ML18023B081: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
(2 intermediate revisions by the same user not shown)
Line 2: Line 2:
| number = ML18023B081
| number = ML18023B081
| issue date = 03/05/1979
| issue date = 03/05/1979
| title = Susquehanna Units 1 and 2 - Amendment No. 4 Rev. 1 to Environmental Report
| title = Amendment No. 4 Rev. 1 to Environmental Report
| author name =  
| author name =  
| author affiliation = Pennsylvania Power & Light Co
| author affiliation = Pennsylvania Power & Light Co
Line 15: Line 15:


=Text=
=Text=
{{#Wiki_filter:SUSQUEHANNA SES-ER-OL SECTION TITLE VOLUME APP EN DX'XZS....~.............
{{#Wiki_filter:SUSQUEHANNA SES-ER-OL SECTION                       TITLE APP EN DX AN  EVALUA
~XII B1 AN EVALUA ON OF THE COST OF SF.VICE IMPACT OF A DELAY N THE IN-SERVICE D TES OF SUSQUEHANNA ES (JANUARY 1978............IXI CURRENT LONG-RA GE FORECAS ENERGY SALES 6 PEAK LOAD 1976-1 0....................
                  'XZS....     ~ .............
~~IXI APPLICANT'S FORECAS NG METHODOLOGY KMH SALES AND PEAK LOADS CE!1BER, 1976.........IXI NATXONMIDE FUEL EilZ GENCY ZSPONSZ TO FPC ORDER NO 496..............
ON OF THE COST     OF SF. VICE IMPACT
~XII SUSQUEHANNA RIVE MATER ANALYSZ  
                                                              ~
VOLUME XII OF A DELAY SUSQUEHANNA N THE IN-SERVICE ES (JANUARY 1978 D
                                              ............IXI TES OF B1 PEAK LOAD 1976-1     0.................... IXI CURRENT LONG-RA GE FORECAS        ENERGY SALES 6
                                                            ~ ~
APPLICANT'S FORECAS     NG METHODOLOGY KMH
                                  'IX SALES AND PEAK LOADS       CE!1BER,   1976.........IXI FPC ORDER NO     496..............
NATXONMIDE FUEL EilZ GENCY      ZSPONSZ TO
                                                              ~ XII SUSQUEHANNA RIVE     MATER ANALYSZ    


==SUMMARY==
==SUMMARY==
..III EQUATIONS AND SSUMPTIONS UTILIZED N THE CALCULATION 0 INDIVIDUAL AND POPULA ON DOSES TO MAN.'IX ENVIRON%EN AL TECHNXCA L S PECIFXC ATION S..XII SUSQUEHANNA SES-ER-OL TABLE 1.1-3 1977 PROJECTION OF APPLICAN'A LOADS-CAPACITY-RESERVES (HIGH LOAD PROJECTION Year Winter Peak MWe 1978 4960 1979 5320 1980 5670 1981 6100 1982 6480 1983 6840 1984 7200 1985 7570 Capacity Changes Fossil (Oil)Nuclear Hydro Reratings 945(')945(l)63(2)Total Capacities Fossil (Coal)Fossil (Oil)CT 6 (j~sel Hydro Nuclear Firm Purchase Capacity Transactions 4145 1640 539 146 76 (41)4145 1640 539 146 76 (50)4145 1640 539 146 76 4145 1640 539 146 1890 76 4145 4145 4145 4145 1640 1640 1640 1640 539 539 539 539 146 146 146 209 945 1890 1890 1890 76 76 76 76 Total MWe 6505 6496 6436 7426 8405 8374 8343 8374 Reserve over winter peak: With Susquehanna MWe Capacity X of Load 1326 22 1925 30 1534 1143 22 16 804 ll Without Susquehanna MWe Capacity%of Load 1545 31 1176 22 766 14 326 5 (65)(436)(807)(1126)(1)(6)(ll)(15)With Susquehanna But Without Oil S Hydro Generation Without Susquehanna~
  .. III EQUATIONS AND     SSUMPTIONS UTILIZED N THE CALCULATION 0     INDIVIDUAL AND POPULA ON DOSES   TO MAN           .
Oil 8 Hydro Generation Hwe Capacity (856)(1225)(17)(23)(1075)(476)(867)(1258)(1660)(18)(7)(13)(17)(22)(1635)(2075)(2466)(2837)(3208)(3590)(29)(34)(38)(41)(45)(47)Note: See Footnotes Following Table 1.1-6.
ENVIRON%EN AL TECHNXCA L     S PECIFXC ATION S..       XII
 
SUSQUEHANNA SES-ER-OL TABLE 1.1-3 1977 PROJECTION OF APPLICAN'A LOADS-CAPACITY-RESERVES (HIGH LOAD PROJECTION Year                           1978      1979      1980      1981    1982    1983    1984    1985 Winter Peak   MWe               4960       5320       5670     6100     6480     6840   7200   7570 Capacity Changes Fossil (Oil)
Nuclear                                                       945(')   945(l)
Hydro                                                                                              63(2)
Reratings Total Capacities Fossil (Coal)                 4145      4145      4145      4145    4145    4145    4145    4145 Fossil (Oil)                 1640      1640      1640      1640    1640    1640    1640    1640 CT 6 (j~sel                   539       539       539       539     539     539     539     539 Hydro                          146      146        146      146     146     146     146    209 Nuclear                                                        945     1890     1890   1890   1890 Firm Purchase                    76        76        76        76       76       76     76     76 Capacity Transactions                    (41)      (50)
Total MWe                     6505       6496       6436     7426     8405     8374   8343   8374 Reserve over   winter peak:
With Susquehanna MWe Capacity                                                 1326    1925    1534    1143    804 X of Load                                                       22       30       22     16     ll Without Susquehanna MWe Capacity                 1545       1176       766       326       (65)   (436)   (807) (1126)
  %  of Load                      31        22        14        5      (1)     (6)   (ll)   (15)
With Susquehanna But Without Oil   S                                         (1075)   (476)   (867) (1258) (1660)
Hydro Generation                                                (18)     (7)     (13)   (17)   (22)
Without Susquehanna~
Oil 8 Hydro Generation        (856)    (1225)    (1635)   (2075)   (2466)   (2837) (3208) (3590)
Hwe Capacity                    (17)      (23)      (29)     (34)     (38)     (41)   (45)   (47)
Note:   See Footnotes Following Table 1.1-6.
 
SUSQUEHANNA SES"ER-OL TABLE 1.1-4 1977 PROJECTION OF APPLICAFA LOADS-CAPACITY-RESERVES MID-RANGE LOAD PROJECTION)
SUSQUEHANNA SES"ER-OL TABLE 1.1-4 1977 PROJECTION OF APPLICAFA LOADS-CAPACITY-RESERVES MID-RANGE LOAD PROJECTION)
Year Winter Peak MWe Capacity Changes Fossil (Oil)Nuclear Hydro Reratings 1978 4820 1979 5050 1980 5310 1981 5690 945(l)1982 5990 945"'983 6280 1984 6560 1985 6850 63(2)Total Capacities Fossil (Coal)Fossil (Oil)CT 6 (j~sel Hydro Nuclear Firm Purchase Capacity Transactions Total MWe 4145 1640 539 146 76 (41)6505 4145 1640 539 146 76 (50)6496 4145 1640 539 146 76~(110 6436 4145 1640 539 146 945 76 (65)7426 4145 1640 539 146 1890 76 (31)8405 4145 1640 539 146 1890 76 (62)8374 4145 1640 539 146 1890 76 4145 1640 539 209 1890 76~(93 (125)8343 8374 Reserve over winter peak: With Susquehanna MWe Capacity g of Load 1736 2415 31 40 2094 33 1783 1524'27 22 Without Susquehanna MWe Capacity$of Load 1685 1446 35 29 1126 21 736 13 425 7 124 2 (167)(406)(3)(6)With Susquehanna But Without Oil 6 Hydro Generation (665)(12)14 (307)(618)(940)1 (5)(9)(14)Without Susquehanna~
Year                     1978      1979          1980      1981    1982            1984    1985 Winter Peak MWe         4820      5050          5310      5690    5990    6280    6560    6850 Capacity Changes                                                       945"'983 Fossil (Oil)
Oil 6 Hydro Generation (716)(955)(1275)(1665)(1976)Mwe Capacity (15)(19)(24)(29)(33)NOTE: See Footnotes Following Table 1.1-6 (2277)(2568)(2870)(36), (39)(42)  
Nuclear                                                     945(l)
Hydro                                                                                            63(2)
Reratings Total Capacities Fossil (Coal)           4145      4145          4145      4145    4145    4145    4145    4145 Fossil (Oil)           1640      1640          1640      1640    1640    1640    1640    1640 CT 6 (j~sel             539        539          539        539      539    539      539      539 Hydro                   146        146          146      146      146    146      146      209 Nuclear                                                     945    1890    1890    1890    1890 Firm Purchase             76        76          76        76      76      76      76      76 Capacity Transactions             (41)     (50)       ~(110       (65)     (31)   (62)   ~(93     (125)
Total  MWe                6505      6496          6436      7426    8405    8374    8343     8374 Reserve over winter peak:
With Susquehanna MWe Capacity                                             1736    2415    2094    1783    1524 g of Load                                                     31       40     33     '27       22 Without Susquehanna MWe Capacity           1685     1446         1126       736     425     124     (167)   (406)
  $ of Load                  35        29          21        13        7      2        (3)     (6)
With Susquehanna But Without Oil 6                                         (665)       14   (307)   (618)   (940)
Hydro Generation                                            (12)      1     (5)       (9)   (14)
Without Susquehanna~
Oil 6 Hydro Generation (716)       (955)       (1275)     (1665)   (1976) (2277)  (2568)  (2870)
Mwe Capacity             (15)       (19)         (24)       (29)     (33)   (36),    (39)    (42)
NOTE:   See Footnotes Following Table 1.1-6
 
SUS(UEHANNA SES-ER-OL TABLE    1.1-5 1977 PROJECTION OF APPLICANT LOADS-CAPACITY"RESERVES (IOW IOAD PROJECTION Year                      1978    1979          1980        1981            1983    1984    1985 Winter Peak  MWe          4650    4720          4910        5170      5390    5650    5920    6050 Capacity Changes 945"'982 Fossil (Oil)
Nuclear                                                                945("
63(2)
Hydro Reratings Total Capacities Fossil (Coal)            4145      4145        4145        4145    4145    4145    4145      4145 Fossil (Oil)            1640      1640        1640        1640    1640    1640    1640      1640 CT 8                      539      539          539          539      539    539    539      539 (j~sel                                      146          146      146    146    146      146 Hydro                      146      146 Nuclear                                                        945    1890    1890    1890    1890 Firm Purchase                76        76          76          76      76      76      76      76 Capacity Transactions                                                                                    (125)
Total  Mwe                6505      6496        6436        7426      8405    8374    8343    8374 Reserve over winter peak:
With Susquehanna MWe Capacity                                                2256      3015    2724    2423    2324
  ~ of Load                                                        44      56      48      41        38 Without Susquehanna MWe Capacity            1855    1776          1526        1256    1025    754    473      394 4 of Load                  40        38          31          24      19      13      8        7 With Susquehanna But Without Oil 6                                            (145)      614    323      22    (140)
Hydro Generation                                                (3)    11      6        1      (2)
MWe Capacity g of Load Without Susquehanna>
Oil 8 Hydro Generation (546)      (625)        (875)      (1 145 )  (1376)  (1647)  (1928)  (2070)
MWe Capacity              (12)      (13)        (18)        (22)    (26)    (29)    (33) i    (34) g of Load NOTE:  See Footnotes Following Table 1.1-6.
 
SUSQUEHANNA SES-ER-OL TABLE  1.1-6 1977 PROJECTION OF APPLICAN'8 LOADS-CAPACITY-RESERVES (LOW-LOW LOAD PROJECTION)
Year                      1978    1979        1980      1981      1982    1983    1984    1985 Winter Peak  HWe          4530    4580        4720      4890      5050    5230    5420    5500 Capacity Changes Fossil (Oil)
Nuclear                                                    945(l)  945( )
Hydro                                                                                          63(2)
Reratings Total Capacities Fossil (Coal)            4145    4145        4145      4145      4145    4145    4145    4145 Fossil (Oil)            1640    1640        1640        1640    1640    1640    1640    1640 CT 8 (j~sel              539      539        539        539      539      539    539    539 Hydro                    146      146        146        146      146      146    146    209 Nuclear                                                    945    1890    1890    1890    1890 Fixm Purchase              76        76          76        76        76      76      76      76 Capacity Transactions              (41)      (50)      ~llO        (65)    (31)     (62)   (93)   (125)
Total  HWe                6505    6496        6436        7426    8405    8374    8343    8374 Reserve over  winter peak:
With Susquehanna NWe Capacity                                              2536    3355    3144    2923    2874
  $ of Load                                                  52        66      60      54      52 Without Susquehanna MWe Capacity            1975    1916        1716        1536    1365    1174    973    944 g of Load                  44        42          36         31        27      22      18      17 With Susquehanna But Without Oil 6                                          135      954      743    522    410 Hydro Generation                                            3        19      14      10      7 MWe Capacity g of Load Without Susquehanna, Oil 6 Hydro Generation (426)      (485)      (685)      (865)  (1036)  (1227)  (1428)  (1520)
MWe Capacity                (9)    (11)        (15)      (18)      (21)    (23)    (26)    (28) g of Load NOTE:  See Footnotes Following Table 1.1-6
 
S USQ UEH A N NA S ES-E R-OL 2  3. 1 2. 2  Tornadoes The  incidence of tornadoes in the site area is very low. Between the years 1950 and 1973 only 38 tornadoes were reported within 50 miles of the site. Tornado activity is at a maximum during the summer months with most tornadoes occurring in the late afternoon or evening. Figure 2. 3-1, Tornado Occurrence <<nd Intensity in the Susquehanna SZS Reqion, is a histogram for the years 1953-1962 showing tornado frequency by month, hour and intensity within a 3 by 3~ square which is centered on the site. The intensity cateqories are based on the Fujita tornado intensity classification (Ref. 2.3-5). Prom Figure 2.3-            1  it can be seen that maximum tornado occurrence is            in the  summer. Diurnally, tornado frequency reaches a maximum during late afternoon, shortly after the period of greatest instability 2  3.1. 2  3  Th>>ndec storms Thunderstorms    in the area are usually of brief duration and concentrated in the warm months. They are responsible foc most of the summertime rainfall which normally avecaqes around 3.7 inches per month at Avoca. Based on a 19 year average at Avoca the mean number of "days with thunder heard" is 30 (Ref 2.3-3) .
A monthly breakdown      of the mean number of thunderstorm days that is  representative    of  the site is shown in Table 2.3-2, Th understocm  Days  for  Avoca.
: 2. 3. 1 2. 4  L~iht ning There  is neither documentation nor direct measurement of the occurrence of lightning other than the observation of associated thunder. Local climatological data tabulated by the National Weather Service (Ref. 2. 3-3) does not provide information reqardinq the incidence, severity. or frequency of lightning occurrences      A .thunderstocm    can usually be heard unless the liqhtning causing the thunder is more than 15 miles away; therefore, thunder incidence can presumably be used to confirm the presence of some lightning The number    of lightning strikes per square mile per year has been established by, Uman (Ref. 2.3-6) . The combined results of several studies summarized ny Uman indicate that the number of flashes to the qround pec square mile per year is between 0 05 and 0.80 times the number of thunderstorm days pec year.              The mean number of days with thunderstorms probably over estimates the actual occurrence of cloud-to-ground lightning since some thunderstocms probably contain only cloud-to-cloud lightning.
2~3 3
 
SUSQUEHANNA S ES-ER-OL Therefore. if the annual thunderstorm frequency at Avoca is used (30 days), the number of: ground lightning strikes is between two and 24.
2 3  1  2 5  Hail Hail in the site region sometimes falls from severe thunderstorms.      Because hail f alls in narrow swa ths, only a small fraction of occurrences is recorded at regular reporting stations      The average annual number of days with hail at a point in the area is 23. The occurrence of large hail (greater than
: 0. 75 inches diameter) averaqes one or two occurrences annually Accordinq to Pautz (Ref. 2.3-7) the number of hailstorms with hail 0.75 inch or greater in a one-degree longitude-latitude square area in the vicinity of the site for the period 1955-1967 was about five      For Avoca from 1973-75 there was one hailstorm in June and one in July of 1973 and 1974. Xn 1975 there was also one hailstorm in August and one in October        There were no occurrences of hail recorded in 1976 at Avoca (Ref. 2.3-3) 2  3.1  2  6 Extreme Minds Strong winds occur in Pennsylvania as a result of occasional hurricanes, thunderstorms, tornadoes and tropical storms. The followinq is the fastest mile of wind and its associated direction, by month, at Avoca (1955-1976) (Ref. 2.3-3).
Fastest Mile of  Wind Month          mph    Direction      Month      mph      Direction January          43          SE      July        42        NW February        60          W        Auqust      50        NE March            49          S        September    38        SM April            47          NW      October      38        E May              40          NW      November    45        S June            43          W        December    47        SM The  50-year and 100-year mean fastest mile wind speeds for the site    area are 75 miles per hour and 80 miles per hour, respectively (Ref. 2.3-8) . Accordinq to Pautz, there were eight windstorms 50 knots and qreater for the one degree latitude-longitude square that includes the Susquehanna SES for the period 1955-1967 (Ref. 2 3-7) .
2 3-4
 
SUSQUEHANNA SES-ER-G'i.
TABLE  2.3-33 LONG-TERM TEMPERATURE ( F) AT AVOCA (Period of Record:    1956-1974)
Extreme Month      ~Dail  Max      ~Dail  Mia      Mean    Hicihest    lowest January      33.5            18.4          26.0      67          -10 February    35.3            19.3          27.3      62 March        44.7            27.2          36.0      78 April        58.9            38.0          48.5      89            15 70.0            47.8          58.9      93            27 June        79.0            56.8          67.9      97            34 July        83.0            61.3          72.2    101            45 August      80.7            59.2          70.0      94            43 September    73.6            52.1          62.9      95            30 October      63.0            42.2          52.6      84            19 November    48.8            32.8          40.8      77            10 December    36.1            22.0          29.1      65 Annual      58.9            39.8          49.4    101 Ref. 2.3-3
 
SUSQUEHANNA SES-ER-OL TABLE  2.3-49 PRECIPITATION DATA FOR AVOCA (Period of Record:    1956-1974)
Month                    Total            Greatest 24-Hour (in inches)            (in inches)
January                    2.04                  1.52 February                  1.96                  1.60 March                      2.50                  2.20 April                      3.06                  1.59 May                        3.50                  2.58 June                      3.40                  3.61 July                      4.09                  2.33 August                    3.21                  3.18 September                  2.82                  3.09 October                    2.71                  2.61 November                  3.01                  2.91 December                  2.51                  2. 30 Annual                    34.81                  3.61 Ref. 2.3-3
 
SUSQUEHANNA  SES-ER-OL.
TABLE  2.3-81 JOINT FRE UENCY (%) OF WIND DIRECTION, WIND SPEED AND STABILITY FOR AVOCA (Period of Record:      1971-1975)
Stability  Class    B Wind Speed    (kts)
Se'ctor      0-3      4-6      7-10        11-16      17-21    >21 Total 898    .1507      .1164                                .3569 NNE            975    .0548      .0548                                .2071 NE            654    .0548      .0616                                .1819 ENE          1112    .0411      .0137                                .1660 768    .0274      .0342                                .1385 ESE            516    .0205        0                                  .0721 SE            528    .0274      .0068                                .0870 SSE            424    .0137      .0137                                .0698 1675    .0890      .0205                                .2771 SSW            898    .1507      .0959                                .3364 SW            991    .2055      .1507                                .4553 WSW          1773    .2877      .2123                                ~ 6773 2118    .2493      .1301                                .6913 1449    .1918      .1164                                .4531 NW            1449    .1986      .0890                                .3856 NNW            748    .1096      .1027                                .2871 Total        6507    1.9726    1.2192 Relative frequency of occurrences of      B  Stability  = 4.8425 Ref. 2.3-4


SUS(UEHANNA SES-ER-OL TABLE 1.1-5 1977 PROJECTION OF APPLICANT LOADS-CAPACITY"RESERVES (IOW IOAD PROJECTION Year Winter Peak MWe Capacity Changes Fossil (Oil)Nuclear Hydro Reratings 1978 4650 1979 4720 1980 4910 1981 5170 945"'982 5390 945(" 1983 5650 1984 5920 1985 6050 63(2)Total Capacities Fossil (Coal)Fossil (Oil)CT 8 (j~sel Hydro Nuclear Firm Purchase Capacity Transactions Total Mwe 4145 1640 539 146 76 4145 1640 539 146 76 4145 1640 539 146 76 4145 1640 539 146 945 76 4145 4145 4145 1640 1640 1640 539 539 539 146 146 146 1890 1890 1890 76 76 76 6505 6496 6436 7426 8405 8374 8343 4145 1640 539 146 1890 76 (125)8374 Reserve over winter peak: With Susquehanna MWe Capacity~of Load 2256 3015 44 56 2724 48 2423 2324 41 38 Without Susquehanna MWe Capacity 4 of Load With Susquehanna But Without Oil 6 Hydro Generation MWe Capacity g of Load 1855 1776 1526 40 38 31 (145)(3)614 11 1256 1025 24 19 754 13 323 6 473 8 22 1 394 7 (140)(2)Without Susquehanna>
SUSQUEHANNA SES-ER-OL SECTION                           TITLE                                                   VOLUME APPENDICIESo o r o o o o o o e o ~ o o o o o o o o o r o or o o o o o o o o o o o III B1 AN EVALUATION OF THE COST OF SERVICE .IMPACT OF A DELAY IN THE IN-SERVICE DATES OF SUSQUEHANNA SES (JANUARY 1978)
Oil 8 Hydro Generation (546)(625)MWe Capacity (12)(13)g of Load NOTE: See Footnotes Following Table 1.1-6.(875)(1 145)(1376)(1647)(18)(22)(26)(29)(1928)(2070)(33)i (34)
CURRENT LONG-RANGE FORECAST ENERGY SALES 6
SUSQUEHANNA SES-ER-OL TABLE 1.1-6 1977 PROJECTION OF APPLICAN'8 LOADS-CAPACITY-RESERVES (LOW-LOW LOAD PROJECTION)
                                                          ....... III PEAK LOAD 1976-1990.................                                               III B2     APPLICANT' FORECASTING METHODOLOGY KWH SALES AND PEAK LOADS DECEMBER,                       1976..                         III FPC ORDER NO     496.............
Year Winter Peak HWe Capacity Changes Fossil (Oil)Nuclear Hydro Reratings 1978 4530 1979 4580 1980 4720 1981 4890 945(l)1982 5050 945()1983 5230 1984 5420 1985 5500 63(2)Total Capacities Fossil (Coal)Fossil (Oil)CT 8 (j~sel Hydro Nuclear Fixm Purchase Capacity Transactions Total HWe 4145 1640 539 146 76 (41)6505 4145 1640 539 146 76 (50)6496 4145 1640 539 146 76~llO 6436 (65)7426 (31)8405 (62)8374 (93)8343 (125)8374 4145 4145 4145 4145 4145 1640 1640 1640 1640 1640 539 539 539 539 539 146 146 146 146 209 945 1890 1890 1890 1890 76 76 76 76 76 Reserve over winter peak: With Susquehanna NWe Capacity$of Load 2536 52 3355 3144 2923 66 60 54 2874 52 Without Susquehanna MWe Capacity g of Load 1975 44 1916 42 1716 1536 36 31 1365 27 1174 22 973 18 944 17 With Susquehanna But Without Oil 6 Hydro Generation MWe Capacity g of Load Without Susquehanna, Oil 6 Hydro Generation (426)MWe Capacity (9)g of Load 135 3 (485)(685)(865)(11)(15)(18)954 19 743 14 (1036)(1227)(21)(23)522 10 410 7 (1428)(1520)(26)(28)NOTE: See Footnotes Following Table 1.1-6 S USQ UEH A N NA S ES-E R-OL 2 3.1 2.2 Tornadoes The incidence of tornadoes in the site area is very low.Between the years 1950 and 1973 only 38 tornadoes were reported within 50 miles of the site.Tornado activity is at a maximum during the summer months with most tornadoes occurring in the late afternoon or evening.Figure 2.3-1, Tornado Occurrence
NATIONWIDE FUEL EMERGENCY RESPONSE                          TO
<<nd Intensity in the Susquehanna SZS Reqion, is a histogram for the years 1953-1962 showing tornado frequency by month, hour and intensity within a 3 by 3~square which is centered on the site.The intensity cateqories are based on the Fujita tornado intensity classification (Ref.2.3-5).Prom Figure 2.3-1 it can be seen that maximum tornado occurrence is in the summer.Diurnally, tornado frequency reaches a maximum during late afternoon, shortly after the period of greatest instability 2 3.1.2 3 Th>>ndec storms Thunderstorms in the area are usually of brief duration and concentrated in the warm months.They are responsible foc most of the summertime rainfall which normally avecaqes around 3.7 inches per month at Avoca.Based on a 19 year average at Avoca the mean number of"days with thunder heard" is 30 (Ref 2.3-3).A monthly breakdown of the mean number of thunderstorm days that is representative of the site is shown in Table 2.3-2, Th understocm Days for Avoca.2.3.1 2.4 L~iht ning There is neither documentation nor direct measurement of the occurrence of lightning other than the observation of associated thunder.Local climatological data tabulated by the National Weather Service (Ref.2.3-3)does not provide information reqardinq the incidence, severity.or frequency of lightning occurrences A.thunderstocm can usually be heard unless the liqhtning causing the thunder is more than 15 miles away;therefore, thunder incidence can presumably be used to confirm the presence of some lightning The number of lightning strikes per square mile per year has been established by, Uman (Ref.2.3-6).The combined results of several studies summarized ny Uman indicate that the number of flashes to the qround pec square mile per year is between 0 05 and 0.80 times the number of thunderstorm days pec year.The mean number of days with thunderstorms probably over estimates the actual occurrence of cloud-to-ground lightning since some thunderstocms probably contain only cloud-to-cloud lightning.
                                                                                          ~ III SUSQUEHANNA RIVER WATER ANALYSES  
2~3 3 SUSQUEHANNA S ES-ER-OL Therefore.
if the annual thunderstorm frequency at Avoca is used (30 days), the number of: ground lightning strikes is between two and 24.2 3 1 2 5 Hail Hail in the site region sometimes falls from severe thunderstorms.
Because hail f alls in narrow swa ths, only a small fraction of occurrences is recorded at regular reporting stations The average annual number of days with hail at a point in the area is 23.The occurrence of large hail (greater than 0.75 inches diameter)averaqes one or two occurrences annually Accordinq to Pautz (Ref.2.3-7)the number of hailstorms with hail 0.75 inch or greater in a one-degree longitude-latitude square area in the vicinity of the site for the period 1955-1967 was about five For Avoca from 1973-75 there was one hailstorm in June and one in July of 1973 and 1974.Xn 1975 there was also one hailstorm in August and one in October There were no occurrences of hail recorded in 1976 at Avoca (Ref.2.3-3)2 3.1 2 6 Extreme Minds Strong winds occur in Pennsylvania as a result of occasional hurricanes, thunderstorms, tornadoes and tropical storms.The followinq is the fastest mile of wind and its associated direction, by month, at Avoca (1955-1976)(Ref.2.3-3).Fastest Mile of Wind Month mph Direction Month mph Direction January February March April May June 43 60 49 47 40 43 SE W S NW NW W July 42 NW Auqust 50 NE September 38 SM October 38 E November 45 S December 47 SM The 50-year and 100-year mean fastest mile wind speeds for the site area are 75 miles per hour and 80 miles per hour, respectively (Ref.2.3-8).Accordinq to Pautz, there were eight windstorms 50 knots and qreater for the one degree latitude-longitude square that includes the Susquehanna SES for the period 1955-1967 (Ref.2 3-7).2 3-4 SUSQUEHANNA SES-ER-G'i.
TABLE 2.3-33 LONG-TERM TEMPERATURE (F)AT AVOCA (Period of Record: 1956-1974)
Month January February March April June July August September October November December 33.5 18.4 35.3 44.7 58.9 70.0 19.3 27.2 38.0 47.8 79.0 83.0 56.8 61.3 80.7 59.2 73.6 52.1 63.0 48.8 36.1 42.2 32.8 22.0~Dail Max~Dail Mia Mean 26.0 27.3 36.0 48.5 58.9 67.9 72.2 70.0 62.9 52.6 40.8 29.1 67-10 62 78 89 15 93 27 97 34 101 45 94 43 95 30 84 19 77 10 65 Extreme Hicihest lowest Annual 58.9 39.8 49.4 101 Ref.2.3-3 SUSQUEHANNA SES-ER-OL TABLE 2.3-49 PRECIPITATION DATA FOR AVOCA (Period of Record: 1956-1974)
Month January February March April May Total (in inches)2.04 1.96 2.50 3.06 3.50 Greatest 24-Hour (in inches)1.52 1.60 2.20 1.59 2.58 June July August September October November December 3.40 4.09 3.21 2.82 2.71 3.01 2.51 3.61 2.33 3.18 3.09 2.61 2.91 2.30 Annual 34.81 3.61 Ref.2.3-3 SUSQUEHANNA SES-ER-OL.
TABLE 2.3-81 JOINT FRE UENCY (%)OF WIND DIRECTION, WIND SPEED AND STABILITY FOR AVOCA (Period of Record: 1971-1975)
Stability Class B Wind Speed (kts)Se'ctor NNE NE ENE ESE SE SSE SSW SW WSW NW NNW Total 0-3 898 975 654 4-6.1507.0548.0548 7-10.1164.0548.0616 424 1675 898 991 1773.0137.0890.1507.2055.2877.0137.0205.0959.1507.2123 2118.2493.1301 1449.1918 1449.1986 748.1096 6507 1.9726.1164.0890.1027 1.2192 1112.0411.0137 768.0274.0342 516.0205 0 528.0274.0068 11-16 17-21>21 Total.3569.2071.1819.1660.1385.0721.0870.0698.2771.3364.4553~6773.6913.4531.3856.2871 Relative frequency of occurrences of B Stability=4.8425 Ref.2.3-4 SUSQUEHANNA SES-ER-OL SECTION TITLE VOLUME APPENDICIESo o r o o o o o o e o~o o o o o o o o o r o or o o o o o o o o o o o III B1 AN EVALUATION OF THE COST OF SERVICE.IMPACT OF A DELAY IN THE IN-SERVICE DATES OF SUSQUEHANNA SES (JANUARY 1978).......III CURRENT LONG-RANGE FORECAST ENERGY SALES 6 PEAK LOAD 1976-1990.................
III B2 APPLICANT' FORECASTING METHODOLOGY KWH SALES AND PEAK LOADS DECEMBER, 1976..III NATIONWIDE FUEL EMERGENCY RESPONSE TO FPC ORDER NO 496.............
~III SUSQUEHANNA RIVER WATER ANALYSES  


