ML13189A195: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
||
Line 14: | Line 14: | ||
| page count = 48 | | page count = 48 | ||
}} | }} | ||
=Text= | |||
{{#Wiki_filter:T-2ToFacilityAddressNRC-BRANCH CHIEF COPY #169MT Department DENAE SIEVERS -SAB2TO BE MAILED TO REGION IIIPASSPORT DOCUMENTTRANSMITTAL Page: 1S1 1 1111 1 1 1 N11 1N111 1N11From : C-DOC CNTRL-MTAddress : 2807 W CO RD 75Attention: | |||
State: MN Postal Code: 55362CityCountryEmailContactDate/Time Trans No.Total Items:MONTICELLO UNITED STATES07/01/2013 1000221087 000010:02 Transmittal Group Id:Title:0000024980 Item Facility Type Sub Document Number Sheet Doc Status Revision Doc Date Copy # Media Cpys0001 MT LIC COLR COLR ISSUED 007 HOLE SS 01Security | |||
: [] Destroy Documents Date:Form of Destruction Signature of Destroyer Signature of WitnessIf a document was not received or is no longer required check the response below and return to sender.Documents noted above not received (identify those not received). | |||
I no longer require distribution of these documents (identify those no longer required). | |||
Date: Signature: | |||
#401 TECHNICAL REQUIREMENTS MANUALUPDATING INSTRUCTIONS MNGP TECHNICAL REQUIREMENTS MANUAL NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Monticello Nuclear Generating PlantCycle 27at Current Licensed Thermal PowerCore Operating Limits ReportNAD-MN-033 Revision 0Prepared By: _Date:_________ | |||
Kenneth Smolinske Senior Engineer, Nuclear Analysis and DesignVerified By: , __ _Date: _ -2,_ __o/_Bill LaxPrinclpal | |||
: Engineer, Nuclear Analysis and DesignReviewed By:Approved By:Supervisor, Reactor Engineering | |||
-Monticello Sugrvls4r, Nuclear Analysis and DesignDate: 51A1Date: 5r/7/o23NAD-MN-033, Monticello Cycle 27 CL-FP COLR, Revision 0Page 1 of46 1.0 Core Operating Limits Report (COLR)This Core Operating Limits Report for Monticello Nuclear Generating Plant (MNGP)Cycle 27 at the Current Licensed Thermal Power (CLTP) of 1775 MWt is prepared inaccordance with the requirements of Technical Specification 5.6.3. The core operating limits are developed using NRC approved methodology (References 1, 3, 4, 10, and 13),and are established such that all applicable thermal limits of the plant safety analysis aremet.The SLMCPR of 1.15 was used for two-loop operation for all fuel types in Cycle 27. TheSLMCPR for single loop operation is 1.15. These values are consistent with the valuesspecified in Reference 2.This report includes the Option III Generic Shape Function (GSF) definition for theBackup Stability Protection (BSP) region, which is used in providing backup thermalhydraulic stability protection when the Option III OPRM system is declaredINOPERABLE. | |||
Figure 4, which shows the flow-dependent CPR limits, is now bounded by the ECCSMCPR value as specified in Reference | |||
====2.2.0 References==== | |||
1.0 General Electric Standard Application for Reactor Fuel (GESTAR-II), | |||
NEDE-24011-P-A-19, May 2012.2.0 Supplemental Reload Licensing Report for Monticello Reload 26, Cycle 27 CurrentLicensed Thermal Power (CLTP), 0000-0140-2542-SRLR, Revision 1, April 2013.3.0 General Electric Licensing Topical Report ODYSY Application for Stability Licensing Calculations, NEDC-32992-P-A, DRF A13-00426-00, July 2001.4.0 Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology forReload Applications, Licensing Topical Report, NEDO-32465-A, August 1996.5.0 Fuel Bundle Information Report for Monticello, Reload 26, Cycle 27 CurrentLicensed Thermal Power (CLTP), 0000-0140-2542-FBIR, Revision 0, April 20136.0 Letter from M. F. Hammer (NSP) to USNRC dated December 4 1997, Revision 1 toLicense Amendment Request dated July 26, 1996 Supporting the Monticello Nuclear Generating Plant Rerate Program, including attached exhibits. | |||
7.0 Document GE14 Fuel Design Cycle-Independent Analysis for Monticello NuclearGenerating Plant, GE-NE-0000-001 3-9576P, GE Nuclear Energy (Proprietary), | |||
March 2003.8.0 Letter from Les Conner (GNF) to R. J. Rohrer (NMC), dated March 24, 2003,Monticello Option B Licensing Basis, IC.MN.2003.010, Global Nuclear Fuel.9.0 GE14 Fuel Design, Cycle Independent Transient Analysis for Monticello NuclearGenerating Plant, GE-NE-0000-0014-7048-01P, Rev. 0, March 2003 (GNFProprietary). | |||
10.0 BWR Owners Group Long Term Stability Solution Licensing Methodology, NEDO-31960-A, Licensing Topical Report, November 1995 (including Supplement 1).NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 2 of 46 11.0 Reactor Long-Term Stability Solution Option II: Licensing Basis Hot ChannelOscillation Magnitude for Monticello Nuclear Generating Plant, GHNE-0000-0073-4167-R2, December 2007.12.0 Plant-Specific Regional Mode DIVOM Procedure Guideline, GE-NE-0000-0028-9714-R1, June 2005.13.0 Backup Stability Protection (BSP) for Inoperable Option III Solution, OG-02-0119-260, July 2002.14.0 Letter from M. F. Hammer (NSP) to USNRC dated July 30, 1998, "Supplementary Information Regarding the Monticello Power Rerate (TAC No. 96238)", | |||
including attachments. | |||
15.0 Letter from Tae Kim (USNRC) to Roger 0 Anderson (NSP), "Monticello NuclearGenerating Plant -Issuance of Amendment Re. Power Uprate Program (TAC No.M96238)," | |||
including enclosures, September 16, 1998.16.0 Calculation CA-08-051, Rev 0, Instrument Setpoint Calculation | |||
-Rod Block Monitor(RBM) PRNM Setpoints for CLTP and EPU Operation. | |||
17.0 GE BWR Licensing Report, Average Power Range Monitor, Rod Block Monitor,and Technical Specification Improvement (ARTS) Program for Monticello NuclearGeneration Plant, NEDC-30492-P, Section 4, April 1984.18.0 GE Services Information Letter, Backup Pressure Regulator, GE SIL No. 614Revision 1, March 15, 1999.19.0 Nuclear Management Company Monticello Nuclear Generating Plant PressureRegulator Downscale Failure Analysis, GE-NE-0000-0051-2643-RO, September 2007.20.0 Letter from Peter S. Tam (USNRC) to Timothy J. O'Connor (Northern States PowerCompany), | |||
"Monticello Nuclear Generating Plant (MNGP) -Issuance OfAmendment Regarding The Power Range Neutron Monitoring System (TAC No.MD8064)," | |||
dated January 30, 2009.21.0 Fuel Bundle Information Report for Monticello, Reload 25, Cycle 26, 0000-0118-401 0-FBIR, Revision 0, February 2011.22.0 Supplemental Reload Licensing Report for Monticello Reload 25, Cycle 26, 0000-0118-4010-SRLR, Revision 1, March 2011.23.0 Monticello Nuclear Generating Plant, Cycle 26 Core Operating Limits Report. NAD-MN-025, Revision 0, April 2011.24.0 Letter from D. Musolf (NSP) to Director, Office of Nuclear Reactor Regulation, NRC"Revision 1 to License Amendment Request Dated September 7, 1976, SingleLoop Operation" dated July 2, 1982.25.0 ODYSY Application for Stability Licensing Calculations Including Option I-D and IILonq Term Solutions, Licensing Topical Report, NEDE-33213P-A, April 2009.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 3 of 46 3.0 Rod Block Monitor Operability Requirements The ARTS Rod Withdrawal Error (RWE) analysis (Reference | |||
: 2) validated that thefollowing MCPR values provide the required margin for full withdrawal of any control rodduring Monticello Cycle 27:For Power < 90%: MCPR > 1.83For Power > 90%: MCPR > 1.50When the core power is less than 90% of rated and the MCPR is less than 1.83, then alimiting control rod pattern exists and the Rod Block Monitor is required to be operable. | |||
Ifthe core power is greater than or equal to 90% and the MCPR is less than 1.50, then alimiting control rod pattern exists and the Rod Block Monitor is required to be operable. | |||
==Reference:== | |||
Technical Specification Table 3.3.2.1-1 Function 1.4.0 Rod Block Monitor Upscale Trip Setpoint4.1 Technical Specification Trip Setpoints and Allowable ValuesFunction Trip Setpoint Allowable ValuesLow Power Range -Upscale (a) < 120/125 of full scale < 120.4/125 of full scaleIntermediate Power Range -Upscale (b) < 115/125 of full scale < 115.4/125 of full scaleHigh Power Range -Upscale (c), (d) 110/125 of full scale < 110.4/125 of full scaleApplicable Thermal Power(a) Thermal Power > 30% and < 65% RTP and MCPR is below the limit specified in Section 3.(b) Thermal Power > 65% and < 85% RTP and MCPR is below the limit specified in Section 3.(c) Thermal Power -> 85% and < 90% RTP and MCPR is below the limit specified in Section 3.(d) Thermal Power 2t 90% RTP and MCPR is below the limit specified in Section 3. | |||
==Reference:== | |||
Technical Specification Table 3.3.2.1-1 Functions 1.a, 1.b, and 1.c.The Reference for the "Trip Setpoints" and "Allowable Values" isReference 16.5.0 Minimum Critical Power Ratio (MCPR)5.1 Option AThe Operating Limit Minimum Critical Power Ratio (OLMCPR) for Option A does notaccount for scram speeds that are faster than those required by Technical Specifications. | |||
5.1.1 Option A OLMCPR for Two Recirculation Loop Operation The Option A OLMCPR shall be determined for two recirculation loop operation asfollows:If core thermal power (P) is 2! 45% of rated core thermal power, then the Option AOLMCPR for all fuel types is the areater of {1.75 | |||
* K(P) from Figure 3} or {MCPR(F)from Figure 4}, where 1.75 is the Option A OLMCPR at rated (100%) core thermalpower reported in Table 33.i.e. if P _> 45% rated core thermal power,then Option A OLMCPR limit= Maximum of 1.75 * {K(P) from Figure 3} or {MCPR(F) from Figure 4}.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 4 of 46 If core thermal power (P) is < 45% of rated core thermal power, the Option AOLMCPR for all fuel types is obtained from Figure 3. | |||
==Reference:== | |||
Technical Specification Section 3.2.2.5.1.2 Option A OLMCPR for Single Recirculation Loop Operation The Option A OLMCPR as defined above for two recirculation loop operation inSection 5.1.1 is the same OLMCPR to be used for single recirculation loop operation. | |||
==Reference:== | |||
Technical Specification Section 3.2.2.5.2 Option BOption B does take into account the measured scram speeds that are faster than theTechnical Specification requirements, thus reducing the potential consequences of alimiting transient. | |||
Calculation of the Option B OLMCPR value as a function of measuredscram speeds is described in Section 10.5.2.1 Option B OLMCPR for Two Recirculation Loop Operation The Option B OLMCPR shall be determined for two recirculation loop operation asfollows:*TJ I 100%The rated (100%) core thermal power Option B OLMCPR (OLMCPR"o"B | |||
)is 1.66,--100%and is reported in Table 33. This OLMCPRo00 'nB of 1.66 is modified as described inNewSection 10 to be a function of the measured scram speeds to yield OLMCPR OptonBThen, if core thermal power (P) is > 45% of rated core thermal power, the Option BOLMCPR for all fuel types is the greater of:OLMCPRoNBW. | |||
* {K(P) from Figure 3} or {MCPR(F) from Figure 4},i.e. if P >__ 45% rated core thermal power, then Option B OLMCPR limitNew= Maximum of {OLMCPRoNfion | |||
* K(P) from Figure 3} or {MCPR(F) from Figure 4}.If core thermal power (P) is < 45% of rated core thermal power, the Option BOLMCPR for all fuel types is obtained from Figure 3. | |||
==Reference:== | |||
Technical Specification 3.2.2.5.2.2 Option B OLMCPR for Single Recirculation Loop Operation The Option B OLMCPR as defined above for two recirculation loop operation inSection 5.2.1 is the same OLMCPR to be used for single recirculation loop operation. | |||
==Reference:== | |||
Technical Specification 3.2.2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 5 of 46 5.3 Pressure Regulator Out of Service (PROOS) Operation Reference 18 GE SIL 614, Revision 1 describes the impact of operation without a backuppressure regulator (also called PROOS). This section provides power dependent MCPRlimits when a backup pressure regulator is not operational. | |||
The existing power dependent MAPLHGR and LHGR limits described in Sections 8.1 and8.2 have been found to be valid (bounding) for operation without a backup pressureregulator (References 19 and 2).A Pressure Regulator Fails Down-Scale (PRFDS) event without backup pressureregulator was evaluated for Monticello (Reference 19). This event resulted in a morerestrictive Power Dependent MCPR limit than required for normal reduced poweroperation with both pressure regulators operational. | |||
This event was re-evaluated forCycle 27 (Reference | |||
: 2) and determined to be more restrictive than the results inReference | |||
: 19. Figure 8 provides the required more restrictive power dependent MCPRARTS limits for powers below 85% and greater than or equal to 45%. For powers greaterthan or equal to 85% or below 45%, the power dependent MCPR and K(P) ARTS limitsprovided in Figure 3 are still valid. The ARTS limits are described in Reference | |||
: 17. Thenew Pressure Regulator Out of Service limits are applicable for Cycle 27 (Reference 2).Figure 8 combines the unchanged limits from Figure 3 along with the more restrictive limits determined in Reference 2 for PROOS operation. | |||
Figure 8 should only be used foroperation without a backup pressure regulator. | |||
Figure 8 is valid for both Option A andOption B OLMCPR limits.An interim MFLCPR Limit is provided in Figure 9. This limit should only be used if theGardel thermal limit input has not been modified as described in Sections 5.3.1 or 5.3.2to account for pressure regulator out of service operation. | |||
I.e., only Figure 8 or Figure 9should be used to provide the appropriate PROOS limit. These figures should not beutilized in combination. | |||
5.3.1 OLMCPR for Two Recirculation Loop Operation, WITHOUT A BACKUPPRESSURE REGULATOR. | |||
The Option A or B OLMCPR shall be determined for two recirculation loop operation as follows:The Option A OLMCPR is calculated as shown below for the Option B example withthe following exception: | |||
L NewThe OLMCPR OpfioN is replaced with the Option A OLMCPR of 1.75.The Option B OLMCPR is calculated as follows:100%The rated (100%) core thermal power Option B OLMCPR (OLMCPRop'o*B) is 1.66,ITIP 100%/and is reported in Table 33. This OLMCPR....OpB of 1.66 is modified as described inNewSection 10 to be a function of the measured scram speeds to yield OLMCPROp;on. | |||
Then, if core thermal power (P) is _> 85% of rated core thermal power, the Option BOLMCPR for all fuel types is the greater of:NewOLMCPR optionB * {K(P) from Figure 8} or {MCPR(F) from Figure 4),i.e. if P _ 85% rated core thermal power, then Option B OLMCPR limit... RNewMaximum of { OLMC_ OptionB | |||
