical 4lodels Used in Westinghouse Fuel Rod Oesign Computations.
16.Young, 4I.Y., et al.,"BART-Al: A Computer Code for he Best Estimate Analysis of Reflood Transients,"WCAP-9561-P-A (Proorietary) and WCAP-9695"A (Non-Proprietary)
January 1980.12


TABLE 14.3~1-1 LARGE BREAK CONTAINMENT DATA (ICE CONDENSER CONTAINMENT)
By  this letter  and its  attachments,   we request changes to the Technical Specifications      for the   Donald C. Cook Nuclear Plant Unit No. 1. The proposed revised Technical Specification pages are contained in Attachment A. The reasons for the proposed changes to the Technical Specif'ications, and the Justifications that the changes do not involve significant hazards considerations,   are contained in Attachments B and C to this letter. The changes    described in Attachment B involve extending the peak pellet burnup in fuel supplied by Exxon Nuclear Company from 42,200 MWD/MTU (42.2 %0)/KG) to 48,000 MWD/MTU (48.0 MWD/KG). These changes are supported by a LOCA Analysis and additional information regarding mechanical design, which was sent to you directly by Exxon Nuclear Company with letter JCC:113:84, dated August 21, 1984. The current burnup limit is expected to be reached on November 30, 1984. Without this burnup extension, we would be unable to continue operation of Cycle 8 because  of the requirements of Technical Specification Section 3.2.2. The changes proposed in Attachment C and supported by Attachment D involve an increase in the F limit in fuel supplied by Westinghouse f'rom 1.97 to 2.10. It should be noted that part of this analysis is based on use of the BART code, which has not been previously used for the Donald C. Cook Nuclear Plant, Unit 1 ~
NET FREE VOLUME (Includes Distribution Between Upper, Lower, and Dead-Ended Compartments)
These proposed changes have been reviewed by the Plant Nuolear Safety Review Committee (PNSRC) and will be reviewed by the Nuclear Safety and Design Review Committee (NSDRC) at their next regularly scheduled meeting.
UC LC OE IC 746,829'ft.
In compliance with the requirements of 10 CFR 50.91(b)(1), a copy of'his letter and its attachments have been transmitted to Mr. R. C. Callen of the Michigan Public Service Commission.
249,446 116,168 122,400 Initial Conditions Pressure Temperature for the Upper, Lower and Dead-Ended Compartments RWST Temperature Service Mater Temperature Temperature Outside Containment Initial Spray Temperature 14.7 psia UC 100~F LC 120~F OE 120oF 70~F 40oF 7oF 70~F Spray System Burnout Flow for a Spray Pump Number of Spray Pumps Operating Post-Accident Initiation of Spray System Ois ribution of the Spray Flow to the Upper and Lower Compartments 3600 gpm 2 40 secs LC 2835 gpm UC 43o5 gpm Deck Fan Post-Accident Initiation of Deck Fans Flow'at,e Per Fan 600 secs~39,000 cfm per'ran'I Hydrogen Skimmer System Flow Rate 2800 cfm per ran Assumed Spray Efficiency of Mater from Ice Condenser'Drains 100'o 13 TABLE 14.3 1~1'continued)
8409050167 840823 PDR ADOCK F'
STRUCTURAL HEAT SENKS i 2 blateri a 11.LC 2.LC 3.LC 4.LC 5.LC 6.LC 7.LC 8.LC 9.LC 10.LC 11.LC 12.LC 13.UC 14.UC 15.UC 16.UC 17.UC 18.UC 19.UC 12,105 11,700 65,980 5,481 4,735 289 14,690 3,439 5,775 4,966 7,013 2,457 378 29,772 8,033 420 29,330 34 125 2'10 0.0469/2.0 2.0 1.35 0.0833 0.01147 0.25 0.0079 0.1561 0.009 0.0096 0.037 0.0334.1667/.0365
050003l5
.0092.0209.0052.1.47 0.0469/2.0
            .         PDR
.0052 steel/concrete concrete concrete steel steel lead steel steel steel steel steel steel steel/concrete steel steel s eel concrete steel/concrete steel UC: Upper Compartment
~:......LO:..Lower.Compartment OE: Oead-Ended Compartment 1C: lce Condenser Compartment


ASS AiND 9?"=Y RE':-~SE?~iES u!,.<IMUM Si i!!ME (sec)O..2GGGE.Q1.cuGQEiyl.6GGGE'v I.8GijGE~Gl
k,
~10GC;E 02 , 1 ZC'C E'02.124ciE 02.140QE'02~15GGE+GZ'1s OE-02.18GQE+02.190GE+02.200GE'02.21QQE>02.220GE 02.24,0QE.OZ
  'I
.25CQE+02.26GPE~QZ.270QEip2'28GGE'02.292GE'02.3QGQE'02.31GGE+02.32GGEi02.33 GGEiQZ ,35GQE~G2.37GOE'02.38GQE+02.3849E~QZ.c5QOE+02~50QGEi02.5265E+G2 5325EiQZ.5355E+02.5375E+02.".5385E+02.
'I II 0
.5973EQ2.7020E 02.864OE+02~10698 03.1302E+03.156OE i03.2152E.03.2887E+03.4107E~Q3.4434c+03 i@SS (jb/sac)~57888>05 4783E G5.34228~05.2563Ei05.2225c+05.ZQ4cC+05.18GCE+05.16558+05.1561E>05.14368~G5.1319E+05.1134E'05.1061E 05~991 7E~04.8999E ipc.8183E+04.64G7E+04.5476Eipc.445GEipc.6099E+04 68i09EtP4.7005E nc.c>31E+0>>.5248E Gc.6371E.Qc.4858E~G4.4315Eipc.2298Eipc.667CE.03.6587E~Q3.173GE.G3 ,1730E, v3 , 1 730 E.>03.1rb8E 03.1768E i03~1767E+03.'.1rbrE;03
.-.205GE+03~.5402E G3.5729E+03.5850E.03.5947E+03.6022E+03 ,616GE.03.5317E 03.6535c-'-'3 ,659~c 03'tE?GY (~is/sec)30jiZc F08.24,78E~GS.179'E i08~1377E iCjS.1223E G8.114GE'08.1037E+08.9762E+07.9229E ipr SCQ3Eipr.799GE+07.6925Eipr.6491E 07.6106E'07.5628E+07.5086Eipr.40cZE>07.34CZE.07.2730E'07.2983E+07.3GGcE+Gr.2753E.Qr~5 1 38~vr.ZG'73E'Gr 19~'-.07 ,1391=Or.1019E Gr.6255c Gb.1 7'>4 E-C'6 ,fbt9E F 05.6583E 04~6583Eipc.6583E~04.114&E'05.1145E+G5.1135E+05.1134E+05'.c>>GE 05.2098E 06.2153E+06.2128E Gb.2081 E ipb.2027E 06.19G7E i'c.17.>=05.1631E'Gb.1635E+05


TnQL:-14.-"'.l-3~SS neo.qrvI4Y<e.-45@l4AX.HUH Si 7VL'il.i (Sac}0 , 2COOE 0 l.lCQOE nl.5CCCE Ol ROCQEiol.lQCOE F02.l ZOCE~02~l 24OE~02~I 400E~02.lSCCE402.l60nE F02.l 7CCE'02.lSCCEi02.lsQOEi02.ZCOPEi02.2 lCCE~02.220CE'02 2300Ei02.240CE'02.25QQE'QZ.2600E~OZ.2700E'02.Z8CCE 02.2895E 02.2900E F02.3CCQE 02 30 l35-02.3 lCOE'02 ,38COE 02 ,4Q'.43Eio2
Mr. Harold R. Denton                                AEP: NRC: 0745M Pursuant to 10 CFR 170.12, we have enclosed a check in the amount  of $ 150.00 as payment for the application fee for the proposed amount.
,4248EiPZ ,4308E~CZ.4328Ei<<32 4338E 02 ,4348E 02<<4358Ei02 ,4885EiCZ c<4 l E Q2.7796E 02 lQ IZC b03 , l309E i03 , l639Ei03.25l6E 03"ASS (ib/SIC).6776Ei05.5500Ei05~388 lEi05~304 l E F05 ,2738Ei05~2382Ei05~l888Ei05.ISOZEi05 , 1455E+05 , lZSZEi05.l 120E F05.9375Ei04 ,8597E'04.7564Ei04.5880Eio4.4Q47E F04.5 l 298~04.6880Ei04.7206Ei04.60 lOEi04.4829E F04.4337Ei04.3670Ei04.2623Ei04 ,24 lSE<<04~2380E i04 ,2357E 04 ,'I 54'2E F04 , 34'2 5E 03.3425Ei03.3425Ei03.3470Ei03.3410E~03 ,3470Ei03.3470E~03 ,3469Ei03.3762Ei03.4579E~O4 l 486E i04 , lSOSE 04.lS lSEi04.l 524 E 04.f545Ei04<<3607E QS ,2874E~QS~ZC69Eioe>>l687EiCS l54ZE~OS.l 379E ioe l l29Eioe.lC84E~CS:9098E-07.SZZSEi07.7433Eio7.6562E 07 5CSSE 07.54 lSE 07 444 7E 07 29 lSE'07.283ZE i07 , 2968 E i07 , 2679 E i07.l877E~07.l 282E F07 , l059E<<07 ,8232E'06.44CSEiC6 , 3675E F06.3406E~C6 ,3f95E'06 8 l54E F05.l303E iPS l 3CZE PCS l 303E'05.l892ciPS 189 lE"PS l 89OE 05 lSSSE-OS<579E CS 5683E OS 44 lSE 062:36c 06'.iCSE'C6"352E~6 23 l 7c<<06 2240'-06
This document has been prepared following Corporate procedures which incorporate a reasonable set of controls to insure its accuracy and completeness prior to signature by the undersigned.
Very  truly yours, M    . Ale ich Vice Preeidect


TABLE 14.3.1-A-3 NITROGEN MASS AND ENERGY RELEASE RATES~Time sec Flow Rate lbs/sec 37.5 39.5 45.5 47.5 53.5 55.5 61.5 63.5 70.3 72.3 78.5 80.5 86.3 88.3 94.3 96.3 102.2 104.2 110.2 112.2 126.2 128.2 138.2 140.2~146.2 148.2 174.2 176.2 71.9'0.7 37.2 31.6 18.8 15.6 8.5 6'.9 186.0 158.0 97.3 82.4 48.5 40.0 21.9 18.2 11.7 10.5 7.6 6.8 3.3 2.9 1.8 1.6.1.2'.1 0.25 0.075 0329L:6/840727 l7
4 t
I,      c h,            '\      Ir h
                                          ~
0
                                              *I" I
                                                      ,h l, Jt.>              I        h,'j h
h    I  I I  ~ c hr


TABLE 14.3.1-A-4 LARGE BREAK OECLG C0=0.4 Results Max SI Peak Clad Temp.'F Peak Clad Location Ft.Local Zr/H20 Reaction (Max)i~Local 2r/H20 Location Ft.Total 2r/H20 Reaction,'o'ot Rod Burst Time sec.Hot Rod Burst Location Ft.2162 7,.50 6.58 7.50 (0.3 71.4 6.75 Calculation Licensed Core Power (Mwt)102;o'f Peak Linear Power (kw/ft)102;o'f Peaking Factor (at License Rating)Accumulator Water Volume (ft)per Accumulator 3 3250 13.225 1.97 950.Cycle Analyzed.,:Cycle 8 18 0329L:6/840727
Mr. Harold R. Denton                ~ \3             AEP: NRC:0745M Attachments:  A. Proposed Revised Technical Specifications Pages for D.C. Cook Unit 1.
B. Reasons  for the extension of the  peak  pellet burnup allowed in fuel supplied by Exxon Nuclear Company and Justification that the changes do not involve significant hazards considerations.
C. Reasons for the increase in    F~ for fuel supplied by Westinghouse.
D.   "D.C. Cook Unit 1 3411 MWt Large Break LOCA Analysis", Westinghouse Electric Corporation, June,  1984.
cc: John E. Dolan W. G. Smith, Jr. -  Bridgman R. C. Callen G. Charnoff E. R. Swanson, NRC  Resident Inspector  - Bridgman


TABLE 14.3.1-A-5 LARGE BREAK TIME SEQUENCE OF EVENTS Max SI OECLG CO=0.4 (sec)START Reactor Trip Signal Safety Injection Signal Accumulator Injection End of Blowdown Bottom of Core Recovery Accumula'tor Empty Pump Injection 0.00 0.60 4.05 20'.50 38.70 52.78 67.45 29.05~~0329L: 6/840727 19
  ~ E'""
                ~    ~
                ) a l
J~~~
c E.
                            *
              ~    3 k...>      Z I
J
                          '     $ 0
                        ~
                                              )
1 t
                                          ~ ~
            )        hP                  I 4


TABLE 14.3.1-4 NITROGEN MASS AND ENERGY RELEASE RATES Time sec Flow Rate lbs/sec 37.5 39.5 45.5 47.5 53.5 55.5 57.5 60.7 66.7 68.7 74.7 76.7 78.7 80.7 86.7 88.7 98.7 100.7 110.7 112.7 122.7 124.7 130.7 132.7'146.6 145.5 71.9 60.7 37.2 31.6 18.8 15.6 12.8 266.81 159.7 135.7 83.2 70.3 58.9 49.1 27.2 22.3 10.7 9.6 5.6 5.1 3.0 2.7 2.0 1.8~0,8 0.7 0329L:6/840727 20
Mr. Harold R. Denton                              AEP: NRC: 0745M Attachment D "D.C. Cook Unit 1 3411 MWt Large Break LOCA Analysis",
Westinghouse Electric Corporation, June, 1983.>>
    'This document has been piepared by Westinghouse Electric Corporation in a format foi eventual inclusion in the Donald C; Cook Nuolear Plant FSAR. Although this is ~o intended for that purpose at this time, the format has been retained for convenience.


TABLE 14.3.1-5 LARGE BREAK Results OECLG C=0.8 D Min SI DECLG CD=0.6 Min SI OECLG~C=0.4 0 Min SI OECLG'O='6 Max SI Peak Clad Temp., F 1942 Peak Clad Location, ft.7.00 Local Zr/H20 Reaction (Max)2.85 Local Zr/H20 Location, ft 7.00 Total Zr/H20 Reaction<0.3 Hot Rod Burst Time, sec 43.8 Hot Rod Burst Location, ft 6.00 2014 5.75 5.65 5.75<0.3 37.8 5.75 1956 7.00 3.84 5.75<0.3 47.4 5.75 2163 6.00 9.65 5.75<0.3 37.8 5.75 Calculation Licensed Core Power (MWT)102;<of 3411 Peak Linear Power (kw/ft)102;~of 14.796 Peaking Factor (at License Rating)2.10 Accumulator Water Volume (ft)per Accumulator 950 3 21~0329L:6/840727 TABLE 14.3.1-6 LARGE BREAK TIME SEQUENCE OF EVENTS Min SI OECLG CO=0.8 (sec)Min SI OECLG CO=0.6 (sec)Min SI OECLG CO=0.4 (sec)Max SI OECLG CO=0.6 (sec)START Reactor Trip Signal Safety Injection Signal Accumulator Injection End of Blowdown Bottom of Core Recovery Accumulator Empty Pump Injection 0.00 0.00 0.62 0.63 3.83.3.95 12.90 15.50 29.68 30.43 40.66 43.29 56.89 59.29 28.83 28.95 0.00 0.64 4.20 20.80 38.49 52.64 65.65 29.20 0.00 0.63.3.95 15.50 30.43 42.47 60.58 28.95 0329L: 6/840727 22 I.l000 1.2500 COOR UHITI LAIP)0.8 OKCLC HI)LSI 3aIIHMt UPR*IIKG ECCS LBLOCA MIIH BARf ANO OLO PAD f0=2.10 OUALIIY OF fLUID BURSl.6.00 f1<)PEAR.1.00 fl)~)IC W CL 1.0000 CI 0.7500 0.5000 0.2500 0.0 CI CI CI CI CI 0."'0 0 0 o 0 0 m 0 0 0 0 OOOO 0 0 OOOO 0 0 oooo III III S OIea~~~0 0 OOO>>~II CI 0 0 04000 0 0 O OOOO 0 0 00000 0 0 0000~~~~~0 gl EP A OIII>>)IHI)SEC)CI CI CI 0 m 0 o aaoao 0 0 a oooo 0 0 4aoa~~~~~~o a ooooo~II IO l IO III CI 0 Aa CI m 0 o o~~0 0 Cl O 0 0 oooo 0 000~~0 0 OOOO 0 oooo+&Olfl>>Fl@l,N'j I/.3./-l Flue>QftRt.lay~~pl g.(QP 4 8)+t~S+J I.F000 l.2500 COOK UNITI tAEPI O.C OECLC HINSI)L IIHVT UPRATINC ECCS LBLOCA VITN BART ANO OLO PAO fO 2.IO OUALITY Of fLUIO BuRSt, 5.75 ftC)PEAK.5.15 ftrii I EJ CC 4i CL l.0000 0.?500 C 0.5000 0.2500 0.0 D.D~D O D a o D D D o o o D OOOO D DDDD D Dog@~~~~~D QDO D 8 D o 8 D 8 DDDDD 8 8 S58F.~~~~~v cn p m pre TINE tSECI D o nJ y 8 8 DDDDD o o aooo~~~~~~~D o a o Doooo Cn uS pP FLutC>QuRuC'y.DECC C (ED=>C=O.a'l rnir Si
14.3.1.1    Major  LOCA Analyses Applicable to Westinghouse      Fuel Identification of   Causes and Fre uenc    Classification
'.F000 I.2500 COOK UNIII (AEP)O.l OECLC HINSI 3)I IHMT UPAAIINC ECCS L8LOCA MIIH BARF ANO OLO PAO F0=2.)0 QUALIFY'F FLUIO 8UASfa 5.75 FTI)PEAK~7~00 Fll~)I cc l.0000 0.7500 0.5000 0.2500 0.0 0 0 0 Cl Cl Cl Cl 0 0 0 OOOO O 0 00000 0 0 00000~n aaa a CO Caaa~a~~~0 0 0000 O O O 0 0 OOOO 0 O O 0 O OOOO 3 O 3 3 OQOOO~~~~~0 r an au c raaca caa Cl Cl o Cl Cl 0 Cal 0 0 O OOOO 0 0 00000 0 0 0000~~~~~~0 0 00000 an e a caen Cl Cl Cl Cl m 0 o 0 0~~0 O o 0~n O OOOO o ooa~o oooo 0 OOOO ac t IIHE)Sf C) 1.i Boo 1.2500 COOK URlT 1 lAEP)0.6 DECLC HAX Sl 3i 1 lMMT UPRATlNG ECCS LBLOCA MlTN BART ARD OLD PAD F0=2.10 DUALITY OF FLUIO BURST, 5.75 FA l PEAK~6.00 FTl~l CL W CL 1.0000 Ci 0~0.7500 I 0 0.5000~~0.2500 0.0 0 0 0 0 Al O D 0 D 0 0 0 D II1 0 0 0 O OOOO D DODO O OOOO 4)~CACAO~~~~~0 OOO CI CI O O 0 CIOQO 0 D ODDOO O D O OOOO 0 0 0000~~0~~1Q IP ID~CO~TlHE lSECl Ci O O OOOO D D OQDQ 0 D 0000~~0~~~K5 0 0 OOOO cu I me>>CI CI CI CI CM CI m 0 Q O DOC: 0 DOQC~~~~~0 O D DODO 0 0400 gp w EON>>F[PLIQE I$.3.I-)FLUID GICALI jg CIECLC CI'-U=CI C)<M 50.000 COOK LIHIfl (AEPI O.B OECLG HINSI 3i IIHV1 LIPAAIIHC ECCS LBLOCA ullH SARf ANO OLO PAO fOC2.IO HASS VELOCIIY RSI 6.00 f1l l Pf.AK.l.00 f ft~)Vl I I-0.0 la.-50.000 VI-100.00 X-l50.00-200.00 Ci O'I CI CI O 0 OOOOO 0 0 O OOOO 0 0 0 OOOO V VI IO&VIVIO~~4~~0 0 0000 CI 0 0 O OOOO 0 0 h OOOO 0 O OOOOO 0 0 0000~~~~~~0 r VI aP~VIe I IHE ISEC I CI CI CI CI~V 0 CI CI P7 O 0 OOOOO 0 0 0 OOOCI 0 0 0000~~~~~4 0 00000 sn IO~coo O 0 O 0 O Al O 0 0 OOOO 0 C OOOO~~~~0 0 O OOOO 0 0 OOOO lp~VI IP 50.000 COOK Vltl lAEPl O.C OECLC HIIISI 31lIHVT UPRAISING ECCS LOCA VITH QARE ANO OLO PAO f082~IO HAS ELOCIIY URSI~5 75 fl(l PEAK 75 ffl~I o 5.I LI 0 CI Cl Cl Al CI CI 0 0 0 00000 0 0 O OOOO 0 0 00000 r IA III r SaIO~~~~~0 0 OOOO 0 0 0 0 00000 3 5 8 33303~AJ e%r rl VIA CI~tIHE ISECI 0 Cl CI AI O O 0 OOOO 0 O OOOOO 0 0 OOOO~~~~~~0 0 0 4000 nor se CI CI CI AI g 0 3 00000 8 8 8888@P/scca@u~LOeir V DA.CL~CeJ=O.I)~~a~
-A  loss-of-coolant accident    (LOCA) is the result of   a  pipe rupture of the RCS  pressure boundary. For the analyses      reported here, a major pipe break ( large break) is defined as a rupture with a total cross-sectional area equal to or greater than 1.0 ft . This event is considered an 2
300.00 COOX uvltl IAEP)O.a OECLC)IIRSI ta)I)IMt uPRAIIRC ECCS LBLOCA MIIH BARf ANO OLO PAO f0c2.IO HASS VELOCItV BURSt.5.75 fthm i PEAR.I.00 Fti~)200.00 I00.00 0 0 0 0~Ca 0 0 O 0 0 Caa Caa CI 0 0 0 0 O OOOO~~~~~~0 0000 0 0 0 O OOOOO an us ale 0 0 0 0 OOOO 3 O 0 ODOO 0 0 0000~~~~~~0 0 0 0 ClDDO~n CCC t COOl 0 0 g D 0 0 O OOOO 0 0 OOOO~0 0 0Og@lj a CO~tIVE)SEC)+~6Lc~w/5.B J 7 AS VELDT/7 l lG C<D=O y)~IN 8Z.
ANS Condition IV event, a,limiting fault, in that      it  is not expected to occur during the lifetime of D. C. Cook Unit 1, but is postulated as a conservative design basis.
1 50.000 l 6.COOK N!1'1 lAEP)0.6 OECLC HAXS1 3i11Hur uPRATIOC ECCS LOCA MlTH BARl'HO OLO PAO F0=2.10 HAS ELOC 11Y URSte 5.7S FT()PEAK 00 Fl)~)LP~al ttt I At 0 0 Ctl-$0.000 I EJ CI W 0 v-100.00 X-100.00-200.00 Ct 0 Cl CI 0 At 0 0 O O OOODD O O O OOOO 0 0 Cl OOOO Itt tO A ttt ttIO~~~~~~0 0 0OO~Ct At CI D 0 Ct 0000 D CI DDOO O 0 OODQO 0 0 OOOO~~~0~0 ao cO~tttctt<<Y1HE)SEC)0 CI Ct CI 0 OOOO 0 DDDP 0 0 0 QDQ~~~~~~0 0 0 0000 Itt t CIA CI Ct At 0 Cl O Ct m 0 ODDO 0 OC~~~0 00 O ODD ttt~Ctt 0'>>'I SORE N.3.I-8 YlASS VELOC.t 7'I ltt:CICr (g.[>=O.ta)NItX SI
The  Acceptance Criteria for the    LOCA  are described  in  10 CFR  50.46 (30 CFR 50.46 and Aopendix K of    10 CFR 50  1974)   as  follows:
: 1. The  calculated peak fuel element clad temperature        is below the requirement of 2,200'F.
2,   The amount  of fuel element cladding that reac;s chemically with water or steam does not exceed 1 percent of:he total amount of 2ircaloy in the reac or.
: 3. The  clad temoerature transient is terminated at a time when the core aeometry is still amenable to cooling. The locali-ed cladding oxidation limit of 17 percent is not exceeded d ring or af er quenching.
: 4. The  core remains amenable to cooling during and      after  :he break.
: 5. The  core temperature is reduced and decay heat is removed for an         'I period of time, as required by he long-lived "radioactivity".     '''..'xtended remaining in the core.


