TXX-4452, Emergency Dose Assessment Model, Program Documentation

From kanterella
(Redirected from TXX-4452)
Jump to navigation Jump to search
Emergency Dose Assessment Model, Program Documentation
ML20112J687
Person / Time
Site: Comanche Peak  Luminant icon.png
Issue date: 03/29/1985
From: Beck J, Beleckis R, Bell G
TEXAS UTILITIES ELECTRIC CO. (TU ELECTRIC)
To: Youngblood B
Office of Nuclear Reactor Regulation
References
PROC-850329, TXX-4452, NUDOCS 8504050260
Download: ML20112J687 (59)


Text

r s

... 'd

,o- ,.

I' EMERGENCY DOSE ASSESSMENT MODEL (EDAM)

Program Documentation Prepared by: R. A.'Beleckis, G. L. Bell, G. J. Laughlin Texas Utilities Generating Company Glen Rose, Texas 8504050260 850329 PDR ADOCK 05000445 F PDR 0j g0 Y\

l 1

. l'

[ .

4 ABSTRACT A micro-computer system called the Emergency Dose Assessment Model or EDAM has been developed for determining downwind radiation doses in a radiological emergency at Comanche Peak.

This system would be used if the primary means of determining offsite doses, the RM-21 Dose Assessment Computer, is not avail-able. This system is primarily based upon the Interactive Rapid Dose Assessment Model (IRDAM), developed by Pacific Northwest Laboratory for the U.S. Nuclear Regulatory Commission.

This document describes the Emergency Dose Assessment Model (EDAM) used at Comanche Peak. It includes a detailed description of all models, assumptions and methods used in the program. The EDAM program calculates radiation dose rates and total doses for whole body and infant thyroid at four fixed downwind distances.

Various methods for determining key parameters in the calculation are given to aid the operator should certain information not be available.

Besides describing the program, this document includes appendices which list the dose assessment program, include flowcharts for key parameter determination and provide program verification data.

. b TABLE OF CONTENTS ABSTRACT.

. . . . . . . . . . . . . . . . . . . . . . . . . . . 2 INTRODUCTION.

. . . . . . . . . . . . . . . . . . . . . . . . . 4 METEOROLOGICAL DATA . . . . . . , . . . . . . . . . . . . . . . 5 DETERMINING STABILITY CLASS. . . . . . . . . . . . . . . . 5 Lapse Rates . . . . . . . . . . . . . . . . . . . . . 5 Sigma Theta . . . . . . .. . . . . . . . . . . . . . 6 Stability Class Known . . . . . . . . . . . . . . . . 6 Default Stability Class . . . . . . . . . . . . . . . 6 PLUME DISPERSION CALCULATION . . . . . . . . . . . . . . . 6 RADIOACTIVE RELEASE RATE. . . . . . . . . . . . . . . . . . . . 8 STACK RELEASE. . . . . . . . . . . . . . . . . . . . . . . 8 Isotopic Data Available . . . . . . . . . . . . . . . 8 Gross Noble Gas and Iodine Data Available . . . . . . 9 CONTAINMENT LEAKAGE. . . . . . . . . . . . . . . . . . . .10 Coolant Inventory Method. . . . . . . . . . . . . . .10 Gap Inventory . . . . . . . . . . . . . . . . . . . .10 Fuel Melt . . . . . . . . . . . . . . . . . . . . . .11 Containment Monitor Readings. . . . . . . . . . . . .11 Default Data. . . . . . . . . . . . . . . . . . . . .11 STEAM GENERATOR TUBE LEAK. . . . . . . . . . . . . . . . .12 SOURCE TERM ADJUSTMENT . . . . . . . . . . . . . . . . . .13 Iodine to Noble Gas Ratio . . . . . . . . . . . . . .13 Decay Correction. . . . . . . . . . . . . . . . . . .13 DOSE RATE DETERMINATION . . . . . . . . . . . . . . . . . . . .15 WHOLE BODY 5 CM DEPTH DOSE RATE. . . . . . . . . . . . . .15 INFANT THYROID DOSE RATE . . . . . . . . . . . . . . . . .16 INTEGRATED DOSES. . . . . . . . . . . . . . . . . . . . . . . .18 REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . .19 APPENDIX I - NORMALIZED DISPERSION FACTORS. . . . . . . . . . I-l APPENDIX II - DOSE ASSESSMENT PROGPAM LISTING. . . . . . . . II-1 PROGRAM I APPENDIX III - DOSE ASSESSMENT PROGPAM LISTING. . . . . . . III-l PROGRAM II APPENDIX IV - FLOWCHARTS . . . . . . . . . . . . . . . . . . IV-1 APPENDIX V - CONTAINMENT MONITOR CONVERSION FACTORS . . . . . V-1

ie INTRODUCTION To provide a rapid backup method to determine radiation doses to individuals in an emergency, a micro-computer based Emergency Dose Assessment System has been developed. This system uses the Emergency Dose Assessment Model (EDAM) described in this docu-ment. EDAM is based primarily on the program described in NUREG/CR-3012, PNL-4510, called the " Interactive Rapid Dose Assessment Model" (IRDAM) which has been modified to reflect Comanche Peak Steam Electric Station's (CPSES) site-specific data.

EDAM incorporates four different methods of determining the atmospheric stability class and includes three different accident scenarios. The calculations assume a ground release due to Comanche Peak's plant stacks being less than 2.5 times the height of the tallest structure. Dose rates and integrated doses are calculated for the whole body and infant thyroid for four downwind receptor distances.

The EDAM program is user friendly and requires little computer experience. The program does require that the operator be familiar with radiation protection and meteorological dispersion concepts. The program guides the operator through various data inputs and default values if needed to obtain the required information for the calculations with a minimum of time and effort.

. ._. .m . __ ..

A

, si o .

METEOROLOGICAL DATA Various sources of meteorological (MET) data can be used to determine atmospheric stability class for dispersion

, calculations. The temperature change versus height taken from the primary MET tower can be used to determine the stability class using the lapse rates method. The standard deviation of the wind fluctuations is the second method for determining the stability class. This standard deviation is also obtained from the MET towers.

The program also allows for direct input of a known stability class and allows a default stability class of E or F to be used if the stability class is unknown and no other data other than wind speed is available.

DETERMINING STABILITY CLASS i

The two calculational methods used for determining the stability class have been taken from U.S. NRC 1980. They are the Lapse Rate and Sigma Theta methods.

f

1. Lapse Rate Method This method uses the temperature difference with height to determine the stability class. The program takes the sixty meter to ten meter pri;ary MET tower temperature difference in *F and multiplies this number by 1.11 to obtain 'C/100 l meter. The program then compares this value to the follow-ing table taken from Regulatory Guide 1.23 (U.S. NRC 1980).

1

~ AT/AH Pasquill Category ('C/100m) 4 A AT/4H < -1.9 B -1.9 < AT/AH 7 -1.7 i C -1.7 < AT/AH 7 -1.5 D -1.5 < AT/AH 7 -0.5 E -0.5 < AT/AH 7 1.5 F 1.5 < AT/AH 3 4.0 G 4.0 < AT/AH I

l 4

, i 4.

+

o D s

2. Sigma Theta The sigma theta method determines the stability classifica-tion based upon the standard deviation of the wind direc-tion. This method, also documented in Regulatory Guide 1.23 (U.S. NRC 1980), uses the following tabic:

Pasquill Category oo (degrees)

A o g > 22.5 B 22.5 > o 17.5 C 17.5 > as >> 12.5 D 12.5 > a T 7.5 E

F 7.5 3.8 0[

> os>

3.8 2.1 G 2.1 > 0 0

, Where o$al horizon is defined to be the standard deviation of the wind direction fluctuation over a period of 15 minutes to I hour.

The EDAM program will flag the user when the wind speed and stability class are not compatible. For example, if a windspeed of 5 m/s or greater is used and a lapse rate or sigma theta value corresponding to an F or G Pasquill stability class is used, the program will inform the user that the wind speed is not compatible with the stability class.

3. Stability Class Known This option allows the user to input the stability class directly. It is important to note that if the user inputs a stability class which is incompatible with the previously inputted wind speed, the program will not warn the user of the inconsistency.
4. Default Stability Class If only the wind speed is available, the user may choose the default option to determine stability class. This option simply assigns a stability class of F for wind speeds less than 5 m/s and a stability class of E for wind speeds greater than or equal to 5 m/s.

PLUME DISPERSION CALCULATIONS Since the plant stack height at Comanche Peak is less than 2.5 times the tallest building height, only the ground level release case for plume dispersion is considered. X-/0 is given by the i

equation:

u!O " no o

Where:

X-/O = normalized dispersion factor m-2 o = horitsutal dispersion coefficient m o, = vertical dispersion coefficient m The X-/Q terms used in the EDAM program are normalized dispersion factoEs based on a semi-infinite cloud geometry and must be divided by the wind speed in m/s to obtain the specific X/Q for the corresponding distance and stability class. These values of X-/O were obtained from IRDAM Vol. 2 for the 2, 5 and 10 mile dYstances and where calculated for the various exclusion area boundary (EAB) distances surrounding CPSES using the RM-21, dose assessment computer. The method in which the RM-21 calculates these values is documented in General Atomic (GA) manual.

E-115-10075-1, " Supplement to Model RM-21 Report Processor, Software System Manual". A table of the X-/0 values used by EDAM is given in Appendix I.

RADIOACTIVE RELEASE RATE EDAM has three basic accident scenario options for use in determining release rates. The three primary release pathways considered are stack releases, containment leakage and steam generator tube leak.

STACK RELEASES Stack releases are further broken down into two other options which can be used depending on the specificity of source term information.

1. Isotopic Data Available This option allows the user to input radionuclide release concentrations for up to twenty different nuclides of concern. A list of those radionuclides is shown below:

(1) Kr-83M (11) Xe-135 (2) Kr-85M (12) Xe-137 (3) Kr-85 (13) Xe-138 (4) Kr-87 (14) Cs-134 (5) Kr-88 (15) Cs-137 (6) Kr-89 (16) I-131 (7) Xe-131M (17) I-132 (8) Xe-133M (18) I-133 (9) Xe-133 (19) I-134 (10) Xe-135M (20) I-135 The specific radionuclide is called up using the number to its left on the list. The activity concentration can then be entered in units of uCi/cc.

The program also requires the plant stack flow rate in cubic feet per minute (CFM) to calculate release rates. If the stack flow rate from either stack monitor is known, it can be inputted directly in CFM. The program then multiplies the individual stack flow rate by two and then multiplies this number by 472 cc/sec/CFM to convert the flow rate to cc/sec. If the flow rate is not known the program will prompt the user to input the number of ventilation fans operating. The program then uses the following formula to determine the stack flow rate.

Stack Flow = Number of fans

  • 1.50 E+4 CFM/ fan
  • 472 cc/sec/CFM Rate (cc/sec) operating To determine the release rate of a particular radionuclide in Ci/sec the program simply divides the concentration by the flow rate and multiplys by 1.0 E-6 Ci/uCi.

Using specific radionuclide release data provides an accur-ate dose rate determination but the availability of the grab sample and relatively long analysis time makes this method infeasible during the early minutes of a release. A second, less accurate but much quicker method of determining release rates is using the gross noble gas and iodine method.

2. Gross Noble Gas and Iodine Data Available If the gross noble gas (NG) or.the gross iodine (I) activity concentration is available then the NG and I data available method may be used to determine the release rates. Either the wide range gas monitor -(WRGM) or the particulate-io-dine-noble gas (PING) monitors could provide this informa-tion.

To use this option the program first prompts the user to input a stack flow rate in CFM directly or if the flow rate is not available it will prompt the user to enter the number of building ventilation fans operating and will compute a stack flow rate.

Next the program prompts the user to input the total radio-iodine concentration in uCi/cc. Next the user inputs the noble gas concentration also in uCi/cc.

The release rate (Q) of noble gas and radiciodines is calculated as follows:

Q= (CNG + C7 )

  • RFR
  • 1.OE-6 Ci/uCi Where: C NG

= noble gas concentration uCi/cc C7 = iodine concentration uCi/cc RFR = release flow rate cc/sec This program also allows for the occasion where only the noble gas or iodine concentration is available during a stack release. In these cases the unknown concentration is calculated using one of the iodine / noble gas conversion factors shown in the following equations:

If NG Concentration Known If I Concentration Known C7=CNG .02

  • 0.05 C * / 0.02 / 0.05 NG I where: C 7 = iodine concentration uCi/cc CNG = noble gas concentration uCi/cc 0.02 is the fraction of iodines to noble gas released from the core gap.

2 ~

O.05 is the fraction of iodines passing through the stack filters.

Once the unknown concentration is calculated the program determines the total release rate using the release rate equation show above.

CONTAINMENT LEAKAGE This method for determining radioactive release rates assumes the radioactivity is contained within the containment building and is leaking out at a specific rate. There are four cases used in this method. Three of which use inventory activities found in the CPSES FSAR.

1. Coolant Inventory The coolant inventory case determines the total noble gas and iodine release rate using the conservative reactor coolant fission product activities found in Table II.1-4 of the CPSES FSAR. These activities were summed and divided by the containment free air volume to get an activity concentration in Ci/ft2 The release rate, Q CI, in Ci/see is determined as follows:

O c3 =A CI * *

"l 0 "'*

where: A CI = containment coolant inventory activity concentration

~4

= 4.46 x 10 Ci/ft3 LR = containment leak rate CFM

2. Gap Inventory This case assumes that the total FSAR gap inventory of noble gases and iodines is released into the containment atmosphere. The gap inventory release rate is determined using the gap inventory activities listed in Table 15.0-7 of the CPSES FSAR. Like in the coolant inventory case, these activities were summed and divided by the containment free air volume to obtain an activity concentration in Ci/ft3 The gap inventory release rate, QCI, in Ci/sec is expressed by the formula:

Og7 =A GI

  • m n/60 sec

where: AGI = containment gap inventory activity concentration

= 1.45 Ci/ft3 LR = containment leak rate CFM

3. Fuel Melt The fuel melt method for determining containment release rates uses core activity values found in the CPSES FSAR Table 15.0-7 for iodines and noble gases of interest.

Again, these activities are summed and divided by the containment free air volume to obtain a fuel melt containment activity concentration in Ci/ft3 The fuel melt release rate QFM in Ci/sec is given by the formula:

QFM " ^FM m n/60 sec where: A FM = containment fuel melt activity concentration

648'Ci/ft3 LR

containment leak rate CFM

4. Containment Monitor Reading The program can use the containment monitor reading in R/Hr to estimate the release rate. The source term is calculated as follows:

QCy = CF

  • B
  • LR
  • min /60 sec where: OCM = release rate Ci/sec containment monitor reading R = containment monitor reading R/Hr LR = containment leak rate CFM CF = is a conversion factor for Comanche Peak's high range containment monitors which relates the high range containment monitor reading to an activity concentration in Ci/ft3 Since there are two high range radiation monitors (HRRM) in containment the program contains two convertion factors.

Which of these conversion factor to use is dependent on the specific monitor tag number or TUGCo ID number inputted to the computer.

Additional information on how these terms were derived is contained in Appendix VI of this manual.

4

5. Default-Data If containment radionuclide concentration information is not available then the default data option can be used. This option, based on the worst case fuel melt scenario, will prompt the user to use the fuel melt case for determining the containment release rate. The program will ask the user if this is an acceptable method. If it is, the program will ask for a containment leak rate and use the fuel melt containment activity concentration to determine a release rate in Ci/sec.

STEAM GENERATOR TUBE LEAK The third basic accident scenario which the EDAM program addresses is the steam generator (S/G) tube leak. The program requires the user to first enter the units of the coolant rate.

Three options are provided:

(1) Default primary to secondary leak rate of 500 GPM, based on the CPSES FSAR design basis accident S/G tube.

leak rate.

(2) Gallons / Minute using the primary to secondary leak rate.

(3) Pounds / Hour using the secondary coolant to atmospheric leak rate.

After the leak rate is entered the program converts it to units of cc/sec.

Next the program asks the user to specify the units for the leaking coolant activity or to select a default activity concentration. These four options are shown below:

(1) Micro Curies / gram (2) Curies / liter (3) Micro Curies /cc (4) Default (127 uCi/cc)

Note that the default value of 127 uCi/cc was obtained using the total gap inventory activities found in the CPSES FSAR, Table 15.0-7. It assumes that one percent of the total gap activity is released into the primary coolant.

The program converts the activity concentration to units of uC1/cc if required and simply multiplies the concentration C1/cc by the leak rate in cc/see to determine a conservative release rate in Ci/sec of both noble gases and lodines.

SOURCE TERM ADJUSTMENT Except for Stack Releases, all release rates determined in each.

of the previous scenarios calculate the total activity of all noble gases and iodines. For this data to be useful in calculating doses the source term must be broken down into its noble gas and iodine fractions. These release rates, including stack releases must also take into account radioactive decay during the plume travel time to the downwind receptor.