==SUMMARY==
==SUMMARY==
...III EQUATIONS AND ASSUMPTIONS UTXLIZ ED IN THE CALCULATION OF IN DIVIDUAL AND POPULATION DOSESTOMANoorooooo
                                    ...III EQUATIONS AND ASSUMPTIONS UTXLIZED IN THE CALCULATION OF IN DIVIDUAL AND POPULATION DOSESTOMANoorooooo           ~ or   eooeoooooooooor               ~ ooo coro     ~ III ENVIRONMENTAL TECH NICA L             S PECIFIC ATIONS...                   ~     III
~or eooeoooooooooor
 
~ooo coro~III ENVIRONMENTAL TECH NICA L S PECIFIC ATIONS...~III P i t~P E'I SUSQU EHANNA S ES-ER-OL site)and at Danville (about 31 miles (49.9 km)downstream.
P i
The Corps of Engineers has compiled flood stage and discharge.information for the Susquehanna River at Wilkes-Barre (Ref.2.4-7).These data are based on records of flood stages dating from 1991 Data for the four most severe floods of record are presented in Table 2.4-5, Historic Floods in the Vicinity of the Susquehanna SES Table 2.4-5 also includes the stages and discharges f or floods at the site and at Danville.The flood frequency characteristics of the Susquehanna as measured at Danville are illustrated in Figure 2.4-6, Flood Discharge Frequency.
t
The passaqe of Tropical Storm Agnes through.Pennsylvania on June 22 and 23, 1972 resulted in record flood levels in the Susquehanna River Basin Flood crests exceeded the previous record flood level.of 1936 at Wilkes-Barre by 7 5 feet (2.3 m).At Danville, a local maximum qaqe level resulting from a 1904 ice jam was exceeded by 1.6 feet (0.5 m).Peak discharqe at Wilkes-Barre was an estimated 345,000 cfs (9,770 m~/sec)or a unit discharge of 34.5 cubic feet per second per sguare mile (cfsm)(0 4 m~/sec/km~)
    ~   P E
.Accumulated runoff for the drainage area above Wilkes-Barre for the period of 0000 hours, June 21, 1972 through 2200 hours, June 27, 1972 totaled 4.32 inches (11.0 cm)(Ref.2 4-13).2 4.2 5 Low Plows Long term records from the USGS gaging stations at Danville and Wilkes-Barre provide the data base for the low flew f requency analyses presented in this Subsection.
            'I
Long duration low flow f requency analysis has been performed by the Pennsylvania Department of Environmental Resources (DER).The resulting curves for low f3.ow durations of two to 60 months and recurrence intervals up to 100 years for Danville and Wilkes-Barre are provided in Figures 2.4-7, Low Flow Duration at Danville and 2.4-8~Low Flow Duration at Wilkes-Barre, respectively.
 
Tables 2.4-6 and 2.4-7, Maqnitude and Frequency of Annual Low Flow of the Susquehanna River at Danville and Wilkes-Barre, Pa.respectively, discuss the discharge for different recurrence intervals.
SUSQU EHANNA S ES-ER-OL site)   and at   Danville (about   31 miles (49.9 km) downstream. The Corps of Engineers       has compiled flood stage and discharge
Tables 2.4-8 and 2.4-9, Duration Table of Daily Flow of the Susquehanna River at Danville and Wilkes-Barre, Pa.respectively indicate the river discharge (Ref.2.4-14).The most extended drought period occurred in the 1960's.The lowest consecutive day flows for periods of 183 days and less have also occurred in this period The mean monthly flows at Danville and Wilkes-Barre are provided in Table 2.4-10a, Mean Monthly Drought Year Flow Sequences.
. information for the Susquehanna River at Wilkes-Barre (Ref. 2.4-7). These data are based on records of flood stages dating from 1991     Data for the four most severe floods of record are presented   in Table 2.4-5, Historic Floods in the Vicinity of the Susquehanna     SES   Table 2.4-5 also includes the stages and discharges f or floods at the site and at Danville. The flood frequency characteristics of the Susquehanna as measured at Danville are illustrated in Figure 2.4-6, Flood Discharge Frequency.
Mean Daily Flows During 1964 Drought, Table 2.4-10b for these two stations are provided for the four lowest flow months of this year 2 4-5 S USQ U EH A NNA S ES-E R-OL A policy decision'of the Susquehanna River Basin Commission reqardinq consumptive withdrawals during low flow periods provides that natural flows during droughts will not he diminished by future water users.On September 30 1976, this policy decision was implemented as an Amendment to 18 CFR Part 80'3 (Susquehanna River Basin Commission, Subpart D-Standards for Review, Section 803.61, Consumptive Uses of Mater)(Ref.2.4-15).Compensation shall be reguired for consumptive uses of water during periods of low flow.The provisions of this regulation apply to consumptive uses initiated since January 23, 1971 2 4 2 6 Sedimentation Annual sediment yields in the reqion surrounding the site are spacially uniform.Neasurements at Towanda, Pa.about 105 miles (169 km)above the station, indicate on annua'ediment yield of 150 tons/sq mi (52.5 metric tons/km~)from a drainaqe area of 7797 sq mi (20,194 km~).Annual yields at Danville, 11,220 sq mi (29,060 km~)drainage area are estimated to be 140 tons/sq mi (49.0 metric tons/km~)(Ref 2 4-8).Daily sediment discharges at individual stations are highly variable The daily sediment discharqe at Danville ranqes from a high of 556, 000 tons/day (504,400 metric tons/day)to a low of 18 tons/day (16.3 metric tons/day).Mater quality samplinq at the site included measurement of total suspended solids A range of values from 1.6 mg/1 to 912.6 mq/1 with an averaqe value of 57.0 mg/1 was found.These results are further reported in Subsection 2.4 3.Grain size analysis was performed on water samples taken in 1974 usinq an automatic image analyzer.The grain size determination was performed on treated and untreated river water samples.The results for the untreated samples are reported in Table 2 4-11, Sediment Grain Size Distribution.
The passaqe of Tropical Storm Agnes through. Pennsylvania on June 22 and 23, 1972 resulted in record flood levels in the Susquehanna River Basin         Flood crests exceeded the previous record flood level .of 1936 at Wilkes-Barre by 7 5 feet (2.3 m).
2 4 2 7 Mater Impoundments The Susquehanna River supplies all the water required for normal station operation.
At Danville, a local maximum qaqe level resulting from a 1904 ice jam was exceeded by 1.6 feet (0.5 m) . Peak discharqe at Wilkes-Barre was an estimated 345,000 cfs (9,770 m~/sec) or a unit discharge of 34.5 cubic feet per second per sguare mile (cfsm)
A seven-acre (2.8 ha.)spray'ond is located onsite to supply water to emergency heat dissipation systems.The warmed water from the reactors is cooled via the pond's spray system and then recirculated throuqh the emergency cooling systems.This spray pond has a relatively impervious liner.It is free-form in shape to conform to the natural topography of the area.Embankments and ditches are provided to direct surface water 2.4-6 SUS(}UEHANNA SES-ER-OL TABLE 2.4-2 MONTHLY AVERAGE RIVER CONDITIONS STAGE, VEIOCITY AND DISCHARGE OCTOBER STATION (River Mile)~Sunbury (122.0)STAGE VELOCITY DIS(HARGE (Ft.msl)(Ft/sec)(Ft/sec)Present Pro ected Present Pro ected Present Pro ected 420.9 420.9 2.0 1.9 9164 8631 Northumberland (123.5)Volverton Sta.(128.5)Danville (134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia (150.4)Berwick (159.1)Nescopeck (160.0)Beach Haven (162.4)Mapwallopen (163.9)Plant Site (165;5)Shickshinny (169.5)422.9 427.8 434.6 447.9 453.5 457.4 476.4 477.6 483.0 483.3 484.7 487.9 422.8 427.6 434.4 447.7 453.3'57.2 476.3 477.4 482.9 483.1 484.5 487.7 0.8 3.0 1.8 1.6 1.0 1.6 1.9 1.6 1.5 1.0 2'0.7 3.3 1.8 1.6 1.0 1.5 1.0 1.9 1.5 1.4 0.9 2.7 5144 5122 5083 4939 4749 4749 4623 4623 4623 4623 4595 4570 4761 4742 4707 4590 4408 1 4408 4290 4290 4290 4290 4280 4270  
(0 4 m~/sec/km~) . Accumulated runoff for the drainage area above Wilkes-Barre for the period of 0000 hours, June 21, 1972 through 2200 hours, June 27, 1972 totaled 4.32 inches (11.0 cm) (Ref.
2   4-13) .
2   4. 2 5   Low Plows Long term records from the       USGS gaging stations at Danville and Wilkes-Barre provide the data base for the low flew f requency analyses presented in this Subsection. Long duration low flow f requency analysis has been performed by the Pennsylvania Department of Environmental Resources (DER). The resulting curves for low f3.ow durations of two to 60 months and recurrence intervals up to 100 years for Danville and Wilkes-Barre are provided in Figures 2.4-7, Low Flow Duration at Danville and 2.4-8 ~ Low Flow Duration at Wilkes-Barre, respectively.
Tables 2.4-6 and 2.4-7, Maqnitude and Frequency of Annual Low Flow of the Susquehanna River at Danville and Wilkes-Barre, Pa.
respectively, discuss the discharge for different recurrence intervals. Tables 2.4-8 and 2.4-9, Duration Table of Daily Flow of the Susquehanna River at Danville and Wilkes-Barre, Pa.
respectively indicate the river discharge (Ref. 2.4-14) .
The most extended drought period occurred in the 1960's.         The lowest consecutive day flows for periods of 183 days and less have also occurred in this period           The mean monthly flows at Danville and Wilkes-Barre are provided in Table 2.4-10a, Mean Monthly Drought Year Flow Sequences.         Mean Daily Flows During 1964 Drought, Table 2.4-10b for these two stations are provided for the four lowest flow months of this year 2 4-5
 
S USQ U EH A NNA S ES-E R-OL A policy decision 'of the Susquehanna River Basin Commission reqardinq consumptive withdrawals during low flow periods provides that natural flows during droughts will not he diminished by future water users. On September 30 1976, this policy decision was implemented as an Amendment to 18 CFR Part 80'3 (Susquehanna   River Basin Commission, Subpart D Standards for Review, Section 803.61, Consumptive Uses of Mater) (Ref. 2.4-15). Compensation shall be reguired for consumptive uses of water during periods of low flow. The provisions of this regulation apply to consumptive uses initiated since January 23, 1971 2 4 2 6   Sedimentation Annual sediment   yields in the reqion surrounding the site are spacially uniform.     Neasurements at Towanda, Pa. about 105 miles (169 km) above the station,     indicate on annua'ediment yield of 150 tons/sq mi (52.5 metric tons/km~) from a drainaqe area of 7797 sq mi (20,194 km~) . Annual yields at Danville, 11,220 sq mi (29,060 km~) drainage area are estimated to be 140 tons/sq mi (49.0 metric tons/km~) (Ref 2 4-8) . Daily sediment discharges at individual stations are highly variable               The daily sediment discharqe at Danville ranqes from a high of 556, 000 tons/day (504,400 metric tons/day) to a low of 18 tons/day (16.3 metric tons/day) .
Mater   quality samplinq at the site included           measurement of total suspended   solids   A range of values from 1. 6 mg/1 to 912.6 mq/1 with   an averaqe value of 57. 0 mg/1 was found. These results are further reported in Subsection 2.4           3.
Grain size analysis was performed on water samples taken in 1974 usinq an automatic image analyzer. The grain size determination was performed on treated and untreated river water samples.             The results for the untreated samples are reported in Table 2 4-11, Sediment Grain Size Distribution.
2 4 2   7 Mater Impoundments The Susquehanna   River supplies all the water required for normal station operation. A seven-acre (2.8 ha.) spray'ond is located onsite to supply water to emergency heat dissipation systems.
The warmed water from the reactors is cooled via the pond's spray system and then recirculated throuqh the emergency cooling systems.
This spray pond has a relatively impervious liner. It is free-form in shape to conform to the natural topography of the area.
Embankments and ditches are provided to direct surface water
: 2. 4-6
 
SUS(}UEHANNA SES-ER-OL TABLE 2.4-2 MONTHLY AVERAGE RIVER CONDITIONS STAGE, VEIOCITY AND DISCHARGE OCTOBER STATION             STAGE                       VELOCITY             DIS(HARGE (River Mile)      (Ft. msl)                       (Ft/sec)             (Ft /sec)
Present     Pro ected         Present     Pro ected Present   Pro ected
~
Sunbury        420.9       420.9               2.0         1.9     9164         8631 (122.0)
Northumberland  422.9        422.8              0.8          0.7     5144        4761 (123.5)
Volverton Sta. 427.8        427.6               3.0          3.3    5122        4742 (128.5)
Danville        434. 6      434.4               1.8          1.8    5083        4707 (134.7)
Catawissa      447. 9       447.7              1.6         1.6    4939        4590 (143.7)
Bloomsburg      453.5                           1.0          1.0    4749        4408 (146.6)                      453.3'57.
1 Almedia        457. 4                2        1.6          1.5    4749        4408 (150.4)
Berwick        476.4        476.3                           1.0    4623        4290 (159.1)
Nescopeck      477.6        477.4               1.9         1.9    4623        4290 (160.0)
Beach Haven    483.0       482.9               1.6         1.5     4623        4290 (162.4)
Mapwallopen    483.3       483.1               1.5          1.4    4623        4290 (163.9)
Plant Site      484.7        484.5               1.0         0.9     4595        4280 (165;5)
Shickshinny    487.9       487.7              2'          2.7     4570         4270 (169.5)
 
SUS(}UEHANNA SES-ER-OL TABLE  2.4-2 (Continued)
STATION            STAGE                VELOCITY            DIS(HARGE (River Mile)      (Ft. msl)                (Ft/sec)            (Ft /sec)
Present    Pro ected    Present    Pro ected Present    Pro ected Sunbury        422.0        421.9        3.4        3.4    21146      20613 (122.0)
Northumberland  425.0        424.9        1.0        1.0    12478      12095 (123.5)
Wolverton Sta. 429.8        429.7        2.4        2.4    12457      12077 (128.5)
Danville        437.1        437.0        2.2        2.2    12421      12045 (134.7)
Catawissa      451. 2      451. 1        1.9        1.9    12090      11741 (143.7)
Bloomsburg      456.2        456.1        1.5        1.5    11648      11307 (146.6)
Almedia        460.0        59.9        2.2        2.1    11648      11307 (150.4)
Berwick        478.9        478.8        1.6        1.5    11356      11023 (159.1)
Nescopeck      479.8        479.7        2.0        2.0    11356      11023 (160.0)
Beach Haven    484.8        484.8        2.1        2'      11356      11023 (162.4)
Wapwallopen    485.5        485.4        2.4        2.3    11356      11023 (163.9)
Plant Site      487.4        487.3        1.6        1.6    11291      10976 (165.5)
Shickshinny    490. 8      490.7        3.9        3.9    11232      10932 (169.5)
 
SUSQUEHANNA SES-ER-OL TABLE  2.4-2 (Continued)
STATION            STAGE                  VELOCITY            DIS(HARGE (River Mile)      (Ft. msl)                (Ft/sec)              (Pt /sec)
Present    Pro ected    Present    Pro ected Present    Pro'ected Sunbury        422.6        422.6        4.2          4.2    29842      29309 (122.0)
Northumberland  426.2        426.1                            18028        17645 (123.5)
Wolverton Sta. 431.0        430.9        2.5          2.5    17958        17578 (128.5)
Danville        438.5        438.4        2.4          2.4    17835        17459 (134.7)
Catawissa      453. 2      453. 0        2.0          2.0    17348        16999 (143.7)
Bloomsburg      457.5        457.4        1.8          1.7    16698        16357 (146.6)
Almedia        461.4        461.3        2.5          2.5    16698        16357 (150.4)
Berwick        480.2        480.10        1.8          1.8    16270        15937 (159.1)
Nescopeck      481.1        481.0        2.2          2.2    16270        15937 (160.0)
Beach Haven    485 '        485.7-        2.3          2.3 (162 ')                                                        16270        15937 Wapwallopen    486.7        486.6        2.9          2.8    16270        15937 (163.9)
Plant Site      488.8        488.7        2.0        1.9    16175        15860 (165.5)
Shickshinny    492.4        492.3        4.2        4.2    16089        15789 (169.5)
 
SUSQUEHANNA SES-ER-OL TABLE  2.4-2 (Continued)
STATION            STAGE                  VELOCITY            DIS(HARGE (River Mile)      (Ft. msl)                (Ft/sec)            (Ft /sec)
Present    Pro'ected    Present    Pro ected Present    Pro ected Sunbury        422.3      422.3        3.9          3.8    25852      25319 (122.0)
Northumberland  425.6      425.6                      1.0    14978      14595 (123.5)
Volverton Sta. 430.4      430.3        2.4          2.4    14908      14528 (128.5)
Danville        437.7      437.6        2.3          2.3    14785      14409 (134.7)
Catawissa      452.0      451.9        1.9          1.9    14349      14000 (143.7)
Bloomsburg      456.7      456.6        1.6          1.6    13768      13427 (146.6)
Almedia        460.6      460.5        2.3          2.3    13768      13427 (150.4)
Berwick        479.5      479.4        -l. 7        1.7    13384      13051 (159.1)
Nescopeck      480.4      480.3        2.1          2.1    13384      13051 (160.0)
Beach Haven    485.2      485.2        2.2          2.2    13384      13051 (162.4)
Mapwallopen    486.0      485.9        2.6          2.5    13384      13051 (163.9)
Plant Site      488.0      487.9        1.8          1.7    13299      12984 (165.5)
Shickshinny    491.5      491.4        4.0          4.0    13222      12922 (169.5)
 
)
0
 
SUSQUEHANNA SES-ER-OL TABLE  2.4-2 (Continued)
STATION            STAGE                  VELOCITY              DIS(HARGE (River Mile)      (Ft. msl)            *
(Ft/sec)              (Ft /sec)
Present    Pro ected    Present      Pro ected Present    Pro ected Sunbury        422.7      422.6          4.3          4.3    30704      30171 (122.0)
Northumberland  426.2      426.2                              17576      17193 (123.5)
Wolverton Sta. 430.9      430.8          2.5          2.5    17479      17099 (128.5)
Danville        438.3      438.3          2.4          2.4    17308      16932 (134.7)
Catawissa      453.0      452.9          2.0          2.0    16920      16571 (143.7)
Bloomsburg      457.5      457.4          1.8          1.8    16685      16344 (146.6)
Almedia        461.4      461.3          2.5          2.5    16685      16344 (150.4)
Berwick        480.1      480.1          1.8          1.8    16071      15738 (159.1)
Nescopeck      481.0      481.0          2.2          2.1    16071      15738 (160.0)
Beach Haven    485.8      485.7          2.3          2.3    16071      15738 (162.4)
Wapwallopen    486.7      486.6          2.8          2.8    16071      15738 (163.9)
Plant Site      488.7      488.6          1.9          1.9    15828      15513 (165.5)
Shickshinny    492.3      492.2          4.2          4.2    15759      15459 (169.5)
 
SUSQUEHANNA SES-ER-OL TABLE  2.4-2 (Continued)
STATION            STAGE                  VELOCITY            DIS)HARGE (River Mile)      (Ft. msl)                (Ft/sec)            (Ft /sec)
Present    Pro ected    Present    Pro ected Present    Pro ected Sunbury        424.4      424.4        5.6        5.6    55420      54887 (122.0)
Northumberland  428.7      428.7        1.3        1.3    31852      31469 (123.5)
Wolverton Sta. 433.4      433.4        2.7        2.7    31732        31352 (128.5)
Danville        441.2      441.1        2.8        2.8    31521        31143 (134.7)
Catawissa      456.7      456. 7        2.4        2.4    31065        30716 (143.7)
Bloomsburg      460.4      460.3        2.3        2.3    30458        30117 (146.6)
Almedia        464.4      464.4        3.1        3.1    30458        30117 (150.4)
Berwick        482.9      482.8        2.5        2.5    30058        29725 (159.1)
Nescopeck      483.8        483.7        2.6        2.6    30058        29725 (160.0)
Beach Haven    488.0        488.0        2.9        2.9    30058        29725 (164.2)
Wapwallopen    489.4        489.4        3.8        3.8    30058        29725 (163.9)
Plant Site      491. 9      491.8        2.7        2.7    29969        29654 (165.5)
Shickshinny    495.9        495.9        5.0        5.0    29888        29588 (169.5)
 