600.00 ,SOO.OO%00.00 300.00 200.00 COOK UNITl lAEPl 0.$OECLi I4SI 3%I lHUf UPRAllNC ECCS LSLOCA UIIH SARf ANO OLO PIIII~.2.10 HEA1 1RANS.COEfflCIEN1 SURS1.6.00 fl.1 PEAK.1.00 flf~l~ao.ooo 30.000" 2O.O00 6.0000 S.0000 A.0000 3.0000'.0000 I.0000 CI CI Cl CI CI III CI CI~II CI Ci 1lHE (SEC>t-/Q-Lipid/p$/9//Ep7 7gp~f zw QDEws.z&znl T'EaIG CQb=D-&)~<N S~
These  criteria  were established    to provide significant margin in emergency core cooling system (ECCS) performance          following  a LOCA.
I 600.00 500.00 i LOO.OO i00.00 Ai 200.00 COOK UKITI IAEPI 0.6 DECLC HIKSI)lllHVT UPRATIKG ECCS LBLOCA VITH BART AKO OLO I'AD f0 2.IO HEAT TRAKS.COEfflCIEKT BURST.5.15 fTl I PEAK~S.T5 fll~I 10.000 30.000 20.000 IMII 6.0000 5.0000 l.0000 3.0000 2.0000 1.0000 CI CI IA T I HE ISE C I h'EJP 7 7''NSF~~C oEFFICV~~T D~a.G.(Cs=d~)
WASH-1400 (USNRC 1975)          presents a recent study in regards to the probability of occurrence of RCS pipe ruptures.
Se  uence    of Events and  S stems 0   erations Should    a  major break occur, depressurizaton of the RCS results in a pressure decrease in the pressurizer.         The reactor trip signal subsequently occurs when the pressurizer low pressure trip setpoint is reached'. A safety injection signal is generated wnen the appropriate setpoint is reached. These countermeasures will limit the consequences of the accident in two ways:
: 1. Reactor trip and borated water injection supplement void formation in causing rapid reduction of power to a residual level corresponding to fission product decay heat. However, no credit is taken in the LOCA analysis for the boron content of the injection water. In addition, the insertion of contr".'. rods to shut down the reactor is neglected in the large break analysis.
: 2. Injection of borated water provides for heat transfer          rrom the core and    prevents excessive clad temperatures.
Oescr ation of Large Break Loss-of-Coolant Accident Transient The sequence    of events following    a large break  LOCA  is p".esen ed in Table 14. 3. 1-6.


N'4 600.00 500.00 l00.00 300.00~II L 200.00 COOK UNITI (AEP)O.A OECLC KINSI 3)IIHVT UPRAYINC ECCS LQLOCA MIIH QARF ANO OLO PAO F0~2.10 HEAl IRANS.COEffICIENT QURSTo$.75 fll)PEAKED lo00 FB+)=IN A0.000 30.000 20.000)%II 6.0000 5.0000 o.0000 3.0000 2.0000 CI~n I I HE l SE C)pt c i(c~st.a./-ll pg~~~~~~~gos~w(et r D C~Cea=D V) 600.00 500.00 100.00 I 300-00'L 2OO.OO I COOK UNITl TAEP)0.6 OECLC HAXSI 31I)HAT UPRATING ECCS ie).OCA NITN BART ANO OCO PAO F0=2.)0 NEAT TRANS.COEFFICIENT BURST 5 l5 FB)PEAK 6.00 FTT~)10.000 30.000 20.000 6.0000 5.0000 1.0000 3.0000 2.0000 l.0000 CI CI CI CI In CI TIHE (SEC)CI In CI CI CI IV I9 3./" l2 HE'FI r TgFIPISFER QDEFF IC.IGN 7 tIFcLs (cb=g.(,)MAX 81' 2500.0 AEP LBLOEA fOR 34 II HUT UPRATIRC AHALTSIS VITH BART ISK IS OfA 215 PSIG BACKfILL 5 PET SCTP 0.8 OECLG BREAK HlkSI PRESSURE CORE BOITOH l I TOP~t~l 2000.0 l500.0 I000.0 500.00 0.0 Cl CI CD CI AJ'1IHE (SEEi F (&Ills gg,3.I-l3 CD''PA'Essed DcCc&CeD=o8)PI~AI Zz.
Before the break occurs, the unit is in an equilibrium condition; that is, the heat generated in the core is being removed via the secondary system. Ouring blowdown, heat from fission product decay', hot internals and the vessel, continues to be transferred to the reactor coolant.       At the beginning of the blowdown phase, the entire RCS contains subcooled liquid which transfers heat from the core by forced convection with some fully developed nucleate boiling. After the break develops, the time to departure from nucleate boiling is calculated, consistent with (1)
2500.0 ACP LBLOCA fOR 3%II HVT uPRATIRG ARALVSIS slTH BART ISa IS Of A 215 PSIG BACKf ILL 5 PCT SGlP 0.6 OCCLG BRIC@HIRSI PRCSSURC CORC BoiloH l I TOP.l~l 2000." I500.0 I000.0 Soo.on 0.0 CI M~C)ED TIHC<SCC I CI ED CI m C)~D F t&LlRE I'3 3~I I" QxokE O'REssu RE.r)ecLI-gf-g-o,r.)
Appendix K of 10 CFR 50.( 'hereafter the core heat transfer is unstable, with both nucleate boiling and film boiling occurring. As the core becomes uncovered, both turbulent and laminar forced convection and radiation are considered as core heat transfer mechanisms.
~~w 8r 2500.0 AEP LBLOCA FOR)l 1 1 HUT Ul'RAT lHG AHALYS(S VTTH BART 15x15 OFA 215 PSlG BACAFIL1.S.PCT SGTP O.a OEC1G BREA<HIRSl PRESSURE CORE BOTTOH 1 1 fOP e 1~1 2000.0 1'500.0 1000.0 500.00 0.0 v TIHT ISECI CI CI CI m CI Ct CI F l&gPE)'t.2.)-l5 CORE'R<~0<C DeC1 C ggS=OS)W<<82
The    heat transfer between the RCS and the secondary system may be in either direction, depending on the relative temperatures.       In the case of continued heat addition to the secondary system, the secondary system pressure increases and the main steam safety valves may actuate to limit the pressure.     makeup water to the secondary side is automatically provided by the emergency feedwater .system. The safety injection signal ac uates a feedwater isolation signal which isoiaies normal feedwater flow by closing the main feedwater isolation valves, and also initiates emergency feedwater flow by starting the emergency feedwater pumps.       The secondary    flow aids in the reduction of  RCS pressure.
'>)hen  the RCS depressurizes to 600 psiz, the accumulators begin to inject borated water into the reactor coolant loops. The conservative assumption is made that accumulator water injec ed bypasses the core and goes out through the break until the termination of bypass.       This conservatism is again consistent with Appendix K of 10CFRSO. Since loss of offsite power (LOOP) is assumed, the RCPs are assumed to trip at the inception of'the accident. 'The e'ffects of'ump coastdown are i'nc'luded
'n    the blowdown analysis.
The blowdown phase    of the transient ends when the RCS pressure (initially assumed at 2280 psia) falls to a value approaching that of the containment atmosphere.     Prior to or at the end of the blowdown, the


2500.0 aEp loeoca foR Gill HMt upRatlRG aRalvsls Mite isxls ofa 2ls pslc aac<ftit.s ect sctp o.6 0EcLc SREAK PRCSSURE CORE BottoH 1)toP e 1+1 2000.0 1500.0 1000.0 sou.no 0.0 Cl C)Ch Al tlHE<SEC)Cl CI Cl F IC u tcF i').>I-1 o C,ORe O'RESSuRE~g,)P1 AX 8Z 1.00E+5 AEP LBLOCA fOR)III HMT UPRATINC AHALTSIS MITM BART ISK IS Of A 21S PSIC BACKflLI.S PCT SGTP O.B OECLC BREAK Hl'ISI BREAK fLOM v B.OOE~04 6~OOErt)a A.OOE~Oa 2.00E<a 0.0 CI o flHE ISECI C)F I Lt R E['t 3 I l7 8+pgy F Lo DEC.t+(ZP PP)YLC<
mechanisms    that are responsible for the emergency core cooling water injected into the RCS bypassing the core are calculated not to be effective. At this time (called end-of-bypass) refill of the reactor vessel lower plenum begins. Refill is completed when emergency core cooling water has filled the lower plenum of the reactor vessel, which is bounded by the bottom of the fuel rods (called bottom of core recovery time).
I.OCE 45 HEI'BLOEA fOR 34 I I Hvl UPAAFIHC ANALYSIS ulIH BARF ISl IS OF glS PSIC BA(@Flit S PE I SCIF'.6 OEELC BREA'lhSI BAE za FEOv LJ B.OOE Ra aD 6.00I 4s C IX~A%.00E Oi a.OOE.O'.0 CI CP C)CI Cl IIHE ISEC I F tC ups Ill.a.l-i8 BRE~y FZOW g~oz~Cco o q)=P.~N S?'
The  reflood  phase  of the transient is defined as the time period lasting from the end-of-refill until the reactor vessel has been filled with water to the extent that the core temperature rise has been terminated.
From the latter stage of blowdown and then the beginning-of-reflood, the safety injection accumulator tanks rapidly discharge borated cooling water into the RCS, contributing to the filling of the reactor vessel downcomer. The downcomer wa'ter elevation head provides the driving force required for the reflooding of the reactor core. The low head and high head safety injec ion pumps aid in the filling of the downcomer and subsequently    supply water to maintain    a full  downcomer and complete the reflooding process.
Cont'inued operation of the    ECCS  pumps supplies  wa er during longterm cooling. Core temperatures have been reduced to longterm steady state levels associated with dissipation of residual heat generation. After tne water level of the residual water s orage tank (RWST) reaches a minim m allowable value, coolant for long-tern cooling of the core is obtained by switching to the cold recirculation phase of opera ion, in which spilled borated wa er is drawn from the engineered safety ea ures (ESF) containment sumps by the low head safety injection (residual heat removal) pumps and returned to the RCS cold legs. The containment spray system continues to operate to further reduce containment pressure.
r  r.
Approximately 24 hours 'after initiation of the LOCA, the ECCS is realigned to supply water to the RCS hot legs in order to control the boric acid concentra-ion in the reactor vessel.


I.OOE<5~AEP LBIOCA FOR 3A Il HMI UPRATIRG ANALYSIS VlfH BAAl ISA I5 OFA 235 PSIG BACKFILL 5 PCF SGIP O.a OECLG BREAK HIIISI BREAA FLOV LJ P.OOE+4 6.00E+a C.OOE<a 2.00E<a 0.0 CI FlxE (SEC)ID CI Cl m arcual<t<,3.i-tS amon.su~~~>c~ccc QCr>=Or)NZN SZ t.OOE<05 AEP LBLOCA FOR Rll l HMf UPRAftHC ANALYSIS M[TO BARf lSK l5 OFA 275 PSlC BACKFlLL 5 PC1 SCfP 0.6 OECLC BREAK BREAK FLOV v&.BOERS I 6.00E+a 1.00E+01 2.00E+Oi 0.0 TlHE lSEC)CI Ch C)FlCl.lee it..l-20 BVEAg rlOg RATE bECL&(PP=Q (o)l1hX SI
Core and  S stem performance Mathematical Model:
The  requirements of    an acceptable CCS evaluation model are presented      in of  10 CFR  50 (Federal Register 1974).
(1)
Appendix  K Large Break    LOCA Evaluation Model The  analysis of a large break LOCA transient is divided into three phases:    (1) blowdown, (2) refill, and (3) ref lood. There are three distinct transients analyzed in each phase, including the thermal-hydraulic transient in the RCS, the pressure and temperature transient within the containment, and the fuel and clad temperature transient of the hottest fuel rod in the core. Based on these considerations, a system of interrelated computer codes has been developed for the analysis of the LOCA.
A  description of the various aspects of the      LOCA  analysis methodology is given by Bordelon, Massie, and      2ordan ( 1974). (6)   Tnis document describes the major pnenomena modeled, the inter-.aces among the computer codes, and the features of the codes which ensure comoliance with the Acceptance Criteria. The SATAN-'ll, WREFLGO0, BART and LOCTA-IV codes, wnich are used in the LOCA analysis, are described in detail by Bordelon et al. (1974)((5)  'elly                    ';
et al. (1974) (9) Young et al.
(4)
(1980);  /~X Bordelon and Murphy (1974)(    '; and Bordelon et al.
( 1974).       Code modifications are specified in References 2, 7 and
: 13. These codes assess the core heat transfer geometry and determine if the core remains amenable to cooling throughout.and subsequent to the blowdown, refill, and reflood phases of the LOCA. The SATAN-V1 computer,
~ , ' co'de'nalyzes the thermal-hydraul'ic;'transi'ent in 'the RCS during blowdow'n and the WREFLOOO computer code calculates thi's transient during the refill and reflood phases to the accident. The LOTiC computer code, described by Hsieh and      Raymund  in


10.000 AEP LBLOCA FOR 3ill HMT UPRATIMC ARALYSIS MITH BART TSX l5 OFA 275 PSlC BACKFlLL 5 PCT SCTP O.B OECLG BREAK HlgSl CORE PR OROP 50.000 R 25.000 0.0-25-000-'50.000-10.000 I."~L~eFlC uRE ld~~-Zl~oRE'RE'GsuRi DROP Dcccc Ccv=o 8).bfZN ag i
0 WCAP-8355 ( 1975) and WCAP-8345 ( 1974)
10.000 PEP LSLOC1 fOR 3A I I HUl UPRAIIHG AHALYSIS Mild SARI ISa 15 OfA 215 PSIG OACKfILL 5 PCI SGIP 0.6 OECLG 6REAA rlvSI CORE PR.OROP 50.000 CL 25.000 Cl 0.0-25.000<0.000-10.000 o Cl C)CI C)Al IIHE iSEC>
(3) , calculates the containment pressure transient. The containment pressure transient is input to WREFLOOO for the purpose of calculating the reflood transient.       The LOCTA-IV computer code calculates the thermal transient of the hottest fuel rod during the three phases. The standard Pad Fuel Thermal Safety Model, described in Reference 15, generates the initial fuel rod conditions input to LOCTA-IV.
SATAN-VI  calculates the RCS pressure, enthalpy, density, and the mass and energy flow rates in the RCS, as well as steam generator energy transfer between the primary and secondary systems as a function of time during the blowdown phase of the LOCA. SATAN-VI also calculates the accumulator water mass and internal pressure and the pipe break mass and energy flow rates that are assumed to be vented to the containment during blowdown. At the end of the blowdown phase, these data are transferred to the WREFLOOD code. Also, at the end-of-blowdown, the mass and energy release rates during blowdown are input to the LOTIC code for use in the determination of the contai.",".ien pressure response during <<his first phase of the LOCA. Additiona', SATAN-VI outout data from the end-of-blowdown, including the core inlet flow rate and enthalpy, the core pressure, and the core power decay transi'ent, are input to the LOCTA-IV code.
With input from the SATAN-VI code, WREFLOOO uses a system thermal-hydraulic model to determine the core flooding rate (".hat is, he rate at wnich coolant enters the bottom of'he core),      he cool-ant pressure and"temperature, and the quench front height during the reflood phase of the LOCA. WREFLOOO also calculates the mass and energy flow addition to the containment through the break. WREFLOOO is also linked to the BART and LOCTA-IV codes. The heat transfer calculation for the I        7 II
                                                                                '
  , average fuel channel in the hot assembly during the ref lood phase of the
~
(16)
LOCA is performed by the BART'omputer code using a mechanistic core heat transfer model. This information is then used by LOCTA-IV throughout the analysis of the LOCA transient to calculate the fuel clad temperature and metal-water reaction of the hottest rod in the core.


ID.000 AEP LOLOCA FOR 311l l'V1 UPRAEIHO AHALTSIS MIIH BARE ISX l5 OFA 2)5 PSIC BACHE ILL 5 PC1 SCIP D.l OECLC BREAK HIHSI CORE PR.OROP 25.000 CI CL'J 0.0-25.000-50.000-70.000 CI CI IIHE (SEC)CI CI Cl CI m F~@~(RE'lf.
The  large break analysis was performed with the December 1981 version of (16) computer the Evaluation Model modified to incorporate the BART code.
B.l-28 CORe F R~uAE gpOp E>Eeoc(m=
Input Parameters  and  Initial Conditions:
D.'/)NX kl 8Z
The  analysis presented in, this section was performed with a reactor vessel upper head temperature equal to the RCS hot leg temperature.
The bases  used  o  select the numerical values that are input parameters to the analysis have been conservatively determined from extensive sensitivity studies (Westinghouse 1974 (12) .; Salvatori 1974 (11).
                                                            ~
Johnson, Hassle, and Thompson 1975 (8) ). In addition, the requirements of Appendix K regarding specific model 'features were met by selecting models which provide a significant overall conservatism in the analysis. The assumptions which were made pertain to the conditions of the reactor and associated safety system equipment at the time that the LOCA occurs, and include such items as the core oeaking factors, the containment pressure, and the performance or the =CCS. Gecay heat generated throughout the transient is also conservatively calculated.
A  meeting was held at :he Mestinghouse      Licensing Office in Bethesda on Oecember 17, 1981 between members of the U. S. Nuclear Regulatory Commission and members of tne Mestinghouse Nuclear 'Safety Oepartment to discuss the impac. of maximum safety injection on the large break ECCS analysis on a generic basis. Further discussion of this issue is provided in a letter from E. P. Rahe, Manager of Westinghouse Nuclear Safety Oepartment, to Robert L. Tedesco of the U. S. Nuclear Regulatory (14) A brief description of this issue is given below.
Commission.(,
analyses currently: assume. minimum s'afeguards for the
                                                                                    ~
.,Mestihghause  ECCS                                                          ~
                                                                                      ~
safety injection flow, which minimizes the amount of flow to the RCS by        ~
assuming maximum injection line resistances, degraded ECCS pump performance, and the loss of one residual heat removal (QHR) pump as the most limiting single failure. This is the limiting single failure assumption when offsite power is unavailable for most Westinghouse


10.000 AEP LBLOCA FOR 31 II O'Vl UPRATINC ANALYSIS VITH BART ISX I5 OFA 215 PSIG BACKFILL 5 PCT SGTP 0.6 OECLG BREAK CORE PR.OROP 50.000 IL 25 000 R.0.0-25.000-50.000 10i000 ED C>n C>TIVE (SEC)F 1 I'4RE'0-B.
plants. However, for some Westinghouse plants including 0. C. Cook Unit 1, the current nature of the Appendix K ECCS evaluation models is such that it may be more limiting to assume the maximum possible ECCS flow delivery. In that case, maximum safeguards which assume minimum injection line resistances, enhanced ECCS pump performance, and no single failure, result in the highest amount of flow delivered to the RCS.
I-2't C.ORE f'R<5SQRE'R~I
Current  LOCA  analysis for 'the 0. C. Cook Unit  1 has demonstrated  that, maximum  safeguards assumptions result in    he  highest peak clad temperatur'e. Therefore, the worst break  for  O. C. Cook (CO =   0.6) was re-analyzed, assuming maximum safeguards.
><C I C-PC.D=0.4)
Results:
YlAX 2500.0 coo<URIII iAfP)O.a Offf6 HIKSI 3llIHQt UWRAIINC fccs<e<ocA ultu OARt ANO OLO PAO F0=2.IO flAD AVG.tfHP.HOt ROO OURSt.6.00 Ftr>PfAA.).00 Ftt~i Vl 2000.0 l500.0 T a l000.0 EJ 0.0 CI CI CI CI CI CI CI III CI CI CI CI tlHI tSff)>>~ficE l),3,l-~~P~~<C~nD-TEnll~~~Tu~~
Based on the    results of the  LOCA sensitivity studies  (Westinghouse 1974      ; Salvatori 1974      ; Johnson, Massie, and Thompson 1975    ) the limiting large break was found to be the double ended cold leg guillotine (OECLG). Therefore, only the OECLG break is considered in the large break ECCS performance analysis. Calculations were performed for a range of Moody break discharge coefficients.          The results of these calculations are summarized in Tables 14.3. 1-5 and 14.3.1-6.
The  containment data used to generate the LOTIC backpressure transient are shown in Table 14.3. 1-1. The mass and energy release data ror the minimum and maximum safeguards cases are shown in Tables 14.3. 1-2 and 14.3. 1-3 respectively. Nitrogen release rates to the containment are given in Table 14.3.1-4.
Figures 14.3. 1-1 through 14:3. 1-54.present the transients for the
                                                    'I principal parameters 'for the break size's analyzed. The following items are noted:


2SOO.O COOK UNlll tAEP)0.6 DECLC HINSI SlllHV1 UPRAllNC ECCS lRCOCA VllN BART AND 0<D PAD fO 2.IO CLAD AVG.TEHP.HOf ROD SURSf 5.1S foal I PEAK S.)S fAol I/I 2000.0 l500.0 X a l000.0 4J 500.00 0.0 Cl C3 CI flHE lSECI Cl IA O AI CL CI Vl I4 2500.0 COOr uKttt LAEP>O.a OECLC HtKSf SaltHVt UPRAttNC ECCS LBLOCA VltN BAR1 ANO OLO PAD F0*2.10 CLAD AVG.IEHP.VOt ROO BuRSt.5.15 Flt>PfAr.7.00 Ftt~I 2000.0 1500.0 X IL X tw a 1000.0 LJ 500.00 0.0 C>Cl cS 43 llHE'SEC)Cb CI sA
Fi ures 14.3.1-1    The  following quantities are presented at the clad throu  h 14.3.1-12  burst location and at the hot spot (location of maximum clad temperature), both on the hottest fuel rod (hot rod):
~~
: 1. fluid quality;
: 2. mass  velocity;
: 3. heat transfer coefficient.
The  heat transfer coefficient shown is calculated  by the LOCTA-IV code.
Fi ures 14.3.1-13  The system  pressure shown is the calculated throu h 14. 3. 1-24 pressure in the core. The flow rate from the break is plotted as the sum of both ends for the guillotine break cases. The core pressure drop shown is from the lower plenum, near the core, to the upper plenum at the core outlet.
Figures 14.3.1-25  These  figures show the hot spot clad temperature throu h 14. 3. 1-36 transient and the clad temp rature transient at the burst location. The fluid emperature shown is also for the hot spot and burst location. The core flow (top and bottom) is also snown.
Figures 14.3. 1-37  These  figures  show he  core rerlood transient.
through 14.3. 1-44 Figures 14.3. 1-45  These  figures show the mergency Core Cooling throu h 14. 3. 1-52 System flow for all of the cases analyzed. As described earlier, the accumulator delivery during blowdown is discarded until the.end of bypass is calculated. Accumulator 'flow:, however, is established in the refill and the reflood calculations. The accumulator flow assumed is the sum of that injected in the intact cold legs.


2000.0't50.0 COO<uRltt<AEPt 0.&DECLC HtRSt 3otlHMt uPRAtlRC ECCS LBI.OCA MttH SARt ARD OLD PAD to=2.lo tI.Uto tEHPERA1UAE BuRSt.6.00 ft<1 PEA<.l,00 ft<~>l 500.0 l250.0 I I l000.0 t50.00 500.00 250.00 0.0 CI CI CI CI CI CI~A Cl ttHE<SEC)CI Cl CI~II 2000.0 a I)50.0 COOK UNITI IAEPI O.C OECLG HINSI)LIIHVT UPRATING ECCS LBLOCA VITH QART ARO OLO PAO F0=2.IO FLUIO TEHPERATURE BURST.S.1S ft>>I PEAK.S.PS fthm~)a ISOO.O I250.0 I000.0 CL X, I 3 ISO.OO S00.00 2$0.00 0.0 C)E3 C3 vs IIHE ISECI 2000.0 I)50.0 COOK UNIlI lAEPI O.l OECLG HINSI 3i I IHU1 UPRAlING ECCS LBLOCA MIIN SARI ANO OLO PAO F0*2 10 fLUIO IEHPERAlURE SURSF 5.)5 fll)PEAK).00 fll~)lal 1500.0 1250.0 1000.0 I 3)50.00 5'.OO 250.00 0.0 D o~fl CI lIHE ISEC)CI 2000.0 P l)50.0 COOK Ut)lTl lAEP)0.6 OECLG HAXSl 31 l)H'LIT UPRATlNQ ECCS LBLOCA MlTH BART ANO OLO PAO F0=2.IO FLUlD TEHPERATURE BURST~5.15 FT()PEAK 6,00 FT)0)1500.0)250.0 I l000.0 X 750.00 500.00 250 00 0.0 CI sn TlHE lSEC)F[G QP f)L.3.I-32 FLL()P TF-.YIPERATLlRE DiC LCr CCb=o.lo')
Fi ures 14.3. 1-53    The  containment pressure transient used in the throu  h 14.3.1"54    analysis is also provided for the minimum and maximum SI cases.
Figures 14.3.1-55      These  figures  show the heat removal  rates of the heat and 14.3.1-60          sinks found in the lower compartment and the heat removal by the lower containment drain, andthe heat removal by the sump and LC sprays (minimum and maximum SI cases).
Fi ures 14.3.1-61      These  figures  show the  temperature transients in throu h 14. 3. 1-64    both the upper and lower compartments of the containment and flow from the upper to lower compartments. Total heat removal in the lower compartment is the sum of all the heat removal rates shown (for minimum and maximum SI cases).
The maximum  clad temperature calculated for a large break is 2163 F, which is less than the Acceptance Criteria limit of 2200~F. The maximum local metal-water reaction is 9.65,percent, which is well below the embrittlement limit.of 17 percent as required by 10 CFR 50.46. The
:otal core metal-water reaction is less than 0.3 percent for all breaks, as compared with the 1 percent criterion of 10 CFR 50.46.       The clad temperature transient is terminated at a time when the core geometry is still amenable to cooling. As a result, the core temperature will continue o drop and the ability to remove decay heat generated in the fuel for an extended period of time will be provided.
10


1000.0 ACP LBLOCA FOR jA I I HUT UPRATIIIG AIIALYSIS VITH BART ISx IS OFA 215 PSlC BACKFILL 5 PCT SGTP 0.8 OCCLC BRf AX HIRSI 2-FLOUR>lf CORf BOlTOH I I TOP~I~I 5000.0 2500.0 CI 0.0-2500.C-5000.0-1000.0 Cl CI Cl Cl Cl Cl Al TIHf<SfCI Cl Cl Cl m Cl Fy@~Rg]q g)-33 pygmy FI II~(TN&MD 3$TTDYI)DecLc (cI=08)N&#x17d;8T
References  for Section 14.3. 1. 1
: 1. "Acceptance Criteria for Emergency Core Cooling System for Light Water Cooled Nuclear Power Reactors," 10 CFR 50.46 and Appendix K of 10 CFR 50, Federal Re ister 1974, Volume 39, Number 3.
: 2. Rahe,  E. P.  (Westinghouse),  letter  to J. R. Miller (USNRC); Letter No. NS-EPRS-2679,    November 1982.
: 3. Hsieh, T., and Raymund, M., "Long Term Ice Condenser Containment LOTIC Code Supplement      1," WCAP-8355, Supplement      1, May 1975, WCAP-8345  (Proprietary), July    1974.
: 4. Bordelon, F. M. et "al., "LOCTA-IV Program: Loss-of-Coolant Transient Analysis," WCAP-8301 (Proprietary) and WCAP-8305 (Non-proprietary), 1974.
: 5. Bordelon, F. M. et al., "SATAN-VI Program: Comprehensive Space, Time Oependent Analysis of Loss-of-Coolant," WCAP-8302 (Proprietary) and WCAP-8306 (Non-proprietary), 1974.
: 6. Bordelon, F. M.; Massie, H. W.; and 2ordan, T. A., "Westinghouse ECCS Evaluation Model - Summa'ry," WCAP-8339, 1974.
: 7. Rahe,  E. P., "Westinghouse    ECCS  Evaluation Model, 1981 Version,"
WCAP-9220-P-A (Proprietary Version), WCAP-9221-?-A (Non-proprie~ry version),. Revision 1, 1981.
: 8. Johnson,  W. J.;  Massie, H. W.; and Thompson, C. M., "Westinghouse ECCS  -  Four Loop Plant (17x17) Sensitivity Studies," WCAP-8565-P-A (Propr'ietary)    and WCAP-8566-A  (Non-proprie't'ary), 1975.
PP
: 9. Kelly,  R. 0. et  al., "Calculational    Model    for  Core Ref looding After" a  Lo'ss-of-Coolant Accident    (WREFLOOO  Code)," WCAP-8170 (Proprietary) and WCAP-8171    (Non-proprietary),  1974.