* K(P) from Figure 81 or {MCPR(F) from Figure 4}.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 6 of 46 If core thermal power (P) is < 85% of rated core thermal power, the OLMCPR for allfuel types is obtained from Figure 8.5.3.2 OLMCPR for Single Recirculation Loop Operation, WITHOUT A BACKUPPRESSURE REGULATOR The Option A or B OLMCPR as defined previously for two recirculation loop operation in Section 5.3.1 is the same OLMCPR to be used for single recirculation loopoperation: | |||
6.0 Power-Flow MapThe Power-Flow Operating Map based on analysis to support Cycle 27 is shown inFigures 5, and 6. The Power-Flow Operating Map is consistent with a rated power of1775 MWth as described in References 6, 14, and 15.7.0 Approved Analytical MethodsNEDE-24011-P-A Rev. 19 "General Electric Standard Application for Reactor Fuel(GESTARY' NEDE-24011-P-A-US Rev. 19"General Electric Standard Application for Reactor Fuel(GESTAR) | |||
-Supplement for the United States."NEDO-31960-A NEDO-31960-A NEDC-32992P-A NEDO-32465-A NSPNAD-8608-A NSPNAD-8609-A "BWR Owners Group Long-Term Stability SolutionLicensing Methodology," | |||
Licensing Topical Report, June1991.Sup. 1 "BWR Owners Group Long-Term Stability SolutionLicensing Methodology, (Supplement 1)," Licensing Topical Report, Supplement 1, March 1992.General Electric Licensing Topical Report, "ODYSYApplication for Stability Licensing Calculations," | |||
July2001.General Electric Licensing Topical Report, "ReactorStability Detect and Suppress Solutions Licensing BasisMethodology and Reload Applications," | |||
August 1996.Rev. 4 "Reload Safety Evaluation Methods for Application to theMonticello Generating Plant." October 1995.Rev. 3 "Qualification of Reactor Physics Methods for Application to Monticello," | |||
October 1995.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 7 of 46 8.0 Fuel Rod Heat Generation Rate8.1 Maximum Average Planar Linear Heat Generation Rate (MAPLHGR) as a Function of ExposureThe MAPLHGR limits in Tables 1 through 14 are conservative values bounding all fuellattice types (all natural uranium lattices are excluded) in a given fuel bundle design, andare intended only for use in hand calculations as described below to establish MAPLHGRlimits for Technical Specification 3.2.1. No channel bow effects are included in thebounding MAPLHGR values in Tables I through 14 as there are no reused channels. | |||
MAPLHGR limits for each individual fuel lattice for a given bundle design as a function ofaxial location and average planar exposure are determined based on the approvedmethodology referenced in Monticello Technical Specification 5.6.3.b and are loaded intothe process computer for use in core monitoring calculations. | |||
When and if hand calculations are required: | |||
8.1.1 Two-Recirculation Loop Operation (MAPLHGR) | |||
At rated core thermal power and core flow conditions, the MAPLHGR limit foreach fuel bundle design as a function of average planar exposure shall notexceed the bounding limits provided in Tables 1 through 14.The MAPLHGR limit is adjusted for off-rated core thermal power and core flowconditions by determining the following: | |||
MAPLHGR(P) | |||
= MAPFAC(P) | |||
* MAPLHGR limit from Tables 1 through 14.MAPLHGR(F) | |||
= MAPFAC(F) | |||
* MAPLHGR limit from Tables 1 through 14.where MAPFAC(P) and MAPFAC(F) are determined from Figures 1 and 2,respectively, and where P is the core thermal power in percent of rated, and Fis the core flow in percent of rated.The Technical Specification (TS) MAPLHGR limit is determined as follows:MAPLHGR (TS) Limit = Minimum{MAPLHGR(P), | |||
MAPLHGR(F)} | |||
Note that all natural uranium lattices are excluded in Tables 1 through 14.Straight line interpolation between nearest data points is permitted only withineach individual Tables 1 through 14.8.1.2 Single Recirculation Loop Operation (MAPLHGR) | |||
When in single recirculation loop operation, perform the following: | |||
8.1.2.1 Perform the action specified in Section 8.1.1 above.8.1.2.2 Separately, apply the single loop operation multiplier to the limitingvalues of MAPLHGR from Tables 1 through 14 as follows:for GE14C: multiplier is 0.90.8.1.2.3 Select the more limiting (i.e. smaller) value from Sections 8.1.2.1 or8.1.2.2. | |||
==Reference:== | |||
Technical Specification 3.2.1.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 8 of 46 8.2 Linear Heat Generation Rate (LHGR)The uranium dioxide (U02) and gadolinia LHGR limits as a function of fuel rod peak pelletexposure for each bundle type in Cycle 27 is provided in Tables 15 through 28. Thegadolinia LHGR limits in Tables 15 through 28 are bounding gadolinia LHGR limits for allthe gadolinia concentrations occurring in each of the bundle types used in Cycle 27. TheLHGR limits are fuel rod nodal limits, and are to be applied at every node of the fuel rodincluding the natural uranium lattices. | |||
The individual LHGR limits for the uranium dioxide and gadolinia fuel rods in each fuelbundle type used in Cycle 27, as a function of axial location and pellet exposure aredetermined based on the approved methodology referenced in Monticello Technical Specification 5.6.3.b and are loaded into the process computer for use in core monitoring calculations. | |||
The LHGR limits are presented in this report for use when and if hand calculations areperformed to demonstrate compliance with Technical Specification 3.2.3.When and if hand calculations are performed: | |||
8.2.1 Two-Recirculation Loop Operation (LHGR)At rated core thermal power and core flow conditions, the LHGR limit for eachfuel bundle design as a function of peak pellet exposure and fuel pin type shallnot exceed the bounding limits provided in Tables 15 through 28.The LHGR limit is adjusted for off-rated core thermal power and core flowconditions by determining the following: | |||
LHGR(P) = MAPFAC(P) | |||
* LHGR limit from Tables 15 through 28.LHGR(F) = MAPFAC(F) | |||
* LHGR limit from Tables 15 through 28.where the multipliers MAPFAC(P) and MAPFAC(F) are determined from Figures1 and 2, respectively, and where P is the core thermal power in percent of rated,and F is the core flow in percent of rated.The Technical Specification (TS) LHGR limit is determined as follows:LHGR TS Limit = Minimum{LHGR(P), | |||
LHGR(F)}Note that the LHGR limits are fuel rod nodal limits, and are to be applied at everynode of the fuel rod, including the natural uranium lattices. | |||
Straight lineinterpolation between nearest data points is permitted only within each individual Tables 15 through 28.8.2.2 Single Recirculation Loop Operation (LHGR)When in single recirculation loop operation, perform the following: | |||
8.2.2.1 Perform the same action specified in Section 8.2.1 above. There areno separate single loop operation specific multipliers applicable toLHGR, i.e. the multipliers from Section 8.2.1 also apply to singlerecirculation loop operation. | |||
==Reference:== | |||
Technical Specification Section 3.2.3.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 9 of 46 Table IMAPLHGR Limits (1)GE14C EDB-2931 (2) GE14-P1ODNAB392-16GZ-10OT-145-T6-2931 Average Planar Exposure MAPLHGR LimitGWD/MTU (GWD/STU) | |||
(kW/ft)(3) 0.00 (0.00) 8.120.22 (0.20) 8.161.10 (1.00) 8.232.20 (2.00) 8.323.31 (3.00) 8.424.41 (4.00) 8.525.51 (5.00) 8.626.61 (6.00) 8.717.72 (7.00) 8.798.82 (8.00) 8.889.92 (9.00) 8.9811.02 (10.00) 9.0912.13 (11.00) 9.2113.23 (12.00) 9.3314.33 (13.00) 9.3915.43 (14.00) 9.3916.53 (15.00) 9.4118.74 (17.00) 9.4322.05 (20.00) 9.4523.01 (20.87) 9.4227.56 (25.00) 9.2733.07 (30.00) 9.0038.58 (35.00) 8.7844.09 (40.00) 8.5046.34 (42.04) 8.3249.60 (45.00) 8.0755.12 (50.00) 7.5660.63 (55.00) 6.2263.50 (57.61) 4.9363.54 (57.65) 4.9163.68 (57.77) 4.8963.99 (58.05) 4.7564.52 (58.53) 4.75Notes:(1) Values in Table 1 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 10 of 46 Table 2MAPLHGR Limits (1)GE14C EDB-31 00(2) GE14-P1ODNAB424-14GZ-10OT-145-T6-3100 Average Planar Exposure MAPLHGR LimitGWD/MTU (GWD/STU) | |||
(kW/ft)(3) 0.00 (0.00) 7.470.22 (0.20) 7.531.10 (1.00) 7.632.20 (2.00) 7.753.31 (3.00) 7.864.41 (4.00) 7.965.51 (5.00) 8.066.61 (6.00) 8.167.72 (7.00) 8.268.82 (8.00) 8.379.92 (9.00) 8.4811.02 (10.00) 8.5912.13 (11.00) 8.7113.23 (12.00) 8.8314.33 (13.00) 8.8915.43 (14.00) 8.9616.53 (15.00) 9.0317.64 (16.00) 9.1118.74 (17.00) 9.1419.84 (18.00) 9.1720.94 (19.00) 9.1922.05 (20.00) 9.2123.01 (20.87) 9.2223.15 (21.00) 9.2224.25 (22.00) 9.2325.35 (23.00) 9.2326.46 (24.00) 9.2227.56 (25.00) 9.2233.07 (30.00) 9.1738.58 (35.00) 9.0244.09 (40.00) 8.6646.34 (42.04) 8.4649.60 (45.00) 8.1855.12 (50.00) 7.4560.63 (55.00) 4.9760.90 (55.25) 4.8560.96 (55.30) 4.8562.80 (56.97) 4.8563.16 (57.30) 4.85Notes:(1) Values in Table 2 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 11 of 46 Table 3MAPLHGR Limits )GE14C EDB-3101(2) | |||
GE14-P1ODNAB375-16GZ-10OT-145-T6-3101 Average Planar Exposure MAPLHGR LimitGWD/MTU (GWDISTU) | |||
(kW/ft)(3) 0.00 (0.00) 7.990.22 (0.20) 8.041.10(1.00) 8.122.20(2.00) 8.183.31 (3.00) 8.254.41 (4.00) 8.325.51 (5.00) 8.386.61 (6.00) 8.447.72 (7.00) 8.518.82 (8.00) 8.599.92 (9.00) 8.6811.02 (10.00) 8.7812.13 (11.00) 8.9013.23 (12.00) 9.0114.33 (13.00) 9.1115.43 (14.00) 9.1216.53 (15.00) 9.1517.64 (16.00) 9.1818.74 (17.00) 9.2019.84 (18.00) 9.2220.94 (19.00) 9.2322.05 (20.00) 9.2423.01 (20.87) 9.2523.15 (21.00) 9.2524.25 (22.00) 9.2125.35 (23.00) 9.1626.46 (24.00) 9.1027.56 (25.00) 9.0533.07 (30.00) 8.7938.58 (35.00) 8.5844.09 (40.00) 8.3846.34 (42.04) 8.2049.60 (45.00) 7.9455.12 (50.00) 7.4560.63 (55.00) 5.4661.93 (56.19) 4.8762.00 (56.24) 4.8762.73 (56.91) 4.7163.39 (57.50) 4.71Notes:(1) Values in Table 3 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 12 of 46 Table 4MAPLHGR Limits )GE14C EDB-3102(2) | |||
GEl 4-PIODNAB392-16GZ-1OOT-145-T6-3102 Average Planar Exposure MAPLHGR LimitGWD/MTU (GWDISTU) | |||
(kW/ft)(3) 0.00 (0.00) 8.130.22 (0.20) 8.171.10 (1.00) 8.242.20 (2.00) 8.333.31 (3.00) 8.434.41 (4.00) 8.525.51 (5.00) 8.626.61 (6.00) 8.717.72 (7.00) 8.798.82 (8.00) 8.879.92 (9.00) 8.9711.02 (10.00) 9.0812.13 (11.00) 9.2013.23 (12.00) 9.3114.33 (13.00) 9.3315.43 (14.00) 9.3416.53 (15.00) 9.3617.64 (16.00) 9.3918.74 (17.00) 9.4119.84 (18.00) 9.4320.94 (19.00) 9.4322.05 (20.00) 9.4423.01 (20.87) 9.4523.15 (21.00) 9.4524.25 (22.00) 9.4425.35 (23.00) 9.3826.46 (24.00) 9.3227.56 (25.00) 9.2633.07 (30.00) 8.9938.58 (35.00) 8.7644.09 (40.00) 8.5646.34 (42.04) 8.3849.60 (45.00) 8.1355.12 (50.00) 7.6360.63 (55.00) 6.1663.41 (57.53) 4.9063.50 (57.61) 4.9063.52 (57.62) 4.8963.86 (57.93) 4.7464.43 (58.45) 4.74Notes:(') Values in Table 4 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 13 of 46 Table 5MAPLHGR Limits (1)GE14C EDB-3103(2) | |||
GE14-PIODNAB391-12GZ-10OT-145-T6-3103 Average Planar Exposure MAPLHGR LimitGWD/MTU (GWD/STU) | |||
(kW/ft)(3) 0.00 (0.00) 8.520.22 (0.20) 8.541.10 (1.00) 8.582.20 (2.00) 8.643.31 (3.00) 8.714.41 (4.00) 8.775.51 (5.00) 8.836.61 (6.00) 8.907.72 (7.00) 8.958.82 (8.00) 9.029.92 (9.00) 9.0811.02 (10.00) 9.1512.13 (11.00) 9.2413.23 (12.00) 9.3314.33 (13.00) 9.3315.43 (14.00) 9.3516.53 (15.00) 9.3717.64 (16.00) 9.4018.74 (17.00) 9.4219.84 (18.00) 9.4320.94 (19.00) 9.4422.05 (20.00) 9.4423.01 (20.87) 9.4523.15 (21.00) 9.4524.25 (22.00) 9.4426.46 (24.00) 9.3227.56 (25.00) 9.2733.07 (30.00) 9.0038.58 (35.00) 8.7744.09 (40.00) 8.5546.34 (42.04) 8.3849.60 (45.00) 8.1355.12 (50.00) 7.6360.63 (55.00) 6.1563.50 (57.61) 4.8963.60 (57.70) 4.8563.61 (57.71) 4.8463.84 (57.92) 4.7464.43 (58.45) 4.74Notes:(1) Values in Table 5 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 14 of 46 Table 6MAPLHGR Limits (1)GE14C EDB-3375(2' GE14-P1ODNAB373-16GZ-10OT-145-T6-3375 Average Planar Exposure MAPLHGR LimitGWD/MTU (GWD/STU) | |||
(kW/ft)(3) 0.00 (0.00) 7.950.22 (0.20) 8.011.10 (1.00) 8.082.20 (2.00) 8.143.31 (3.00) 8.214.41 (4.00) 8.285.51 (5.00) 8.346.61 (6.00) 8.407.72 (7.00) 8.478.82 (8.00) 8.559.92 (9.00) 8.6411.02 (10.00) 8.7412.13 (11.00) 8.8613.23 (12.00) 8.9814.33 (13.00) 9.0915.43 (14.00) 9.2016.53 (15.00) 9.3117.64 (16.00) 9.4018.74 (17.00) 9.4019.84 (18.00) 9.4020.94 (19.00) 9.4022.05 (20.00) 9.4123.01 (20.87) 9.4223.15 (21.00) 9.4224.25 (22.00) 9.4325.35 (23.00) 9.4326.46 (24.00) 9.3627.56 (25.00) 9.3033.07 (30.00) 8.9638.58 (35.00) 8.6544.09 (40.00) 8.3746.34 (42.04) 8.1949.60 (45.00) 7.9455.12 (50.00) 7.4460.63 (55.00) 5.3861.77 (56.04) 4.8661.83 (56.09) 4.8663.07 (57.22) 4.8563.11 (57.25) 4.84Notes:(1) Values in Table 6 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 15 of 46 Table 7MAPLHGR Limits (1)GE14C EDB-3376(2) | |||
GE14-P 1ODNAB391-16GZ-10OT-145-T6-3376 Average Planar Exposure MAPLHGR LimitGWD/MTU (GWDISTU) | |||
(kW/ft)"3)0.00 (0.00) 8.150.22 (0.20) 8.191.10 (1.00) 8.252.20 (2.00) 8.323.31 (3.00) 8.414.41 (4.00) 8.495.51 (5.00) 8.576.61 (6.00) 8.667.72 (7.00) 8.758.82 (8.00) 8.849.92 (9.00) 8.9311.02 (10.00) 9.0112.13(11.00) 9.1013.23 (12.00) 9.2014.33 (13.00) 9.3115.43 (14.00) 9.4316.53 (15.00) 9.5417.64 (16.00) 9.6518.74 (17.00) 9.6919.84 (18.00) 9.6820.94 (19.00) 9.6722.05 (20.00) 9.6623.01 (20.87) 9.6523.15 (21.00) 9.6524.25 (22.00) 9.6425.35 (23.00) 9.6326.46 (24.00) 9.6127.56 (25.00) 9.5333.07 (30.00) 9.1838.58 (35.00) 8.8844.09 (40.00) 8.6346.34 (42.04) 8.5049.60 (45.00) 8.2855.12 (50.00) 7.7360.63 (55.00) 6.1463.36 (57.48) 4.8963.50 (57.61) 4.8963.51 (57.62) 4.8964.05 (58.11) 4.8964.10 (58.15) 4.87Notes:(1) Values in Table 7 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 16 of 46 Table 8MAPLHGR Limits (1)GE14C EDB-3377( | |||
: 2) GE 14-P 1ODNAB391-15GZ-10OT-145-T6-3377 Average Planar Exposure MAPLHGR LimitGWDIMTU (GWD/STU) | |||
(kW/ft)(3 10.00 (0.00) 8.030.22 (0.20) 8.081.10 (1.00) 8.162.20 (2.00) 8.293.31 (3.00) 8.434.41 (4.00) 8.535.51 (5.00) 8.616.61 (6.00) 8.707.72 (7.00) 8.798.82 (8.00) 8.889.92 (9.00) 8.9711.02 (10.00) 9.0612.13 (11.00) 9.1513.23 (12.00) 9.2514.33 (13.00) 9.3515.43 (14.00) 9.4716.53 (15.00) 9.5817.64 (16.00) 9.6818.74 (17.00) 9.7119.84 (18.00) 9.7020.94 (19.00) 9.6922.05 (20.00) 9.6823.01 (20.87) 9.6723.15 (21.00) 9.6725.35 (23.00) 9.6526.46 (24.00) 9.6127.56 (25.00) 9.5333.07 (30.00) 9.1838.58 (35.00) 8.8844.09 (40.00) 8.6446.34 (42.04) 8.4849.60 (45.00) 8.2555.12 (50.00) 7.7260.63 (55.00) 6.1663.41 (57.53) 4.8963.42 (57.53) 4.8963.50 (57.61) 4.8963.99 (58.05) 4.8964.04 (58.09) 4.87Notes:(1) Values in Table 8 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 17 of 46 Table 9MAPLHGR Limits )GE14C EDB-337812) | |||
GE14-P1ODNAB391-12GZ-10OT-145-T6-3378 Average Planar Exposure MAPLHGR LimitGWD/MTU (GWDISTU) | |||
