ULNRC-06156, Cycle 21 Core Operating Limits Report
| ML14321A872 | |
| Person / Time | |
|---|---|
| Site: | Callaway |
| Issue date: | 11/17/2014 |
| From: | Maglio S Ameren Missouri, Union Electric Co |
| To: | Document Control Desk, Office of Nuclear Reactor Regulation |
| References | |
| ULNRC-06156 | |
| Download: ML14321A872 (29) | |
Text
~~
~Ameren MISSOURI Callaway Plant November 17, 2014 ULNRC-06156 U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555-0001 Ladies and Gentlemen:
DOCKET NUMBER 50-483 CALLAWAY PLANT UNIT 1 UNION ELECTRIC CO.
FACILITY OPERATING LICENSE NPF-30 CORE OPERATING LIMITS REPORT Please find enclosed the Callaway Cycle 21 Core Operating Limits Report (COLR). This report is provided to the NRC Staff for information. It has been prepared in accordance with the requirements of Technical Specification 5.6.5.
This letter does not contain new commitments.
If you have any questions concerning this report, please contact us.
Sincerely,
.AeotfA.2 Scott A. Maglio Manager, Regu atory Affairs JPK/
Attachment:
Callaway Cycle 21 Core Operating Limits Report PO Box 620 Fulton, MD 65251 AmerenMissouri.com STARS
- Alliance
ULNRC-06156 November 17, 2014 Page2 cc:
Mr. Marc L. Dapas Regional Administrator U.S. Nuclear Regulatory Commission Region IV 1600 East Lamar Boulevard Arlington, TX 76011-4511 Senior Resident Inspector Callaway Resident Office U.S. Nuclear Regulatory Commission 8201 NRC Road Steedman, MO 65077 Mr. Fred Lyon Project Manager, Callaway Plant Office of Nuclear Reactor Regulation U. S. Nuclear Regulatory Commission Mail Stop 0-8B1 Washington, DC 20555-2738
ULNRC-06156 November 17, 2014 Page 3 Index and send hardcopy to QA File A160.0761 Hardcopy:
Certrec Corporation 4150 International Plaza Suite 820 Fort Worth, TX 76109 (Certrec receives ALL attachments as long as they are non-safeguards and may be publicly disclosed.)
Electronic distribution for the following can be made via Responses and Reports ULNRC Distribution:
F. M. Diya D. W. Neterer L. H. Graessle T. E. Herrmann B.L.Cox S. A. Maglio T. B. Elwood Corporate Communications NSRB Secretary STARS Regulatory Affairs Mr. John O'Neill (Pillsbury Winthrop Shaw Pittman LLP)
Attachment to ULNRC-06156 Attachment Callaway Cycle 21 Core Operating Limits Report
Callaway Cycle 21 COLR Callaway Cycle 21 Core Operating Limits Report September 2014 Edited by:
Gregory M. Core
- Approved:
David J. Wotus, Manager Nuclear Design C Nuclear Fuel Core Engineering Electronically Approved Records Are Authenticated in the Electronic Document Management System Westinghouse Electric Company LLC I 000 Westinghouse Drive Cranberry Township, P A 16066
©20 14 Westinghouse Electric Company LLC All Rights Reserved
Callaway Cycle 21 COLR 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for Callaway Plant Cycle 21 has been prepared in accordance with the requirements of Technical Specification 5.6.5.
The Core Operating Limits affecting the following Technical Specifications are included in this report.
3.1.1, 3.1.4, 3.1.5, 3.1.6, 3.1.8 SHUTDOWN MARGIN (SDM) 3.1.3 Moderator Temperature Coefficient {MTC) 3.1.5 Shutdown Bank Insertion Limits 3.1.6 Control Bank Insertion Limits 3.2.1 Heat Flux Hot Channel Factor (FQ(z))
3.2.2 Nuclear Enthalpy Rise Hot Channel Factor F mN 3.2.3 AXIAL FLUX DIFFERENCE (AFD) 2.1.1 Reactor Core SLs 3.3.I Reactor Trip System (R TS) Instrumentation 3.4.1 RCS Pressure and Temperature Departure from Nucleate Boiling (DNB) Limits
Callaway Cycle 21 COLR 2.0 OPERATING LIMITS The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the subsections which follow. These limits have been developed using the NRC-approved methodologies specified in Technical Specification 5.6.5.
2.1 SHUTDOWN MARGIN CSDM)
(Specifications 3.1.1, 3.1.4, 3.1.5, 3.1.6, and 3.1.8) 2.1.1 The Shutdown Margin in MODES 1-4 shall be greater than or equal to 1.3% ~k/k.
2.1.2 The Shutdown Margin prior to blocking Safety Injection below P-11 in MODES 3 and 4 shall be greater than 0% ~k/k as calculated at 200°F.