1000.0 AEP LBLOCA FOR 3l I!.HV'I UPRAEIIIC AIIALYSIS VIIN BARf 15115 OFA 2)5 PSIG BACKFILL 5 PCI SG'IP 0.6 OECLC BREAK HIHSI 2-FLOVRAIE (OR~80110H I I 10P I 1~1 5000.0 2500.0 I 0.0-2500.I3-5000.0-)000.0 CI C)CI CI CI CI~II I!HE ISE C I CI 4D CI m FZG IIRE Ig 3.(-g.'I QORE V'LOW CT boccie-(c.p=o t)
10  U. S. Nuclear Regulatory Commission 1975 "Reactor Safety Study -      An Assessment of Accident Risks in U. S. Commercial Nuclear Power Plants,"  WASH-1400, NUREG-75/014.
: 11. Salvatori, R., "Westinghouse    ECCS  - Plant Sensitivity Studies,"
WCAP-8340 (Proprietary) and    WCAP-8356 (Non-proprietary), 1974.
: 12. "Westinghouse  ECCS  - Evaluation Model Sensitivity Studies,"
WCAP-8341  (Proprietary) and WCAP-8342 (Non-proprietary), 1974.
: 13. Bordelon, F. H.,  et al., "Westinghouse ECCS Evaluation Model-Supplementary Information," WCAP-8471 (Proprietary) and WCAP-8472 (Non-proprietary), 1975;
: 14. Rahe,  E. P.  (Westinghouse). Letter to Robert  L. Tedesco  (USNRC),
Letter  No. NS-EPR-2538,  Oecember    1981.
: 15. Letter from J. F. Stoltz (NRC) to T. M. Anderson (Westinghouse);
subject: Review of WCAP-8720, Improved Ana'.ytical 4lodels Used in Westinghouse  Fuel Rod Oesign Computations.
: 16. Young, 4I. Y., et al., "BART-Al: A Computer Code for he Best Estimate Analysis of Reflood Transients, "WCAP-9561-P-A (Proorietary) and WCAP-9695"A (Non-Proprietary) January 1980.
12


1000.0 ACP LBLOCA fOR 34 II HVT UPRATIHG AHALYSIS UITH BART ISl l5 OfA 215 PSIG BAC<fILL 5.PCT SGTP O.l OCCLG BREAK~IHSI 2 fLOVRATK CORC BOTTOH I)TOP, l~I Ll Vl CQ 5000.0 2500.0~a I 0.0-2SOO.O-5000.0-1000.0 CI IV TIllC (SIC) 0 7000.0 AEP LBLOCA FOR 3ell HMT UPRATINC ANALYSIS MITH BART ISX l5 OFA 275 PSIG BACKFILL 5 PCT SCTP 0.6 OECLC BREAK 7-FLOMRATE CORE BOTTOH I)TOP~(+)EJ 4%5000.0 2500.0 I o I 0.0-2500.0-5000.0-7000.0 CS C)ID C)CU T I>)6 (5:.C)C1 Cl CI m Cl P)QQ+E[Q 3}Q(z Q,QQg PLDW ESTOP AND BOTTOPl)Pggl~ggb=O.a)M AX Bg
TABLE 14.3 1-1
                                                  ~
LARGE BREAK CONTAINMENT DATA
( ICE  CONDENSER CONTAINMENT)
NET FREE VOLUME
( Includes Distribution Between Upper, Lower,              UC  746,829'ft.
and Dead-Ended Compartments)                               LC  249,446 OE    116,168 IC    122,400 Initial  Conditions Pressure                                                14.7 psia Temperature      for the Upper,    Lower and    UC    100~ F Dead-Ended    Compartments                      LC    120~ F OE    120oF RWST  Temperature                                        70~F Service Mater Temperature                                40oF Temperature Outside Containment                            7oF Initial    Spray Temperature                            70~F Spray System Burnout Flow for        a Spray  Pump                  3600 gpm Number  of Spray      Pumps  Operating                2 Post-Accident      Initiation of    Spray System      40 secs Ois  ribution of      the Spray Flow to the      LC  2835 gpm Upper and Lower Compartments                      UC    43o5 gpm Deck Fan Post-Accident      Initiation of    Deck Fans          600 secs Flow'at,e Per      Fan                              ~
39,000 cfm per'ran
                    'I Hydrogen Skimmer System Flow Rate                                2800 cfm per ran Assumed Spray    Efficiency of Mater from                        100'o Ice Condenser 'Drains 13


20.000 l7.500 AEP UPRAIIHG CD D.R OECLG RK HlkSl QART-REFL000 27S RXPlLL PRESSURE lS17$ofA UATER LEVELIfll l$.000 90MHCoWER l2.S00 l0.000 g LJ 7.5000 J~s.oooo 2.5000 0.0 CI CI CI TIVE<SEC)FT~upp iq.3.(-2 I'REFLooD Y'RAASZ<PL ba+NCONER WA EaL L EVILS~eC.~~<C,E=O.G)~X~aZ 20.000 IT.500 AEP UPRATIHC Coco.g OECLG Ba HIHSI PART-REELOOO 2TS&<FILL PRESSVRE TSx TS OFA MATER LEVELLETT IS.OOO~WHCOPlEA.
TABLE 14. 3  1 ~ 1
I2.500 IO.OCO D T.SOOO 5.0000 2.5000 9.0 C7 CI CI CI CI CI CI~II TIME iSEC'el CI CI CD Fggqgg l'l,3.I-SS RE'T=LOOP W A TER, LEVELS aeCLa CCO-O.r.)
                                            'continued)
STRUCTURAL HEAT SENKS 2
i                      blateri a 1
: 1. LC                12,105            0.0469/2.0      steel/concrete
: 2. LC                11,700            2.0            concrete
: 3. LC                65,980            1.35            concrete
: 4. LC                  5,481            0.0833          steel
: 5. LC                  4,735            0.01147          steel
: 6. LC                    289            0.25            lead
: 7. LC                14,690            0.0079          steel
: 8. LC                  3,439            0.1561          steel
: 9. LC                  5,775            0.009            steel
: 10. LC                  4,966            0.0096          steel
: 11. LC                  7,013            0.037            steel
: 12. LC                  2,457            0.0334          steel
: 13. UC                    378              .1667/.0365    steel/concrete
: 14. UC                29,772              .0092          steel
: 15. UC                  8,033              .0209          steel
: 16. UC                    420              .0052 .
s  eel
: 17. UC                29,330            1.47            concrete
: 18. UC                34 125            0.0469/2.0      steel/concrete
: 19. UC                    2'10            .0052          steel UC:  Upper Compartment
~:...... LO: ..Lower. Compartment OE:  Oead-Ended Compartment 1C:  lce Condenser Compartment


tO.COO Ig SOO IS.OCO Af~u<<<<lhC CO:0.~Of fC 84>I'aSI 8>>f.~(<F003
ASS    AiND    9  ?"=Y RE':-~SE ?~iES u!,.<IMUM  Si i@SS                                    'tE?GY i !!ME (jb/sac)                              (~is/sec)
?>S 8K<I's 0 04f$5gkf ISi IS 0<4 Vs~i~af Vf<iCI)DowNComCR l It.S03 I0.000~r.S000~C>S.OOOO t.SOOG 0.0 Cl CI C7 n C3 C7 n n IIHE ISE CI CI C7 CJ n C7 FX.GQRQ I'l.3.1-&l RE.FI OOQ TRhl4SC<H>
(sec)
DoWllCornER LnJATE.R LEVEm De.C.I I I f g=O.1)frlXN SX 20.000 11.500 AEP uPRALIHC (0=0.6 OEElC Ba HAISI SART-REFL000 215 SAIILL PRESSuRE ISIls ofA MALER LEVEL{F1)Oowgc,omEP.
O.                               ~ 57888>05                              30jiZc F08
L5.000 12.500 Io.ooo~p.sooo I+s.oooo 2.5000 0.0 CI I CI CI~fl CI f!HE ISEE>CI CI Vl CI CI PgQ QgP)q.3.l-QO RFFLOotO TRAHSZEH>-CORE+DOWNCOME'/ATES LEUEiS, P~Cia.g C.g=O.E.)
    .2GGGE.Q1                        4783E G5                          .24,78E        ~GS
    .cuGQEiyl                      .34228~05                            .179'E i08
    .6GGGE'v I                   .2563Ei05                            ~  1377E iCjS
    .8GijGE~Gl                    .2225c+05                            .1223E G8
    ~ 10GC;E 02                  .ZQ4cC+05                            .114GE'08
    ,  1 ZC'C E  '02              .18GCE+05                            .1037E+08
    .124ciE 02                    .16558+05                              .9762E +07
    .140QE'02                      . 1561E>05                            .9229E ipr
                                  .14368 ~G5                                SCQ3Eipr
  '1s15GGE+GZ
    ~
OE-02                  .1319E +05                            .799GE+07
    .18GQE+02                      .1134E'05                            .6925Eipr
    .190GE+02                      .1061E 05                            .6491E 07
    .200GE'02                      ~ 991 7E ~04                          .6106E'07
    .21QQE>02                      .8999E ipc                            .5628E+07
    .220GE 02                      .8183E +04                            .5086Eipr
    .24,0QE.OZ                    .64G7E+04                            .40cZE>07
    .25CQE+02                      .5476Eipc                            .34CZE.07
    .26GPE~QZ                      .445GEipc                            .2730E'07
    .270QEip2                      .6099E+04                            .2983E+07
                      '28GGE'02 68i09EtP4                          .3GGcE+Gr
    .292GE'02                      .7005E nc                            .2753E          .Qr
    .3QGQE'02                        .c>31E+0>>                          ~   5 1 38    ~ vr
    .31GGE+02                      .5248E Gc                            .ZG'73E'Gr
    .32GGEi02                      .6371E.Qc                                19~   '-.07
    .33 GGEiQZ                      .4858E~G4                            ,1391= Or
    ,35GQE~G2                      .4315Eipc                            .1019E Gr
    .37GOE'02                      .2298Eipc                            .6255c Gb
    .38GQE+02                      .667CE.03                            . 1 7 '>  4E  -C'6
    .3849E~QZ                      .6587E~Q3                            ,fbt9E 05      F
    .c5QOE+02                      . 173GE.G3                          .6583E 04
    ~ 50QGEi02                      ,1730E, v3                          ~  6583Eipc
    .5265E+G2                      , 1 730 E. > 03                      .6583E~04 5325EiQZ                    .1rb8E 03                            .114&E'05
    .5355E+02                      .1768E i03                          .1145E+G5
    .5375E+02                      ~ 1767E+03                          .1135E+05
. ".5385E+02.                     .'.1rbrE;03        .-                 .1134E+05'.c>>GE
    . 5973EQ2                      .205GE+03                                              05
    .7020E 02                    ~
                                    .5402E G3                            .2098E 06
    .864OE+02                      .5729E+03                            . 2153E+06
    ~ 10698      03                .5850E.03                            .2128E Gb
    .1302E+03                      .5947E+03                            . 2081        E ipb
    . 156OE    i03                .6022E+03                            .2027E 06
    .2152E.03                      ,616GE.03                            .19G7E            i'c
    .2887E+03                      .5317E 03                            .17.>= 05
    .4107E~Q3                      . 6535c -'-'3                        . 1631E        'Gb
    .4434c+03                      ,659~c 03                            .1635E+05


2.0000 1.7500 AEP UtRAIINC CD 0.$OECLC BK HINSI BARI-REFLOOD 27$REFILL tRESSORE ISX IS OFA FLOOD RAIELIIIISEC) 1.5000 1.2500 u I.OOM~0.75M CC CI CI 0.5000 0.2500 0.0 Cl CI~n fIHE (SEC)8 FXC ORE Ig Q I t~gPPLQQD TR IH I e.O~~ZOI CT cecirCcr.=>.R)
TnQL:- 14.-"'. l-3
, 2.0000 I.)500 AEP uPRitIRC CO=0.6 OECLC Ba HIHSI SiRt-PEFL000 275 SwtlLL PRESSURE l51 IS OFA I'L000 RAIE{IR/SEC)
                                  ~SS neo .qrvI4Y            <e. -45@
I.5000 l.2500 u I.0000 0.7500 IC CI CI 0.5000 0.2500 0.0 CI CI Al tIVE LSECl ID CI CI m CI CI F~gggE Iq,3./-'l2.RE I.LOO+TRhg SX~pl PT'E L<<<TV'gE-I C-(gg=O.E)VlZN Sj Z.OCTO 1.1503 afar uPRAIIhC CO:0.<OCCCC 8~HIASI BA41-RIii000 81$84ilal.~~ISSuAE ISl 15 Oik fa000 4AII<lb/SEC)1.5000 I.t500 I.COOQ Vl 0.1500 CC~0.5000 0.Z500 0.0 C7 C7 CP n CD IV>I>E ISECI CI C7 C3 Pl ETC QgQ''(.3.l-9S RE F'LooD%RA'~1 E~T~ORE X.NLG T V E~I'-Z T'/-becLc (u=o.u)mz~SZ 2.0000 1.1500 AEt'"Ra f.'i C.'=0.6 DECLG BK H~a 51 64" f-riErt000 2fs Br e 1ll f r ESSVRE Isa 15 Cfi flDDD RAffrfrfl<EEf 1.5000 1.2500 1.0000 0.1500 0.5000 0.2500 0.0 C)o Cl Cl In ffvE r5E(r
l4AX.HUH Si il.i 7VL' "ASS (Sac}                    (ib/SIC) 0
" ia.ooo~8.0000 PUHPED fCCS FLOM CREFLOOD)-DECLC (CD 0 B)HIM 5~6.0000 4.0000 2.0000 0.0 C)8'8 ,8 8 g 8 g t:+SURE (~/.3.J-'I5 t 4&PER ECC$F<<~CHIEF<>>>)
            , 2COOE    0l              . 6776Ei05
DEGLc ('t" b-g.g)PlzH
              . lCQOE  nl              . 5500Ei05                              <<3607E QS
~t0.000+8.I)00 4-PUHPED ECCS FLOW (REFLOOD)-DECLC (CD 0.6)HIN S~8.0000 u.4.0000 P..0000.0.0 8 T E(S)pyt"~<g<i'l.3.>'l4<~urnF+Ec+S p~CL~(j p-g, g)[AD hl i0.000't e.0{NO PUHPED ECCS FLOM{REFLOOD)-OECLC{CD 0~4)HlN S1 o 6.0000 M I-~4.0000.-I-4.n 2.0000 8 8 20.003 lal 17.500 I 15.000 CD 1Z.500 CD 10.000 PUHPE0 CC~OT~'E fC690 g tg0=0.6)AX Sll7.5000 Caj 5.0000 2.5000 0.0 CD CD CD CD C)C C CD CD n gl CD CD C3 CD CD CD n AJ CD C CI'>YlPED ECeR FLEAM(REFioor)
            .5CCCE Ol                ~   388 lEi05                            ,2874E~QS ROCQEiol                ~ 304 l E F05                          ~ ZC69Eioe
DFc.i C CC.D=O 4)MAX I.BOERS AEP IBLOCA fOR 3i I I HVT UPRATIRG AKALTSIS VITR BARF ISA IS OFA 275 PSIG BACKFILL 5 PCT SGIP O.B OECLG BRCAK HINSI ACCUH.FLOV 8000.0<OOOO.O EJ LJ<000.0 2000.0 0.0 Cl Cl n ClC TIHC iSCC)CD m CD Cl CD CD Cl~q.3.i-sl sccurnuL~>
            . lQCOE F02              ,2738Ei05                                >> l687EiCS
C Cl~~ClR 8)O'g~ZQ I.oot~ii AEP EBLOCA FOR tatI'HMt UPRatlHC aRAL'IS Mttn BAAt ISI IS OFA 21S PSIG BACKFILI.5 PCt SCIP 0.6 OCELOT BRE a 4IHSI ACCuH.Fcov aJ~e000.0 Cl~eooo.o LP LP oooo.o 2000.0 0.0 o co C)C)CD C1 m CI P tIHE ISEC)~F.o~Cpio~oo<<)FXE uRE I9.3t-So&X,H
            . l ZOCE ~02            ~    2382Ei05                                l54ZE~OS
          ~ l 24OE ~02              ~   l888Ei05                            . l 379E    ioe
          ~   I 400E ~02            . ISOZEi05                                l l29Eioe
          . lSCCE402                ,    1455E+05                            . lC84E~CS
          . l60nE F02              ,    lZSZEi05                            :9098E-07
          . l 7CCE    '02          . l 120E F05                          .SZZSEi07
        . lSCCEi02                .9375Ei04                                  .7433Eio7
        . lsQOEi02                ,8597E'04                                .6562E 07
        .ZCOPEi02                  . 7564Ei04                                5CSSE 07
        . 2 lCCE ~02              .5880Eio4                                  .54 lSE 07
        .220CE'02                . 4Q47E F04                                444 7E 07 2300Ei02              . 5 l 298~04                                  29 lSE    '07
      .240CE        '02          .6880Ei04                                  .283ZE i07
      .25QQE'QZ                  .7206Ei04                                  , 2968 E i07
      .2600E~OZ                . 60 lOEi04                                , 2679 E i07
      .2700E'02                  . 4829E F04                                . l877E~07
      .Z8CCE 02                .4337Ei04                                  . l 282E F07
    .2895E 02                  .3670Ei04                                  , l059E<<07
    . 2900E F02              .2623Ei04                                  ,8232E'06
    .3CCQE 02                ,24 lSE<<04                                  .44CSEiC6 30 l35-02              ~   2380E        i04                      , 3675E F06
    . 3 lCOE '02            ,2357E 04                                  .3406E~C6
    ,38COE 02                ,    'I   54'2E F04                      ,3f95E'06
    ,4Q'.43Eio2              , 34'2 5E 03                                  8   l54E F05
  ,4248EiPZ                  .3425Ei03                                  . l303E iPS
  ,4308E~CZ                .3425Ei03                                        l 3CZE PCS
  .4328Ei<<32                .3470Ei03                                        l 303E    '05 4338E 02              . 3410E~03                                .l892ciPS
  ,4348E 02                ,3470Ei03                                      189 lE "PS
  <<4358Ei02                  .3470E~03                                      l 89OE 05
,4885EiCZ                  ,3469Ei03                                        lSSSE-OS c<4 l E Q2            .3762Ei03                                        <579E CS
. 7796E 02              .4579E~O4                                      5683E OS lQ IZC b03                l 486E i04                                44 lSE 06
,    l309E i03            , lSOSE 04                                  2:36c 06
,    l639Ei03              . lS lSEi04                                    '.iCSE'C6
.25l6E 03                  . l 524 E 04                                  "352E ~6
                          . f545Ei04                                    23 l 7c <<06 2240'-06


I.QQE Rl AEP LSLOCA FOR 3%II HMI UPRAFIFIC ANALZSIS VIIH SARI I5r 1$OFA 215 PSIC SACAFILL 5 PCI'lGTP O.a OECLC SREAA HINDI ACCUH.FLOV EJ v.SQOQ.Q SQOQ.O LJ LJ'l 000.Q 2000.0 0.0 CI C>>CI AJ tlHE<SEC>Cl CI CI F ZCrLIRE I'I.3.I-5'I h 0 0 LIAAIILA<O>
TABLE 14.3.1-A-3 NITROGEN MASS AND ENERGY RELEASE RATES
FLOW (SLOWDOWN)
            ~Time  sec                          Flow Rate      lbs/sec 37.5                                     71.9'0.7 39.5 45.5                                      37.2 47.5                                      31.6 53.5                                      18.8 55.5                                     15.6 61.5                                        8.5 63.5                                        6'. 9 70.3                                    186.0 72.3                                    158.0 78.5                                      97.3 80.5                                      82.4 86.3                                      48.5 88.3                                      40.0 94.3                                      21.9 96.3                                       18.2 102.2                                      11.7 104.2                                      10.5 110.2                                        7.6 112.2                                        6.8 126.2                                        3.3 128.2                                        2.9 138.2                                         1.8 140.2                                        1.6
DCCLG.(Lb=o.'I)&EN R~
                                                            .
1.COEDS)4 AEP LBLOCA FOR 3tlt HMI UPRAflMG AMALVSlS MlTM BART l5X l5 DFA 275 PSIG BACKFlLL 5 PCl SGYP 0.6 OECLG BREAK ACCUH., FLOM Ek~-8000.0 4 Cb'x 6000.0 1000.0 2000.0 0.0 Cp Cs C)Ci Ch CI C>CI CJ YlHE (SEC)F II'IRE I'l.3.I-S2 QCCUY)IILRTDR FLOW CaLIIWDOWN) nial C geP=O.g)MhK RX t.0~I J J I I I ,.I~~I I I I.I I I r<<<<r<<QM4!<<s~
          ~
s<<<<r rs''4~~spl rsWt%'~s<<I I J~~L.:I+.~J f.Jig~I~I~~I s~~J I'J!I s J L LL-L I s~s CJ L~s l s l~J J+I J J p!JM~I I J i'QmZZI)0~~~I I J I~rH+'I~J~s~J J I J~I I I J!s j I, I s~)I l I I~]s;T.~A~~: 0.0 200 7~!~J T+Iz;-r.'s<<i 0&G.G%00.r PlZhlXPl Lt M S X'<$4RG l t.3.l-53 CDH TAI)4 fflKHT PRESSURE i,0 0 L.O s44~0 JIVE (SEC)~.200.0, CQnPAATOE4T
146.2                                        1.2'.1 148.2 174.2                                        0.25 176.2                                        0.075 l7 0329L:6/840727
: PRESSURE, 10 I~I 10 4~C 10 s I I I 11<1 I I LO 0 0~l00.0 200.0)00.0 7 lhK 1 SEC) 1.4fiCI 4l O)l I l I G.O 140.4 jGO.O T!PIE t SEC)'YIAxrrAum 8X F.T&4RK li~I.5'4.'WEA CptOPAATnEHT 5TAIJCTIJAAI.
HEAT AEApVAL AATE I 0~~I I I I~I I~I~I ill II I I~I I I I I I I~I~I I I:.):I;'I ilit I I)I II I I I))!I I I I i)I I I I tQ~M Cl I I I I I I~~I I I~I 10 C IO'~I~I I I~I I I~I I I I I I I I I I I I I I i0'''.0.0 100.0 250.0 YtnE ISEC)Wzdzmum PQ@ggg)g, Q,)-Q7'IKA I IIKnOVAI.SY I.C OIIA lH F00.0 I~j I I I~-I I I j I I I I s i~s I i I I s I I~I I I I, I~I I I g~I I I I;I j I~I~I I I I I I W 2.0(F 0%Cl~U I ct C)1.0K~<A r e~1.'E~~8 100.0 400~0~~J T lhf (SEC)rn AX~mum SZ-'~>>4~<l~>~-S8~'Ejj'i jjKMOY4L 8.v LC OAA'lH'~*
Ag~~ll I I I I I I I'i I I I Ili!: I I I'I i i I I t!a EJ~" l.0Atr'8 lie C v4 CC IAJ/I~'ACA0c 200.0 IlHE t SEC))00.0 i00,0 q~r mxv z mum sx P<&l4RE)%3 1 Q MEAT~E.ll:"A'Y 5IJl&A1A 0 I~(.~P AAIy TlhE (SEC)400.0 M AXZlhu>gz;~>@LLQG)9.3.)-4Q HEAT REMOVAL 8Y S~JPlP RHi3'pp RBY5 1 W F00.0 t00.0 TTNE (SCC))00.0'<0.0 WX0Z mum SZ C 0 tl P 4 A T P!K~T T E ll P K i)h T V"..  
*!I I 1 I I I 1~~hss I V I I I I 100.0 TlnE (SKC)~mhxrmurn.zr.CORP4ATPIENT TKhPEAATURK


