W3P84-0405, Forwards Info Re Changes to Component Cooling Water Sys to Ensure Cooling to Reactor Coolant Pump Seals in Event of Inadvertent Safety Injection Actuation Signal.Info Includes Summary,Safety Evaluation & marked-up FSAR Pages
| ML20080P408 | |
| Person / Time | |
|---|---|
| Site: | Waterford |
| Issue date: | 02/16/1984 |
| From: | Cook K LOUISIANA POWER & LIGHT CO. |
| To: | Knighton G Office of Nuclear Reactor Regulation |
| References | |
| W3P84-0405, W3P84-405, NUDOCS 8402220536 | |
| Download: ML20080P408 (37) | |
Text
-
l w
l
! %T LoulSIANA
/,4a o-o~ae ermer.
oooxeme POWER & L1GHT / NEW CALE ANS LOUGANA 70174-0000
. (504)368-2345 MIDDLE SOUTH UT!UTIES SYSTEM February 16, 1984 W3P84-0405 3-A1.01.04 Q-3-B41 Director of Nuclear Reactor Regulation Attention:
Mr. G.W. Knighten, Chief, Licensing Branch No. 3 Division of Licensing U.S. Nuclear Regulatory Commission Washington, D.C. 20555
SUBJECT:
Waterford SES Unit 3 Docket No. 50-382 Changes To Component Cooling Water System To Enhance Availability Of Cooling To Reactor L slant Pump Seals
REFERENCE:
W3P83-4150 dated December 29, 1983 ENCLOSURES:
(1) Description of Change and Safety Evaluation (2) FUSAR Change Request (3) Revised Control Wiring Diagrams
Dear Sir:
In the referenced letter, we informed you that LP&L was making certain changes to the Waterford 3 Component Cooling Water (CCW) System. The objective of these changes is to ensure the availability of CCW to the Reactor Coolant Pump seal coolers in the event of an inadvertent Safety Injection Actuation Signal (SIAS), as well as for certain non-LOCA depressurization events addressed in Generic Letter 83-10a.
On January 26, a meeting was held in Bethesda, Maryland among members of the NRC, LP&L and Ebasco staffs at which the design details of the change were presented. These changes do not puse an unreviewed safety issue and, in fact, increase the overall safety of the plant.
The purpose of this letter is to inform you that we are proceeding to implement these changes prior to fuel load.
Enclosed please find appropriate documen-tation in the form of a summary description of the change and a safety evaluation, a FUSAR change package, and design drawings.
8402220536 840216 PDR ADOCK 05000382 A
\\
W
s 7
s Page 2 W3P84-0405 3-A1.01.04 Q-3-B41 Should you have any questions or comments on this matter, please feel free to c.ontact Mike Meisner at (504) 363-8938.
Very truly yours, K. W. Cook Nuclear Support & Licensing Manager KWC/FUM/ch Attachments cc:
W.M. Stevensen, E.L. Blake, J. Wilson, R. Stevens (NRC/ICSB),
J.S. Wermier (NRC/ASB), Y. Leung (NRC/RSB), Y.S. Huang (NRC/CSB),
C.L. Constable
b ENCLOSURE (1)
DESCRIPTION OF CHANGE AND SAFETY EVALUATION (See Simplified CCW Flow Diagram Attached)
I.
PRESENT DESIGN The Waterford-3 CCW System is described in FSAR Sections 9.2.2 and is shown in FSAR Figure 9.2-1.
The Reactor Coolant Pumps are described in FSAR Section 5.4.
II.
PROBLEM Both SIAS and CIAS are actuated via either a low pressurizer pressure or a high containment pressure signal.
Under the present design, CCW to the RCP seal coolers will be isolated by either of these signals.
Automatic closure of the CCW header isolation valves (3CC-F120A, 122A, 121B,123B) on SIAS or automatic closure of the CCW supply and return containment isolation valves (CIV's) (2CC-F146A/B, F243A/B and F147A/B) on CIAS will therefore isolate CCW from the RCP's.
Once this isolation takes place via a valid or inadvertent SIAS or CIAS, the operator would have to manually re.. pen the header isolation valves and the CIV's.
Though the RCP's have been tested to demonstrate that they can operate acceptably without CCW for 30 minutes (see response to FSAR Question 010.15), such manual intervention would have to take place within 10 minutes in order to maintain a high degree of confidence that the seals will not suffer degradation. During this critical initial period after an ESFAS, the operator's attention should be totally dedicated to diagnosing the problem and taking essential steps l
to bring the plant to a safe condition.
i III. OJBECTIVE OF CHANGE I
The objective is to ensure that CCW will continue to provide cooling to the RCP seal coolers af ter an SIAS or CIAS is generated by low pressurizer pressure without relying on operator action. This goal is in keeping with the " trip two/run two" strategy of the CE Owner's Group that will be adopted by LPtL at Waterford-3.
It is also in 1
s 4
o keeping with the intent of the guidance contained in Generic Letter 83-102 (Resolution of TMI Action Item II,K.3.5 " Automatic Trip of Reactor Coolant Pumps"). At the same time, this change will ensure that Waterford-3's design philosophy of physical separation and isolation of redundant trains for safety related systems, such as CCW, after any ESEAS is maintained, and that the CCW piping to and from the RCP's is isolated automatically on a large LOCA or MSLB, or any accident yielding elevated containment pressure.
It may be said that since the Containment Isolation Valves providing CCW to the RCP's are now dependent on a high containment pressure actuation signal, they therefore do not meet diverse isolation criteria. We feel, however, that since the concept of providing CCW to the RCP's for certain accidents is endorsed by NRC, the actual intent is met.
CSAS is a fully qualified and NRC approved part of the Waterford-3 Plant Protection System (PPS). Such isolation, referred to as " Phase B" isolation in the terminology of ANS 56.2, which is endorsed by RGl.141, has industry precedent.
IV.
DESCRIPTION OF CHANGE A.
SUMMARY
Upon SIAS or CIAS, the nonseismic, nonessential loop will continue to be isolated and the two redundant essential divisions of CCW will continue to be separated from each other. However, a flow path will be provided for CCW from the A train only to the RCP's and CEDM coolers.
This will be accomplished by deferring closure of the header isolation valves on the A side (3CC-F120A, F122A) and the three CIV's from SIAS and CIAS, respectively to CSAS.
Upon CSAS, the flow pattern of CCW and separation configuration will be exactly as it is now after SIAS or CIAS.
B.
DETAILS As noted above, in order to resolve the problem of providing adequate containment isolation and still provide continued availability of the RCP's, the containment isolation valves to
s s and from the RCP's will close on CSAS rather than CIAS.
The two header isolation valves will alsa now close on CSAS rather than SIAS. The adrantage of CSAS is that it is actuated on high con-tainment pressure with an interlock with SIAS, so that SIAS must be actuated as a prerequisite for containment spray actuation.
Actuation of CSAS, therefore, is a positive indication that there is either a LOCA event or a main steam line break in progress in the containment.
In either event, the closure of the containment isolation valves in the CCW lines to the RCP's is in order.
The CSAS being used, as discussed above, is a four channel system as described in Section 7.3 of the FSAR and SER.
It should also be noted that the instrumentation used in monitoring containment pressure for the purpose of actuation of SIAS and CSAS consists of independent loops that are not subject to a common fault.
In addition to the signal changes discussed above, the following other changes will be made:
Shutdown Heat Exchanger "A" Outlet Valve (3CC-F130A) - This valve will remain as is on SIAS and will open fully on CSAS. This is being done to reduce the demand on the "A" CCW pump which will be servicing the RCP's.
The "B" SDHX outlet valve will continue to go full open on SIAS.
Fuel Pool Heat Exchanger TCV (3CC-TM138AB) - As before, CCW to the FPHX is isolated on SIAS.
Now, however, SIAS will directly close this valve since the header valves on the "A" side will remain open on SIAS.
Letdown Heat Exchanger TCV (3CC-TM169AB) - The CCW to LDHX will be isolated but now it will close automatically when either letdown isolation valve, 2CH-F1518AB or 1CH-F2S01AB, on tDe CVCS side closes.
V.
SAFETY EVALUATION-The following safety evaluation is based on the requirements and re-commendations for integrated Component Cooling Water System design as expressed in Standard Review Plan 9.2.2.
1.
General besign Criteria (GDC) 2:
The above described change has no effect on the CCW System capability to meet GDC 2.
2.
GDC 5: Not Applicable 3.
GDC 44: As it relates to:
a.
The capability to transfer heat loads from safety-related structures, systems, and components to a heat sink under both normal operating and accident conditions.
This change has no effect on the ability of CCW to transfer heat loads to a heat sink under both normal and accident conditions. Under both SIAS and CSAS configurations, there are two separate divisions of CCW, each capable of removing 100% of the essential heat loads, b.
Component redundancy so that safety functions can be performed assuming a single active component failure coincident with losa of offsite power.
Component redundancy and the ability to meet a single active failure is not affected by this change (See FSAR FMEA T9.2-4).
c.
The capability to isolate components, systems or piping, if required, so that the system safety function will not be compromised.
This change has no affect on this capability.
d.
NUREG-0737 II.K.2.10 and II.K.3.25 This change has no affect on compliance with these two items.
e.
(i) A single failure in CCW C as not result in fuel damage or reactor coolant leakage in excess of noraal coolant makeup capability.
Single failure includes but is not limited to operator error, spurious activation of a valve operator, and loss of a cooling water pump.
This change has no effect.
- (ii) Moderate energy leakage crack analysis (per BTF ASB 3-1).
This change has no effect on the moderate energy analysis of FSAR Sec. 3.6.
-(iii) Demonstration by test that the RCP's can withstand loss of I
cooling water for 20 minutes, and instrumentation to detect same is provided in control room.
This change has no effect on this requirement. As stated in FSAR Section 5.4.1.3 and response to FSAR QO10.15, a 30 minute test has been conducted successfully.
4.
GDC 45: No Effect 5.
GDC 46: No Effect 6.