SUSQUEHANNA SES-ER-OL TABLE  2.4-2 (Continued)
STATION              STAGE                VELOCITY              DIS(HARGE (River Mile)        (Ft. msl)                (Ft/sec)              (Ft /sec)
Present    Pro ected    Present    Pro ected Present    Pro ected Sunbury          424.8        424.7        5.8          5.9    61354      60821 (122.0)
Northumberland  429.2        429.2        1.4          1.4    37415      37032 (123.5)
Wolverton 'Sta. 434. 2                    2.8 (128 ')                      434.2                      2.8    37256      36876 Danville        442.1        442.0        2.9          2.9    36978      36602 (134.7)
Catawissa        457. 9      457. 8        2.5          2.5    36331      35982 (143.7)
Bloomsburg      461.3        461;2        2.5          2.5    35469      35128 (146.6)
Almedia          465.3        465.3        3.3          3-3    35469      35128 (150.4)
Berwick          483.6        483.6        2.7          2.7    34900      34567 (159.1)
Nescopeck        484.6        484.6        2.7          2.7    34900      34567 (160.0)
Beach Haven      488.7        488.7        3.0          3.0    34900      34567 (162.4)
Mapwallopen      490.2        490.2        4.1          4.1    34900      34567 (163.9)
Plant Site      492.8        492.8        2.9          2.9    34774      34459 (165.5)
Shickshinny      497.0        496.9        5.3          5.3    34659      34359 (169.5)
 
0 SUSQUEHANNA SES-ER-OL TABLE  2.4-2 (Continued)
STATION            STAGE                  VELOCITY            DIS(HARGE (River Mile)      (Ft. msl)                (Ft/sec)            (Ft /sec)
Present    Pro ected    Present    Pro ected Present    Pro ected Sunbury        423.0      423.0        4.6        4.5    35015      34882 (122.0)
Northumberland  426.7      426.7                            19326      18943 (123.5)
Wolverton Sta. 431.3      431.2        2.5        2.5    19229      18849 (128.5)
Danville        438.7      438.7        2.4        2.4    19060      18684 (134.7)
Catawissa      453.5      453.4        2.0        2.0    18567    . 18218 (143.7)
Bloomsburg      457.8      457.7        1.8        1.8    17909      17568 (146.6)
Almedia        461.7      461.7        2.6        2.5    17909      17568 (150.4)
Berwick        480.4      480.4        1.9        1.9    17475      17142 (159.1)
Nescopeck      481.4      481.3        2.2        2.2    17475        17142 (160.0)
Beach Haven    486.0      486.0        2.4        2.4    17457        17142 (162.4)
Wapwallopen    487.0      486.9        3.0        2.9    17475        17142 (163.9)
Plant Site      489.1        489.0        2.0        2.0    17379        17064 (165.5)
Shickshinny    492.8        492.7        4.3        4'      17291        16991 (169.5)
 
SUSQUEHANNA SES-ER-OL TABLE  2.4-2 (Continued)
STATION( )          STAGE                  VELOCITY              DIS(HARGE (River Mile)      (Ft. msl)                  (Ft/sec)              (Ft /sec)
Present      Pro ected    Present    Pro 'ected Present    Pro ected S unbury        421.8        421.8        3.4          3.3    19915        19382 (122.0)
Northumberland  424.8        424;7        0.9          0.9    11108        10725 (123.5)
Wolverton Sta. 429.5        429.4        2.4          2.4    11054        10674 (128.5)
Danville        436.7        436.6        2.2          2.1    10959        10583 (134.7)
Catawissa      450.6        450.5        1.8          1.8    10638        10289 (143.7)
Bloomsburg      455.7        455.6        1.4          1.4    10211        9870 (146.6)
Almedia        459.5        459.4        2.1          2.0    10211        9870 (150.4)
Berwick        47.8. 5      478.3        1.5          1.4    9930        9597 (159.1)
Nescopeck      479.4        479.3        2.0          2.0    9930        9597 (160.0)
Beach Haven    484.5          484.5    ~
2.0          2.0    9930        9597 (162.4)
Wapwallopen    485.1          485.0        2.2          2.2    9930        9597 (163.9)
Plant Site      486.9          486.8        1.5          1.5    9868        9553 (165.5)
Shickshinny    490.3          490.2        3.8          3.7    9811        9511 (169.5)


SUS(}UEHANNA SES-ER-OL TABLE 2.4-2 (Continued)
SUS(}UEHANNA SES-ER-OI TABLE   2.4-2 (Continued)
STATION (River Mile)Sunbury (122.0)Northumberland (123.5)Wolverton Sta.(128.5)Danville (134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia (150.4)Berwick (159.1)Nescopeck (160.0)Beach Haven (162.4)Wapwallopen (163.9)Plant Site (165.5)Shickshinny (169.5)425.0 429.8 437.1 451.2 456.2 460.0 478.9 479.8 484.8 485.5 487.4 490.8 424.9 429.7 437.0 451.1 456.1 59.9 478.8 479.7 484.8 485.4 487.3 490.7 1.0 2.4 2.2 1.9 1.5 2.2 1.6 2.0 2.1 2.4 1.6 3.9 1.0 2.4 2.2 1.9 1.5 2.1 1.5 2.0 2'2.3 1.6 3.9 12478 12095 12457 12077 12421 12045 12090 11741 11648 11307 11648 11307 11356 11023 11356 11023 11356 11023 11356 11023 11291 10976 11232 10932 STAGE VELOCITY DIS(HARGE (Ft.msl)(Ft/sec)(Ft/sec)Present Pro ected Present Pro ected Present Pro ected 422.0 421.9 3.4 3.4 21146 20613 SUSQUEHANNA SES-ER-OL TABLE 2.4-2 (Continued)
STATION           STAGE                  VELOCITY              DIS(HARGE (River Mile)       (Ft. msl)                 (Ft/sec)             (Zt /sec)
STATION (River Mile)STAGE VELOCITY DIS(HARGE (Ft.msl)(Ft/sec)(Pt/sec)Present Pro ected Present Pro ected Present Pro'ected Sunbury (122.0)Northumberland (123.5)Wolverton Sta.(128.5)Danville (134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia (150.4)Berwick (159.1)Nescopeck (160.0)Beach Haven (162')Wapwallopen (163.9)Plant Site (165.5)Shickshinny (169.5)426.2 426.1 431.0 430.9 438.5 438.4 453.2 453.0 457.5 457.4 461.4 461.3 480.2 480.10 481.1 481.0 485'485.7-486.7 486.6 488.8 488.7 492.4 492.3 422.6 422.6 4.2 2.5 2.4 2.0 1.8 2.5 1.8 2.2 2.3 2.9 2.0 4.2 4.2 2.5 2.4 2.0 1.7 2.5 1.8 2.2 2.3 2.8 1.9 4.2 29842 18028 17958 17835 17348 16698 16698 16270 16270 16270 16270 16175 16089 29309 17645 17578 17459 16999 16357 16357 15937 15937 15937 15937 15860 15789
Present    Pro ected      Present    Pro ected Present    Pro ected Sunbury        421.0        420.9        2.0          2.0    9734        9201 (122.0)
Northumberland  423.0         422.9        0.7          0.7    5277        4894 (123.5)
Volverton Sta. 427.8         427.7        3.0          3.2     5247        4867 (128.5)
Danville        434.7         434.5        1.8          1.8     5194        4818 (134.7)
Catawissa      448.0         447.8        1.6          1.6    5116        4767 (143.7)
Bloomsburg      453.6         453.4                     1.0     5012        4671 (146.6)
Almedia        457.5         457.3        1.6          1.6     5012        4671 (150.4)
Berwick        476.6         476.4                             4944        4611 (159.1)
Nescopeck       477.7      . 477.5         1.9          1.9     4944        4611 (160.0)
Beach Haven    483.2         483.0         1.6         1.6     4944        4611 (162.4)
Mapwallopen    483.5         483.3        1.5         1.4    4944        4611 (163.9)
Plant Site      484.9         484.7        1.0         1.0    4929        4614 (165.5)
Shickshinny    488.1         487.9        2.9          2.8     4915        4615 (169.5)


SUSQUEHANNA SES-ER-OL TABLE 2.4-2 (Continued)
SUS(}UEHANNA SES-ER-OL TABLE 2.4-2 (Continued)
STATION (River Mile)STAGE (Ft.msl)Present Pro'ected VELOCITY (Ft/sec)Present Pro ected DIS(HARGE (Ft/sec)Present Pro ected Sunbury (122.0)Northumberland (123.5)Volverton Sta.(128.5)Danville (134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia (150.4)Berwick (159.1)Nescopeck (160.0)Beach Haven (162.4)Mapwallopen (163.9)Plant Site (165.5)Shickshinny (169.5)425.6 425.6 430.4 430.3 437.7 437.6 452.0 451.9 456.7 456.6 460.6 460.5 479.5 479.4 480.4 480.3 485.2 485.2 486.0 485.9 488.0 487.9 491.5 491.4 422.3 422.3 3.9 2.4 2.3 1.9 1.6 2.3-l.7 2.1 2.2 2.6 1.8 4.0 3.8 1.0 2.4 2.3 1.9 1.6 2.3 1.7 2.1 2.2 2.5 1.7 4.0 25852 14978 14908 14785 14349 13768 13768 13384 13384 13384 13384 13299 13222 25319 14595 14528 14409 14000 13427 13427 13051 13051 13051 13051 12984 12922
STATION( )        STAGE                  VELOCI1Y            DIS(HARGE (River Mile)       (Ft. msl)               (Ft/sec)             (Ft /sec)
)0 SUSQUEHANNA SES-ER-OL TABLE 2.4-2 (Continued)
Present   Pro ected    Present    Pro ected Present    Pro ected Sunbury         420.6      420.5         1.5        1.5     6520        5987 (122.0)
STATION (River Mile)STAGE (Ft.msl)Present Pro ected VELOCITY*(Ft/sec)Present Pro ected DIS(HARGE (Ft/sec)Present Pro ected Sunbury (122.0)Northumberland (123.5)Wolverton Sta.(128.5)Danville (134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia (150.4)Berwick (159.1)Nescopeck (160.0)Beach Haven (162.4)Wapwallopen (163.9)Plant Site (165.5)Shickshinny (169.5)422.7 426.2 430.9 438.3 453.0 457.5 461.4 480.1 481.0 485.8 486.7 488.7 492.3 422.6 426.2 430.8 438.3 452.9 457.4 461.3 480.1 481.0 485.7 486.6 488.6 492.2 4.3 2.5 2.4 2.0 1.8 2.5 1.8 2.2 2.3 2.8 1.9 4.2 4.3 2.5 2.4 2.0 1.8 2.5 1.8 2.1 2.3 2.8 1.9 4.2 17576 17193 17479 17099 17308 16932 16920 16571 16685 16344 16685 16344 16071 15738 16071 15738 16071 15738 16071 15738 15828 15513 15759 15459 30704 30171 SUSQUEHANNA SES-ER-OL TABLE 2.4-2 (Continued)
Northumberland  422.2      422.1         0.7        0.6    3480        3097 (123.5)
STATION (River Mile)STAGE (Ft.msl)Present Pro ected VELOCITY (Ft/sec)Present Pro ected DIS)HARGE (Ft/sec)Present Pro ected Sunbury (122.0)Northumberland (123.5)Wolverton Sta.(128.5)Danville (134.7)428.7 428.7 433.4 433.4 441.2 441.1 424.4 424.4 5.6 1.3 2.7 2.8 5.6 1.3 2.7 2.8 55420 31852 31732 31521 54887 31469 31352 31143 Catawissa (143.7)Bloomsburg (146.6)Almedia (150.4)Berwick (159.1)Nescopeck (160.0)Beach Haven (164.2)Wapwallopen (163.9)Plant Site (165.5)Shickshinny (169.5)456.7 460.4 464.4 482.9 483.8 488.0 489.4 491.9 495.9 456.7 460.3 464.4 482.8 483.7 488.0 489.4 491.8 495.9 2.4 2.3 3.1 2.5 2.6 2.9 3.8 2.7 5.0 2.4 2.3 3.1 2.5 2.6 2.9 3.8 2.7 5.0 31065 30458 30458 30058 30058 30058 30058 29969 29888 30716 30117 30117 29725 29725 29725 29725 29654 29588
Wolverton Sta. 427.2      427.1        4.4         4.2     3460        3080 (128.5)
Danville        433.8      433.6        1.7        1.6     3425        3049 (134.7)
Catawissa      446.7       446.2         1.7        1.9     3278        2929 (143.7)
Bloomsburg      452.5      452.2         0.9        0.9    3082        2741 (146.6)
Almedia         456.5.     456.3         1.3       1.3     3082        2741 (150.4)
Berwick        475.6       475.5         0.9        0.8,    2953        2620 (159.1)
Nescopeck      476.7      476.5         2.1       2.3     2953        2620 (160.0)
Beach Haven    482.2       482.0          1.4       1.3     2953        2620 (162.4)
Wapwallopen    482.4       482.2        1.2               2953        2620 (163.9)
Plant Site     483.6        483.4         0.8       0.7     2924          2620 (165.5)
Shickshinny    487.5        487.1         2.0       1.9     2898          2598 (169.5)


SUSQUEHANNA SES-ER-OL TABLE 2.4-2 (Continued)
SUSQUEHANNA SES-ER-OL TABLE   2.4-2 (Continued)
STATION (River Mile)STAGE (Ft.msl)Present Pro ected VELOCITY (Ft/sec)Present Pro ected DIS(HARGE (Ft/sec)Present Pro ected Sunbury (122.0)Northumberland (123.5)Wolverton'Sta.(128')Danville (134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia (150.4)Berwick (159.1)Nescopeck (160.0)Beach Haven (162.4)Mapwallopen (163.9)Plant Site (165.5)Shickshinny (169.5)424.8 429.2 434.2 442.1 457.9 461.3 465.3 483.6 484.6 488.7 490.2 492.8 497.0 424.7 429.2 434.2 442.0 457.8 461;2 465.3 483.6 484.6 488.7 490.2 492.8 496.9 5.8 5.9 1.4 1.4 37415 37032 2.8 2.8 37256 36876 2.9 2.9 36978 36602 2.5 2.5 36331 35982 2.5 2.5 35469 35128 3.3 3-3 35469 35128 2.7 2.7 34900 34567 2.7 2.7 34900 34567 3.0 3.0 34900 34567 4.1 4.1 34900 34567 2.9 2.9 34774 34459 5.3 5.3 34659 34359 61354 60821 0
STATION           STAGE                  VELOCITY            DIS(HARGE (River Mile)       (Ft. msl)                 (Ft/sec)             (Ft /sec)
STATION (River Mile)SUSQUEHANNA SES-ER-OL TABLE 2.4-2 (Continued)
Present    Pro ected    Present    Pro ected Present   Pro ected Sunbury         42o.6      420.5         1.4         1.4     6137        5604 (122.O)
STAGE VELOCITY (Ft.msl)(Ft/sec)Present Pro ected Present Pro ected DIS(HARGE (Ft/sec)Present Pro ected Sunbury (122.0)Northumberland (123.5)Wolverton Sta.(128.5)Danville (134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia (150.4)Berwick (159.1)Nescopeck (160.0)Beach Haven (162.4)Wapwallopen (163.9)Plant Site (165.5)Shickshinny (169.5)423.0 426.7 431.3 438.7 453.5 457.8 461.7 480.4 481.4 486.0 487.0 489.1 492.8 423.0 426.7 431.2 438.7 453.4 457.7 461.7 480.4 481.3 486.0 486.9 489.0 492.7 4.6 2.5 2.4 2.0 1.8 2.6 1.9 2.2 2.4 3.0 2.0 4.3 4.5 2.5 2.4 2.0 1.8 2.5 1.9 2.2 2.4 2.9 2.0 4'35015 34882 19326 18943 19229 18849 19060 18684 18567.18218 17909 17568 17909 17568 17475 17142 17475 17142 17457 17142 17475 17142 17379 17064 17291 16991 SUSQUEHANNA SES-ER-OL TABLE 2.4-2 (Continued)
Northumberland  422.2       422.0         0.7         0.7     3582        3199 (123.5)
STATION()(River Mile)S unbury (122.0)Northumberland (123.5)Wolverton Sta.(128.5)Danville (134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia (150.4)Berwick (159.1)Nescopeck (160.0)Beach Haven (162.4)Wapwallopen (163.9)Plant Site (165.5)Shickshinny (169.5)424.8 424;7 429.5 429.4 436.7 436.6 450.6 450.5 455.7 455.6 459.5 459.4 47.8.5 478.3 479.4 484.5 479.3 484.5 485.1 485.0 486.9 486.8 490.3 490.2 STAGE (Ft.msl)Present Pro ected 421.8 421.8 3.4 3.3 0.9 0.9 2.4 2.4 2.2 2.1 1.8 1.8 1.4 1.4 2.1 2.0 1.5 1.4 2.0 2.0~2.0 2.0 2.2 2.2 1.5 1.5 3.8 3.7 VELOCITY (Ft/sec)Present Pro'ected 11108 10725 11054 10674 10959 10583 10638 10289 10211 9870 10211 9870 9930 9597 9930 9597 9930 9597 9930 9597 9868 9553 9811 9511 DIS(HARGE (Ft/sec)Present Pro ected 19915 19382 SUS(}UEHANNA SES-ER-OI TABLE 2.4-2 (Continued)
Wolverton Sta. 427.2       427.2         4.4         4.3     3568        3188 (128.5)
STATION (River Mile)STAGE (Ft.msl)Present Pro ected VELOCITY (Ft/sec)Present Pro ected DIS(HARGE (Zt/sec)Present Pro ected Sunbury (122.0)Northumberland (123.5)Volverton Sta.(128.5)Danville (134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia (150.4)Berwick (159.1)Nescopeck (160.0)Beach Haven (162.4)Mapwallopen (163.9)Plant Site (165.5)Shickshinny (169.5)421.0 423.0 427.8 434.7 448.0 453.6 457.5 476.6 477.7 483.2 483.5 484.9 488.1 420.9 422.9 427.7 434.5 447.8 453.4 457.3 476.4.477.5 483.0 483.3 484.7 487.9 2.0 0.7 3.0 1.8 1.6 1.6 1.9 1.6 1.5 1.0 2.9 2.0 0.7 3.2 1.8 1.6 1.0 1.6 1.9 1.6 1.4 1.0 2.8 5277 4894 5247 4867 5194 4818 5116 4767 5012 4671 5012 4671 4944 4611 4944 4611 4944 4611 4944 4611 4929 4614 4915 4615 9734 9201
Danville       433.8      433.'6         1.7         1.7     3543        3167 (134.7)
Catawissa      446.9      446.3         1.6         1.9     3383        3034 (143.7)
Bloomsburg      452.5      452.3         0.9         0.9     3170        2829 (146.6)
Almedia         456.6      456.4         1.3        1.3    3170        2829 (150.4)
Berwick        475.7       475.5         0.9         0.8     2953        2620 (159.1)
Nescopeck      476.8       476.6          2.1        2.2     3030        2697 (160.0)
Beach Haven    482.2       482.1         1.4         1.4     3030        2697 (162.4)
Wapwallopen    482.4       482.2          1.2                3030        2697 (163.9)
Plant Site     483.7      483.5         0.8         0.7     2999        2684 (165.5)
Shickshinny    487.5       487.1         2.0         2.0     2971        2671 (169.5)


SUS(}UEHANNA SES-ER-OL TABLE 2.4-2 (Continued)
SUS(}UEHANNA SES-ER-OL TABLE 2.4-2 (Continued)
STATION()(River Mile)STAGE (Ft.msl)Present Pro ected VELOCI1Y (Ft/sec)Present Pro ected DIS(HARGE (Ft/sec)Present Pro ected Sunbury (122.0)Northumberland (123.5)Wolverton Sta.(128.5)Danville (134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia (150.4)Berwick (159.1)Nescopeck (160.0)Beach Haven (162.4)Wapwallopen (163.9)Plant Site (165.5)Shickshinny (169.5)422.2 422.1 427.2 427.1 433.8 433.6 446.7 446.2 452.5 452.2 456.5.456.3 475.6 475.5 476.7 476.5 482.2 482.0 482.4 482.2 483.6 483.4 487.5 487.1 420.6 420.5 1.5 0.7 4.4 1.7 1.7 0.9 1.3 0.9 2.1 1.4 1.2 0.8 2.0 1.5 0.6 4.2 1.6 1.9 0.9 1.3 0.8, 2.3 1.3 0.7 1.9 6520 3480 3460 3425 3278 3082 3082 2953 2953 2953 2953 2924 2898 5987 3097 3080 3049 2929 2741 2741 2620 2620 2620 2620 2620 2598 STATION (River Mile)SUSQUEHANNA SES-ER-OL TABLE 2.4-2 (Continued)
Station locations are indicated as the nearest municipality or feature to the river cross-section used in the computations. The exact cross-section location is indicated by river mile.
STAGE VELOCITY (Ft.msl)(Ft/sec)Present Pro ected Present Pro ected DIS(HARGE (Ft/sec)Present Pro ected Sunbury (122.O)Northumberland (123.5)Wolverton Sta.(128.5)Danville (134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia (150.4)Berwick (159.1)Nescopeck (160.0)Beach Haven (162.4)Wapwallopen (163.9)Plant Site (165.5)Shickshinny (169.5)42o.6 422.2 427.2 433.8 446.9 452.5 456.6 475.7 476.8 482.2 482.4 483.7 487.5 420.5 422.0 427.2 433.'6 446.3 452.3 456.4 475.5 476.6 482.1 482.2 483.5 487.1 1.4 0.7 4.4 1.7 1.6 0.9 1.3 0.9 2.1 1.4 1.2 0.8 2.0 1.4 0.7 4.3 1.7 1.9 0.9 1.3 0.8 2.2 1.4 0.7 2.0 3582 3199 3568 3188 3543 3167 3383 3034 3170 2829 3170 2829 2953 2620 3030 2697 3030 2697 3030 2697 2999 2684 2971 2671 6137 5604 SUS(}UEHANNA SES-ER-OL TABLE 2.4-2 (Continued)
One Foot = 0.3048 meter One Foot Per Second = 0.3048 meter per second One  Cubic Foot Per Second = 0.0283 cubic meters per second.
Station locations are indicated as the nearest municipality or feature to the river cross-section used in the computations.
 
The exact cross-section location is indicated by river mile.One Foot=0.3048 meter One Foot Per Second=0.3048 meter per second One Cubic Foot Per Second=0.0283 cubic meters per second.
SUSQUEHANNA SES-ER-OL TABLE 2.4"3 MONTHLY PERCENT CHANCE OF FLOODING SUS UEHANNA RIVER UPSTREAM OF SUNBURY Month                    Percent Chance of Floodin Jan                                6.8 Feb                                7.5 Mar                              40.4 Apr                              19.0 May                                8.2 Jun                                2,1 Jul                                2.1 Aug                                1.4 Sept                              1.0 Oct                                3.4 Nov                                2.7 Dec                                5.4 (1) Sunbury is 43 miles (69 km) downstream of the site at the confluence of the Susquehanna River and the West Branch Susquehanna  River.
SUSQUEHANNA SES-ER-OL TABLE 2.4"3 MONTHLY PERCENT CHANCE OF FLOODING SUS UEHANNA RIVER UPSTREAM OF SUNBURY Month Jan Percent Chance of Floodin 6.8 Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 7.5 40.4 19.0 8.2 2,1 2.1 1.4 1.0 3.4 2.7 5.4 (1)Sunbury is 43 miles (69 km)downstream of the site at the confluence of the Susquehanna River and the West Branch Susquehanna River.
 
SUSQUEHANNA SES-ER-OL SECTION TITLE VOLUME APP EN DXCIESe e s s s s e o e o s~e e~e e e e s s s s s s s s~s e s e s~s e I I I B1 AN EVALUATION OF THE COST OF SERVICE IMPACT OF A DELAY IN THE IN-SERVICE DATES OF SUSQUEHANNA SES (JANUARY 1 978).....III CURRENT LONG-RANGE FORECAST ENERGY SALES PEAK LOAD 1976-1990......................III B2 APPLICANT' FORECASTING NETHODOLOGY KMH SALES AND PEAK LOADS DECEMBER, 1976...III NATXON MIDE FU EL EilER GE NCY RES PON SE TO FPC OR DER NO 496....................
SUSQUEHANNA SES-ER-OL SECTION                              TITLE                                                  VOLUME II I APP EN DXCIESe e s s s s e o e o s ~ e e ~ e e e e s s s s s s s s ~ s e s e s ~ s e AN EVALUATION OF THE COST OF SERVICE IMPACT OF A DELAY IN THE IN-SERVICE DATES OF SUSQUEHANNA SES (JANUARY 1 978)                                                      III B1      CURRENT LONG-RANGE FORECAST ENERGY SALES PEAK LOAD 1976-1990......................III SALES AND PEAK LOADS DECEMBER, 1976...
~III SUSQUEHANNA RIVER MATER ANALYSES SUNHARY..III EQUATIONS AND ASSUMPTIONS UTXLIZ ED IN THE CALCULATION OF INDIVIDUAL AND POPULATION DOS ES TO MAN....III ENVIRONMENTAL TECHNICAL SPECIFICATIONS-
B2      APPLICANT' FORECASTING NETHODOLOGY                            KMH III NATXONMIDE FPC  OR DER FU NO    496.................... III EL EilER      GE NCY      RES PON SE TO
-III SUSg UEHAxfH A SES ER OL Accuracy 1%f u ll scale Current full-scale deflection Input impedence Respon se Time'Rriting Type Chart Speed Channels 1.0 milliampere s 1400 ohms 0.5 seconds Curvilinear 3 in/hour 1 on each chart 2 charts/recorder All recording devices, translator=
                                                                                          ~
and the digitizer are housed in a weatherproof cinderblock building.This building has thermistatically controlled heating and air conditioning.
SUSQUEHANNA RIVER MATER ANALYSES SUNHARY                                    .. III DOS ES  TO  MAN....
6..1.3.1.1 5 Calibration and Yaintenance of the System All calibration and maintenance is pe formed at least semi-annually in accordance with the frequencies and producedures prescribed in the manufacturer's operating and maintenance manual.6 1.3.1.1.6 Data Analysis The analog chart records are removed every 14 days for inspection and analysis.Each chart is removed separately and placed in individual boxes labeled with date, instrument'nd level.The charts are inspected for breaks in record, time errors, power failures and other indications of system malfunction and then stored.The information gained from this inspection is used to update and verify the digital data, and to locate anomalies with any parameter.
EQUATIONS AND ASSUMPTIONS UTXLIZED IN THE CALCULATION OF INDIVIDUAL AND POPULATION ENVIRONMENTAL TECHNICAL SPECIFICATIONS- -
The analog recording system provides a back-up in case of digital system failure, so that a high data recovery rate can be maintained.
III III
Table 6.1-2, Data Recovery Bates, gives the recovery rates for each year.Digital minute data are recorded at the site on magne ic tape for analysis.At the begi.nning of each scan of data a unique identification code, the date,'hour and minute is recorded.After 14 days of recording, the tape is removed, labeled with the data period and forwarded to the Applicant, The computer 6.1-13 SUSQUEHANNA S ES-ER-OL/facility processes these tapes converting the recorded millivoltaqes into enqineerinq units.An hourly averaqe for each parameter is computed Data validity, range of hourly averages and the number of valid observations contributinq to the averages are tabulated to assist in the determination of data reliability.
 
