ML060860078: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(StriderTol Bot change)
 
(3 intermediate revisions by the same user not shown)
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:L-2006-066 ATTACHMENT 3 CALCULATION PTN-BFJR-06-001 PHASE 3 SDP FOR TURKEY POINT "B" AFW PUMP FAILURE 5  
{{#Wiki_filter:L-2006-066 ATTACHMENT 3 CALCULATION PTN-BFJR-06-001 PHASE 3 SDP FOR TURKEY POINT "B" AFW PUMP FAILURE 5
:Page 1 of 30 CALCULATION COVER SHEET Calculation No: PTN-BFJR-06-001 Title: PHASE 3 SDP FOR TURKEY POINT B AFW PUMP FAILURE., A 0 INITIAL ISSUE -ae 1 7,6WLg~ 2#N. Descriptlon BY 7 Date _'dhk/Ver I fe atelDate REVISIONS PTN-BFJR-06--01 Rev 0 PTN AFWP B SDP Calc.doc PTN-BFJR-06-001 Rev. 0 Page 2 of 30 LIST OF EFFECTIVE PAGES Calculation No: PTN-BFJR-06-001 REV. 0 Title: PHASE 3 SDP FOR TURKEY POINT B AFW PUMP FAILURE.PAGE SECTION REV PAGE SECTION REV PAGE SECTION REV 1 COVER SHEET 0 2 LIST OF EF PG 0 3 TABLE OF CONTS 0 4 1.0 0 4 2.0 0 °4 3.0 0 5 4.0 0 _ __7 5.0 0 15 6.0 0 15 7.0 0 18 Attachment 1 0 23 Attachment 2 _ _25 _ Attachment 3 0 28 Attachment 4 0 29 _ Attachment 5 0 30 Attachment 6 0 PTN-BFJR-06-031 Rev 0 PTN AFWP B SDP CalcFinal.doc PTN-BFJR-06-001 Rev. 0 Page 3 of 30 TABLE OF CONTENTS Calculation No: PTN-BFJR-06-001 REV. 0 ORMI mm 1.0 PURPOSE/SCOPE  
 
.....................
:Page 1 of 30 CALCULATION COVER SHEET Calculation No:           PTN-BFJR-06-001
4  
 
==Title:==
PHASE 3 SDP FOR TURKEY POINT B AFW PUMP FAILURE
                          .,                                 A 1 7,6WLg~         2#
0      INITIAL ISSUE                    -ae Descriptlon                     BY     7                   fe Date _'dhk/Ver I atelDate N.
REVISIONS PTN-BFJR-06--01 Rev 0 PTN AFWP BSDP Calc.doc
 
PTN-BFJR-06-001 Rev. 0 Page 2 of 30 LIST OF EFFECTIVE PAGES Calculation No:           PTN-BFJR-06-001                                   REV. 0
 
==Title:==
PHASE 3 SDP FOR TURKEY POINT B AFW PUMP FAILURE.
PAGE         SECTION         REV     PAGE   SECTION   REV PAGE SECTION   REV 1       COVER SHEET         0 2       LIST OF EF PG       0 3       TABLE OF CONTS       0 4               1.0           0 4             2.0           0° 4             3.0             0 5             4.0             0                           _ __
7              5.0             0 15             6.0           0 15             7.0           0 18         Attachment 1         0 23         Attachment 2             _     _
25    _    Attachment 3         0 28         Attachment 4         0 29     _   Attachment 5         0 30         Attachment 6         0 PTN-BFJR-06-031 Rev 0 PTN AFWP B SDP CalcFinal.doc
 
PTN-BFJR-06-001 Rev. 0 Page 3 of 30 TABLE OF CONTENTS Calculation No:             PTN-BFJR-06-001                                                         REV. 0 ORMI                     mm 1.0 PURPOSE/SCOPE .....................                                                                           4


==2.0 REFERENCES==
==2.0 REFERENCES==
.....................                                                                              4 3.0 METHODOLOGY .....................                                                                              4 4.0 ASSUMPTIONSIBASES .....................                                                                        5 5.0 CALCULATION .......................                                                                            7 6.0 CALCULATIONAL FILES ....................                                                                    is 7.0 RESULTS                  .....................                                                                15 ATTACHMENT 1: SENSITIVITY CASE, USING MSPI DATA, WITH AFW B FAILURE TO RUN SET TO 1.0 .....................                                                                                        18 ATTACHME:NT 2, SENSITIVITY STUDY: BASE CASE, USING MSPI DATA, NOMINAL AFW B FAILURE TO RUN ...........                            .                                                          23 ATTACHMENT 3: CLARIFICATION OF LOSS OF DC 3A OPERATOR RECOVERY ACTION ............. 25 ATTACHMENT 4:


.....................
==SUMMARY==
4 3.0 METHODOLOGY
OF TURKEY POINT PLANT RESPONSE TO LOSS OF AFW 1 HOUR AFTER A LOSS OF FEEDWATER ..........................................................................             28 ATTACHMENT 5:  
.....................
4 4.0 ASSUMPTIONSIBASES
.....................
5 5.0 CALCULATION
.......................
7 6.0 CALCULATIONAL FILES ....................
is 7.0 RESULTS .....................
15 ATTACHMENT 1: SENSITIVITY CASE, USING MSPI DATA, WITH AFW B FAILURE TO RUN SET TO 1.0 .....................
18 ATTACHME:NT 2, SENSITIVITY STUDY: BASE CASE, USING MSPI DATA, NOMINAL AFW B FAILURE TO RUN ...........
.23 ATTACHMENT 3: CLARIFICATION OF LOSS OF DC 3A OPERATOR RECOVERY ACTION .............
25 ATTACHMENT 4:  


==SUMMARY==
==SUMMARY==
OF TURKEY POINT PLANT RESPONSE TO LOSS OF AFW 1 HOUR AFTER A LOSS OF FEEDWATER
OF NRC PHASE 3 SDP RESULTS ....................................................... 29 ATTACHMENT 6: SPAR-H PERFORMANCE SHAPING FACTORS FOR EXECUTION ....................... 30 LIST OF TABLES i            MMEMM Table  (1):  AFW Pump B Surveillance Data.                                                                         5 Table  (2):  Top 10 cutsets from SPAR Model for LODC3A.                                                            9 Table  (3):  List of Key HEPs and Performance shaping Factors.                                                  10 Table  (4):  Top 10 cutsets from SPAR Model for LOCHS.                                                          11 Table  (5):  Top 10 cutsets from SPAR Model for LOMFW.                                                          13 Table  (6): Best Estimate Delta CDF.                                                                            16 Table  (7):  Summary of Delta CDF Sensitivity Study.                                                            16 PTN-BFJR-06-001 Rev 0 PTN AFWP B SDP CaicFinal.doc
..........................................................................
28 ATTACHMENT 5:  


==SUMMARY==
PTN-BFJR-6001 Rev. 0 Page 4 of 30 1.0 PURPOSEISCOPE This calculation documents the methodology and input used to support a response to the NRC phase 3 SDP (Ref. 1) associated with B AFW pump failure identified in a test run on November 7, 2005. During IST testing 11/7/05, the B AFW pump P28 exhibited high vibration and temperatures at the inboard journal bearing location inspection point (Reference 4). The reading was documented as 0.8 in/sec. On 11/8/05 the AFW pump was disassembled for inspection. The initial inspection included disassembling the coupling and pump inboard bearing. The results of this inspection found signs of uneven tooth wear on the pump coupling and evidence of grease caking.
OF NRC PHASE 3 SDP RESULTS .......................................................
Inspection of the inboard journal bearing found that the bearing was installed incorrectly. The bearing was installed 90 degrees from its correct orientation. This incorrect installation resulted in inadequate lubrication to the bearing and caused flaking of the sleeve bearing babbit.
29 ATTACHMENT 6: SPAR-H PERFORMANCE SHAPING FACTORS FOR EXECUTION
.......................
30 LIST OF TABLES i MMEMM Table (1): AFW Pump B Surveillance Data. 5 Table (2): Top 10 cutsets from SPAR Model for LODC3A. 9 Table (3): List of Key HEPs and Performance shaping Factors. 10 Table (4): Top 10 cutsets from SPAR Model for LOCHS. 11 Table (5): Top 10 cutsets from SPAR Model for LOMFW. 13 Table (6): Best Estimate Delta CDF. 16 Table (7): Summary of Delta CDF Sensitivity Study. 16 PTN-BFJR-06-001 Rev 0 PTN AFWP B SDP CaicFinal.doc PTN-BFJR-6001 Rev. 0 Page 4 of 30 1.0 PURPOSEISCOPE This calculation documents the methodology and input used to support a response to the NRC phase 3 SDP (Ref. 1) associated with B AFW pump failure identified in a test run on November 7, 2005. During IST testing 11/7/05, the B AFW pump P28 exhibited high vibration and temperatures at the inboard journal bearing location inspection point (Reference 4). The reading was documented as 0.8 in/sec. On 11/8/05 the AFW pump was disassembled for inspection.
The initial inspection included disassembling the coupling and pump inboard bearing. The results of this inspection found signs of uneven tooth wear on the pump coupling and evidence of grease caking.Inspection of the inboard journal bearing found that the bearing was installed incorrectly.
The bearing was installed 90 degrees from its correct orientation.
This incorrect installation resulted in inadequate lubrication to the bearing and caused flaking of the sleeve bearing babbit.


==2.0 REFERENCES==
==2.0 REFERENCES==
: 1. Turkey Point Nuclear Plant Integrated Inspection Report , 05000250/2005005 and 05000251/2005005 Preliminary White Finding, ; January 27, 2005.2. NURG/CR-6883, The SPAR-H Human Reliability Analysis Method, 8/2005.3. Emails from Glen Blinde 12/28/2005, Re: PTN AFW SDP issue success criteria need;2/16/2006, Re: Questions on 858 & AFW MAAP runs.4. CR 2005-30750 (High Vibrations on the P28 AFW Pump -Extent of Condition).
: 1. Turkey Point Nuclear Plant Integrated Inspection Report , 05000250/2005005 and 05000251/2005005 Preliminary White Finding, ; January 27, 2005.
: 5. NEI-99-02 Appendix F, "Methodologies for Computing The Unavailability Index, The Unreliability Index and Component Performance Limits", Revision 4.6. PTN Change Form PTN-C-06-001, February, 2006.7. PTN-BFJR-00-001, "PTN PSA Model Update," FPL-RRAG, Revision 5, 6/24/04.8. SPAR Model for Turkey Point Units 3 and 4, August 2005, version 9/30/2005.
: 2. NURG/CR-6883, The SPAR-H Human Reliability Analysis Method, 8/2005.
: 3. Emails from Glen Blinde 12/28/2005, Re: PTN AFW SDP issue success criteria need; 2/16/2006, Re: Questions on 858 & AFW MAAP runs.
: 4. CR 2005-30750 (High Vibrations on the P28 AFW Pump - Extent of Condition).
: 5. NEI-99-02 Appendix F, "Methodologies for Computing The Unavailability Index, The Unreliability Index and Component Performance Limits", Revision 4.
: 6. PTN Change Form PTN-C-06-001, February, 2006.
: 7. PTN-BFJR-00-001, "PTN PSA Model Update," FPL-RRAG, Revision 5, 6/24/04.
: 8. SPAR Model for Turkey Point Units 3 and 4, August 2005, version 9/30/2005.
3.0 METHODOLOGY Because the degradation of B AFW pump is time-dependent, its safety significance is assessed by including the following factors:
: 1. Based on the test data and operating experience of the B AFW pump, .the B AFW pump woL Id run at least one hour on or before October 30, 2005. Afterwards, the performance of B AFW pump is not determined, and is conservatively assumed to fail within the first hour.
: 2. If B AFW pump runs for an hour and then fails, the decay heat is significantly lower, allowing more time for operators to take actions stipulated in the EOP.
: 3. The lower decay heat after one hour from hypothetical accidents also allows a less stringent success criterion for feed and bleed.
: 4. Credit for operator actions (e.g., certain offsite power recovery actions) not included in the orig'nal baseline PSA model, which were not important due to lower probability of the sequences, should be included for consistency.
PTN-BFJR-06-CO1 Rev 0 PTN AFWP BSDP CalcFinal.doc


==3.0 METHODOLOGY==
PTN-BFJR-M001 Rev. 0 Page 5 of 30
Because the degradation of B AFW pump is time-dependent, its safety significance is assessed by including the following factors: 1. Based on the test data and operating experience of the B AFW pump, .the B AFW pump woL Id run at least one hour on or before October 30, 2005. Afterwards, the performance of B AFW pump is not determined, and is conservatively assumed to fail within the first hour.2. If B AFW pump runs for an hour and then fails, the decay heat is significantly lower, allowing more time for operators to take actions stipulated in the EOP.3. The lower decay heat after one hour from hypothetical accidents also allows a less stringent success criterion for feed and bleed.4. Credit for operator actions (e.g., certain offsite power recovery actions) not included in the orig'nal baseline PSA model, which were not important due to lower probability of the sequences, should be included for consistency.
: 5. Usirg a mission time of 24 hours for 3 AFW pumps and 2 standby steam generator feed pumps overestimates the probability of selected sequences.
PTN-BFJR-06-CO1 Rev 0 PTN AFWP B SDP CalcFinal.doc PTN-BFJR-M001 Rev. 0 Page 5 of 30 5. Usirg a mission time of 24 hours for 3 AFW pumps and 2 standby steam generator feed pumps overestimates the probability of selected sequences.
The approach used in the Phase 3 SDP is to review the SPAR model (Reference 8), the Turkey Point PSA model (Reference 7), MSPI data base and insights obtained from the sensitivity studies to develop a scoping estimate of the risk impact.
The approach used in the Phase 3 SDP is to review the SPAR model (Reference 8), the Turkey Point PSA model (Reference 7), MSPI data base and insights obtained from the sensitivity studies to develop a scoping estimate of the risk impact.4.0 ASSUMPTIONS/BASES
4.0 ASSUMPTIONS/BASES
: 1. SPAR-H for Human Error Probability estimates are used for revising the HEPs for cases in which B AFW pump fails after 1 hour.2. Run times for B AFW pump collected from AFW system engineer indicate that the AFW pump was capable of running for more than one hour (see run time for 10/10/05).
: 1. SPAR-H for Human Error Probability estimates are used for revising the HEPs for cases in which B AFW pump fails after 1 hour.
The pump capability (residual runtime) given a demand would be increasingly longer looking back in time due to the progressively less wear when pump experienced fewer run hours. This is indicated in the table below per email from Joe Laduca 12/31/2005.
: 2. Run times for B AFW pump collected from AFW system engineer indicate that the AFW pump was capable of running for more than one hour (see run time for 10/10/05). The pump capability (residual runtime) given a demand would be increasingly longer looking back in time due to the progressively less wear when pump experienced fewer run hours. This is indicated in the table below per email from Joe Laduca 12/31/2005.
Table (1): AFW Pump B Surveillance Data. lSurveillance Runs plus Rx Reason (Procedure or Date Trips(hours)
Table (1): AFW Pump B Surveillance Data.                   l Surveillance Runs plus Rx               Reason (Procedure or Date           Trips(hours)                     Trip)       Residual runtime 1/3/2003             0.7             4-OSP-075.9                 54.83 1/6/2003             1.3             4-OSP-075.2                 54.13 C/6/2003             0.5             4-OSP-075.9                 52.83 G/7/2003             1.75             4-OSP-075.2                 52.33 1/8/2003           3.5             4-OSP-075.7                 50.58 1/9/2003             1.5             3-OSP-075.2                 47.08 9/10/2003             0.6             4-OSP-075.2                 45.58 9/12/2003             0.5             4-OSP-075.9                 44.98 10/13/2003             0.6             3-OSP-075.2                 44.48 11/4/2003             0.5             4-OSP-075.7                 43.88 11/10/2003             1.5             3-OSP-075.7                 43.38 12/8/2003             0.6             3-OSP-075.2                 41.88 12/9/2003             0.8             4-OSP-075.7                 41.28 1/5/2004             0.9             3-OSP-075.2                 40.48 1/5/2004             0.4             4-OSP-075.2                 39.58 1/30/2004               1               3-OSP-075.7                 39.18 2/2/2004             0.6             4-OSP-075.2                 38.18 3/2/2004             0.5             3-OSP-075.2                 37.58 3/4/2004             1.7             4-OSP-075.7                 37.08 3/29/2004             1.1             4-OSP-075.2                 35.38 3/29/2004             0.25             3-OSP-075.2                 34.28 4/26/2004             1.1             3-OSP-075.7                 34.03 5/14/2004             2.75             RxrTdpAFWAutoInitiation     32.93 PTN-BFJR-06-001 Rev 0 PTN AFWP B SDP CalcFinal.doc
Trip) Residual runtime 1/3/2003 0.7 4-OSP-075.9 54.83 1/6/2003 1.3 4-OSP-075.2 54.13 C/6/2003 0.5 4-OSP-075.9 52.83 G/7/2003 1.75 4-OSP-075.2 52.33 1/8/2003 3.5 4-OSP-075.7 50.58 1/9/2003 1.5 3-OSP-075.2 47.08 9/10/2003 0.6 4-OSP-075.2 45.58 9/12/2003 0.5 4-OSP-075.9 44.98 10/13/2003 0.6 3-OSP-075.2 44.48 11/4/2003 0.5 4-OSP-075.7 43.88 11/10/2003 1.5 3-OSP-075.7 43.38 12/8/2003 0.6 3-OSP-075.2 41.88 12/9/2003 0.8 4-OSP-075.7 41.28 1/5/2004 0.9 3-OSP-075.2 40.48 1/5/2004 0.4 4-OSP-075.2 39.58 1/30/2004 1 3-OSP-075.7 39.18 2/2/2004 0.6 4-OSP-075.2 38.18 3/2/2004 0.5 3-OSP-075.2 37.58 3/4/2004 1.7 4-OSP-075.7 37.08 3/29/2004 1.1 4-OSP-075.2 35.38 3/29/2004 0.25 3-OSP-075.2 34.28 4/26/2004 1.1 3-OSP-075.7 34.03 5/14/2004 2.75 RxrTdpAFWAutoInitiation 32.93 PTN-BFJR-06-001 Rev 0 PTN AFWP B SDP CalcFinal.doc PTN-BFJR-06-001 Rev. 0 Page 6 of 30 Table (1M: AFW Pumn B Surveillance Data.Surveillance Runs plus Rx Reason (Procedure or Date Trips(hours)
Trip) Residual runtime 5/24/2004 0.5 3-OSP-075.2 30.18 6/21/2004 0.5 3-OSP-075.2 29.68 6/21/2004 0.9 4-OSP-075.2 29.18 7/19/2004 1.7 3-OSP-075.7 28.28 7/20/2004 0.5 4-OSP-075.2 26.58 8/16/2004 0.4 3-OSP-075.2 26.08 9/13/2004 0.25 3-OSP-075.2 25.68 9/13/2004 0.5 4-OSP-075.2 25.43 10/11/2004 0.4 4-OSP-075.2 24.93_11/8/2004 0.9 4-OSP-075.2 24.53 11/12/2004 1.4 4-OSP-075.7 23.63 1211/2004 1.2 3-OSP-75.7 22.23 1 26/2004 1 4-OSP-075.2 21.03 12/14/2004 1.8 Rxr Trip AFW Auto Initiation 20.03 12/25/2004 1.1 RxrTrip.AFW Auto Initiation 18.23 12/28/2004


===0.9 RxrTripAFW===
PTN-BFJR-06-001 Rev. 0 Page 6 of 30 Table (1M: AFW Pumn B Surveillance Data.
Surveillance Runs plus Rx                  Reason (Procedure or Date          Trips(hours)                        Trip)            Residual runtime 5/24/2004              0.5              3-OSP-075.2                      30.18 6/21/2004              0.5              3-OSP-075.2                      29.68 6/21/2004              0.9              4-OSP-075.2                      29.18 7/19/2004              1.7              3-OSP-075.7                      28.28 7/20/2004              0.5              4-OSP-075.2                      26.58 8/16/2004              0.4              3-OSP-075.2                      26.08 9/13/2004            0.25              3-OSP-075.2                      25.68 9/13/2004              0.5              4-OSP-075.2                      25.43 10/11/2004              0.4              4-OSP-075.2                      24.93
_11/8/2004              0.9              4-OSP-075.2                      24.53 11/12/2004              1.4              4-OSP-075.7                      23.63 1211/2004              1.2              3-OSP-75.7                        22.23 1 26/2004              1                4-OSP-075.2                      21.03 12/14/2004              1.8              Rxr Trip AFW Auto Initiation      20.03 12/25/2004              1.1              RxrTrip.AFW Auto Initiation      18.23 12/28/2004              0.9              RxrTripAFW Auto Initiation        17.13 1/10/2005              0.9              4-OSP-075.2                      16.23 1/31/2005            1.33              4-OSP-075.7                      15.33 2/24/2005            1.05              4-OSP-075.2                      14.00 2/28/2005            0.43              4-OSP-075.2                      12.95 2/28/2005            0.52              3-OSP-075.2.                      12.52 2/28/2005              0.5              3-OSP-075.9                      12.00 3/22/2005            0.5                3-OSP-075.2                      11.50 3/22/2005              1.5              Rxr.Trp AFW Auto Initiation      11.00 4/.25/2005              0.4              3-OSP-075.2                        9.50 5/6/2005              0.3              3-OSP-075.2                        9.10 5/23/2005              0.5                3-OSP-075.2                        8.80 5/27/2005              0.2              .3-OSP-075.2                        8.30 6/25/2005              0.5              4-OSP-075.2                        8.10 6/25/2005              0.6    _          3-OSP-075.7                        7.60 6/27/2005              0.9                Rxr Trip AFW Auto Initiation      7.00 7/18/2005              .1                4-OSP-075.7                          6.1 7/20/2005              0.5                3-OSP-075.2                        5.1 8/15/2005              0.5              4-OSP-075.2                          4.6 9/12/2005              0.3              4-OSP-075.2                          4.1 10/10/2005              0.4              3-OSP-075.2                          3.8 10/10/2005              2.1              4-OSP-075.7                          3.4 10/31/2005              0.6              Rxr Trip AFW Auto Initiation        1.3
_._November  7 ran 0.7 hours
: 3. As a sensitivity study, the MSPI industry. reliability data as a new generic prior and the SPAR model failure data were used for AFW pumps failure to start and run.
PTN-BFJR-06-031 Rev 0 PTN AFWP B SDP CalcFinal.doc


Auto Initiation 17.13 1/10/2005 0.9 4-OSP-075.2 16.23 1/31/2005 1.33 4-OSP-075.7 15.33 2/24/2005 1.05 4-OSP-075.2 14.00 2/28/2005 0.43 4-OSP-075.2 12.95 2/28/2005 0.52 3-OSP-075.2.
PTN-BFJR-06-001 Rev. O Page 7 of 30 5.0 CALCULATION Based on the test data and operating experience of the BAFW pump, .the B AFW pump would run at least one hour at normal failure rate (thus for the first hour given any hypothetical accidents, there is no Delta CDF increase) on or before October 31, 2005. Afterwards, the performance of B AFW pump is not determined, and is conservatively assumed to fail.
12.52 2/28/2005 0.5 3-OSP-075.9 12.00 3/22/2005 0.5 3-OSP-075.2 11.50 3/22/2005 1.5 Rxr.Trp AFW Auto Initiation 11.00 4/.25/2005 0.4 3-OSP-075.2 9.50 5/6/2005 0.3 3-OSP-075.2 9.10 5/23/2005 0.5 3-OSP-075.2 8.80 5/27/2005 0.2 .3-OSP-075.2 8.30 6/25/2005 0.5 4-OSP-075.2 8.10 6/25/2005 0.6 _ 3-OSP-075.7 7.60 6/27/2005 0.9 Rxr Trip AFW Auto Initiation 7.00 7/18/2005
The risk impact of degraded B AFW pump is composed of two time windows, each with a different risk increase.
.1 4-OSP-075.7 6.1 7/20/2005 0.5 3-OSP-075.2 5.1 8/15/2005 0.5 4-OSP-075.2 4.6 9/12/2005 0.3 4-OSP-075.2 4.1 10/10/2005 0.4 3-OSP-075.2 3.8 10/10/2005 2.1 4-OSP-075.7 3.4 10/31/2005 0.6 Rxr Trip AFW Auto Initiation 1.3-._._November 7 ran 0.7 hours 3. As a sensitivity study, the MSPI industry.
Time Window 1:             Before October 30, 2005, B AFW pump Is assumed to fall one hour or longer after automatic actuation
reliability data as a new generic prior and the SPAR model failure data were used for AFW pumps failure to start and run.PTN-BFJR-06-031 Rev 0 PTN AFWP B SDP CalcFinal.doc PTN-BFJR-06-001 Rev. O Page 7 of 30 5.0 CALCULATION Based on the test data and operating experience of the B AFW pump, .the B AFW pump would run at least one hour at normal failure rate (thus for the first hour given any hypothetical accidents, there is no Delta CDF increase) on or before October 31, 2005. Afterwards, the performance of B AFW pump is not determined, and is conservatively assumed to fail.The risk impact of degraded B AFW pump is composed of two time windows, each with a different risk increase.Time Window 1: Before October 30, 2005, B AFW pump Is assumed to fall one hour or longer after automatic actuation 1. If B AFW pump runs for an hour and then fails, the decay heat is significantly lower, allowing more time for operators to take actions stipulated in the EOP.A scoping MAAP run and an analysis based on decay heat equation indicated that at least an additional hour would be available for execution (Reference 7). The Human Error Probabilities, based on the SPAR-H, for the performance shaping factor "Available Time", are adjusted from "just enough" to "nominal" due to much longer time and potentially less stress. Thus HEPs (see Attachment 6, which is excerpted from Reference  
: 1. If BAFW pump runs for an hour and then fails, the decay heat is significantly lower, allowing more time for operators to take actions stipulated inthe EOP.
: 2) would be reduced by a factor of 10 or more.2. The lower decay heat after one hour from hypothetical accidents also allows a less stringent success criterion for bleed and feed. Instead of 2 PORVs for bleed, either PORV opening is sufficient for the successful operation of bleed and feed. (see Attachment 4, which is excerpted from Reference 3, second and third cases)This reduces the contribution of the dominant sequences LDC3A, by a factor of 10 or more.The above factors are included in the Turkey Point SPAR model to estimate the delta CDF for the case where B AFW pump would fail after one hour of operation.
A scoping MAAP run and an analysis based on decay heat equation indicated that at least an additional hour would be available for execution (Reference 7). The Human Error Probabilities, based on the SPAR-H, for the performance shaping factor "Available Time",
Delta CDF is estimated to be approximately 3.2E-7 (a factor of 10 reduction from 3.2E-6NYr).
are adjusted from "just enough" to "nominal" due to much longer time and potentially less stress. Thus HEPs (see Attachment 6, which is excerpted from Reference 2) would be reduced by a factor of 10 or more.
Time Window 2: After October31, 2005, B AFW pump Is assumed to fall witin one hour of automatic actuation.
: 2. The lower decay heat after one hour from hypothetical accidents also allows a less stringent success criterion for bleed and feed. Instead of 2 PORVs for bleed, either PORV opening is sufficient for the successful operation of bleed and feed. (see Attachment 4, which is excerpted from Reference 3, second and third cases)
A review of the cutsets for loss of DC bus; indicates that if AFW fails within the first hour, those cutsets involving the stopping of the C pump are not valid, as the condition for it being failed due to deadheading is eliminated by B pump failing. The CDF is conservatively assumed to be 1.6 E-6/r (3.2E-6NYr, subtracted by 1.6E-6/Yr, a scoping elimination of the top cutest of loss of DC bus).The core damage frequency increase due to the degraded B AFW pump over a year is estimated to be: PTN-BFJR-0r6-O01 Rev 0 PTN AFWP B SDP CalcFinal.doc PTN-BFJR-0OO1 Rev. 0 Page 8 of 30 1.6E-6/Yr
This reduces the contribution of the dominant sequences LDC3A, by a factor of 10 or more.
The above factors are included in the Turkey Point SPAR model to estimate the delta CDF for the case where B AFW pump would fail after one hour of operation. Delta CDF is estimated to be approximately 3.2E-7 (a factor of 10 reduction from 3.2E-6NYr).
Time Window 2:           After October31, 2005, B AFW pump Is assumed to fall witin one hour of automatic actuation.
A review of the cutsets for loss of DC bus; indicates that if AFW fails within the first hour, those cutsets involving the stopping of the C pump are not valid, as the condition for it being failed due to deadheading is eliminated by B pump failing. The CDF is conservatively assumed to be 1.6 E-6/r (3.2E-6NYr, subtracted by 1.6E-6/Yr, a scoping elimination of the top cutest of loss of DC bus).
The core damage frequency increase due to the degraded B AFW pump over a year is estimated to be:
PTN-BFJR-0r6-O01 Rev 0 PTN AFWP B SDP CalcFinal.doc
 