FSAR Chapter 15 Safety Analyses The safety analyses are not affected by this change.
The actual setpoints are determined to ensure that the specified protective action is initiated at or before the analysis high pressure set-point is reached. The analysis high pressure setpoint of CSAS is the same as that of SIAS or CIAS, i.e. 5 psig. The actual instrument setting will be slightly different only due to the fact that independent instrument loops are involved.
e e
a
,45 p t
F t
EBA500 SERVICE $ INCORPORATED 9.l
,9' t,
I.., ),,.. >
l l
[.
1
- 9 s
p.
-l
[,,y
- tchisiAnA sbwan 4 tisuT._
i I
Q
,.O WATERFORD 3 STEAM ELECTR}C STATlot4
%..,.;JROPosED__CRANGE%_To.CCWs ro sul'PtN CCW T63E RcP'S.
...c....,
sturt.: rir,o~ctw Flow.ptAGRnA r i ! -[-
- j' l
~
~
~
~
~
[g
~
~
~
l!!
l
- is eb l
c e7l su 1
^
~
' 'k.]- }~~[}
, pstis ct osgs g
pqr A o
.FPHE
- d 6
b (TYP) i m'g a
3>-l.
- F14[.d i l
NC
/
i }ij (
trrP1 m 8
i tosus i
- st os custs
' +
^
.[
l-n41 F241 j
F141 I
l l
r j,
p' :
h,I 6
i I
^i
!. FC l-k: @
-- M WiH f-
~
RCP'S g
o
~
[ i I~
-4
~
~ [
l
'7
[
7
$n!
SDHX !
l l ~ ~ ";
j' l
(-
!__ ya L.
/, 0.' -
t N c!sAs d. g.
1 R
! t M
- d. :
jo b"-l :
[W th!
orsus l.
'[h 5,s ; -ka
- c1As _
^
~
3 LtiHE -
4 i.
l
~l E
Ioj
~
rika
~
Arissh.le l
l
~~
~
~
~
~~
~
- gl
{.-
r,x -
t i t i,,,
i
~-~
~
~
-~
6 l
I'l
/
"j l 'ShE dt As i:tdsis-[' FC A
vict isundic b}
yl@A?
O l
l Fc ; l l L:--
I
-i t
g
~
CCW1 I,
j SDHX
- 'm-u I i p
l' UMP.5
- M as NHS-I 1QulPEH F l
li j
. L-l-i l
p ShFETT RELATED
_m i
i 4
EQU1PMENT 3
. csg 4 l'3 5
p.-
l l,m i. l,',,llifitoA. ctes.tg 1
.F i,32A/ b-is
' i
~
i,
~-
84 1,
4
. i
'4 ;' '
I I'll SN SB got 5El1LMIC Tc TCl (N
i I
t i
t pq &
l l
l ;
j l
ca-I
- q. l l,
l.
Fillb A pM j
t i
v r
uc e
i tsc,e!a S O C 0"AS
~
./
i rcl i l
i
>,4 :
sd _.
m asato rnoiAAikui raom Alm nud j, j '
- 4 ;i-sa i
cuniat.,vaou entvious i
L i cato g-i i
rnom e eus t#sicu i.
i, i,
..p p
l l l, s
- l l
4g-ey /
I t l l
l sxac ro mato 4
l
)
i i l l. i, ;
l 6
_ _.1 T.%
- i 3 ;
s Page 6e2-205 e
FUSAR CHANGE PACKAGE vies-rsa TABLE 6.2-:
Leestice Lise to fenesee Sase (
resetteties Fios to te ree reered/preieed III relee Tea Wo.
(tech)
Penettges III I8I
. Type Close Direet t ee Cost eteneet h ~ Overster For free *e* Teet penettet ten Flate(s)_
es.
Bretee m gy e
s.I*I 2CC-f tlist 5
16 Ceeposses Coo!&as Desteerelined teter III C
E 0
Set terfly F
unter paties free Centeiseent Fee Cooter sette ISI 2CC-fl18Al 8
!?
Ceeposset Coeling teeinerelleed votes C
8 0
Betterfly F
ge unter cettet free Costetenset fee Cooler Weite s (e) 2CC-r15eAl e
I4 t Coelies Weetalised Water til C
I O
tetterfly r
unter telet to Ceetaiemmet Fee Coster seite fe) 2CC-F11tA3 8
19 Comoseest Caetime tuniserettaed seter C
3 e
gottegggy y
ge estee entlet free Centelausset Fee Cooler gotte t e) 2&F115A2 8
20
- Coellet busineretteed Water til C
I O
Setterftp P
es meter teles to Costelement Pee Coster Seite ne(s) 2CC-F15681 8
il Campenses Coeties puoleereilsed water It!
C I
e setterfly P
water telet to Costelement fee Cooler Ostte te) 2CC-Fl6Mt e
22 Consenses Coeting Semineralised Water C
8 0
setter fly 7
as unter cettet fra Caetalummnes tee Coster Sette fe) 2CC-7166A/S 10 I?
Casseeeet Coolies amaneralised Wetor C
1 0
setterftp F
mo ICC-ele 2A/B 10 I
Cheet self meter teles to toester Centees fuese and CEint Cooler
e Page 6.2-205 (Cont'd) e E:tt-3 (Cant'd) appres.
Wen mesh Cleewe Telee Peetth t Lees of astustice unde 8g3 ggy et reser type feet tm"C" gy aressassee gg asserie (d) actest g ties fest
- Peuer to Pipe Bestee seem sinnet m neweet me<4e= aseisees enerecer triesce seesseer, t ri-t e)ggy a Ac te*
- sus topm) ms 0
0 0
0 P
a 19 4 was se e/a ten ggag(0peeel at 0
0 0
0 F
u 19 4 AC-Ba Re g/a fee gug(Opees) ha 0
0 0
0 D
u 19 4 aC-sa as Bla fee ggag(Opeme)
Ra 0
0 0
0 P
W 19-4 AC-ea Re 9/a les gug(0 pees) an 0
0 0
0 F
R 19-9 aC-te Re 9/a M
ses gus(opene) em 0
0 0
0 t
u 19 4 ac-se se R/a f
is.
sus (**ene) an 0
0 0
0 e
a i,4 ac-se ne sia 0"?
3,-.
.C a
.e
./a
<o 0
0 c/0
.e CSM
.nes
.e 22 I
l asame
.n.(,m>
i l
l
-m
.---..,m_,.,
p-+--,
.e-2
n..-
wm, = _
- p. 6 2. - 2. O (c>
~
Penetration Penetrpjon i
Penetration Fluid (a)
Type Class D
e No.
System Name 1
24 Component Cooling Demineralized Water III C
U.'ter Outlet from Reactor Coolant Pumps and CEDM Cooler 25 Fuel Transfer Fuel Transfer Tube VI
~
Containment and Fuel Handling Building 26 Chemical & Volume Borated Water III B1 Control Letdown Line 27 Chemical 6 Volume Borated Water III D
Control Charging Line 28 Sampling Line from Primary Coolant III B1 Reactor Coolant Line 29 Sampling Line from Primary Coolant III B1 Pressurizer Surge Line 30-Sampling Line from Primary Coolant III B1 Pressurizer Steam Space i
31 Waste Management Waste Gas III Al from Containment Vent Header 32 Safety Injection Borated Water IV D
[
33 Safety Injection Borated Water IV D
Sampling Line frou Borated Water IV D
IV D
I i
of the i'
- 4 The double scaled blind finnge when installed is considered part I
(
~
~,%*
- ~,
~-~
1I a.
- ). 6 2_.-2-CG Cc.onet'c9 l
t i
WSES-FSAR-UNIT-3
}
TABLE 6'.2-32(Cont'
's Location Line Reference Valve Vented / Drained Sire i
tp
- ion (b) Containment (*
g Operator For Type "A" Test Valve Tag No, (Inch)
Essential eu 0
Butterfly P
No 2CC-F147A/B 10
.No I
Butterfly P
2CC-F243A/B 10 j
36 No 1
I Double Scaled
~
Flange O
Gate P
Yes 2CH-F1518A/B 2
No I
. Cate P
ICH-F2501A/B 2
Yes(*
No(I 2CH-F1529A/B 2
Gate P
0 I
Globe S
Globe S
ICH-E2505B 2
Globe
-S 1CH-E2504B 2
Globe S
Check
'Self ICH-V2506 2
0 G lobe P
Yes 2SL-F1504A/B 1/2 No 2SL-F1501A/B 1/2 I
Globe P
Globe P
Yes 2SL-F1505A/B 1/2 No 0
2SL-F1502A/B 1/2 I
Globe P
0 Globe-P Yes 2SL-F1506A/B 1/2 No I
Globe P
2SL-F1503A/B 1/2 0
Yes 2WH-F158A/B 1
No 2WM-F157A/B 1
I Diaphragm P
No(*
2SI-L101A 24 Yes O
Butterfly P
No(*}
2SI-L102B 24 Yes O
Butterfly P
2SI-E654 1-1/2 Yes O
Globe S
2SI-E655 1-1/2 Yes O
Globe S
al..ent pressure boundary.
.. ~ _ -...
g r
e.
s m
4 p.6.z-z.oe Cc=Po 3
.ed)
Approx.