This modification of the source term, called source term adjustment, is accomplished in two parts. First the iodine release fraction must be determined then if the age of the released material is greater than one day a noble gas and thyroid decay correction is applied to the release.

1. Iodine to Noble Gas Ratio To determine the iodine to noble gas ratio several options are available to the user:

(1) Input Iodine to noble gas ratio directly as a decimal fraction.

(2) Input percent iodine and total I plus NG concentration.

(3) Input the percent iodine in the core inventory.

(4) Entering the individual iodine and noble gas concentration to determine the ratio.

(5) Default iodine to noble gas ratio.

1 The default ratio is taken from core inventory data provided in FSAR section 15.0.9.1 and the assumption that ninety percent of the iodines will plate out in containment.

2. Decay Correction A separate decay correction is used for noble gases and iodines. For noble gases and iodines if the age of the i material prior to release is less than or equal to one day the following corrections are applied:

noble gas: Q NG NG 1

  • C Oy
  • 34e+t/22 iodine:

C =0 7 where: t = the time interval between reactor shut-down to initiation of the release in hr.

These equations were taken from PNL-4510, Volume 2, IRDAM Manual.

If the age of the material is greater than one day, the program assumes that the plume is made of only Xe-133 and I-131 and decay corrects appropriately.

For releases where an isotopic concentration is available, the program decay corrects each nuclide independently.

Once these adjustments have been made the program asks the user to verify the information then it will calculate the 5 cm Whole Body Depth Dose and the Infant Thyroid Dose.

i DOSE RATE DETERMINATION EDAM calculates the dose for four downwind recepter distances.

These are the exclusion area boundary (EAB), 2, 5 and 10 miles.

These distances have been chosen because they are convenient distances for taking offsite survey data and also to implement protective actions such as sheltering or evacuation. ,

WHOLE BODY 5 CM DEPTH DOSE RATE The whole body dose rate.is determined using different assumptions for each of the different scenarios.

1. Isotopic Release When individual nuclide concentration information is avail-able and this option is selected, EDAM applies the following semi-infinite dose conversion factors from U.S. NRC Regula-tory Guide 1.109 (U.S. NRC 1977) and from Kocher 1980 for the cesium isotopes:

Radionuclide rem-m /Ci-hr Kr-83M 8.62E-3 Kr-85M 1.33E+2 i

Kr-85 1.84E0 .

Kr-87 6.75E+2 Kr-88 1.68E+3 Kr-89 1.89E+3

Xe-131M i 1.04E+1' Xe-133M 2.89E+1

' Xe-133 3.36E+1 Xe-135M 3.56E+2 Xe-135 2.06E+2 l Xe-137 1.62E+2 Xe-138 1.01E+3 Cs-134 9.66E+2

Cs-137 3.70E+2

{

The following equation is used to determine the Whole Body Dose Rate for radionuclides 1 through 15:

4

  • i DR WB " u/0
  • u _1 *15 E(Og i=1

where: X-/0 = normalized dispersion factor in m-2 u =_ wind speed m/sec I

0 1 = Ci/secrelease rate of ith radionuclide in

DF
WB i

= Dose Conversion factor in rem-m3/Ci-hr i

2.

Gross Noble Gas Release Data Available In cases where only the gross noble gas concentration is available the whole body dose rate is determined using the Xe-133 semi-infinite dose conversion factor and the gross noble gas concentration in the equation shown above. This method is used for all other release scenarios.

INFANT THYROID DOSE RATE As with the whole body dose rate determination, the infant thyroid dose rate is determined using two different methoda.

1. Isotopic Release The infant thyroid dose rate in the case of the radioiodine release concentrations being known uses inhalation dose conversion factors from Regulatory Guide 1.109. These conversion factors are multiplied by an infant breathing rate of 0.25 m3/hr and converted to units of rem-m3/Ci-hr for use by the computer. The following table gives these infant inhalation dose factors for the five radioisotopes in the EDAM library:

Radionuclide rem-m s /Ci-hr I-131 2.65E+6 I-132 3.03E+4 I-133 6.35E+5 I-134 7.95E+3 I-135 1.24E+5 EDAM then uses these dose factors in the following equation to determine the infant thyroid dose rate:

20

-1 DR TH

=

g/0

  • u 7 E(Og
  • DFTH I 1=16 i where:X-/O = normalized dispersion factors in m-2 u = wind speed m/sec Q release ratio of the ith radiciodine nuclide 1 = Ci/sec DF = infant inhalation thyroid dose factor TH i rem-m3/Ci-br for the ith radiciodine nuclide
2. Gross Iodine Release Data Available To determine the thyroid dose rate when only a gross iodine release concentration is known the following equation is used:

DR TH " ( u/0) *u *0 7

  • BR
  • DFTH I-131 where: X-/Q = normalized dispersion factors in m-2 u = wind speed m/sec 0 7 = gross iodine release rate ci/sec BR = adult man light work breathing rate of 1.2 m3/hr taken from Standard man data in Radio-logical Health Handbook, Revised January 1970.

DF TH = the I-131 adult inhalation dose factor taken I-131 from Table E-7 of Reg. Guide 1.109

= 1.49E+6 rem /Ci The I-131 dose factor is used in the gross release because it is the most conservative of the five iodine dose factors.

This method of determining thyroid dose rate is used in all but the isotopic release case.

i 4

  • .o

+ .

INTEGRATED DOSES The EDAM program determines the integrated done for both the whole body and infant thyroid by simply multiplying the calculated dose rates by the release duration. These doses are printed interest previouslyout for mentioned.

the four downwind receptor distances of 1

0 0

. _ - . _ . . - . _ _ _ . = _ _ _ - . . _ _ . _ . . ._. - _ _ _ _ _ _ . _

i

. :o REFERENCES Texas Utilities Generating Company, Comanche Peak Steam Electric Station (CPSES), Emergency Plan, Section 7.0, Revision 8,- Dated Apr. 1984.

Texas Utilities Generating Company, CPSES Emergency Plan Manual, Procedure EPP-300, " Manual Calculation of Release Rates",

Revision 1, Dated Sept. 1983.

L Texas Utilities Generating Company, CPSES Emergency Plan Manual, Procedure EPP-302, " Manual Assessment of Radiological Conditions", Revision 2, Dated Dec. 1983.

Texas Utilities Generating Company, CPSES Final Safety Analysis k Report, Amendment 52, Dated August 27, 1984. ,

General Atomic Technologies, 1984, Model RM-21 Report Processor Software System Manual, E-ll5-1007, Rev. 2.

i U.S. Department of Health Education and Welfare, 1970.

Radiological Health Handbook, Dated Jan. 1970.

-GA Manual E-115-10075-1, " Supplement to Model RM-21 Report Processor Software System Manual", Rev. 2, Dated May 1984.

Kocher, D.C. 1980, Dose Rate Conversion Factors for External Exposure to photon and Electron Radiation from Radionuclides occurring in Routine Releases from Nuclear Fuel Cycle Facilities, Health-Physics 38, 543.

Poeton, R.W., M.P. Moeller, G.J. Laughlin and A.E. Desrosiers, 1982, Interactive Rapid Dose Assessment Model (IRDAM), PNL-4510, Volumes 1, 2 and 3, 3acific Northwest Laboratory, Richland, Washington.

Slade, D.H., Editor, 1968, Meteorology and Atomic Energy, U.S.

Atomic Energy Commission, Washington, D.C.

Theodore Rockwell III, Editor. 1955. Reactor Shielding Design Manual, TID-7004, National Technical Information Service, U.S.

Department of Commerce, Springfield, Virginia.

U.S. Nuclear Regulatory Commission, 1977, Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the l Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I, l Regulatory Guide 1.109, Washington, D.C.

U.S. Nuclear Regulatory Commission, 1980, Meteorological Programs

! in Support of Nuclear Power Plants. Proposed Revision 1 to j Regulatory Guide 1.23, Washington, D.C.

4 l U.S. Nuclear Rcgulatory Commission, 1983, Nomoc rams for Evaluation of Doses from Finite Noble Gas Clouds, NUREG-0851,

[ Washington, D.C.

l

APPENDIX I NORMALIZED DISPERSION FACTORS I-l

NORMALIZED DISPERSION FACTORS Xu/Q Values (M~8)

EAB Atmospheric Stability Class Distance Sector (miles) A B C D E F C 348.75<0< 11.25 1.2) 7.73E-07 2.17E-06 1.04E-05 3.43E-05 6.55E-05 1.39E-04 2.41E-04 11.2510< 33.75 1.07 8.65E-07 3.50E-06 1.37E-05 4.27E-05 8.04E-05 1.66E-04 2.79E-04 33.7510< 56.25 0.96 1.04E-06 4.33E-06 1.64E-05 4.96E-05 9.10E-05 1.84E-04 3.02E-04 56.2518< 78.75 0.96 1.04E-06 4.33E-06 1.64E-05 4.96E-05 9.10E-05 1.84E-04 3.02E-04 78.7516<101.25 1.19 7.74E-07 2.62E-06 1.16E-05 3.73E-05 7.09E-05 1.49E-04 2.55E-04 101.25<6<123.75 1.48 6.55E-07 1.43E-06 8.13E-06 2.78E-05 5.39E-05 1.19E-04 1.18E-04 123.7516<146.25 1.31 7.20E-07 1.99E-06 9.92E-06 3.29E-05 6.30E-05 1.34E-04 2.35E-04 146.2510<168.75 1.29 7.29E-07 2.07E-06 1.02E-05 3.36E-05 6.42E-05 1.36E-04 2.38E-04 168.7510<191.25 1.33 7.12E-07 1.90E-06 9.68E-06 3.22E-05 6.18E-05 1.32E-04 2.32E-04 191.25<0<213.75 1.61 6.13E-07 1.15E-06 7.06E-06 2.47E-05 4.83E-05 1.09E-04 1.93E-04 213.7518<236.25 1.66 5.99E-07 1.07E-06 6.71E-06 2.37E-05 4.65E-05 1.06E-04 1.88E-04 236.2510<258.75 1.61 6.13E-07 '1.15E-06 7.06E-06 2.47E-05 4.813-05 1.09E-04 1.93E-04 258.7518<281.25 1.60 6.16E-07 1.17E-06 7.14E-06 2.50E-05 4.87E-05 1.10E-04 1.95E-04 281.2510<303.75 1.37 6.96E-07 1.76E-06 9.22E-06 3.10E-05 5.95E-05 1.28E-04 2.25E-04 303.7510<326.25 1.39 6.88E-07 1.69E-06 9.01E-06 3.03E-5 5.84E-05 1.26E-04 2.22E-04 l

326.2510<348.75 1.37 6.96E-07 1.76E-06 9.22E-06 3.10E-05 5.95E-05 1.28E-04 2.25E-04 l

l

, 2 5.18E-07 8.27E-07 5.03E-05 1.85E-05 3.65E-05 8.77E-05 1.55E-04 5 2.43E-7 3.19E-07 1.15E-06 5.03E-06 1.11E-05 2.97E-05 6.30E-05 l 10 1.41E-7 1.83E-07 4.00E-07 2.04E-06 5.23E-06 1.43E-05 3.27E-05 L

l I-2 l

e p 09 4 4 s

APPENDIX II DOSE ASSESSMENT PROGRAM LISTING PROGRAM I II-1

10 ** RADIOLOGICAL ASSESSMENT e REVISED 02-22-85 8Y:GLS 20

  • Interactive Rapid Dose Assessment Model
  • NUREG/CR-3012, VOL. 1.2 & 3 30 PRINT TAB (3)"***================ e======* e**e.**========="

40 PRINT TA8(33". *"

50 PRINT TA8(3)"= THIS IS THE EMERGENCY DOSE +"

60 PRINT TAB (3)". ."

70 PRINT TA8(3)"* ASSESSMENT MODEL (EDAM). FOLLOW *"

40 PRINT TAB (3)". ."

90 PRINT TAB (3)". THE RESPONSE INSTRUCTIONS EXPLICITLY 70 ."

100 PRINT TAB (3)"o ."

110 PRINT TAB (3)"* OPERATE THE PROGRAM. YOU WILL HAVE AN e" 120 PRINT TA8(3)"= +"

.130 PRINT TAR (3)"o OPPORTUNITY TO REVIEW AND CHAhGE ALL ."

140 PRINT TAB (33". ."

150 PRINT TA8(3)"= INPUTS PRIOR TO ANY CALCULATIONS. ="

160 PRINT TAB (3)"o ."

170 PRINT TAB (3)"a**========== REVISED 02-22-85 ========......"

180 GOSUS 6930 190 DIM RIQUE(21) 200 COMMON SNAME.SDATE,STIME,SRNAM.IPOWR.RLK.RVOL,IRUN,ILU,IG.IE.RWIND,RDIR.RSTA CK.SPASQ ICLAS,IFLAG, ISO 210 COMMON RIQUE(),RQUE,IPROG,RPERCO,RACTIV.RSTERM.RRATE. RING.RI.RNG.RILEF,RIRF, RIREL.RDUR.RPOST,IAGEFL,IFIX,SFAC.RNUM 220 DEFINT I 230 DEFSTR S,N Y 240 DEFSMG R 250 DEFDBL D 260 DATA "Y","y","N","n" 270 READ Y,YL.N,NL 275 REVIEW 0 280 IF IRUN=2 THEN GOSUB 6930 290 IF IRUN=2 THEN 6580 300 SDATE="" : STIME="" : SCALNUs"" : $NAME="" : SFAC=""

  • 310 IRUN=1:ILU=0:ZG=2:IE=2:RWIND=0:RDIR=0:RSTACK=0:SPASQu"" ICLAS 0 IFLAG=o:I30 0:RIQUE(0)=0:RQUEe0:IPROGeo 320 RPERCOs0:RACTIV=0:RSTERM=0:RRATE=0: RING =0:RI=0:RNG=0:RILEF=0:RIRF=0:RIREL=0:

RDUR=0:RPOST=0:IAGEFL=0:IFIX=0:ICAL=0:RNUM=0 330 SRNAM=" COMANCHE PEAK" : IPOWR=1150 : RVOL=1 : RLK=.001 340 GOSUB 7130 350 PRINT 360 INPUT " ENTER FACILITY NAME: CR, TSC, EOF, TECH SUPP CTR, ETC.- ",SFAC 370 IF SFAC="" THEN 360 380 PRINT 390 INPUT " ENTER INITIAL CALCULATION NUMBER: " RNUM 400 IF RNUM=0 THEN PRINT " ENTER ANYTHING BUT '0*" : GOTO 390 410 PRINT 420 INPUT " ENTER USER *S NAME (EX: JOHN DOE): ",SNAME 430 IF SNAME="" THEN 420 440 PRINT 450 INPUT " ENTER TODAY'S DATE (EX: MM/DD/YY OR DD MM YY): ",SDATE 460 IF SDATE="" THEN 450 - - -

470 IF IFIX <>0 THEN 6580 480 IF IRUN = 2 THEN 4340 490 PRINT 500 INPUT " ENTER CURRENT TIME (EX: 1735 OR 5:35 PM CST): ",STIME 510 IF STIME="" THEN 500 520 PRINT 530 'a==== METEOROLOGICAL DATA ......**.e==...e.e. ...........................

540 FRINT " ENTER GROUND LEVEL WIND SPEED IN MI/HR,"

550 INPUT"(EX: 12.0.5.4, 0.1: HOWEVER, ENTRY CANNOT = 03: " , RWIND 560 IF RWIND<=0 THEN 540 570 RWIND=RWIND=.44704 II-2

l 7

. i e

g 580 PRINT 590 90,ETC.):INPUT " ENTER UPWIND (FROM) GROUND LEVEL WIND DIRECTION IN DEGREES (EX:0.

",RDIR 600 IF RDIR <0 CR RDIR>360 THEN 590 610 IF RDIR=360 THEN RDIR=0 620 IGel:IE*0 630 PRINT 640 PRINT USING"THE GROUND LZVEL WIND SPEED (MI/HR): sess.w":RWIND/.44704 650 PRINT USING " AND THE UPWIND (FROM; WIND DIRECTION IS ses" RDIR 660 ** DETERMINE STABILITY CLASS. ********eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees.

670 FRINT 680 PRINT" SELECT METHOD FOR DETERMINING STABILITY CLASS."

690 PRINT TAB (5)"(1) LAPSE RATE (TEMP DIFF) METHOD" 700 PRINT TAB (5)"(2) SIGMA THETA (WIND FLUCTUATION) METHOD" 710 PRINT TAB (5)"(3) STABILITY CLASS KNOWN" 720 PRINT TAB (5)"(4) DEFAULT STABILITY CLASS" 730 INPUT "(RESPOND 1,2,3 OR 43: ",Il  !