(kW/ft)13)0.00 (0.00) 8.520.22 (0.20) 8.551.10(1.00) 8.622.20 (2.00) 8.703.31 (3.00) 8.764.41 (4.00) 8.825.51 (5.00) 8.896.61 (6.00) 8.957.72 (7.00) 9.028.82 (8.00) 9.099.92 (9.00) 9.1611.02 (10.00) 9.2212.13 (11.00) 9.2913.23 (12.00) 9.3614.33 (13.00) 9.4415.43 (14.00) 9.5316.53 (15.00) 9.6117.64 (16.00) 9.6818.74 (17.00) 9.7519.84 (18.00) 9.7620.94 (19.00) 9.7622.05 (20.00) 9.7623.01 (20.87) 9.7523.15 (21.00) 9.7524.25 (22.00) 9.7325.35 (23.00) 9.7226.46 (24.00) 9.7027.56 (25.00) 9.6633.07 (30.00) 9.3238.58 (35.00) 9.0044.09 (40.00) 8.6646.34 (42.04) 8.5149.60 (45.00) 8.2955.12 (50.00) 7.7560.63 (55.00) 6.2263.50 (57.61) 4.9263.64 (57.74) 4.8663.66 (57.75) 4.8664.05 (58.10) 4.8664.09 (58.14) 4.86Notes:(1) Values in Table 9 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 18 of 46 Table 10MAPLHGR Limits (1)GE14C EDB-293212) GEl 4-P1ODNAB392-17GZ-10OT-145-T6-2932 Average Planar Exposure MAPLHGR LimitGWD/MTU (GWD/STU) | |||
(kW/ft)'3)0.00 (0.00) 8.000.22 (0.20) 8.051.10 (1.00) 8.142.20 (2.00) 8.253.31 (3.00) 8.374.41 (4.00) 8.505.51 (5.00) 8.626.61 (6.00) 8.757.72 (7.00) 8.888.82 (8.00) 8.999.92 (9.00) 9.1111.02 (10.00) 9.2312.13 (11.00) 9.3513.23 (12.00) 9.4614.33 (13.00) 9.5615.43 (14.00) 9.6616.53 (15.00) 9.7418.74 (17.00) 9.8222.05 (20.00) 9.8123.01 (20.87) 9.7827.56 (25.00) 9.6433.07 (30.00) 9.3038.58 (35.00) 8.9844.09 (40.00) 8.7046.34 (42.04) 8.5149.60 (45.00) 8.2555.12 (50.00) 7.7360.63 (55.00) 6.2563.50 (57.61) 4.9363.57 (57.67) 4.9063.70 (57.79) 4.8964.44 (58.46) 4.8964.48 (58.50) 4.89Notes:(1) Values in Table 10 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 19 of 46 Table 11MAPLHGR Limits1)GE1 4C EDB-4175(2) | |||
GE 14-P 1ODNAB372-17GZ-10OT-145-T6-4175 Average Planar Exposure MAPLHGR LimitGWD/MTU (GWD/STU) | |||
(kW/ft)(3 10.00 (0.00) 7.980.22 (0.20) 8.021.10 (1.00) 8.082.20(2.00) 8.183.31 (3.00) 8.284.41 (4.00) 8.385.51 (5.00) 8.496.61 (6.00) 8.617.72 (7.00) 8.738.82 (8.00) 8.869.92 (9.00) 8.9811.02 (10.00) 9.1112.13 (11.00) 9.2213.23 (12.00) 9.3014.33 (13.00) 9.3915.43 (14.00) 9.4916.53 (15.00) 9.4617.64 (16.00) 9.4618.74 (17.00) 9.4619.84 (18.00) 9.4720.94 (19.00) 9.4723.01 (20.87) 9.4723.15 (21.00) 9.4724.25 (22.00) 9.4725.35 (23.00) 9.4726.46 (24.00) 9.4027.56 (25.00) 9.3433.07 (30.00) 9.0338.58 (35.00) 8.7644.09 (40.00) 8.5246.34 (42.04) 8.3649.60 (45.00) 8.1355.12 (50.00) 7.5960.63 (55.00) 6.1663.44 (57.55) 4.8863.50 (57.61) 4.8863.70 (57.79) 4.8764.88 (58.86) 4.8765.11 (59.07) 4.87Notes:(1) Values in Table 11 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 20 of 46 Table 12MAPLHGR Limits (GE14C EDB-4176(2) | |||
GE14-P 1ODNAB386-16GZ-10OT-145-T6-4176 Average Planar Exposure MAPLHGR LimitGWD/MTU (GWD/STU) | |||
(kW/ft)(3) 0.00 (0.00) 8.110.22 (0.20) 8.151.10 (1.00) 8.212.20 (2.00) 8.293.31 (3.00) 8.364.41 (4.00) 8.445.51 (5.00) 8.516.61 (6.00) 8.597.72 (7.00) 8.678.82 (8.00) 8.769.92 (9.00) 8.8411.02 (10.00) 8.9312.13 (11.00) 9.0213.23 (12.00) 9.1114.33 (13.00) 9.2115.43 (14.00) 9.3116.53 (15.00) 9.4217.64 (16.00) 9.5318.74 (17.00) 9.6019.84 (18.00) 9.6420.94 (19.00) 9.6522.05 (20.00) 9.6623.01 (20.87) 9.6623.15 (21.00) 9.6624.25 (22.00) 9.6425.35 (23.00) 9.6326.46 (24.00) 9.6127.56 (25.00) 9.5733.07 (30.00) 9.2438.58 (35.00) 8.9244.09 (40.00) 8.5946.34 (42.04) 8.4349.60 (45.00) 8.2055.12 (50.00) 7.6760.63 (55.00) 5.9362.89 (57.06) 4.9063.16 (57.30) 4.8963.50 (57.61) 4.8964.67 (58.67) 4.8965.28 (59.23) 4.89Notes:ý') Values in Table 12 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 21 of 46 Table 13MAPLHGR Limits )GE14C EDB-417712) | |||
GE14-PIODNAB386-16GZ-10OT-145-T6-4177 Average Planar Exposure MAPLHGR LimitGWDJMTU (GWD/STU) | |||
(kW/ft)(3) 0.00 (0.00) 8.130.22 (0.20) 8.171.10 (1.00) 8.232.20 (2.00) 8.303.31 (3.00) 8.384.41 (4.00) 8.465.51 (5.00) 8.546.61 (6.00) 8.637.72 (7.00) 8.728.82 (8.00) 8.819.92 (9.00) 8.9011.02 (10.00) 8.9912.13 (11.00) 9.0713.23 (12.00) 9.1614.33 (13.00) 9.251543 (14.00) 9.3416.53 (15.00) 9.4417.64 (16.00) 9.5418.74 (17.00) 9.6119.84 (18.00) 9.6420.94 (19.00) 9.6422.05 (20.00) 9.6523.01 (20.87) 9.6523.15 (21.00) 9.6524.25 (22.00) 9.6525.35 (23.00) 9.6426.46 (24.00) 9.6127.56 (25.00) 9.5533.07 (30.00) 9.2438.58 (35.00) 8.9144.09 (40.00) 8.5946.34 (42.04) 8.4349.60 (45.00) 8.2055.12 (50.00) 7.6760.63 (55.00) 5.9863.02 (57.17) 4.8863.12 (57.26) 4.8863.50 (57.61) 4.8864.64 (58.64) 4.8865.26 (59.20) 4.88Notes:(1) Values in Table 13 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 22 of 46 Table 14MAPLHGR Limits (1)GE14C EDB-4178(2) | |||
GE14-P 1ODNAB389-11GZ-10OT-145-T6-4178 Average Planar Exposure MAPLHGR LimitGWD/MTU (GWD/STU) | |||
(kW/ft)(3) 0.00 (0.00) 8.550.22 (0.20) 8.621.10 (1.00) 8.702.20 (2.00) 8.763.31 (3.00) 8.824.41 (4.00) 8.885.51 (5.00) 8.946.61 (6.00) 9.017.72 (7.00) 9.088.82 (8.00) 9.159.92 (9.00) 9.2211.02 (10.00) 9.3012.13 (11.00) 9.3713.23 (12.00) 9.4414.33 (13.00) 9.5115.43 (14.00) 9.5716.53 (15.00) 9.6317.64 (16.00) 9.6918.74 (17.00) 9.7419.84 (18.00) 9.7420.94 (19.00) 9.7322.05 (20.00) 9.7323.01 (20.87) 9.7123.15 (21.00) 9.7124.25 (22.00) 9.6925.35 (23.00) 9.6826.46 (24.00) 9.6627.56 (25.00) 9.6233.07 (30.00) 9.2938.58 (35.00) 8.9344.09 (40.00) 8.6146.34 (42.04) 8.4549.60 (45.00) 8.2255.12 (50.00) 7.6860.63 (55.00) 6.2563.50 (57.61) 4.9363.61 (57.71) 4.8863.63 (57.72) 4.8865.22 (59.17) 4.8865.83 (59.72) 4.88Notes:(1) Values in Table 14 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 23 of 46 Table 152U02/Gd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-P1ODNAB392-16GZ-10OT-145-T6-2931 (GE14C)Engineering Data Bank (EDB) Bundle Number : 2931Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GWD/ST) | |||
(kW/ft) GWd/MT (GWD/ST) | |||
(kW/ft)0.00 (0.00) 13.40 0.00(0.00) 12.0016.00 (14.51) 13.40 13.42 (12.17) 12.0063.50 (57.61) 8.00 60.17 (54.59) 7.1670.00 (63.50) 5.00 66.57 (60.39) 4.48Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations. | |||
Table 162UO2/Gd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-P1ODNAB392-17GZ-10OT-145-T6-2932 (GE14C)Engineering Data Bank (EDB) Bundle Number : 2932Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GWD/ST) | |||
(kW/ft) GWd/MT (GWD/ST) | |||
(kW/ft)0.00 (0.00) 13.40 0.00 (0.00) 12.2616.00 (14.51) 13.40 13.53 (12.28) 12.2663.50 (57.61) 8.00 60.63 (55.00) 7.3270.00 (63.50) 5.00 67.07 (60.84) 4.57Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations. | |||
NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 24 of 46 Table 17 2UO2IGd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-P1ODNAB424-14GZ-10OT-145-T6-3100 (GE14C)Engineering Data Bank (EDB) Bundle Number : 3100Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GVMD/ST) | |||
(kW/ft) GWd/MT (GWD/ST) | |||
(kW/ft)0.00 (0.00) 13.40 0.00 (0.00) 12.0016.00 (14.51) 13.40 13.42 (12.17) 12.0063.50 (57.61) 8.00 60.17 (54.59) 7.1670.00 (63.50) 5.00 66.57 (60.39) 4.48Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations. | |||
Table 182UO2/Gd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-P1ODNAB375-16GZ-10OT-145-T6-3101 (GE14C)Engineering Data Bank (EDB) Bundle Number : 3101Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GWD/ST) | |||
(kW/ft) GWd/MT (GWD/ST) | |||
(kW/ft)0.00 (0.00) 13.40 0.00 (0.00) 12.0016.00 (14.51) 13.40 13.42 (12.17) 12.0063.50 (57.61) 8.00 60.17 (54.59) 7.1670.00 (63.50) 5.00 66.57 (60.39) 4.48Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations. | |||
NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 25 of 46 Table 192UO21Gd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-PIODNAB392-16GZ-10OT-145-T6-3102 (GE14C)Engineering Data Bank (EDB) Bundle Number 1: 3102Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GWD/ST) | |||
(kW/ft) GWd/MT (GWD/ST) | |||
(kW/ft)0.00 (0.00) 13.40 0.00 (0.00) 12.0016.00 (14.51) 13.40 13.42 (12.17) 12.0063.50 (57.61) 8.00 60.17 (54.59) 7.1670.00 (63.50) 5.00 66.57 (60.39) 4.48Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations. | |||
Table 20 2U02/Gd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-P1ODNAB391-12GZ-10OT-145-T6-3103 (GE14C)Engineering Data Bank (EDB) Bundle Number : 3103Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GWD/ST) | |||
(kW/ft) GWd/MT (GWD/ST) | |||
(kW/ft)0.00 (0.00) 13.40 0.00 (0.00) 12.0016.00 (14.51) 13.40 13.42 (12.17) 12.0063.50 (57.61) 8.00 60.17 (54.59) 7.1670.00 (63.50) 5.00 66.57 (60.39) 4.48Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations. | |||
NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 26 of 46 Table 21 2U02/Gd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-P1ODNAB373-16GZ-10OT-145-T6-3375 (GE14C)Engineering Data Bank (EDB) Bundle Number': | |||
3375Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GWD/ST) | |||
(kW/ft) GWd/MT (GWD/SF) | |||
(kW/ft)0.00 (0.00) 13.40 0.00 (0.00) 12.0016.00 (14.51) 13.40 13.42 (12.17) 12.0063.50 (57.61) 8.00 60.17 (54.59) 7.1670.00 (63.50) 5.00 66.57 (60.39) 4.48Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations. | |||
Table 22 2UO2/Gd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-P1ODNAB391-16GZ-10OT-145-T6-3376 (GE14C)Engineering Data Bank (EDB) Bundle Number 1: 3376Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GWD/ST) | |||
(kW/ft) GWd/MT (GWD/ST) | |||
(kW/ft)0.00(0.00) 13.40 0.00(0.00) 12.0016.00 (14.51) 13.40. 13.42 (12.17) 12.0063.50 (57.61) 8.00 60.17 (54.59) 7.1670.00 (63.50) 5.00 66.57 (60.39) 4.48Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations. | |||
NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 27 of 46 Table 23 2UO2/Gd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-PI0DNAB391-15GZ-10OT-145-T6-3377 (GE14C)Engineering Data Bank (EDB) Bundle Number 1: 3377Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GWD/ST) | |||
(kW/ft) GWd/MT (GWD/ST) | |||
(kW/ft)0.00 (0.00) 13.40 0.00 (0.00) 12.0016.00 (14.51) 13.40 13.42 (12.17) 12.0063.50 (57.61) 8.00 60.17 (54.59) 7.1670.00 (63.50) 5.00 66.57 (60.39) 4.48Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations. | |||
Table 24 2UO2/Gd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-P1ODNAB391-12GZ-10OT-145-T6-3378 (GE14C)Engineering Data Bank (EDB) Bundle Number : 3378Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GWD/ST) | |||
(kW/ft) GWd/MT (GWD/ST) | |||
(kW/ft)0.00(0.00) 13.40 0.00(0.00) 12.0016.00 (14.51) 13.40 13.42 (12.17) 12.0063.50 (57.61) 8.00 60.17 (54.59) 7.1670.00 (63.50) 5.00 66.57 (60.39) 4.48Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations. | |||
NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 28 of 46 Table 25 2UO2/Gd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-P1ODNAB372-17GZ-10OT-145-T6-4175 (GE14C)Engineering Data Bank (EDB) Bundle Number : 4175Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GWD/ST) | |||
(kW/ft) GWd/MT (GWD/ST) | |||
(kW/ft)0.00 (0.00) 13.40 0.00(0.00) 12.0016.00 (14.51) 13.40 13.42 (12.17) 12.0063.50 (57.61) 8.00 60.17 (54.59) 7.1670.00 (63.50) 5.00 66.57 (60.39) 4.48Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations. | |||
Table 26 2UO2/Gd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-P1ODNAB386-16GZ-10OT-145-T6-41ý76 (GE14C)Engineering Data Bank (EDB) Bundle Number : 4176Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GWD/ST) | |||
(kW/ft) GWd/MT (GWD/ST) | |||
(kW/ft)0.00 (0.00) 13.40 0.00 (0.00) 12.0016.00 (14.51) 13.40 13.42 (12.17) 12.0063.50 (57.61) 8.00 60.17 (54.59) 7.1670.00 (63.50) 5.00 66.57 (60.39) 4.48Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations. | |||
NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 29 of 46 Table 27 2UO2/Gd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-P1ODNAB386-16GZ-10OT-145-T6-4177 (GE14C)Engineering Data Bank (EDB) Bundle Number ': 4177Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GWD/ST) | |||
(kW/ft) GWd/MT (GWD/ST) | |||
(kW/ft)0.00 (0.00) 13.40 0.00 (0.00) 12.0016.00 (14.51) 13.40 13.42 (12.17) 12.0063.50 (57.61) 8.00 60.17 (54.59) 7.1670.00 (63.50) 5.00 66.57 (60.39) 4.48Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations. | |||
Table 28 2UO2/Gd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-P1ODNAB389-11GZ-10OT-145-T6-4178 (GE14C)Engineering Data Bank (EDB) Bundle Number : 4178Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GWD/ST) | |||
(kW/ft) GWd/MT (GWD/ST) | |||
(kW/ft)0.00 (0.00) 13.40 0.00 (0.00) 12.0016.00 (14.51) 13.40 13.42 (12.17) 12.0063.50 (57.61) 8.00 60.17 (54.59) 7.1670.00 (63.50) 5.00 66.57 (60.39) 4.48Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations. | |||
NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 30 of 46 9.0 Core Stability Requirements Stability Option III SolutionMonticello has implemented the BWR Owners Group Long Term Stability Solution OptionIII using the Oscillation Power Range Monitor (OPRM) as described in References 4 and10. The plant specific Hot Channel Oscillation Magnitude (HCOM) (Reference | |||
: 11) andother cycle specific stability parameters are used in the Cycle 27 Option III Stability Evaluation, which is documented in Reference | |||
: 2. A Backup Stability Protection (BSP)evaluation is also documented in References 2 and 13, and is used in the event that theOption III OPRM system is declared INOPERABLE. | |||
The following Option III OPRM stability setpoint determination and the implementation ofthe associated BSP Regions shown in Figures 5 and 6 provide the stability licensing bases for Monticello Cycle 27.Option III OPRM Setpoints A reload Option III evaluation has been performed in accordance with the licensing methodology described in Reference | |||
: 4. The stability based Operating Limit MinimumCritical Power Ratio (OLMCPR) is determined for two conditions as a function of OPRMamplitude setpoint. | |||
The two conditions evaluated are: (1) a postulated oscillation at 45%rated core flow quasi steady-state operation (SS), and (2) a postulated oscillation following a two recirculation pump trip (2PT) from the limiting rated power operating statepoint.The OPRM-setpoint-dependent OLMCPR(SS) and OLMCPR(2PT) values are calculated for Cycle 27 in accordance with the BWROG regional mode DIVOM guidelines described in Reference | |||
: 12. The Cycle 27 Option Ill evaluation provides adequate protection againstviolation of the Safety Limit MCPR (SLMCPR) for the two postulated reactor instability events as long as the plant OLMCPR is equal to or greater than OLMCPR(SS) andOLMCPR(2PT) for the selected OPRM setpoint in Table 30.The relationship between the OPRM Successive Confirmation Count Setpoint and theOPRM Amplitude Setpoint is provided in Reference 4 and Table 29. For intermediate OPRM Amplitude Setpoints, the corresponding OPRM Successive Confirmation CountSetpoints have been obtained by using linear interpolation. | |||
The OPRM setpoints for Two Loop Operation (TLO) are conservative relative to SingleLoop Operation (SLO) and are, therefore, bounding. | |||
NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 31 of 46 Table 29Relationship Between OPRM Successive Confirmation Count Setpoint andOPRM Amplitude SetpointSuccessive OPRMConfirmation Amplitude Count SetpointSetpoint6 >1.048 >1.059 >1.0610 >1.0711 M1.0812 >1.0913 M1.1014 >1.1115 >1.1316 >-1.1417 2:1.1618 >-1.1919 -1.2120 >-1.24Table 30OPRM Setpoint Versus OLMCPROPRMAmplitude OLMCPR(SS) | |||