Maximum Actuation Mode (E} Length Closure Valve Position (f)
Loss of of itial(d) Actuat{oy Time Post-Power to Pipe Signal (see)
Normal Shutdown Accident Operator Primary Secondary (ft-in)(g
- CEAS di4As!9 5
0 0
C/0 O
P M
28-3 C8)'
I8) 9 5
0 0
C/0 O
P M
CSA$ et*F
~
NA None CIAS(9 /SIAS(9 10g 0
0 C/0 C
P M
10 0
0 C/0 C
P M
17-9 CIAS 9 s(t)--
Remote M'anual ID 0
0 0
P M
13-0 LC C
C/0 C
S Remote Manual LC C
C/G C
S Remote Manual Remote Manual O
0 0
C S
s Remote Manual 0
0 0
C S
None I9) 10 0
0 C/0 C
P M
26-6 CIAS I9) 10 0
0 C/0 C
P M
CIAS CIAS(9}
10 0
0 C
C P
M 26-6 e
CIAS(9}
10 0
0 C
C P
M
/
CIAS(9}
I 10 0
0 C
C P
M 24-9
/
9}
/
10 0
0 C
C P
M CIAS r
l CIAS 7
0 0
C C
P None 24-9
/
/
CIAS 7
0 0
C C
P None SIAS (Close)/
5 C
C 0
AI P
M 6-0
/
RAS (Open)
SIAS (Close)/
5 C
C 0
AI P
M 6-0 A
RAS (Open) 11-0 A
None 5
C C
C/0 0
S 10-0 A
None 5
C C
C/0 0
S
2_.
-.:m:;a a_
7 i
h.Q-E 06 C.C)A D i
Typa "C"
Test
- ($3ts( } e Arrangement Remarks N/A No No 19 25 No N/A 33 25
~
Yes 3
33 Yes 4
Na N/A l gg No No' 23 No N.i No l 14 Yes 3
33 Yes 14 Yes 3
l 33 14 Yes 3
isn l 33 14 6
3 Yes 33 No N/A 8
N/A No N/A 33 No N/A 6.2-206 Amendment No. 33, (9/83) 9 w.._
cxce.pt h Oc k'S ES-FSA R-1 NIT-3 C AT**- R N M AU* "
N game-tpa. Coc>(At+r-fby S**k COC*lCAI ecQ CEoM esotea (AcA ^="+'C'
( s% cAose o P
A n Convtwo"w+ S f%d ctu-6.2.4 CONTAINMENT ISOLATION SYSTEM b6 son Cyas (CSMS) vwm -
The Containment Isolation System (CIS) provides the means for isolating fluid systems that pass through the containment in order to confine any radioacti-
/
vity that may be released following a LOCA or main steam line break (MSLB)
/
ins.ide containment.
The containment purge isolation signal (CPIS) also isolates the containment purge upon high radiation inside the <:entainment (see Section 7.6).
6.2.4.1 Design Bases 6.2.4.1.1 Conditions Requiring Isolation a)
Automatic initiation of a containment isolation actuation signal l17 (CIAS) occurs when containment high pressure or low pressure in l33
~
~
pressurizer is detected. The CIAS closes all automatic isolation 12 2 valves in the lines penetrating the containment not required for the operation of the engineered safety features systems.
33 D
b)
Main steam line and main feedwater isolation valves are closed auto-matically#following a secondary system line break or detection of g
high pressure inside the containment. MSIS is generated by low steam generator pressure or high containment pressure, c)
The containment purge is automatically isolated upon receipt of a high radiation inside containment signal and high activity in the 33 plant stack, and the ESF signal CIAS.
6.2.4.1.2 Criter - t for Isolation of Fluid Systems Penetrating the Containment a)
Valves isolating penetrating lines serving engineered safety feature systems are not closed automatically by the CIAS, but have the ability to be closed by remote manual operation from the main control room, thereby isolating any engineered safety feature system which mal-functions.
b)
All penetration assemblies and containment isolation valves are seismic Category I, Safety Class 2 (except for valves,inside contain-22 ment, connected to the RCPB which are Safety Class 1) and are pro,
tected from the effects of missiles and pipe break.
c)
All piping penetrating the containment ve.ssel shell is designed to withstand at least a pressure and teis:perature equal to the contain-ment vessel design internal pressure and temperature and to with-stand the pos t-accident transient environment.
In each of the four classes of penetrations listed belov, at least two barriers are pro-vided between the containment i ursphere and the outside atmosphere, so that failure of one valvt to. ose does not prevent isolation.
1 i
6.2-62 Amendment No. 33, (9/83) i
=
_ _ _ _ _ __ _ _ _ _ _ j u
s
. +..
.u f
I WSES-FSA R-UNIT-3 l
I TABLE 7.3-5 (Cont'd)
@pWuTS hC:tlAATCO Cd b l Actuation
_ Channel Action _
Component Taj Number A_
B, e
Start Component Cooling Water Pump A
X Start Component Cooling Water Pump B
X Start (
Component Cooling Water l' ump A/B X
X 33
'FF-M
- Y
-0; Z CS? ?/* ! M Y2!r I"'"
e t..._ a m.., uv a Open CCW Outlet Valve from 3CC-F131B X
Shutdown HX B Start Aux Component Cooling Water Pump A
X 0
l33 Aux Component Cooling Water Pump B
X Start Close CCW Pump A Discharge Header 3CC-F109A/B X
Isolation Valve
/
Close CCW Pump A Discharge Header 3CC-F110A/B X
Isolation Valve Close CCW Pump B Discharge Header 3CC-Fil2A/B X
Isolation Valve 30 Close CCW Pump B Discharge Header 3CC-FlllA/B X
Isolation Valve Clese CCW Pump A Suction Header 3CC-F113A/B X
Isolation Valve Block Instrument Air Compressor A
X Auto Operation Block Instrument Air Compressor B
X Auto Operation Close CCW Pump A Suction Header 3CC-Fil4A/B X
Isolation Valve Close CCW Pump B Suction Header 3CC-Fil6A/B X
30 Isolation Valve Close CCW Pump B Suction Header 3CC-F115A/B X
Isolation Valve Clow CCW Train A Supply to NNS 3CC-F 122A X
b l o i m..
'.' u '.1 7.3-55 Arrendment No. 33, (9/83)
,_____m.___
r w.
t WSES-FSA R-UNIT-3 TABLE 7.3-5 (Cont'd)
Actuation
_ Channel Action Componen_t Tag Number A_
E NWC
'Close CCW Train B Supply to M 3CC-F123B X
Isolation Valve Close CCW Supply to NNS Isolation 3CC-F133A/B X
Valve Ch CC Tr a i,-.
'at..
- CT 3:C ~! C'
?... ;; C::- :: %:ti:: "i:
L ;!;t ;r ":'_';;
Close CCW Train B Return to CCW 3CC-F121B X
Pumps Common Suction Hdr Isolation Valve Close 4 CCW Return fror NNS to CCW 3CC-F132A/B X
Pumps Common Suction Hdr' Isolation Valve Remet to CCW Heat Exchanger A 3CC-TM290A X
SIAS Temperature Control operational Valve node 33 Reset to CCW Heat Exchanger B 3CC-TM291B A
SIAS Temperature Control operaticnal Valve mode 3 N-TMl3848 X
Ath.rgiLh%d Mvwp%Spe fuec, SC5b W W e-
&( Mew EcW e4 3
7.3-56 Arnendment No. 33, (9/63)
______n__.
- &w_ _
a._ _. -
_r L _
WSES-FSAR-UNIT-3 i
TABLE 7.3-7 COMPONENTS ACTUATED ON CSAS Actuation Channel
,, Action Component Tae Number A,
B, Start Containment Spray Pump A
X Start Containment Spray Pump B
X Open Containment Spray Isol 2CS-F305A X
Valve Open Containment Spray Isol 2CS-F306B X
Valve Fail to start Cont. Spray Pump A Alann X
Fail t9. start Cont. Spray Pump B Alarm X
4 C\\ese.
Con 6 Atom ^tMArt a 2 Cc-R %AG X
wive. - cco to EcPa u& CEon 's.
C \\ese G^NL^"'^+
"5 Wive ccw fhem EcP's ^^g csDMs,,
C losc
("o^h (*M 2CC' VA \\ve - CCW 5*d -
R c F 's <4 J C 6 D Open cco cktle+ %lv e acc -wac>p g
& Sh%,t Hy 4 C les e.
ccco hv A Q/
3cc-F/zz.A x
10 AwS Tso/Argoa )
VAIvt I
Close Mbu A QIg 3 g_p g.g e u m rsd m YA N 7.3-59 l
1
.a
' h ua i
...c C...
m WS ES-ESA R-UNIT-3 i
TABLE 7.3-8 (Cont'd)
(Cwmneocs Aeweeo en Cn95 1 -
Actuation Channel T
[
B, y Nueber Action Conponent
,C, lose Containment Purge 2HV-B151A X
Air Make-Up Isol Valve Close Containment Purge 2HV-B150B X
27 Air Make-Up Isol Valve Close Containment Purge 2HV-B152A X
Air Make-Up Isol Valve Close Containment Purge 2HV-B155A X
Exhaust Isol Valve Close Containment Purge 2HV-B154B X
Exhaust Isol Valve 1
Close
's tontai'nment Purge 2HV-B153B X
l 30 Exhaust Isol Valve 27 Close SI Tank Drain to RWP 2SI-F1561A/B X
l 30 Cont Isol Valve (SI-682) i 9er-r1LAa/n v
oan emmit,g em+m, e., e p
),
ci e r,_
C.: Icel "r!':
CI :e RCD Cre! rg "eter et---
'e c -F ' A ' A / "
Y r
27 v..._,... u i. _
- re r147^/R Y
CI ::
"C" Cre!!n; " ter ret r-
"--t I: 0 ! " ! "';
Close Containment Atmosphere 2CA-E604B X
RAD Monitoring Cont 2CA-E 605A X
Isol Valves 2CA-E606A X
Close Containment Pressure 2HV-E633B X
Instrumentation Isolation Valve Close Containment Pressure 2HV-E634A X
33 Instrumentation Isolation Valve
- 7. 3-63c Amendment No. 33, (9/63) n.--
~.
=
e
, M. :.
L h -.,
y
-w: -
,i
._e-USES-FSAR-UN17-3 Two CCW pumps normally operate. A third pump is provided as a standby.
The motors of the two normally operating pumps are connected to buses in I
seperste electrical divisions A and B.
The third pump is available to replace an on-line pump that is enable to perform its function.
The stand-by pump is connected to the A/B bus and may be manually aligned to either A or s division (see subsection 3.3.1.2.3).
