ML20216A852: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:*           -
{{#Wiki_filter:*
        .                                                                    ~
~
Attachment 4
Attachment Page:
Page:   3 BABCO'CK & WILCOX a McDermott company ENGINEERING INFORMATION RECORD
3 4
        ,- I
BABCO'CK & WILCOX a McDermott company ENGINEERING INFORMATION RECORD
        \
,- I
\\
Safety Related:
Safety Related:
DOCUMENT IDENTFIER 51 - 1158880-00 YES O   No O TITLE           Steam Line Break Qualification Evaluation PREPARED BY                       b L''' "                               '
DOCUMENT IDENTFIER 51 - 1158880-00 YES O No O TITLE Steam Line Break Qualification Evaluation PREPARED BY b L''' "
R.M. GoEEww           suitm*Y NE           0 ATE    j REVIEWED BY                 ~
0 ATE j
A                          DATE     8-I~
R.M. GoEEww suitm*Y NE REVIEWED BY A
                                                /
DATE 8-I~
~
/
REMARKS:
REMARKS:
This work, prepared for Florida Power, is a qualitative assessment of the vulnerability of in-containment equipment to a steam line break.
This work, prepared for Florida Power, is a qualitative assessment of the vulnerability of in-containment equipment to a steam line break.
It is not supported by any testing or analysis specifically
It is not supported by any testing or analysis specifically performed for the environmental conditions at Crystal River 3.
(
(
(
performed for the environmental conditions at Crystal River 3.
( .    ,
c.
c.
NLa 1                   54 (l                         .
NLa 1 54 (l
9804130306 980403 DR       ADOCK 0500         9 s-
9804130306 980403 DR ADOCK 0500 9
s-


I Attachment Page:   4 0                     +~
I Attachment Page:
1.0  
4 0
+~
1.0


==SUMMARY==
==SUMMARY==
 
l The purpose of this document is to assemble the data available at B&W regarding the comparative severity of steam line breaks (SLBs) and Loss of Coolant Accidents (LOCAs) on instrumentation and control equipment and to come to some, conclusions.
l                                                                                                             .
The conclusions reached are that the brief high vapor temperature peak during a SLB does not affect equipment performance more severely than the long high vapor temperature soak associated with LOCAs.
The   purpose     of   this document is to assemble the data available at B&W regarding         the comparative severity of steam line breaks (SLBs)
In fact, the peak is so brief that most equipment will not be affected by it at all.
(LOCAs)    on                    and Loss of Coolant Accidents and instrumentation       and     control     equipment to come to some , conclusions.               The conclusions reached are that the brief high vapor temperature peak during a SLB does not affect equipment               performance more severely       than   the long high vapor           temperature soak associated with         LOCAs. In   fact, the       peak is so brief that most equipment will not be affected by it at all.
: 2. 0 BACKGROUND _
: 2. 0 BACKGROUND _
In 1970,       the pipe   break accident analysis that showed the   highest   containment over 300 degrees F for several temperature was a LOCA, reaching hours.       However,     in the mid-1970s, the effects control      equipment of SLBs   on   instrumentation     and became an NRC concern.               At   that 4                    time,     the Containment Systems           Branch issued Branch Technical Position CSB 6-1 Rev 1, enti tl ed " Minimum
In 1970, the pipe break accident analysis that showed the highest containment temperature was a LOCA, reaching over 300 degrees F for several hours.
('-               Containment Pressure Model for PWR Evaluation." This new model showed ECCS                      Performance that during the first several minutes of a SLB, superheated steam was discharged and codfainment peak               temperatures near 500 degrees F.                                               rose to Although use in anal yses of containment pressure CSB     6-1,was   intended   for the                                                          integrity, model     was   soon used     to determine         equipment qualification         service conditions per the 1978 "CBS Interim Evaluation Model - Environmental Qualification for Main Steam Line Break Inside Containment (operation license applicants only)."           The model in IE Information               -
: However, in the mid-1970s, the effects of SLBs on instrumentation and control equipment became an NRC concern.
Notice No. 84-90 is essentially the same.
At that
3.0     TECHNICAL DISCUSSION Figure i shows a         typical LOCA   and SLB       curve. The SLB curve ri ses       above the LOCA curve at 10 seconds into the event, and     drops below at 150     seconds.       The   LOCA curve has a long time dwell at over 250 degrees, while the SLB curve dwell is at 175 degrees.               It is clear from this that the only time in which the effects of a SLB on instrumentation may be more severe than a LOCA is lt Lfi91             'U2 i(.                                                                                                                 !
: time, the Containment Systems Branch issued Branch 4
PREPARED By OATE ensu         - . --
Technical Position CSB 6-1 Rev 1,
enti tl ed " Minimum
('-
Containment Pressure Model for PWR ECCS Performance Evaluation."
This new model showed that during the first several minutes of a SLB, superheated steam was discharged and codfainment peak temperatures rose to near 500 degrees F.
Although CSB 6-1,was intended for use in anal yses of containment pressure integrity, the model was soon used to determine equipment qualification service conditions per the 1978 "CBS Interim Evaluation Model - Environmental Qualification for Main Steam Line Break Inside Containment (operation license applicants only)."
The model in IE Information Notice No. 84-90 is essentially the same.
3.0 TECHNICAL DISCUSSION Figure i shows a typical LOCA and SLB curve.
The SLB curve ri ses above the LOCA curve at 10 seconds into the event, and drops below at 150 seconds.
The LOCA curve has a long time dwell at over 250 degrees, while the SLB curve dwell is at 175 degrees.
It is clear from this that the only time in which the effects of a SLB on instrumentation may be more severe than a
LOCA is lt Lfi91
'U2 i(.
PREPARED By OATE ensu


Attachlitellt l-
Attachlitellt Pace:
                                                                                                                                                                    ...........                      Pace:     5
5 l-
                                                  . 'n : o3.<.y..                                                                                  .
'n : o3.<.y..
l-3; a sq+.<. ,n..::Q b                           Babcock.&'Wilcor .                                                                                                             ,, jdl;ijfMs;
l-3; a sq+.<.,n..::Q b
  -(.    ,ff . '                      . ".=*5.
Babcock.&'Wilcor.
                                                . .      . m.... iss.u;a.y))..                ..
,, jdl;ijfMs;
                                                                                                                        /fi*r&E                                . :.: i.9[b; ' ..si0n58880:00N.
. ".=*5.. m.....u;a.y))... :.: i.9[b; '..si0n58880:00N.
                                                                                                                                                                                ~
-(.
h.i?@iW N'-  .... .. %,,,,2?-.
,ff. '
iss /fi*r&E.
h.i?@iW...... %,,,,2?-
~
N'-
LOCA AND SLB Temperature Profiles 450 -
LOCA AND SLB Temperature Profiles 450 -
SLB 400 -
SLB 400 -
350 -                                                                                                                                                                       '
350 -
h.
h.
I.                .
I.
e L>.             e  300 -                                                                                                                                                                                               .
L>.
e                                       -
ee 300 -
LOCA O                                          ~-
*e O
250 -                                       ""
LOCA
200 -                                                                                                   '
~-
250 -
200 -
150 -
150 -
100                             ,                                        ,                                                          ,              ,                ,
100 0
0                                                      2                                                                           4                             6 Seconds, power of ten
2 4
                                                                                                                            " Figure 1" (91             'M PREPARED BY CATE       II aEviewc0 ev
6 Seconds, power of ten
[ [ out I'l-ff                                                     nicc ,,o     3
" Figure 1" (91
'M PREPARED BY CATE II
[ [ out I'l-ff 3
aEviewc0 ev nicc,,o