PTN-BFJR-0OO1 Rev. 0 Page 8 of 30 1.6E-6/Yr
* 1/12 + 3.2E-7/Yr
* 1/12 + 3.2E-7/Yr
* 11/12 = 4.3E-7/Yr, which is less than 1.OE-6/Yr.
* 11/12 = 4.3E-7/Yr, which is less than 1.OE-6/Yr. The Delta CDF increase is considered not risk significant.
The Delta CDF increase is considered not risk significant.
There is still some margin in the estimated safety significance from the threshold of 1.OE-6/Yr, even if it is conservatively assumed that risk impact of the BAFW pump due to external events is as high as that due to internal events.
There is still some margin in the estimated safety significance from the threshold of 1.OE-6/Yr, even if it is conservatively assumed that risk impact of the B AFW pump due to external events is as high as that due to internal events.Other mitigating factors that may reduce the risk impact include: 1. Unit 3 and Unit 4 were shutdown to Mode 3 on October 24 because of grid instabilities due to Hurricane Wilma. Unit 3 was returned to full power operation on November 2. Unit 4 remained shutdown due to secondary chemistry problems.
Other mitigating factors that may reduce the risk impact include:
On October 31, the switchyard insulator salting caused loss of Unit 4 startup transformer and on November 1, the unit was placed in Mode 5. Following restoration of offsite power and resolution of chemistry problems, the unit was restarted on November 12 and returned to full power operation on November 14.2. Using a mission time of 24 hours for 3 AFW pumps and 2 standby steam generator feed pumps overestimates the probability of selected sequences.
: 1. Unit 3 and Unit 4 were shutdown to Mode 3 on October 24 because of grid instabilities due to Hurricane Wilma. Unit 3 was returned to full power operation on November 2. Unit 4 remained shutdown due to secondary chemistry problems. On October 31, the switchyard insulator salting caused loss of Unit 4 startup transformer and on November 1, the unit was placed in Mode 5. Following restoration of offsite power and resolution of chemistry problems, the unit was restarted on November 12 and returned to full power operation on November 14.
: 3. Manual actions stipulated in the plant procedures to recover failure of AFW pumps were not credited in the original baseline PSA model should be included to be consistent with NRC's SPAR model 4. The delta CDF for the time windows where B AFW pump was degraded, but could have run for longer than one hour, is lower than that for which B AFW pump was assumed to run for just one hour.SAPHIRE ,' and the latest Turkey Point model were used to understand the three dominant sequences contributing to the phase 3 SDP summarized in the NRC inspection report. The SPAR model was modified by incorporating the key modeling assumptions related to using SSGFW pump, with slightly higher delta CDF than that estimated in Reference 2 (see Attachment 5)Mitigating factor 1: For the case of B AFW pump failing within the first hour, the operator action to stop the weaker pump is not applicable, as the B AFW pump would fail before the deadheading of the weaker [pump becomes an issue.For the case when B AFW pump fails after running for one hour or more, the probability of dominant cutsets can be reduced by a factor of 10 or more, because: 1. The success criterion for feed and bleed is relaxed from two PORVs to one PORV.2. Recovery action to locally use AFW train A given loss of DC bus A is proceduralized and credited in the Turkey Point PSA model, with failure probability of 0.11 including the hardWare failure.PTN-BFJR-06-G)1 Rev 0 PTN AFWVP B SDP CalcFinal.doc PTN-BFJR--001 Rev. 0 Page 9 of 30 Table (2): Top 10 cutsets from SPAR Model for LODC3A.Cut %Cut No. % Total Set ProbJFrequency Basic Event Description Event Prob.1 93.79 93.79 1.750E-006 IE-LODC3A LOSS OF DC BUS 3A 2.500E-003 AFW-TDPC-AFW TDP-C WEAKER OF 5.000E-001 WEAKER THE TWO TRAIN 2 PUMPS (PSA)AFW-XHE-XM-OPERATOR FAILS TO TRIP 1.400E-003 TRIP1 AFW PUMP MFW-XHE-XL-OPERATOR FAILS TO 1.000E+000 TRIP RECOVER MFW 2 95.67 1.88 3.500E-008 IE-LODC3A LOSS OF DC BUS 3A 2.500E-003 AFW-TDP-FS-C AFW TDP C FAILS TO 7.OOOE-003 START MFW-XHE-XL-OPERATOR FAILS TO 2.000E-003 RESTORE RESTORE MFW (LODC3A-__ PSA)3 97.01 1.34 2.500E-008 IE-LODC3A LOSS OF DC BUS 3A 2.500E-003 AFW-TDP-TM-C AFW TDP C UNAVAILABLE 5.000E-003 DUE TO TEST AND MAINTENANCE MFW-XHE-XL-OPERATOR FAILS TO 2.000E-003 RESTORE RESTORE MFW (LODC3A -__ _ _ _ PSA)4 98.25 1.24 2.305E-008 IE-LODC3A LOSS OF DC BUS 3A 2.500E-003 AFW-TDP-CF-COMMON CAUSE FAILURE 4.610E-003 FRBC OF TDP B & C TO RUN MFW-XHE-XL-OPERATOR FAILS TO 2.000E-003 RESTORE RESTORE MFW (LODC3A -PSA)5 98.97 0.72 1.348E-008 IE-LODC3A LOSS OF DC BUS 3A 2.500E-003 AFW-TDP-CF-COMMON CAUSE FAILURE 2.696E-003 FRALL OF TURBINE DRIVEN PUMPS TO RUN MFW-XHE-XL-OPERATOR FAILS TO 2.000E-003 RESTORE RESTORE MFW (LODC3A -PSA)6 99.13 0.16 2.951E-009 IE-LODC3A LOSS OF DC BUS 3A 2.500E-003 AFW-TDP-FR-C AFW TDP C FAILS TO RUN 5.366E-003 AFW-XHE-XL-OPERATOR FAILS TO 1.100E-001 TDPA MANUALLY ALIGN TDP-A GIVEN LOSS OF DC-3A (PSA)MFW-XHE-XL-OPERATOR FAILS TO 2.000E-003 RESTORE RESTORE MFW (LODC3A -._ PSA)7 99.26 0.13 2.500E-009 IE-LODC3A LOSS OF DC BUS 3A 2.500E-003 AFW-CKV-CC-FAILURE OF FLOW TO SG- 1.000E-004 3012 3B THROUGH CHECK VALVE 3-012 AFW-XHE-XM-OPERATOR FAILS TO 1.OOOE-002 FLOW2 INCREASE AFW TRAIN 2 FLOW GIVEN ONE DISCH__ PATH FAILED PTN-BFJR-06-CO1 Rev 0 PTN AFWP B SDP CalcFinal.doc PTN-BFJR-06-001 Rev. 0 Page 10 of 30 Table (2): Top 10 cutsets from SPAR Model for LODC3A.Cut -%Cut No. % Total Set ProbiFrequency Basic Event Description Event Prob.MFW-XHE-XL-OPERATOR FAILS TO 1.000E+000 TRIP RECOVER MFW 8 99.39 0.13 2.500E-009 IE-LODC3A LOSS OF DC BUS 3A 2.500E-003 AFW-CKV-CC-FAILURE OF FLOW TO SG- 1.000E-004 3010 3A THROUGH CHECK VALVE 3-010 AFW-XHE-XM-OPERATOR FAILS TO 1.OOOE-002 FLOW2 INCREASE AFW TRAIN 2 FLOW GIVEN ONE DISCH PATH FAILED MFW-XHE-XL-OPERATOR FAILS TO 1.000E+000 TRIP RECOVER MFW 9 99.52 0.13 2.500E-009 IE-LODC3A LOSS OF DC BUS 3A 2.500E-003 AFW-CKV-CC-FAILURE OF FLOW TO SG- 1.OOOE-004 3014 3C THROUGH CHECK VALVE 3-014 AFW-XHE-XM-OPERATOR FAILS TO 1.OOOE-002 FLOW2 INCREASE AFW TRAIN 2 FLOW GIVEN ONE DISCH PATH FAILED MFW-XHE-XL-OPERATOR FAILS TO 1.OOOE+000 TRIP RECOVER MFW 10 99.63 0.11 2.134E-009 IE-LODC3A LOSS OF DC BUS 3A 2.500E-003 AFW-TDP-TM-AFW TRAIN 2 3.880E-003 TRAIN2 UNAVAILABLE DUE TO TEST AND MAINTENANCE (PSA)AFW-XHE-XL-OPERATOR FAILS TO 1.100E-001 TDPA MANUALLY ALIGN TDP-A GIVEN LOSS OF DC-3A (PSA)MFW-XHE-XL-OPERATOR FAILS TO 2.OOOE-003 RESTORE RESTORE MFW (LODC3A -PSA)For the case when B AFW pump fails after running for one hour or more, the HEPs are reduced by a factor of 10 because available time is nominal (See Attachment 6, the basis of SPAR-H for execution).
: 2. Using a mission time of 24 hours for 3 AFW pumps and 2 standby steam generator feed pumps overestimates the probability of selected sequences.
Table (3): Ust of Key HEPs and Performance shaping Factors.HRA Basic Event Event Description/Shaping Distribution Probability/
: 3. Manual actions stipulated in the plant procedures to recover failure of AFW pumps were not credited in the original baseline PSA model should be included to be consistent with NRC's SPAR model
InitialUMultiplier Name Factor
: 4. The delta CDF for the time windows where B AFW pump was degraded, but could have run for longer than one hour, is lower than that for which B AFW pump was assumed to run for just one hour.
* Type/PSF Percentage AFW-XHE-XMI-THRTL OPERATOR FAILS TO Constrained 1.OE-3 THROTTLE SG FCVs Noninformative Action is modeled. 1.0E-3 Available Time Nominal time 100% 1.00 Stress/Stressors Nominal 100% 1.00 Complexity Nominal 100% 1.00 Experience/Training Nominal 100% 1.00 Procedures Nominal 100% 1.00 Egonomics/HMI Nominal 100% 1.00 PTN-BFJR-06-CO1 Rev 0 PTN AFWP B SDP CalcFinal.doc PTN-BFJR-06-001 Rev. 0 Page 11 of 30 Table (3): Ust of Key HEPs and Performance shaping Factors.HRA Basic Event Event Description/Shaping Distribution Probability/
SAPHIRE ,' and the latest Turkey Point model were used to understand the three dominant sequences contributing to the phase 3 SDP summarized in the NRC inspection report. The SPAR model was modified by incorporating the key modeling assumptions related to using SSGFW pump, with slightly higher delta CDF than that estimated in Reference 2 (see Attachment 5)
Initial/Multiplier Name Factor TypeIPSF Percentage Fitness for Duty Nominal 100% 1.00 Work Processes Nominal 100% 1.00.Dependency is not modeled.SFP-XHE-XIM--SSGFP OPERATOR FAILS TO Constrained START AND ALIGN Noninformative STANDBY SG PUMP TRAINS Action is modeled. 1.OE-3 Available Time Nominal time 100% 1.00 Stress/Stressors Nominal 100% 1.00 Complexity Nominal 100% 1.00 Experience/Training Nominal 100% 1.00 Procedures Nominal 100% 1.00 Egonomics/HMI Nominal 100% 1.00 Fitness for Duty Nominal 100% 1.00 Work Processes Nominal 100% 1.00 Dependency is not modeled.HPI-XHE-XM-FB OPERATOR FAILS TO Constrained 2.OE-3 INITIATE FEED AND Noninformative BLEED COOLING Action is modeled. 1.OE-3 Available Time Nominal time 100% 1.00 Stress/Stressors High 100% 2.00 Complexity Nominal 100% 1.00 Experience/Training Nominal 100% 1.00 Procedures Nominal 100% 1.00 Egonomics/HMI Nominal 100% 1.00 Fitness for Duty Nominal 100% 1.00 Work Processes Nominal 100% 1.00 Dependency is not modeled.Table (4): Top 10 cutsets from SPAR Model for LOCHS.Cut % % Cut ProbJ No. Totsil Set Frequency Basic Event Description Event Prob.1 70.82 70.82 2.888E-007 IE-LOCHS LOSS OF CONDENSER HEAT SINK 9.000E-002 AFW-TDP-CF-COMMON CAUSE FAILURE OF 2.696E-003 FRALL TURBINE DRIVEN PUMPS TO RUN HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.OOOE-002 FEED AND BLEED COOLING SFP-XHE-XM-OPERATOR FAILS TO START AND 5.950E-002 SSGFP1 ALIGN STANDBY SG PUMP TRAINS (DE 2 73.80 2.98 1.213E-008 IE-LOCHS LOSS OF CONDENSER HEAT SINK 9.000E-002 AFW-TDP-CF-COMMON CAUSE FAILURE OF 2.696E-003
Mitigating factor 1: For the case of B AFW pump failing within the first hour, the operator action to stop the weaker pump is not applicable, as the B AFW pump would fail before the deadheading of the weaker [pump becomes an issue.
__ FRALL TURBINE DRIVEN PUMPS TO RUN PPR-SRV-CC-PORV 1 (PCV-456)
For the case when B AFW pump fails after running for one hour or more, the probability of dominant cutsets can be reduced by a factor of 10 or more, because:
FAILS TO OPEN 5.OOOE-003
: 1. The success criterion for feed and bleed is relaxed from two PORVs to one PORV.
_ 456 ON DEMAND PTN-BFJR-06-031 Rev 0 PTN AFWP B SDP CalcFinal.doc PTN-BFJR-06001 Rev. 0 Page 12 of 30 Table (4): To 10 cutsets from SPAR Model for LOCHS.Cut % % Cut ProbJ No. Totail Set Frequency Basic Event Description Event Prob.SFP-XHE-XM-OPERATOR FAILS TO START AND 1.000E-002 SSGFP ALIGN STANDBY SG PUMP TRAINS 3 76.78 2.98 1.213E-008 IE-LOCHS LOSS OF CONDENSER HEAT SINK 9.000E-002 AFW-TDP-CF-COMMON CAUSE FAILURE OF 2.696E-003 FRALL TURBINE DRIVEN PUMPS TO RUN PPR-SRV-CC-PORV 2 (PCV-455C)
: 2. Recovery action to locally use AFW train A given loss of DC bus A is proceduralized and credited in the Turkey Point PSA model, with failure probability of 0.11 including the hardWare failure.
FAILS TO 5.000E-003 455C OPEN ON DEMAND SFP-XHE-XM-OPERATOR FAILS TO START AND 1.OOOE-002 SSGFP ALIGN STANDBY SG PUMP TRAINS 4 78.07 1.29 5.248E-009 IE-LOCHS LOSS OF CONDENSER HEAT SINK 9.000E-002 AFW-TDP-FS-A AFW TDP A FAILS TO START 7.000E-003 AFW-TDP-FS-C AFW TDP C FAILS TO START 7.000E-003 HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.OOOE-002
PTN-BFJR-06-G)1 Rev 0 PTN AFWVP B SDP CalcFinal.doc
._ FEED AND BLEED COOLING SFP-XHE-XM-OPERATOR FAILS TO START AND 5.950E-002 SSGFP1 ALIGN STANDBY SG PUMP TRAINS (DE 5 79.26 1.19 4.853E-009 IE-LOCHS LOSS OF CONDENSER HEAT SINK 9.OOOE-002 AFW-TDP-CF-COMMON CAUSE FAILURE OF 2.696E-003 FRALL TURBINE DRIVEN PUMPS TO RUN HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.OOOE-002
 
__ FEED AND BLEED COOLING SFP-MOV-CC-FAILURE OF SSGFP DISCHARGE 1.000E-003
PTN-BFJR--001 Rev. 0 Page 9 of 30 Table (2): Top 10 cutsets from SPAR Model for LODC3A.
_ 3012 PATH VALVE 3-012 6 80.25 0.99 4.023E-009 IE-LOCHS LOSS OF CONDENSER HEAT SINK 9.000E-002 AFW-TDP-FR-A AFW TDP A FAILS TO RUN 5.366E-003 AFW-TDP-FS-C AFW TDP C FAILS TO START 7.OOOE-003 HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.OOOE-002
Cut             %Cut No.   % Total     Set     ProbJFrequency       Basic Event         Description           Event Prob.
__ FEED AND BLEED COOLING SFP-XHE-XM-OPERATOR FAILS TO START AND 5.950E-002 SSGFP1 ALIGN STANDBY SG PUMP TRAINS (DE 7 81.24 0.99 4.023E-009 IE-LOCHS LOSS OF CONDENSER HEAT SINK 9.000E-002 AFW-TDP-FR-C AFW TDP C FAILS TO RUN 5.366E-003 AFW-TDP-FS-A AFW TDP A FAILS TO START 7.000E-003 HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.0002-002 FEED AND BLEED COOLING SFP-XHE-XM-OPERATOR FAILS TO START AND 5.950E-002 SSGFP1 ALIGN STANDBY SG PUMP__ TRAINS (DE 8 82.16 0.92 3.749E-009 IE-LOCHS LOSS OF CONDENSER HEAT SINK 9.OOOE-002 AFW-TDP-FS-A AFW TDP A FAILS TO START 7.000E-003 AFW-TDP-TM-C AFW TDP C UNAVAILABLE DUE 5.000E-003 TO TEST AND MAINTENANCE HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.OOOE-002 FEED AND BLEED COOLING SFP-XHE-XM-OPERATOR FAILS TO START AND 5.950E-002 SSGFP1 ALIGN STANDBY SG PUMP TRAINS (DE 8308 0.92 3.749E-009 IE-LOCHS LOSS OF CONDENSER HEAT SINK 9.000E-002 PTN-BFJR-06-001 Rev 0 PTN AFWP B SDP CalcFinal.doc PTN-BFJR406-D01 Rev. 0 Page 13 of 30 CTable (4): Top 10 cutsets from SPAR Model for LOCHS.Cut % °% Cut ProbJ No. Totsil Set Frequency Basic Event Description Event Prob.AFW-TDP-FS-C AFW TDP C FAILS TO START 7.000E-003 AFW-TDP-TM-A AFW TDP A UNAVAILABLE DUE 5.000E-003
1       93.79   93.79         1.750E-006         IE-LODC3A     LOSS OF DC BUS 3A         2.500E-003 AFW-TDPC-     AFW TDP-C WEAKER OF         5.000E-001 WEAKER     THE TWO TRAIN 2 PUMPS (PSA)
___ TO TEST AND MAINTENANCE HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.000E-002 FEED AND BLEED COOLING SFP-XHE-XM-OPERATOR FAILS TO START AND 5.950E-002 SSGFP1 ALIGN STANDBY SG PUMP__ TRAINS (DE 10 83.93 0.85 3.456E-009 IE-LOCHS LOSS OF CONDENSER HEAT SINK 9.000E-002 AFW-TDP-CF-COMMON CAUSE FAILURE OF 4.610E-003 FRBC TDP B & C TO RUN AFW-TDP-FS-A AFW TDP A FAILS TO START 7.000E-003 HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.OOOE-002 FEED AND BLEED COOLING SFP-XHE-XM-OPERATOR FAILS TO START AND 5.950E-002 SSGFP1 ALIGN STANDBY SG PUMP__ TRAINS (DE For the case when B AFW pump fails after running for one hour or more, the HEPs are reduced by a factor Df 10 because available time is "nominal" instead of "just enough".__ _ Table (5): Top 10 cutsets from SPAR Model for LOMFW.Cut % % Cut ProbJ No. Toti Set Frequency Basic Event Description Event Prob.1 70.78 70.78 3.209E-007 IE-LOMFW LOSS OF MAIN FEEDWATER 1.000E-001 AFW-TDP-CF-COMMON CAUSE FAILURE OF 2.696E-003
AFW-XHE-XM- OPERATOR FAILS TO TRIP         1.400E-003 TRIP1           AFW PUMP MFW-XHE-XL-     OPERATOR FAILS TO         1.000E+000 TRIP         RECOVER MFW 2       95.67   1.88         3.500E-008         IE-LODC3A     LOSS OF DC BUS 3A         2.500E-003 AFW-TDP-FS-C     AFW TDP C FAILS TO         7.OOOE-003 START MFW-XHE-XL-     OPERATOR FAILS TO         2.000E-003 RESTORE   RESTORE MFW (LODC3A-
_ FRALL TURBINE DRIVEN PUMPS TO RUN HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.OOOE-002 FEED AND BLEED COOLING MFW-XHE-XL-OPERATOR FAILS TO RECOVER 1.OOOE+000 MFWREC MFW SFP-XHE-XM-OPERATOR FAILS TO START AND 5.950E-002 SSGFPI ALIGN STANDBY SG PUMP__ TRAINS (DE 2 73.75 2.97 1.348E-008 IE-LOMFW LOSS OF MAIN FEEDWATER 1.OOOE-001 AFW-TDP-CF-COMMON CAUSE FAILURE OF 2.696E-003 FRALL TURBINE DRIVEN PUMPS TO RUN MFW-XHE-XL-OPERATOR FAILS TO RECOVER 1.000E+000 MFWREC MFW PPR-SRV-CC-PORV 1 (PCV-456)
__                                                   PSA) 3       97.01   1.34         2.500E-008         IE-LODC3A     LOSS OF DC BUS 3A         2.500E-003 AFW-TDP-TM-C AFW TDP C UNAVAILABLE         5.000E-003 DUE TO TEST AND MAINTENANCE MFW-XHE-XL-     OPERATOR FAILS TO           2.000E-003 RESTORE   RESTORE MFW (LODC3A -
FAILS TO OPEN 5.000E-003 456 ON DEMAND SFP-XHE-XM-OPERATOR FAILS TO START AND 1.OOOE-002 SSGFP ALIGN STANDBY SG PUMP TRAINS 3 76.72 2.97 1.348E-008 IE-LOMFW LOSS OF MAIN FEEDWATER 1.OOOE-001 AFW-TDP-CF-COMMON CAUSE FAILURE OF 2.696E-003 FRALL TURBINE DRIVEN PUMPS TO RUN MFW-XHE-XL-OPERATOR FAILS TO RECOVER 1.000E+000 MFWREC MFW PPR-SRV-CC-PORV 2 (PCV-455C)
__     _   _       _                           PSA) 4       98.25   1.24         2.305E-008         IE-LODC3A       LOSS OF DC BUS 3A         2.500E-003 AFW-TDP-CF- COMMON CAUSE FAILURE           4.610E-003 FRBC       OF TDP B & C TO RUN MFW-XHE-XL-     OPERATOR FAILS TO           2.000E-003 RESTORE   RESTORE MFW (LODC3A -
FAILS TO 5.OOOE-003 455C OPEN ON DEMAND SFP-XHE-XM-OPERATOR FAILS TO START AND 1.OOOE-002 PTN-BFJR.06-CO1 Rev 0 PTN AFWP B SDP CalcFinal.doc PTN-BFJR-6001 Rev.0 Page 14 of 30_ Table (5): Top 10 cutsets from SPAR Model for LOMFW.Cut % % Cut ProbJ No. Totai Set Frequency Basic Event Description Event Prob.SSGFP ALIGN STANDBY SG PUMP...TRAINS 4 78.01 1.29 5.831E-009 IE-LOMFW LOSS OF MAIN FEEDWATER 1.000E-001
PSA) 5       98.97     0.72         1.348E-008         IE-LODC3A       LOSS OF DC BUS 3A         2.500E-003 AFW-TDP-CF- COMMON CAUSE FAILURE           2.696E-003 FRALL       OF TURBINE DRIVEN PUMPS TO RUN MFW-XHE-XL-     OPERATOR FAILS TO         2.000E-003 RESTORE   RESTORE MFW (LODC3A -
.AFW-TDP-FS-A AFW TDP A FAILS TO START 7.OOOE-003
PSA) 6       99.13   0.16         2.951E-009         IE-LODC3A       LOSS OF DC BUS 3A         2.500E-003 AFW-TDP-FR-C AFW TDP C FAILS TO RUN         5.366E-003 AFW-XHE-XL-     OPERATOR FAILS TO           1.100E-001 TDPA     MANUALLY ALIGN TDP-A GIVEN LOSS OF DC-3A (PSA)
_ AFW-TDP-FS-C AFW TDP C FAILS TO START 7.OOOE-003 HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.OOOE-002 FEED AND BLEED COOLING v :. .MFW-XHE-XL-OPERATOR FAILS TO RECOVER 1.OOOE+000
MFW-XHE-XL-     OPERATOR FAILS TO           2.000E-003 RESTORE   RESTORE MFW (LODC3A -
_ ..MFWREC MFW SFP-XHE-XM-OPERATOR FAILS TO START AND 5.950E-002 SSGFP1 .ALIGN STANDBY SG PUMP._ TRAINS (DE 5 79.20 1.19 5.392E-009 IE-LOMFW LOSS OF MAIN FEEDWATER 1.000E-001 AFW-TDP-CF-COMMON CAUSE FAILURE OF 2.696E-003
                        ._                                                 PSA) 7       99.26   0.13         2.500E-009         IE-LODC3A       LOSS OF DC BUS 3A         2.500E-003 AFW-CKV-CC-   FAILURE OF FLOW TO SG-         1.000E-004 3012       3B THROUGH CHECK VALVE 3-012 AFW-XHE-XM-     OPERATOR FAILS TO         1.OOOE-002 FLOW2     INCREASE AFW TRAIN 2 FLOW GIVEN ONE DISCH
.__ FRALL TURBINE DRIVEN PUMPS TO RUN HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.OOOE-002 FEED AND BLEED COOLING MFW-XHE-XL-OPERATOR FAILS TO RECOVER 1.OOOE+000 MFWREC MFW SFP-MOV-CC-FAILURE OF SSGFP DISCHARGE 1.000E-003
__                                                  PATH FAILED PTN-BFJR-06-CO1 Rev 0 PTN AFWP B SDP CalcFinal.doc
_ 3012 PATH VALVE 3-012 6 80.19 0.99 4.470E-009 IE-LOMFW LOSS OF MAIN FEEDWATER 1.OOOE-001
 
