SVP-06-027, Core Operating Limits Report for Cycle 19

From kanterella
Jump to navigation Jump to search
Core Operating Limits Report for Cycle 19
ML061110376
Person / Time
Site: Quad Cities Constellation icon.png
Issue date: 04/14/2006
From: Tulon T
Exelon Nuclear
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
SVP-06-027
Download: ML061110376 (35)


Text

Exelt5 n.

Exelon GE neration Company, LLC www.exeloncorp.coM Nuclear Quad Cities Nuclear Power Station 22710 20 5h Avenue North Cordova, IL 61242-9740 SVP-06-027 April 14, 2006 U. ';. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D.C. 20555 Quad Cities Nuclear Power Station, Unit 2 Renewed Facility Operating License No. DPR-30 NRC Docket No. 50-265

Subject:

Core Operating Limits Report for Quad Cities Unit 2 Cycle 19 Quad Cities Nuclear Power Station Unit 2 was shutdown for Refuel Outage 18 (Q2R18) on March 24, 2006. In accordance with Technical Specifications Section 5.6.5.d, enclosed is the Core Operating Limits Report (COLR) for Quad Cities Unit 2 Cycle 19.

Should you have any questions concerning this letter, please contact Mr. W. J. Beck at (309) 227-2800.

Respectfully, Ti thy J.Tulon

Oe Vice President Quad Cities Nuclear Power Station Attachment A
Core Operating Limits Report for Quad Cities Unit 2 Cycle 19 cc: Regional Administrator - NRC Region IlIl NRC Senior Resident Inspector - Quad Cities Nuclear Power Station cDof

Attachment A Core Operating Limits Report for Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page I Quad Cities Unit 2, Cycle 19 Core Operating Limits Report Revision 0 Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 2 Table of Contents

1. References ........... 4
2. Terms and Definitions .6
3. General Information .7
4. Average Planar Linear Heat Generation Rate .8
5. Operating Limit Minimum Critical Power Ratio .9 5.1. Manual Flow Control MCPR Limits .9 5.1.1. Power-Dependent MCPR .9 5.1.2. Flow - Dependent MCPR .9 5.2. Automatic Flow Control MCPR Limits .9 5.3. Scram Time .9 5.4. Recirculation Pump Motor Generator Settings .10
6. Linear Heat Generation Rate .16
7. Rod Block Monitor. ,0
8. Stability Protection Setpoints...
9. Modes of Operation .32
10. Methodology . '-3 Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 3 List of Tables Table 4-1 MAPLHGR for bundle(s):

GE1 4-P1 ODNAB389-18GZ-1 GOT-1 45-T6-2650 GE1 4-Pi ODNAB418-16GZ-1 GOT-1 45-T6-2646 G E1 4-P 1ODNAB406-16GZ-1 GOT-1 45-T6-2508 G E1 4-P 1ODNAB409-15GZ-1 GOT-1 45-T6-2507 ........................................................ 8 Table 4-2 MAPLHGR for bundle(s):