2.1.3 The Shutdown Margin in MODE 5 shall be greater than or equal to 1.0% ~k/k.
2.2 Moderator Temperature Coefficient CMTC)
(Specification 3.1.3) 2.2.1 The Moderator Temperature Coefficient shall be less positive than the limits shown in Figure 1. These limits shall be referred to as the upper limit.
The Moderator Temperature Coefficient shall be less negative than -4 7.9 pcm/°F.
This limit shall be referred to as the lower limit.
2.2.2 The MTC 300 ppm surveillance limit is -40.4 pcm/°F (all rods withdrawn, Rated Thermal Power condition).
2.2.3 The MTC 60 ppm surveillance limit is -45.5 pcm/°F (all rods withdrawn, Rated Thermal Power condition).
2
Callaway Cycle 21 COLR 7
~ 5 H u H
fs.t fs.t rz1 8 4 1
0 0
10 1 UNACCEPTABLE OPERATION (70%,
~
' \\
~
1 ACCEPTABLE OPERATION 20 30 40 so 60 70 PERCENT OF RATED THERMAL POWER Figure 1 Callaway Cycle 21 Moderator Temperature Coefficient Versus Power Level 3
~ '
5.0) 1\\
~
' \\
' \\
~ ' i\\
1\\ ' i\\
' 1\\
~
80 90 100
Callaway Cycle 21 COLR 2.3 Shutdown Bank Insertion Limits (Specification 3.1.5)
The shutdown banks shall be withdrawn to at least 225 steps.
2.4 Control Bank Insertion Limits (Specification 3.1.6) 2.4.1 Control Bank insertion limits are specified by Figure 2.
2.4.2 Control Bank withdrawal sequence is A-B-C-D. The insertion sequence is the reverse of the withdrawal sequence.
2.4.3 The difference between each sequential Control Bank position is 115 steps when not fully inserted and not fully withdrawn.
4
Callaway Cycle 21 COLR
§
~
Q li::
~
H :s:
[/)
- 11.
rz1
~
[/)
z 0
H
~
H
[/)
0 p..
~
z
.cz:
I:Q Q
0
~
22S 200 L
1/
17S 1/
v v
v J (0, 161) 1SO 12S 100 7S
/
l/
ll v
so v v l (0, 46) 2S 0
0 10
..J.
I/
/
v II (28, 225) v I (78, 225) I v
v v
v 1/
v v
1/
1/
BANK B I
.I
.I
/
'/
ll
~
I (100, 161) t v
/
/
/
v v
1/
v
.I BANK C I
.I
/
/
/
/
I/
I/
I/
II v
v v
v v
v v
v 1/
v v
.J BANK D
.I
/
1/
1/
v v
v v
v v
.I
/
/
I (30.2, 0) 1/ I/
20 30 40 so 60 70 80 90 100 PERCENT OF RATED THERMAL POWER Figure 2 Callaway Cycle 21 Rod Bank Insertion Limits Versus Rated Thermal Power - Four Loop Operation 5
Callaway Cycle 21 COLR 2.5 Heat Flux Hot Channel Factor CFQ(z))
(Specification 3.2.1)
FQRTP FQ(Z) ::S ---
- K(Z) for P > 0.5 p
FQ(Z) ::S ---
- K(Z) for P ::S 0.5 0.5 THERMAL POWER where:
P =
RATED THERMAL POWER 2.5.2 K(Z) is provided in Figure 3.
2.5.3 The W(z) functions that are to be used in Technical Specification 3.2.1 and Surveillance Requirement 3.2.1.2 for determining FQ w(z) are shown in Table A.la and A.lb.** The W(z) functions shown in Table A.1a are only applicable to Figure 4a.
The W(z) functions shown in Table A.1 b are only applicable to Figure 4b.
The data in these tables should be used independently; cross interpolation or extrapolation between W(z) sets is prohibited.
The Axial Flux Difference (AFD) Band in Figure 4b is more restrictive than the AFD Band in Figure 4a. Prior to switching from Figure 4b to Figure 4a, FQ w(z) must be confirmed to meet Technical Specification requirements by one of the following methods:
- 1. Confirm FQ w(z) meets the Technical Specification Limit with the Table A.1a W(z) values for the most recent surveillance performed.
- 2. Perform a new surveillance and confirm FQw(z) meets the Technical Specification Limit with the Table A.1 a W(z) values.
The W(z) values have been determined for several burnups up to 18000 MWD/MTU in Cycle 21. This permits determination of W(z) at any cycle bum up up to 18000 MWD/MTU through the use of three point interpolation. For cycle burnups greater than 18000 MWD/MTU, use of 18000 MWD/MTU W(z) values without extrapolation is conservative. The W(z) values were determined assuming Cycle 21 operates with RAOC strategy.