Comparisons between the analog and diqital data are performed when the bi-weekly review of the digital data reveals qu'estionable or invalid data.Temperature and dew point hourly averages are computed using the f ollowinq scalar equation: B.=1 Z r.B..n.j ji i=1 where: the average hourly value for the jth variable (in physical units);B..the total number of minute observations during the hour (normally 60), but if n is less than 15 f or that hour, data are considered to be missing;the i" minute observation on the 3+" variable (millivolts):
SUSg UEHAxfH A SES  ER OL Accuracy                    1%  fu ll scale Current full-scale deflection                  1. 0 milliampere s Input impedence              1400 ohms Respon se Time              0.5 seconds
the conversion factor to change the j<hvariable from millivolts into physical units.After wind speed (WS)and wind direction (WD)are converted from millivolts they are related in the followinq manner: If WS is invalid (999)then WD is marked invalid (999)and vice versa.If WS)threshold (non-calm) and WD=0 (implying calm)then WD is set to 360~(North)If WS (threshold (calm)and WD)0 (implying non-calm)then WD is set to 0o (calm)Hourly averages are computed as scalars for wind speed.Wind direction averages are, determined as follows: If the associated averaqe wind speed is greater than 1.34112 meters/sec, (3 mph), average WD is determined by vector analysis (where WS and WD for each minute determines a vector).6 1-14 S USQU EH A NNA S ES-ER-OL APPENDIX B2 APPLICANT~S PORECASTING METHODOLOGY KMH SALES AND PEAK LOADS December, 1976 INTRODUCTION The PP&L energy model forecasts KWH consumption for each of the major groups in the PP&L Service Area;i.e., o RESIDENTIAL o COMMERCIAL o INDUSTRIAL o RESALE, STREET LIGHTING AND RAILROAD An econometric model is developed by considering the determinants for each of the sectors.While the model, by necessity, is a simplification, it captures the crucial linkages between sector activity and KWH sales, providing the user with a structural framework for forecasting.
      'Rriting  Type              Curvilinear Chart Speed                  3 in/hour Channels                    1 on each  chart 2 charts/recorder All recording devices, translator= and the digitizer are housed in a weatherproof cinderblock building. This building has thermistatically controlled heating and air conditioning.
Through the model a user can produce a forecast of sales for each of the sectors consistent with an economic outlook.More importantly the impact of alternative economic scenarios can be tested.In arriving at a forecast, the model utilizes information and forecasts of the U.S.economy, the national energy market, the Central Eastern Pennsylvania (C.E.P.)economy, local weather conditions and company policy.This information is obtained from a combination of existing forecasting services and reviews with PP&L Energy Consultants.
6..1. 3. 1. 1 5  Calibration  and Yaintenance    of the System All calibration and maintenance is pe formed at least semi-annually in accordance with the frequencies and producedures prescribed in the manufacturer's operating and maintenance manual.
The PP&L model builds from that point, measuring the impact of the national economic outlook on the C.E.P.region.This outlook is then combined with assumptions about weather conditions and company policy to produce a forecast of energy sales to each of the sectors.MODEL STRUCTURE In developing a model of electric energy consumption for a particular region it is important to, Qrst, define the demand conditions present in that service area, and second, measure their impact on sales to each of the sectors.The PP&L energy model is developed within this two-stage process.In the first stage of the model, demand conditions are defined, i.e., climatic conditions, the economic environment, energy prices, and company policy.Weather, energy'costs and company policy are all exogenous inputs to the model.The economic conditions are developed endogenously through an'conometric frame-work.The second stage measures the impact of these demand conditions on each sector through a set of econometric equations, relating sales to those factors that are known to affect growth.The general flow of the model is given.in Figure I.
6  1.3.1.1.6    Data Analysis The   analog chart records are removed every 14 days for inspection and  analysis. Each chart is removed separately and placed in individual boxes labeled with date, instrument'nd level. The charts are inspected for breaks in record, time errors, power failures and other indications of system malfunction and then stored. The information gained from this inspection is used to update and verify the digital data, and to locate anomalies with any parameter.       The analog recording system provides a back-up in case of digital system failure, so that a high data recovery rate can be maintained.       Table 6.1-2, Data Recovery Bates, gives the recovery rates for each year.
The service area economic model is linked to the DRI Macro Economic Model, bridging the gap between the national economy and local sales by highlighting regional characteristics (i.e., industrial mix, growth trends, demographic mix, etc.)and by including explicitly the impact of the national economy on the region.This linkage is primarily through the industrial sector.For example, the steel industry in the C.E.P.region serves a national market, therefore, their sales depend on demand conditions in the nation.In developing a model to forecast the growth of the steel industry in the region it is necessary to include national economy.As another ex-ample, the housing industry in the area is heavily dependent on local wealth and demographic mix, but a depressed steel industry would lower local wealth thereby slowing housing growth.The function of the service area model is to liter these national conditions so as to measure their impact on the local economy.Thus, the electric use forecast is developed in the following way.A fore-cast of the national economy, developed through the DRI Macro Model, is accepted or altered to reflect PP&L.'s thinking.That forecast is fQtered through the service area economic model to determine local economic conditions.
Digital minute data are recorded at the site on magne ic tape for analysis. At the begi.nning of each scan of data a unique identification code, the date,'hour and minute is recorded.
Again the user has the option of accepting the results or altering them where he deems necessary.
After 14 days of recording, the tape is removed, labeled with the data period and forwarded to the Applicant,            The computer
The economics are combined with assumptions about energy prices, expected weather conditions and company policy to define the local demand conditions.
: 6. 1-13
Finally, this information determines the expected level of megawatthour sales.At each stage the forecaster has the ability to adjust the output of the model before going on.It allows the user the required Qexibility to make the model a useful tool.The next three sections detail the methodology used in developing the economic and energy models.SERVICE AREA ECONOMIC MODEL The Central Eastern Pennsylvania (C.E.P.)economic model is constructed to highlight the regional economy within the PP&L service area.It provides infor-mation about four major economic areas: A.INDUSTRIAL SECTOR B.COMMERCIAL SECTOR C.WAGES&PERSONAL INCOME.D.HOUS ING The general Qow of the model is depicted in Figure II.Briefly, the model unfolds as follows.The industrial sector, through employment, is linked to the national economy.The tightness of the local labor market, along with inflationary conditions, determine the level of manufacturing wages.In the next stage, employ-ment in the commercial sector and per capita personal income are simultaneously determined; their levels are dependent on industrial activity and are interdependent with each other.Finally, population of the house-owning age group is combined with local wealth and employment conditions, and national information on the Qnancial markets to determine the housing market growth.A brief description of each area follows.0 A.INDUSTRIAL SECTOR A region's manufacturing sector, primarily its exporting industries, provide the major link between the national and regional economies.
 
Thus, we would expect this sector to follow the national patterns given that it serves a national market.However, we expect the local industries to maintain regional characteristics as well, from the standpoint of locational decisions on the part of entering/exiting manufacturing concerns, In modelling manu-facturing employment in the PP&L service area every attempt was made to include these two aspects: linkage with the national economy and regional locational decisions.B.COMMERCIAL SECTOR The type of services provided and products sold within the commercial sector are quite similar across different regions of the country.However, the growth of this sector within a region is heavily dependent upon the local economy.In developing the commercial employment equations, the growth in each of these sectors was compared to their breakdowns nationally.
SUSQUEHANNA S ES-ER-OL
The relative growth of the area was then compared to the relative U.S.growth in population and per capita income.C.WAGES, PRICES, AND PERSONAL INCOME Manufacturing average hourly earnings and total personal income for the service area are forecasted within the C.E.P.economic model, building from the employment situation in the manufacturing and commercial sectors.In addition, a forecast of local inflation conditions is developed directly from the inflation conditions of the nation.D.HOUSING SECTOR The growth in the housing stock is an important determinant of residential sales.Therefore, in the economic model, we explictly model household formations in the service area.In developing this sector we have a choice of two available data series, household permits from the federal government and new dwelling unit statistics from PPaL records.The dwelling unit data, considered more reliable and easier to monitor, was used.The long-run demand for housing is hypothesized to be a'unction of the population of the house-owning age group and the level of household wealth.IV.RESIDENTIAL SECTOR The residential model has been developed to forecast sales to the two major classes of residential service;viz., electrically heated homes and general residential.
  /
In doing so the model is divided into two blocks: o CUSTOMER BLOCK o USAGE BLOCK In the customer block the number.of residential customers under each of the services is determined.
facility    processes    these tapes converting the recorded millivoltaqes into enqineerinq units.
The'usage block determines the average kWh usage per customer under each of the, services.Total residential usage is obtained by summing the product of customer stock and per customer usage in each of the groups.Customer Block Total residential customers in any period is equal to the number in the previous period, plus the new units coming on, less the depreciation of the existing stock.In estimating our usage per customer equations, the impact of the following determinants was measured.o HOUSEHOLD INCOME o PRICE OF ELECTRICITY o PEOPLE PER HOUSEHOLD o WEATHER CONDITIONS o CONSERVATION EFFORTS V.Figure III shows the relationships that are considered in modelling this sector.COMMERCIAL SECTOR The Commercial Sector presents a difficult modelling task to the forecaster.
An hourly averaqe for each parameter is computed                          Data validity, range of hourly averages and the number of valid observations contributinq to the averages are tabulated to assist in the determination of data reliability. Comparisons between the analog and diqital data are performed when the bi-weekly review of the digital data reveals qu'estionable or invalid data.
Over the past 10 to 15 years it has shown steady growth, becoming an increasing portion of total sales;yet little information is available over this interval on the type of load served.The best that can be done in lieu of commercial surveys and expanded data collection is to include in, the model those economic indicators that best depict the growth of these customers.
Temperature and      dew point hourly averages are computed using the f ollowinq    scalar equation:
The modelling task is not one of obtaining satisfactory summary statistics, they come rather easily, but rather to be sure that the real determinants and indicators of growth are in the'model.
B. =    1 n    .
In addition to the overall growth, the price of electricity, weather conditions and conservation are considered important determinants of sales and are included.Sales to the commercial sector are collected by four major classes: o Wholesale and Retail Trade o Financial and Personal Services o Other Commercial o Small Commercial The general outline of estimating this sector is exhibited in Figure IV.
Z    r.j B.. ji i=1 where:
INDUSTRIAL SECTOR The Industrial Model was developed to forecast KWH sales to fourteen major industrial classes.The sales forecast for the industrial sector is'the aggregation of these fourteen cia'sses, the breakdown of which is given in the table below and the flow diagram.shown as Exhibit V.INDUSTRIAL SECTOR BREAKDOWN OF INDUSTRIAL CLASSES SIC INDUSTRY 20 22 23 27 28 324 33 (less 331)331 35 36 11512 Food&Kindred Products Textile Mill Products Apparel Printing&Publishing Chemicals&Allied Products Cement Primary Metals (except Steel)Steel Manufacturing Non-Electrical Machinery Electrical Riachinery Other Metal Products>Other General Industry2 S mall Industrial Coal Mining Note: l.Includes Mining (SIC 10), Ordnance (SIC 19), Fabricated Metals (SIC 34), Transportation Equipment (SIC 37)and Instruments (SIC 38).2.Includes Oil a Gas Extractions (SIC 13), Mining a Quarrying (SIC 14), Tobacco Products (SIC 21), Lumber and Wood Products (SIC 24), Furniture and Fixtures (SIC 25), Paper and Allied Products (SIC 26), Petroleum Refining (SIC 29), Rubber and Plastics (SIC 30), Leather and Products (SIC 31), Stone, Clay and Glass, less Cement (SIC 32.less 324), Miscellaneous Industries (SIC 39).In the industrial model, four major factors were considered:
the average hourly value              for the jth variable (in physical units);
o Production Activity o Factor Substitution o Technological Change o Conservation VII.
the total number of minute observations during the hour (normally 60), but that hour, data      are if considered n is less than 15 f or to be missing; B..         the    i"  minute observation on the              3+" variable (millivolts):
the conversion factor to change the j<hvariable from millivolts into physical units.
After    wind speed    (WS) and wind direction (WD) are converted from millivolts    they are related in the followinq manner:
If  WS  is invalid (999) then vice versa.
WD    is  marked    invalid  (999) and If is )setthreshold WD WS                  (non-calm) to 360~ (North) and    WD  = 0    (implying calm) then If is WD WS  ( threshold (calm) set to 0o (calm) and    WD    )  0  (implying non-calm) then Hourly averages      are computed as scalars              for wind speed. Wind direction averages are, determined              as  follows:
If  the associated averaqe wind speed is greater than 1.34112 meters/sec, (3 mph), average WD is determined by vector analysis (where  WS  and  WD  for  each minute determines              a  vector) .
6    1-14
 
S USQU EH A NNA S ES-ER-OL APPENDIX B2 APPLICANT~S PORECASTING METHODOLOGY KMH SALES AND PEAK LOADS December,    1976
 
INTRODUCTION The PP&L energy model forecasts KWH consumption for each of the major groups in the PP&L Service Area; i.e.,
o  RESIDENTIAL o  COMMERCIAL o  INDUSTRIAL o  RESALE, STREET LIGHTING AND RAILROAD An econometric model is developed by considering the determinants for each of the sectors. While the model, by necessity, is a simplification, it captures the crucial linkages between sector activity and KWH sales, providing the user with a structural framework for forecasting. Through the model a user can produce a forecast of sales for each of the sectors consistent with an economic outlook. More importantly the impact of alternative economic scenarios can be tested.
In arriving at a forecast, the model utilizes information and forecasts of the U.S. economy, the national energy market, the Central Eastern Pennsylvania (C.E.P.)
economy, local weather conditions and company policy. This information is obtained from a combination of existing forecasting services and reviews with PP&L Energy Consultants. The PP&L model builds from that point, measuring the impact of the national economic outlook on the C.E.P. region. This outlook is then combined with assumptions about weather conditions and company policy to produce a forecast of energy sales to each of the sectors.
MODEL STRUCTURE In developing a model of electric energy consumption for a particular region it is important to, Qrst, define the demand conditions present in that service area, and second, measure their impact on sales to each of the sectors. The PP&L energy model is developed within this two-stage process.
In the first stage of the model, demand conditions are defined, i.e.,
climatic conditions, the economic environment, energy prices, and company policy.
Weather, energy'costs and company policy are all exogenous inputs to the model.
The economic conditions are developed endogenously through an'conometric frame-work.
The second stage measures the impact of these demand conditions on each sector through a set of econometric equations, relating sales to those factors that are known to affect growth. The general flow of the model is given. in Figure I.
 
The service area economic model is linked to the DRI Macro Economic Model, bridging the gap between the national economy and local sales by highlighting regional characteristics (i.e., industrial mix, growth trends, demographic mix, etc.) and by including explicitly the impact of the national economy on the region. This linkage is primarily through the industrial sector. For example, the steel industry in the C.E.P. region serves a national market, therefore, their sales depend on demand conditions in the nation. In developing a model to forecast the growth of the steel industry in the region it is necessary to include national economy.     As another ex-ample, the housing industry in the area is heavily dependent on    local  wealth and demographic mix, but a depressed steel industry would lower local wealth thereby slowing housing growth. The function of the service area model is to liter these national conditions so as to measure their impact on the local economy.
Thus, the electric use forecast is developed in the following way. A fore-cast of the national economy, developed through the DRI Macro Model, is accepted or altered to reflect PP&L.'s thinking. That forecast is fQtered through the service area economic model to determine local economic conditions. Again the user has the option of accepting the results or altering them where he deems necessary.      The economics are combined with assumptions about energy prices, expected weather conditions and company policy to define the local demand conditions. Finally, this information determines the expected level of megawatthour sales. At each stage the forecaster has the ability to adjust the output of the model before going on. It allows the user the required Qexibility to make the model a useful tool.
The next three sections detail the methodology used in developing the economic and energy models.
SERVICE AREA ECONOMIC MODEL The Central Eastern Pennsylvania (C.E.P.) economic model is constructed to highlight the regional economy within the PP&L service area. It provides infor-mation about four major economic areas:
A. INDUSTRIAL SECTOR B. COMMERCIAL SECTOR C. WAGES &    PERSONAL INCOME
                . D . HOUS ING The general Qow of the model is depicted in Figure II. Briefly, the model unfolds as follows. The industrial sector, through employment, is linked to the national economy. The tightness of the local labor market, along with inflationary conditions, determine the level of manufacturing wages. In the next stage, employ-ment in the commercial sector and per capita personal income are simultaneously determined; their levels are dependent on industrial activity and are interdependent with each other. Finally, population of the house-owning age group is combined with local wealth and employment conditions, and national information on the Qnancial markets to determine the housing market growth. A brief description of each area follows.
0
 
A. INDUSTRIAL SECTOR A region's manufacturing sector, primarily its exporting industries, provide the major link between the national and regional economies.                 Thus, we would expect this sector to follow the    national patterns given that          it serves a national market. However, we expect the local industries to maintain regional characteristics as well, from the standpoint of locational decisions on the part of entering/exiting manufacturing concerns,       In modelling manu-facturing employment in the PP&L service area every attempt was made to include these two aspects:    linkage with the national economy and regional locational decisions .
B. COMMERCIAL SECTOR The type of services provided and products sold within the commercial sector are quite similar across different regions of the country. However, the growth of this sector within a region is heavily dependent upon the local economy. In developing the commercial employment equations, the growth in each of these sectors was compared to their breakdowns nationally.
The relative growth of the area was then compared to the relative U.S.
growth in population and per capita income.
C. WAGES, PRICES, AND PERSONAL INCOME Manufacturing average hourly earnings and total personal income for the service area are forecasted within the C.E.P. economic model, building from the employment situation in the manufacturing and commercial sectors. In addition, a forecast of local inflation conditions is developed directly from the inflation conditions of the nation.
D. HOUSING SECTOR The growth in the housing stock is an important determinant of residential sales. Therefore, in the economic model, we explictly model household formations in the service area. In developing this sector we have a choice of two available data series, household permits from the federal government and new dwelling unit statistics from PPaL records.
The dwelling unit data, considered more reliable and easier to monitor, was used. The long-run demand for housing is hypothesized to be of the population of the house-owning age group and the level  a'unction of household wealth.
IV. RESIDENTIAL SECTOR The residential model has been developed to forecast sales to the two major classes of residential service; viz., electrically heated homes and general residential.
In doing so the model is divided into two blocks:
o  CUSTOMER BLOCK o  USAGE BLOCK
 
In the customer block the number. of residential customers under each of the services is determined. The'usage block determines the average kWh usage per customer under each of the, services. Total residential usage is obtained by summing the product of customer stock and per customer usage in each of the groups.
Customer Block Total residential customers in any period is equal to the number in the previous period, plus the new units coming on, less the depreciation of the existing stock.
In estimating our usage per customer equations, the impact of the following determinants was measured.
o HOUSEHOLD INCOME o  PRICE OF ELECTRICITY o  PEOPLE PER HOUSEHOLD o WEATHER CONDITIONS o  CONSERVATION EFFORTS Figure III shows the relationships that are considered in modelling this sector.
V.       COMMERCIAL SECTOR The Commercial Sector presents a difficult modelling task to the forecaster.
Over the past 10 to 15 years it has shown steady growth, becoming an increasing portion of total sales; yet little information is available over this interval on the type of load served. The best that can be done in lieu of commercial surveys and expanded data collection is to include in, the model those economic indicators that best depict the growth of these customers. The modelling task is not one of obtaining satisfactory summary statistics, they come rather easily, but rather to be sure that the real determinants and indicators of growth are in the'model. In addition to the overall growth, the price of electricity, weather conditions and conservation are considered important determinants of sales and are included.
Sales to the commercial sector are collected by four major classes:
o  Wholesale and Retail Trade o  Financial and Personal Services o  Other Commercial o  Small Commercial The general outline of estimating this sector is exhibited in Figure IV.
 
INDUSTRIAL SECTOR The Industrial Model was developed to forecast KWH sales to fourteen major  industrial classes. The sales forecast for the industrial sector is'the aggregation of these fourteen cia'sses, the breakdown of which is given in the table below and the flow diagram. shown as Exhibit V.
INDUSTRIAL SECTOR BREAKDOWN OF INDUSTRIAL CLASSES SIC                      INDUSTRY 20                      Food  & Kindred Products 22                      Textile Mill Products 23                      Apparel 27                      Printing  & Publishing 28                      Chemicals & Allied Products 324                    Cement 33 (less 331)          Primary Metals (except Steel) 331                    Steel Manufacturing 35                      Non-Electrical Machinery 36                      Electrical Riachinery Other Metal Products>
Other General Industry2 S mall Industrial 11512                  Coal Mining Note:   l. Includes Mining (SIC 10), Ordnance (SIC 19), Fabricated Metals (SIC 34), Transportation Equipment (SIC 37) and Instruments (SIC 38).
: 2. Includes Oil a Gas Extractions (SIC 13), Mining a Quarrying (SIC 14),
Tobacco Products (SIC 21), Lumber and Wood Products (SIC 24),
Furniture and Fixtures (SIC 25), Paper and Allied Products (SIC 26),
Petroleum Refining (SIC 29), Rubber and Plastics (SIC 30), Leather and Products (SIC 31), Stone, Clay and Glass, less Cement (SIC 32.
less 324), Miscellaneous Industries (SIC 39).
In the industrial model, four major factors were considered:
o  Production Activity o  Factor Substitution o  Technological Change o Conservation
 
VII.    


==SUMMARY==
==SUMMARY==
In summary, the PP5L Econometric Model forecasts th'e short and long-term kWh consumption for the major consuming sectors, in the.PPaL Service Area.It utilizes forecasts from the DRI Macro Model togetherwith regional economic, demo-graphic, and climatic conditions-to determine a scenario of the service area economy.Assumptions about the price of electricity and competing fuels, weather expectations, the working age population, and technological changes are then made, from which point the model produces a kWh forecast.Outlooks are also prepared by PPaL Energy Consultants.
 
In the residential sector, the model forecasts kWh sales for Electrically Heated Homes and General Residential Service.For both of these classes, sales is the product of the number of customers and usage per.customer.
In summary, the PP5L Econometric Model forecasts th'e short and long-term kWh consumption for the major consuming sectors, in the. PPaL Service Area. It utilizes forecasts from the DRI Macro Model together with regional economic, demo-graphic, and climatic conditions-to determine a scenario of the service area economy.
The number of customers is a function of employment in the service area, real disposable income, new dwelling units, the price of electricity and competing fuels, and new mortgage commitments.
Assumptions about the price of electricity and competing fuels, weather expectations, the working age population, and technological changes are then made, from which point the model produces a kWh forecast. Outlooks are also prepared by PPaL Energy Consultants.
Usage per customer is determined, for the most part, by the real price of electricity, real disposable income, and weather.The model, which develops the mathematical relationships among these variables, then fore-casts residential sales.Commercial sales, which are segregated into four categories, are a function of commercial employment in the service area, real disposable income, the real price of electricity, and weather.The growth in commercial demand is positively related to the first two variables while negatively related to the third.By solving a series of equations, the model'determines the kWh consumption in the commercial sector.The forecast of industrial sales makes use of estimates of industrial output, which in turn is a function of manufacturing employment.
In the residential sector, the model forecasts kWh sales for Electrically Heated Homes and General Residential Service. For both of these classes, sales is the product of the number of customers and usage per .customer. The number of customers is a function of employment in the service area, real disposable income, new dwelling units, the price of electricity and competing fuels, and new mortgage commitments. Usage per customer is determined, for the most part, by the real price of electricity, real disposable income, and weather. The model, which develops the mathematical relationships among these variables, then fore-casts residential sales.
Manufacturing employment, by two-digit SIC Codes in the PPaL service area depends upon current levels of employment and the level of production for a particular industry.Industrial output in our service area is defined as the Federal Reserve Board Production Index times the ratio of PPSL employment to U~S.employment.
Commercial sales, which are segregated into four categories, are a function of commercial employment in the service area, real disposable income, the real price of electricity, and weather. The growth in commercial demand is positively related to the first two variables while negatively related to the third. By solving a series of equations, the model'determines the kWh consumption in the commercial sector.
Sales to the fourteen industrial SIC groups are mainly determined by finding the relationship of kWh sales to service area industrial output, the relative price of electricity to fuel oil, the relative price of electricity to natural gas, and any technological changes that might occur.No model, regardless of how well it is specified, will forecast perfectly.
The forecast of industrial sales makes use of estimates of industrial output, which in turn is a function of manufacturing employment. Manufacturing employment, by two-digit SIC Codes in the PPaL service area depends upon current levels of employment and the level of production for a particular industry. Industrial output in our service area is defined as the Federal Reserve Board Production Index times the ratio of PPSL employment to U S. employment. Sales to the fourteen industrial
There will be exogenous events, such as large new loads or changes in company or government policy, that the model is unable to pick up.In these cases, the results of the model can be modified to the desired level by judgment.VIII.PEAK LOAD FORECAST In order to adequately provide for our customers'emands for electricity, adequate generating capacity must be available.
                                    ~
The amount of capacity required is determined by forecasting summer and winter system peak loads for ten to fifteen years into the future.Summer and winter system peaks are forecasted because it is during these periods that the greatest demands are made on our system.Air conditioning load causes the summer peaks, and lighting and space heating loads are responsible for those in the winter.
SIC groups are mainly determined by finding the relationship of kWh sales to service area industrial output, the relative price of electricity to fuel oil, the relative price of electricity to natural gas, and any technological changes that might occur.
PPEL's estimating procedure produces summer and winter system peak loads by developing the contribution made by each rate class.The term"rate class" means all customers served under similar rate schedules.
No model,   regardless of how well it is specified, will forecast perfectly.
The sale of energy forecast developed by revenue classes is reallocated to rate classes using observed historical relationships.
There will be exogenous events, such as large new loads or changes in company or government policy, that the model is unable to pick up. In these cases, the results of the model can be modified to the desired level by judgment.
Load study data is then brought into the estimation process.Our load studies are designed to determine the load characteristics of a specific class of service.When meters are of the watt-hour type, stratified random samples of customers within kilowatt-hour ranges are used.In the case of most general service sample customers (up to 7000 kw with demand meter billing), load factor ranges within each rate class are used.Larger commercial and industrial customers are studied individually.
VIII. PEAK LOAD FORECAST In order to adequately provide for our customers'emands for electricity, adequate generating capacity must be available. The amount of capacity required is determined by forecasting summer and winter system peak loads for ten to fifteen years into the future. Summer and winter system peaks are forecasted because it is during these periods that the greatest demands are made on our system. Air conditioning load causes the summer peaks, and lighting and space heating loads are responsible for those in the winter.
Daily load curves for the days of summer and winter system peak are derived for every stratum of each rate class for an average customer.For customers studied by kilowatt-hour ranges, demand per customer data for each stratum of each rate class are multiplied by the number of customers in the universe of that stratum to obtain a universe daily load curve.The number of customers in a stratum is obtained from the Company's bill frequency distributions.
 
