ML18040A226: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 18: Line 18:


=Text=
=Text=
{{#Wiki_filter:TECHNICALEVALUATIONREPORTTECHNICALBASISFORREDUCTIONOFTORUSSHELLCONDENSATIONOSCILLATIONLOADSFORTHENIAGARAMOHAWKPOWERCORPORATIONNINEMILEPOINTUNIT1byC.Economos,J.Lehner,andC.C.LinAccidentAnalysisGroupSafetyandRiskEvaluationDivisionDepartmentofAdvancedTechnologyBrookhavenNationalLaboratoryUpton,NewYork11973January1994RevisedMay1994PreparedforOfficeofNuclearReactorRegulationNuclearRegulatoryCommissionWashington,D.C.20555UnderContractNo.DE-AC02-76CH00016NRCFINL-13119408i001689408051PDRADQCN05000220PDR,  
{{#Wiki_filter:TECHNICAL EVALUATION REPORTTECHNICAL BASISFORREDUCTION OFTORUSSHELLCONDENSATION OSCILLATION LOADSFORTHENIAGARAMOHAWKPOWERCORPORATION NINEMILEPOINTUNIT1byC.Economos, J.Lehner,andC.C.LinAccidentAnalysisGroupSafetyandRiskEvaluation DivisionDepartment ofAdvancedTechnology Brookhaven NationalLaboratory Upton,NewYork11973January1994RevisedMay1994PreparedforOfficeofNuclearReactorRegulation NuclearRegulatory Commission Washington, D.C.20555UnderContractNo.DE-AC02-76CH00016 NRCFINL-13119408i00168 9408051PDRADQCN05000220PDR,  
'P4 LISTOFFIGURESFigure1.Figure2.Figure3.MOIpredictedVariationofPressureinComputationCellPlaneofSymmetry-P(x,0,ZO/2).................................19ComparisonofBNLandNMPCEstimatesforPressureAmplitudeReductionFactors...............................~.....20.ResultsofSensitivityStudiesforNMPviatheBNLMethodfImages.............................................210 P
'P4 LISTOFFIGURESFigure1.Figure2.Figure3.MOIpredicted Variation ofPressureinComputation CellPlaneofSymmetry-P(x,0,ZO/2).................................
ABSTRACTBNL'sevaluationofthetechnicalbasissubmittedbyNMPCtojustifyareductionintheNMPtorusCOloadsisdocumentedinthisreport.ThereductionwasrequestedbecausethinningoftheNMPtorusshellduetocorrosionimpliesthatstresslevelsinducedbytheseDBAloadswouldexceedallowables.ThetechnicalbasisutilizedinBNL'sreviewincludesaseriesoftopicalreportsprovidedbytheapplicantaswellasresponsestoRAIsgeneratedduringthecourseoftheevaluation.Inaddition,theevaluationinvolvedreviewof.documentsinwhichdevelopmentoftheoriginalCOloadspecificationanditsbasisaredescribed.AlsofactoredintotheevaluationaretheresultsofindependentcalculationsperformedbyBNLtoconfirmtheadequacyoftheapplicant'sanalyticalresults.Finally,thereview'sscopewasexpandedtoincludetheimpactofshellthinningonallDBA-relatedhydrodynamicloads.BNL'sfindingsbasedontheaboveisthattherequestedreductioninCOloadsisappropriateandhasasoundtechnicalbasis.  
19Comparison ofBNLandNMPCEstimates forPressureAmplitude Reduction Factors...............................
~.....20.ResultsofSensitivity StudiesforNMPviatheBNLMethodfImages.............................................
210 P
ABSTRACTBNL'sevaluation ofthetechnical basissubmitted byNMPCtojustifyareduction intheNMPtorusCOloadsisdocumented inthisreport.Thereduction wasrequested becausethinningoftheNMPtorusshellduetocorrosion impliesthatstresslevelsinducedbytheseDBAloadswouldexceedallowables.
Thetechnical basisutilizedinBNL'sreviewincludesaseriesoftopicalreportsprovidedbytheapplicant aswellasresponses toRAIsgenerated duringthecourseoftheevaluation.
Inaddition, theevaluation involvedreviewof.documents inwhichdevelopment oftheoriginalCOloadspecification anditsbasisaredescribed.
Alsofactoredintotheevaluation aretheresultsofindependent calculations performed byBNLtoconfirmtheadequacyoftheapplicant's analytical results.Finally,thereview'sscopewasexpandedtoincludetheimpactofshellthinningonallDBA-related hydrodynamic loads.BNL'sfindingsbasedontheaboveisthattherequested reduction inCOloadsisappropriate andhasasoundtechnical basis.  
~I'~~'
~I'~~'
TABLEOFCONTENTSSTRACT~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ABLISTOFFIGURES.................,...............0Vl~~LISTOFTABLES.....................................,..........vllLISTOFACRONYMSANDABBREVIATIONS...,.....~~~~~~~~~~~~VillACKNOWLEDGEMENT...........................................lx
TABLEOFCONTENTSSTRACT~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ABLISTOFFIGURES.................,...............
0Vl~~LISTOFTABLES.....................................,..........
vllLISTOFACRONYMSANDABBREVIATIONS
...,.....
~~~~~~~~~~~~VillACKNOWLEDGEMENT...........................................
lx


==1.0INTRODUCTION==
==1.0INTRODUCTION==
ANDBACKGROUND.......................12.0DESCRIPTIONOFTHEPROPOSEDMETHODOLOGY3.0EVALUATIONOFTHEPROPOSEDMETHODOLOGY......~~~~~~~~53.13.2EvaluationBasedontheInitialSublnittal...EvaluationBasedonOtherConsiderations.,3.2.1AcceptabilityofTotalStructuralResponseMethod.........,.....3.2.2BNLConfirmationofGeometryEffectonCOBoundaryPressures........3.221DescriptionoftheMethodology.3.Z2.2GeometricConsiderations.....3.2.Z3PresentationofResults.......3.22.4DiscussionofResults..........5~.5.6..6..7..7..8..94.0IMPACTOFSHELLTHINNINGONOTHERDBA-RELATEDHYDRODYNAMICLOADS.................................,.115.0CONCLUDINGREMARKS...............................,....1
 
ANDBACKGROUND
.......................
12.0DESCRIPTION OFTHEPROPOSEDMETHODOLOGY
 
==3.0 EVALUATION==
OFTHEPROPOSEDMETHODOLOGY
......~~~~~~~~53.13.2Evaluation BasedontheInitialSublnittal...
Evaluation BasedonOtherConsiderations
.,3.2.1Acceptability ofTotalStructural ResponseMethod.........,.....
3.2.2BNLConfirmation ofGeometryEffectonCOBoundaryPressures
........3.221Description oftheMethodology
.3.Z2.2Geometric Considerations.....
3.2.Z3Presentation ofResults.......
3.22.4Discussion ofResults..........5~.5.6..6..7..7..8..94.0IMPACTOFSHELLTHINNINGONOTHERDBA-RELATED HYDRODYNAMIC LOADS.................................,
.115.0CONCLUDING REMARKS...............................,....
1


==36.0REFERENCES==
==36.0REFERENCES==
.............................................14APPENDIXATHEBNLTECHNICALLETTERREPORT...............A-1APPENDIXBTHEBNLINTERNALMEMORANDUM.................B-1APPENDIXCTHEDESCRIBINGEQUATIONSFORTHEBNLMETHODOFIMAGES..e~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~oC-1APPENDIXDTHENRCREQUESTFORADDITIONALINFORMATIONANDTHENMPCRESPONSE~..................,...D-1


LISTOFTABLESTable1.ValuesofParametersUsedtoDefineCalculationCellGeometry....17Table2.ResultsofBNLMOICalculations...........................18 y~v LISTOFACRONYMSANDABBREVIATIONSACABSSBNLBWRBWROGCDICODBADNEFSTFIBALDRMOINEPNMPNMPCNRCPCPUARRAIRFSERSRSSSRVTERTESTLRTSAcceptanceCriteriaAbsoluteSumBrookhavenNationalLaboratoryBoilingWaterReactorBWROwnersGroupContinuumDynamics,Inc.CondensationOscillationDesignBasisAccidentDepartmentofNuclearEnergyFullScaleTestFacilityIntermediateBreakAccidentLoadDefinitionReportMethodofImagesNon-ExceedanceProbabilityNineMilePointNuclearStationUnit1NiagaraMohawkPowerCorporationNuclearRegulatoryCommissionPersonalComputerPlantUniqueAnalysisReportRequestforAdditionalInformationReductionFactor(forpressureamplitude)SafetyEvaluationReportSquareRootoftheSumofSquaresSafety/ReliefValveTechnicalEvaluationReportTeledyneEngineeringServicesTechnicalLetterReportTechnicalSpecification g~I ACKNOWLEDGEMENTTheauthorswouldliketoexpresstheirappreciationtoA.D'Angelo,theNRCLeadEngineerforthisproject.Theguidanceandsuggestionsheprovidedwereinsightfulandconstructive.Hiscontributionswereessentialtothesuccessfulcompletionoftheevaluationdocumentedinthisreport.
.............................................
14APPENDIXATHEBNLTECHNICAL LETTERREPORT...............
A-1APPENDIXBTHEBNLINTERNALMEMORANDUM
.................
B-1APPENDIXCTHEDESCRIBING EQUATIONS FORTHEBNLMETHODOFIMAGES..e~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~oC-1APPENDIXDTHENRCREQUESTFORADDITIONAL INFORMATION ANDTHENMPCRESPONSE~..................,...
D-1
 
LISTOFTABLESTable1.ValuesofParameters UsedtoDefineCalculation CellGeometry....17Table2.ResultsofBNLMOICalculations
...........................
18 y~v LISTOFACRONYMSANDABBREVIATIONS ACABSSBNLBWRBWROGCDICODBADNEFSTFIBALDRMOINEPNMPNMPCNRCPCPUARRAIRFSERSRSSSRVTERTESTLRTSAcceptance CriteriaAbsoluteSumBrookhaven NationalLaboratory BoilingWaterReactorBWROwnersGroupContinuum
: Dynamics, Inc.Condensation Oscillation DesignBasisAccidentDepartment ofNuclearEnergyFullScaleTestFacilityIntermediate BreakAccidentLoadDefinition ReportMethodofImagesNon-Exceedance Probability NineMilePointNuclearStationUnit1NiagaraMohawkPowerCorporation NuclearRegulatory Commission PersonalComputerPlantUniqueAnalysisReportRequestforAdditional Information Reduction Factor(forpressureamplitude)
SafetyEvaluation ReportSquareRootoftheSumofSquaresSafety/Relief ValveTechnical Evaluation ReportTeledyneEngineering ServicesTechnical LetterReportTechnical Specification g~I ACKNOWLEDGEMENT Theauthorswouldliketoexpresstheirappreciation toA.D'Angelo, theNRCLeadEngineerforthisproject.Theguidanceandsuggestions heprovidedwereinsightful andconstructive.
Hiscontributions wereessential tothesuccessful completion oftheevaluation documented inthisreport.
ILJtCp  
ILJtCp  


==1.0INTRODUCTION==
==1.0INTRODUCTION==
ANDBACKGROUNDThegenericCOloaddefinitionanditsgenesisaredescribedintheMarkILDR.'twassynthesizedfrompressuresrecordedduringtheworstcaseblowdown(TestNumberMS)fromthefirstFSTFtestseries.'histestsimulatedalargeliquidbreakbutwasconductedatapooltemperaturebelowthecurrentTechnicalSpecification(TS)forcontinuousoperation(70'Fvs90-95'F).TheseloadswereapprovedbytheNRC,subjecttotheresultsofadditionalconfirmatorytests.'ncreasedpressureswereobservedintheselatertests'hichwereconductedathigherpooltemperatures(95'FforTestM12).However,theoriginalloadspecificationwasdeemedacceptable'asedonafavorablecomparisonbetweenpredictionsandthestresslevelsobservedduringthehightemperaturetest,Insomecases,thepredictionexceededmeasurementsbyasmuchas150%.TounderstandwhytheLDRloadsexhibitthisconservatismitisnecessarytodescribehowtheloadspecificationisderivedandhowitistobeapplied.Reference6providesadetaileddescriptionofthedesignload'sdevelopment.Herewenoteonlythefollowing:asinglepressuresignaturewasselectedforprocessing(Figure2-6ofReference6).AFourierseriesrepresentationofthissignalwasthendeveloped.ThiswasfollowedbyasomewhatcomplexprocedurethatconvertedtheFouriercoefficientstocorresponding"rigidwall"values.Fromthese,atableofrigidwallFouriercoefficients/pressureamplitudeswasgeneratedasafunctionofdiscretefrequencybands(Table4.4.1-2ofReference1).TheLDRthendirectsthattheseharmonicexcitationsbeapplied,withineachfrequencyband,tostructuralmodelsthatrepresenteachplant-specifictorus,toestablishthestructure'sresponse.Becausethedesignforcingfunctionhasbeendecomposedintoaseriesofdiscreteharmonicexcitations,awayofcombiningthecorrespondingstresseshastobeprescribed.Wenotethatiftheexcitationwasgivenasasingle,continuouspressurewaveformas,forexample,isspecifiedfortheMarkISRVload(Section5.2.2oftheLDR),thisrequirementdoesnotarise.Thus,tocompletetheCOloadspecifi...tion,theLDRrequiresthatthestressesbecombinedbytheABSSmethodwhichisthesimplestandmostconservativeapproach.Thelargemarginsbetweenmeasuredandpredictedstressesnotedaboveareadirectresultofthisapproach.TheexcessiveconservatismofthisapproachwasrecognizedbytheBWROGevenbeforetheLDRloadswereappliedtospecificplants.Accordingly,aseriesofstudieswerecommissionedtodevelopimprovedproceduresthatreducedtheexcessivemarginsbutretainedanappropriatelevelofconservatism.7@'asedonareviewofthesestudies,theNRCstaffagreedthatstrictapplicationoftheABSSmethodwasnotrequiredandrelaxeditsoriginalAC,ForNMP,inparticular,amodifiedCOloadwas,approvedduringreviewoftheirPUAR."ThismodificationinvolvedapplicationoftheABSSmethodtoonlythefourhighestharmonicresponsesandaddition,byaSRSSmethod,oftheremainingones.Notethatthisproceduredoesnotmodifytheforcingfunctionitselfwhichconsistsofthepressureloadsthatareappliedtothewettedtorusboundaries.Therevisedmethoddoes, lrfP however,reducethetotalstressexperiencedbyanyparticularstructuralelementrelativetothatresultingfromfullABSSapplication.FormostBWRplants,useoftheLDRspecifiedABSSmethodwasacceptabledespiteitsinherentconservatism.InthecaseofNMP,however,theneedtoreducetheloadsaroseduetoNMP'snon-prototypicallythintorusshell.Withthepassageoftime,therehasbeenafurtherreductionintheshellthicknessduetocorrosion.ThiscorrosionisacontinuingprocesswhichNMPCanditsconsultantestimateoccursatarateof0.00126inchesperyear."IftheCOloadsarenotreducedevenfurther,controllingstresslevelsareexpectedtoexceedallowablesduring1994.Todelaytheneedtostructurallyreinforcethetorus,NMPChasproposedafurtherreductionintheloadspecification.Thetechnicaljustificationforthisreductionisdescribedandevaluatedintheensuingsections.  
 
~lJt14" 2.0DESCRIPTIONOFTHEPROPOSEDMETHODOLOGYTheinformationsuppliedbytheapplicanttojustifyaloadreductionwastransmittedinavarietyofformsandatvarioustimes.Thegiveandtakebetweenthesesubmittalsandthestaffsresponsesextendedoveraconsiderablechronologicalperiod.Inthissectionwewilldescribetheapplicant'smethodanditsbasisinawaythatparallelsthishistoricaldevelopment.ThemethodsproposedbyNMPCtodemonstratethatareductioninCOloadsisjustifiedwerefirstdescribedintwodocumentspreparedbyaconsultingfirm.'~'hismaterial,aswellasthatprovidedinReference11,constitutedtheinitialsubmittaltotheNRCstaff.Thekeyelementsoftheinformationsuppliedtherewereasfollows:FSTFdataareusedtodemonstratethatsignificantcorrelationoftheCOprocessattheexitoftheeightdowncomersoccursonlyinthe5-6Hzfrequencyrangeandthat,atotherfrequencies,theprocessanditscontributiontoboundarypressuresisrandom.2.ItisnotedthattheFSTFgeometry,whichconsistsofasingle,torus-likebaywitheightdowncomers(cf:Figure3.2-5ofReference2),doesnotcorrectlysimulatetheNMPtorussince,inthelatter,fourdowncomerbaysalternatewitheightdowncomerbays(cf:Figure3ofReference13).TheconsequenceofthisgeometricfeatureisthattheFSTFpressuresareexcessiveforboththefourandeightdowncomerNMPbays.Thisistrueovertheentirefrequencyrangeofthepressuresignatureincludingthesynchronous5-6Hzvalue.3.ItisalsonotedthattheFSTFdoesnotcorrectlysimulateanactualMarkItorusbecauseoftherelativelyrigidendcapswhichactasplanesofsymmetrybetweenadjacentbays.InadditiontoimplyingthatadjacentbayshavethesamenumberofdowncomersastheFSTFasnotedabove,anotherconsequenceofthisgeometricfeatureisthatasynchronouscontributionstothemeasuredpressuresareamplified.4.AnacousticmodelappliedtoanidealizedversionoftheNMPtorus(horizontalcylinderhalffilledwithwater)isdevelopedandutilizedtoquantifytheeffectsenumeratedabove.Theresultsofthisanalysisarepresentedasreductionfactors(cf:Table1ofReference13)thataretobeappliedtotheLDRpressureamplitudes(cf:Table4.4.1-2ofReference1).ThesefactorsdependprimarilyonbaygeometryandthenatureoftheCOprocess:i.e.:whetheritiscoherentorrandom.Thereductionfactorsalsoexhibitaslightdependenceonfrequency.ForuncorrelatedCOtheirvaluesareabout60%and80%forthefourandeightdowncomerarrangements,respectively.ThecorrespondingvaluesforcoherentCOare70%and95%%uo.Theseallrepresentbayaveragedvalues.
ANDBACKGROUND ThegenericCOloaddefinition anditsgenesisaredescribed intheMarkILDR.'twassynthesized frompressures recordedduringtheworstcaseblowdown(TestNumberMS)fromthefirstFSTFtestseries.'his testsimulated alargeliquidbreakbutwasconducted atapooltemperature belowthecurrentTechnical Specification (TS)forcontinuous operation (70'Fvs90-95'F).
J~~I1Jz' 5.Thecorrelatedreductionfactorsaretobeappliedonlyforthe5to6Hzpressureamplitude(about3psia).Forthebalanceofthefrequencyspectrumtheuncorrelatedvaluesaretobeutilized.6.Theproceduretodevelopthestructuralresponse(stresses)totherevisedhydrodynamicloadsisalsoaddressed.Reference13states(p.14)that"thestructuralanalysisshouldbeundertakenaspertheLoadDefinitionReport".TheanalogouscitationfromReference11appearsonpage11.Itstates"total...stresswasdonebyaddingtheabsolutevalueofthefourhighestharmoniccontributorstotheSRSScombinationoftheothers...".SincetheLDRdictatestheuseoftheABSSmethodforcombiningstresses,twocontradictoryproceduresforcombiningstressesarespecifiedinthisoriginalsubmittalaccordingtowhatiscitedinItem6.Thus,inBNL'soriginalevaluation'4thedistinctionbetweentheLDR'sABSSmethodandthealternativeofcombiningonlythefourpeakresponsesbyABSSandtheremainingresponsesbySRSS'ashighlightedandtheacceptabilityoftheproposedmethodmadecontingentontheassumptionthattheABSSmethodwastobeused.ThispositioncarriedoverintotheSERissuedbytheNRC.'ollowingtheissuanceoftheSER,theNMPCtookexceptiontotherequirementthatABSSbeusedtocomputetotalstructuralresponse."ItclarifiedtheambiguityimpliedinItem6bystatingthattheintentwastoutilizethe4ABSS+SRSSmethodaswasdoneintheiroriginalPUAR.'dditionalinformationinsupportofthisapproachwasalsoincludedinthissubmittal.AdescriptionandevaluationofthislaterinformationisincludedinSection3.2.1below.Insummary,therevisedmethodologyconsistsofasetofmuttipliers(Table1ofReference13)thatareusedtoreducetheLDRpressureamplitudes(Table4.4.1-2ofReference1).AllotheraspectsofthemethodareidenticaltothoseusedintheoriginalNMPPUAR."Forconvcnicnccinthcensuingdiscussion,thismethodofcombiningthcindividualharmonicresponseswillbedenotedbythcacronym4ABSS+SRSS.
TheseloadswereapprovedbytheNRC,subjecttotheresultsofadditional confirmatory tests.'ncreased pressures wereobservedintheselatertests'hich wereconducted athigherpooltemperatures (95'FforTestM12).However,theoriginalloadspecification wasdeemedacceptable'ased onafavorable comparison betweenpredictions andthestresslevelsobservedduringthehightemperature test,Insomecases,theprediction exceededmeasurements byasmuchas150%.Tounderstand whytheLDRloadsexhibitthisconservatism itisnecessary todescribehowtheloadspecification isderivedandhowitistobeapplied.Reference 6providesadetaileddescription ofthedesignload'sdevelopment.
V~Cgl 3.0EVALVATIONOFTHEPROPOSEDMETHODOLOGY3.1EvaluationBasedontheInitialSubmittalAsindicatedabove,anevaluationbasedontheinitialsubmittalwascompletedanddocumentedviaaBNLTLRearlyin1992.AcopyofthisTLRisincludedinthisreportasAppendixA.Itwasfoundthattheproposedreductionwas"reasonable,conservativeandtechnicallydefensible".ThebasisforthisconclusionrestedprimarilyonBNL'sconcurrencethattheLDRpressureloadswereoverlyconservativeforthereasonscited(therandomnessoftheexcitationformostoftheobservedfrequencyspectrumandthegeometricdifferencesbetweentheFSTFandtheNMPtorus)andtheacceptabilityoftheanalyticalprocedureutilizedtodevelopanappropriatereduction.However,theincorrectassumptionthatitwasNMPC/YES'sintenttodeveloptotalstressesviaanABSSmethodalsoplayedapartindevelopingtheoverallfindinginthatitimpliedasourceofadditionalconservatism.ThispositionwasevenmoreemphaticallystatedintheNRCstaff'sSER.Finally,theTLRhighlightedthefactthatBNLdidnotcriticallyreviewimplementationoftheanalyticalmethodnoraccuracyofthenumericalresultsthatweregenerated.TheconfirmatoryanalysispresentedinSection3.2.2representsanindirectwayofevaluatingthecorrectnessoftheNMPCmethodandresults.Summarizingthissection,thefindingsfromtheinitialevaluationregardingthepressureamplitudereductionfactorsremainqualitativelyvalidbutrequireadditionalconfirmationoftheirquantitativeacceptability.Thisadditionalrequirementaswellasotherconsiderationsthathaveevolvedsincetheissuanceofthestaff'sSER'saddressedinSection3.2.3.2EvaluationBasedonOtherConsiderationsAsaresultofNMPC'sresponsetotheTER,furtherevaluationwasundertakenbasedontheadditionalinformationthatwassuppliedthereandinReferences8,18,19,and20.Themainfocusofthisnewinitiativewastoestablishthesuitabilityofusingthe4ABSS+SRSSmethodincombinationwiththereducedpressureloads.However,becauseitcouldbeanticipatedthatacceptanceofthiscombinationinevitablywouldreduceexistingmargins,thestafffeltthatamorethoroughexaminationofthenewlydevelopedexcitationwasappropriate.Specifically,theNRCformallyrequestedBNLtoexpandthescopeofitsefforttoincludeanindependent,confirmatorysetofcalculationstodemonstratetheloadreducingeffectofthegeometrydifferencescitedearlier(ie:Items2and3listedinSection2.0).Forcompleteness,thedecisionwasalsomadetoincludeanexaminationoftheimpactofreducedshellthicknessontheabilityoftheNMPtorustowithstandallotherhydrodynamic(ie:besidesCO)loads.Inthenextsub-section,theacceptabilityofthemethodproposedtodeveloptorusstructuralresponse(the4ABSS+SRSSmethod)isaddressed.Then,theBNLmethodforestimating 1~lytt, theeffectofgeometryonpressureisdescribedandnumericalresultspresented.Finally,BNL'sfindingsresultingfromexaminationoftheNMPtorusstructuralcapabilityvis-a-visallDBAhydrodynamicloadsarediscussed.3.2.1AcceptabilityofTotalStructuralResponseMethodInSection1.0itwasnotedthattheNRCstaff'soriginalACwererelaxedregardinguseoftheLDRABSSmethodforcombiningstresses.ThebasisforacceptingalessconservativeversionwasdocumentedinanAugust1983BNLInternalMemorandum."AcopyofthismemohasbeenincludedhereasAppendixB.ThemethodapprovedtherewasintendedtobegenericallyapplicabletoallMarkIplantsbuthasbeenutilizedbyrelativelyfewutilitiesotherthanNMPC.TheevaluationwascarriedoutbythelateG.Bienkowski,ofPrincetonUniversityactingasconsultanttotheContainmentSystemsGroupofBNL'sDNE.ItreviewedessentiallythesamedocumentationNMPCsuppliedmorerecently.Usingconventional,industryacceptedstatisticalconsiderations,methodsweredevelopedtheretoobtainimprovedagreementbetweenmeasuredFSTFstructuralresponses(stresses,displacements,forces)andthosepredictedusingtheLDRharmonicpressure".CommontoallthesemethodswasthenotionthatsomewherebetweenpureABSSandpureSRSSexistsawayofcombiningtheresponsesinamorerealisticway.The"NavalSum"P~whichcombinesthetwohighestpeaksbyABSSandtheremainderbySRSS(2ABSS+SRSS)isoneexample.InReference7therecommendedprocedurewas3ABSS+SRSSimplyinganon-exceedanceprobability(NEP)of84%%uo.Althoughimprovedagreementwasdemonstrated,someexceedanceswerefound,primarilyintheareaofmembranestresses.Toprovidesufficientconservatismtoboundallthemeasuredresponses,itwasrecommendedinReference21thattheproposedmethodbemodifiedtothe4ABSS+SRSSmethodthatwasacceptedbythestaffandapprovedforusebyNMPCintheNMPPUAR.Insummary,the4ABSS+SRSSmethodthatNMPChasusedtodeveloptotalstructuralresponsetotheCOexcitationwasapprovedbythestaffearlier.Nothingthathastranspiredsincethatapprovalwarrantswithdrawalofthisapprovaland/ormodificationoftheprocedure.3.2.2BNLConfirmationofGeometryEffectonCOBoundaryPressuresThemethodologyusedbyBNLtocomputeboundaryloadsonsimulatedversionsoftheNMPtorusandtheFSTFduetoCOatdowncomerexitsisdescribedinthissection.Numericalresultsarealsopresentedhere.TheyincludecomparisonswithcorrespondingNMPCresultsandsensitivitystudiesthatexhibitthedependenceoftheloadsonkeygeometricparametersthatcharacterizetheNMPsuppressionpool.  
Herewenoteonlythefollowing:
)~lyi15,AqV<<P' 3.2.2.1DescriptionoftheMethodologyThemethodusedderivesfromanapplicationoftheclassicalMethodOfImages(MOI)technique.ThetechniqueisparticularlysuitablefordescribingthehydrodynamicphenomenonoccurringduringtheCOphaseofaDBAblowdown.BNL'smethodisvirtuallyidenticaltothatemployedbytheGeneralElectricCo.toestimateramsheadrelated,SRVhydrodynamicloads(Section3.3.1,ofReference23),ThesoledifferenceisthatarectangulararrayofimagesisusedbyBNLratherthanGE'sdiamondpattern.Thisisbecausecomputerstoragecapacityandexecutiontimeshaveimprovedconsiderablysincethen(1978).Thus,thegreaterefficiencyprovidedbythediamondshapedarrayisunnecessary.WewereabletocarryoutthesecalculationsonaPC(Gateway2000).AbriefdescriptionoftherelevantdescribingequationsusedherearepresentedinAppendixC.Itshouldbenotedthatthesegivethealgorithmfordevelopingthepressureatanypoint(x,y,z)duetotheexcitationinducedbya~siniedowncomer/source.Tocomputethepressureduetomultiplesources,thecomputercodeloopsoverallsourcesandcombinesthepressurecontributionfromeacheitherbyABSSfor"correlated"pressureorbySRSSfor"uncorrelated"results,3.2.2.2GeometricConsiderationsThegeometryoftheFSTFwasmodelledasasingle,rectangularparallelopipedwithplatformXObyZOanddepthYO(seeFigure1).ThespecificvaluesusedfortheseparametersaregiveninTable1andweredevelopedusingtheinformationgiveninReference20asfollows:YOwastakenequaltotheFSTFtorusradius(aofReference20);XO,correspondingtothecircumferentiallengthoftheFSTFbay,wastakentobefourtimesthedowncomerpairspacing(lofReference20);ZO,thelateralwidthofthecomputationcell,wasselectedsothatthecross-sectionalareaofthecellsequaledthatoftheFSTF;ie:wetookZOsuchthat(YO)(ZO)=m(YO)~/2.Fourpairsofsourceswithlateral/radialspacingDS,weresymmetricallylocatedwithinthecelladistanceHOabovethetorusbottom.HOandDSderivefromthevaluesgivenforrand0inReference20todefinethelocation/submergenceofthedowncomerexitplanes.Thissinglecomputationalcellwasutilizedtodevelopestimatesofboththecorrelatedanduncorrelatedpressureloads.ThisisvalidfortheFSTFsince,asnotedearlier,therigidendcapsrepresentplanesofsymmetrysothatasynchronyoftheCOpulsescanonlyoccuramongtheeightdowncomerscontainedwithinthesinglecell.ModellingoftheNMPgeometrydifferedfromthatfortheFSTFbecauseoftheneedtocorrectlyrepresentconditionswhentheCOprocessisasynchronous.IncontrasttothesituationfortheFSTF,whenthisconditionprevailsintheNMPtorusitimpliesthattheCOpulsesatall120downcomers(10bayswith4pairs;10bayswith2pairs)areoutofphaseratherthanjustatthefouroreightlocatedinasinglebay.Theloadreductionthatwouldresultfromsuchalimitednumberofuncorrelatedsourceswouldbeunrealistic.
asinglepressuresignature wasselectedforprocessing (Figure2-6ofReference 6).AFourierseriesrepresentation ofthissignalwasthendeveloped.
Thiswasfollowedbyasomewhatcomplexprocedure thatconverted theFouriercoefficients tocorresponding "rigidwall"values.Fromthese,atableofrigidwallFouriercoefficients/pressure amplitudes wasgenerated asafunctionofdiscretefrequency bands(Table4.4.1-2ofReference 1).TheLDRthendirectsthattheseharmonicexcitations beapplied,withineachfrequency band,tostructural modelsthatrepresent eachplant-specific torus,toestablish thestructure's response.
Becausethedesignforcingfunctionhasbeendecomposed intoaseriesofdiscreteharmonicexcitations, awayofcombining thecorresponding stresseshastobeprescribed.
Wenotethatiftheexcitation wasgivenasasingle,continuous pressurewaveformas,forexample,isspecified fortheMarkISRVload(Section5.2.2oftheLDR),thisrequirement doesnotarise.Thus,tocompletetheCOloadspecifi...tion, theLDRrequiresthatthestressesbecombinedbytheABSSmethodwhichisthesimplestandmostconservative approach.
Thelargemarginsbetweenmeasuredandpredicted stressesnotedaboveareadirectresultofthisapproach.
Theexcessive conservatism ofthisapproachwasrecognized bytheBWROGevenbeforetheLDRloadswereappliedtospecificplants.Accordingly, aseriesofstudieswerecommissioned todevelopimprovedprocedures thatreducedtheexcessive marginsbutretainedanappropriate levelofconservatism.7@'ased onareviewofthesestudies,theNRCstaffagreedthatstrictapplication oftheABSSmethodwasnotrequiredandrelaxeditsoriginalAC,ForNMP,inparticular, amodifiedCOloadwas,approved duringreviewoftheirPUAR."Thismodification involvedapplication oftheABSSmethodtoonlythefourhighestharmonicresponses andaddition, byaSRSSmethod,oftheremaining ones.Notethatthisprocedure doesnotmodifytheforcingfunctionitselfwhichconsistsofthepressureloadsthatareappliedtothewettedtorusboundaries.
Therevisedmethoddoes, lrfP however,reducethetotalstressexperienced byanyparticular structural elementrelativetothatresulting fromfullABSSapplication.
FormostBWRplants,useoftheLDRspecified ABSSmethodwasacceptable despiteitsinherentconservatism.
InthecaseofNMP,however,theneedtoreducetheloadsaroseduetoNMP'snon-prototypically thintorusshell.Withthepassageoftime,therehasbeenafurtherreduction intheshellthickness duetocorrosion.
Thiscorrosion isacontinuing processwhichNMPCanditsconsultant estimateoccursatarateof0.00126inchesperyear."IftheCOloadsarenotreducedevenfurther,controlling stresslevelsareexpectedtoexceedallowables during1994.Todelaytheneedtostructurally reinforce thetorus,NMPChasproposedafurtherreduction intheloadspecification.
Thetechnical justification forthisreduction isdescribed andevaluated intheensuingsections.  
~lJt14"  
 
==2.0 DESCRIPTION==
OFTHEPROPOSEDMETHODOLOGY Theinformation suppliedbytheapplicant tojustifyaloadreduction wastransmitted inavarietyofformsandatvarioustimes.Thegiveandtakebetweenthesesubmittals andthestaffsresponses extendedoveraconsiderable chronological period.Inthissectionwewilldescribetheapplicant's methodanditsbasisinawaythatparallels thishistorical development.
ThemethodsproposedbyNMPCtodemonstrate thatareduction inCOloadsisjustified werefirstdescribed intwodocuments preparedbyaconsulting firm.'~'his