i Attachment Page:   6 (3
i Attachment Page:
                                                                        .- ,e  .i I. :.e...
6
r:
.i
                                              ... 3.v., .u
. (3 I. :.e.
: t. . Exn i,rr 1158880-00 9   Fyh,f.fMNjih,f.,.:}h,Thd
.u.: -
                                                                                                                  'r     -  ..  -
: t.. Exn i,rr 1158880-00
between 10 and 175 seconds.
... 3.v.,
temperature cannot raise the                        After that, the SLB vapor equipment     temperature to LOCA l evel s.
9 Fyh,f.fMNjih,f.,.:}h,Thd
3.1   FINITE ELEMENT ANALYSIS B&W different for    has addressed           this problem in several different ways equipment.               When pressure         transmitter qualification to the new customer in 1977, B&W undertook to           SLB    levels  was  requested        by a l                         actually raised the temperature                             show  that        the LOCA
,e r:
!                                                                                      of   the transmitter internals more than did a SLB.
'r between 10 and 175 seconds.
This was deemed reasonable, since             the quick temperature peak of the SLB i
After that, the SLB vapor temperature cannot raise the equipment temperature to LOCA l evel s.
3.1 FINITE ELEMENT ANALYSIS B&W has addressed this problem in several different ways for different equipment.
When pressure transmitter qualification to the new SLB levels was requested by a customer in 1977, B&W undertook to show that the LOCA l
actually raised the temperature of the transmitter internals more than did a
SLB.
This was deemed reasonable, since the quick temperature peak of the SLB i
didn't allow much time f or heat transf er.
didn't allow much time f or heat transf er.
A two dimensional typical finite         element       thermal   model' of a transmitter was                 developed, as shown in Figure 2.
A two dimensional finite element thermal model' of a typical transmitter was developed, as shown in Figure 2.
Thicknesses, volumes, and exposed surface areas were preserved as closely as possible. The major assumptions
Thicknesses, volumes, and exposed surface areas were preserved as closely as possible.
,                        of the modeling were:                     (a) the external electrical and mechanical connections                     were neglected;                       thermal contact between mating surfaces was perfect,(b)maximizing heat transfer into the transmi tter; a n'd , (c) natural convection       and radiation heat k( ).                within the transmitter air gapstransfer coefficients were realistic best estimates.         It   was decided that the circuit components       were the most sensitive to heat, so                                 board the entire circuit board.Aas modeled as a lumped mass and its temperature determined.
The major assumptions of the modeling were:
Rules for       determining heat transfer coefficients were developed.         For the SLD,                   two       time     periods         were considered.         Up to 115 seconds, a forced convection heat transfer coefficient was used                         based on air properties evaluated at         the steam temperatures. Past 115 seconds, the Uchida correlation was used with a 1.2 mul tiplier                                         . .
(a) the external electrical and mechanical connections were neglected; (b) thermal contact between mating surfaces was perfect, maximizing heat transfer into the transmi tter; a n'd, (c) natural k(.
l                      for conservatism.                 The LOCA analysis used the Tagami correlation for the 40 second blowdown period; the Uchida correlation with a 1.2 multiplier seconds; and a linear past        115 decrease from the final Tagami i                       value to the first Uchida value seconds.                                                        between 40 and 115 l
convection and radiation heat transfer coefficients
The model       was then subjected analytically to both the LOCA and       the SLB temperature / pressure models.                             Results showed that the internal temperatures were                               as expected, h
)
entunto ev                                              OUS om #'/tr-fM..           ~-w           . . . . .      -
within the transmitter air gaps were realistic best estimates.
i
It was decided that the circuit board components were the most sensitive to heat, so the entire circuit board.Aas modeled as a lumped mass and its temperature determined.
Rules for determining heat transfer coefficients were developed.
For the
: SLD, two time periods were considered.
Up to 115 seconds, a forced convection heat transfer coefficient was used based on air properties evaluated at the steam temperatures.
Past 115 seconds, the Uchida correlation was used with a 1.2 mul tiplier l
for conservatism.
The LOCA analysis used the Tagami correlation for the 40 second blowdown period; the Uchida correlation with a
1.2 multiplier past 115 seconds; and a linear decrease from the final Tagami i
value to the first Uchida value between 40 and 115 seconds.
l The model was then subjected analytically to both the LOCA and the SLB temperature / pressure models.
Results showed that the internal temperatures were as expected, h
OUS om #'/tr-entunto ev fM..
~-w i


                ',                                                                                                                    Attachinelit
Attachinelit Page:
        -                                                                                                                            Page:     7 m               .c   -
7 m
                                                        . i.3 .w . . , ,.
.c i.3.w..,,.
I + t?' =
I + t?' =
* s.
l 5
0f ,g& M$$
s.
l                                                                                                                                                    5
.Qj;. ?ljl[{l'f'] '
                                                          .Qj;. f      ?ljl[{l'f'] '
P.        . d cc . . y: a 2 ;:
uM55TG(($
uM55TG(($
0f,g& M$$
f P.
. d cc.. y: a 2 ;:
l i
l i
l                                                                                                                   -
l z
z d
d l
l l                                                                            =                               2.500"     -
l
2                          2.077"
=
                                                                            "                    1. 722 "--+-
2.500" 2.077" 2
:            1.590" -
: 1. 722 "--+-
1.590" -
438"~
438"~
d'   JL     di   dL     &
d' JL di dL 1.11" I
1.11" I
l 2.61"
l 2.61"                                                           ..
(...
( ...
                                                                  ~
i
i
:                                                                      ,.I                     -
~
l l                                                                                                  1.                                                     1
,.I l
_y                                                   _
1.
i l                                         3.24"                                                                       .
_y i
                                                ,                            .500"3:
l 3.24"
l                                   3.74" I
.500"3:
                                      .k                                                   -
l 3.74" I
4.6"                                                         <
.k 4.6" d
d                                 .
I l
I l                                                                                 -
r f
r f
{']t;) j           ty),
{']t;) j ty),
(..                             " Figure 2 - Typical Transmitter Finite Element Model" PREPAnED BY_
(..
" Figure 2 - Typical Transmitter Finite Element Model" PREPAnED BY_