' Lt45ELT
.s CCW pumps are connected on the passp suction and discha 4$ Lggg.
cooling water into common headers serving safety and nonsafety equipment.
-puring the accident mode, a SMsisolates~the~ redundant safety related loops froaJanch.other-and both^from the monessential equipment.
The isole-E b,.# ^...
tion of the-eedundant safety-related-40W-loops -is achieved by' two valves irr-7 "~
series.
- yollowing isolation, separate CCWS channels -are formed, and each supplies cooling water in sufficient quantity and at the required temperature to remove 100 percent-of the heat accessary to shutdown the reactor.
The required NPSH for the CCW pumps is provided by a surge tank located approxia'ately 70 ft. above the pumps..The surge tank is provided with a baf fle plate and redundant level indication and controls to ensure that water loes in one CCWS channel will not affect the redundant channel operation.
Overflow from the surge tank is piped to the vast g g (ing to th Waete Managenent Syatea.
Le w.krtesW..w Levau, ulm /Sc urE
& c frsrco.rsvcd4 W W sw Yhe chemical feed tank in the systes permits manus on-ine addttion of pro-per corrosion inhibitor. A commercial nitrite based corrosion inhibitor is used to maintain proper corrosion protection for the Component Cooling Water s,s tem.
26 A continuously operating radiation monitor is provided in each of the re-l dundant headers on the discharge loop of the CCW pumps. Addit.ional radia-tion monitoring is provided to monitor radioactivity of the cooling water from the components inside the containment; i.e., reactor coolant pump, motor an'd seal coolers, and control element drive mechanism. Should activity in the system rise above the set limit, a high radiation alare is actuated in the main control roca. A more complete discussion of the CCWS radiation monitors la provided in section 11.5.
9.2.2.2.2 Auxiliary Component Cooling Water System The ACCWS removes heat, when required from the CCWS via the CCW heat ex-changer during normal operation, normal. shutdown, and accident conditions, and transfers it to the wet cooling towers for dissipation to the atmos-phere. The ACCWS is requi ed to operate whenever the heat rejection caps-city of the CCWS is exceeded (LOCA conditions), or whenever the ambient conditions prevent the CCWS from rejecting its required heat load.
The temperature controls for the ACCWS components are described in Table 9.2-2 and in Subsection 9.2.5.
The ACCUS consists of two 100 percent caps-city, independent loops. gach loop includes a pump, and an evaporative wet type mechanical draft cooling tower. gach tower has a basin which is capable
)
i of storlag sufficient water to bring the plant to safe shutdown under all
- e 6
)
...n-w='
- m 8"**-* N " "
7
.,,. _ _,.r,-
INSERT A The CCWS supplies cooling water to two redundant safety related l
essential loops, a nonessential seisaicall.y qualified loop, and a non-essential nonseismic loop.
Each essential loop services the following equipment:
1 A.
one emergency diesel generator B.
one essential services water chiller C.
.two containment fan coolers D.
one high pressure safety injection pump and the standby high pressure injection pump (valved into one train only) 2 E.
one low pressure safety injection pump
}
F.
one containment spray pump G.
.one shutdown cooling heat exchanger 4
The non-essential seismically qualified loop services the following equipment:
A.
one letdown heat exchanger B.
one fuel pool heat exchanger C.
four reactor coolant pump seals and motor coolers (seismically 4
. supported) i D.
control element drive mechanism (CEDM) coolers (seismically supported)
The nonessential, nonseismic loop services the following equipment:
A.
waste gas compressors B.
sample coolers C.
chemical feed tank D.
basic acid and waste concentrators
INSERT B Upon SIAS, the two redundant safety loops vill be automatically isolated from each other by closure of two fail close pneumatic header isolation valves (3CC-F121B, 3CC-F123B) and the nonessential, nonseismically qualified loop will be automatically isolated from both by closure of two fail closed pneumatic valves (3CC-F133A/B, 3CC-F152A/B). The CCW pump suction and discharge header isolation valves will also close on SIAS.
The outlet valve on the "A" shutdown heat exchanger (3CC-F130A) remains closed but may be opened manually from the control room, the outlet valve (3CC-F131B) on the "B" shutdown heat exchanger goes full open automatically.
The A loop also continues to provide cooling to the Reactor Coolant Pumps via the nonessential seismically qualified loop.
Upon CSAS, the containment isolation valves (2CC-F146A/B, 2CC-243A/B, 2CC-F147A/B) on the supply and return lines of CCW to the Reactor Coolant Pumps and CEDM coolers are automatically isolated, and the outlet vs1ve (3CC-F130A) on the A shutdown heat exchanger goes full open automatically.
Following isolation, on SIAS, separate CCWS channels are formed, and each supplies cooling water in sufficient quantity and at the required temperature to remove 100 percent of the heat necessary to shutdown the reactor.
WS ES-FSAR-UNIT-3 TABLE 9.2-2 o
dtp c6 dO b
$_ N[O 63 %. [8 I
CCWS AND ACCWS ltHPENATukE AND FLOW CONTHOL DESCRIPTION s
1 NORMAL.
NOkHAL SHUTDOWN ItEFUELING ACCIDLNT Fuel Pool Heat The teisperature control valve Same as normal Same as rormal The SIAS automatically closes th*-s ect a ting-velves 366-fl+2A-and-We-t*t2D, therbby shut t ing the Exchanger 3CC-FHl38A/8 maintains the fuel CCWS f low t o t t.e fuel pool heat exchanger. The pool cooling water temperature isolation valve will be manually re-opened (*ee leaving the heat exchanger at See64en-hH.
approximately 108 F.
T'
< ! M c r L._: ; c c Hy-e le*** -th. i sol at i ng va lves 12 kecctor Coolant Flow through the kCP coolers and Same an e as nor h 3t'e-el+n, wetts., m.-r i 2aA aim 3Cc=r:2 rii,
Pump (HCP) the CEDM air cooler is set by Q
$lM OtL [ Mg'
'] ge{d S1 4g Mw cu
[gy a
+h= d, _t :: b.. CCWS llow tu the reactor manually operated outlet valves; the CCWS llow to each pump is shut-
.ggn p l
c(-f coolant pump cooler ler.
p., gg l
g m) c tig geP oft automatically by a,nlet valves g
u
,j y
3CC-P188Al, -15981, - 190A2, and g
- g a c pgt @
acC -F p3
-19152, wheneve r the pump as not operating; CCWS liow to the CEDM ai
/
hf gg 2CC-FlW % lid E att&t&. k M d.,b dy 0 W
cooler can also be shutdown from e
<t the main control room by closing T
the intet valve 3CC-B187A/B.
Letdown tieat The temperature control valve Same as normal Same as normal The-EIAS-automatica1%y-elones-tlie isolating-valves 3CC412 2 AT-3CC-F1236 /~3CC-Fl 20A, and 3CC-F1213',
l 31 tzchanger 3CC-TH169A/B maintains the s
/ thgeb_y_shnLLing M6e-4dNty-flow-t o-the-let down--hest letdown water temperature eve 4 anger.
b below 140 F.
?.,
HPSI, LPS1 and The required flow is set by Same as normal Same as normal Same as normal Containment Spray manually adjusting the respec-Pumps tive outlet valves.
Weste cas Com-The required flow is set by Same as normal Same as normal The SIAS automatically closes the isolating valves 3CC-F133A/B and 3CC-F132A/B, thereby shutting l33 piensors. Sample manually adjusting the the CCWS tiow to the waste gas compressors Coolers, notic respective outlet valves.
sample coolers, and concentrators.
y Acad/Wante and W. ante Concen-trators osenel Generator Outlet valves 3CC-F268A Same am normal Same as normal On loss of of tsite power, the diesel generators l3 start automatically. The starting ut diesel and 3CC-F2698 are closed.
generators will autoriatically open the outlet by p.a s s valves are set to valves 3CC-F26BA and 3CC-F2b9b, to past 800 gpm lT y
maintain approximately 100 gpm through ea.:h diesel generator. The flow in set through each diesel generator.
by manual valves 3CC-527A, -82BA, -83 t h,
.ud I
-8328.
S nor m.n l e norm
'o= t LOCA, the control valves 3CC-lH14HA and 6'
tontaanment Fan unty three conteenment tan g eme_as tan q y ".
gjg,Q g, 3cC-7mj(;QJ] two 1
CC 'lHl495 open tully to permit 2700 gpa thsough Louless coolers ase operating.
One tan coolers et each channel.
O
.A k E l b O Mp
)
cooles = isolated by closing tenThnud MelaGbk oh ac H-risisn A Fi IC H -F M/6 (
{}i f
O the sont ain+ ut isolatson valven',
VMthw tGawned &
t uto io and i,om o.a pari cniar F
a re.v (sinaud ikWGin OdNCL Cpn.
tan im cmu i
\\ scac, lab oaMoaf.
\\ ne w whLn ut4h s Cbt
=
. ~
a'
)
s WSES-FSAR-UNIT-3 TAHLE 9.2-2 (Cont 'd )
~
NORMAL NORMAL SHUTDOWN REFUELING ACCIDENT r
Containment Fan cocter. The control valves hhh @ h M
()dD I
[
)
QdfL ( ([ y Coolers (Cont'd) 3CC-TM148A and 3CC-TM1495 g
gg hg *. g Qg
- I the coolers, at 670 gpa for
/UUh d,t,91
't/3.
C545, b 6DHA nKJ vudjC LdU control the CCWS flow through for the channel in which the 4 gt Md I QQ30, 3000<fmi. %
Actb Mo
{
g ggg gg isolated cooler is located, g(g g 7
and 1340 gpa for the other P
Shutdown Heat Outlet valves 3CC-F130A Dutlet valves 3CC-F130A Same as normal
^;:!:t --' er M "'?C'.
...J 3cc-Fi3i. vren Exchanger (SDHK) and 3CC-F1318 are closed
- and 3CC-F1315 are open-shutdown e" ' ^- -
- i a - ' l - *^ p ;. 3GGu p 6nrougn cach r
i r-* M !: ' h m de%
Cn"'-
th-
' ' ~ -
Bypass valves are set to ed fully by operator.
e-i'i'-- Wr**,
- .2 3CJ-aiH6.