This can also be done for years other than the load study test year because the load characteristics of a kWh or load factor stratum remain fairly constant with only the number of customers in a stratum changing from year to year.Daily load curves for load factor stratum are stated as ratios of customer monthly maximum demand.These are applied to the sum of customer demands in each load factor stratum as determined from an hours-use distribution to obtain the universe daily load curve.For an historical year the strata of a given rate class are added together to form the daily load curve for the universe of that rate class.The rate class load curves for the days of summer and winter system peak of a given year are corrected for losses to the net generation level and added together to form the summer and winter load curves for the system.The result is checked against actual peak loads.Using these techniques we have developed rate class contributions to summer and winter system peaks historically for selected hours of the day.The ratio between class contribution to system peak and annual sales to that class is calculated for each rate class at the time of summer and winter system peak, for every historical period analyzed.The trend of this ratio for either a summer or a winter syst'm peak is fairly constant over time.For a given class the trend of this ratio for the time of both summer and winter system peak is projected through time.By applying the appropriate ratios to the predicted annual sales of any future year, that class'ontribution to summer and winter peak is forecasted.
PPEL's estimating procedure produces summer and winter system peak loads by developing the contribution made by each rate class. The term "rate class" means all customers served under similar rate schedules. The sale of energy forecast developed by revenue classes is reallocated to rate classes using observed historical relationships. Load study data is then brought into the estimation process. Our load studies are designed to determine the load characteristics of a specific class of service. When meters are of the watt-hour type, stratified random samples of customers within kilowatt-hour ranges are used. In the case of most general service sample customers (up to 7000 kw with demand meter billing), load factor ranges within each rate class are used.
The system peak for a specific time period is obtained by adding together the projected class contributions to system peak.
Larger commercial and industrial customers are studied individually. Daily load curves for the days of summer and winter system peak are derived for every stratum of each rate class for an average customer.
Sl RBHP/t 7O~I/AD L i'm<CF US ECSVc3~&~/tHVTC CbvbmcvJS lfE~CF.MMES~EH E68RS l~MYE7ul6 iA)L5522(rR eru6~MFigure I DR'i NAt'RO 50DEL or U.S.EcoNoN''hf905%lhL s&c&#xc3;QA.'Tcqhl EHPUH HE}4T{rue-otl.n a~ooW~)'ERUIcE ARgAi W~s~parce>c%QV ICS~.QOQ-hQUCULTQML plpUHHF-'AT
For customers studied by kilowatt-hour ranges, demand per customer data for each stratum of each rate class are multiplied by the number of customers in the universe of that stratum to obtain a universe daily load curve. The number of customers in a stratum is obtained from the Company's bill frequency distributions. This can also be done for years other than the load study test year because the load characteristics of a kWh or load factor stratum remain fairly constant with only the number of customers in a stratum changing from year to year.
~6ERVICR hRFA CQcm6kclA~
Daily load curves for load factor stratum are stated as ratios of customer monthly maximum demand. These are applied to the sum of customer demands in each load factor stratum as determined from an hours-use distribution to obtain the universe daily load curve.
SECOR.TDTAL EHPkMM~V~ciCg,~QUA~Tbsp l4EV bQEU i'd&Ogle i cGfhlcf AAEA-~V/cE AQ69 M~(MUp D~OF~BOO&oQLTS U.CI.ECONOMY ILIMSMIAL Sc~~~K NFL'(HG4T'A4 05(T 2AM~IXWQ)'ed(CK A~~WAQ5 i Jc(ce,5'5eRv (cj p((eA I PC(LCL(AL lt(COt((I I'~(CE, POfA~I(OI(ACia(ClAL~~
For an historical year the strata of a given rate class are added together to form the daily load curve for the universe of that rate class. The rate class load curves for the days of summer and winter system peak of a given year are corrected for losses to the net generation level and added together to form the summer and winter load curves for the system. The result is checked against actual peak loads.
etlFL(t(t(KAl i~ca~~1(7Th(EHrl(telD41 SQvCE~.pea urer PRgNAI IH~~ICCWCC Pgako POOVm ITO(L I~~.I l Agt V l((M~5@V~rCEA~I'Sr'(lar.AKL.I I~QxlCR$%%$I UNWON AP~V~S V.'b.STYX, OF 5Ghl(C(K Dg5QJt44 tP4T4~5@)ICE AKA NEu~Mb LML~P4J-~LC S2AE~a6uu~~OlCtOL OP C46LuHO OQL~~55bl l CE~e t(WH P(LL.a+mt(e(L Q4eak.oem'(-0 CMTlAL tlunl VS@A AIL~~AL(RRT4C~kl((CD I$4'-OF QG O(L~<Ce ARK@I I RLCE OF I Phd(LPc, I~beni(AL I I P(bCZ OS'~~I%-s~~(CS I I I Ply@OS'I ggCQQ&I LzprflJL, 5E pt.'ce (I t(KQAVLA1('OVg
Using these techniques we have developed rate class contributions to summer and winter system peaks historically for selected hours of the day. The ratio between class contribution to system peak and annual sales to that class is calculated for each rate class at the time of summer and winter system peak, for every historical period analyzed. The trend of this ratio for either a summer or a winter syst'm peak is fairly constant over time. For a given class the trend of this ratio for the time of both summer and winter system peak is projected through time. By applying the appropriate ratios to the predicted annual sales of any future year, that class'ontribution to summer and winter peak is forecasted. The system peak for a specific time period is obtained by adding together the projected class contributions to system peak.
~~Old RL QK~~ICE 1 I I(e(1(~C I ocoaee~vs I I I r FQt(l 0 M IIJ6CC"~QTIAI+~MT'~AIL ILCLIIL,~RRB ORATlhr 5~O(eKRVATLON (I L I igure III Rrvez Aav~v QR'I MACRO MOOEI or U.S.ECOMOtf!IIIQQSMIAL
 
~ItnAL~~~T.(TWO 0&T QAMQCWAI)~gERVlCK AX~A'M~PelcaS'~ICS PagA I SGhnCE PCXA-NON ABACI CIA JVlAL, W Plghfll CAIT'SCbnCt~>>r~~~~APL~CAT SERuCC, A~i~CCC4CC~POPULUS TIClH~~~.l l~VlIIm CChl45 AREA.~u~Ka5,~~'Saeva~I EH~~'usus~+aeAlt'T$4DC'5$2llCE AQUA.N'AH~PllOK WACLESWC~WP4a~C EHDLCth HCIJT R IIAIICIAI PER&~~~CCl4bVAlPllgth PIP~'.AI 4 PtQ,~~le%HAH COu~m OlltKP~EQ.CIAI I ptICK cP~C~C~I L9+Rs~~o~I (@AMER.C&L"DECTCR.HwH I COIJII tT~I I t HE&hk)A,T lICIIQ.CDt1HFQC;Al cE~~R I I I r~SeWW I I I ll40lhMIAL SECtCA.~TIDAL.EW~mur (~Ol&T SMAKQOWL))
Sl RBHP/t 7O   ~     I /AD L i'm<     CF   US   ECSVc3~&
~5ERVICE AIL'QXKS~PILICI.S'QRV IC3 PC@A I PueOuu-I~E I glg ACCICV~aKRnca ALKA.~m~mr'SEbnCE~v~PCR~IN~~~~+I PCPV IAr&N I~~-I leal (gagLI IIQCp QUOITS eahIC ACTA.v am'55blICI'.
~/tHVTC                                           E68RS CbvbmcvJS lfE~ CF     .MMES   ~EH               ~MYE7ul6 l
Adrh-P4CL5 a RIAI.5CILVICvi hREA (~O<CgT CQEACOul)P7gl t Cl+Olc,Q M'A.,EX'I+
iA)L5522(rR eru6~M Figure I
OCO~ttIdH~PP PAILEL, CXBRK PvL<<H~Kv u.S.(~~3~v)r LP ITS~~I L 3 I PRa<>~W~I I SCRI CE H2CA HWH PdlDTIM&+PCS'~HIS+NalH'k@HIQKLS t ALLIS)PQg)~~H4H~CvHB T he%)PAC.TCILIW I PRIcz cF~&cb~CC r I Pha CP~~I 55bJ I C v I~H'g-I"~~ACTCC.i~IIIdH pIIIITACV I-EIpL5 (, 5;s,~3 C%EL~'P CcCCC,5 HulH~~+ICAL r~luEAV CA r~lmm II43H crHalL cm~~immi keAN~ImIHl5iiL~
 
t C Q$5NATICN I I IN cvsnu~c Bmoc IIIiIH CCRC.NISI~TOTAL~WAW HO@%.SALES IMDV5TTRIAL ScCTA Exhibit V SUSQU EH ANNA SES-ER-OL contaminated by airborne radioiodine is a potential source of exposure.Samples from milk animals are considered a better indicator of radioiodine in the environment than vegetation.
DR'i NAt'RO 50DEL or U.S.
If the census reveals milk animals are not present or are unavailable for sampling, then veqetation may be sampled.The 500-sq.ft.garden, considering 20%used for growing green leafy vegetables and a vegetation yield of 2 kg/m>will produce the 26 kq/yr assumed in~Re ula~tor Guide 1.109 (March 1974)for child consumption of leaf y veqetation.
EcoNoN''hf905%lhL s&c&#xc3;QA.
The option to consider the garden to be at the nearest residence is conservative and those locations may be used to calculate doses due to radioactive ef fluent releases in place of the actual locations which would be determined by the census.The permission of deviations from the sampling schedule is based on the recognition of unavoidable practical difficulties which in the absence of the permitted deviations would result in violation of the specifications.
W~s ~ parce>
The requirement for the participation in the EPA cross-check program, or similar program, is based on the need for independent checks on the precision and accuracy of the measurements of radioactive material in environmental monitorinq in order to demonstrate the validity of the results.~Re oeting Requirement A.Annual Environmental Operatinq Report, Part B, Radiological.
            'Tcqhl EHPUH HE}4T
A report on the radiological environmental sur veillance proqram for the previous calender year shall be submitted to the Director of the NRC Regional Office (with a copy to the Director, Office of Nuclear Reactor Requlation) as a separate document in May of each year.The period of the first report shall begin with the date of initial criticality The report shall include a.summary (format of Table F-1, Environmental Monitoring Program Summary)interpretations, and statistical evaluation of the results of the radiological environmental surveillance activities for the report period, includinq a comparison with operational, controls, preoperational studies (as appropriate) and previous environmental surveillance reports and an assessment of the observed impacts of the station operation on the environment.
{rue - otl.n a~ooW~)
In the event that some results are not available the report shall be submitted noting and explaining the reasons for the missinq results.The missing data shall be submitted as soon as possible in a supplementary report.
                'ERUIcE ARgAi c%QV ICS ~.
S US QU EHA N NA S ES-ER-OL The reports shall include either explicitly or by reference to other documentation, the following:
QOQ- hQUCULTQML               CQcm6kclA~ SECOR.
a summary description of the radiological environmental monitorinq program including sampling methods for each sample type, size and physical characteristics of each sample type, sample preparation methods analytical methods, and measurinq equipment used;a map of all sampling locations..the results of the land use censuses and the results of the Applicant's participation in the Environmental Protection Agency's Environmental Radioactivity Laboratory Intercomparisons Studies (Crosscheck)
plpUHHF-'AT                 TDTAL EHPkMM~V
Proqram.B.Non-routine Radiological Fnvironmental Operatinq Reports If a confirmed measured radionuclide concentration in an environmental sampling medium averaged over any quarter samplinq period exceeds the reporting level given in Table F-4, Reportinq Levels.for Non-Routine Operation, a written report shall be submitted to the Director of the NBC Regional Office (with a copy to the Director, Office of Nuclear Reactor Regulation) within 30 days from the end of the quarter.A confirmatory reanalysis of the original, a duplicate or a new sample may be desirable, as appropriate.
~ 6ERVICR hRFA                     ~ciCg, ~QUA ~
The results of the confirmatory analysis shall be completed at the earliest time consistent with the analysis, but in any case within 30 days except in the case of the strontium analysis.Zf it can be demonstrated that the level is not a result of station effluents (i.e., by comparison with control station or preoperational data)a report need not be submitted, but shall be discussed in the annual report.If radionuclides other than those in Table-F-4 are detected and are due from station effluents, a reporting level is exceeded if the potential annual dose to an individual is equal to or greater than the design objective doses of 10 CFR Part 50, Appendix I This report shall include an evaluation of a release conditions, environmental factors or other aspects necessary to explain the anomalous result SUSQUEHANNA SFS-ER OL TABLE F-2 SUSQUEHANNA SES OPERATIONAL RADIOLOGICAL ENVIRONMENTAL HONITORING PROGRAH Sam~le T pe Air Particulates SS-AP-551 SS-AP-1152 SS-AP-9A1 SS-AP-12E1 SS-AP-7Hl Air Iodine SS-AI-551 SS-AI-1152 SS-AI-9A1 SS-AI-12El SS-AI-7H1 Surface Water SS-SW-5S2 SS-SW-12F1 Dr~inkin Water SS-PWT-12F2 SS-PWT-12H2 Fish**SS-AQF-6AI SS-AQF-2G1 Sediment SS-AQS-llcl Milk SS-H-5B1 SS-M-12B1 SS-H-1282 SS-H-7H2 Location++North of I.A.SW corner of si te Near Transmission Field Berwi ck Hospital PPEtL Roof North of I.A.SW corner of site Near Transmission Field Berwick Hospital PPSL Roof At I.A.Berwick Bridge Berwick Water Co.(treated)Danvi lie Water Co.(treated)Outfall Upstream Hess Is, area Farm Schultz Farm Young Farm Crytal Springs Dairy Collection F~PB UMC*SA SA 2/H~Anal sis Gross Beta Galena Emitters I-131 Gama Emitters H-3 Gross Beta Gamma Emi tters H-3 Gama Emi tters Gamma Emi tters I-131 Gama Emitters Analyti cal F~re Cene*W QC H QC SA SA 2/H 2/H Uni ts pCi/m3 pCi/m pCi/m pCi/1 pCi/1 pCi/1 pCi/1 pCi/1 pCi/g(wet)
Tbsp l4EV bQEU i'd& Ogle i cGfhlcf AAEA-
PCi/9(dry) pCi/1 pCi/1 SUSQUEHANNA SES-ER-OL TABLE F-2 (cont.)SUSQUEHANNA SES OPERATIONAL RADIOLOGICAL ENVIRONMENTAL HONITORING PROGRAH~Sam le T e Food Products SS-FP-5B1 Direct Radiation SS-ID-3S2 SS-I D-4S1 SS-ID-551 SS-ID-7S1 SS-ID-11S2 SS-I D-9AI SS-ID-12E1 SS-ID-7HI Location++Farm Susquehanna River Susquehanna River North of I.A.On 230 KV Tower On 230 KV Tower Near Transmission Field Berwick Hospital PP&L Roof Collection
~V/cE AQ69 M~(MUp                             D~     OF
~Fee mene*~Anal sis Ganma Emitters Gama Dose Analytical
                                  ~BOO& oQLTS
~Fre mene*Uni ts pCi/g(wet) mrem/std.mo Frequency Codes: W=Weekly;H=Monthly;Q=Quarterly; SA=Semi-Annual; A=Annual;2/H=twice each month;C Composite.
 
Important classes of fish will be analyzed separately.(bottom feeders and game fish)Hilk collected and analyzed semi-monthly from April through October-monthly during other months.Shown in Figure.
U.CI. ECONOMY
SUSQUEHANNA SES ER OL TABLE F-3 DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYSIS MINIMUM DETECTABLE LEVEL (MDL)Analys is Water (pCi/l)Airborne Particulate or Gas (pCi/m')Fish (pCi/kg-wet)
                      ~
Mi 1 k Food Products Sediment (pCi/1)(pCi/kg-wet)(pCi/kg-dry)
                        ~
Gross Beta H-3 Mn-54 Fe-59 Co-58,60 Zn-65 ZrNb-95 I-131 Cs-134,137 BaLa-140 200 10 20 10 20 0.3 10 10 7 x 10 5x10 5 x 10 85 170 85 170 85 5c 10 10 16c,d 50 100 SUSQUEHANNA SES-ER-OL Table F-3 (Cont'd)~Acceptable detection capabilities for thermoluminescent dosimeters used for environmental measurements are given in Regulatory Guide 4.13, July 1977.Indicates acceptable detection capabilities for radioactive materials in environmental samples.These detection capabilities are tabulated in terms of the minimum detectable level (MDLs).The NOL is defined, for purposes of this Table, as that concentration of radioactive material in a sample that will yield a net count which is different from the background count by three times the standard deviation after background count.For a particular measurement system (which may include radiochemical separation):
ILIMSMIAL    Sc~
MDL=3 00 Sb E x V x 2.22 x Y x exp(-X t)where, NOL is minimum detectable level as defined above (as pCi per unit mass or volume)Sb is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute)E is the counting efficiency (as counts per disintegration)
K NFL'( HG4T' A4 05(T 2AM~IXWQ)
V is the sample size (in units of mass of volume)2e22 is the number of disintegrations per minute per picocurie Y is the fractional radiochemical yield (when applicable) is the radioactive decay constant for the particular radionuclide is the elapsed time between sample collection and counting The value of S used in the calculation of the NOL for a particular measurement system should e based on the actual observed variance of the background counting rate or of the counting rate of the blank samples (as appropriate) rather than on an unverified theoretically predicated variance.In calculating the MDL for a radionuclide determined by gama-ray spectrometry, the background should include the typical contributions of other radionuclides normally present in the sample (e.q., potassium-40 in milk samples).Typical values of E,V,Y, and t should be used in the calculation.
                          'ed(CK     A~~
It should be recognized that the NOL is defined as~a riori (before the fact)limit representing the capability of a measurement system and not as f t f ill i f p SUSQUEHANNA SES-ER-OL Table F-3 (Cont'd)c.MDLs for I-131 in water, milk and other food products correspond to one-quarter of the Appendix I (10 CFR Part 50)design objective dose-equivalent of 15 mrem/year using the assumptions given in Regulatory Guide 1.109 except for an infant consuming 330 1/yr of drink water.d.MDL for leafy vegetables.}}
WAQ5 Jc(ce,5
                                                                            '5eRv i
(cj p((eA I PC(LCL(AL I
I lt(COt((
                                                                                                                                '~(CE, POfA~
I(OI( ACia(ClAL~~                                                                                pea    urer IH~
etlFL(t(t(KAl i~ca ~~
1(7Th(
                                                          ~.
EHrl(telD41                                         PRgNAI
                                                                                                                                                ~~.
SQvCE                                                      ~ ICCWCC Pgako POOVm ITO(L I                 I l Agt V l((M                                                                       I
                                                ~ 5@V~     rCEA~                                                                             'Sr'(lar. AKL.
I                 I
                                                                                                                                ~QxlCR $ %%$ I UNWON AP~V V. 'b.
                                                                                                                                                ~S NEu   ~Mb LML~                                                                             I
                                                                                                                                $ 4'- OF
                                      ~LC S2AE P4J -
                                    ~
a6uu~       ~                                                                         I QG O(L
                                                                                                                                ~<Ce          ARK@
I  RLCE OF              I Phd(LPc, STYX,    OF                    OlCtOL OP I
                                                                                                                                ~beni(AL              I 5Ghl(C(K                                                                          tlunl Dg5QJt44 tP4T4                    C46LuHO OQL~
                                                  ~e t(WH P(LL. a+mt(e(L          AIL~~  VS@A
  ~
5@)ICE AKA                      ~
55bl l CE                    Q4eak.
0 CMTlAL oem'(-        AL(  RRT4C
                                                                                                ~kl((CD I
I
                                                                                                                                ~~
P(bCZ OS'
                                                                                                                                %-s~
                                                                                                                                  ~(CS                I I       OS'             I Ply@
I ggCQQ         &I      I LzprflJL, 5E pt.'ce   (
t(KQAVLA1('OVg       ~~Old RL
                                                                ~QK~   ICE I
I I(e(1(~C ocoaee     ~vs 1
I I
I r
FQt(l 0 M IIJ6CC
  +~MT'~AIL                       RRB ORATlhr ILCLIIL, 5~
                                                        ~                                                         O(eKRVATLON
"~QTIAI                                                                                                        (
L I
I igure III
 
Rrvez Aav           ~v         QR'I MACRO MOOEI     or U.S. ECOMOtf!
IIIQQSMIAL
                ~
ItnAL (TWO
                      ~
                            ~~~T.
AX~A'M 0&T QAMQCWAI) gERVlCK
                                                                  ~ PelcaS
                                                            '~ICS PagA                 I SGhnCE PCXA-NON ABACICIAJVlAL,             r~~~
                                  ~APL ~CAT POPULUS W Plghfll CAIT' SCbnCt   ~>>                     SERuCC, A~i                           ~ CCC4CC ~                         TIClH
                                                                                                        ~~~.         l l~
                                                                                                          ~u~
Ka5,~~
CChl45 AREA.
VlIIm
                                                                                                          'Saeva   ~ I EH~~aeAlt
        'usus~           +                           N'AH  ~PllOK
                  'T$ 4DC                           WACLESWC ~    WP4a
          '5$ 2llCE       AQUA.                           ~C EHDLCth HCIJT CCl4bVAlPllgth R IIAIICIAI PER&~           ~~                       PIP~'.AI
                                                          ~le%
4   PtQ,~
I  ptICK cP HAH   COu~m                           ~C~C~
L9+Rs~
OlltKP  ~EQ.CIAI                    I I    ~o~
I
                                                                                                        ~
HwH
(@AMER.C&L "DECTCR.                                                                                 COIJII tT           I t                        I I
I HE&hk)A,T lICIIQ.
I r~SeWW CDt1HFQC;Al   cE~~R                 I                       I I
 
PueOuu-ll40lhMIAL SECtCA.
TIDAL.EW~ mur QXKS ~ PILICI.S I
I I~E
(~
            ~
Ol&T SMAKQOWL))                             'QRV IC3 PC@A
                  ~ 5ERVICE AIL' glg   ACCICV
                              ~m     ~mr                                                 PCR
                                                                                              ~ ~+~
IN~               I
                                              ~v
                                                                                                                      ~~-
                                                                                            ~
                                  'SEbnCE            ~                                                              PCPV IAr&N
~ aKRnca ALKA.
I               I QUOITS leal (gagLI   IIQCp eahIC       ACTA.                                                                 v am
                                    '55blICI'. Adrh-CXBRK PvL  <<H~Kv u.S.
P4CL5 a RIAI.
5CILVICvi hREA
(~~ 3~v)
(~      O<CgT   CQEACOul)
P7gl M'A.,EX'I+ OCO~
t Cl+Olc,Q                                r L
LP ITS    ~~           I 3
PRa<   > ~W~         I
                                                                                                                      ~
I                         I SCRI CE H2CA ttIdH ~    PP PAILEL, PRIcz cF          &cb HWH         PdlDTIM& + PCS'~HIS+
I
                                                                                                            ~CC NalH 'k@HIQKLS         t ALLIS)   PQg)~~
r Pha I
CP ~~
55bJ I C v I
I H4H ~ CvHB T he%)PAC.TCILIW
                                            ~H'g-               I"~~ ACTCC.i~
IIIdH pIIIITACV I-EIpL5 (,       5; s,~3 C%EL     ~     'P CcCCC,5 HulH ~     ~+ICAL r~luEAV CA   r~lmm t
II43H   crHalL   cm~~         immi                       C  Q$ 5NATICN keAN IIIiIH
                                                      ~ CCRC.
ImIHl5iiL~
NISI~
I I
INcvsnu~c Bmoc                             TOTAL       ~WAW           HO@%. SALES IMDV5TTRIAL         ScCTA Exhibit V
 
SUSQU EH ANNA SES-ER-OL contaminated by airborne radioiodine is a potential source of exposure.     Samples from milk animals are considered a better indicator of radioiodine in the environment than vegetation.
the census reveals milk animals are not present or are If unavailable for sampling, then veqetation may be sampled.
The 500-sq. ft. garden, considering 20% used for growing green leafy vegetables and a vegetation yield of 2 kg/m> will produce the 26 kq/yr assumed in ~Re ula~tor Guide 1.109 (March 1974) for child consumption of leaf y veqetation. The option to consider the garden to be at the nearest residence is conservative and those locations may be used to calculate doses due to radioactive ef fluent releases in place of the actual locations which would be determined by the census.
The permission of     deviations from the sampling schedule is based on the recognition     of unavoidable practical difficulties which in the absence of the permitted deviations would result in violation of the specifications.
The requirement for the participation in the EPA cross-check program, or similar program, is based on the need for independent checks on the precision and accuracy of the measurements of radioactive material in environmental monitorinq in order to demonstrate     the validity of the results.
~Re oeting Requirement A. Annual Environmental Operatinq Report, Part B, Radiological.
A report on the radiological environmental sur veillance proqram   for the previous calender year shall be submitted to the Director of the NRC Regional Office (with a copy to the Director, Office of Nuclear Reactor Requlation) as a separate document in May of each year.
The period of the first report shall begin with the date of initial criticality The report shall include a
          . summary (format of Table F-1, Environmental Monitoring Program Summary) interpretations, and statistical evaluation of the results of the radiological environmental surveillance activities for the report period, includinq a comparison with operational, controls, preoperational studies (as appropriate) and previous environmental surveillance reports and an assessment of the observed impacts of the station operation   on the environment.
In the event that some results are not available the report shall be submitted noting and explaining the reasons for the missinq results. The missing data shall be submitted as soon as possible in a supplementary report.
 