c               .
c i
i       ..    .
Attachlttent Page:
Attachlttent
8
        .-                                                                                                                Page:   8
(. M{} ".8". W L ' E ; E m d d @jf_.p@j g$ h y g. 4
      ,                      ns                  ..
{ g ns ge. li.g 5g MsWpg
* ge. li.g
-+
(. M{} ".8". W L ' E ; E m d d @jf_.p@j
. i..:.: r
{ g
..t.
                                                  -+
wi th the SLB always less Figure 3 shows the than the LOCA temperature.
                                                      . i ..:.: r                                         ! 5g MsWpg      g$ h y g. 4
expected temperature circuit board element in the thermal model.
                                                                        ..t.   ;      -
For response for a example, during a LOCA the circuitry reaches about 300 degrees peak temperature, while the peak during a SLB was only 230 degrees.
wi th   the     SLB     always less Figure 3 shows the                                         than the LOCA temperature.
At this
circuit                                expected temperature response for a board           element in the thermal example,     during a LOCA                                                       model. For degrees peak temperature,                      thewhile circuitry reaches about 300 was only 230 degrees.                                                the peak during a SLB At this       time,       the           CSB       Interim Evaluation issued. The guidelines                           in the model                         Model was conservati ve , approach,                                                     suggested a more using correlations with a multiplierthe Tagami and Uchida time,      the customer                                                of   4. At the same transmitters outside containment move      decided            to               the affected qualification issue.                                                     to avoid the entire with the                                    No     formal           analysis   was performed greater             heat         transfer coefficients, no change in the relative temperatures was expected. but course,                                                                                       Of the absolute values wpuld both rise.
: time, the CSB Interim Evaluation Model was issued.
3.2 ELECTRICAL CONNECTION         .
The guidelines in the model conservati ve, approach, using the Tagami and Uchida suggested a more correlations with a
BOX ANALYSIS In     1980,   B&W was again
multiplier of 4.
* asked to work on SLB equipment approached by a customer and specific piece of equipment                                                 qualification.      A period of                                                 had a very short required connector operability used during an SLB; unf ortunatel y, the an SLB.                    h5d**not             been tested B&W     un'dertook steel cover plate would protect                to   show t h at thefor 0.25     operation during inch thick SLB temperature rise for                           the reqpired-   the connector time. The from the and connector            were modeled                                                       plate in perfect thermal contac,t. To avoid questions about   as    one      dimensional    elements the proper heat transfer correlations determining the cover temperature, the covertotemperature                              be used in was arbitrarily stepped from start of the SLB. The cover was                               140 to 440 degrees at the                  ,
At the same
the air                                                            allowed to radiate to was not        space     inside         the     connection             box. Ths connector or to        allowed       to     lose         heat       at     all,       either to the air the connecting cables. A thin fin                                 assumption was used to solve for the temperature of the connector at 90 seconds.
: time, the customer decided to move the affected transmitters outside containment to avoid the entire qualification issue.
The       results       showed that in 90 seconds, the connector would over the    only reach     154 degrees, an increase of 14 degrees original               temperature.
No formal analysis was performed with the greater heat transfer coefficients, but no change in the relative temperatures was expected.
temperature would                                                            Further,     the   air if the                        only increase about I degree; cl earl y,                                                   i l
course, the absolute values wpuld both rise.
connector and the cover were not in contact, the OFl                 59 PGEPAAED By I       D A TT       /j-1
Of 3.2 ELECTRICAL CONNECTION BOX ANALYSIS In
: 1980, B&W was again approached by a customer asked to work on SLB equipment qualification.
A and specific piece of equipment had a period of very short required operability during an SLB; unf ortunatel y, the connector used h5d**not been tested B&W un'dertook to show t h at thefor operation during an SLB.
steel cover plate would 0.25 inch thick SLB temperature rise for protect the connector from the and connector the reqpired-time.
The plate were modeled as one dimensional elements in perfect thermal contac,t.
To avoid questions about the proper heat transfer correlations to be used in determining the cover temperature, the cover temperature was arbitrarily stepped from 140 to 440 degrees at the start of the SLB.
The cover was allowed to radiate to the air space inside the connection box.
Ths connector was not allowed to lose heat at all, either to the air or to the connecting cables.
A thin fin assumption was used to solve for the temperature of the connector at 90 seconds.
The results showed that in 90 seconds, the connector would only reach 154 degrees, an increase of 14 degrees over the original temperature.
: Further, the air temperature would only increase about I degree; cl earl y, l
i if the connector and the cover were not in contact, the OFl 59 PGEPAAED By I
D A TT
/j-1


f.
f.
Attachntent Page:     9
Attachntent Page:
('          s
9
                    ?             ,
?
                                                                                                                                        .               p F      ..-:-                .        r?1MsW#sN;?%
. r?1MsW#sN;?% y " s;izYBias@gy, sabcock4Awndex@R.. tut @gdigyyniffy
sabcock4Awndex@R..
('
                                    *'4..".'."T,,M:=..;i..B,.c.w.c
$- % G *pj d h e p
                                                          . e.c                  2P je W
s je 3 gi.W$gf Q.
                                                                                          . ?., . . n . . .
g F
y 3 gi.W$gf
W
                                                                                                                      "    s;izYBias@gy, tut @gdigyyniffy o: ._. . Q.%  -wm gG *pj d h MN  e 1
*'4..".'."T,,M:=..;i..B,.c.w.c 2P
. ?.,.. n...
-wm MN o:
. e.c 1
t 1
t 1
1 l
1 l
l Temperature Response 400--                                             Transmitter Doctronics 380 -                                                                       '
l Temperature Response Transmitter Doctronics 400--
380 -
360 -
360 -
340 -
340 -
320 -                                                         .
320 -
300 -
300 -
g    2hlO -
2hlO -
(                                                                                                                                                           l 3   260 -
g
'                        t
(
: a. 240 -
3 260 -
* 3   220 -                           .
t a.
LOCA 200 -         ,g                             a 130           llI 1
240 -
160 -                                                                                   SLB l
3 LOCA 220 -
140 120 ~                                                 9                                                                           i 100       ,          ,          ,        ,    ,      , ,,        ,    ,
200 -
0              0.4               0.5           1.2           1.8         2                   2.5 2.4                      3.2 Seconds, power of ten
a
                                                                                    " Figure 3"
,g ll 130 1
  $O91                 6D                                                                   .
I 160 -
SLB 140 120 ~
i 9
100 0
0.4 0.5 1.2 1.8 2
2.4 2.5 3.2 Seconds, power of ten
" Figure 3"
$O91 6D
(
(
u -
u -
Jl    8. l ,'
J l
                                                                          \
: 8. l,'
                  ......n..
Mid om 84da-
Mid om 84da-
\\
......n..


              .                                                                                                    l Attachluent Page:   10
Attachluent Page:
                                  ..w.,...e..~,.. ~   ..-    ,.r,.               $                          '
10
connector would not heat up at all in the first 90 seconds. This implies that any ins,trumentation with a steel cover at least 0.25 inches thick would not be affected by the SLB peak temperature, and that                     the LOCA temperatures would be an adequate qualification profile.
..w.,...e..~,..
3.3 MOTOR OPERATOR ANALYSIS In 1981, B&W was requested to apply the on                                                        techniques used the previ ous transmitter. work to valve                     operators.
~
Again, a finite element thermal model       was   developed.
,.r,.
During     blowdown,"     the   condensing             heat coefficient used was the greater of 4 times thetransfer correlation or 4 times the Tagami correlation. Uchida                    After blowdown a forced convective correlation based on the product of the Prandtl number raised to a power and the Reynolds number raised to a - power and a determine the Nusselt number was used. The constant                          to powers and constants differ depending .upon whether the turbulent                                                                flow is or   laminar.         This         forced           convective correlation was used after b 1_owdown until the square 7 g                - of   the Reynolds number       equaled         the Grashof number, s
connector would not heat up at all in the first 90 seconds.
indicating the onset of natural convection. The natural convection correl ati on was based on the product of a constant and the Rayleigh number raised to a power to determine the Nusselt number.                                                                 !
This implies that any ins,trumentation with a steel cover at least 0.25 inches thick would not be affected by the SLB peak temperature, and that the LOCA temperatures would be an adequate qualification profile.
l In this case, additional work was performed to benchmark the model against the me,asured thermal response during qualification testing to LOCA levels. After the effects of condensation were added to the model, good agreement                                         l with the       test results was obtained.                       The results showed that the temperatures of the internal components                               ,
3.3 MOTOR OPERATOR ANALYSIS In 1981, B&W was requested to apply the techniques used on the previ ous transmitter. work to valve operators.
did not exceed the LOCA temperatures; the peak for the internals was only 270 degrees, as shown in Figure 4.                                           j 3.4     INDUSTRY SURVEY To confirm     these results,       B&W performed               an industr'y survey to       find out if similar analyses had been done el sewhere. An analysis was found in the TMI-2 FSAR (Figure     15B-10)   showing       the results of                   such an analysis. The analysis was done with one-dimensional bk1             61
Again, a finite element thermal model was developed.
            - . . _                                  adu.n %
During blowdown,"
the condensing heat transfer coefficient used was the greater of 4 times the Uchida correlation or 4
times the Tagami correlation. After blowdown a forced convective correlation based on the product of the Prandtl number raised to a power and the Reynolds number raised to a - power and a
constant to determine the Nusselt number was used.
The powers and constants differ depending.upon whether the flow is turbulent or laminar.
This forced convective correlation was used after b 1_owdown until the square
- of the Reynolds number equaled the Grashof number, 7 g indicating the onset of natural convection.
The natural s
convection correl ati on was based on the product of a constant and the Rayleigh number raised to a power to determine the Nusselt number.
In this case, additional work was performed to benchmark the model against the me,asured thermal response during qualification testing to LOCA levels.
After the effects of condensation were added to the model, good agreement with the test results was obtained.
The results showed that the temperatures of the internal components did not exceed the LOCA temperatures; the peak for the internals was only 270 degrees, as shown in Figure 4.
j 3.4 INDUSTRY SURVEY To confirm these
: results, B&W performed an industr'y survey to find out if similar analyses had been done el sewhere.
An analysis was found in the TMI-2 FSAR (Figure 15B-10) showing the results of such an analysis.
The analysis was done with one-dimensional bk1 61 adu.n %
on -
on -