Tin-u m ;er maintain approximately 100 Opening of the valves irr
'h-
- r-ki'ity fr^-
'" -ri;;- ;;n: rs! c;;
gpa flow through the SDHX.
will provide each SOHX with 3000 gpm controlled
- ^ r--tis!!; : -- A ei n;.. #.;; a ; :e
- ' ~
'ha N ^"
by the flow restricting prrdat- ~4' d r~ tire tr orifices 3CC-E296A and th;;;'.._J. G;= ; 2000 gp.
3CC-K2978. The operator has the (.apability from the main control room to partially close the discharge valves to a predetermined position, to eL reduce the CCWS flow through O
each SOHX to 2000 gpe.
Chillers CCWS flow through each chiller Same as normal Same as normal The chiller water supply valves (3CC-F272A, -F2738,
-F274A, -F2755, -F276A -F2778, -F278A, & -F2798) l3 is set at 850 gpe, by manually align automatically when temperature exceeds 105 F i
adjusting valves 3CC-V34A, to supply cooling water to the chillers from the 3CC-V35A/B, and 3CC-V36r. One ACCWS. The operator has the capability to realign chiller is normally isolated.
the valves to supply cooling water to the chillers from CCWS when the cold CCWS temperature decreases below 105 F.
In this case the CCWS flow to each SOHX must be reduced to 200d gpm to avoid runout of the CCW pump.
CCW Heat in the event that dry cooling The set point for Same as norm.al The set point for the control valves 3CC-TM290A l3 Exchanger towers cannot maintain 95 F out-the control valves shutdown and 3CC-TM29tB automatically read just on receipt of let temperature in the CCWS, the 3CC-TM290A and SIAS to maintain the CCWS cold temperature at 115 F.
E ACCW pumps will start and pump 3CC-TM2918 can be This feature is required to reduce water makeup d
cooling water through the CCW adjusted by the opera-requirements to the wet cooling tower post LOCA.
S heat exchanger; control valves tor from the main con-3CC-TM290A and 3CC-TM29tB main-trol room to maintain z
tain the CCWS cold temperature the CCWS cold temp-u at 93 F.
erature at H0 F to pt:mit faster shutd a.
O 5
TABLE 9.2-5 (Cont'd)
Indication Alarm
- System Parameter & Location Control Control Function In s t rumen t Local Room High Low Range LPSI Pump 1.
Outlet Flov X(CP-8)
Containment Spray Pump 1.
Outlet Flow X(CP-8)
Outlet Flov X( C P-4 )
Waste Management Concentrator 1.
Outlet Flow X(CP-4)
Waste Cas Compressors c
un 1.
Oettet Flow X(CP-4)
E u
b 4:
Letdown Heat Exchanger E'7 1.
Outlet Pressure X
0-150 psig Q
2.
Outlet Flow CP-8 X(CP-8) 0-1400 gpm y
O Chemical Feed Tank 1.
Outlet Pressure X
0-150 psig CCW Pump 1.
Discharge Pressure X
0-150 psig CCW Surge Tank 1.
Level X
- 1. Control makeup 0-48" 2.
Level flow into tank
- 2. Automatic bypass of dry towers on lo level
- All alarms indicated are in the main control room
r
...-_viL w -
-c...ez i _ 2 E L L L L -
, a. - : :. -....-
s.
TABl.E 9.3-la SAFETY CLAUS VALVES WITH AIR ACCUMULATORS
'D' Valve Tag Figure Valve Tag Figure 9
9 2SI-L101A 6.3-1 2CC-F243A/B 9.2-1
$Si-L102B 6.3-1 2CC-F146A/B 9.2-5 3CC-5201A 9.2-1 2CC-F147A[B 9.2-1 3CC-5203B 9.2-1 2CC-F154A1 9.2-1 3CC-B262B 9.2-1 2CC-F155A2 9.2-1 3CC-8265A 9.2-1 2CC-F156B1 9.2-1 2HV-8156A 9.2-1 2CC-F157B2 9.2-1 12 2HV-B1578 9.2-1 2CC-F158A1 9.2-1 2CS-F305A ;
6.2-35 2CC-F159A2 9.2-1 2CS-F3068 6.3-35 2CC-F160B1 9.2-1 2CC-F16182 9.2-1 3cc FaoA q.1-4 h
% rMI69 A/S 3,1-t 3cc-FPtaTA/6 9.z-t n_
.r l
1
(
l 4
l l
i
. ~..
i2 l
9.3-56 Anendment No.12, (9/80) u
_.m
-"~'
I 9
T bh<-
8 4
- T y
f ;-!) i-
'f4
-, y[ Q :
9 EBASCO SERYlCE5 lNCORPORATED
.e or
,1. ; i. *
- f 1
I i
s s
- 1 E
j r
FT p54g j
gu, f '
.ldilS1ANA.FbWER d UGT p c,, v e_g, clo, # 7-I
'f
(
G4,.k. WATERFDRDl3 STEAM Ei.ECT'UC STAT 1oM l
! b,sJ,)ltOPD5EIL_CilANGES To CCV/S__To SUPPtN CCW T6WE RCP'S.
e. e....,
hN W{Cm
. FLOW.D1 G A----
r-t, }
/CtAS C cussts.
i,-
.D sum,.
1:
sus etosi.s-
/
H.Epl r
o,
- p8;3g.
__d
- g
(,TTP) 1 pita It4[.d s,
-l C
i y
i i
t 7./
- :msus-
+1 I i
- um.custs I' (.
F14I a
q - yz42 ;-
-TF7G i
8
._. _. trrP3%\\l.
c h H j
h' k: @ ;
- r REP'S
~
rc i
. {$
-u
'.:6
.\\
f M
~
E-5
/1 7U-
- .sB.
t SB' I '$
.S
~ $_
9
}"';
l60 f
E
=
ro
[
- i n
ggg l-_
d-
)
ll';
j
- (
9EEDA:
l[4 g
^
I-r,e
[3
$5!
. cans- '
- - ; g e
i
~ N
..~c1At A o
bg
$jy h -NSI
- 11.W E-kN 7
[
l l
E Jol
' Fl:L3B i i Fl33 E.U.
g y,x i I
-i i,,;
I
-i.!
,..c 6 4 1
- + - -
'j-g.
g g
i
- j.'gg g.
i
-. y/
PO C
g l
rc, i t i l-rc
- -l m
2't lb' M
.k-g I
,t
- g I l l ji j,,;
- _Icet9s
-..N W-p"j I' UMP.5 JgugplAnNT-j I
),p l
j i
i I.t.E..
ShFETt REl.ATED l :
o 6
~I I!
l EQUIP)AtNT
--a y
,l p2o^
ctostq-
{,F8326
{
]
,~
i I
1.
i
!*l t
i
'.s4 i i r ms i
_ 1 s,3m,c >.
I FCl
.FC 3-3l j
l!
t l If f,,j
- f..,,, F,1116 7
i 1 1
a,
.a
-I i,
.s
. CHAMGE iFRoM PREV 10tl$
I d
5A_L R:WERED-,FRcM N Bus.
! l'%
f i i 1
,p* e D
otston noWsano FRom o aus i
- ss p F"OWERE.D '
v 5FB FROM ' A/B' BUS t i l l h
1 i ;
j i
]
, l l
O.
{
t I j l l i l t.
i
! l
{
l.
I l._ l t
i -
Il y.
~
h.;$
.f
?.
Q~
4s p
.,g.,
q~
4
5~1_. __, n
- =
^
~
~
' ' 5" k m
~- -
sw
+
.Aw_
4,.
-m.
- i
_a_1 c
dfl I
4 1
WSES-FSAR-UNIT-3
[
Question No.
L.s/
480.44 Table 6.2-32 states that the component cooling water inlet valve (2CC-F146A/B) and outlet valves (2CC-F147A/B and 2CC-F263A/B) for the reactor coolant pumps and CEDM cooler fail open.
Provide the necessary justification this is the " safe" position as opposed to failing closed.
Response
These valves are closed automatically on an to ensure that there is sufficient water supply to the essential cooling water systems post-LOCA. Fowever, if off
. power is available, the operator may manually override the in order to open these
~
valves and provide cooling water to the Raactor Coolant Pumps (RCP).
The valves fail open to ensure that a single active failure will not preclude availability of the RCP's.
The fail open position is the safe position for the following reasons:
4 Inlet Valves For the post accident period, the valve is positioned by the operator in the safe position.
If that position is open, then a failure to the open position is a trivial case.
It should also be noted that the RCP's have been tested to demonstrate that they can operate acceptably without component cooling water for thirty minutes (see response to Question 010.15). If the safe position is closed, a failure to the open position does not compromise containment isolation because of the check valve.
inside containment.
It is therefore, neither necessary nor 3
desirable for the isolation valve outside containment to fail closed or "as is."
Return Valves There are two power operated valves, one inside containment and one outside. The inside valve is powered by the SA channel plus a DC redundant source. The outside valve is powered by the SB channel plus a DC redundant source. If the safe position is j
closed, and a valve should fail open, the other independent valve would remain closed.
The inlet isolation valve and both return isolation valves are each provided with seismically qualified air accumulators to preclude a common mode failure from moving these valves into an undesired position.
Reference See revised Table 6.2-32 (Penetrations 23 and 24).
s.s/
480.44-1 Amendment No. 19, (6/81)
m
._,m._m._____.__.__.___..
NNcl_osuRsc/sW wp *~s:.M
-+.
& =.?- n -
- -..?,. }.. *--l y
~m 3
6#.4 #/9- /3 +:
c, rm m e "U '..i... - -.
i
)
i
-r
~
e ~n.
a. -
. rb E 9 3
U
~
M i
2 8 ;; xsag Eg 4 em:gc : '-' l' I
9 58 Z
- '8El@2cc6jipiigi I
6@
FO,. g-C i
(e. t,i.s+ IW I.
z i
e a
c e
e
,r Ya,le,(1 a
~e o
i n
o
.l l
l j !n= A
+==
y,'.
g.
jo g
=
c aCC a
/h
~~
t Ac 4
&* 4.