740 IF ((11ti)CR(11>41)THEN 680 750 ON Il GOTO 770,1040,1180,13mo 760 ** LAPSE RATE. esseseeeee**esese**e===eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee=eesee 770 PRINT 780 PRINT " STABILITY CLASS DETERMINED BY THE LAPSE RATE METHOD."

800 PRINT 810 PRINT " ENTER TEMP. DIFF. (60s-10m) IN DEGREES FAHRENHEIT OR -99 TO" 820 PRINT " ABORT. (IF THE ELEVATED TEMP. ((LT) THE GROUND TEMP., THE ENTRY" 830 INPUT "SHOULD BE NEGATIVE (EX:-1.71,3.60,ETC.): ":RTEMP 850'IF RTEMP<>-99 THEN'870 860 GOTO 670 870 PRINT 840 PRINT USING" TEMP (F) DIFFERENCE #se.s";RTEMP 890 PRINT 900 *=== CONVERT FROM FAHRENHEIT TO CENTIGRADE. **e==ee=====ee==========ee====ee 910 RTEMPeRTEMPe.556 920 PRINT 930 RHYT=50 940 **** DETERMINE STABILITY CLASS FROM TEMP & HEIGHT DIFFERENCE. ===

950

  • THE HEIGHT DIFFERENCE AT CPSES IS 50 METERS. TO CHANGE GOTO LINE 1220 960 RLAPS=(RTEMPe100:)/RHYT 970 IF(RLAPS) .5)THEN 1010 980 IF(RLAPS)-1.9)THEN 990 ELSE SPASQ "A":ICLAS=1:GOTO 1430 990 IF(RLAPS>-1.7)THEN 1000 ELSE SPASQa"B":ICLAS=2:GOTO 1430 1000 IF(RLAPS)-1.5)THEN SPASQ="D":!CLASe4:GOTO 1430 ELSE SPASQ="C":ICLAS=3:GOTO 1430 1010 IF(RLAPS)1.5)THEN 1020 ELSE SPASQ="E":ICLAS=5:GOTO 1430 1020 30 IF(RLAPS)4:)THEN SPASQ="G":ICLASe7:GOTO 1430 ELSE SPASQe"F":ICLAS=6:GOTO 14 1030 ** SIGMA THETA. ee***eseeee====ese==================== .....e==============

1040 PRINT 1050 PRINT" INPUT SICMA THETA IN DEGREES."

1060 INPUT"(EX: 10.05, 1.23, 0.01): ",RSIGT 1070 PRINT 1080 PRINT USING" SIGMA THETA = ses.ws":RSIGT 1090 PRINT 1100 *=== DETERMINE STABILITY CLASS FROM SIGMA THETA. eee 1110 IF(RSIGT<7.5)THEN 1150 1120 IF(RSIGT<22.5)THEN 1130 ELSE SPASO="A":ICLAS=1:COTO 1430 1130 IF(RSIGT<17.5)THEN 1140 ELSE SPASQ="B":ICLAS=2:COTO 1430 1140 IF(RSIGT<12.5)THEN SPASQ="D":ICLAS=4:COTO 1430 ELSE SPASQe"C":ICLAS 3:GOTO 1430 115v IF(RSIGT<3.8)THEN 1160 ELSE SPASQ="E":ICLAS=5:GOTO 1430 1160 430 IF(RSIGT<2.1)THEN SPASQa"G":ICLAS*7:GOTO 1430 ELSE SPASQ="F":ICLAS=6:GOTO 1 1170 ** STABILITY CLASS KNOWN. *******ese*****************eee**********e***eseen 1180 PRINT 1190 PRINT" SELECT STABILITY CLASS."

1200 PRINT TAB (53"(A) CLASS A - EXTR2MELY UNSTABLE" II-3

1210 PRINT TAB (5)"(B) CLA33 8 - NODERATELY UNSTABLE" 1220 PRINT tat (53"(C) CLASS C - SLIGHTLY UNSTABLE" 1230 PRINT TAB (53"(D) CLASS D - NEUTRAL" 1240 PRINT TA8(5)"(E) CLASS E - SLIGHTLY STABLE" 1250 PRINT TAS(5)"(F) CLASS F - NODERATELY STABLE" 1260 PRINT TA8(5)"(G) CLASS G - EXTREMELY STABLE" 1270 INPUT"(RESPOND A.8,C.D.E.F OR G): ".S 1280 SPASQa$

1290 IF((LEFTS (5.1)="A")OR(LEFTS (S.1)="a"))THEN ICLAS=1:COTO 1430 1300 IF((LEFTe(5.1) "B")OR(LEFTe(S.1) "b"))THEN ICLAS=2:COTO 1930 1310 IF((LEFTS (3.1)="C")OR(LEFTS (5.1)="c"))THEN ICLAS=3:GOTO 1430 1320 IF((LEFTS (S.1)="D")OR(LEFTS (5.13="d"))THEN ICLAS 4:GOTO 1430 1330 IF((LEFTS (S.1)="E")OR(LEFTets.1)="e"))THEN ICLAS=5:GOTO 1430 1340 IF((LEFTS (5,1)="F")OR(LEFTS (3,13="f"))THEN 1CLAS 6:GOTO 1430 1350 IF((LEFTS (3.1)="G")OR(LETTs(S.13="g")3THEN ICLASe7:GOTO 1430 1360 GOTO 1190 1370 ** STABILITY CLASS DEFAULT. e==ese====== esse ==eeeeessseese===eesee sose....

1380 IF(RWIND(SI)THEN SPASQu"F":ICLAS=6 ELSE SPASQu"E":ICLASe5 1390 PRINT 1400 PRINT"STASILITY CLASS DEFAULTS" 1410 LY IF(ICLAS 6)THEN PRINT"TO F OR MODERATELY STABLE." ELSE PRINT"TO E OR SLIGHT STABLE" 1420 PRINT 1430 IF(RWIND(S t )THEN 1470 1440 IF((ICLAS)0)AND(ICLAS(6))THEN 1470 1450 PRINT:PPINT"seeeme==******.sse*==========e": PRINT"o WIND SPEED IS INCOMPATA BLE**"' ~

1460 PRINT"o WITH STABILITY CLASS. . " : PR INT" e e * * * * = = = = = = e * * * * * * = s e e e e e e e e e "

GOTO 670 1470 ON IRUN GOTO 1490,4340 1480 *
  • SELECT METHOD OF RELEASE RATE. ===== i ====== eee===ese=== ..e== ...e .

1490 PRINT 1500 PRINT" SELECT METHOD FOR INPUT OF RELEASE ATE."

  • 1510 PRINT TAB (5)"(1) STACX RELEASE: ISOTOPIC JATA AVAILABLE."

1520 PRINT TAB (5)"(2) STACX RELEASE: GROSS N.i. AND 1. DATA AVAILABLE."

1530 PRINT TAB (5)"(3). CONTAINMENT LEAKAGE: IlJLUDES:"

1540 GOSUB 6940 1550 PRINT TAB (5)"(4) S/G TUBE LEAX."

1560 RPRIACT=0 1570 INPUT"(RESPOND 1.2.3 OR 4): " Il 1580 IF((Il<1)OR(I1>4))THEN GOSUB 6820 : GOTO 1490 1590 IPROG=0:ON Il GOTO 1610.2330,2530.2920 1600 '. ISOTOPIC RELEASE RATE. =================================================

1610 IF((IRUN<>13AND(IFLAG=1))THEN 1640 1620 FOR I=1 TO 20 : RIQUECI)=0: : NEXT I 1630 PRINT 1640 GOSUB 7020 1650 PRINT"e======================*eeeeeeeeeeeee========== .. "

1660 PRINT"o TO INPUT THE CONCENTRATION (uCI/CC) FOR A *"

1670 PRINT". RADIONUCLIDE. RESPOND WITH THE CORRESPONDING *"

1680 PRINT"o NUMBER FROM THE RADIONUCLIDE REFERENCE L ."

1690 PRINT"se =========== =ese==......eeeee......e===IBRARY. =. ... e="

1700 PRINT 1710 PRINT"TO REPRINT THE RADIONUCLIDE REFERENCE LIBRARY."

1720 PRINT" RESPOND -99" 1730 PRINT 1740 PRINT"WHEN FINISHED RESPOND +99.

1750 PRINT 1760 PRINT"ARE THE ISOTOPIC CONCENTRATICNS KNOWN AND" 1770 INPUT"IS THIS METHOD ACCEPTABLE: YES OR NO7 ".S 1780 IF((LEFTS (S,1)=Y)OR(LEFTS (S.1)=YL))THEN 1800 1790 1800 IF((LEFTS SITOP=" (S.1)=N)ORCLEFTs(S.1)=NL))THEN 1490 ELSE GOSUB 6860:: GOTO 1750 KR83M KR85M KR85 KR87 KR88 KR89 XE131MXE133MXE133 XE135MXE1 35 135 "

XE137 XE138 CS134 CS137 I131 I132 I133 I134 I

. 1810 GOSUB 6930 II-4

e 1820 PRINT TA8(3)"e===========. e====

1830 PRINT TAB (3)"o RADIONUCLIDE R ee****=======.."

e" 1840 PRINT TA8(3)"e===============EFERENCE LIBRARY.

========e========*e" 1850 PRINT 1860 PRINT TA8(8)"(1) KR83M"TA8(22) "(11) XE135" 1870 PRINT TAtt8)"(2) KR85M"TA8(22) "(12) XE137" 1880 PRINT TA8(8)"(3) KR85" TA8(2233"(13) XE138" 1890 PRINT TA8(8)"(4) KR87" TA8(22) "(14) CS134" 1900 PRINT TA8(8)"(5) KR88" TA8(223:"(15) CS137" 1910 PRINT TA8(8)"(6) KR89":TA8(2213"(161 1131" 1920 PRINT TA8(8)"(7) XE131M"TA8(2233"(17) I132" 1930 PRINT TA8(8)*(8) XE133M" TA8(22) "(18) 1133" 1940 PRINT TAB (8)"(9) XE133" TABC2233"(19) 1134" 1950PRINT 1960 PRINT TA8(7)"(10) XE135M* TA8(22) "(20) I135" 1970 PRINT TA8(6)"(-99) FINISHED" 1980 PRINT 1990 PRINT 2000 PRINT TA8(3)".=================================e" 2010 INPUT"(RESPOND -99, 1,2,3,.. 20): ",Il 2020 PRINT 2030 63 IF((21>0)AND(21<21))THEN PRINT USING"YOUR SELECTION IS: &" MIDS (SITOP,Ile6, ELSE PRINT USING"YOUR ENTRY IS: ###" Il 2040 IF(I1=-99)THEN 2260 2050 IF((Il<1)OR(I1>203)THEN GOSUB 6820 : GOTO 2000 2060 PRINT 2070 IF RIQUE(I1)=0 THEN 2140 2080 PRINT "== CAUTION TOPE." == - A RELEASE RATE HAS ALREADY BEEN ENTERED FOR THIS ISO 2090 INPUT "DO YOU WISH TO CHANGE ITT ",5 2100 IF ((LEFTS (S.1)=Y) OR (LEFTS (S.1)=YL)) THEN 2130 2110 IF ((LEFTS (3,1)=N) OR (LEFTS (5,1)=NL)) THEN 1820 2120 GOTO 2080 2130 PRINT 2140 PRINT USING "(A *O' 63 ENTRY RETURNS TO ISOTOPE LIB) FOR: &" MIDstSITOP,I1=6 "2150 INPUT " ENTER CONCENTRATION IN MICROCURIES PER CC RIQUE(I1) (EX:

2.18E+07, 0.01E-12):

2160 INPUT "IS THE ENTRY CORRECT: YES OR NOT ",3 2170 IF ((LEFTS (3,1)eY)OR(LEFTS (3,1)=YL)) THEN 2190 2180 GOTO 2150 2190 IF RIQUECI1)=0 THEN 1820 2200 RIQUE(II)=RIQUECII)=RFR=.000001 2210 PRINT 2220 PRINT USING"FOR &" MIDS (SITCP Ile6,6) 2230 PRINT USING"THE RELEASE RATE IN CI/SEC IS ss.******" RIQUE(II) 2240 PRINT 2250 GOTO 1820 2260 FOR I1 1 TO 20 2270 IF RIQUECI1)<>0 THEN 2300 2280 NEXT Il 2290 GOTO 2450 2300 PRINT 2310 IFLAG=1: ISO =1:COTO 4330 2320 *e GROSS RELEASE RATE.

2330 PRINT =====+=====ee===========ese======eese====== e=======

2340 PRINT " COMPUTE THE STACK RELEASE RATE IN CI/SEC."

2350 PRINT TAB (10)" DATA FORMAT: 2.18E+07, 0.01E-12 ETC."

2360 PRINT 2370 GOSUB 7020 2340 LE ORINPUT " ENTER UNKNOWN): ",RICIODINE CONC. (UCI/CC) FROM EITHER STACK (-1, MONITOR IF OFFSCA 2390 RNCC PRINT : INPUT " ENTER NOBLE GAS CONC. (UCI/CC) FROM EITHER STACK MONITOR: ",

2400 PRINT 2410 IF RIC=-1 AND RNGC)0 THEN RIC=RNGCo.02*.05 II-5

l -

2420 IF RIC)O AND RNGC=0 TNEW RNGCoRIC/.02/.05 2430 RQUEs(RNGC=RIC)eRFRe.000001 : RER .000001 1 C1/ 1E6uCI 2440 IF RQUE)0 THEN 2480 2450 PRINT 2460 PRINT"THIS INFORMATION IS ESSENTIAL TO THE CALCULATIONS. PLEASE" 2470 PRINT" SELECT ANOTHER METHOD." : GOTO 1490 2480 PRINT 2490 PRINT USING "THE TOTAL STACK RELEASE (CI/SEC) IS ss.ss-**-":RQUE 2500 IFLAGe2 2510 GOTO 3400 2520 *e CONTAINMENT LEAKAGE. seeesseeeeeeeeeeeeeeeeeeee==eeseeeeeeeeee====ee....

2530 PRINT 2540 PRINT "IS THE CONTAINMENT LEAK RATE (* FREE AIR VOL./ DAY) KNOWN "

2550 INPUT "(RESPOND: YES OR NO (*NO* RESULTS IN DEFAULT RATE BEING USED))? ",3 2560 IF((LEFTS (5,1)=Y)OR(LEFTe(5,1)eYL))THEN 2590 2570 IF((LEFTS (S.1)=N)OR(LEFTS (3,1)=NL))THEN 2680 2580 PRINT : GOTO 2540 2590 PRINT , ,

2600 PRINT " ENTER THE PERCENTAGE OF CONTAINHENT RELEASED PER DAY."

2610 INPUT"(EX: 100.0, 0.1, 1234.5): ",RPERCO 2620 PRINT 2630 PRINT USING "THE PERCENTAGE OF CONTAINMENT FREE AIR VOL. RELEASED PER DAY I S ##.ss****":RPERCO 2640 PRINT 2650 INPUT "IS THE ENTRY CORRECT: YES OR NO? ",5 2660 IF((LEFTS (S.1)=Y)OR(LEFTS (3,13eYL))THEN 2710 2670 IF((LETTs(S.1)=N)OR(LEFTS (3,1)=NL))THEN 2530 ELSE GOSUB 6860 : GOTO'2630 2680 PRINT 2690 PRINT USING "THE DEFAULT CONTAINMENT LEAK RATE (CONTAINMENT VOL/ DAY) IS #.#

ss." RLK

  • 2700 RPERCO=RLK:IPROG=1 2710 PRINT 2720 GOSUB 6940 2730 PRINT TAB (10)" (6) RETURN TO
  • RELEASE RATE
  • MENU" 2740 INPUT"(RESPOND 1,2,3,4,5 OR 6): ",Il 2750 IF((Il<1)ORCI1>6))THEN GOSUB 6820 : GOTO 2720 2760 ON Il GOTO 2820,2830,2810.2840,2770,1490 2770 PRINT 2780 INPUT "IS THE DEFAULT SOURCE ORIGIN
  • ACCEPTABLE: YES OR NO ? ".5 2790 IF((LEFTS (5,1)=Y)OR(LtrTs(5,1)=fL))THEN 2810 2800 IF((LEFTS (5,1)=N)OR(LETTs(5,1)=NL))THEN 2710 ELSE GOSUB 6860 : GOTO 2780 2810 IFLAG=5:GOTO 34G0 2820 IFLAG=3:GOTO 3400 2830 IFLAG=4:GOTO 3400 2840 PRINT 2841 PRINT " ENTER CONTAINMENT MONITOR REFERENCE NUMBER:

2842 INPUT "EX: 1RE6290A, 1RE62908 CTE-116 OR CTE-117. ",SREFNO 2843 IF ((RIGHTS (SRETNO,1)="A") OR (RIGHTS (SRETNO,1)="6")) THEN RMONCF=.053 : GO TO 2849 2844 IF ((RIGHTS (SREFNO,1)="B") OR (RIGHTS (SRETNO,1)="7")) THEN RMONCF=.0727 : G OTO 2849 2845 PRINT: PRINT "USE RE6290A/CTE-116 FOR CONSERVATIVE CALCULATION.":GOTO 2840 2849 PRINT 2850 PRINT" INPUT CONTAINMENT MONITOR READING IN ROENTGENS / HOUR."