    ,' ,      f                                                                                                             Attachment Page:     11 w.pigsg.r E-]Mf;f                   .@yyd
f Attachment Page:
11 w.pigsg.r
,m: m....r...
.m..,,sa.,.4s.s. i. m;a.. Babcock:'AWiliin A(fu E-]Mf;f
.@yyd
(
(
      ,,. s A(fu
_, m ssaso ea An.dhm ra
                  ..,m...
,,. s a
                          ..      .m..,,sa.,.4s.s.
..,m...
                                  ,m: m.. ..r...
..m RESPONSE TO SLB l
ra
i Motor Operator 500-i s_
: i. m;a..
                                                                                        ..m
_,ma      ssaso Babcock:'AWiliin ea An.dhm      .
RESPONSE TO SLB                                                                     l i
500-                                           Motor Operator i
s_
450 -
450 -
3 l
3 SLB 400 -
SLB l
350 -
400 -                                               .
L
350 -                       :
(< '
L                                 -
a
(< '                 a
\\ >
    \ >                 e g   300 -
e g
a                           -
300 -
e O                             . . ' .'
a e
:                250 -                                   -                        -          '~
O 250 -
OPERATOR                     {r.~   '                  i
'~
                                                                        .          Il4TEiliiALS                                             i 200 -                                 .
{
150 -                                               .
OPERATOR r.~
                                                                                                                                      ~
i Il4TEiliiALS i
1 100       ,    ,    ,        ,      ,          ,        ,    ,      ,      ,  ,    ,    ,
200 -
0        0.4       0.8                   1.2             1.6           2       2.4       2.8 Seconds, power of ten
150 -
                                                                          " Figure 4"
~
'th... . 1             6;?
1 100 0
f PAEPARED Oy                                                             OATE P A. A                       .
0.4 0.8 1.2 1.6 2
2.4 2.8 Seconds, power of ten
" Figure 4"
'th.... 1 6;?
PAEPARED Oy OATE f
P A. A


1     ..      e
1 e
              ,                                                                                                            Attacluttelit F-                   :
Attacluttelit F-Page:
z                . -                                    Page:    12 5.:-.        *s . .a.c, ii. . 6,'g. 7*s.' qv,.gs.     ,y .                   c . . . .. . ..
12
                  $5.          BabCOCkl&'., wilco'jdp.                   i?/?/jyj.sji,s..
..a.c, ii.. 6,'g. 7*s qv,.gs.
jfA:i 33-pg.y.<.- .d l ( ,i          h's        O.$Y. N!@wh.is,E[d[nw%bYc.,iNa/4E!thM.5
z i?/?/jyj.sji,s..
                                            - .           6 _
c...
E.@
BabCOCkl&'., wilco'jdp.,y.
E       fbi m_.-r, .     , . . .    ,          , . .  ,                , ,, .; ,
: 5..
*s 33-pg.y.<.-.d O.$Y. N!@wh.is,E[d[nw%bYc.,iNa/4E!thM.5
$5.
jfA:i E.@ fbi
,l (,i h's E
6 _
m_.-r,.
I i
I i
l                       codes, 30 foot per second steam flows, and                                         conservative i
l codes, 30 foot per second steam flows, and conservative i
assumptions of heat transfer coefficients.                                             Containment vapor temperatures reached 440 degrees; as expected, the temperatures inside. a pressure sensor enclosure peaked at about the time the SLB temperature leveled off, at   a                                                                                           both value of 275 degrees.                                   This     analysis modeled electrical penetrati ons ,                             instrument           enclosures, and cable jackets with the same results.
assumptions of heat transfer coefficients.
Containment vapor temperatures reached 440 degrees; as expected, the temperatures inside. a pressure sensor enclosure peaked at about the time the SLB temperature leveled off, both at a
value of 275 degrees.
This analysis modeled electrical penetrati ons,
instrument enclosures, and cable jackets with the same results.
e 4
e 4
e h6
e h6
                                                            '' ki
'' ki
                                                                        +
+
1 i
1 i
l i
l
(
(
i                                                                                                                                             i
i i
: k. , 1           b.b enceinco or M oirr k/r mmmo av        _
i
((#         o. y  s'-/ -/5-             ,,ct ~o   iq _
: k., 1 b.b M oirr k/r enceinco or
((#
s'-/ -/5-mmmo av
: o. y
,,ct ~o iq _


Attaclun mt Page:     13
Attaclun mt Page:
        ,          *g. '
13
: r. .; ; [*'; [:Q ''4Q3 ;,             .
*g. '
                                                                                , .        .,. . ... .    .a.
.; ; [*' [:Q ''4Q3 ;,
un                Babcock'&.WHcome, g,;"'+p,.
h Babcock'&.WHcome, g,;"'+p,.
h                                      gf ni c;;
.a. gf r.
ni c;;
un
)
e
e
(      s
$O.
                  -_  ,. 'r      ..~.,.",,
gg
                                                                              )                                              gg
(
                  $O.                                                                              6 _ 158880-0& M. g? n d O M ll5gpaggw
6 _ 158880-0& M. g? n d O M ll5gpaggw.g
                                      .v    . . .c.,2 !)-....rf.$O,,:..
-_,. 'r
aa . ., Nf?';j boci h .g s.. e y         m _-     . ,_        , . . , .
.. ~.,. ",,...c.,2 !)-....rf.$O,,:.. Nf?';j boci s
                                                                                                                                +     ..~--.,,.=   , ._ w.
h
4O   CONCLUE'ONS The   result     of     the         above follows: the brief temperature mentioned            spike due to super-heated work          is  as steam following a Steam Line Break                                   does not affect the internals           of         containment significantly.                                                       mounted                  equipment In       overy case                       examined, duratfon temperatures associated with                                                         the long severe to equipment than                                                     a LOCA were more Therefore,                                        the               higher             SLB spike.
.v aa..,
equipment             qualified                     to withstand LOCA environments for a given period of time should withstand SLB environments No further testing for           at least as long a period of time.
s.. e y m _-
should be required.
+
..~--.,,.=
,._ w.
4O CONCLUE'ONS The result of the above mentioned work is as follows: the brief temperature spike due to super-heated steam following a Steam Line Break does not affect the internals of containment mounted equipment significantly.
In overy case
: examined, the long duratfon temperatures associated with a LOCA were more severe to equipment than the higher SLB spike.
Therefore, equipment qualified to withstand LOCA environments for a given period of time should withstand SLB environments for at least as long a period of time.
No further testing should be required.