OPT2-3.89-16GZ8.00-2G6.00 OPT2-3.94-13GZ7.00-2G6.00 ..................................................................... 8 Table 4-3 MAPLHGR SLO multiplier for GE and Westinghouse Fuel ........... ...................... 8 Table 5-1 Scram Times .................... ................................................ 9 Table 5-2 MCPR TSSS Based Operating Limits .......................................................... 11 Table 5-3 MCPR ISS Based Operating Limits ............................................................. 12 Table 5-4 MCPR NSS Based Operating Limits ........................................................... 13 Table 5-5 MCPR(P) for GE and Westinghouse Fuel ..................... ............................... 14 Table 5-6 MCPR(F) Limits for GE Fuel, DLO or SLO Operation ........... ....................... 15 Table 5-7 MCPR(F) Limits for Westinghouse Fuel, DLO or SLO Operation ........ ........... 15 Table 6-1: LHGR Limit for GE14-P1ODNAB418-16GZ-1iOT-145-T6-2646 ......................... 16 Table 6-2: LHGR Limit for GE14-P1ODNAB418-16GZ-1iOT-145-T6-2646, Lattice 5972 ...... 17 Table 6-3: LHGR Limit for GE14-PlODNAB418-16GZ-10OT-145-T6-2646, Lattice 5973 ...... 18 Table 6-4: LHGR Limit for GE14-PlODNAB389-18GZ-10OT-145-T6-2650 ......................... 19 Table 6-5: LHGR Limit for GE14-P1ODNAB389-18GZ-10OT-145-T6-2650, Lattice 5996 ........ 19 Table 6-6: LHGR Limit for GE14-PiODNAB389-18GZ-100T-145-T6-2650, Lattice 5997 ........ 20 Table 6-7: LHGR Limit for GE14-Pi0DNAB409-15GZ-10OT-145-T6-2507 ......................... 21 Table 6-8: LHGR Limit for GE14-PiGDNAB409-15GZ-10OT-145-T6-2507, Lattice 5255 ........ 21 Table 6-9: LHGR Limit for GE14-PiGDNAB409-15GZ-10OT-145-T6-2507, Lattice 5256 ........ 22 Table 6-10: LHGR Limit for GE14-P1GDNAB409-15GZ-100T-145-T6-2507, Lattice 5257 ...... 22 Table 6-11: LHGR Limit for GE14-P1GDNAB409-15GZ-10iT-145-T6-2507, Lattice 5258 ...... 23 Table 6-12: LHGR Limit for GE14-P1GDNAB406-16GZ-10OT-145-T6-2508 ........................ 24 Table 6-13: LHGR Limit for GE14-PiGDNAB406-16GZ-10OT-145-T6-2508, Lattice 5261 ...... 24 Table 6-14: LHGR Limit for GE14-PiGDNAB406-16GZ-10iT-145-T6-2508, Lattice 5262 ...... 25 Table 6-15: LHGR Limit for GE14-PIODNAB406-16GZ-10iT-145-T6-2508, Lattice 5263 ...... 25 Table 6-16: LHGR Limit for GE14-PlODNAB406-16GZ-10iT-145-T6-2508, Lattice 5264 ...... 26 Table 6-17: LHGR Limit for Westinghouse Optima2 Fuel OPT2-3.89-16GZ8.00-2G6.00 OPT2-3.94-13GZ7.00-2G6.00 .................................................................... 26 Table 6-18 LHGRFAC(P) for GE Fuel, DLO.................................................................. 27 Table 6-19 LHGRFAC(P) for GE Fuel, SLO.................................................................. 27 Table 6-20 LHGRFAC(P) for Westinghouse Fuel ......................................................... 28 Table 6-21 LHGRFAC(F) Multipliers, GE Fuel, DLO ........................... 29 Table 6-22 LHGRFAC(F) Multipliers, GE Fuel, SLO ........................... 29 Table 6-23 LHGRFAC(F) Multipliers, Westinghouse Fuel . .......................... 29 Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 4

1. References
1. Exelon Generation Company, LLC and MidAmerican Energy Company, Docket No. 50-265, Quad Cities Nuclear Power Station, Unit 2, Renewed Facility Operating License, License No. DPR-30.
2. Letter from D. M. Crutchfield to All Power Reactor Licensees and Applicants, Generic Letter 88-16; Concerning the Removal of Cycle-Specific Parameter Limits from Tech Specs, October 3, 1988.
3. Westinghouse Document, WCAP-16537-P, Revision 0, "Quad Cities Nuclear Power Station Unit 2 Cycle 19 Reload Licensing Report", April 2006.
4. GNF Document, J11-03918-SRLR, Revision 2, "Supplemental Reload Licensing Report for Quad Cities Unit 2 Reload 16 Cycle 17", October 2003. (TODI NFMO200001 Sequence 1)
5. Exelon TODI, NF0600005, Revision 1, "Quad Cities 2 Cycle 19 Licensing Generic Inputs, Report," March 21, 2006.
6. GNF Engineering Calculation, e-Matrix 0000-0005-9064, "GE14 LHGR Limits with Gd Suppression for Quad Cities 2, Cycle 17, Bundles 2507 and 2508," July 1, 2002.
7. GNF Letter, FRL-EXN-EE2-04-002, "Quad Cities Unit 2 Cycle 18 Fresh Fuel Peak Pelle:

LHGR Limits," F. Lindquist to F. Trikur, January 16,2004.

8. GE Document, GE DRF C51-00217-01, "Instrument Setpoint Calculation Nuclear Instrumentation, Rod Block Monitor, Commonwealth Edison Company, Quad Cities 1 &

2," December 14,1999.