_ .AFW-TDP-FR-C AFW TDP C FAILS TO RUN 5.366E-003 AFW-TDP-FS-A AFW TDP A FAILS TO START 7.000E-003 HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.OOOE-002 FEED AND BLEED COOLING MFW-XHE-XL-OPERATOR FAILS TO RECOVER 1.OOOE+000 MFWREC MFW SFP-XHE-XM-OPERATOR FAILS TO START AND 5.950E-002 SSGFP1 ALIGN STANDBY SG PUMP TRAINS (DE 7 81.18 0.99 4.470E-009 IE-LOMFW LOSS OF MAIN FEEDWATER 1.000E-001 AFW-TDP-FR-A AFW TDP A FAILS TO RUN 5.366E-003 l AFW-TDP-FS-C AFW TDP C FAILS TO START 7.OOOE-003 HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.OOOE-002
PTN-BFJR-06-001 Rev. 0 Page 10 of 30 Table (2): Top 10 cutsets from SPAR Model for LODC3A.
: .FEED AND BLEED COOLING MFW-XHE-XL-OPERATOR FAILS TO RECOVER 1.OOOE+000
Cut         -%Cut No.   % Total Set           ProbiFrequency         Basic Event             Description             Event Prob.
_ .MFWREC MFW SFP-XHE-XM-OPERATOR FAILS TO START AND 5.950E-002 SSGFP1 ALIGN STANDBY SG PUMP TRAINS (DE 8 82.1D. 0.92 4.165E-009 IE-LOMFW LOSS OF MAIN FEEDWATER 1.OOOE-001 AFW-TDP-FS-C AFW TDP C FAILS TO START 7.OOOE-003 AFW-TDP-TM-A AFW TDP A UNAVAILABLE DUE 5.000E-003 TO TEST AND MAINTENANCE
MFW-XHE-XL-         OPERATOR FAILS TO             1.000E+000 TRIP             RECOVER MFW 8       99.39   0.13           2.500E-009         IE-LODC3A         LOSS OF DC BUS 3A             2.500E-003 AFW-CKV-CC-       FAILURE OF FLOW TO SG-           1.000E-004 3010           3A THROUGH CHECK VALVE 3-010 AFW-XHE-XM-         OPERATOR FAILS TO             1.OOOE-002 FLOW2         INCREASE AFW TRAIN 2 FLOW GIVEN ONE DISCH PATH FAILED MFW-XHE-XL-         OPERATOR FAILS TO             1.000E+000 TRIP               RECOVER MFW 9       99.52   0.13           2.500E-009         IE-LODC3A           LOSS OF DC BUS 3A             2.500E-003 AFW-CKV-CC-       FAILURE OF FLOW TO SG-           1.OOOE-004 3014           3C THROUGH CHECK VALVE 3-014 AFW-XHE-XM-         OPERATOR FAILS TO             1.OOOE-002 FLOW2         INCREASE AFW TRAIN 2 FLOW GIVEN ONE DISCH PATH FAILED MFW-XHE-XL-         OPERATOR FAILS TO             1.OOOE+000 TRIP               RECOVER MFW 10     99.63     0.11           2.134E-009         IE-LODC3A           LOSS OF DC BUS 3A             2.500E-003 AFW-TDP-TM-             AFW TRAIN 2               3.880E-003 TRAIN2         UNAVAILABLE DUE TO TEST AND MAINTENANCE (PSA)
..HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.000E-002 FEED AND BLEED COOLING MFW-XHE-XL-OPERATOR FAILS TO RECOVER 1.OOOE+000
AFW-XHE-XL-         OPERATOR FAILS TO             1.100E-001 TDPA         MANUALLY ALIGN TDP-A GIVEN LOSS OF DC-3A (PSA)
.MFWREC MFW SFP-XHE-XM-OPERATOR FAILS TO START AND 5.950E-002
MFW-XHE-XL-         OPERATOR FAILS TO             2.OOOE-003 RESTORE         RESTORE MFW (LODC3A -
.SSGFP1 ALIGN STANDBY SG PUMP__ : .TRAINS (DE PTN-BFJR-06-0)1 Rev 0 PTN AFWP B SDP CalcFinal.doc PTN-BFJR-06-001 Rev. 0 Page 15 of 30__ Table (5): Top 10 cutsets from SPAR Model for LOMFW.Cut % % cut Probl No. Total Set Frequency Basic Event Description Event Prob.9 83.02 0.92 4.165E-009 IE-LOMFW LOSS OF MAIN FEEDWATER 1.000E-001 AFW-TDP-FS-A AFW TDP A FAILS TO START 7.000E-003 AFW-TDP-TM-C AFW TDP C UNAVAILABLE DUE 5.OOOE-003
PSA)
:_ TO TEST AND MAINTENANCE HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.OOOE-002
For the case when B AFW pump fails after running for one hour or more, the HEPs are reduced by a factor of 10 because available time is nominal (See Attachment 6, the basis of SPAR-H for execution).
._ FEED AND BLEED COOLING MFW-XHE-XL-OPERATOR FAILS TO RECOVER 1.OOOE+000 MFWREC MFW SFP-XHE-XM-OPERATOR FAILS TO START AND 5.950E-002 SSGFP1 ALIGN STANDBY SG PUMP TRAINS (DE 10 83.87 0.85 3.840E-009 IE-LOMFW LOSS OF MAIN FEEDWATER 1.000E-001 AFW-TDP-CF-COMMON CAUSE FAILURE OF 4.610E-003 FRBC TDP B & C TO RUN AFW-TDP-FS-A AFW TDP A FAILS TO START 7.000E-003 HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.000E-002
Table (3): Ust of Key HEPs and Performance shaping Factors.
__ FEED AND BLEED COOLING MFW-XHE-XL-OPERATOR FAILS TO RECOVER 1.000E+000 MFWREC MFW_ _SFP-XHE-XM-OPERATOR FAILS TO START AND 5.950E-002 SSGFP1 ALIGN STANDBY SG PUMP__ TRAINS (DE Similarly, the probability of cutsets for other sequences are reduced by a factor of 10 due to the following mitigating factors: 1. Feed and bleed success criterion being relaxed to one of 2 PORVs, 2. Time to take actions is increased by at least an hour 3. Condensate system may be used for scenarios not involving power conversion systems 6.0 CALCULATIONAL FILES The key assumptions and data used in the calculation are documented in the calculation.
HRA Basic Event         Event Description/Shaping       Distribution     Probability/   InitialUMultiplier Name                           Factor
Additional files and information used for sensitivity studies are found in directory\\Ws0847E4\Max1  
* Type/PSF         Percentage AFW-XHE-XMI-THRTL           OPERATOR FAILS TO             Constrained         1.OE-3 THROTTLE SG FCVs           Noninformative Action is modeled.                                                 1.0E-3 Available Time       Nominal time         100%               1.00 Stress/Stressors         Nominal           100%               1.00 Complexity             Nominal           100%               1.00 Experience/Training         Nominal           100%               1.00 Procedures             Nominal           100%               1.00 Egonomics/HMI             Nominal           100%               1.00 PTN-BFJR-06-CO1 Rev 0 PTN AFWP B SDP CalcFinal.doc
\PTNAFW, 7.0 RESULTS The CDF increase is estimated by combining the different CDF for the two different time windows, one for B AFW pump failing before one hour and the other B AFW pump failing after one hour. F or the purpose of bounding evaluation, conservative values are used to simplify the calculation.
 
A best-estimate based on the review of the NRC's phase 3 SDP and revised SPAR model yielcs the following:
PTN-BFJR-06-001 Rev. 0 Page 11 of 30 Table (3): Ust of Key HEPs and   Performance shaping Factors.
PTN-BFJR-06-COI Rev 0 PTN AFWP B SDP CakFinal.doc PTN-BFJR-0DO1 Rev. 0 Page 16 of 30 Table (6): Best Estimate Delta CDF.Exposure Time 11 months I month Delta CDF AFW F ailure Time after 1 hour in the first hour I weighted by exposure time delta CDF 3.20E-07 1.60E-06 4.27E-07 Additional sensitivity studies were performed by using the Turkey Point Rev 5B model with newer MS1I1 industry average failure data (Reference  
HRA Basic Event         Event Description/Shaping       Distribution     Probability/ Initial/Multiplier Name                           Factor               TypeIPSF         Percentage Fitness for Duty         Nominal           100%             1.00 Work Processes             Nominal           100%             1.00.
: 6) for MOVs, Motor Driven Pumps, Turbine Driven Pumps, AOVs, EDGs, etc. Attachments 1 and 2 provide a list of dominant cutsets involving the B AFW pump, for failure probability of running set to 1.0 and 1.6E-2 respectively.
Dependency is not modeled.
Comparable results are obtained using a similar approach but using Turkey Point PSA model with a scoping assumption based on insights of many exploratory runs considering the following factors: 1. Top cutsets involving A & C AFW failing to runs, can be reduced by a factor of 2 to 4, simply by applying convolution.
SFP-XHE-XIM--SSGFP         OPERATOR FAILS TO             Constrained START AND ALIGN           Noninformative STANDBY SG PUMP TRAINS Action is modeled.                                             1.OE-3 Available Time       Nominal time         100%             1.00 Stress/Stressors           Nominal           100%             1.00 Complexity             Nominal           100%             1.00 Experience/Training         Nominal           100%             1.00 Procedures             Nominal           100%             1.00 Egonomics/HMI           Nominal           100%               1.00 Fitness for Duty         Nominal           100%               1.00 Work Processes           Nominal           100%               1.00 Dependency is not modeled.
: 2. Top cutsets involving A& C AFW failing to start, can apply 0.5 or smaller for reasons similar to that of MSPI AFW FTS, PSL SPAR or even lower say a factor of 0.1 based on PSI. Unit 2 C AFW pump case 3. Selected cutsets involving LOG I.E. do not have offsite power recovery 4. For AkFW failing within the first hour, cutsets involving AHFAFWPTRP may be eliminated
HPI-XHE-XM-FB             OPERATOR FAILS TO             Constrained         2.OE-3 INITIATE FEED AND           Noninformative BLEED COOLING Action is modeled.                                               1.OE-3 Available Time         Nominal time         100%             1.00 Stress/Stressors           High             100%             2.00 Complexity           Nominal           100%             1.00 Experience/Training         Nominal           100%             1.00 Procedures           Nominal           100%             1.00 Egonomics/HMI           Nominal           100%             1.00 Fitness for Duty         Nominal           100%             1.00 Work Processes           Nominal           100%             1.00 Dependency is not modeled.
: 5. Cutsets involving T3 and T1 may be mitigated by using condensate for secondary heat removal 6. Cutsets involving loss of 4 KV bus may be mitigated by condensate for secondary heat removal A scoping estimate is performed assuming a factor of 2 reduction (based on judgment and the fact that SPAR model results indicate a factor of 5 reduction as indicated in Table 6) for the delta CDF associated with B AFW pump failing after one hour from that when AFW fails within the first hour. The delta CDF in the first hour for the second case in Table 7, PTN Model with MSPI data is obtained by using the cutest files indicated in Attachments 1 and 2, by setting AHFPAFWPTRP to false, as this operator action is not required if AFW is assumed to fail in less than one hour. The delta CDF for the case in which AFW fails after one hour is obtained by reducing by a factor of 2 that for the case in which AFW is assumed to fail in less than one hour.The results are summarized below.Table (7): Summary of Delta CDF Sensitivity Study.l Exposure Time I 11 months I 1 month I Delta CDF PTN-BFJR406-C1 Rev 0 PTN AFWP B SDP CalcFinal.doc PTN-BFJR-06-001 Rev.0 Page 17 of 30 AFW Failure in the first Time after 1 hour hour weighted by exposure time SPAR Model delta CDF 3.20E-07 1.60E-06 4.27E-07 PTN Model with MSPI data delta CDF 2.79E-07 5.58E-07 3.02E-07 The increase in the CDF associated with the degraded B AFW pump is estimated to be lower than 4.3E-7/Yr.
Table (4): Top 10 cutsets from SPAR Model for LOCHS.
Cut     %     % Cut         ProbJ No. Totsil   Set     Frequency         Basic Event               Description             Event Prob.
1     70.82   70.82     2.888E-007         IE-LOCHS     LOSS OF CONDENSER HEAT SINK         9.000E-002 AFW-TDP-CF-       COMMON CAUSE FAILURE OF           2.696E-003 FRALL     TURBINE DRIVEN PUMPS TO RUN HPI-XHE-XM-FB     OPERATOR FAILS TO INITIATE       2.OOOE-002 FEED AND BLEED COOLING SFP-XHE-XM-     OPERATOR FAILS TO START AND         5.950E-002 SSGFP1         ALIGN STANDBY SG PUMP TRAINS (DE 2     73.80   2.98     1.213E-008         IE-LOCHS     LOSS OF CONDENSER HEAT SINK         9.000E-002 AFW-TDP-CF-       COMMON CAUSE FAILURE OF           2.696E-003
__                                         FRALL     TURBINE DRIVEN PUMPS TO RUN PPR-SRV-CC-     PORV 1 (PCV-456) FAILS TO OPEN     5.OOOE-003
_                                   456                 ON DEMAND PTN-BFJR-06-031 Rev 0 PTN AFWP B SDP CalcFinal.doc
 
PTN-BFJR-06001 Rev. 0 Page 12 of 30 Table (4): To 10 cutsets from SPAR Model for LOCHS.
Cut       %     % Cut         ProbJ No. Totail   Set     Frequency       Basic Event               Description         Event Prob.
SFP-XHE-XM-   OPERATOR FAILS TO START AND     1.000E-002 SSGFP         ALIGN STANDBY SG PUMP TRAINS 3     76.78   2.98     1.213E-008         IE-LOCHS   LOSS OF CONDENSER HEAT SINK     9.000E-002 AFW-TDP-CF-     COMMON CAUSE FAILURE OF       2.696E-003 FRALL   TURBINE DRIVEN PUMPS TO RUN PPR-SRV-CC-     PORV 2 (PCV-455C) FAILS TO   5.000E-003 455C           OPEN ON DEMAND SFP-XHE-XM-   OPERATOR FAILS TO START AND     1.OOOE-002 SSGFP       ALIGN STANDBY SG PUMP TRAINS 4     78.07   1.29     5.248E-009         IE-LOCHS   LOSS OF CONDENSER HEAT SINK     9.000E-002 AFW-TDP-FS-A       AFW TDP A FAILS TO START     7.000E-003 AFW-TDP-FS-C       AFW TDP C FAILS TO START     7.000E-003 HPI-XHE-XM-FB     OPERATOR FAILS TO INITIATE     2.OOOE-002
                            ._                               FEED AND BLEED COOLING SFP-XHE-XM-   OPERATOR FAILS TO START AND     5.950E-002 SSGFP1       ALIGN STANDBY SG PUMP TRAINS (DE 5     79.26   1.19     4.853E-009       IE-LOCHS   LOSS OF CONDENSER HEAT SINK       9.OOOE-002 AFW-TDP-CF-     COMMON CAUSE FAILURE OF       2.696E-003 FRALL   TURBINE DRIVEN PUMPS TO RUN HPI-XHE-XM-FB     OPERATOR FAILS TO INITIATE     2.OOOE-002
__                                             FEED AND BLEED COOLING SFP-MOV-CC-   FAILURE OF SSGFP DISCHARGE       1.000E-003
_                                 3012             PATH VALVE 3-012 6     80.25     0.99     4.023E-009       IE-LOCHS   LOSS OF CONDENSER HEAT SINK       9.000E-002 AFW-TDP-FR-A       AFW TDP A FAILS TO RUN       5.366E-003 AFW-TDP-FS-C       AFW TDP C FAILS TO START     7.OOOE-003 HPI-XHE-XM-FB   OPERATOR FAILS TO INITIATE     2.OOOE-002
__                                             FEED AND BLEED COOLING SFP-XHE-XM-   OPERATOR FAILS TO START AND       5.950E-002 SSGFP1         ALIGN STANDBY SG PUMP TRAINS (DE 7     81.24     0.99   4.023E-009         IE-LOCHS   LOSS OF CONDENSER HEAT SINK       9.000E-002 AFW-TDP-FR-C       AFW TDP C FAILS TO RUN       5.366E-003 AFW-TDP-FS-A       AFW TDP A FAILS TO START     7.000E-003 HPI-XHE-XM-FB   OPERATOR FAILS TO INITIATE     2.0002-002 FEED AND BLEED COOLING SFP-XHE-XM-   OPERATOR FAILS TO START AND       5.950E-002 SSGFP1         ALIGN STANDBY SG PUMP
__                                              TRAINS (DE 8     82.16     0.92   3.749E-009       IE-LOCHS   LOSS OF CONDENSER HEAT SINK       9.OOOE-002 AFW-TDP-FS-A     AFW TDP A FAILS TO START     7.000E-003 AFW-TDP-TM-C     AFW TDP C UNAVAILABLE DUE     5.000E-003 TO TEST AND MAINTENANCE HPI-XHE-XM-FB     OPERATOR FAILS TO INITIATE     2.OOOE-002 FEED AND BLEED COOLING SFP-XHE-XM-   OPERATOR FAILS TO START AND     5.950E-002 SSGFP1         ALIGN STANDBY SG PUMP TRAINS (DE 8308     0.92     3.749E-009       IE-LOCHS   LOSS OF CONDENSER HEAT SINK     9.000E-002 PTN-BFJR-06-001 Rev 0 PTN AFWP B SDP CalcFinal.doc
 
PTN-BFJR406-D01 Rev. 0 Page 13 of 30 CTable       (4): Top 10 cutsets from SPAR Model for LOCHS.
Cut       %   °% Cut     ProbJ No.     Totsil   Set   Frequency         Basic Event             Description           Event Prob.
AFW-TDP-FS-C       AFW TDP C FAILS TO START       7.000E-003 AFW-TDP-TM-A     AFW TDP A UNAVAILABLE DUE       5.000E-003
___                                                 TO TEST AND MAINTENANCE HPI-XHE-XM-FB     OPERATOR FAILS TO INITIATE       2.000E-002 FEED AND BLEED COOLING SFP-XHE-XM-   OPERATOR FAILS TO START AND       5.950E-002 SSGFP1         ALIGN STANDBY SG PUMP
__                                                    TRAINS (DE 10       83.93   0.85   3.456E-009         IE-LOCHS   LOSS OF CONDENSER HEAT SINK       9.000E-002 AFW-TDP-CF-     COMMON CAUSE FAILURE OF         4.610E-003 FRBC               TDP B & C TO RUN AFW-TDP-FS-A       AFW TDP A FAILS TO START       7.000E-003 HPI-XHE-XM-FB     OPERATOR FAILS TO INITIATE       2.OOOE-002 FEED AND BLEED COOLING SFP-XHE-XM-   OPERATOR FAILS TO START AND       5.950E-002 SSGFP1         ALIGN STANDBY SG PUMP
__                                                    TRAINS (DE For the case when B AFW pump fails after running for one hour or more, the HEPs are reduced by a factor Df 10 because available time is "nominal" instead of "just enough".
___              Table (5): Top 10 cutsets from SPAR Model for LOMFW.
Cut       %     % Cut       ProbJ No.     Toti     Set     Frequency         Basic Event             Description           Event Prob.
1       70.78   70.78   3.209E-007         IE-LOMFW         LOSS OF MAIN FEEDWATER         1.000E-001 AFW-TDP-CF-     COMMON CAUSE FAILURE OF         2.696E-003
_                                 FRALL     TURBINE DRIVEN PUMPS TO RUN HPI-XHE-XM-FB     OPERATOR FAILS TO INITIATE       2.OOOE-002 FEED AND BLEED COOLING MFW-XHE-XL-     OPERATOR FAILS TO RECOVER         1.OOOE+000 MFWREC                     MFW SFP-XHE-XM-   OPERATOR FAILS TO START AND       5.950E-002 SSGFPI         ALIGN STANDBY SG PUMP
__          TRAINS (DE 2       73.75   2.97   1.348E-008         IE-LOMFW         LOSS OF MAIN FEEDWATER         1.OOOE-001 AFW-TDP-CF-     COMMON CAUSE FAILURE OF         2.696E-003 FRALL     TURBINE DRIVEN PUMPS TO RUN MFW-XHE-XL-     OPERATOR FAILS TO RECOVER       1.000E+000 MFWREC                     MFW PPR-SRV-CC-   PORV 1 (PCV-456) FAILS TO OPEN     5.000E-003 456                 ON DEMAND SFP-XHE-XM-   OPERATOR FAILS TO START AND       1.OOOE-002 SSGFP         ALIGN STANDBY SG PUMP TRAINS 3     76.72   2.97     1.348E-008         IE-LOMFW       LOSS OF MAIN FEEDWATER         1.OOOE-001 AFW-TDP-CF-       COMMON CAUSE FAILURE OF         2.696E-003 FRALL     TURBINE DRIVEN PUMPS TO RUN MFW-XHE-XL-     OPERATOR FAILS TO RECOVER       1.000E+000 MFWREC                     MFW PPR-SRV-CC-     PORV 2 (PCV-455C) FAILS TO     5.OOOE-003 455C             OPEN ON DEMAND SFP-XHE-XM-   OPERATOR FAILS TO START AND       1.OOOE-002 PTN-BFJR.06-CO1 Rev 0 PTN AFWP B SDP CalcFinal.doc
 
PTN-BFJR-6001 Rev.0 Page 14 of 30
_          Table (5): Top 10 cutsets from SPAR Model for LOMFW.
Cut       %       % Cut           ProbJ No.     Totai     Set       Frequency         Basic Event                   Description       Event Prob.
SSGFP             ALIGN STANDBY SG PUMP
      .                                           .                       .     TRAINS 4       78.01     1.29     5.831E-009           IE-LOMFW           LOSS OF MAIN FEEDWATER       1.000E-001
                                                . FW-TDP-FS-A A                    AFW TDP A FAILS TO START     7.OOOE-003
_                               AFW-TDP-FS-C         AFW TDP C FAILS TO START     7.OOOE-003 HPI-XHE-XM-FB       OPERATOR FAILS TO INITIATE   2.OOOE-002 FEED AND BLEED COOLING v                     :.   .           MFW-XHE-XL-       OPERATOR FAILS TO RECOVER     1.OOOE+000
_     .             .             MFWREC                         MFW SFP-XHE-XM-       OPERATOR FAILS TO START AND     5.950E-002 SSGFP1         . ALIGN STANDBY SG PUMP
                                                    ._                           TRAINS (DE 5     79.20       1.19     5.392E-009         IE-LOMFW           LOSS OF MAIN FEEDWATER     1.000E-001 AFW-TDP-CF-         COMMON CAUSE FAILURE OF       2.696E-003
              .__                                     FRALL       TURBINE DRIVEN PUMPS TO RUN HPI-XHE-XM-FB         OPERATOR FAILS TO INITIATE   2.OOOE-002 FEED AND BLEED COOLING MFW-XHE-XL-       OPERATOR FAILS TO RECOVER     1.OOOE+000 MFWREC                         MFW SFP-MOV-CC-       FAILURE OF SSGFP DISCHARGE     1.000E-003
_                                       3012                 PATH VALVE 3-012 6     80.19     0.99     4.470E-009           IE-LOMFW           LOSS OF MAIN FEEDWATER       1.OOOE-001
_               . AFW-TDP-FR-C             AFW TDP C FAILS TO RUN     5.366E-003 AFW-TDP-FS-A           AFW TDP A FAILS TO START     7.000E-003 HPI-XHE-XM-FB         OPERATOR FAILS TO INITIATE   2.OOOE-002 FEED AND BLEED COOLING MFW-XHE-XL-       OPERATOR FAILS TO RECOVER     1.OOOE+000 MFWREC                         MFW SFP-XHE-XM-       OPERATOR FAILS TO START AND     5.950E-002 SSGFP1           ALIGN STANDBY SG PUMP TRAINS (DE 7     81.18     0.99     4.470E-009           IE-LOMFW           LOSS OF MAIN FEEDWATER       1.000E-001 AFW-TDP-FR-A           AFW TDP A FAILS TO RUN     5.366E-003 l AFW-TDP-FS-C           AFW TDP C FAILS TO START     7.OOOE-003 HPI-XHE-XM-FB         OPERATOR FAILS TO INITIATE   2.OOOE-002
:   .FEED         AND BLEED COOLING MFW-XHE-XL-         OPERATOR FAILS TO RECOVER     1.OOOE+000
_         .                         MFWREC                         MFW SFP-XHE-XM-       OPERATOR FAILS TO START AND     5.950E-002 SSGFP1             ALIGN STANDBY SG PUMP TRAINS (DE 8     82.1D.     0.92     4.165E-009         IE-LOMFW           LOSS OF MAIN FEEDWATER       1.OOOE-001 AFW-TDP-FS-C           AFW TDP C FAILS TO START     7.OOOE-003 AFW-TDP-TM-A         AFW TDP A UNAVAILABLE DUE     5.000E-003 TO TEST AND MAINTENANCE
                                  .     .     HPI-XHE-XM-FB         OPERATOR FAILS TO INITIATE   2.000E-002 FEED AND BLEED COOLING MFW-XHE-XL-         OPERATOR FAILS TO RECOVER     1.OOOE+000
                            .                     MFWREC                         MFW SFP-XHE-XM-       OPERATOR FAILS TO START AND     5.950E-002
                                            .       SSGFP1             ALIGN STANDBY SG PUMP
__  :                                           .               TRAINS (DE PTN-BFJR-06-0)1 Rev 0 PTN AFWP B SDP CalcFinal.doc
 
PTN-BFJR-06-001 Rev. 0 Page 15 of 30
__        Table (5): Top 10 cutsets from SPAR Model for LOMFW.
Cut       %     % cut         Probl No. Total     Set       Frequency       Basic Event           Description         Event Prob.
9     83.02   0.92       4.165E-009       IE-LOMFW     LOSS OF MAIN FEEDWATER       1.000E-001 AFW-TDP-FS-A     AFW TDP A FAILS TO START     7.000E-003 AFW-TDP-TM-C   AFW TDP C UNAVAILABLE DUE       5.OOOE-003
:_                                               TO TEST AND MAINTENANCE HPI-XHE-XM-FB   OPERATOR FAILS TO INITIATE     2.OOOE-002
                            .       _                       FEED AND BLEED COOLING MFW-XHE-XL-   OPERATOR FAILS TO RECOVER       1.OOOE+000 MFWREC                 MFW SFP-XHE-XM-   OPERATOR FAILS TO START AND     5.950E-002 SSGFP1       ALIGN STANDBY SG PUMP TRAINS (DE 10     83.87   0.85       3.840E-009       IE-LOMFW     LOSS OF MAIN FEEDWATER       1.000E-001 AFW-TDP-CF-     COMMON CAUSE FAILURE OF       4.610E-003 FRBC           TDP B & C TO RUN AFW-TDP-FS-A     AFW TDP A FAILS TO START     7.000E-003 HPI-XHE-XM-FB   OPERATOR FAILS TO INITIATE     2.000E-002
__                                     FEED AND BLEED COOLING MFW-XHE-XL-   OPERATOR FAILS TO RECOVER     1.000E+000 MFWREC                 MFW_                   _
SFP-XHE-XM-   OPERATOR FAILS TO START AND     5.950E-002 SSGFP1       ALIGN STANDBY SG PUMP
__                                                TRAINS (DE Similarly, the probability of cutsets for other sequences are reduced by a factor of 10 due to the following mitigating factors:
: 1. Feed and bleed success criterion being relaxed to one of 2 PORVs,
: 2. Time to take actions is increased by at least an hour
: 3. Condensate system may be used for scenarios not involving power conversion systems 6.0 CALCULATIONAL FILES The key assumptions and data used in the calculation are documented in the calculation.
Additional files and information used for sensitivity studies are found in directory
\\Ws0847E4\Max1 \PTNAFW, 7.0 RESULTS The CDF increase is estimated by combining the different CDF for the two different time windows, one for B AFW pump failing before one hour and the other B AFW pump failing after one hour. For the purpose of bounding evaluation, conservative values are used to simplify the calculation. A best-estimate based on the review of the NRC's phase 3 SDP and revised SPAR model yielcs the following:
PTN-BFJR-06-COI Rev 0 PTN AFWP B SDP CakFinal.doc
 
PTN-BFJR-0DO1 Rev. 0 Page 16 of 30 Table (6): Best Estimate Delta CDF.
Exposure Time           11 months             I month                 Delta CDF AFW Failure Time         after 1 hour       in the first hour I weighted by exposure time delta CDF             3.20E-07             1.60E-06                 4.27E-07 Additional sensitivity studies were performed by using the Turkey Point Rev 5B model with newer MS1I1 industry average failure data (Reference 6) for MOVs, Motor Driven Pumps, Turbine Driven Pumps, AOVs, EDGs, etc. Attachments 1 and 2 provide a list of dominant cutsets involving the B AFW pump, for failure probability of running set to 1.0 and 1.6E-2 respectively.
Comparable results are obtained using a similar approach but using Turkey Point PSA model with a scoping assumption based on insights of many exploratory runs considering the following factors:
: 1. Top cutsets involving A & C AFW failing to runs, can be reduced by a factor of 2 to 4, simply by applying convolution.
: 2. Top cutsets involving A& C AFW failing to start, can apply 0.5 or smaller for reasons similar to that of MSPI AFW FTS, PSL SPAR or even lower say a factor of 0.1 based on PSI. Unit 2 C AFW pump case
: 3. Selected cutsets involving LOG I.E. do not have offsite power recovery
: 4. For AkFW failing within the first hour, cutsets involving AHFAFWPTRP may be eliminated
: 5. Cutsets involving T3 and T1 may be mitigated by using condensate for secondary heat removal
: 6. Cutsets involving loss of 4 KV bus may be mitigated by condensate for secondary heat removal A scoping estimate is performed assuming a factor of 2 reduction (based on judgment and the fact that SPAR model results indicate a factor of 5 reduction as indicated in Table 6) for the delta CDF associated with B AFW pump failing after one hour from that when AFW fails within the first hour. The delta CDF in the first hour for the second case in Table 7, PTN Model with MSPI data is obtained by using the cutest files indicated in Attachments 1 and 2, by setting AHFPAFWPTRP to false, as this operator action is not required if AFW is assumed to fail in less than one hour. The delta CDF for the case in which AFW fails after one hour is obtained by reducing by a factor of 2 that for the case in which AFW is assumed to fail in less than one hour.
The results are summarized below.
Table (7): Summary of Delta CDF Sensitivity Study.
l Exposure Time I 11 months               I 1 month I       Delta CDF PTN-BFJR406-C1 Rev 0 PTN AFWP B SDP CalcFinal.doc
 