: material, aswellasthatprovidedinReference 11,constituted theinitialsubmittal totheNRCstaff.Thekeyelementsoftheinformation suppliedtherewereasfollows:FSTFdataareusedtodemonstrate thatsignificant correlation oftheCOprocessattheexitoftheeightdowncomers occursonlyinthe5-6Hzfrequency rangeandthat,atotherfrequencies, theprocessanditscontribution toboundarypressures israndom.2.ItisnotedthattheFSTFgeometry, whichconsistsofasingle,torus-like baywitheightdowncomers (cf:Figure3.2-5ofReference 2),doesnotcorrectly simulatetheNMPtorussince,inthelatter,fourdowncomer baysalternate witheightdowncomer bays(cf:Figure3ofReference 13).Theconsequence ofthisgeometric featureisthattheFSTFpressures areexcessive forboththefourandeightdowncomer NMPbays.Thisistrueovertheentirefrequency rangeofthepressuresignature including thesynchronous 5-6Hzvalue.3.ItisalsonotedthattheFSTFdoesnotcorrectly simulateanactualMarkItorusbecauseoftherelatively rigidendcapswhichactasplanesofsymmetrybetweenadjacentbays.Inadditiontoimplyingthatadjacentbayshavethesamenumberofdowncomers astheFSTFasnotedabove,anotherconsequence ofthisgeometric featureisthatasynchronous contributions tothemeasuredpressures areamplified.
4.Anacousticmodelappliedtoanidealized versionoftheNMPtorus(horizontal cylinderhalffilledwithwater)isdeveloped andutilizedtoquantifytheeffectsenumerated above.Theresultsofthisanalysisarepresented asreduction factors(cf:Table1ofReference 13)thataretobeappliedtotheLDRpressureamplitudes (cf:Table4.4.1-2ofReference 1).Thesefactorsdependprimarily onbaygeometryandthenatureoftheCOprocess:i.e.:whetheritiscoherentorrandom.Thereduction factorsalsoexhibitaslightdependence onfrequency.
Foruncorrelated COtheirvaluesareabout60%and80%forthefourandeightdowncomer arrangements, respectively.
Thecorresponding valuesforcoherentCOare70%and95%%uo.Theseallrepresent bayaveragedvalues.
J~~I1Jz' 5.Thecorrelated reduction factorsaretobeappliedonlyforthe5to6Hzpressureamplitude (about3psia).Forthebalanceofthefrequency spectrumtheuncorrelated valuesaretobeutilized.
6.Theprocedure todevelopthestructural response(stresses) totherevisedhydrodynamic loadsisalsoaddressed.
Reference 13states(p.14)that"thestructural analysisshouldbeundertaken aspertheLoadDefinition Report".Theanalogous citationfromReference 11appearsonpage11.Itstates"total...stress wasdonebyaddingtheabsolutevalueofthefourhighestharmoniccontributors totheSRSScombination oftheothers...".
SincetheLDRdictatestheuseoftheABSSmethodforcombining
: stresses, twocontradictory procedures forcombining stressesarespecified inthisoriginalsubmittal according towhatiscitedinItem6.Thus,inBNL'soriginalevaluation'4 thedistinction betweentheLDR'sABSSmethodandthealternative ofcombining onlythefourpeakresponses byABSSandtheremaining responses bySRSS'ashighlighted andtheacceptability oftheproposedmethodmadecontingent ontheassumption thattheABSSmethodwastobeused.ThispositioncarriedoverintotheSERissuedbytheNRC.'ollowing theissuanceoftheSER,theNMPCtookexception totherequirement thatABSSbeusedtocomputetotalstructural response."
Itclarified theambiguity impliedinItem6bystatingthattheintentwastoutilizethe4ABSS+SRSS methodaswasdoneintheiroriginalPUAR.'dditional information insupportofthisapproachwasalsoincludedinthissubmittal.
Adescription andevaluation ofthislaterinformation isincludedinSection3.2.1below.Insummary,therevisedmethodology consistsofasetofmuttipliers (Table1ofReference 13)thatareusedtoreducetheLDRpressureamplitudes (Table4.4.1-2ofReference 1).Allotheraspectsofthemethodareidentical tothoseusedintheoriginalNMPPUAR."Forconvcnicncc inthcensuingdiscussion, thismethodofcombining thcindividual harmonicresponses willbedenotedbythcacronym4ABSS+SRSS.
V~Cgl  
 
==3.0 EVALVATION==
OFTHEPROPOSEDMETHODOLOGY 3.1Evaluation BasedontheInitialSubmittal Asindicated above,anevaluation basedontheinitialsubmittal wascompleted anddocumented viaaBNLTLRearlyin1992.AcopyofthisTLRisincludedinthisreportasAppendixA.Itwasfoundthattheproposedreduction was"reasonable, conservative andtechnically defensible".
Thebasisforthisconclusion restedprimarily onBNL'sconcurrence thattheLDRpressureloadswereoverlyconservative forthereasonscited(therandomness oftheexcitation formostoftheobservedfrequency spectrumandthegeometric differences betweentheFSTFandtheNMPtorus)andtheacceptability oftheanalytical procedure utilizedtodevelopanappropriate reduction.
However,theincorrect assumption thatitwasNMPC/YES's intenttodeveloptotalstressesviaanABSSmethodalsoplayedapartindeveloping theoverallfindinginthatitimpliedasourceofadditional conservatism.
Thispositionwasevenmoreemphatically statedintheNRCstaff'sSER.Finally,theTLRhighlighted thefactthatBNLdidnotcritically reviewimplementation oftheanalytical methodnoraccuracyofthenumerical resultsthatweregenerated.
Theconfirmatory analysispresented inSection3.2.2represents anindirectwayofevaluating thecorrectness oftheNMPCmethodandresults.Summarizing thissection,thefindingsfromtheinitialevaluation regarding thepressureamplitude reduction factorsremainqualitatively validbutrequireadditional confirmation oftheirquantitative acceptability.
Thisadditional requirement aswellasotherconsiderations thathaveevolvedsincetheissuanceofthestaff'sSER'saddressed inSection3.2.3.2Evaluation BasedonOtherConsiderations AsaresultofNMPC'sresponsetotheTER,furtherevaluation wasundertaken basedontheadditional information thatwassuppliedthereandinReferences 8,18,19,and20.Themainfocusofthisnewinitiative wastoestablish thesuitability ofusingthe4ABSS+SRSS methodincombination withthereducedpressureloads.However,becauseitcouldbeanticipated thatacceptance ofthiscombination inevitably wouldreduceexistingmargins,thestafffeltthatamorethoroughexamination ofthenewlydeveloped excitation wasappropriate.
Specifically, theNRCformallyrequested BNLtoexpandthescopeofitsefforttoincludeanindependent, confirmatory setofcalculations todemonstrate theloadreducingeffectofthegeometrydifferences citedearlier(ie:Items2and3listedinSection2.0).Forcompleteness, thedecisionwasalsomadetoincludeanexamination oftheimpactofreducedshellthickness ontheabilityoftheNMPtorustowithstand allotherhydrodynamic (ie:besidesCO)loads.Inthenextsub-section, theacceptability ofthemethodproposedtodeveloptorusstructural response(the4ABSS+SRSS method)isaddressed.
Then,theBNLmethodforestimating 1~lytt, theeffectofgeometryonpressureisdescribed andnumerical resultspresented.
Finally,BNL'sfindingsresulting fromexamination oftheNMPtorusstructural capability vis-a-vis allDBAhydrodynamic loadsarediscussed.
3.2.1Acceptability ofTotalStructural ResponseMethodInSection1.0itwasnotedthattheNRCstaff'soriginalACwererelaxedregarding useoftheLDRABSSmethodforcombining stresses.
Thebasisforaccepting alessconservative versionwasdocumented inanAugust1983BNLInternalMemorandum."
AcopyofthismemohasbeenincludedhereasAppendixB.Themethodapprovedtherewasintendedtobegenerically applicable toallMarkIplantsbuthasbeenutilizedbyrelatively fewutilities otherthanNMPC.Theevaluation wascarriedoutbythelateG.Bienkowski, ofPrinceton University actingasconsultant totheContainment SystemsGroupofBNL'sDNE.Itreviewedessentially thesamedocumentation NMPCsuppliedmorerecently.
Usingconventional, industryacceptedstatistical considerations, methodsweredeveloped theretoobtainimprovedagreement betweenmeasuredFSTFstructural responses (stresses, displacements, forces)andthosepredicted usingtheLDRharmonicpressure".
Commontoallthesemethodswasthenotionthatsomewhere betweenpureABSSandpureSRSSexistsawayofcombining theresponses inamorerealistic way.The"NavalSum"P~whichcombinesthetwohighestpeaksbyABSSandtheremainder bySRSS(2ABSS+SRSS) isoneexample.InReference 7therecommended procedure was3ABSS+SRSS implyinganon-exceedance probability (NEP)of84%%uo.Althoughimprovedagreement wasdemonstrated, someexceedances werefound,primarily intheareaofmembranestresses.
Toprovidesufficient conservatism toboundallthemeasuredresponses, itwasrecommended inReference 21thattheproposedmethodbemodifiedtothe4ABSS+SRSS methodthatwasacceptedbythestaffandapprovedforusebyNMPCintheNMPPUAR.Insummary,the4ABSS+SRSS methodthatNMPChasusedtodeveloptotalstructural responsetotheCOexcitation wasapprovedbythestaffearlier.Nothingthathastranspired sincethatapprovalwarrantswithdrawal ofthisapprovaland/ormodification oftheprocedure.
3.2.2BNLConfirmation ofGeometryEffectonCOBoundaryPressures Themethodology usedbyBNLtocomputeboundaryloadsonsimulated versionsoftheNMPtorusandtheFSTFduetoCOatdowncomer exitsisdescribed inthissection.Numerical resultsarealsopresented here.Theyincludecomparisons withcorresponding NMPCresultsandsensitivity studiesthatexhibitthedependence oftheloadsonkeygeometric parameters thatcharacterize theNMPsuppression pool.  
)~lyi15,AqV<<P' 3.2.2.1Description oftheMethodology Themethodusedderivesfromanapplication oftheclassical MethodOfImages(MOI)technique.
Thetechnique isparticularly suitablefordescribing thehydrodynamic phenomenon occurring duringtheCOphaseofaDBAblowdown.
BNL'smethodisvirtually identical tothatemployedbytheGeneralElectricCo.toestimateramsheadrelated,SRVhydrodynamic loads(Section3.3.1,ofReference 23),Thesoledifference isthatarectangular arrayofimagesisusedbyBNLratherthanGE'sdiamondpattern.Thisisbecausecomputerstoragecapacityandexecution timeshaveimprovedconsiderably sincethen(1978).Thus,thegreaterefficiency providedbythediamondshapedarrayisunnecessary.
Wewereabletocarryoutthesecalculations onaPC(Gateway2000).Abriefdescription oftherelevantdescribing equations usedherearepresented inAppendixC.Itshouldbenotedthatthesegivethealgorithm fordeveloping thepressureatanypoint(x,y,z)duetotheexcitation inducedbya~siniedowncomer/source.
Tocomputethepressureduetomultiplesources,thecomputercodeloopsoverallsourcesandcombinesthepressurecontribution fromeacheitherbyABSSfor"correlated" pressureorbySRSSfor"uncorrelated" results,3.2.2.2Geometric Considerations ThegeometryoftheFSTFwasmodelledasasingle,rectangular parallelopiped withplatformXObyZOanddepthYO(seeFigure1).Thespecificvaluesusedfortheseparameters aregiveninTable1andweredeveloped usingtheinformation giveninReference 20asfollows:YOwastakenequaltotheFSTFtorusradius(aofReference 20);XO,corresponding tothecircumferential lengthoftheFSTFbay,wastakentobefourtimesthedowncomer pairspacing(lofReference 20);ZO,thelateralwidthofthecomputation cell,wasselectedsothatthecross-sectional areaofthecellsequaledthatoftheFSTF;ie:wetookZOsuchthat(YO)(ZO)=m(YO)~/2.
Fourpairsofsourceswithlateral/radial spacingDS,weresymmetrically locatedwithinthecelladistanceHOabovethetorusbottom.HOandDSderivefromthevaluesgivenforrand0inReference 20todefinethelocation/submergence ofthedowncomer exitplanes.Thissinglecomputational cellwasutilizedtodevelopestimates ofboththecorrelated anduncorrelated pressureloads.ThisisvalidfortheFSTFsince,asnotedearlier,therigidendcapsrepresent planesofsymmetrysothatasynchrony oftheCOpulsescanonlyoccuramongtheeightdowncomers contained withinthesinglecell.Modelling oftheNMPgeometrydifferedfromthatfortheFSTFbecauseoftheneedtocorrectly represent conditions whentheCOprocessisasynchronous.
Incontrasttothesituation fortheFSTF,whenthiscondition prevailsintheNMPtorusitimpliesthattheCOpulsesatall120downcomers (10bayswith4pairs;10bayswith2pairs)areoutofphaseratherthanjustatthefouroreightlocatedinasinglebay.Theloadreduction thatwouldresultfromsuchalimitednumberofuncorrelated sourceswouldbeunrealistic.
I~
I~
Inviewoftheabove,twotypesofgeometrywereemployedfortheNMPsimulations.Forthecorrelatedcase,asinglecomputationalcellwasemployedanalogoustothatusedfortheFSTFexceptforthenumberandlocationofthesources/downcomers.Thesewerearrangedsothatthecalculationcellextendedfromthecenter(hence,planeofsymmetry)ofanon-vent,eightdowncomerbaytothecenterofafourdowncomerbay.Thus,onlythreepairsofsourceswereusedforthissimulation.Allotherpertinentdimensionsforthesingle,NMPcomputationalcellaregiveninTable1.ThesevaluesalsoderivefromtheinformationgiveninReference20.ReferringtoTable1,itisinterestingtonotethattheFSTFandNMPgeometriesarecomparableexceptfordowncomerpairclearance(HO)andspacing(DS).Ascanbeseen,theNMPdowncomerexitsaresignificantlyclosertoeachotherandtothebottomofthetorus.ThesegeometricdifferenceshaveasignificantimpactontheboundarypressuresaswillbediscussedinSection3.2.2.4.ForthecaseofuncorrelatedsourcesintheNMP,thegeometrymustreflectthefactthatincoherencebetweendowncomersisnotlimitedtothoseresidentinasingleoreveninapairofbays.Solongasrigidwallsarespecifiedattheendsoftheselectedcalculationcell,coherencebetweenthesourcesinthatcellandthearrayofimagesthatareemployedbytheMOIisimposed.Unlessthiseffectisproperlyaccountedfor,misleadingresultscanbeobtained.ThisisaccomplishedherebymodelingtheNMPtorusasrealisticallyaspossiblewithrespecttothetotalnumberofdowncomers,Asnotedabove,forNMPthisnumberis120.Ourmodellinghasutilizedhalfthisnumberwhichwouldyieldconservativeresults;i.e.:thepressureatanyparticularspatiallocationdecreasesastherigidboundarieswithinwhichincreasingnumbersofuncorrelatedsourcesareembeddedrecedefromthatlocation.Insummary,twotypesofgeometriesareemployedinBNL'scalculations.Forcorrelatedpressures,asinglecellinwhicheitherfourorthreepairsofsources/downcomersarelocatedisused.ForuncorrelatedpressurescorrespondingtoNMP,thecellextendsinthecircumferential(X)directionapproximately180feetcorrespondingto10bays.'achofthesecellshasthreepairsofsourcesclusteredinsuchawaythatthealternating8-4-8-4patternintheNMPisreproduced(cf:Figure3ofReference13)~TheoriginoftheXcoordinateisatthecenterofoneortheotherofthesebays(bothcalculationsweremadewithnosignificantdifferencefound)correspondingtoaplaneofsymmetry.ForFSTFpressures,thecalculationcellforbothcorrelatedanduncorrelatedresultsisidentical.Thisisconsistentwiththeactualgeometricconfigurationofthefacilityandcorrectlymodelsthepresenceoftherigidwalls.3.2.2.3PresentationofResultsItwasnotedinSection2.0thattheNMPCmethodultimatelyinvolvesreductionoftheLDRCOpressureamplitudesbywhatarereferredtoinReference13as"HarmonicAmplitudeLoadReductionFactors".ThecalculationsperformedhereprovideanalogousreductionfactorsbygeneratingboundarypressuresforthemodeledFSTFduetoaunitexcitationateachsourceandformingtheratiowiththecorrespondingvaluesobtainedwhenidenticalstrengthsourcesarelocatedinasimulatedNMPtorusgeometry.
Inviewoftheabove,twotypesofgeometrywereemployedfortheNMPsimulations.
4' ResultsofBNL'scalculationsaregiveninthreedistinctways.First,themaximumpressurecomputedwithinagivencomputationalcell(PMAX)istabulatedasinTable2.ThetableincludestheresultsofasensitivitystudywherekeygeometricparametershavebeenvariedfromthebasecasevaluesgiveninTable1.Byfocusingonthesepeakvalues,improvedinsightregardingthetrendsassociatedwithchangesingeometryisprovided.InadditiontotabulatingPMAX,thespatialvariationofpressureatthebottomofthecellattheverticalplaneofsymmetrybetweenpairsofdowncomershasbeengeneratedandisplottedinFigure1,Notethatthisfigureincludesanindicationofthecalculationcellgeometryasithasbeensimulatedhere.Figure2comparestheNMPCreductionfactors(RF)withthosedevelopedbyBNL.ThelatterderivefromtheresultsshowninFigure1byformingtheappropriateratios.Finally,graphicalrepresentationofthefindingsfromthesensitivitystudiesisshowninFigure3.3.2.2.4DiscussionofResultsFromtheperspectiveofjustifyingaloadreductionforNMPrelativetotheloadsderivedfromFSTFtests,thekeyfindingisthecomparisonbetweenthevaluesofPMAXobtainedforCasesN1andF1forcorrelatedresultsandN1(U)andF1(U)foruncorrelatedCOsources,Thereductionfactor(RF)impliedbythefirstoftheseisessentiallyunity;thatis,PMAX=1.45forbothCaseF1andCaseN1asindicatedinTable2.Foruncorrelatedsources,RF=0.76sincePMAX=0.42forCaseN1(U)andPMAX=0.55forCaseF1(U).ThecorrespondingvaluesproposedbyNMPC(fromTable1ofReference13)are0.98and0.83.WeconsiderthistobereasonableagreementparticularlywhenthecomparisonshowninFigure2isalsofactoredin,ReferringnowtoFigure1,themostsignificantoftheresultsshownthereisthelargereductioninpressurethatisobtainedwhenthesourcesarenolongercorrelated.EvenfortheFSTF,thepressuresarereducedtoonlyaboutonethirdofthecorrelatedvalues.Interestinglyenough,thisismoreorlesstheArderofmagnitudeofreductioninpressureamplitudebetweenthefundamentalfrequency(about3psifor5Hz)andtheothernon-synchronousvalues(1psimaximum)asindicatedinTable4.4.1-2ofReference1.ComparisonoftheBNLandNMPCvaluesoftheRFsshowninFigure2indicateclearlythattheyareinverygoodagreement.NoteespeciallythattheNMPC'suncorrelatedRFsaremoreconservativethanBNL's.Thatis,theLDRpressureamplitudesarereducedlesswhentheNMPCRF'sareused.SomenonconservatismisexhibitedforcorrelatedRF'sbutthisdifferenceis,atmost,6%.Thesedifferencesareconsideredminorand,inourjudgement,donotinvalidatetheacceptabilityoftheproposedmodifications.Withrespecttothesensitivitystudiesthatwereperformed,wenotefirstthattheyweremotivatedbytheresultobtainedforCaseN2ofTable2correspondingtoacomputationalcellwiththeNMPgeometrybutwithfourratherthanthreepairsofdowncomers.Although Jtr~
Forthecorrelated case,asinglecomputational cellwasemployedanalogous tothatusedfortheFSTFexceptforthenumberandlocationofthesources/downcomers.
thiscasedoesnothavedirectapplicabilityhere,itwasperformedoutofacademicinterestandforthesakeofcompleteness.AscanbeseenbyreferringtoTable2,thevalueofPMAXcorrespondingtoCaseN2(1.66)notonlyexceedsthatforCaseN1(1.45),whichistobeexpected,butalsoexceedsthevaluepredictedforthebasicFSTFcase(CaseF1).Thisincreasecanonlybeattributedtogeometricdifferencessincesourcenumberandstrengthareidenticalforthosetwocases.ThesamesortofdifferenceisexhibitedbetweentheCaseF2(PMAX=1.24)andtheCaseN1(PMAX=1.45)results.Notethattheselattertwocasescorrespondto8-4-8-4typeconfigurations.Thesefindingswerethemotivationforthesensitivitystudiesthatwereconducted;ie:todeterminewhatfeatureoftheNMPtorusgeometrygivesrisetopressureloadshigherthanthoseexpectedintheFSTFforthesamenumberofdowncomers.AscanbeseenfromtheresultsshowninFigure3,thenotedincreasesareprimarilytheresultofthesignificantlysmallerclearance(7vs7.8ft)thatprevailsintheNMPtorus.OneimplicationofthisfindingisthattheFSTFgeometrywasnotstrictlyapplicableforNMPbothwithrespecttothelatter's8-4-8downcomerarrangement(aconservatism),butalsowithregardtodowncomerclearance(anon-conservatism)~Thetrade-offbetweenthesetwoopposingeffectssuggeststhattheoriginalNMPdesignloadsweresuitable,notwithstandingthat,totheauthors'nowledge,noadjustmentfortheeffectofreducedclearancewasmadeorconsidered.AmorepositiveinterpretationofthisfindingwouldbethatCOloadscouldbereducedbyanincreaseinclearanceatNMP;ie:byshorteningthelengthofthedowncomers.AccordingtoTable2(CaseN8vsCaseN1),adecreaseinPMAXofalmost20%couldbeachievedbyremoving12inchesfromthedowncomerends.Ofcourse,suchamodificationwouldinvolvesignificantexpensebutmightbeacost-effectivealternativetothestructuralmodificationscurrentlyunderconsiderationbyNMPCintheeventtheybecomenecessary.NotethatareductionofHOimpliesacorrespondingreductionindowncomersubmergencewhichtendstomitigatepoolswellloads(Section3ofReference3)~However,italsopotentiallyreducesthesteamcondensingperformanceofthesuppressionpool.Thusatotalsystemanalysiswouldberequiredtodeterminethemeritofthisconcept.10 I
Thesewerearrangedsothatthecalculation cellextendedfromthecenter(hence,planeofsymmetry) ofanon-vent,eightdowncomer baytothecenterofafourdowncomer bay.Thus,onlythreepairsofsourceswereusedforthissimulation.
4.4IMPACTOFSHELLTHINNINMi&RODYNAMICLOADS6ONOTHERDBA-RELATEDTheapproachherewastore-reviewtheNMPCPUARfortheNMPToruswiththefocusonhowthinningofthetorusshellcouldpotentiallyeffecttheearlierevaluation.~Asaresultofthisreview,anRAIwasdevelopedandtransmittedtoNMPC.~NMPC'sresponsetothisRAIwasprovidedtotheNRCstaffvialetterdatedSeptember28,1993.BNLreceivedandreviewedthisinformationinOctoberof1993.Itsfindings"werethat"itwasresponsiveandcomplete.Noopenissuesorconcernsrelatedtothissubmittalwere'dentified."ThecontentoftheRAIandNMPC'sresponseareincludedinthisreportasAppendixD.ThegeneralthrustofthequestionsposedintheRAIwastoconfirmthatsufficientmarginwasavailabletoaccommodatetheincreaseinstresslevelsassociatedwithreducedshellthicknessforalltheloadcasesmandatedbytheNRCstaff'sAC.Atotalof27suchloadcasesarespecifiedasenumeratedinFigures4.3-1,4.3-2and4.3-3ofReference3.TheRAIalsorequestedthatthecontributiontostresslevelduetoeachevent(eg:theDBACOload)beitemizedtodeterminetheirrelativeimportance.Examplesoftheinformationobtainedinthiswayissummarizedbelow.InresponsetothefirstRAIquestion,theapplicantindicatedthatforEventCombination20(thecontrollingloadcase)onlyabout30%ofthetotalstressisduetotheCOload.Mostofthestress(almost60%)stemsfromtheDBAinternalpressureload.Thus,anyreductionintotalstresscanonlybeasmallfractionofthecorrespondingreductioninCOload.Thisclarifiestheseeminglyanomalousresultthatupto60%reductionsinthelatterleadto,atmost,a10%reductionintotalmembranestressasreportedinNMPC'soriginalsubmittal."Anotherquestionaskedthattheloadcombinationinducingthenexthigheststressbeidentified.TheresponseindicatedthistobeEventCombination14,Thiseventcombines,amongotherloads,thosestemmingfromSRVactuationandtheIBACOload."ConsiderablereductionintotalstressrelativetoEventCombination20isreported(from16ksitoabout13ksi)withtheinternalpressurebeingevenmoredominant(almost75%ofthetotal).TheIBACOloadcontributionisonly6%,anamountequaltothatfromSRVactuation,asurprisinglysmallvalue.Insummary,theresponsesindicatethatthemarginbetweenexpectedandallowablestresslevelsforallotherEventCombinationsaremuchgreaterthanforthatcitedasthelimitingcase.Basedonthisinformation,itcanbeconcludedthatthecapabilityoftheNMPtorusItisimportanttonotethattheoriginalIBACOloadisusedherc.ThemodificationrcriucstcdbyNMPCappliesonlytotheDBACOload.11 I4 tomaintainitsintegrityduringpostulatedDBAeventsisassuredprovidedthatthisisdemonstratedforEventCombination20.Finally,duringreviewoftheNMPtorusPUAR,aconcernrelatingtothewayinwhichtheCOloadsareappliedtodeveloptheringgirderstructuralresponse(Section5.0ofReference24)wasidentified.Thisconcernarisesduetotheasymmetryintroducedbythe8-4-8downcomerarrangement.Specifically,thePUARstatesthatthehalfbaystructuralmodeloftheNMPtorus(Figure3-3ofReference24)isusedfortheringgirderresponsefor"allshelldynamicloads."SincetheaverageCOpressureamplitudesthatareappliedinalternatebaysdifferbymorethan20%,thequestionofhowthegradientacrosstheringgirderwasaccommodatedarose.TheissuewasraisedandresolvedviatelephoneconferencewithNMPCpersonnelandconsultants.Firstitwasestablishedthattheissuehadnotbeenaddressed.Toresolvetheissue,theapplicantcommittedtoutilizingaboundingapproach~whereinthehigher,non-ventbayloadswouldbeappliedonbothsidesoftheringgirdertodevelopthestresseswithintheregionimmediatelyadjacenttothetorusmiterjointandmiteroffset.Sincethisloadingcreatesthehighestbendingmomentacrosswhatis,ineffectarigidconnection,thestructuralresponsewillbemaximized.Weconsiderthisaconservativeand,therefore,acceptableapproach.12 I4 5.0CONCLUDINGREMARKSBasedontheevaluationdocumentedhere,BNLconcludesthatthereductionintheDBACOloadsthathasbeenrequestedbyNMPCisappropriateandtechnicallyjustified.ThegeometricrestraintsimposedbytheFSTFfromwhichtheLDRloadsderivedidintroduceconservatismsthatcansafelybereduced.Theabsenceofcoherenceformostofthefrequencyspectrumisalsoclear.TheCDIanalysisbasedonacousticsrepresentsarationalprocedureforestimatingandquantifyingtheseeffects.Ourindependentcalculationsconfirmthatthisanalysiswascorrectlyimplemented.ThesoleconcernthatwewouldhighlighthererelatestoBWRplantoperatingprocedures/technicalspecifications/emergencyoperatingprocedures.Specifically,itwasnotedintheintroductoryremarksthattheFSTFtestresultsexhibitedanincreasingtrendoftheCOloadswithincreasingpooltemperature.AlthoughtheLDRloadsandtheNMPmodifiedversioncanaccommodatetheobservedincrease,anyfurtherincreaseintheTSfortheinitiationofsuppressionpoolcooling~canpotentiallyinvalidatetheiracceptability.InthisconnectionwenotethatarequesttopermitasubstantialincreaseinthisTSisnowbeingconsideredbytheNRCstaff."WewanttoemphasizeheretheneedtokeeptheconnectionbetweenDBAloadsandplantoperatingconditionsintheforefrontwhenconsideringanyfurthermodificationstocurrentlyacceptabledesignhydrodynamicloads.Additionalevaluationand/oraugmentationoftheexistingsuppressionpoolhydrodynamicdatabasetogetherwithadditionalanalysiscouldverywellbeneededtoprovidesoundjustificationforsuchmodifications.13 I4  
Allotherpertinent dimensions forthesingle,NMPcomputational cellaregiveninTable1.Thesevaluesalsoderivefromtheinformation giveninReference 20.Referring toTable1,itisinteresting tonotethattheFSTFandNMPgeometries arecomparable exceptfordowncomer pairclearance (HO)andspacing(DS).Ascanbeseen,theNMPdowncomer exitsaresignificantly closertoeachotherandtothebottomofthetorus.Thesegeometric differences haveasignificant impactontheboundarypressures aswillbediscussed inSection3.2.2.4.Forthecaseofuncorrelated sourcesintheNMP,thegeometrymustreflectthefactthatincoherence betweendowncomers isnotlimitedtothoseresidentinasingleoreveninapairofbays.Solongasrigidwallsarespecified attheendsoftheselectedcalculation cell,coherence betweenthesourcesinthatcellandthearrayofimagesthatareemployedbytheMOIisimposed.Unlessthiseffectisproperlyaccounted for,misleading resultscanbeobtained.
Thisisaccomplished herebymodelingtheNMPtorusasrealistically aspossiblewithrespecttothetotalnumberofdowncomers, Asnotedabove,forNMPthisnumberis120.Ourmodelling hasutilizedhalfthisnumberwhichwouldyieldconservative results;i.e.:thepressureatanyparticular spatiallocationdecreases astherigidboundaries withinwhichincreasing numbersofuncorrelated sourcesareembeddedrecedefromthatlocation.
Insummary,twotypesofgeometries areemployedinBNL'scalculations.
Forcorrelated pressures, asinglecellinwhicheitherfourorthreepairsofsources/downcomers arelocatedisused.Foruncorrelated pressures corresponding toNMP,thecellextendsinthecircumferential (X)direction approximately 180feetcorresponding to10bays.'ach ofthesecellshasthreepairsofsourcesclustered insuchawaythatthealternating 8-4-8-4patternintheNMPisreproduced (cf:Figure3ofReference 13)~TheoriginoftheXcoordinate isatthecenterofoneortheotherofthesebays(bothcalculations weremadewithnosignificant difference found)corresponding toaplaneofsymmetry.
ForFSTFpressures, thecalculation cellforbothcorrelated anduncorrelated resultsisidentical.
Thisisconsistent withtheactualgeometric configuration ofthefacilityandcorrectly modelsthepresenceoftherigidwalls.3.2.2.3Presentation ofResultsItwasnotedinSection2.0thattheNMPCmethodultimately involvesreduction oftheLDRCOpressureamplitudes bywhatarereferredtoinReference 13as"Harmonic Amplitude LoadReduction Factors".
Thecalculations performed hereprovideanalogous reduction factorsbygenerating boundarypressures forthemodeledFSTFduetoaunitexcitation ateachsourceandformingtheratiowiththecorresponding valuesobtainedwhenidentical strengthsourcesarelocatedinasimulated NMPtorusgeometry.
4' ResultsofBNL'scalculations aregiveninthreedistinctways.First,themaximumpressurecomputedwithinagivencomputational cell(PMAX)istabulated asinTable2.Thetableincludestheresultsofasensitivity studywherekeygeometric parameters havebeenvariedfromthebasecasevaluesgiveninTable1.Byfocusingonthesepeakvalues,improvedinsightregarding thetrendsassociated withchangesingeometryisprovided.
Inadditiontotabulating PMAX,thespatialvariation ofpressureatthebottomofthecellattheverticalplaneofsymmetrybetweenpairsofdowncomers hasbeengenerated andisplottedinFigure1,Notethatthisfigureincludesanindication ofthecalculation cellgeometryasithasbeensimulated here.Figure2comparestheNMPCreduction factors(RF)withthosedeveloped byBNL.ThelatterderivefromtheresultsshowninFigure1byformingtheappropriate ratios.Finally,graphical representation ofthefindingsfromthesensitivity studiesisshowninFigure3.3.2.2.4Discussion ofResultsFromtheperspective ofjustifying aloadreduction forNMPrelativetotheloadsderivedfromFSTFtests,thekeyfindingisthecomparison betweenthevaluesofPMAXobtainedforCasesN1andF1forcorrelated resultsandN1(U)andF1(U)foruncorrelated COsources,Thereduction factor(RF)impliedbythefirstoftheseisessentially unity;thatis,PMAX=1.45forbothCaseF1andCaseN1asindicated inTable2.Foruncorrelated sources,RF=0.76sincePMAX=0.42forCaseN1(U)andPMAX=0.55forCaseF1(U).Thecorresponding valuesproposedbyNMPC(fromTable1ofReference 13)are0.98and0.83.Weconsiderthistobereasonable agreement particularly whenthecomparison showninFigure2isalsofactoredin,Referring nowtoFigure1,themostsignificant oftheresultsshownthereisthelargereduction inpressurethatisobtainedwhenthesourcesarenolongercorrelated.