9. GE Design Basis Document, DB-0012.03, Revision 0, "Fuel-Rod Thermal-Mechanical Performance Limits for GE14C," May 2000.
10. Exelon Letter, NF-MW:02-0081, "Approval of GE Evaluation of Dresden and Quad Cities Extended Final Feedwater Temperature Reduction," Carlos de la Hoz to Doug Wise and Alex Misak, August 27, 2002.
11. GE Document, NEDO-33187 Revision 1, DRF 0000-0038-8843, "Safety Evaluation in Support of the New Steam Dryer for Quad Cities Unit 1 & 2," May 2005.
12. FANP Letter, NJC:04:031/FAB04-496, "Startup with TIP Equipment Out of Service," April 20, 2004 (EC 348897-00).
13. GNF Document, 0000-0024-0751-SRLR, Revision 1, "Supplemental Reload Licensing Report for Quad Cities Unit 2 Reload 17 Cycle 18," April 2005. (TODI NF0400018 Revision 1).
14. GE Document, GE-NE-J11-03912-00-01-R3, "Dresden 2 and 3 Quad Cities 1 and 2 Equipment Out-Of-Service and Legacy Fuel Transient Analysis," September 2005.

(TODI NFM01 00091 Sequence 03)

15. Exelon TODI QDC-06-01 1, Revision 0, "Fast Transients Input Parameters Operating Parameter List for Westinghouse Quad Cities Unit 2 Cycle 19 Reload Analysis," Februaly 16,2006.

Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 5

16. Exelon TODI NF0600004, Revision 1, "Quad Cities 2 Cycle 19 Reload Licensing Analysis Plan (RLAP)," March 23, 2006.
17. Technical Specifications for Quad Cities 1 and 2, Table 3.1.4-1, "Control Rod Scram Times" Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 6

2. Terms and Definitions APLHGR Average planar linear heat generation rate APRM Average power range monitor BOC Beginning of cycle DLO Dual loop operation EFPH Effective full power hour EOC End of cycle EOOS Equipment out of service EOFPL End of full power life FFTR Final feedwater temperature reduction FWHOOS Feedwater heater out of service GE14 GE14C fuel GNF Global Nuclear Fuel ICF Increased core flow ISS Intermediate scram speed LHGR Linear heat generation rate LHGRFAC(F) Flow dependent LHGR multiplier LHGRFAC(P) Power dependent LHGR multiplier LPRM Local power range monitor MAPLHGR Maximum average planar linear heat generation rate MAPRAT Maximum average planar ratio MCPR Minimum critical power ratio MCPR(F) Flow dependent MCPR MCPR(P) Power dependent MCPR MFLCPR Maximum fraction of limiting critical power ratio MFLPD Maximum fraction of limiting power density MSIV Main steamline isolation valve NSS Nominal scram speed OLMCPR Operating limit minimum critical power ratio OPRM Oscillation power range monitor PBDA Period based detection algorithm PLUOOS Power load unbalance out of service PROOS Pressure regulator out of service RBM Rod block monitor RWE Rod withdrawal error SLMCPR Safety limit minimum critical power ratio SLO Single loop operation SRVOOS Safety-relief valve out of service TBPOOS Turbine bypass system out of service TCV Turbine control valve TIP Traversing Incore probe TSSS Technical Specification scram speed Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 7

3. General Information Power and flow dependent limits are listed for various power and flow levels. Linear interpolation is to be used to find intermediate values.

Rated core flow is 98 Mlb/hr. Operation up to 108% rated flow is licensed for this cycle. Licensed rated thermal power is 2957 MWth.

MCPR(P) and MCPR(F) values are independent of scram time.

LHGRFAC(P) and LHGRFAC(F) values are independent of scram speed.

For thermal limit monitoring above 100% rated power or 100% rated core flow, the 100% rated power and the 100% core flow values, respectively, can be used unless otherwise indicated in the applicable table.

The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCPR and the power dependent MCPR limits. Any change to the OLMCPR values and/or the power dependent MCFR limits should be evaluated for potential impact on the OPRM PBDA trip settings.

Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 8

4. Average Planar Linear Heat Generation Rate The MAPLHGR values for the most limiting lattice (excluding natural uranium) of each fuel type as a function of average planar exposure is given in Tables 4-1 and 4-2. During single loop operation, these limits are multiplied by the SLO multiplier listed in Table 4-3.