OLMCPR(2PT) | |||
Setpoint1.05 1.26 1.171.06 1.28 1.191.07 1.30 1.211.08 1.33 1.241.09 1.35 1.261.10 1.38 1.281.11 1.40 1.311.12 1.43 1.331.13 1.46 1.361.14 1.49 1.381.15 1.52 1.41OLMCPRAcceptance 1.87 1.66Criteria IThe OPRM Period Based Detection Algorithm (PBDA) instrumentation setpoints for usein Technical Specification LCO 3.3.1.1 Table 3.3.1.1-1 Function 2f shall not exceed thefollowing: | |||
Confirmation Count Setpoint: | |||
16Amplitude Setpoint: | |||
1.15NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 32 of 46 Backup Stability Protection RegionsThe Backup Stability Protection (BSP) regions are shown in Figure 5, and are given ingreater detail in Figure 6. The BSP regions are an integral part of the Tech Spec requiredalternative method to detect and suppress thermal hydraulic instability oscillations in thatthey identify areas of the power/flow map where there is an increased probability that thereactor core could experience a thermal hydraulic instability. | |||
Regions are identified that are either excluded from planned entry and continued operation (Scram Region), | |||
or where planned entry is not permitted unless specificoperating restrictions are met and specific actions are required to be taken to immediately leave the region following inadvertent or forced entry (Controlled Entry Region). | |||
Theboundaries of these regions are established on a cycle specific basis based upon coredecay ratio calculations performed using NRC approved methodology (Reference 3).The BSP regions are only applicable when the Upscale Trip function of the OPRMis INOPERABLE. | |||
The BSP region boundaries were calculated for Monticello Cycle27 for nominal feedwater temperature conditions. | |||
The endpoints of the regions aredefined in Table 31. The region boundaries shown in Figures 5 and 6 are definedusing the Generic Shape Function (GSF), which is described in References 13 and25.Table 31Cycle 27 BSP Region Intercepts for Normal Feedwater Temperature RegionBoundary Power Core Flow Core DR HighestIntercepts N%(%) N Channel DRAl 63.9 40.0 <0.80 <0.56B1 48.1 33.8 <0.80 <0.56A2 72.8 50.0 <0.80 <0.56B2 32.3 31.2 <0.80 <0.56Actions For Entry Into Scram RegionImmediate manual scram upon determination that the region has been entered. | |||
Ifentry is unavoidable, early scram initiation is appropriate. | |||
Actions For Entry Into Controlled Entry RegionIf entry is inadvertent or forced, immediately exit from region. The region can beexited by control rod insertion or core flow increase. | |||
Increasing the core flow byrestarting an idle recirculation pump is not an acceptable method of exiting theregion.Deliberate entry into the Controlled Entry Region requires compliance with at leastone of the stability controls outlined below:1. Maintain core average boiling boundary (BB) > 4.0 feet.2. Maintain core decay ratio (DR) < 0.6 as calculated by an on-line stability monitor.3. Continuous dedicated monitoring of real time control room neutronmonitoring instrumentation with manual scram required upon indication of areactor instability induced power oscillation. | |||
Caution is required whenever operating near the Controlled Entry Regionboundary (i.e., within approximately 10% of core power or core flow), and it isNAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 33 of 46 recommended that the amount of time spent operating near this region beminimized. | |||
==Reference:== | |||
Technical Specification 3.3.1.110.0 Scram Time Dependence The Technical Specification Option A (no scram times dependence) | |||
OLMCPR can be found inSection 5 of this report. If the Option B scram time dependence option is preferred, then theprocedure listed in Section 10.1 may be used.10.1 Technical Specification Scram Time Dependence Technical Specification 3.1.4 and Table 3.1.4-1 provide the scram insertion time versusposition requirements for continued operations. | |||
Technical Specification Surveillance Requirements SR 3.1.4.1 -SR 3.1.4.4 provide the surveillance requirements for theCRDs. Data from testing of the CRDs, or from an unplanned scram, is summarized inSurveillance Test 0081. Reference 8 describes the procedure below.Using this cycle specific information, values of Tave can be calculated in accordance withthe equation below for the notch 36 position. | |||
The Equation (1) used to calculate the average of all the scram data generated to date inthe cycle is:XNirii=1rave = n1Ni(1)where: n = the number of surveillance tests performed to date in the cycle;nn=1=total number of active control rods measured to date in the cycle; andsum of the scram times to the 36th notch position of all active rodsmeasured to date in the cycle to comply with the Technical Specification surveillance requirements SR 3.1.4.1, SR 3.1.4.2, SR 3.1.4.3, SR 3.1.4.4.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 34 of 46 The average scram time, .ave is tested against the analysis mean using the following equation: | |||
rave <-- TB(2)where:VBa =P+(3)The parameters jt and a are the mean and standard deviation of the distribution of theaverage scram insertion time to notch 36 position in the ODYN Option B analysis (Table32), and N1 = number of active control rods tested at BOC.Table 32GEMINI Methods, CRD Notch Position for TB Determination Notch Position I a I36 0.830 1 0.019If the cycle average scram time satisfies the Equation 2 criteria, continued plant operation under the ODYN Option B operating limit minimum critical power ratio (OLMCPR) forpressurization events is permitted. | |||
If not, the OLMCPR for pressurization events must bere-established based on linear interpolation between the Option B and Option A OLMCPRs.Note that Option B has an OLMCPR applicable to two recirculation loop operation, andan OLMCPR applicable to single recirculation loop operation. | |||
The Option B OLMCPRvalue for single recirculation loop operation is the same as the Option B OLMCPR valuefor two recirculation loop operation. | |||
The equation to establish the new operating limit for pressurization events is given below:_ ( p 100% 1Tave --TIBOLMCPR NEW -AO OLMC optionB + TA TB AOLMCPR,OLMCPRTTwBP (4)where:'cave and TB are defined in Equations 1 and 3, respectively; and'CA = The Technical Specification limit on scram time to notch position 36.(Technical Specification Table 3.1.4-1 at notch position 36)AOLMCPR = the difference between the Option A OLMCPR and the Option B OLMCPRreported in Table 33.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 35 of 46 Table 33Cycle OLMCPR ValuesTransient Option A Option BFeed Water Controller Failure 1.75 1.58Turbine Trip with Bypass' 1.661. The Turbine Trip with Bypass transient will be used as the Minimum OLMCPRtransient for Option B Analysis. | |||
: 2. All the OLMCPR values reported in Table 33 are for two recirculation loop operation. | |||
: 3. For Options A and B, the OLMCPR value for single recirculation loop operation isequal to the OLMCPR value for two recirculation loop operation. | |||
Sample Calculation: | |||
Assume two recirculation loop operation. | |||
If cave is 0.820 seconds (scram time test) and tB (as calculated with equation | |||
: 3) is 0.850 secondsthen the criteria from Equation 2 is met and the Option B OLMCPR of 1.66 can be used.If 'Cave is 0.970 seconds and TB is 0.850 seconds, then Equation 2 is not met and a new Option BOLMCPR must be calculated using Equation 4 above.The example calculation is as follows:OLMCPR NEW = MAX(OLMCPR'/ | |||
+ tavei-TB AOLMCPROLMCPRTTWBP OpioBTA -T:BOLMCPR.Op*" | |||
= 1.66 (from Table 33 above.)T've =0.970TB = 0.850TA = 1.080 (Technical Specification Table 3.1.4-1 at notch position 36)AOLMCPR = 1.75 -1.58 = 0.17 (from Table 33 above; assume two recirculation loop operation) | |||
= MAL4A1.58+ | |||
0.970-0.850 1*0.17, 1.66)= MAX(1.67, 1.66)= 1.67; two recirculation loop operation Note: If single recirculation loop operation Option B OLMCPR value is desired, the same value isused, i.e. 1.67.11.0 Turbine Bypass System Response TimeThe TURBINE BYPASS SYSTEM RESPONSE TIME shall be that time interval from when themain turbine trip solenoid is activated until 80% of the turbine bypass capacity is established. | |||
The TURBINE BYPASS SYSTEM RESPONSE TIME shall be < 1.1 seconds. | |||
==Reference:== | |||
Technical Specification 1.1, Surveillance Requirement 3.7.7.3.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 36 of 46 12.0 Shutdown Margin (SDM) Confirmation Technical Specification 3.1.1 requires that the SDM be confirmed for Monticello Cycle 27.Analytical SDM has been confirmed in the Supplemental Reload Licensing Report (Reference 2,Section 4).For any mid-cycle core loading changes, the analytical SDM will be re-confirmed, formallydocumented, and reviewed prior to start-up. | |||
13.0 APRM Simulated Thermal Power- High Delta W Allowable ValueThe APRM Simulated Thermal Power -High Flow Biased Scram Setpoint Allowable Value shall be:SSTP < (0.66(W-AW) | |||
+ 61.6%)where:SSTP = Scram setting in percent of rated thermal power (1775 MWt)W = Loop recirculation flow rate in percent of ratedAW = Difference between two-loop and single-loop effective recirculation flow at thesame core flow (AW = 5.4% for single loop operation, AW = 0.0 for two-loopoperation) | |||
==Reference:== | |||
Technical Specification 5.6.3, item 5, Technical Specification Table 3.3.1.1-1, Function 2.b, and Reference 24NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 37 of 46 Figure 1Monticello Cycle 27Power Dependent MAPLHGR and LHGR Multipliers For CLTP Conditions 1.101.000.900.80~,0.70LL.S0.600.500.40-0.300.200MAPLHGRp | |||
= MAPFACp *MAPLHGRFor 25% > P: No Thermal Limits Required0 %. flowFor 25% 5 P < 45%, >50% FlowMAP FACp=0. 527+0.001 55(P-45%) | |||
For 25% ý P < 45%, ýý 50% Flow"I > 011.flowMAP FACpO0.677+0. | |||
00775(P-45%) | |||
For 45% P < 100%MAP FACp=1 .0+0. 005224(P-1 00%)25 30 35 40 45 50 55 60 65 70 75 80 85POWER (% Rated)90 95 100NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 38 of 46 Figure 2Monticello Cycle 27Flow Dependent MAPLHGR and LHGRfor CLTP Conditions Multipliers 1.1MAPMULT(F) | |||
= 0.941.0or-7-0.9U-0.800.70.(L 0.6MAPFAC(F) | |||
= MINIMUM[MFRPD(F), | |||
MAPMULT(F)] | |||
MAPMULT(F) | |||
= 1.0 FOR FLOW > 80%MAPMULT(F) | |||
= 0.94 FOR FLOW < 80%MFRPD(F) | |||
= MINIMUM[1.0,nF | |||
+ b]F = CORE FLOW (% of RATED)/1 00n = 0.6758b = 0.45740.50.40.3304050 60 70 80Core Flow (% Rated)90100110NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 39 of 46 Figure 3Monticello Cycle 27Power Dependent K(P) / MCPR(P) Limits4.0(nU,.3.5V0.I.-0.-J0_RAl 2.52.L0~1.51.0* II II II II IOperating Limit MCPR(P) = Kp x Operating Limit MCPR(100) | |||
* IK U For P < 25%: No Thermal Limits Monitoring RequiredI IFor 25% : P < 45%, > 50% Flow* OLMCPR(P) | |||
= 2.72 + 0.028*(45%-P) | |||
Flow > 500/ For 25% 5 P < 45%, 5 50% FlowI OLMCPR(P) | |||
= 2.22 + 0.0305*(45%-P) | |||
* | |||
* For 45% 5 P < 60% Kp = 1.15 + 0.00867*(60%-P) | |||
* IFor 60% < P < 90% Kp = 1.056 + 0.00313*(90%-P) | |||
For 90% 5 P < 100% Kp = 1.00 + 0.0056*(100%-P) | |||
..* lI IFlo N<50%S --*_ 'IOLMCPR , ,pK-I II II I,20 30 40 5060 70Power (% Rated)8090100110NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 40 of 46 Figure 4Monticello Cycle 27Flow Dependent CPR Limits1.81.71.6U-C-,[A..E 1.31.411.21.1For W(C) (% Rated Core Flow) : 30%MCPR(F) = MAX(1.35, A(F) | |||
* W(C) / 100 + B(F))Max Flow = 107.0 A(F) = -0.639 B(F) = 1.832N20 30 40 5060 70 80Core Flow (% Rated)90 100110 120The MCPRf limits shown above are cut-off at theECCS-LOCA MCPR = 1.35 as specified inSection 16.3 and Appendix D of Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 41 of 46 Figure 5Monticello Cycle 27 Power/Flow Map225020001750150012500I. 10000)L..075050025000 10 20 30 40 50 60Core Flow (Mlb/Hr)NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 42 of 46 0Figure 6Monticello Cycle 27 Power/Flow Map80%70%60%4).0I..050%40%30%20%15 16 17 18 19 20 2122 23 24 25 26 27 28 29Core Flow (MIblHr)30 31 32 33 34 35NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 43 of 46 0Figure 7Stability Criterion Map0w0U1.00.90.80.70.60.50.40.30.20.10.00.00.4 0.6 0.8CHANNEL DECAY RATIO1.0NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 44 of 46 Figure 8.Monticello Cycle 27Power Dependent K(P) and MCPR(P) Limits forPressure Regulator Out of Service (PROOS)for CLTP Conditions IIIIII4.03.5qIOV0.0 .a.3.0000Al 2.52.00.1.5NoChangefromFigure 3IIIOperating Limit MCPR Determination For P < 25%: No Thermal Limits Monitoring RequiredOLMCPR(P). | |||
No chanae from Fiaure 3* II I* II FIow>50% | |||
II II IFor 25% < P < 45%, > 50% FlowOLMCPR(P) | |||
= 2.72 + 0.028*(45%-P) | |||
For 25% < P < 45%, 5 50% FlowOLMCPR(P) | |||
= 2.22 + 0.0305*(45%-P) | |||
OLMCPR(P) for PROOSFor 45% < P < 60% OLMCPRp = 2.24 + 0.00867*(60%-P) | |||
For 60% < P < 85% OLMCPRp = 1.88 + 0.0144*(85%-P) | |||
OLMCPR(P) | |||
= K(P) | |||
* OLMCPR(100), | |||
No change from Fig. 3N"%.\IFor 85% 5 P < 90% Kp = 1.056 + 0.00313*(90%-P) | |||
For 90% < P < 100% Kp = 1.00 + 0.0056*(100%-P) t ~ --IIIIIIIFIo* < 50%III* II I II I I, ----.OLMCPR( ) -* 4- Kp- -* I ' No Change' I ' from Figure 3* I I* I II I I* I I* I II I1.020 30 40 50 60 70 80 90 100Power (% Rated)110NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 45 of 46 Figure 9Pressure Regulator Out Of ServiceInterim MFLCPR Limitfor CLTP Conditions The plot is valid for Option A & B scram times.The limit is not dependent on core flow.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 46 of 46}} |
Revision as of 22:45, 4 July 2018
ML13189A195 | |
Person / Time | |
---|---|
Site: | Monticello |
Issue date: | 04/26/2013 |
From: | Smolinske K Xcel Energy |
To: | Document Control Desk, Office of Nuclear Reactor Regulation |
References | |
NAD-MN-033, Rev 0 | |
Download: ML13189A195 (48) | |
Text
T-2ToFacilityAddressNRC-BRANCH CHIEF COPY #169MT Department DENAE SIEVERS -SAB2TO BE MAILED TO REGION IIIPASSPORT DOCUMENTTRANSMITTAL Page: 1S1 1 1111 1 1 1 N11 1N111 1N11From : C-DOC CNTRL-MTAddress : 2807 W CO RD 75Attention:
State: MN Postal Code: 55362CityCountryEmailContactDate/Time Trans No.Total Items:MONTICELLO UNITED STATES07/01/2013 1000221087 000010:02 Transmittal Group Id:Title:0000024980 Item Facility Type Sub Document Number Sheet Doc Status Revision Doc Date Copy # Media Cpys0001 MT LIC COLR COLR ISSUED 007 HOLE SS 01Security
- [] Destroy Documents Date:Form of Destruction Signature of Destroyer Signature of WitnessIf a document was not received or is no longer required check the response below and return to sender.Documents noted above not received (identify those not received).