EvenfortheFSTF,thepressures arereducedtoonlyaboutonethirdofthecorrelated values.Interestingly enough,thisismoreorlesstheArderofmagnitude ofreduction inpressureamplitude betweenthefundamental frequency (about3psifor5Hz)andtheothernon-synchronous values(1psimaximum)asindicated inTable4.4.1-2ofReference 1.Comparison oftheBNLandNMPCvaluesoftheRFsshowninFigure2indicateclearlythattheyareinverygoodagreement.
Noteespecially thattheNMPC'suncorrelated RFsaremoreconservative thanBNL's.Thatis,theLDRpressureamplitudes arereducedlesswhentheNMPCRF'sareused.Somenonconservatism isexhibited forcorrelated RF'sbutthisdifference is,atmost,6%.Thesedifferences areconsidered minorand,inourjudgement, donotinvalidate theacceptability oftheproposedmodifications.
Withrespecttothesensitivity studiesthatwereperformed, wenotefirstthattheyweremotivated bytheresultobtainedforCaseN2ofTable2corresponding toacomputational cellwiththeNMPgeometrybutwithfourratherthanthreepairsofdowncomers.
Although Jtr~
thiscasedoesnothavedirectapplicability here,itwasperformed outofacademicinterestandforthesakeofcompleteness.
Ascanbeseenbyreferring toTable2,thevalueofPMAXcorresponding toCaseN2(1.66)notonlyexceedsthatforCaseN1(1.45),whichistobeexpected, butalsoexceedsthevaluepredicted forthebasicFSTFcase(CaseF1).Thisincreasecanonlybeattributed togeometric differences sincesourcenumberandstrengthareidentical forthosetwocases.Thesamesortofdifference isexhibited betweentheCaseF2(PMAX=1.24)andtheCaseN1(PMAX=1.45)results.Notethattheselattertwocasescorrespond to8-4-8-4typeconfigurations.
Thesefindingswerethemotivation forthesensitivity studiesthatwereconducted; ie:todetermine whatfeatureoftheNMPtorusgeometrygivesrisetopressureloadshigherthanthoseexpectedintheFSTFforthesamenumberofdowncomers.
AscanbeseenfromtheresultsshowninFigure3,thenotedincreases areprimarily theresultofthesignificantly smallerclearance (7vs7.8ft)thatprevailsintheNMPtorus.Oneimplication ofthisfindingisthattheFSTFgeometrywasnotstrictlyapplicable forNMPbothwithrespecttothelatter's8-4-8downcomer arrangement (aconservatism),
butalsowithregardtodowncomer clearance (anon-conservatism)
~Thetrade-off betweenthesetwoopposingeffectssuggeststhattheoriginalNMPdesignloadsweresuitable, notwithstanding that,totheauthors'nowledge, noadjustment fortheeffectofreducedclearance wasmadeorconsidered.
Amorepositiveinterpretation ofthisfindingwouldbethatCOloadscouldbereducedbyanincreaseinclearance atNMP;ie:byshortening thelengthofthedowncomers.
According toTable2(CaseN8vsCaseN1),adecreaseinPMAXofalmost20%couldbeachievedbyremoving12inchesfromthedowncomer ends.Ofcourse,suchamodification wouldinvolvesignificant expensebutmightbeacost-effective alternative tothestructural modifications currently underconsideration byNMPCintheeventtheybecomenecessary.
Notethatareduction ofHOimpliesacorresponding reduction indowncomer submergence whichtendstomitigatepoolswellloads(Section3ofReference 3)~However,italsopotentially reducesthesteamcondensing performance ofthesuppression pool.Thusatotalsystemanalysiswouldberequiredtodetermine themeritofthisconcept.10 I
4.4IMPACTOFSHELLTHINNINMi&RODYNAMIC LOADS6ONOTHERDBA-RELATED Theapproachherewastore-review theNMPCPUARfortheNMPToruswiththefocusonhowthinningofthetorusshellcouldpotentially effecttheearlierevaluation.~
Asaresultofthisreview,anRAIwasdeveloped andtransmitted toNMPC.~NMPC'sresponsetothisRAIwasprovidedtotheNRCstaffvialetterdatedSeptember 28,1993.BNLreceivedandreviewedthisinformation inOctoberof1993.Itsfindings" werethat"itwasresponsive andcomplete.
Noopenissuesorconcernsrelatedtothissubmittal were'dentified."
ThecontentoftheRAIandNMPC'sresponseareincludedinthisreportasAppendixD.Thegeneralthrustofthequestions posedintheRAIwastoconfirmthatsufficient marginwasavailable toaccommodate theincreaseinstresslevelsassociated withreducedshellthickness foralltheloadcasesmandatedbytheNRCstaff'sAC.Atotalof27suchloadcasesarespecified asenumerated inFigures4.3-1,4.3-2and4.3-3ofReference 3.TheRAIalsorequested thatthecontribution tostresslevelduetoeachevent(eg:theDBACOload)beitemizedtodetermine theirrelativeimportance.
Examplesoftheinformation obtainedinthiswayissummarized below.InresponsetothefirstRAIquestion, theapplicant indicated thatforEventCombination 20(thecontrolling loadcase)onlyabout30%ofthetotalstressisduetotheCOload.Mostofthestress(almost60%)stemsfromtheDBAinternalpressureload.Thus,anyreduction intotalstresscanonlybeasmallfractionofthecorresponding reduction inCOload.Thisclarifies theseemingly anomalous resultthatupto60%reductions inthelatterleadto,atmost,a10%reduction intotalmembranestressasreportedinNMPC'soriginalsubmittal."
Anotherquestionaskedthattheloadcombination inducingthenexthigheststressbeidentified.
Theresponseindicated thistobeEventCombination 14,Thiseventcombines, amongotherloads,thosestemmingfromSRVactuation andtheIBACOload."Considerable reduction intotalstressrelativetoEventCombination 20isreported(from16ksitoabout13ksi)withtheinternalpressurebeingevenmoredominant(almost75%ofthetotal).TheIBACOloadcontribution isonly6%,anamountequaltothatfromSRVactuation, asurprisingly smallvalue.Insummary,theresponses indicatethatthemarginbetweenexpectedandallowable stresslevelsforallotherEventCombinations aremuchgreaterthanforthatcitedasthelimitingcase.Basedonthisinformation, itcanbeconcluded thatthecapability oftheNMPtorusItisimportant tonotethattheoriginalIBACOloadisusedherc.Themodification rcriucstcd byNMPCappliesonlytotheDBACOload.11 I4 tomaintainitsintegrity duringpostulated DBAeventsisassuredprovidedthatthisisdemonstrated forEventCombination 20.Finally,duringreviewoftheNMPtorusPUAR,aconcernrelatingtothewayinwhichtheCOloadsareappliedtodeveloptheringgirderstructural response(Section5.0ofReference 24)wasidentified.
Thisconcernarisesduetotheasymmetry introduced bythe8-4-8downcomer arrangement.
Specifically, thePUARstatesthatthehalfbaystructural modeloftheNMPtorus(Figure3-3ofReference 24)isusedfortheringgirderresponsefor"allshelldynamicloads."SincetheaverageCOpressureamplitudes thatareappliedinalternate baysdifferbymorethan20%,thequestionofhowthegradientacrosstheringgirderwasaccommodated arose.Theissuewasraisedandresolvedviatelephone conference withNMPCpersonnel andconsultants.
Firstitwasestablished thattheissuehadnotbeenaddressed.
Toresolvetheissue,theapplicant committed toutilizing aboundingapproach~
whereinthehigher,non-ventbayloadswouldbeappliedonbothsidesoftheringgirdertodevelopthestresseswithintheregionimmediately adjacenttothetorusmiterjointandmiteroffset.Sincethisloadingcreatesthehighestbendingmomentacrosswhatis,ineffectarigidconnection, thestructural responsewillbemaximized.
Weconsiderthisaconservative and,therefore, acceptable approach.
12 I4  
 
==5.0 CONCLUDING==
REMARKSBasedontheevaluation documented here,BNLconcludes thatthereduction intheDBACOloadsthathasbeenrequested byNMPCisappropriate andtechnically justified.
Thegeometric restraints imposedbytheFSTFfromwhichtheLDRloadsderivedidintroduce conservatisms thatcansafelybereduced.Theabsenceofcoherence formostofthefrequency spectrumisalsoclear.TheCDIanalysisbasedonacoustics represents arationalprocedure forestimating andquantifying theseeffects.Ourindependent calculations confirmthatthisanalysiswascorrectly implemented.
Thesoleconcernthatwewouldhighlight hererelatestoBWRplantoperating procedures/technical specifications/emergency operating procedures.
Specifically, itwasnotedintheintroductory remarksthattheFSTFtestresultsexhibited anincreasing trendoftheCOloadswithincreasing pooltemperature.
AlthoughtheLDRloadsandtheNMPmodifiedversioncanaccommodate theobservedincrease, anyfurtherincreaseintheTSfortheinitiation ofsuppression poolcooling~canpotentially invalidate theiracceptability.
Inthisconnection wenotethatarequesttopermitasubstantial increaseinthisTSisnowbeingconsidered bytheNRCstaff."Wewanttoemphasize heretheneedtokeeptheconnection betweenDBAloadsandplantoperating conditions intheforefront whenconsidering anyfurthermodifications tocurrently acceptable designhydrodynamic loads.Additional evaluation and/oraugmentation oftheexistingsuppression poolhydrodynamic databasetogetherwithadditional analysiscouldverywellbeneededtoprovidesoundjustification forsuchmodifications.
13 I4  


==6.0REFERENCES==
==6.0REFERENCES==
GeneralElectricCompany,"MarkIContainmentProgramLoadDefinitionReport,"GETopicalReportNEDO-21888,Revision2,November1981.2.Fitzsimmons,G.W.,etal.,"MarkIContainmentProgramFull-ScaleTestProgramFinalReport,TaskNo.5.11,"GEProprietaryReportNEDE-24539-P,April1979.3.U.S.NuclearRegulatoryCommission,"SafetyEvaluationReport,MarkILongTermProgram,ResolutionofGenericTechnicalActivityA-7,"NUREG-0661,July1980.GeneralElectricCompany,"MarkIContainmentProgramLetterReport:SupplementalFull-ScaleCondensationTestResultsandLoadConfirmation,"MI-LR-81-01-P,April1981.U.S.NuclearRegulatoryCommission,"SafetyEvaluationReport,MarkILongTermProgram,ResolutionofGenericTechnicalActivityA-7,"NUREG-0661,Supplement1,August1982.6.GeneralElectricCompany,"MarkIContainmentProgramAnalysisofFullScaleTestFacilityforCondensationOscillationLoading,"GEReportNEDE-24645,July1979.7.GeneralElectricCompany,"MarkIContainmentProgramEvaluationofHarmonicPhasingforMarkITorusShellCondensationOscillationLoads,"GEReportNEDE-24840(preparedbyStructuralMechanicsAssociates),October1980.8.Kennedy,R.P.,"ResponseFactorsAppropriateforUsewithCOHarmonicResponseCombinationDesignRules,"SMAReport12101.04-R002D,preparedbyStructuralMechanicsAssociatesforGeneralElectric,March1982.9.Kennedy,R.P.,"AStatisticalBasisforLoadFactorsforUsewithCOHarmonicResponseCombinationDesignRules,"SMAReport12101.04-R003D,preparedbyStructuralMechanicsAssociatesforGeneralElectric,March1982.10.Bienkowski,G.,Lehner,J.R.,andEconomos,C.,"TechnicalEvaluationoftheNineMilePointUnit1NuclearGeneratingStationPlantUniqueAnalysisReport,"BNL-04243,September1984.TeledyneEngineeringService,"NineMilePointUnit1ReductioninMarkITorusProgramCondensationOscillationLoadDefinitionandResultingEffectonMinimumShellThicknessRequirements,"TESTR-7353-1,Revision1,April1991.14 lI~,
 
12.Bliss,D.B.andTeske,M.E.,"FSTFShellCondensationOscillationCorrectionFactors-UncorrelatedVents,"CDIReport79-1,Revision2,preparedbyContinumDynamics,Inc.forGeneralElectric,August1980.13.ContinuumDynamics,Inc.,"ReductionofTorusShellCondensationOscillationHydrodynamicLoadsforNineMilePointUnit1,"CDITechnicalNote90-11,preparedforTeledyneEngineeringServices,November1990.14.Economos,C.,Lehner,J.andLin,C.C.,"EvaluationofNMCTechnicalBasisforReductionofNMPTorusCOLoads,"BNLTechnicalLetterReport,February1992.15.U.S.NuclearRegulatoryCommission,"SafetyEvaluationbytheOfficeofNuclearRegulationRelatedtoProposedDefermentofTorusModificationsNiagaraMohawkPowerCorporationNineMilepointNuclearStationUnitNo.1,DocketNo.50-220,"August1992.16.TeledyneEngineeringServices,"TechnicalResponsetoSafetyEvaluationbytheOfficeofNuclearRegulationRelatedtoProposedDefermentofTorusModificationsNiagaraMohawkPowerCorporationNineMilepointNuclearStationUnitNo.1,DocketNo.50-220,"November1992.17.TeledyneEngineeringServices,"MarkIContainmentProgram,Plant-UniqueAnalysisReportoftheTorusSuppressionChamberforNineMilePointUnit1NuclearGeneratingStation",TESTR-5320-1,Revision1,OctoberSeptember1984.18.NiagaraMohawkPowerCorporation,"ReductioninMarkITorusProgramCondensationOscillationLoadDefinitionandResultingEffectonMinimumShellThicknessRequirements,"PresentationtoNRC,March23,1993.19.Kennedy,R.P.,etal,"StudytoDemonstratetheSRSSCombinedResponsehasgreaterthan84PercentNonexceedanceProbabilityWhentheNewmark-KennedyAcceptanceCriteriaareSatisfied,"GEReportNEDO-24010-03,Supplement3,August1979.20.Bilanin,A.J.,"NRCRequestforDocumentationoftheNineMileCondensationOscillationAcousticTorusLoadReductionAnalysisLimits,"ContinuumDynamicsLetterReportNo.TELEDYNE/0073,April1993.21.Bienkowski,G.,"ReviewoftheValidityofRandomPhasingRulesasAppliedtoCOTorusLoads",InternalBNLMemorandum,August1983.22.Scanlon,R.,ProfessorEmeritus,PrincetonUniversity,PersonalCommunication.15 ItkAll'I 23.GeneralElectricCompany,"MarkIIContainmentDynamicForcingFunctionsInformationReport,"GEReportNEDO-21061,Revision3,June1978.24.TeledyneEngineeringServices,"PlantUniqueAnalysisReportoftheTorusSuppressionChamberforNineMilePointUnit1NuclearGeneratingStation,"TESTechnicalReportTR-5320-1,October1983.25.Triolo,S.andLe,A.,"AuditforMarkIContainmentLongTermProgram-StructuralAnalysisforOperatingReactors,NiagaraMohawkPowerCorporationNineMilePointNuclearStationUnit1",FranklinResearchCenterTechnicalEvaluationReportTER-C5506-331,September1984.26.U.S.NuclearRegulatoryCommission,"RequestforAdditionalInformationRegardingRe-ReviewofNineMilePointNuclearStationUnit1TorusLoadReductionSubmittalofMay14,1991.",August1993.27.TeledyneEngineeringServices,"ResponsetotheNRCRequestforAdditionalInformationRegardingRe-ReviewofMay14,1991TorusLoadReductionSubmittalNiagaraMohawkPowerCorporationNineMilePointNuclearStationUnit1,DocketNo.50-220",TESLetterReport7519-28,September1993.28.BrookhavenNationalLaboratory,"MonthlyBusinessReportforOctober1993-NineMilePoint,Unit1:SuppressionPoolDynamicLoadsRevisedMethodology."29.Attachment1toNMPCLetterDatedNovember30,1993fromC.D.Terry,NMPCtoUSNRCDocumentControlDeskUnderDocketNo.50-220.30.Mintz,S.,"BWRSuppressionPoolTemperatureTechnicalSpecificationLimits.",GeneralElectricReportNEDO-31695.31.U.S.NuclearRegulatoryCommission,"StandardTechnicalSpecificationsGeneralElectricPlant,BWR/4,"NUREG-1433,January1991.16 f/
GeneralElectricCompany,"MarkIContainment ProgramLoadDefinition Report,"GE TopicalReportNEDO-21888, Revision2,November1981.2.Fitzsimmons, G.W.,etal.,"MarkIContainment ProgramFull-Scale TestProgramFinalReport,TaskNo.5.11,"GEProprietary ReportNEDE-24539-P, April1979.3.U.S.NuclearRegulatory Commission, "SafetyEvaluation Report,MarkILongTermProgram,Resolution ofGenericTechnical ActivityA-7,"NUREG-0661, July1980.GeneralElectricCompany,"MarkIContainment ProgramLetterReport:Supplemental Full-Scale Condensation TestResultsandLoadConfirmation,"
Table1ValuesofParametersUsedtoDefineCalculationCellGeometryITEMXOYOZODSHOFSTFVALUE19.513.821.78.07.84.956.37.2NMPVALUE19.6(176.4)13.521.26.07.04.965.27.2NOMENCLATUREDSHOlNDPMAXp/XOYOZOeUNITSSPACINGBETWEENDOWNCOMERPAIRSINTHEZDIRECTIONVERTICALDISTANCEBETWEENTORUSBOTTOMANDDOWNCOMEREXITSPACINGBETWEENDOWNCOMERPAIRSINTHEXDIRECTIONNUMBEROFDOWNCOMERPAIRS(SEETABLE2)MAXIMUMPRESSUREIN8DOWNCOMERBAYINFLUENCECOEFFICIENTS-dPMAX/dDS,dPMAX/dYO,etc.RADIALDISTANCETORUSCENTERTODOWNCOMEREXITCENTERSIMULATEDLENGTHOFTORUSBAYDEPTHOFSUPPRESSIONPOOL=TORUSRADIUSSIMULATEDTORUSDIAMETERPOLARCOORDINATEANGLEMEASUREDFROMHORIZONTALTODOWNCOMEREXITCENTERPMAX-SOURCEUNITS(SU)P-SU/FTDS,HO,I,r,XO,YO,ZO-FEET8-DEGREES17 I
MI-LR-81-01-P, April1981.U.S.NuclearRegulatory Commission, "SafetyEvaluation Report,MarkILongTermProgram,Resolution ofGenericTechnical ActivityA-7,"NUREG-0661, Supplement 1,August1982.6.GeneralElectricCompany,"MarkIContainment ProgramAnalysisofFullScaleTestFacilityforCondensation Oscillation Loading,"
Table2ResultsofBNLMOICalculationsCASEF1F1(U)F2YO13.8ZO21.7ND8.0HO7.8PMAX1.450.551.24N1(U)N2N3N4N5N6N7N8N9N1013.512.514.513.521.2176.43021.224.027.06.07.08.06.07.06.08.07.01.450.421.661.251,631.421.391.701.211.341.27Notes:SeeTable1fornomenclatureandunits.Allresultsareforcorrelatedsourcesunlessotherwiseindicatedbythenotation(U)followingtheCaseIdentifierNumber.
GEReportNEDE-24645, July1979.7.GeneralElectricCompany,"MarkIContainment ProgramEvaluation ofHarmonicPhasingforMarkITorusShellCondensation Oscillation Loads,"GEReportNEDE-24840(prepared byStructural Mechanics Associates),
I III1~NonventBayA2XOVentBay(NMP)DS:FSTFIPjO+O+O++,'ypicalComputationCell+a+++,s+,'I,--,IIIOnly0+Y=Z=Ox=z=o2.0P'.an~HO~YOSectionA-A1.61.2~CaseN2~CaseF1~CaseN1P0.80.4~CaseF1(U)~CaseN1(U)0.000.51.0X/XO2.0Figure1-BNLMethodofImagesPredictedVariationofPressureintheComputationCellPlaneofSymmetry-P(X,O,ZO/2)19!II l4  
October1980.8.Kennedy,R.P.,"Response FactorsAppropriate forUsewithCOHarmonicResponseCombination DesignRules,"SMAReport12101.04-R002D, preparedbyStructural Mechanics Associates forGeneralElectric, March1982.9.Kennedy,R.P.,"AStatistical BasisforLoadFactorsforUsewithCOHarmonicResponseCombination DesignRules,"SMAReport12101.04-R003D, preparedbyStructural Mechanics Associates forGeneralElectric, March1982.10.Bienkowski, G.,Lehner,J.R.,andEconomos, C.,"Technical Evaluation oftheNineMilePointUnit1NuclearGenerating StationPlantUniqueAnalysisReport,"BNL-04243,September 1984.TeledyneEngineering Service,"NineMilePointUnit1Reduction inMarkITorusProgramCondensation Oscillation LoadDefinition andResulting EffectonMinimumShellThickness Requirements,"
'.0BNLRF080.6CorrelatedNMPC////r/X/XO1.0RF0.80.6NMPC~\~srBNLUncorrelatedrr//I/////0.40.00.51.0X/XO1.52.0Figure2-ComparisonofBNLandNMPCEstimatesforPressureAmplitudeReductionFactors20 IJC 2.0PMAX1.00.0125~ppWP'=0.1914YO2.01.00.0P'=-0.037DS2.02.0PMAX1.01.0~~ppP'=-0.25P'=-0.030.07HO0.02024ZO28Figure3-ResultsofSensitivityStudiesforNMPviatheBNLMethodofImagesSolidSymbolsDenoteCaseN1ParametersSeeTable1forNomenclatureandUnits21
TESTR-7353-1, Revision1,April1991.14 lI~,
12.Bliss,D.B.andTeske,M.E.,"FSTFShellCondensation Oscillation Correction Factors-Uncorrelated Vents,"CDIReport79-1,Revision2,preparedbyContinumDynamics, Inc.forGeneralElectric, August1980.13.Continuum
: Dynamics, Inc.,"Reduction ofTorusShellCondensation Oscillation Hydrodynamic LoadsforNineMilePointUnit1,"CDITechnical Note90-11,preparedforTeledyneEngineering
: Services, November1990.14.Economos, C.,Lehner,J.andLin,C.C.,"Evaluation ofNMCTechnical BasisforReduction ofNMPTorusCOLoads,"BNLTechnical LetterReport,February1992.15.U.S.NuclearRegulatory Commission, "SafetyEvaluation bytheOfficeofNuclearRegulation RelatedtoProposedDeferment ofTorusModifications NiagaraMohawkPowerCorporation NineMilepointNuclearStationUnitNo.1,DocketNo.50-220,"August1992.16.TeledyneEngineering
: Services, "Technical ResponsetoSafetyEvaluation bytheOfficeofNuclearRegulation RelatedtoProposedDeferment ofTorusModifications NiagaraMohawkPowerCorporation NineMilepointNuclearStationUnitNo.1,DocketNo.50-220,"November1992.17.TeledyneEngineering
: Services, "MarkIContainment Program,Plant-Unique AnalysisReportoftheTorusSuppression ChamberforNineMilePointUnit1NuclearGenerating Station",
TESTR-5320-1, Revision1,OctoberSeptember 1984.18.NiagaraMohawkPowerCorporation, "Reduction inMarkITorusProgramCondensation Oscillation LoadDefinition andResulting EffectonMinimumShellThickness Requirements,"
Presentation toNRC,March23,1993.19.Kennedy,R.P.,etal,"StudytoDemonstrate theSRSSCombinedResponsehasgreaterthan84PercentNonexceedance Probability WhentheNewmark-Kennedy Acceptance CriteriaareSatisfied,"
GEReportNEDO-24010-03, Supplement 3,August1979.20.Bilanin,A.J.,"NRCRequestforDocumentation oftheNineMileCondensation Oscillation AcousticTorusLoadReduction AnalysisLimits,"Continuum DynamicsLetterReportNo.TELEDYNE/0073, April1993.21.Bienkowski, G.,"ReviewoftheValidityofRandomPhasingRulesasAppliedtoCOTorusLoads",InternalBNLMemorandum, August1983.22.Scanlon,R.,Professor
: Emeritus, Princeton University, PersonalCommunication.
15 ItkAll'I 23.GeneralElectricCompany,"MarkIIContainment DynamicForcingFunctions Information Report,"GEReportNEDO-21061, Revision3,June1978.24.TeledyneEngineering
: Services, "PlantUniqueAnalysisReportoftheTorusSuppression ChamberforNineMilePointUnit1NuclearGenerating Station,"
TESTechnical ReportTR-5320-1, October1983.25.Triolo,S.andLe,A.,"AuditforMarkIContainment LongTermProgram-Structural AnalysisforOperating
: Reactors, NiagaraMohawkPowerCorporation NineMilePointNuclearStationUnit1",FranklinResearchCenterTechnical Evaluation ReportTER-C5506-331, September 1984.26.U.S.NuclearRegulatory Commission, "RequestforAdditional Information Regarding Re-Review ofNineMilePointNuclearStationUnit1TorusLoadReduction Submittal ofMay14,1991.",August1993.27.TeledyneEngineering
: Services, "Response totheNRCRequestforAdditional Information Regarding Re-Review ofMay14,1991TorusLoadReduction Submittal NiagaraMohawkPowerCorporation NineMilePointNuclearStationUnit1,DocketNo.50-220",TESLetterReport7519-28,September 1993.28.Brookhaven NationalLaboratory, "MonthlyBusinessReportforOctober1993-Nine MilePoint,Unit1:Suppression PoolDynamicLoadsRevisedMethodology."
29.Attachment 1toNMPCLetterDatedNovember30,1993fromC.D.Terry,NMPCtoUSNRCDocumentControlDeskUnderDocketNo.50-220.
30.Mintz,S.,"BWRSuppression PoolTemperature Technical Specification Limits.",
GeneralElectricReportNEDO-31695.
31.U.S.NuclearRegulatory Commission, "StandardTechnical Specifications GeneralElectricPlant,BWR/4,"NUREG-1433, January1991.16 f/
Table1ValuesofParameters UsedtoDefineCalculation CellGeometryITEMXOYOZODSHOFSTFVALUE19.513.821.78.07.84.956.37.2NMPVALUE19.6(176.4)13.521.26.07.04.965.27.2NOMENCLATURE DSHOlNDPMAXp/XOYOZOeUNITSSPACINGBETWEENDOWNCOMER PAIRSINTHEZDIRECTION VERTICALDISTANCEBETWEENTORUSBOTTOMANDDOWNCOMER EXITSPACINGBETWEENDOWNCOMER PAIRSINTHEXDIRECTION NUMBEROFDOWNCOMER PAIRS(SEETABLE2)MAXIMUMPRESSUREIN8DOWNCOMER BAYINFLUENCE COEFFICIENTS
-dPMAX/dDS, dPMAX/dYO, etc.RADIALDISTANCETORUSCENTERTODOWNCOMER EXITCENTERSIMULATED LENGTHOFTORUSBAYDEPTHOFSUPPRESSION POOL=TORUSRADIUSSIMULATED TORUSDIAMETERPOLARCOORDINATE ANGLEMEASUREDFROMHORIZONTAL TODOWNCOMER EXITCENTERPMAX-SOURCEUNITS(SU)P-SU/FTDS,HO,I,r,XO,YO,ZO-FEET8-DEGREES17 I
Table2ResultsofBNLMOICalculations CASEF1F1(U)F2YO13.8ZO21.7ND8.0HO7.8PMAX1.450.551.24N1(U)N2N3N4N5N6N7N8N9N1013.512.514.513.521.2176.43021.224.027.06.07.08.06.07.06.08.07.01.450.421.661.251,631.421.391.701.211.341.27Notes:SeeTable1fornomenclature andunits.Allresultsareforcorrelated sourcesunlessotherwise indicated bythenotation(U)following theCaseIdentifier Number.
I III1~NonventBayA2XOVentBay(NMP)DS:FSTFIPjO+O+O++,'ypical Computation Cell+a+++,s+,'I,--,IIIOnly0+Y=Z=Ox=z=o2.0P'.an~HO~YOSectionA-A1.61.2~CaseN2~CaseF1~CaseN1P0.80.4~CaseF1(U)~CaseN1(U)0.000.51.0X/XO2.0Figure1-BNLMethodofImagesPredicted Variation ofPressureintheComputation CellPlaneofSymmetry-P (X,O,ZO/2) 19!II l4  
'.0BNLRF080.6Correlated NMPC////r/X/XO1.0RF0.80.6NMPC~\~srBNLUncorrelated rr//I/////0.40.00.51.0X/XO1.52.0Figure2-Comparison ofBNLandNMPCEstimates forPressureAmplitude Reduction Factors20 IJC 2.0PMAX1.00.0125~ppWP'=0.1914YO2.01.00.0P'=-0.037DS2.02.0PMAX1.01.0~~ppP'=-0.25P'=-0.030.07HO0.02024ZO28Figure3-ResultsofSensitivity StudiesforNMPviatheBNLMethodofImagesSolidSymbolsDenoteCaseN1Parameters SeeTable1forNomenclature andUnits21


I4A-1 4
I4A-1 4
a~~EvaluationofNMCTechnicalBasisfor~ReductionofNMPTorusCOLoadsC.Economos,J.Lehner,andC.C.Linjanuary1992RevisedFebruary1992~r~SummaBNL'sevaluationofthetechnicalbasissubmittedbyNMCtojustifyareductionintheNMPTorusCOloadsisdocumentedviathisletter.report.Theevaluationincludesareviewofthehistoricaldevelopmentsthatprecededthecurrentsubmittal.ThesearepertinentbecausetheyrepresentthepointofdeparturefortheproposedmodiGcations.BNL'sGndingisthatthemethodologyusedtodemonstratethatareductionintheseloadsisappropriateis,technicallysoundandjustiGestherequestedmodiGcations.BackroundThegenericCOloaddeGnitionanditsgenesisaredescribedintheMarkILDR'.Itwassynthesizedfromthepressuresrecordedduringtheworstcaseblowdown(TestNumberM8)fromtheGrstFSTFtestseries'.Thistestsimulatedalargeliquidbreakbutwasconductedattherelativelylowpooltemperatureof70'F,avalueless'hanthecurrentTechnicalSpeciQcation(TS)forcontinuousoperation(theLCO).TheseloadswereapprovedbytheNRC,subjecttotheresultsofaddi~analconGrmatorytests3.Thepressuresobservedintheselatertests'erehigherforliquidblowdownsconductedatsomewhathigherpooltemperatures.SpeciGcally,TestNumberM12,conductedataninitialpooltemperatureof95F,gaverisetopressuresthatwereabout15%higherthanpeakM8values.Notethatthistemperaturelevelisroughl~eualtothecurrentTSontheLCO(90to95'F)andissomewhatlessIt)anthemohiGedValueof100FthattheBWROGhasrequestedtheNRCtoapprove.Notwithstandingtheincreasedloadsobsertj'edduringTestM12,theoriginalloads'peciQcationwasWundacceptable6basedonafavorablecomparisonbetweenthemeasuredand'.predictedstressNvelsfortheFSTF.Insomecases,thepredictionexceededmeasurementsbyasmuch.as150%%uo'.I'heconservatismoftheLDRloadspeciGcationstemsprimarilyfromtherequirementthatalloftheharmoniccomponentresponsesbeaddedbyabsolutesum.Thisisequivalenttoassumingthattheexcitationcreatedbyoscillationofthesteam-waterinterfaceattheendofeachoftheeightdowncomersissynchronizedovertheentirefrequencyrangethatwasobserved(upto50Hz).ThestaffrecognizedthatthisapproachisconservativeandrelaxedtheACbasedonseverallaterstudiessubmittedbyGEanditsconsultants"9.ForNMP,inparticular,amodiQedCOloadwasapprovedduringreviewoftheirPUAR'.ThismodificationaccountedfortheabsenceofcompletecorrelationbetweenventsbytakingtheabsolutesumofonlythefourhighestharmonicresponsesandaddingtheSRSSof'the~~'SeeListofAbbreviationsfordetinitiono(neronyms.A-2 II  
a~~Evaluation ofNMCTechnical Basisfor~Reduction ofNMPTorusCOLoadsC.Economos, J.Lehner,andC.C.Linjanuary1992RevisedFebruary1992~r~SummaBNL'sevaluation ofthetechnical basissubmitted byNMCtojustifyareduction intheNMPTorusCOloadsisdocumented viathisletter.report.Theevaluation includesareviewofthehistorical developments thatprecededthecurrentsubmittal.
~remainingones.Notethatthisprocedurereducescriticalstressesbutdoesnotexplicitlychangetheforcingfunctionitselfwhichconsistsofthepressureloadingonthesubmergedboundaries.ThebasisforapprovingthisapproachwasthatitstillboundedthemeasuredresponsewhenappliedtotheFSTF..WhenappliedtoNMP,thecriticalstressesintheshellremainedbelowallowables.l/TheneedtoreducetheCOloadsbelowthegenericLDRvaluesarose'becauseofNMP'sthintorusshell.Withthepassageoftime,therehasbeenafurtherreductionintheshellthicknessduetocorrosion.ThisreductionisacontinuingprocesswhichNMCanditsconsultantestimateoccursatarateof.00126inchesperyear".IftheCOloadsarenotchanged,criticalstresslevelsareexpectedtoexceedallowablesduring1994.Todelaytheneedtostructurallyreinforcethetorus,NMChasproposedareductionintheloadspeciGcation.ThetechnicaljustiGcationforthisreductionisdescribedandevaluatedintheensuingsections.DescritionoftheProosedMethodoloThemethodsproposedbyNMCtodemonstratethatareductioninCOloadsisjustiGedaredescribedintwodocumentspreparedbyaconsultingGrm'~".Keyelementsofthepresentationareasfollows:1.FSTFtestdataareusedtodemonstratethatsigniGcantcorrelationoftheCOprocessattheexitoftheeightdowncomersoccursonlyinthe5-6Hzfrequencyrangeandthat,atotherfrequencies,theprocessanditscontributiontothepressuresignatureisrandom.2.3.ItisnotedthattheFSTFtestfacilityisnotprototypicalofanactualMarkItorusbecauseoftheendcapswhich'actasplanesofsymmetrybetweenadjacentbays.ItisclaimedthattheconsequenceofthisgeometricfeatureistiiattheincoherentcontributionstotheobservedpressuresareampliGed.Itisfurther-notedthattheFSTFfacilityisalsonotprototypicaloftheNMPtorussince,inthelatter,fourdowncomerbaysalternatewitheightdowncomerbays".Inthiscaseitisclaimedthattliisgeometricdiscrepancyimpliesthatthe'FSTFpressuresareexcessiveforboththefourandeightdowncomerNMPbays,andthatthisistrueovertheentirefrequencyrangeincludingthesynchronous5-6Hzvalue.4.AnacousticmodelappliedtoanidealizedversionoftheNMPtorus(horizontalcylinderhalffilledwithwater)isdevelopedandutilizedtoquantifytheeffectsenumeratedabove.Theresultsfrom'thisanalysisarepresentedasreductionfactors'hataretobeappliedtotheLDRpressureamplitudes".ThesefactorsdependprimarilyonbaygeometryandthenatureoftheCOprocess,ie.,coherentorrandom.Theyalsoexhibitaslightdependenceonfrequency.Thereductionfactors'reabout60%forthefourdowncomergeometiyand80%fortheeightdowncomerbayconGgurationforuncorrelatedCO,Thecorrespondingfactorsforthecorrelatedcaseareapproximately70%and95%,-respectively.Theserepresentbayaveragedvalues.'Theterm"reductionfactor"isusedhereandinReference12toindicateamultiplieroftheoriginalvalue.A-3 lIt'Ay'4II5'  
Thesearepertinent becausetheyrepresent thepointofdeparture fortheproposedmodiGcations.