I r~s~~~~r S~~s~r s~lis I:I II)I I I)~s I I I I s c~(p l>s~s I I/N~~.a (sjr I I Su<1 r>ss sssQ I 0)ls.g s I I I I~~I=~~s I:: I:;,ss"I II I~~I s ,.s~..1-',/,.:I iri+1~~::I.-'II', s s:Ij:~~~'~,~s."I I r~s I'.s~~Ij..'jll~~I:.I::I!s II:::I:: st~s, sl I sl jl.I:~is, I;I'.s ws I s~s I:.<<t~I s~s" ,.'ll;-~~~'"!I/y:s'I."..~s I;: I l I.: si;s I'.Is I II s s I s~.I'~-I-:.'I s s s I~I s'I s s IG I I)I I s I I s n I 0 j.I 0l Is sI.FL.Oii!L(F'P" s I 0 I.S.'Ssts I~20 I 49 e s
TABLE    14.3.1-A-4 LARGE BREAK OECLG C0=0.4 Results                                          Max SI Peak Clad Temp.              'F                2162 Peak Clad  Location Ft.                          7,. 50 Local Zr/H20 Reaction (Max)i~                   6.58 Local 2r/H20 Location Ft.                       7.50 Total 2r/H20  Reaction,'o'ot
( 0.3 Rod Burst Time sec.                         71.4 Hot Rod Burst Location Ft.                       6.75 Calculation Licensed Core Power (Mwt) 102;o'f                                3250 Peak  Linear Power (kw/ft) 102;o'f                                13.225 Peaking Factor (at License Rating)                               1.97 Accumulator Water Volume        (ft3
                                      )  per Accumulator          950
                                              . Cycle Analyzed.,:Cycle 8 18 0329L:6/840727


I e e e~I~i'e~.I'e I:.Iii I e I i I i)I I I!I I I e I I e I e I I e>ee~I~>~~C I\)I r Ie!'"'C, je>Ir lie I I I I i Iej er I~'I": jl'.ee>:I;ll I e'~e~I;I":;I:;I~~~~,~: I~ll ll"~~I.;~.~~I,'~~~"~II~I I~'I~I!I.~,I I:;l I'~I~-Ij.~~'i, I':~~'e~I''.iIII il';:: e I.,~I~e I: I"'~~I~I;I~le e-~I e'I I I I I e e I e I I e I I e e i I I j I I I I~I'p r I I gq ld~I I'l.I riiO.~~e e F I 1>e'll/h/I f I:..I..I I.~Ie/'I I f..jr/I I I I Iipelel I I I'II./J I I I I I I~I I~l I)I I I e e I e'e"!I I li I e e I I I I I I I~I ATTACHMENT 8 LOCA Rci A-"0-."CH SPECS Plant Name: Oonald C.Cook Unit 1 (AFP)Tyoe/Date o'OCA Analysis O.lp 0C=~-4 (max SI case)Large Break LOCA Analysis Df'Qg Total Peaking Factor F~.~g ,'IQ Cold Leg Accumula or.Water Yolume: 980 ft/accumulator (nominal)unchanged-,rom cur rent tech specs Cold Leg Accumulator Gas Pressure: 600 psia (minimum)unchanged from current tech specs K(z)Cu.ve: See next page 1.5000 AEP 4 LOOP CALC.NOTE SEC-RFFA-1481-CO CURR f NT LIH ITS RUN 05/15/84 K(Z)l/S.CORE KE ICHT (FICURE 1.2500 1.0000 0.7500~V 0.5000 0.2500 TOTAL FO 2.100 CORE REICHT 0'g<~~s c.al'ii I I.I83 12.000 l.Oon 1.000 0.935 0.714 0.0 Q~n n EU n CJ CJ lO CORE HEICHT (FT)C1 CD ca C3 OO
TABLE 14.3. 1-A-5 LARGE BREAK TIME SEQUENCE OF EVENTS Max SI OECLG CO=0.4 (sec)
~c,~}}
START                                  0.00 Reactor Trip Signal                    0.60 Safety Injection Signal                4.05 Accumulator Injection                20'. 50 End  of Blowdown                    38.70 Bottom of Core Recovery              52.78 Accumula'tor Empty                  67.45 Pump  Injection                      29.05
~ ~
19 0329L: 6/840727
 
TABLE 14. 3.1-4 NITROGEN MASS AND ENERGY RELEASE RATES Time    sec                    Flow Rate  lbs/sec 37.5                          71.9 39.5                          60.7 45.5                          37.2 47.5                          31.6 53.5                          18.8 55.5                          15.6 57.5                          12.8 60.7                          266.81 66.7                          159.7 68.7                          135.7 74.7                          83.2 76.7                          70.3 78.7                          58.9 80.7                          49.1 86.7                          27.2 88.7                          22.3 98.7                            10.7 100.7                              9.6 110.7                              5.6 112.7                              5.1 122.7                              3.0 124.7                              2.7 130.7                              2.0 132.7                              1.8
              '146. 6                          ~ 0,8 145.5                            0.7 20 0329L:6/840727
 
TABLE    14.3.1-5 LARGE BREAK OECLG        DECLG    OECLG    OECLG C
D
                                          =0.8    CD=0.6 ~
C 0
                                                                =0.4 'O='6 Results                            Min SI      Min SI    Min SI  Max SI Peak Clad Temp.F               1942        2014      1956    2163 Peak Clad  Location, ft    .       7.00        5.75      7.00    6.00 Local Zr/H20 Reaction (Max)        2.85        5.65      3.84    9.65 Local Zr/H20 Location,  ft          7.00        5.75      5.75    5.75 Total Zr/H20 Reaction              <0.3        <0.3      <0.3    <0.3 Hot Rod Burst Time, sec            43.8        37.8      47.4    37.8 Hot Rod Burst Location,  ft        6.00        5.75      5.75    5.75 Calculation Licensed Core Power  (MWT) 102;<    of                    3411 Peak  Linear Power (kw/ft)  102;~ of                    14.796 Peaking Factor (at License Rating)                       2.10 Accumulator Water Volume  (ft 3
                                  ) per Accumulator        950 21
~
0329L:6/840727
 
TABLE  14.3. 1-6 LARGE BREAK TIME SEQUENCE OF EVENTS Min SI       Min SI  Min SI  Max SI OECLG        OECLG    OECLG    OECLG CO=0.8      CO=0.6  CO=0.4  CO=0.6 (sec)       (sec)   (sec)   (sec)
START                          0.00        0.00      0.00    0.00 Reactor Trip Signal            0.62        0.63      0.64    0. 63.
Safety Injection Signal        3.83.       3.95      4.20    3.95 Accumulator Injection        12.90      15.50    20.80    15.50 End  of Blowdown              29.68      30.43      38.49    30.43 Bottom  of Core Recovery      40.66      43.29      52.64    42.47 Accumulator Empty            56.89      59.29      65.65    60.58 Pump  Injection              28.83      28.95      29.20    28.95 22 0329L: 6/840727
 
I.l000 COOR UHITI LAIP) 0.8 OKCLC HI)LSI 3aIIHMt UPR*IIKG ECCS LBLOCA MIIH BARf ANO OLO PAD f0=2.10 OUALIIY OF fLUID          BURSl. 6.00 f1< ) PEAR. 1.00          fl)~ )
1.2500 IC W
CL 1.0000 CI
: 0. 7500 0.5000 0.2500 0.0 0  0o 00 0    OOOO            CI  0  00 04000                    00  o aaaoao 0      oooo              o0 o 00 oooo 000 0 0 OOOO0 CI                                                                                                                    ~
CI    CI  0 0    0 0  0    OOOO 0 oooo                  000  0 O OOOO 00000              CI CI    0  0 4aoa          ~
0~  ~    ~
0 0000                                                  Cl O 0 oooo CI                                                                                                        CI CI m      III III OIea S
0~
CI 0m o ~
aII ooooo
                                                                                                  ~  ~  ~ ~
IO l IO III CI 0Aa m        + & Olfl>>
: 0. " '      0  0        ~
0 0 OOO>>  ~ ~
                                                  ~ II
                                                              ~      ~ ~ ~
gl EP A OIII>>                  ~                        0
                                                                          )IHI )SEC)
Fl@l,N'j    I/.3. /-l Flue> QftRt.layJ                  ~~pl g. ( QP    4  8) +t~ S+
 
I.F000 COOK  UNITI tAEPI O.C OECLC HINSI )L IIHVT UPRATINC ECCS  LBLOCA VITN BART ANO OLO PAO fO 2. IO OUALITY Of fLUIO          BuRSt, 5.75 ftC ) PEAK.      5.15    ftrii    I l.2500 EJ CC 4i CL l.0000 0.?500 C
0.5000 0.2500 0.0 DDDDD D . D  D  D  D OOOO                D  D  8 DDDDD              D o  y o8 8o aooo D
                ~
DDDD              D O  D oD D o D D Dog@            8 o    8 8 8 S58F.                        ~
Doooo
                                                                                          ~  ~ ~
                                                                                                  ~
o a Cno uS
                                                                                ~      ~
pP a  o o    ~
D QDO
                              ~ ~ ~ ~
v cn p~ m pre
                                                    ~  ~    ~ ~
nJ TINE tSECI (ED=>  =O.a'l rnir Si C
FLutC> QuRuC'y            . DECC  C
 
  '.F000 COOK      UNIII (AEP) O.l OECLC HINSI 3) I IHMT UPAAIINC ECCS L8LOCA        MIIH BARF  ANO OLO PAO F0=2.)0 QUALIFY'F        FLUIO          8UASfa 5.75 FTI ) PEAK ~ 7 ~ 00              Fll ~ )
I.2500 I
cc l.0000 0.7500 0.5000 0.2500 0.0 0 0    0O 0  0                          O 00 O0 OOOO Cl  0  0 O  OOOO 00000 00 0000 Cl 0 o0 Oo OOOO 0          ooa 00 OOOO              O        O                                                            Cl 00  00000                  0    O  O        OOOO                Cl
                                                                                                                                            ~
00000                                                                                            o O0n oac0 toooo 0~  ~
0 Cl Cl  0  n                        3    O 3 3 OQOOO0                    Cl Cl 0 0  ~
0 00000
                                                                                                      ~  ~  ~  ~
                                                                                                                    ~
Cl Cl            OOOO
                      ~  aaa a  CO Caaa r                            o          an e                m Cl Cl 0  0  0000
                            ~  a  ~ ~ ~
caa
                                                            ~  ~
an au
                                                                  ~
c
                                                                      ~  ~
raaca              Cal            a  caen            ~
IIHE )Sf C)
 
i
: 1. Boo COOK  URlT 1 lAEP) 0.6 DECLC HAX Sl 3i 1 lMMT UPRATlNG ECCS  LBLOCA MlTN BART ARD OLD PAD F0=2. 10 DUALITY OF FLUIO            BURST,      5. 75 FA l PEAK ~ 6.00 FTl ~ l
: 1. 2500 CL W
CL 1 .0000 Ci 0~ 0. 7500 I
0  0.5000
                                                                                                  ~~
0.2500 0.0 00 0                                                0 CIOQO                      O    OOOO O OQDQ      CI    0 Q0 ODOQCDOC:
00 0OD D 0 O D
O OOOO D DODO OOOO O
0O OD D ODDOO O OOOO~
Ci 0~ D  D D0 0000    ~
CI    ~
0 OD~  ~  ~ ~
DODO Al          II1 4) ~ CACAO CI CI  0 0 0000                                  ~ ~ K5 0 0 IOOOO
                                                                                                ~
me>>
CI CI CI      0gp 0400 w EON>>
0        0 0 0 0 OOO~  ~ ~ ~ ~                ~    0  ~ ~
IP ID ~CO~
1Q                    cu          CM m TlHE lSECl F[PLIQE I$ .3.I-)              FLUID GICALIjg                CIECLC CI'-U =CI C)      <M
 
50.000 COOK  LIHIfl (AEPI O.B OECLG  HINSI    3i IIHV1    LIPAAIIHC ECCS LBLOCA  ullH SARf ANO    OLO PAO      fOC2. IO HASS VELOCIIY                  RSI      6.00 f1l l      Pf. AK. l.00 f ft ~ )
Vl I
I-la.
0.0
    -50.000 VI -100.00 X
    - l50.00
                'I
    -200. 00 0                            00 0                              0    O 0    OOOOO      0O    O 0  0 0OOOO OOOO CI O 00V 0  OOOOO OOOO 0 0O OOOO                CI 0  0O h OOOO OOOO CI CI    CI  00 0 0  0 OOOCI 0000          O 0~
C 0  ~  ~ ~
O OOOO 0 O0 OOOOO                  CI    CI Ci VI IO & VIVIO                      0000 0    ~
CI        4 sn0
                                                                                                  ~  ~
00000
                                                                                                          ~  ~  ~
0 O    0 0 ~OOOO lp O    CI    0  0 0000
                            ~  ~    4 ~ ~
r~  ~
VI
                                                                ~  ~
aP~VIe
                                                                      ~
                                                                                      ~ V  P7          IO ~  coo    Al            VIIP I IHE  ISEC I
 
50.000 COOK    Vltl lAEPl O.C OECLC HIIISI 31lIHVT UPRAISING ECCS    LOCA VITH QARE ANO OLO PAO f082 ~ IO HAS      ELOCIIY              URSI ~ 5 75  fl(  l PEAK o  5. 75  ffl I~
I LI 0
CI Cl  CI 0  0 0  00 00000OOOO 0    0 0 0 00000              0      O O OOOOO 0
0 O 0 OOOO      CI g 0 3 00000 0r  0 O00000              3    5 8 33303                Cl            0 OOOO 0    ~
CI 8 8 8888@
Al        IA III r SaIO                                ~                  ~
0 0 4000
                                                                                            ~
nor
                                                                                                ~ ~  ~
se    CI Cl CI      0    ~
0 OOOO
                            ~    ~ ~ ~
AJ  e%  r rl VIA CI~          CI AI                          AI tIHE ISECI P/scca@                                          u~LOeir V DA.CL~CeJ =O.I)            ~~          a~
 
300.00 COOX  uvltl IAEP) O.a OECLC )IIRSI ta) I)IMt uPRAIIRC ECCS  LBLOCA MIIH BARf ANO OLO PAO f0c2. IO HASS VELOCItV              BURSt. 5.75 fthm i PEAR. I.00 Fti ~ )
200.00 I00.00 0    0  0  0 0  O OOOO            0    0 0  O OOOOO                        0  0 0 OOOO          0 0 0 0 00 OOOOO OOOO~
Ca  0  0                                                    00      3 0 0 O 0000  ODOO 0  0                                                                                      D 0 0 0Og@
          ~
O 0 0n 0 tClDDO
                                                                                  ~  ~  ~  ~  ~  0~
g CI Caa 0
Caa 0  0 0~
0000
                          ~  ~ ~ ~ ~
an us ale                      ~  CCC    COOl                lj a CO~
tIVE )SEC)
                      +~6Lc~w          /5.B    J  7      AS          VELDT/7      l lG C<D=O y)                ~IN        8Z.
 
1 50.000                                    N!1'1 lAEP) 0.6 OECLC HAXS1 3i11Hur uPRATIOC COOK ECCS          LOCA MlTH BARl'HO OLO PAO F0=2.10 HAS          ELOC 11Y              URSte        5.7S FT( ) PEAK l  6. 00 Fl) ~ )
LP
~ al ttt I
At 0 0 Ctl
    -$ 0.000 I
EJ CI W
0 v -100.00 X
    -100.00
    -200.00 0Cl      O O  OOODD                            D 0  Ct 0000                            0 OOOO      CI  0    00 ODDO 0 0 0 OC 0 DDDP O O OOOO                                  CI DDOO                                              Cl 0 0O Itt CI 0 tOCl OOOO                          O  D 0  OODQO                0  CI Ct            QDQ0~            0 00
                                                                                                                                ~    ~  ~
0 0 OOOO ~                                                O At                A ttt ttIO          Ct    CI 0            CI
                                                                                                    ~  ~
0 t0000 0 Itt~  ~  ~
Ct  Ct O ODD 0'>>'
Ct 0    0 0 0 0OO~
                              ~  ~  ~  ~  ~ ~
At
                                                                  ~  ~
ao cO ~
0  ~
tttctt<<                            CIA  At m        ttt ~ Ctt Y1HE )SEC)
I SORE            N.3. I 8    YlASS VELOC.t 7'I ltt:CICr (g.[>= O.ta)            NItX          SI
 
COOK  UNITl lAEPl 0.$ OECLi  I4SI  3%I lHUf UPRAllNC ECCS LSLOCA UIIH SARf ANO OLO    PIIII ~ . 2.10 600.00
  ,SOO.OO HEA1 1RANS.COEfflCIEN1 SURS1.      6.00    fl. 1 PEAK. 1.00 flf l
                                                                                      ~
  %00.00 300.00 200.00
~  ao.ooo 30.000
"  2O.O00 6.0000 S.0000 A  . 0000 3.0000'.0000 I. 0000
                        /Q-Lipid CI                            CI CI            CI Cl                      CI CI
                                            ~ II          Ci CI          III 1lHE (SEC>
t-            /p $ / 9      //Ep7        7gp~f zw          QDEws. z&znl CQb=D- &)          ~<N S~    T'EaIG
 
I COOK UKITI IAEPI 0.6 DECLC HIKSI  )lllHVT    UPRATIKG ECCS LBLOCA VITH BART AKO OLO I'AD f0 2. IO 600.00 500.00 HEAT TRAKS.COEfflCIEKT BURST. 5.15 fTl I PEAK ~ S.T5  fll I
                                                                      ~
i  LOO.OO i00.00 Ai 200.00 10.000 30.000 20.000 IMII 6.0000 5.0000 l.0000 3.0000 2.0000
: 1. 0000 CI CI IA T I HE  ISE C I h'EJP 7    7''NSF~~              C oEFFICV~~ T D~a.G.(Cs = d~)
 
N'4                COOK UNITI (AEP) O.A OECLC KINSI 3) IIHVT UPRAYINC ECCS LQLOCA  MIIH QARF ANO OLO PAO F0~2.10 600.00 500.00 HEAl IRANS.COEffICIENT QURSTo $ .75      fll  ) PEAKED lo00 FB+)
l00.00 300.00
~ II L    200.00
=IN A0.000 30.000 20.000
    )%II 6.0000 5.0000 o.0000 3.0000 2.0000 CI
                      ~ n I I HE l SE C) pt c i(c~  st.a.  /- ll    pg~~      ~~~~~                gos~w(et        r D C~Cea=D V)
 
COOK UNITl TAEP) 0.6 OECLC HAXSI 31I )HAT UPRATING ECCS ie).OCA NITN BART ANO OCO PAO F0=2.)0 600.00    NEAT TRANS. COEFFICIENT BURST    5 l5 FB ) PEAK 6.00 FTT ~ )
500.00 100.00 I 300-00
'L  2OO.OO I
10.000 30.000 20.000 6.0000 5.0000 1.0000 3.0000 2.0000 l.0000 CI CI                CI CI                    CI CI                                                              CI CI                                              In CI                                                              IV In TIHE (SEC)
I9 3./" l2    HE'FI r  TgFIPISFER    QDEFF IC.IGN 7 tIFcLs (cb=g.(,)        MAX 81'
 
2500.0 AEP LBLOEA fOR 34 II HUT UPRATIRC AHALTSIS VITH BART ISK IS OfA 215 PSIG BACKfILL 5 PET SCTP    0.8 OECLG BREAK HlkSI PRESSURE    CORE  BOITOH  l I TOP ~ t ~ l 2000.0 l500.0 I000.0 500.00 0.0 CI CD Cl CI AJ
                                                    '1IHE (SEEi F ( &Ills    gg,3. I- l3        CD'' PA'Essed DcCc &CeD=o8) PI~AI              Zz.
 
2500.0 ACP LBLOCA fOR    3%  II HVT uPRATIRG ARALVSIS slTH BART ISa IS Of A    215 PSIG BACKfILL    5 PCT SGlP  0.6 OCCLG BRIC@ HIRSI PRCSSURC        CORC    BoiloH  l I TOP . l ~ l 2000."
I500.0 I000.0 Soo.on 0.0 CI                    CI M  ~                  ED                  C)
C)
                                                                                    ~D ED                    CI m
TIHC <SCC I F t&LlRE        I'3  3  ~ I    I"    QxokE      O'REssu    RE.
r)ecLI- gf-g-o,r.) ~~w                8r
 
2500.0 AEP LBLOCA FOR )l 1 1 HUT Ul'RATlHG AHALYS(S VTTH BART 15x15  OFA 215 PSlG BACAFIL1. S.PCT SGTP O.a OEC1G BREA< HIRSl PRESSURE    CORE    BOTTOH    1 1  fOP e  1~1 2000.0 1'500. 0 1000.0 500.00 0.0 CI                CI CI                Ct CI                CI v                        m TIHT ISECI F l&gPE      )'t.2.) - l5        CORE'        R<~0<C DeC1  C    ggS=OS)    W<<82
 
2500.0 aEp loeoca foR Gill HMt upRatlRG aRalvsls Mite isxls ofa 2ls pslc aac<ftit. s ect sctp o.6 0EcLc  SREAK PRCSSURE    CORE  BottoH  1 )  toP  e  1+1 2000.0 1500.0 1000.0 sou.no 0.0 Ch                                  CI Cl                                                          Cl Cl C)
Al tlHE  <SEC)
F IC u tcF  i').> I- o 1    C,ORe      O'RESSuRE
                                                      ~g,) P1 AX 8Z
 
1.00E+5 AEP LBLOCA fOR    )III HMT UPRATINC AHALTSIS MITM BART ISK IS Of A  21S PSIC BACKflLI. S PCT SGTP  O.B OECLC BREAK Hl'ISI BREAK fLOM v  B.OOE ~04 6 ~ OOErt)a A.OOE~Oa 2.00E<a 0.0 o
C)
CI flHE ISECI F I Lt RE    ['t 3    I  l7      8+pgy F Lo DEC.t + (ZP PP)          YLC<
 
I.OCE 45 HEI'BLOEA  fOR 34 I I Hvl UPAAFIHC ANALYSIS ulIH  BARF ISl IS OF  glS PSIC BA(@Flit S PE I  SCIF'.6  OEELC  BREA'lhSI BAE za FEOv LJ B.OOE    Ra aD 6.00I 4s C
IX
~ A
    %.00E    Oi a.OOE.O'.0 CI CI                                        Cl CP C)
IIHE ISEC I F tC ups        Ill.a.l- i8      BRE~y FZOW g~oz~      Cco    o q)=P.~N S?'
 