The W(z) values are provided for 73 axial points within the core height boundaries ofO and 12.08 feet (hot core height) at equally spaced intervals.
6
Callaway Cycle 21 COLR The W(z) values are generated assuming that they will be used for a full power surveillance. When a part power surveillance is performed from beginning of cycle to 150 MWD/MTU and at 45% +/- 5% RTP, the W(z) values listed in Table A.2 should be used.
When a part power surveillance is performed after 150 MWD/MTU, or at a power level other than the level specified above, the HFP W(z) values in Table A.l a or A.l b should be used.
W(z) values should be adjusted by the factor liP, when P is> 0.5. When Pis ~
0.5, the W(z) values should be adjusted by the factor 1/(0.5), or 2.0. This is consistent with the adjustment in the FQ(z) limit at part power conditions.
Table A.3 shows the bum up dependent F Q penalty factors for Cycle 21 which are applicable to both Figures 4a and 4b. These values shall be used to increase FQ w(z) when required by Technical Specification Surveillance Requirement 3.2.1.2. A 2%
penalty factor should be used at all cycle bumups that are outside the range of Table A.3.
- Refer to Table A.2 for W(z) values for evaluating the startup testing flux map at 150 MWD/MTU bumup and 45% +/- 5% RTP.
2.5.4 The uncertainty, UFQ, to be applied to measured FQ(Z) shall be calculated by the following where:
Uqu =Base FQ measurement uncertainty= 1.05 when PDMS is inoperable (Uqu is defined by PDMS when OPERABLE)
Ue =Engineering uncertainty factor= 1.03 7
Callaway Cycle 21 COLR Table A.1a W(z) versus Core Height for +10%/-15% RAOC Band (Top 5% and Bottom 8% Excluded at 150 MWD/MTU; Top and Bottom 8% Excluded Remainder of Cycle)
Height 150 4000 10000 (feet)
MWD/MTU MWD/MTU MWD/MTU 0.00 (bottom) 1.0000 1.0000 1.0000 0.17 1.0000 1.0000 1.0000 0.34 1.0000 1.0000 1.0000 0.50 1.0000 1.0000 1.0000 0.67 1.0000 1.0000 1.0000 0.84 1.0000 1.0000 1.0000 1.01 1.4450 1.4784 1.3031 1.17 1.4340 1.4639 1.2951 1.34 1.4205 1.4462 1.2846 1.51 1.4049 1.4262 1.2730 1.68 1.3880 1.4047 1.2607 1.84 1.3701 1.3819 1.2478 2.01 1.3512 1.3582 1.2344 2.18 1.3318 1.3338 1.2206 2.35 1.3121 1.3092 1.2068 2.52 1.2917 1.2846 1.1939 2.68 1.2716 1.2596 1.1818 2.85 1.2537 1.2352 1.1720 3.02 1.2403 1.2151 1.1683 3.19 1.2323 1.2029 1.1676 3.35 1.2283 1.1985 1.1653 3.52 1.2237 1.1954 1.1622 3.69 1.2181 1.1916 1.1595 3.86 1.2121 1.1873 1.1578 4.03 1.2052 1.1822 1.1569 4.19 1.1981 1.1768 1.1561 4.36 1.1914 1.1715 1.1545 4.53 1.1851 1.1660 1.1523 4.70 1.1784 1.1601 1.1496 4.86 1.1711 1.1536 1.1462 5.03 1.1635 1.1465 1.1422 5.20 1.1545 1.1388 1.1374 5.37 1.1453 1.1307 1.1322 5.54 1.1441 1.1226 1.1271 5.70 1.1456 1.1165 1.1247 5.87 1.1519 1.1152 1.1260 6.04 1.1608 1.1171 1.1326 6.21 1.1702 1.1223 1.1425 8
18000 MWD/MTU 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.3073 1.3001 1.2907 1.2801 1_.2687 1.2568 1.2444 1.2317 1.2188 1.2058 1.1921 1.1784 1.1690 1.1666 1.1689 1.1739 1.1800 1.1852 1.1896 1.1935 1.1974 1.2009 1.2035 1.2048 1.2052 1.2055 1.2058 1.2041 1.2043 1.2105 1.2215 1.2329