I no longer require distribution of these documents (identify those no longer required).
Date: Signature:
- 401 TECHNICAL REQUIREMENTS MANUALUPDATING INSTRUCTIONS MNGP TECHNICAL REQUIREMENTS MANUAL NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Monticello Nuclear Generating PlantCycle 27at Current Licensed Thermal PowerCore Operating Limits ReportNAD-MN-033 Revision 0Prepared By: _Date:_________
Kenneth Smolinske Senior Engineer, Nuclear Analysis and DesignVerified By: , __ _Date: _ -2,_ __o/_Bill LaxPrinclpal
- Engineer, Nuclear Analysis and DesignReviewed By:Approved By:Supervisor, Reactor Engineering
-Monticello Sugrvls4r, Nuclear Analysis and DesignDate: 51A1Date: 5r/7/o23NAD-MN-033, Monticello Cycle 27 CL-FP COLR, Revision 0Page 1 of46 1.0 Core Operating Limits Report (COLR)This Core Operating Limits Report for Monticello Nuclear Generating Plant (MNGP)Cycle 27 at the Current Licensed Thermal Power (CLTP) of 1775 MWt is prepared inaccordance with the requirements of Technical Specification 5.6.3. The core operating limits are developed using NRC approved methodology (References 1, 3, 4, 10, and 13),and are established such that all applicable thermal limits of the plant safety analysis aremet.The SLMCPR of 1.15 was used for two-loop operation for all fuel types in Cycle 27. TheSLMCPR for single loop operation is 1.15. These values are consistent with the valuesspecified in Reference 2.This report includes the Option III Generic Shape Function (GSF) definition for theBackup Stability Protection (BSP) region, which is used in providing backup thermalhydraulic stability protection when the Option III OPRM system is declaredINOPERABLE.
Figure 4, which shows the flow-dependent CPR limits, is now bounded by the ECCSMCPR value as specified in Reference
2.2.0 References
1.0 General Electric Standard Application for Reactor Fuel (GESTAR-II),
NEDE-24011-P-A-19, May 2012.2.0 Supplemental Reload Licensing Report for Monticello Reload 26, Cycle 27 CurrentLicensed Thermal Power (CLTP), 0000-0140-2542-SRLR, Revision 1, April 2013.3.0 General Electric Licensing Topical Report ODYSY Application for Stability Licensing Calculations, NEDC-32992-P-A, DRF A13-00426-00, July 2001.4.0 Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology forReload Applications, Licensing Topical Report, NEDO-32465-A, August 1996.5.0 Fuel Bundle Information Report for Monticello, Reload 26, Cycle 27 CurrentLicensed Thermal Power (CLTP), 0000-0140-2542-FBIR, Revision 0, April 20136.0 Letter from M. F. Hammer (NSP) to USNRC dated December 4 1997, Revision 1 toLicense Amendment Request dated July 26, 1996 Supporting the Monticello Nuclear Generating Plant Rerate Program, including attached exhibits.
7.0 Document GE14 Fuel Design Cycle-Independent Analysis for Monticello NuclearGenerating Plant, GE-NE-0000-001 3-9576P, GE Nuclear Energy (Proprietary),
March 2003.8.0 Letter from Les Conner (GNF) to R. J. Rohrer (NMC), dated March 24, 2003,Monticello Option B Licensing Basis, IC.MN.2003.010, Global Nuclear Fuel.9.0 GE14 Fuel Design, Cycle Independent Transient Analysis for Monticello NuclearGenerating Plant, GE-NE-0000-0014-7048-01P, Rev. 0, March 2003 (GNFProprietary).
10.0 BWR Owners Group Long Term Stability Solution Licensing Methodology, NEDO-31960-A, Licensing Topical Report, November 1995 (including Supplement 1).NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 2 of 46 11.0 Reactor Long-Term Stability Solution Option II: Licensing Basis Hot ChannelOscillation Magnitude for Monticello Nuclear Generating Plant, GHNE-0000-0073-4167-R2, December 2007.12.0 Plant-Specific Regional Mode DIVOM Procedure Guideline, GE-NE-0000-0028-9714-R1, June 2005.13.0 Backup Stability Protection (BSP) for Inoperable Option III Solution, OG-02-0119-260, July 2002.14.0 Letter from M. F. Hammer (NSP) to USNRC dated July 30, 1998, "Supplementary Information Regarding the Monticello Power Rerate (TAC No. 96238)",
including attachments.
15.0 Letter from Tae Kim (USNRC) to Roger 0 Anderson (NSP), "Monticello NuclearGenerating Plant -Issuance of Amendment Re. Power Uprate Program (TAC No.M96238),"
including enclosures, September 16, 1998.16.0 Calculation CA-08-051, Rev 0, Instrument Setpoint Calculation
-Rod Block Monitor(RBM) PRNM Setpoints for CLTP and EPU Operation.
17.0 GE BWR Licensing Report, Average Power Range Monitor, Rod Block Monitor,and Technical Specification Improvement (ARTS) Program for Monticello NuclearGeneration Plant, NEDC-30492-P, Section 4, April 1984.18.0 GE Services Information Letter, Backup Pressure Regulator, GE SIL No. 614Revision 1, March 15, 1999.19.0 Nuclear Management Company Monticello Nuclear Generating Plant PressureRegulator Downscale Failure Analysis, GE-NE-0000-0051-2643-RO, September 2007.20.0 Letter from Peter S. Tam (USNRC) to Timothy J. O'Connor (Northern States PowerCompany),
"Monticello Nuclear Generating Plant (MNGP) -Issuance OfAmendment Regarding The Power Range Neutron Monitoring System (TAC No.MD8064),"
dated January 30, 2009.21.0 Fuel Bundle Information Report for Monticello, Reload 25, Cycle 26, 0000-0118-401 0-FBIR, Revision 0, February 2011.22.0 Supplemental Reload Licensing Report for Monticello Reload 25, Cycle 26, 0000-0118-4010-SRLR, Revision 1, March 2011.23.0 Monticello Nuclear Generating Plant, Cycle 26 Core Operating Limits Report. NAD-MN-025, Revision 0, April 2011.24.0 Letter from D. Musolf (NSP) to Director, Office of Nuclear Reactor Regulation, NRC"Revision 1 to License Amendment Request Dated September 7, 1976, SingleLoop Operation" dated July 2, 1982.25.0 ODYSY Application for Stability Licensing Calculations Including Option I-D and IILonq Term Solutions, Licensing Topical Report, NEDE-33213P-A, April 2009.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 3 of 46 3.0 Rod Block Monitor Operability Requirements The ARTS Rod Withdrawal Error (RWE) analysis (Reference
- 2) validated that thefollowing MCPR values provide the required margin for full withdrawal of any control rodduring Monticello Cycle 27:For Power < 90%: MCPR > 1.83For Power > 90%: MCPR > 1.50When the core power is less than 90% of rated and the MCPR is less than 1.83, then alimiting control rod pattern exists and the Rod Block Monitor is required to be operable.
Ifthe core power is greater than or equal to 90% and the MCPR is less than 1.50, then alimiting control rod pattern exists and the Rod Block Monitor is required to be operable.
Reference:
Technical Specification Table 3.3.2.1-1 Function 1.4.0 Rod Block Monitor Upscale Trip Setpoint4.1 Technical Specification Trip Setpoints and Allowable ValuesFunction Trip Setpoint Allowable ValuesLow Power Range -Upscale (a) < 120/125 of full scale < 120.4/125 of full scaleIntermediate Power Range -Upscale (b) < 115/125 of full scale < 115.4/125 of full scaleHigh Power Range -Upscale (c), (d) 110/125 of full scale < 110.4/125 of full scaleApplicable Thermal Power(a) Thermal Power > 30% and < 65% RTP and MCPR is below the limit specified in Section 3.(b) Thermal Power > 65% and < 85% RTP and MCPR is below the limit specified in Section 3.(c) Thermal Power -> 85% and < 90% RTP and MCPR is below the limit specified in Section 3.(d) Thermal Power 2t 90% RTP and MCPR is below the limit specified in Section 3.
Reference:
Technical Specification Table 3.3.2.1-1 Functions 1.a, 1.b, and 1.c.The Reference for the "Trip Setpoints" and "Allowable Values" isReference 16.5.0 Minimum Critical Power Ratio (MCPR)5.1 Option AThe Operating Limit Minimum Critical Power Ratio (OLMCPR) for Option A does notaccount for scram speeds that are faster than those required by Technical Specifications.
5.1.1 Option A OLMCPR for Two Recirculation Loop Operation The Option A OLMCPR shall be determined for two recirculation loop operation asfollows:If core thermal power (P) is 2! 45% of rated core thermal power, then the Option AOLMCPR for all fuel types is the areater of {1.75
- K(P) from Figure 3} or {MCPR(F)from Figure 4}, where 1.75 is the Option A OLMCPR at rated (100%) core thermalpower reported in Table 33.i.e. if P _> 45% rated core thermal power,then Option A OLMCPR limit= Maximum of 1.75 * {K(P) from Figure 3} or {MCPR(F) from Figure 4}.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 4 of 46 If core thermal power (P) is < 45% of rated core thermal power, the Option AOLMCPR for all fuel types is obtained from Figure 3.
Reference:
Technical Specification Section 3.2.2.5.1.2 Option A OLMCPR for Single Recirculation Loop Operation The Option A OLMCPR as defined above for two recirculation loop operation inSection 5.1.1 is the same OLMCPR to be used for single recirculation loop operation.
Reference:
Technical Specification Section 3.2.2.5.2 Option BOption B does take into account the measured scram speeds that are faster than theTechnical Specification requirements, thus reducing the potential consequences of alimiting transient.
Calculation of the Option B OLMCPR value as a function of measuredscram speeds is described in Section 10.5.2.1 Option B OLMCPR for Two Recirculation Loop Operation The Option B OLMCPR shall be determined for two recirculation loop operation asfollows:*TJ I 100%The rated (100%) core thermal power Option B OLMCPR (OLMCPR"o"B
)is 1.66,--100%and is reported in Table 33. This OLMCPRo00 'nB of 1.66 is modified as described inNewSection 10 to be a function of the measured scram speeds to yield OLMCPR OptonBThen, if core thermal power (P) is > 45% of rated core thermal power, the Option BOLMCPR for all fuel types is the greater of:OLMCPRoNBW.
- {K(P) from Figure 3} or {MCPR(F) from Figure 4},i.e. if P >__ 45% rated core thermal power, then Option B OLMCPR limitNew= Maximum of {OLMCPRoNfion
- K(P) from Figure 3} or {MCPR(F) from Figure 4}.If core thermal power (P) is < 45% of rated core thermal power, the Option BOLMCPR for all fuel types is obtained from Figure 3.
Reference:
Technical Specification 3.2.2.5.2.2 Option B OLMCPR for Single Recirculation Loop Operation The Option B OLMCPR as defined above for two recirculation loop operation inSection 5.2.1 is the same OLMCPR to be used for single recirculation loop operation.
Reference:
Technical Specification 3.2.2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 5 of 46 5.3 Pressure Regulator Out of Service (PROOS) Operation Reference 18 GE SIL 614, Revision 1 describes the impact of operation without a backuppressure regulator (also called PROOS). This section provides power dependent MCPRlimits when a backup pressure regulator is not operational.
The existing power dependent MAPLHGR and LHGR limits described in Sections 8.1 and8.2 have been found to be valid (bounding) for operation without a backup pressureregulator (References 19 and 2).A Pressure Regulator Fails Down-Scale (PRFDS) event without backup pressureregulator was evaluated for Monticello (Reference 19). This event resulted in a morerestrictive Power Dependent MCPR limit than required for normal reduced poweroperation with both pressure regulators operational.
This event was re-evaluated forCycle 27 (Reference
- 2) and determined to be more restrictive than the results inReference
- 19. Figure 8 provides the required more restrictive power dependent MCPRARTS limits for powers below 85% and greater than or equal to 45%. For powers greaterthan or equal to 85% or below 45%, the power dependent MCPR and K(P) ARTS limitsprovided in Figure 3 are still valid. The ARTS limits are described in Reference
- 17. Thenew Pressure Regulator Out of Service limits are applicable for Cycle 27 (Reference 2).Figure 8 combines the unchanged limits from Figure 3 along with the more restrictive limits determined in Reference 2 for PROOS operation.
Figure 8 should only be used foroperation without a backup pressure regulator.
Figure 8 is valid for both Option A andOption B OLMCPR limits.An interim MFLCPR Limit is provided in Figure 9. This limit should only be used if theGardel thermal limit input has not been modified as described in Sections 5.3.1 or 5.3.2to account for pressure regulator out of service operation.
I.e., only Figure 8 or Figure 9should be used to provide the appropriate PROOS limit. These figures should not beutilized in combination.
5.3.1 OLMCPR for Two Recirculation Loop Operation, WITHOUT A BACKUPPRESSURE REGULATOR.
The Option A or B OLMCPR shall be determined for two recirculation loop operation as follows:The Option A OLMCPR is calculated as shown below for the Option B example withthe following exception:
L NewThe OLMCPR OpfioN is replaced with the Option A OLMCPR of 1.75.The Option B OLMCPR is calculated as follows:100%The rated (100%) core thermal power Option B OLMCPR (OLMCPRop'o*B) is 1.66,ITIP 100%/and is reported in Table 33. This OLMCPR....OpB of 1.66 is modified as described inNewSection 10 to be a function of the measured scram speeds to yield OLMCPROp;on.
Then, if core thermal power (P) is _> 85% of rated core thermal power, the Option BOLMCPR for all fuel types is the greater of:NewOLMCPR optionB * {K(P) from Figure 8} or {MCPR(F) from Figure 4),i.e. if P _ 85% rated core thermal power, then Option B OLMCPR limit... RNewMaximum of { OLMC_ OptionB
- K(P) from Figure 81 or {MCPR(F) from Figure 4}.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 6 of 46 If core thermal power (P) is < 85% of rated core thermal power, the OLMCPR for allfuel types is obtained from Figure 8.5.3.2 OLMCPR for Single Recirculation Loop Operation, WITHOUT A BACKUPPRESSURE REGULATOR The Option A or B OLMCPR as defined previously for two recirculation loop operation in Section 5.3.1 is the same OLMCPR to be used for single recirculation loopoperation:
6.0 Power-Flow MapThe Power-Flow Operating Map based on analysis to support Cycle 27 is shown inFigures 5, and 6. The Power-Flow Operating Map is consistent with a rated power of1775 MWth as described in References 6, 14, and 15.7.0 Approved Analytical MethodsNEDE-24011-P-A Rev. 19 "General Electric Standard Application for Reactor Fuel(GESTARY' NEDE-24011-P-A-US Rev. 19"General Electric Standard Application for Reactor Fuel(GESTAR)
-Supplement for the United States."NEDO-31960-A NEDO-31960-A NEDC-32992P-A NEDO-32465-A NSPNAD-8608-A NSPNAD-8609-A "BWR Owners Group Long-Term Stability SolutionLicensing Methodology,"
Licensing Topical Report, June1991.Sup. 1 "BWR Owners Group Long-Term Stability SolutionLicensing Methodology, (Supplement 1)," Licensing Topical Report, Supplement 1, March 1992.General Electric Licensing Topical Report, "ODYSYApplication for Stability Licensing Calculations,"
July2001.General Electric Licensing Topical Report, "ReactorStability Detect and Suppress Solutions Licensing BasisMethodology and Reload Applications,"
August 1996.Rev. 4 "Reload Safety Evaluation Methods for Application to theMonticello Generating Plant." October 1995.Rev. 3 "Qualification of Reactor Physics Methods for Application to Monticello,"
October 1995.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 7 of 46 8.0 Fuel Rod Heat Generation Rate8.1 Maximum Average Planar Linear Heat Generation Rate (MAPLHGR) as a Function of ExposureThe MAPLHGR limits in Tables 1 through 14 are conservative values bounding all fuellattice types (all natural uranium lattices are excluded) in a given fuel bundle design, andare intended only for use in hand calculations as described below to establish MAPLHGRlimits for Technical Specification 3.2.1. No channel bow effects are included in thebounding MAPLHGR values in Tables I through 14 as there are no reused channels.