Table 4-1 MAPLHGR for bundle(s):

GE14-PI ODNAB389-18GZ-1 OOT-145-T6-2650 GE14-Pl ODNAB418-16GZ-1OOT-145-T6-2646 GE14-P1 ODNAB406-16GZ-100T-145-T6-2508 GE14-PI ODNAB409-15GZ-1 OOT-145-T6-2507 (Reference 4 and 13)

Avg. Planar Exposure MAPLHGR (GWdIMT) (kW/ft) 0.00 11.68 l 16.00 11.68 22.05 11.34 l 55.12 8.19 63.50 6.97 70.00 4.36 l Table 4-2 MAPLHGR for bundle(s):

OPT2-3.89-16GZ8.00-2G6.00 OPT2-3.94-13GZ7.00-2G6.00 (Reference 3)

Avg. Planar Exposure MAPLHGR (GWd/MT) (kWlft) 0.0 8.615 7.5 8.276 17.5 8.276 24.0 8.650 58.0 8.650 72.0 7.128 Table 4-3 MAPLHGR SLO multiplier for GE and Westinghouse Fuel (Reference 3 and 13)

Fue~y IFuelType 1Multiplier SLO GE14 0.77 Optima2 1 0.86 Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 9

5. Operating Limit Minimum Critical Power Ratio 5.1. Manual Flow Control MCPR Limits The OLMCPR is determined for a given power and flow condition by evaluating the power-dependent MCPR and the flow-dependent MCPR and selecting the greater of the two.

5.1.1. Power - Dependent MCPR For operation at less than 38.5% core thermal power, the OLMCPR as a function of core thermal power is shown in Table 5-5. For operation at greater than 38.5% core thermal power, the OLMCPR as a function of core thermal power is determined by multiplying the applicable rated condition OLMCPR limit shown in Table 5-2, 5-3, or 5-4 by the applicable MCPR multiplier K(P) given in Table 5-5.

For operation at exactly 38.5% core thermal power, the OLMCPR as a function of core thermal power is the higher of either of the two methods evaluated at 38.50%

core thermal power.

5.1.2. Flow - Dependent MCPR Tables 5-6 and 5-7 give the MCPR(F) limit as a function of the flow based on the applicable plant condition. The MCPR(F) limit determined from these tables is the flow dependent OLMCPR.

5.2. Automatic Flow Control MCPR Limits Automatic flow control MCPR limits are not provided.

5.3. Scram Time TSSS, ISS, and NSS refer to scram speeds. TSSS is the Technical Specification Scram Speed, ISS is the Intermediate Scram Speed, and NSS is the Nominal Scram Speed.

The scram time values are shown in Table 5-1.

The NSS scram times are based on a conservative interpretation of scram time surveillance measurements. In the event that plant surveillance shows these scram insertion times to be exceeded, the MCPR limits are to default to the values which correspond to the ISS scram time. The ISS times have been chosen to provide an intermediate value between the NSS and the TSSS, but the interpolation between these values is not supported by Westinghouse methodology. In the event that the ISS times are exceeded, MCPR limits for the TSSS apply.

Table 5-1 Scram Times (References 3 and 17)

Control Rod Insertion Fraction TSSS (seconds) ISS (seconds) NSS (seconds) 5 0.48 0.350 0.324 20 0.89 0.715 0.694 50 1.98 1.482 1.459 _

90 3.44 2.558 2.535 _

Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page l0 5.4. Recirculation Pump Motor Generator Settings Cycle 19 was analyzed with a maximum core flow runout of 110%; therefore the recirculation pump motor generator scoop tube mechanical and electrical stops must be set to maintain core flow less than 110% (107.8 Mlb/hr) for all runout events (Reference 16). This value is consistent with the analyses of Reference 3.

Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 11 Table 5-2 MCPR TSSS Based Operating Limits (Reference 3) ycle Exposure

>11551 to

< 11551 EOFPL+590 > EOFPL +

EOOS Combination Fuel Type MWd/MT MWd/MT 590 MWd/MT BASE Optima2 1.66 1.74 1.75 GE14 1.64 1.71 1.72 BASE SLO Optima2 1.68 1.76 1.77 GE14 1.65 1.72 1.73 Optima2 1.74 1.84 1.86 PLUOOS GE14 1.71 1.82 1.83 Optima2 1.76 1.86 1.88 PLUOOS SLO GE14 1.72 1.83 1.84 Optima2 1.74 1.89 1.92 TBPOOS GE14 1.71 1.84 1.86 Optima2 1.76 1.91 1.94 TBPOOS SLO GE14 1.72 1.85 1.87 o tima2 1.66 1.74 1.75 TCV SLOW CLOSURE GE14 1.64 1.71 1.72 Optima2 1.68 1.76 1.77 TCVSLOWCLOSURESSLO GE14 1.65 1.72 1.73 Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 12 Table 5-3 MCPR ISS Based Operating Limits (Reference 3) cle Exposure