Callaway Cycle 21 COLR Height (feet) 6.37 6.54 6.71 6.88 7.05 7.21 7.38 7.55 7.72 7.88 8.05 8.22 8.39 8.55 8.72 8.89 9.06 9.23 9.39 9.56 9.73 9.90 10.06 10.23 10.40 10.57 10.74 10.90 11.07 11.24 11.41 11.57 11.74 11.91 12.08 (top)
Table A.1a W(z) versus Core Height for +10%/-15% RAOC Band (Top 5% and Bottom 8% Excluded at 150 MWD/MTU; Top and Bottom 8% Excluded Remainder of Cycle) 150 4000 10000 MWD/MTU MWD/MTU MWD/MTU 1.1783 1.1284 1.1504 1.1854 1.1354 1.1580 1.1913 1.1431 1.1659 1.1960 1.1505 1.1741 1.1993 1.1571 1.1825 1.2011 1.1627 1.1903 1.2013 1.1671 1.1968 1.1999 1.1704 1.2021 1.1968 1.1724 1.2063 1.1919 1.1730 1.2091 1.1844 1.1724 1.2107 1.1767 1.1699 1.2108 1.1703 1.1668 1.2095 1.1621 1.1676 1.2072 1.1528 1.1686 1.2027 1.1456 1.1689 1.2002 1.1450 1.1809 1.2069 1.1475 1.2053 1.2219 1.1581 1.2309 1.2347 1.1730 1.2561 1.2468 1.1927 1.2808 1.2576 1.2169 1.3048 1.2676 1.2409 1.3276 1.2824 1.2631 1.3499 1.3009 1.2841 1.3718 1.3204 1.3060 1.3921 1.3421 1.3253 1.4074 1.3630 1.3377 1.4171 1.3794 1.3447 1.4266 1.3910 1.3496 1.0000 1.0000 1.3500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 9
18000 MWD/MTU 1.2420 1.2507 1.2584 1.2640 1.2678 1.2698 1.2698 1.2677 1.2636 1.2575 1.2494 1.2390 1.2268 1.2156 1.2079 1.2066 1.2099 1.2177 1.2263 1.2382 1.2530 1.2691 1.2845 1.2986 1.3113 1.3225 1.3318 1.3386 1.3421 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Callaway Cycle 21 COLR Height (feet) 0.00 (bottom) 0.17 0.34 0.50 0.67 0.84 1.01 1.17 1.34 1.51 1.68 1.84 2.01 2.18 2.35 2.52 2.68 2.85 3.02 3.19 3.35 3.52 3.69 3.86 4.03 4.19 4.36 4.53 4.70 4.86 5.03 5.20 5.37 5.54 5.70 5.87 6.04 6.21 Table A.1b W(z) versus Core Height for +8%/-12% RAOC Band (Top and Bottom 8% Excluded) 150 4000 10000 MWD/MTU MWD/MTU MWD/MTU 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.3791 1.4048 1.2617 1.3697 1.3919 1.2545 1.3580 1.3759 1.2449 1.3446 1.3579 1.2340 1.3300 1.3386 1.2222 1.3146 1.3182 1.2099 1.2984 1.2969 1.1971 1.2818 1.2751 1.1841 1.2650 1.2533 1.1711 1.2480 1.2313 1.1579 1.2305 1.2095 1.1454 1.2131 1.1891 1.1354 1.2001 1.1735 1.1293 1.1933 1.1657 1.1272 1.1912 1.1653 1.1272 1.1888 1.1641 1.1267 1.1852 1.1618 1.1264 1.1815 1.1594 1.1271 1.1769 1.1564 1.1284 1.1723 1.1531 1.1297 1.1684 1.1500 1.1305 1.1646 1.1468 1.1307 1.1605 1.1432 1.1305 1.1563 1.1391 1.1298 1.1529 1.1343 1.1282 1.1491 1.1292 1.1268 1.1446 1.1237 1.1259 1.1441 1.1165 1.1248 1.1456 1.1129 1.1242 1.1520 1.1142 1.1255 1.1591 1.1174 1.1320 1.1656 1.1221 1.1420 10 18000 MWD/MTU 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.2513 1.2450 1.2368 1.2276 1.2178 1.2077 1.1973 1.1868 1.1763 1.1659 1.1551 1.1445 1.1369 1.1351 1.1393 1.1440 1.1468 1.1493 1.1567 1.1663 1.1743 1.1813 1.1875 1.1924 1.1960 1.1987 1.2000 1.1992 1.1995 1.2045 1.2130 1.2221
Callaway Cycle 21 COLR Height (feet) 6.37 6.54 6.71 6.88 7.05 7.21 7.38 7.55 7.72 7.88 8.05 8.22 8.39 8.55 8.72 8.89 9.06 9.23 9.39 9.56 9.73 9.90 10.06 10.23 10.40 10.57 10.74 10.90 11.07 11.24 11.41 11.57 11.74 11.91 12.08 (top)