==5.0     REFERENCES==
==5.0 REFERENCES==
: 1.     Steam Line Break Thermal Analysis of N1BQ and N1KS
1.
* BMCO Pressure         Transmitters, dated November 7, 1978, ARC Letter Report LR:78:6311-01:1.
Steam Line Break Thermal Analysis of N1BQ and N1KS BMCO Pressure Transmitters, dated November 7, 1978, ARC Letter Report LR:78:6311-01:1.
2.
2.
SLB Qualification of NI Detector Connector, Dated April 14, 1980, B&W Calculation 32-1105986-01.
SLB Qualification of NI Detector Connector, Dated April 14, 1980, B&W Calculation 32-1105986-01.
                                                      ~
3.
: 3.     Results       of i
Results of
                                                        .Limitorque           Ther* mal                 Anal ysi s ,         dated November 30, 1981, ARC Letter Report LR: 81: 7580-04: 01.
.Limitorque Ther* mal Anal ysi s,
dated
~
i November 30, 1981, ARC Letter Report LR: 81: 7580-04: 01.
4 w
4 w
k dW1             64 i
k dW1 64 i
            , eacamato ev__
eacamato ev__
M o.rt Uh>-
M o.rt Uh>-
arvinen av                                        [j//nur f-/-/r                                       ,, . m ,   t1
[j//nur f-/-/r t1 arvinen av
,,. m,


1 1
1 1
0 O
0 O
ATTACHMENT 3 I
I ATTACHMENT 3 1
1                  1 1                   1 l
1 1
l l
i I
i I
l I                   i l
l I
i 1
i i
I
1 I


A % eh d 3 A%. Grinnell
A % eh d 3 A Grinnell CORPORATION PIPE SUPPORT DIVISION 160 Frenchtown Road Precision Park North Kingstown. RI 02852 QA (401) 886-3030 STATEMENT OF COMPLI ANCE SEPTEMBER 24, 1996 DUKE POWER CO.
          -    CORPORATION                                                       PIPE SUPPORT DIVISION 160 Frenchtown Road Precision Park North Kingstown. RI 02852 QA (401) 886-3030         ,
MCGUIRE SITE RECEIVING 13225 HAGERS FERRY RD.
STATEMENT                     OF     COMPLI ANCE SEPTEMBER 24, 1996 DUKE POWER CO.
HWY. 73
MCGUIRE SITE RECEIVING 13225 HAGERS FERRY RD.                 HWY. 73


==Reference:==
==Reference:==
P.O.       # MN-16154 Grinnell S.O. #41-24341-01 DUKE SPEC:OSS 0244.00-00-0001, Rev.2 MCS 1206.00-04-0C03, Rev.2 Item Nos./Part Nos.: 3/ 2004051AMDBN, FIG. 200, W/ Polycarbonate Reservoir We, Grinnell Corporation, Pipe Support Division, certify that the material supplied on the referenced order complies with                           the applicable requirements of ASME B31.1, the referenced purchase order and Duke Specification.
P.O.
A marking code may be utilized to identify material specification, grada, class and heat treated condition.                     See reverse side for mattiial identification codes.
# MN-16154 Grinnell S.O. #41-24341-01 DUKE SPEC:OSS 0244.00-00-0001, Rev.2 MCS 1206.00-04-0C03, Rev.2 Item Nos./Part Nos.: 3/ 2004051AMDBN, FIG. 200, W/ Polycarbonate Reservoir We, Grinnell Corporation, Pipe Support Division, certify that the material supplied on the referenced order complies with the applicable requirements of ASME B31.1, the referenced purchase order and Duke Specification.
l All materials were manufactured and/or supplied in accordance with the     referenced purchase order,                 the ASME approved Grinnell l           Corporation,             Pipe       Support     Division,   Quality     Assurance Program / Manual, Fourth Issue, Rev. 10, dated 3-15-96.
A marking code may be utilized to identify material specification, grada, class and heat treated condition.
l The provisions of 10CFR Part 21' apply to this order.
See reverse side for mattiial identification codes.
TEST REPORTS ATTACHED: SN.. 33791,33792,33793,33794, l                                                         33795,33796,33797 DUKE POWER COMPANY O                                 l RECORDS APPROVED D. v. Walsh/ -QA Manager aA REPAEsturatsvr
l All materials were manufactured and/or supplied in accordance with the referenced purchase
                                    ~
: order, the ASME approved Grinnell l
Corporation, Pipe Support
: Division, Quality Assurance l
Program / Manual, Fourth Issue, Rev. 10, dated 3-15-96.
The provisions of 10CFR Part 21' apply to this order.
TEST REPORTS ATTACHED:
SN..
33791,33792,33793,33794, l
33795,33796,33797 DUKE POWER COMPANY O
RECORDS APPROVED l
D. v. Walsh/ -QA Manager aA REPAEsturatsvr
~
L nAr tlc-E-96
L nAr tlc-E-96
                        =. w l
=. w l
A tllCO INTERNATIONAL LTD. COMPANY                   101383 1
A tllCO INTERNATIONAL LTD. COMPANY 101383 1
l l
l l
1
1


e e                                                                                                                                                   >
e e
ReceivingInspection Report                                                                     Form "Pr-3 n A "cv.
ReceivingInspection Report Form "Pr-3 n A "cv.
* reoc , os 2 Purchase Order No.:         l MN16154               l     C NPP 315 Station: l MC l             MEDB ID.: l               02981333FN           l           UTC No.: l     851075   l     QA Shop No.: [ 0227       l Vendor: lGRINNELL CORP                                                 l                 Manufacturer: lGRINNELL CORP.                           l Item No.             Quantity                 Part No.                           Heat No.           Lot No.       Serial No.                       l l    3     l       l     7     l           l200N                       l       l   NA       l     l NA l         133791,2,3,4,5,6,7           l    l
* reoc, os 2 Purchase Order No.:
l MN16154 l
C NPP 315 Station: l MC l MEDB ID.: l 02981333FN l
UTC No.: l 851075 l
QA Shop No.: [ 0227 l
Vendor: lGRINNELL CORP l
Manufacturer: lGRINNELL CORP.
l Item No.
Quantity Part No.
Heat No.
Lot No.
Serial No.
l 3
l l
7 l
l200N l
l NA l
l NA l 133791,2,3,4,5,6,7 l


== Description:==
==
SUPPRESSOR, , HYDRAULIC SHOCK AND SWAY,4* BORE X 6" STROKE,02981333FN,200N,0 CK'd                 SAMPLE                     Duke /             Inspectiort Examination, and Testing               Procedures /'?andards         !
Description:==
l By         Size       Pass         Fall     Vendor                       Performed - Specify                                 Used DW             7           7             0       i       Ei Visual / Configuration lNPP 311 Rev. 4               l C Dimensional             Approx. I] Tolerance
SUPPRESSOR,, HYDRAULIC SHOCK AND SWAY,4* BORE X 6" STROKE,02981333FN,200N,0 CK'd SAMPLE Duke /
                                ~
Inspectiort Examination, and Testing Procedures /'?andards By Size Pass Fall Vendor Performed - Specify Used DW 7
                                                            ~
7 0
C Goctrical:                                       l C Magnetic
i Ei Visual / Configuration lNPP 311 Rev. 4 l
                                                            ~                          O vea D No l C Weight
C Dimensional Approx.
                                            ~
I] Tolerance
C Pressure: l                                         l C Chem. Analysis:         l                                 Ei QA Condition: l1 l, C Physical Properties'         {                             Q Commercial Grade
~
(                                        _
C Goctrical:
Omer: l                                                 C Salvagec"'tepaired C Comments C Problems MAPPS PO35120 Calibrated Test, Examination, and inspection Equipment Used:
l
Instrument Type                                 Model Number                           Serial Number                     Calibration Due l
~
C Magnetic O vea D No l
~
C Weight C Pressure: l l
~
C Chem. Analysis:
l Ei QA Condition: l1 l, C Physical Properties'
{
Q Commercial Grade Omer: l C Salvagec"'tepaired
(
C Comments C Problems MAPPS PO35120 Calibrated Test, Examination, and inspection Equipment Used:
Instrument Type Model Number Serial Number Calibration Due l
l 1
l 1
I l
I l
i L Description of Problem                                                                  Sent To: l                                     l l
i Sent To: l l
Originator: l                                           l     Phone #:l                   l     FAX #:l                 l   Date: l             l A                       I Accepted By:                                                                                                   Date:     /C,f f(
L Description of Problem l
Originator: l l
Phone #:l l
FAX #:l l
Date: l l
A I
Accepted By:
Date:
/C,f f(
(Levej (1 Receiving inspector)
(Levej (1 Receiving inspector)
Final QA Approval:               j g                                                       Date:       <h-          O i
<h-O Final QA Approval:
j g
Date:
i