3 4
i 3
vo o-o-
~.a:
. p..ls. y
- i: 2 ~5: * *= I 's g3:l-i : @e 1
E.
.s,
'..la l=.
=E.3
~
.M
- ,. jJ.. :::
~
O i iN~
4 i
E e
s
=
ta
_ :p\\
- r.s:::
=c_
e 2
fkFE5*.
2
.3 fa 5.ce E
g :<b,,!
w J,lAW lA I
a i
\\
t i
E ;E C =o:
.:e*<
o tk
- o gbe
.lTl
~O.
g f
e a.
_ _.3 3
-:.=;9:;
- r i
.a
=.
s N
e-je g l
t i jNin g
]
Y A~&_.! ^
g E,!j
.i ya l
> h i
1[o-
=
iw_
y )
+
e-
~-
s il-H >
i ga p V
g g __ ::
E, hf
~
7
"... !h I
l
>8
$3
~
l-g-
gp c"ll.,3_3 a!
1
'l I *s I E*
l If, gli dj E
gJR
+
3 s _~$8[
}
. m4
- c.
s a
[M.,i; 73 s mEs.
r-5 e
l 4
c a
u.
u
=,c.Q{g t
a y,,
j,,,,f, j2I g
T 5
-ll
~ z m s ne
, " $. A* s E A..** A. ? h._~ $.
.e A :*E ! g ! Ta ~c ~i: * ~ e 5 Wl'
~
@V A
8 J.
b a r
~J l
-l
~
g q
- p l,
,5 ga ma *;;; a y.
z b ili.
=
5 4 0o 2
I 2
7 tz '
I tT l
l
)I L."._.*_*u_ L 2L *I, I "L n i
=
D *b.!:
"_*_'F r_ r_ d,, l., gt;;
5 m
S e
8 jo lc 3
o
~si e _rn r
=
a1"a^i(!(!"a r
vn R i n
g=v.c=w=w si I
e a.a l.a f
I e
~
1 f
m m
t-
- Eo l
g i
s 8 ORE o
-+-
a.
I 1
135*! t:
EE 555-; 5 "I 8 o>
I
- 4.a p.h."
3 CI is!
C sE CT se e
i F,s g fr
-5=-
l vo e
s 5=
9 g,n,,,
a T
$ a h gEt I
E E=E sg--
A P.O.N.Y.
DWG: #### +
g
. P(
+!@--j 2 OkTE: 4WB4 l
(j g 41 9
s t*
ia~. -
,a m, 325*
M rg 4
- e[
x iiE c.
sy:
j.. j CH-k.
+
.,n-ocN E M,
. " ~
.r.
- r. _. -
_i_-
_m i
r _.. g.
.._.._._m.
. m_...
x.
- s. =.
- ..., - a;
. >.m.e. x.~.
~.
T M++. &
is M
ki j!l mam.$.. !l d
$.e-_.l()hm$
5 um ll, x 4
3
'g o-.-c;.
l.'
I c
ii" N 3:
i:
t S
o f :e o
~
x x
as I i
i.
%:.+
f me a".5I,
.ag.5 s=e
,*=y a
~
z
=...a.
=
e O
$ sis e 4.o B *-
Z ga!
AI-c3 e=h,* [
h
-l S,
O 4
O Ei i
d.d M i
t
.=m, mrofi::P=4 V
@ei I
gns E
yr
=
- e h'
h' h
h h
~
h 3'l l
l l
i l
e n.s.,,
- sv5 4 8 n 8-f e
g
- s. ;12 2.
' l'i~-
,,c o o U
! *s Et c,
6,c.Ao
{
C
'no no
=
w'
- k l
E 3., 3 3_3 al 2 F,f*f,f'.s*3-ifil
{
g_
~
5 g 5s wa sai 4
J I '4 g!,!a!i Mi e
__b5 iil di i
w~i g
x e
hw. +.
s 8r @oq 95 errig t 3 e;
.~
ej m
.m NS? d. ;
- e..
51
'# j I
- %y1 sa
m,
-.w 3 5 pf.
g su T
s.!., r --
s m.
-g g
.l
[
i
-l.:
~
'?
Bt' 7:Qp
- r
-n!
gh h
'k.a
,,5.
- 3 3
EI dfQ : E.
3 2
4 D j
'**.'8 5:
- *J.4 E
2 a
l
=
d 2
E-wa
- t #
o 6
- x 31*
-c 4
>-n- -- g y e
a
<la
_. J aw ww a
2" IS l
-Pdde :.a.
I 05
- ! 17 <
i o
d
- f d
>H; E
p444 5
o h
E i
a sIw. 2, i t.
K' g
z-i i
-a, m 3
4
.l. 4g:
8; H i
e
=
8 i
io E
C.
l lt a
4 I
lf *E '
o
. 4:
2 3
2;-
i
.,..,-,{
1 3.
-r e
I7 E
E W
I 5
g g
t
-.l i
e
= z
- j u
h I
I f
~ [:d**;E l
P.O.N.Y.
,1
=
.I ), '
>OWG W NESA,S I !.
oATE: #2WM.
' ' ' ~ '
- a,.
SY:
An' CH:
W 6,7. -
s i.'
sx - ocN M Y _.
- f. - - -
t I
- -m e= S gam
I-s
,.C FORINFORMATION ONLYi i
sir - ~ ~
y Q q18f-[*Dr:)e: 1/ 8 * ' 8'* < ' '
N s
~
~
,,.,,e
. y
'e a y-l I k.
.i,'h - f' [.
Q,*,l^""
,G,
,s.
5,,.
ce n su un 2..
)...s.
rer, *n,s n
.a n.l u
o e 1 3
gavoow e seat =ces.
g s
.. v%
L ff-A RTGP-C04 9'M I
)
?
,. s
....h.
. si. f.i
A12 DI'9.275)
I
?,
t' 7
y 0,,t,,,,
. y f., t.
a*=)
4 i
c.,,t.e, n..
6
- 4
,g.g g s 3
MH f5 As6 e i l
__ o e e,
,J g.
j i
a a
>& SEEtote 4'
8 ^ ~I
.I
' )8 l l2 4 '4 (e L - lA l
1P l
.q' 5
y tv,et else,.,
j-l i
T,223 P
q 1 s
t me is tsei I' i. - F C
- l
~"
I cia.'29 ( m6) urnsi _. ;;:.-
rtnes).
's !i!, h !
teno%ume 'II
'i '. O s I
n I ) ;'
I I
- q. :c.'
c
- -l
- ., =, *;
.a f -
o, c's <,s
<a N
y.,
es 3, m I
- (
t.
r
,.r 4
as'id' ".
'ok.., i.[ " i 't I.Ia -
9 a ('
{t,,
,c' a
e.
- s -
4
";IWd.'
..R...y.
c'.
c 3 ),s..
i e
s.
('1 W.',. -
- t. i.
c
'r
'h
.d.
jl..
( WJ.i 9 W t,
.a 4,.y i
.g.
e.
sw e
1
.x..
,4.,. '.,...g i
i ' [. -
\\
g*
f, I j
.~o
{.:
4 r
.... t e
<>so om s,
p: '
! j f,.
un
-D
.j b,c -
-i Note. -
Iimimm)l -
8 s
8 l
s-I 3
'e
/
'fil et capoucron(Siwiste o rwa) emes Dec.:
-) L,
'/ '
M*
cc tas e634i:
Ranotacun.wina tusumiaAvious cza 1 cc tas esss/t
. cmeasctoits saa set nua.
'i I
i.4 i j.
v, ecc Iger/a Na (cH-22s)
'. EUIGe ntofr.4 I
~.
e
.sg i
3 ;
f g
3y
[,
~.. - -
4
.~. 01 OO ?
g
,8 c.!*
- p..I <>
o.
~1m g t
..g 43,i
(
/
seasco senvicas mconronArso t.0UISIANA POWER 4 LIGHT C4
- g. ~.
64 i
l q C)
Z 7
u.;, u vl ac_ m.a _ '9e*
WATERFORO S.E.S. UNIT Ne'5 J
is as=
e go u
cowinat. winins tuasnaas B
1 pr)i E
o w
J.;
< # p o
A d
f_C_
I'@
,j s
,as
>M ser A t ti e
/ b l' 'd LETDOWN TEMP CONTROL 4 11 g
y arraoveh
.. y, }o i p4_
dtt,/,8[t/ef",
VALVE 3CC-TMI69 A/S
, og
-l{
l J
new cars av arenovan nu, opus av 7
p 3
f.
. s e at 5 per eim.m a s t i.
I
~
sins ni v
//rl. C#ED i
)
h R
'bt{17 6y' Dcg/ ;
- ..i
.f NO7' w
i M
k..
j NJ
, Eg.
b.;;
e
____.D
I t
m.
'l FORINFORMATION CMLY r
r7 ?
g._. p. _~._ r...
gy,H
~
g
..k
.c, ccges. 3,g}
hk
):
DD,# Asd PHL-l
.' ly -
(
e
(.n o om iadm
,,,,,,o,,
j ' 9. -
s j
l.-
ru4.se ve 4a
.a C*D lsitg4 n' ;
in Q
sL
'*8100 siov SH
.s*
__69X-6SA d9X vivac Ac c,,,,,,,,,o,,a t![);
p
'.l l
It le a cc tatt es ts ll rwt 3,o sA v
5 1
'Y CE t
- ll '
8-8 M
l, HC 601*
3 i
14 of2 d4% e40 os insi ec ssan toa-tis
- 3.,
p.
g
<b39 i
i
'[t1'
~
f.