S US QU EHA N NA S ES-ER-OL The reports shall include either explicitly or by reference to other documentation, the following: a summary description of the radiological environmental monitorinq program including sampling methods for each sample type, size and physical characteristics of each sample type, sample preparation methods analytical methods, and measurinq equipment used; a map of all sampling locations..the results of the land use censuses and the results of the Applicant's participation in the Environmental Protection Agency's Environmental Radioactivity Laboratory Intercomparisons Studies (Crosscheck) Proqram.
B. Non-routine Radiological Fnvironmental Operatinq Reports If a confirmed measured radionuclide concentration in an environmental sampling medium averaged over any quarter samplinq period exceeds the reporting level given in Table F-4, Reportinq Levels. for Non-Routine Operation, a written report shall be submitted to the Director of the NBC Regional Office (with a copy to the Director, Office of Nuclear Reactor Regulation) within 30 days from the end of the quarter.       A confirmatory reanalysis of the original, a duplicate or a new sample may be desirable, as appropriate. The results of the confirmatory analysis shall be completed at the earliest time consistent with the analysis, but in any case within 30 days except in the case of the strontium analysis.       Zf it can be demonstrated that the level is not a result of station effluents (i.e., by comparison with control station or preoperational data) a report need not be submitted, but shall be discussed in the annual report.
If radionuclides other than those in Table -F-4 are detected and are due from station effluents, a reporting level is exceeded     if the potential annual dose to an individual is equal to or greater than the design objective doses of 10 CFR Part 50, Appendix I This report shall include an evaluation of a release conditions, environmental factors or other aspects necessary to explain the anomalous result
 
SUSQUEHANNA SFS-ER OL TABLE F-2 SUSQUEHANNA SES OPERATIONAL RADIOLOGICAL ENVIRONMENTAL HONITORING PROGRAH
                          ++                        Collection                                Analyti cal Sam~le T pe     Location                            F~PB UMC  *          ~Anal  sis            F~re Cene
* Uni ts Air Particulates SS-AP-551       North of I.A.
SS-AP-1152       SW  corner of si te SS-AP-9A1       Near Transmission  Field                                Gross Beta                W      pCi/m3 SS-AP-12E1       Berwi ck Hospital                                        Galena  Emitters          QC    pCi/m SS-AP-7Hl       PPEtL Roof Air Iodine SS-AI-551       North of I.A.
SS-AI-1152       SW  corner of site SS-AI-9A1       Near Transmission  Field                                  I-131                            pCi/m SS-AI-12El       Berwick Hospital SS-AI-7H1       PPSL Roof Surface Water SS-SW-5S2       At I.A.                                                  Gama Emitters                    pCi/1 SS-SW-12F1       Berwick Bridge                                            H-3                              pCi/1 Dr~inkin Water SS- PWT-12F2     Berwick Water Co.
(treated)                                                Gross Beta                H      pCi/1 SS-PWT-12H2     Danvi lie Water Co.                                      Gamma  Emi tters                pCi/1 (treated)                                                H-3                        QC    pCi/1 Fish**
SS-AQF-6AI       Outfall                                  SA              Gama Emi tters            SA    pCi/g(wet)
SS-AQF-2G1       Upstream Sediment SS-AQS-llcl     Hess  Is, area                            SA              Gamma  Emi tters          SA    PCi/9(dry)
Milk SS-H-5B1         Farm SS-M-12B1       Schultz Farm                              2/H            I-131                      2/H    pCi/1 SS-H-1282       Young Farm                                                Gama Emitters              2/H    pCi/1 SS-H-7H2         Crytal Springs Dairy
 
SUSQUEHANNA SES-ER-OL TABLE  F-2  (cont.)
SUSQUEHANNA SES OPERATIONAL RADIOLOGICAL ENVIRONMENTAL HONITORING PROGRAH
                                        ++                           Collection                                Analytical
~Sam  le  T  e                Location                              ~Fee  mene  *          ~Anal sis        ~Fre mene
* Uni ts Food Products SS-FP-5B1                      Farm                                                          Ganma  Emitters              pCi/g(wet)
Direct Radiation SS-ID-3S2                    Susquehanna    River SS- I D-4S1                  Susquehanna    River SS- ID-551                    North of I.A.
SS-ID-7S1                    On  230 KV Tower                                              Gama Dose                    mrem/std.mo SS-ID-11S2                    On  230 KV Tower SS- I D-9AI                  Near Transmission    Field SS- ID-12E1                  Berwick Hospital SS- ID-7HI                    PP&L Roof Frequency Codes:
            = Weekly; H = Monthly;    = Quarterly;  SA = Semi-Annual; A = Annual; 2/H = twice each month; C W                          Q                                                                        Composite.
Important classes of fish will be    analyzed separately.    (bottom feeders and game fish)
Hilk collected and analyzed semi-monthly from April through October - monthly during other months.
Shown  in Figure.
 
SUSQUEHANNA SES ER OL TABLE F-3 DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYSIS MINIMUM DETECTABLE LEVEL (MDL)
Airborne Particulate Water          or Gas                Fish        Mi 1 k Food Products  Sediment Analys is  (pCi/l)      (pCi/m')            (pCi/kg-wet)    (pCi/1) (pCi/kg-wet)  (pCi/kg-dry)
Gross Beta              7  x 10 H-3          200 Mn-54        10                                  85 Fe-59        20                                  170 Co-58,60      10                                  85 Zn-65        20                                  170 ZrNb-95 I-131          0.3      5x10                                    5c        16c,d Cs-134,137    10        5 x 10                    85        10          50          100 BaLa-140      10                                              10
 
SUSQUEHANNA SES-ER-OL Table F-3      (Cont'd)  ~
Acceptable detection capabilities for thermoluminescent dosimeters used for environmental measurements are given in Regulatory Guide 4.13, July 1977.
Indicates acceptable detection capabilities for radioactive materials in environmental samples. These detection capabilities are tabulated in terms of the minimum detectable level (MDLs). The NOL is defined, for purposes of this Table, as that concentration of radioactive material in a sample that will yield a net count which is different from the background count by three times the standard deviation after background count.
For  a  particular  measurement    system (which may include radiochemical separation):
3 00 Sb MDL =
E x  V x 2.22 x    Y  x exp(-X  t)
: where, NOL  is minimum  detectable level      as  defined above (as pCi per unit mass or volume)
Sb  is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute)
E  is the counting efficiency (as counts per disintegration)
V  is the  sample size    (in units of    mass  of  volume) 2e22    is the  number  of disintegrations per minute per picocurie Y  is the fractional radiochemical yield          (when  applicable) is the radioactive decay constant for the particular radionuclide is the elapsed time      between sample    collection    and counting The value    of S  used  in the calculation of the NOL for a particular measurement system should      e based    on the actual observed variance of the background counting rate or of the counting rate of the blank samples (as appropriate) rather than on an unverified theoretically predicated variance. In calculating the MDL for a radionuclide determined by gama-ray spectrometry, the background should include the typical contributions of other radionuclides normally present in the sample (e.q., potassium-40 in milk samples). Typical values of E,V,Y, and t should be used in the calculation.
It should    be recognized    that the NOL is defined as ~a riori (before the fact) limit representing      the capability of a measurement system and not as f      t    f    ill i    f      p
 
SUSQUEHANNA SES-ER-OL Table F-3 (Cont'd)
: c. MDLs  for I-131 in water, milk and other food products correspond to one-quarter of the Appendix I ( 10 CFR Part 50) design objective dose-equivalent of 15 mrem/
year using the assumptions given in Regulatory Guide 1. 109 except for an infant consuming 330 1/yr of drink water.
: d. MDL for leafy vegetables.}}

Latest revision as of 18:38, 3 February 2020

Amendment No. 4 Rev. 1 to Environmental Report
ML18023B081
Person / Time
Site: Susquehanna  Talen Energy icon.png
Issue date: 03/05/1979
From:
Pennsylvania Power & Light Co
To:
Office of Nuclear Reactor Regulation
References
Download: ML18023B081 (58)


Text

SUSQUEHANNA SES-ER-OL SECTION TITLE APP EN DX AN EVALUA

'XZS.... ~ .............

ON OF THE COST OF SF. VICE IMPACT

~

VOLUME XII OF A DELAY SUSQUEHANNA N THE IN-SERVICE ES (JANUARY 1978 D

............IXI TES OF B1 PEAK LOAD 1976-1 0.................... IXI CURRENT LONG-RA GE FORECAS ENERGY SALES 6

~ ~

APPLICANT'S FORECAS NG METHODOLOGY KMH

'IX SALES AND PEAK LOADS CE!1BER, 1976.........IXI FPC ORDER NO 496..............

NATXONMIDE FUEL EilZ GENCY ZSPONSZ TO

~ XII SUSQUEHANNA RIVE MATER ANALYSZ

SUMMARY

.. III EQUATIONS AND SSUMPTIONS UTILIZED N THE CALCULATION 0 INDIVIDUAL AND POPULA ON DOSES TO MAN .

ENVIRON%EN AL TECHNXCA L S PECIFXC ATION S.. XII

SUSQUEHANNA SES-ER-OL TABLE 1.1-3 1977 PROJECTION OF APPLICAN'A LOADS-CAPACITY-RESERVES (HIGH LOAD PROJECTION Year 1978 1979 1980 1981 1982 1983 1984 1985 Winter Peak MWe 4960 5320 5670 6100 6480 6840 7200 7570 Capacity Changes Fossil (Oil)

Nuclear 945(') 945(l)

Hydro 63(2)

Reratings Total Capacities Fossil (Coal) 4145 4145 4145 4145 4145 4145 4145 4145 Fossil (Oil) 1640 1640 1640 1640 1640 1640 1640 1640 CT 6 (j~sel 539 539 539 539 539 539 539 539 Hydro 146 146 146 146 146 146 146 209 Nuclear 945 1890 1890 1890 1890 Firm Purchase 76 76 76 76 76 76 76 76 Capacity Transactions (41) (50)

Total MWe 6505 6496 6436 7426 8405 8374 8343 8374 Reserve over winter peak:

With Susquehanna MWe Capacity 1326 1925 1534 1143 804 X of Load 22 30 22 16 ll Without Susquehanna MWe Capacity 1545 1176 766 326 (65) (436) (807) (1126)

% of Load 31 22 14 5 (1) (6) (ll) (15)

With Susquehanna But Without Oil S (1075) (476) (867) (1258) (1660)

Hydro Generation (18) (7) (13) (17) (22)

Without Susquehanna~

Oil 8 Hydro Generation (856) (1225) (1635) (2075) (2466) (2837) (3208) (3590)

Hwe Capacity (17) (23) (29) (34) (38) (41) (45) (47)

Note: See Footnotes Following Table 1.1-6.

SUSQUEHANNA SES"ER-OL TABLE 1.1-4 1977 PROJECTION OF APPLICAFA LOADS-CAPACITY-RESERVES MID-RANGE LOAD PROJECTION)

Year 1978 1979 1980 1981 1982 1984 1985 Winter Peak MWe 4820 5050 5310 5690 5990 6280 6560 6850 Capacity Changes 945"'983 Fossil (Oil)

Nuclear 945(l)

Hydro 63(2)

Reratings Total Capacities Fossil (Coal) 4145 4145 4145 4145 4145 4145 4145 4145 Fossil (Oil) 1640 1640 1640 1640 1640 1640 1640 1640 CT 6 (j~sel 539 539 539 539 539 539 539 539 Hydro 146 146 146 146 146 146 146 209 Nuclear 945 1890 1890 1890 1890 Firm Purchase 76 76 76 76 76 76 76 76 Capacity Transactions (41) (50) ~(110 (65) (31) (62) ~(93 (125)

Total MWe 6505 6496 6436 7426 8405 8374 8343 8374 Reserve over winter peak:

With Susquehanna MWe Capacity 1736 2415 2094 1783 1524 g of Load 31 40 33 '27 22 Without Susquehanna MWe Capacity 1685 1446 1126 736 425 124 (167) (406)

$ of Load 35 29 21 13 7 2 (3) (6)

With Susquehanna But Without Oil 6 (665) 14 (307) (618) (940)

Hydro Generation (12) 1 (5) (9) (14)

Without Susquehanna~

Oil 6 Hydro Generation (716) (955) (1275) (1665) (1976) (2277) (2568) (2870)

Mwe Capacity (15) (19) (24) (29) (33) (36), (39) (42)

NOTE: See Footnotes Following Table 1.1-6

SUS(UEHANNA SES-ER-OL TABLE 1.1-5 1977 PROJECTION OF APPLICANT LOADS-CAPACITY"RESERVES (IOW IOAD PROJECTION Year 1978 1979 1980 1981 1983 1984 1985 Winter Peak MWe 4650 4720 4910 5170 5390 5650 5920 6050 Capacity Changes 945"'982 Fossil (Oil)

Nuclear 945("

63(2)

Hydro Reratings Total Capacities Fossil (Coal) 4145 4145 4145 4145 4145 4145 4145 4145 Fossil (Oil) 1640 1640 1640 1640 1640 1640 1640 1640 CT 8 539 539 539 539 539 539 539 539 (j~sel 146 146 146 146 146 146 Hydro 146 146 Nuclear 945 1890 1890 1890 1890 Firm Purchase 76 76 76 76 76 76 76 76 Capacity Transactions (125)

Total Mwe 6505 6496 6436 7426 8405 8374 8343 8374 Reserve over winter peak:

With Susquehanna MWe Capacity 2256 3015 2724 2423 2324

~ of Load 44 56 48 41 38 Without Susquehanna MWe Capacity 1855 1776 1526 1256 1025 754 473 394 4 of Load 40 38 31 24 19 13 8 7 With Susquehanna But Without Oil 6 (145) 614 323 22 (140)

Hydro Generation (3) 11 6 1 (2)

MWe Capacity g of Load Without Susquehanna>

Oil 8 Hydro Generation (546) (625) (875) (1 145 ) (1376) (1647) (1928) (2070)

MWe Capacity (12) (13) (18) (22) (26) (29) (33) i (34) g of Load NOTE: See Footnotes Following Table 1.1-6.

SUSQUEHANNA SES-ER-OL TABLE 1.1-6 1977 PROJECTION OF APPLICAN'8 LOADS-CAPACITY-RESERVES (LOW-LOW LOAD PROJECTION)

Year 1978 1979 1980 1981 1982 1983 1984 1985 Winter Peak HWe 4530 4580 4720 4890 5050 5230 5420 5500 Capacity Changes Fossil (Oil)

Nuclear 945(l) 945( )

Hydro 63(2)

Reratings Total Capacities Fossil (Coal) 4145 4145 4145 4145 4145 4145 4145 4145 Fossil (Oil) 1640 1640 1640 1640 1640 1640 1640 1640 CT 8 (j~sel 539 539 539 539 539 539 539 539 Hydro 146 146 146 146 146 146 146 209 Nuclear 945 1890 1890 1890 1890 Fixm Purchase 76 76 76 76 76 76 76 76 Capacity Transactions (41) (50) ~llO (65) (31) (62) (93) (125)

Total HWe 6505 6496 6436 7426 8405 8374 8343 8374 Reserve over winter peak:

With Susquehanna NWe Capacity 2536 3355 3144 2923 2874

$ of Load 52 66 60 54 52 Without Susquehanna MWe Capacity 1975 1916 1716 1536 1365 1174 973 944 g of Load 44 42 36 31 27 22 18 17 With Susquehanna But Without Oil 6 135 954 743 522 410 Hydro Generation 3 19 14 10 7 MWe Capacity g of Load Without Susquehanna, Oil 6 Hydro Generation (426) (485) (685) (865) (1036) (1227) (1428) (1520)

MWe Capacity (9) (11) (15) (18) (21) (23) (26) (28) g of Load NOTE: See Footnotes Following Table 1.1-6

S USQ UEH A N NA S ES-E R-OL 2 3. 1 2. 2 Tornadoes The incidence of tornadoes in the site area is very low. Between the years 1950 and 1973 only 38 tornadoes were reported within 50 miles of the site. Tornado activity is at a maximum during the summer months with most tornadoes occurring in the late afternoon or evening. Figure 2. 3-1, Tornado Occurrence <<nd Intensity in the Susquehanna SZS Reqion, is a histogram for the years 1953-1962 showing tornado frequency by month, hour and intensity within a 3 by 3~ square which is centered on the site. The intensity cateqories are based on the Fujita tornado intensity classification (Ref. 2.3-5). Prom Figure 2.3- 1 it can be seen that maximum tornado occurrence is in the summer. Diurnally, tornado frequency reaches a maximum during late afternoon, shortly after the period of greatest instability 2 3.1. 2 3 Th>>ndec storms Thunderstorms in the area are usually of brief duration and concentrated in the warm months. They are responsible foc most of the summertime rainfall which normally avecaqes around 3.7 inches per month at Avoca. Based on a 19 year average at Avoca the mean number of "days with thunder heard" is 30 (Ref 2.3-3) .

A monthly breakdown of the mean number of thunderstorm days that is representative of the site is shown in Table 2.3-2, Th understocm Days for Avoca.

2. 3. 1 2. 4 L~iht ning There is neither documentation nor direct measurement of the occurrence of lightning other than the observation of associated thunder. Local climatological data tabulated by the National Weather Service (Ref. 2. 3-3) does not provide information reqardinq the incidence, severity. or frequency of lightning occurrences A .thunderstocm can usually be heard unless the liqhtning causing the thunder is more than 15 miles away; therefore, thunder incidence can presumably be used to confirm the presence of some lightning The number of lightning strikes per square mile per year has been established by, Uman (Ref. 2.3-6) . The combined results of several studies summarized ny Uman indicate that the number of flashes to the qround pec square mile per year is between 0 05 and 0.80 times the number of thunderstorm days pec year. The mean number of days with thunderstorms probably over estimates the actual occurrence of cloud-to-ground lightning since some thunderstocms probably contain only cloud-to-cloud lightning.

2~3 3

SUSQUEHANNA S ES-ER-OL Therefore. if the annual thunderstorm frequency at Avoca is used (30 days), the number of: ground lightning strikes is between two and 24.

2 3 1 2 5 Hail Hail in the site region sometimes falls from severe thunderstorms. Because hail f alls in narrow swa ths, only a small fraction of occurrences is recorded at regular reporting stations The average annual number of days with hail at a point in the area is 23. The occurrence of large hail (greater than

0. 75 inches diameter) averaqes one or two occurrences annually Accordinq to Pautz (Ref. 2.3-7) the number of hailstorms with hail 0.75 inch or greater in a one-degree longitude-latitude square area in the vicinity of the site for the period 1955-1967 was about five For Avoca from 1973-75 there was one hailstorm in June and one in July of 1973 and 1974. Xn 1975 there was also one hailstorm in August and one in October There were no occurrences of hail recorded in 1976 at Avoca (Ref. 2.3-3) 2 3.1 2 6 Extreme Minds Strong winds occur in Pennsylvania as a result of occasional hurricanes, thunderstorms, tornadoes and tropical storms. The followinq is the fastest mile of wind and its associated direction, by month, at Avoca (1955-1976) (Ref. 2.3-3).

Fastest Mile of Wind Month mph Direction Month mph Direction January 43 SE July 42 NW February 60 W Auqust 50 NE March 49 S September 38 SM April 47 NW October 38 E May 40 NW November 45 S June 43 W December 47 SM The 50-year and 100-year mean fastest mile wind speeds for the site area are 75 miles per hour and 80 miles per hour, respectively (Ref. 2.3-8) . Accordinq to Pautz, there were eight windstorms 50 knots and qreater for the one degree latitude-longitude square that includes the Susquehanna SES for the period 1955-1967 (Ref. 2 3-7) .

2 3-4

SUSQUEHANNA SES-ER-G'i.

TABLE 2.3-33 LONG-TERM TEMPERATURE ( F) AT AVOCA (Period of Record: 1956-1974)

Extreme Month ~Dail Max ~Dail Mia Mean Hicihest lowest January 33.5 18.4 26.0 67 -10 February 35.3 19.3 27.3 62 March 44.7 27.2 36.0 78 April 58.9 38.0 48.5 89 15 70.0 47.8 58.9 93 27 June 79.0 56.8 67.9 97 34 July 83.0 61.3 72.2 101 45 August 80.7 59.2 70.0 94 43 September 73.6 52.1 62.9 95 30 October 63.0 42.2 52.6 84 19 November 48.8 32.8 40.8 77 10 December 36.1 22.0 29.1 65 Annual 58.9 39.8 49.4 101 Ref. 2.3-3

SUSQUEHANNA SES-ER-OL TABLE 2.3-49 PRECIPITATION DATA FOR AVOCA (Period of Record: 1956-1974)

Month Total Greatest 24-Hour (in inches) (in inches)

January 2.04 1.52 February 1.96 1.60 March 2.50 2.20 April 3.06 1.59 May 3.50 2.58 June 3.40 3.61 July 4.09 2.33 August 3.21 3.18 September 2.82 3.09 October 2.71 2.61 November 3.01 2.91 December 2.51 2. 30 Annual 34.81 3.61 Ref. 2.3-3

SUSQUEHANNA SES-ER-OL.

TABLE 2.3-81 JOINT FRE UENCY (%) OF WIND DIRECTION, WIND SPEED AND STABILITY FOR AVOCA (Period of Record: 1971-1975)

Stability Class B Wind Speed (kts)

Se'ctor 0-3 4-6 7-10 11-16 17-21 >21 Total 898 .1507 .1164 .3569 NNE 975 .0548 .0548 .2071 NE 654 .0548 .0616 .1819 ENE 1112 .0411 .0137 .1660 768 .0274 .0342 .1385 ESE 516 .0205 0 .0721 SE 528 .0274 .0068 .0870 SSE 424 .0137 .0137 .0698 1675 .0890 .0205 .2771 SSW 898 .1507 .0959 .3364 SW 991 .2055 .1507 .4553 WSW 1773 .2877 .2123 ~ 6773 2118 .2493 .1301 .6913 1449 .1918 .1164 .4531 NW 1449 .1986 .0890 .3856 NNW 748 .1096 .1027 .2871 Total 6507 1.9726 1.2192 Relative frequency of occurrences of B Stability = 4.8425 Ref. 2.3-4

SUSQUEHANNA SES-ER-OL SECTION TITLE VOLUME APPENDICIESo o r o o o o o o e o ~ o o o o o o o o o r o or o o o o o o o o o o o III B1 AN EVALUATION OF THE COST OF SERVICE .IMPACT OF A DELAY IN THE IN-SERVICE DATES OF SUSQUEHANNA SES (JANUARY 1978)

CURRENT LONG-RANGE FORECAST ENERGY SALES 6

....... III PEAK LOAD 1976-1990................. III B2 APPLICANT' FORECASTING METHODOLOGY KWH SALES AND PEAK LOADS DECEMBER, 1976.. III FPC ORDER NO 496.............

NATIONWIDE FUEL EMERGENCY RESPONSE TO

~ III SUSQUEHANNA RIVER WATER ANALYSES

SUMMARY

...III EQUATIONS AND ASSUMPTIONS UTXLIZED IN THE CALCULATION OF IN DIVIDUAL AND POPULATION DOSESTOMANoorooooo ~ or eooeoooooooooor ~ ooo coro ~ III ENVIRONMENTAL TECH NICA L S PECIFIC ATIONS... ~ III

P i

t

~ P E

'I

SUSQU EHANNA S ES-ER-OL site) and at Danville (about 31 miles (49.9 km) downstream. The Corps of Engineers has compiled flood stage and discharge

. information for the Susquehanna River at Wilkes-Barre (Ref. 2.4-7). These data are based on records of flood stages dating from 1991 Data for the four most severe floods of record are presented in Table 2.4-5, Historic Floods in the Vicinity of the Susquehanna SES Table 2.4-5 also includes the stages and discharges f or floods at the site and at Danville. The flood frequency characteristics of the Susquehanna as measured at Danville are illustrated in Figure 2.4-6, Flood Discharge Frequency.

The passaqe of Tropical Storm Agnes through. Pennsylvania on June 22 and 23, 1972 resulted in record flood levels in the Susquehanna River Basin Flood crests exceeded the previous record flood level .of 1936 at Wilkes-Barre by 7 5 feet (2.3 m).

At Danville, a local maximum qaqe level resulting from a 1904 ice jam was exceeded by 1.6 feet (0.5 m) . Peak discharqe at Wilkes-Barre was an estimated 345,000 cfs (9,770 m~/sec) or a unit discharge of 34.5 cubic feet per second per sguare mile (cfsm)

(0 4 m~/sec/km~) . Accumulated runoff for the drainage area above Wilkes-Barre for the period of 0000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />, June 21, 1972 through 2200 hours0.0255 days <br />0.611 hours <br />0.00364 weeks <br />8.371e-4 months <br />, June 27, 1972 totaled 4.32 inches (11.0 cm) (Ref.

2 4-13) .