, MAR-27-98 FRi 09:30                   GRINNELL, Kl/ESi !MI'ING               PHA NU. 4U166b3Utd                         r. ut s.
, MAR-27-98 FRi 09:30 GRINNELL, Kl/ESi !MI'ING PHA NU. 4U166b3Utd
                                                                                                                      ~
: r. ut s.
4           )
~
        's e       CORPORATION                                                                   ENGINEERED PIPE SUPPORTS Precision Pak                     [QX $704-8[5-g]6g 160 Frenchtown Road North Kingstown. RI 02852 Duke Energy Corporation                                                               March 26,1998 McGuire Nuc. Sta.
4
)
's e CORPORATION ENGINEERED PIPE SUPPORTS Precision Pak
[QX $704-8[5-g]6g 160 Frenchtown Road North Kingstown. RI 02852 Duke Energy Corporation March 26,1998 McGuire Nuc. Sta.
13225 Hagers Ferry Rd.
13225 Hagers Ferry Rd.
Huntersville, NC 28078-8985 (18)
Huntersville, NC 28078-8985 (18)
Attn: Mr. Phil Stiles t5dSd.YNNNN$ Mids $jNINRM@k$6%@Alsh?Ad[ A[ESNy Gentlemen:
Attn: Mr. Phil Stiles t5dSd.YNNNN$ Mids $jNINRM@k$6%@Alsh?Ad[ A[ESNy Gentlemen:
1 Grinnell Corporation meets the McGuire Environmental Requirements specified in MCS-1206.00-04-0003. The additional testing performed by Grinnell to insure our compliance is documented in Report PE-9778-1 Rev. O, which was previously transmitted to Duke Power.
1 Grinnell Corporation meets the McGuire Environmental Requirements specified in MCS-1206.00-04-0003. The additional testing performed by Grinnell to insure our compliance is documented in Report PE-9778-1 Rev. O, which was previously transmitted to Duke Power.
I Grinnell's Procedure QAM-2.0 Rev. O outlines our handling of customer input                                               j documents such aspurchase orders and design specifications (see attached).
Grinnell's Procedure QAM-2.0 Rev. O outlines our handling of customer input j
l Report PE-9778-1 is the appropriate Technical Report to be transmitted to the NRR.                                                                       -
documents such aspurchase orders and design specifications (see attached).
Report PE-9778-1 is the appropriate Technical Report to be transmitted to the NRR.
Shouldyou have any questions or comments.....or needfurther information, please do not hesitate to contact me (401-886-3030).
Shouldyou have any questions or comments.....or needfurther information, please do not hesitate to contact me (401-886-3030).
Very truly yours, GRIN ELL CORPORATION t
Very truly yours, GRIN ELL CORPORATION t
WILLIAM . GOLINI Quality Assurance Manager WPG/m/Att.
WILLIAM. GOLINI Quality Assurance Manager WPG/m/Att.
SALES 4dARKETING                               TECHMCAL SERVICES                         ADMINISTRATION PHONE (404) 886 3116 FAK,(401) 8854470           PHONE (401) 886 301$ FAX (401) 88&3010   PHONE (401) Sarrasco FAX (401) 666 3010 A tijcc INTERNATIONAL LTD. COMPANY}}
SALES 4dARKETING TECHMCAL SERVICES ADMINISTRATION PHONE (404) 886 3116 FAK,(401) 8854470 PHONE (401) 886 301$ FAX (401) 88&3010 PHONE (401) Sarrasco FAX (401) 666 3010 A tijcc INTERNATIONAL LTD. COMPANY}}

Latest revision as of 21:10, 3 December 2024

Steam Line Break Qualification Evaluation
ML20216A852
Person / Time
Site: McGuire, Mcguire  Duke Energy icon.png
Issue date: 08/01/1985
From: Orgera E, Queenan R
BABCOCK & WILCOX CO.
To:
Shared Package
ML20216A845 List:
References
51-1158880, 51-1158880-00, NUDOCS 9804130306
Download: ML20216A852 (15)


Text

~

Attachment Page:

3 4

BABCO'CK & WILCOX a McDermott company ENGINEERING INFORMATION RECORD

,- I

\\

Safety Related:

DOCUMENT IDENTFIER 51 - 1158880-00 YES O No O TITLE Steam Line Break Qualification Evaluation PREPARED BY b L "

0 ATE j

R.M. GoEEww suitm*Y NE REVIEWED BY A

DATE 8-I~

~

/

REMARKS:

This work, prepared for Florida Power, is a qualitative assessment of the vulnerability of in-containment equipment to a steam line break.

It is not supported by any testing or analysis specifically performed for the environmental conditions at Crystal River 3.

(

(

c.

NLa 1 54 (l

9804130306 980403 DR ADOCK 0500 9

s-

I Attachment Page:

4 0

+~

1.0

SUMMARY

l The purpose of this document is to assemble the data available at B&W regarding the comparative severity of steam line breaks (SLBs) and Loss of Coolant Accidents (LOCAs) on instrumentation and control equipment and to come to some, conclusions.

The conclusions reached are that the brief high vapor temperature peak during a SLB does not affect equipment performance more severely than the long high vapor temperature soak associated with LOCAs.

In fact, the peak is so brief that most equipment will not be affected by it at all.

2. 0 BACKGROUND _

In 1970, the pipe break accident analysis that showed the highest containment temperature was a LOCA, reaching over 300 degrees F for several hours.

However, in the mid-1970s, the effects of SLBs on instrumentation and control equipment became an NRC concern.

At that

time, the Containment Systems Branch issued Branch 4

Technical Position CSB 6-1 Rev 1,

enti tl ed " Minimum

('-

Containment Pressure Model for PWR ECCS Performance Evaluation."

This new model showed that during the first several minutes of a SLB, superheated steam was discharged and codfainment peak temperatures rose to near 500 degrees F.

Although CSB 6-1,was intended for use in anal yses of containment pressure integrity, the model was soon used to determine equipment qualification service conditions per the 1978 "CBS Interim Evaluation Model - Environmental Qualification for Main Steam Line Break Inside Containment (operation license applicants only)."

The model in IE Information Notice No. 84-90 is essentially the same.

3.0 TECHNICAL DISCUSSION Figure i shows a typical LOCA and SLB curve.

The SLB curve ri ses above the LOCA curve at 10 seconds into the event, and drops below at 150 seconds.

The LOCA curve has a long time dwell at over 250 degrees, while the SLB curve dwell is at 175 degrees.

It is clear from this that the only time in which the effects of a SLB on instrumentation may be more severe than a

LOCA is lt Lfi91

'U2 i(.

PREPARED By OATE ensu

Attachlitellt Pace:

5 l-

'n : o3.<.y..

l-3; a sq+.<.,n..::Q b

Babcock.&'Wilcor.

,, jdl;ijfMs;

. ".=*5.. m.....u;a.y))... :.: i.9[b; '..si0n58880:00N.

-(.

,ff. '

iss /fi*r&E.

h.i?@iW...... %,,,,2?-

~

N'-

LOCA AND SLB Temperature Profiles 450 -

SLB 400 -

350 -

h.

I.

L>.

ee 300 -

  • e O

LOCA

~-

250 -

200 -

150 -

100 0

2 4

6 Seconds, power of ten

" Figure 1" (91

'M PREPARED BY CATE II

[ [ out I'l-ff 3

aEviewc0 ev nicc,,o

i Attachment Page:

6

.i

. (3 I. :.e.

.u.: -

t.. Exn i,rr 1158880-00

... 3.v.,

9 Fyh,f.fMNjih,f.,.:}h,Thd

,e r:

'r between 10 and 175 seconds.

After that, the SLB vapor temperature cannot raise the equipment temperature to LOCA l evel s.