N' i
, s.e g
pc e
~ J.KA q'
W m
f j
j gg,,g s, g,,
e gA,,A l,,,
6 6
W o
o-8A Tvre Cidt.ie tuas snett
- P.
j
-'.'d i
I MING MTUft*4 TD 6308'44AL att a+18 UN 28(f 5 Wil
? p'
'Kl1 j>
i i
5 i_
" a,,,..,,.-... g nu
<tr.
_8_ h ]A CS41 3 Kg l
tai a3i
---i i w,- -c H
'g g.
S.g2_
m 5 -
l?
t 1
fip CS g
, x.>
..;. i
,,,. t 3
ine g;-
-w n
~
-ga
'g
,t
,. tg.
I CCtf 44 A
- hb f
'K4
' KC' S
'KS
Ki A
614 1 541 4 (j tle)
(X"O'S) i
. Jtt-71 0
.sctd.l12A>HFAlC4S.A KI(ab-C PO.
n s-n.
e Y
86 tf h
e a..
,?
f a+
,4 s
i
.7 o
i.
\\c
.d-ascc.FiggA j,
, s 5
i 4
,,3 l
W es4F120A
.g
_,3
,,4 g,
.i
('
l_
I o
{
f.),'
(:
~
i og
.n g
[
,D
-dP-
-f>-
M M
-u-
-4P--
-It-
'n' I
i ll'dilUl@
Ji Ti,i','an l lct,!!;#!P l-Ft-gsja*/,;;;',
ac be ao sy t. cit on sv uota n no two c6c
, ' -l l m,64o J
f-suj $40 10CPE4 Io e 1j sce.s im e'r Sc o,F E lastra I t
~,
- wxa
/
t.xA j.
I-
-g
[
,ai
[
vos (a og, u.o oO ~
' as.tco,', ort
- . T" nuo,',,,
l t
l '. :ti 0 CD" > g.o xI
. g 64 uit ( As aktiot l,.
,)
.o 04ut cAS A4 210g i
l' ESASCO SERVICES INCOF4POMATED LOUISIANA POWER Si LIGHT CG g,0
.I 64 h-'['.
WATERFORD 3.E.S. UNIT Na3 4
llll)
"O "k' *<
.Laar 8
m M
l'21)3
- 8 iL 145._
BEL CONTROL WIRING DIAGRAM 0
I
-j i
O g
E' g'M g'
'E' %- Tt 14AILEM*agt
. Cs)MPONENT C00 TANT 1 RAIN AISOLVAh 3H 343
{
1 2
f M
L pava j ev aremoveo nav mais er arenoveo
.....lVW 21,197L e, n.
(e s 8 3CC-Fl20A 13CC FI22A 4
- _ [
.f arv g
.,.igo.g}
.9-4 y
4 s ca s incearenalt o vues ety m
i I(.,
j
,y I
~ ' ~
r i~
C FORINFORMATl0N ONW
s.L
-a-
,p '.
- i %
[k6W967d
$, k nrse cretmn m ~ _
i J
Gsras.A49
[.)
,9'-
t 1 [.,
,G.. e.4 r
.i -v.
e%
..y i
- i. u I...'g*
i.cb 4TN
=
-'I g
- i"0" ons fne g
,o.r. o... l 8
g om ons ios ih cie ons a nr,
i ur l
cusse
. ism
. o a
o we v
is s
,a e-m
-t n
n.
j a
. M,,
Aux rui..e a4 x
e J
,- (,
nfsai _va) om TYPE CMC W T85 5tEfi u* ou oss on o a* on on w"H1 i
s,s 1-V s
_L
.Q :
[
MandTAINED CDgTACT cc tesA-3
)
'sj 3...
,a u t g. -. 1-
- I
[
(Lt5e(qn='
>/
l 1
k n,n
.m MTAL k O"4
[
g-
- g ". _
Pre m sa V 8 v
-~ sa i i
.&fS@
--()s,.,),
w}
u l
,, _ w__.c.s.
rwt tout coatin q
- Ss.
Lcc enet.
""*****"a 2.:
on o.e* N 'S 4 m o.4*
c".
ou*
4 i
+
i w
a
~i a
+
e.g, f
l g.3, r.
s g
o.3.
so 4 )0 tit i)$
i>9 I80 iPS
' #70 t 114 4 bl4 (HI
]..
~
l l arbe
- ac 4mi
!bc I
!be tutesire l
I l
c, TO CLOW l
g 4q l
g *"'"*" l ts.-%t Sus *t IsN 854
~~
l/
_l snese FutL Poot. Tuv towinat v4 8
- - s,.sp 3CC-rit04 3CC.f tttA
,' j,,
,, 4 r,
]
COHfDNENT C00LAN TRAIN 4 E0t V44 I
g hSW
\\
a.,
tscoiseAlst t
t-3 e..
L_
_'_J
[,g
.,.[
'4
~.a Hus CAB tuoial.
, k.,
[ lh m
, 1 O in O O %
^*
3
.I..-<. > 5O A,., u s>"
' pt s4 f*
.6 t'*
Vif JL l4 8
unasCo SERVICES lNCOe PORATED LOUISlAN A POWER E LIGHT CG LOU +1564 M
g 25_tA '2a 4. w, A
,,,,1 g L,, _3.s.,
ha d-f WATERFORD 5.E.S. UNIT Na5
=
n ei O
r af a**=
g&
7.,q o
.n g'Z
_ M 3
ti-si G__yA ryt a ' ~d* ---
CONTROL WIRING DIAGRAM o
1
..' }j.'
ae.... '
.. nyim..'r_
~
rwt in voir Cairnot a snerT n
cf g
ace.ovio
...a aceno..=.... w n,m q._ u, a6 f/rj 56FHise as Ciwinn a
.J
.j z 9 i
q y-rcos mCongon un msn.
3
,A p.
+
.i 4'n Q
p.k 3
b ;I)
m.
c
_FORINFO.RMATION ONLY
'.y t.3
^
- u. s l
m M
e,
,r m
e q
r wwseo v
p=
1
-. m q.c
- t.,
W, s
- e.,,
- I.. ll.
I.. $5
- h..
. hf 4
.m g
e.g sg
- cia,
- p.. *
.., i
, mm.
m.,
- a. -..
RA)ta sesi)I.,
i~
- N o.t o6. o.s e>.s' on ort e'.
.L - ~,
,s.
l CMC eTIst 18EET l
Male 6T4eestD CosetAct
(
I E ttR-
!s t_
g,.-
(tost (meet til f,.,
f 'I I
~1g@1-l b'n'
. v.c a r*'
t i -.,,
.m PDP 39614 is ti g
i bg '
Risat ce,
/sen /ere g
.[
anse assc tt t
.g
- g rigt root (notte y.i s
g
=>oc satecan
.t I-3 o
- CorgtAn, g.,e c,,
o.l sa-o ; 'n o.,
~.
+
+
a
+
s a..,,pb T
e.,
- +
c 1
os i>
- is no no os i pis on l
Ion oss
{-
l l l l rbc rbc ac
- le.
ibc 4
gg l s.
'I f.
as cassa - I cc.itsos.to/t l
I l,,
l Sn.sw l
ch Me UNeT Swat Sae.su Furt Poot TEMP CONTROL VA SCC-Ft215 3CC-Ft2 38
'[ l f g r
._[.
COMMlHE (Il0LANT TRAnt B lidt tWS
.P-
?-
95
' f '; -
.e'
[
..i p.,
.p
,, U3 O O
'O g^ I.i D $b
.A ' '.e' 111 J f( lb?t LOUlstANA POWER S LIGHT CG LOU lS64
.e.
8 U
consco sanveces INCORPORAirD r
'i r
- iSt AS W'A WATERFORD 5.E.S. UNIT Na5 ff,I g *[
,,,,,i,I.
,p l
0,
- re P
LAj.A 3 W gA
-,,, asc,, z, jjf.**7--
CONTROL WIRING DIAGRAM 54.img-e gfLm 3 O
..a T
y
,,,,,.,,m,a,,,c_4 g l/f-scc-rwinents cuaHast s 3
, _ u,,,, c o,,,,,,
p new pass av arenovee new onir e,
aceno...
,,,,,,m o_
g,,,
{.
~
W FCS SINCORPORA TED Ilits REV
. :- [
.h k
I i ; '
'" ~
'i ['
m g i
y
,n I
^
j i,
n
. a T,ewsen-
+
m, r-
,g
~,.
ey
.'f 9 e gy,,,ya.
-.6 2 J
e a
La... a.m v:~n.
~
~,a pgpNFORMATl0N ON&
M ! (.. !
E. M..,k;,
. 6, se L.?
"~
~~
.w %
d drii -, i
~
- 11 g
h_.
m i
of L.e, sd e
a micric = vesis sneer
- g. j.
%m
-E-XB e,
1 H AlNTAINED CONTACTS
},
y.8
. EL d Ag.56IE A-Q-9--- b 5
- a. :..
.t... -
I f
t *.f*
47
.e
< ry, 7s <. so 4, rs ->e2
'si 8
'5 8 3_-
t-g st.g l
8 q?,+gM i
3,,
4A w
0
~
- f. '
s I
.}.
st -
2 4
2 K
I
't '
U G2
@+
i.
.; o;-
tt.
i
/'2 9g.
I n
6 7,, g'tf n.-
i j0; C 1' I i
.4 f
it
~
' )..
....., l.S :
j[
+
~
14 '
~
~,,
{f ',j r-2 y
MH.
,77
>9F
'+76 o75
,,[*
h, '
~
AUX PNL-2
'a ?,.
i 2
8 8
R o.ss_ 8 w
t F-sa
', / ;
,2.'
t 1
6 y.
si
%{.,b 5
r*
4.se
[-
A
- a 1
h
,,- o,
i e-H.
i
'7 q' '
is
'4
.s _<'s
+'2
't
,. L.
8-
. [;
8 h"Dc.a 4 l
- fbe
!bo
- oc l
lafy%rg,=Fi-i l
r*
- * / lintast 57
- 4/.