Table A.1b W(z) versus Core Height for +8%/-12% RAOC Band (Top and Bottom 8% Excluded) 150 4000 10000 MWD/MTU MWD/MTU MWD/MTU 1.1710 1.1282 1.1499 1.1754 1.1355 1.1578 1.1787 1.1426 1.1655 1.1807 1.1485 1.1723 1.1815 1.1534 1.1780 1.1809 1.1573 1.1825 1.1789 1.1599 1.1858 1.1752 1.1612 1.1876 1.1701 1.1611 1.1881 1.1632 1.1596 1.1870 1.1540 1.1564 1.1846 1.1446 1.1540 1.1801 1.1367 1.1541 1.1750 1.1267 1.1535 1.1744 1.1169 1.1516 1.1761 1.1153 1.1511 1.1775 1.1229 1.1619 1.1822 1.1391 1.1838 1.1881 1.1546 1.2053 1.1952 1.1720 1.2244 1.2141 1.1931 1.2412 1.2388 1.2174 1.2582 1.2604 1.2415 1.2812 1.2815 1.2639 1.3084 1.3020 1.2850 1.3358 1.3210 1.3072 1.3620 1.3380 1.3266 1.3830 1.3528 1.3392 1.3971 1.3647 1.3463 1.4105 1.3734 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 11 18000 MWD/MTU 1.2295 1.2364 1.2424 1.2465 1.2489 1.2495 1.2483 1.2451 1.2401 1.2332 1.2244 1.2134 1.2007 1.1890 1.1831 1.1825 1.1842 1.1907 1.2015 1.2090 1.2183 1.2344 1.2500 1.2637 1.2763 1.2875 1.2968 1.3037 1.3074 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Callaway Cycle 21 COLR Table A.2 W(z) versus Core Height for Partial Power Operation (45% Power, 150 MWD/MTU, D-bank at 185 steps)
(Top 5% and Bottom 8% Excluded)
- The W(z) 's are not increased by the nominal power ratio. In order to be applicable, the W(z) 's must be adjusted for relative power per Section 2.5.3 at the time of the surveillance Height (feet)
W(z)**
- 0. 00 (bottom) 1.0000 0.17 1.0000 0.34 1.0000 0.50 1.0000 0.67 1.0000 0.84 1.0000 1.01 1.6300 1.17 1.6076 1.34 1.5828 1.51 1.5565 1.68 1.5293 1.84 1.5014 2.01 1.4725 2.18 1.4430 2.35 1.4133 2.52 1.3832 2.68 1.3539 2.85 1.3270 3.02 1.3052 3.19 1.2891 3.35 1.2772 3.52 1.2648 3.69 1.2517 3.86 1.2384 4.03 1.2243 4.19 1.2100 4.36 1.1966 4.53 1.1834 4.70 1.1699 4.86 1.1555 5.03 1.1410 5.20 1.1257 5.37 1.1103 5.54 1.1031 5.70 1.0986 5.87 1.0989 6.04 1.1016 12
Callaway Cycle 21 COLR Table A.2 W(z) versus Core Height for Partial Power Operation (45% Power, 150 MWD/MTU, D-bank at 185 steps)
(Top 5% and Bottom 8% Excluded)
- The W(z) 's are not increased by the nominal power ratio. In order to be applicable, the W(z) 's must be adjusted for relative power per Section 2.5.3 at the time of the surveillance Height (feet)
W(z)**
6.21 1.1047 6.37 1.1064 6.54 1.1071 6.71 1.1071 6.88 1.1061 7.05 1.1043 7.21 1.1013 7.38 1.0972 7.55 1.0917 7.72 1.0851 7.88 1.0771 8.05 1.0671 8.22 1.0573 8.39 1.0490 8.55 1.0393 8.72 1.0292 8.89 1.0212 9.06 1.0190 9.23 1.0202 9.39 1.0297 9.56 1.0463 9.73 1.0671 9.90 1.0899 10.06 1.1090 10.23 1.1244 10.40 1.1390 10.57 1.1523 10.74 1.1626 10.90 1.1716 11.07 1.1824 11.24 1.1976 11.41 1.2089 11.57 1.0000 11.74 1.0000 11.91 1.0000 12.08 (top) 1.0000 13
Callaway Cycle 21 COLR Table A.3 FQ Penalty Factors as a Function of Cycle Bumup Cycle 21 Bumup EQ w (z) Penalty Factor (%)
150 2.05 322 2.66 493 3.51 665 4.43 836 4.64 1008 3.89 1179 3.24 1351 2.68 1522 2.20 1694 2.00 4438 2.00 4610 2.14 4781 2.39 4953 2.34 5124 2.25 5296 2.16 5468 2.07 5639 2.00 5811 2.02 5982 2.00 Note:
All cycle bumups not in the range of the above table shall use a 2.0% penalty factor for compliance with Surveillance Requirement 3.2.1.2.
For values ofbumup between two of those listed in the first column, the greater of the two corresponding penalty factors shall be used for compliance with Surveillance Requirement 3.2.1.2.