PTN-BFJR-06-001 Rev.0 Page 17 of 30 AFW Failure                       in the first Time           after 1 hour     hour     weighted by exposure time SPAR Model                     delta CDF         3.20E-07     1.60E-06             4.27E-07 PTN Model with MSPI data                           delta CDF         2.79E-07     5.58E-07             3.02E-07 The increase in the CDF associated with the degraded B AFW pump is estimated to be lower than 4.3E-7/Yr.
In summary, a phase 3 safety significance determination has been performed, based in part, on the following key assumptions:
In summary, a phase 3 safety significance determination has been performed, based in part, on the following key assumptions:
: 1. The degradation of the B AFW pump is time-dependent, as the pump continued to deliver adequate
: 1. The degradation of the B AFW pump is time-dependent, as the pump continued to deliver adequate flow at least for one hour until 10/


==Subject:==
==Subject:==
Re: AHFPTRNAMAN See response in blue.Mark Ching Guey 02/17/2006 07:31 AM To: Mark Averett/Juno/Nuclear/FplNuc@FplNuc cc:Brien VincentIJuno/Nuclear/FplNuc@FplNuc, Mahmoud Heiba/Juno/Nuclear/FplNuc, Glen Blinde/Ptn/Nuclear/FplNuc@FplNuc
Re: AHFPTRNAMAN See response in blue.
Mark Ching Guey To:       Mark Averett/Juno/Nuclear/FplNuc@FplNuc 02/17/2006 07:31 AM cc:Brien VincentIJuno/Nuclear/FplNuc@FplNuc, Mahmoud Heiba/Juno/Nuclear/FplNuc, Glen Blinde/Ptn/Nuclear/FplNuc@FplNuc


==Subject:==
==Subject:==
Re: AHFPTRNAMAN Does this imply that the Bimbaum importance of the hardware (A AFW pump, and train 1 steam admission valve, mainly) involved may need to be added (or allocated based on its contribution to 0.1083, which may be reduced if the MSPI data is used, I presume that FTR of 0.096 for Train A AFW pump may dominate)?
Re: AHFPTRNAMAN Does this imply that the Bimbaum importance of the hardware (A AFW pump, and train 1 steam admission valve, mainly) involved may need to be added (or allocated based on its contribution to 0.1083, which may be reduced if the MSPI data is used, I presume that FTR of 0.096 for Train A AFW pump may dominate)? Yes, it does. Replacing ZHFPTRNAMAN with ATPFOAFWA in the cutsets would approximate the increase in Bimbaum due to the hardware portion of the AHFPTRNAMAN recovery.
Yes, it does. Replacing ZHFPTRNAMAN with ATPFOAFWA in the cutsets would approximate the increase in Bimbaum due to the hardware portion of the AHFPTRNAMAN recovery.This may not be an important issue, until DC bus 3A becomes dominant sequence of concem.Also, Glen's email earlier may change the HEP somewhat?
This may not be an important issue, until DC bus 3A becomes dominant sequence of concem.
No. Glen's email simply confirms that the AHFPTRNAMAN recovery is possible.Ching PTN-BFJR.06-001 Rev 0 PTN AFWP B SDP CalcFinal.doc PTN-BFJR-06-001 Rev. 0 Page 26 of 30 Mark Avereft 02/17/2006 07:10 AM To: ching gueyafpl.com cc: Brien VincentlJunolNuclear/FplNuc@FplNuc, Mahmoud HeibalJunolNuclearlFplNuc@FplNuc, glen blindeefpl.com
Also, Glen's email earlier may change the HEP somewhat? No. Glen's email simply confirms that the AHFPTRNAMAN recovery is possible.
Ching PTN-BFJR.06-001 Rev 0 PTN AFWP B SDP CalcFinal.doc
 
PTN-BFJR-06-001 Rev. 0 Page 26 of 30 Mark Avereft To: ching gueyafpl.com 02/17/2006 07:10 AM cc: Brien VincentlJunolNuclear/FplNuc@FplNuc, Mahmoud HeibalJunolNuclearlFplNuc@FplNuc, glen blindeefpl.com


==Subject:==
==Subject:==
AHFPTRNAMAN Ching, I found the reference for the 0.11 probability for the recovery event AHFPTRNAMAN in the Rev. 4 update calculation.
AHFPTRNAMAN Ching, I found the reference for the 0.11 probability for the recovery event AHFPTRNAMAN in the Rev. 4 update calculation.
PTN-03-068 Recovery for %ZZDC3A/B Sequences Descripio Actual Change During the cutset review with the Licensed Operator Instructors, it was pointed out that it did not appear that the dependency of SSGFW on the feedwater bypass valves (FCV-3-479, 489, and 499) was adequately modeled. This was discovered by noting that the loss of DC Bus 3A (power for these valves)was not resulting in a failure of SSGFW. This was corrected via change PTN-03-066.
PTN-03-068               Recovery for %ZZDC3A/B Sequences Descripio         Actual Change During the cutset review with the Licensed Operator       This recovery action was modeled In the HRA Toolbox as Instructors, it was pointed out that it did not appear   event AHFPTRNAMAN. The hardware portion of this recovery that the dependency of SSGFW on the feedwater             was determined by quantifying the gate A0003, giving a failure bypass valves (FCV-3-479, 489, and 499) was             probability of 0.1083, dwarfing the the human error part of the adequately modeled. This was discovered by noting       recovery of 1.4E-3.
This change brought a lot of loss of DC Bus 3A cutsets to the top. The Licensed Operator Instructors also pointed out that Train 1 of AFW which is lost due to the loss of DC Bus 3A due to steam admission valve not opening and the FCVs not opening could be recovered by manually opening these valves and manually controlling the FCVs using local Indication.
that the loss of DC Bus 3A (power for these valves) was not resulting in a failure of SSGFW. This was         This recovery cannot easily be placed into the fault tree itself as corrected via change PTN-03-066. This change             it is very cutset-specific. Therefore, the recovery was applied brought a lot of loss of DC Bus 3A cutsets to the       using the recovery rule file to apply it to the individual cutsets.
*RECOVERY**
top. The Licensed Operator Instructors also pointed     The probability of the recovery was set to the sum of the out that Train 1 of AFW which is lost due to the loss   hardware and human error probabilities, or 0.1097.
ZHFPTRNAMAN 0.1 097%ZZDC3A ATPFOAFWB ATPFOAFWC This recovery action was modeled In the HRA Toolbox as event AHFPTRNAMAN.
of DC Bus 3A due to steam admission valve not opening and the FCVs not opening could be               The addition to the recovery rule file is shown below:
The hardware portion of this recovery was determined by quantifying the gate A0003, giving a failure probability of 0.1083, dwarfing the the human error part of the recovery of 1.4E-3.This recovery cannot easily be placed into the fault tree itself as it is very cutset-specific.
recovered by manually opening these valves and manually controlling the FCVs using local Indication.     "CLEAR RECOVERY FLAGS**
Therefore, the recovery was applied using the recovery rule file to apply it to the individual cutsets.The probability of the recovery was set to the sum of the hardware and human error probabilities, or 0.1097.The addition to the recovery rule file is shown below: "CLEAR RECOVERY FLAGS**PTN-BFJR-06-001 Rev 0 PTN AFWP B SDP CalcFinal.doc PTN-BFJR-06-001 Rev. 0 Page 27 of 30 ,6ZZDC3A ATPAOAFWB ATPFOAFWC.77rflDe3A ATDn, F'."B ATPA^AA eF'%ZZDC3A ATMOTRAIN2
                          *RECOVERY** ZHFPTRNAMAN 0.1 097
%ZZDC3A AHFAOPUMPB ATPFOAFWC%ZZDC3A AHFAOPUMPC ATPFOAFWB%ZZDC3A AHFAOPUMPB ATPAOAFWC%ZZDC3A AHFAOPUMPC ATPAOAFWB%ZZDC3A AHFPAFWPTRP ATPFOAFWB ZZAFWPUMPC
                          %ZZDC3A ATPFOAFWB ATPFOAFWC PTN-BFJR-06-001 Rev 0 PTN AFWP B SDP CalcFinal.doc
%ZZDC3A AHFPAFWPTRP ATPFOAFWC ZZAFWPUMPB
 
%ZZDC3A AHFPAFWPTRP ATPAOAFWB ZZAFWPUMPC
PTN-BFJR-06-001 Rev. 0 Page 27 of 30
%ZZDC3A AHFPAFWPTRP ATPAOAFWC ZZAFWPUMPB
                        ,6ZZDC3A ATPAOAFWB ATPFOAFWC
%ZZDC3A AROPO-3418 ATPFOAFWC%ZZDC3A ATPFOAFWB AROPO-3419
                          .77rflDe3A ATDn, F'."B ATPA^AA eF'
%ZZDC3A AROPO-3418 ATPAOAFWC%ZZDC3A ATPAOAFWB AROPO-3419
                        %ZZDC3A ATMOTRAIN2
%ZZDC3A AMMOCCFAVBD
                        %ZZDC3A AHFAOPUMPB ATPFOAFWC
%ZZDC3A AMMOCCFAVBF
                        %ZZDC3A AHFAOPUMPC ATPFOAFWB
%ZZDC3A AMMOCCFAVDF
                        %ZZDC3A AHFAOPUMPB ATPAOAFWC
%ZZDC3A AMM3SSHV2 ZZU400S%ZZDC3A ACVNOPD243 ATPFOAFWC%ZZDC3A ACVNOPD243 ATPFOAFWC%ZZDC3A ACVNOS003B ATPFOAFWC%ZZDC3A ACVNOS003C ATPFOAFWB%ZZDC3A ACVNOPD243 ATPAOAFWC%ZZDC3A ACVNOPD243 ATPAOAFWC%ZZDC3A ACVNOS003B ATPAOAFWC%ZZDC3A ACVNOS003C ATPAOAFWB Added ZHFPTRNAMAN to gate ZREC6 for placeholding.
                        %ZZDC3A AHFAOPUMPC ATPAOAFWB
Mark PTN-BFJR-06-001 Rev 0 PTN AFWP B SDP CalcFinal.doc PTN-BFJR-0MO1 Rev.0 Page 28 of 30 Plant Response to Loss of AFW 1 Attachment 4: Summary of Turkey Point Hour after a Loss of Feedwater MAAP File Name Event Description Results PTN_,AFWlHRLSGWR_2HHSI_2PORVSGL60 86400 sec run PTN_LOHSlHRlHHSIlPORV_SGL6CHRA 43200 sec run PTNLOHSlHR_2HHSIlPORV_SGL6CHRA 43200 sec run PTN_LOHS1HR_2HHSI_2PORV_SGL6CHRA 43200 sec run PTNLOHSIHR_2HHSI_2PORV_SGL6CNOCD 36000 sec run PTN_LOHS1HR_NOF&B_NOCHG 36000 sec run PTNLOHSlHRNOF&BNOCHGAFWRESTHRA 43200 sec run PTN_LOOP_LOHS1HR_NOF&B_NOCHG 30000 sec PTN_2IN_S1LOCA_LOHS1HR_NOCHG 86400 sec PTN_LOOP_AFW1HRLSGWR_2HHSI_2PORVSGL60 86400 sec run Loss of feedwater Loss of AFW@ lhr SSGFW available Loss of feedwater Loss of AFW/SSGFW  
                        %ZZDC3A AHFPAFWPTRP ATPFOAFWB      ZZAFWPUMPC
@ lhr Bleed & feed initiated (1 HHSIP -1 PORV) to avoid core uncovery Loss of feedwater Loss of AFW/SSGFW  
                        %ZZDC3A AHFPAFWPTRP ATPFOAFWC      ZZAFWPUMPB
@ lhr Bleed & feed initiated (2 HHSIP -1 PORV) to avoid core uncovery Loss of feedwater Loss of AFW/SSGFW  
                        %ZZDC3A AHFPAFWPTRP ATPAOAFWB      ZZAFWPUMPC
@ lhr Bleed & feed initiated (2 HHSIP -2 PORV) to avoid core uncovery Loss of feedwater Loss of AFW/SSGFW  
                        %ZZDC3A AHFPAFWPTRP ATPAOAFWC      ZZAFWPUMPB
@ lhr Bleed & feed initiated (2 HHSIP -2 PORV) to avoid core damage Loss of feedwater Loss of AFW/SSGFW
                        %ZZDC3A AROPO-3418 ATPFOAFWC
@ lhr No bleed & feed initiated No charging Loss of feedwater Loss of AFW/SSGFW  
                        %ZZDC3A ATPFOAFWB AROPO-3419
@ lhr No bleed & feed initiated No charging AFW restored to avoid core damage LOOP/Loss of feedwater Loss of AFW/SSGFW  
                        %ZZDC3A AROPO-3418 ATPAOAFWC
@ lhr No bleed & feed initiated No charging 2" SlLOCA Loss of AFW/SSGFW  
                        %ZZDC3A ATPAOAFWB AROPO-3419
@ lhr Minimum SI @ 77 sec No charging Loss of feedwater Loss of AFW@ lhr SSGFW available S/G dryout -none Core uncovery -none Fuel damage -none Bleed & feed -none CL recirc -none S/G dryout -none Core uncovery -none Fuel damage -none Bleed & feed -22596 sec CL recirc -> 43200 sec S/G dryout -none Core uncovery -none Fuel damage -none Bleed & feed -23166 sec CL recirc -> 43200 sec S/G dryout -none Core uncovery -none Fuel damage -none Bleed & feed -23746 sec CL recirc -33132 sec S/G dryout -26834 sec Core uncovery -28406 sec Fuel damage -none Bleed & feed -27646 sec CL recirc -35861 sec S/G dryout -25787 sec Core uncovery -28221 sec Fuel damage -30657 sec Bleed & feed -n/a CL recirc -n/a S/G dryout -25787 sec Core uncovery -28221 sec Fuel damage -none Bleed & feed -n/a CL recirc -n/a AFW restored -28746 sec S/G dryout -23810 sec Core uncovery -26186 sec Fuel damage -28580 sec Bleed & feed -n/a CL recirc -n/a S/G dryout -none Core uncovery -none Fuel damage -none Bleed & feed -none CL recirc -78507 sec S/G dryout -none Core uncovery -none Fuel damage -none Bleed & feed -none CL recirc -none PTN-BFJR46-001 Rev 0 PTN AFWP B SDP CalcFinal.doc PTN-BFJR-06-001 Rev. 0 Page 29 of 30 Attachment 5: Summary of NRC Phase 3 SDP Results sequotice Best Vs. Curfert Roport by DM i 4n cut (b-c)Project TKPTL3 Analysis:
                        %ZZDC3A AMMOCCFAVBD
RANDOM Units: Per Year Event Sequence Curr Freq Base fteq Per Dillerence Ratio Curr 1329a Differ* End it Ie prYear year Cnt Cnt nce State LOQHS 02-07-07 0.000E+00 0.0O0E+00 0.000NE00 O)U00Q&00 O O O LOCCW 18 0.000E+00 0.000E+00 0.000E+00 0.000E+o0 0 0 0 GE)LOCCW 17 3.738E-1 2 3.73SE-12 noooLNoo 1 .OWEt00 3 3 0 CD LOCCW 15 0.000E+00 0.0002E00 0.oooE+Do 0.000E400 0 I .1 CO LOCCW 13 0.000Eo00 0.000E+00 0.00000 O.OOO00Etoo 0 1 .1 CO OCCW 6-06 , O.000.E+00 0.000E+00 0.000E+00 O.o0 E+000 O o 0 CD LOCHS 02-02 45 t.4622E-11
                        %ZZDC3A AMMOCCFAVBF
.00WE+00 1S002E00 6 O 0 CD LOCCW 26-10 3.331 E-11 3.331 E-11 0000E*00 t is S o C LOCCW aes9 0.000E400 0.000E+00 0.000oE00 0.0002E00 0 OQ 0 CD LOCHS 02-06-15 O.oooE400 0.000E+00 a OOCE.0 0.000E+00 0- 0 0 CD LOC 1HS 02-00-17 0.o00E+00 0 0.0002E00 o.oOOE-0 0 0 0 CD LOCcW 26-12 2.331E-11  
                        %ZZDC3A AMMOCCFAVDF
.832E-11 0.000E200 1.000E400 8 S 0 C6 LOCHS 02-06-18 0.000o+c0 0.000E+00 oooCE+00 0.000E*00 0 0 0 co LOCCW 26-08 0.000E+00 0.000E+00 0.000E+00 0.0o0E+O40 o 0 co LOCHS 02-07403 0.0 0E+oo o0 oE000+0o .00CE400 0.000E+00 0 o 0 CD LOCHS 02o07-0 O.O000E+00 0.0000E+0 O000E400 0.000E400 0 o 0 0 CO LOCHS 02-04-13 -.OOOE+00 0.000E+00 0.00oE+0O 0 00BE*00 0 0 0 CO LOOP 18-43-3 1.t7E2-11 iAW 11 5.310E-12 1.467Et00 3 5 .-2 1CD LDC3A 15-11 7.286E-12 2.21lE-13 7.055E-12 a .153E01 o 14 -11 Co C6HW 13 1.0D6E-11 0.00oE+00 1.096E-1 1 0.000E400 3 0 3 S LOMFW 1a 1217E-11 0.000E+o0 1t217E It 0.000E+00 O 3 CD LOOP , te i,403E-t1 0.000E 00 1.403E-1l 0.000C.00 e 0 CO MLOCA 12 -2.0311-11 238-E.11 .9482-11 3.91-8900 23 9 14 co LOCCW 25-11 9.s12E-11 2.313E-11 68s-9E-1I 4.026E+00 30 12 te CD LOICW 26-11 9.312E-11 Z313E-11 6.99sE-11 4.02SEo00 30 12 18 CD SLOCA 19-11 9.312E-1 1 2.313E1 6.999E-11 4.02E* 30 12 18 CD LOOP 16-45 3.152E.10 2.0o5E21 1.0s7F-10 1.534E400 17 38 -21 CD LOOP 14 1.0282-1o 3.3062-1Z 1.092E-10 o .823E.01 28 2 26 CD LAC3A 4 4494E-10 5.OS21-12 4.444E-10 8.896E0 44 , 0 O CD LtIAs 19-11 1.392E-9 4.757E-10 1463E-09 4.076E400 48 T7 91 SLOCAK 18 T.6R52-09 3.B922-11 1.64-06Eg 429E1+oi 33 T13 20 LOOP 19-11 2.470E9 64252.10 1 .s2sE40 s.844E400 15 30 -1S CD TP.A4S 14 2.07E-09 1.7642--10
                        %ZZDC3A AMM3SSHV2 ZZU400S
-2.A312-09 1.4782.01 109 179 .70 CD LAOB. -14 3.0022-09 8.1 202-11 I .0111-09 3.8082.01 27 109 -82 CD LAC3B 15-11 4.873E4-9 1227E-09 3.8646E09 3.0722.00 63 60 13 CD LAC3A .15-11 4.873E-09 1227E-09 3.S46E-09 32.72E.00 63 SO so 13 sOIR 30 5.5BOE-09 1261E-10 5,4s2E49 4.356E+0-255. 49 206 CD S~iR 32-11 932F.9 .3-060-to
                        %ZZDC3A ACVNOPD243 ATPFOAFWC
* .80.6092-0 3.004E401 s0 32 CD LOC-S 15.11 2.195e-0a 5.710E-09 1.624E2-8
                        %ZZDC3A ACVNOPD243 ATPFOAFWC
.3.844E400 72 104 -32 CD LOMFW 15-11 2.439E-08 6.344Es09 1.805E-08 3.845E+00 73 104 -31 CD 1.I 18 4.268E24) 1.32DEi 9 4.1 36E- -3214E+01 173 88 87 CD TR1ANS 15-11 1.708E-07 4.449E-08 1263E-07.
                        %ZZDC3A ACVNOS003B ATPFOAFWC
3.839E400 95 135 -40 CD G1T R 8 1 1.59aE-07
                        %ZZDC3A ACVNOS003C ATPFOAFWB
_6.30E-09 1.544E-07 2.943E401 434 163 271 CD LOOP 17 1.968E407 1.693E2-0 1.7sE4-07 1.162E601 471 299 172 Co LOCHS 14 3.870E-07 1.1 0C-08 3.760E-07 3.518E+01 3.41 214 127 CD LOMFW 14 4.300E-07 1225E-08 4.1704-07 3.6102.01 353 293 60 CD DC3A 14 1.867E-06 2.123E-08 1.8462-00 8 7942.Q 59 212 .153 Co TOTALS 5.6i56E-0 2.473E-06 2287E400 5390 5010 380 200&'12121 Page 22 Modd Rev. 3.31 200511OM28 13:55:45 PTN-BFJR-06-001 Rev 0 PTN AFWP B SDP Calcdoc PTN-BFJR-06-001 Rev. 0 Page 30 of 30 Attachment 6: SPAR-H Performance Shaping Factors for Execution Pi ant: Initatitng Event: Basic Event: Event Coder: _Baic Event Contexct.twliG Event DescripUon:__
                        %ZZDC3A ACVNOPD243 ATPAOAFWC
lArt IL EVALUATE EACH PSF FOR ACTION A. Evaluate PM~ for thicAction Portion of (be TsikJf Any.ire PSF Level: Mutlfpler for Please note specIfic reasons few Action PSF level selection In this____ ____ ___ ____ ____ __ ____ ___ colum n.TWiiK:I 'Imd..ue avA*Hirq -__It _____ r(I vqe~.On Time avaiWbe Iis I(b SNe time required 0.0!SWti MInxim I LV.I _ _ _ _ _ _ _ _ _I 0 MoI..11ga'm.1k InI FitessOX 4 0 Tlul~intlirl~tO crew 0.5 Imsuflkeit
                        %ZZDC3A ACVNOPD243 ATPAOAFWC
~ Info g.rom .ny I __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _[END]PTN-BFJRI-06-001 RevO0 PTN AFWP B SDP CalcFlnal.doc}}
                        %ZZDC3A ACVNOS003B ATPAOAFWC
                        %ZZDC3A ACVNOS003C ATPAOAFWB Added ZHFPTRNAMAN to gate ZREC6 for placeholding.
Mark PTN-BFJR-06-001 Rev 0 PTN AFWP B SDP CalcFinal.doc
 
PTN-BFJR-0MO1 Rev.0 Page 28 of 30 Attachment 4: Summary of Turkey Point Plant Response to Loss of AFW 1 Hour after a Loss of Feedwater MAAP File Name                    Event Description                    Results PTN_,AFWlHRLSGWR_2HHSI_2PORVSGL60                    Loss of feedwater            S/G dryout - none 86400 sec run                      Loss of AFW@ lhr          Core uncovery - none SSGFW available            Fuel damage - none Bleed & feed - none CL recirc - none PTN_LOHSlHRlHHSIlPORV_SGL6CHRA                      Loss of feedwater            S/G dryout - none 43200 sec run                 Loss of AFW/SSGFW @ lhr        Core uncovery - none Bleed & feed initiated (1      Fuel damage - none HHSIP - 1 PORV) to avoid      Bleed & feed - 22596 sec core uncovery          CL recirc - > 43200 sec PTNLOHSlHR_2HHSIlPORV_SGL6CHRA                    Loss of feedwater           S/G dryout - none 43200 sec run                Loss of AFW/SSGFW @ lhr         Core uncovery - none Bleed & feed initiated (2      Fuel damage - none HHSIP - 1 PORV) to avoid     Bleed & feed - 23166 sec core uncovery           CL recirc - > 43200 sec PTN_LOHS1HR_2HHSI_2PORV_SGL6CHRA                  Loss of feedwater           S/G dryout - none 43200 sec run                Loss of AFW/SSGFW @ lhr         Core uncovery - none Bleed & feed initiated (2       Fuel damage - none HHSIP - 2 PORV) to avoid     Bleed & feed - 23746 sec core uncovery           CL recirc - 33132 sec PTNLOHSIHR_2HHSI_2PORV_SGL6CNOCD                    Loss of feedwater         S/G dryout - 26834 sec 36000 sec run                Loss of AFW/SSGFW @ lhr     Core uncovery - 28406 sec Bleed & feed initiated (2       Fuel damage - none HHSIP - 2 PORV) to avoid     Bleed & feed - 27646 sec core damage            CL recirc - 35861 sec PTN_LOHS1HR_NOF&B_NOCHG                      Loss of feedwater         S/G dryout - 25787 sec 36000 sec run                Loss of AFW/SSGFW @lhr       Core uncovery - 28221 sec No bleed & feed initiated   Fuel damage - 30657 sec No charging              Bleed & feed - n/a CL recirc - n/a PTNLOHSlHRNOF&BNOCHGAFWRESTHRA                        Loss of feedwater         S/G dryout - 25787 sec 43200 sec run                Loss of AFW/SSGFW @ lhr     Core uncovery - 28221 sec No bleed & feed initiated       Fuel damage - none No charging               Bleed & feed - n/a AFW restored to avoid core           CL recirc - n/a damage             AFW restored - 28746 sec PTN_LOOP_LOHS1HR_NOF&B_NOCHG                LOOP/Loss of feedwater       S/G dryout - 23810 sec 30000 sec                  Loss of AFW/SSGFW @ lhr     Core uncovery - 26186 sec No bleed & feed initiated   Fuel damage - 28580 sec No charging               Bleed & feed - n/a CL recirc - n/a PTN_2IN_S1LOCA_LOHS1HR_NOCHG                        2" SlLOCA               S/G dryout - none 86400 sec                  Loss of AFW/SSGFW @ lhr         Core uncovery - none Minimum SI @ 77 sec           Fuel damage - none No charging             Bleed & feed - none CL recirc - 78507 sec PTN_LOOP_AFW1HRLSGWR_2HHSI_2PORVSGL60                  Loss of feedwater           S/G dryout - none 86400 sec run                      Loss of AFW@ lhr          Core uncovery - none SSGFW available            Fuel damage - none Bleed & feed - none CL recirc - none PTN-BFJR46-001 Rev 0 PTN AFWP B SDP CalcFinal.doc
 