>11551 to

< 11551 EOFPL+590 > EOFPL +

EOOS Combination Fuel Type MWd/MT MWd/MT 590 MWd/MT BASE Optima2 1.51 1.54 1.53 GE14 1.64 1.64 1.64 BASE SLO Optima2 1.53 1.56 1.55 GE14 1.65 1.65 1.65 Optima2 1.59 1.64 1.66 PLUOOS GE14 1.64 1.65 1.66 Optima2 1.61 1.66 1.68 PLUOOS SLO GE14 1.65 1.66 1.67 Optima2 1.55 1.66 1.66 TBPOOS GE14 1.64 1.65 1.66 Optima2 1.57 1.68 1.68 TBPOOS SLO GE14 1.65 1.66 1.67 Optima2 1.54 1.54 1.53 TCV SLOW CLOSURE GE14 1.64 1.64 1.64 Optima2 1.56 1.56 1.55 TCV SLOW CLOSURE SLO GE14 1.65 1.65 1.65 Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 'I3 Table 5-4 MCPR NSS Based Operating Limits (Reference 3)

Cycle Exposure

>11551 to

< 11551 EOFPL+590 > EOFPL +

EOOS Combination Fuel Type MWd/MT MWd/MT 590 MWdIMT BASE Optima2 1.51 1.54 1.53 GE14 1.64 1.64 1.64 BASE SLO Optima2 1.53 1.56 1.55 GE14 1.65 1.65 1.65 Optima2 1.58 1.64 1.65 PLUOOS GE14 1.64 1.64 1.65 Optima2 1.60 1.66 1.67 PLUOOS SLO GE14 1.65 1.65 1.66 Optima2 1.55 1.66 1.65 TBPOOS GE14 1.64 1.64 1.65 Optima2 1.57 1.68 1.67 TBPOOS SLO GE14 1.65 1.65 1.66 Optima2 1.54 1.54 1.53 TCV SLOW CLOSURE GE14 1.64 1.64 1.64 Optima2 1.56 1.56 1.55 TCV SLOW CLOSURE SLO GE14 1.65 1.65 1.65 Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 14 Table 5-5 MCPR(P) for GE and Westinghouse Fuel (Reference 3)

Core Core Thermal Power (% of rated)

O O Combination (Flow (j lof

°0 l 25 38.5 38.5 41 50 T 60 80 Rated) Operating Limit MCPR l Operating Limit MCPR Multiplier, Kp s60 3.12 2.64 2.38 Base 1.44 1.40 1.28 1.19 1.08 1.00

>60 3.74 3.34 3.16

<60 3.14 2.66 2.40 Base SLO 1.44 1.40 1.28 1.19 1.08 1.00

>60 3.76 3.36 3.18

<60 3.12 2.64 2.38 PLUOOS 1.99 1.92 1.72 1.44 1.1.2 1.00

>60 3.74 3.34 3.16

<60 3.14 2.66 2.40 PLUOOS SLO 1.99 1.92 1.72 1.44 1.1.2 1.00

>60 3.76 3.36 3.18 c60 5.50 3.76 2.82 TBPOOS 1.51 1.47 1.31 1.21 1.10 1.00

>60 8.97 6.01 4.41 S60 5.52 3.78 2.84 TBPOOS SLO 1.51 1.47 1.31 1.21 1.1( 1.00

>60 8.99 6.03 4.43 TC<LW :60 3.12 2.64 2.38 CLOSURE 2.05 1.97 1.78 1.63 1.1 3 1.00

>60 3.74 3.34 3.16 TCV SLOW :560 3.14 2.66 2.40 CLOSURESLO 2.05 1.97 1.78 1.63 1.1 3J 1.00

>60 3.76 3.36 3.18 Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 15 Table 5-6 MCPR(F) Limits for GE Fuel DLO or SLO Operation (Reference 3)

Flow MCPR(F)

(% rated) Limit 110.0 1.23 100.0 1.23 80.0 1.42 60.0 1.62 40.0 1.82 20.0 1.93 0.0 2.04 Table 5-7 MCPR(F) Limits for Westinghouse Fuel DLO or SLO Operation (Reference 3)

Flow MCPR(F)

(% rated) Limit 110.0 1.17 100.0 1.17 80.0 1.35 60.0 1.51 40.0 1.59 20.0 1.67 0.0 1.75 Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 16

6. Linear Heat Generation Rate The maximum LHGR shall not exceed the zero exposure limit of 13.4 kW/ft for the following fuel bundles (Reference 9):

GE14-P1 ODNAB409-15GZ-10OT-145-T6-2507 GE14-P 1ODNAB406-16GZ-1OOT-145-T6-2508 GE14-P 1ODNAB418-16GZ-10OT-145-T6-2646 GE14-P 1ODNAB389-18GZ-10OT-145-T6-2650 The thermal mechanical operating limit at rated conditions for the Optima2 fuel is established in terms of the maximum LHGR given in Table 6-17 as a function of rod nodal exposure. The limit applies to all Optima2 bundle designs.