I.OOE<5 ~
AEP LBIOCA FOR 3A Il HMI UPRATIRG ANALYSIS VlfH BAAl ISA I5 OFA 235 PSIG BACKFILL 5 PCF SGIP O.a OECLG BREAK HIIISI BREAA FLOV LJ P.OOE+4 6.00E+a C.OOE<a 2.00E<a 0.0 arcual<
ID CI CI                                              Cl m
FlxE (SEC) t<,3.i-    tS      amon. su ~ ~~>
c~ccc QCr>=Or) NZN SZ
 
t.OOE<05 AEP LBLOCA FOR Rll l HMf UPRAftHC ANALYSIS M[TO BARf lSK l5 OFA 275 PSlC BACKFlLL 5 PC1 SCfP 0.6 OECLC BREAK BREAK FLOV v  &.BOERS I
6.00E+a 1.00E+01 2.00E+Oi 0.0 Ch CI              C)
TlHE lSEC)
FlCl.lee  it..l-20      BVEAg      rlOg    RATE bECL&(PP= Q      (o) l1hX  SI
 
10.000 AEP LBLOCA FOR    3ill HMT UPRATIMC ARALYSIS MITH BART TSX l5 OFA  275 PSlC BACKFlLL 5 PCT SCTP O.B OECLG BREAK HlgSl CORE PR OROP 50.000 R 25.000 0.0 000
-'50.000
-10.000 I." ~
L
                                                          ~ e FlC uRE        ld ~  ~-Zl      ~oRE'RE'GsuRi          DROP Dcccc Ccv=o 8)          .bfZN ag
 
i 10.000 PEP  LSLOC1 fOR 3A I I HUl UPRAIIHG AHALYSIS Mild SARI ISa 15 OfA  215 PSIG OACKfILL 5 PCI SGIP 0.6 OECLG 6REAA rlvSI CORE PR.OROP 50.000 CL Cl 25.000 0.0
  -25.000
  <0.000
  -10.000 Cl C)
CI C) o                          Al IIHE iSEC>
 
ID.000 AEP LOLOCA FOR  311l l'V1 UPRAEIHO AHALTSIS MIIH BARE ISX l5 OFA  2)5 PSIC BACHE ILL 5 PC1 SCIP  D.l OECLC BREAK HIHSI CORE  PR.OROP CI 25.000 CL'J 0.0
    -25.000
    -50.000
    -70.000 CI CI                    CI Cl CI                    CI m
IIHE (SEC)
F~@~(RE'lf.        B. l-28        CORe      F  R~uAE          gpOp E>Eeoc(m= D.'/)          NX kl 8Z
 
10.000 AEP LBLOCA FOR 31 II O'Vl UPRATINC ANALYSIS VITH BART ISX I5 OFA 215 PSIG BACKFILL 5 PCT SGTP 0.6 OECLG BREAK CORE PR.OROP 50.000 IL 25 000 R.
0.0
  -25.000
  -50.000 10i000 ED n
C>
C>
TIVE (SEC)
F 1 I'4RE'0-B. I- 2't      C.ORE    f'R<5SQRE'R~I
                                        ><C  I C-PC.D=0.4)      YlAX
 
2500.0 coo< URIII iAfP) O.a Offf6 HIKSI 3llIHQt UWRAIINC fccs <e<ocA ultu OARt ANO OLO PAO F0=2.IO flAD AVG.tfHP.HOt ROO    OURSt. 6.00 Ftr  > PfAA. ).00 Ftt ~ i Vl 2000.0 l500.0 T
a  l000.0 EJ 0.0 CI CI CI                                      CI              CI CI CI                          CI CI CI                                                  III CI tlHI tSff)
              >>~ficE      l ),3,l-~~      P~~< C~nD- TEnll~~~Tu~~
 
2SOO.O COOK UNlll  tAEP)  0.6 DECLC HINSI SlllHV1 UPRAllNC ECCS lRCOCA  VllN BART AND 0<D PAD fO 2.IO CLAD AVG.TEHP.HOf ROD      SURSf    5.1S foal I PEAK S.)S fAol I/I 2000.0 l500.0 X
a    l000.0 4J 500.00 0.0 CL C3                                              Cl CI Cl                                                IA              O  Vl CI                                                              AI I4 flHE lSECI
 
2500.0 COOr uKttt LAEP> O.a OECLC HtKSf SaltHVt UPRAttNC ECCS LBLOCA VltN BAR1 ANO OLO PAD F0*2.10 CLAD AVG.IEHP.VOt ROO    BuRSt. 5.15 Flt > PfAr. 7.00 Ftt ~ I 2000.0 1500.0 X
IL X
tw a  1000.0 LJ 500.00 0.0 cS                                          Cb C>                                            CI 43                                          sA Cl llHE'SEC)
 
~ ~
 
2000.0 COO<  uRltt  <AEPt 0.& DECLC HtRSt 3otlHMt uPRAtlRC ECCS LBI.OCA MttH SARt ARD OLD PAD to=2. lo tI.Uto tEHPERA1UAE        BuRSt. 6.00 ft< 1 PEA<. l,00 ft< ~ >
          't50.0 l 500.0 l250.0 I
I  l000.0 t50.00 500.00 250.00 0.0 CI                                                  CI              Cl CI CI            CI            Cl CI                                          CI
                                            ~ A                                          ~ II CI ttHE <SEC)
 
2000.0 COOK  UNITI IAEPI O.C OECLG HINSI )LIIHVT UPRATING ECCS  LBLOCA VITH QART ARO OLO PAO F0=2.IO FLUIO TEHPERATURE        BURST. S.1S ft>> I PEAK. S.PS fthm ~ )
a  I)50.0 a    ISOO.O I250.0 CL I000.0 X,
I 3  ISO.OO S00.00 2$ 0.00 0.0 E3 C3 C) vs IIHE ISECI
 
2000.0 COOK UNIlI lAEPI O.l OECLG HINSI 3i I IHU1 UPRAlING ECCS LBLOCA  MIIN SARI  ANO OLO PAO F0*2 10 fLUIO IEHPERAlURE        SURSF  5.)5 fll )  PEAK  ).00 fll )
                                                                          ~
I)50.0 lal 1500.0 1250.0 1000.0 I
3  )50.00 5'.OO 250.00 0.0 CI                    CI D
ofl
            ~
lIHE ISEC)
 
2000.0        COOK Ut)lTl lAEP) 0.6 OECLG  HAXSl  31 l)H'LIT UPRATlNQ ECCS LBLOCA MlTH BART ANO OLO PAO F0=2. IO FLUlD TEHPERATURE        BURST ~  5.15 FT( )    PEAK  6,00 FT)0)
P l)50.0 1500.0
  )250.0 I  l000.0 X
750.00 500.00 250 00 0.0 CI sn TlHE lSEC)
F [G QP  f  ) L.3. I -32      FLL()P TF-.YIPERATLlRE DiC LCr CCb= o.lo')
 
1000.0 ACP LBLOCA FOR jA I I HUT UPRATIIIG AIIALYSIS VITH BART ISx IS OFA 215 PSlC BACKFILL 5 PCT SGTP 0.8 OCCLC BRf AX HIRSI 2-FLOUR>lf CORf BOlTOH      I I TOP ~    I~ I 5000.0 2500.0 CI 0.0
  -2500.C
  -5000.0
  -1000.0 Cl                                      Cl Cl                                              Cl Cl                      Cl Cl                                                  Cl Cl                      m CI                        Al TIHf <SfCI Fy@~Rg          ]q g )-33          pygmy      FI  II~(TN &MD 3$ TTDYI)
DecLc      (cI =08) N' 8T
 
1000.0 AEP LBLOCA FOR 3l I!. HV'I UPRAEIIIC AIIALYSIS VIIN BARf 15115 OFA 2)5 PSIG BACKFILL 5 PCI SG'IP 0.6 OECLC BREAK HIHSI 2-FLOVRAIE (OR~ 80110H      I I  10P I  1 ~ 1 5000.0 2500.0 I
0.0
  -2500.I3
  -5000.0
  -)000.0 CI                      CI                          CI C)                      CI                          4D CI                      CI                          CI
                                  ~ II                        m I!HE ISE C I FZG IIRE    Ig 3. (-g.'I      QORE          V'LOW  CT boccie- (c.p= o      t )
 
1000.0 ACP LBLOCA fOR 34 II HVT UPRATIHG AHALYSIS UITH BART ISl l5 OfA 215 PSIG BAC<fILL 5.PCT SGTP O.l OCCLG BREAK ~IHSI 2 fLOVRATK CORC    BOTTOH  I ) TOP,      l~ I 5000.0 Ll Vl CQ 2500.0
~a I
0.0
  -2SOO.O
  -5000.0
  -1000. 0 CI IV TIllC (SIC)
 
0 7000.0 AEP LBLOCA FOR  3ell HMT UPRATINC ANALYSIS MITH BART ISX l5 OFA 275 PSIG BACKFILL 5 PCT SCTP          0.6 OECLC BREAK 7-FLOMRATE CORE    BOTTOH  I ) TOP ~ (+)
5000.0 EJ 4%
2500.0 I
o I
0.0
    -2500.0
    -5000.0
    -7000.0 CS                                                  C1 ID                          Cl                Cl CI C)                    C)                          m CU T I >) 6 (5:. C )
P)QQ+E    [Q 3 }  Q(z  Q,QQg PLDW            ESTOP AND  BOTTOPl)
Pggl ~ggb =O. a)                M AX  Bg
 
20.000 AEP UPRAIIHG CD D.R OECLG RK HlkSl QART-REFL000 27S RXPlLL PRESSURE lS17$ ofA UATER LEVELIfll l7.500 90MHCoWER l$ .000 l2.S00 l0.000 g
LJ 7.5000 J
~  s.oooo 2.5000 0.0 CI CI                                  CI TIVE <SEC)
FT~upp        iq.3.(-2 I    'REFLooD Y'RAASZ<PL ba+NCONER WA EaL      L  EVILS
                                            ~eC.~~<    C,E  =O.G) ~X~ aZ
 
20.000 AEP UPRATIHC Coco.g OECLG Ba HIHSI PART-REELOOO 2TS &<FILL PRESSVRE TSx TS OFA MATER LEVELLETT IT.500
                                                          ~WHCOPlEA.
IS.OOO I2.500 IO.OCO D T.SOOO 5.0000 2.5000 9.0 CI  CI CI                      CI CI CD CI                      CI CI                      ~ II C7 TIME iSEC'el Fggqgg      l'l,3. I-SS    RE'T=LOOP W A TER, LEVELS aeCLa CCO-      O.r.)
 
tO.COO Af~  u<<<<lhC      CO:0.~ Of fC 84 >I'aSI 8>>f.~(<F003
                  ? >S 8K<I's 0 04f $ 5gkf ISi IS 0<4 Vs~i~ af Vf<iCI)
Ig SOO l
DowNComCR IS.OCO It. S03 I0.000
~ r.S000
~C
>  S.OOOO t.SOOG 0.0 CI C7                            C7                    C7                CJ Cl n C3 nn                                        n C7 CI IIHE ISE CI FX.GQRQ          I'l.3.1-& l      RE.FI OOQ      TRhl4SC<H>
DoWllCornER        LnJATE. R    LEVEm De.C.I  I  I  f g=O.1)          frlXN  SX
 
20.000 AEP uPRALIHC (0=0.6 OEElC Ba HAISI SART-REFL000 215 SAIILL PRESSuRE    ISIls ofA MALER LEVEL{F1)
Oowgc,omEP.
11.500 L5.000 12.500 Io.ooo
~ p.sooo I
+ s.oooo 2.5000 0.0 CI CI CI                                            CI CI CI                        CI                  Vl CI  ~ fl I
f!HE ISEE>
CORE PgQ  QgP      )q. 3. l -  QO    RFFLOotO TRAHSZEH>
                                                + DOWNCOME'/ATES LEUEiS, P ~Cia. g C.g= O.E.)
 
2.0000 AEP UtRAIINC CD 0.$ OECLC BK HINSI BARI-REFLOOD 27$ REFILL tRESSORE ISX IS OFA FLOOD RAIELIIIISEC) 1.7500 1.5000 1.2500 u  I.OOM
~  0.75M CC CI CI 0.5000 0.2500 0.0 8
CI Cl ~ n fIHE (SEC)
FXC ORE      Ig  Q I  t~  gPPLQQD TR IH I e.O~~ ZOI CT cecirCcr        .=>.R)
 
  ,
2.0000 AEP  uPRitIRC CO=0.6 OECLC Ba HIHSI SiRt-PEFL000 275 SwtlLL PRESSURE l51 IS OFA I'L000 RAIE{IR/SEC)
I.)500 I. 5000 l.2500 u    I.0000 0.7500 IC CI CI 0.5000 0.2500 0.0 ID                  CI CI                                            CI                  CI CI                    CI Al                    m tIVE LSECl F~gggE          Iq,3. /- 'l2. RE I. LOO+      TRhg SX
                                                        ~pl PT'E
                                                                      ) VlZN Sj L<<<TV'gE-I C-(gg =  O.E
 
Z.OCTO afar uPRAIIhC CO:0.< OCCCC 8~ HIASI    BA41-RIii000 81$  84ilal. ~~ISSuAE ISl 15 Oik fa000 4AII <lb/SEC)
: 1. 1503
: 1. 5000 I.t500 I.COOQ Vl 0.1500 CC
~ 0.5000
: 0. Z500 0.0 CP n                    CI C7                            CD                    C7 C3 C7                            IV                    Pl
                                                    >I>E ISECI ETC    QgQ''(.3.      l    -9S      RE F'LooD %RA'~1 E ~T
                                                      ~ORE X.NLG T V E ~I'-Z T'/
                                                  -
becLc    (u    =o.u) mz~ SZ
 
2.0000      AEt'"Ra f.'i                              64" f-riErt000 C.'=0.6 DECLG BK  H~a 51 2fs Br e 1ll f r ESSVRE  Isa 15 Cfi flDDD RAffrfrfl<EEf
: 1. 1500 1.5000 1.2500 1.0000 0.1500 0.5000 0.2500 0.0 Cl C)
Cl o  In ffvE r5E(r
 
" ia.ooo PUHPED fCCS FLOM CREFLOOD)  DECLC (CD 0 B) HIM 5
~  8.0000
~ 6.0000 4.0000 2.0000 0.0 8'    8      8                            8 CHIEF<>>>)
C)
                      ,8      g                            g t:+SURE (~/.3.J -'I5 t 4 &PER ECC$ F<<~
DEGLc ('t" b - g.g)    PlzH
 
~  t0.000                                          DECLC (CD 0.6) HIN PUHPED ECCS FLOW (REFLOOD)                      S
+ 8.I)00 4-
~  8.0000
: u. 4.0000
          .
P..0000 0.0 8
T  E(S    )
pyt"~<g<  i'l.3.> 'l4  <~urnF  +  Ec+S p~ CL~    (j p g, g)    [AD hl
 
          '
i0.000                                -
PUHPED ECCS FLOM {REFLOOD)  OECLC {CD 0 ~ 4) HlN S1 t  e.0{NO o 6.0000 M
I-
~ 4.0000 .-
I-4.
n 2.0000 8
8
 
20.003 PUHPE0 CC~OT~'E fC690        g tg0=0. 6) AX Sl lal 17.500 I
15.000 CD 1Z.500 CD 10.000 l  7.5000 Caj 5.0000 2.5000 0.0 CD        CD        CD          CD CD        CD        CD          CD          CD C)
CD C C n
gl C3 nAJ CD        C CD CI'>YlPED ECeR FLEAM(REFioor)
DFc.i C CC.D=O  4) MAX
 
I.BOERS AEP IBLOCA fOR 3i I I HVT UPRATIRG AKALTSIS VITR BARF ISA IS OFA 275 PSIG BACKFILL 5 PCT SGIP  O.B OECLG BRCAK HINSI ACCUH. FLOV 8000.0
<  OOOO.O EJ LJ
  <000.0 2000.0 0.0 CD CD Cl                                                                Cl            Cl Cl n                      ClC CD m
CD TIHC iSCC) sccurnuL~>                            Cl~~ClR 8)
                                ~q.3.i-    sl                                          C O'g          ~ZQ
 
OCELOT I.oot~ii AEP EBLOCA FOR  tatI'HMt UPRatlHC aRAL'IS Mttn BAAt ISI IS OFA 21S PSIG BACKFILI. 5 PCt SCIP 0.6        BRE a 4IHSI ACCuH. Fcov aJ
~  e000.0 Cl
~ eooo.o LP LP oooo.o 2000.0 0.0 C) o                      co                  CD C1 CI C) m tIHE ISEC)
FXE uRE        I9.3t -So                            ~ F.o~      Cpio~oo<<)
P
                                                                              &X,H
 
I.QQE  Rl AEP LSLOCA FOR 3%II HMI UPRAFIFIC ANALZSIS VIIH SARI I5r 1$ OFA 215 PSIC SACAFILL 5 PCI 'lGTP O.a OECLC SREAA HINDI ACCUH. FLOV EJ
: v. SQOQ.Q SQOQ.O LJ LJ
    'l 000. Q 2000.0 0.0 Cl    CI C>>                                        CI CI                      CI AJ tlHE <SEC >
F ZCrLIRE      I'I.3. I 5'I      h  0 0 LIAAIILA<O> FLOW (SLOWDOWN)
DCCLG. (Lb= o.'I)          &EN R~
 
1.COEDS)4 AEP LBLOCA FOR  3tlt HMI UPRAflMG AMALVSlS MlTM BART l5X l5 DFA 275 PSIG BACKFlLL 5 PCl SGYP 0.6 OECLG BREAK ACCUH., FLOM Ek
  ~  -8000.0 4
Cb
  '
x  6000.0 1000.0 2000.0 0.0 C>
Cp                  Ci              CI Cs                                  CJ C)                  Ch CI YlHE (SEC)
F  II'IRE I'l.3.I-S2      QCCUY)IILRTDR FLOW CaLIIWDOWN) nial C geP=O.g)            MhK RX
 
t.0        ~          I J J I I                      I I    . I
                                                                      <<<<r<<QM4!<<s~ s<<<<r rs '  '4  ~      ~ spl  rsWt%  '~
I                          I        I
            ,  .I    ~ ~ I I                                    r I
J                ~ ~
s<<I L.:I      +.                              ~
I~
f.
Jig
            ~    J
                              ~  I s
~      I                                                                            ~  ~
J  I      '    J
                                                        ~  s  l s l ~J J+I            J J p! JM      ~
            ! I                  ~  s                                                  I I J  i s  J
                                                                                        '
L                                      CJ LL L        I s
L QmZZI
) 0                                            I J  I
                                                        ~
                                                        ~
                                                          ~  ~ I rH+'          J        ~
I      ~
J s
I J
                                                                                                                      ~JI
                                                                                                                      ~
I I  J!
s    j                                                                        I,  I  s~)
I l I
I ~
      ];T.      s J
T+Iz;-r.
                                                          ~
~  A                                                ~  !
~ ~                                                                                                  's<<i
: 0.0    200                                              0&G.G                        %00.r 7
PlZhlXPl Lt M                  S l-53 X'<$
4RG l t.3.                    CDH    TAI)4 fflKHT PRESSURE
 
i,0 0
L.O s44 ~ 0                  .200.0, JIVE  ( SEC) ~
CQnPAATOE4T PRESSURE,
 
10 I ~
I 10 4
~ C 10 s I I I 11  <1 I I 0
LO 0 ~
l00.0    200. 0        )00.0 7 lhK  1 SEC )
 
4l 1.4fiCI O) l I l I G.O                140. 4                          jGO.O T !PIE t SEC 8X
                                                      )'YIAxrrAum F.T&4RK  li ~  I. 5'4. 'WEA CptOPAATnEHT 5TAIJCTIJAAI. HEAT AEApVAL AATE
 
I 0
                                                          ~ ~  I I I I  I    I ~
I I ill II I I  I          I                      I I:.
                    ~                ~  ~            ~                    ~
I I I I                      I  I
              ):I;'I I
I I )      I        I I )  )!  I I    I                  I    i) I    I I I ilit II            I
                                        ~ ~
tQ                                                                                            I I I  ~  I
~ M I I I I I  I Cl 10 C
IO  '
                ~    I ~                                                                ~ I  I I ~      I I  I I                                                              I    I I I I I I        I I I I      I I i0'''.
0.0              100. 0            250.0                          F00. 0 YtnE ISEC)
Wzdzmum PQ@ggg        )g, Q,)-Q7 'IKA I IIKnOVAI.          SY    I.C OIIA lH
 
I  ~
I      -  I      i j  I  I    ~                    ~
I  I j  I  I                  s  I  i  I I  I s                    I  s  I  I  ~  I I I
                                                                                ~
I, I I
I I;  I I
I g
j I
                                                                                ~
I I
I
                                                                                    ~
I I I~I I      I W
2.0( F 0%
Cl
~ U I
ct C) 1.0K~<A re ~
1.'E ~ ~8 100.0                      400 ~ 0                      ~~ J T  lhf ( SEC )
rn AX ~mum                SZ-
                                                                                                  *
              '~>>4~< l~> ~-S8 ~'Ejj'i jjKMOY4L    8.v LC OAA'lH'
                                                                                                ~
 
                  ~ll                                                                  Ili!:
Ag ~
I I      I I  '  i  I  I                      I
                                                                                          '
I I I    I i I
I    I i I I t!  a EJ
~"    l.0Atr'8 lie C
v4 CC IAJ
  /
I ~ 'ACA0c 200.0              )00.0          i00,0              q
                                                                                                  ~ r IlHE    t SEC )
mxv z mum                sx P< &l4RE ) %3 1 Q MEAT E.ll:"A'
                                        ~              Y  5IJl&  A1A 0 I ~  (.  ~ P AAIy
 
400.0 TlhE ( SEC)
M AXZlhu>      gz;
~>@LLQG )9.3. )-4Q HEAT REMOVAL 8Y 1
S~JPlP  RHi3 '
W pp RBY5
 
F00.0 t00.0                    )00.0          '<0.0 TTNE      ( SCC )
WX0Z mum SZ C 0 tl P 4 A T P! K ~ T  TE llP K i) h T V "..
 
                                      *!  I I 1 1
I I I
                                        ~  ~
hss I  V I I I    I 100. 0 TlnE (SKC)
~
mhxrmurn .zr.
CORP4ATPIENT  TKhPEAATURK
 
I  r  ~ s ~ ~ ~ ~ r S  ~  ~s ~ r
                                                                                                                                                              ~ lis  I:I II) s I    ~
                                                                                                                                                                              )
I s
I I
I I  s I
c~ (p l >
                                                                                    ,.s s
I'.
s              ws
                                                                  ~ s                                                                                      .
sl I
                                                                                                                                                          ~
~  s
                                                                        ~ ..      1
                                                                                      -',/
                                                                                                        ~ ~
s I
I                                                          I::                                  Ij..
I:                                  'jll                ",.'ll;
                                                                                                                                ~  s
                                                              ;,ss    ,.:I iri                                    ~  s                      I                  s (sjr                                                                +        ~~              ~~
                                                                                                                            -~
/N  I I
                                                  ~  ~
                                                              "I                  1 I:.
                                                                                                                                ~ ~
s
~  ~
I                                          I= ~          ::I.  -'II',
                                                                                                                                    '"!
:I l
I/y si; s
I:                                  I.:
II                                                    :s'I ."..      s I'. II s                        :I!                                    Is  s  s I                                s I
.a                                                                                                  II::
Su<1                                                                                          :I::
st ~
                                                                ~  ~
:Ij:                          sl jl I
                                                                                    ~ ~~                    .I:                                                                                  ~ I
                                                                                                            ~
is,                                            '                                    s s                                                                                  I                                        'I s,
I; I:.                                                                              s sssQ        s
                                                                                                                      <<t s
r>                                                                                                          I'. ~
I
                                                                                                                              ~  s s
ss
                                                                              '                                              I;                                                            s
                                                                                      ~
                                                                                          ,
I
                                                                              ."I      ~ s I                                                                                          I 0  ) ls.g                                                                                  s s
                                                                                                                                                          ~  -  I-I                                                                        r~                s I
I I
:.'
I IG                                                                                                                                                                                      e I
s I
I)          n                I    0                                            0l                                                                            20      49 I
I s
I s
I                                                                              Is sI.
I s                    j  .      I                FL.Oii!                          L(F'P"                    0      I.S.'Ssts I~
 
I    e e  e ~  I~ i'              e ~
                                                                                                                                    .I'e    I:. Iii I                      I i      I  i  )
I        I            !
I                                                                                                                                                              I e
I I
I                                                                                                              I e
e                      I e
I
                                                            ": jl'.                    II I                                                                                    ~
I          Ij  .
                                                                                                      ~ ~
ee  ;ll        I
                                                                                ~
e' e  ~
                                                                >:I I;I                      'i,'  I':
~
I e>ee I ~
                                                                      ":; I:
                                                                        ;I
                                                                        ~ ~
                                                                                ~
                                                                                ~ ,
I I~
                                                                                        !I.
                                                                                            ~  '
I
                                                                                                    ''.
                                                                                                  ~ ~  e I
                                                                                                              ~
I~
                                                                                                                            ~ ~
e                                                                      I e
~> ~  ~
                                                                        ~: I ~
                                                                                            ,I                  I"                    - ~
ll"              iIII il'; ::
                                                                                        ~
                                                  '
I                  ll                                      '
I                                                                      I I                                                                                                            e'                                                                I C
  \)                                                                    I.; .    ~ ~
                                                                                  ~
I:;      e I.
I                                                              ~ ~
                                                                                                ,~I I;
r                                                                    I,'
                                                                          ~  ~~ "~
l I'                              I~
Ie                                                                                                                                                                                              e
              !
      '"'C, je>  Ir
                                                                                              ~
le I
lie            I                                                                          ~-
I                                                                                                  ~ e I          I I:                                                              I                                e i                                                                                                                                                        e I
I                                  I e
Iej er                                                                                                                                                I I
I e
I                            e e
i                                                                                                                                                            I I                                                                                                                                                                        I          e e
I I          j                                                                                                                                                      I    ~
I                                                                                                                                                            I                      I I                                                                                            e                                                                I                      I
                      ~ I 'p          r                                                    e                                                                            ~ l I) I    I e' e"!
I                            I I                                                                                                                                                                              I I                                                                                                                                  I I                              I I
I      I I                                I I              I                                  I gq ld                                  riiO.I
                                                                            ~        ~
1>e 'll                        Ie/'          f..jr/ Iipelel 'II. /J                                      I I
I      I
                                                                                              /h/I I fF li I        I                              I    I
                                                ~      I  I  'l. I                    :..I..                  I I . ~                                                                          ~    I
 
ATTACHMENT 8 LOCA Rci  A-"0  -."CH SPECS Plant  Name:        Oonald C. Cook Unit    1 (AFP)
O.lp Tyoe/Date o                  0C
                                  = ~-4  (max SI case)    Large Break LOCA Analysis Analysis 'OCA Df'Qg Total Peaking Factor F~.            ~      g ,'IQ Cold Leg Accumula or.          980  ft /accumulator    (nominal) unchanged -,rom Water Yolume:                  cur  rent tech specs Cold Leg Accumulator          600  psia (minimum) unchanged from current Gas  Pressure:                tech specs K(z)  Cu. ve:                  See  next page
 
1.5000 AEP  4        LOOP CALC. NOTE      SEC-RFFA-1481-CO f
CURR NT LIH ITS  RUN          05/15/84 K(Z) l/S. CORE KE ICHT (FICURE 1.2500 1.0000 0.7500
~V 0.5000 TOTAL FO
: 2. 100 CORE      REICHT 0  'g<
              .al'ii
                      ~
                        ~ s
: l. Oon 0.2500 c                            1.000 I  I. I83                     0.935 12.000                        0.714 0.0 nCJ            C1 nn Q ~
CD CJ              ca C3 EU                                    lO              OO CORE  HEICHT (FT)
 
    ~
c,~}}

Revision as of 11:46, 22 October 2019

Application for Amend to License DPR-58,revising Tech Specs to Extend Fuel Peak Pellet Burnup & Increase Fq Value Limit in Fuel.Fee Paid
ML17334A814
Person / Time
Site: Cook American Electric Power icon.png
Issue date: 08/23/1984
From: Alexich M
INDIANA MICHIGAN POWER CO. (FORMERLY INDIANA & MICHIG
To:
Shared Package
ML17334A815 List:
References
AEP:NRC:0745M, AEP:NRC:745M, NUDOCS 8409050167
Download: ML17334A814 (130)


Text

1 ~

REGULATOR'r INFORMATION DISTRIBUTION SYSTEM (RIDS)

'ACCESSION NB/ 8009050167, DOC ~ DATE e 84/08/23 NOTARIZED!"'O DOCKET ¹ FACIL:50 315 Donald C ~ Cook Nuclear Power Pl anti Unf t 1, Indiana- 8 05000315 AUTH ~ NAME AUTHOR AFFILIATION ALEXICHiM~ P. Indiana L Michigan Electric Co.