MAPLHGR limits for each individual fuel lattice for a given bundle design as a function ofaxial location and average planar exposure are determined based on the approvedmethodology referenced in Monticello Technical Specification 5.6.3.b and are loaded intothe process computer for use in core monitoring calculations.
When and if hand calculations are required:
8.1.1 Two-Recirculation Loop Operation (MAPLHGR)
At rated core thermal power and core flow conditions, the MAPLHGR limit foreach fuel bundle design as a function of average planar exposure shall notexceed the bounding limits provided in Tables 1 through 14.The MAPLHGR limit is adjusted for off-rated core thermal power and core flowconditions by determining the following:
MAPLHGR(P)
= MAPFAC(P)
= MAPFAC(F)
- MAPLHGR limit from Tables 1 through 14.where MAPFAC(P) and MAPFAC(F) are determined from Figures 1 and 2,respectively, and where P is the core thermal power in percent of rated, and Fis the core flow in percent of rated.The Technical Specification (TS) MAPLHGR limit is determined as follows:MAPLHGR (TS) Limit = Minimum{MAPLHGR(P),
MAPLHGR(F)}
Note that all natural uranium lattices are excluded in Tables 1 through 14.Straight line interpolation between nearest data points is permitted only withineach individual Tables 1 through 14.8.1.2 Single Recirculation Loop Operation (MAPLHGR)
When in single recirculation loop operation, perform the following:
8.1.2.1 Perform the action specified in Section 8.1.1 above.8.1.2.2 Separately, apply the single loop operation multiplier to the limitingvalues of MAPLHGR from Tables 1 through 14 as follows:for GE14C: multiplier is 0.90.8.1.2.3 Select the more limiting (i.e. smaller) value from Sections 8.1.2.1 or8.1.2.2.
Reference:
Technical Specification 3.2.1.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 8 of 46 8.2 Linear Heat Generation Rate (LHGR)The uranium dioxide (U02) and gadolinia LHGR limits as a function of fuel rod peak pelletexposure for each bundle type in Cycle 27 is provided in Tables 15 through 28. Thegadolinia LHGR limits in Tables 15 through 28 are bounding gadolinia LHGR limits for allthe gadolinia concentrations occurring in each of the bundle types used in Cycle 27. TheLHGR limits are fuel rod nodal limits, and are to be applied at every node of the fuel rodincluding the natural uranium lattices.
The individual LHGR limits for the uranium dioxide and gadolinia fuel rods in each fuelbundle type used in Cycle 27, as a function of axial location and pellet exposure aredetermined based on the approved methodology referenced in Monticello Technical Specification 5.6.3.b and are loaded into the process computer for use in core monitoring calculations.
The LHGR limits are presented in this report for use when and if hand calculations areperformed to demonstrate compliance with Technical Specification 3.2.3.When and if hand calculations are performed:
8.2.1 Two-Recirculation Loop Operation (LHGR)At rated core thermal power and core flow conditions, the LHGR limit for eachfuel bundle design as a function of peak pellet exposure and fuel pin type shallnot exceed the bounding limits provided in Tables 15 through 28.The LHGR limit is adjusted for off-rated core thermal power and core flowconditions by determining the following:
LHGR(P) = MAPFAC(P)
- LHGR limit from Tables 15 through 28.where the multipliers MAPFAC(P) and MAPFAC(F) are determined from Figures1 and 2, respectively, and where P is the core thermal power in percent of rated,and F is the core flow in percent of rated.The Technical Specification (TS) LHGR limit is determined as follows:LHGR TS Limit = Minimum{LHGR(P),
LHGR(F)}Note that the LHGR limits are fuel rod nodal limits, and are to be applied at everynode of the fuel rod, including the natural uranium lattices.
Straight lineinterpolation between nearest data points is permitted only within each individual Tables 15 through 28.8.2.2 Single Recirculation Loop Operation (LHGR)When in single recirculation loop operation, perform the following:
8.2.2.1 Perform the same action specified in Section 8.2.1 above. There areno separate single loop operation specific multipliers applicable toLHGR, i.e. the multipliers from Section 8.2.1 also apply to singlerecirculation loop operation.
Reference:
Technical Specification Section 3.2.3.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 9 of 46 Table IMAPLHGR Limits (1)GE14C EDB-2931 (2) GE14-P1ODNAB392-16GZ-10OT-145-T6-2931 Average Planar Exposure MAPLHGR LimitGWD/MTU (GWD/STU)
(kW/ft)(3) 0.00 (0.00) 8.120.22 (0.20) 8.161.10 (1.00) 8.232.20 (2.00) 8.323.31 (3.00) 8.424.41 (4.00) 8.525.51 (5.00) 8.626.61 (6.00) 8.717.72 (7.00) 8.798.82 (8.00) 8.889.92 (9.00) 8.9811.02 (10.00) 9.0912.13 (11.00) 9.2113.23 (12.00) 9.3314.33 (13.00) 9.3915.43 (14.00) 9.3916.53 (15.00) 9.4118.74 (17.00) 9.4322.05 (20.00) 9.4523.01 (20.87) 9.4227.56 (25.00) 9.2733.07 (30.00) 9.0038.58 (35.00) 8.7844.09 (40.00) 8.5046.34 (42.04) 8.3249.60 (45.00) 8.0755.12 (50.00) 7.5660.63 (55.00) 6.2263.50 (57.61) 4.9363.54 (57.65) 4.9163.68 (57.77) 4.8963.99 (58.05) 4.7564.52 (58.53) 4.75Notes:(1) Values in Table 1 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 10 of 46 Table 2MAPLHGR Limits (1)GE14C EDB-31 00(2) GE14-P1ODNAB424-14GZ-10OT-145-T6-3100 Average Planar Exposure MAPLHGR LimitGWD/MTU (GWD/STU)
(kW/ft)(3) 0.00 (0.00) 7.470.22 (0.20) 7.531.10 (1.00) 7.632.20 (2.00) 7.753.31 (3.00) 7.864.41 (4.00) 7.965.51 (5.00) 8.066.61 (6.00) 8.167.72 (7.00) 8.268.82 (8.00) 8.379.92 (9.00) 8.4811.02 (10.00) 8.5912.13 (11.00) 8.7113.23 (12.00) 8.8314.33 (13.00) 8.8915.43 (14.00) 8.9616.53 (15.00) 9.0317.64 (16.00) 9.1118.74 (17.00) 9.1419.84 (18.00) 9.1720.94 (19.00) 9.1922.05 (20.00) 9.2123.01 (20.87) 9.2223.15 (21.00) 9.2224.25 (22.00) 9.2325.35 (23.00) 9.2326.46 (24.00) 9.2227.56 (25.00) 9.2233.07 (30.00) 9.1738.58 (35.00) 9.0244.09 (40.00) 8.6646.34 (42.04) 8.4649.60 (45.00) 8.1855.12 (50.00) 7.4560.63 (55.00) 4.9760.90 (55.25) 4.8560.96 (55.30) 4.8562.80 (56.97) 4.8563.16 (57.30) 4.85Notes:(1) Values in Table 2 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 11 of 46 Table 3MAPLHGR Limits )GE14C EDB-3101(2)
GE14-P1ODNAB375-16GZ-10OT-145-T6-3101 Average Planar Exposure MAPLHGR LimitGWD/MTU (GWDISTU)
(kW/ft)(3) 0.00 (0.00) 7.990.22 (0.20) 8.041.10(1.00) 8.122.20(2.00) 8.183.31 (3.00) 8.254.41 (4.00) 8.325.51 (5.00) 8.386.61 (6.00) 8.447.72 (7.00) 8.518.82 (8.00) 8.599.92 (9.00) 8.6811.02 (10.00) 8.7812.13 (11.00) 8.9013.23 (12.00) 9.0114.33 (13.00) 9.1115.43 (14.00) 9.1216.53 (15.00) 9.1517.64 (16.00) 9.1818.74 (17.00) 9.2019.84 (18.00) 9.2220.94 (19.00) 9.2322.05 (20.00) 9.2423.01 (20.87) 9.2523.15 (21.00) 9.2524.25 (22.00) 9.2125.35 (23.00) 9.1626.46 (24.00) 9.1027.56 (25.00) 9.0533.07 (30.00) 8.7938.58 (35.00) 8.5844.09 (40.00) 8.3846.34 (42.04) 8.2049.60 (45.00) 7.9455.12 (50.00) 7.4560.63 (55.00) 5.4661.93 (56.19) 4.8762.00 (56.24) 4.8762.73 (56.91) 4.7163.39 (57.50) 4.71Notes:(1) Values in Table 3 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 12 of 46 Table 4MAPLHGR Limits )GE14C EDB-3102(2)
GEl 4-PIODNAB392-16GZ-1OOT-145-T6-3102 Average Planar Exposure MAPLHGR LimitGWD/MTU (GWDISTU)
(kW/ft)(3) 0.00 (0.00) 8.130.22 (0.20) 8.171.10 (1.00) 8.242.20 (2.00) 8.333.31 (3.00) 8.434.41 (4.00) 8.525.51 (5.00) 8.626.61 (6.00) 8.717.72 (7.00) 8.798.82 (8.00) 8.879.92 (9.00) 8.9711.02 (10.00) 9.0812.13 (11.00) 9.2013.23 (12.00) 9.3114.33 (13.00) 9.3315.43 (14.00) 9.3416.53 (15.00) 9.3617.64 (16.00) 9.3918.74 (17.00) 9.4119.84 (18.00) 9.4320.94 (19.00) 9.4322.05 (20.00) 9.4423.01 (20.87) 9.4523.15 (21.00) 9.4524.25 (22.00) 9.4425.35 (23.00) 9.3826.46 (24.00) 9.3227.56 (25.00) 9.2633.07 (30.00) 8.9938.58 (35.00) 8.7644.09 (40.00) 8.5646.34 (42.04) 8.3849.60 (45.00) 8.1355.12 (50.00) 7.6360.63 (55.00) 6.1663.41 (57.53) 4.9063.50 (57.61) 4.9063.52 (57.62) 4.8963.86 (57.93) 4.7464.43 (58.45) 4.74Notes:(') Values in Table 4 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 13 of 46 Table 5MAPLHGR Limits (1)GE14C EDB-3103(2)
GE14-PIODNAB391-12GZ-10OT-145-T6-3103 Average Planar Exposure MAPLHGR LimitGWD/MTU (GWD/STU)
(kW/ft)(3) 0.00 (0.00) 8.520.22 (0.20) 8.541.10 (1.00) 8.582.20 (2.00) 8.643.31 (3.00) 8.714.41 (4.00) 8.775.51 (5.00) 8.836.61 (6.00) 8.907.72 (7.00) 8.958.82 (8.00) 9.029.92 (9.00) 9.0811.02 (10.00) 9.1512.13 (11.00) 9.2413.23 (12.00) 9.3314.33 (13.00) 9.3315.43 (14.00) 9.3516.53 (15.00) 9.3717.64 (16.00) 9.4018.74 (17.00) 9.4219.84 (18.00) 9.4320.94 (19.00) 9.4422.05 (20.00) 9.4423.01 (20.87) 9.4523.15 (21.00) 9.4524.25 (22.00) 9.4426.46 (24.00) 9.3227.56 (25.00) 9.2733.07 (30.00) 9.0038.58 (35.00) 8.7744.09 (40.00) 8.5546.34 (42.04) 8.3849.60 (45.00) 8.1355.12 (50.00) 7.6360.63 (55.00) 6.1563.50 (57.61) 4.8963.60 (57.70) 4.8563.61 (57.71) 4.8463.84 (57.92) 4.7464.43 (58.45) 4.74Notes:(1) Values in Table 5 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 14 of 46 Table 6MAPLHGR Limits (1)GE14C EDB-3375(2' GE14-P1ODNAB373-16GZ-10OT-145-T6-3375 Average Planar Exposure MAPLHGR LimitGWD/MTU (GWD/STU)
(kW/ft)(3) 0.00 (0.00) 7.950.22 (0.20) 8.011.10 (1.00) 8.082.20 (2.00) 8.143.31 (3.00) 8.214.41 (4.00) 8.285.51 (5.00) 8.346.61 (6.00) 8.407.72 (7.00) 8.478.82 (8.00) 8.559.92 (9.00) 8.6411.02 (10.00) 8.7412.13 (11.00) 8.8613.23 (12.00) 8.9814.33 (13.00) 9.0915.43 (14.00) 9.2016.53 (15.00) 9.3117.64 (16.00) 9.4018.74 (17.00) 9.4019.84 (18.00) 9.4020.94 (19.00) 9.4022.05 (20.00) 9.4123.01 (20.87) 9.4223.15 (21.00) 9.4224.25 (22.00) 9.4325.35 (23.00) 9.4326.46 (24.00) 9.3627.56 (25.00) 9.3033.07 (30.00) 8.9638.58 (35.00) 8.6544.09 (40.00) 8.3746.34 (42.04) 8.1949.60 (45.00) 7.9455.12 (50.00) 7.4460.63 (55.00) 5.3861.77 (56.04) 4.8661.83 (56.09) 4.8663.07 (57.22) 4.8563.11 (57.25) 4.84Notes:(1) Values in Table 6 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 15 of 46 Table 7MAPLHGR Limits (1)GE14C EDB-3376(2)
GE14-P 1ODNAB391-16GZ-10OT-145-T6-3376 Average Planar Exposure MAPLHGR LimitGWD/MTU (GWDISTU)
(kW/ft)"3)0.00 (0.00) 8.150.22 (0.20) 8.191.10 (1.00) 8.252.20 (2.00) 8.323.31 (3.00) 8.414.41 (4.00) 8.495.51 (5.00) 8.576.61 (6.00) 8.667.72 (7.00) 8.758.82 (8.00) 8.849.92 (9.00) 8.9311.02 (10.00) 9.0112.13(11.00) 9.1013.23 (12.00) 9.2014.33 (13.00) 9.3115.43 (14.00) 9.4316.53 (15.00) 9.5417.64 (16.00) 9.6518.74 (17.00) 9.6919.84 (18.00) 9.6820.94 (19.00) 9.6722.05 (20.00) 9.6623.01 (20.87) 9.6523.15 (21.00) 9.6524.25 (22.00) 9.6425.35 (23.00) 9.6326.46 (24.00) 9.6127.56 (25.00) 9.5333.07 (30.00) 9.1838.58 (35.00) 8.8844.09 (40.00) 8.6346.34 (42.04) 8.5049.60 (45.00) 8.2855.12 (50.00) 7.7360.63 (55.00) 6.1463.36 (57.48) 4.8963.50 (57.61) 4.8963.51 (57.62) 4.8964.05 (58.11) 4.8964.10 (58.15) 4.87Notes:(1) Values in Table 7 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 16 of 46 Table 8MAPLHGR Limits (1)GE14C EDB-3377(
(kW/ft)(3 10.00 (0.00) 8.030.22 (0.20) 8.081.10 (1.00) 8.162.20 (2.00) 8.293.31 (3.00) 8.434.41 (4.00) 8.535.51 (5.00) 8.616.61 (6.00) 8.707.72 (7.00) 8.798.82 (8.00) 8.889.92 (9.00) 8.9711.02 (10.00) 9.0612.13 (11.00) 9.1513.23 (12.00) 9.2514.33 (13.00) 9.3515.43 (14.00) 9.4716.53 (15.00) 9.5817.64 (16.00) 9.6818.74 (17.00) 9.7119.84 (18.00) 9.7020.94 (19.00) 9.6922.05 (20.00) 9.6823.01 (20.87) 9.6723.15 (21.00) 9.6725.35 (23.00) 9.6526.46 (24.00) 9.6127.56 (25.00) 9.5333.07 (30.00) 9.1838.58 (35.00) 8.8844.09 (40.00) 8.6446.34 (42.04) 8.4849.60 (45.00) 8.2555.12 (50.00) 7.7260.63 (55.00) 6.1663.41 (57.53) 4.8963.42 (57.53) 4.8963.50 (57.61) 4.8963.99 (58.05) 4.8964.04 (58.09) 4.87Notes:(1) Values in Table 8 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 17 of 46 Table 9MAPLHGR Limits )GE14C EDB-337812)
GE14-P1ODNAB391-12GZ-10OT-145-T6-3378 Average Planar Exposure MAPLHGR LimitGWD/MTU (GWDISTU)