2860 INPUT"(EX: 1.23E*12, 0.01E-01): ",RACTIV 2870 PRINT 2880 PRINT USING" CONTAINMENT MONITOR READING (R/HR) IS ss.ss****" RACTIV 2890 IFLAG=6 2900 RSTERMoRACTIV RPERCO/10000=RMONCF : GOTO 3400 2910 *= COOLANT LEAKAGE. ============****e====================*e== esse ===*e===*.

2920 PRINT 2930 PRINT" SELECT UNITS FOR COOLANT RATE LOSS.

  • 2940 PRINT TAB (5)"(1) DEFAULT (500 GPM)."

2950 PRINT TAB (5)"(2) GALLONS / MIN: USE PRIMARY ACT, & PRI/SEC LX RATE DATA."

2955 PRINT TAB (5)"(3) POUNDS / HOUR: USE SECONDARY ACT. & SEC/ATM LK RATE DATA."

2960 PRINT TAB (5)"(4) ABORT AND RETURN."

II-6

2970 INPUT "(RESPOND 1.2,3 OR 4:) ".Il 2980 IF((1141)OR(11>43)TNEN GOSUB 6420 : GOTO 2930 2990 ON Il GOTO 3000,3040,3101,1490 3000 PRINT 3010 RRATE*500 3020 PRINT "THE DEFAULT COOLANT LEAK RATE IS 500 GALLONS PER MINUTE."

3030 GOTO 3070 3040 PRINT 3050 PRINT" INPUT COOLANT LEAKAGE RATE IN GALLONS / MIN."

3060 INPUT"(EX: 1.23Ee12. 1234.5): ".RRATE 3065 RPRIACTel-3370 PRINT 3080 RRATE*RRATE 3090 PRINT USING" COOLANT 63.07 LEAKAGE RATE (GALLONS / MIN.) IS #s.es****":RRATE 3100 PRINT : GOTO 3110 3101 PRINT 3102 INPUT " ENTER THE SECONDARY LEAK RATE (L8S/HR),(EX:1.23Ee12.123.4.ETC): " RR ATE 3103 RRATEsRRATEe.1261 3104 PRINT  : ' CONSTANT CONVERTS L8S/HR(STEAM) TO GM/SEC OR CC/SEC 3110 PRINT" SELECT UNITS OR DEFAULT FOR GROSS" 3120 PRINT" TOTAL ACTIVITY OF LEAKING COOLANT."

3130 PRINT TAB (5)"(1) MICRO CURIES / GRAM" 3140 PRINT TAB (5)"(2) CURIES / LITER" 3150 PRINT TAB (5)"(3) MICRO CURIES /CC" 3160 PRINT TA8(5)"(4) DEFAULT (127 UCI/CC)" : REM THIS IS 12 OF GAP ACT, FOR S/G ACCIDENT l 3170 PRINT " EXAMPLE FORMATS: 1.23Ee12, 1234.$. ETC."

i 3180 INPUT"(RESPOND 1.2.3 OR 4)* " Il 3190 IF((Il<1)OR(11>43)THEN GOSUB 6820 : GOTO 3100 3200 ON Il GOTO 3240,3290,3340,3210 3210 PRINT 3220 PRINT " GROSS ACTIVITY OF LEAKING COOLANT DEFAULTS TO 635 UCI/CC."

3230 RACTIVs.000127:GOTO 3390 3240 PRINT 3250 INPUT " ENTER GROSS ACTIVITY OF LEAKING COOLANT IN UCI/G: ",RACTIV 3260 PRINT 3270 PRINT USING" GROSS ACTIVITY (MICRO CURIES / GRAM) IS WW.s#****":RACTIV 3280 RACTIV=RACTIV=.000001 : GOTO 3390 3290 PRINT 3300 INPUT " ENTER GROSS ACTIVITY OF LEAKING COOLANT IN CI/L: ",RACTIV 3310 PRINT 3320 PRINT USING" GROSS ACTIVITY (CURIES / LITER) IS ##.ww****":RACTIV 3330 RACTIVsRACTIV=.001:GOTO 3390 3340 PRINT 3350 INPUT 3360 PRINT " ENTER GROSS ACTIVITY OF LEAKING COOLANT IN UCI/CC:

",RACTIV 3370 RACTIV=RACTIVe.000001 3380 PRINT USING" GROSS ACTIVITY (MICRO CURIES /CC) IS 88.s#^^^*":RACTIV 3390 IFLAGs7 3400 PRINT 3410 IF((IRUN<>1)AND(ISOs03)THEN 4340 3420 ** IODINE SECTION. e*****=eeeee*===* **e*=*eeeeee*** e===========eseeeeeese 3430 PRINT 3440 IF IFLAG<>2 THEN 3470 3450 IF RIso AND RICs0 THEN 4300 3460 IF RI)0 OR RIC)0 THEN 3980 3470 IF IFLAG<>l THEN 3490 3480 FCR Ile16 TO 20 : IF RICUECI1)>0 THEN 3570 :NEXT Il 3490 PRINT"ARE THERE IODINES IN THE RELEASE?"

3500 PRINT TAB (5)"(1) YES" 3510 PRINT TAB (5)"(2) NO" 3520 PRINT TAB (5)"(3) UNCERTAIN" 3530 INPUT"(RESPOND 1,2 OR 33: "3 ,

3540 IF((LEFTsts,1)="1")OR(LEFTS (S.1)=Y)OR(LEFTS (S.1) YL))THEN 3570 3550 IF(CLEFTS (3,1)s"2")OR(LEFTS (S,1)=N)CR(LEFTSCS.1) NL))THEN 4300 II-7

3560 IF((LEFTe(5,1)="3")OR(LIFTS (S,1)="U"))THEN 4100 ELSE GOSUB 6860 : GOTO 3490 3570 PRINT 3580 PRINT" SELECT FOR INPUT OF IODINE TO NOBLE GAS RATIO."

3590 PRINY TA8(5)"(1) INPUT IODINE TO NOBLE GAS RATIO AS A DECINAL FRACTION."

3600 PRINT 3610 PRINT TA8(5)"(2) INPUT

3620 PRINT 3630 PRINT TA8(5)"(3) INPUT

3640 PRINT 3650 PRINT TA8(5)"(4) ENTER IODINE AND NOBLE GAS CONC. T@ DETERNINE RATIO."

3660 PRINT 3670 PRINT TA8(5)"(5) DEFAULT - IODINE AND NOBLE CAS CONC. ARE UNKNOWN."

3680 INPUT"(RESPOND 1,2,3,4 OR 5): " Il, 3690 IF((Il<1)CR(I1)S))THEN GOSUB 6820 : GOTO 3580 3700 ON Il GOTO 3710,3800,3890,3980,4100 3710 PRINT 3720 PRINT" INPUT IODINE TO NOSLE GAS RATIO AS A DECINAL FRACTION."

3730 PRINT"(NOTE: RANGE: 0 =< DECINAL FRACTION =< 1)"

3740 INPUT"(EX: 1.23E-12, 0.01): ", RING 3750 IF((RING 40)CR(RING)1))THEN GOSUB 6820 : GOTO 3720 3760 PRINT 3770 PRINT USING" IODINE TO NOBLE GAS RATIO IS ##.##****": RING 3780 RIe(100= RING)/(1= RING):RNG=1001-RI 3790 GOTO 4170 3800 PRINT 3810 INPUT " ENTER

  • IODINE OF IODINE PLUS NOBLE GAS TOTAL (EX: 100.0, 0.1): ":RI 3815 IF RI<0 CR RI)100'THEN 3810 3820 RNG=1001-RI 3830 RING =RI/RNG 3840 PRINT 3850 PRINT USING" INPUT VALUES ARE:
  • IODINE = ##.8#"***" RI 3860 PRINT USING"
  • NOBLE GAS = ##.8#"""*" 100-R*.

3870 PRINT 3880 GOTO 4170 3890 PRINT 3900 INPUT " ENTER

  • OF IODINE IN CORE INVENTORY (EX: 300.0, 0.1): ";RI 3905 IF RICO OR RI)100 THEN 3900 3910 PRINT 3920 INPUT " ENTER
  • OF NOBLE GAS IN CORE INVENTORY (EX: 100.0, 0.1): " RNG 3925 IF RNG<0 OR RNG)100 THEN 3920 3930 PRINT 3940 PRINT" INPUT VALUES ARE:

3950 PRINT "

  • NCBLE GAS = ",

3960 RING =RI/RNG:RI=100t=RI/(RI+RNG):RNG=100t-RI 3970 GOTO 4170 3980 PRINT 3990 IF IFLAG<>2 THEN 4010 4000 RI=RIC : RNG=RNGC : GOTO 4050 4010 INPUT " ENTER THE TOTAL IODINE CONCENTRATION: ",RI 4020 PRINT 4030 INPUT " ENTER THE TOTAL NOBLE GAS CONCENTRATICN: ",RNG 4040 PRINT 4050 RING =RI/RNG 4060 PRINT USING "ICDINE TO NOBLE GAS RATIO IS: ##.##"***": RING 4070 PRINT 4080 RI=100t=RI/(RI+RNG) : RNG=100f-RI 4090 GOTO 4170 4100 PRINT 4110 IF IFLAG<>7 THEN 4140 4120 RING =.05 : RIs4.76 : RNG=95.24 4130 GOTO 4150 4140 RING =.02 : RI=1.96 : RNG=98.04 4150 PRINT "THE DEFAULT RATIO FOR IODINE TO NOBLE GAS IS: "

4160 PRINT USING "#.## OR s.##2 IODINE TO ##.##4 NOBLE GAS."; RING RI:RNG 4170 PRINT 4180 IF IFLAG=2 OR IFLAG=7 THEN 4220 II-8

?

4190 INPUT "WOULD THE IODINES BE FILTERED (RESPOND: TIS OR NO)? ";S 4200 IF((LEFTetS.1)=Y)OR(LIFTe(S 1)=YL))THEN 4260 4210 IF((LEFTS (S.1) N)OR(LEFTe(S.1)=NL))THEN 4220 ELSE GOSUB 6860 : GOTO 4170 4220 RILEFoot 4230 PRINT 4240 PRINT" ASSUME NO FILTRATION."

4250 GOTO 4310 4260 PRINT 4270 RILEF= 95t 4280 PRINT USING" FILTER EFFICIENCY (4)= ####.##" RILEF 4290 GOTO 4310 4300 RINGeO:RILEF=100t:RI=0:RNGe100 4310 RIRFe((RING /(it= RING))e(100t-RILEF)/1001) 4320 IF IFLAG=7 AND RPRIACT=1 THEN RIRF=RIRFe.1 4330 IF((IFLAGC)1)AND(ISO =1))THEN 4360 4340 ON IRUN GOTO 4350,6540 4350 IFCISO=1)GOTO 4420 4360 PRINT 4365 IF IFLAG=2 THEN 4430 4370 PRINT " ENTER THE TIME INTERVAL FROM REACTOR SHUTDOWN" 4380 INPUT"TO INITIATION OF THE RELEASE IN HOURS (0, IF UNKNOWN) ",RIREL 4390 PRINT 4400 PRINT USING"IN HOURS, INPUT TIME INTERVAL IS####.##";RIREL 4410 ISOa0 4420 PRINT 4430 PRINT " ENTER A TIME ESTIMATE (IN HOURS) FOR THE DURATION" 4440 INPUT"OF THE RELEASE t-1, IF UNKNOWN) ",RDUR 4450 IF RDUR=-1 THEN PRINT" DURATION OF RELEASE DEFAULTS TO 8 HOURS.":RDUR=8 4460 PRINT 4470 PRINT USING"IN HOURS. INPUT TIME INTERVAL IS####.##":RDUR 4480 PRINT 4490 IF IFLAG=2 THEN 4540 4500 PRINT: PRINT" INPUT IN HOURS THE TIME INTERVAL FROM" 4510 PRINT"WHEN THE RADIATION MEASUREMENT OR SAMPLE WAS MADE" 4520 PRINT"TO THE MATERIAL *S PROJECTED TIME OF RELEASE." --

4530 INPUT"(EX: 24.00, 0.25): ",RPOST 4540 IF (ISO =1) THEN 4560 4550 IF (RIREL(24) THEN IAGEFL=1 ELSE IAGEFLs0 1 4560 IF (IRUN<>1)GOTO 6580 4570 *. PRINT INPUT AND MAKE CHANGES. *************************e======*ee*******

4580 IRUN=2:I3=0 4590 REVIEW =1 : ON ILU GOTO 5560,4605 4600

  • OUTPUT ON PRINTER.

4605 PRINT : PRINT "e== CHECX THE *SEL* SWITCH ON THE PRINTERt! ===" : PRINT 4610 LPRINT:LPRINT:LPRINT TAB (29)"se*========e***===ee."

4620 LPRINT"e===============*e=====****** INPUT INFORMATION *eeeeeeeee===ee=====

======e==="

4630 LPRINT T A B ( 29 ) " . . e = = = = = =

  • e m e s e * * * = e" 4640 LPRINT 4650 LPRINT USING" USER NAME: &":SNAME 4660 LPRINT 4670 LPRINT USING"TODAY*S DATE: &":SDATE i 4680 LPRINT l 4690 LPRINT USING" CURRENT TIME: &":STIME l 4700 LPRINT l 4710 LPRINT USING" REACTOR NAME: &":SRNAM

! 4720 LPRINT 4730 LPRINT USING" NET ELECTRICAL OUTPUT:###ses#":IPOWR 4740 LPRINT 4750 LPRINT USING " CALCULATION NUMBER: E-sess":SFAC:RNUM : LPRINT 4760 LPRINT USING" GROUND LEVEL WIND SPEED (M/SEC):s####.##" RWIND:

4770 LPRINT USING " (MPH):s####.##";(RWIND/.44704) 4780 LPRINT 4790 LPRINT USING" GROUND LEVEL WIND DIRECTION (FROM): #s#" RDIR 4800 LPRINT 4810 GOSUB 7210 i

I l

II-9 l

4420 LPRINT USING" STABILITY CLASS: &" SPASQ 4830 IF(IPROGeo)THEN 4860 4440 LPRINT 4450 LPRINT" NOTE:

  • DEFAULT ESTIMATES USED FOR THE RELEASE RATE. *"

4860 LPRINT 4870 ON IFLAG COTO 4880.4960.5040.5040.5040.5040.5190 4880 LPRINT" INPUTS FOR ISOTOPIC RELEASE RATE:"

4485 LPRINT 4846 LPRINT USING "THE COMBINED STACK FLOW RATE (CFM): ##.##****." RFR/472 4890 FOR Ist TO 20 4900 IF(RIOUE(I)=0t)THEN 4940 4910 LPRINT 4920 LPRINT USING" FOR &" MIDe(SITOP.Ie6.6) 4930 LPRINT USING" THE RELEASE RATE (CI/SEC): ##.WWa***":RIOUECI) 4935 LPRINT LPRINT USING" THE INPUT CONC. (UCI/CC): ##.##****" RIOUE(I)/RFR

/.000001 4940 NEXT I 4950 GOTO 5440 4960 LPRINT" INPUTS FOR GROSS RELEASE RATE:"

4970 LPRINT 4980 LPRINT USING" GROSS RELEASE RATE (CI/SEC): ##.##****": ROUE 4990 LPRINT USING " COMBINED STACK FLOW RATE (CFM): ##.###****";RFR/472 : LPRI NT 5000 LPRINT USING " IODINE RELEASE RATE (CI/SEC): ##.##****": ROUE.RI/10 0

501C LPRINT USING " CONC. (UCI/CC): ##.##^^*^";RIC : LPRINT 5020 LPRINT USING " - NOBLE G AS RELEASE -RATE (CI/SEC): r#.##****": ROUE *RN G/100 5025 LPRINT USING " CONC. (UCI/CC): ##.##****" RNGC 5030 GOTO 5260 5040 LPRINT" INPUTS FOR CONTAINMENT LEAKAGE:"

5050 LPRINT 5060 LPRINT USING" PERCENTAGE OF CONTAINMENT RELEASED PER DAY: ##.##"***":RPER CO 5070 LPRINT 5080 IF(IFLAGC)3)THEN 5110 5090 LPRINT TAB (4)" SOURCE MAGNITUDE: COOLANT INVENTORY" 5100 GOTO 5260 5110 IF(IFLAG<>4)THEN 5140 5120 LPRINT TAB (4)" SOURCE MAGNITUDE: GAP INVENTORY" 5130 GOTO 5260 5140 IF(IFLAG<>5)THEN 5170 5150 LPRINT TAB (4)" SOURCE MAGNITUDE: FUEL MELT" 5160 GOTO 5260 5170 LPRINT USING" CONTAINMENT MONITOR READING (R/HR): ##.##^***":RACTIV 5180 GOTO 5260 5190 LPRINT " INPUTS FOR STEAM GENERATOR LEAK:"