RECIP, NAME RECIPIENT AFFILIATION SUBJECT! Application for amend to License OPR 58 revising Tech Specs to extend fuel peak pellet burnup L increase FQ value limit in fuels Fee paido Qs~ fly&

DISTRIBUTION CODE: A001D COPIES .RECEIVED:LTR g' ENCL SIZE:~ 3 TITLE: OR Submittal! General Distribution NayES .P>< P4f ~

get oc 05000315 OL i 1 0/25/74,',. >>

REC I'P-I:.EN,T COPIES RECIPIENT COPIES ID COOg/NAME LTTR ENCL ID CODE/NAME LTTR ENCL>>

NRR ORBi BC 01 7 7 INTERNAL: ADM/LFMB 1 0 ELO/HDS3. 1 0 NRR/DE/MTEB 1 1 NRR/DL DIR 1 '1 NRR/OL/ORAB 1 *0 N - 4ETB 1 1 NRR/OS I/RAB 1- 1 EG FI E 00 1 1 ~

RGN3 1 1

'XTERNALS ACRS 09 6 6 LPDR 03 1 1 NRC POR 02 1 1 NSIC 05<< '1 NTIS 1

~4ww tC TOTAL NUMBER OF COPIES REQUIRED: LTTR 26 ENCL 23

E E lf K

ll

'K I

)

~

V

$ 1",

Kg t K ll y

V'.V>>

~ ~

It

)i j VI t" q<<l K ll Kl

INDIANA & MICHIGAN ELECTRIC COMPANY P.O. BOX 16631 COLUMBUS, OHIO 43216 August 23, 1984 AEP: NRC: 0745M Donald C. Cook Nuclear Plant Unit No. 1 Docket No. 50-315 License No. DPR-58 TECHNICAL SPECIFICATION CHANGE REQUESTS Mr. Harold R. Denton, Director Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, D. C. 20555

Dear Mr. Denton:

By this letter and its attachments, we request changes to the Technical Specifications for the Donald C. Cook Nuclear Plant Unit No. 1. The proposed revised Technical Specification pages are contained in Attachment A. The reasons for the proposed changes to the Technical Specif'ications, and the Justifications that the changes do not involve significant hazards considerations, are contained in Attachments B and C to this letter. The changes described in Attachment B involve extending the peak pellet burnup in fuel supplied by Exxon Nuclear Company from 42,200 MWD/MTU (42.2 %0)/KG) to 48,000 MWD/MTU (48.0 MWD/KG). These changes are supported by a LOCA Analysis and additional information regarding mechanical design, which was sent to you directly by Exxon Nuclear Company with letter JCC:113:84, dated August 21, 1984. The current burnup limit is expected to be reached on November 30, 1984. Without this burnup extension, we would be unable to continue operation of Cycle 8 because of the requirements of Technical Specification Section 3.2.2. The changes proposed in Attachment C and supported by Attachment D involve an increase in the F limit in fuel supplied by Westinghouse f'rom 1.97 to 2.10. It should be noted that part of this analysis is based on use of the BART code, which has not been previously used for the Donald C. Cook Nuclear Plant, Unit 1 ~

These proposed changes have been reviewed by the Plant Nuolear Safety Review Committee (PNSRC) and will be reviewed by the Nuclear Safety and Design Review Committee (NSDRC) at their next regularly scheduled meeting.

In compliance with the requirements of 10 CFR 50.91(b)(1), a copy of'his letter and its attachments have been transmitted to Mr. R. C. Callen of the Michigan Public Service Commission.

8409050167 840823 PDR ADOCK F'

050003l5

. PDR

k,

'I

'I II 0

Mr. Harold R. Denton AEP: NRC: 0745M Pursuant to 10 CFR 170.12, we have enclosed a check in the amount of $ 150.00 as payment for the application fee for the proposed amount.

This document has been prepared following Corporate procedures which incorporate a reasonable set of controls to insure its accuracy and completeness prior to signature by the undersigned.

Very truly yours, M . Ale ich Vice Preeidect

4 t

I, c h, '\ Ir h

~

0

  • I" I

,h l, Jt.> I h,'j h

h I I I ~ c hr

Mr. Harold R. Denton ~ \3 AEP: NRC:0745M Attachments: A. Proposed Revised Technical Specifications Pages for D.C. Cook Unit 1.

B. Reasons for the extension of the peak pellet burnup allowed in fuel supplied by Exxon Nuclear Company and Justification that the changes do not involve significant hazards considerations.

C. Reasons for the increase in F~ for fuel supplied by Westinghouse.

D. "D.C. Cook Unit 1 3411 MWt Large Break LOCA Analysis", Westinghouse Electric Corporation, June, 1984.

cc: John E. Dolan W. G. Smith, Jr. - Bridgman R. C. Callen G. Charnoff E. R. Swanson, NRC Resident Inspector - Bridgman

~ E'""

~ ~

) a l

J~~~

c E.

~ 3 k...> Z I

J

' $ 0

~

)

1 t

~ ~

) hP I 4

Mr. Harold R. Denton AEP: NRC: 0745M Attachment D "D.C. Cook Unit 1 3411 MWt Large Break LOCA Analysis",

Westinghouse Electric Corporation, June, 1983.>>

'This document has been piepared by Westinghouse Electric Corporation in a format foi eventual inclusion in the Donald C; Cook Nuolear Plant FSAR. Although this is ~o intended for that purpose at this time, the format has been retained for convenience.

14.3.1.1 Major LOCA Analyses Applicable to Westinghouse Fuel Identification of Causes and Fre uenc Classification

-A loss-of-coolant accident (LOCA) is the result of a pipe rupture of the RCS pressure boundary. For the analyses reported here, a major pipe break ( large break) is defined as a rupture with a total cross-sectional area equal to or greater than 1.0 ft . This event is considered an 2

ANS Condition IV event, a,limiting fault, in that it is not expected to occur during the lifetime of D. C. Cook Unit 1, but is postulated as a conservative design basis.

The Acceptance Criteria for the LOCA are described in 10 CFR 50.46 (30 CFR 50.46 and Aopendix K of 10 CFR 50 1974) as follows:

1. The calculated peak fuel element clad temperature is below the requirement of 2,200'F.

2, The amount of fuel element cladding that reac;s chemically with water or steam does not exceed 1 percent of:he total amount of 2ircaloy in the reac or.

3. The clad temoerature transient is terminated at a time when the core aeometry is still amenable to cooling. The locali-ed cladding oxidation limit of 17 percent is not exceeded d ring or af er quenching.
4. The core remains amenable to cooling during and after :he break.
5. The core temperature is reduced and decay heat is removed for an 'I period of time, as required by he long-lived "radioactivity". ..'xtended remaining in the core.

These criteria were established to provide significant margin in emergency core cooling system (ECCS) performance following a LOCA.

WASH-1400 (USNRC 1975) presents a recent study in regards to the probability of occurrence of RCS pipe ruptures.

Se uence of Events and S stems 0 erations Should a major break occur, depressurizaton of the RCS results in a pressure decrease in the pressurizer. The reactor trip signal subsequently occurs when the pressurizer low pressure trip setpoint is reached'. A safety injection signal is generated wnen the appropriate setpoint is reached. These countermeasures will limit the consequences of the accident in two ways:

1. Reactor trip and borated water injection supplement void formation in causing rapid reduction of power to a residual level corresponding to fission product decay heat. However, no credit is taken in the LOCA analysis for the boron content of the injection water. In addition, the insertion of contr".'. rods to shut down the reactor is neglected in the large break analysis.
2. Injection of borated water provides for heat transfer rrom the core and prevents excessive clad temperatures.

Oescr ation of Large Break Loss-of-Coolant Accident Transient The sequence of events following a large break LOCA is p".esen ed in Table 14. 3. 1-6.

Before the break occurs, the unit is in an equilibrium condition; that is, the heat generated in the core is being removed via the secondary system. Ouring blowdown, heat from fission product decay', hot internals and the vessel, continues to be transferred to the reactor coolant. At the beginning of the blowdown phase, the entire RCS contains subcooled liquid which transfers heat from the core by forced convection with some fully developed nucleate boiling. After the break develops, the time to departure from nucleate boiling is calculated, consistent with (1)

Appendix K of 10 CFR 50.( 'hereafter the core heat transfer is unstable, with both nucleate boiling and film boiling occurring. As the core becomes uncovered, both turbulent and laminar forced convection and radiation are considered as core heat transfer mechanisms.

The heat transfer between the RCS and the secondary system may be in either direction, depending on the relative temperatures. In the case of continued heat addition to the secondary system, the secondary system pressure increases and the main steam safety valves may actuate to limit the pressure. makeup water to the secondary side is automatically provided by the emergency feedwater .system. The safety injection signal ac uates a feedwater isolation signal which isoiaies normal feedwater flow by closing the main feedwater isolation valves, and also initiates emergency feedwater flow by starting the emergency feedwater pumps. The secondary flow aids in the reduction of RCS pressure.

'>)hen the RCS depressurizes to 600 psiz, the accumulators begin to inject borated water into the reactor coolant loops. The conservative assumption is made that accumulator water injec ed bypasses the core and goes out through the break until the termination of bypass. This conservatism is again consistent with Appendix K of 10CFRSO. Since loss of offsite power (LOOP) is assumed, the RCPs are assumed to trip at the inception of'the accident. 'The e'ffects of'ump coastdown are i'nc'luded

'n the blowdown analysis.

The blowdown phase of the transient ends when the RCS pressure (initially assumed at 2280 psia) falls to a value approaching that of the containment atmosphere. Prior to or at the end of the blowdown, the

mechanisms that are responsible for the emergency core cooling water injected into the RCS bypassing the core are calculated not to be effective. At this time (called end-of-bypass) refill of the reactor vessel lower plenum begins. Refill is completed when emergency core cooling water has filled the lower plenum of the reactor vessel, which is bounded by the bottom of the fuel rods (called bottom of core recovery time).

The reflood phase of the transient is defined as the time period lasting from the end-of-refill until the reactor vessel has been filled with water to the extent that the core temperature rise has been terminated.

From the latter stage of blowdown and then the beginning-of-reflood, the safety injection accumulator tanks rapidly discharge borated cooling water into the RCS, contributing to the filling of the reactor vessel downcomer. The downcomer wa'ter elevation head provides the driving force required for the reflooding of the reactor core. The low head and high head safety injec ion pumps aid in the filling of the downcomer and subsequently supply water to maintain a full downcomer and complete the reflooding process.

Cont'inued operation of the ECCS pumps supplies wa er during longterm cooling. Core temperatures have been reduced to longterm steady state levels associated with dissipation of residual heat generation. After tne water level of the residual water s orage tank (RWST) reaches a minim m allowable value, coolant for long-tern cooling of the core is obtained by switching to the cold recirculation phase of opera ion, in which spilled borated wa er is drawn from the engineered safety ea ures (ESF) containment sumps by the low head safety injection (residual heat removal) pumps and returned to the RCS cold legs. The containment spray system continues to operate to further reduce containment pressure.

r r.

Approximately 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 'after initiation of the LOCA, the ECCS is realigned to supply water to the RCS hot legs in order to control the boric acid concentra-ion in the reactor vessel.

Core and S stem performance Mathematical Model:

The requirements of an acceptable CCS evaluation model are presented in of 10 CFR 50 (Federal Register 1974).

(1)

Appendix K Large Break LOCA Evaluation Model The analysis of a large break LOCA transient is divided into three phases: (1) blowdown, (2) refill, and (3) ref lood. There are three distinct transients analyzed in each phase, including the thermal-hydraulic transient in the RCS, the pressure and temperature transient within the containment, and the fuel and clad temperature transient of the hottest fuel rod in the core. Based on these considerations, a system of interrelated computer codes has been developed for the analysis of the LOCA.

A description of the various aspects of the LOCA analysis methodology is given by Bordelon, Massie, and 2ordan ( 1974). (6) Tnis document describes the major pnenomena modeled, the inter-.aces among the computer codes, and the features of the codes which ensure comoliance with the Acceptance Criteria. The SATAN-'ll, WREFLGO0, BART and LOCTA-IV codes, wnich are used in the LOCA analysis, are described in detail by Bordelon et al. (1974)((5) 'elly ';

et al. (1974) (9) Young et al.

(4)

(1980); /~X Bordelon and Murphy (1974)( '; and Bordelon et al.

( 1974). Code modifications are specified in References 2, 7 and

13. These codes assess the core heat transfer geometry and determine if the core remains amenable to cooling throughout.and subsequent to the blowdown, refill, and reflood phases of the LOCA. The SATAN-V1 computer,

~ , ' co'de'nalyzes the thermal-hydraul'ic;'transi'ent in 'the RCS during blowdow'n and the WREFLOOO computer code calculates thi's transient during the refill and reflood phases to the accident. The LOTiC computer code, described by Hsieh and Raymund in

0 WCAP-8355 ( 1975) and WCAP-8345 ( 1974)

(3) , calculates the containment pressure transient. The containment pressure transient is input to WREFLOOO for the purpose of calculating the reflood transient. The LOCTA-IV computer code calculates the thermal transient of the hottest fuel rod during the three phases. The standard Pad Fuel Thermal Safety Model, described in Reference 15, generates the initial fuel rod conditions input to LOCTA-IV.

SATAN-VI calculates the RCS pressure, enthalpy, density, and the mass and energy flow rates in the RCS, as well as steam generator energy transfer between the primary and secondary systems as a function of time during the blowdown phase of the LOCA. SATAN-VI also calculates the accumulator water mass and internal pressure and the pipe break mass and energy flow rates that are assumed to be vented to the containment during blowdown. At the end of the blowdown phase, these data are transferred to the WREFLOOD code. Also, at the end-of-blowdown, the mass and energy release rates during blowdown are input to the LOTIC code for use in the determination of the contai.",".ien pressure response during <<his first phase of the LOCA. Additiona', SATAN-VI outout data from the end-of-blowdown, including the core inlet flow rate and enthalpy, the core pressure, and the core power decay transi'ent, are input to the LOCTA-IV code.

With input from the SATAN-VI code, WREFLOOO uses a system thermal-hydraulic model to determine the core flooding rate (".hat is, he rate at wnich coolant enters the bottom of'he core), he cool-ant pressure and"temperature, and the quench front height during the reflood phase of the LOCA. WREFLOOO also calculates the mass and energy flow addition to the containment through the break. WREFLOOO is also linked to the BART and LOCTA-IV codes. The heat transfer calculation for the I 7 II

'

, average fuel channel in the hot assembly during the ref lood phase of the

~

(16)

LOCA is performed by the BART'omputer code using a mechanistic core heat transfer model. This information is then used by LOCTA-IV throughout the analysis of the LOCA transient to calculate the fuel clad temperature and metal-water reaction of the hottest rod in the core.

The large break analysis was performed with the December 1981 version of (16) computer the Evaluation Model modified to incorporate the BART code.

Input Parameters and Initial Conditions:

The analysis presented in, this section was performed with a reactor vessel upper head temperature equal to the RCS hot leg temperature.

The bases used o select the numerical values that are input parameters to the analysis have been conservatively determined from extensive sensitivity studies (Westinghouse 1974 (12) .; Salvatori 1974 (11).

~

Johnson, Hassle, and Thompson 1975 (8) ). In addition, the requirements of Appendix K regarding specific model 'features were met by selecting models which provide a significant overall conservatism in the analysis. The assumptions which were made pertain to the conditions of the reactor and associated safety system equipment at the time that the LOCA occurs, and include such items as the core oeaking factors, the containment pressure, and the performance or the =CCS. Gecay heat generated throughout the transient is also conservatively calculated.

A meeting was held at :he Mestinghouse Licensing Office in Bethesda on Oecember 17, 1981 between members of the U. S. Nuclear Regulatory Commission and members of tne Mestinghouse Nuclear 'Safety Oepartment to discuss the impac. of maximum safety injection on the large break ECCS analysis on a generic basis. Further discussion of this issue is provided in a letter from E. P. Rahe, Manager of Westinghouse Nuclear Safety Oepartment, to Robert L. Tedesco of the U. S. Nuclear Regulatory (14) A brief description of this issue is given below.

Commission.(,

analyses currently: assume. minimum s'afeguards for the

~

.,Mestihghause ECCS ~

~

safety injection flow, which minimizes the amount of flow to the RCS by ~

assuming maximum injection line resistances, degraded ECCS pump performance, and the loss of one residual heat removal (QHR) pump as the most limiting single failure. This is the limiting single failure assumption when offsite power is unavailable for most Westinghouse

plants. However, for some Westinghouse plants including 0. C. Cook Unit 1, the current nature of the Appendix K ECCS evaluation models is such that it may be more limiting to assume the maximum possible ECCS flow delivery. In that case, maximum safeguards which assume minimum injection line resistances, enhanced ECCS pump performance, and no single failure, result in the highest amount of flow delivered to the RCS.

Current LOCA analysis for 'the 0. C. Cook Unit 1 has demonstrated that, maximum safeguards assumptions result in he highest peak clad temperatur'e. Therefore, the worst break for O. C. Cook (CO = 0.6) was re-analyzed, assuming maximum safeguards.

Results:

Based on the results of the LOCA sensitivity studies (Westinghouse 1974  ; Salvatori 1974  ; Johnson, Massie, and Thompson 1975 ) the limiting large break was found to be the double ended cold leg guillotine (OECLG). Therefore, only the OECLG break is considered in the large break ECCS performance analysis. Calculations were performed for a range of Moody break discharge coefficients. The results of these calculations are summarized in Tables 14.3. 1-5 and 14.3.1-6.

The containment data used to generate the LOTIC backpressure transient are shown in Table 14.3. 1-1. The mass and energy release data ror the minimum and maximum safeguards cases are shown in Tables 14.3. 1-2 and 14.3. 1-3 respectively. Nitrogen release rates to the containment are given in Table 14.3.1-4.

Figures 14.3. 1-1 through 14:3. 1-54.present the transients for the

'I principal parameters 'for the break size's analyzed. The following items are noted:

Fi ures 14.3.1-1 The following quantities are presented at the clad throu h 14.3.1-12 burst location and at the hot spot (location of maximum clad temperature), both on the hottest fuel rod (hot rod):

1. fluid quality;
2. mass velocity;
3. heat transfer coefficient.

The heat transfer coefficient shown is calculated by the LOCTA-IV code.

Fi ures 14.3.1-13 The system pressure shown is the calculated throu h 14. 3. 1-24 pressure in the core. The flow rate from the break is plotted as the sum of both ends for the guillotine break cases. The core pressure drop shown is from the lower plenum, near the core, to the upper plenum at the core outlet.

Figures 14.3.1-25 These figures show the hot spot clad temperature throu h 14. 3. 1-36 transient and the clad temp rature transient at the burst location. The fluid emperature shown is also for the hot spot and burst location. The core flow (top and bottom) is also snown.

Figures 14.3. 1-37 These figures show he core rerlood transient.

through 14.3. 1-44 Figures 14.3. 1-45 These figures show the mergency Core Cooling throu h 14. 3. 1-52 System flow for all of the cases analyzed. As described earlier, the accumulator delivery during blowdown is discarded until the.end of bypass is calculated. Accumulator 'flow:, however, is established in the refill and the reflood calculations. The accumulator flow assumed is the sum of that injected in the intact cold legs.

Fi ures 14.3. 1-53 The containment pressure transient used in the throu h 14.3.1"54 analysis is also provided for the minimum and maximum SI cases.

Figures 14.3.1-55 These figures show the heat removal rates of the heat and 14.3.1-60 sinks found in the lower compartment and the heat removal by the lower containment drain, andthe heat removal by the sump and LC sprays (minimum and maximum SI cases).

Fi ures 14.3.1-61 These figures show the temperature transients in throu h 14. 3. 1-64 both the upper and lower compartments of the containment and flow from the upper to lower compartments. Total heat removal in the lower compartment is the sum of all the heat removal rates shown (for minimum and maximum SI cases).

The maximum clad temperature calculated for a large break is 2163 F, which is less than the Acceptance Criteria limit of 2200~F. The maximum local metal-water reaction is 9.65,percent, which is well below the embrittlement limit.of 17 percent as required by 10 CFR 50.46. The

otal core metal-water reaction is less than 0.3 percent for all breaks, as compared with the 1 percent criterion of 10 CFR 50.46. The clad temperature transient is terminated at a time when the core geometry is still amenable to cooling. As a result, the core temperature will continue o drop and the ability to remove decay heat generated in the fuel for an extended period of time will be provided.

10

References for Section 14.3. 1. 1

1. "Acceptance Criteria for Emergency Core Cooling System for Light Water Cooled Nuclear Power Reactors," 10 CFR 50.46 and Appendix K of 10 CFR 50, Federal Re ister 1974, Volume 39, Number 3.
2. Rahe, E. P. (Westinghouse), letter to J. R. Miller (USNRC); Letter No. NS-EPRS-2679, November 1982.
3. Hsieh, T., and Raymund, M., "Long Term Ice Condenser Containment LOTIC Code Supplement 1," WCAP-8355, Supplement 1, May 1975, WCAP-8345 (Proprietary), July 1974.
4. Bordelon, F. M. et "al., "LOCTA-IV Program: Loss-of-Coolant Transient Analysis," WCAP-8301 (Proprietary) and WCAP-8305 (Non-proprietary), 1974.
5. Bordelon, F. M. et al., "SATAN-VI Program: Comprehensive Space, Time Oependent Analysis of Loss-of-Coolant," WCAP-8302 (Proprietary) and WCAP-8306 (Non-proprietary), 1974.
6. Bordelon, F. M.; Massie, H. W.; and 2ordan, T. A., "Westinghouse ECCS Evaluation Model - Summa'ry," WCAP-8339, 1974.
7. Rahe, E. P., "Westinghouse ECCS Evaluation Model, 1981 Version,"

WCAP-9220-P-A (Proprietary Version), WCAP-9221-?-A (Non-proprie~ry version),. Revision 1, 1981.

8. Johnson, W. J.; Massie, H. W.; and Thompson, C. M., "Westinghouse ECCS - Four Loop Plant (17x17) Sensitivity Studies," WCAP-8565-P-A (Propr'ietary) and WCAP-8566-A (Non-proprie't'ary), 1975.

PP

9. Kelly, R. 0. et al., "Calculational Model for Core Ref looding After" a Lo'ss-of-Coolant Accident (WREFLOOO Code)," WCAP-8170 (Proprietary) and WCAP-8171 (Non-proprietary), 1974.

10 U. S. Nuclear Regulatory Commission 1975 "Reactor Safety Study - An Assessment of Accident Risks in U. S. Commercial Nuclear Power Plants," WASH-1400, NUREG-75/014.

11. Salvatori, R., "Westinghouse ECCS - Plant Sensitivity Studies,"

WCAP-8340 (Proprietary) and WCAP-8356 (Non-proprietary), 1974.

12. "Westinghouse ECCS - Evaluation Model Sensitivity Studies,"

WCAP-8341 (Proprietary) and WCAP-8342 (Non-proprietary), 1974.

13. Bordelon, F. H., et al., "Westinghouse ECCS Evaluation Model-Supplementary Information," WCAP-8471 (Proprietary) and WCAP-8472 (Non-proprietary), 1975;
14. Rahe, E. P. (Westinghouse). Letter to Robert L. Tedesco (USNRC),

Letter No. NS-EPR-2538, Oecember 1981.

15. Letter from J. F. Stoltz (NRC) to T. M. Anderson (Westinghouse);

subject: Review of WCAP-8720, Improved Ana'.ytical 4lodels Used in Westinghouse Fuel Rod Oesign Computations.