PTN-BFJR-06-001 Rev. 0 Page 29 of 30 : Summary of NRC Phase 3 SDP Results sequotice Best Vs. Curfert Roport by DM i 4n cut (b-c)
Project TKPTL3 Analysis: RANDOM                                                                                                  Units: Per Year Event      Sequence Curr Freq          Base fteq Per      Dillerence    Ratio        Curr    1329a    Differ*      End it      Ie                prYear      year                                            Cnt      Cnt      nce        State LOQHS 02-07-07              0.000E+00  0.0O0E+00            0.000NE00        O)U00Q&00  O        O        O LOCCW 18                  0.000E+00    0.000E+00          0.000E+00      0.000E+o0  0        0        0          GE)
LOCCW      17              3.738E-1 2  3.73SE-12              noooLNoo    1.OWEt00    3      3        0            CD LOCCW 15                  0.000E+00      0.0002E00          0.oooE+Do      0.000E400  0        I        .1          CO LOCCW 13                  0.000Eo00    0.000E+00          0.00000 O.OOO00Etoo        0        1          .1        CO OCCW      6-06 ,        O.000.E+00  0.000E+00            0.000E+00      O.o0 E+000  O        o      0            CD LOCHS      02-02            45 t.4622E-11                              .00WE+00    1S002E00    6    O            0          CD LOCCW 26-10              3.331 E-11    3.331 E-11          0000E*00        t          S   is            o        C LOCCW        aes9          0.000E400    0.000E+00            0.000oE00      0.0002E00  0          OQ    0            CD LOCHS 02-06-15          O.oooE400    0.000E+00              aOOCE.0      0.000E+00  0-       0        0          CD LOC 1HS 02-00-17          0.o00E+00      0                  0.0002E00      o.oOOE-0    0        0        0          CD LOCcW      26-12        2.331E-11        .832E-11          0.000E200      1.000E400 8            S     0            C6 LOCHS      02-06-18      0.000o+c0    0.000E+00            oooCE+00      0.000E*00 0          0        0            co LOCCW      26-08        0.000E+00    0.000E+00            0.000E+00      0.0o0E+O40 o          0                    co LOCHS      02-07403      0.0      0E+oo o0oE000+0o            .00CE400    0.000E+00 0             o      0          CD LOCHS      02o07-0        O.O000E+00   0.0000E+0            O000E400      0.000E400o 0          0        0           CO LOCHS      02-04-13      -. OOOE+00   0.000E+00           0.00oE+0O      0 00BE*00 0           0        0          CO LOOP        18-43-3     1.t7E2-11        iAW 11          5.310E-12       1.467Et00 3         5    .-    2      1CD LDC3A      15-11          7.286E-12    2.21lE-13            7.055E-12a      .153E01 o            14      -11        Co C6HW        13            1.0D6E-11    0.00oE+00           1.096E-1 1    0.000E400 3          0        3S LOMFW 1a                1217E-11      0.000E+o0          1t217E It      0.000E+00             O        3            CD LOOP , te                  i,403E-t1  0.000E 00             1.403E-1l      0.000C.00   e        0                   CO MLOCA 12            -     2.0311-11      238-E.11              .9482-11     3.91-8900 23          9        14        co LOCCW      25-11         9.s12E-11    2.313E-11            68s-9E-1I      4.026E+00 30        12        te        CD LOICW      26-11        9.312E-11        Z313E-11        6.99sE-11      4.02SEo00 30          12        18          CD SLOCA      19-11         9.312E-1 1    2.313E1              6.999E-11      4.02E*      30        12        18        CD LOOP        16-45        3.152E.10    2.0o5E21            1.0s7F-10      1.534E400 17        38        -21        CD LOOP        14            1.0282-1o      3.3062-1Z          1.092E-10o      .823E.01 28          2        26        CD LAC3A        4          4494E-10      5.OS21-12            4.444E-10      8.896E0    44        ,        0     O    CD LtIAs      19-11        1.392E-9      4.757E-10            1463E-09        4.076E400 48        T7        91 SLOCAK      18            T.6R52-09    3.B922-11            1.64-06Eg      429E1+oi  33        T13      20 LOOP        19-11         2.470E9      64252.10            1.s2sE40        s.844E400  15       30        -1S        CD TP.A4S      14            2.07E-09      1.7642--10      -    2.A312-09      1.4782.01  109      179      .70        CD LAOB.       -14          3.0022-09    8.1 202-11I            .0111-09      3.8082.01  27        109      -82        CD LAC3B      15-11        4.873E4-9      1227E-09            3.8646E09      3.0722.00   63      60        13        CD LAC3A      .15-11         4.873E-09      1227E-09            3.S46E-09      32.72E.00  63        SO so        13 sOIR        30          5.5BOE-09    1261E-10            5,4s2E49        4.356E+0-  255.      49        206        CD S~iR        32-11         932F.9         .3-060-to *    .     80.6092-0    3.004E401  s0                  32        CD LOC-S      15.11         2.195e-0a    5.710E-09            1.624E2-8      .3.844E400  72        104      -32        CD LOMFW      15-11         2.439E-08    6.344Es09            1.805E-08      3.845E+00  73        104      -31        CD 1.I        18            4.268E24)      1.32DEi9            4.1 36E-    - 3214E+01   173      88        87        CD TR1ANS      15-11        1.708E-07    4.449E-08            1263E-07.      3.839E400  95        135      -40        CD R
G1T      81            1.59aE-07    _6.30E-09            1.544E-07      2.943E401  434      163      271        CD LOOP        17            1.968E407    1.693E2-0            1.7sE4-07      1.162E601  471      299        172      Co LOCHS      14            3.870E-07      1.1 0C-08          3.760E-07      3.518E+01  3.41      214        127        CD LOMFW      14             4.300E-07    1225E-08            4.1704-07      3.6102.01   353      293      60        CD DC3A    14            1.867E-06    2.123E-08            1.8462-00      8 7942.Q    59        212      .153      Co TOTALS        5.6i56E-0    2.473E-06                            2287E400    5390      5010      380 200&'12121                                                  Page 22                                                        13:55:45 Modd Rev. 3.31 200511OM28 PTN-BFJR-06-001 Rev 0 PTN AFWP B SDP Calcdoc
 
PTN-BFJR-06-001 Rev. 0 Page 30 of 30 Attachment 6: SPAR-H Performance Shaping Factors for Execution Pi ant:                    Initatitng Event:                Basic Event:                    Event Coder:                  _
Baic Event Contexct.
twliG Event DescripUon:__
lArt IL EVALUATE EACH PSF FOR ACTION A. Evaluate PM~for thicAction Portion of (be TsikJf Any.
ire          PSF Level:                                      Mutlfpler for Please note specIfic reasons few Action        PSF level selection In this
____      ____  __      ____  ___  column.
TWiiK:I          'Imd..ue avA*Hirq    -         vqe~.On_____
__It                r(I Time avaiWbe IisI(b  SNe time required        0.0!
SWti        MInxim                                      I LV.I                                                                  _    _    _    _    _    _  _  _    _
I            0 MoI..
11ga'm.1kInI FitessOX 4                                                              0 Tlul~intlirl~tO crew                            0.5 Imsuflkeit  ~Info g.rom.ny                      I              __  _ _  _  _ __   _ _   _ _ __ _ _ _ _ _
[END]
PTN-BFJRI-06-001 RevO0 PTN AFWP B SDP CalcFlnal.doc}}

Latest revision as of 08:26, 14 March 2020

Attachment 3 Calculation PTN-BFJR-06-001 Phase 3 SDP for Turkey Point B AFW Pump Failure
ML060860078
Person / Time
Site: Turkey Point  NextEra Energy icon.png
Issue date: 03/13/2006
From:
Florida Power & Light Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
PTN-BFJR-06-001
Download: ML060860078 (31)


Text

L-2006-066 ATTACHMENT 3 CALCULATION PTN-BFJR-06-001 PHASE 3 SDP FOR TURKEY POINT "B" AFW PUMP FAILURE 5

Page 1 of 30 CALCULATION COVER SHEET Calculation No: PTN-BFJR-06-001

Title:

PHASE 3 SDP FOR TURKEY POINT B AFW PUMP FAILURE

., A 1 7,6WLg~ 2#

0 INITIAL ISSUE -ae Descriptlon BY 7 fe Date _'dhk/Ver I atelDate N.

REVISIONS PTN-BFJR-06--01 Rev 0 PTN AFWP BSDP Calc.doc

PTN-BFJR-06-001 Rev. 0 Page 2 of 30 LIST OF EFFECTIVE PAGES Calculation No: PTN-BFJR-06-001 REV. 0

Title:

PHASE 3 SDP FOR TURKEY POINT B AFW PUMP FAILURE.

PAGE SECTION REV PAGE SECTION REV PAGE SECTION REV 1 COVER SHEET 0 2 LIST OF EF PG 0 3 TABLE OF CONTS 0 4 1.0 0 4 2.0 0° 4 3.0 0 5 4.0 0 _ __

7 5.0 0 15 6.0 0 15 7.0 0 18 Attachment 1 0 23 Attachment 2 _ _

25 _ Attachment 3 0 28 Attachment 4 0 29 _ Attachment 5 0 30 Attachment 6 0 PTN-BFJR-06-031 Rev 0 PTN AFWP B SDP CalcFinal.doc

PTN-BFJR-06-001 Rev. 0 Page 3 of 30 TABLE OF CONTENTS Calculation No: PTN-BFJR-06-001 REV. 0 ORMI mm 1.0 PURPOSE/SCOPE ..................... 4

2.0 REFERENCES

..................... 4 3.0 METHODOLOGY ..................... 4 4.0 ASSUMPTIONSIBASES ..................... 5 5.0 CALCULATION ....................... 7 6.0 CALCULATIONAL FILES .................... is 7.0 RESULTS ..................... 15 ATTACHMENT 1: SENSITIVITY CASE, USING MSPI DATA, WITH AFW B FAILURE TO RUN SET TO 1.0 ..................... 18 ATTACHME:NT 2, SENSITIVITY STUDY: BASE CASE, USING MSPI DATA, NOMINAL AFW B FAILURE TO RUN ........... . 23 ATTACHMENT 3: CLARIFICATION OF LOSS OF DC 3A OPERATOR RECOVERY ACTION ............. 25 ATTACHMENT 4:

SUMMARY

OF TURKEY POINT PLANT RESPONSE TO LOSS OF AFW 1 HOUR AFTER A LOSS OF FEEDWATER .......................................................................... 28 ATTACHMENT 5:

SUMMARY

OF NRC PHASE 3 SDP RESULTS ....................................................... 29 ATTACHMENT 6: SPAR-H PERFORMANCE SHAPING FACTORS FOR EXECUTION ....................... 30 LIST OF TABLES i MMEMM Table (1): AFW Pump B Surveillance Data. 5 Table (2): Top 10 cutsets from SPAR Model for LODC3A. 9 Table (3): List of Key HEPs and Performance shaping Factors. 10 Table (4): Top 10 cutsets from SPAR Model for LOCHS. 11 Table (5): Top 10 cutsets from SPAR Model for LOMFW. 13 Table (6): Best Estimate Delta CDF. 16 Table (7): Summary of Delta CDF Sensitivity Study. 16 PTN-BFJR-06-001 Rev 0 PTN AFWP B SDP CaicFinal.doc

PTN-BFJR-6001 Rev. 0 Page 4 of 30 1.0 PURPOSEISCOPE This calculation documents the methodology and input used to support a response to the NRC phase 3 SDP (Ref. 1) associated with B AFW pump failure identified in a test run on November 7, 2005. During IST testing 11/7/05, the B AFW pump P28 exhibited high vibration and temperatures at the inboard journal bearing location inspection point (Reference 4). The reading was documented as 0.8 in/sec. On 11/8/05 the AFW pump was disassembled for inspection. The initial inspection included disassembling the coupling and pump inboard bearing. The results of this inspection found signs of uneven tooth wear on the pump coupling and evidence of grease caking.

Inspection of the inboard journal bearing found that the bearing was installed incorrectly. The bearing was installed 90 degrees from its correct orientation. This incorrect installation resulted in inadequate lubrication to the bearing and caused flaking of the sleeve bearing babbit.

2.0 REFERENCES

1. Turkey Point Nuclear Plant Integrated Inspection Report , 05000250/2005005 and 05000251/2005005 Preliminary White Finding, ; January 27, 2005.
2. NURG/CR-6883, The SPAR-H Human Reliability Analysis Method, 8/2005.
3. Emails from Glen Blinde 12/28/2005, Re: PTN AFW SDP issue success criteria need; 2/16/2006, Re: Questions on 858 & AFW MAAP runs.
4. CR 2005-30750 (High Vibrations on the P28 AFW Pump - Extent of Condition).
5. NEI-99-02 Appendix F, "Methodologies for Computing The Unavailability Index, The Unreliability Index and Component Performance Limits", Revision 4.
6. PTN Change Form PTN-C-06-001, February, 2006.
7. PTN-BFJR-00-001, "PTN PSA Model Update," FPL-RRAG, Revision 5, 6/24/04.
8. SPAR Model for Turkey Point Units 3 and 4, August 2005, version 9/30/2005.

3.0 METHODOLOGY Because the degradation of B AFW pump is time-dependent, its safety significance is assessed by including the following factors:

1. Based on the test data and operating experience of the B AFW pump, .the B AFW pump woL Id run at least one hour on or before October 30, 2005. Afterwards, the performance of B AFW pump is not determined, and is conservatively assumed to fail within the first hour.
2. If B AFW pump runs for an hour and then fails, the decay heat is significantly lower, allowing more time for operators to take actions stipulated in the EOP.
3. The lower decay heat after one hour from hypothetical accidents also allows a less stringent success criterion for feed and bleed.
4. Credit for operator actions (e.g., certain offsite power recovery actions) not included in the orig'nal baseline PSA model, which were not important due to lower probability of the sequences, should be included for consistency.

PTN-BFJR-06-CO1 Rev 0 PTN AFWP BSDP CalcFinal.doc

PTN-BFJR-M001 Rev. 0 Page 5 of 30

5. Usirg a mission time of 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> for 3 AFW pumps and 2 standby steam generator feed pumps overestimates the probability of selected sequences.

The approach used in the Phase 3 SDP is to review the SPAR model (Reference 8), the Turkey Point PSA model (Reference 7), MSPI data base and insights obtained from the sensitivity studies to develop a scoping estimate of the risk impact.

4.0 ASSUMPTIONS/BASES

1. SPAR-H for Human Error Probability estimates are used for revising the HEPs for cases in which B AFW pump fails after 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />.
2. Run times for B AFW pump collected from AFW system engineer indicate that the AFW pump was capable of running for more than one hour (see run time for 10/10/05). The pump capability (residual runtime) given a demand would be increasingly longer looking back in time due to the progressively less wear when pump experienced fewer run hours. This is indicated in the table below per email from Joe Laduca 12/31/2005.

Table (1): AFW Pump B Surveillance Data. l Surveillance Runs plus Rx Reason (Procedure or Date Trips(hours) Trip) Residual runtime 1/3/2003 0.7 4-OSP-075.9 54.83 1/6/2003 1.3 4-OSP-075.2 54.13 C/6/2003 0.5 4-OSP-075.9 52.83 G/7/2003 1.75 4-OSP-075.2 52.33 1/8/2003 3.5 4-OSP-075.7 50.58 1/9/2003 1.5 3-OSP-075.2 47.08 9/10/2003 0.6 4-OSP-075.2 45.58 9/12/2003 0.5 4-OSP-075.9 44.98 10/13/2003 0.6 3-OSP-075.2 44.48 11/4/2003 0.5 4-OSP-075.7 43.88 11/10/2003 1.5 3-OSP-075.7 43.38 12/8/2003 0.6 3-OSP-075.2 41.88 12/9/2003 0.8 4-OSP-075.7 41.28 1/5/2004 0.9 3-OSP-075.2 40.48 1/5/2004 0.4 4-OSP-075.2 39.58 1/30/2004 1 3-OSP-075.7 39.18 2/2/2004 0.6 4-OSP-075.2 38.18 3/2/2004 0.5 3-OSP-075.2 37.58 3/4/2004 1.7 4-OSP-075.7 37.08 3/29/2004 1.1 4-OSP-075.2 35.38 3/29/2004 0.25 3-OSP-075.2 34.28 4/26/2004 1.1 3-OSP-075.7 34.03 5/14/2004 2.75 RxrTdpAFWAutoInitiation 32.93 PTN-BFJR-06-001 Rev 0 PTN AFWP B SDP CalcFinal.doc

PTN-BFJR-06-001 Rev. 0 Page 6 of 30 Table (1M: AFW Pumn B Surveillance Data.

Surveillance Runs plus Rx Reason (Procedure or Date Trips(hours) Trip) Residual runtime 5/24/2004 0.5 3-OSP-075.2 30.18 6/21/2004 0.5 3-OSP-075.2 29.68 6/21/2004 0.9 4-OSP-075.2 29.18 7/19/2004 1.7 3-OSP-075.7 28.28 7/20/2004 0.5 4-OSP-075.2 26.58 8/16/2004 0.4 3-OSP-075.2 26.08 9/13/2004 0.25 3-OSP-075.2 25.68 9/13/2004 0.5 4-OSP-075.2 25.43 10/11/2004 0.4 4-OSP-075.2 24.93

_11/8/2004 0.9 4-OSP-075.2 24.53 11/12/2004 1.4 4-OSP-075.7 23.63 1211/2004 1.2 3-OSP-75.7 22.23 1 26/2004 1 4-OSP-075.2 21.03 12/14/2004 1.8 Rxr Trip AFW Auto Initiation 20.03 12/25/2004 1.1 RxrTrip.AFW Auto Initiation 18.23 12/28/2004 0.9 RxrTripAFW Auto Initiation 17.13 1/10/2005 0.9 4-OSP-075.2 16.23 1/31/2005 1.33 4-OSP-075.7 15.33 2/24/2005 1.05 4-OSP-075.2 14.00 2/28/2005 0.43 4-OSP-075.2 12.95 2/28/2005 0.52 3-OSP-075.2. 12.52 2/28/2005 0.5 3-OSP-075.9 12.00 3/22/2005 0.5 3-OSP-075.2 11.50 3/22/2005 1.5 Rxr.Trp AFW Auto Initiation 11.00 4/.25/2005 0.4 3-OSP-075.2 9.50 5/6/2005 0.3 3-OSP-075.2 9.10 5/23/2005 0.5 3-OSP-075.2 8.80 5/27/2005 0.2 .3-OSP-075.2 8.30 6/25/2005 0.5 4-OSP-075.2 8.10 6/25/2005 0.6 _ 3-OSP-075.7 7.60 6/27/2005 0.9 Rxr Trip AFW Auto Initiation 7.00 7/18/2005 .1 4-OSP-075.7 6.1 7/20/2005 0.5 3-OSP-075.2 5.1 8/15/2005 0.5 4-OSP-075.2 4.6 9/12/2005 0.3 4-OSP-075.2 4.1 10/10/2005 0.4 3-OSP-075.2 3.8 10/10/2005 2.1 4-OSP-075.7 3.4 10/31/2005 0.6 Rxr Trip AFW Auto Initiation 1.3

_._November 7 ran 0.7 hours8.101852e-5 days <br />0.00194 hours <br />1.157407e-5 weeks <br />2.6635e-6 months <br />

3. As a sensitivity study, the MSPI industry. reliability data as a new generic prior and the SPAR model failure data were used for AFW pumps failure to start and run.

PTN-BFJR-06-031 Rev 0 PTN AFWP B SDP CalcFinal.doc

PTN-BFJR-06-001 Rev. O Page 7 of 30 5.0 CALCULATION Based on the test data and operating experience of the BAFW pump, .the B AFW pump would run at least one hour at normal failure rate (thus for the first hour given any hypothetical accidents, there is no Delta CDF increase) on or before October 31, 2005. Afterwards, the performance of B AFW pump is not determined, and is conservatively assumed to fail.

The risk impact of degraded B AFW pump is composed of two time windows, each with a different risk increase.

Time Window 1: Before October 30, 2005, B AFW pump Is assumed to fall one hour or longer after automatic actuation

1. If BAFW pump runs for an hour and then fails, the decay heat is significantly lower, allowing more time for operators to take actions stipulated inthe EOP.

A scoping MAAP run and an analysis based on decay heat equation indicated that at least an additional hour would be available for execution (Reference 7). The Human Error Probabilities, based on the SPAR-H, for the performance shaping factor "Available Time",

are adjusted from "just enough" to "nominal" due to much longer time and potentially less stress. Thus HEPs (see Attachment 6, which is excerpted from Reference 2) would be reduced by a factor of 10 or more.

2. The lower decay heat after one hour from hypothetical accidents also allows a less stringent success criterion for bleed and feed. Instead of 2 PORVs for bleed, either PORV opening is sufficient for the successful operation of bleed and feed. (see Attachment 4, which is excerpted from Reference 3, second and third cases)

This reduces the contribution of the dominant sequences LDC3A, by a factor of 10 or more.

The above factors are included in the Turkey Point SPAR model to estimate the delta CDF for the case where B AFW pump would fail after one hour of operation. Delta CDF is estimated to be approximately 3.2E-7 (a factor of 10 reduction from 3.2E-6NYr).

Time Window 2: After October31, 2005, B AFW pump Is assumed to fall witin one hour of automatic actuation.

A review of the cutsets for loss of DC bus; indicates that if AFW fails within the first hour, those cutsets involving the stopping of the C pump are not valid, as the condition for it being failed due to deadheading is eliminated by B pump failing. The CDF is conservatively assumed to be 1.6 E-6/r (3.2E-6NYr, subtracted by 1.6E-6/Yr, a scoping elimination of the top cutest of loss of DC bus).

The core damage frequency increase due to the degraded B AFW pump over a year is estimated to be:

PTN-BFJR-0r6-O01 Rev 0 PTN AFWP B SDP CalcFinal.doc

PTN-BFJR-0OO1 Rev. 0 Page 8 of 30 1.6E-6/Yr

  • 1/12 + 3.2E-7/Yr
  • 11/12 = 4.3E-7/Yr, which is less than 1.OE-6/Yr. The Delta CDF increase is considered not risk significant.

There is still some margin in the estimated safety significance from the threshold of 1.OE-6/Yr, even if it is conservatively assumed that risk impact of the BAFW pump due to external events is as high as that due to internal events.

Other mitigating factors that may reduce the risk impact include:

1. Unit 3 and Unit 4 were shutdown to Mode 3 on October 24 because of grid instabilities due to Hurricane Wilma. Unit 3 was returned to full power operation on November 2. Unit 4 remained shutdown due to secondary chemistry problems. On October 31, the switchyard insulator salting caused loss of Unit 4 startup transformer and on November 1, the unit was placed in Mode 5. Following restoration of offsite power and resolution of chemistry problems, the unit was restarted on November 12 and returned to full power operation on November 14.
2. Using a mission time of 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> for 3 AFW pumps and 2 standby steam generator feed pumps overestimates the probability of selected sequences.
3. Manual actions stipulated in the plant procedures to recover failure of AFW pumps were not credited in the original baseline PSA model should be included to be consistent with NRC's SPAR model
4. The delta CDF for the time windows where B AFW pump was degraded, but could have run for longer than one hour, is lower than that for which B AFW pump was assumed to run for just one hour.

SAPHIRE ,' and the latest Turkey Point model were used to understand the three dominant sequences contributing to the phase 3 SDP summarized in the NRC inspection report. The SPAR model was modified by incorporating the key modeling assumptions related to using SSGFW pump, with slightly higher delta CDF than that estimated in Reference 2 (see Attachment 5)

Mitigating factor 1: For the case of B AFW pump failing within the first hour, the operator action to stop the weaker pump is not applicable, as the B AFW pump would fail before the deadheading of the weaker [pump becomes an issue.

For the case when B AFW pump fails after running for one hour or more, the probability of dominant cutsets can be reduced by a factor of 10 or more, because:

1. The success criterion for feed and bleed is relaxed from two PORVs to one PORV.
2. Recovery action to locally use AFW train A given loss of DC bus A is proceduralized and credited in the Turkey Point PSA model, with failure probability of 0.11 including the hardWare failure.

PTN-BFJR-06-G)1 Rev 0 PTN AFWVP B SDP CalcFinal.doc

PTN-BFJR--001 Rev. 0 Page 9 of 30 Table (2): Top 10 cutsets from SPAR Model for LODC3A.

Cut %Cut No.  % Total Set ProbJFrequency Basic Event Description Event Prob.

1 93.79 93.79 1.750E-006 IE-LODC3A LOSS OF DC BUS 3A 2.500E-003 AFW-TDPC- AFW TDP-C WEAKER OF 5.000E-001 WEAKER THE TWO TRAIN 2 PUMPS (PSA)

AFW-XHE-XM- OPERATOR FAILS TO TRIP 1.400E-003 TRIP1 AFW PUMP MFW-XHE-XL- OPERATOR FAILS TO 1.000E+000 TRIP RECOVER MFW 2 95.67 1.88 3.500E-008 IE-LODC3A LOSS OF DC BUS 3A 2.500E-003 AFW-TDP-FS-C AFW TDP C FAILS TO 7.OOOE-003 START MFW-XHE-XL- OPERATOR FAILS TO 2.000E-003 RESTORE RESTORE MFW (LODC3A-

__ PSA) 3 97.01 1.34 2.500E-008 IE-LODC3A LOSS OF DC BUS 3A 2.500E-003 AFW-TDP-TM-C AFW TDP C UNAVAILABLE 5.000E-003 DUE TO TEST AND MAINTENANCE MFW-XHE-XL- OPERATOR FAILS TO 2.000E-003 RESTORE RESTORE MFW (LODC3A -

__ _ _ _ PSA) 4 98.25 1.24 2.305E-008 IE-LODC3A LOSS OF DC BUS 3A 2.500E-003 AFW-TDP-CF- COMMON CAUSE FAILURE 4.610E-003 FRBC OF TDP B & C TO RUN MFW-XHE-XL- OPERATOR FAILS TO 2.000E-003 RESTORE RESTORE MFW (LODC3A -

PSA) 5 98.97 0.72 1.348E-008 IE-LODC3A LOSS OF DC BUS 3A 2.500E-003 AFW-TDP-CF- COMMON CAUSE FAILURE 2.696E-003 FRALL OF TURBINE DRIVEN PUMPS TO RUN MFW-XHE-XL- OPERATOR FAILS TO 2.000E-003 RESTORE RESTORE MFW (LODC3A -

PSA) 6 99.13 0.16 2.951E-009 IE-LODC3A LOSS OF DC BUS 3A 2.500E-003 AFW-TDP-FR-C AFW TDP C FAILS TO RUN 5.366E-003 AFW-XHE-XL- OPERATOR FAILS TO 1.100E-001 TDPA MANUALLY ALIGN TDP-A GIVEN LOSS OF DC-3A (PSA)

MFW-XHE-XL- OPERATOR FAILS TO 2.000E-003 RESTORE RESTORE MFW (LODC3A -

._ PSA) 7 99.26 0.13 2.500E-009 IE-LODC3A LOSS OF DC BUS 3A 2.500E-003 AFW-CKV-CC- FAILURE OF FLOW TO SG- 1.000E-004 3012 3B THROUGH CHECK VALVE 3-012 AFW-XHE-XM- OPERATOR FAILS TO 1.OOOE-002 FLOW2 INCREASE AFW TRAIN 2 FLOW GIVEN ONE DISCH

__ PATH FAILED PTN-BFJR-06-CO1 Rev 0 PTN AFWP B SDP CalcFinal.doc

PTN-BFJR-06-001 Rev. 0 Page 10 of 30 Table (2): Top 10 cutsets from SPAR Model for LODC3A.

Cut -%Cut No.  % Total Set ProbiFrequency Basic Event Description Event Prob.

MFW-XHE-XL- OPERATOR FAILS TO 1.000E+000 TRIP RECOVER MFW 8 99.39 0.13 2.500E-009 IE-LODC3A LOSS OF DC BUS 3A 2.500E-003 AFW-CKV-CC- FAILURE OF FLOW TO SG- 1.000E-004 3010 3A THROUGH CHECK VALVE 3-010 AFW-XHE-XM- OPERATOR FAILS TO 1.OOOE-002 FLOW2 INCREASE AFW TRAIN 2 FLOW GIVEN ONE DISCH PATH FAILED MFW-XHE-XL- OPERATOR FAILS TO 1.000E+000 TRIP RECOVER MFW 9 99.52 0.13 2.500E-009 IE-LODC3A LOSS OF DC BUS 3A 2.500E-003 AFW-CKV-CC- FAILURE OF FLOW TO SG- 1.OOOE-004 3014 3C THROUGH CHECK VALVE 3-014 AFW-XHE-XM- OPERATOR FAILS TO 1.OOOE-002 FLOW2 INCREASE AFW TRAIN 2 FLOW GIVEN ONE DISCH PATH FAILED MFW-XHE-XL- OPERATOR FAILS TO 1.OOOE+000 TRIP RECOVER MFW 10 99.63 0.11 2.134E-009 IE-LODC3A LOSS OF DC BUS 3A 2.500E-003 AFW-TDP-TM- AFW TRAIN 2 3.880E-003 TRAIN2 UNAVAILABLE DUE TO TEST AND MAINTENANCE (PSA)

AFW-XHE-XL- OPERATOR FAILS TO 1.100E-001 TDPA MANUALLY ALIGN TDP-A GIVEN LOSS OF DC-3A (PSA)

MFW-XHE-XL- OPERATOR FAILS TO 2.OOOE-003 RESTORE RESTORE MFW (LODC3A -

PSA)

For the case when B AFW pump fails after running for one hour or more, the HEPs are reduced by a factor of 10 because available time is nominal (See Attachment 6, the basis of SPAR-H for execution).

Table (3): Ust of Key HEPs and Performance shaping Factors.