14
Callaway Cycle 21 COLR 1.20 1.10
~ ( 0 I 1. 00) 1.00 0.90 0.80 toil 01 f:q Q
0.70 IZl toil H I 0.60 0 z 0.50 toil -
~ 0.40 0.30 0.20 0.10 0.00 0
1 2
I I ( 6 I 1. 00)
FQ Elevation (ft.)
K(z) 2.50 0.0 1.00 2.50 6.0 1.00 2.31 12.0 0.925 3
4 5
6 7
8 9
CORE HEIGHT (FEET)
Figure 3 Callaway Cycle 21 K(z) - Normalized FQ(z) as a Function of Core Height 15 I
I I (12 I
.925)
~""-
I I
10 11 12
Callaway Cycle 21 COLR 2.6 Nuclear Enthalpy Rise Hot Channel Factor F "HN (Specification 3.2.2)
THERMAL POWER where:
P RATED THERMAL POWER 2.6.1 F L\\H RTP = 1.65 2.6.2 PF L\\H = 0.3 2.6.3 The uncertainty, UL\\H, to be applied to measured F L\\H shall be 1.04 when PDMS is inoperable (UL\\H is defined by PDMS when OPERABLE).
2.7 Axial Flux Difference (Specification 3.2.3)
The Axial Flux Difference (AFD) Limits are provided in Figures 4a and 4b.
Prior to switching to the more restrictive AFD band (Figure 4b ), it should be confirmed that the plant is within the specified AFD band.
16
Callaway Cycle 21 COLR 120 110 100 r-r-90 --
~
rz1
~
0 80 p,.
..:I
~
~
70 rz1 =
E-t Q
60 rz1 E-t ICC
~
f:q so 0
E-t z 40 rz1 u
~
rz1 p,.
30 20 10 0
-so I ( -15, 100%)
I (+10, 100%) I I I ll UNACCEPTABLE 1\\
UNACCEPTABLE I
\\
OPERATION II OPERATION 1\\
\\
I II 1\\
\\
I II 1\\
\\
I ACCEPTABLE I
\\
OPERATION
\\
j I
\\
\\
I
\\
I
\\
I I
\\
(-30, 50%)
(+26, 50%) I
-40
-30
-20
-10 0
10 20 30 AXIAL FLUX DIFFERENCE (% DELTA-I)
Figure 4a Callaway Cycle 21 Axial Flux Difference Limits as a Function of Rated Thermal Power for RAOC Band +10/-15°/o 17 40 so
Callaway Cycle 21 COLR 120 110 100 90 P:
~
80 Pol
~
70 fzl
- I:
E-4 0
60 fzl
~
fzl 50 0
E-4 z fzl 40
~
re 30 20 10 0
I I I I I I I I I I I I I I I I I I
(-12, 100%)
I
(+8, 100%)
I I
I I I f-+-
I I
f-+-
UNACCEPTABLE I
I' I
UNACCEPTABLE r-r-I 1 OPERATION OPERATION I
r--
II
\\ '
I I'
,I I I '
I I I I' I
I '
I ACCEPTABLE I
I I
I OPERATION I
I I,
~
I
'I_
I
(-27, 50%)
(+24, 50%) I I
I I
I I
I I
I
-50
- 40
-30
-20
-10 0
10 20 30 40 AXIAL FLUX DIFFERENCE (% DELTA-I)
Figure 4b Callaway Cycle 21 Alternate Axial Flux Difference Limits as a Function of Rated Thermal Power for RAOC Band +8/-12°/o 18 r-r-1 r-r-1 --
50
Callaway Cycle 21 COLR 2.8 Reactor Core SLs (Safety Limit 2.1.1)
'-+-
I en
<1.)
-o C)')
0 I
f-(f) u 0:::::
In MODES I and 2, the combination of THERMAL POWER, Reactor Coolant System (RCS) highest loop average temperature, and pressurizer pressure shall not exceed the limits in Figure 5.