~5.Correlatedreductionfactorsaretobeappliedonlytothe5-6Hzpressureamplitude.Fortheremainingfrequencyspectrum,uncorrelatedvaluesaretobeutilized.AftertheLDRpressuresarereducedbythesefactors,thestructuralanalysisisto"be.undertakenaspertheLDR.""/~Withrespecttotheoriginalanalysis",theseproceduresyielda4%%uoreductionofthecontrollingstress(membrane)foraneightdowncomerbayanda10%%uoreductionforafourdowncomerbay".Intermsofshellthickness,thesecorrespondtoreductionsof16and44mils,respectively.Thecorrespondingvaluesgiveninamorerecentsubmittal're18and37mils.Itisstatedthere,thatthesecorrespondtoa17%and30%reductionintheLDRCOloads,respectively.EvaluationoftheProosedMethodoloInBNL'sjudgement,thereductionintheCOloadsthatNMChasrequestedare,reasonable,conservative,andtechnicallydefensible.Thebasisforthisconclusionareasfollows:1.TheFSTFdatasupportthenotionthattheCOprocessisrandomovermostofthefrequencyspectrumconsideredintheloadmethods,2.Becauseofthegeometricdifferences,particularlythe4-8-4downcomerarrangement,thepressureloadsduringaCOblowdownwilltendtobegreaterintheFSTFrelativetotheNMPtorusforthesamethermodynamicQowconditions.3.TheprocedureusedtoquantifytheeffectofItems1and2representsastraightforwardapplicationofaconventionalhydrodynamicmethod.Theresultsarereasonableandprobablyconservativebecauseofthehighsoundspeedusedinthenumerics.WealsoconsidertheassumptionthatacorrelationexistsbetweenbaystobeasigniQcantconservatism.4.TheoverallreductionoftheloadsfromLDRvaluesissigniQcantlylessthanthatapprovedearlierbythestafP.ThisreductionwasfoundacceptablebecauseitwasabletoaccommodateallofthestressesobservedduringtheFSTFtests.ConcludinRemarksTherearethreepointswewanttoemphasizehere.Thefirstisthattheprocedurewehaveevaluatedrepresentsamorerigorous,almostQrstprinciplesway,toaccomplishwhatwasdonebeforeinanapproximateway.Aswealreadynotedinourbackgrounddiscussion,themodificationthatwasutilizedbyNMPearlierdidnotinvolveanychangeintheLDRpressures.ReliefwasobtainedbynotsummingthestressesinducedbyeachandeveryoneoftheQftyharmonicexcitationsbyabsolutesumasrequiredbytheLDRmethodology.ThatthiswasanacceptableprocedurecouldonlybedemonstratedbycomparingpredictedFSTFPe~=Modelingofthetorusashalffilledwithwaterisaminornonconservatism(NWLinMarkIplantsiswellbelowthetoruscenterline),bui.isareasonablesimplificationofananalysiswhichisalreadyquitecomplex.A-4  
BNL'sGndingisthatthemethodology usedtodemonstrate thatareduction intheseloadsisappropriate is,technically soundandjustiGestherequested modiGcations.
BackroundThegenericCOloaddeGnition anditsgenesisaredescribed intheMarkILDR'.Itwassynthesized fromthepressures recordedduringtheworstcaseblowdown(TestNumberM8)fromtheGrstFSTFtestseries'.Thistestsimulated alargeliquidbreakbutwasconducted attherelatively lowpooltemperature of70'F,avalueless'hanthecurrentTechnical SpeciQcation (TS)forcontinuous operation (theLCO).TheseloadswereapprovedbytheNRC,subjecttotheresultsofaddi~anal conGrmatory tests3.Thepressures observedintheselatertests'ere higherforliquidblowdowns conducted atsomewhathigherpooltemperatures.
SpeciGcally, TestNumberM12,conducted ataninitialpooltemperature of95F,gaverisetopressures thatwereabout15%higherthanpeakM8values.Notethatthistemperature levelisroughl~eual tothecurrentTSontheLCO(90to95'F)andissomewhatlessIt)anthemohiGedValueof100FthattheBWROGhasrequested theNRCtoapprove.Notwithstanding theincreased loadsobsertj'ed duringTestM12,theoriginalloads'peciQcation wasWundacceptable6 basedonafavorable comparison betweenthemeasuredand'.predicted stressNvelsfortheFSTF.Insomecases,theprediction exceededmeasurements byasmuch.as150%%uo'.
I'heconservatism oftheLDRloadspeciGcation stemsprimarily fromtherequirement thatalloftheharmoniccomponent responses beaddedbyabsolutesum.Thisisequivalent toassumingthattheexcitation createdbyoscillation ofthesteam-water interface attheendofeachoftheeightdowncomers issynchronized overtheentirefrequency rangethatwasobserved(upto50Hz).Thestaffrecognized thatthisapproachisconservative andrelaxedtheACbasedonseverallaterstudiessubmitted byGEanditsconsultants "9.ForNMP,inparticular, amodiQedCOloadwasapprovedduringreviewoftheirPUAR'.Thismodification accounted fortheabsenceofcompletecorrelation betweenventsbytakingtheabsolutesumofonlythefourhighestharmonicresponses andaddingtheSRSSof'the~~'SeeListofAbbreviations fordetinition o(neronyms.
A-2 II  
~remaining ones.Notethatthisprocedure reducescriticalstressesbutdoesnotexplicitly changetheforcingfunctionitselfwhichconsistsofthepressureloadingonthesubmerged boundaries.
Thebasisforapproving thisapproachwasthatitstillboundedthemeasuredresponsewhenappliedtotheFSTF..WhenappliedtoNMP,thecriticalstressesintheshellremainedbelowallowables.
l/TheneedtoreducetheCOloadsbelowthegenericLDRvaluesarose'because ofNMP'sthintorusshell.Withthepassageoftime,therehasbeenafurtherreduction intheshellthickness duetocorrosion.
Thisreduction isacontinuing processwhichNMCanditsconsultant estimateoccursatarateof.00126inchesperyear".IftheCOloadsarenotchanged,criticalstresslevelsareexpectedtoexceedallowables during1994.Todelaytheneedtostructurally reinforce thetorus,NMChasproposedareduction intheloadspeciGcation.
Thetechnical justiGcation forthisreduction isdescribed andevaluated intheensuingsections.
DescritionoftheProosedMethodolo ThemethodsproposedbyNMCtodemonstrate thatareduction inCOloadsisjustiGedaredescribed intwodocuments preparedbyaconsulting Grm'~".Keyelementsofthepresentation areasfollows:1.FSTFtestdataareusedtodemonstrate thatsigniGcant correlation oftheCOprocessattheexitoftheeightdowncomers occursonlyinthe5-6Hzfrequency rangeandthat,atotherfrequencies, theprocessanditscontribution tothepressuresignature israndom.2.3.ItisnotedthattheFSTFtestfacilityisnotprototypical ofanactualMarkItorusbecauseoftheendcapswhich'act asplanesofsymmetrybetweenadjacentbays.Itisclaimedthattheconsequence ofthisgeometric featureistiiattheincoherent contributions totheobservedpressures areampliGed.
Itisfurther-notedthattheFSTFfacilityisalsonotprototypical oftheNMPtorussince,inthelatter,fourdowncomer baysalternate witheightdowncomer bays".Inthiscaseitisclaimedthattliisgeometric discrepancy impliesthatthe'FSTFpressures areexcessive forboththefourandeightdowncomer NMPbays,andthatthisistrueovertheentirefrequency rangeincluding thesynchronous 5-6Hzvalue.4.Anacousticmodelappliedtoanidealized versionoftheNMPtorus(horizontal cylinderhalffilledwithwater)isdeveloped andutilizedtoquantifytheeffectsenumerated above.Theresultsfrom'this analysisarepresented asreduction factors'hat aretobeappliedtotheLDRpressureamplitudes".
Thesefactorsdependprimarily onbaygeometryandthenatureoftheCOprocess,ie.,coherentorrandom.Theyalsoexhibitaslightdependence onfrequency.
Thereduction factors're about60%forthefourdowncomer geometiyand80%fortheeightdowncomer bayconGguration foruncorrelated CO,Thecorresponding factorsforthecorrelated caseareapproximately 70%and95%,-respectively.
Theserepresent bayaveragedvalues.'Theterm"reduction factor"isusedhereandinReference 12toindicateamultiplier oftheoriginalvalue.A-3 lIt'Ay'4II5'  
~5.Correlated reduction factorsaretobeappliedonlytothe5-6Hzpressureamplitude.
Fortheremaining frequency
: spectrum, uncorrelated valuesaretobeutilized.
AftertheLDRpressures arereducedbythesefactors,thestructural analysisisto"be.undertaken aspertheLDR.""/~Withrespecttotheoriginalanalysis",
theseprocedures yielda4%%uoreduction ofthecontrolling stress(membrane) foraneightdowncomer bayanda10%%uoreduction forafourdowncomer bay".Intermsofshellthickness, thesecorrespond toreductions of16and44mils,respectively.
Thecorresponding valuesgiveninamorerecentsubmittal're 18and37mils.Itisstatedthere,thatthesecorrespond toa17%and30%reduction intheLDRCOloads,respectively.
Evaluation oftheProosedMethodolo InBNL'sjudgement, thereduction intheCOloadsthatNMChasrequested are,reasonable, conservative, andtechnically defensible.
Thebasisforthisconclusion areasfollows:1.TheFSTFdatasupportthenotionthattheCOprocessisrandomovermostofthefrequency spectrumconsidered intheloadmethods,2.Becauseofthegeometric differences, particularly the4-8-4downcomer arrangement, thepressureloadsduringaCOblowdownwilltendtobegreaterintheFSTFrelativetotheNMPtorusforthesamethermodynamic Qowconditions.
3.Theprocedure usedtoquantifytheeffectofItems1and2represents astraightforward application ofaconventional hydrodynamic method.Theresultsarereasonable andprobablyconservative becauseofthehighsoundspeedusedinthenumerics.
Wealsoconsidertheassumption thatacorrelation existsbetweenbaystobeasigniQcant conservatism.
4.Theoverallreduction oftheloadsfromLDRvaluesissigniQcantly lessthanthatapprovedearlierbythestafP.Thisreduction wasfoundacceptable becauseitwasabletoaccommodate allofthestressesobservedduringtheFSTFtests.Concludin RemarksTherearethreepointswewanttoemphasize here.Thefirstisthattheprocedure wehaveevaluated represents amorerigorous, almostQrstprinciples way,toaccomplish whatwasdonebeforeinanapproximate way.Aswealreadynotedinourbackground discussion, themodification thatwasutilizedbyNMPearlierdidnotinvolveanychangeintheLDRpressures.
ReliefwasobtainedbynotsummingthestressesinducedbyeachandeveryoneoftheQftyharmonicexcitations byabsolutesumasrequiredbytheLDRmethodology.
Thatthiswasanacceptable procedure couldonlybedemonstrated bycomparing predicted FSTFPe~=Modelingofthetorusashalffilledwithwaterisaminornonconservatism (NWLinMarkIplantsiswellbelowthetoruscenterline),
bui.isareasonable simplification ofananalysiswhichisalreadyquitecomplex.A-4  
'lld>>;,'  
'lld>>;,'  
~stresseswithmeasuredFSTFstresses.Indistinctcontrast,thepresentmethodprovidesreliefbyreducingtheexcitation(pressures)itself.ThesecondpointisthatthebasisforItem4restsonourassumptionthatwhentheapplicantrefersto"LDRvalues"whatismeantarethestressesthatresultbyapplyingthe,LDRpressureamplitudesandthencombiningalloftheindividualpeakstressesbyabsolutesum.Thedocumentsthatwehaveinhandaresomewhatambiguousonthispointanditwould.beprudenttoobtaindocumentedconGrmationthatourinterpretationiscorrect.Finally,wenotethatourreviewoftheanalysisdoesnotincludedirectconfirmationofanyofthenumericalresultsthatwerepresented,e.g.,the:reductionfactors.Itisassumedthatthesederivefromacorrectapplicationofthemethodology.A-5  
~stresseswithmeasuredFSTFstresses.
'IIIS.r References1.GeneralElectricCompany,"MarkIContainmentProgramLoadDefinitionReport,"GeneralElectricTopicalReportNEDO-21888,Revision2,November1981.~r~2.Fitzsimmons,G.W.,etal.,"MarkIContainmentProgramFull-ScaleTestProgramFinalReport,TaskNumber5.11,"GeneralElectricProprietaryReportNEDE-24539-P,April1979.3.U.S.NuclearRegulatoryCommission,"SafetyEvaluationReport,MarkILongTermProgram,ResolutiohofGenericTechnicalActivityA-7,"NUREG-0661,July1980.4GeneralElectricCompany,"MarkIContainmentProgramLetterReport:SupplementalFull-ScaleCondensationTestResultsandLoadConfirmation,"MI-LR-81-01-P,April1981.5.Mintz,S.,"BWRSuppressionPoolTemperatureTechnicalSpecificationLimits,"GeneralElectricReportNEDO-31695,May1989.6.U.S,NuclearRegulatoryCommission,"SafetyEvaluationReport,MarkILongTermProgram,ResolutionofGenericTechnicalActivityA-7,"NUREG-0661,Supplement1,August1982.7."MarkIContainmentProgramEvaluationofHarmonicPhasingforMarkITorusShellCondensationOscillationLoads,"NEDE-24840,preparedbyStructuralMechanicsAssociatesforGeneralElectricCompany,October1980.8.9.Kennedy,R.P.,"ResponseFactorsAppropriateforUsewithCOHarmonicResponseCombinationDesignRules,"SMA12101.04-R002D,preparedbyStructuralMechanicsAssociatesforGeneralElectricCompany,March1982.IKennedy,R.P.,"AStatisticalBasisforLoadFactorsAppropriateforUsewithCOHarmonicResponseCombination'DesignRules,"SMA12101.04-R003D,preparedbyStructuralMechanicsAssociatesforGeneralElectricCompany,March1982.10.11.Bienkowski,G.,Lehner,J.R.andEconomos,C.,"TechnicalEvaluationoftheNineMilePointUnit1NuclearGeneratingStationPlantUniqueAnalysisReport,"BNL-04243,September1984.7"NineMilePointUnit1ReductioninMarkITorusProgramCondensationOscillationLoadDefinitionandResultingEffectonMinimumShellThicknessRequirements,"TechnicalReportTR-7353-1,Revision1,preparedbyTeledyneEngineeringServicesforNiagaraMohawkPowerCorporation,April1991.12."ReductionofTorusShellCondensationOscillationHydrodynamicLoadsforNineMilePointUnit1,"C.D.I.TechnicalNoteNo.90-11,preparedbyContinuumDynamics,Inc.forTeledyneEngineeringServices,November1990.A-6 I
Indistinctcontrast, thepresentmethodprovidesreliefbyreducingtheexcitation (pressures) itself.ThesecondpointisthatthebasisforItem4restsonourassumption thatwhentheapplicant refersto"LDRvalues"whatismeantarethestressesthatresultbyapplyingthe,LDRpressureamplitudes andthencombining alloftheindividual peakstressesbyabsolutesum.Thedocuments thatwehaveinhandaresomewhatambiguous onthispointanditwould.beprudenttoobtaindocumented conGrmation thatourinterpretation iscorrect.Finally,wenotethatourreviewoftheanalysisdoesnotincludedirectconfirmation ofanyofthenumerical resultsthatwerepresented, e.g.,the:reduction factors.Itisassumedthatthesederivefromacorrectapplication ofthemethodology.
13."FSTFShellCondensationOscillationLoadingCorrectionFactors-UncorrelatedVents,"C.D.I.ReportNo.79-1,Revision2,preparedbyD.B.BlissandM.E.TeskeofContinuumDynamics,Inc.forGeneralElectricCompany,August1980.14.Figure3ofReference12.15.Table1ofReference12.16.Table4.4.1-2ofReference1.17.p.14ofReference12.18.TESReportTR-5230-1,Rev.1,"MarkIContainmentProgram,Plant-UniqueAnalysisReportoftheTorusSuppressionChamberforNineMilePointUnit1NuclearGeneratingStation,"datedSeptember21,1984.19.NMCletterNMP1L-0628fromC.D.Terry(VPNuclearEngineering)toU.S.NRC,datedDecember13,1991.20.Bienkowski,G.,"ReviewoftheValidityofRandomPhasingRulesasAppliedtoCOTorusLoads,"InternalBNLMemo,August1983.A-7 I
A-5  
LISTOFACRONYMSACBNLAcceptanceCriteriaBrookhavenNationalLaboratoryBWROGBoilingWaterReactorOwnersGroupCOFSTFGELCOLDRNMCNMPNRCPUARSRSSTSCondensationOscillationFullScaleTestFacilityGeneralElectricLimitingConditionforOperationLoadDefinitionReportNiagaraMohawkPowerCorporationNineMilePoint-Unit1NuclearRegulatoryCommissionNormalWaterLevelPlantUniqueAnalysisReportSquareRootoftheSumofSqaresTechnicalSpecificationA-8 Ilf4  
'IIIS.r References 1.GeneralElectricCompany,"MarkIContainment ProgramLoadDefinition Report,"GeneralElectricTopicalReportNEDO-21888, Revision2,November1981.~r~2.Fitzsimmons, G.W.,etal.,"MarkIContainment ProgramFull-Scale TestProgramFinalReport,TaskNumber5.11,"GeneralElectricProprietary ReportNEDE-24539-P, April1979.3.U.S.NuclearRegulatory Commission, "SafetyEvaluation Report,MarkILongTermProgram,Resolutioh ofGenericTechnical ActivityA-7,"NUREG-0661, July1980.4GeneralElectricCompany,"MarkIContainment ProgramLetterReport:Supplemental Full-Scale Condensation TestResultsandLoadConfirmation,"
MI-LR-81-01-P, April1981.5.Mintz,S.,"BWRSuppression PoolTemperature Technical Specification Limits,"GeneralElectricReportNEDO-31695, May1989.6.U.S,NuclearRegulatory Commission, "SafetyEvaluation Report,MarkILongTermProgram,Resolution ofGenericTechnical ActivityA-7,"NUREG-0661, Supplement 1,August1982.7."MarkIContainment ProgramEvaluation ofHarmonicPhasingforMarkITorusShellCondensation Oscillation Loads,"NEDE-24840, preparedbyStructural Mechanics Associates forGeneralElectricCompany,October1980.8.9.Kennedy,R.P.,"Response FactorsAppropriate forUsewithCOHarmonicResponseCombination DesignRules,"SMA12101.04-R002D, preparedbyStructural Mechanics Associates forGeneralElectricCompany,March1982.IKennedy,R.P.,"AStatistical BasisforLoadFactorsAppropriate forUsewithCOHarmonicResponseCombination'Design Rules,"SMA12101.04-R003D, preparedbyStructural Mechanics Associates forGeneralElectricCompany,March1982.10.11.Bienkowski, G.,Lehner,J.R.andEconomos, C.,"Technical Evaluation oftheNineMilePointUnit1NuclearGenerating StationPlantUniqueAnalysisReport,"BNL-04243, September 1984.7"NineMilePointUnit1Reduction inMarkITorusProgramCondensation Oscillation LoadDefinition andResulting EffectonMinimumShellThickness Requirements,"
Technical ReportTR-7353-1, Revision1,preparedbyTeledyneEngineering ServicesforNiagaraMohawkPowerCorporation, April1991.12."Reduction ofTorusShellCondensation Oscillation Hydrodynamic LoadsforNineMilePointUnit1,"C.D.I.Technical NoteNo.90-11,preparedbyContinuum
: Dynamics, Inc.forTeledyneEngineering
: Services, November1990.A-6 I
13."FSTFShellCondensation Oscillation LoadingCorrection Factors-Uncorrelated Vents,"C.D.I.ReportNo.79-1,Revision2,preparedbyD.B.BlissandM.E.TeskeofContinuum
: Dynamics, Inc.forGeneralElectricCompany,August1980.14.Figure3ofReference 12.15.Table1ofReference 12.16.Table4.4.1-2ofReference 1.17.p.14ofReference 12.18.TESReportTR-5230-1, Rev.1,"MarkIContainment Program,Plant-Unique AnalysisReportoftheTorusSuppression ChamberforNineMilePointUnit1NuclearGenerating Station,"
datedSeptember 21,1984.19.NMCletterNMP1L-0628 fromC.D.Terry(VPNuclearEngineering) toU.S.NRC,datedDecember13,1991.20.Bienkowski, G.,"ReviewoftheValidityofRandomPhasingRulesasAppliedtoCOTorusLoads,"InternalBNLMemo,August1983.A-7 I
LISTOFACRONYMSACBNLAcceptance CriteriaBrookhaven NationalLaboratory BWROGBoilingWaterReactorOwnersGroupCOFSTFGELCOLDRNMCNMPNRCPUARSRSSTSCondensation Oscillation FullScaleTestFacilityGeneralElectricLimitingCondition forOperation LoadDefinition ReportNiagaraMohawkPowerCorporation NineMilePoint-Unit1NuclearRegulatory Commission NormalWaterLevelPlantUniqueAnalysisReportSquareRootoftheSumofSqaresTechnical Specification A-8 Ilf4  
'B-1 I
'B-1 I
ReviewoftheValidityofRandomPhasingRulesasAppliedtoCOTorusLoadsGeorgeBienkowskiAugust25,1983ContainmentSystemsGroupDepartmentofNuclearEnergyBrookhavenNationalLaboratoryUpton,NewYork11973B-2 l4lS INTRODUCTIONTheLDR<'>specificationforCOTorusloadsisbasedonFSTFdata(primarilytestM-8).Inordertoresolvepotentialuncertaintiesintheconservatismofthedata,supplementarytestsM-11BandM-12wereconductedintheFSTFfacility.WhileM-12wasnottotallyboundedbytheLDRspecification,thestafffeltthattheLDRprocedureofsummingtheabsolutevaluesoftheharmoniccomponentswassufficientlyconservativetoboundanyuncertaintiesinthedata(SupplementtoMarkISER-NUREG-0661).<'>ManyoftheindividualMarkIplantshavechosentodeviatefromtheLDRprocedureandhavereducedtheconservatisminherentintheabsolutesumloadapplicationthroughsomeuseofrandomphasingbetweenharmonicsoftheLDRCOrigid-wallpressurespecification.ThebasisforallofthesealternateloadapplicationprocedurescomesfromGEreportNEDE-24840<'~andsomesubsequentreportsbyStructuralMechanicAssociates(SMA12101.04-RODID,SMA12101.04-ROOZD,SMA12101,04-R003D).<4">Whileindividualplantsobtainareductioninloadduetotheeifectofrandomphasingindifferentmatter,agenericevaluationofthebasefortheseproceduresisnecessaryinordertoestablishtheadequacyofeachplant'sexceptiontotheAcceptanceCriteria.A.ReviewofGENEDE24840,"EvaluationofHarmonicPhasingforMarkITorus"Theprimaryobjectiveofthisreportistoreducetheexcessiveconservatisminthetorusshellresponseduetotheuseoftheabsolutesumofharmonicamplitudes.Thereportdemonstrates,byexaminingthroughMonteCarlocalculationboththeFSTFdataandanactualfacility(OysterCreek),thatrandomphasingleadstoamorerealisticresponse.Thereportfurtherproposesadesignrulethatisrelativelyeasytoapplyandprovides90%confidenceof50%non-exceedanceprobability.Thereportfurtherjustifiesthischoiceasbeingappropriatetopreserve,attheresponselevel,thenon-exceedanceprobabilityorthedegreeofconservatismcontainedwithintheloaddata.Sevenresponses(BDCaxialandhoopstress,BDCradialdisplacement,andfourcolumnforces)attheFSTFfacilityareanalyzedonthreedifferentbases:(a)Fouriercomponentsofthemeasuredspatially-averagedpressuretimehistoriesover5(second)intervalsofRunNumberM-8areusedasloadinput;(b)MonteCarlotrialsbasedonrandomphasingbetweenthe50harmoniccomponentsrepresentingthehistoriesin(a)areapplied;(c)MonteCarlotrialsusingrandomphasingamongthe50harmonicsoftheLDRloadspecificationareused.ThepeakresponsesresultingfromthesesanalysesarethencomparedtothemeasuredpeaksintheFSTFtests.Acomparisonoftheresultsof(a)tothemeasuredresponsessuggeststhatthemodellingofthefacilityandarepresentationofthedataisadequatetomatchthecolumnforcesandradialdisplacementbutyieldspeakmembranestressesthatarefrom13%to30%(hoop)toolow.Thereportgoesintoanumberofexplanationsforthereasonsforthisdiscrepancy.Whilemostofthesuggestedcauseswouldnotbeapplicableinarealfacility,thesuggestionB-3  
ReviewoftheValidityofRandomPhasingRulesasAppliedtoCOTorusLoadsGeorgeBienkowski August25,1983Containment SystemsGroupDepartment ofNuclearEnergyBrookhaven NationalLaboratory Upton,NewYork11973B-2 l4lS INTRODUCTION TheLDR<'>specification forCOTorusloadsisbasedonFSTFdata(primarily testM-8).Inordertoresolvepotential uncertainties intheconservatism ofthedata,supplementary testsM-11BandM-12wereconducted intheFSTFfacility.
WhileM-12wasnottotallyboundedbytheLDRspecification, thestafffeltthattheLDRprocedure ofsummingtheabsolutevaluesoftheharmoniccomponents wassufficiently conservative toboundanyuncertainties inthedata(Supplement toMarkISER-NUREG-0661).<'>
Manyoftheindividual MarkIplantshavechosentodeviatefromtheLDRprocedure andhavereducedtheconservatism inherentintheabsolutesumloadapplication throughsomeuseofrandomphasingbetweenharmonics oftheLDRCOrigid-wall pressurespecification.
Thebasisforallofthesealternate loadapplication procedures comesfromGEreportNEDE-24840<'~
andsomesubsequent reportsbyStructural MechanicAssociates (SMA12101.04-RODID, SMA12101.04-ROOZD, SMA12101,04-R003D).<4
">Whileindividual plantsobtainareduction inloadduetotheeifectofrandomphasingindifferent matter,agenericevaluation ofthebasefortheseprocedures isnecessary inordertoestablish theadequacyofeachplant'sexception totheAcceptance Criteria.
A.ReviewofGENEDE24840,"Evaluation ofHarmonicPhasingforMarkITorus"Theprimaryobjective ofthisreportistoreducetheexcessive conservatism inthetorusshellresponseduetotheuseoftheabsolutesumofharmonicamplitudes.
Thereportdemonstrates, byexamining throughMonteCarlocalculation boththeFSTFdataandanactualfacility(OysterCreek),thatrandomphasingleadstoamorerealistic response.
Thereportfurtherproposesadesignrulethatisrelatively easytoapplyandprovides90%confidence of50%non-exceedance probability.
Thereportfurtherjustifies thischoiceasbeingappropriate topreserve, attheresponselevel,thenon-exceedance probability orthedegreeofconservatism contained withintheloaddata.Sevenresponses (BDCaxialandhoopstress,BDCradialdisplacement, andfourcolumnforces)attheFSTFfacilityareanalyzedonthreedifferent bases:(a)Fouriercomponents ofthemeasuredspatially-averaged pressuretimehistories over5(second)intervals ofRunNumberM-8areusedasloadinput;(b)MonteCarlotrialsbasedonrandomphasingbetweenthe50harmoniccomponents representing thehistories in(a)areapplied;(c)MonteCarlotrialsusingrandomphasingamongthe50harmonics oftheLDRloadspecification areused.Thepeakresponses resulting fromthesesanalysesarethencomparedtothemeasuredpeaksintheFSTFtests.Acomparison oftheresultsof(a)tothemeasuredresponses suggeststhatthemodelling ofthefacilityandarepresentation ofthedataisadequatetomatchthecolumnforcesandradialdisplacement butyieldspeakmembranestressesthatarefrom13%to30%(hoop)toolow.Thereportgoesintoanumberofexplanations forthereasonsforthisdiscrepancy.
Whilemostofthesuggested causeswouldnotbeapplicable inarealfacility, thesuggestion B-3  
\I~
\I~
thatshellmembranestresseswillrespondtolocalpressureswhiletheinputloadhasbeenaveraged,canbeassumedtobetransferabletoaplantcalculation.Thispotentialnon-conservatismiseventuallyrecognizedinthefinaldesignrule.Thepeakresponsesatthe50%NEPlevelresultingfrom200MonteCarlotrialswithrandomphasingbetweenharmonics(optionb)generallyeitherboundtheresultsusingactualphasingorareveryclosetothem.Theratiooftheresponses,basedon(a)dividedbythe50%NEPresultof(b)rangesfrom0.88forthecolumnforcesto1.03fortheradialdisplacement,withthemembranestressesat0.94.The50%NEPresultof(b)comesclosertoboundingtheexperimentaldatabutthemembranestressesarestilllow(9%axialand15%hoop).The200MonteCarlotrialsarealsoperformedfortheLDRspecification.Becauseofsomeadditionalconservatismsintheloadharmonicamplitudes,the50%NEPnowboundsthecolumnforcesandradialdisplacementsubstantially,essentiallymatchestheaxialmembranestress,andunderpredictstheFSTFpeakhoopstressbyonlyabout6%.Thereportthenproceedstoperform200MonteCarloresponsecalculationsforthemodelofarealfacility(OysterCreek).ClearlyinthisexerciseonlytheLDRharmonicscanreasonablybeappliedandnodirectcomparisontoexperimentscanbeperformed.Theresults,however,suggestthatthecumulativeprobabilitydistributions(CDP's)fortherealfacilityareverysimilartothosefortheFSTFfacility.Theratioofthe50%NEPleveltotheabsolutesumisaboutthesameasinFSTFandliesinthevicinityof50%forthemonitoredresponses.Thereport'ssubsequentdiscussionoftheproperwaytocombinestressesisoutsidethescopeofthisreviewandnotdirectlyrelevanttotheloadspecificationissue.Onthebasisoftheinformationsummarizedabove,thereportrecommendsasimpledesignrulethatwillyield90%confidenceof50%NEP,Theresultsof(b)and(c)forFSTF,andthecalculationsforOysterCreekdemonstratethattakinganabsolutesumofthethreehighestharmonics(atresponselevel)coupledtoasquarerootofthesumofthesquares(SRSS)oftheremainingharmonicsalwaysboundsandcloselyapproximatesthe50%NEPlevel.Thereport,therefore,suggeststheuseofthissimplealgorithmfortheadditionoftheharmoniccomponentsinthefrequencydomain.Inordertoprovideadditionalconservatisminarealfacility,theharmonicloadcomponentsthatspanastructuralnaturalfrequencyaretunedtothenaturalfrequencyratherthanappliedattheaveragefrequencyintheinterval.AcomparisonoftheapplicationofthisdesignruletotheFSTFfacility(wherefrequencytuningisnotused)tothemeasureddatashowsthatallpeakresponsesarebound,except'hehoopstresswhichisabout5%low.Thereportsuggestsanumberofconservatismsintheloadingthatwouldcompensateforthissmalldiscrepancy.Theprimaryeffectsuggestedisrelatedtothedampingof2%usedinanalysis.Inarealfacility,whereloadsarecombinedandarethushigher,the2%dampingisaconservativerepresentationofthestructureandwouldthusleadtoconservativeresponses.B-4  
thatshellmembranestresseswillrespondtolocalpressures whiletheinputloadhasbeenaveraged, canbeassumedtobetransferable toaplantcalculation.
Thispotential non-conservatism iseventually recognized inthefinaldesignrule.Thepeakresponses atthe50%NEPlevelresulting from200MonteCarlotrialswithrandomphasingbetweenharmonics (optionb)generally eitherboundtheresultsusingactualphasingorareveryclosetothem.Theratiooftheresponses, basedon(a)dividedbythe50%NEPresultof(b)rangesfrom0.88forthecolumnforcesto1.03fortheradialdisplacement, withthemembranestressesat0.94.The50%NEPresultof(b)comesclosertoboundingtheexperimental databutthemembranestressesarestilllow(9%axialand15%hoop).The200MonteCarlotrialsarealsoperformed fortheLDRspecification.
Becauseofsomeadditional conservatisms intheloadharmonicamplitudes, the50%NEPnowboundsthecolumnforcesandradialdisplacement substantially, essentially matchestheaxialmembranestress,andunderpredicts theFSTFpeakhoopstressbyonlyabout6%.Thereportthenproceedstoperform200MonteCarloresponsecalculations forthemodelofarealfacility(OysterCreek).ClearlyinthisexerciseonlytheLDRharmonics canreasonably beappliedandnodirectcomparison toexperiments canbeperformed.
Theresults,however,suggestthatthecumulative probability distributions (CDP's)fortherealfacilityareverysimilartothosefortheFSTFfacility.
Theratioofthe50%NEPleveltotheabsolutesumisaboutthesameasinFSTFandliesinthevicinityof50%forthemonitored responses.
Thereport'ssubsequent discussion oftheproperwaytocombinestressesisoutsidethescopeofthisreviewandnotdirectlyrelevanttotheloadspecification issue.Onthebasisoftheinformation summarized above,thereportrecommends asimpledesignrulethatwillyield90%confidence of50%NEP,Theresultsof(b)and(c)forFSTF,andthecalculations forOysterCreekdemonstrate thattakinganabsolutesumofthethreehighestharmonics (atresponselevel)coupledtoasquarerootofthesumofthesquares(SRSS)oftheremaining harmonics alwaysboundsandcloselyapproximates the50%NEPlevel.Thereport,therefore, suggeststheuseofthissimplealgorithm fortheadditionoftheharmoniccomponents inthefrequency domain.Inordertoprovideadditional conservatism inarealfacility, theharmonicloadcomponents thatspanastructural naturalfrequency aretunedtothenaturalfrequency ratherthanappliedattheaveragefrequency intheinterval.
Acomparison oftheapplication ofthisdesignruletotheFSTFfacility(wherefrequency tuningisnotused)tothemeasureddatashowsthatallpeakresponses arebound,except'he hoopstresswhichisabout5%low.Thereportsuggestsanumberofconservatisms intheloadingthatwouldcompensate forthissmalldiscrepancy.
Theprimaryeffectsuggested isrelatedtothedampingof2%usedinanalysis.
Inarealfacility, whereloadsarecombinedandarethushigher,the2%dampingisaconservative representation ofthestructure andwouldthusleadtoconservative responses.