5200 LPRINT 5210 LPRINT USING" LEAKAGE RATE (CC/SEC): ##.##****";RRATE 5220 LPRINT 5230 LPRINT USING" GROSS ACTIVITY (CI/CC): ##.*#^***":RACTIV 5240 LPRINT 5250 LPRINT USING " THE RELEASE RATE IS (CI/SEC): ##.##****.":RACTIV*RRATE 5260 LPRINT

5270 LPRINT" IODINE. NOBLE GAS. AND FILTER EFFICIENCY INPUTS
"

l 5280 LPRINT 5290 LPRINT USING" PERCENTAGE IODINE:#####.##" RI 5300 LPRINT 5310 LPRINT USING" PERCENTAGE NOBLE GAS:#####.##" RNG 5320 LPRINT 5330 LPRINT USING" IODINE TO NOBLE GAS RATIO: ##.##**"*"; RING 5340 LPRINT 5345 IF IFLAG=7 AND RPRIACTs1 THEN LPRINT "S/G TUBE RUPTURE ASSUMES 904 OF ICDIN ES REMOVED BY PLATE-007." : GOTO 5360 5347 IF IFLAG=7 THEN LPRINT " SECONDARY LEAK RATE TO ATM AND SECONDARY ACT DATA U

! SED FOR THIS CALCULATION." : GOTO 5360

II-10 l

o I '

5350 LPRINT USING" 5360 LPRINT PERCENTAGE OF ICDINES REMOVED SY FILTRATION!ssess.es":RILEF 5370 IF IFLAG<>7 THEN 5420 5380 LPRINT USING" IODINE RELEASE RATE (CI/SEC) IS: es.se****.":RACTIVeRRATEe RIRF 5390 LPRINT 5400 LPRINT USING" NOBLE GAS RELEASE RATE (CI/SEC) IS:

TE=RNG/100 so.se****.":RACTIVeRRA 5410 LPRINT 5415 IF IFLAG=2 THEN 5450 5420 LPRINT" TIME INTERVAL FROM REACTOR SHUTDOWN 5430 LPRINT 5440 LPRINT USING"TO INITIATION OF RELEASE (HR):sess.ss":RIREL 5450 LPRINT" TIME ESTIMATE FOR TOTAL DURATION" 5460 LPRINT USING"OF RELEASE (HR):sess.ss";RDUR 5470 IF((ISOt>1)AND(IFLAG<>63)THEN 5500 5480 LPRINT:LPRINT" TIME ESTIMATE FROM RADIATION MEASUREMENT TO" 5490 LPRINT 5500 LPRINT USING"THE MATERIAL *S PROJECTED TIME OF RELEASE (HR):sses.ss":RPOST 5510 IF(IAGEFL=1)THEN LPRINT" AGE OF RELEASED MATERIAL: < 1 DAY"ELSE LPRINT" AGE OF RELEASED MATERIAL: >= 1 DAY" 5520 FOR Ie1 TO 5 : LPRINT : NEXT I 5530 GOTD 6580 5540 LPRINT"e=============ese***e==="

5550

5560 PRINT 5570 PRINT -

  • 5580 PRINT"e************=eeeee*********e" 5590 PRINT"o REVIEW INPUT INFORMATION. ."

5600 PRINT"e*****======seeme==========ee" 5610 PRINT 5620 PRINT USING" USER NAME: &" SNAME 5630 PRINT 5640 PRINT USING"TODAY'S DATE: &" SDATE 5650 PRINT 5660 PRINT USING" CURRENT TIME: &";STIME 5670 PRINT 5680 PRINT USING" REACTOR NAME: &":SRNAM 5690 PRINT

  • 5700 PRINT USING" NET ELECTRICAL OUTPUT:ssesse":IPOWR 5710 PRINT 5720 PRINT USING " CALCULATION NUMBER: &-sess":SFAC RNUM : PRINT 5730 5740 PRINT PRINTUSING USING" "GROUND LEVEL WIND SPEED (M/SEC):sessa.ss":RWIND:

(MPH):#sses.ss":(RWIND/.44704) 5750 PRINT 5760 PRINT USING " GROUND LEVEL WIND DIRECTION (FROM): #ss";RCIR 5770 PRINT 5780 GOSUB 7210 5790 INPUT"o HIT CARRIAGE RETURN TO CONTINUE. =",3 5800 PRINT 5810 DRINT USING" STABILITY CLASS: &" SDASO 5820 IF(IPROGe0)THEN 5850 5830 PRINT 5840 PRINT" NOTE:

  • DEFAULT ESTINATES USED FOR RELEASE RATE. e" 5850 PRINT 5860 ON IFLAG GOTO 5870.5960.6040,6040,6040,6040.6200 5870 PRINT" INPUTS FOR ISOTOPIC RELEASE RATE:"

5880 FOR I 1 TO 20 5890 IF(RIOUE(I)*0:)THEN 5940 5900 PRINT 5905 PRINT USING " THE CCMBINED STACX FLOW RATE.(CFM): ss.s*****.":RFR/472 5910 PRINT USING" FOR &": MIDS (SITCP,Ie6,6) 5920 PRINT USING" THE RELEASE RATE (CI/SEC): so.ss****":RICUECI) 5925 PRINT : PRINT USING " THE INPUT CONC. (UCI/CC): ##.s#****":RIOUE(I)/RFR/

.000001 5930 PRINT: INPUT"o HIT CARRIAGE RETURN TO CONTINUE. .",S II-11

e s

5940 NEXT I 5950 GOTO 6470 5960 PRINT" INPUTS FOR GROSS RELEASE RATE:"

5970 PRINT 5980 PRINT USING " GROSS RELEASE RATE (CI/SEC): es.se****":RQUE 5990 PRINT  : PRINT USING " ENTERED ST. FL. RT. (CFM): es.s##****";RFR/472 : PRINT 6000 PRINT USING " IODINE REL. RATE (CI/SEC): es.ss"***":RCUE*RI/1003 6010 PRINT USING " CONC. (UCI/CC): ##.ms"***":RIC : PRINT 6020 PRINT USING " NOBLE GAS REL. RATE (CI/SEC): es.esaa-*": ROUE *RNG/10 0:

6025 PRINT USING " CONC. (UCI/CC): #s.se****";RNGC 6030 GOTO 6270 6040 PRINT" INPUTS FOR CONTAINMENT LEAKAGE:"

6050 PRINT 6060 PRINT TAB (3)" PERCENTAGE OF CONTAINMENT RELEASED" 6070 PRINT USING" PER DAY: ##.me****";RPERCO 6080 PRINT 6090 IF(IFLAG<>3)THEN 6120 6100 PRINT TAB (3)" SOURCE MAGNITUDE: COOLANT INVENTORY" 6110 GOTO 6270 6120 IF(IFLAGC>4)THEN 6150 6130 PRINT TAB (3)" SOURCE MAGNITUDE: GAP INVENTORY" 6140 GOTO 6270 6150 IF(IFLAG<>5)THEN 6180 6160 PRINT TAD (3)" SOURCE MAGNITUDE: FUEL MELT" 6170 GOTO 6270 6180 PRINT USING" CONTAINMENT MONITOR READING (R/HR): #s.s***"*":RACTIV 6190 GOTO 6270 6200 PRINT " INPUTS FOR STEAM GENERATOR LEAK:"

6210 PRINT 6220 PRINT USING" LEAKAGE RATE (CC/SEC): es.es"""*" RRATE 6230 PRINT 6240 PRINT USING" GROSS ACTIVITY (CI/CC): ss.sm---"":RACTIV 6250 PRINT 6260 ?RINT USING" THE RELEASE RATE IS (CI/SEC): es.es"""*.":RACTIVeRRATE 6270 PRINT 6280 INPUT"o HIT CAR 9IAGE RETURN TO CONTINUE. =",5 6290 PRINT 6300 PRINT" IODINE, NOBLE GAS, AND FILTER EFFICIENCY INPUTS:

6310 PRINT 6320 PRINT USING" PERCENTAGE ICDINE:ssese.ss":RI 6330 PRINT 6340 PRINT USING" PERCENTABE NOBLE GAS:s#6ss.es":RNG 6350 PRINT 6360 PRINT USING" IODINE TO NOBLE GAS RATIO: es.es"*"*": RING 6370 PRINT 6375 IF IFLAG=7 AND RPRIACT=1 THEN PRINT "S/G TUBE RUPTURE ASSUMES 904 OF IODINE S REMOVED BY PLATE-OUT." : GOTO 6390 6377 IF IFLAG=7 THEN PRINT " SECONDARY LEAK RATE TO ATM AND SECONDARY ACT DATA US ED FOR THIS CALCULATION." : GOTO 6390 6380 PRINT USING" PERCENTAGE OF ICDINES REMOVED BY FILTRATION: ##ses.#":RILEF 6390 PRINT 6400 IF IFLAG<>7 THEN 6450 6410 PRINT USING" IODINE RELEASE RATE (CI/SEC) IS: es.se****.":RACTIVeRRATE=R IRF 6420 uRINT 6430 PRINT USING" NOBLE GAS RELEASE RATE (CI/SEC) IS: #s.es****.":RACTIVeRRAT E RNG/100 6440 PRINT 6445 IF IFLAG=2 THEN 6480 6450 PRINT: PRINT" TIME INTERVAL FROM REACTOR SHUTDOWN 6460 PRINT USIhG"TO INITIATION OF RELEASE (HR):sess.ss":RIREL 6470 PRINT 6480 PRINT" TIME ESTIMATE FOR TOTAL DURATION 6490 PRINT USING"OF RELEASE (HR):sess.es" RDUR 6500 IF((ISO <>1)AND(IFLAGC)6))THEN 6530 II-12

w

?

6510 PRINT: PRINT" TIME INTERVAL FROM RADIATION MEASUREMENT TO THE" 6520 PRINT USING" MATERIAL *S PROJECTED TIME OF RELEASE (HR):##88.8#":RPOST 6530 PRINT 6540 IF(IAGEFLei)THEN PRINT" AGE OF RELEASED MATERIAL: C 1 DAY"ELSE PRINT" AGE OF RELEASED MATERIAL: >= 1 DAY" 4550 PRINT 6560 INPUT"o MIT CARRIAGE RETURN TO CONTINUE. =",5 6570 PRINT : PRINT 6580 PRINT : PRINT" SELECT TOPIC WHICH NEEDS TO BE CHANCED."

6590 PRINT : PRINT TAB (5)"(1) USER NAME AND THE DATE" 6600 PRINT 6610 PRINT TAB (5)"(2) METEOROLOGICAL DATA: WIND SPEED, WIND DIR, & STAB CLASS."

6620 PRINT 6630 PRINT TAB (5)"(3) RELEASE RATE: ISOTOPIC, STACX, CCNT. LEAKAGE, ETC."

6640 PRINT 6650 PRINT TAB (5)"(4) AGE OF RELEASED MATERIAL: TIME INT.- SHUTDOWN, DUR, ETC."

6660 PRINT 6670 PRINT TAB (5)"(5) IODINE PRESENCE: I/NG RATIO, FILTER, ETC."

6680 PRINT 6690 PRINT TAB (5)"(6) PRINTER STATUS" 6700 PRINT 6710 PRINT TAB (5)"(7) TIME OF NEXT CALCULATION" 6720 PRINT 6730 PRINT TAB (53"(8) REVIEW INPUT DATA."

6740 PRINT 6750 PRINT TAB (5)"(9) COMPLETE CALCULATIONS."

6760 PRINT . --

6770 INPUT "(RESPOND 1,2,3,...,9) " , IFIX 6780 IF IFIX=3 AND IRUN=2 THEN IRUN=1 6785 IF IFLAGC3 AND IFIXe5 THEN PRINT "e== TO CHANGE I-NG RATIO, USE RELEASE RAT E SCENARIOS ***": PRINT:GOTO 6580 6790 IF((IFIX<1)ORCIFIX)97)THEN GOSUB 6820 : GOTO 6590 6800 ON IFIX GOTO 420,540,1490,4360,3430,7140,7460,4590,6900 6810 END 6820 PRINT 6830 PRINT" ENTRY OUT OF RANGE - PLEASE TRY AGAIN."

6840 PRINT 6850 RETURN 6860 PRINT 6870 PRINT" ENTRY NOT UNDERSTOOD - PLEASE TRY AGAIN."

6880 PRINT 6890 RETURN 6900 PRINT : IF REVIEWe0 THEN 4590 6910 CHAIN "CPCAL. BAS",19 6920 END 6930 FOR Iai TO 8 : PRINT : NEXT I : RETURN 6940

  • SOURCE MAGNITUDE FOR CONTAINMENT LEAKAGE =================================

6950 PRINT TAB (6)" CHARACTERIZE SOURCE ORIGIN."

6960 PRINT TAB (10)" (1) COOLANT INVENTORY" 6970 PRINT TAB (10)" (2) GAP INVENTORY" 6980 PRINT TAB (10)" (3) FUEL MELT" l 6990 PRINT TAB (10)" (4) CONTAINMENT MONITOR READINGS" l 7000 PRINT TAD (10)" (5) DEFAULT (FUEL MELT)"

l 7010 RETURN 7020 *FLCW RATE DETERMINATION ======================...........ee===..eeeeeeeee 7030 INPUT " ENTER STACK FLOW RATE (CFM) FROM EITHER STACX MONITOR OR -1, IF UNKN OWN: " ,RFR 7040 IF RFRe-1 THEN 7070 7050 RFR RFR*2 7060 GOTO 7100 l 7070 INPUT " ENTER THE NUMBER OF OPERATING FANS: ",RFR 7080 IF RFR<0 THEN 7030 7090 RFR RFR=15000 7100 RFR RFR=472 7110 PRINT : PRINT USING "THE FLCW RATE (CC/SEC)IS: ##.s##****":RFR : PRINT 7120 RETURN l II-13 l

s. .

7130 *CNECX ON PRINTER STATUS ess eee ee eeeeeeeeeee ee eeeeeeeeeseoseeeeee eee m e* ****

7140 IUPUT "IS THE PRINTER PROPERLY CONNECTED TO THE COMPUTER: YES OR NO7 ",3 7150 IF ((LEFTS (S,1)=Y)OR(LEFTotS,1)=YL)) THEN ILUe2 : GOTO 7190 7160 IF t(LEFTS (S.1)=N)OR(LEFTS (3,1)eNL)) THEN ILUe1 :GOTO 7190 7170 GOTO 7140 7180 PRINT 7190 IF IFIXe6 THEN 6580 7200 RETURN 7210

  • SELECT THE MINIMUM AFFECTED AREA seeeeeeeeeeeeeeee===eeeeeeeeeeeeeeeeeeeee 7220 IF RDIR(11.25 THEN S="H.J AND K" : GOTO 7390 7230 IF RDIR(33.75 THEN S="J,K AND L" : GOTO 7390 7240 IF RDIR(56.25 THEN S="K,L AND M" : GOTO 7390 7250 IF RDIR(78.75 THEN Se"L.M AND N" : GOTO 7390 7260 IF RDIR<101.25 THEN S="M N AND P" : GOTO 7390 7270 IF RDIR(123.75 THEN S="N,P AND Q" : GOTO 7390 7280 IF RDIR(146.25 THEN S="P,Q AND R" : GOTO 7390 7290 IF RDIRt168.75 THEN Sm"Q,R AND A" : GOTO 7390 7300 IF RDIR(191.25 THEN S="R, A AND B" : GOTO 7390 7310 IF RDIR<213.75 THEN S="A,8 AND C" : GOTO 7390 7320 IF RDIR(236.25 THEN S="S C AND D" : GOTO 7390 7330 IF RDIRt258.75 THEN S="C.D AND E" : GOTO 7390 7340 IF RDIRC281.25 THEN S="D,E AND F" : GOTO 7390 7350 IF RDIR(303.75 THEN S="E,F AND G" : GOTO 7390 7360 IF RDIR(326.25 THEN Se"F G AND H" : GOTO 7390 7370 IF RDIR(348.75 TH=N S="G,H AND J" : GOTO 7390 7380 S="H.J AND X" 7390 IF.JLU=2 THEN 7430 - -

7400 PRINT "THE MINIMUM AFFECTED AREA INCLUDES SECTORS: ":S 7410 PRINT 7420 GOTO 7450 7430 LPRINT "THE MINIMUM AFFECTED AREA INCLUDES SECTORS: ":S 7440 LPRINT 7450 RETURN 7460

  • SET TIME OF NEXT CALCULATION esemesseeeeeeeeeeeeeeeeeeeeeeeeeeeeeee. eeee.