The linear heat generation rate (LHGR) limit is the product of the exposure dependent LHGR limit from Tables 6-1 through 6-17 and the minimum of: the power dependent LHGR factor, LHGRFAC(P) or the flow dependent LHGR factor, LHGRFAC(F) where applicable. The LHGRFAC(P) is determined from Table 6-18,6-19, or 6-20. The LHGRFAC(F) is determined from Table 6-21, 6-22, or 6-23.

Table 6-1: LHGR Limit for GE1 4-PI ODNAB41 8-1 6GZ-1 0OT-1 45-T6-2646 (Reference 7)

Lattices 5963,5970, 5971, 5974 and 5975 Composite Limit kW/tt 5963: P1 ODNAL071-NOG-1OOT-T6-5963 5970: P1 ODNAL465-16G7.0-10OT-T6-5970 5971: P1 ODNAL465-13G7.0/3G6.0-10OT-T6-5971 5974: P1 ODNAL071-NOG-10OT-V-T6-5974 5975: P1 ODNAL071-16GE-10OT-V-T6-5975 U02 Pellet Burnup Composite Limit (GWd iTU) (kW/tt) 0.0 13.4 16.0 13.4 63.5 8.0 70.0 5.0 Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 17 Table 6-2: LHGR Limit for GE14-Pl ODNAB418-16GZ-1OOT-145-T6-2646, Lattice 5972 (Reference 7)

Lattice 5972 Composite Limit kWlft P1 ODNAL461-12G7.0/3G6.0-1 OOT-E-T6-5972 U02 Pellet Burnup Composite Limit (GWd/IMTU) (kW/ft) 0.0000 13.4000 15.9515 13.4000 17.2857 13.2538 18.1089 13.1602 19.4140 13.0119 20.7050 12.8651 23.2463 12.5762 26.9800 12.1517 33.0780 11.4585 39.0585 10.7786 44.9195 10.0506 50.6634 9.3499 56.3043 8.7427 61.8691 8.1854 67.3941 6.2027 70.0000 5.0000 Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page *18 Table 6-3: LHGR Limit for GE14-P1ODNAB418-16GZ-100T-145-T6-2646, Lattice 5973 (Reference 7)

Lattice 5973 Composite Limit kWMt P1 ODNAL461-12G7.0/3G6.0-1 OOT-V-T6-5973 U02 Pellet Burnup Composite Limit (GWd/IMTU) (kW/ft) 0.0000 13.4000 14.6537 13.4000 16.0077 13.3991 17.3409 13.2476 18.1982 13.1501 19.5019 13.0019 20.7905 12.8554 23.3251 12.5672 27.0482 12.1440 33.1306 11.4525 39.0945 10.7607 44.9367 9.9688 50.6595 9.2608 56.2772 8.6476 61.8172 8.1267 67.3169 6.2384 70.0000 5.0000 Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 19 Table 6-4: LHGR Limit for GE14-P1 ODNAB389-18GZ-1 OOT-145-T6-2650 (Reference 7)

Lattices 5963, 5994, 5995, 5998 and 5999 Composite Limit kWMfM 5963: P1 ODNAL071 -NOG-1 OOT-T6-5963 5994: P1 ODNAL430-17G8.O/1 G3.0-1OOT-T6-5994 5995: P1 ODNAL431 -9G8.0/8G6.O/1 G3.0-10OT-T6-5995 5998: P1ODNAL071-NOG-1OOT-V-T6-5998 5999: P1 ODNAL071 -18GE-1 OOT-V-T6-5999 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0 13.4 16.0 13.4 63.5 8.0 70.0 - 5.0 Table 6-5: LHGR Limit for GE14-P1ODNAB389-18GZ-10OT-145-T6-2650, Lattice 5996 (Reference 7)