B-4  
/
/
B.ReviewofSMAreport12101.04-R001D,R002DandR003DReportSMA12101.04-R001D,"EvaluationofFSTFtestsM12andM11BCondensationLoadsandResponses,"wasnotavailableandthusnotdirectlyreviewed.Themajorresultsandconclusionsofthatreportare,however,summarizedinSMA12101.04R002D,andwerefoundtobeconsistentwithboththeoriginalreportNEDE-24840andtheFSTFSupplementalTestLetterReportM1-LR-81-01P.ReportSMA12101.04-R002D,"ResponseFactorsAppropriateforUsewithCOHarmonicResponseCombinationDesignRules,"summarizesalloftheconclusionofNEDE-24820andupdatesthecomparisontoincludeFSTFtestsM12andM11B.WhentestM12isincludedinthecomparison,thedesignruleapplicationoftheLDRharmonicstotheFSTFtorusunderestimatespeakmeasuredmembraneaxialstressby11%andunderestimatesthehoopstressby14%,whileboundingtheotherresponses.Onthebasisofthiscomparison,thereportsuggestsmodifyingthedesignrulebyusinga"responsefactor:R,=1.0forotherresponses.Inaddition,thereportaddsanadditionaldesignruleforthosecircumstanceswherethecombinationofabsolutesumandSRSSisnotconvenient,suchasinthetimedomain.Inthiscasethereportstatesthata90%confidenceof50%NEPlevelcanbeachievedbymultiplyingthepeakresponseresultingfromasinglerandomphasedtrialby1.15.Notethatformembranestressesandstrainsthereisanadditional1.15"responsefactor"describedabove,Theconclusionsprovidecriteriafordesignanalysesalongthelinesjustdiscussed,butanadditionalsimplificationofneglectingharmoniccomponentsabove30HZissuggestedforstructureswithsimilarnaturalfrequencycontenttotheFSTForOysterCreek.ReportSMA12101.04-R003D,"StatisticalBasisforLoadFactorsAppropriateforUsewithCOHarmonicResponseCombinationRules,"reiteratesthedesignrulesdescribedabove.Inaddition,recognizingpotentialuncertaintiesinthedata,thereportattemptstoprovidesomejustificationforneglectinganyadditionalfactortoprovideadequateconservatism.Thereportshowsthat,consideringthespecificationisaresultofthreedatapoints(M8,M12,M11B),theincreaseinresponsetoachieve75%confidenceof84%NEPrangesfrom2%forinsidecolumnforceto33%forthehoopstress.ThereportfurtherquotesanunreferencedcommunicationfromDr.AlanBilaninasstatingafactorof1.33fortheratiooftheFSTFdatatothatexpectedinarealfulltorus.Thiseffectispurportedtobetheresultoftherigidendeffects,butnofurtherexplanationisprovided.InAppendixA,thiseffectisexamined.Weconcludethatforthesefrequenciesthatarenotcorrelatedbetweenbays,theFSTFshouldproduce32%to35%higherloadsthanwouldexistinarealfacility.AnexaminationoftheFSTFdata(inSupplementedLetterReportM1-LR-81-01-P)showsthatonlythefundamentalfrequencynear6Hzshowsanycorrelationbetweendowncomers.Ifoneassumescorrelationbetweenbaysatthatfrequencyandrandomphasingbetweenbaysatallotherfrequencies,theoverallconservatismfortheaveragepressuremaybeaslowas17%,whileattheresponseleveltheFSTFconservatismwillrangeform18%forthehoopstressto38%%uofortheaxialstress.Ifwenowbalancethisversusthemaximumexpecteduncertaintyfactorforhoopstress(1.33)asinreportR003D,wecouldexpectaB-5 I~~)~t%~
B.ReviewofSMAreport12101.04-R001D, R002DandR003DReportSMA12101.04-R001D, "Evaluation ofFSTFtestsM12andM11BCondensation LoadsandResponses,"
maximumdegreeofnonconservatismofabout13%.Thisisnotseriousfortwodistinctreasons.Theadditionalconservatismsassociatedwiththerealstructureduetothetuningofharmoniccomponentstothenaturalfrequenciesandtheclosermatchtothe2%dampingfactorcaneasilycompensatefortheslightnonconservatism.Secondly,theuncertaintyestimate,usingonlythreepeakresponsesformthetestsM8,M11BandM12isprobablyexcessivelyconservative.Ifoneused1secondaveragedRMSpressuresfrom8-secondhighmassflowintervals,aswasdoneintheSERSupplement,theratioofmeantopeakR=0.72andthestandarddeviationiso,=0.172.Theresultantloadorresponseat2o,fromthemean(nowprovidingaveryhighconfidencelevelofnon-exceedence)isonly7%abovethedesignruleandcanbeeasilycompensatedbythe1.18conservatismfactorfortheFSTF.C.SummaryandConclusionsOnthebasisofthereviewofthesereportsthestaffconcludesthatadirectapplicationofdesignrulesasgiveninreportSMA12101.04R002Donpage41orinreportSMA12101.04-R003Donpages1-2isacceptable.Ifharmonicsabove30Hzareneglected,assuggestedforstructuressimilartoFSTForOysterCreek,aspecificjustificationintheformtorusresponsefrequencycharacteristicmustbepresented.AnyvariationthatproducesatleastashigharatioofresponsetothatproducedbyabsolutesumasthehighestobservedintheFSTFandOysterCreekanalyses(63%)isalsoacceptable.UsingthedesignruleasinitiallystatedonNEDE-24840(withoutthe1.15factorforshellstresses)isnotacceptable,butamodificationusing4harmonicssummedabsolutelyaddedtotheremainingsummedSRSSismarginallyacceptable,providedthereportedshellstressesarenotwithinafewpercentofallowables.Theadditionof1harmonic,tobesummedabsolutely,providesonlyabouta10%increaseintheresponsesratherthanthe15%neededtoboundFSTFmeasurements.Theeffectissufficientlysmall,however,thatfurtherevaluationwouldbenecessaryonlyintheeventtheresultantstressesapproachedallowablevaluesveryclosely.Insummary,thestafffindstheanalysispresentedintheseriesofreportsreasonable.Anyconservativeapplicationofthoseresultsisthusacceptable.Thedirectapplicationofthedesignrules,asstatedinthefinalreportSMA12101-04-R003Disconsideredadequatelyconservative.Anyalternateisacceptable,provideditsapplicationtoFSTFdatawouldboundallthemeasuredstresses.B-6 1'I I~IC-1 IR METHODOFIMAGESBythemethodofimages,theimagelocationsaredefinedbyx;=2L~x,y;=2H;~y,z),=2'zgi,j,k=0,~1,+2...ThetankdimensionsareL,H,Dinthex,yandzdirectionrespectively.yistheverticaldirection,y=0isthetankbottomandy=Histhefreesurface.Theoriginofthecoordinatesystemisatthelowerleftcorner.xyandz,definethelocationofthesourcewithstrengthP,.Thepotentialatanypoint(x,y,z)canbeexpressedasDefine$g=x0-xpg,=-x0-x,g,=-x,+x,g4=xa+xgi=-yo+ygz--2H-y,-y,7t,=y,+y,g,=2H+y0-y1=zoz>(20z03="0-z04=0+ZandliiBnan(&,.4,)'+(4Hj+g)'2D1yklmn~(2L,Q,)+(4H,.+2H+g)+(2D~Q)C-2 4~~l sothatNNKLNlP=P.ZZZZAWheii+lilhi4EZ(4i-I;;up(1)-"jsOmal+aihhlPJ,!asiMilPJWwhereNI=4NI=2NK=4NK=2ifififi~1ifi=1kw1k=1andL,MandNdefinethenumberofimagesusedintheimagearray.C-3  
wasnotavailable andthusnotdirectlyreviewed.
~e~f~'~E APPENDIXDTHENRC.REQUESTFORADDITIONALINFORMATION-''-'::-',;'.A'ND'THENMPCRESPONSE I'aji gVN~IAAII$HIAOAIIAICWhWkMWR5COlfPOllAYIONl30IPLAINFIELDROAD.SYRAE.NY.I3212'ELEPHONEI3'I5I47*15IISeptember29,lNMPrr.0VU.B.NuclearReguhgozyCommissionAttn:DociunentContxolDesk%aswzlgton,DC35'B:NineMilePointUzIh1DoclretNo.$0-220DPR43S~ed:MCRcqucdfarAAQheati+onzzcofozzBeguSaBe~&wqfAVqrMltPorcNuclearSafesVn01ToneLoadctfazsSubmittalq/"MtyX4gNNByletterdatedAuguat26,l993,theNRCnqIIestodadditional'nnecessarytocompletethere-mvievofam'ayl4,1991re@estfoeducethecondensationoscillationloadsintheNineMihPointUnitITorus.Attachmezltltothislprovidesourresponsetotherequestedinfarntatha.pyoiI+~anyquestimIs~QgthezIMponsctpleasecontact~DavidELh5rat(315)428-7029.VerytrulyyorC.D;-TerryVicepzeideat-NuclearipzlecrizIgxc:RcgiolQ1Adlni51tslzatorRcg4&#xc3;iIMr.B.Norris,SeniorReaMentInspectorMr.R.A.Capra,Director,projectNzeetorateX-i,NRRMr.D.3.BzinRznan,8caiorprojectManatpr,NRRRecozdsMIzlagemezIt0-2  
Themajorresultsandconclusions ofthatreportare,however,summarized inSMA12101.04R002D, andwerefoundtobeconsistent withboththeoriginalreportNEDE-24840 andtheFSTFSupplemental TestLetterReportM1-LR-81-01P.
ReportSMA12101.04-R002D, "Response FactorsAppropriate forUsewithCOHarmonicResponseCombination DesignRules,"summarizes alloftheconclusion ofNEDE-24820 andupdatesthecomparison toincludeFSTFtestsM12andM11B.WhentestM12isincludedinthecomparison, thedesignruleapplication oftheLDRharmonics totheFSTFtorusunderestimates peakmeasuredmembraneaxialstressby11%andunderestimates thehoopstressby14%,whileboundingtheotherresponses.
Onthebasisofthiscomparison, thereportsuggestsmodifying thedesignrulebyusinga"response factor:R,=1.0forotherresponses.
Inaddition, thereportaddsanadditional designruleforthosecircumstances wherethecombination ofabsolutesumandSRSSisnotconvenient, suchasinthetimedomain.Inthiscasethereportstatesthata90%confidence of50%NEPlevelcanbeachievedbymultiplying thepeakresponseresulting fromasinglerandomphasedtrialby1.15.Notethatformembranestressesandstrainsthereisanadditional 1.15"response factor"described above,Theconclusions providecriteriafordesignanalysesalongthelinesjustdiscussed, butanadditional simplification ofneglecting harmoniccomponents above30HZissuggested forstructures withsimilarnaturalfrequency contenttotheFSTForOysterCreek.ReportSMA12101.04-R003D, "Statistical BasisforLoadFactorsAppropriate forUsewithCOHarmonicResponseCombination Rules,"reiterates thedesignrulesdescribed above.Inaddition, recognizing potential uncertainties inthedata,thereportattemptstoprovidesomejustification forneglecting anyadditional factortoprovideadequateconservatism.
Thereportshowsthat,considering thespecification isaresultofthreedatapoints(M8,M12,M11B),theincreaseinresponsetoachieve75%confidence of84%NEPrangesfrom2%forinsidecolumnforceto33%forthehoopstress.Thereportfurtherquotesanunreferenced communication fromDr.AlanBilaninasstatingafactorof1.33fortheratiooftheFSTFdatatothatexpectedinarealfulltorus.Thiseffectispurported tobetheresultoftherigidendeffects,butnofurtherexplanation isprovided.
InAppendixA,thiseffectisexamined.
Weconcludethatforthesefrequencies thatarenotcorrelated betweenbays,theFSTFshouldproduce32%to35%higherloadsthanwouldexistinarealfacility.
Anexamination oftheFSTFdata(inSupplemented LetterReportM1-LR-81-01-P) showsthatonlythefundamental frequency near6Hzshowsanycorrelation betweendowncomers.
Ifoneassumescorrelation betweenbaysatthatfrequency andrandomphasingbetweenbaysatallotherfrequencies, theoverallconservatism fortheaveragepressuremaybeaslowas17%,whileattheresponseleveltheFSTFconservatism willrangeform18%forthehoopstressto38%%uofortheaxialstress.Ifwenowbalancethisversusthemaximumexpecteduncertainty factorforhoopstress(1.33)asinreportR003D,wecouldexpectaB-5 I~~)~t%~
maximumdegreeofnonconservatism ofabout13%.Thisisnotseriousfortwodistinctreasons.Theadditional conservatisms associated withtherealstructure duetothetuningofharmoniccomponents tothenaturalfrequencies andtheclosermatchtothe2%dampingfactorcaneasilycompensate fortheslightnonconservatism.
: Secondly, theuncertainty
: estimate, usingonlythreepeakresponses formthetestsM8,M11BandM12isprobablyexcessively conservative.
Ifoneused1secondaveragedRMSpressures from8-secondhighmassflowintervals, aswasdoneintheSERSupplement, theratioofmeantopeakR=0.72andthestandarddeviation iso,=0.172.Theresultant loadorresponseat2o,fromthemean(nowproviding averyhighconfidence levelofnon-exceedence) isonly7%abovethedesignruleandcanbeeasilycompensated bythe1.18conservatism factorfortheFSTF.C.SummaryandConclusions Onthebasisofthereviewofthesereportsthestaffconcludes thatadirectapplication ofdesignrulesasgiveninreportSMA12101.04R002D onpage41orinreportSMA12101.04-R003Donpages1-2isacceptable.
Ifharmonics above30Hzareneglected, assuggested forstructures similartoFSTForOysterCreek,aspecificjustification intheformtorusresponsefrequency characteristic mustbepresented.
Anyvariation thatproducesatleastashigharatioofresponsetothatproducedbyabsolutesumasthehighestobservedintheFSTFandOysterCreekanalyses(63%)isalsoacceptable.
Usingthedesignruleasinitially statedonNEDE-24840 (withoutthe1.15factorforshellstresses) isnotacceptable, butamodification using4harmonics summedabsolutely addedtotheremaining summedSRSSismarginally acceptable, providedthereportedshellstressesarenotwithinafewpercentofallowables.
Theadditionof1harmonic, tobesummedabsolutely, providesonlyabouta10%increaseintheresponses ratherthanthe15%neededtoboundFSTFmeasurements.
Theeffectissufficiently small,however,thatfurtherevaluation wouldbenecessary onlyintheeventtheresultant stressesapproached allowable valuesveryclosely.Insummary,thestafffindstheanalysispresented intheseriesofreportsreasonable.
Anyconservative application ofthoseresultsisthusacceptable.
Thedirectapplication ofthedesignrules,asstatedinthefinalreportSMA12101-04-R003D isconsidered adequately conservative.
Anyalternate isacceptable, provideditsapplication toFSTFdatawouldboundallthemeasuredstresses.
B-6 1'I I~IC-1 IR METHODOFIMAGESBythemethodofimages,theimagelocations aredefinedbyx;=2L~x,y;=2H;~y, z),=2'zgi,j,k=0,~1,+2...Thetankdimensions areL,H,Dinthex,yandzdirection respectively.
yistheverticaldirection, y=0isthetankbottomandy=Histhefreesurface.Theoriginofthecoordinate systemisatthelowerleftcorner.xyandz,definethelocationofthesourcewithstrengthP,.Thepotential atanypoint(x,y,z)canbeexpressed asDefine$g=x0-xpg,=-x0-x,g,=-x,+x,g4=xa+xgi=-yo+ygz--2H-y,-y,7t,=y,+y,g,=2H+y0-y1=zoz>(20z03="0-z04=0+ZandliiBnan(&,.4,)'+(4Hj+g
)'2D1yklmn~(2L,Q,)+(4H,.+2H+g
)+(2D~Q)C-2 4~~l sothatNNKLNlP=P.ZZZZAWheii+lilhi4EZ(4i-I;;up(1)-"jsOmal+aihhlPJ,!a siMilPJWwhereNI=4NI=2NK=4NK=2ifififi~1ifi=1kw1k=1andL,MandNdefinethenumberofimagesusedintheimagearray.C-3  
~e~f~'~E APPENDIXDTHENRC.REQUESTFORADDITIONAL INFORMATION-
''-'::-',;
'.A'ND'THENMPCRESPONSE I'aji gVN~IAAII$HIAOAIIAICWhWkMWR5COlfPOllAYIONl30I PLAINFIELD ROAD.SYRAE.NY.I3212'ELEPHONE I3'I5I47*15IISeptember 29,lNMPrr.0VU.B.NuclearReguhgozy Commission Attn:Dociunent ContxolDesk%aswzlgton, DC35'B:NineMilePointUzIh1DoclretNo.$0-220DPR43S~ed:MCRcqucdfarAAQheati+onzzcofozz BeguSaBe~&wqfAVqrMltPorcNuclearSafesVn01ToneLoadctfazsSubmittal q/"MtyX4gNNByletterdatedAuguat26,l993,theNRCnqIIestod additional
'nnecessary tocompletethere-mvievofam'ayl4,1991re@estfoeducethecondensation oscillation loadsintheNineMihPointUnitITorus.Attachmezlt ltothislprovidesourresponsetotherequested infarntatha.
pyoiI+~anyquestimIs
~QgthezIMponsct pleasecontact~DavidELh5rat(315)428-7029.
VerytrulyyorC.D;-TerryVicepzeideat-NuclearipzlecrizIg xc:RcgiolQ1Adlni51tslzator Rcg4&#xc3;iIMr.B.Norris,SeniorReaMentInspector Mr.R.A.Capra,Director, projectNzeetorate X-i,NRRMr.D.3.BzinRznan, 8caiorprojectManatpr,NRRRecozdsMIzlagemezIt 0-2  
)~I  
)~I  
..g~~RESPONSETOTHENRCREQADBXHONALPiFORIVtATKONRERE-M',VIEWOFMAT14,1TORUSLOADREBUCHONAJSNIAGARAMOHAWKPOWERCOMjNEMIlUEPOP%MJCLEARSTATIO90CKEYNG.S{}-2207FORORATIONUNl'O.1R8dD-39$:68266'l-ZL'-O'C  
..g~~RESPONSETOTHENRCREQADBXHONAL PiFORIVtATKON RERE-M',VIEW OFMAT14,1TORUSLOADREBUCHONAJSNIAGARAMOHAWKPOWERCOMjNEMIlUEPOP%MJCLEARSTATIO90CKEYNG.S{}-2207FORORATIONUNl'O.1R8dD-39$:68266'l-ZL'-O'C  
~<~-!tP LetterReport7519-28,Rev.1September17,1993~AttachmentPage1SERVtCESpgyle'Tt~tltOWNtN&iC4NHoInSectian3.3,1aftheNinebaflePointPlant-UniqueTorusSuppressionChamber(TeledyneEngineeringSerRev.1;September21,19S4),itisstatedthatcantraforthetorusshellfsthatwhichcombinesOBACOwfpressure(P),deadweight(M)andtheOBE(Case20).thefol'lowingadditionalfnformationand/arclarifithisstatement:nalysisReportofthefees{TES)TR-5320-1,linglaadcambfnatfanhtheOBAhydrostaticheHRCstaffrequestsationwithrespecttoQhatfractionofthetota1shellstress(membrane,local,etc.)derivesfromtheCOloadingtfromthePlaadf97Etc.FarEventCombfnatfan20,ElementNo.19(theostlimitingelement),thestressesfromeachof'hecantrfbutingloasareasfollows:OriginalAnalysis,UnreducedCmembranepercentStressoi'l}~xLMembranePercent+Bond'9of&51:M&CaLOeadweightOBESeismicInternalPressure(QBA):Total1)7562059,219&2K.16,150(16,025)10.951.3%57.0%'100.051;8122079,72216,751(16,618)10.P41.2X58.0XMJ5100.(4CodeAllowableStress16,500'4,750herepart(TR-7353-1)ulatedafterallthesasaresuaraed,Theseaddingtheprincipal5QhksThestressesinparenthesesareframtandaretheprincipalstressescalcomponentstressesframthefaurloadaarelowerthanthetotalsobtainedstressesfromeachloadcase.D-49L'-602667-ZE'-QC  
~<~-!tP LetterReport7519-28,Rev.1September 17,1993~Attachment Page1SERVtCESpgyle'Tt~tltOWNtN&iC4NHo InSectian3.3,1aftheNinebaflePointPlant-Unique TorusSuppression Chamber(Teledyne Engineering SerRev.1;September 21,19S4),itisstatedthatcantraforthetorusshellfsthatwhichcombinesOBACOwfpressure(P),deadweight (M)andtheOBE(Case20).thefol'lowing additional fnformation and/arclarifithisstatement:
nalysisReportofthefees{TES)TR-5320-1, linglaadcambfnatfan htheOBAhydrostatic heHRCstaffrequestsationwithrespecttoQhatfractionofthetota1shellstress(membrane, local,etc.)derivesfromtheCOloadingtfromthePlaadf97Etc.FarEventCombfnatfan 20,ElementNo.19(theostlimitingelement),
thestressesfromeachof'hecantrfbuting loasareasfollows:OriginalAnalysis, Unreduced CmembranepercentStressoi'l}~xLMembranePercent+Bond'9of&51:M&CaLOeadweight OBESeismicInternalPressure(QBA):Total1)7562059,219&2K.16,150(16,025)10.951.3%57.0%'100.051;8122079,72216,751(16,618)10.P41.2X58.0XMJ5100.(4CodeAllowable Stress16,500'4,750herepart(TR-7353-1) ulatedafterallthesasaresuaraed,Theseaddingtheprincipal 5QhksThestressesinparentheses areframtandaretheprincipal stressescalcomponent stressesframthefaurloadaarelowerthanthetotalsobtainedstressesfromeachloadcase.D-49L'-602667-ZE'-QC  
~lrar$,
~lrar$,
LatterReport7519-28,Rev.1September17,1993AttachmentPage2IJN'%ERvCESW~oYNI~IKWCKCWNRfterCase20,whatloadcombinationinvolvingnexthfgheststressfnthetorusshell2WhatpstressisduetaCQ2hmmne:ThenextcontrollingeventcombinationisEvelieitfngflelentHo.19,whichincludesdeainternalpressure,SRUandIHACO.Thestrecontributfngloadsareasfollows:COloadsinducesthercentagaofthetotaltCaibfnatfon14forwefght,08Esefsmfc,sasfromeachoftheMembranepercentStressofMB1~aLNeabrano+Bend'g~UPercentofZetaLOeadwe)ght08KSoismfcLnternalPressure(lSA)SRV1,7562059,928821'3.534(13,232)13.0%1,5L73.4%6.0X100.OSCodeAllowableStress16,500$@Q!Thestressesinparenthesesarethcalculatedafterallthecol'ponantstrescasesaresummed.Thoseara,'owerthanaddingtheprfncfpalstressesframeach1,81220710,4702,385~i'll16470(15,148)24,75011.0%1.3%83,6%14,5'00.l7Iipr'incfpalstressesesfromthafiveloadhototalsobtainedbyloadcase,vfngbothCOandSNitforthiscaso2kfaftingelement19,ation14,Seeanswer'Whatistheworstcasaloadcombfnatfaninvoloads'hatarethestresslave>sandtheirs18mme:Theworstcaseloadcombfnatfon,fortheinvolvingbothCOandSRVloadsisEventCondftoQuestion2.D-5  
LatterReport7519-28,Rev.1September 17,1993Attachment Page2IJN'%ERvCES W~oYNI~IKWCKCWNRfterCase20,whatloadcombination involving nexthfgheststressfnthetorusshell2WhatpstressisduetaCQ2hmmne:Thenextcontrolling eventcombination isEvelieitfngflelentHo.19,whichincludesdeainternalpressure, SRUandIHACO.Thestrecontributfng loadsareasfollows:COloadsinducesthercentagaofthetotaltCaibfnatfon 14forwefght,08Esefsmfc,sasfromeachoftheMembranepercentStressofMB1~aLNeabrano+Bend'g~UPercentofZetaLOeadwe)ght 08KSoismfcLnternalPressure(lSA)SRV1,7562059,928821'3.534(13,232) 13.0%1,5L73.4%6.0X100.OSCodeAllowable Stress16,500$@Q!Thestressesinparentheses arethcalculated afterallthecol'ponant strescasesaresummed.Thoseara,'ower thanaddingtheprfncfpal stressesframeach1,81220710,4702,385~i'll16470(15,148)24,75011.0%1.3%83,6%14,5'00.l7Ii pr'incfpalstressesesfromthafiveloadhototalsobtainedbyloadcase,vfngbothCOandSNitforthiscaso2kfaftingelement19,ation14,Seeanswer'Whatistheworstcasaloadcombfnatfan involoads'hat arethestresslave>sandtheirs18mme:Theworstcaseloadcombfnatfon, fortheinvolving bothCOandSRVloadsisEventCondftoQuestion2.D-5  
~>~it,,~,~'4 LetterReport7619-28,Rev.1September17,1993AttachmentPage3SERVICESNVSCHQf%CUP~QKWNOcwlQWo4.QhatfstheworstcaseloadcombinationforthenotfnvolveC07Howarethestressesforthatthinnfngofthetorusshall2Howdotheycornstresses'mm:TheworstcaseeventcombinationthatdoesnoCambfnatian18farElementHo.l9,whichfncsefsmfc1andpoolswell,Thestressesfromealoadsareasfollows;torusshellthatdoescaseaffectedbythearewiththeCase20involveCQisEventudesdeadweight,OBEhofthecontrfbut1ngHlabranaStressNeabrane+8endfngOeadwefghtOBESefsmfcTotalCodeAllowableStress1,756205MKR71929(7,812)16,50011812207k2JQ.S,222(8,103)24,760fhgysThestressesfnparenthesesarethcalcu'latedaftera)1thecomponentstloadcasesaresummed.ThesearelobtafnedbyaddingtheprfncfpalstressThesestrlsseswouldincreaseslightlyduettorusshell.However,ascanbeseen,approxfmatolyhalftheEventCambfnatfan20swouldcontrolbyawidemarg1n.\ReferringnowtoSection5.3ofTESTR-7353-1,Rev.provfdethefallowfngfnformatfon/ciarfffcatfon:5.IsthIstatementthat"...EventCamb1natfovalidforboth8and4downcomerbays'owfsBQSSE:Yes.ItfsestablfshedbycomparingthesCoebfnatfonspresentedherein.(Seeresponse6.HhatshellthfcknessfsusedtacalculateeachlevelstabulatedfnthissectfanThnaMfJ::Theor1gfnalthickness1sused,t0.46inchprincipalstressesessesfromthethreewerthanthetotalssfromeachloadcase.thethfnnfngofthethesestressesareresses,sothelattar2(January14,1992),20...fscontrolling"thisestablfshed7ressesfromtheEventoquestion8).afthe"actual"stressD-699'd j4 LetterRaport7519-28,Rev.1September17,1993AttachmentPago4ITthmzae:Yes.Itauldbethesame.Isthesplitinstressesduetothevarioidenticalforthethinnershel1case?Iffractionaldistribution,scantHbutingloadsitisnot,state'thl8.Isthesplitinstressesduetothevariascontributingloadsidenticalfartha4derncomarbeycases?Iitisnot,statethefractionaldistribution?km)nil'.:FaradventCombination20,BeatentNo.19,withreducedCO,thestressesframeachofthecontributingloadsaasfollows:ReducedC0,SOowncamerQaysOeadweightOBESeismicInternalPressure(OBA)TotalCadeAIIovableStressHeehraneStress~D1,756'205g,z)gMBZ)5,522{15,452)16,500PercentofU8aL)1.3%1.3'A59-4%MMK100.0XHeibrane+Band'g~Q1,8122079,722~0.16,122()6,044)24,750Percentotll..P).3%60.3%~5100.%ReducadCO,4OelecaeerBaysHoebranaPercentStressat&%ELZSalHeabranlPercent+Send'gof'Ml~aLGeaheightOBKSeisaicInternalPressure(QSA)Tota1,7562059,2)9M2614,529()4,460}12.)X,).4%63.5'5~5100.N1,8122079,722M2B/,15,116()5~040))2.&#xc3;).4%64.3%~El100.(4CadeAllowableStress16,50024,750therepgrt(TR-7353-I)culatadafteralltheasesaresumaed.Theseyaddingtheprincipal5gia!Thestressesinparenthesesarefroandaretheprincipalstressesccomponentstressesframthefavrloadcarelaierthanthetotalsobtainedstressesfromeachloadcase.I60IdD-7LT:68266'-0C-6<
~>~it,,~,~'4 LetterReport7619-28,Rev.1September 17,1993Attachment Page3SERVICESNVSCHQf%CUP~QKWNOcwlQWo4.Qhatfstheworstcaseloadcombination forthenotfnvolveC07Howarethestressesforthatthinnfngofthetorusshall2Howdotheycornstresses'mm:
0~<,l%p~g LetterReport75}9-28.RevSeptemberl7,1993AttachmentPago59.Pravfdetheequfvalentresponsetaquestfondawncaaarbays.hmsz:EventCombfnatfon20fstheonlycasefnvoIvfnextcontrallfngeventcombfnatfanfsEventfnc)udesISACO,Thisfsalsotheworstcfnvalv$ngbathCQandSRYloads.Sfncothosoughtfsanlyfar'BACO,therearenochvaluesforthelBACOresultsforEventCombfsay,thora'fsnadfffsrantfatfonbatmenthe.'oreventcambfnatiansotherthanthe:rsvfsedTheresultsarepresentedfn'guestfan..2~.I~yygygOITILaOYNtIhCSNL?N+E~and3farthe4g08ACOlaads.TheCombfnatfonl4whichsIQvontCONhfnatfonloadreductfanbefngngestotheorfgfnalatfanl4.Thatistaand8.4amceaerbays.":,"2EventComhfnatfanRQ.D-8 e~I}}
Theworstcaseeventcombination thatdoesnoCambfnatian 18farElementHo.l9,whichfncsefsmfc1andpoolswell,Thestressesfromealoadsareasfollows;torusshellthatdoescaseaffectedbythearewiththeCase20involveCQisEventudesdeadweight, OBEhofthecontrfbut1ng HlabranaStressNeabrane+8endfngOeadwefght OBESefsmfcTotalCodeAllowable Stress1,756205MKR71929(7,812)16,50011812207k2JQ.S,222(8,103)24,760fhgysThestressesfnparentheses arethcalcu'lated aftera)1thecomponent stloadcasesaresummed.Thesearelobtafnedbyaddingtheprfncfpal stressThesestrlsseswouldincreaseslightlyduettorusshell.However,ascanbeseen,approxfmatoly halftheEventCambfnatfan 20swouldcontrolbyawidemarg1n.\Referring nowtoSection5.3ofTESTR-7353-1, Rev.provfdethefallowfng fnformatfon/ciarfffcatfon:
5.IsthIstatement that"...Event Camb1natfo validforboth8and4downcomer bays'owfsBQSSE:Yes.Itfsestablfshed bycomparing thesCoebfnatfons presented herein.(Seeresponse6.Hhatshellthfckness fsusedtacalculate eachlevelstabulated fnthissectfanThnaMfJ::Theor1gfnalthickness 1sused,t0.46inchprincipal stressesessesfromthethreewerthanthetotalssfromeachloadcase.thethfnnfngofthethesestressesareresses,sothelattar2(January14,1992),20...fscontrolling" thisestablfshed7 ressesfromtheEventoquestion8).afthe"actual"stressD-699'd j4 LetterRaport7519-28,Rev.1September 17,1993Attachment Pago4ITthmzae:Yes.Itauldbethesame.Isthesplitinstressesduetothevarioidentical forthethinnershel1case?Iffractional distribution, scantHbuting loadsitisnot,state'thl8.Isthesplitinstressesduetothevariascontributing loadsidentical fartha4derncomar beycases?Iitisnot,statethefractional distribution?
km)nil'.:
FaradventCombination 20,BeatentNo.19,withreducedCO,thestressesframeachofthecontributing loadsaasfollows:ReducedC0,SOowncamer QaysOeadweight OBESeismicInternalPressure(OBA)TotalCadeAIIovable StressHeehraneStress~D1,756'205g,z)gMBZ)5,522{15,452)16,500PercentofU8aL)1.3%1.3'A59-4%MMK100.0XHeibrane+Band'g~Q1,8122079,722~0.16,122()6,044)24,750Percentotll..P).3%60.3%~5100.%ReducadCO,4Oelecaeer BaysHoebranaPercentStressat&%ELZSalHeabranlPercent+Send'gof'Ml~aLGeaheight OBKSeisaicInternalPressure(QSA)Tota1,7562059,2)9M2614,529()4,460}12.)X,).4%63.5'5~5100.N1,8122079,722M2B/,15,116()5~040))2.&#xc3;).4%64.3%~El100.(4CadeAllowable Stress16,50024,750therepgrt(TR-7353-I) culatadafteralltheasesaresumaed.Theseyaddingtheprincipal 5gia!Thestressesinparentheses arefroandaretheprincipal stressesccomponent stressesframthefavrloadcarelaierthanthetotalsobtainedstressesfromeachloadcase.I60IdD-7LT:68266'-0C-6<
0~<,l%p~g LetterReport75}9-28.RevSeptember l7,1993Attachment Pago59.Pravfdetheequfvalent responsetaquestfondawncaaar bays.hmsz:EventCombfnatfon 20fstheonlycasefnvoIvfnextcontrallfng eventcombfnatfan fsEventfnc)udesISACO,Thisfsalsotheworstcfnvalv$ngbathCQandSRYloads.Sfncothosoughtfsanlyfar'BACO,therearenochvaluesforthelBACOresultsforEventCombfsay,thora'fsnadfffsrantfatfon batmenthe.'oreventcambfnatians otherthanthe:rsvfsed Theresultsarepresented fn'guestfan..2~.
I~yygygOITILaOYNtIhCSNL?N+E~
and3farthe4g08ACOlaads.TheCombfnatfon l4whichsIQvontCONhfnatfon loadreductfan befngngestotheorfgfnalatfanl4.Thatistaand8.4amceaer bays.":,"2EventComhfnatfan RQ.D-8 e~I}}

Revision as of 03:26, 29 June 2018

Technical Evaluation Rept,Technical Basis for Reduction of Torus Shell Condensation Oscillation Loads for Niagra Mohawk Power Corp Nine Mile Point Unit 1.
ML18040A226
Person / Time
Site: Nine Mile Point Constellation icon.png
Issue date: 05/31/1994
From: ECONOMOS C, LEHNER J, LIN C C
BROOKHAVEN NATIONAL LABORATORY
To:
Office of Nuclear Reactor Regulation
Shared Package
ML17059A382 List:
References
CON-FIN-L-1331 NUDOCS 9408100168
Download: ML18040A226 (106)


Text

TECHNICAL EVALUATION REPORTTECHNICAL BASISFORREDUCTION OFTORUSSHELLCONDENSATION OSCILLATION LOADSFORTHENIAGARAMOHAWKPOWERCORPORATION NINEMILEPOINTUNIT1byC.Economos, J.Lehner,andC.C.LinAccidentAnalysisGroupSafetyandRiskEvaluation DivisionDepartment ofAdvancedTechnology Brookhaven NationalLaboratory Upton,NewYork11973January1994RevisedMay1994PreparedforOfficeofNuclearReactorRegulation NuclearRegulatory Commission Washington, D.C.20555UnderContractNo.DE-AC02-76CH00016 NRCFINL-13119408i00168 9408051PDRADQCN05000220PDR,

'P4 LISTOFFIGURESFigure1.Figure2.Figure3.MOIpredicted Variation ofPressureinComputation CellPlaneofSymmetry-P(x,0,ZO/2).................................

19Comparison ofBNLandNMPCEstimates forPressureAmplitude Reduction Factors...............................

~.....20.ResultsofSensitivity StudiesforNMPviatheBNLMethodfImages.............................................

210 P

ABSTRACTBNL'sevaluation ofthetechnical basissubmitted byNMPCtojustifyareduction intheNMPtorusCOloadsisdocumented inthisreport.Thereduction wasrequested becausethinningoftheNMPtorusshellduetocorrosion impliesthatstresslevelsinducedbytheseDBAloadswouldexceedallowables.

Thetechnical basisutilizedinBNL'sreviewincludesaseriesoftopicalreportsprovidedbytheapplicant aswellasresponses toRAIsgenerated duringthecourseoftheevaluation.

Inaddition, theevaluation involvedreviewof.documents inwhichdevelopment oftheoriginalCOloadspecification anditsbasisaredescribed.

Alsofactoredintotheevaluation aretheresultsofindependent calculations performed byBNLtoconfirmtheadequacyoftheapplicant's analytical results.Finally,thereview'sscopewasexpandedtoincludetheimpactofshellthinningonallDBA-related hydrodynamic loads.BNL'sfindingsbasedontheaboveisthattherequested reduction inCOloadsisappropriate andhasasoundtechnical basis.

~I'~~'

TABLEOFCONTENTSSTRACT~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ABLISTOFFIGURES.................,...............

0Vl~~LISTOFTABLES.....................................,..........

vllLISTOFACRONYMSANDABBREVIATIONS

...,.....