2 4. 2 5 Low Plows Long term records from the USGS gaging stations at Danville and Wilkes-Barre provide the data base for the low flew f requency analyses presented in this Subsection. Long duration low flow f requency analysis has been performed by the Pennsylvania Department of Environmental Resources (DER). The resulting curves for low f3.ow durations of two to 60 months and recurrence intervals up to 100 years for Danville and Wilkes-Barre are provided in Figures 2.4-7, Low Flow Duration at Danville and 2.4-8 ~ Low Flow Duration at Wilkes-Barre, respectively.

Tables 2.4-6 and 2.4-7, Maqnitude and Frequency of Annual Low Flow of the Susquehanna River at Danville and Wilkes-Barre, Pa.

respectively, discuss the discharge for different recurrence intervals. Tables 2.4-8 and 2.4-9, Duration Table of Daily Flow of the Susquehanna River at Danville and Wilkes-Barre, Pa.

respectively indicate the river discharge (Ref. 2.4-14) .

The most extended drought period occurred in the 1960's. The lowest consecutive day flows for periods of 183 days and less have also occurred in this period The mean monthly flows at Danville and Wilkes-Barre are provided in Table 2.4-10a, Mean Monthly Drought Year Flow Sequences. Mean Daily Flows During 1964 Drought, Table 2.4-10b for these two stations are provided for the four lowest flow months of this year 2 4-5

S USQ U EH A NNA S ES-E R-OL A policy decision 'of the Susquehanna River Basin Commission reqardinq consumptive withdrawals during low flow periods provides that natural flows during droughts will not he diminished by future water users. On September 30 1976, this policy decision was implemented as an Amendment to 18 CFR Part 80'3 (Susquehanna River Basin Commission, Subpart D Standards for Review, Section 803.61, Consumptive Uses of Mater) (Ref. 2.4-15). Compensation shall be reguired for consumptive uses of water during periods of low flow. The provisions of this regulation apply to consumptive uses initiated since January 23, 1971 2 4 2 6 Sedimentation Annual sediment yields in the reqion surrounding the site are spacially uniform. Neasurements at Towanda, Pa. about 105 miles (169 km) above the station, indicate on annua'ediment yield of 150 tons/sq mi (52.5 metric tons/km~) from a drainaqe area of 7797 sq mi (20,194 km~) . Annual yields at Danville, 11,220 sq mi (29,060 km~) drainage area are estimated to be 140 tons/sq mi (49.0 metric tons/km~) (Ref 2 4-8) . Daily sediment discharges at individual stations are highly variable The daily sediment discharqe at Danville ranqes from a high of 556, 000 tons/day (504,400 metric tons/day) to a low of 18 tons/day (16.3 metric tons/day) .

Mater quality samplinq at the site included measurement of total suspended solids A range of values from 1. 6 mg/1 to 912.6 mq/1 with an averaqe value of 57. 0 mg/1 was found. These results are further reported in Subsection 2.4 3.

Grain size analysis was performed on water samples taken in 1974 usinq an automatic image analyzer. The grain size determination was performed on treated and untreated river water samples. The results for the untreated samples are reported in Table 2 4-11, Sediment Grain Size Distribution.

2 4 2 7 Mater Impoundments The Susquehanna River supplies all the water required for normal station operation. A seven-acre (2.8 ha.) spray'ond is located onsite to supply water to emergency heat dissipation systems.

The warmed water from the reactors is cooled via the pond's spray system and then recirculated throuqh the emergency cooling systems.

This spray pond has a relatively impervious liner. It is free-form in shape to conform to the natural topography of the area.

Embankments and ditches are provided to direct surface water

2. 4-6

SUS(}UEHANNA SES-ER-OL TABLE 2.4-2 MONTHLY AVERAGE RIVER CONDITIONS STAGE, VEIOCITY AND DISCHARGE OCTOBER STATION STAGE VELOCITY DIS(HARGE (River Mile) (Ft. msl) (Ft/sec) (Ft /sec)

Present Pro ected Present Pro ected Present Pro ected

~

Sunbury 420.9 420.9 2.0 1.9 9164 8631 (122.0)

Northumberland 422.9 422.8 0.8 0.7 5144 4761 (123.5)

Volverton Sta. 427.8 427.6 3.0 3.3 5122 4742 (128.5)

Danville 434. 6 434.4 1.8 1.8 5083 4707 (134.7)

Catawissa 447. 9 447.7 1.6 1.6 4939 4590 (143.7)

Bloomsburg 453.5 1.0 1.0 4749 4408 (146.6) 453.3'57.

1 Almedia 457. 4 2 1.6 1.5 4749 4408 (150.4)

Berwick 476.4 476.3 1.0 4623 4290 (159.1)

Nescopeck 477.6 477.4 1.9 1.9 4623 4290 (160.0)

Beach Haven 483.0 482.9 1.6 1.5 4623 4290 (162.4)

Mapwallopen 483.3 483.1 1.5 1.4 4623 4290 (163.9)

Plant Site 484.7 484.5 1.0 0.9 4595 4280 (165;5)

Shickshinny 487.9 487.7 2' 2.7 4570 4270 (169.5)

SUS(}UEHANNA SES-ER-OL TABLE 2.4-2 (Continued)

STATION STAGE VELOCITY DIS(HARGE (River Mile) (Ft. msl) (Ft/sec) (Ft /sec)

Present Pro ected Present Pro ected Present Pro ected Sunbury 422.0 421.9 3.4 3.4 21146 20613 (122.0)

Northumberland 425.0 424.9 1.0 1.0 12478 12095 (123.5)

Wolverton Sta. 429.8 429.7 2.4 2.4 12457 12077 (128.5)

Danville 437.1 437.0 2.2 2.2 12421 12045 (134.7)

Catawissa 451. 2 451. 1 1.9 1.9 12090 11741 (143.7)

Bloomsburg 456.2 456.1 1.5 1.5 11648 11307 (146.6)

Almedia 460.0 59.9 2.2 2.1 11648 11307 (150.4)

Berwick 478.9 478.8 1.6 1.5 11356 11023 (159.1)

Nescopeck 479.8 479.7 2.0 2.0 11356 11023 (160.0)

Beach Haven 484.8 484.8 2.1 2' 11356 11023 (162.4)

Wapwallopen 485.5 485.4 2.4 2.3 11356 11023 (163.9)

Plant Site 487.4 487.3 1.6 1.6 11291 10976 (165.5)

Shickshinny 490. 8 490.7 3.9 3.9 11232 10932 (169.5)

SUSQUEHANNA SES-ER-OL TABLE 2.4-2 (Continued)

STATION STAGE VELOCITY DIS(HARGE (River Mile) (Ft. msl) (Ft/sec) (Pt /sec)

Present Pro ected Present Pro ected Present Pro'ected Sunbury 422.6 422.6 4.2 4.2 29842 29309 (122.0)

Northumberland 426.2 426.1 18028 17645 (123.5)

Wolverton Sta. 431.0 430.9 2.5 2.5 17958 17578 (128.5)

Danville 438.5 438.4 2.4 2.4 17835 17459 (134.7)

Catawissa 453. 2 453. 0 2.0 2.0 17348 16999 (143.7)

Bloomsburg 457.5 457.4 1.8 1.7 16698 16357 (146.6)

Almedia 461.4 461.3 2.5 2.5 16698 16357 (150.4)

Berwick 480.2 480.10 1.8 1.8 16270 15937 (159.1)

Nescopeck 481.1 481.0 2.2 2.2 16270 15937 (160.0)

Beach Haven 485 ' 485.7- 2.3 2.3 (162 ') 16270 15937 Wapwallopen 486.7 486.6 2.9 2.8 16270 15937 (163.9)

Plant Site 488.8 488.7 2.0 1.9 16175 15860 (165.5)

Shickshinny 492.4 492.3 4.2 4.2 16089 15789 (169.5)

SUSQUEHANNA SES-ER-OL TABLE 2.4-2 (Continued)

STATION STAGE VELOCITY DIS(HARGE (River Mile) (Ft. msl) (Ft/sec) (Ft /sec)

Present Pro'ected Present Pro ected Present Pro ected Sunbury 422.3 422.3 3.9 3.8 25852 25319 (122.0)

Northumberland 425.6 425.6 1.0 14978 14595 (123.5)

Volverton Sta. 430.4 430.3 2.4 2.4 14908 14528 (128.5)

Danville 437.7 437.6 2.3 2.3 14785 14409 (134.7)

Catawissa 452.0 451.9 1.9 1.9 14349 14000 (143.7)

Bloomsburg 456.7 456.6 1.6 1.6 13768 13427 (146.6)

Almedia 460.6 460.5 2.3 2.3 13768 13427 (150.4)

Berwick 479.5 479.4 -l. 7 1.7 13384 13051 (159.1)

Nescopeck 480.4 480.3 2.1 2.1 13384 13051 (160.0)

Beach Haven 485.2 485.2 2.2 2.2 13384 13051 (162.4)

Mapwallopen 486.0 485.9 2.6 2.5 13384 13051 (163.9)

Plant Site 488.0 487.9 1.8 1.7 13299 12984 (165.5)

Shickshinny 491.5 491.4 4.0 4.0 13222 12922 (169.5)

)

0

SUSQUEHANNA SES-ER-OL TABLE 2.4-2 (Continued)

STATION STAGE VELOCITY DIS(HARGE (River Mile) (Ft. msl) *

(Ft/sec) (Ft /sec)

Present Pro ected Present Pro ected Present Pro ected Sunbury 422.7 422.6 4.3 4.3 30704 30171 (122.0)

Northumberland 426.2 426.2 17576 17193 (123.5)

Wolverton Sta. 430.9 430.8 2.5 2.5 17479 17099 (128.5)

Danville 438.3 438.3 2.4 2.4 17308 16932 (134.7)

Catawissa 453.0 452.9 2.0 2.0 16920 16571 (143.7)

Bloomsburg 457.5 457.4 1.8 1.8 16685 16344 (146.6)

Almedia 461.4 461.3 2.5 2.5 16685 16344 (150.4)

Berwick 480.1 480.1 1.8 1.8 16071 15738 (159.1)

Nescopeck 481.0 481.0 2.2 2.1 16071 15738 (160.0)

Beach Haven 485.8 485.7 2.3 2.3 16071 15738 (162.4)

Wapwallopen 486.7 486.6 2.8 2.8 16071 15738 (163.9)

Plant Site 488.7 488.6 1.9 1.9 15828 15513 (165.5)

Shickshinny 492.3 492.2 4.2 4.2 15759 15459 (169.5)

SUSQUEHANNA SES-ER-OL TABLE 2.4-2 (Continued)

STATION STAGE VELOCITY DIS)HARGE (River Mile) (Ft. msl) (Ft/sec) (Ft /sec)

Present Pro ected Present Pro ected Present Pro ected Sunbury 424.4 424.4 5.6 5.6 55420 54887 (122.0)

Northumberland 428.7 428.7 1.3 1.3 31852 31469 (123.5)

Wolverton Sta. 433.4 433.4 2.7 2.7 31732 31352 (128.5)

Danville 441.2 441.1 2.8 2.8 31521 31143 (134.7)

Catawissa 456.7 456. 7 2.4 2.4 31065 30716 (143.7)

Bloomsburg 460.4 460.3 2.3 2.3 30458 30117 (146.6)

Almedia 464.4 464.4 3.1 3.1 30458 30117 (150.4)

Berwick 482.9 482.8 2.5 2.5 30058 29725 (159.1)

Nescopeck 483.8 483.7 2.6 2.6 30058 29725 (160.0)

Beach Haven 488.0 488.0 2.9 2.9 30058 29725 (164.2)

Wapwallopen 489.4 489.4 3.8 3.8 30058 29725 (163.9)

Plant Site 491. 9 491.8 2.7 2.7 29969 29654 (165.5)

Shickshinny 495.9 495.9 5.0 5.0 29888 29588 (169.5)

SUSQUEHANNA SES-ER-OL TABLE 2.4-2 (Continued)

STATION STAGE VELOCITY DIS(HARGE (River Mile) (Ft. msl) (Ft/sec) (Ft /sec)

Present Pro ected Present Pro ected Present Pro ected Sunbury 424.8 424.7 5.8 5.9 61354 60821 (122.0)

Northumberland 429.2 429.2 1.4 1.4 37415 37032 (123.5)

Wolverton 'Sta. 434. 2 2.8 (128 ') 434.2 2.8 37256 36876 Danville 442.1 442.0 2.9 2.9 36978 36602 (134.7)

Catawissa 457. 9 457. 8 2.5 2.5 36331 35982 (143.7)

Bloomsburg 461.3 461;2 2.5 2.5 35469 35128 (146.6)

Almedia 465.3 465.3 3.3 3-3 35469 35128 (150.4)

Berwick 483.6 483.6 2.7 2.7 34900 34567 (159.1)

Nescopeck 484.6 484.6 2.7 2.7 34900 34567 (160.0)

Beach Haven 488.7 488.7 3.0 3.0 34900 34567 (162.4)

Mapwallopen 490.2 490.2 4.1 4.1 34900 34567 (163.9)

Plant Site 492.8 492.8 2.9 2.9 34774 34459 (165.5)

Shickshinny 497.0 496.9 5.3 5.3 34659 34359 (169.5)

0 SUSQUEHANNA SES-ER-OL TABLE 2.4-2 (Continued)

STATION STAGE VELOCITY DIS(HARGE (River Mile) (Ft. msl) (Ft/sec) (Ft /sec)

Present Pro ected Present Pro ected Present Pro ected Sunbury 423.0 423.0 4.6 4.5 35015 34882 (122.0)

Northumberland 426.7 426.7 19326 18943 (123.5)

Wolverton Sta. 431.3 431.2 2.5 2.5 19229 18849 (128.5)

Danville 438.7 438.7 2.4 2.4 19060 18684 (134.7)

Catawissa 453.5 453.4 2.0 2.0 18567 . 18218 (143.7)

Bloomsburg 457.8 457.7 1.8 1.8 17909 17568 (146.6)

Almedia 461.7 461.7 2.6 2.5 17909 17568 (150.4)

Berwick 480.4 480.4 1.9 1.9 17475 17142 (159.1)

Nescopeck 481.4 481.3 2.2 2.2 17475 17142 (160.0)

Beach Haven 486.0 486.0 2.4 2.4 17457 17142 (162.4)

Wapwallopen 487.0 486.9 3.0 2.9 17475 17142 (163.9)

Plant Site 489.1 489.0 2.0 2.0 17379 17064 (165.5)

Shickshinny 492.8 492.7 4.3 4' 17291 16991 (169.5)

SUSQUEHANNA SES-ER-OL TABLE 2.4-2 (Continued)

STATION( ) STAGE VELOCITY DIS(HARGE (River Mile) (Ft. msl) (Ft/sec) (Ft /sec)

Present Pro ected Present Pro 'ected Present Pro ected S unbury 421.8 421.8 3.4 3.3 19915 19382 (122.0)

Northumberland 424.8 424;7 0.9 0.9 11108 10725 (123.5)

Wolverton Sta. 429.5 429.4 2.4 2.4 11054 10674 (128.5)

Danville 436.7 436.6 2.2 2.1 10959 10583 (134.7)

Catawissa 450.6 450.5 1.8 1.8 10638 10289 (143.7)

Bloomsburg 455.7 455.6 1.4 1.4 10211 9870 (146.6)

Almedia 459.5 459.4 2.1 2.0 10211 9870 (150.4)

Berwick 47.8. 5 478.3 1.5 1.4 9930 9597 (159.1)

Nescopeck 479.4 479.3 2.0 2.0 9930 9597 (160.0)

Beach Haven 484.5 484.5 ~

2.0 2.0 9930 9597 (162.4)

Wapwallopen 485.1 485.0 2.2 2.2 9930 9597 (163.9)

Plant Site 486.9 486.8 1.5 1.5 9868 9553 (165.5)

Shickshinny 490.3 490.2 3.8 3.7 9811 9511 (169.5)

SUS(}UEHANNA SES-ER-OI TABLE 2.4-2 (Continued)

STATION STAGE VELOCITY DIS(HARGE (River Mile) (Ft. msl) (Ft/sec) (Zt /sec)

Present Pro ected Present Pro ected Present Pro ected Sunbury 421.0 420.9 2.0 2.0 9734 9201 (122.0)

Northumberland 423.0 422.9 0.7 0.7 5277 4894 (123.5)

Volverton Sta. 427.8 427.7 3.0 3.2 5247 4867 (128.5)

Danville 434.7 434.5 1.8 1.8 5194 4818 (134.7)

Catawissa 448.0 447.8 1.6 1.6 5116 4767 (143.7)

Bloomsburg 453.6 453.4 1.0 5012 4671 (146.6)

Almedia 457.5 457.3 1.6 1.6 5012 4671 (150.4)

Berwick 476.6 476.4 4944 4611 (159.1)

Nescopeck 477.7 . 477.5 1.9 1.9 4944 4611 (160.0)

Beach Haven 483.2 483.0 1.6 1.6 4944 4611 (162.4)

Mapwallopen 483.5 483.3 1.5 1.4 4944 4611 (163.9)

Plant Site 484.9 484.7 1.0 1.0 4929 4614 (165.5)

Shickshinny 488.1 487.9 2.9 2.8 4915 4615 (169.5)

SUS(}UEHANNA SES-ER-OL TABLE 2.4-2 (Continued)

STATION( ) STAGE VELOCI1Y DIS(HARGE (River Mile) (Ft. msl) (Ft/sec) (Ft /sec)

Present Pro ected Present Pro ected Present Pro ected Sunbury 420.6 420.5 1.5 1.5 6520 5987 (122.0)

Northumberland 422.2 422.1 0.7 0.6 3480 3097 (123.5)

Wolverton Sta. 427.2 427.1 4.4 4.2 3460 3080 (128.5)

Danville 433.8 433.6 1.7 1.6 3425 3049 (134.7)

Catawissa 446.7 446.2 1.7 1.9 3278 2929 (143.7)

Bloomsburg 452.5 452.2 0.9 0.9 3082 2741 (146.6)

Almedia 456.5. 456.3 1.3 1.3 3082 2741 (150.4)

Berwick 475.6 475.5 0.9 0.8, 2953 2620 (159.1)

Nescopeck 476.7 476.5 2.1 2.3 2953 2620 (160.0)

Beach Haven 482.2 482.0 1.4 1.3 2953 2620 (162.4)

Wapwallopen 482.4 482.2 1.2 2953 2620 (163.9)

Plant Site 483.6 483.4 0.8 0.7 2924 2620 (165.5)

Shickshinny 487.5 487.1 2.0 1.9 2898 2598 (169.5)

SUSQUEHANNA SES-ER-OL TABLE 2.4-2 (Continued)

STATION STAGE VELOCITY DIS(HARGE (River Mile) (Ft. msl) (Ft/sec) (Ft /sec)

Present Pro ected Present Pro ected Present Pro ected Sunbury 42o.6 420.5 1.4 1.4 6137 5604 (122.O)

Northumberland 422.2 422.0 0.7 0.7 3582 3199 (123.5)

Wolverton Sta. 427.2 427.2 4.4 4.3 3568 3188 (128.5)

Danville 433.8 433.'6 1.7 1.7 3543 3167 (134.7)

Catawissa 446.9 446.3 1.6 1.9 3383 3034 (143.7)

Bloomsburg 452.5 452.3 0.9 0.9 3170 2829 (146.6)

Almedia 456.6 456.4 1.3 1.3 3170 2829 (150.4)

Berwick 475.7 475.5 0.9 0.8 2953 2620 (159.1)

Nescopeck 476.8 476.6 2.1 2.2 3030 2697 (160.0)

Beach Haven 482.2 482.1 1.4 1.4 3030 2697 (162.4)

Wapwallopen 482.4 482.2 1.2 3030 2697 (163.9)

Plant Site 483.7 483.5 0.8 0.7 2999 2684 (165.5)

Shickshinny 487.5 487.1 2.0 2.0 2971 2671 (169.5)

SUS(}UEHANNA SES-ER-OL TABLE 2.4-2 (Continued)

Station locations are indicated as the nearest municipality or feature to the river cross-section used in the computations. The exact cross-section location is indicated by river mile.

One Foot = 0.3048 meter One Foot Per Second = 0.3048 meter per second One Cubic Foot Per Second = 0.0283 cubic meters per second.

SUSQUEHANNA SES-ER-OL TABLE 2.4"3 MONTHLY PERCENT CHANCE OF FLOODING SUS UEHANNA RIVER UPSTREAM OF SUNBURY Month Percent Chance of Floodin Jan 6.8 Feb 7.5 Mar 40.4 Apr 19.0 May 8.2 Jun 2,1 Jul 2.1 Aug 1.4 Sept 1.0 Oct 3.4 Nov 2.7 Dec 5.4 (1) Sunbury is 43 miles (69 km) downstream of the site at the confluence of the Susquehanna River and the West Branch Susquehanna River.

SUSQUEHANNA SES-ER-OL SECTION TITLE VOLUME II I APP EN DXCIESe e s s s s e o e o s ~ e e ~ e e e e s s s s s s s s ~ s e s e s ~ s e AN EVALUATION OF THE COST OF SERVICE IMPACT OF A DELAY IN THE IN-SERVICE DATES OF SUSQUEHANNA SES (JANUARY 1 978) III B1 CURRENT LONG-RANGE FORECAST ENERGY SALES PEAK LOAD 1976-1990......................III SALES AND PEAK LOADS DECEMBER, 1976...

B2 APPLICANT' FORECASTING NETHODOLOGY KMH III NATXONMIDE FPC OR DER FU NO 496.................... III EL EilER GE NCY RES PON SE TO

~

SUSQUEHANNA RIVER MATER ANALYSES SUNHARY .. III DOS ES TO MAN....

EQUATIONS AND ASSUMPTIONS UTXLIZED IN THE CALCULATION OF INDIVIDUAL AND POPULATION ENVIRONMENTAL TECHNICAL SPECIFICATIONS- -

III III

SUSg UEHAxfH A SES ER OL Accuracy 1% fu ll scale Current full-scale deflection 1. 0 milliampere s Input impedence 1400 ohms Respon se Time 0.5 seconds

'Rriting Type Curvilinear Chart Speed 3 in/hour Channels 1 on each chart 2 charts/recorder All recording devices, translator= and the digitizer are housed in a weatherproof cinderblock building. This building has thermistatically controlled heating and air conditioning.

6..1. 3. 1. 1 5 Calibration and Yaintenance of the System All calibration and maintenance is pe formed at least semi-annually in accordance with the frequencies and producedures prescribed in the manufacturer's operating and maintenance manual.

6 1.3.1.1.6 Data Analysis The analog chart records are removed every 14 days for inspection and analysis. Each chart is removed separately and placed in individual boxes labeled with date, instrument'nd level. The charts are inspected for breaks in record, time errors, power failures and other indications of system malfunction and then stored. The information gained from this inspection is used to update and verify the digital data, and to locate anomalies with any parameter. The analog recording system provides a back-up in case of digital system failure, so that a high data recovery rate can be maintained. Table 6.1-2, Data Recovery Bates, gives the recovery rates for each year.

Digital minute data are recorded at the site on magne ic tape for analysis. At the begi.nning of each scan of data a unique identification code, the date,'hour and minute is recorded.

After 14 days of recording, the tape is removed, labeled with the data period and forwarded to the Applicant, The computer

6. 1-13

SUSQUEHANNA S ES-ER-OL

/

facility processes these tapes converting the recorded millivoltaqes into enqineerinq units.

An hourly averaqe for each parameter is computed Data validity, range of hourly averages and the number of valid observations contributinq to the averages are tabulated to assist in the determination of data reliability. Comparisons between the analog and diqital data are performed when the bi-weekly review of the digital data reveals qu'estionable or invalid data.

Temperature and dew point hourly averages are computed using the f ollowinq scalar equation:

B. = 1 n .

Z r.j B.. ji i=1 where:

the average hourly value for the jth variable (in physical units);

the total number of minute observations during the hour (normally 60), but that hour, data are if considered n is less than 15 f or to be missing; B.. the i" minute observation on the 3+" variable (millivolts):

the conversion factor to change the j<hvariable from millivolts into physical units.

After wind speed (WS) and wind direction (WD) are converted from millivolts they are related in the followinq manner:

If WS is invalid (999) then vice versa.

WD is marked invalid (999) and If is )setthreshold WD WS (non-calm) to 360~ (North) and WD = 0 (implying calm) then If is WD WS ( threshold (calm) set to 0o (calm) and WD ) 0 (implying non-calm) then Hourly averages are computed as scalars for wind speed. Wind direction averages are, determined as follows:

If the associated averaqe wind speed is greater than 1.34112 meters/sec, (3 mph), average WD is determined by vector analysis (where WS and WD for each minute determines a vector) .

6 1-14

S USQU EH A NNA S ES-ER-OL APPENDIX B2 APPLICANT~S PORECASTING METHODOLOGY KMH SALES AND PEAK LOADS December, 1976

INTRODUCTION The PP&L energy model forecasts KWH consumption for each of the major groups in the PP&L Service Area; i.e.,

o RESIDENTIAL o COMMERCIAL o INDUSTRIAL o RESALE, STREET LIGHTING AND RAILROAD An econometric model is developed by considering the determinants for each of the sectors. While the model, by necessity, is a simplification, it captures the crucial linkages between sector activity and KWH sales, providing the user with a structural framework for forecasting. Through the model a user can produce a forecast of sales for each of the sectors consistent with an economic outlook. More importantly the impact of alternative economic scenarios can be tested.

In arriving at a forecast, the model utilizes information and forecasts of the U.S. economy, the national energy market, the Central Eastern Pennsylvania (C.E.P.)

economy, local weather conditions and company policy. This information is obtained from a combination of existing forecasting services and reviews with PP&L Energy Consultants. The PP&L model builds from that point, measuring the impact of the national economic outlook on the C.E.P. region. This outlook is then combined with assumptions about weather conditions and company policy to produce a forecast of energy sales to each of the sectors.