3.1 FINITE ELEMENT ANALYSIS B&W has addressed this problem in several different ways for different equipment.

When pressure transmitter qualification to the new SLB levels was requested by a customer in 1977, B&W undertook to show that the LOCA l

actually raised the temperature of the transmitter internals more than did a

SLB.

This was deemed reasonable, since the quick temperature peak of the SLB i

didn't allow much time f or heat transf er.

A two dimensional finite element thermal model' of a typical transmitter was developed, as shown in Figure 2.

Thicknesses, volumes, and exposed surface areas were preserved as closely as possible.

The major assumptions of the modeling were:

(a) the external electrical and mechanical connections were neglected; (b) thermal contact between mating surfaces was perfect, maximizing heat transfer into the transmi tter; a n'd, (c) natural k(.

convection and radiation heat transfer coefficients

)

within the transmitter air gaps were realistic best estimates.

It was decided that the circuit board components were the most sensitive to heat, so the entire circuit board.Aas modeled as a lumped mass and its temperature determined.

Rules for determining heat transfer coefficients were developed.

For the

SLD, two time periods were considered.

Up to 115 seconds, a forced convection heat transfer coefficient was used based on air properties evaluated at the steam temperatures.

Past 115 seconds, the Uchida correlation was used with a 1.2 mul tiplier l

for conservatism.

The LOCA analysis used the Tagami correlation for the 40 second blowdown period; the Uchida correlation with a

1.2 multiplier past 115 seconds; and a linear decrease from the final Tagami i

value to the first Uchida value between 40 and 115 seconds.

l The model was then subjected analytically to both the LOCA and the SLB temperature / pressure models.

Results showed that the internal temperatures were as expected, h

OUS om #'/tr-entunto ev fM..

~-w i

Attachinelit Page:

7 m

.c i.3.w..,,.

I + t?' =

l 5

s.

.Qj;. ?ljl[{l'f'] '

uM55TG(($

0f,g& M$$

f P.

. d cc.. y: a 2 ;:

l i

l z

d l

l

=

2.500" 2.077" 2

1. 722 "--+-

1.590" -

438"~

d' JL di dL 1.11" I

l 2.61"

(...

i

~

,.I l

1.

_y i

l 3.24"

.500"3:

l 3.74" I

.k 4.6" d

I l

r f

{']t;) j ty),

(..

" Figure 2 - Typical Transmitter Finite Element Model" PREPAnED BY_

c i

Attachlttent Page:

8

(. M{} ".8". W L ' E ; E m d d @jf_.p@j g$ h y g. 4

{ g ns ge. li.g 5g MsWpg

-+

. i..:.: r

..t.

wi th the SLB always less Figure 3 shows the than the LOCA temperature.

expected temperature circuit board element in the thermal model.

For response for a example, during a LOCA the circuitry reaches about 300 degrees peak temperature, while the peak during a SLB was only 230 degrees.

At this

time, the CSB Interim Evaluation Model was issued.

The guidelines in the model conservati ve, approach, using the Tagami and Uchida suggested a more correlations with a

multiplier of 4.

At the same

time, the customer decided to move the affected transmitters outside containment to avoid the entire qualification issue.

No formal analysis was performed with the greater heat transfer coefficients, but no change in the relative temperatures was expected.

course, the absolute values wpuld both rise.

Of 3.2 ELECTRICAL CONNECTION BOX ANALYSIS In

1980, B&W was again approached by a customer asked to work on SLB equipment qualification.

A and specific piece of equipment had a period of very short required operability during an SLB; unf ortunatel y, the connector used h5d**not been tested B&W un'dertook to show t h at thefor operation during an SLB.

steel cover plate would 0.25 inch thick SLB temperature rise for protect the connector from the and connector the reqpired-time.

The plate were modeled as one dimensional elements in perfect thermal contac,t.

To avoid questions about the proper heat transfer correlations to be used in determining the cover temperature, the cover temperature was arbitrarily stepped from 140 to 440 degrees at the start of the SLB.

The cover was allowed to radiate to the air space inside the connection box.

Ths connector was not allowed to lose heat at all, either to the air or to the connecting cables.

A thin fin assumption was used to solve for the temperature of the connector at 90 seconds.

The results showed that in 90 seconds, the connector would only reach 154 degrees, an increase of 14 degrees over the original temperature.

Further, the air temperature would only increase about I degree; cl earl y, l

i if the connector and the cover were not in contact, the OFl 59 PGEPAAED By I

D A TT

/j-1

f.

Attachntent Page:

9

?

. r?1MsW#sN;?% y " s;izYBias@gy, sabcock4Awndex@R.. tut @gdigyyniffy

('

$- % G *pj d h e p

s je 3 gi.W$gf Q.

g F

W

  • '4..".'."T,,M:=..;i..B,.c.w.c 2P

. ?.,.. n...

-wm MN o:

. e.c 1

t 1

1 l

l Temperature Response Transmitter Doctronics 400--

380 -

360 -

340 -

320 -

300 -

2hlO -

g

(

3 260 -

t a.

240 -

3 LOCA 220 -

200 -

a

,g ll 130 1

I 160 -

SLB 140 120 ~

i 9

100 0

0.4 0.5 1.2 1.8 2

2.4 2.5 3.2 Seconds, power of ten

" Figure 3"

$O91 6D

(

u -

J l

8. l,'

Mid om 84da-

\\

......n..

Attachluent Page:

10

..w.,...e..~,..

~

,.r,.

connector would not heat up at all in the first 90 seconds.

This implies that any ins,trumentation with a steel cover at least 0.25 inches thick would not be affected by the SLB peak temperature, and that the LOCA temperatures would be an adequate qualification profile.

3.3 MOTOR OPERATOR ANALYSIS In 1981, B&W was requested to apply the techniques used on the previ ous transmitter. work to valve operators.

Again, a finite element thermal model was developed.

During blowdown,"

the condensing heat transfer coefficient used was the greater of 4 times the Uchida correlation or 4

times the Tagami correlation. After blowdown a forced convective correlation based on the product of the Prandtl number raised to a power and the Reynolds number raised to a - power and a

constant to determine the Nusselt number was used.

The powers and constants differ depending.upon whether the flow is turbulent or laminar.

This forced convective correlation was used after b 1_owdown until the square

- of the Reynolds number equaled the Grashof number, 7 g indicating the onset of natural convection.

The natural s

convection correl ati on was based on the product of a constant and the Rayleigh number raised to a power to determine the Nusselt number.

In this case, additional work was performed to benchmark the model against the me,asured thermal response during qualification testing to LOCA levels.

After the effects of condensation were added to the model, good agreement with the test results was obtained.

The results showed that the temperatures of the internal components did not exceed the LOCA temperatures; the peak for the internals was only 270 degrees, as shown in Figure 4.

j 3.4 INDUSTRY SURVEY To confirm these

results, B&W performed an industr'y survey to find out if similar analyses had been done el sewhere.

An analysis was found in the TMI-2 FSAR (Figure 15B-10) showing the results of such an analysis.

The analysis was done with one-dimensional bk1 61 adu.n %

on -

f Attachment Page:

11 w.pigsg.r

,m: m....r...

.m..,,sa.,.4s.s. i. m;a.. Babcock:'AWiliin A(fu E-]Mf;f

.@yyd

(

_, m ssaso ea An.dhm ra

,,. s a

..,m...

..m RESPONSE TO SLB l

i Motor Operator 500-i s_

450 -

3 SLB 400 -

350 -

L

(< '

a

\\ >

e g

300 -

a e

O 250 -

'~

{

OPERATOR r.~

i Il4TEiliiALS i

200 -

150 -

~

1 100 0

0.4 0.8 1.2 1.6 2

2.4 2.8 Seconds, power of ten

" Figure 4"

'th.... 1 6;?