7470 INPUT " ENTER TIME OF NEXT CALULATION: ",STIME 7480 IF STIME="" THEN 7470 7490 GOTO 6580

  • II-14

60

?

APPENDIX III DOSE ASSESSMENT PROGRAM LISTING PROGRAM II III-1

o 5 *e GROUND RELEASE SCENARIO EQUATIONS.

    • e***e===esesse******eeeeeme***=****

10

  • PROGRAM Comanche Peak Calculations - EDAM e REVISED) 02-22-85 BY) GLB 19 COMMON SNAME,$DATE,STIME,SRNAM,IPOWR.RLK.RVOL,IRUN,ILU,IG.IE.RWIND RDIR.RSTAC K.SPASQ,ICLAS,IFLAG,130 20 COMMON RIQUE(),RQUE,IPROG.RPERCO,RACTIV,RSTERM.RRATE, RING RI.RNG RILEF.RIRF.R IREL.RDUR,RPOST,IAGEFL,IFIX,SFAC.RNUM 21 DEFINT I 22 DEFSTR S 23 DEFSNG R 24 DEFDBL D 25 SITope" KR83M KR85M XR85 KR87 XR88 KR89 XE131MXE133MXE133 XE135MXE135 5 XE137

" XE138 CS134 CS137 I131 I132 I133 I134 I13 1020 DIM EC21), RIB RDT(21),RDF(21),RF(21),RLAM(21),RMUS(21),RE(21),RCHIQ(7),RDIST(4),RDRAT (21) 1030 DIM RA1(12),RA2(12),RA3(12),RA4(12) -

1040 DIN RB1(17),RB2(17),RB3(17),RB4(17) 1050 DIN REB 1(13), REB 2(13), REB 3(13), REB 4(13) 1060 DIN RSIGMA(7,8),RSIG2(7,8),RDRWB(4),RDRTHC4),RIQUED(21) 1065 DIM RWATT(13),RWETT(13),RBW(13),RDRTISC21),RWBTIS(4),RHR(4),RMIN(4),RPLUMEC 4) 1066 DIM RYLD(21) RCHOLD(21) 1070 DEFINT-I 1080 DEFSTR S 1090 DEFSNG R 1100 DEFDBL D 1104 DATA 0.,2.,5.,10 1105 READ RDIST(0),RDIST(2),RDIST(3),RDIST(4) 1110 DATA 8.62E-03.1.33E*02,1.84,6.75E+02.1.68E+03.1.89E+03 1120 READ RDF(1),RDF(2),RDF(3),RDF(4),RDr(5) RDF(6) 1130 DATA 1.04E+01,2.89E+01,3.36E*01,3.56E+02,2.06E+02,1.62E*02 1140 READ RDF(7),RDF(8),RDF(9),RDF(10),RDF(11),RDF(12) 1150 DATA 1.01E+03.9.66E*02.3.70E+02.1.06E+07.1.21E+05,2.54E+06 1160 READ RDF(13),RDF(14),RDF(15),RDF(16),RDF(17),RDF(18) 1170 DATA 3.18E+04,4.97E+05 1180 READ RDF(19),RDF(20) 1190 DATA 5.18E-07,2,43E-07.1.41E-07 1200 READ RSIGMA(2,1),RSIGMA(3,1),RSIGMA(4,1) 1210 DATA 8.27E-07,3.19E-07,1.83E-07 1220 READ RSIGMA(2,2),RSIGMA(3,2),RSIGMA(4,2) 1230 DATA 5.03E-05,1.15E-06,4.00E-07 1240 READ RSIGMA(2,3),RSIGMA(3,3),RSIGMA(4.3) 1250 DATA 1.85E-05,5.03E-06,2.04E-06 1260 READ RSIGMA(2,4),RSIGMA(3,4),RSIGMA(4,4) 1270 DATA 3.65E-05.1.11E-05,5.23E-06

! 1280 READ RSIGMA(2,5),RSIGMA(3,5),RSIGMA(4,5) 1 1290 DATA 8.77E-05,2.97E-05,1.43E-05 l 1300 READ RSIGMA(2,6),RSIGMA(3,6),RSIGMA(4,6) i 1310 DATA 1.55E-04,6.30E-05,3.27E-05 1320 READ RSICMA(2,7),RSIGMA(3,7),RSIGMA(4,7) 1321 DATA 135. 670. 2000.,2000. 2000.,2000.

1322 READ RSIG2(1,1),RSIG2(2,1),RSIG2(3,1),RSIG2(4,1),RSIG2(5,1),RSIG2(6,1) 1323 DATA 57. 135. 410. 890.,2000. 2000.

1324 1325 READDATA RSIG2(1,2),RSIG2(2,2),RSIG2(3,2),RSIGZ(4,2),RSIG2(5,2),RSIG2(6,2) 34.,64. 115. 165. 373.33.740.

l 1326 READ RSIG2(1,3),RSIG2(2,3),RSIGZ(3,3),RSIG2(4,3),RSIG2(5,3),RSIG2(6,3) 1327 DATA 19. 33.,51.5,69. 123.33,195.

)

1328 READ RSIf 2 (1,4) ,RSIG2(2,4) ,RSIG2(3,4) , RSIG2(4,4 ) ,RSIG2(5,4) ,RSIG2(6,4) 1329 DATA 13., 2.,35. 45.5,76. 108.

l 1330 READ RSIG2(1,5),RSIG2(2.5),RSIG2(3,5),RSIG2(4,5),RSIG2(5,5),RSIG2(6.5)

I l

III-2 l

l t

l 1331 DATA 7.6.13.5,21.35,27.5,43. 59.5 1332 READ RSIG2(1,6),RSIG2(2,6),RSIG2(3,6),RSIGZ(4,6),RSIG2(5,6),RSIGZ(6.4) 1333 DATA 4.56,8.1,12.81,16.5,25.8,35.7 1334 READ RSIG2(1,7),RSIG2(2,7),RSIG2(3,7),RS!G2(4,7),RSIG2(5,7),RSIG2(6,7) 1339 DATA .013. 038. 000231 070,.097,.120 1340 READ RF(1),RF(2),RF(3),RF(4),RF(5),RF(6) 1350 DATA .00074. 00376. 194. 052. 048. 190 1360 READ RF(7),RF(8),RF(9),RF(10),RF(11),RF(12) 1370 DATA .169,0.0.0.0,.116,.164. 222 1380 READ RF(13),RF(14),RF(10),RF(16),RF(17),RF(18) 1390 DATA .271. 227 1400 READ RFt19),RF(20) 1410 DATA 0.37,0.16,7.31E-6,0.55,0.25,13.ua 1420 READ RLAM(1) RLAM(2),RLAM(3),RLAM(4),RL7M(5),RLAM(6) 1430 DATA 2.41E-3,0.01295,0.00547,2.718,0.0752,10.83 1440 READ RLAM(7),RLAM(8),RLAM(9),RLAM(10),RLAM(11),RLAM(12) 1450 DATA 1.291,3.85E-05,2.64E-07,0.00359,0.303,0.033 1460 R EA D RL A M (13 ) , RLA M ( 14 ) , RL AM ( 15 ) , R LA M ( 16 ) , RLAM ( 17) , RL A M ( 18 )

1470 DATA 0.799,0.105 1480 READ RLAM(19),RLAM(20) 1481 DATA 0.0005,0.87,0,004,1.35,1.37,1.6 1482 READ RYLD(1),RYLD(2),RYLD(3),RYLD(4),RYLD(5),RYLD(b) 1483 DATA 0.02,0.14,0.37,0.8,0.94,0.33 1484 READ RYLD(7),RYLD(8),RYLD(9),RYLD(10),RYLD(11),RYLD(12) 1485 DATA 1.35,2.26,0.86,0.99,3.07,0.9 1486 READ RYLD(13),RYLD(14),RYLD(15),RYLD(16),RYLD(17),RYLD(14) 1487 DATA 2.22,1.4 1488 READ RYLD(19),RYLD(20) 1490 DATA .00045,.00017,.00011. 000066,.000066. 000074 1500 READ RMUS(1),RMUS(2),RMUS(3),RMUS(4),RMUS(5),RMUS(6) 1510 DATA .00017,.00015,.00021,.00011,.00013 00012 1520 READ RMUS(7),RMUS(8),RMUS(9),RMUS(10),RMUS(11),RMUS(12) 1530 DATA .000085,.000094,.0001,.00012,.000085. 00009 1540 READ RMUS(13),RMUS(14),RMUS(15),RMUS(16),RMUS(17),RMUS(18) 1550 DATA .000079,.000079 1560 READ RMUS(19),RMUS(20) 1570 DATA .0322 273 514,1,177,1.298,1.135 1580 READ RE(1),RE(2),RE(3),RE(4),RE(5),RE(6) 1590 DATA .164,.233 081,.526,.263 455 1600 READ RE(7),RE(8),RE(9),RE(10),RE(11), REC 12) 1610 DATA .832,.705,.662,.384,.708,.881 1620 READ RE(13),RE(14), REC 15),RE(16),RE(17),RE(18) 1630 DATA .910,1.150 1640 READ RE(19),RE(20) 1650 DATA 2.03888E-04,1.10251E-04,6.28777E-04,-5.70207E-04,1.08410E-03,3.00665E-04 1660 READ RB1(1),RB1(2),AB1(3),RB1(4),RB1(5),RB1(6) 1670 DATA 4.3198CE-04,8.17307E-04,-2.94015E-04,-5.74031E-04,-4.90479E-04,1.28432 E-04 1680 READ RB1(7),RB1(8),RB1(9),RB1(10),RB1(11),RB1(12) 1690 DATA 2.72494E-04.5.20521E-04.5.46809E-04,8.59416E-04 1700 READ RB1(13),RB1(14),RB1(15),RB1(16) 1710 DATA 4.99312E-03,-3.32812E-03,-1.15559E-02,3.04618E-03,-1.55232E-02.-3.9014 2E-03 1720 READ RB2(1),RB2(2),RB2(3),RB2(4),RB2(5),RB2(6) 1730 DATA -4.08232E-03,1.74238E-03,7.67312E-03.1.18160E-02,1.01579E-02,-4.15216E

-03 1740 READ RB2(7),RB2(8),RB2(9),RB2(10),RB2(11),RB2(12) 1750 DATA -6.51063E-03.-l.03807E-02,-1.14217E-02,-1.55479E-02 1760 READ RB2(13),RB2(14),RB2(15),RB2(16) 1770 2

DATA 6.96874E-02,4.51302E-02,5.95301E-02,2.35543E-1,2.83318E-02,-2.45385E-0 1780 READ RB3(1),RB3(2),RB3(3),RB3(4),RB3(5),RB3(6) 1790 DATA -3.18502E-02,-5.34563E-02 -7.20190E-02,-8.40507E-02,-7.1117E-02.8.0834 CE-02 1800 READ RB3(7),RB3(8),RB3(9),RB3(10),RB3(11).RB3(12)

III-3

o i

  • 1810 DATA 9.64344E-02.1.14477E-01,1.35059E-01,1.53396E-01 1820 READ RB3(13),RB3(14) RB3(15),RB3(16) 1830 DATA 1.27844,1.25165,1.22048,1.09709.1.12251,1.06457 1840 READ RS4(1),RS4(2),RS4(3),RS4(4),R84(5),RS4(6) 1850 DATA 9.74052E-01,8.70398E-01,7.20406E-01,5.47146E-01,3.23682E-01,1.36398 1860 READ R84(7),RB4(8),RB4(9),RB4(10),RB4(11),RB4(12) 1870 DATA 1.44678,1.50434.1.55970,1.63100 1880 READ RB4(13),R34(14),RB4(15),RB4(16) 1890 DATA 2.43541E-04,1.42425E-04,8.01036E-05,-6.21571E-05,-2.61580E-05,-9.57644 E-05 1900 READ RA1(1),RA1(2),RA1(3),RA1(4),RA1(5),RA1(6) 1910 DATA -1.17420E-04,8.14948E-05,1.35875E-07.-4.93753E-05 1920 READ RA1(7),RA1(8),RA1(9),RA1(10) 1930 DATA -8.66841E-03,-5.86079E-03.-3.94326E-03,3.25787E-04,-5.78838E-04,1.2173 2E-03 1940 READ RA2(1),RA2(2),RA2(3),RA2(4),RA2(5),RA2(6) 1950 DATA 2.35355E-03.1.26573E-03.-5.19547E-04,9.78751E-04 1960 READ RA2(7),RA2(8),RA2(9),RA2(10) 1970 DATA .104731,.0835005. 0683118. 0308J55. 029255 0155528 1980 READ RA3(1),RA3(2),RA3(3),RA3(4),RA3(5),RA3(6) 1990 DATA 8.04277E-04,7.47457E-03,1.08332E-02,-3.60910E-03 2000 READ RA3(7),RA3(8),RA3(9),RA3(10) 2010 DATA 1.46008EO,1.37488EO,1.29761EO,1.21453EO,1.11479EO,1.05194E0 2020 READ RA4(1),RA4(2),RA4(3).RA4(4),RA4(5),RA4(6) 2030 DATA 9.30823E-01,7.83191E-01,5.59269E-01,4.52899E-01 2040 READ R44(7),RA4(8),RA4(9),RA4(10) 2050 DATA-.0072975. 0010697, .0010516 00097167. 0009009 01782 2060 READ REB 1(1), REB 1(2), REB 1(3), REB 1(4), REB 1(5), REB 1(6) 2070 DATA .0051224,.001584,.00089293, .0012368. .0010444, .0006157 2080 READ REB 1(7), REB 1(8), REB 1(9), REB 1(10), REB 1(11), REB 1(12) 2090 DATA .372505, .0471528, .047268, .04442, .041194. 504776 2100 READ REB 2(1), REB 2(2), REB 2(3), REB 2(4), REB 2(5), REB 2(6) ,

2110 DATA .420224,.3394,.21715. 146454,.068201 03471 2120 READ REB 2(7), REB 2(8), REB 2(9), REB 2(10), REB 2(11), REB 2(12) 2130 DATA 3.56304. 83624, .86959 8343. 7633,1.2359 2140 READ REB 3(1), REB 3(2), REB 3(3), REB 3(4), REB 3(5), REB 3(6) 2150 DATA 1.15507,1.13681,1.17594,1.15297,.9964 87741 2160 READ REB 3(7), REB 3(8), REB 3(9), REB 3(10), REB 3(11), REB 3(12) 2170 DATA .30531 88934 58151,.47587,.40017. 7853 2180 READ REB 4(1), REB 4(2), REB 4(3), REB 4(4), REB 4(5), REB 4(6) 2190 DATA .83031,.83191,.75538,.74768,.844705,.89645 2200 READ REB 4(7), REB 4(8), REB 4(9), REB 4(10), REB 4(11), REB 4(12) 2210 DATA 1,3,7,10,11,10,3,4,2,7 2220 READ RIB (1), RIB (2), RIB (3), RIB (4), RIB (5), RIB (6), RIB (7), RIB (8), RIB (9), RIB (10) 2230 DATA 5,7,9,9,8,6,9,9,10,10 l 2240 READ RIB (11), RIB (12), RIB (13), RIB (14), RIB (15), RIB (16), RIB (17), RIB (18), RIB (19

), RIB (20) 2260 DATA .33. 18,.15,.14,.12,.105 2270 READ RWATT(1),RWATT(2),RWATT(3),RWATT(4),RWATT(5),RWATT(6) 2280 DATA .098,.09,.08 07,.058,.049 2290 READ RWATT(7),RWATT(8),RWATT(9),RWATT(10),RWATT(11),RWATT(12) 2300 DATA 0.150,.0253,.0278,.03,.032,.0329 2310 READ RWETT(1),RWETT(2),RWETT(3),RWETT(4),RWETT(5),RWETT(6) 2320 DATA .033 0329,.0321,.0311,.0283,.026 2330 R E A D RW ETT ( 7 ) , RWETT ( 8 ) , RW ETT ( 9 ) , RW ETT ( 10 ) , R W ETT ( 11 ) , RWETT ( 12 )

2340 DATA 3.05,2.98,2.91,2.84,2.77,2.7 2350 READ RBWC1),RBW(2),RBW(3),RBW(4),RBW(5),RBW(6) 2360 DATA 2.63,2.56,2.41,2.26,2.05,1.84 j 2370 READ kBW(7),RBW(8) RBW(9),RBWC10),RBW(11),RBWC12) l 3000 GOTO 5000: DIM RIQUE(21) 3001 ILU=2:IPOWR=1200:RVOL=2 3002 IE=1:IG=0:RSTACX=1001 3003 RI=1.96:RNG=98.04: RING =.02:RIRF=.0196:RILEF=0!

3004 RWIND=2t:ICLAS=6 3005 RIREL*0t:RDUR=4t:RPOST=0!

3006 IFLAG=2:IAGEFL=1 l

l I

III-4

e .