16. Young, 4I. Y., et al., "BART-Al: A Computer Code for he Best Estimate Analysis of Reflood Transients, "WCAP-9561-P-A (Proorietary) and WCAP-9695"A (Non-Proprietary) January 1980.

12

TABLE 14.3 1-1

~

LARGE BREAK CONTAINMENT DATA

( ICE CONDENSER CONTAINMENT)

NET FREE VOLUME

( Includes Distribution Between Upper, Lower, UC 746,829'ft.

and Dead-Ended Compartments) LC 249,446 OE 116,168 IC 122,400 Initial Conditions Pressure 14.7 psia Temperature for the Upper, Lower and UC 100~ F Dead-Ended Compartments LC 120~ F OE 120oF RWST Temperature 70~F Service Mater Temperature 40oF Temperature Outside Containment 7oF Initial Spray Temperature 70~F Spray System Burnout Flow for a Spray Pump 3600 gpm Number of Spray Pumps Operating 2 Post-Accident Initiation of Spray System 40 secs Ois ribution of the Spray Flow to the LC 2835 gpm Upper and Lower Compartments UC 43o5 gpm Deck Fan Post-Accident Initiation of Deck Fans 600 secs Flow'at,e Per Fan ~

39,000 cfm per'ran

'I Hydrogen Skimmer System Flow Rate 2800 cfm per ran Assumed Spray Efficiency of Mater from 100'o Ice Condenser 'Drains 13

TABLE 14. 3 1 ~ 1

'continued)

STRUCTURAL HEAT SENKS 2

i blateri a 1

1. LC 12,105 0.0469/2.0 steel/concrete
2. LC 11,700 2.0 concrete
3. LC 65,980 1.35 concrete
4. LC 5,481 0.0833 steel
5. LC 4,735 0.01147 steel
6. LC 289 0.25 lead
7. LC 14,690 0.0079 steel
8. LC 3,439 0.1561 steel
9. LC 5,775 0.009 steel
10. LC 4,966 0.0096 steel
11. LC 7,013 0.037 steel
12. LC 2,457 0.0334 steel
13. UC 378 .1667/.0365 steel/concrete
14. UC 29,772 .0092 steel
15. UC 8,033 .0209 steel
16. UC 420 .0052 .

s eel

17. UC 29,330 1.47 concrete
18. UC 34 125 0.0469/2.0 steel/concrete
19. UC 2'10 .0052 steel UC: Upper Compartment

~:...... LO: ..Lower. Compartment OE: Oead-Ended Compartment 1C: lce Condenser Compartment

ASS AiND 9  ?"=Y RE':-~SE ?~iES u!,.<IMUM Si i@SS 'tE?GY i !!ME (jb/sac) (~is/sec)

(sec)

O. ~ 57888>05 30jiZc F08

.2GGGE.Q1 4783E G5 .24,78E ~GS

.cuGQEiyl .34228~05 .179'E i08

.6GGGE'v I .2563Ei05 ~ 1377E iCjS

.8GijGE~Gl .2225c+05 .1223E G8

~ 10GC;E 02 .ZQ4cC+05 .114GE'08

, 1 ZC'C E '02 .18GCE+05 .1037E+08

.124ciE 02 .16558+05 .9762E +07

.140QE'02 . 1561E>05 .9229E ipr

.14368 ~G5 SCQ3Eipr

'1s15GGE+GZ

~

OE-02 .1319E +05 .799GE+07

.18GQE+02 .1134E'05 .6925Eipr

.190GE+02 .1061E 05 .6491E 07

.200GE'02 ~ 991 7E ~04 .6106E'07

.21QQE>02 .8999E ipc .5628E+07

.220GE 02 .8183E +04 .5086Eipr

.24,0QE.OZ .64G7E+04 .40cZE>07

.25CQE+02 .5476Eipc .34CZE.07

.26GPE~QZ .445GEipc .2730E'07

.270QEip2 .6099E+04 .2983E+07

'28GGE'02 68i09EtP4 .3GGcE+Gr

.292GE'02 .7005E nc .2753E .Qr

.3QGQE'02 .c>31E+0>> ~ 5 1 38 ~ vr

.31GGE+02 .5248E Gc .ZG'73E'Gr

.32GGEi02 .6371E.Qc 19~ '-.07

.33 GGEiQZ .4858E~G4 ,1391= Or

,35GQE~G2 .4315Eipc .1019E Gr

.37GOE'02 .2298Eipc .6255c Gb

.38GQE+02 .667CE.03 . 1 7 '> 4E -C'6

.3849E~QZ .6587E~Q3 ,fbt9E 05 F

.c5QOE+02 . 173GE.G3 .6583E 04

~ 50QGEi02 ,1730E, v3 ~ 6583Eipc

.5265E+G2 , 1 730 E. > 03 .6583E~04 5325EiQZ .1rb8E 03 .114&E'05

.5355E+02 .1768E i03 .1145E+G5

.5375E+02 ~ 1767E+03 .1135E+05

. ".5385E+02. .'.1rbrE;03 .- .1134E+05'.c>>GE

. 5973EQ2 .205GE+03 05

.7020E 02 ~

.5402E G3 .2098E 06

.864OE+02 .5729E+03 . 2153E+06

~ 10698 03 .5850E.03 .2128E Gb

.1302E+03 .5947E+03 . 2081 E ipb

. 156OE i03 .6022E+03 .2027E 06

.2152E.03 ,616GE.03 .19G7E i'c

.2887E+03 .5317E 03 .17.>= 05

.4107E~Q3 . 6535c -'-'3 . 1631E 'Gb

.4434c+03 ,659~c 03 .1635E+05

TnQL:- 14.-"'. l-3

~SS neo .qrvI4Y <e. -45@

l4AX.HUH Si il.i 7VL' "ASS (Sac} (ib/SIC) 0

, 2COOE 0l . 6776Ei05

. lCQOE nl . 5500Ei05 <<3607E QS

.5CCCE Ol ~ 388 lEi05 ,2874E~QS ROCQEiol ~ 304 l E F05 ~ ZC69Eioe

. lQCOE F02 ,2738Ei05 >> l687EiCS

. l ZOCE ~02 ~ 2382Ei05 l54ZE~OS

~ l 24OE ~02 ~ l888Ei05 . l 379E ioe

~ I 400E ~02 . ISOZEi05 l l29Eioe

. lSCCE402 , 1455E+05 . lC84E~CS

. l60nE F02 , lZSZEi05 :9098E-07

. l 7CCE '02 . l 120E F05 .SZZSEi07

. lSCCEi02 .9375Ei04 .7433Eio7

. lsQOEi02 ,8597E'04 .6562E 07

.ZCOPEi02 . 7564Ei04 5CSSE 07

. 2 lCCE ~02 .5880Eio4 .54 lSE 07

.220CE'02 . 4Q47E F04 444 7E 07 2300Ei02 . 5 l 298~04 29 lSE '07

.240CE '02 .6880Ei04 .283ZE i07

.25QQE'QZ .7206Ei04 , 2968 E i07

.2600E~OZ . 60 lOEi04 , 2679 E i07

.2700E'02 . 4829E F04 . l877E~07

.Z8CCE 02 .4337Ei04 . l 282E F07

.2895E 02 .3670Ei04 , l059E<<07

. 2900E F02 .2623Ei04 ,8232E'06

.3CCQE 02 ,24 lSE<<04 .44CSEiC6 30 l35-02 ~ 2380E i04 , 3675E F06

. 3 lCOE '02 ,2357E 04 .3406E~C6

,38COE 02 , 'I 54'2E F04 ,3f95E'06

,4Q'.43Eio2 , 34'2 5E 03 8 l54E F05

,4248EiPZ .3425Ei03 . l303E iPS

,4308E~CZ .3425Ei03 l 3CZE PCS

.4328Ei<<32 .3470Ei03 l 303E '05 4338E 02 . 3410E~03 .l892ciPS

,4348E 02 ,3470Ei03 189 lE "PS

<<4358Ei02 .3470E~03 l 89OE 05

,4885EiCZ ,3469Ei03 lSSSE-OS c<4 l E Q2 .3762Ei03 <579E CS

. 7796E 02 .4579E~O4 5683E OS lQ IZC b03 l 486E i04 44 lSE 06

, l309E i03 , lSOSE 04 2:36c 06

, l639Ei03 . lS lSEi04 '.iCSE'C6

.25l6E 03 . l 524 E 04 "352E ~6

. f545Ei04 23 l 7c <<06 2240'-06

TABLE 14.3.1-A-3 NITROGEN MASS AND ENERGY RELEASE RATES

~Time sec Flow Rate lbs/sec 37.5 71.9'0.7 39.5 45.5 37.2 47.5 31.6 53.5 18.8 55.5 15.6 61.5 8.5 63.5 6'. 9 70.3 186.0 72.3 158.0 78.5 97.3 80.5 82.4 86.3 48.5 88.3 40.0 94.3 21.9 96.3 18.2 102.2 11.7 104.2 10.5 110.2 7.6 112.2 6.8 126.2 3.3 128.2 2.9 138.2 1.8 140.2 1.6

.

~

146.2 1.2'.1 148.2 174.2 0.25 176.2 0.075 l7 0329L:6/840727

TABLE 14.3.1-A-4 LARGE BREAK OECLG C0=0.4 Results Max SI Peak Clad Temp. 'F 2162 Peak Clad Location Ft. 7,. 50 Local Zr/H20 Reaction (Max)i~ 6.58 Local 2r/H20 Location Ft. 7.50 Total 2r/H20 Reaction,'o'ot

( 0.3 Rod Burst Time sec. 71.4 Hot Rod Burst Location Ft. 6.75 Calculation Licensed Core Power (Mwt) 102;o'f 3250 Peak Linear Power (kw/ft) 102;o'f 13.225 Peaking Factor (at License Rating) 1.97 Accumulator Water Volume (ft3

) per Accumulator 950

. Cycle Analyzed.,:Cycle 8 18 0329L:6/840727

TABLE 14.3. 1-A-5 LARGE BREAK TIME SEQUENCE OF EVENTS Max SI OECLG CO=0.4 (sec)

START 0.00 Reactor Trip Signal 0.60 Safety Injection Signal 4.05 Accumulator Injection 20'. 50 End of Blowdown 38.70 Bottom of Core Recovery 52.78 Accumula'tor Empty 67.45 Pump Injection 29.05

~ ~

19 0329L: 6/840727

TABLE 14. 3.1-4 NITROGEN MASS AND ENERGY RELEASE RATES Time sec Flow Rate lbs/sec 37.5 71.9 39.5 60.7 45.5 37.2 47.5 31.6 53.5 18.8 55.5 15.6 57.5 12.8 60.7 266.81 66.7 159.7 68.7 135.7 74.7 83.2 76.7 70.3 78.7 58.9 80.7 49.1 86.7 27.2 88.7 22.3 98.7 10.7 100.7 9.6 110.7 5.6 112.7 5.1 122.7 3.0 124.7 2.7 130.7 2.0 132.7 1.8

'146. 6 ~ 0,8 145.5 0.7 20 0329L:6/840727

TABLE 14.3.1-5 LARGE BREAK OECLG DECLG OECLG OECLG C

D

=0.8 CD=0.6 ~

C 0

=0.4 'O='6 Results Min SI Min SI Min SI Max SI Peak Clad Temp., F 1942 2014 1956 2163 Peak Clad Location, ft . 7.00 5.75 7.00 6.00 Local Zr/H20 Reaction (Max) 2.85 5.65 3.84 9.65 Local Zr/H20 Location, ft 7.00 5.75 5.75 5.75 Total Zr/H20 Reaction <0.3 <0.3 <0.3 <0.3 Hot Rod Burst Time, sec 43.8 37.8 47.4 37.8 Hot Rod Burst Location, ft 6.00 5.75 5.75 5.75 Calculation Licensed Core Power (MWT) 102;< of 3411 Peak Linear Power (kw/ft) 102;~ of 14.796 Peaking Factor (at License Rating) 2.10 Accumulator Water Volume (ft 3

) per Accumulator 950 21

~

0329L:6/840727

TABLE 14.3. 1-6 LARGE BREAK TIME SEQUENCE OF EVENTS Min SI Min SI Min SI Max SI OECLG OECLG OECLG OECLG CO=0.8 CO=0.6 CO=0.4 CO=0.6 (sec) (sec) (sec) (sec)

START 0.00 0.00 0.00 0.00 Reactor Trip Signal 0.62 0.63 0.64 0. 63.

Safety Injection Signal 3.83. 3.95 4.20 3.95 Accumulator Injection 12.90 15.50 20.80 15.50 End of Blowdown 29.68 30.43 38.49 30.43 Bottom of Core Recovery 40.66 43.29 52.64 42.47 Accumulator Empty 56.89 59.29 65.65 60.58 Pump Injection 28.83 28.95 29.20 28.95 22 0329L: 6/840727

I.l000 COOR UHITI LAIP) 0.8 OKCLC HI)LSI 3aIIHMt UPR*IIKG ECCS LBLOCA MIIH BARf ANO OLO PAD f0=2.10 OUALIIY OF fLUID BURSl. 6.00 f1< ) PEAR. 1.00 fl)~ )

1.2500 IC W

CL 1.0000 CI

0. 7500 0.5000 0.2500 0.0 0 0o 00 0 OOOO CI 0 00 04000 00 o aaaoao 0 oooo o0 o 00 oooo 000 0 0 OOOO0 CI ~

CI CI 0 0 0 0 0 OOOO 0 oooo 000 0 O OOOO 00000 CI CI 0 0 4aoa ~

0~ ~ ~

0 0000 Cl O 0 oooo CI CI CI m III III OIea S

0~

CI 0m o ~

aII ooooo

~ ~ ~ ~

IO l IO III CI 0Aa m + & Olfl>>

0. " ' 0 0 ~

0 0 OOO>> ~ ~

~ II

~ ~ ~ ~

gl EP A OIII>> ~ 0

)IHI )SEC)

Fl@l,N'j I/.3. /-l Flue> QftRt.layJ ~~pl g. ( QP 4 8) +t~ S+

I.F000 COOK UNITI tAEPI O.C OECLC HINSI )L IIHVT UPRATINC ECCS LBLOCA VITN BART ANO OLO PAO fO 2. IO OUALITY Of fLUIO BuRSt, 5.75 ftC ) PEAK. 5.15 ftrii I l.2500 EJ CC 4i CL l.0000 0.?500 C

0.5000 0.2500 0.0 DDDDD D . D D D D OOOO D D 8 DDDDD D o y o8 8o aooo D

~

DDDD D O D oD D o D D Dog@ 8 o 8 8 8 S58F. ~

Doooo

~ ~ ~

~

o a Cno uS

~ ~

pP a o o ~

D QDO

~ ~ ~ ~

v cn p~ m pre

~ ~ ~ ~

nJ TINE tSECI (ED=> =O.a'l rnir Si C

FLutC> QuRuC'y . DECC C

'.F000 COOK UNIII (AEP) O.l OECLC HINSI 3) I IHMT UPAAIINC ECCS L8LOCA MIIH BARF ANO OLO PAO F0=2.)0 QUALIFY'F FLUIO 8UASfa 5.75 FTI ) PEAK ~ 7 ~ 00 Fll ~ )

I.2500 I

cc l.0000 0.7500 0.5000 0.2500 0.0 0 0 0O 0 0 O 00 O0 OOOO Cl 0 0 O OOOO 00000 00 0000 Cl 0 o0 Oo OOOO 0 ooa 00 OOOO O O Cl 00 00000 0 O O OOOO Cl

~

00000 o O0n oac0 toooo 0~ ~

0 Cl Cl 0 n 3 O 3 3 OQOOO0 Cl Cl 0 0 ~

0 00000

~ ~ ~ ~

~

Cl Cl OOOO

~ aaa a CO Caaa r o an e m Cl Cl 0 0 0000

~ a ~ ~ ~

caa

~ ~

an au

~

c

~ ~

raaca Cal a caen ~

IIHE )Sf C)

i

1. Boo COOK URlT 1 lAEP) 0.6 DECLC HAX Sl 3i 1 lMMT UPRATlNG ECCS LBLOCA MlTN BART ARD OLD PAD F0=2. 10 DUALITY OF FLUIO BURST, 5. 75 FA l PEAK ~ 6.00 FTl ~ l
1. 2500 CL W

CL 1 .0000 Ci 0~ 0. 7500 I

0 0.5000

~~

0.2500 0.0 00 0 0 CIOQO O OOOO O OQDQ CI 0 Q0 ODOQCDOC:

00 0OD D 0 O D

O OOOO D DODO OOOO O

0O OD D ODDOO O OOOO~

Ci 0~ D D D0 0000 ~

CI ~

0 OD~ ~ ~ ~

DODO Al II1 4) ~ CACAO CI CI 0 0 0000 ~ ~ K5 0 0 IOOOO

~

me>>

CI CI CI 0gp 0400 w EON>>

0 0 0 0 0 OOO~ ~ ~ ~ ~ ~ 0 ~ ~

IP ID ~CO~

1Q cu CM m TlHE lSECl F[PLIQE I$ .3.I-) FLUID GICALIjg CIECLC CI'-U =CI C) <M

50.000 COOK LIHIfl (AEPI O.B OECLG HINSI 3i IIHV1 LIPAAIIHC ECCS LBLOCA ullH SARf ANO OLO PAO fOC2. IO HASS VELOCIIY RSI 6.00 f1l l Pf. AK. l.00 f ft ~ )

Vl I

I-la.

0.0

-50.000 VI -100.00 X

- l50.00

'I

-200. 00 0 00 0 0 O 0 OOOOO 0O O 0 0 0OOOO OOOO CI O 00V 0 OOOOO OOOO 0 0O OOOO CI 0 0O h OOOO OOOO CI CI CI 00 0 0 0 OOOCI 0000 O 0~

C 0 ~ ~ ~

O OOOO 0 O0 OOOOO CI CI Ci VI IO & VIVIO 0000 0 ~

CI 4 sn0

~ ~

00000

~ ~ ~

0 O 0 0 ~OOOO lp O CI 0 0 0000

~ ~ 4 ~ ~

r~ ~

VI

~ ~

aP~VIe

~

~ V P7 IO ~ coo Al VIIP I IHE ISEC I

50.000 COOK Vltl lAEPl O.C OECLC HIIISI 31lIHVT UPRAISING ECCS LOCA VITH QARE ANO OLO PAO f082 ~ IO HAS ELOCIIY URSI ~ 5 75 fl( l PEAK o 5. 75 ffl I~

I LI 0

CI Cl CI 0 0 0 00 00000OOOO 0 0 0 0 00000 0 O O OOOOO 0

0 O 0 OOOO CI g 0 3 00000 0r 0 O00000 3 5 8 33303 Cl 0 OOOO 0 ~

CI 8 8 8888@

Al IA III r SaIO ~ ~

0 0 4000

~

nor

~ ~ ~

se CI Cl CI 0 ~

0 OOOO

~ ~ ~ ~

AJ e% r rl VIA CI~ CI AI AI tIHE ISECI P/scca@ u~LOeir V DA.CL~CeJ =O.I) ~~ a~

300.00 COOX uvltl IAEP) O.a OECLC )IIRSI ta) I)IMt uPRAIIRC ECCS LBLOCA MIIH BARf ANO OLO PAO f0c2. IO HASS VELOCItV BURSt. 5.75 fthm i PEAR. I.00 Fti ~ )

200.00 I00.00 0 0 0 0 0 O OOOO 0 0 0 O OOOOO 0 0 0 OOOO 0 0 0 0 00 OOOOO OOOO~

Ca 0 0 00 3 0 0 O 0000 ODOO 0 0 D 0 0 0Og@

~

O 0 0n 0 tClDDO

~ ~ ~ ~ ~ 0~

g CI Caa 0

Caa 0 0 0~

0000

~ ~ ~ ~ ~

an us ale ~ CCC COOl lj a CO~

tIVE )SEC)

+~6Lc~w /5.B J 7 AS VELDT/7 l lG C<D=O y) ~IN 8Z.

1 50.000 N!1'1 lAEP) 0.6 OECLC HAXS1 3i11Hur uPRATIOC COOK ECCS LOCA MlTH BARl'HO OLO PAO F0=2.10 HAS ELOC 11Y URSte 5.7S FT( ) PEAK l 6. 00 Fl) ~ )

LP

~ al ttt I

At 0 0 Ctl

-$ 0.000 I

EJ CI W

0 v -100.00 X

-100.00

-200.00 0Cl O O OOODD D 0 Ct 0000 0 OOOO CI 0 00 ODDO 0 0 0 OC 0 DDDP O O OOOO CI DDOO Cl 0 0O Itt CI 0 tOCl OOOO O D 0 OODQO 0 CI Ct QDQ0~ 0 00

~ ~ ~

0 0 OOOO ~ O At A ttt ttIO Ct CI 0 CI

~ ~

0 t0000 0 Itt~ ~ ~

Ct Ct O ODD 0'>>'

Ct 0 0 0 0 0OO~

~ ~ ~ ~ ~ ~

At

~ ~

ao cO ~

0 ~

tttctt<< CIA At m ttt ~ Ctt Y1HE )SEC)

I SORE N.3. I 8 YlASS VELOC.t 7'I ltt:CICr (g.[>= O.ta) NItX SI

COOK UNITl lAEPl 0.$ OECLi I4SI 3%I lHUf UPRAllNC ECCS LSLOCA UIIH SARf ANO OLO PIIII ~ . 2.10 600.00

,SOO.OO HEA1 1RANS.COEfflCIEN1 SURS1. 6.00 fl. 1 PEAK. 1.00 flf l

~

%00.00 300.00 200.00

~ ao.ooo 30.000

" 2O.O00 6.0000 S.0000 A . 0000 3.0000'.0000 I. 0000

/Q-Lipid CI CI CI CI Cl CI CI

~ II Ci CI III 1lHE (SEC>

t- /p $ / 9 //Ep7 7gp~f zw QDEws. z&znl CQb=D- &) ~<N S~ T'EaIG

I COOK UKITI IAEPI 0.6 DECLC HIKSI )lllHVT UPRATIKG ECCS LBLOCA VITH BART AKO OLO I'AD f0 2. IO 600.00 500.00 HEAT TRAKS.COEfflCIEKT BURST. 5.15 fTl I PEAK ~ S.T5 fll I

~

i LOO.OO i00.00 Ai 200.00 10.000 30.000 20.000 IMII 6.0000 5.0000 l.0000 3.0000 2.0000

1. 0000 CI CI IA T I HE ISE C I h'EJP 7 7NSF~~ C oEFFICV~~ T D~a.G.(Cs = d~)

N'4 COOK UNITI (AEP) O.A OECLC KINSI 3) IIHVT UPRAYINC ECCS LQLOCA MIIH QARF ANO OLO PAO F0~2.10 600.00 500.00 HEAl IRANS.COEffICIENT QURSTo $ .75 fll ) PEAKED lo00 FB+)

l00.00 300.00

~ II L 200.00

=IN A0.000 30.000 20.000

)%II 6.0000 5.0000 o.0000 3.0000 2.0000 CI

~ n I I HE l SE C) pt c i(c~ st.a. /- ll pg~~ ~~~~~ gos~w(et r D C~Cea=D V)

COOK UNITl TAEP) 0.6 OECLC HAXSI 31I )HAT UPRATING ECCS ie).OCA NITN BART ANO OCO PAO F0=2.)0 600.00 NEAT TRANS. COEFFICIENT BURST 5 l5 FB ) PEAK 6.00 FTT ~ )

500.00 100.00 I 300-00

'L 2OO.OO I

10.000 30.000 20.000 6.0000 5.0000 1.0000 3.0000 2.0000 l.0000 CI CI CI CI CI CI CI CI In CI IV In TIHE (SEC)

I9 3./" l2 HE'FI r TgFIPISFER QDEFF IC.IGN 7 tIFcLs (cb=g.(,) MAX 81'

2500.0 AEP LBLOEA fOR 34 II HUT UPRATIRC AHALTSIS VITH BART ISK IS OfA 215 PSIG BACKfILL 5 PET SCTP 0.8 OECLG BREAK HlkSI PRESSURE CORE BOITOH l I TOP ~ t ~ l 2000.0 l500.0 I000.0 500.00 0.0 CI CD Cl CI AJ

'1IHE (SEEi F ( &Ills gg,3. I- l3 CD PA'Essed DcCc &CeD=o8) PI~AI Zz.

2500.0 ACP LBLOCA fOR 3% II HVT uPRATIRG ARALVSIS slTH BART ISa IS Of A 215 PSIG BACKfILL 5 PCT SGlP 0.6 OCCLG BRIC@ HIRSI PRCSSURC CORC BoiloH l I TOP . l ~ l 2000."