PAEPARED Oy OATE f

P A. A

1 e

Attacluttelit F-Page:

12

..a.c, ii.. 6,'g. 7*s qv,.gs.

z i?/?/jyj.sji,s..

c...

BabCOCkl&'., wilco'jdp.,y.

5..
  • s 33-pg.y.<.-.d O.$Y. N!@wh.is,E[d[nw%bYc.,iNa/4E!thM.5

$5.

jfA:i E.@ fbi

,l (,i h's E

6 _

m_.-r,.

I i

l codes, 30 foot per second steam flows, and conservative i

assumptions of heat transfer coefficients.

Containment vapor temperatures reached 440 degrees; as expected, the temperatures inside. a pressure sensor enclosure peaked at about the time the SLB temperature leveled off, both at a

value of 275 degrees.

This analysis modeled electrical penetrati ons,

instrument enclosures, and cable jackets with the same results.

e 4

e h6

ki

+

1 i

l

(

i i

i

k., 1 b.b M oirr k/r enceinco or

((#

s'-/ -/5-mmmo av

o. y

,,ct ~o iq _

Attaclun mt Page:

13

  • g. '

.; ; [*' [:Q 4Q3 ;,

h Babcock'&.WHcome, g,;"'+p,.

.a. gf r.

ni c;;

un

)

e

$O.

gg

(

6 _ 158880-0& M. g? n d O M ll5gpaggw.g

-_,. 'r

.. ~.,. ",,...c.,2 !)-....rf.$O,,:.. Nf?';j boci s

h

.v aa..,

s.. e y m _-

+

..~--.,,.=

,._ w.

4O CONCLUE'ONS The result of the above mentioned work is as follows: the brief temperature spike due to super-heated steam following a Steam Line Break does not affect the internals of containment mounted equipment significantly.

In overy case

examined, the long duratfon temperatures associated with a LOCA were more severe to equipment than the higher SLB spike.

Therefore, equipment qualified to withstand LOCA environments for a given period of time should withstand SLB environments for at least as long a period of time.

No further testing should be required.

5.0 REFERENCES

1.

Steam Line Break Thermal Analysis of N1BQ and N1KS BMCO Pressure Transmitters, dated November 7, 1978, ARC Letter Report LR:78:6311-01:1.

2.

SLB Qualification of NI Detector Connector, Dated April 14, 1980, B&W Calculation 32-1105986-01.

3.

Results of

.Limitorque Ther* mal Anal ysi s,

dated

~

i November 30, 1981, ARC Letter Report LR: 81: 7580-04: 01.

4 w

k dW1 64 i

eacamato ev__

M o.rt Uh>-

[j//nur f-/-/r t1 arvinen av

,,. m,

1 1

0 O

I ATTACHMENT 3 1

1 1

i I

l I

i i

1 I

A % eh d 3 A Grinnell CORPORATION PIPE SUPPORT DIVISION 160 Frenchtown Road Precision Park North Kingstown. RI 02852 QA (401) 886-3030 STATEMENT OF COMPLI ANCE SEPTEMBER 24, 1996 DUKE POWER CO.

MCGUIRE SITE RECEIVING 13225 HAGERS FERRY RD.

HWY. 73

Reference:

P.O.

  1. MN-16154 Grinnell S.O. #41-24341-01 DUKE SPEC:OSS 0244.00-00-0001, Rev.2 MCS 1206.00-04-0C03, Rev.2 Item Nos./Part Nos.: 3/ 2004051AMDBN, FIG. 200, W/ Polycarbonate Reservoir We, Grinnell Corporation, Pipe Support Division, certify that the material supplied on the referenced order complies with the applicable requirements of ASME B31.1, the referenced purchase order and Duke Specification.

A marking code may be utilized to identify material specification, grada, class and heat treated condition.

See reverse side for mattiial identification codes.

l All materials were manufactured and/or supplied in accordance with the referenced purchase

order, the ASME approved Grinnell l

Corporation, Pipe Support

Division, Quality Assurance l

Program / Manual, Fourth Issue, Rev. 10, dated 3-15-96.

The provisions of 10CFR Part 21' apply to this order.

TEST REPORTS ATTACHED:

SN..

33791,33792,33793,33794, l

33795,33796,33797 DUKE POWER COMPANY O

RECORDS APPROVED l

D. v. Walsh/ -QA Manager aA REPAEsturatsvr

~

L nAr tlc-E-96

=. w l

A tllCO INTERNATIONAL LTD. COMPANY 101383 1

l l

1

e e

ReceivingInspection Report Form "Pr-3 n A "cv.

  • reoc, os 2 Purchase Order No.:

l MN16154 l

C NPP 315 Station: l MC l MEDB ID.: l 02981333FN l

UTC No.: l 851075 l

QA Shop No.: [ 0227 l

Vendor: lGRINNELL CORP l

Manufacturer: lGRINNELL CORP.

l Item No.

Quantity Part No.

Heat No.

Lot No.

Serial No.

l 3

l l

7 l

l200N l

l NA l

l NA l 133791,2,3,4,5,6,7 l

==

Description:==

SUPPRESSOR,, HYDRAULIC SHOCK AND SWAY,4* BORE X 6" STROKE,02981333FN,200N,0 CK'd SAMPLE Duke /

Inspectiort Examination, and Testing Procedures /'?andards By Size Pass Fall Vendor Performed - Specify Used DW 7

7 0

i Ei Visual / Configuration lNPP 311 Rev. 4 l

C Dimensional Approx.

I] Tolerance

~

C Goctrical:

l

~

C Magnetic O vea D No l

~

C Weight C Pressure: l l

~

C Chem. Analysis:

l Ei QA Condition: l1 l, C Physical Properties'

{

Q Commercial Grade Omer: l C Salvagec"'tepaired

(

C Comments C Problems MAPPS PO35120 Calibrated Test, Examination, and inspection Equipment Used:

Instrument Type Model Number Serial Number Calibration Due l

l 1

I l

i Sent To: l l

L Description of Problem l

Originator: l l

Phone #:l l

FAX #:l l

Date: l l

A I

Accepted By:

Date:

/C,f f(

(Levej (1 Receiving inspector)

<h-O Final QA Approval:

j g

Date:

i

, MAR-27-98 FRi 09:30 GRINNELL, Kl/ESi !MI'ING PHA NU. 4U166b3Utd

r. ut s.

~

4

)

's e CORPORATION ENGINEERED PIPE SUPPORTS Precision Pak

[QX $704-8[5-g]6g 160 Frenchtown Road North Kingstown. RI 02852 Duke Energy Corporation March 26,1998 McGuire Nuc. Sta.

13225 Hagers Ferry Rd.

Huntersville, NC 28078-8985 (18)

Attn: Mr. Phil Stiles t5dSd.YNNNN$ Mids $jNINRM@k$6%@Alsh?Ad[ A[ESNy Gentlemen:

1 Grinnell Corporation meets the McGuire Environmental Requirements specified in MCS-1206.00-04-0003. The additional testing performed by Grinnell to insure our compliance is documented in Report PE-9778-1 Rev. O, which was previously transmitted to Duke Power.

Grinnell's Procedure QAM-2.0 Rev. O outlines our handling of customer input j

documents such aspurchase orders and design specifications (see attached).

Report PE-9778-1 is the appropriate Technical Report to be transmitted to the NRR.

Shouldyou have any questions or comments.....or needfurther information, please do not hesitate to contact me (401-886-3030).

Very truly yours, GRIN ELL CORPORATION t

WILLIAM. GOLINI Quality Assurance Manager WPG/m/Att.

SALES 4dARKETING TECHMCAL SERVICES ADMINISTRATION PHONE (404) 886 3116 FAK,(401) 8854470 PHONE (401) 886 301$ FAX (401) 88&3010 PHONE (401) Sarrasco FAX (401) 666 3010 A tijcc INTERNATIONAL LTD. COMPANY