Lattice 5996 Composite Limit kWt P1 ODNAL430-7G8.0/8G6.0-1 OOT-E-T6-5996 U02 Pellet Burnup Composite Limit (GWd/MTU) (kWflt) 0.0000 13.4000 14.8906 13.4000 16.2580 13.3707 17.6015 13.2179 18.9215 13.0679 19.4423 13.0087 20.7453 12.8605 23.3142 12.5685 27.0881 12.1395 33.2434 11.4389 39.2913 10.5936 45.2308 9.8060 51.0564 9.1014 56.7750 8.4943 61.9432 8.0319 67.9800 5.9323 70.0000 5.0000 Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 20 Table 6-6: LHGR Limit for GE14-PlODNAB389-18GZ-100T-145-T6-2650, Lattice 5997 (Reference 7)

Lattice 5997 Composite Limit kWt P1 ODNAL430-7G8.0/8G6.0-1 OOT-V-T6-5997 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0000 13.4000 14.9485 13.4000 16.3156 13.3641 17.6577 13.1592 18.9752 12.9330 19.3601 12.9427 20.6567 12.8235 23.2117 12.5211 26.9637 12.0810 33.0874 11.3527 39.1088 10.5071 45.0238 9.6894 50.6192 8.9710 56.3453 8.3308 62.0012 7.7843 67.6125 6.1019 70.0000 5.0000 Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 21 Table 6-7: LHGR Limit for GE14-Pl ODNAB409-15GZ-10OT-145-T6-2507 (References 6 and 7)

Lattices 5254, 5259, and 5260 Composite Limit kWlft 5254: P1 ODNAL071 -NOG-1OOT-T6-5254 5259: P1 ODNAL071 -NOG-10OT-V-T6-5259 5260: P1 ODNAL071-15GE-10OT-V-T6-5260 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0 13.4 16.0 13.4 63.5 8.0 70.0 5.0 Table 6-8: LHGR Limit for GE14-PlODNAB409-15GZ-100T-145-T6-2507, Lattice 5255 (Reference 6)

Lattice 5255 Composite Limit kW/ft P1 ODNAL457-1 OG7.0/5G6.0-1 OOT-T6-5255 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0000 13.4000 16.0000 13.4000 26.5600 12.1995 32.4838 11.3566 38.2923 10.5548 42.6374 10.0194 48.4082 9.4042 54.1266 8.8227 59.7952 8.2658 66.1221 6.7898 70.0000 5.0000 Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 22 Table 6-9: LHGR Limit for GE14-P1ODNAB409-15GZ-100T-145-T6-2507, Lattice 5256 (Reference 6)

Lattice 5256 Composite Limit kW/tt P1 ODNAL457-1 OG7.0/4G6.0-10OT-T6-5256 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0000 13.4000 16.0000 13.4000 26.4377 12.2134 32.3724 11.3683 38.1915 10.5646 42.5345 10.0279 48.3153 9.4117 54.0433 8.8293 59.7208 8.2716 66.0634 6.8169 70.0000 5.0000 Table 6-10: LHGR Limit for GE14-PI ODNAB409-15GZ-1 OOT-145-T6-2507, Lattice 5257 (Reference 6)

Lattice 5257 Composite Limit kWlft P1 ODNAL446-1 OG7.0/4G6.0-1 OOT-E-T6-5257 U02 Pellet Burnup Composite Limit (GWd/MTU) (kWlft) 0.0000 13.4000 16.0000 13.4000 22.4684 12.6646 25.9797 12.2498 31.8383 11.5023 36.4126 10.9965 42.2318 10.3946 48.0000 9.7621 63.5000 8.0000 70.0000 5.0000 Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page .'3 Table 6-11: LHGR Limit for GEI 4-P1 ODNAB409-15GZ-1 OOT-1 45-T6-2507, Lattice 5258 (Reference 6)

Lattice 5258 Composite Limit kWlft P1 ODNAL446-1 OG7.014G6.0-1 OOT-V-T6-5258 U02 Pellet Burnup Composite Limit (GWdIMTU) (kW/ft) 0.0000 13.4000 16.0000 13.4000 17.7371 13.2025 18.9898 13.0548 20.2266 12.9195 22.6600 12.6287 26.2497 12.1583 32.1571 11.4142 37.9780 10.6863 42.3297 10.1829 48.0873 9.5889 53.7859 9.0048 59.4266 8.4220 65.0184 7.2992 70.0000 5.0000 Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 24 Table 6-12: LHGR Limit for GEI 4-P1 ODNAB406-16GZ-1 GOT-I 45-T6-2508 (References 6 and 7)