6Bo --~~~~~~~~~~~~~~~~~~~~~~~~~~
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
-t-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-t-+-+-+-+-+-+-t-+-
1 I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I
- +- -+ - -+ - +--+ -+ - +- + - +- +- -+--+ -+--+ - + - +_,...._...._...._................ __._....._...,--+ - +- - +-
1 I
I I
I I
I I
I I
I I
I I
I I u bl I
I I
-+-+-+-+-+-+-+-+-+-+ - +- +-+-+-+-+
naccepta e
-+-+-+-
1 I
I I
I I
I I
I I
I I
I I
Q I
I I
660 - +- +-
- +- +- +- +- +- +- +- +- +- +- +- +
peratton
_ + _ + _ + _
640 620 600 580
-+--+--+-+--+-+-+-+-+-+--+--+-+~----------~~
I I
I I
I I
I I
I I
I I
I
-+-+-+-+-+-+-+-+-+-+-+-+-+
I I
I I
I I L.:-1 --:-1 ---:1-o:-1 --:-1 ---:1-' I I
I I
I I
I
-+-+-+-
J\\cceptable
+-+-+-+-+-+-+-+-+-+-+-+-
-+-+-
1 I
I I
I I
I I
I I
I I
I I
I I
I I
I I
- + - +- + -
Operation
+ - + - + - + - +- + - +- + - +- + - +- + - + -
- +-
I I
I I
I I
I I
I I
I I
I I
I I
I I
I
-+-+-+-
+-+-+-+-+-+-+-+-+-+-+-+-+-+ t-+-
1 I
I I
I I
I I
I I
I I
I I
I I
I I
I
-+--+--+-+--+-+-+-+-+-+--+--+-+--+-+-+-+-+-+--+-+--+--+-+--+-+--+-
1 I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
1 I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I 560 ~~~~~~~~--~~~~~--~~~~~~--~--~~~
0 0.2 0.4 o.6 o.a 1
r RACTION OF RATED THERMAL POWER Figure 5 Callaway Cycle 21 Reactor Core Safety Limits 19 1.2 1.4
Callaway Cycle 21 COLR 2.9 Reactor Trip System (RTS) Instrumentation (Specification 3.3.I)
Parameter Overtemperature /j. T reactor trip setpoint Overtemperature /j. T reactor trip setpoint Tavg coefficient Overtemperature /j. T reactor trip setpoint pressure coefficient Nominal Tavg at RTP Nominal RCS operating pressure Measured RCS /j. T lead/lag time constants Measured RCS /j. T lag time constant Measured RCS average temperature lead/lag time constants Measured RCS average temperature lag time constant Value K1 = 1.2260 K3 = 0.0011/psig T' :S 585.3 °F P' = 2235 psig 1:1 ~ 0 sec 1:2 :S 0 sec 1:3 :S 4 sec t4 ~ 27 sec ts :S 4 sec 1:6 :S 2 sec when (qt-qb) < -18% RTP 0
when -18% RTP :S (qt-qb) :S 10% RTP when (qt-qb) > 10% RTP Where, qt and qb are percent RTP in the upper and lower halves of the core, respectively, and qt + qb is the total THERMAL POWER in percent RTP.
20
Callaway Cycle 21 COLR 2.10 Reactor Trip System CRTS) Instrumentation (Specification 3.3.1)
Parameter
....:.V-=a=lu=e:__ ______ _
Overpower b. T reactor trip setpoint K4 = 1.1073 Overpower b.T reactor trip setpoint Tavg rate/lag coefficient Ks = 0.02/oF for increasing Tavg
= 0/°F for decreasing Tavg Overpower b.T reactor trip setpoint Tavg heatup coefficient K6 = 0.00151°F forT> T"
= 0/°F for T.:S T" Nominal Tavg at RTP T".:S 585.3°F Measured RCS b.T lead/lag time constants 1 1 ~ 0 sec 12.:S 0 sec Measured RCS b. T lag time constant Measured RCS average temperature lag time constant 16.:S 2 sec Measured RCS average temperature rate/lag time constant 17 ~ 10 sec f2(b.l) = 0 for all b.l.
2.11 RCS Pressure and Temperature Departure from Nucleate Boiling CDNB) Limits (Specification 3.4.1)
Parameter Indicated Value Pressurizer pressure
~ 2195 psig RCS average temperature
,:S 590.1 °F 21
Callaway Cycle 21 COLR APPENDIX A Approved Analytical Methods for Determining Core Operating Limits The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents:
- 1.
WCAP-9272-P-A, "Westinghouse Reload Safety Evaluation Methodology," July 1985.
NRC letter dated May 28, 1985, "Acceptance for Referencing of Licensing Topical Report WCAP-9272(P)/9273(NP), 'Westinghouse Reload Safety Evaluation Methodology.'"
- 2.
WCAP-10216-P-A, Revision 1A, "Relaxation of Constant Axial Offset Control-FQ Surveillance Technical Specification," February 1994.
NRC Safety Evaluation Report dated November 26, 1993, "Acceptance for Referencing of Revised Version of Licensing Topical Report WCAP-10216-P, Rev. 1, Relaxation of Constant Axial Offset Control - FQ Surveillance Technical Specification" (T AC No. M88206).
- 3.
WCAP-10266-P-A, Revision 2, "The 1981 Version ofthe Westinghouse ECCS Evaluation Model Using the BASH Code," March 1987.
NRC letter dated November 13, 1986, "Acceptance for Referencing of Licensing Topical Report WCAP-10266 'The 1981 Version ofthe Westinghouse ECCS Evaluation Model Using the BASH Code.'"