2007 RIQUE(9)elt:RIQUE(16)elt 2004 ROUE =1 3009 RPERCO=.1:IPROG=0 3010 1STERMelt 3011 RRATE=150t:RACTIVe10C001 5000 'eCENTERLINE DOSE CALCULATIONS. ***eeeeeeeeeee=====eseeeeeeeees eeeeeeeee.

5005 GOSUB 11000 5015 FOR I=1 TO 9 5020 PRINT 5025 NEXT I 5030 PRINT TA8(10)"seeeeeeeeeeeeeeeeeeeeeeesese 5035 PRINT TAB (101"o INPUT COMPLETED - e 5040 PRINT TA8(10)". CALCULATIONS BEING MADE. e 5045 PRINT TA8(10)"meesessee====ese**======== .

5050 FOR I=1 TO 9 5055 PRINT 5060 NEXT I 7045 ** GROUND RELEASE SCENARIO EQUATIONS. e seemseeeeeeeeeeeeeeeeeeeeeeeeeeeeee 7050 ON IFLAG GOTO 7055,7120,7125.7130,7135,7140,7145 7054 **== ISOTOPIC PATHWAY. ese see.......ee seeeeeee...eeeeee===eesese..... ...

7055 RQWBoot:RQTHoot 7056 IF((IEel)AND(I2>4))THEN 7075 7060 FOR I=1 TO 15 7065 RQW8=RQW8+RIQUE(I).RDF(I) 7070 NEXT I 7071 IF(IE=1)THEN I4=I2 ELSE I4=1 7072 FOR I5=I4 TO 4 .

7073 RWBTIS(IS)=(RQW8eRSIGMA(IS,ICLAS))/RWIND 7074 NEXT I5 7075 FOR I=16 TO 20 7080 RQTHeRQTH+RIQUE(I) RDF(I) 7045 NEXT I 7086 FOR I5=1 TO 4 7087 RDRTH(15)=(ROTHeRSIGMACIS,ICLAS)e.25)/RWIND 7090 NEXT IS 7115 GOTO 8000 7119 **ee GROSS RELEASE PATHWAY. ***

7120 RQWB=RQUE:GOTO 7150 7124 '=== CONTAINMENT LEAKAGE - COOLANT INVENTORY. ===

7125 RQWB=IPOWR 7.2E-08=RPERCO:GOTO 7150 7129 *ees CONTAINMENT LEAKAGE - GAP INVENTORY. ===

7130 RQWB=IPOURe.00072eRPERCO:GOTO 7150

[ 7134 'e== CONTAINMENT LEAKAGE - FUEL MELT. ese 7135 RQWB=IPOWRe.072=RPERCO:GOTO 7150 7139 **== CONTAINMENT LEAKAGE - MONITOR READING. ***

7140 RQWB=IPOWRe.00072=RSTERN:GOTO 7150 7144 **ee COOLANT LEAKAGE. ===

7145 RQW8=RRATE=RACTIV 7150 RQTH=RQWB 7155 *ese DECAY FUNOTION FOR AGE < 1 DAY. === some==*ese======e es neseeeeesese

, 7160 IF(IAGEFL=0)THEN 7171 7162 IF(IFLAG<>6)Ti!EN RT=RIREL ELSE RT=RPOST I

7163 IF(RT)=241)THEN 7171 7165 RQWB=RQWBe(11te(2.71828'( .leRT)))

7170 RQTH=RQTHe(.34e(2.71828-(RT/22t)))

7171 IF((IE=1) AND(I2>43 )THEN 7180

  • l 7172 IFCIE=1)THEN I4=I2 ELSE I4=1

{ 7173 FOR I5=I4 TO 4 7174 RWBTIS(15)=(RQWBeRSIGMACIS ICLASle33.5391/RWIND l

7175 NEXT 15 7180 FOR I5=1 TO 4 7185 RDRTH(I5)=(RQTHeRSIGMA(IS,ICLAS)=RIRFe.25 1.06E+07)/RWIND 7195 NEXT IS 8000 IF((IE=1)AND(I2<=42)THEN I4=I2 ELSE I4=1

  • 8001 FOR I5=I4 TO 4 8005 RCHIQ(IS) RSIGMA(15,ICLAS)/RWIND l .

l l

i III-5

. - . . _ . - - - , - - - . . _ . , - . . - - - - - .-, n.-. --

8006 IF(IE=1)THEN RCHIQ(IS)*RCHIQtI5)e2.71828**((.SsRSTACK"2)/(RSIG2(I5,ICLAS)*2

))

8010 RMIN(I5)=RDIST(IS)/((RWIND/.44704)/3600) 8015 IF((RMIN(15)/36003)(13)THEN 8025 8020 RHR(I5).RHR(Z5)e13:RMIN(15)=RMIN(253-36003:GOTO 8015 8025 RMINCIS).RMINCIS)/603 8030 NEXT IS 8035 ON ILU GOTO 8037,8085 8037 IF(IE 1)THEN INPUT"o HIT CARRIAGE RETURN TO CONTINUE. *".S 8040 FOR I2 1 TO 3 8045 PRINT 8050 NEXT I2 8055 PRINT"e***========== PLUME INFORMATION =========*e==e": PRINT 8060 PRINT: PRINT TAB (3)" DISTANCE" TAB (16)" PLUME TRAVEL TIME" TAB (39)" CHI /Q" 8062 PRINT TAB (3)"(MILES)": TAB (18)"(HOURS dINUTES)" TAB (39)"VALUE": PRINT 8065 FOR I2=1 TO 4 8070 PRINT: PRINT USING" ###.8 ### : ##.# ##.##****" RDIST(22);

RHR(I2);RMINCI23 RCH1WC12) 8075 NEXT I2 8080 PRINT: PRINT: PRINT: INPUT"o MIT CARRIAGE RETURN TO CONTINUE. e" !.:GOTO 9760 8085 LPRINT:LPRINT:LPRINT:LPRINT TAB (29)"=ee=================="

8090 LPRINT"e***=======*e==========e===== PLUME INFORMATION e==ee===============

ese.=*es."

8095 LPRINT TAB (29)"e====================":LPRINT:

8097 LPRINT USING " CALCULATION NUMBER : &-####" SFAC RNUM : LPRINT 8098 LPRINT USING "DATE: &" SDATE:

8099 LPRINT USING " TIME: L":STIME-: LPRINT -

8100 LPRINT TAB (12)" DISTANCE" TAB (31)" PLUME TRAVEL TIME": TAB (59)" CHI /Q" 8105 LPRINT TAB (7)": MILES) (METERS)": TAB (32)"(HOURS: MINUTES)": TAB (59)"VALUE":L PRINT 8110 FOR I2 1 TO 4 8112 RDM=RDIST(I2;/.00062 .

8115 LPRINT:LPRINT USING" ###.# #######.# #w# : ##.#

    1. .##^^^^":RDIST(I23:RDM RHRCI2):RMINCI2):RCHIQ(I2) 8120 NEXT I2 9750 GOTO 9870 9760 FOR I2 1 TO 10 9770 PRINT 9780 NEXT I2 9790 PRINT"some============

SUMMARY

        • ===========e" 9800 PRINT: PRINT"e***===== CALCULATED DOSE RATES ========="

9810 PRINT: PRINT" DISTANCE WHOLE BODY INFANT THYROID" 9812 PRINT" (MILES) (REM /HR) (REM /HR)"

9820 FOR I2 1 TO 4 9830 PRINT: PRINT USING" ######.# ##.##**** ##.##a***":RDISTCI2):RWBTISC I23:RDRTH(I2) 9440 NEXT I2 9842 PRINT: PRINT: PRINT: INPUT"o HIT CARRIAGE RETURN TO CONTINUE. e",S 9845 FOR I2=1 TO 10 9846 PRINT 9847 NEXT I2 9451 PRINT: PRINT: PRINT: PRINT: PRINT"eeeee==ee== CALCULATED DOSES ===.....e=*e" 9852 PRINT: PRINT" DISTANCE WHOLE BODY INFANT THYROID" 9853 PRINT" (MILES) (REM) (REM)"

9854 FOR I2=1 TO 4 9855 RWBTIS(12).RWBTIS(I2)*RDUR:RDRTH(I2)=RDRTH(I2) RDUR 9856 PRINT: PRINT USING" ######.# ##.8#**** ##.##****" RDIST(I2):RWBTISC I2):RDRTHCI2) 9857 NEXT I2 9858 PRINT: PRINT: PRINT: INPUT"o HIT CARRIAGE RETURN TO CCNTINUE. e".S 9860 GOTO 9935 9870 LPRINT:LPRINT:LPRINT:LPRINT TAB (34)"ee=== .e== "

9880 LPRINT".... .. e*************************

SUMMARY

    • ===================....

e.ese.e=="

. 9881 LPRINT TAB (34)"ee. e=====."

9882 LPRINT
LPRINT USING "CALCULATICM NUMBER: &-####" SFAC:RNUM III-6
  • e 9885 LPRINT:LPRINT:LPRINT TAB (24)" CALCULATED DOSE RATES (REN/HR):"

9486 LPRINT tab (24)"sesse****=eesse=====esee**e***"

9491 LPRINT:LPRINT TAB (12)" DISTANCE" TAB (34)"WHOLE BODY" TAB (593" INFANT":LPRINT TAB (7)"(MILES) (METERS)" TAB (343"Sem DEPTH" TAB (58 3" THYROID":LPRINT 9892 FOR I2e1 TO 4 9393 RDM=RDIST(I2)/.00062:LPRINT:LPRINT USING" #se.m smessfe.m #

8.##**** 88.##****" RDIST(I2):RDM RWBTI SCI 2):RDRTHCI2)

! 9494 NEXT I2 9496 LPRINT:LPRINT:LPRINT TAB (27)" CALCULATED DOSES (REMS):"

9497 LPRINT TAB (27)"seeeeeeeeeeeeeeeeeeeeee" 9898 LPRINT : LPRINT USING " CALCULATION NUMBER: &-ssse" SFAC RNUM 9900 LPRINT:LPRIMT TAB (12)" DISTANCE" TAB (34)"WHOLE BODY" TAB (59)" INFANT":LPRINT TAB (7)"(NILES) (NETERS)": TAB (34)"5cm DEPTH": TAB (58 3" THYROID":LPRINT 9901 FOR I2e1 TO 4 9902 RWBTIS(I2)eRWBTISCI2)eRDUR:RDRTHCI2)eRDRTH(I2)*RDUR:RDMeRDIST(I2)/.00062 9905 LPRINT USING " ###.s es#####.s":RDIST(I2):RDM 9906 IF RWBTISCI2)>=1 OR RDRTH(12)>e5 THEN LPRINT CHR8(31); : LPRINT USING " #

s.swaa** ss.ssa --*"; Nwe ris (12) :MUNTH(12) bu".U 99 08 9907 -LPRINT USING " Wo.#saaaa so.ssa-a"":RWBTISCI2):RDRTM-(I2) 9908 LPRINT CHRs(30) 9910 NEXT 12 9915 LPRINT CHRs(30):LPRINT:LPRINT:LPRINT TAB (26)"e====esee=====eesse=esese."

9920 LPRINT"e=====eesee==*eeeeee **eee CALCULATIONS COMPLETED geoesseeeeeeme====

eeeeeeeee" 9925 LPRINT TAB (26)"=eeeeeeeee======seeeeeee*="

9930 LPRINT:LPRINT:LPRINTILPRINT:LPRINT:LPRINT:LPRINT 9935 FOR 11=1 TO 24 9940 PRINT 9945 NEXT Il 9947 PRINT"o CALCULATIONS COMPLETED. ="

9950 PRINT: PRINT"DO YOU WISH TO RUN THE PROGRAM AGAIN7" 9955 INPUT *(RESPOND YES OR NO): ".S 9960 IF((LEFTS (S.13e"Y">OR(LEFTS (S,13e"y"))THEN 10010 9965 IF((LEFTS (S.13e"N")OR(LEFTS (S.1)="n"))THEN GOTO 10055 9967 PRINT: PRINT" ENTRY NOT UNDERSTOOD - PLEASE TRY AGAIN.": PRINT:GOTO 9955 10010 RNUMeRNUMei : PRINT 10011 INPUT " ENTER TIME OF THE NEXT CALCULATION: ";STIME 10012 PRINT 10015 PRINT TAB (8)"e===eeeeee===ee=esseeeee**easee" 10010 PRINT TAB (8)"o WAIT-EDAM IS SEARCHING FOR *"

10025 PRINT TAB (8)"o THE NEXT PIECE OF THE CODE. ."

10030 PRINT TAB (8)"e=====sessesseeeeeeeeeeeeeeeeee" 10035 FOR Ia1 TO 9 10040 PRINT 10045 NEXT I 10050 CHAIN "CPEDAM. BAS".200 10055 PRINT: PRINT"o PROGRAM COMPLETED. =" PRINT: PRINT". IRDAM SIGNING CFF. =":PR INT 10100 END 11000

  • DETERMINE EAB DISTANCE AND (U* CHI)/O VALUE 11010 IF RDIR<11.25 THEN RDIST(1)el.27 : GOTO 11170 11015 IF 9DIR<33.75 THEN RDIST(1)el.07 : GOTO 11190 11020 IF RDIR(56.25 THEN RDIST(1)e.96 : GOTO 11210 11030 IF RDIR(78.75 THEN RDIST(1)e.96 : GOTO 11210 11040 IF RDIR<101.25 THEN RDIST(1)st.19 : GOTO 11230

, 11050 IF RDIR<123.75 THEN RDIST(1)ei.48 : GOTO 11:50 11060 IF RDIRt146.25 THEN RDIST(1)ol.31 : GOTO 11270 III-7

11070 IF ROIR4168.75 THEN RDIST(1)=1.29 : GOTO 11290 11060 IF RDIRt191.25 THEN ROISTC1)=1.33 : GOTO 11310 11090 IF RDIR(213.75 THEN RDIST(1)=1.61 : GOTO 11330 11100 IF RDIRc236.25 THEN RDIST(1)=1.66 : GOTO 11350 11110 IF RDIR(258.75 THEN RDIST(1)el.61 : GOTO 11330 11120 IF RDIR<281.25 THEN RDIST(1).1.6 : GOTO 11370 11130 IF RDIR<303.75 THEN RDIST(1)=1.37 : GOTO 11390 11140 IF RDIR<326.25 THEN RDIST(1)=1.39 : GOTO 11410 11150 IF RDIR(348.75 THEN RDIST(1)=1.37 : COTO 11390 11160 RDIST(1)=1.27 11170 DATA 7.73E-07, 2.17E-06, 1.04E-05, 3.43E-05, 6.55E-05, 1.39E-04, 2.41E-04 11180 GOTO 11430 11190 DATA 8.65E-07, 3.50E-06, 1.37E-05, 4.27E-05, 8.04E-05, 1.66E-04, 2.79E-04 11200 GOTO 11430 11210 DATA 1.04E-06, 4.33E-06, 1.64E-05, 4.96E-05, 9.10E-05, 1.84E-04, 3.02E-04 11220 GOTO 11430 11230 DATA 7.74E-07, 2.62E-06, 1.16E-05, 3.73E-05, 7.09E-05, 1.49E-04, 2.55E-04 11240 GOTO 11430 11250 DATA 6.55E-07, 1.43E-06, 8.13E-06, 2.78E-05, 5.39E-05, 1.19E-04, 1.18E-04 11260 GOTO 11430 11270 DATA 7.20E-07, 1.99E-06, 9.92E-06, 3.29E-05, 6.30E-05, 1.34E-04, 2.35E-04 11280 GOTO 11430 11290 DATA 7.29E-07, 2.07E-06, 1.02E-05, 3.36E-05, 6.422-05, 1.36E-04, 2.38E-04 11300 GOTO 11430 11310 DATA 7.12E-07, 1.90E-06, 9.68E-06,3.22E-05, 6.18E-05, 1.32E-04, 2.32E-04 11320 GOTO 11430 11330 DATA 6.13E-07, 1.15E-06, 7.06E-06, 2.47E-05, 4.83E-05, 1.09E-04, 1.93E-04 11340 GOTO 11430 11350 DATA 5.99E-07, 1.07E-06, 6.71E-06, 2.37E-05, 4.65E-05, 1.06E-04, 1.88E-04 11360 GOTO 11430 11370 DATA 6.16E-07, 1.17E-06, 7.14E-06, 2.50E-05, 4.87E-05, 1.10E-04, 1.95E-04 11380 GOTO 11430 11390 DATA 6.96E-07, 1.76E-06, 9.22E-06, 3.10E-05, 5.95E-05, 1.28E-04, 2.25E-04 11400 GOTO 11430 11410 DATA 6.88E-07, 1.69E-06, 9.01E-06, 3.03E-05, 5.84E-05, 1.26E-04, 2.22E-0*i 11430 READ RSIGMA(1,1),RSIGMAC1,2),RSIGMAC1,3),RSIGMA(1,4),RSIGMA(1,5),RSIGMA(1, 63,RSIGMA(1,7) 11440 RETURN III-8

9 o e

e APPENDIX IV EDAM FLOWCHARTS IV-1

4 a ~.t2. -a-- = _

_-4 ;0 2 2 4 .w _ - +- -- 2-e----~ a-

  • O

. 8

  • e O

G x 0 NEPUT PuestrEn STATUS, 7AOUTV M CALQAAft0N sameER.