HRA Basic Event Event Description/Shaping Distribution Probability/ InitialUMultiplier Name Factor

  • Type/PSF Percentage AFW-XHE-XMI-THRTL OPERATOR FAILS TO Constrained 1.OE-3 THROTTLE SG FCVs Noninformative Action is modeled. 1.0E-3 Available Time Nominal time 100% 1.00 Stress/Stressors Nominal 100% 1.00 Complexity Nominal 100% 1.00 Experience/Training Nominal 100% 1.00 Procedures Nominal 100% 1.00 Egonomics/HMI Nominal 100% 1.00 PTN-BFJR-06-CO1 Rev 0 PTN AFWP B SDP CalcFinal.doc

PTN-BFJR-06-001 Rev. 0 Page 11 of 30 Table (3): Ust of Key HEPs and Performance shaping Factors.

HRA Basic Event Event Description/Shaping Distribution Probability/ Initial/Multiplier Name Factor TypeIPSF Percentage Fitness for Duty Nominal 100% 1.00 Work Processes Nominal 100% 1.00.

Dependency is not modeled.

SFP-XHE-XIM--SSGFP OPERATOR FAILS TO Constrained START AND ALIGN Noninformative STANDBY SG PUMP TRAINS Action is modeled. 1.OE-3 Available Time Nominal time 100% 1.00 Stress/Stressors Nominal 100% 1.00 Complexity Nominal 100% 1.00 Experience/Training Nominal 100% 1.00 Procedures Nominal 100% 1.00 Egonomics/HMI Nominal 100% 1.00 Fitness for Duty Nominal 100% 1.00 Work Processes Nominal 100% 1.00 Dependency is not modeled.

HPI-XHE-XM-FB OPERATOR FAILS TO Constrained 2.OE-3 INITIATE FEED AND Noninformative BLEED COOLING Action is modeled. 1.OE-3 Available Time Nominal time 100% 1.00 Stress/Stressors High 100% 2.00 Complexity Nominal 100% 1.00 Experience/Training Nominal 100% 1.00 Procedures Nominal 100% 1.00 Egonomics/HMI Nominal 100% 1.00 Fitness for Duty Nominal 100% 1.00 Work Processes Nominal 100% 1.00 Dependency is not modeled.

Table (4): Top 10 cutsets from SPAR Model for LOCHS.

Cut  %  % Cut ProbJ No. Totsil Set Frequency Basic Event Description Event Prob.

1 70.82 70.82 2.888E-007 IE-LOCHS LOSS OF CONDENSER HEAT SINK 9.000E-002 AFW-TDP-CF- COMMON CAUSE FAILURE OF 2.696E-003 FRALL TURBINE DRIVEN PUMPS TO RUN HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.OOOE-002 FEED AND BLEED COOLING SFP-XHE-XM- OPERATOR FAILS TO START AND 5.950E-002 SSGFP1 ALIGN STANDBY SG PUMP TRAINS (DE 2 73.80 2.98 1.213E-008 IE-LOCHS LOSS OF CONDENSER HEAT SINK 9.000E-002 AFW-TDP-CF- COMMON CAUSE FAILURE OF 2.696E-003

__ FRALL TURBINE DRIVEN PUMPS TO RUN PPR-SRV-CC- PORV 1 (PCV-456) FAILS TO OPEN 5.OOOE-003

_ 456 ON DEMAND PTN-BFJR-06-031 Rev 0 PTN AFWP B SDP CalcFinal.doc

PTN-BFJR-06001 Rev. 0 Page 12 of 30 Table (4): To 10 cutsets from SPAR Model for LOCHS.

Cut  %  % Cut ProbJ No. Totail Set Frequency Basic Event Description Event Prob.

SFP-XHE-XM- OPERATOR FAILS TO START AND 1.000E-002 SSGFP ALIGN STANDBY SG PUMP TRAINS 3 76.78 2.98 1.213E-008 IE-LOCHS LOSS OF CONDENSER HEAT SINK 9.000E-002 AFW-TDP-CF- COMMON CAUSE FAILURE OF 2.696E-003 FRALL TURBINE DRIVEN PUMPS TO RUN PPR-SRV-CC- PORV 2 (PCV-455C) FAILS TO 5.000E-003 455C OPEN ON DEMAND SFP-XHE-XM- OPERATOR FAILS TO START AND 1.OOOE-002 SSGFP ALIGN STANDBY SG PUMP TRAINS 4 78.07 1.29 5.248E-009 IE-LOCHS LOSS OF CONDENSER HEAT SINK 9.000E-002 AFW-TDP-FS-A AFW TDP A FAILS TO START 7.000E-003 AFW-TDP-FS-C AFW TDP C FAILS TO START 7.000E-003 HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.OOOE-002

._ FEED AND BLEED COOLING SFP-XHE-XM- OPERATOR FAILS TO START AND 5.950E-002 SSGFP1 ALIGN STANDBY SG PUMP TRAINS (DE 5 79.26 1.19 4.853E-009 IE-LOCHS LOSS OF CONDENSER HEAT SINK 9.OOOE-002 AFW-TDP-CF- COMMON CAUSE FAILURE OF 2.696E-003 FRALL TURBINE DRIVEN PUMPS TO RUN HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.OOOE-002

__ FEED AND BLEED COOLING SFP-MOV-CC- FAILURE OF SSGFP DISCHARGE 1.000E-003

_ 3012 PATH VALVE 3-012 6 80.25 0.99 4.023E-009 IE-LOCHS LOSS OF CONDENSER HEAT SINK 9.000E-002 AFW-TDP-FR-A AFW TDP A FAILS TO RUN 5.366E-003 AFW-TDP-FS-C AFW TDP C FAILS TO START 7.OOOE-003 HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.OOOE-002

__ FEED AND BLEED COOLING SFP-XHE-XM- OPERATOR FAILS TO START AND 5.950E-002 SSGFP1 ALIGN STANDBY SG PUMP TRAINS (DE 7 81.24 0.99 4.023E-009 IE-LOCHS LOSS OF CONDENSER HEAT SINK 9.000E-002 AFW-TDP-FR-C AFW TDP C FAILS TO RUN 5.366E-003 AFW-TDP-FS-A AFW TDP A FAILS TO START 7.000E-003 HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.0002-002 FEED AND BLEED COOLING SFP-XHE-XM- OPERATOR FAILS TO START AND 5.950E-002 SSGFP1 ALIGN STANDBY SG PUMP

__ TRAINS (DE 8 82.16 0.92 3.749E-009 IE-LOCHS LOSS OF CONDENSER HEAT SINK 9.OOOE-002 AFW-TDP-FS-A AFW TDP A FAILS TO START 7.000E-003 AFW-TDP-TM-C AFW TDP C UNAVAILABLE DUE 5.000E-003 TO TEST AND MAINTENANCE HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.OOOE-002 FEED AND BLEED COOLING SFP-XHE-XM- OPERATOR FAILS TO START AND 5.950E-002 SSGFP1 ALIGN STANDBY SG PUMP TRAINS (DE 8308 0.92 3.749E-009 IE-LOCHS LOSS OF CONDENSER HEAT SINK 9.000E-002 PTN-BFJR-06-001 Rev 0 PTN AFWP B SDP CalcFinal.doc

PTN-BFJR406-D01 Rev. 0 Page 13 of 30 CTable (4): Top 10 cutsets from SPAR Model for LOCHS.

Cut  % °% Cut ProbJ No. Totsil Set Frequency Basic Event Description Event Prob.

AFW-TDP-FS-C AFW TDP C FAILS TO START 7.000E-003 AFW-TDP-TM-A AFW TDP A UNAVAILABLE DUE 5.000E-003

___ TO TEST AND MAINTENANCE HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.000E-002 FEED AND BLEED COOLING SFP-XHE-XM- OPERATOR FAILS TO START AND 5.950E-002 SSGFP1 ALIGN STANDBY SG PUMP

__ TRAINS (DE 10 83.93 0.85 3.456E-009 IE-LOCHS LOSS OF CONDENSER HEAT SINK 9.000E-002 AFW-TDP-CF- COMMON CAUSE FAILURE OF 4.610E-003 FRBC TDP B & C TO RUN AFW-TDP-FS-A AFW TDP A FAILS TO START 7.000E-003 HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.OOOE-002 FEED AND BLEED COOLING SFP-XHE-XM- OPERATOR FAILS TO START AND 5.950E-002 SSGFP1 ALIGN STANDBY SG PUMP

__ TRAINS (DE For the case when B AFW pump fails after running for one hour or more, the HEPs are reduced by a factor Df 10 because available time is "nominal" instead of "just enough".

___ Table (5): Top 10 cutsets from SPAR Model for LOMFW.

Cut  %  % Cut ProbJ No. Toti Set Frequency Basic Event Description Event Prob.

1 70.78 70.78 3.209E-007 IE-LOMFW LOSS OF MAIN FEEDWATER 1.000E-001 AFW-TDP-CF- COMMON CAUSE FAILURE OF 2.696E-003

_ FRALL TURBINE DRIVEN PUMPS TO RUN HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.OOOE-002 FEED AND BLEED COOLING MFW-XHE-XL- OPERATOR FAILS TO RECOVER 1.OOOE+000 MFWREC MFW SFP-XHE-XM- OPERATOR FAILS TO START AND 5.950E-002 SSGFPI ALIGN STANDBY SG PUMP

__ TRAINS (DE 2 73.75 2.97 1.348E-008 IE-LOMFW LOSS OF MAIN FEEDWATER 1.OOOE-001 AFW-TDP-CF- COMMON CAUSE FAILURE OF 2.696E-003 FRALL TURBINE DRIVEN PUMPS TO RUN MFW-XHE-XL- OPERATOR FAILS TO RECOVER 1.000E+000 MFWREC MFW PPR-SRV-CC- PORV 1 (PCV-456) FAILS TO OPEN 5.000E-003 456 ON DEMAND SFP-XHE-XM- OPERATOR FAILS TO START AND 1.OOOE-002 SSGFP ALIGN STANDBY SG PUMP TRAINS 3 76.72 2.97 1.348E-008 IE-LOMFW LOSS OF MAIN FEEDWATER 1.OOOE-001 AFW-TDP-CF- COMMON CAUSE FAILURE OF 2.696E-003 FRALL TURBINE DRIVEN PUMPS TO RUN MFW-XHE-XL- OPERATOR FAILS TO RECOVER 1.000E+000 MFWREC MFW PPR-SRV-CC- PORV 2 (PCV-455C) FAILS TO 5.OOOE-003 455C OPEN ON DEMAND SFP-XHE-XM- OPERATOR FAILS TO START AND 1.OOOE-002 PTN-BFJR.06-CO1 Rev 0 PTN AFWP B SDP CalcFinal.doc

PTN-BFJR-6001 Rev.0 Page 14 of 30

_ Table (5): Top 10 cutsets from SPAR Model for LOMFW.

Cut  %  % Cut ProbJ No. Totai Set Frequency Basic Event Description Event Prob.

SSGFP ALIGN STANDBY SG PUMP

. . . TRAINS 4 78.01 1.29 5.831E-009 IE-LOMFW LOSS OF MAIN FEEDWATER 1.000E-001

. FW-TDP-FS-A A AFW TDP A FAILS TO START 7.OOOE-003

_ AFW-TDP-FS-C AFW TDP C FAILS TO START 7.OOOE-003 HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.OOOE-002 FEED AND BLEED COOLING v  :. . MFW-XHE-XL- OPERATOR FAILS TO RECOVER 1.OOOE+000

_ . . MFWREC MFW SFP-XHE-XM- OPERATOR FAILS TO START AND 5.950E-002 SSGFP1 . ALIGN STANDBY SG PUMP

._ TRAINS (DE 5 79.20 1.19 5.392E-009 IE-LOMFW LOSS OF MAIN FEEDWATER 1.000E-001 AFW-TDP-CF- COMMON CAUSE FAILURE OF 2.696E-003

.__ FRALL TURBINE DRIVEN PUMPS TO RUN HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.OOOE-002 FEED AND BLEED COOLING MFW-XHE-XL- OPERATOR FAILS TO RECOVER 1.OOOE+000 MFWREC MFW SFP-MOV-CC- FAILURE OF SSGFP DISCHARGE 1.000E-003

_ 3012 PATH VALVE 3-012 6 80.19 0.99 4.470E-009 IE-LOMFW LOSS OF MAIN FEEDWATER 1.OOOE-001

_ . AFW-TDP-FR-C AFW TDP C FAILS TO RUN 5.366E-003 AFW-TDP-FS-A AFW TDP A FAILS TO START 7.000E-003 HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.OOOE-002 FEED AND BLEED COOLING MFW-XHE-XL- OPERATOR FAILS TO RECOVER 1.OOOE+000 MFWREC MFW SFP-XHE-XM- OPERATOR FAILS TO START AND 5.950E-002 SSGFP1 ALIGN STANDBY SG PUMP TRAINS (DE 7 81.18 0.99 4.470E-009 IE-LOMFW LOSS OF MAIN FEEDWATER 1.000E-001 AFW-TDP-FR-A AFW TDP A FAILS TO RUN 5.366E-003 l AFW-TDP-FS-C AFW TDP C FAILS TO START 7.OOOE-003 HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.OOOE-002

.FEED AND BLEED COOLING MFW-XHE-XL- OPERATOR FAILS TO RECOVER 1.OOOE+000

_ . MFWREC MFW SFP-XHE-XM- OPERATOR FAILS TO START AND 5.950E-002 SSGFP1 ALIGN STANDBY SG PUMP TRAINS (DE 8 82.1D. 0.92 4.165E-009 IE-LOMFW LOSS OF MAIN FEEDWATER 1.OOOE-001 AFW-TDP-FS-C AFW TDP C FAILS TO START 7.OOOE-003 AFW-TDP-TM-A AFW TDP A UNAVAILABLE DUE 5.000E-003 TO TEST AND MAINTENANCE

. . HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.000E-002 FEED AND BLEED COOLING MFW-XHE-XL- OPERATOR FAILS TO RECOVER 1.OOOE+000

. MFWREC MFW SFP-XHE-XM- OPERATOR FAILS TO START AND 5.950E-002

. SSGFP1 ALIGN STANDBY SG PUMP

__  : . TRAINS (DE PTN-BFJR-06-0)1 Rev 0 PTN AFWP B SDP CalcFinal.doc

PTN-BFJR-06-001 Rev. 0 Page 15 of 30

__ Table (5): Top 10 cutsets from SPAR Model for LOMFW.

Cut  %  % cut Probl No. Total Set Frequency Basic Event Description Event Prob.

9 83.02 0.92 4.165E-009 IE-LOMFW LOSS OF MAIN FEEDWATER 1.000E-001 AFW-TDP-FS-A AFW TDP A FAILS TO START 7.000E-003 AFW-TDP-TM-C AFW TDP C UNAVAILABLE DUE 5.OOOE-003

_ TO TEST AND MAINTENANCE HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.OOOE-002

. _ FEED AND BLEED COOLING MFW-XHE-XL- OPERATOR FAILS TO RECOVER 1.OOOE+000 MFWREC MFW SFP-XHE-XM- OPERATOR FAILS TO START AND 5.950E-002 SSGFP1 ALIGN STANDBY SG PUMP TRAINS (DE 10 83.87 0.85 3.840E-009 IE-LOMFW LOSS OF MAIN FEEDWATER 1.000E-001 AFW-TDP-CF- COMMON CAUSE FAILURE OF 4.610E-003 FRBC TDP B & C TO RUN AFW-TDP-FS-A AFW TDP A FAILS TO START 7.000E-003 HPI-XHE-XM-FB OPERATOR FAILS TO INITIATE 2.000E-002

__ FEED AND BLEED COOLING MFW-XHE-XL- OPERATOR FAILS TO RECOVER 1.000E+000 MFWREC MFW_ _

SFP-XHE-XM- OPERATOR FAILS TO START AND 5.950E-002 SSGFP1 ALIGN STANDBY SG PUMP

__ TRAINS (DE Similarly, the probability of cutsets for other sequences are reduced by a factor of 10 due to the following mitigating factors:

1. Feed and bleed success criterion being relaxed to one of 2 PORVs,
2. Time to take actions is increased by at least an hour
3. Condensate system may be used for scenarios not involving power conversion systems 6.0 CALCULATIONAL FILES The key assumptions and data used in the calculation are documented in the calculation.

Additional files and information used for sensitivity studies are found in directory

\\Ws0847E4\Max1 \PTNAFW, 7.0 RESULTS The CDF increase is estimated by combining the different CDF for the two different time windows, one for B AFW pump failing before one hour and the other B AFW pump failing after one hour. For the purpose of bounding evaluation, conservative values are used to simplify the calculation. A best-estimate based on the review of the NRC's phase 3 SDP and revised SPAR model yielcs the following:

PTN-BFJR-06-COI Rev 0 PTN AFWP B SDP CakFinal.doc

PTN-BFJR-0DO1 Rev. 0 Page 16 of 30 Table (6): Best Estimate Delta CDF.

Exposure Time 11 months I month Delta CDF AFW Failure Time after 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> in the first hour I weighted by exposure time delta CDF 3.20E-07 1.60E-06 4.27E-07 Additional sensitivity studies were performed by using the Turkey Point Rev 5B model with newer MS1I1 industry average failure data (Reference 6) for MOVs, Motor Driven Pumps, Turbine Driven Pumps, AOVs, EDGs, etc. Attachments 1 and 2 provide a list of dominant cutsets involving the B AFW pump, for failure probability of running set to 1.0 and 1.6E-2 respectively.

Comparable results are obtained using a similar approach but using Turkey Point PSA model with a scoping assumption based on insights of many exploratory runs considering the following factors:

1. Top cutsets involving A & C AFW failing to runs, can be reduced by a factor of 2 to 4, simply by applying convolution.
2. Top cutsets involving A& C AFW failing to start, can apply 0.5 or smaller for reasons similar to that of MSPI AFW FTS, PSL SPAR or even lower say a factor of 0.1 based on PSI. Unit 2 C AFW pump case
3. Selected cutsets involving LOG I.E. do not have offsite power recovery
4. For AkFW failing within the first hour, cutsets involving AHFAFWPTRP may be eliminated
5. Cutsets involving T3 and T1 may be mitigated by using condensate for secondary heat removal
6. Cutsets involving loss of 4 KV bus may be mitigated by condensate for secondary heat removal A scoping estimate is performed assuming a factor of 2 reduction (based on judgment and the fact that SPAR model results indicate a factor of 5 reduction as indicated in Table 6) for the delta CDF associated with B AFW pump failing after one hour from that when AFW fails within the first hour. The delta CDF in the first hour for the second case in Table 7, PTN Model with MSPI data is obtained by using the cutest files indicated in Attachments 1 and 2, by setting AHFPAFWPTRP to false, as this operator action is not required if AFW is assumed to fail in less than one hour. The delta CDF for the case in which AFW fails after one hour is obtained by reducing by a factor of 2 that for the case in which AFW is assumed to fail in less than one hour.

The results are summarized below.

Table (7): Summary of Delta CDF Sensitivity Study.

l Exposure Time I 11 months I 1 month I Delta CDF PTN-BFJR406-C1 Rev 0 PTN AFWP B SDP CalcFinal.doc

PTN-BFJR-06-001 Rev.0 Page 17 of 30 AFW Failure in the first Time after 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> hour weighted by exposure time SPAR Model delta CDF 3.20E-07 1.60E-06 4.27E-07 PTN Model with MSPI data delta CDF 2.79E-07 5.58E-07 3.02E-07 The increase in the CDF associated with the degraded B AFW pump is estimated to be lower than 4.3E-7/Yr.

In summary, a phase 3 safety significance determination has been performed, based in part, on the following key assumptions:

1. The degradation of the B AFW pump is time-dependent, as the pump continued to deliver adequate flow at least for one hour until 10/30/2005. Between 10/30/2005 and the date of condition discovery (11/07/05), the ability to deliver flow for longer than an hour is not determined.
2. Based on the test operating data, the B AFW pump would run at least one hour on or before October 30, 2005 (eight days prior to discovery). After October 30, 2005, the B AFW pump is conservatively assumed to fail in the first hour.
3. If the E AFW pump runs for one hour prior to failure, the decay heat is significantly lower, which allows more time for operators to take actions stipulated in the EOP.
4. Manual actions stipulated in the plant procedures (e.g. EOP, ONOP and OP) to provide secondary heat removal after the failure of AFW pumps by use of Standby Steam Generator Feedwater pumps and bleed and feed are included in the model (e.g. reduces the need for two pressurizer power operated relief valves to one).

The safety significance determination has concluded that the core damage probability increase over a year is less than 1.OE-6.

PTN-BFJR-06-D)1 Rev 0 PTN AFWP B SDP CalcFinal.doc

PTN-BFJR-06-001 Rev. 0 Page 18 of 30 : Sensitivity Case, Using MSPI data, with AFW B failure to run set to 1.0 Cutsets with Descriotions Reoort PTNR5C10 = 6.21E-08 C:\2006MSPr\CAFTA Files Rev C\CutsVPTNRSC10AFWB.CUT 2115/2008 9:20 PM Cutset Prob Event Prob C Rate U Exposure U Event Description 1 7.95E-08 3.50E-03 9 3.50E-03 %ZZRU3C STEAM GENERATOR TUBE RUPTURE 3C GENERATOR 1.OOE+00 0 .5 AHFPAFWPTRP OPERATORS FAIL TO SHUT DOWN 1OF THE TRAIN 2 PUMPS 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWB AFW TURBINE-DRIVEN PUMP B FAILS TO RUN 1.OOE+00 0.5 FHFPAFv'STM OPERATING CREW FAILS TO SWITCH STEAM SUPPLY TO AFW TRAIN 1 GIVEN SGTR INSG 3C 1.00E+00 0 .5 FHFPCD4-1 FAILURE TO RESET Si AND RESTART MFW FOLLOWING A REACTOR TRIP OR Si ACTUATION 1.00E+00 0 .5 FHFPSSGFW FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW 6.40E.04 0 8.4E-4 ZHF-C2-004 FAILURE TO RESET Si AND RESTORE MFW AFTER LOSS OF AFW AND FAILURE TO USE SSGFW AS A BACKUP SOURCE OF FEEDWATER (FHFPCD4-1VFHFPSSGFW) 5.OOE-01 0.5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS 7.10E02 0 .071 ZZU400S UNIT 4 OUT OF SERVICE 2 7.63E.08 1.27E-01 9 1.27E-01 %ZZT3CU3 LOSS OF MAIN FEEDWATER-NOT RECOVERABLE 1.OOE+00 0 .5 AHFPAFWPvTRP OPERATORS FAIL TO SHUT DOWN I OF THE TRAIN 2 PUMPS 1.60E-02 3 6.73E.04 H 24 H ATPFOAFWA AFW TURBINE-DRIVEN PUMP A FAILS TO RUN 1.60E.02 3 6.73E-04 H 24 H ATPFOAFWB AFW TURBINE-DRIVEN PUMP B FAILS TO RUN 1.00E+00 0 .5 FHFPSSGFW FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW 1.00E+00 0 .5 GHFPOPPSI OPERATING CREW FAILS TO USE HHSI FROM OPPOSITE UNIT 1.OOE+00 0 .5 GHFPS2RCRC OPERATOR FAILS TO SWITCHOVER TO HIGH HEAD COLD LEG RECIRC (SMALL LOCA) 7.50E-05 0 7.5E405 ZHF-C2-020 OPERATING CREW FAILS TO IMPLEMENT HHSR FOR A SMALL LOCA AND FAILS TO IMPLEMENT HHSI FROM OPPOSITE UNIT RWST (GHFPS2RCRC-GHFPOPPSI) 5.OOE-01 0.5 ZZAFWPUMPC AFW PUMP C ISTHE WEAKER OF THE 2 PUMPS 3 6.72E-08 1.OOE+00 9 1.0 %ZDC3A SPECIAL INITIATOR -LOSS OF 125VDC BUS 3A 1.00E+00 0 .5 AHFPAFWPTRP OPERATORS FAIL TO SHUT DOWN I OF THE TRAIN 2 PUMPS 1.60E-02 3 6.73E.04 H 24 H ATPFOAFWB AFW TURBINE-DRIVEN PUMP B FAILS TO RUN 8.76E-04 3 1.00E-07 H 1 Y EBDF33DO1I 125V DC BUS 3A FAILURE 1.WOE+00 0 .5 FHFPT4CD4-1 FAILURE TO RECOVER MFW OPERATING FWBFCVs LOCALLY 1.40E-03 0 1.4E403 ZHFPAFWPTRP FAILURE TO TRIP AFW PUMP B OR C WHEN BOTH ARE RUNNING ON TRAIN 2 5.00E-01 0.5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS 1.10E-01 0 0.1097 ZHFPTRNAMAN OPERATORS FAIL TO MANUALLY ALIGN, START, AND RUN AFW TRAIN A GIVEN A LOSS OF DC BUS 3A 4 4.84E-08 5.30E-02 9 5.30E-02 %ZZLOG LOSS OF GRID 1.00E+00 0 .5 AHFPAFWPTRP OPERATORS FAIL TO SHUT DOWN I OF THE TRAIN 2 PUMPS 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWB AFW TURBINE-DRIVEN PUMP B FAILS TO RUN 2.43E-02 3 1.03E-03 H 24 EDGF44A DIESEL GENERATOR 4A FAILS TO RUN 1.WOE+00 0 .5 FHFPSSGFW FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW 1.W0E+00 0 .5 GHFPOPPSI OPERATING CREW FAILS TO USE HHSI FROM OPPOSITE UNIT 1.OOE+00 0 .5 GHFPS2RCRC OPERATOR FAILS TO SWITCHOVER TO HIGH HEAD COLD LEG RECIRC (SMALL LOCA) 1.OOE+00 0 .5 IHFPPORTFN OPERATOR FAILS TO UTILIZE PORTABLE FANS 1.OOE+00 0 .5 RHFPSRHVAC OPERATOR FAILURE TO START SR HVAC 7.50E-05 0 7.5E405 ZHF-C2-020 OPERATING CREW FAILS TO IMPLEMENT HHSR FOR A SMALL LOCA AND FAILS TO IMPLEMENT HHSI FROM OPPOSITE UNIT RWST (GHFPS2RCRC-GHFPOPPSI) 5.OOE-01 0.5 ZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS 1.W0E+00 1.0 ZZHVAC HVAC FLAG 5 3.97E-08 5.30E-02 9 5.30E-02 %ZZLOG LOSS OF GRID 1.OOE+00 0 .5 AHFPAFWPvTRP OPERATORS FAIL TO SHUT DOWN I OF THE TRAIN 2 PUMPS 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWB AFW TURBINE-DRIVEN PUMP B FAILS TO RUN 1.WOE+00 0 .5 EHFPCLR4KVS OPERATOR FAILS TO MANUALLY OPEN BREAKER TO ALLOW BUS TO LOAD - SOFT BREAKER FAIL 2.OOE-02 1.999E-02 EMM4ACLR 4160V BUS 4A BREAKERS FAIL TO OPEN -SOFT FAILURES 1.WE+00 0 .5 FHFPSSGFW FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW 1.OOE+00 0 .5 GHFPOPPSI OPERATING CREW FAILS TO USE HHSI FROM OPPOSITE UNIT 1.OOE+00 0 .5 GHFPS2RCRC OPERATOR FAILS TO SWITCHOVER TO HIGH HEAD COLD LEG RECIRC (SMALL LOCA) 1.W0E+00 0 .5 IHFPPORTFN OPERATOR FAILS TO UTILIZE PORTABLE FANS 1.00E+00 0 .5 RHFPSRHVAC OPERATOR FAILURE TO START SR HVAC 7.50E-05 0 7.5E405 ZHF-C2-020 OPERATING CREW FAILS TO IMPLEMENT HHSR FOR A SMALL LOCA AND FAILS TO IMPLEMENT HHSI FROM OPPOSITE UNIT RWST (GHFPS2RCRC-GHFPOPPSI) 5.OOE-01 0.5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS PTN-BFJR-06-001 Rev 0 PTN AFWP B SDP CalcFinal.doc