~~~~~~~~~~~~VillACKNOWLEDGEMENT...........................................

lx

1.0INTRODUCTION

ANDBACKGROUND

.......................

12.0DESCRIPTION OFTHEPROPOSEDMETHODOLOGY

3.0 EVALUATION

OFTHEPROPOSEDMETHODOLOGY

......~~~~~~~~53.13.2Evaluation BasedontheInitialSublnittal...

Evaluation BasedonOtherConsiderations

.,3.2.1Acceptability ofTotalStructural ResponseMethod.........,.....

3.2.2BNLConfirmation ofGeometryEffectonCOBoundaryPressures

........3.221Description oftheMethodology

.3.Z2.2Geometric Considerations.....

3.2.Z3Presentation ofResults.......

3.22.4Discussion ofResults..........5~.5.6..6..7..7..8..94.0IMPACTOFSHELLTHINNINGONOTHERDBA-RELATED HYDRODYNAMIC LOADS.................................,

.115.0CONCLUDING REMARKS...............................,....

1

36.0REFERENCES

.............................................

14APPENDIXATHEBNLTECHNICAL LETTERREPORT...............

A-1APPENDIXBTHEBNLINTERNALMEMORANDUM

.................

B-1APPENDIXCTHEDESCRIBING EQUATIONS FORTHEBNLMETHODOFIMAGES..e~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~oC-1APPENDIXDTHENRCREQUESTFORADDITIONAL INFORMATION ANDTHENMPCRESPONSE~..................,...

D-1

LISTOFTABLESTable1.ValuesofParameters UsedtoDefineCalculation CellGeometry....17Table2.ResultsofBNLMOICalculations

...........................

18 y~v LISTOFACRONYMSANDABBREVIATIONS ACABSSBNLBWRBWROGCDICODBADNEFSTFIBALDRMOINEPNMPNMPCNRCPCPUARRAIRFSERSRSSSRVTERTESTLRTSAcceptance CriteriaAbsoluteSumBrookhaven NationalLaboratory BoilingWaterReactorBWROwnersGroupContinuum

Dynamics, Inc.Condensation Oscillation DesignBasisAccidentDepartment ofNuclearEnergyFullScaleTestFacilityIntermediate BreakAccidentLoadDefinition ReportMethodofImagesNon-Exceedance Probability NineMilePointNuclearStationUnit1NiagaraMohawkPowerCorporation NuclearRegulatory Commission PersonalComputerPlantUniqueAnalysisReportRequestforAdditional Information Reduction Factor(forpressureamplitude)

SafetyEvaluation ReportSquareRootoftheSumofSquaresSafety/Relief ValveTechnical Evaluation ReportTeledyneEngineering ServicesTechnical LetterReportTechnical Specification g~I ACKNOWLEDGEMENT Theauthorswouldliketoexpresstheirappreciation toA.D'Angelo, theNRCLeadEngineerforthisproject.Theguidanceandsuggestions heprovidedwereinsightful andconstructive.

Hiscontributions wereessential tothesuccessful completion oftheevaluation documented inthisreport.

ILJtCp

1.0INTRODUCTION

ANDBACKGROUND ThegenericCOloaddefinition anditsgenesisaredescribed intheMarkILDR.'twassynthesized frompressures recordedduringtheworstcaseblowdown(TestNumberMS)fromthefirstFSTFtestseries.'his testsimulated alargeliquidbreakbutwasconducted atapooltemperature belowthecurrentTechnical Specification (TS)forcontinuous operation (70'Fvs90-95'F).

TheseloadswereapprovedbytheNRC,subjecttotheresultsofadditional confirmatory tests.'ncreased pressures wereobservedintheselatertests'hich wereconducted athigherpooltemperatures (95'FforTestM12).However,theoriginalloadspecification wasdeemedacceptable'ased onafavorable comparison betweenpredictions andthestresslevelsobservedduringthehightemperature test,Insomecases,theprediction exceededmeasurements byasmuchas150%.Tounderstand whytheLDRloadsexhibitthisconservatism itisnecessary todescribehowtheloadspecification isderivedandhowitistobeapplied.Reference 6providesadetaileddescription ofthedesignload'sdevelopment.

Herewenoteonlythefollowing:

asinglepressuresignature wasselectedforprocessing (Figure2-6ofReference 6).AFourierseriesrepresentation ofthissignalwasthendeveloped.

Thiswasfollowedbyasomewhatcomplexprocedure thatconverted theFouriercoefficients tocorresponding "rigidwall"values.Fromthese,atableofrigidwallFouriercoefficients/pressure amplitudes wasgenerated asafunctionofdiscretefrequency bands(Table4.4.1-2ofReference 1).TheLDRthendirectsthattheseharmonicexcitations beapplied,withineachfrequency band,tostructural modelsthatrepresent eachplant-specific torus,toestablish thestructure's response.

Becausethedesignforcingfunctionhasbeendecomposed intoaseriesofdiscreteharmonicexcitations, awayofcombining thecorresponding stresseshastobeprescribed.

Wenotethatiftheexcitation wasgivenasasingle,continuous pressurewaveformas,forexample,isspecified fortheMarkISRVload(Section5.2.2oftheLDR),thisrequirement doesnotarise.Thus,tocompletetheCOloadspecifi...tion, theLDRrequiresthatthestressesbecombinedbytheABSSmethodwhichisthesimplestandmostconservative approach.

Thelargemarginsbetweenmeasuredandpredicted stressesnotedaboveareadirectresultofthisapproach.

Theexcessive conservatism ofthisapproachwasrecognized bytheBWROGevenbeforetheLDRloadswereappliedtospecificplants.Accordingly, aseriesofstudieswerecommissioned todevelopimprovedprocedures thatreducedtheexcessive marginsbutretainedanappropriate levelofconservatism.7@'ased onareviewofthesestudies,theNRCstaffagreedthatstrictapplication oftheABSSmethodwasnotrequiredandrelaxeditsoriginalAC,ForNMP,inparticular, amodifiedCOloadwas,approved duringreviewoftheirPUAR."Thismodification involvedapplication oftheABSSmethodtoonlythefourhighestharmonicresponses andaddition, byaSRSSmethod,oftheremaining ones.Notethatthisprocedure doesnotmodifytheforcingfunctionitselfwhichconsistsofthepressureloadsthatareappliedtothewettedtorusboundaries.

Therevisedmethoddoes, lrfP however,reducethetotalstressexperienced byanyparticular structural elementrelativetothatresulting fromfullABSSapplication.

FormostBWRplants,useoftheLDRspecified ABSSmethodwasacceptable despiteitsinherentconservatism.

InthecaseofNMP,however,theneedtoreducetheloadsaroseduetoNMP'snon-prototypically thintorusshell.Withthepassageoftime,therehasbeenafurtherreduction intheshellthickness duetocorrosion.

Thiscorrosion isacontinuing processwhichNMPCanditsconsultant estimateoccursatarateof0.00126inchesperyear."IftheCOloadsarenotreducedevenfurther,controlling stresslevelsareexpectedtoexceedallowables during1994.Todelaytheneedtostructurally reinforce thetorus,NMPChasproposedafurtherreduction intheloadspecification.

Thetechnical justification forthisreduction isdescribed andevaluated intheensuingsections.

~lJt14"

2.0 DESCRIPTION

OFTHEPROPOSEDMETHODOLOGY Theinformation suppliedbytheapplicant tojustifyaloadreduction wastransmitted inavarietyofformsandatvarioustimes.Thegiveandtakebetweenthesesubmittals andthestaffsresponses extendedoveraconsiderable chronological period.Inthissectionwewilldescribetheapplicant's methodanditsbasisinawaythatparallels thishistorical development.

ThemethodsproposedbyNMPCtodemonstrate thatareduction inCOloadsisjustified werefirstdescribed intwodocuments preparedbyaconsulting firm.'~'his

material, aswellasthatprovidedinReference 11,constituted theinitialsubmittal totheNRCstaff.Thekeyelementsoftheinformation suppliedtherewereasfollows:FSTFdataareusedtodemonstrate thatsignificant correlation oftheCOprocessattheexitoftheeightdowncomers occursonlyinthe5-6Hzfrequency rangeandthat,atotherfrequencies, theprocessanditscontribution toboundarypressures israndom.2.ItisnotedthattheFSTFgeometry, whichconsistsofasingle,torus-like baywitheightdowncomers (cf:Figure3.2-5ofReference 2),doesnotcorrectly simulatetheNMPtorussince,inthelatter,fourdowncomer baysalternate witheightdowncomer bays(cf:Figure3ofReference 13).Theconsequence ofthisgeometric featureisthattheFSTFpressures areexcessive forboththefourandeightdowncomer NMPbays.Thisistrueovertheentirefrequency rangeofthepressuresignature including thesynchronous 5-6Hzvalue.3.ItisalsonotedthattheFSTFdoesnotcorrectly simulateanactualMarkItorusbecauseoftherelatively rigidendcapswhichactasplanesofsymmetrybetweenadjacentbays.Inadditiontoimplyingthatadjacentbayshavethesamenumberofdowncomers astheFSTFasnotedabove,anotherconsequence ofthisgeometric featureisthatasynchronous contributions tothemeasuredpressures areamplified.

4.Anacousticmodelappliedtoanidealized versionoftheNMPtorus(horizontal cylinderhalffilledwithwater)isdeveloped andutilizedtoquantifytheeffectsenumerated above.Theresultsofthisanalysisarepresented asreduction factors(cf:Table1ofReference 13)thataretobeappliedtotheLDRpressureamplitudes (cf:Table4.4.1-2ofReference 1).Thesefactorsdependprimarily onbaygeometryandthenatureoftheCOprocess:i.e.:whetheritiscoherentorrandom.Thereduction factorsalsoexhibitaslightdependence onfrequency.

Foruncorrelated COtheirvaluesareabout60%and80%forthefourandeightdowncomer arrangements, respectively.

Thecorresponding valuesforcoherentCOare70%and95%%uo.Theseallrepresent bayaveragedvalues.

J~~I1Jz' 5.Thecorrelated reduction factorsaretobeappliedonlyforthe5to6Hzpressureamplitude (about3psia).Forthebalanceofthefrequency spectrumtheuncorrelated valuesaretobeutilized.

6.Theprocedure todevelopthestructural response(stresses) totherevisedhydrodynamic loadsisalsoaddressed.

Reference 13states(p.14)that"thestructural analysisshouldbeundertaken aspertheLoadDefinition Report".Theanalogous citationfromReference 11appearsonpage11.Itstates"total...stress wasdonebyaddingtheabsolutevalueofthefourhighestharmoniccontributors totheSRSScombination oftheothers...".

SincetheLDRdictatestheuseoftheABSSmethodforcombining

stresses, twocontradictory procedures forcombining stressesarespecified inthisoriginalsubmittal according towhatiscitedinItem6.Thus,inBNL'soriginalevaluation'4 thedistinction betweentheLDR'sABSSmethodandthealternative ofcombining onlythefourpeakresponses byABSSandtheremaining responses bySRSS'ashighlighted andtheacceptability oftheproposedmethodmadecontingent ontheassumption thattheABSSmethodwastobeused.ThispositioncarriedoverintotheSERissuedbytheNRC.'ollowing theissuanceoftheSER,theNMPCtookexception totherequirement thatABSSbeusedtocomputetotalstructural response."

Itclarified theambiguity impliedinItem6bystatingthattheintentwastoutilizethe4ABSS+SRSS methodaswasdoneintheiroriginalPUAR.'dditional information insupportofthisapproachwasalsoincludedinthissubmittal.

Adescription andevaluation ofthislaterinformation isincludedinSection3.2.1below.Insummary,therevisedmethodology consistsofasetofmuttipliers (Table1ofReference 13)thatareusedtoreducetheLDRpressureamplitudes (Table4.4.1-2ofReference 1).Allotheraspectsofthemethodareidentical tothoseusedintheoriginalNMPPUAR."Forconvcnicncc inthcensuingdiscussion, thismethodofcombining thcindividual harmonicresponses willbedenotedbythcacronym4ABSS+SRSS.

V~Cgl

3.0 EVALVATION

OFTHEPROPOSEDMETHODOLOGY 3.1Evaluation BasedontheInitialSubmittal Asindicated above,anevaluation basedontheinitialsubmittal wascompleted anddocumented viaaBNLTLRearlyin1992.AcopyofthisTLRisincludedinthisreportasAppendixA.Itwasfoundthattheproposedreduction was"reasonable, conservative andtechnically defensible".

Thebasisforthisconclusion restedprimarily onBNL'sconcurrence thattheLDRpressureloadswereoverlyconservative forthereasonscited(therandomness oftheexcitation formostoftheobservedfrequency spectrumandthegeometric differences betweentheFSTFandtheNMPtorus)andtheacceptability oftheanalytical procedure utilizedtodevelopanappropriate reduction.

However,theincorrect assumption thatitwasNMPC/YES's intenttodeveloptotalstressesviaanABSSmethodalsoplayedapartindeveloping theoverallfindinginthatitimpliedasourceofadditional conservatism.

Thispositionwasevenmoreemphatically statedintheNRCstaff'sSER.Finally,theTLRhighlighted thefactthatBNLdidnotcritically reviewimplementation oftheanalytical methodnoraccuracyofthenumerical resultsthatweregenerated.

Theconfirmatory analysispresented inSection3.2.2represents anindirectwayofevaluating thecorrectness oftheNMPCmethodandresults.Summarizing thissection,thefindingsfromtheinitialevaluation regarding thepressureamplitude reduction factorsremainqualitatively validbutrequireadditional confirmation oftheirquantitative acceptability.

Thisadditional requirement aswellasotherconsiderations thathaveevolvedsincetheissuanceofthestaff'sSER'saddressed inSection3.2.3.2Evaluation BasedonOtherConsiderations AsaresultofNMPC'sresponsetotheTER,furtherevaluation wasundertaken basedontheadditional information thatwassuppliedthereandinReferences 8,18,19,and20.Themainfocusofthisnewinitiative wastoestablish thesuitability ofusingthe4ABSS+SRSS methodincombination withthereducedpressureloads.However,becauseitcouldbeanticipated thatacceptance ofthiscombination inevitably wouldreduceexistingmargins,thestafffeltthatamorethoroughexamination ofthenewlydeveloped excitation wasappropriate.

Specifically, theNRCformallyrequested BNLtoexpandthescopeofitsefforttoincludeanindependent, confirmatory setofcalculations todemonstrate theloadreducingeffectofthegeometrydifferences citedearlier(ie:Items2and3listedinSection2.0).Forcompleteness, thedecisionwasalsomadetoincludeanexamination oftheimpactofreducedshellthickness ontheabilityoftheNMPtorustowithstand allotherhydrodynamic (ie:besidesCO)loads.Inthenextsub-section, theacceptability ofthemethodproposedtodeveloptorusstructural response(the4ABSS+SRSS method)isaddressed.

Then,theBNLmethodforestimating 1~lytt, theeffectofgeometryonpressureisdescribed andnumerical resultspresented.

Finally,BNL'sfindingsresulting fromexamination oftheNMPtorusstructural capability vis-a-vis allDBAhydrodynamic loadsarediscussed.

3.2.1Acceptability ofTotalStructural ResponseMethodInSection1.0itwasnotedthattheNRCstaff'soriginalACwererelaxedregarding useoftheLDRABSSmethodforcombining stresses.

Thebasisforaccepting alessconservative versionwasdocumented inanAugust1983BNLInternalMemorandum."

AcopyofthismemohasbeenincludedhereasAppendixB.Themethodapprovedtherewasintendedtobegenerically applicable toallMarkIplantsbuthasbeenutilizedbyrelatively fewutilities otherthanNMPC.Theevaluation wascarriedoutbythelateG.Bienkowski, ofPrinceton University actingasconsultant totheContainment SystemsGroupofBNL'sDNE.Itreviewedessentially thesamedocumentation NMPCsuppliedmorerecently.

Usingconventional, industryacceptedstatistical considerations, methodsweredeveloped theretoobtainimprovedagreement betweenmeasuredFSTFstructural responses (stresses, displacements, forces)andthosepredicted usingtheLDRharmonicpressure".

Commontoallthesemethodswasthenotionthatsomewhere betweenpureABSSandpureSRSSexistsawayofcombining theresponses inamorerealistic way.The"NavalSum"P~whichcombinesthetwohighestpeaksbyABSSandtheremainder bySRSS(2ABSS+SRSS) isoneexample.InReference 7therecommended procedure was3ABSS+SRSS implyinganon-exceedance probability (NEP)of84%%uo.Althoughimprovedagreement wasdemonstrated, someexceedances werefound,primarily intheareaofmembranestresses.

Toprovidesufficient conservatism toboundallthemeasuredresponses, itwasrecommended inReference 21thattheproposedmethodbemodifiedtothe4ABSS+SRSS methodthatwasacceptedbythestaffandapprovedforusebyNMPCintheNMPPUAR.Insummary,the4ABSS+SRSS methodthatNMPChasusedtodeveloptotalstructural responsetotheCOexcitation wasapprovedbythestaffearlier.Nothingthathastranspired sincethatapprovalwarrantswithdrawal ofthisapprovaland/ormodification oftheprocedure.

3.2.2BNLConfirmation ofGeometryEffectonCOBoundaryPressures Themethodology usedbyBNLtocomputeboundaryloadsonsimulated versionsoftheNMPtorusandtheFSTFduetoCOatdowncomer exitsisdescribed inthissection.Numerical resultsarealsopresented here.Theyincludecomparisons withcorresponding NMPCresultsandsensitivity studiesthatexhibitthedependence oftheloadsonkeygeometric parameters thatcharacterize theNMPsuppression pool.

)~lyi15,AqV<<P' 3.2.2.1Description oftheMethodology Themethodusedderivesfromanapplication oftheclassical MethodOfImages(MOI)technique.

Thetechnique isparticularly suitablefordescribing thehydrodynamic phenomenon occurring duringtheCOphaseofaDBAblowdown.