(kW/ft)13)0.00 (0.00) 8.520.22 (0.20) 8.551.10(1.00) 8.622.20 (2.00) 8.703.31 (3.00) 8.764.41 (4.00) 8.825.51 (5.00) 8.896.61 (6.00) 8.957.72 (7.00) 9.028.82 (8.00) 9.099.92 (9.00) 9.1611.02 (10.00) 9.2212.13 (11.00) 9.2913.23 (12.00) 9.3614.33 (13.00) 9.4415.43 (14.00) 9.5316.53 (15.00) 9.6117.64 (16.00) 9.6818.74 (17.00) 9.7519.84 (18.00) 9.7620.94 (19.00) 9.7622.05 (20.00) 9.7623.01 (20.87) 9.7523.15 (21.00) 9.7524.25 (22.00) 9.7325.35 (23.00) 9.7226.46 (24.00) 9.7027.56 (25.00) 9.6633.07 (30.00) 9.3238.58 (35.00) 9.0044.09 (40.00) 8.6646.34 (42.04) 8.5149.60 (45.00) 8.2955.12 (50.00) 7.7560.63 (55.00) 6.2263.50 (57.61) 4.9263.64 (57.74) 4.8663.66 (57.75) 4.8664.05 (58.10) 4.8664.09 (58.14) 4.86Notes:(1) Values in Table 9 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 18 of 46 Table 10MAPLHGR Limits (1)GE14C EDB-293212) GEl 4-P1ODNAB392-17GZ-10OT-145-T6-2932 Average Planar Exposure MAPLHGR LimitGWD/MTU (GWD/STU)
(kW/ft)'3)0.00 (0.00) 8.000.22 (0.20) 8.051.10 (1.00) 8.142.20 (2.00) 8.253.31 (3.00) 8.374.41 (4.00) 8.505.51 (5.00) 8.626.61 (6.00) 8.757.72 (7.00) 8.888.82 (8.00) 8.999.92 (9.00) 9.1111.02 (10.00) 9.2312.13 (11.00) 9.3513.23 (12.00) 9.4614.33 (13.00) 9.5615.43 (14.00) 9.6616.53 (15.00) 9.7418.74 (17.00) 9.8222.05 (20.00) 9.8123.01 (20.87) 9.7827.56 (25.00) 9.6433.07 (30.00) 9.3038.58 (35.00) 8.9844.09 (40.00) 8.7046.34 (42.04) 8.5149.60 (45.00) 8.2555.12 (50.00) 7.7360.63 (55.00) 6.2563.50 (57.61) 4.9363.57 (57.67) 4.9063.70 (57.79) 4.8964.44 (58.46) 4.8964.48 (58.50) 4.89Notes:(1) Values in Table 10 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 19 of 46 Table 11MAPLHGR Limits1)GE1 4C EDB-4175(2)
GE 14-P 1ODNAB372-17GZ-10OT-145-T6-4175 Average Planar Exposure MAPLHGR LimitGWD/MTU (GWD/STU)
(kW/ft)(3 10.00 (0.00) 7.980.22 (0.20) 8.021.10 (1.00) 8.082.20(2.00) 8.183.31 (3.00) 8.284.41 (4.00) 8.385.51 (5.00) 8.496.61 (6.00) 8.617.72 (7.00) 8.738.82 (8.00) 8.869.92 (9.00) 8.9811.02 (10.00) 9.1112.13 (11.00) 9.2213.23 (12.00) 9.3014.33 (13.00) 9.3915.43 (14.00) 9.4916.53 (15.00) 9.4617.64 (16.00) 9.4618.74 (17.00) 9.4619.84 (18.00) 9.4720.94 (19.00) 9.4723.01 (20.87) 9.4723.15 (21.00) 9.4724.25 (22.00) 9.4725.35 (23.00) 9.4726.46 (24.00) 9.4027.56 (25.00) 9.3433.07 (30.00) 9.0338.58 (35.00) 8.7644.09 (40.00) 8.5246.34 (42.04) 8.3649.60 (45.00) 8.1355.12 (50.00) 7.5960.63 (55.00) 6.1663.44 (57.55) 4.8863.50 (57.61) 4.8863.70 (57.79) 4.8764.88 (58.86) 4.8765.11 (59.07) 4.87Notes:(1) Values in Table 11 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 20 of 46 Table 12MAPLHGR Limits (GE14C EDB-4176(2)
GE14-P 1ODNAB386-16GZ-10OT-145-T6-4176 Average Planar Exposure MAPLHGR LimitGWD/MTU (GWD/STU)
(kW/ft)(3) 0.00 (0.00) 8.110.22 (0.20) 8.151.10 (1.00) 8.212.20 (2.00) 8.293.31 (3.00) 8.364.41 (4.00) 8.445.51 (5.00) 8.516.61 (6.00) 8.597.72 (7.00) 8.678.82 (8.00) 8.769.92 (9.00) 8.8411.02 (10.00) 8.9312.13 (11.00) 9.0213.23 (12.00) 9.1114.33 (13.00) 9.2115.43 (14.00) 9.3116.53 (15.00) 9.4217.64 (16.00) 9.5318.74 (17.00) 9.6019.84 (18.00) 9.6420.94 (19.00) 9.6522.05 (20.00) 9.6623.01 (20.87) 9.6623.15 (21.00) 9.6624.25 (22.00) 9.6425.35 (23.00) 9.6326.46 (24.00) 9.6127.56 (25.00) 9.5733.07 (30.00) 9.2438.58 (35.00) 8.9244.09 (40.00) 8.5946.34 (42.04) 8.4349.60 (45.00) 8.2055.12 (50.00) 7.6760.63 (55.00) 5.9362.89 (57.06) 4.9063.16 (57.30) 4.8963.50 (57.61) 4.8964.67 (58.67) 4.8965.28 (59.23) 4.89Notes:ý') Values in Table 12 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 21 of 46 Table 13MAPLHGR Limits )GE14C EDB-417712)
GE14-PIODNAB386-16GZ-10OT-145-T6-4177 Average Planar Exposure MAPLHGR LimitGWDJMTU (GWD/STU)
(kW/ft)(3) 0.00 (0.00) 8.130.22 (0.20) 8.171.10 (1.00) 8.232.20 (2.00) 8.303.31 (3.00) 8.384.41 (4.00) 8.465.51 (5.00) 8.546.61 (6.00) 8.637.72 (7.00) 8.728.82 (8.00) 8.819.92 (9.00) 8.9011.02 (10.00) 8.9912.13 (11.00) 9.0713.23 (12.00) 9.1614.33 (13.00) 9.251543 (14.00) 9.3416.53 (15.00) 9.4417.64 (16.00) 9.5418.74 (17.00) 9.6119.84 (18.00) 9.6420.94 (19.00) 9.6422.05 (20.00) 9.6523.01 (20.87) 9.6523.15 (21.00) 9.6524.25 (22.00) 9.6525.35 (23.00) 9.6426.46 (24.00) 9.6127.56 (25.00) 9.5533.07 (30.00) 9.2438.58 (35.00) 8.9144.09 (40.00) 8.5946.34 (42.04) 8.4349.60 (45.00) 8.2055.12 (50.00) 7.6760.63 (55.00) 5.9863.02 (57.17) 4.8863.12 (57.26) 4.8863.50 (57.61) 4.8864.64 (58.64) 4.8865.26 (59.20) 4.88Notes:(1) Values in Table 13 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 22 of 46 Table 14MAPLHGR Limits (1)GE14C EDB-4178(2)
GE14-P 1ODNAB389-11GZ-10OT-145-T6-4178 Average Planar Exposure MAPLHGR LimitGWD/MTU (GWD/STU)
(kW/ft)(3) 0.00 (0.00) 8.550.22 (0.20) 8.621.10 (1.00) 8.702.20 (2.00) 8.763.31 (3.00) 8.824.41 (4.00) 8.885.51 (5.00) 8.946.61 (6.00) 9.017.72 (7.00) 9.088.82 (8.00) 9.159.92 (9.00) 9.2211.02 (10.00) 9.3012.13 (11.00) 9.3713.23 (12.00) 9.4414.33 (13.00) 9.5115.43 (14.00) 9.5716.53 (15.00) 9.6317.64 (16.00) 9.6918.74 (17.00) 9.7419.84 (18.00) 9.7420.94 (19.00) 9.7322.05 (20.00) 9.7323.01 (20.87) 9.7123.15 (21.00) 9.7124.25 (22.00) 9.6925.35 (23.00) 9.6826.46 (24.00) 9.6627.56 (25.00) 9.6233.07 (30.00) 9.2938.58 (35.00) 8.9344.09 (40.00) 8.6146.34 (42.04) 8.4549.60 (45.00) 8.2255.12 (50.00) 7.6860.63 (55.00) 6.2563.50 (57.61) 4.9363.61 (57.71) 4.8863.63 (57.72) 4.8865.22 (59.17) 4.8865.83 (59.72) 4.88Notes:(1) Values in Table 14 are for two recirculation loop operation, see Section 8.1.1.For single loop operation, see Section 8.1.2(2) Engineering Data Bank (EDB) number, Reference 2.(3) MAPLHGR Data, Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 23 of 46 Table 152U02/Gd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-P1ODNAB392-16GZ-10OT-145-T6-2931 (GE14C)Engineering Data Bank (EDB) Bundle Number : 2931Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GWD/ST)
(kW/ft) GWd/MT (GWD/ST)
(kW/ft)0.00 (0.00) 13.40 0.00(0.00) 12.0016.00 (14.51) 13.40 13.42 (12.17) 12.0063.50 (57.61) 8.00 60.17 (54.59) 7.1670.00 (63.50) 5.00 66.57 (60.39) 4.48Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations.
Table 162UO2/Gd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-P1ODNAB392-17GZ-10OT-145-T6-2932 (GE14C)Engineering Data Bank (EDB) Bundle Number : 2932Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GWD/ST)
(kW/ft) GWd/MT (GWD/ST)
(kW/ft)0.00 (0.00) 13.40 0.00 (0.00) 12.2616.00 (14.51) 13.40 13.53 (12.28) 12.2663.50 (57.61) 8.00 60.63 (55.00) 7.3270.00 (63.50) 5.00 67.07 (60.84) 4.57Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations.
NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 24 of 46 Table 17 2UO2IGd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-P1ODNAB424-14GZ-10OT-145-T6-3100 (GE14C)Engineering Data Bank (EDB) Bundle Number : 3100Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GVMD/ST)
(kW/ft) GWd/MT (GWD/ST)
(kW/ft)0.00 (0.00) 13.40 0.00 (0.00) 12.0016.00 (14.51) 13.40 13.42 (12.17) 12.0063.50 (57.61) 8.00 60.17 (54.59) 7.1670.00 (63.50) 5.00 66.57 (60.39) 4.48Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations.
Table 182UO2/Gd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-P1ODNAB375-16GZ-10OT-145-T6-3101 (GE14C)Engineering Data Bank (EDB) Bundle Number : 3101Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GWD/ST)
(kW/ft) GWd/MT (GWD/ST)
(kW/ft)0.00 (0.00) 13.40 0.00 (0.00) 12.0016.00 (14.51) 13.40 13.42 (12.17) 12.0063.50 (57.61) 8.00 60.17 (54.59) 7.1670.00 (63.50) 5.00 66.57 (60.39) 4.48Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations.
NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 25 of 46 Table 192UO21Gd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-PIODNAB392-16GZ-10OT-145-T6-3102 (GE14C)Engineering Data Bank (EDB) Bundle Number 1: 3102Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GWD/ST)
(kW/ft) GWd/MT (GWD/ST)
(kW/ft)0.00 (0.00) 13.40 0.00 (0.00) 12.0016.00 (14.51) 13.40 13.42 (12.17) 12.0063.50 (57.61) 8.00 60.17 (54.59) 7.1670.00 (63.50) 5.00 66.57 (60.39) 4.48Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations.
Table 20 2U02/Gd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-P1ODNAB391-12GZ-10OT-145-T6-3103 (GE14C)Engineering Data Bank (EDB) Bundle Number : 3103Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GWD/ST)
(kW/ft) GWd/MT (GWD/ST)
(kW/ft)0.00 (0.00) 13.40 0.00 (0.00) 12.0016.00 (14.51) 13.40 13.42 (12.17) 12.0063.50 (57.61) 8.00 60.17 (54.59) 7.1670.00 (63.50) 5.00 66.57 (60.39) 4.48Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations.
NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 26 of 46 Table 21 2U02/Gd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-P1ODNAB373-16GZ-10OT-145-T6-3375 (GE14C)Engineering Data Bank (EDB) Bundle Number':
3375Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GWD/ST)
(kW/ft) GWd/MT (GWD/SF)
(kW/ft)0.00 (0.00) 13.40 0.00 (0.00) 12.0016.00 (14.51) 13.40 13.42 (12.17) 12.0063.50 (57.61) 8.00 60.17 (54.59) 7.1670.00 (63.50) 5.00 66.57 (60.39) 4.48Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations.
Table 22 2UO2/Gd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-P1ODNAB391-16GZ-10OT-145-T6-3376 (GE14C)Engineering Data Bank (EDB) Bundle Number 1: 3376Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GWD/ST)
(kW/ft) GWd/MT (GWD/ST)
(kW/ft)0.00(0.00) 13.40 0.00(0.00) 12.0016.00 (14.51) 13.40. 13.42 (12.17) 12.0063.50 (57.61) 8.00 60.17 (54.59) 7.1670.00 (63.50) 5.00 66.57 (60.39) 4.48Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations.
NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 27 of 46 Table 23 2UO2/Gd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-PI0DNAB391-15GZ-10OT-145-T6-3377 (GE14C)Engineering Data Bank (EDB) Bundle Number 1: 3377Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GWD/ST)
(kW/ft) GWd/MT (GWD/ST)
(kW/ft)0.00 (0.00) 13.40 0.00 (0.00) 12.0016.00 (14.51) 13.40 13.42 (12.17) 12.0063.50 (57.61) 8.00 60.17 (54.59) 7.1670.00 (63.50) 5.00 66.57 (60.39) 4.48Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations.
Table 24 2UO2/Gd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-P1ODNAB391-12GZ-10OT-145-T6-3378 (GE14C)Engineering Data Bank (EDB) Bundle Number : 3378Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GWD/ST)
(kW/ft) GWd/MT (GWD/ST)
(kW/ft)0.00(0.00) 13.40 0.00(0.00) 12.0016.00 (14.51) 13.40 13.42 (12.17) 12.0063.50 (57.61) 8.00 60.17 (54.59) 7.1670.00 (63.50) 5.00 66.57 (60.39) 4.48Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations.
NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 28 of 46 Table 25 2UO2/Gd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-P1ODNAB372-17GZ-10OT-145-T6-4175 (GE14C)Engineering Data Bank (EDB) Bundle Number : 4175Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GWD/ST)
(kW/ft) GWd/MT (GWD/ST)
(kW/ft)0.00 (0.00) 13.40 0.00(0.00) 12.0016.00 (14.51) 13.40 13.42 (12.17) 12.0063.50 (57.61) 8.00 60.17 (54.59) 7.1670.00 (63.50) 5.00 66.57 (60.39) 4.48Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations.
Table 26 2UO2/Gd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-P1ODNAB386-16GZ-10OT-145-T6-41ý76 (GE14C)Engineering Data Bank (EDB) Bundle Number : 4176Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GWD/ST)
(kW/ft) GWd/MT (GWD/ST)
(kW/ft)0.00 (0.00) 13.40 0.00 (0.00) 12.0016.00 (14.51) 13.40 13.42 (12.17) 12.0063.50 (57.61) 8.00 60.17 (54.59) 7.1670.00 (63.50) 5.00 66.57 (60.39) 4.48Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations.
NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 29 of 46 Table 27 2UO2/Gd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-P1ODNAB386-16GZ-10OT-145-T6-4177 (GE14C)Engineering Data Bank (EDB) Bundle Number ': 4177Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GWD/ST)
(kW/ft) GWd/MT (GWD/ST)
(kW/ft)0.00 (0.00) 13.40 0.00 (0.00) 12.0016.00 (14.51) 13.40 13.42 (12.17) 12.0063.50 (57.61) 8.00 60.17 (54.59) 7.1670.00 (63.50) 5.00 66.57 (60.39) 4.48Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations.
Table 28 2UO2/Gd Thermal Mechanical LHGR Limits(Reference 5)Bundle Type: GE14-P1ODNAB389-11GZ-10OT-145-T6-4178 (GE14C)Engineering Data Bank (EDB) Bundle Number : 4178Peak Pellet Exposure U02 LHGR Limit Peak Pellet Exposure Most Limiting Gadolinia LHGR LimitGWd/MT (GWD/ST)
(kW/ft) GWd/MT (GWD/ST)
(kW/ft)0.00 (0.00) 13.40 0.00 (0.00) 12.0016.00 (14.51) 13.40 13.42 (12.17) 12.0063.50 (57.61) 8.00 60.17 (54.59) 7.1670.00 (63.50) 5.00 66.57 (60.39) 4.48Notes:1. Reference 5.2. Applicable multipliers per Section 8.2 will be applied to the data in this table for tworecirculation loop and single recirculation loop operations.
NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 30 of 46 9.0 Core Stability Requirements Stability Option III SolutionMonticello has implemented the BWR Owners Group Long Term Stability Solution OptionIII using the Oscillation Power Range Monitor (OPRM) as described in References 4 and10. The plant specific Hot Channel Oscillation Magnitude (HCOM) (Reference
- 11) andother cycle specific stability parameters are used in the Cycle 27 Option III Stability Evaluation, which is documented in Reference
- 2. A Backup Stability Protection (BSP)evaluation is also documented in References 2 and 13, and is used in the event that theOption III OPRM system is declared INOPERABLE.
The following Option III OPRM stability setpoint determination and the implementation ofthe associated BSP Regions shown in Figures 5 and 6 provide the stability licensing bases for Monticello Cycle 27.Option III OPRM Setpoints A reload Option III evaluation has been performed in accordance with the licensing methodology described in Reference
- 4. The stability based Operating Limit MinimumCritical Power Ratio (OLMCPR) is determined for two conditions as a function of OPRMamplitude setpoint.
The two conditions evaluated are: (1) a postulated oscillation at 45%rated core flow quasi steady-state operation (SS), and (2) a postulated oscillation following a two recirculation pump trip (2PT) from the limiting rated power operating statepoint.The OPRM-setpoint-dependent OLMCPR(SS) and OLMCPR(2PT) values are calculated for Cycle 27 in accordance with the BWROG regional mode DIVOM guidelines described in Reference
- 12. The Cycle 27 Option Ill evaluation provides adequate protection againstviolation of the Safety Limit MCPR (SLMCPR) for the two postulated reactor instability events as long as the plant OLMCPR is equal to or greater than OLMCPR(SS) andOLMCPR(2PT) for the selected OPRM setpoint in Table 30.The relationship between the OPRM Successive Confirmation Count Setpoint and theOPRM Amplitude Setpoint is provided in Reference 4 and Table 29. For intermediate OPRM Amplitude Setpoints, the corresponding OPRM Successive Confirmation CountSetpoints have been obtained by using linear interpolation.
The OPRM setpoints for Two Loop Operation (TLO) are conservative relative to SingleLoop Operation (SLO) and are, therefore, bounding.
NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 31 of 46 Table 29Relationship Between OPRM Successive Confirmation Count Setpoint andOPRM Amplitude SetpointSuccessive OPRMConfirmation Amplitude Count SetpointSetpoint6 >1.048 >1.059 >1.0610 >1.0711 M1.0812 >1.0913 M1.1014 >1.1115 >1.1316 >-1.1417 2:1.1618 >-1.1919 -1.2120 >-1.24Table 30OPRM Setpoint Versus OLMCPROPRMAmplitude OLMCPR(SS)
OLMCPR(2PT)
Setpoint1.05 1.26 1.171.06 1.28 1.191.07 1.30 1.211.08 1.33 1.241.09 1.35 1.261.10 1.38 1.281.11 1.40 1.311.12 1.43 1.331.13 1.46 1.361.14 1.49 1.381.15 1.52 1.41OLMCPRAcceptance 1.87 1.66Criteria IThe OPRM Period Based Detection Algorithm (PBDA) instrumentation setpoints for usein Technical Specification LCO 3.3.1.1 Table 3.3.1.1-1 Function 2f shall not exceed thefollowing:
Confirmation Count Setpoint:
16Amplitude Setpoint:
1.15NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 32 of 46 Backup Stability Protection RegionsThe Backup Stability Protection (BSP) regions are shown in Figure 5, and are given ingreater detail in Figure 6. The BSP regions are an integral part of the Tech Spec requiredalternative method to detect and suppress thermal hydraulic instability oscillations in thatthey identify areas of the power/flow map where there is an increased probability that thereactor core could experience a thermal hydraulic instability.
Regions are identified that are either excluded from planned entry and continued operation (Scram Region),
or where planned entry is not permitted unless specificoperating restrictions are met and specific actions are required to be taken to immediately leave the region following inadvertent or forced entry (Controlled Entry Region).
Theboundaries of these regions are established on a cycle specific basis based upon coredecay ratio calculations performed using NRC approved methodology (Reference 3).The BSP regions are only applicable when the Upscale Trip function of the OPRMis INOPERABLE.
The BSP region boundaries were calculated for Monticello Cycle27 for nominal feedwater temperature conditions.
The endpoints of the regions aredefined in Table 31. The region boundaries shown in Figures 5 and 6 are definedusing the Generic Shape Function (GSF), which is described in References 13 and25.Table 31Cycle 27 BSP Region Intercepts for Normal Feedwater Temperature RegionBoundary Power Core Flow Core DR HighestIntercepts N%(%) N Channel DRAl 63.9 40.0 <0.80 <0.56B1 48.1 33.8 <0.80 <0.56A2 72.8 50.0 <0.80 <0.56B2 32.3 31.2 <0.80 <0.56Actions For Entry Into Scram RegionImmediate manual scram upon determination that the region has been entered.
Ifentry is unavoidable, early scram initiation is appropriate.
Actions For Entry Into Controlled Entry RegionIf entry is inadvertent or forced, immediately exit from region. The region can beexited by control rod insertion or core flow increase.
Increasing the core flow byrestarting an idle recirculation pump is not an acceptable method of exiting theregion.Deliberate entry into the Controlled Entry Region requires compliance with at leastone of the stability controls outlined below:1. Maintain core average boiling boundary (BB) > 4.0 feet.2. Maintain core decay ratio (DR) < 0.6 as calculated by an on-line stability monitor.3. Continuous dedicated monitoring of real time control room neutronmonitoring instrumentation with manual scram required upon indication of areactor instability induced power oscillation.
Caution is required whenever operating near the Controlled Entry Regionboundary (i.e., within approximately 10% of core power or core flow), and it isNAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 33 of 46 recommended that the amount of time spent operating near this region beminimized.
Reference:
Technical Specification 3.3.1.110.0 Scram Time Dependence The Technical Specification Option A (no scram times dependence)
OLMCPR can be found inSection 5 of this report. If the Option B scram time dependence option is preferred, then theprocedure listed in Section 10.1 may be used.10.1 Technical Specification Scram Time Dependence Technical Specification 3.1.4 and Table 3.1.4-1 provide the scram insertion time versusposition requirements for continued operations.
Technical Specification Surveillance Requirements SR 3.1.4.1 -SR 3.1.4.4 provide the surveillance requirements for theCRDs. Data from testing of the CRDs, or from an unplanned scram, is summarized inSurveillance Test 0081. Reference 8 describes the procedure below.Using this cycle specific information, values of Tave can be calculated in accordance withthe equation below for the notch 36 position.
The Equation (1) used to calculate the average of all the scram data generated to date inthe cycle is:XNirii=1rave = n1Ni(1)where: n = the number of surveillance tests performed to date in the cycle;nn=1=total number of active control rods measured to date in the cycle; andsum of the scram times to the 36th notch position of all active rodsmeasured to date in the cycle to comply with the Technical Specification surveillance requirements SR 3.1.4.1, SR 3.1.4.2, SR 3.1.4.3, SR 3.1.4.4.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 34 of 46 The average scram time, .ave is tested against the analysis mean using the following equation:
rave <-- TB(2)where:VBa =P+(3)The parameters jt and a are the mean and standard deviation of the distribution of theaverage scram insertion time to notch 36 position in the ODYN Option B analysis (Table32), and N1 = number of active control rods tested at BOC.Table 32GEMINI Methods, CRD Notch Position for TB Determination Notch Position I a I36 0.830 1 0.019If the cycle average scram time satisfies the Equation 2 criteria, continued plant operation under the ODYN Option B operating limit minimum critical power ratio (OLMCPR) forpressurization events is permitted.
If not, the OLMCPR for pressurization events must bere-established based on linear interpolation between the Option B and Option A OLMCPRs.Note that Option B has an OLMCPR applicable to two recirculation loop operation, andan OLMCPR applicable to single recirculation loop operation.
The Option B OLMCPRvalue for single recirculation loop operation is the same as the Option B OLMCPR valuefor two recirculation loop operation.
The equation to establish the new operating limit for pressurization events is given below:_ ( p 100% 1Tave --TIBOLMCPR NEW -AO OLMC optionB + TA TB AOLMCPR,OLMCPRTTwBP (4)where:'cave and TB are defined in Equations 1 and 3, respectively; and'CA = The Technical Specification limit on scram time to notch position 36.(Technical Specification Table 3.1.4-1 at notch position 36)AOLMCPR = the difference between the Option A OLMCPR and the Option B OLMCPRreported in Table 33.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 35 of 46 Table 33Cycle OLMCPR ValuesTransient Option A Option BFeed Water Controller Failure 1.75 1.58Turbine Trip with Bypass' 1.661. The Turbine Trip with Bypass transient will be used as the Minimum OLMCPRtransient for Option B Analysis.
- 2. All the OLMCPR values reported in Table 33 are for two recirculation loop operation.
- 3. For Options A and B, the OLMCPR value for single recirculation loop operation isequal to the OLMCPR value for two recirculation loop operation.
Sample Calculation:
Assume two recirculation loop operation.
If cave is 0.820 seconds (scram time test) and tB (as calculated with equation
- 3) is 0.850 secondsthen the criteria from Equation 2 is met and the Option B OLMCPR of 1.66 can be used.If 'Cave is 0.970 seconds and TB is 0.850 seconds, then Equation 2 is not met and a new Option BOLMCPR must be calculated using Equation 4 above.The example calculation is as follows:OLMCPR NEW = MAX(OLMCPR'/
+ tavei-TB AOLMCPROLMCPRTTWBP OpioBTA -T:BOLMCPR.Op*"
= 1.66 (from Table 33 above.)T've =0.970TB = 0.850TA = 1.080 (Technical Specification Table 3.1.4-1 at notch position 36)AOLMCPR = 1.75 -1.58 = 0.17 (from Table 33 above; assume two recirculation loop operation)
= MAL4A1.58+
0.970-0.850 1*0.17, 1.66)= MAX(1.67, 1.66)= 1.67; two recirculation loop operation Note: If single recirculation loop operation Option B OLMCPR value is desired, the same value isused, i.e. 1.67.11.0 Turbine Bypass System Response TimeThe TURBINE BYPASS SYSTEM RESPONSE TIME shall be that time interval from when themain turbine trip solenoid is activated until 80% of the turbine bypass capacity is established.
The TURBINE BYPASS SYSTEM RESPONSE TIME shall be < 1.1 seconds.
Reference:
Technical Specification 1.1, Surveillance Requirement 3.7.7.3.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 36 of 46 12.0 Shutdown Margin (SDM) Confirmation Technical Specification 3.1.1 requires that the SDM be confirmed for Monticello Cycle 27.Analytical SDM has been confirmed in the Supplemental Reload Licensing Report (Reference 2,Section 4).For any mid-cycle core loading changes, the analytical SDM will be re-confirmed, formallydocumented, and reviewed prior to start-up.
13.0 APRM Simulated Thermal Power- High Delta W Allowable ValueThe APRM Simulated Thermal Power -High Flow Biased Scram Setpoint Allowable Value shall be:SSTP < (0.66(W-AW)
+ 61.6%)where:SSTP = Scram setting in percent of rated thermal power (1775 MWt)W = Loop recirculation flow rate in percent of ratedAW = Difference between two-loop and single-loop effective recirculation flow at thesame core flow (AW = 5.4% for single loop operation, AW = 0.0 for two-loopoperation)
Reference:
Technical Specification 5.6.3, item 5, Technical Specification Table 3.3.1.1-1, Function 2.b, and Reference 24NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 37 of 46 Figure 1Monticello Cycle 27Power Dependent MAPLHGR and LHGR Multipliers For CLTP Conditions 1.101.000.900.80~,0.70LL.S0.600.500.40-0.300.200MAPLHGRp
= MAPFACp *MAPLHGRFor 25% > P: No Thermal Limits Required0 %. flowFor 25% 5 P < 45%, >50% FlowMAP FACp=0. 527+0.001 55(P-45%)
For 25% ý P < 45%, ýý 50% Flow"I > 011.flowMAP FACpO0.677+0.
00775(P-45%)
For 45% P < 100%MAP FACp=1 .0+0. 005224(P-1 00%)25 30 35 40 45 50 55 60 65 70 75 80 85POWER (% Rated)90 95 100NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 38 of 46 Figure 2Monticello Cycle 27Flow Dependent MAPLHGR and LHGRfor CLTP Conditions Multipliers 1.1MAPMULT(F)
= 0.941.0or-7-0.9U-0.800.70.(L 0.6MAPFAC(F)
= MINIMUM[MFRPD(F),
MAPMULT(F)]
MAPMULT(F)
= 1.0 FOR FLOW > 80%MAPMULT(F)
= 0.94 FOR FLOW < 80%MFRPD(F)
= MINIMUM[1.0,nF
+ b]F = CORE FLOW (% of RATED)/1 00n = 0.6758b = 0.45740.50.40.3304050 60 70 80Core Flow (% Rated)90100110NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 39 of 46 Figure 3Monticello Cycle 27Power Dependent K(P) / MCPR(P) Limits4.0(nU,.3.5V0.I.-0.-J0_RAl 2.52.L0~1.51.0* II II II II IOperating Limit MCPR(P) = Kp x Operating Limit MCPR(100)
- IK U For P < 25%: No Thermal Limits Monitoring RequiredI IFor 25% : P < 45%, > 50% Flow* OLMCPR(P)
= 2.72 + 0.028*(45%-P)
Flow > 500/ For 25% 5 P < 45%, 5 50% FlowI OLMCPR(P)
= 2.22 + 0.0305*(45%-P)
- For 45% 5 P < 60% Kp = 1.15 + 0.00867*(60%-P)
- IFor 60% < P < 90% Kp = 1.056 + 0.00313*(90%-P)
For 90% 5 P < 100% Kp = 1.00 + 0.0056*(100%-P)
..* lI IFlo N<50%S --*_ 'IOLMCPR , ,pK-I II II I,20 30 40 5060 70Power (% Rated)8090100110NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 40 of 46 Figure 4Monticello Cycle 27Flow Dependent CPR Limits1.81.71.6U-C-,[A..E 1.31.411.21.1For W(C) (% Rated Core Flow) : 30%MCPR(F) = MAX(1.35, A(F)
- W(C) / 100 + B(F))Max Flow = 107.0 A(F) = -0.639 B(F) = 1.832N20 30 40 5060 70 80Core Flow (% Rated)90 100110 120The MCPRf limits shown above are cut-off at theECCS-LOCA MCPR = 1.35 as specified inSection 16.3 and Appendix D of Reference 2.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 41 of 46 Figure 5Monticello Cycle 27 Power/Flow Map225020001750150012500I. 10000)L..075050025000 10 20 30 40 50 60Core Flow (Mlb/Hr)NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 42 of 46 0Figure 6Monticello Cycle 27 Power/Flow Map80%70%60%4).0I..050%40%30%20%15 16 17 18 19 20 2122 23 24 25 26 27 28 29Core Flow (MIblHr)30 31 32 33 34 35NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 43 of 46 0Figure 7Stability Criterion Map0w0U1.00.90.80.70.60.50.40.30.20.10.00.00.4 0.6 0.8CHANNEL DECAY RATIO1.0NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 44 of 46 Figure 8.Monticello Cycle 27Power Dependent K(P) and MCPR(P) Limits forPressure Regulator Out of Service (PROOS)for CLTP Conditions IIIIII4.03.5qIOV0.0 .a.3.0000Al 2.52.00.1.5NoChangefromFigure 3IIIOperating Limit MCPR Determination For P < 25%: No Thermal Limits Monitoring RequiredOLMCPR(P).
No chanae from Fiaure 3* II I* II FIow>50%
II II IFor 25% < P < 45%, > 50% FlowOLMCPR(P)
= 2.72 + 0.028*(45%-P)
For 25% < P < 45%, 5 50% FlowOLMCPR(P)
= 2.22 + 0.0305*(45%-P)
OLMCPR(P) for PROOSFor 45% < P < 60% OLMCPRp = 2.24 + 0.00867*(60%-P)
For 60% < P < 85% OLMCPRp = 1.88 + 0.0144*(85%-P)
OLMCPR(P)
= K(P)
- OLMCPR(100),
No change from Fig. 3N"%.\IFor 85% 5 P < 90% Kp = 1.056 + 0.00313*(90%-P)
For 90% < P < 100% Kp = 1.00 + 0.0056*(100%-P) t ~ --IIIIIIIFIo* < 50%III* II I II I I, ----.OLMCPR( ) -* 4- Kp- -* I ' No Change' I ' from Figure 3* I I* I II I I* I I* I II I1.020 30 40 50 60 70 80 90 100Power (% Rated)110NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 45 of 46 Figure 9Pressure Regulator Out Of ServiceInterim MFLCPR Limitfor CLTP Conditions The plot is valid for Option A & B scram times.The limit is not dependent on core flow.NAD-MN-033, Monticello Cycle 27 CLTP COLR, Revision 0Page 46 of 46