PTN-BFJR-06-001 Rev. 0 Page 19 of 30 1.OOE+00 1.0 ZZHVAC HVAC FLAG 8 3.97E-08 1.27E-01 9 1.27E-01 %ZZT3CU3 LOSS OF MAIN FEEDWJATER-NOT RECOVERABLE 1.00E+00 0 .5 AHFPAFWPTRP OPERATORS FAIL TO SHUT DOWN 1 OF THE TRAIN 2 PUMPS 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWA AFW TURBINE-DRIVEN PUMP A FAILS TO RUN 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWB AFW TURBINE-DRIVEN PUMP B FAILS TO RUN 1.OOE+00 0 .5 FHFPSSGFW FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW 1.OOE+00 0 .5 GHFPBLFEEDL OPERATING CREW FAILS TO IMPLEMENT BLEED-AND-FEED - LMFW W/LOW SG LEVEL 3.90E-05 0 4.OE-5 ZHF-C3-007 FAILURE TO TRIP ONE OF THE TWO TRAIN 2 AFW PUMPS, FAILURE TO RESTORE SECONDARY COOLING USING SSGFW AFTER LOSS OF AFW, AND FAILURETO RESETSI AND INITIATE BLEED-AND-FEED COOLING (AHFPAFWPTRP-FHFPSSGF 5.OOE-01 . 0.5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS 7 3,31 E-08 5.30E-02 9 5.30E-02 %ZZLOG LOSS OF GRID 1.OOE+00 0 .5 AHFPAFWPTRP OPERATORS FAIL TO SHUT DOWN 1 OF THE TRAIN 2 PUMPS 1.60E-02 3 6.73E-04 H 24- H ATPFOAFWVB AFWTURBINE-DRIVENPUMPBFAILSTORUN 1.00E+00 0 .5 EHFPDOSTXT OPERATOR FAILS TO ATTEMPT DOSTXTIE 1.67E-02 3 210E-03 N 8 N EMPA4P241A DIESEL OIL TRANSFER PUMP4P241A FAILS TO START 1.OOE+00 0 .5 FHFPSSGFW FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW 1.OOE+00 0 .5 GHFPOPPSI OPERATING CREW FAILS TO USE HHSI FROM OPPOSITE UNIT

1. 1E+00 0 .5 GHFPS2RCRC OPERATOR FAILS TO SW[TCHOVER TO HIGH HEAD COLD LEG RECIRC (SMALL LOCA) 1.00E+00 0 .5 IHFPPORTFN OPERATOR FAILS TO UTILIZE PORTABLE FANS 1.OOE+00 0 .5 RHFPSRHVAC OPERATOR FAILURE TO START SR HVAC 7.50E-05 0 7.5E-05 ZHF-C2-020 OPERATING CREW FAILS TO IMPLEMENT HHSR FOR A SMALL LOCA AND FAILS TO IMPLEMENT HHSI FROM OPPOSITE UNIT RWST (GHFPS2RCRC-GHFPOPPSD 5.OOE-01 0.5 ZZAFWPUMPC AFN PUMP C IS THE WEAKER OF THE 2 PUMPS 1.WOE+00 1.0 ZZHVAC HVAC FLAG 8 3.25E-08 1.27E4-1 9 1.27E-01 %ZZT3CU3 LOSS OF MAIN FEEDWATER-NOT RECOVERABLE 1.OOE+00 0 .5 AHFPAFWPTRP OPERATORS FAIL TO SHUT DOWN I OF THE TRAIN 2 PUMPS 8.83E-03 0 6.825E-03 ATMOTRAIN1 AFW TRAIN 1 UNAVAILABLE DUE TO TEST OR MAINTENANCE 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWB AFW TURBINE-DRIVEN PUMP B FAILS TO RUN 1.OOE+00 0 .5 FHFPSSGFW FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW 1.OOE+00 0 .5 GHFPOPPSI OPERATING CREW FAILS TO USE HHSI FROM OPPOSITE UNIT 1.OOE+00 0 .5 GHFPS2RCRC OPERATOR FAILS TO SWITCHOVER TO HIGH HEAD COLD LEG RECIRC (SMALL LOCA) 7.50E-05 0 7.5E-05 ZHF-C2-20 OPERATING CREW FAILS TO IMPLEMENT HHSR FOR A SMALL LOCA AND FAILS TO IMPLEMENT HHSI FROM OPPOSITE UNIT RWST (GHFPS2RCRC-GHFPOPPSI) 5.00E-1 0.5 ZZAFWPUMPC AFW PUMP C ISTHE WEAKER OF THE 2 PUMPS 9 3.24E-08 5.30E-02 9 5.30E-02 %ZZLOG LOSS OF GRID 1.OOE+00 0 .5 AHFPAFWPTRP OPERATORS FAIL TO SHUT DOWN I OF THE TRAIN 2 PUMPS 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWB AFWTURBINE-DRIVEN PUMP B FAILS TO RUN 1.63E-02 0 1.630E-02 ETM4AEDG EDG 4A INTEST OR MAINTENANCE 1.OOE+00 0 .5 FHFPSSGFW FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW 1.CoE+00 0 .5 GHFPOPPSI OPERATING CREW FAILS TO USE HHSI FROM OPPOSITE UNIT 1.OOE+00 0 .5 GHFPS2RCRC OPERATOR FAILS TO SWITCHOVER TO HIGH HEAD COLD LEG RECIRC (SMALL LOCA) 1.OOE+00 0 .5 IHFPPORTFN OPERATOR FAILS TO UTILIZE PORTABLE FANS 1.W1E+00 0 .5 RHFPSRHVAC OPERATOR FAILURE TO START SR HVAC 7.50E-05 0 7.5E-05 ZHF-C2-020 OPERATING CREW FAILS TO IMPLEMENT HHSR FOR A SMALL LOCA AND FAILS TO IMPLEMENT HHSI FROM OPPOSITE UNIT RWST (GHFPS2RCRC-GHFPOPPS) 5.00E-1 0.5 ZZAPWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS 1.00E+00 1.0 ZZHVAC HVAC FLAG 10 3.19E-08 5.30E-02 9 5.30E-02 %ZZLOG LOSSOFGRID 1.OOE+00 0 .5 AHFPAFWPTRP OPERATORS FAIL TO SHUT DOWN 1 OF THE TRAIN 2 PUMPS 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWA AFWTURBINE-DRIVENPUMPAFAILSTORUN 1.60E-02 3 8.73E-04 H 24 H ATPFOAFWB AFWTURBINE-DRIVENPUMPBFAILSTORUN 1.00E+00 0 .5 FHFPSSGFW FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW 1.NE+00 0 .5 GHFPOPPSI OPERATING CREW FAILS TO USE HHSI FROM OPPOSITE UNIT 1.OOE+Q00 .5 GHFPS2RCRC OPERATOR FAILS TO SWITCHOVER TO HIGH HEAD COLD LEG RECIRC (SMALL LOCA) 7.50E-05' 0 7.5E-45 ZHF-C2-20 OPERATING CREW FAILS TO IMPLEMENT HHSR FOR A SMALL LOCA AND FAILS TO IMPLEMENT HHSI FROM OPPOSITE UNIT RWST (GHFPS2RCRC-GHFPOPPSD 5.OOE-01 0.5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS 11 3.17E-08 1.10E-1 9 1,10E-1 %ZZT3AU3 LOSS OF MAIN FEEDWATER - RECOVERABLE 1.OOE+00 0 .5 AHFPAFWPTRP OPERATORS FAIL TO SHUT DOWN 1 OF THE TRAIN 2 PUMPS 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWA AFW TURBINE-DRIVEN PUMP A FAILS TO RUN 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWB AFW TURBINE-DRIVEN PUMP B FAILS TO RUN 1.OOE0+0 0 .5 . FHFPCD4-1 FAILURE TO RESET SI AND RESTART MFW FOLLOWING A REACTOR TRIP OR SI ACTUATION PTN-BFJR-0&001 Rev 0 PTN AFWP B SDP CalcFinal.doc

PTN-BFJR-06-001 Rev. 0 Page 20 of 30 1.OOE+00 0 .5 FHFPSSGFW FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW 1.OOE+00 0 .5 GHFPBLFEEDL OPERATING CREW FAILS TO IMPLEMENT BLEED-AND-FEED - LMFW WILOW SG LEVEL 3.60E-05 0 3.6E-05 ZHF-C3-006 FAILURE TO TRIP ONE OF THE TWO TRAIN 2 AFW PUMPS, FAILURE TO RESTORE MFW AFTER LOSS OF AFW. AND FAILUKE IO RESET SI ANU INITIATE BLEED-AND-FEED COOLING (AHFPAFWTRP-FHFPCD4.1-GHFPBLFEEDL) 5.OOE-01 0.5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS 12 3.1 5E-08 5.30E-02 9 5.30E-02 %ZZLOG LOSSOFGRID 1.OOE+00 0 :5 AHFPAFWNPTRP OPERATORS FAIL TO SHUT DOWN 1 OF THE TRAIN 2 PUMPS 1.60E-02 3 e.73E-04 H 24 H ATPFOAFWB AFWTURBINE-DRIVENPUMPBFAILSTORUN 1.59E-02 3 2.O0E-03 N 8 N ESVN43434A SOLENOID VALVE SV-4-3434A FAILS TO OPEN 1.OOE+00 0 .5 FHFPSSGFW FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW 1.OOE+00 0 .5 GHFPOPPSI OPERATING CREW FAILS TO USE HHSI FROM OPPOSITE UNIT 1.OOE+00 0 .5 GHFPS2RCRC OPERATOR FAILS TO SWITCHOVER TO HIGH HEAD COLD LEG RECIRC (SMALL LOCA) 1.00E+00 0 .5 IHFPPORTFN* OPERATOR FAILS TO UTILIZE PORTABLE FANS 1.00E+00 0 .5 RHFPSRHVAC OPERATOR FAILURE TO START SR HVAC 7.50E-05 0 7.5E-05 ZHF-C2-020 OPERATING CREW FAILS TO IMPLEMENT HHSR FOR A SMALL LOCA AND FAILS TO IMPLEMENT HHSI FROM OPPOSITE UNIT RWST (GHFPS2RCRC-GHFPOPPSI 5.00E-01 0.5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS 1.OOE+00 1.0 ZZHVAC HVAC FLAG 13 3.02E-08 1.OOE+00 9 1.00 %ZZIAU3 UNIT3LOSSOF IA 1.OOE+00 0 .5 AHFPAFWPTRP OPERATORS FAIL TO SHUT DOWN I OF THE TRAIN 2 PUMPS 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWA AFW TURBINE-DRIVEN PUMP A FAILS TO RUN 1.60E-02 3 0.73E-04 H 24 H ATPFOAFWB AFWTURBINE-DRIVEN PUMPBFAILSTORUN 1.001E+00 0 .5 FHFPT4CD4-1 FAILURE TO RECOVER MFW OPERATING FWBFCVs LOCALLY 1.OOE+00 0 .5 GHFPOPPSI OPERATING CREW FAILS TO USE HHSI FROM OPPOSITE UNIT 1.00E+00 0 .5 GHFPS2RCRC OPERATOR FAILS TO SWITCHOVER TO HIGH HEAD COLD LEG RECIRC (SMALL LOCA) 5.02E-02 3 5.88E-06 H 1 Y HADF33T9I AIR DRYER 3T9 FAILS TO DELIVER FLOW (1 YR EXPOSURE) 7.50E-05 0 7.5E-05 ZHF-C2-020 OPERATING CREW FAILS TO IMPLEMENT HHSR FOR A SMALL LOCA AND FAILS TO IMPLEMENT HHSI FROM OPPOSITE UNIT RWST (GHFPS2RCRC-GHFPOPPSD 5.OOE-01 0.5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS 14 298E-08 3.50E-03 9 3.50E-03 %ZZRU3A STEAM GENERATOR TUBE RUPTURE 3A GENERATOR 1.OOE+00 0 .5 AHFPAFWFLO OPERATOR FAILS TO THROTTLE UP AFW FLOW 1.OOE+00 0 .5 AHFPAFWPTRP OPERATORS FAIL TO SHUT DOWN I OF THE TRAIN 2 PUMPS 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWB AFW TURBINE-DRIVEN PUMP B FAILS TO RUN 1.OOE+00 0 .5 FHFPCD4-1 FAILURE TO RESET SI AND RESTART MFW FOLLOWING A REACTOR TRIP OR Si ACTUATION 1.OOE+00 0 .5 FHFPSSGFW FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW 1.70E-45 0 1.7E-5 ZHF-C2-426 FAILURE TO THROTTLE UP AFW FLOW AND FAILURE TO USE SSGFW AS A BACKUP SOURCE OF FEEDWATER (AHFPAFWFLO

  • FHFPSSGFW) 5.OOE-01 0.5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS 15 2.98E-08 3.50E-03 9 3.50E-03 %ZZRU3B STEAM GENERATOR TUBE RUPTURE 3B GENERATOR 1.OOE+00 0 .5 AHFPAFWFLO OPERATOR FAILS TO THROTTLE UP AFW FLOW 1.OOE+00 0 .5 AHFPAFWPTRP OPERATORS FAIL TO SHUT DOWN 1 OF THE TRAIN 2 PUMPS 1.60E-02 3 8.73E-04 H 24 H ATPFOAFWB AFWTURBINE-DRIVENPUMPBFAILSTORUN 1.OOE+00 0 .5 FHFPCD4-I FAILURE TO RESET SI AND RESTART MFW FOLLOWING A REACTOR TRIP OR SI ACTUATION 1.OOE+000 .5 FHFPSSGFW FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW 1.70E-05 0 1.7E-5 ZHF-C2-028 FAILURE TO THROTTLE UP AFW FLOW AND FAILURE TO USE SSGFW AS A BACKUP SOURCE OF FEEDWATER (AHFPAFWFLO
  • FHFPSSGFW) 5.O0E-1 0.5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS 16 2.98E-08 3.50E-03 9 3.50E-03 %ZZRU3C STEAM GENERATOR TUBE RUPTURE 3C GENERATOR 1.OOE+00 0 .5 AHFPAFWFLO OPERATOR FAILS TO THROTTLE UP AFW FLOW 1.OOE+00 0 .5 AHFPAFWPTRP OPERATORS FAIL TO SHUT DOWN 1 OF THE TRAIN 2 PUMPS 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWB AFWTURBINE-DRIVENPUMPBFAILSTORUN 1.OOE+00 0 .5 FHFPCD4-1 FAILURE TO RESET Si AND RESTART MFW FOLLOWING A REACTOR TRIP OR SI ACTUATION 1.OOE+00 0 .5 FHFPSSGFW FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW 1.70E-45 0 1.7E-5 ZHF-C2-026 FAILURE TO THROTTLE UP AFW FLOW AND FAILURE TO USE SSGFW AS A BACKUP SOURCE OF FEEDWATER (AHFPAFWFLO - FHFPSSGFW) 5.00E-1 0.5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS 17 2.58E408 8.94E-01 9 8.94E-01 %ZZT1U3 REACTORTRIP 1.60E-02 3 e.73E-04 H 24 H ATPFOAFWA AFWTURBINE-DRIVENPUMPAFAILSTORUN 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWB AFW TURBINE-DRIVEN PUMP B FAILS TO RUN 1.80E-0 0 1.80E-46 NRDFPHYSICAL FAILURE OF CONTROL RODS TO INSERT WITH POWER REMOVED 1.OOE+00 1.0 ZZATWS ATWS FLAG 18 2.58E-08 8.94E-01 9 8.94E-01 %ZZTIU3 REACTORTRIP PTN-BFJR-06-001 Rev 0 PTN AFWP B SDP CalcFinal.doc

PTN-BFJR-06-001 Rev.0.

Page 21 of 30 1.604-02 3 6.73E-04 H 24 H ATPF0AANB AFWTURBINE-DRIVENPUMPBFAILSTORUN 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWC AFW TURBINE-DRIVEN PUMP C FAILS TO RUN 1.80E-06 0 1.80E-06 NRDFPHYSICAL FAILURE OF CONTROL RODS TO INSERTWITH POWER REMOVED 1.00E+00 1.0 ZZATWS ATWS FLAG 19 244E-08 1.27E-41 9 1.27E-01 %ZZT3CU3 LOSS OF MAIN FEEDWATER-NOT RECOVERABLE 1.00E+00 0 .5 AHFPAFWPTRP OPERATORS FAIL TO SHUT DOWN I OF THE TRAIN 2 PUMPS 5,13E-03 3 5.14E-03 N I N ATPAOAFWA AFWTURBINE-DRIVENPUMPAFAILSTOSTART 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWB AFWTURBINE-DRIVENPUMPBFAILSTORUN 1.00E+00 0 .5 FHFPSSGFW FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW 1.00E+00 0 .5 GHFPOPPSI OPERATING CREW FAILS TO USE HHSI FROM OPPOSITE UNIT 1.OOE+00 0 .5 GHFPS2RCRC OPERATOR FAILS TO SWITCHOVER TO HIGH HEAD COLD LEG RECIRC (SMALL LOCA) 7.50E-05 0 7.5E-05 ZHF-C2-020 OPERATING CREW FAILS TO IMPLEMENT HHSR FOR A SMALL LOCA AND FAILS TO IMPLEMENT HHSI FROM OPPOSITE UNIT RWST (GHFPS2RCRC GHFPOPPSQ 5.00E-01 0.5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS 20 2.23E-08 5.30E-02 9 5.30E-02 %ZZLOG LOSS OF GRID 1.OOE+00 0 .5 AHFPAFWPTRP OPERATORS FAIL TO SHUT DOWN 1 OF THE TRAIN 2 PUMPS 1.60E-02 3 Q.73E-04 H 24 H ATPFOAFWB AFW TURBINE-DRIVEN PUMP B FAILS TO RUN 1.12E-02 3 1.13E-02 N 1 N EDGA44A DIESEL GENERATOR 4A FAILS TO START 1.OOE+00 0 .S FHFPSSGFW FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW 1.00E+00 0 .5 GHFPOPPSI OPERATING CREW FAILS TO USE HHSI FROM OPPOSITE UNIT 1.00E+00 0 .5 GHFPS2RCRC OPERATOR FAILS TO SWITCHOVER TO HIGH HEAD COLD LEG RECIRC (SMALL LOCA) 1.00E+00 0 .5 IHFPPORTFN OPERATOR FAILS TO UTILIZE PORTABLE FANS 1.OOE+00 0 .5 RHFPSRHVAC OPERATOR FAILURE TO START SR HVAC 7.50E-05 0 7.5E-05 ZHF-C2-020 OPERATING CREW FAILS TO IMPLEMENT HHSR FOR A SMALL LOCA AND FAILS TO IMPLEMENT HHSI FROM OPPOSITE UNIT RWST (GHFPS2RCRC-GHFPOPPSD 5.00E-01 0.5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS 1.OOE+00 1.0 ZZHVAC HVAC FLAG 21 2.19E-08 1.27E-01 9 1.27E-01 %ZZT3CU3 LOSS OF MAIN FEEDWATER-NOT RECOVERABLE 1.57E-04 1.569E-04 AMMOCCTPAAC CCF (2t3) OF TURBINE-DRIVEN PUMP A,C TO START 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWB AFW TURBINE-DRIVEN PUMP B FAILS TO RUN 1.00E+00 0 .5 FHFPSSGFW FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW 1.00E+00 0 .5 GHFPBLFEEDL OPERATING CREW FAILS TO IMPLEMENT BLEED-AND-FEED -LMFW WILOW SG LEVEL 1.10E-03 0 1.1E-3 ZHF-C2-028 OPERATORS FAIL TO RECOVER SEC COOLING USING SSGFW AND FAIL TO IMPLEMENT BLEED-AND-FEED COOLING (FHPSSGFW-GHFPBLFEEDL) 22 2.15E-08 1.OOE+00 9 1.00 %ZZIA34 DUAL UNIT LOSS OF IA 1.00E+00 0 .5 AHFPAFWPTRP OPERATORS FAIL TO SHUT DOWN 1 OF THE TRAIN 2 PUMPS 1.60E-02 3 0.73E-04 H 24 H ATPFOAFWB AFWTURBINE-DRIVENPUMPBFAILSTORUN 1.OOE+00 0 .5 FHFPT4CD4-1 FAILURE TO RECOVER MFW OPERATING FWBFCVs LOCALLY 1.00E+00 0 .5 GHFPOPPSI OPERATING CREW FAILS TO USE HHSI FROM OPPOSITE UNIT 1.00E+00 0 .5 GHFPS2RCRC OPERATOR FAILS TO SWITCHOVER TO HIGH HEAD COLD LEG RECIRC (SMALL LOCA) 3.72E-01 3.717E-01 HMM3M3321 LOCAL FAULTS IN HEADER M 332 (1YR EXPOSURE) 3.09E-03 3.086E-03 HMMCCFALLR CCF TO RUN- 4/4 U3 & U4 IA COMPRESSORS (2DAY EXPOSURE) 1.OOE+00 0 .5 XHFPRCPTRP OPERATING CREW FAILS TO TRIP RCPs GIVEN DUAL-UNIT TRIP 7.50E-05 0 7.5E-05 ZHF-C2-020 OPERATING CREW FAILS TO IMPLEMENT HHSR FOR A SMALL LOCA AND FAILS TO IMPLEMENT HHSI FROM OPPOSITE UNIT RWST (GHFPS2RCRC-GHFPOPPSI 5.00E-01 0.5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS 5.OOE-01 0 0.5 ZZIAU3 FLAG - 3CM RUNNING, 4CM IN STANDBY 23 2.15E-08 1.00E+00 9 1.00 %ZZIA34 DUAL UNIT LOSS OF IA 1.00E+00 0 .5 AHFPAFWPTRP OPERATORS FAIL TO SHUT DOWN 1 OF THE TRAIN 2 PUMPS 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWB AFWTURBINE-DRIVENPUMPBFAILSTORUN 1.00E+00 0 .5 FHFPT4CD4-1 FAILURE TO RECOVER MFW OPERATING FWBFCVs LOCALLY 1.00E+00 0 .5 GHFPOPPSI OPERATING CREW FAILS TO USE HHSI FROM OPPOSITE UNIT 1.OOE+00 0 .5 GHFPS2RCRC OPERATOR FAILS TO SWITCHOVER TO HIGH HEAD COLD LEG RECIRC (SMALL LOCA) 3.72E-01 3.717E-01 HMM4M4321 LOCAL FAULTS IN HEADER M 432 (1 YR EXPOSURE) 3.09E-03 3.086E-03 HMMCCFALLR CCF TO RUN- 4/4 U3 & U4 IACOMPRESSORS (2 DAY EXPOSURE) 1.OOE+00 0 .5 XHFPRCPTRP OPERATING CREW FAILS TO TRIP RCPs GIVEN DUAL-UNIT TRIP 7.50E-05 0 7.5E-05 ZHF-C2-020 OPERATING CREW FAILS TO IMPLEMENT HHSR FOR A SMALL LOCA AND FAILS TO IMPLEMENT HHSI FROM OPPOSITE UNIT RWST (GHFPS2RCRC-GHFPOPPSI 5.00E-01 0.5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS 5.00E-01 0 05 ZZIAU4 FLAG - 4CM RUNNING, 3CM INSTANDBY 24 2.15E-08 5.30E-02 9 5.302-02 %ZZLOG LOSS OF GRID 1.00E+00 0 .5 AHFPAFWPTRP OPERATORS FAIL TO SHUT DOWN I OF THE TRAIN 2 PUMPS PTN-BFJR-06-001 Rev 0 PTN AFWP B SDP CalcFinal.doc

PTN-BFJR-06-001 Rev. 0 Page 22 of 30 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWB AFW TURBINE-DRIVEN PUMP B FAILS TO RUN 1.08E-02 2 3.00E-05 H 1 M EBSP46332A BASKET STRAINER BS4-6332A PLUGS 1.00E+00 0 .5 EHFPDOSTXT OPERATOR FAILS TO ATTEMPT DOST XTIE 1.00E+00 0 .5 FHFPSSGFW FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW 1.OOE+00 0 .5 GHFPOPPSI OPERATING CREW FAILS TO USE HHSI FROM OPPOSITE UNIT 1.00E+00 0 .5 GHFPS2RCRC OPERATOR FAILS TO SWITCHOVER TO HIGH HEAD COLD LEG RECIRC (SMALL LOCA) 1.OOE+.0 0 .5 IHFPPORTFN OPERATOR FAILS TO UTILIZE PORTABLE FANS 1.OOE+00 0 .5 RHFPSRHVAC OPERATOR FAILURE TO START SR HVAC 7.50E-05 0 7.5E405 ZHF-C2-020 OPERATING CREW FAILS TO IMPLEMENT HHSR FOR A SMALL LOCA AND FAILS TO IMPLEMENT HHSI FROM OPPOSITE UNIT RWST (GHFPS2RCRC-GHFPOPPSI) 5.00E-01 0.5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS 1.00E+00 1.0 ZZHVAC HVAC FLAG 25 1.80E-08 3.50E-03 9 3.50E-03 %ZZRU3A STEAM GENERATOR TUBE RUPTURE 3A GENERATOR 1.00E+00 0 .5 AHFPAFWNPTRP OPERATORS FAIL TO SHUT DOWN I OF THE TRAIN 2 PUMPS 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWA AFW TURBINE-DRIVEN PUMP A FAILS TO RUN 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWB AFW TURBINE-DRIVEN PUMP B FAILS TO RUN 1.00E+00 0 .5 FHFPCD4-1 FAILURE TO RESET Si AND RESTART MFW FOLLOWING A REACTOR TRIP OR Si ACTUATION 1.00E+00 0 .5 FHFPSSGFW FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW 6.40E-04 0 6.4E-4 ZHF-C2-004 FAILURE TO RESET Si AND RESTORE MFW AFTER LOSS OF AFW AND FAILURE TO USE SSGFW AS A BACKUP SOURCE OF FEEDWATER (FHFPCD4-1-FHFPSSGFW) 5.0E2-01 0.5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS Report Summary:

Filename: C:A2006MSPIACAFTA Files Rev C\CutslPTNR5C10AFWB.CUT Print date: 2/1 52006 9:20 PM Not sorted Printed the first 25 PTN-BFJR-06-001 Rev 0 PTN AFWP B SDP CalcFinal.doc