BNL'smethodisvirtually identical tothatemployedbytheGeneralElectricCo.toestimateramsheadrelated,SRVhydrodynamic loads(Section3.3.1,ofReference 23),Thesoledifference isthatarectangular arrayofimagesisusedbyBNLratherthanGE'sdiamondpattern.Thisisbecausecomputerstoragecapacityandexecution timeshaveimprovedconsiderably sincethen(1978).Thus,thegreaterefficiency providedbythediamondshapedarrayisunnecessary.

Wewereabletocarryoutthesecalculations onaPC(Gateway2000).Abriefdescription oftherelevantdescribing equations usedherearepresented inAppendixC.Itshouldbenotedthatthesegivethealgorithm fordeveloping thepressureatanypoint(x,y,z)duetotheexcitation inducedbya~siniedowncomer/source.

Tocomputethepressureduetomultiplesources,thecomputercodeloopsoverallsourcesandcombinesthepressurecontribution fromeacheitherbyABSSfor"correlated" pressureorbySRSSfor"uncorrelated" results,3.2.2.2Geometric Considerations ThegeometryoftheFSTFwasmodelledasasingle,rectangular parallelopiped withplatformXObyZOanddepthYO(seeFigure1).Thespecificvaluesusedfortheseparameters aregiveninTable1andweredeveloped usingtheinformation giveninReference 20asfollows:YOwastakenequaltotheFSTFtorusradius(aofReference 20);XO,corresponding tothecircumferential lengthoftheFSTFbay,wastakentobefourtimesthedowncomer pairspacing(lofReference 20);ZO,thelateralwidthofthecomputation cell,wasselectedsothatthecross-sectional areaofthecellsequaledthatoftheFSTF;ie:wetookZOsuchthat(YO)(ZO)=m(YO)~/2.

Fourpairsofsourceswithlateral/radial spacingDS,weresymmetrically locatedwithinthecelladistanceHOabovethetorusbottom.HOandDSderivefromthevaluesgivenforrand0inReference 20todefinethelocation/submergence ofthedowncomer exitplanes.Thissinglecomputational cellwasutilizedtodevelopestimates ofboththecorrelated anduncorrelated pressureloads.ThisisvalidfortheFSTFsince,asnotedearlier,therigidendcapsrepresent planesofsymmetrysothatasynchrony oftheCOpulsescanonlyoccuramongtheeightdowncomers contained withinthesinglecell.Modelling oftheNMPgeometrydifferedfromthatfortheFSTFbecauseoftheneedtocorrectly represent conditions whentheCOprocessisasynchronous.

Incontrasttothesituation fortheFSTF,whenthiscondition prevailsintheNMPtorusitimpliesthattheCOpulsesatall120downcomers (10bayswith4pairs;10bayswith2pairs)areoutofphaseratherthanjustatthefouroreightlocatedinasinglebay.Theloadreduction thatwouldresultfromsuchalimitednumberofuncorrelated sourceswouldbeunrealistic.

I~

Inviewoftheabove,twotypesofgeometrywereemployedfortheNMPsimulations.

Forthecorrelated case,asinglecomputational cellwasemployedanalogous tothatusedfortheFSTFexceptforthenumberandlocationofthesources/downcomers.

Thesewerearrangedsothatthecalculation cellextendedfromthecenter(hence,planeofsymmetry) ofanon-vent,eightdowncomer baytothecenterofafourdowncomer bay.Thus,onlythreepairsofsourceswereusedforthissimulation.

Allotherpertinent dimensions forthesingle,NMPcomputational cellaregiveninTable1.Thesevaluesalsoderivefromtheinformation giveninReference 20.Referring toTable1,itisinteresting tonotethattheFSTFandNMPgeometries arecomparable exceptfordowncomer pairclearance (HO)andspacing(DS).Ascanbeseen,theNMPdowncomer exitsaresignificantly closertoeachotherandtothebottomofthetorus.Thesegeometric differences haveasignificant impactontheboundarypressures aswillbediscussed inSection3.2.2.4.Forthecaseofuncorrelated sourcesintheNMP,thegeometrymustreflectthefactthatincoherence betweendowncomers isnotlimitedtothoseresidentinasingleoreveninapairofbays.Solongasrigidwallsarespecified attheendsoftheselectedcalculation cell,coherence betweenthesourcesinthatcellandthearrayofimagesthatareemployedbytheMOIisimposed.Unlessthiseffectisproperlyaccounted for,misleading resultscanbeobtained.

Thisisaccomplished herebymodelingtheNMPtorusasrealistically aspossiblewithrespecttothetotalnumberofdowncomers, Asnotedabove,forNMPthisnumberis120.Ourmodelling hasutilizedhalfthisnumberwhichwouldyieldconservative results;i.e.:thepressureatanyparticular spatiallocationdecreases astherigidboundaries withinwhichincreasing numbersofuncorrelated sourcesareembeddedrecedefromthatlocation.

Insummary,twotypesofgeometries areemployedinBNL'scalculations.

Forcorrelated pressures, asinglecellinwhicheitherfourorthreepairsofsources/downcomers arelocatedisused.Foruncorrelated pressures corresponding toNMP,thecellextendsinthecircumferential (X)direction approximately 180feetcorresponding to10bays.'ach ofthesecellshasthreepairsofsourcesclustered insuchawaythatthealternating 8-4-8-4patternintheNMPisreproduced (cf:Figure3ofReference 13)~TheoriginoftheXcoordinate isatthecenterofoneortheotherofthesebays(bothcalculations weremadewithnosignificant difference found)corresponding toaplaneofsymmetry.

ForFSTFpressures, thecalculation cellforbothcorrelated anduncorrelated resultsisidentical.

Thisisconsistent withtheactualgeometric configuration ofthefacilityandcorrectly modelsthepresenceoftherigidwalls.3.2.2.3Presentation ofResultsItwasnotedinSection2.0thattheNMPCmethodultimately involvesreduction oftheLDRCOpressureamplitudes bywhatarereferredtoinReference 13as"Harmonic Amplitude LoadReduction Factors".

Thecalculations performed hereprovideanalogous reduction factorsbygenerating boundarypressures forthemodeledFSTFduetoaunitexcitation ateachsourceandformingtheratiowiththecorresponding valuesobtainedwhenidentical strengthsourcesarelocatedinasimulated NMPtorusgeometry.

4' ResultsofBNL'scalculations aregiveninthreedistinctways.First,themaximumpressurecomputedwithinagivencomputational cell(PMAX)istabulated asinTable2.Thetableincludestheresultsofasensitivity studywherekeygeometric parameters havebeenvariedfromthebasecasevaluesgiveninTable1.Byfocusingonthesepeakvalues,improvedinsightregarding thetrendsassociated withchangesingeometryisprovided.

Inadditiontotabulating PMAX,thespatialvariation ofpressureatthebottomofthecellattheverticalplaneofsymmetrybetweenpairsofdowncomers hasbeengenerated andisplottedinFigure1,Notethatthisfigureincludesanindication ofthecalculation cellgeometryasithasbeensimulated here.Figure2comparestheNMPCreduction factors(RF)withthosedeveloped byBNL.ThelatterderivefromtheresultsshowninFigure1byformingtheappropriate ratios.Finally,graphical representation ofthefindingsfromthesensitivity studiesisshowninFigure3.3.2.2.4Discussion ofResultsFromtheperspective ofjustifying aloadreduction forNMPrelativetotheloadsderivedfromFSTFtests,thekeyfindingisthecomparison betweenthevaluesofPMAXobtainedforCasesN1andF1forcorrelated resultsandN1(U)andF1(U)foruncorrelated COsources,Thereduction factor(RF)impliedbythefirstoftheseisessentially unity;thatis,PMAX=1.45forbothCaseF1andCaseN1asindicated inTable2.Foruncorrelated sources,RF=0.76sincePMAX=0.42forCaseN1(U)andPMAX=0.55forCaseF1(U).Thecorresponding valuesproposedbyNMPC(fromTable1ofReference 13)are0.98and0.83.Weconsiderthistobereasonable agreement particularly whenthecomparison showninFigure2isalsofactoredin,Referring nowtoFigure1,themostsignificant oftheresultsshownthereisthelargereduction inpressurethatisobtainedwhenthesourcesarenolongercorrelated.

EvenfortheFSTF,thepressures arereducedtoonlyaboutonethirdofthecorrelated values.Interestingly enough,thisismoreorlesstheArderofmagnitude ofreduction inpressureamplitude betweenthefundamental frequency (about3psifor5Hz)andtheothernon-synchronous values(1psimaximum)asindicated inTable4.4.1-2ofReference 1.Comparison oftheBNLandNMPCvaluesoftheRFsshowninFigure2indicateclearlythattheyareinverygoodagreement.

Noteespecially thattheNMPC'suncorrelated RFsaremoreconservative thanBNL's.Thatis,theLDRpressureamplitudes arereducedlesswhentheNMPCRF'sareused.Somenonconservatism isexhibited forcorrelated RF'sbutthisdifference is,atmost,6%.Thesedifferences areconsidered minorand,inourjudgement, donotinvalidate theacceptability oftheproposedmodifications.

Withrespecttothesensitivity studiesthatwereperformed, wenotefirstthattheyweremotivated bytheresultobtainedforCaseN2ofTable2corresponding toacomputational cellwiththeNMPgeometrybutwithfourratherthanthreepairsofdowncomers.

Although Jtr~

thiscasedoesnothavedirectapplicability here,itwasperformed outofacademicinterestandforthesakeofcompleteness.

Ascanbeseenbyreferring toTable2,thevalueofPMAXcorresponding toCaseN2(1.66)notonlyexceedsthatforCaseN1(1.45),whichistobeexpected, butalsoexceedsthevaluepredicted forthebasicFSTFcase(CaseF1).Thisincreasecanonlybeattributed togeometric differences sincesourcenumberandstrengthareidentical forthosetwocases.Thesamesortofdifference isexhibited betweentheCaseF2(PMAX=1.24)andtheCaseN1(PMAX=1.45)results.Notethattheselattertwocasescorrespond to8-4-8-4typeconfigurations.

Thesefindingswerethemotivation forthesensitivity studiesthatwereconducted; ie:todetermine whatfeatureoftheNMPtorusgeometrygivesrisetopressureloadshigherthanthoseexpectedintheFSTFforthesamenumberofdowncomers.

AscanbeseenfromtheresultsshowninFigure3,thenotedincreases areprimarily theresultofthesignificantly smallerclearance (7vs7.8ft)thatprevailsintheNMPtorus.Oneimplication ofthisfindingisthattheFSTFgeometrywasnotstrictlyapplicable forNMPbothwithrespecttothelatter's8-4-8downcomer arrangement (aconservatism),

butalsowithregardtodowncomer clearance (anon-conservatism)

~Thetrade-off betweenthesetwoopposingeffectssuggeststhattheoriginalNMPdesignloadsweresuitable, notwithstanding that,totheauthors'nowledge, noadjustment fortheeffectofreducedclearance wasmadeorconsidered.

Amorepositiveinterpretation ofthisfindingwouldbethatCOloadscouldbereducedbyanincreaseinclearance atNMP;ie:byshortening thelengthofthedowncomers.

According toTable2(CaseN8vsCaseN1),adecreaseinPMAXofalmost20%couldbeachievedbyremoving12inchesfromthedowncomer ends.Ofcourse,suchamodification wouldinvolvesignificant expensebutmightbeacost-effective alternative tothestructural modifications currently underconsideration byNMPCintheeventtheybecomenecessary.

Notethatareduction ofHOimpliesacorresponding reduction indowncomer submergence whichtendstomitigatepoolswellloads(Section3ofReference 3)~However,italsopotentially reducesthesteamcondensing performance ofthesuppression pool.Thusatotalsystemanalysiswouldberequiredtodetermine themeritofthisconcept.10 I

4.4IMPACTOFSHELLTHINNINMi&RODYNAMIC LOADS6ONOTHERDBA-RELATED Theapproachherewastore-review theNMPCPUARfortheNMPToruswiththefocusonhowthinningofthetorusshellcouldpotentially effecttheearlierevaluation.~

Asaresultofthisreview,anRAIwasdeveloped andtransmitted toNMPC.~NMPC'sresponsetothisRAIwasprovidedtotheNRCstaffvialetterdatedSeptember 28,1993.BNLreceivedandreviewedthisinformation inOctoberof1993.Itsfindings" werethat"itwasresponsive andcomplete.

Noopenissuesorconcernsrelatedtothissubmittal were'dentified."

ThecontentoftheRAIandNMPC'sresponseareincludedinthisreportasAppendixD.Thegeneralthrustofthequestions posedintheRAIwastoconfirmthatsufficient marginwasavailable toaccommodate theincreaseinstresslevelsassociated withreducedshellthickness foralltheloadcasesmandatedbytheNRCstaff'sAC.Atotalof27suchloadcasesarespecified asenumerated inFigures4.3-1,4.3-2and4.3-3ofReference 3.TheRAIalsorequested thatthecontribution tostresslevelduetoeachevent(eg:theDBACOload)beitemizedtodetermine theirrelativeimportance.

Examplesoftheinformation obtainedinthiswayissummarized below.InresponsetothefirstRAIquestion, theapplicant indicated thatforEventCombination 20(thecontrolling loadcase)onlyabout30%ofthetotalstressisduetotheCOload.Mostofthestress(almost60%)stemsfromtheDBAinternalpressureload.Thus,anyreduction intotalstresscanonlybeasmallfractionofthecorresponding reduction inCOload.Thisclarifies theseemingly anomalous resultthatupto60%reductions inthelatterleadto,atmost,a10%reduction intotalmembranestressasreportedinNMPC'soriginalsubmittal."

Anotherquestionaskedthattheloadcombination inducingthenexthigheststressbeidentified.

Theresponseindicated thistobeEventCombination 14,Thiseventcombines, amongotherloads,thosestemmingfromSRVactuation andtheIBACOload."Considerable reduction intotalstressrelativetoEventCombination 20isreported(from16ksitoabout13ksi)withtheinternalpressurebeingevenmoredominant(almost75%ofthetotal).TheIBACOloadcontribution isonly6%,anamountequaltothatfromSRVactuation, asurprisingly smallvalue.Insummary,theresponses indicatethatthemarginbetweenexpectedandallowable stresslevelsforallotherEventCombinations aremuchgreaterthanforthatcitedasthelimitingcase.Basedonthisinformation, itcanbeconcluded thatthecapability oftheNMPtorusItisimportant tonotethattheoriginalIBACOloadisusedherc.Themodification rcriucstcd byNMPCappliesonlytotheDBACOload.11 I4 tomaintainitsintegrity duringpostulated DBAeventsisassuredprovidedthatthisisdemonstrated forEventCombination 20.Finally,duringreviewoftheNMPtorusPUAR,aconcernrelatingtothewayinwhichtheCOloadsareappliedtodeveloptheringgirderstructural response(Section5.0ofReference 24)wasidentified.

Thisconcernarisesduetotheasymmetry introduced bythe8-4-8downcomer arrangement.

Specifically, thePUARstatesthatthehalfbaystructural modeloftheNMPtorus(Figure3-3ofReference 24)isusedfortheringgirderresponsefor"allshelldynamicloads."SincetheaverageCOpressureamplitudes thatareappliedinalternate baysdifferbymorethan20%,thequestionofhowthegradientacrosstheringgirderwasaccommodated arose.Theissuewasraisedandresolvedviatelephone conference withNMPCpersonnel andconsultants.

Firstitwasestablished thattheissuehadnotbeenaddressed.

Toresolvetheissue,theapplicant committed toutilizing aboundingapproach~

whereinthehigher,non-ventbayloadswouldbeappliedonbothsidesoftheringgirdertodevelopthestresseswithintheregionimmediately adjacenttothetorusmiterjointandmiteroffset.Sincethisloadingcreatesthehighestbendingmomentacrosswhatis,ineffectarigidconnection, thestructural responsewillbemaximized.

Weconsiderthisaconservative and,therefore, acceptable approach.

12 I4

5.0 CONCLUDING

REMARKSBasedontheevaluation documented here,BNLconcludes thatthereduction intheDBACOloadsthathasbeenrequested byNMPCisappropriate andtechnically justified.

Thegeometric restraints imposedbytheFSTFfromwhichtheLDRloadsderivedidintroduce conservatisms thatcansafelybereduced.Theabsenceofcoherence formostofthefrequency spectrumisalsoclear.TheCDIanalysisbasedonacoustics represents arationalprocedure forestimating andquantifying theseeffects.Ourindependent calculations confirmthatthisanalysiswascorrectly implemented.

Thesoleconcernthatwewouldhighlight hererelatestoBWRplantoperating procedures/technical specifications/emergency operating procedures.

Specifically, itwasnotedintheintroductory remarksthattheFSTFtestresultsexhibited anincreasing trendoftheCOloadswithincreasing pooltemperature.

AlthoughtheLDRloadsandtheNMPmodifiedversioncanaccommodate theobservedincrease, anyfurtherincreaseintheTSfortheinitiation ofsuppression poolcooling~canpotentially invalidate theiracceptability.

Inthisconnection wenotethatarequesttopermitasubstantial increaseinthisTSisnowbeingconsidered bytheNRCstaff."Wewanttoemphasize heretheneedtokeeptheconnection betweenDBAloadsandplantoperating conditions intheforefront whenconsidering anyfurthermodifications tocurrently acceptable designhydrodynamic loads.Additional evaluation and/oraugmentation oftheexistingsuppression poolhydrodynamic databasetogetherwithadditional analysiscouldverywellbeneededtoprovidesoundjustification forsuchmodifications.

13 I4

6.0REFERENCES

GeneralElectricCompany,"MarkIContainment ProgramLoadDefinition Report,"GE TopicalReportNEDO-21888, Revision2,November1981.2.Fitzsimmons, G.W.,etal.,"MarkIContainment ProgramFull-Scale TestProgramFinalReport,TaskNo.5.11,"GEProprietary ReportNEDE-24539-P, April1979.3.U.S.NuclearRegulatory Commission, "SafetyEvaluation Report,MarkILongTermProgram,Resolution ofGenericTechnical ActivityA-7,"NUREG-0661, July1980.GeneralElectricCompany,"MarkIContainment ProgramLetterReport:Supplemental Full-Scale Condensation TestResultsandLoadConfirmation,"

MI-LR-81-01-P, April1981.U.S.NuclearRegulatory Commission, "SafetyEvaluation Report,MarkILongTermProgram,Resolution ofGenericTechnical ActivityA-7,"NUREG-0661, Supplement 1,August1982.6.GeneralElectricCompany,"MarkIContainment ProgramAnalysisofFullScaleTestFacilityforCondensation Oscillation Loading,"

GEReportNEDE-24645, July1979.7.GeneralElectricCompany,"MarkIContainment ProgramEvaluation ofHarmonicPhasingforMarkITorusShellCondensation Oscillation Loads,"GEReportNEDE-24840(prepared byStructural Mechanics Associates),

October1980.8.Kennedy,R.P.,"Response FactorsAppropriate forUsewithCOHarmonicResponseCombination DesignRules,"SMAReport12101.04-R002D, preparedbyStructural Mechanics Associates forGeneralElectric, March1982.9.Kennedy,R.P.,"AStatistical BasisforLoadFactorsforUsewithCOHarmonicResponseCombination DesignRules,"SMAReport12101.04-R003D, preparedbyStructural Mechanics Associates forGeneralElectric, March1982.10.Bienkowski, G.,Lehner,J.R.,andEconomos, C.,"Technical Evaluation oftheNineMilePointUnit1NuclearGenerating StationPlantUniqueAnalysisReport,"BNL-04243,September 1984.TeledyneEngineering Service,"NineMilePointUnit1Reduction inMarkITorusProgramCondensation Oscillation LoadDefinition andResulting EffectonMinimumShellThickness Requirements,"

TESTR-7353-1, Revision1,April1991.14 lI~,

12.Bliss,D.B.andTeske,M.E.,"FSTFShellCondensation Oscillation Correction Factors-Uncorrelated Vents,"CDIReport79-1,Revision2,preparedbyContinumDynamics, Inc.forGeneralElectric, August1980.13.Continuum

Dynamics, Inc.,"Reduction ofTorusShellCondensation Oscillation Hydrodynamic LoadsforNineMilePointUnit1,"CDITechnical Note90-11,preparedforTeledyneEngineering
Services, November1990.14.Economos, C.,Lehner,J.andLin,C.C.,"Evaluation ofNMCTechnical BasisforReduction ofNMPTorusCOLoads,"BNLTechnical LetterReport,February1992.15.U.S.NuclearRegulatory Commission, "SafetyEvaluation bytheOfficeofNuclearRegulation RelatedtoProposedDeferment ofTorusModifications NiagaraMohawkPowerCorporation NineMilepointNuclearStationUnitNo.1,DocketNo.50-220,"August1992.16.TeledyneEngineering
Services, "Technical ResponsetoSafetyEvaluation bytheOfficeofNuclearRegulation RelatedtoProposedDeferment ofTorusModifications NiagaraMohawkPowerCorporation NineMilepointNuclearStationUnitNo.1,DocketNo.50-220,"November1992.17.TeledyneEngineering
Services, "MarkIContainment Program,Plant-Unique AnalysisReportoftheTorusSuppression ChamberforNineMilePointUnit1NuclearGenerating Station",

TESTR-5320-1, Revision1,OctoberSeptember 1984.18.NiagaraMohawkPowerCorporation, "Reduction inMarkITorusProgramCondensation Oscillation LoadDefinition andResulting EffectonMinimumShellThickness Requirements,"

Presentation toNRC,March23,1993.19.Kennedy,R.P.,etal,"StudytoDemonstrate theSRSSCombinedResponsehasgreaterthan84PercentNonexceedance Probability WhentheNewmark-Kennedy Acceptance CriteriaareSatisfied,"

GEReportNEDO-24010-03, Supplement 3,August1979.20.Bilanin,A.J.,"NRCRequestforDocumentation oftheNineMileCondensation Oscillation AcousticTorusLoadReduction AnalysisLimits,"Continuum DynamicsLetterReportNo.TELEDYNE/0073, April1993.21.Bienkowski, G.,"ReviewoftheValidityofRandomPhasingRulesasAppliedtoCOTorusLoads",InternalBNLMemorandum, August1983.22.Scanlon,R.,Professor

Emeritus, Princeton University, PersonalCommunication.

15 ItkAll'I 23.GeneralElectricCompany,"MarkIIContainment DynamicForcingFunctions Information Report,"GEReportNEDO-21061, Revision3,June1978.24.TeledyneEngineering

Services, "PlantUniqueAnalysisReportoftheTorusSuppression ChamberforNineMilePointUnit1NuclearGenerating Station,"

TESTechnical ReportTR-5320-1, October1983.25.Triolo,S.andLe,A.,"AuditforMarkIContainment LongTermProgram-Structural AnalysisforOperating

Reactors, NiagaraMohawkPowerCorporation NineMilePointNuclearStationUnit1",FranklinResearchCenterTechnical Evaluation ReportTER-C5506-331, September 1984.26.U.S.NuclearRegulatory Commission, "RequestforAdditional Information Regarding Re-Review ofNineMilePointNuclearStationUnit1TorusLoadReduction Submittal ofMay14,1991.",August1993.27.TeledyneEngineering
Services, "Response totheNRCRequestforAdditional Information Regarding Re-Review ofMay14,1991TorusLoadReduction Submittal NiagaraMohawkPowerCorporation NineMilePointNuclearStationUnit1,DocketNo.50-220",TESLetterReport7519-28,September 1993.28.Brookhaven NationalLaboratory, "MonthlyBusinessReportforOctober1993-Nine MilePoint,Unit1:Suppression PoolDynamicLoadsRevisedMethodology."

29.Attachment 1toNMPCLetterDatedNovember30,1993fromC.D.Terry,NMPCtoUSNRCDocumentControlDeskUnderDocketNo.50-220.

30.Mintz,S.,"BWRSuppression PoolTemperature Technical Specification Limits.",

GeneralElectricReportNEDO-31695.

31.U.S.NuclearRegulatory Commission, "StandardTechnical Specifications GeneralElectricPlant,BWR/4,"NUREG-1433, January1991.16 f/

Table1ValuesofParameters UsedtoDefineCalculation CellGeometryITEMXOYOZODSHOFSTFVALUE19.513.821.78.07.84.956.37.2NMPVALUE19.6(176.4)13.521.26.07.04.965.27.2NOMENCLATURE DSHOlNDPMAXp/XOYOZOeUNITSSPACINGBETWEENDOWNCOMER PAIRSINTHEZDIRECTION VERTICALDISTANCEBETWEENTORUSBOTTOMANDDOWNCOMER EXITSPACINGBETWEENDOWNCOMER PAIRSINTHEXDIRECTION NUMBEROFDOWNCOMER PAIRS(SEETABLE2)MAXIMUMPRESSUREIN8DOWNCOMER BAYINFLUENCE COEFFICIENTS

-dPMAX/dDS, dPMAX/dYO, etc.RADIALDISTANCETORUSCENTERTODOWNCOMER EXITCENTERSIMULATED LENGTHOFTORUSBAYDEPTHOFSUPPRESSION POOL=TORUSRADIUSSIMULATED TORUSDIAMETERPOLARCOORDINATE ANGLEMEASUREDFROMHORIZONTAL TODOWNCOMER EXITCENTERPMAX-SOURCEUNITS(SU)P-SU/FTDS,HO,I,r,XO,YO,ZO-FEET8-DEGREES17 I

Table2ResultsofBNLMOICalculations CASEF1F1(U)F2YO13.8ZO21.7ND8.0HO7.8PMAX1.450.551.24N1(U)N2N3N4N5N6N7N8N9N1013.512.514.513.521.2176.43021.224.027.06.07.08.06.07.06.08.07.01.450.421.661.251,631.421.391.701.211.341.27Notes:SeeTable1fornomenclature andunits.Allresultsareforcorrelated sourcesunlessotherwise indicated bythenotation(U)following theCaseIdentifier Number.

I III1~NonventBayA2XOVentBay(NMP)DS:FSTFIPjO+O+O++,'ypical Computation Cell+a+++,s+,'I,--,IIIOnly0+Y=Z=Ox=z=o2.0P'.an~HO~YOSectionA-A1.61.2~CaseN2~CaseF1~CaseN1P0.80.4~CaseF1(U)~CaseN1(U)0.000.51.0X/XO2.0Figure1-BNLMethodofImagesPredicted Variation ofPressureintheComputation CellPlaneofSymmetry-P (X,O,ZO/2) 19!II l4

'.0BNLRF080.6Correlated NMPC////r/X/XO1.0RF0.80.6NMPC~\~srBNLUncorrelated rr//I/////0.40.00.51.0X/XO1.52.0Figure2-Comparison ofBNLandNMPCEstimates forPressureAmplitude Reduction Factors20 IJC 2.0PMAX1.00.0125~ppWP'=0.1914YO2.01.00.0P'=-0.037DS2.02.0PMAX1.01.0~~ppP'=-0.25P'=-0.030.07HO0.02024ZO28Figure3-ResultsofSensitivity StudiesforNMPviatheBNLMethodofImagesSolidSymbolsDenoteCaseN1Parameters SeeTable1forNomenclature andUnits21

I4A-1 4

a~~Evaluation ofNMCTechnical Basisfor~Reduction ofNMPTorusCOLoadsC.Economos, J.Lehner,andC.C.Linjanuary1992RevisedFebruary1992~r~SummaBNL'sevaluation ofthetechnical basissubmitted byNMCtojustifyareduction intheNMPTorusCOloadsisdocumented viathisletter.report.Theevaluation includesareviewofthehistorical developments thatprecededthecurrentsubmittal.

Thesearepertinent becausetheyrepresent thepointofdeparture fortheproposedmodiGcations.

BNL'sGndingisthatthemethodology usedtodemonstrate thatareduction intheseloadsisappropriate is,technically soundandjustiGestherequested modiGcations.

BackroundThegenericCOloaddeGnition anditsgenesisaredescribed intheMarkILDR'.Itwassynthesized fromthepressures recordedduringtheworstcaseblowdown(TestNumberM8)fromtheGrstFSTFtestseries'.Thistestsimulated alargeliquidbreakbutwasconducted attherelatively lowpooltemperature of70'F,avalueless'hanthecurrentTechnical SpeciQcation (TS)forcontinuous operation (theLCO).TheseloadswereapprovedbytheNRC,subjecttotheresultsofaddi~anal conGrmatory tests3.Thepressures observedintheselatertests'ere higherforliquidblowdowns conducted atsomewhathigherpooltemperatures.

SpeciGcally, TestNumberM12,conducted ataninitialpooltemperature of95F,gaverisetopressures thatwereabout15%higherthanpeakM8values.Notethatthistemperature levelisroughl~eual tothecurrentTSontheLCO(90to95'F)andissomewhatlessIt)anthemohiGedValueof100FthattheBWROGhasrequested theNRCtoapprove.Notwithstanding theincreased loadsobsertj'ed duringTestM12,theoriginalloads'peciQcation wasWundacceptable6 basedonafavorable comparison betweenthemeasuredand'.predicted stressNvelsfortheFSTF.Insomecases,theprediction exceededmeasurements byasmuch.as150%%uo'.

I'heconservatism oftheLDRloadspeciGcation stemsprimarily fromtherequirement thatalloftheharmoniccomponent responses beaddedbyabsolutesum.Thisisequivalent toassumingthattheexcitation createdbyoscillation ofthesteam-water interface attheendofeachoftheeightdowncomers issynchronized overtheentirefrequency rangethatwasobserved(upto50Hz).Thestaffrecognized thatthisapproachisconservative andrelaxedtheACbasedonseverallaterstudiessubmitted byGEanditsconsultants "9.ForNMP,inparticular, amodiQedCOloadwasapprovedduringreviewoftheirPUAR'.Thismodification accounted fortheabsenceofcompletecorrelation betweenventsbytakingtheabsolutesumofonlythefourhighestharmonicresponses andaddingtheSRSSof'the~~'SeeListofAbbreviations fordetinition o(neronyms.

A-2 II

~remaining ones.Notethatthisprocedure reducescriticalstressesbutdoesnotexplicitly changetheforcingfunctionitselfwhichconsistsofthepressureloadingonthesubmerged boundaries.

Thebasisforapproving thisapproachwasthatitstillboundedthemeasuredresponsewhenappliedtotheFSTF..WhenappliedtoNMP,thecriticalstressesintheshellremainedbelowallowables.

l/TheneedtoreducetheCOloadsbelowthegenericLDRvaluesarose'because ofNMP'sthintorusshell.Withthepassageoftime,therehasbeenafurtherreduction intheshellthickness duetocorrosion.

Thisreduction isacontinuing processwhichNMCanditsconsultant estimateoccursatarateof.00126inchesperyear".IftheCOloadsarenotchanged,criticalstresslevelsareexpectedtoexceedallowables during1994.Todelaytheneedtostructurally reinforce thetorus,NMChasproposedareduction intheloadspeciGcation.

Thetechnical justiGcation forthisreduction isdescribed andevaluated intheensuingsections.

DescritionoftheProosedMethodolo ThemethodsproposedbyNMCtodemonstrate thatareduction inCOloadsisjustiGedaredescribed intwodocuments preparedbyaconsulting Grm'~".Keyelementsofthepresentation areasfollows:1.FSTFtestdataareusedtodemonstrate thatsigniGcant correlation oftheCOprocessattheexitoftheeightdowncomers occursonlyinthe5-6Hzfrequency rangeandthat,atotherfrequencies, theprocessanditscontribution tothepressuresignature israndom.2.3.ItisnotedthattheFSTFtestfacilityisnotprototypical ofanactualMarkItorusbecauseoftheendcapswhich'act asplanesofsymmetrybetweenadjacentbays.Itisclaimedthattheconsequence ofthisgeometric featureistiiattheincoherent contributions totheobservedpressures areampliGed.

Itisfurther-notedthattheFSTFfacilityisalsonotprototypical oftheNMPtorussince,inthelatter,fourdowncomer baysalternate witheightdowncomer bays".Inthiscaseitisclaimedthattliisgeometric discrepancy impliesthatthe'FSTFpressures areexcessive forboththefourandeightdowncomer NMPbays,andthatthisistrueovertheentirefrequency rangeincluding thesynchronous 5-6Hzvalue.4.Anacousticmodelappliedtoanidealized versionoftheNMPtorus(horizontal cylinderhalffilledwithwater)isdeveloped andutilizedtoquantifytheeffectsenumerated above.Theresultsfrom'this analysisarepresented asreduction factors'hat aretobeappliedtotheLDRpressureamplitudes".