5H 2el2
/J2 l
g S
(
us a w o o 'o
.s-
~
'.- :n I -< >$O Y
i
.i dg7 measco sanvicas inconrost ATuo LOUISlAN A POWER & Llel4T CQ LOU 644 ff Lnai)hi t_{1.
( L.
A llli M.
InD 2L r
ia WATERFORD 5.E.S. UNIT Ns3 1
(
'1.
A'_
O~4 i
h_ L'P3 8'a L
'M AJ ns..Mit!8 //g' g","g*J s
g;
- 1. L11.A).8 2K d {
O
'a ca coNTRai. wlRING 08AGRAM t
'/
i a na e g
1_ 11111 8i.lL.
ft. D c.emrentist tootsNG w4tta is at res4r's g,gggyi,4g i
Il O
n d';'
Z tv dart av arenovr e nsv naus av arraovse new,onva py arenovso
..DEC.Z.tSIL A_ M fc /Ld todit A,7 V4 2CC Fl4 6 A/S 4
- *at i
b g
rp l
r,,
Y.
$ N(OAreRAILD INil etV e
h
& y 4O' j AR B f $1*S M f'
_lku i%q k.,-
":l 11 j
t
EQINFORMATION e
g
[L r.,
\\/9sese B
4evisep
,2 4~
O
/
J g h,r, g [RTG[5-CPS Cd*[. N.M_M M' g,NN (GP,,l$
'E
'<(C@A
--4 R
ry A N,N.{C,,P;IT
& WAS C.An
, u-eew I m-w f
.. I r. ~,,-
- 8:
A (p TGB-CPS P t ',.,
g,,,
i il --+y
=^< ~
. c.,
.,7e :
t.
.e-u aose mii 9:
d,,,
u;w
- l,cu d) lI
.dg Ib,,d[ I g3 g
b y,) f ".-, /
c, me, 1 4 4
)
a p0I l Etame I W"
,IG *j l l
,88 1 S&88 4 88'H' l
ig i l g.6 K
---<."P-
@t'4]d,gj,p'
[. %'M J
g yif,'
Am,.
4,
. s. ".= -.4,ni".= "..,
u x
"...-.e..
g
"""' v TYPE CHC =THit steetT g
- f. g4gg 8
J g y. g,g, &
a LJ O
(, __ e
.gg WI tj e
W e
e,g4, 4 W
d R
g,s e _
E W
8 g.pg HAb4TAINED CONTACTS n-
,,o.,
CLO3t O.PEtt.
2.'
4.,
.. ~
4a it w
~6 m.
. ulo 96
- =94 Y.'.. g.
- h.
15
'M s
34-l
- - 94
~ og
. u usie -,n
~
t '
{14e0l 1400
'l...
ccw To., acps 61 '. '- i62 ::62 4
2 4'
k 562:
(62
,+ -l. i -
(C5f)ccw Faorsace4 62 I g 2
18 62
.I
{ 62.
l'
(.
l d.e A'4 4
AtQ 11
.IsoL%^ 097.' A 1
g g,
' s[.
e S4
"'9 i'
'I.#
...~$
SAY84 i,,'
2
[.
ANN (Chlj),,
N 4
f;
.I 81
,f a64L I_
g
.f;
-* m
- d'
.r g
- f. N k
l' bb -
2 gF SF' IF'
- h.
alntle-gn w
I l
j.*
d 21*
,5
'W
'et
-its '(Ac)(a-issa)
'45 l
'4
>$0
>3 (au)(s.igs3) 6 4.
l' AUX PNtfl Aus PNl:2 L '.t-i
,6,';p i
4_ L e
p.gg. t w
g q.34
,L.,,
s
.s.
. a___ Cu m 4
o a
a w
b, 4
jr.
t v
a, y
- ]r g~.
y m e
l
.. ex.
H $8 3
f '.
h l'
>3
,4 g<,I i'<>#
,8
i R
i i
i s
i
.;E
'G
- 7
,,1-0
,1-14 2'
A-54 8
dyr- -R (
S dgg j
Mf
>3
.i4 3
I
'2 iI x._1h g_
4 i
,3,
'1 shiv D C
.+ %
f.:=
- mins ramel. f.
'I '
It5v DC 3
I l
/ ;e
.). d MD 3Alec.g i%
10
- QC pop 33,oc.g h g lI
$ f h 6V-cc2434)I g
cgregacsA MJ g sv-ccit7Als g Qe J
i* 7 f APP m..?A..'.
j) f ff4._
g i
l S
inn','t r
=65 = < "> 5*
s.
sts4 2836 sn a o,o
- l'
('fff*)
k
~f 3
a
.I. -< >g $ O, enAsco senvices NeorieoRATED LOU 131ANA POWER S LIGHT CQ LOU 1564
'y' se e
u %M rLS A
s - t- *"
O H
II G "Lj-
gri * * + 2 Ubi g_d311 T_di i
o WATERFORD 3.E.S. UNIT Na5 s'
h 0*
4"/I */4 A*- - con,CGNTR(1. WIRW80 INASRAM
... I N
IIII^ C ILJ 4 r'* ***** /
a 3 % C
- f'1"-
t il M
8 K
77I'8 E
e -
O 12113
=
U_ffE&
!OliX-munk n
y WALve t 2NF245a$rra tooe, ace's isot owen < cons w gegg
~.' L. I mas pass' et Aernoveo new pass av mernoveo new ears av arraovse,,,, g g t2,g3]l._
h,6 - [
p<}.
lb ( tcGFMTA/E y.ssy 7
y
'R'l N0(GRf04Alth lHf$ Self e
I e
4
'M
=
,8
-!,.' i
"^
^*
g
,i,.
. ', I g
X/Of NQGr -[$6 dQV k'*
r &,
6 (f
j *
- s N/
4-M p..s.
,, p o.
,y i g,g Y.cus),Avv.ruus--
1 15.*. 4'd!'Z?) c1 -' M6*78W 5 b.N
~
a (en u.. o.iir>7Tii.wx-r377>
< :f 4 8e o
2_
' ""I'# M
, y?h.
,' 4,,' g s
e
.. l a.
w 9
in m
m,,
p.
. m.
m.t.
. sje a
na
. us
'*f a a
4 j
.. a.n m$
y
- ?
~
wrer o sw cess j' y
- ._.. 4
.s,
?!"1 ' '
' f'
_Q
. '5 x
n-
,*:l j
F
'l i
1
%-s n
T_.sg y
...j y
a 4c
. ic _,,,
o
=y
.._ 6..,'
i a J4 T__DAaK
.,,n mc....
2 i,
..a ks a
is.
5,'s. gLn o
4,,. a'3 k,
a
...i.
'%*d, S.,
.- *# 5-M w w w'o coH'Ac'S cx
.i y
=)o e
sn ej cg"%. y is i
iv t
Q a~m
~
//.-
/ ' '_ - =N"w w
i?nJd,.,@ L &L Lo
~en J =b ~
M L'
c} 7,.
%i:
I 1
3 t
k Id s
l 898 JS' M (
x G ' WJoivl w/
m
~
I a
25 dcww a.n
- w
=
a Ae
- ' E
'_ 1.06l tpo, 4 38 l
- p up 4 ci-a
.A iw' 9
(16 'IR "4
10 u
e' l
2 Dil 4,3 n
31
~[
m2
. < i,m
- s. r t c r
ces "ss.on g _.= 4(-
ww p-
- 1: ip h">"":
t 'rP U
i 4
m oiss' 5-
]
'8tI ' i
]fi ush,gg4 j
,5 +
,,p,t,, tats
,j j
me, irs -
T
'i{
'i
_g g_
6 4 W,4 9-[ h
- hji
%g.,( [,y
,f.
e pairion 4a,{
R gg.A_
3%
u wa S
d p.
a w
R e
[' p ' d
- m u :-
k.!,. c... g e
mi==
,,i.
~,
I,vpy.0vAc h, _",,,~,0 '?_'h
?"12 i
~
q,l..
Mipu s
e41
.4 gj; g,{y, m
am
- opsi, i.
-,2
+'5 oS 7 4
aW i
12
.r.
lj I
i,3 <>>3.,<g,{k i l' g
]n,,1,r
,;,.m
==,
y
=
.g
'N i
?j,
~V'
- (f-
,r. :-
N,o}..,.b wG#rnd 1Qr _t 3
l.
yo
.,W c."
N,o m o.T.I>
fc yojiAv,-
/
k
\\
9 (( -
I1,esg
.t
?..,csAs r i-e osyness
,c x
sr.
q-i
. 3
..s..
n s
a,_ _ _ dif i.. v.! y.z.,-
e.e 1
et 4
- 1. t '..
gg
~ '~
r_A acc.-rison i.
f.-
g
. ) ;-
'. ANu(,ce-ig) hs%
atrAS-f.e
,- f
-~
e a w
,r g
'.*,i
}
i.e e
I-5 p
[
g.
e*
'.,j o
,3f ense r
,p r..
9 i
g l(..
cars x
i
,. a earness x
w 11 4
(p OO D
.a.
,e C
- 4 e-Tii i
t
- i. Y,es c,aseNAIN AINED CONTM15lg
',g !
- >t.I <. > g*O, te azinavit@it
~'
..x.co.snyics. ancorirosentan t.OUIStAN A POWER a LIGHT CG t.O hl 44 9
.2' 0y
["
- ill-D El b
WATERFORD 3.E.S. UNIT Na5 -
o C
.uc - nt M t --
c0Nmal. WIRING INAGRAM M~
X u/(ff'wMU.aG hI1EMStu_ f/VA '
5HU100WN ttEAT EXCHANGER h ad, L Ts
=
S 3
-l. O pp 4
W,41 2 7 4
Em 1L2 new ease av arenovs.
as, o.
av arenova.
,,,, Arangtitra_
ny)-- l
+
I ras esconrenasto seus any
_,[
{
g gy ygg.
'F i \\ ; '
G:n
'"i a A/O f R h e,7 0 F 7 S' K N -
g
~* '
N.
4 W