PTN-BFJR-06-001

. Rev.0 Page 23 of 30 , Sensitivity Study: Base Case, Using MSPI data, Nominal AFW B failure to run Cutsets with DescrIptions Report PTNR5CI0 - 3.87E-06 C:\2OO6MSPI\CAFTAFiles RevC\Cuts\TNRSCI0.CUT 2V112006 9:30 PM N Cutset Prob Event Prob C Rate U Exposure U Event Desciption I I.27E-09 3.50E-03 9 3.50E-03 %ZZRU3C STEAM GENERATOR TUBE RUPTURE 3C GENERATOR I.00E+00 0 .5 AHFPAFWPTRP OPERATORS FAIL TO SHUT DOWN I OF THE TRAIN 2 PUMPS 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWB AFWTURBINE-DRIVEN PUMP B FAILS TO RUN 1.00E+00 0.5 FHFPAFWSTM OPERATING CREW FAILS TO SWITCH STEAM SUPPLY TO AFW'TRAIN I GIVEN SGTR IN SG 3C I.OOE+00 0 .5 FHFPCD4-1 FAILURE TO RESET Si AND RESTART MFW FOLLOWING A REACTOR TRIP IOR SI ACTUATION 1.00E+00 0 .5 FHFPSSGFW FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW 6.40E-04 0 6.4E-4 ZHF-C2-004 FAILURE TO RESET SI AND RESTORE MFW AFTER LOSS OF AFW AND FAI ULURE TO USE SSGFW AS A BACKUP SOURCE OF FEEDWATER (FHFPCD4-lIFHFPSSGFW) 5.OOE-01 0.5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS 7.1OE-02 0 .071 ZZU400S UNIT40UTOFSERVICE 2 1.22E-09 1.27E-01 9 1.27E-01 %ZZT3CU3 LOSS OF MAIN FEEDWATER-NOTRECOVERABLE I.00E+00 0 .5 AHFPAFWPTRP OPERATORS FAIL TO SHUT DOWN I OFTHE TRAIN 2 PUMPS 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWA AFWTURBINE-DRIVEN PUMPAFAILSTO RUN 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWB AFWTURBINE-DRIVEN PUMP B FAILS TO RUN I.00E+00 0 .5 FHFPSSGFW FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW 1.00E+00 0 .5 GHFPOPPSI OPERATING CREW FAILS TO USE HHSI FROM OPPOSITE UNIT 1.00E+00 0 .5 GHFPS2RCRC OPERATOR FAILS TO SWITCHOVER TO HIGH HEAD COLD LEG RECIRC (SMALL LOCA) 7.50E-05 0 7.5E-05 ZHF-C2-020 OPERATING CREW FAILS TO IMPLEMENT HHSR FOR A SMALL LOCA AND FAILS TO IMPLEMENT HHSI FROM OPPOSITE UNIT RWST (GHFPS2RCRC GHFPOPPSI) 5.00E-0I 0.5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS 3 1.08EE09 1.00E+00 9 1.0 %ZZDC3A SPECIALINnITATOR-LOSSOF 125VDCBUS3A 1.OOE+00 0 .5 AHFPAFWPTRP OPERATORS FAILTO SHUT DOWN I OFTHE TRAIN 2 PUMPS 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWB AFWTURBINE-DRIVEN PUMP B FAILS TO RUN 8.76E-04 3 1.00E-07 H I Y EBDF33DOW1 125V DC BUS 3A FAILURE 1.00E+00 0 , .5 FHFPT4CD4-1 FAILURE TO RECOVER MFW OPERATING FWBFCVs LOCALLY 1.40E-03 0 I.AE-03 ZHFPAFWPTRP FAILURE TO TRIP AFW PUMP B OR C WHEN BOTH ARE RUNNn NG ON TRAIN 2 5.00E-01 0.5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS 1.IOE-01 0 0.1097 ZHFPTRNAMAN OPERATORS FAILTO MANUALLY ALIGN, START, AND RUNAl FIVTRAIN A GIVEN A LOSS OF DC BUS 3A 4 7.76E-10 5.30E-02 9 5.30E-02 */.ZZLOG LOSSOFGRID I.OOE+00 0 .5 AHFPAFvVPTRP OPERATORS FAILTOSHUr DOWN I OFTHETRANN2PUMPS 1.60E-02 3 6.73E-04 H 24 H ATPF0AFWB AFWVTURBINE-DRIVENPUMPBFAILSTORUN 2.43E-02 3 1.03E-03 H 24 EDWF44A DIESEL GENERATOR 4A FAILS TO RUN I .00E+00 0 .5 FHFPSSGFW FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW I .OOE+00 0 .5 GHFPOPPSI OPERATING CREW FAILS TO USE HHSI FROM OPPOSITE UNIT 1.00E+00 0 .5 GHFPS2RCRC OPERATOR FAILS TO SWITCHOVER TO HIGH HEAD COLD LEG;RECIRC (SMALL LOCA) 1.00E+00 0 .5 IHFPPORTFN OPERATOR FAILS TO UTILIZE PORTABLE FANS 1.00E+00 0 .5 RHFPSRHVAC OPERATOR FAILURE TO START SR HVAC 7.50E-05 0 7.5E-05 ZHF-C2-020 OPERATING CREW FAILS TO IMPLEMENT HHSR FOR A SMALL LOCA AND FAILS TO IMPLEMENT HHSI FROM OPPOSITE UNIT RWST (GHFPS2RCRC GHFPOPPSI) 5.00E-01 0.5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS 1.00E+00 1.0 ZZHVAC HVAC FLAG 5 6.37E.10 5.30E-02 9 5.30E-02 %ZZLOG LOSS OF GRID 1.00E+00 0 .5 AHFPAFWPTRP OPERATORS FAIL TO SHUT DOWN I OF THE TRAIN 2 PUMPS 1.60E-02 3 6.73E-04 Hi 24 H ATPFOAFWB AFWTURBINE-DRIVEN PUMP B FAILS TO RUN 1.00E+00 0 .5 EHFPCLR4KVS OPERATOR FAILS TO MANUALLY OPEN BREAKER TO ALLOW 'BUS TO LOAD - SOFT BREAKER FAIL 2.00E-02 L.999E-02 EMM4ACLR 4160V BUS 4A BREAKERS FAIL TO OPEN - SOFT FAILURES 1.00E+00 0 .5 FHFPSSGFW FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW 1.00E+00 0 .5 GHFPOPPSI OPERATING CREW FAILS TO USE HIISI FROM OPPOSITE UNIT I.00E+00 0 *5 GHFPS2RCRC OPERATOR FAILS TO SWITCHOVER TO HIGH HEAD COLD LECI RECIRC (SMALL LOCA) 1.00E+00 0 .5 IHFPPORTFN OPERATOR FAILS TO UTILIZE PORTABLE FANS I. ODE+00 0 .5 RHFPSRHVAC OPERATOR FAILURE TO START SR HVAC 7.50E-05 0 7.5E-05 ZHF-C2-020 OPERATING CREW FAILS TO IMPLEMENT HHSR FOR A SMALL LOCA AND FAILS TO IMPLEMENT HHSI FROM OPPOSITE UNIT RWST (GHFPS2RCRC-GHFPOPPSI) 5.00E-01 0,5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS PTN-BFJR-0-01 Rev 0 PTN AFWp B SDP CalcFinal.doc

PTN-BFJR-06-001 Rev. 0 Page 24 of 30 1.00E+00 1.0 ZZHVAC HVAC FLAG 6 6.36E-10 1.27E-01 9 I.27E-01 /ZZT3CU3 LOSSOFMAINFEEDWATER-NOTRECOVERABLE 1.00E+00 0 .5 AHFPAFWPTRP OPERATORS FAIL TO SHUT DOWN I OFTHE TRAIN 2 PUMPS 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWA AFWTURBINE-DRIVENPUMPAFAILSTORUN 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWB AFWTURBINE-DRIVENPUMPBFAILSTO RUN I .OOE+00 0 .5 FHFPSSGFW FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW 1.00E+00 0 .5 GHFPBLFEEDL OPERATING CREW FAILS TO IMPLEMENT BLEED-AND-FEED -LMFW W/LOW SG LEVEL 3.90E-05 0 4.0E-5 ZHF-C3-007 FAILURE TO TRIP ONE OF THE IWO TRAIN 2 AFW PUMPS, FAILURE TO RESTORE SECONDARY COOLING USING SSGFW AFTER LOSS OF AFW, AND FAILURE TO RESET SI AND INMATE BLEED-AND-FEED COOLING (AHFPAFM'P7W-FHFPSSGF 5.00E-01 0.5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS 7 5.31E-10 5.30E-02 9 5.30E.02 NZZLOG LOSS OF GRID I.OOE+00 0 .5 AHFPAFWPTRP OPERATORS FAIL TO SHUT DOWN I OF THE TRAIN 2 PUMPS 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWB AFWTURBINE-DRIVEN PUMP B FAILS TO RUN I .OOE+00 0 .5 EHFPDOSTXT OPERATOR FAILS TO ATTEMPT DOST XllE 1.67E 02 3 2.10E-03 N S N EMPA4P241A DIESELOILTRANSFER PUMP 4P241A FAILS TO START 1.00E+00 0 .5 FHFPSSGFW FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW 1.00E+00 0 .5 GHFPOPPSI OPERATING CREW FAILS TO USE HHSI FROM OPPOSITE UNIT I.OOE+00 0 .5 GHFPS2RCRC OPERATOR FAILS TO SWITCHOVER TO HIGH HEAD COLD LEG RECIRC (SMALL LOCA) 1.00E+00 0 .5 IHFPPORTFN OPERATOR FAILS TO UTILIZE PORTABLE FANS I.OOE+00 0 .5 RHFPSRHVAC OPERATOR FAILURE TO START SR HVAC 7.50E-05 0 7.5E-05 ZHF-C2-020 OPERATING CREW FAILS TO IMPLEMENT HHSR FOR A SMALL LOCA AND FAILS TO IMPLEMENT HHSI FROM OPPOSITE UNIT RWST (GHFPS2RCRC-GHFPOPPSI) 5.00E-01 0.5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS 1.00E+00 1.0 ZZHVAC HVAC FLAG 8 5.21E-10 1.27E-01 9 1.27E-01 %ZZT3CU3 LOSSOFMAINFEEDWATER-NOTRECOVERABLE I.OOE+00 0 .5 AHFPAFWPTRP OPERATORS FAILTO SHUT DOWN I OFTHE TRAIN 2 PUMPS 6.83E-03 0 6.825E-03 ATMOTRAINI AFIWTRAIN I UNAVAILABLE DUETO TEST OR MAINTENANCE 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWB AFWTURBINE-DRIVEN PUMP B FAILS TO RUN I.OOE+00 0 .5 FHFPSSGFW FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW 1.00E+00 0 .5 GHFPOPPSI OPERATING CREW FAILS TO USE HHSI FROM OPPOSITE UNIT I .OOE+00 0 .5 GHFPS2RCRC OPERATOR FAILS TO SWITCHOVER TO HIGH HEAD COLD LEG RECIRC (SMALL LOCA) 7.50E-05 0 7.5E-05 ZHF-C2.020 OPERATING CREW FAILS TO IMPLEMENT HHSR FOR A SMALL LOCA AND FAILS TO IMPLEMENT HHSI FROM OPPOSITE UNIT RWST (GHFPS2RCRC-GHFPOPPSI) 5.00E-01 0.5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS 9 5.19E-10 5.30E-02 9 5.30E-02 "ZZLOG LOSS OF GRID I.OOE+00 0 .5 AHFPAFWPTRP OPERATORS FAIL TO SHUT DOWN I OF THE TRAIN 2 PUMPS 1.60E-02 3 6.73E-04 H 24 H ATPFOAFWB AFW TURBINE-DRIVEN PUMP B FAILS TO RUN I.63E-02 0 1.630E-02 ET`M4AED EDG 4A INTEST OR MAINTENANCE 1.00E+00 0 .5 FHFPSSGFWV FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW I.OOE+00 0 .5 GHFPOPPSI OPERATING CREW FAILS TO USE HHSI FROM OPPOSITE UNIT I .OOE+00 0 .5 GHFPS2RCRC OPERATOR FAILS TO SWITCHOVER TO HIGH HEAD COLD LEG RECIRC (SMALL LOCA)

I.OOE+00 0 .5 IHFPPORTFN OPERATOR FAILS TO UTILIZE PORTABLE FANS I .OOE+00 0 .5 RHFPSRHVAC OPERATOR FAILURE TO START SR HVAC 7.50E-05 0 7.5E-05 ZHF-C2.020 OPERATING CREW FAILS TO IMPLEMENT HHSR FOR A SMALL LOCA AND FAILS TO IMPLEMENT HHSI FROM OPPOSITE UNIT RWST (GHFPS2RCRC-GHFPOPPSI) 5.00E-01 0.5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS 1.00E+00 1.0 ZZHVAC HVAC FLAG 10 5.11E510 5.30E-02 9 5.30E-02 %ZZLOG LOSS OF GRID 1.00E+00 0 .5 AHFPAFWPTRP OPERATORS FAIL TO SHUT DOWN I OF THE TRAIN 2 PUMPS 1.60E-02 3 6.73E.04 H 24 H ATPFOAFWA AFWTURBINE-DRIVENPUMPAFAILSTORUN 1.60E-02 3 6.73E.04 H 24 H ATPFOAFWB AFWTURBINE-DRIVEN PUMP B FAILS TO RUN 1.00E+00 0 .5 FHFPSSGFV FAILURE TO RECOVER SECON. HEAT SINK BY SSGFW I.OOE+00 0 .5 GHFPOPPSI OPERATING CREW FAILS TO USE HHSI FROM OPPOSITE UNIT I .OOE+00 0 .5 GHFPS2RCRC OPERATOR FAILS TO SWITCHOVER TO HIGH HEAD COLD LEG RECIRC (SMALL LOCA) 7.50E-05 0 . 7.5E-05 ZHF-C2-020 OPERATING CREW FAILS TO IMPLEMENT HHSR FOR A SMALL LOCA AND FAILS TO IMPLEMENT HHSI FROM OPPOSITE UNIT RWST (GHFPS2RCRC-GHFPOPPSI) 5.00E-01 0.5 ZZAFWPUMPC AFW PUMP C IS THE WEAKER OF THE 2 PUMPS Report Sanmary:

Filename: C:A2006MSPI"CAFTA Files Rev C\Cuts\PTNR.5CIO.CUT Print date: 2/15/2006 9:30 PM Not sorted, Printed the first 10 PTN-BFJR-06-001 Rev 0 PTN AFWP B SDP CalcFinal.doc

PTN-BFJR-06-001 Rev.0 Page 25 of 30 : Clarification of Loss of DC 3A Operator Recovery Action FcM.aakded by Ching Averet unt-.Nuclc^-I pl uc on 1 I 0 -

M~ark Avereft To: ching guey@fpl.com 02/17/2006 07:44 AM cc:Brien VincentIJuno/Nuclear/FplNuc@FplNuc, Glen Blinde/Ptn/Nuclear/FplNuc@FplNuc, Mahmoud Heiba/Juno/Nuclear/FplNuc@FplNuc

Subject:

Re: AHFPTRNAMAN See response in blue.

Mark Ching Guey To: Mark Averett/Juno/Nuclear/FplNuc@FplNuc 02/17/2006 07:31 AM cc:Brien VincentIJuno/Nuclear/FplNuc@FplNuc, Mahmoud Heiba/Juno/Nuclear/FplNuc, Glen Blinde/Ptn/Nuclear/FplNuc@FplNuc

Subject:

Re: AHFPTRNAMAN Does this imply that the Bimbaum importance of the hardware (A AFW pump, and train 1 steam admission valve, mainly) involved may need to be added (or allocated based on its contribution to 0.1083, which may be reduced if the MSPI data is used, I presume that FTR of 0.096 for Train A AFW pump may dominate)? Yes, it does. Replacing ZHFPTRNAMAN with ATPFOAFWA in the cutsets would approximate the increase in Bimbaum due to the hardware portion of the AHFPTRNAMAN recovery.

This may not be an important issue, until DC bus 3A becomes dominant sequence of concem.

Also, Glen's email earlier may change the HEP somewhat? No. Glen's email simply confirms that the AHFPTRNAMAN recovery is possible.

Ching PTN-BFJR.06-001 Rev 0 PTN AFWP B SDP CalcFinal.doc

PTN-BFJR-06-001 Rev. 0 Page 26 of 30 Mark Avereft To: ching gueyafpl.com 02/17/2006 07:10 AM cc: Brien VincentlJunolNuclear/FplNuc@FplNuc, Mahmoud HeibalJunolNuclearlFplNuc@FplNuc, glen blindeefpl.com

Subject:

AHFPTRNAMAN Ching, I found the reference for the 0.11 probability for the recovery event AHFPTRNAMAN in the Rev. 4 update calculation.

PTN-03-068 Recovery for %ZZDC3A/B Sequences Descripio Actual Change During the cutset review with the Licensed Operator This recovery action was modeled In the HRA Toolbox as Instructors, it was pointed out that it did not appear event AHFPTRNAMAN. The hardware portion of this recovery that the dependency of SSGFW on the feedwater was determined by quantifying the gate A0003, giving a failure bypass valves (FCV-3-479, 489, and 499) was probability of 0.1083, dwarfing the the human error part of the adequately modeled. This was discovered by noting recovery of 1.4E-3.

that the loss of DC Bus 3A (power for these valves) was not resulting in a failure of SSGFW. This was This recovery cannot easily be placed into the fault tree itself as corrected via change PTN-03-066. This change it is very cutset-specific. Therefore, the recovery was applied brought a lot of loss of DC Bus 3A cutsets to the using the recovery rule file to apply it to the individual cutsets.

top. The Licensed Operator Instructors also pointed The probability of the recovery was set to the sum of the out that Train 1 of AFW which is lost due to the loss hardware and human error probabilities, or 0.1097.

of DC Bus 3A due to steam admission valve not opening and the FCVs not opening could be The addition to the recovery rule file is shown below:

recovered by manually opening these valves and manually controlling the FCVs using local Indication. "CLEAR RECOVERY FLAGS**

  • RECOVERY** ZHFPTRNAMAN 0.1 097

%ZZDC3A ATPFOAFWB ATPFOAFWC PTN-BFJR-06-001 Rev 0 PTN AFWP B SDP CalcFinal.doc

PTN-BFJR-06-001 Rev. 0 Page 27 of 30

,6ZZDC3A ATPAOAFWB ATPFOAFWC

.77rflDe3A ATDn, F'."B ATPA^AA eF'

%ZZDC3A ATMOTRAIN2

%ZZDC3A AHFAOPUMPB ATPFOAFWC

%ZZDC3A AHFAOPUMPC ATPFOAFWB

%ZZDC3A AHFAOPUMPB ATPAOAFWC

%ZZDC3A AHFAOPUMPC ATPAOAFWB

%ZZDC3A AHFPAFWPTRP ATPFOAFWB ZZAFWPUMPC

%ZZDC3A AHFPAFWPTRP ATPFOAFWC ZZAFWPUMPB

%ZZDC3A AHFPAFWPTRP ATPAOAFWB ZZAFWPUMPC

%ZZDC3A AHFPAFWPTRP ATPAOAFWC ZZAFWPUMPB

%ZZDC3A AROPO-3418 ATPFOAFWC

%ZZDC3A ATPFOAFWB AROPO-3419

%ZZDC3A AROPO-3418 ATPAOAFWC

%ZZDC3A ATPAOAFWB AROPO-3419

%ZZDC3A AMMOCCFAVBD

%ZZDC3A AMMOCCFAVBF

%ZZDC3A AMMOCCFAVDF

%ZZDC3A AMM3SSHV2 ZZU400S

%ZZDC3A ACVNOPD243 ATPFOAFWC

%ZZDC3A ACVNOPD243 ATPFOAFWC

%ZZDC3A ACVNOS003B ATPFOAFWC

%ZZDC3A ACVNOS003C ATPFOAFWB

%ZZDC3A ACVNOPD243 ATPAOAFWC

%ZZDC3A ACVNOPD243 ATPAOAFWC

%ZZDC3A ACVNOS003B ATPAOAFWC

%ZZDC3A ACVNOS003C ATPAOAFWB Added ZHFPTRNAMAN to gate ZREC6 for placeholding.

Mark PTN-BFJR-06-001 Rev 0 PTN AFWP B SDP CalcFinal.doc

PTN-BFJR-0MO1 Rev.0 Page 28 of 30 Attachment 4: Summary of Turkey Point Plant Response to Loss of AFW 1 Hour after a Loss of Feedwater MAAP File Name Event Description Results PTN_,AFWlHRLSGWR_2HHSI_2PORVSGL60 Loss of feedwater S/G dryout - none 86400 sec run Loss of AFW@ lhr Core uncovery - none SSGFW available Fuel damage - none Bleed & feed - none CL recirc - none PTN_LOHSlHRlHHSIlPORV_SGL6CHRA Loss of feedwater S/G dryout - none 43200 sec run Loss of AFW/SSGFW @ lhr Core uncovery - none Bleed & feed initiated (1 Fuel damage - none HHSIP - 1 PORV) to avoid Bleed & feed - 22596 sec core uncovery CL recirc - > 43200 sec PTNLOHSlHR_2HHSIlPORV_SGL6CHRA Loss of feedwater S/G dryout - none 43200 sec run Loss of AFW/SSGFW @ lhr Core uncovery - none Bleed & feed initiated (2 Fuel damage - none HHSIP - 1 PORV) to avoid Bleed & feed - 23166 sec core uncovery CL recirc - > 43200 sec PTN_LOHS1HR_2HHSI_2PORV_SGL6CHRA Loss of feedwater S/G dryout - none 43200 sec run Loss of AFW/SSGFW @ lhr Core uncovery - none Bleed & feed initiated (2 Fuel damage - none HHSIP - 2 PORV) to avoid Bleed & feed - 23746 sec core uncovery CL recirc - 33132 sec PTNLOHSIHR_2HHSI_2PORV_SGL6CNOCD Loss of feedwater S/G dryout - 26834 sec 36000 sec run Loss of AFW/SSGFW @ lhr Core uncovery - 28406 sec Bleed & feed initiated (2 Fuel damage - none HHSIP - 2 PORV) to avoid Bleed & feed - 27646 sec core damage CL recirc - 35861 sec PTN_LOHS1HR_NOF&B_NOCHG Loss of feedwater S/G dryout - 25787 sec 36000 sec run Loss of AFW/SSGFW @lhr Core uncovery - 28221 sec No bleed & feed initiated Fuel damage - 30657 sec No charging Bleed & feed - n/a CL recirc - n/a PTNLOHSlHRNOF&BNOCHGAFWRESTHRA Loss of feedwater S/G dryout - 25787 sec 43200 sec run Loss of AFW/SSGFW @ lhr Core uncovery - 28221 sec No bleed & feed initiated Fuel damage - none No charging Bleed & feed - n/a AFW restored to avoid core CL recirc - n/a damage AFW restored - 28746 sec PTN_LOOP_LOHS1HR_NOF&B_NOCHG LOOP/Loss of feedwater S/G dryout - 23810 sec 30000 sec Loss of AFW/SSGFW @ lhr Core uncovery - 26186 sec No bleed & feed initiated Fuel damage - 28580 sec No charging Bleed & feed - n/a CL recirc - n/a PTN_2IN_S1LOCA_LOHS1HR_NOCHG 2" SlLOCA S/G dryout - none 86400 sec Loss of AFW/SSGFW @ lhr Core uncovery - none Minimum SI @ 77 sec Fuel damage - none No charging Bleed & feed - none CL recirc - 78507 sec PTN_LOOP_AFW1HRLSGWR_2HHSI_2PORVSGL60 Loss of feedwater S/G dryout - none 86400 sec run Loss of AFW@ lhr Core uncovery - none SSGFW available Fuel damage - none Bleed & feed - none CL recirc - none PTN-BFJR46-001 Rev 0 PTN AFWP B SDP CalcFinal.doc

PTN-BFJR-06-001 Rev. 0 Page 29 of 30 : Summary of NRC Phase 3 SDP Results sequotice Best Vs. Curfert Roport by DM i 4n cut (b-c)

Project TKPTL3 Analysis: RANDOM Units: Per Year Event Sequence Curr Freq Base fteq Per Dillerence Ratio Curr 1329a Differ* End it Ie prYear year Cnt Cnt nce State LOQHS 02-07-07 0.000E+00 0.0O0E+00 0.000NE00 O)U00Q&00 O O O LOCCW 18 0.000E+00 0.000E+00 0.000E+00 0.000E+o0 0 0 0 GE)

LOCCW 17 3.738E-1 2 3.73SE-12 noooLNoo 1.OWEt00 3 3 0 CD LOCCW 15 0.000E+00 0.0002E00 0.oooE+Do 0.000E400 0 I .1 CO LOCCW 13 0.000Eo00 0.000E+00 0.00000 O.OOO00Etoo 0 1 .1 CO OCCW 6-06 , O.000.E+00 0.000E+00 0.000E+00 O.o0 E+000 O o 0 CD LOCHS 02-02 45 t.4622E-11 .00WE+00 1S002E00 6 O 0 CD LOCCW 26-10 3.331 E-11 3.331 E-11 0000E*00 t S is o C LOCCW aes9 0.000E400 0.000E+00 0.000oE00 0.0002E00 0 OQ 0 CD LOCHS 02-06-15 O.oooE400 0.000E+00 aOOCE.0 0.000E+00 0- 0 0 CD LOC 1HS 02-00-17 0.o00E+00 0 0.0002E00 o.oOOE-0 0 0 0 CD LOCcW 26-12 2.331E-11 .832E-11 0.000E200 1.000E400 8 S 0 C6 LOCHS 02-06-18 0.000o+c0 0.000E+00 oooCE+00 0.000E*00 0 0 0 co LOCCW 26-08 0.000E+00 0.000E+00 0.000E+00 0.0o0E+O40 o 0 co LOCHS 02-07403 0.0 0E+oo o0oE000+0o .00CE400 0.000E+00 0 o 0 CD LOCHS 02o07-0 O.O000E+00 0.0000E+0 O000E400 0.000E400o 0 0 0 CO LOCHS 02-04-13 -. OOOE+00 0.000E+00 0.00oE+0O 0 00BE*00 0 0 0 CO LOOP 18-43-3 1.t7E2-11 iAW 11 5.310E-12 1.467Et00 3 5 .- 2 1CD LDC3A 15-11 7.286E-12 2.21lE-13 7.055E-12a .153E01 o 14 -11 Co C6HW 13 1.0D6E-11 0.00oE+00 1.096E-1 1 0.000E400 3 0 3S LOMFW 1a 1217E-11 0.000E+o0 1t217E It 0.000E+00 O 3 CD LOOP , te i,403E-t1 0.000E 00 1.403E-1l 0.000C.00 e 0 CO MLOCA 12 - 2.0311-11 238-E.11 .9482-11 3.91-8900 23 9 14 co LOCCW 25-11 9.s12E-11 2.313E-11 68s-9E-1I 4.026E+00 30 12 te CD LOICW 26-11 9.312E-11 Z313E-11 6.99sE-11 4.02SEo00 30 12 18 CD SLOCA 19-11 9.312E-1 1 2.313E1 6.999E-11 4.02E* 30 12 18 CD LOOP 16-45 3.152E.10 2.0o5E21 1.0s7F-10 1.534E400 17 38 -21 CD LOOP 14 1.0282-1o 3.3062-1Z 1.092E-10o .823E.01 28 2 26 CD LAC3A 4 4494E-10 5.OS21-12 4.444E-10 8.896E0 44 , 0 O CD LtIAs 19-11 1.392E-9 4.757E-10 1463E-09 4.076E400 48 T7 91 SLOCAK 18 T.6R52-09 3.B922-11 1.64-06Eg 429E1+oi 33 T13 20 LOOP 19-11 2.470E9 64252.10 1.s2sE40 s.844E400 15 30 -1S CD TP.A4S 14 2.07E-09 1.7642--10 - 2.A312-09 1.4782.01 109 179 .70 CD LAOB. -14 3.0022-09 8.1 202-11I .0111-09 3.8082.01 27 109 -82 CD LAC3B 15-11 4.873E4-9 1227E-09 3.8646E09 3.0722.00 63 60 13 CD LAC3A .15-11 4.873E-09 1227E-09 3.S46E-09 32.72E.00 63 SO so 13 sOIR 30 5.5BOE-09 1261E-10 5,4s2E49 4.356E+0- 255. 49 206 CD S~iR 32-11 932F.9 .3-060-to * . 80.6092-0 3.004E401 s0 32 CD LOC-S 15.11 2.195e-0a 5.710E-09 1.624E2-8 .3.844E400 72 104 -32 CD LOMFW 15-11 2.439E-08 6.344Es09 1.805E-08 3.845E+00 73 104 -31 CD 1.I 18 4.268E24) 1.32DEi9 4.1 36E- - 3214E+01 173 88 87 CD TR1ANS 15-11 1.708E-07 4.449E-08 1263E-07. 3.839E400 95 135 -40 CD R

G1T 81 1.59aE-07 _6.30E-09 1.544E-07 2.943E401 434 163 271 CD LOOP 17 1.968E407 1.693E2-0 1.7sE4-07 1.162E601 471 299 172 Co LOCHS 14 3.870E-07 1.1 0C-08 3.760E-07 3.518E+01 3.41 214 127 CD LOMFW 14 4.300E-07 1225E-08 4.1704-07 3.6102.01 353 293 60 CD DC3A 14 1.867E-06 2.123E-08 1.8462-00 8 7942.Q 59 212 .153 Co TOTALS 5.6i56E-0 2.473E-06 2287E400 5390 5010 380 200&'12121 Page 22 13:55:45 Modd Rev. 3.31 200511OM28 PTN-BFJR-06-001 Rev 0 PTN AFWP B SDP Calcdoc

PTN-BFJR-06-001 Rev. 0 Page 30 of 30 Attachment 6: SPAR-H Performance Shaping Factors for Execution Pi ant: Initatitng Event: Basic Event: Event Coder: _

Baic Event Contexct.

twliG Event DescripUon:__

lArt IL EVALUATE EACH PSF FOR ACTION A. Evaluate PM~for thicAction Portion of (be TsikJf Any.

ire PSF Level: Mutlfpler for Please note specIfic reasons few Action PSF level selection In this

____ ____ __ ____ ___ column.

TWiiK:I 'Imd..ue avA*Hirq - vqe~.On_____

__It r(I Time avaiWbe IisI(b SNe time required 0.0!

SWti MInxim I LV.I _ _ _ _ _ _ _ _ _

I 0 MoI..

11ga'm.1kInI FitessOX 4 0 Tlul~intlirl~tO crew 0.5 Imsuflkeit ~Info g.rom.ny I __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _

[END]

PTN-BFJRI-06-001 RevO0 PTN AFWP B SDP CalcFlnal.doc