Thesefactorsdependprimarily onbaygeometryandthenatureoftheCOprocess,ie.,coherentorrandom.Theyalsoexhibitaslightdependence onfrequency.

Thereduction factors're about60%forthefourdowncomer geometiyand80%fortheeightdowncomer bayconGguration foruncorrelated CO,Thecorresponding factorsforthecorrelated caseareapproximately 70%and95%,-respectively.

Theserepresent bayaveragedvalues.'Theterm"reduction factor"isusedhereandinReference 12toindicateamultiplier oftheoriginalvalue.A-3 lIt'Ay'4II5'

~5.Correlated reduction factorsaretobeappliedonlytothe5-6Hzpressureamplitude.

Fortheremaining frequency

spectrum, uncorrelated valuesaretobeutilized.

AftertheLDRpressures arereducedbythesefactors,thestructural analysisisto"be.undertaken aspertheLDR.""/~Withrespecttotheoriginalanalysis",

theseprocedures yielda4%%uoreduction ofthecontrolling stress(membrane) foraneightdowncomer bayanda10%%uoreduction forafourdowncomer bay".Intermsofshellthickness, thesecorrespond toreductions of16and44mils,respectively.

Thecorresponding valuesgiveninamorerecentsubmittal're 18and37mils.Itisstatedthere,thatthesecorrespond toa17%and30%reduction intheLDRCOloads,respectively.

Evaluation oftheProosedMethodolo InBNL'sjudgement, thereduction intheCOloadsthatNMChasrequested are,reasonable, conservative, andtechnically defensible.

Thebasisforthisconclusion areasfollows:1.TheFSTFdatasupportthenotionthattheCOprocessisrandomovermostofthefrequency spectrumconsidered intheloadmethods,2.Becauseofthegeometric differences, particularly the4-8-4downcomer arrangement, thepressureloadsduringaCOblowdownwilltendtobegreaterintheFSTFrelativetotheNMPtorusforthesamethermodynamic Qowconditions.

3.Theprocedure usedtoquantifytheeffectofItems1and2represents astraightforward application ofaconventional hydrodynamic method.Theresultsarereasonable andprobablyconservative becauseofthehighsoundspeedusedinthenumerics.

Wealsoconsidertheassumption thatacorrelation existsbetweenbaystobeasigniQcant conservatism.

4.Theoverallreduction oftheloadsfromLDRvaluesissigniQcantly lessthanthatapprovedearlierbythestafP.Thisreduction wasfoundacceptable becauseitwasabletoaccommodate allofthestressesobservedduringtheFSTFtests.Concludin RemarksTherearethreepointswewanttoemphasize here.Thefirstisthattheprocedure wehaveevaluated represents amorerigorous, almostQrstprinciples way,toaccomplish whatwasdonebeforeinanapproximate way.Aswealreadynotedinourbackground discussion, themodification thatwasutilizedbyNMPearlierdidnotinvolveanychangeintheLDRpressures.

ReliefwasobtainedbynotsummingthestressesinducedbyeachandeveryoneoftheQftyharmonicexcitations byabsolutesumasrequiredbytheLDRmethodology.

Thatthiswasanacceptable procedure couldonlybedemonstrated bycomparing predicted FSTFPe~=Modelingofthetorusashalffilledwithwaterisaminornonconservatism (NWLinMarkIplantsiswellbelowthetoruscenterline),

bui.isareasonable simplification ofananalysiswhichisalreadyquitecomplex.A-4

'lld>>;,'

~stresseswithmeasuredFSTFstresses.

Indistinctcontrast, thepresentmethodprovidesreliefbyreducingtheexcitation (pressures) itself.ThesecondpointisthatthebasisforItem4restsonourassumption thatwhentheapplicant refersto"LDRvalues"whatismeantarethestressesthatresultbyapplyingthe,LDRpressureamplitudes andthencombining alloftheindividual peakstressesbyabsolutesum.Thedocuments thatwehaveinhandaresomewhatambiguous onthispointanditwould.beprudenttoobtaindocumented conGrmation thatourinterpretation iscorrect.Finally,wenotethatourreviewoftheanalysisdoesnotincludedirectconfirmation ofanyofthenumerical resultsthatwerepresented, e.g.,the:reduction factors.Itisassumedthatthesederivefromacorrectapplication ofthemethodology.

A-5

'IIIS.r References 1.GeneralElectricCompany,"MarkIContainment ProgramLoadDefinition Report,"GeneralElectricTopicalReportNEDO-21888, Revision2,November1981.~r~2.Fitzsimmons, G.W.,etal.,"MarkIContainment ProgramFull-Scale TestProgramFinalReport,TaskNumber5.11,"GeneralElectricProprietary ReportNEDE-24539-P, April1979.3.U.S.NuclearRegulatory Commission, "SafetyEvaluation Report,MarkILongTermProgram,Resolutioh ofGenericTechnical ActivityA-7,"NUREG-0661, July1980.4GeneralElectricCompany,"MarkIContainment ProgramLetterReport:Supplemental Full-Scale Condensation TestResultsandLoadConfirmation,"

MI-LR-81-01-P, April1981.5.Mintz,S.,"BWRSuppression PoolTemperature Technical Specification Limits,"GeneralElectricReportNEDO-31695, May1989.6.U.S,NuclearRegulatory Commission, "SafetyEvaluation Report,MarkILongTermProgram,Resolution ofGenericTechnical ActivityA-7,"NUREG-0661, Supplement 1,August1982.7."MarkIContainment ProgramEvaluation ofHarmonicPhasingforMarkITorusShellCondensation Oscillation Loads,"NEDE-24840, preparedbyStructural Mechanics Associates forGeneralElectricCompany,October1980.8.9.Kennedy,R.P.,"Response FactorsAppropriate forUsewithCOHarmonicResponseCombination DesignRules,"SMA12101.04-R002D, preparedbyStructural Mechanics Associates forGeneralElectricCompany,March1982.IKennedy,R.P.,"AStatistical BasisforLoadFactorsAppropriate forUsewithCOHarmonicResponseCombination'Design Rules,"SMA12101.04-R003D, preparedbyStructural Mechanics Associates forGeneralElectricCompany,March1982.10.11.Bienkowski, G.,Lehner,J.R.andEconomos, C.,"Technical Evaluation oftheNineMilePointUnit1NuclearGenerating StationPlantUniqueAnalysisReport,"BNL-04243, September 1984.7"NineMilePointUnit1Reduction inMarkITorusProgramCondensation Oscillation LoadDefinition andResulting EffectonMinimumShellThickness Requirements,"

Technical ReportTR-7353-1, Revision1,preparedbyTeledyneEngineering ServicesforNiagaraMohawkPowerCorporation, April1991.12."Reduction ofTorusShellCondensation Oscillation Hydrodynamic LoadsforNineMilePointUnit1,"C.D.I.Technical NoteNo.90-11,preparedbyContinuum

Dynamics, Inc.forTeledyneEngineering
Services, November1990.A-6 I

13."FSTFShellCondensation Oscillation LoadingCorrection Factors-Uncorrelated Vents,"C.D.I.ReportNo.79-1,Revision2,preparedbyD.B.BlissandM.E.TeskeofContinuum

Dynamics, Inc.forGeneralElectricCompany,August1980.14.Figure3ofReference 12.15.Table1ofReference 12.16.Table4.4.1-2ofReference 1.17.p.14ofReference 12.18.TESReportTR-5230-1, Rev.1,"MarkIContainment Program,Plant-Unique AnalysisReportoftheTorusSuppression ChamberforNineMilePointUnit1NuclearGenerating Station,"

datedSeptember 21,1984.19.NMCletterNMP1L-0628 fromC.D.Terry(VPNuclearEngineering) toU.S.NRC,datedDecember13,1991.20.Bienkowski, G.,"ReviewoftheValidityofRandomPhasingRulesasAppliedtoCOTorusLoads,"InternalBNLMemo,August1983.A-7 I

LISTOFACRONYMSACBNLAcceptance CriteriaBrookhaven NationalLaboratory BWROGBoilingWaterReactorOwnersGroupCOFSTFGELCOLDRNMCNMPNRCPUARSRSSTSCondensation Oscillation FullScaleTestFacilityGeneralElectricLimitingCondition forOperation LoadDefinition ReportNiagaraMohawkPowerCorporation NineMilePoint-Unit1NuclearRegulatory Commission NormalWaterLevelPlantUniqueAnalysisReportSquareRootoftheSumofSqaresTechnical Specification A-8 Ilf4

'B-1 I

ReviewoftheValidityofRandomPhasingRulesasAppliedtoCOTorusLoadsGeorgeBienkowski August25,1983Containment SystemsGroupDepartment ofNuclearEnergyBrookhaven NationalLaboratory Upton,NewYork11973B-2 l4lS INTRODUCTION TheLDR<'>specification forCOTorusloadsisbasedonFSTFdata(primarily testM-8).Inordertoresolvepotential uncertainties intheconservatism ofthedata,supplementary testsM-11BandM-12wereconducted intheFSTFfacility.

WhileM-12wasnottotallyboundedbytheLDRspecification, thestafffeltthattheLDRprocedure ofsummingtheabsolutevaluesoftheharmoniccomponents wassufficiently conservative toboundanyuncertainties inthedata(Supplement toMarkISER-NUREG-0661).<'>

Manyoftheindividual MarkIplantshavechosentodeviatefromtheLDRprocedure andhavereducedtheconservatism inherentintheabsolutesumloadapplication throughsomeuseofrandomphasingbetweenharmonics oftheLDRCOrigid-wall pressurespecification.

Thebasisforallofthesealternate loadapplication procedures comesfromGEreportNEDE-24840<'~

andsomesubsequent reportsbyStructural MechanicAssociates (SMA12101.04-RODID, SMA12101.04-ROOZD, SMA12101,04-R003D).<4

">Whileindividual plantsobtainareduction inloadduetotheeifectofrandomphasingindifferent matter,agenericevaluation ofthebasefortheseprocedures isnecessary inordertoestablish theadequacyofeachplant'sexception totheAcceptance Criteria.

A.ReviewofGENEDE24840,"Evaluation ofHarmonicPhasingforMarkITorus"Theprimaryobjective ofthisreportistoreducetheexcessive conservatism inthetorusshellresponseduetotheuseoftheabsolutesumofharmonicamplitudes.

Thereportdemonstrates, byexamining throughMonteCarlocalculation boththeFSTFdataandanactualfacility(OysterCreek),thatrandomphasingleadstoamorerealistic response.

Thereportfurtherproposesadesignrulethatisrelatively easytoapplyandprovides90%confidence of50%non-exceedance probability.

Thereportfurtherjustifies thischoiceasbeingappropriate topreserve, attheresponselevel,thenon-exceedance probability orthedegreeofconservatism contained withintheloaddata.Sevenresponses (BDCaxialandhoopstress,BDCradialdisplacement, andfourcolumnforces)attheFSTFfacilityareanalyzedonthreedifferent bases:(a)Fouriercomponents ofthemeasuredspatially-averaged pressuretimehistories over5(second)intervals ofRunNumberM-8areusedasloadinput;(b)MonteCarlotrialsbasedonrandomphasingbetweenthe50harmoniccomponents representing thehistories in(a)areapplied;(c)MonteCarlotrialsusingrandomphasingamongthe50harmonics oftheLDRloadspecification areused.Thepeakresponses resulting fromthesesanalysesarethencomparedtothemeasuredpeaksintheFSTFtests.Acomparison oftheresultsof(a)tothemeasuredresponses suggeststhatthemodelling ofthefacilityandarepresentation ofthedataisadequatetomatchthecolumnforcesandradialdisplacement butyieldspeakmembranestressesthatarefrom13%to30%(hoop)toolow.Thereportgoesintoanumberofexplanations forthereasonsforthisdiscrepancy.

Whilemostofthesuggested causeswouldnotbeapplicable inarealfacility, thesuggestion B-3

\I~

thatshellmembranestresseswillrespondtolocalpressures whiletheinputloadhasbeenaveraged, canbeassumedtobetransferable toaplantcalculation.

Thispotential non-conservatism iseventually recognized inthefinaldesignrule.Thepeakresponses atthe50%NEPlevelresulting from200MonteCarlotrialswithrandomphasingbetweenharmonics (optionb)generally eitherboundtheresultsusingactualphasingorareveryclosetothem.Theratiooftheresponses, basedon(a)dividedbythe50%NEPresultof(b)rangesfrom0.88forthecolumnforcesto1.03fortheradialdisplacement, withthemembranestressesat0.94.The50%NEPresultof(b)comesclosertoboundingtheexperimental databutthemembranestressesarestilllow(9%axialand15%hoop).The200MonteCarlotrialsarealsoperformed fortheLDRspecification.

Becauseofsomeadditional conservatisms intheloadharmonicamplitudes, the50%NEPnowboundsthecolumnforcesandradialdisplacement substantially, essentially matchestheaxialmembranestress,andunderpredicts theFSTFpeakhoopstressbyonlyabout6%.Thereportthenproceedstoperform200MonteCarloresponsecalculations forthemodelofarealfacility(OysterCreek).ClearlyinthisexerciseonlytheLDRharmonics canreasonably beappliedandnodirectcomparison toexperiments canbeperformed.

Theresults,however,suggestthatthecumulative probability distributions (CDP's)fortherealfacilityareverysimilartothosefortheFSTFfacility.

Theratioofthe50%NEPleveltotheabsolutesumisaboutthesameasinFSTFandliesinthevicinityof50%forthemonitored responses.

Thereport'ssubsequent discussion oftheproperwaytocombinestressesisoutsidethescopeofthisreviewandnotdirectlyrelevanttotheloadspecification issue.Onthebasisoftheinformation summarized above,thereportrecommends asimpledesignrulethatwillyield90%confidence of50%NEP,Theresultsof(b)and(c)forFSTF,andthecalculations forOysterCreekdemonstrate thattakinganabsolutesumofthethreehighestharmonics (atresponselevel)coupledtoasquarerootofthesumofthesquares(SRSS)oftheremaining harmonics alwaysboundsandcloselyapproximates the50%NEPlevel.Thereport,therefore, suggeststheuseofthissimplealgorithm fortheadditionoftheharmoniccomponents inthefrequency domain.Inordertoprovideadditional conservatism inarealfacility, theharmonicloadcomponents thatspanastructural naturalfrequency aretunedtothenaturalfrequency ratherthanappliedattheaveragefrequency intheinterval.

Acomparison oftheapplication ofthisdesignruletotheFSTFfacility(wherefrequency tuningisnotused)tothemeasureddatashowsthatallpeakresponses arebound,except'he hoopstresswhichisabout5%low.Thereportsuggestsanumberofconservatisms intheloadingthatwouldcompensate forthissmalldiscrepancy.

Theprimaryeffectsuggested isrelatedtothedampingof2%usedinanalysis.

Inarealfacility, whereloadsarecombinedandarethushigher,the2%dampingisaconservative representation ofthestructure andwouldthusleadtoconservative responses.

B-4

/

B.ReviewofSMAreport12101.04-R001D, R002DandR003DReportSMA12101.04-R001D, "Evaluation ofFSTFtestsM12andM11BCondensation LoadsandResponses,"

wasnotavailable andthusnotdirectlyreviewed.

Themajorresultsandconclusions ofthatreportare,however,summarized inSMA12101.04R002D, andwerefoundtobeconsistent withboththeoriginalreportNEDE-24840 andtheFSTFSupplemental TestLetterReportM1-LR-81-01P.

ReportSMA12101.04-R002D, "Response FactorsAppropriate forUsewithCOHarmonicResponseCombination DesignRules,"summarizes alloftheconclusion ofNEDE-24820 andupdatesthecomparison toincludeFSTFtestsM12andM11B.WhentestM12isincludedinthecomparison, thedesignruleapplication oftheLDRharmonics totheFSTFtorusunderestimates peakmeasuredmembraneaxialstressby11%andunderestimates thehoopstressby14%,whileboundingtheotherresponses.

Onthebasisofthiscomparison, thereportsuggestsmodifying thedesignrulebyusinga"response factor:R,=1.0forotherresponses.

Inaddition, thereportaddsanadditional designruleforthosecircumstances wherethecombination ofabsolutesumandSRSSisnotconvenient, suchasinthetimedomain.Inthiscasethereportstatesthata90%confidence of50%NEPlevelcanbeachievedbymultiplying thepeakresponseresulting fromasinglerandomphasedtrialby1.15.Notethatformembranestressesandstrainsthereisanadditional 1.15"response factor"described above,Theconclusions providecriteriafordesignanalysesalongthelinesjustdiscussed, butanadditional simplification ofneglecting harmoniccomponents above30HZissuggested forstructures withsimilarnaturalfrequency contenttotheFSTForOysterCreek.ReportSMA12101.04-R003D, "Statistical BasisforLoadFactorsAppropriate forUsewithCOHarmonicResponseCombination Rules,"reiterates thedesignrulesdescribed above.Inaddition, recognizing potential uncertainties inthedata,thereportattemptstoprovidesomejustification forneglecting anyadditional factortoprovideadequateconservatism.

Thereportshowsthat,considering thespecification isaresultofthreedatapoints(M8,M12,M11B),theincreaseinresponsetoachieve75%confidence of84%NEPrangesfrom2%forinsidecolumnforceto33%forthehoopstress.Thereportfurtherquotesanunreferenced communication fromDr.AlanBilaninasstatingafactorof1.33fortheratiooftheFSTFdatatothatexpectedinarealfulltorus.Thiseffectispurported tobetheresultoftherigidendeffects,butnofurtherexplanation isprovided.

InAppendixA,thiseffectisexamined.

Weconcludethatforthesefrequencies thatarenotcorrelated betweenbays,theFSTFshouldproduce32%to35%higherloadsthanwouldexistinarealfacility.

Anexamination oftheFSTFdata(inSupplemented LetterReportM1-LR-81-01-P) showsthatonlythefundamental frequency near6Hzshowsanycorrelation betweendowncomers.

Ifoneassumescorrelation betweenbaysatthatfrequency andrandomphasingbetweenbaysatallotherfrequencies, theoverallconservatism fortheaveragepressuremaybeaslowas17%,whileattheresponseleveltheFSTFconservatism willrangeform18%forthehoopstressto38%%uofortheaxialstress.Ifwenowbalancethisversusthemaximumexpecteduncertainty factorforhoopstress(1.33)asinreportR003D,wecouldexpectaB-5 I~~)~t%~

maximumdegreeofnonconservatism ofabout13%.Thisisnotseriousfortwodistinctreasons.Theadditional conservatisms associated withtherealstructure duetothetuningofharmoniccomponents tothenaturalfrequencies andtheclosermatchtothe2%dampingfactorcaneasilycompensate fortheslightnonconservatism.

Secondly, theuncertainty
estimate, usingonlythreepeakresponses formthetestsM8,M11BandM12isprobablyexcessively conservative.

Ifoneused1secondaveragedRMSpressures from8-secondhighmassflowintervals, aswasdoneintheSERSupplement, theratioofmeantopeakR=0.72andthestandarddeviation iso,=0.172.Theresultant loadorresponseat2o,fromthemean(nowproviding averyhighconfidence levelofnon-exceedence) isonly7%abovethedesignruleandcanbeeasilycompensated bythe1.18conservatism factorfortheFSTF.C.SummaryandConclusions Onthebasisofthereviewofthesereportsthestaffconcludes thatadirectapplication ofdesignrulesasgiveninreportSMA12101.04R002D onpage41orinreportSMA12101.04-R003Donpages1-2isacceptable.

Ifharmonics above30Hzareneglected, assuggested forstructures similartoFSTForOysterCreek,aspecificjustification intheformtorusresponsefrequency characteristic mustbepresented.

Anyvariation thatproducesatleastashigharatioofresponsetothatproducedbyabsolutesumasthehighestobservedintheFSTFandOysterCreekanalyses(63%)isalsoacceptable.

Usingthedesignruleasinitially statedonNEDE-24840 (withoutthe1.15factorforshellstresses) isnotacceptable, butamodification using4harmonics summedabsolutely addedtotheremaining summedSRSSismarginally acceptable, providedthereportedshellstressesarenotwithinafewpercentofallowables.

Theadditionof1harmonic, tobesummedabsolutely, providesonlyabouta10%increaseintheresponses ratherthanthe15%neededtoboundFSTFmeasurements.

Theeffectissufficiently small,however,thatfurtherevaluation wouldbenecessary onlyintheeventtheresultant stressesapproached allowable valuesveryclosely.Insummary,thestafffindstheanalysispresented intheseriesofreportsreasonable.

Anyconservative application ofthoseresultsisthusacceptable.

Thedirectapplication ofthedesignrules,asstatedinthefinalreportSMA12101-04-R003D isconsidered adequately conservative.

Anyalternate isacceptable, provideditsapplication toFSTFdatawouldboundallthemeasuredstresses.

B-6 1'I I~IC-1 IR METHODOFIMAGESBythemethodofimages,theimagelocations aredefinedbyx;=2L~x,y;=2H;~y, z),=2'zgi,j,k=0,~1,+2...Thetankdimensions areL,H,Dinthex,yandzdirection respectively.

yistheverticaldirection, y=0isthetankbottomandy=Histhefreesurface.Theoriginofthecoordinate systemisatthelowerleftcorner.xyandz,definethelocationofthesourcewithstrengthP,.Thepotential atanypoint(x,y,z)canbeexpressed asDefine$g=x0-xpg,=-x0-x,g,=-x,+x,g4=xa+xgi=-yo+ygz--2H-y,-y,7t,=y,+y,g,=2H+y0-y1=zoz>(20z03="0-z04=0+ZandliiBnan(&,.4,)'+(4Hj+g

)'2D1yklmn~(2L,Q,)+(4H,.+2H+g

)+(2D~Q)C-2 4~~l sothatNNKLNlP=P.ZZZZAWheii+lilhi4EZ(4i-I;;up(1)-"jsOmal+aihhlPJ,!a siMilPJWwhereNI=4NI=2NK=4NK=2ifififi~1ifi=1kw1k=1andL,MandNdefinethenumberofimagesusedintheimagearray.C-3

~e~f~'~E APPENDIXDTHENRC.REQUESTFORADDITIONAL INFORMATION-

-'::-',;

'.A'ND'THENMPCRESPONSE I'aji gVN~IAAII$HIAOAIIAICWhWkMWR5COlfPOllAYIONl30I PLAINFIELD ROAD.SYRAE.NY.I3212'ELEPHONE I3'I5I47*15IISeptember 29,lNMPrr.0VU.B.NuclearReguhgozy Commission Attn:Dociunent ContxolDesk%aswzlgton, DC35'B:NineMilePointUzIh1DoclretNo.$0-220DPR43S~ed:MCRcqucdfarAAQheati+onzzcofozz BeguSaBe~&wqfAVqrMltPorcNuclearSafesVn01ToneLoadctfazsSubmittal q/"MtyX4gNNByletterdatedAuguat26,l993,theNRCnqIIestod additional

'nnecessary tocompletethere-mvievofam'ayl4,1991re@estfoeducethecondensation oscillation loadsintheNineMihPointUnitITorus.Attachmezlt ltothislprovidesourresponsetotherequested infarntatha.

pyoiI+~anyquestimIs

~QgthezIMponsct pleasecontact~DavidELh5rat(315)428-7029.

VerytrulyyorC.D;-TerryVicepzeideat-NuclearipzlecrizIg xc:RcgiolQ1Adlni51tslzator Rcg4ÃiIMr.B.Norris,SeniorReaMentInspector Mr.R.A.Capra,Director, projectNzeetorate X-i,NRRMr.D.3.BzinRznan, 8caiorprojectManatpr,NRRRecozdsMIzlagemezIt 0-2

)~I

..g~~RESPONSETOTHENRCREQADBXHONAL PiFORIVtATKON RERE-M',VIEW OFMAT14,1TORUSLOADREBUCHONAJSNIAGARAMOHAWKPOWERCOMjNEMIlUEPOP%MJCLEARSTATIO90CKEYNG.S{}-2207FORORATIONUNl'O.1R8dD-39$:68266'l-ZL'-O'C

~<~-!tP LetterReport7519-28,Rev.1September 17,1993~Attachment Page1SERVtCESpgyle'Tt~tltOWNtN&iC4NHo InSectian3.3,1aftheNinebaflePointPlant-Unique TorusSuppression Chamber(Teledyne Engineering SerRev.1;September 21,19S4),itisstatedthatcantraforthetorusshellfsthatwhichcombinesOBACOwfpressure(P),deadweight (M)andtheOBE(Case20).thefol'lowing additional fnformation and/arclarifithisstatement:

nalysisReportofthefees{TES)TR-5320-1, linglaadcambfnatfan htheOBAhydrostatic heHRCstaffrequestsationwithrespecttoQhatfractionofthetota1shellstress(membrane, local,etc.)derivesfromtheCOloadingtfromthePlaadf97Etc.FarEventCombfnatfan 20,ElementNo.19(theostlimitingelement),

thestressesfromeachof'hecantrfbuting loasareasfollows:OriginalAnalysis, Unreduced CmembranepercentStressoi'l}~xLMembranePercent+Bond'9of&51:M&CaLOeadweight OBESeismicInternalPressure(QBA):Total1)7562059,219&2K.16,150(16,025)10.951.3%57.0%'100.051;8122079,72216,751(16,618)10.P41.2X58.0XMJ5100.(4CodeAllowable Stress16,500'4,750herepart(TR-7353-1) ulatedafterallthesasaresuaraed,Theseaddingtheprincipal 5QhksThestressesinparentheses areframtandaretheprincipal stressescalcomponent stressesframthefaurloadaarelowerthanthetotalsobtainedstressesfromeachloadcase.D-49L'-602667-ZE'-QC

~lrar$,

LatterReport7519-28,Rev.1September 17,1993Attachment Page2IJN'%ERvCES W~oYNI~IKWCKCWNRfterCase20,whatloadcombination involving nexthfgheststressfnthetorusshell2WhatpstressisduetaCQ2hmmne:Thenextcontrolling eventcombination isEvelieitfngflelentHo.19,whichincludesdeainternalpressure, SRUandIHACO.Thestrecontributfng loadsareasfollows:COloadsinducesthercentagaofthetotaltCaibfnatfon 14forwefght,08Esefsmfc,sasfromeachoftheMembranepercentStressofMB1~aLNeabrano+Bend'g~UPercentofZetaLOeadwe)ght 08KSoismfcLnternalPressure(lSA)SRV1,7562059,928821'3.534(13,232) 13.0%1,5L73.4%6.0X100.OSCodeAllowable Stress16,500$@Q!Thestressesinparentheses arethcalculated afterallthecol'ponant strescasesaresummed.Thoseara,'ower thanaddingtheprfncfpal stressesframeach1,81220710,4702,385~i'll16470(15,148)24,75011.0%1.3%83,6%14,5'00.l7Ii pr'incfpalstressesesfromthafiveloadhototalsobtainedbyloadcase,vfngbothCOandSNitforthiscaso2kfaftingelement19,ation14,Seeanswer'Whatistheworstcasaloadcombfnatfan involoads'hat arethestresslave>sandtheirs18mme:Theworstcaseloadcombfnatfon, fortheinvolving bothCOandSRVloadsisEventCondftoQuestion2.D-5

~>~it,,~,~'4 LetterReport7619-28,Rev.1September 17,1993Attachment Page3SERVICESNVSCHQf%CUP~QKWNOcwlQWo4.Qhatfstheworstcaseloadcombination forthenotfnvolveC07Howarethestressesforthatthinnfngofthetorusshall2Howdotheycornstresses'mm:

Theworstcaseeventcombination thatdoesnoCambfnatian 18farElementHo.l9,whichfncsefsmfc1andpoolswell,Thestressesfromealoadsareasfollows;torusshellthatdoescaseaffectedbythearewiththeCase20involveCQisEventudesdeadweight, OBEhofthecontrfbut1ng HlabranaStressNeabrane+8endfngOeadwefght OBESefsmfcTotalCodeAllowable Stress1,756205MKR71929(7,812)16,50011812207k2JQ.S,222(8,103)24,760fhgysThestressesfnparentheses arethcalcu'lated aftera)1thecomponent stloadcasesaresummed.Thesearelobtafnedbyaddingtheprfncfpal stressThesestrlsseswouldincreaseslightlyduettorusshell.However,ascanbeseen,approxfmatoly halftheEventCambfnatfan 20swouldcontrolbyawidemarg1n.\Referring nowtoSection5.3ofTESTR-7353-1, Rev.provfdethefallowfng fnformatfon/ciarfffcatfon:

5.IsthIstatement that"...Event Camb1natfo validforboth8and4downcomer bays'owfsBQSSE:Yes.Itfsestablfshed bycomparing thesCoebfnatfons presented herein.(Seeresponse6.Hhatshellthfckness fsusedtacalculate eachlevelstabulated fnthissectfanThnaMfJ::Theor1gfnalthickness 1sused,t0.46inchprincipal stressesessesfromthethreewerthanthetotalssfromeachloadcase.thethfnnfngofthethesestressesareresses,sothelattar2(January14,1992),20...fscontrolling" thisestablfshed7 ressesfromtheEventoquestion8).afthe"actual"stressD-699'd j4 LetterRaport7519-28,Rev.1September 17,1993Attachment Pago4ITthmzae:Yes.Itauldbethesame.Isthesplitinstressesduetothevarioidentical forthethinnershel1case?Iffractional distribution, scantHbuting loadsitisnot,state'thl8.Isthesplitinstressesduetothevariascontributing loadsidentical fartha4derncomar beycases?Iitisnot,statethefractional distribution?

km)nil'.:

FaradventCombination 20,BeatentNo.19,withreducedCO,thestressesframeachofthecontributing loadsaasfollows:ReducedC0,SOowncamer QaysOeadweight OBESeismicInternalPressure(OBA)TotalCadeAIIovable StressHeehraneStress~D1,756'205g,z)gMBZ)5,522{15,452)16,500PercentofU8aL)1.3%1.3'A59-4%MMK100.0XHeibrane+Band'g~Q1,8122079,722~0.16,122()6,044)24,750Percentotll..P).3%60.3%~5100.%ReducadCO,4Oelecaeer BaysHoebranaPercentStressat&%ELZSalHeabranlPercent+Send'gof'Ml~aLGeaheight OBKSeisaicInternalPressure(QSA)Tota1,7562059,2)9M2614,529()4,460}12.)X,).4%63.5'5~5100.N1,8122079,722M2B/,15,116()5~040))2.Ã).4%64.3%~El100.(4CadeAllowable Stress16,50024,750therepgrt(TR-7353-I) culatadafteralltheasesaresumaed.Theseyaddingtheprincipal 5gia!Thestressesinparentheses arefroandaretheprincipal stressesccomponent stressesframthefavrloadcarelaierthanthetotalsobtainedstressesfromeachloadcase.I60IdD-7LT:68266'-0C-6<

0~<,l%p~g LetterReport75}9-28.RevSeptember l7,1993Attachment Pago59.Pravfdetheequfvalent responsetaquestfondawncaaar bays.hmsz:EventCombfnatfon 20fstheonlycasefnvoIvfnextcontrallfng eventcombfnatfan fsEventfnc)udesISACO,Thisfsalsotheworstcfnvalv$ngbathCQandSRYloads.Sfncothosoughtfsanlyfar'BACO,therearenochvaluesforthelBACOresultsforEventCombfsay,thora'fsnadfffsrantfatfon batmenthe.'oreventcambfnatians otherthanthe:rsvfsed Theresultsarepresented fn'guestfan..2~.

I~yygygOITILaOYNtIhCSNL?N+E~

and3farthe4g08ACOlaads.TheCombfnatfon l4whichsIQvontCONhfnatfon loadreductfan befngngestotheorfgfnalatfanl4.Thatistaand8.4amceaer bays.":,"2EventComhfnatfan RQ.D-8 e~I