I500.0 I000.0 Soo.on 0.0 CI CI M ~ ED C)

C)

~D ED CI m

TIHC <SCC I F t&LlRE I'3 3 ~ I I" QxokE O'REssu RE.

r)ecLI- gf-g-o,r.) ~~w 8r

2500.0 AEP LBLOCA FOR )l 1 1 HUT Ul'RATlHG AHALYS(S VTTH BART 15x15 OFA 215 PSlG BACAFIL1. S.PCT SGTP O.a OEC1G BREA< HIRSl PRESSURE CORE BOTTOH 1 1 fOP e 1~1 2000.0 1'500. 0 1000.0 500.00 0.0 CI CI CI Ct CI CI v m TIHT ISECI F l&gPE )'t.2.) - l5 CORE' R<~0<C DeC1 C ggS=OS) W<<82

2500.0 aEp loeoca foR Gill HMt upRatlRG aRalvsls Mite isxls ofa 2ls pslc aac<ftit. s ect sctp o.6 0EcLc SREAK PRCSSURE CORE BottoH 1 ) toP e 1+1 2000.0 1500.0 1000.0 sou.no 0.0 Ch CI Cl Cl Cl C)

Al tlHE <SEC)

F IC u tcF i').> I- o 1 C,ORe O'RESSuRE

~g,) P1 AX 8Z

1.00E+5 AEP LBLOCA fOR )III HMT UPRATINC AHALTSIS MITM BART ISK IS Of A 21S PSIC BACKflLI. S PCT SGTP O.B OECLC BREAK Hl'ISI BREAK fLOM v B.OOE ~04 6 ~ OOErt)a A.OOE~Oa 2.00E<a 0.0 o

C)

CI flHE ISECI F I Lt RE ['t 3 I l7 8+pgy F Lo DEC.t + (ZP PP) YLC<

I.OCE 45 HEI'BLOEA fOR 34 I I Hvl UPAAFIHC ANALYSIS ulIH BARF ISl IS OF glS PSIC BA(@Flit S PE I SCIF'.6 OEELC BREA'lhSI BAE za FEOv LJ B.OOE Ra aD 6.00I 4s C

IX

~ A

%.00E Oi a.OOE.O'.0 CI CI Cl CP C)

IIHE ISEC I F tC ups Ill.a.l- i8 BRE~y FZOW g~oz~ Cco o q)=P.~N S?'

I.OOE<5 ~

AEP LBIOCA FOR 3A Il HMI UPRATIRG ANALYSIS VlfH BAAl ISA I5 OFA 235 PSIG BACKFILL 5 PCF SGIP O.a OECLG BREAK HIIISI BREAA FLOV LJ P.OOE+4 6.00E+a C.OOE<a 2.00E<a 0.0 arcual<

ID CI CI Cl m

FlxE (SEC) t<,3.i- tS amon. su ~ ~~>

c~ccc QCr>=Or) NZN SZ

t.OOE<05 AEP LBLOCA FOR Rll l HMf UPRAftHC ANALYSIS M[TO BARf lSK l5 OFA 275 PSlC BACKFlLL 5 PC1 SCfP 0.6 OECLC BREAK BREAK FLOV v &.BOERS I

6.00E+a 1.00E+01 2.00E+Oi 0.0 Ch CI C)

TlHE lSEC)

FlCl.lee it..l-20 BVEAg rlOg RATE bECL&(PP= Q (o) l1hX SI

10.000 AEP LBLOCA FOR 3ill HMT UPRATIMC ARALYSIS MITH BART TSX l5 OFA 275 PSlC BACKFlLL 5 PCT SCTP O.B OECLG BREAK HlgSl CORE PR OROP 50.000 R 25.000 0.0 000

-'50.000

-10.000 I." ~

L

~ e FlC uRE ld ~ ~-Zl ~oRE'RE'GsuRi DROP Dcccc Ccv=o 8) .bfZN ag

i 10.000 PEP LSLOC1 fOR 3A I I HUl UPRAIIHG AHALYSIS Mild SARI ISa 15 OfA 215 PSIG OACKfILL 5 PCI SGIP 0.6 OECLG 6REAA rlvSI CORE PR.OROP 50.000 CL Cl 25.000 0.0

-25.000

<0.000

-10.000 Cl C)

CI C) o Al IIHE iSEC>

ID.000 AEP LOLOCA FOR 311l l'V1 UPRAEIHO AHALTSIS MIIH BARE ISX l5 OFA 2)5 PSIC BACHE ILL 5 PC1 SCIP D.l OECLC BREAK HIHSI CORE PR.OROP CI 25.000 CL'J 0.0

-25.000

-50.000

-70.000 CI CI CI Cl CI CI m

IIHE (SEC)

F~@~(RE'lf. B. l-28 CORe F R~uAE gpOp E>Eeoc(m= D.'/) NX kl 8Z

10.000 AEP LBLOCA FOR 31 II O'Vl UPRATINC ANALYSIS VITH BART ISX I5 OFA 215 PSIG BACKFILL 5 PCT SGTP 0.6 OECLG BREAK CORE PR.OROP 50.000 IL 25 000 R.

0.0

-25.000

-50.000 10i000 ED n

C>

C>

TIVE (SEC)

F 1 I'4RE'0-B. I- 2't C.ORE f'R<5SQRE'R~I

><C I C-PC.D=0.4) YlAX

2500.0 coo< URIII iAfP) O.a Offf6 HIKSI 3llIHQt UWRAIINC fccs <e<ocA ultu OARt ANO OLO PAO F0=2.IO flAD AVG.tfHP.HOt ROO OURSt. 6.00 Ftr > PfAA. ).00 Ftt ~ i Vl 2000.0 l500.0 T

a l000.0 EJ 0.0 CI CI CI CI CI CI CI CI CI CI III CI tlHI tSff)

>>~ficE l ),3,l-~~ P~~< C~nD- TEnll~~~Tu~~

2SOO.O COOK UNlll tAEP) 0.6 DECLC HINSI SlllHV1 UPRAllNC ECCS lRCOCA VllN BART AND 0<D PAD fO 2.IO CLAD AVG.TEHP.HOf ROD SURSf 5.1S foal I PEAK S.)S fAol I/I 2000.0 l500.0 X

a l000.0 4J 500.00 0.0 CL C3 Cl CI Cl IA O Vl CI AI I4 flHE lSECI

2500.0 COOr uKttt LAEP> O.a OECLC HtKSf SaltHVt UPRAttNC ECCS LBLOCA VltN BAR1 ANO OLO PAD F0*2.10 CLAD AVG.IEHP.VOt ROO BuRSt. 5.15 Flt > PfAr. 7.00 Ftt ~ I 2000.0 1500.0 X

IL X

tw a 1000.0 LJ 500.00 0.0 cS Cb C> CI 43 sA Cl llHE'SEC)

~ ~

2000.0 COO< uRltt <AEPt 0.& DECLC HtRSt 3otlHMt uPRAtlRC ECCS LBI.OCA MttH SARt ARD OLD PAD to=2. lo tI.Uto tEHPERA1UAE BuRSt. 6.00 ft< 1 PEA<. l,00 ft< ~ >

't50.0 l 500.0 l250.0 I

I l000.0 t50.00 500.00 250.00 0.0 CI CI Cl CI CI CI Cl CI CI

~ A ~ II CI ttHE <SEC)

2000.0 COOK UNITI IAEPI O.C OECLG HINSI )LIIHVT UPRATING ECCS LBLOCA VITH QART ARO OLO PAO F0=2.IO FLUIO TEHPERATURE BURST. S.1S ft>> I PEAK. S.PS fthm ~ )

a I)50.0 a ISOO.O I250.0 CL I000.0 X,

I 3 ISO.OO S00.00 2$ 0.00 0.0 E3 C3 C) vs IIHE ISECI

2000.0 COOK UNIlI lAEPI O.l OECLG HINSI 3i I IHU1 UPRAlING ECCS LBLOCA MIIN SARI ANO OLO PAO F0*2 10 fLUIO IEHPERAlURE SURSF 5.)5 fll ) PEAK ).00 fll )

~

I)50.0 lal 1500.0 1250.0 1000.0 I

3 )50.00 5'.OO 250.00 0.0 CI CI D

ofl

~

lIHE ISEC)

2000.0 COOK Ut)lTl lAEP) 0.6 OECLG HAXSl 31 l)H'LIT UPRATlNQ ECCS LBLOCA MlTH BART ANO OLO PAO F0=2. IO FLUlD TEHPERATURE BURST ~ 5.15 FT( ) PEAK 6,00 FT)0)

P l)50.0 1500.0

)250.0 I l000.0 X

750.00 500.00 250 00 0.0 CI sn TlHE lSEC)

F [G QP f ) L.3. I -32 FLL()P TF-.YIPERATLlRE DiC LCr CCb= o.lo')

1000.0 ACP LBLOCA FOR jA I I HUT UPRATIIIG AIIALYSIS VITH BART ISx IS OFA 215 PSlC BACKFILL 5 PCT SGTP 0.8 OCCLC BRf AX HIRSI 2-FLOUR>lf CORf BOlTOH I I TOP ~ I~ I 5000.0 2500.0 CI 0.0

-2500.C

-5000.0

-1000.0 Cl Cl Cl Cl Cl Cl Cl Cl Cl m CI Al TIHf <SfCI Fy@~Rg ]q g )-33 pygmy FI II~(TN &MD 3$ TTDYI)

DecLc (cI =08) N' 8T

1000.0 AEP LBLOCA FOR 3l I!. HV'I UPRAEIIIC AIIALYSIS VIIN BARf 15115 OFA 2)5 PSIG BACKFILL 5 PCI SG'IP 0.6 OECLC BREAK HIHSI 2-FLOVRAIE (OR~ 80110H I I 10P I 1 ~ 1 5000.0 2500.0 I

0.0

-2500.I3

-5000.0

-)000.0 CI CI CI C) CI 4D CI CI CI

~ II m I!HE ISE C I FZG IIRE Ig 3. (-g.'I QORE V'LOW CT boccie- (c.p= o t )

1000.0 ACP LBLOCA fOR 34 II HVT UPRATIHG AHALYSIS UITH BART ISl l5 OfA 215 PSIG BAC<fILL 5.PCT SGTP O.l OCCLG BREAK ~IHSI 2 fLOVRATK CORC BOTTOH I ) TOP, l~ I 5000.0 Ll Vl CQ 2500.0

~a I

0.0

-2SOO.O

-5000.0

-1000. 0 CI IV TIllC (SIC)

0 7000.0 AEP LBLOCA FOR 3ell HMT UPRATINC ANALYSIS MITH BART ISX l5 OFA 275 PSIG BACKFILL 5 PCT SCTP 0.6 OECLC BREAK 7-FLOMRATE CORE BOTTOH I ) TOP ~ (+)

5000.0 EJ 4%

2500.0 I

o I

0.0

-2500.0

-5000.0

-7000.0 CS C1 ID Cl Cl CI C) C) m CU T I >) 6 (5:. C )

P)QQ+E [Q 3 } Q(z Q,QQg PLDW ESTOP AND BOTTOPl)

Pggl ~ggb =O. a) M AX Bg

20.000 AEP UPRAIIHG CD D.R OECLG RK HlkSl QART-REFL000 27S RXPlLL PRESSURE lS17$ ofA UATER LEVELIfll l7.500 90MHCoWER l$ .000 l2.S00 l0.000 g

LJ 7.5000 J

~ s.oooo 2.5000 0.0 CI CI CI TIVE <SEC)

FT~upp iq.3.(-2 I 'REFLooD Y'RAASZ<PL ba+NCONER WA EaL L EVILS

~eC.~~< C,E =O.G) ~X~ aZ

20.000 AEP UPRATIHC Coco.g OECLG Ba HIHSI PART-REELOOO 2TS &<FILL PRESSVRE TSx TS OFA MATER LEVELLETT IT.500

~WHCOPlEA.

IS.OOO I2.500 IO.OCO D T.SOOO 5.0000 2.5000 9.0 CI CI CI CI CI CD CI CI CI ~ II C7 TIME iSEC'el Fggqgg l'l,3. I-SS RE'T=LOOP W A TER, LEVELS aeCLa CCO- O.r.)

tO.COO Af~ u<<<<lhC CO:0.~ Of fC 84 >I'aSI 8>>f.~(<F003

? >S 8K<I's 0 04f $ 5gkf ISi IS 0<4 Vs~i~ af Vf<iCI)

Ig SOO l

DowNComCR IS.OCO It. S03 I0.000

~ r.S000

~C

> S.OOOO t.SOOG 0.0 CI C7 C7 C7 CJ Cl n C3 nn n C7 CI IIHE ISE CI FX.GQRQ I'l.3.1-& l RE.FI OOQ TRhl4SC<H>

DoWllCornER LnJATE. R LEVEm De.C.I I I f g=O.1) frlXN SX

20.000 AEP uPRALIHC (0=0.6 OEElC Ba HAISI SART-REFL000 215 SAIILL PRESSuRE ISIls ofA MALER LEVEL{F1)

Oowgc,omEP.

11.500 L5.000 12.500 Io.ooo

~ p.sooo I

+ s.oooo 2.5000 0.0 CI CI CI CI CI CI CI Vl CI ~ fl I

f!HE ISEE>

CORE PgQ QgP )q. 3. l - QO RFFLOotO TRAHSZEH>

+ DOWNCOME'/ATES LEUEiS, P ~Cia. g C.g= O.E.)

2.0000 AEP UtRAIINC CD 0.$ OECLC BK HINSI BARI-REFLOOD 27$ REFILL tRESSORE ISX IS OFA FLOOD RAIELIIIISEC) 1.7500 1.5000 1.2500 u I.OOM

~ 0.75M CC CI CI 0.5000 0.2500 0.0 8

CI Cl ~ n fIHE (SEC)

FXC ORE Ig Q I t~ gPPLQQD TR IH I e.O~~ ZOI CT cecirCcr .=>.R)

,

2.0000 AEP uPRitIRC CO=0.6 OECLC Ba HIHSI SiRt-PEFL000 275 SwtlLL PRESSURE l51 IS OFA I'L000 RAIE{IR/SEC)

I.)500 I. 5000 l.2500 u I.0000 0.7500 IC CI CI 0.5000 0.2500 0.0 ID CI CI CI CI CI CI Al m tIVE LSECl F~gggE Iq,3. /- 'l2. RE I. LOO+ TRhg SX

~pl PT'E

) VlZN Sj L<<<TV'gE-I C-(gg = O.E

Z.OCTO afar uPRAIIhC CO:0.< OCCCC 8~ HIASI BA41-RIii000 81$ 84ilal. ~~ISSuAE ISl 15 Oik fa000 4AII <lb/SEC)

1. 1503
1. 5000 I.t500 I.COOQ Vl 0.1500 CC

~ 0.5000

0. Z500 0.0 CP n CI C7 CD C7 C3 C7 IV Pl

>I>E ISECI ETC QgQ(.3. l -9S RE F'LooD %RA'~1 E ~T

~ORE X.NLG T V E ~I'-Z T'/

-

becLc (u =o.u) mz~ SZ

2.0000 AEt'"Ra f.'i 64" f-riErt000 C.'=0.6 DECLG BK H~a 51 2fs Br e 1ll f r ESSVRE Isa 15 Cfi flDDD RAffrfrfl<EEf

1. 1500 1.5000 1.2500 1.0000 0.1500 0.5000 0.2500 0.0 Cl C)

Cl o In ffvE r5E(r

" ia.ooo PUHPED fCCS FLOM CREFLOOD) DECLC (CD 0 B) HIM 5

~ 8.0000

~ 6.0000 4.0000 2.0000 0.0 8' 8 8 8 CHIEF<>>>)

C)

,8 g g t:+SURE (~/.3.J -'I5 t 4 &PER ECC$ F<<~

DEGLc ('t" b - g.g) PlzH

~ t0.000 DECLC (CD 0.6) HIN PUHPED ECCS FLOW (REFLOOD) S

+ 8.I)00 4-

~ 8.0000

u. 4.0000

.

P..0000 0.0 8

T E(S )

pyt"~<g< i'l.3.> 'l4 <~urnF + Ec+S p~ CL~ (j p g, g) [AD hl

'

i0.000 -

PUHPED ECCS FLOM {REFLOOD) OECLC {CD 0 ~ 4) HlN S1 t e.0{NO o 6.0000 M

I-

~ 4.0000 .-

I-4.

n 2.0000 8

8

20.003 PUHPE0 CC~OT~'E fC690 g tg0=0. 6) AX Sl lal 17.500 I

15.000 CD 1Z.500 CD 10.000 l 7.5000 Caj 5.0000 2.5000 0.0 CD CD CD CD CD CD CD CD CD C)

CD C C n

gl C3 nAJ CD C CD CI'>YlPED ECeR FLEAM(REFioor)

DFc.i C CC.D=O 4) MAX

I.BOERS AEP IBLOCA fOR 3i I I HVT UPRATIRG AKALTSIS VITR BARF ISA IS OFA 275 PSIG BACKFILL 5 PCT SGIP O.B OECLG BRCAK HINSI ACCUH. FLOV 8000.0

< OOOO.O EJ LJ

<000.0 2000.0 0.0 CD CD Cl Cl Cl Cl n ClC CD m

CD TIHC iSCC) sccurnuL~> Cl~~ClR 8)

~q.3.i- sl C O'g ~ZQ

OCELOT I.oot~ii AEP EBLOCA FOR tatI'HMt UPRatlHC aRAL'IS Mttn BAAt ISI IS OFA 21S PSIG BACKFILI. 5 PCt SCIP 0.6 BRE a 4IHSI ACCuH. Fcov aJ

~ e000.0 Cl

~ eooo.o LP LP oooo.o 2000.0 0.0 C) o co CD C1 CI C) m tIHE ISEC)

FXE uRE I9.3t -So ~ F.o~ Cpio~oo<<)

P

&X,H

I.QQE Rl AEP LSLOCA FOR 3%II HMI UPRAFIFIC ANALZSIS VIIH SARI I5r 1$ OFA 215 PSIC SACAFILL 5 PCI 'lGTP O.a OECLC SREAA HINDI ACCUH. FLOV EJ

v. SQOQ.Q SQOQ.O LJ LJ

'l 000. Q 2000.0 0.0 Cl CI C>> CI CI CI AJ tlHE <SEC >

F ZCrLIRE I'I.3. I 5'I h 0 0 LIAAIILA<O> FLOW (SLOWDOWN)

DCCLG. (Lb= o.'I) &EN R~

1.COEDS)4 AEP LBLOCA FOR 3tlt HMI UPRAflMG AMALVSlS MlTM BART l5X l5 DFA 275 PSIG BACKFlLL 5 PCl SGYP 0.6 OECLG BREAK ACCUH., FLOM Ek

~ -8000.0 4

Cb

'

x 6000.0 1000.0 2000.0 0.0 C>

Cp Ci CI Cs CJ C) Ch CI YlHE (SEC)

F II'IRE I'l.3.I-S2 QCCUY)IILRTDR FLOW CaLIIWDOWN) nial C geP=O.g) MhK RX

t.0 ~ I J J I I I I . I

<<<<r<<QM4!<<s~ s<<<<r rs ' '4 ~ ~ spl rsWt% '~

I I I

, .I ~ ~ I I r I

J ~ ~

s<<I L.:I +. ~

I~

f.

Jig

~ J

~ I s

~ I ~ ~

J I ' J

~ s l s l ~J J+I J J p! JM ~

! I ~ s I I J i s J

'

L CJ LL L I s

L QmZZI

) 0 I J I

~

~

~ ~ I rH+' J ~

I ~

J s

I J

~JI

~

I I J!

s j I, I s~)

I l I

I ~

];T. s J

T+Iz;-r.

~

~ A ~  !

~ ~ 's<<i

0.0 200 0&G.G %00.r 7

PlZhlXPl Lt M S l-53 X'<$

4RG l t.3. CDH TAI)4 fflKHT PRESSURE

i,0 0

L.O s44 ~ 0 .200.0, JIVE ( SEC) ~

CQnPAATOE4T PRESSURE,

10 I ~

I 10 4

~ C 10 s I I I 11 <1 I I 0

LO 0 ~

l00.0 200. 0 )00.0 7 lhK 1 SEC )

4l 1.4fiCI O) l I l I G.O 140. 4 jGO.O T !PIE t SEC 8X

)'YIAxrrAum F.T&4RK li ~ I. 5'4. 'WEA CptOPAATnEHT 5TAIJCTIJAAI. HEAT AEApVAL AATE

I 0

~ ~ I I I I I I ~

I I ill II I I I I I I:.

~ ~ ~ ~ ~

I I I I I I

):I;'I I

I I ) I I I ) )! I I I I i) I I I I ilit II I

~ ~

tQ I I I ~ I

~ M I I I I I I Cl 10 C

IO '

~ I ~ ~ I I I ~ I I I I I I I I I I I I I I I I I i0.

0.0 100. 0 250.0 F00. 0 YtnE ISEC)

Wzdzmum PQ@ggg )g, Q,)-Q7 'IKA I IIKnOVAI. SY I.C OIIA lH

I ~

I - I i j I I ~ ~

I I j I I s I i I I I s I s I I ~ I I I

~

I, I I

I I; I I

I g

j I

~

I I

I

~

I I I~I I I W

2.0( F 0%

Cl

~ U I

ct C) 1.0K~<A re ~

1.'E ~ ~8 100.0 400 ~ 0 ~~ J T lhf ( SEC )

rn AX ~mum SZ-

'~>>4~< l~> ~-S8 ~'Ejj'i jjKMOY4L 8.v LC OAA'lH'

~

~ll Ili!:

Ag ~

I I I I ' i I I I

'

I I I I i I

I I i I I t! a EJ

~" l.0Atr'8 lie C

v4 CC IAJ

/

I ~ 'ACA0c 200.0 )00.0 i00,0 q

~ r IlHE t SEC )

mxv z mum sx P< &l4RE ) %3 1 Q MEAT E.ll:"A'

~ Y 5IJl& A1A 0 I ~ (. ~ P AAIy

400.0 TlhE ( SEC)

M AXZlhu> gz;

~>@LLQG )9.3. )-4Q HEAT REMOVAL 8Y 1

S~JPlP RHi3 '

W pp RBY5

F00.0 t00.0 )00.0 '<0.0 TTNE ( SCC )

WX0Z mum SZ C 0 tl P 4 A T P! K ~ T TE llP K i) h T V "..

  • ! I I 1 1

I I I

~ ~

hss I V I I I I 100. 0 TlnE (SKC)

~

mhxrmurn .zr.

CORP4ATPIENT TKhPEAATURK

I r ~ s ~ ~ ~ ~ r S ~ ~s ~ r

~ lis I:I II) s I ~

)

I s

I I

I I s I

c~ (p l >

,.s s

I'.

s ws

~ s .

sl I

~

~ s

~ .. 1

-',/

~ ~

s I

I I:: Ij..

I: 'jll ",.'ll;

~ s

,ss ,.
I iri ~ s I s (sjr + ~~ ~~

-~

/N I I

~ ~

"I 1 I:.

~ ~

s

~ ~

I I= ~  ::I. -'II',

'"!

I l

I/y si; s

I: I.:

II :s'I .".. s I'. II s :I! Is s s I s I

.a II::

Su<1 :I::

st ~

~ ~

Ij: sl jl I

~ ~~ .I: ~ I

~

is, ' s s I 'I s,

I; I:. s sssQ s

<<t s

r> I'. ~

I

~ s s

ss

' I; s

~

,

I

."I ~ s I I 0 ) ls.g s s

~ - I-I r~ s I

I I

.'

I IG e I

s I

I) n I 0 0l 20 49 I

I s

I s

I Is sI.

I s j . I FL.Oii! L(F'P" 0 I.S.'Ssts I~

I e e e ~ I~ i' e ~

.I'e I:. Iii I I i I i )

I I  !

I I e

I I

I I e

e I e

I

": jl'. II I ~

I Ij .

~ ~

ee ;ll I

~

e' e ~

>:I I;I 'i,' I':

~

I e>ee I ~

":; I:

I

~ ~

~

~ ,

I I~

!I.

~ '

I

.

~ ~ e I

~

I~

~ ~

e I e

~> ~ ~

~: I ~

,I I" - ~

ll" iIII il'; ::

~

'

I ll '

I I I e' I C

\) I.; . ~ ~

~

I:; e I.

I ~ ~

,~I I;

r I,'

~ ~~ "~

l I' I~

Ie e

!

'"'C, je> Ir

~

le I

lie I ~-

I ~ e I I I: I e i e I

I I e

Iej er I I

I e

I e e

i I I I e e

I I j I ~

I I I I e I I

~ I 'p r e ~ l I) I I e' e"!

I I I I I I I I I

I I I I I I I gq ld riiO.I

~ ~

1>e 'll Ie/' f..jr/ Iipelel 'II. /J I I

I I

/h/I I fF li I I I I

~ I I 'l. I  :..I.. I I . ~ ~ I

ATTACHMENT 8 LOCA Rci A-"0 -."CH SPECS Plant Name: Oonald C. Cook Unit 1 (AFP)

O.lp Tyoe/Date o 0C

= ~-4 (max SI case) Large Break LOCA Analysis Analysis 'OCA Df'Qg Total Peaking Factor F~. ~ g ,'IQ Cold Leg Accumula or. 980 ft /accumulator (nominal) unchanged -,rom Water Yolume: cur rent tech specs Cold Leg Accumulator 600 psia (minimum) unchanged from current Gas Pressure: tech specs K(z) Cu. ve: See next page

1.5000 AEP 4 LOOP CALC. NOTE SEC-RFFA-1481-CO f

CURR NT LIH ITS RUN 05/15/84 K(Z) l/S. CORE KE ICHT (FICURE 1.2500 1.0000 0.7500

~V 0.5000 TOTAL FO

2. 100 CORE REICHT 0 'g<

.al'ii

~

~ s

l. Oon 0.2500 c 1.000 I I. I83 0.935 12.000 0.714 0.0 nCJ C1 nn Q ~

CD CJ ca C3 EU lO OO CORE HEICHT (FT)

~

c,~