WCAP-10266-P-A, Addendum 1, Revision 2, "The 1981 Version ofthe Westinghouse ECCS Evaluation Model Using the BASH Code Addendum 1: Power Shape Sensitivity Studies," December 1987.
NRC letter dated September 15, 1987, "Acceptance for Referencing of Addendum 1 to WCAP-1 0266, BASH Power Shape Sensitivity Studies."
WCAP-10266-P-A, Addendum 2, Revision 2, "The 1981 Version ofthe Westinghouse ECCS Evaluation Model Using the BASH Code Addendum 2: BASH Methodology Improvements and Reliability Enhancements," May 1988.
NRC letter dated January 20, 1988, "Acceptance for Referencing Topical Report Addendum 2 to WCAP-10266, Revision 2, 'BASH Methodology Improvements and Reliability Enhancements."'
WCAP-10266-P-A, Addendum 3, Revision 0, "Incorporation of the LOCBART Transient Extension Method into the 1981 Westinghouse Large Break LOCA Evaluation Model with BASH (BASH-EM)," December 2002 (cited as Reference 4.5 in the NRC Safety Evaluation for Callaway License Amendment 168).
22
Callaway Cycle 21 COLR
- 4.
WCAP-12610-P-A, "VANTAGE+ Fuel Assembly Reference Core Report," April1995.
NRC Safety Evaluation Reports dated July 1, 1991, "Acceptance for Referencing of Topical Report WCAP-12610, 'VANTAGE+ Fuel Assembly Reference Core Report' (TAC NO. 77258)."
NRC Safety Evaluation Report dated September 15, 1994, "Acceptance for Referencing of Topical Report WCAP-12610, Appendix B, Addendum 1, 'Extended Burnup Fuel Design Methodology and ZIRLO Fuel Performance Models' (TAC NO. M86416)."
- 5.
WCAP-11397-P-A, "Revised Thermal Design Procedure," April1989.
NRC Safety Evaluation Report dated January 17, 1989, "Acceptance for Referencing of Licensing Topical Report WCAP-11397, 'Revised Thermal Design Procedure."'
- 6.
WCAP-14565-P-A, "VIPRE-01 Modeling and Qualification for Pressurized Water Reactor Non-LOCA Thermal-Hydraulic Safety Analysis," October 1999.
NRC letter dated January 19, 1999, "Acceptance for Referencing of Licensing Topical Report WCAP-14565, 'VIPRE-01 Modeling and Qualification for Pressurized Water Reactor Non-LOCA Thermal/Hydraulic Safety Analysis' (TAC No. M98666)."
- 7.
WCAP-10851-P-A, "Improved Fuel Performance Models for Westinghouse Fuel Rod Design and Safety Evaluations," August 1988.
NRC letter dated May 9, 1988, "Westinghouse Topical Report WCAP-10851, 'Improved Fuel Performance Models for Westinghouse Fuel Rod Design and Safety Evaluations."'
- 8.
WCAP-15063-P-A, Revision 1, with Errata, "Westinghouse Improved Performance Analysis and Design Model (PAD 4.0)," July 2000.
NRC letter dated April24, 2000, "Safety Evaluation Related to Topical Report WCAP-15063, Revision 1, 'Westinghouse Improved Performance Analysis and Design Model (PAD 4.0)' (TAC NO. MA2086)."
- 9.
WCAP-8745-P-A, "Design Bases for the Thermal Overpower ~T and Thermal Overtemperature ~ T Trip Functions," September 1986.
NRC Safety Evaluation Report dated April 17, 1986, "Acceptance for Referencing of Licensing Topical Report WCAP-8745(P)/8746(NP), 'Design Bases for the Thermal Overpower ~ T and Thermal Overtemperature ~ T Trip Functions."'
23
Callaway Cycle 21 COLR
- 10.
WCAP-10965-P-A, "ANC: A Westinghouse Advanced Nodal Computer Code," September 1986.
NRC letter dated June 23, 1986, "Acceptance for Referencing of Topical Report WCAP 1 0965-P and WCAP 1 0966-NP."
- 11.
WCAP-11596-P-A, "Qualification of the Phoenix-P/ANC Nuclear Design System for Pressurized Water Reactor Cores," June 1988.
NRC Safety Evaluation Report dated May 17, 1988, "Acceptance for Referencing of Westinghouse Topical Report WCAP-11596-Qualification ofthe Phoenix-P/ANC Nuclear Design System for Pressurized Water Reactor Cores."
- 12.
WCAP-13524-P-A, Revision 1-A, "APOLLO: A One Dimensional Neutron Diffusion Theory Program," September 1997.
NRC letter dated June 9, 1997, "Acceptance for Referencing of Licensing Topical Reports WCAP-13524 and WCAP-13524, Revision 1, 'APOLLO-A One-Dimensional Neutron Diffusion Theory Program."'
24