MERE leandt.TODAY1 DATE AIG CUIWWff fast H-i r

f 18 Tees THE Fins? eso CATA ENTRY

?

1

) SE I

-vf a tuleeOSPEED 1

,4 DeRECTION l I s ms 754 FIRST DATAN ENTRY RUNT 1

f 1

i i

9 IV-2

. .._ .. _ = ---, ..... _ _ .,.__ ._.__ ..._ ,__ _ _ _ _ _ . . _ _ , . . . _ _ .._.__ __ ___ _ .. _ , .- . . .. .

  • a a s O

I 6 X SELECT METHOD FOR CETraueNeso STAalLITY CLASS.

11 LAPSC Raft (TCMP DirF) MttwCD U SiOMA THETAI 69 ) McTMOD

3) STA81LITT CLASS Emow 43 DEFAULT STAe:LITY class x

WAS WA5 WAS WAS 1

SELECTED N No. 8 i SELECTED 3

SELECTED m

SELECTEDf

\ No a u u PRQvlCE wPUT thPUT gg 4T 6p $7AsstlTV

  • M CLASS INDSPEtus No

>6Mrs

  • T N/ u-GALGULATE Aggggg Yt AT#at ST ABILIT Y CL AS$ 5 ASED ST AbouTV ST Aalt.lf v d, c'4 60 CLASS CLASS A6&lGh DEFAULTS DEFAULTS

$TABILITY 70 t 70 F CL ASS s Asto ON C'al

,, - s t-1v tb T AelLIT wo CONSISTENT '

WIND s l, I EEU Ph1NT Lhh0h MESSAGE YEs  ;

TEh THE FIRSh DAT A ENTRV-p b

Ren -QI 7

vts s/

G IV-3

\

o 6

  • G O

T

\/

SELECT RELE ASE Raft WETNOD

8) State Release- tectes.s DATA
2) Stech Roleese G#ees NQ &

I este

3) Centelnment Leshage e) $#Q tueeaest 8 i f

I AS AS W AS wA SELECTED f SELECTED SELECTED

, f SELE /CTE 63 S se TAC LEAgAdg 8NFUT No LOW RAT 4

PER day Wmf ENOWN KNOW LOSS RATE ENTER NUfeCER_ 7 OF OPERATING ##M FANS l

~

I8 E N TE R EEAKAGE b 4 ' LEAKAGE RATE USED CONVERT INPUT ENTER FLOW RATE TO COOLANT AATE CFu CFM Xg ACT. AND UN48 I

V, (

  • I GQNWERI TO /

CQtSEC J 4 CNAR ACTLRIZE SOURCE t t) COOLANT fMVENTORY

' 2)CAPfNVENTORY 2 3) FUEL WELT 33 e) CONT AfNMENT WONITOR N, SOTOPI RE ADINGS 3 RELEASC ENTER GROSS 8) DEFAULT ( FUEL WELT)

^ IODINE sI RELEASE Rt TE

  • y YES PR$N I R ADIO< ENTER GROSS NGCLtDE N.O.R ELE ASL LIBR AR Y RATE NO WAS WAS WA

\# WAS WA 1

NL No I NO 3 DETERWINE No' e No 5 RELEASE TQ CR SELECTED SELECTED SELECTED e SELECTED SELECTED RELEASE RATE MATE yES VEs y YES VES vg5

%> rs s USE USE GAP COOLANT USE FEUL 4NPUT DEFAULTIS ALL MONITUR INVENTORv 8NV. E O MELT E O FEUL WELT No s SOTOPES go R/ ""

ENTERED I T h 'Y 'O .{s b v

.VES gg N/ se THet ME FIAS NO D ATA ENTR g hlIN 9 9

.I IV-4

+

e '

s .-

u . }

\/

ARE THE RE BODINE S IN THE RELEASE til TES (2) NO f 31 UNCERT AIN As wA AS NO 2 NO 3 NO SELECTED SELECTED SELECTED 7 Y 9 ASSUME 1901 USE NG DEFAULT RATIOS i i

/

INPUT IODINE TO NG R ATIO (3) AS A DECIM AL FR ACTION (2) % 8 PLUS TOTAL 1.No (3) % 8 IN CORE INVENTORT (1) l=NG CONCENTR ATIONS (5) CEF AULT I

wAS AS WAS

' N I " 3

", No SELECTED SELECTED SELECTED SELECTED s SELECitu s T ,

TES YES TES VES VES INPUT INPUT %I INPUT %e E NTER TOTAL uSE DECiuAL AND TOT AL ANo No su i AND NG OEFAULT F R A C TION Ct/SEC COREINV CONC: RATIO sf sf *./ N/ \/

ILL IOCINE S No BE ILTERED TES

'./ __

USE 95s FIL* E R E F r.

, e N

\/

TNimi,x

.A..,,

9 e

G IV-5

W 6

  • 1 s.n.1 air enW,.

A an .ND A .c e

6 Co. RELEA r

, Dun A1 ton N#d GNANCEL j COMPL E T E

,, ,ig w e AGE Os MenTunt vEs sf ^

es h

paeNi esePut SUHeeAR V IS NO SUMM AR y TES

) )[ CORAFC?

CALCULATE DOSES S

PRsNT RESULTS SELE CT TOPIC FOR CN ANGE :

II USER N AME AND D ATE

2) METEOROLOotCAL D AT A
3) RELE ASE RATE RU
4) AGE OF RELE ASED M ATERI AL ROGRAM NO b) 00 DINE PRESENCE AND FILTER tr 3
5) PRINTER STATUS . A G AIN rt J
7) TIME OF NEXT C ALCUL ATIONS T' g) REVIEW BNPUT DAT A 93 COMPLETE C ALc.UL ATIONS g

ENTER TIM E MAS WAS AS WAS WAS G WAS I NO 2

.. a 3 NOs 8 N O NO O NO SELECTED SELECTED SELECTED SELECTED SELECTED SELECTED

, T T T T T

" vES VES .yES VES YES VES 6 6 M G U G WA wAS wag

  1. 'O SELECTED

\ NO SELECTED NO s S SELECTED <

NO T

7 YES 'ES vgs 8 G G i IV-6

9 4

  • e 9

APPENDIX V CONTAINMENT MONITOR CONVERSION FACTOR e

V-1

l

. i DISCUSSION High range radiation monitors (HRRM) , located in the upper level of Unit 1 and 2 containment structures are used to estimate airborne activity levels in containment. To do this, it is necessary to relate the estimated airborne activities for a particular accident to an expected done rate at both HRRM's.

A total gap inventory release is used, along with the total containment free air volume, to determine ~the containment airborne activity concentrations for noble gases and iodine isotopes of interest. Gap inventory activities and containment volume information was taken from the CPSES FSAR, Table 15.6-8 and 15.6-9, respectively. A 50% plate out of iodines is also assumed as taken from FSAR, Table 15.6-9.

The individual isotope concentrations are then used to determine the individual flux, 4, contributed by each isotope. The method used for determining the flux was taken from the National Technical Information Service, Rector Shielding Design Manual.

The individual gamma radiation fluxes are used to determine the individual dose rates contributed by each isotope. These dose rates are summed to give a total dose rate corresponding to the total gap release activity.

One of the HRRM's is located near a concrete wail so that dose rate reflected off this surface was evaluated.

Graphs of dose rate versus activity concentration for both the wall detector and the other detector located on a pole (pole detector) show that the pole detector dose rate is 1.37 times higher than the wall detector dose rate for the same concentration. These graphs are used to determine the dose rate conversion factors for both the wall detector and pole detector.

These conversion factors, which relate the monitor dose rate reading to a containment activity concentration, are used in the EDAM program depending on which detector tag number or ID number is inputted to the computer.

V-2

F 6 .

FLUX CALCULATIONS POLE DETECTOR PS h I

$ = 4u s IU I"sh y, b5 I + C I"s 2, b 5) + G (us") , b6 I + CI"s 2' D6 h

-where: -5 = scalar flux dis /sec-cma B =_ buildup factor = 1 Sy = source strength of volume source dis /sec*cm3 ug = macroscopic cross section of source material =

u/p y + u/p 2*D s 2

where: u/p y = gamma mass absorption coefficient for 1MeV photon cm2/gm u/p2 = gamma mass absorption coefficient for 3MeV photon cm2/gm o

s

= density of source material gm/cm3 b5 " "s I o + d)

R2 g _ da b6 " "s R = 67.5 ft o

d = 59.5 ft Ro hy = 160 ft --- _ __ _

n 3 h2 = 5 ft he h

v P3 0

_ ~ Wd) ,'N h2 / \

/

V V f h V-3

-=

PARAMETER XENON KRYPTON _IODI,NE

~

u, (cm ) 2.54E-4 1.57E-4 .232 4 u, 1.01E-3 6.26E-4 .930 b .98 .6 898 5

b .246 .15 225 6

u,hg .26 .76 1131 u,h2. .04 .023 35 G (usy h , b )

5

.41 .55 1 G (u h , b ) .2 .15 1 s2 5 G (usy h , b ) .23 .19 1 6

G (u h , b )

s2 6

.1 .05 1 G (TOTAL) .94 .94 4 WALL DETECTOR FLUX CALCULATIONS BS

" 4u s I "shg, b 5) + G (us2h , b 5 + O("s"1, b' 6 + CI"sh2, b 6 I where: = scalar flux dis /sec - cm2 B = buildup factor = 1 Sy = source strength of volume source dis /sec - cm3 u = ma r scopic cross section of source material s

+ d) = u b5 " "s (Rg s (2Ro) since d = Rg at wall i

b R 2 _ d2 =0 since d = R 6 " "s o o and G = 0, therefore G(u sgh , b 6) and G (ug h2 , b6 ) terns drop out of the equation above V-4  ;

l i

R;

. /4 /4 Rg = d - 56.5 ft he hy = 151.3 ft h2 = 13.7 ft p3 n

~W]5-D2 /

/ 'N.

f \

V 4 i PARAMETER XENON KRYPTON IODINE u 2.54E-4 1.56E-4 s .232 4u s 1.01E-3 6.26E-4 .930 b .87 5 .54 799 u h. 1.17 s1 .722 1069 uh s2 .1 .06 96.9 G (u h , b ) .66 .53 si 5 1 G (u h , b ) .25 .17 s2 5 1 DOSE RATE CALCULATION DR = 2.0E-6

  • I4 Ey where: DR = dose rate in R/hr

~

5 = scalar flux dis

  • sec"
  • cm Ey = gamma energy MeV R , 1.60E-6 erg cm2 ,_2600 see 2.0E-6 = 86.9 erg /gm

, _1 MeV .00129 gm hr

  • 3.89E-5 cm where: 3.89E-5 cm- is the linear energy absorption coefficient for a .5 MeV photon in air. This coefficient is used because it is the range of interest.

most conservative value in the energy V-5

g- - -- )

SCATTEPED GAMMAS The dose rate contribution from scattered gamma rays has only been evaluated for the wall detector monitor. Scattered gamma dose rate contribution is negligible for the pole detector due to its large distance from any reflecting surface. The reflected dose rate is determined using gamma ray dose albedos calculated by C. M. Davisson and L. A. Beach using Monte Carlo techniques.

The dose rate reflected from a surface can be determined using the garrma ray dose albedos and may be represented by:

DR = DR g cos O g A/ra a(Eg, O g, 0, 4) where: DR = reflected dose rate DR 9 = dose rate incident on surface at angle O g A = reflecting area r = distance from center of reflecting area to receptor a(Eg O g, 0, 4) = dose albedo

. NORMAL 4k 1 h

% / ,I se

./

h l e./ s 7l8l n hk p ,

hw[r f-T

, j/

/ -d -

MATERIAL SURFACE V-6

. . _ ~ , _ . _ _ . - ~ . . _ _ _ _ . _ _ _ . . . _ . - _ , . . . . _ _ . _ _ _ _ . _ _ _ _ _ _ _ . _ . . _ . _ _ . . - _ . _ . _

{

t TERMS AND DEFINITIONS FOR DOSE ALBEDOS Of = emergency polar angle (from gamma ray dose albedos chart)

OA or B = degree of angle from charts B=O U" B

A=0 from 90*

B' = length of base for 60 distance from centerline detectortoscatterinh=istance=hwidthofscattering area d

A' = length of base of A0 detector to scatteribg =distance distance=from centerline width of scattering area B'C'

= area length of detector (7") + (2B) = length of scattering for O p A'C'

= area length of detector (7") + (2A') = length of scattering for 9 3 A'-B' = area of A' scattered O's only B' scattered O's have been accounted for already

/ DETECTOR g

\ \

6-B I AI ->

A HB HA a B %A 7 f8 4,g n

^

f

\ b* #{ l Bl Al V

t DETECTOR V-7

N s

GRAPH OF CONTAINMENT ACTIVITY VERSUS HRRM DOSE RATE F

The theoretical dose rates for both the wall detector and pole detector versus the total gap activity released were graphed.

The containment activity was then varied and the dose rates for both detectors determined and plotted on the graph of dose rate versus containment activity. Both curves are linear and have the following equations:

WALL DETECTOR: Containment Activity = 5.3E-2

  • Wall Detector Dose Rate POLE DETECTOR: Containment Activity = 7.27E-2
  • Pole Concentration Detector Dose Rate Both of the equations are used in the EDAM program in the containment monitor reading option.

V-8

e

..s*

b 9,4 8 i 1 i i. i

, ,. . , . I , ,

-Eontainment-Activi

. _ _ , _ . . . . _teEoncentration _ _. l i

?

>WEE %II?--- '1 I --

k jn,, w 4 /

HR RMEED_QSE:RKE.E ,

3 - + .- ,

." W w--~~> { , ,-^

r I

I 1

. I 1

i I .

1 1 j

-[ f [

uwH -NA- ,'! ,'-

v_vB 1

. _._ uwi i k.r - <r 1 .

1 . r I

~/_ .

t .i- i

.i , ,

f._ f. . ,

w

/ /s Q r -

1 . <

a ' >

I I ff I' o  ! i s . ,

O 6

' ' i

.% /  :

o Y

4 _

I I

I I

, F---A I / I 3 ' '

=

,az,:.

g ,

1 T I I

I: I I I /' f

,', I

-EP

. /

I .7 s / _1 d /

w I ,

-/ia

,r ,.

, i.

- e. '

9 , , ,

s . , ,7 ,

i i i w /

1 1 1 ,r j j , ,

s ,/ = - ,_----. - . -.-

x

, n ~

s . / -,_: -

[

z ,-'

t ,

a- + . --

4 I I I I 1 /I /I 1 . I I I I

  1. ,' i w1 > 1 -

3

-.---. -.-.-.t- /- - - e, ,-. --_ .,. . .._. ._ _ -. -... .. . . - _ ._____ _ ..__. _ _ , __

r,/

z'.  ;

x P '. r x

  1. 1 I I I I I y I .

[. I I j f af a f }V i . -

,s i

/ .' '

t / e- ,

i p / / _ i

102 2 3 4 s s 7 s , :03 2 3 4 3 6 -

, :o 9 2 3 4 5 6 - . , 105 R/HR V-9 t

^

? ,

}J

'- Log # TXX-4452 File f 10013 TEXAS UTILITIES GENERATING COMPANY MKYWAY TOWER e 400 NORTH OLIVE MTHEET, L.ll. MS

  • DALt.AN TEXAM 75208 March 29, 1985 2"" ?a.M*,.*

Director of Nuclear Reactor Regulation Attention: Mr. B. J. Youngblood, Chief Licensing Branch No. 1 Division of Licensing U. S. Nuclear Regulatory Commission Washington, D.C. 20555

SUBJECT:

COMANCHE PEAK STEAM ELE (TRIC STATION (CPSES)

DOCKET N05. 50-445 AND E0-446 TRANSMITTAL 0F EMERGEf'OY DOSE ASSESSMENT MODEL MANUAL

Dear Mr. Yourgblood:

Attached is the CPSES Emergency Dose Assessment Model (EDAM) manual. EDAM documents the backup method for projecting offsite doses in a radiological emergency at CPSES.

Sincerely, yw. lLL John W. Beck RWH/grr Attachment c- S. B. Burwell (w/o attachment)

J. J. Stefano (w/o attachment) i

'N l

A DI%'IN10N 09' TEXAN t*TELETEEN ELECTRIC CU.%Cl*ANY

.