MODEL STRUCTURE In developing a model of electric energy consumption for a particular region it is important to, Qrst, define the demand conditions present in that service area, and second, measure their impact on sales to each of the sectors. The PP&L energy model is developed within this two-stage process.

In the first stage of the model, demand conditions are defined, i.e.,

climatic conditions, the economic environment, energy prices, and company policy.

Weather, energy'costs and company policy are all exogenous inputs to the model.

The economic conditions are developed endogenously through an'conometric frame-work.

The second stage measures the impact of these demand conditions on each sector through a set of econometric equations, relating sales to those factors that are known to affect growth. The general flow of the model is given. in Figure I.

The service area economic model is linked to the DRI Macro Economic Model, bridging the gap between the national economy and local sales by highlighting regional characteristics (i.e., industrial mix, growth trends, demographic mix, etc.) and by including explicitly the impact of the national economy on the region. This linkage is primarily through the industrial sector. For example, the steel industry in the C.E.P. region serves a national market, therefore, their sales depend on demand conditions in the nation. In developing a model to forecast the growth of the steel industry in the region it is necessary to include national economy. As another ex-ample, the housing industry in the area is heavily dependent on local wealth and demographic mix, but a depressed steel industry would lower local wealth thereby slowing housing growth. The function of the service area model is to liter these national conditions so as to measure their impact on the local economy.

Thus, the electric use forecast is developed in the following way. A fore-cast of the national economy, developed through the DRI Macro Model, is accepted or altered to reflect PP&L.'s thinking. That forecast is fQtered through the service area economic model to determine local economic conditions. Again the user has the option of accepting the results or altering them where he deems necessary. The economics are combined with assumptions about energy prices, expected weather conditions and company policy to define the local demand conditions. Finally, this information determines the expected level of megawatthour sales. At each stage the forecaster has the ability to adjust the output of the model before going on. It allows the user the required Qexibility to make the model a useful tool.

The next three sections detail the methodology used in developing the economic and energy models.

SERVICE AREA ECONOMIC MODEL The Central Eastern Pennsylvania (C.E.P.) economic model is constructed to highlight the regional economy within the PP&L service area. It provides infor-mation about four major economic areas:

A. INDUSTRIAL SECTOR B. COMMERCIAL SECTOR C. WAGES & PERSONAL INCOME

. D . HOUS ING The general Qow of the model is depicted in Figure II. Briefly, the model unfolds as follows. The industrial sector, through employment, is linked to the national economy. The tightness of the local labor market, along with inflationary conditions, determine the level of manufacturing wages. In the next stage, employ-ment in the commercial sector and per capita personal income are simultaneously determined; their levels are dependent on industrial activity and are interdependent with each other. Finally, population of the house-owning age group is combined with local wealth and employment conditions, and national information on the Qnancial markets to determine the housing market growth. A brief description of each area follows.

0

A. INDUSTRIAL SECTOR A region's manufacturing sector, primarily its exporting industries, provide the major link between the national and regional economies. Thus, we would expect this sector to follow the national patterns given that it serves a national market. However, we expect the local industries to maintain regional characteristics as well, from the standpoint of locational decisions on the part of entering/exiting manufacturing concerns, In modelling manu-facturing employment in the PP&L service area every attempt was made to include these two aspects: linkage with the national economy and regional locational decisions .

B. COMMERCIAL SECTOR The type of services provided and products sold within the commercial sector are quite similar across different regions of the country. However, the growth of this sector within a region is heavily dependent upon the local economy. In developing the commercial employment equations, the growth in each of these sectors was compared to their breakdowns nationally.

The relative growth of the area was then compared to the relative U.S.

growth in population and per capita income.

C. WAGES, PRICES, AND PERSONAL INCOME Manufacturing average hourly earnings and total personal income for the service area are forecasted within the C.E.P. economic model, building from the employment situation in the manufacturing and commercial sectors. In addition, a forecast of local inflation conditions is developed directly from the inflation conditions of the nation.

D. HOUSING SECTOR The growth in the housing stock is an important determinant of residential sales. Therefore, in the economic model, we explictly model household formations in the service area. In developing this sector we have a choice of two available data series, household permits from the federal government and new dwelling unit statistics from PPaL records.

The dwelling unit data, considered more reliable and easier to monitor, was used. The long-run demand for housing is hypothesized to be of the population of the house-owning age group and the level a'unction of household wealth.

IV. RESIDENTIAL SECTOR The residential model has been developed to forecast sales to the two major classes of residential service; viz., electrically heated homes and general residential.

In doing so the model is divided into two blocks:

o CUSTOMER BLOCK o USAGE BLOCK

In the customer block the number. of residential customers under each of the services is determined. The'usage block determines the average kWh usage per customer under each of the, services. Total residential usage is obtained by summing the product of customer stock and per customer usage in each of the groups.

Customer Block Total residential customers in any period is equal to the number in the previous period, plus the new units coming on, less the depreciation of the existing stock.

In estimating our usage per customer equations, the impact of the following determinants was measured.

o HOUSEHOLD INCOME o PRICE OF ELECTRICITY o PEOPLE PER HOUSEHOLD o WEATHER CONDITIONS o CONSERVATION EFFORTS Figure III shows the relationships that are considered in modelling this sector.

V. COMMERCIAL SECTOR The Commercial Sector presents a difficult modelling task to the forecaster.

Over the past 10 to 15 years it has shown steady growth, becoming an increasing portion of total sales; yet little information is available over this interval on the type of load served. The best that can be done in lieu of commercial surveys and expanded data collection is to include in, the model those economic indicators that best depict the growth of these customers. The modelling task is not one of obtaining satisfactory summary statistics, they come rather easily, but rather to be sure that the real determinants and indicators of growth are in the'model. In addition to the overall growth, the price of electricity, weather conditions and conservation are considered important determinants of sales and are included.

Sales to the commercial sector are collected by four major classes:

o Wholesale and Retail Trade o Financial and Personal Services o Other Commercial o Small Commercial The general outline of estimating this sector is exhibited in Figure IV.

INDUSTRIAL SECTOR The Industrial Model was developed to forecast KWH sales to fourteen major industrial classes. The sales forecast for the industrial sector is'the aggregation of these fourteen cia'sses, the breakdown of which is given in the table below and the flow diagram. shown as Exhibit V.

INDUSTRIAL SECTOR BREAKDOWN OF INDUSTRIAL CLASSES SIC INDUSTRY 20 Food & Kindred Products 22 Textile Mill Products 23 Apparel 27 Printing & Publishing 28 Chemicals & Allied Products 324 Cement 33 (less 331) Primary Metals (except Steel) 331 Steel Manufacturing 35 Non-Electrical Machinery 36 Electrical Riachinery Other Metal Products>

Other General Industry2 S mall Industrial 11512 Coal Mining Note: l. Includes Mining (SIC 10), Ordnance (SIC 19), Fabricated Metals (SIC 34), Transportation Equipment (SIC 37) and Instruments (SIC 38).

2. Includes Oil a Gas Extractions (SIC 13), Mining a Quarrying (SIC 14),

Tobacco Products (SIC 21), Lumber and Wood Products (SIC 24),

Furniture and Fixtures (SIC 25), Paper and Allied Products (SIC 26),

Petroleum Refining (SIC 29), Rubber and Plastics (SIC 30), Leather and Products (SIC 31), Stone, Clay and Glass, less Cement (SIC 32.

less 324), Miscellaneous Industries (SIC 39).

In the industrial model, four major factors were considered:

o Production Activity o Factor Substitution o Technological Change o Conservation

VII.

SUMMARY

In summary, the PP5L Econometric Model forecasts th'e short and long-term kWh consumption for the major consuming sectors, in the. PPaL Service Area. It utilizes forecasts from the DRI Macro Model together with regional economic, demo-graphic, and climatic conditions-to determine a scenario of the service area economy.

Assumptions about the price of electricity and competing fuels, weather expectations, the working age population, and technological changes are then made, from which point the model produces a kWh forecast. Outlooks are also prepared by PPaL Energy Consultants.

In the residential sector, the model forecasts kWh sales for Electrically Heated Homes and General Residential Service. For both of these classes, sales is the product of the number of customers and usage per .customer. The number of customers is a function of employment in the service area, real disposable income, new dwelling units, the price of electricity and competing fuels, and new mortgage commitments. Usage per customer is determined, for the most part, by the real price of electricity, real disposable income, and weather. The model, which develops the mathematical relationships among these variables, then fore-casts residential sales.

Commercial sales, which are segregated into four categories, are a function of commercial employment in the service area, real disposable income, the real price of electricity, and weather. The growth in commercial demand is positively related to the first two variables while negatively related to the third. By solving a series of equations, the model'determines the kWh consumption in the commercial sector.

The forecast of industrial sales makes use of estimates of industrial output, which in turn is a function of manufacturing employment. Manufacturing employment, by two-digit SIC Codes in the PPaL service area depends upon current levels of employment and the level of production for a particular industry. Industrial output in our service area is defined as the Federal Reserve Board Production Index times the ratio of PPSL employment to U S. employment. Sales to the fourteen industrial

~

SIC groups are mainly determined by finding the relationship of kWh sales to service area industrial output, the relative price of electricity to fuel oil, the relative price of electricity to natural gas, and any technological changes that might occur.

No model, regardless of how well it is specified, will forecast perfectly.

There will be exogenous events, such as large new loads or changes in company or government policy, that the model is unable to pick up. In these cases, the results of the model can be modified to the desired level by judgment.

VIII. PEAK LOAD FORECAST In order to adequately provide for our customers'emands for electricity, adequate generating capacity must be available. The amount of capacity required is determined by forecasting summer and winter system peak loads for ten to fifteen years into the future. Summer and winter system peaks are forecasted because it is during these periods that the greatest demands are made on our system. Air conditioning load causes the summer peaks, and lighting and space heating loads are responsible for those in the winter.

PPEL's estimating procedure produces summer and winter system peak loads by developing the contribution made by each rate class. The term "rate class" means all customers served under similar rate schedules. The sale of energy forecast developed by revenue classes is reallocated to rate classes using observed historical relationships. Load study data is then brought into the estimation process. Our load studies are designed to determine the load characteristics of a specific class of service. When meters are of the watt-hour type, stratified random samples of customers within kilowatt-hour ranges are used. In the case of most general service sample customers (up to 7000 kw with demand meter billing), load factor ranges within each rate class are used.

Larger commercial and industrial customers are studied individually. Daily load curves for the days of summer and winter system peak are derived for every stratum of each rate class for an average customer.

For customers studied by kilowatt-hour ranges, demand per customer data for each stratum of each rate class are multiplied by the number of customers in the universe of that stratum to obtain a universe daily load curve. The number of customers in a stratum is obtained from the Company's bill frequency distributions. This can also be done for years other than the load study test year because the load characteristics of a kWh or load factor stratum remain fairly constant with only the number of customers in a stratum changing from year to year.

Daily load curves for load factor stratum are stated as ratios of customer monthly maximum demand. These are applied to the sum of customer demands in each load factor stratum as determined from an hours-use distribution to obtain the universe daily load curve.

For an historical year the strata of a given rate class are added together to form the daily load curve for the universe of that rate class. The rate class load curves for the days of summer and winter system peak of a given year are corrected for losses to the net generation level and added together to form the summer and winter load curves for the system. The result is checked against actual peak loads.

Using these techniques we have developed rate class contributions to summer and winter system peaks historically for selected hours of the day. The ratio between class contribution to system peak and annual sales to that class is calculated for each rate class at the time of summer and winter system peak, for every historical period analyzed. The trend of this ratio for either a summer or a winter syst'm peak is fairly constant over time. For a given class the trend of this ratio for the time of both summer and winter system peak is projected through time. By applying the appropriate ratios to the predicted annual sales of any future year, that class'ontribution to summer and winter peak is forecasted. The system peak for a specific time period is obtained by adding together the projected class contributions to system peak.

Sl RBHP/t 7O ~ I /AD L i'm< CF US ECSVc3~&

~/tHVTC E68RS CbvbmcvJS lfE~ CF .MMES ~EH ~MYE7ul6 l

iA)L5522(rR eru6~M Figure I

DR'i NAt'RO 50DEL or U.S.

EcoNoNhf905%lhL s&cÃQA.

W~s ~ parce>

'Tcqhl EHPUH HE}4T

{rue - otl.n a~ooW~)

'ERUIcE ARgAi c%QV ICS ~.

QOQ- hQUCULTQML CQcm6kclA~ SECOR.

plpUHHF-'AT TDTAL EHPkMM~V

~ 6ERVICR hRFA ~ciCg, ~QUA ~

Tbsp l4EV bQEU i'd& Ogle i cGfhlcf AAEA-

~V/cE AQ69 M~(MUp D~ OF

~BOO& oQLTS

U.CI. ECONOMY

~

~

ILIMSMIAL Sc~

K NFL'( HG4T' A4 05(T 2AM~IXWQ)

'ed(CK A~~

WAQ5 Jc(ce,5

'5eRv i

(cj p((eA I PC(LCL(AL I

I lt(COt((

'~(CE, POfA~

I(OI( ACia(ClAL~~ pea urer IH~

etlFL(t(t(KAl i~ca ~~

1(7Th(

~.

EHrl(telD41 PRgNAI

~~.

SQvCE ~ ICCWCC Pgako POOVm ITO(L I I l Agt V l((M I

~ 5@V~ rCEA~ 'Sr'(lar. AKL.

I I

~QxlCR $ %%$ I UNWON AP~V V. 'b.

~S NEu ~Mb LML~ I

$ 4'- OF

~LC S2AE P4J -

~

a6uu~ ~ I QG O(L

~<Ce ARK@

I RLCE OF I Phd(LPc, STYX, OF OlCtOL OP I

~beni(AL I 5Ghl(C(K tlunl Dg5QJt44 tP4T4 C46LuHO OQL~

~e t(WH P(LL. a+mt(e(L AIL~~ VS@A

~

5@)ICE AKA ~

55bl l CE Q4eak.

0 CMTlAL oem'(- AL( RRT4C

~kl((CD I

I

~~

P(bCZ OS'

%-s~

~(CS I I OS' I Ply@

I ggCQQ &I I LzprflJL, 5E pt.'ce (

t(KQAVLA1('OVg ~~Old RL

~QK~ ICE I

I I(e(1(~C ocoaee ~vs 1

I I

I r

FQt(l 0 M IIJ6CC

+~MT'~AIL RRB ORATlhr ILCLIIL, 5~

~ O(eKRVATLON

"~QTIAI (

L I

I igure III

Rrvez Aav ~v QR'I MACRO MOOEI or U.S. ECOMOtf!

IIIQQSMIAL

~

ItnAL (TWO

~

~~~T.

AX~A'M 0&T QAMQCWAI) gERVlCK

~ PelcaS

'~ICS PagA I SGhnCE PCXA-NON ABACICIAJVlAL, r~~~

~APL ~CAT POPULUS W Plghfll CAIT' SCbnCt ~>> SERuCC, A~i ~ CCC4CC ~ TIClH

~~~. l l~

~u~

Ka5,~~

CChl45 AREA.

VlIIm

'Saeva ~ I EH~~aeAlt

'usus~ + N'AH ~PllOK

'T$ 4DC WACLESWC ~ WP4a

'5$ 2llCE AQUA. ~C EHDLCth HCIJT CCl4bVAlPllgth R IIAIICIAI PER&~ ~~ PIP~'.AI

~le%

4 PtQ,~

I ptICK cP HAH COu~m ~C~C~

L9+Rs~

OlltKP ~EQ.CIAI I I ~o~

I

~

HwH

(@AMER.C&L "DECTCR. COIJII tT I t I I

I HE&hk)A,T lICIIQ.

I r~SeWW CDt1HFQC;Al cE~~R I I I

PueOuu-ll40lhMIAL SECtCA.

TIDAL.EW~ mur QXKS ~ PILICI.S I

I I~E

(~

~

Ol&T SMAKQOWL)) 'QRV IC3 PC@A

~ 5ERVICE AIL' glg ACCICV

~m ~mr PCR

~ ~+~

IN~ I

~v

~~-

~

'SEbnCE ~ PCPV IAr&N

~ aKRnca ALKA.

I I QUOITS leal (gagLI IIQCp eahIC ACTA. v am

'55blICI'. Adrh-CXBRK PvL <<H~Kv u.S.

P4CL5 a RIAI.

5CILVICvi hREA

(~~ 3~v)

(~ O<CgT CQEACOul)

P7gl M'A.,EX'I+ OCO~

t Cl+Olc,Q r L

LP ITS ~~ I 3

PRa< > ~W~ I

~

I I SCRI CE H2CA ttIdH ~ PP PAILEL, PRIcz cF &cb HWH PdlDTIM& + PCS'~HIS+

I

~CC NalH 'k@HIQKLS t ALLIS) PQg)~~

r Pha I

CP ~~

55bJ I C v I

I H4H ~ CvHB T he%)PAC.TCILIW

~H'g- I"~~ ACTCC.i~

IIIdH pIIIITACV I-EIpL5 (, 5; s,~3 C%EL ~ 'P CcCCC,5 HulH ~ ~+ICAL r~luEAV CA r~lmm t

II43H crHalL cm~~ immi C Q$ 5NATICN keAN IIIiIH

~ CCRC.

ImIHl5iiL~

NISI~

I I

INcvsnu~c Bmoc TOTAL ~WAW HO@%. SALES IMDV5TTRIAL ScCTA Exhibit V

SUSQU EH ANNA SES-ER-OL contaminated by airborne radioiodine is a potential source of exposure. Samples from milk animals are considered a better indicator of radioiodine in the environment than vegetation.

the census reveals milk animals are not present or are If unavailable for sampling, then veqetation may be sampled.

The 500-sq. ft. garden, considering 20% used for growing green leafy vegetables and a vegetation yield of 2 kg/m> will produce the 26 kq/yr assumed in ~Re ula~tor Guide 1.109 (March 1974) for child consumption of leaf y veqetation. The option to consider the garden to be at the nearest residence is conservative and those locations may be used to calculate doses due to radioactive ef fluent releases in place of the actual locations which would be determined by the census.

The permission of deviations from the sampling schedule is based on the recognition of unavoidable practical difficulties which in the absence of the permitted deviations would result in violation of the specifications.

The requirement for the participation in the EPA cross-check program, or similar program, is based on the need for independent checks on the precision and accuracy of the measurements of radioactive material in environmental monitorinq in order to demonstrate the validity of the results.

~Re oeting Requirement A. Annual Environmental Operatinq Report, Part B, Radiological.

A report on the radiological environmental sur veillance proqram for the previous calender year shall be submitted to the Director of the NRC Regional Office (with a copy to the Director, Office of Nuclear Reactor Requlation) as a separate document in May of each year.

The period of the first report shall begin with the date of initial criticality The report shall include a

. summary (format of Table F-1, Environmental Monitoring Program Summary) interpretations, and statistical evaluation of the results of the radiological environmental surveillance activities for the report period, includinq a comparison with operational, controls, preoperational studies (as appropriate) and previous environmental surveillance reports and an assessment of the observed impacts of the station operation on the environment.

In the event that some results are not available the report shall be submitted noting and explaining the reasons for the missinq results. The missing data shall be submitted as soon as possible in a supplementary report.

S US QU EHA N NA S ES-ER-OL The reports shall include either explicitly or by reference to other documentation, the following: a summary description of the radiological environmental monitorinq program including sampling methods for each sample type, size and physical characteristics of each sample type, sample preparation methods analytical methods, and measurinq equipment used; a map of all sampling locations..the results of the land use censuses and the results of the Applicant's participation in the Environmental Protection Agency's Environmental Radioactivity Laboratory Intercomparisons Studies (Crosscheck) Proqram.

B. Non-routine Radiological Fnvironmental Operatinq Reports If a confirmed measured radionuclide concentration in an environmental sampling medium averaged over any quarter samplinq period exceeds the reporting level given in Table F-4, Reportinq Levels. for Non-Routine Operation, a written report shall be submitted to the Director of the NBC Regional Office (with a copy to the Director, Office of Nuclear Reactor Regulation) within 30 days from the end of the quarter. A confirmatory reanalysis of the original, a duplicate or a new sample may be desirable, as appropriate. The results of the confirmatory analysis shall be completed at the earliest time consistent with the analysis, but in any case within 30 days except in the case of the strontium analysis. Zf it can be demonstrated that the level is not a result of station effluents (i.e., by comparison with control station or preoperational data) a report need not be submitted, but shall be discussed in the annual report.

If radionuclides other than those in Table -F-4 are detected and are due from station effluents, a reporting level is exceeded if the potential annual dose to an individual is equal to or greater than the design objective doses of 10 CFR Part 50, Appendix I This report shall include an evaluation of a release conditions, environmental factors or other aspects necessary to explain the anomalous result

SUSQUEHANNA SFS-ER OL TABLE F-2 SUSQUEHANNA SES OPERATIONAL RADIOLOGICAL ENVIRONMENTAL HONITORING PROGRAH

++ Collection Analyti cal Sam~le T pe Location F~PB UMC * ~Anal sis F~re Cene

  • Uni ts Air Particulates SS-AP-551 North of I.A.

SS-AP-1152 SW corner of si te SS-AP-9A1 Near Transmission Field Gross Beta W pCi/m3 SS-AP-12E1 Berwi ck Hospital Galena Emitters QC pCi/m SS-AP-7Hl PPEtL Roof Air Iodine SS-AI-551 North of I.A.

SS-AI-1152 SW corner of site SS-AI-9A1 Near Transmission Field I-131 pCi/m SS-AI-12El Berwick Hospital SS-AI-7H1 PPSL Roof Surface Water SS-SW-5S2 At I.A. Gama Emitters pCi/1 SS-SW-12F1 Berwick Bridge H-3 pCi/1 Dr~inkin Water SS- PWT-12F2 Berwick Water Co.

(treated) Gross Beta H pCi/1 SS-PWT-12H2 Danvi lie Water Co. Gamma Emi tters pCi/1 (treated) H-3 QC pCi/1 Fish**

SS-AQF-6AI Outfall SA Gama Emi tters SA pCi/g(wet)

SS-AQF-2G1 Upstream Sediment SS-AQS-llcl Hess Is, area SA Gamma Emi tters SA PCi/9(dry)

Milk SS-H-5B1 Farm SS-M-12B1 Schultz Farm 2/H I-131 2/H pCi/1 SS-H-1282 Young Farm Gama Emitters 2/H pCi/1 SS-H-7H2 Crytal Springs Dairy

SUSQUEHANNA SES-ER-OL TABLE F-2 (cont.)

SUSQUEHANNA SES OPERATIONAL RADIOLOGICAL ENVIRONMENTAL HONITORING PROGRAH

++ Collection Analytical

~Sam le T e Location ~Fee mene * ~Anal sis ~Fre mene

  • Uni ts Food Products SS-FP-5B1 Farm Ganma Emitters pCi/g(wet)

Direct Radiation SS-ID-3S2 Susquehanna River SS- I D-4S1 Susquehanna River SS- ID-551 North of I.A.

SS-ID-7S1 On 230 KV Tower Gama Dose mrem/std.mo SS-ID-11S2 On 230 KV Tower SS- I D-9AI Near Transmission Field SS- ID-12E1 Berwick Hospital SS- ID-7HI PP&L Roof Frequency Codes:

= Weekly; H = Monthly; = Quarterly; SA = Semi-Annual; A = Annual; 2/H = twice each month; C W Q Composite.

Important classes of fish will be analyzed separately. (bottom feeders and game fish)

Hilk collected and analyzed semi-monthly from April through October - monthly during other months.

Shown in Figure.

SUSQUEHANNA SES ER OL TABLE F-3 DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYSIS MINIMUM DETECTABLE LEVEL (MDL)

Airborne Particulate Water or Gas Fish Mi 1 k Food Products Sediment Analys is (pCi/l) (pCi/m') (pCi/kg-wet) (pCi/1) (pCi/kg-wet) (pCi/kg-dry)

Gross Beta 7 x 10 H-3 200 Mn-54 10 85 Fe-59 20 170 Co-58,60 10 85 Zn-65 20 170 ZrNb-95 I-131 0.3 5x10 5c 16c,d Cs-134,137 10 5 x 10 85 10 50 100 BaLa-140 10 10

SUSQUEHANNA SES-ER-OL Table F-3 (Cont'd) ~

Acceptable detection capabilities for thermoluminescent dosimeters used for environmental measurements are given in Regulatory Guide 4.13, July 1977.

Indicates acceptable detection capabilities for radioactive materials in environmental samples. These detection capabilities are tabulated in terms of the minimum detectable level (MDLs). The NOL is defined, for purposes of this Table, as that concentration of radioactive material in a sample that will yield a net count which is different from the background count by three times the standard deviation after background count.

For a particular measurement system (which may include radiochemical separation):

3 00 Sb MDL =

E x V x 2.22 x Y x exp(-X t)

where, NOL is minimum detectable level as defined above (as pCi per unit mass or volume)

Sb is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute)

E is the counting efficiency (as counts per disintegration)

V is the sample size (in units of mass of volume) 2e22 is the number of disintegrations per minute per picocurie Y is the fractional radiochemical yield (when applicable) is the radioactive decay constant for the particular radionuclide is the elapsed time between sample collection and counting The value of S used in the calculation of the NOL for a particular measurement system should e based on the actual observed variance of the background counting rate or of the counting rate of the blank samples (as appropriate) rather than on an unverified theoretically predicated variance. In calculating the MDL for a radionuclide determined by gama-ray spectrometry, the background should include the typical contributions of other radionuclides normally present in the sample (e.q., potassium-40 in milk samples). Typical values of E,V,Y, and t should be used in the calculation.

It should be recognized that the NOL is defined as ~a riori (before the fact) limit representing the capability of a measurement system and not as f t f ill i f p

SUSQUEHANNA SES-ER-OL Table F-3 (Cont'd)

c. MDLs for I-131 in water, milk and other food products correspond to one-quarter of the Appendix I ( 10 CFR Part 50) design objective dose-equivalent of 15 mrem/

year using the assumptions given in Regulatory Guide 1. 109 except for an infant consuming 330 1/yr of drink water.

d. MDL for leafy vegetables.