Lattices 5254, 5259, and 5265 Composite Limit kWMft 5254: P1ODNAL071-NOG-100T-T6-5254 5259: P1 ODNAL071-NOG-1OOT-V-T6-5259 5265: P1 ODNAL071-16GE-1 OOT-V-T6-5265 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0 13.4 16.0 13.4 63.5 8.0 70.0 5.0 Table 6-13: LHGR Limit for GE14-PIODNAB406-16GZ-10OT-145-T6-2508, Lattice 5261 (Reference 6)

Lattice 5261 Composite Limit kWlt P1 ODNAL452-12G7.0/4G6.0-1 OOT-T6-5261 U02 Pellet Burnup Composite Limit (GWd/MTU) kWft) 0.0000 13.4000 16.0000 13.4000 26.5529 12.2003 32.5158 11.3596 38.3655 10.5487 42.8529 9.9603 48.6317 9.3489 54.3587 8.7722 60.0364 8.1569 66.3477 6.6857 70.0000 5.0000 Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 25 Table 6-14: LHGR Limit for GE14-P1ODNAB406-16GZ-10OT-145-T6-2508, Lattice 5262 (Reference 6)

Lattice 5262 Composite Limit kWlft P1 ODNAL452-12G7.0/2G6.0-1 00T-T6-5262 U02 Pellet Burnup Composite Limit (GWd/MTU) (kWhft) 0.0000 13.4000 16.0000 13.4000 26.3186 12.2269 32.3063 11.3814 38.1786 10.5659 42.6528 9.9762 48.4524 9.3633 54.1986 8.7853 59.8932 8.1683 66.2385 6.7361 70.0000 5.0000 Table 6-15: LHGR Limit for GE14-P1 ODNAB406-16GZ-100T-145-T6-2508, Lattice 5263 (Reference 6)

Lattice 5263 Composite Limit kW/ft P1 ODNAL444-12G7.0/2G6.0-1 OOT-E-T6-5263 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0000 13.4000 16.0000 13.4000 22.2147 12.6935 25.7994 12.2602 31.6822 11.4670 36.3906 10.8097 42.2210 10.0473 48.0018 9.3234 53.7263 8.6493 59.3943 8.0286 65.0127 7.3018 70.0000 5.0000 Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page .'6 Table 6-16: LHGR Limit for GE14-PlODNAB406-16GZ-IOOT-145-T6-2508, Lattice 5264 (Reference 6)

Lattice 5264 Composite Limit kWlft P1 ODNAL444-12G7.0/2G6.0-1 OOT-V-T6-5264 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0000 13.4000 16.0000 13.4000 17.3980 13.2411 18.6393 13.0830 19.8662 12.8680 22.2850 12.5549 25.8608 12.0511 31.7287 11.2541 36.4936 10.7218 42.3157 9.9690 48.0855 9.2457 53.7969 8.5723 59.4504 7.9532 65.0537 7.2829 70.0000 5.0000 Table 6-17: LHGR Limit for Westinghouse Optima2 Fuel OPT2-3.89-16GZ8.00-2G6.00 OPT2-3.94-13GZ7.00-2G6.00 (Reference 3)

Rod Nodal Exposure LHGR Limit (GWd/MTU) (kW/ft)

I .00 _ 3.1 1 14.00 13.11 72.00 6.48 Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 27 Table 6-18 LHGRFAC(P) for GE Fuel, DLO (Reference 3 and 14)

Core Core Thermal Power (% of rated)I EOOS Combination Flow (% 0 25 l 38.5 l 38.5 l 70 l 70 80 100 of rated) LHGRFAC(P) Multiplier Base - 0.0 0.56 059 0.68 0.86 1.00 PLUOOS 22 0.39 0.48 054 0.73 0.78 1.00

> 60 0.33 0.42 "

~60 0.22 0.48 TBPOOS 039 0.54 1.00

> 60 0.33 0.42 c 60 0.22 0.48 TCV Slow Closure 0.39 0.54 0.73 0.78 1.00

> 60 0.33 0.42 Table 6-19 LHGRFAC(P) for GE Fuel, SLO (Reference 3 and 14)

Core Core Thermal Power (% of rated) =

EOOS Combination Flow (% 0 25 38.5 l 38.5 l 70 CP 100 of rated) LHGRFAC(P) Multiplier Base SLO 60 0.50 0.56 0.59 068 0.77 0.77

  • 60 _ _ _ _ _ _ _ _

c 60 0.22 0.48 PLUOOS SLO 0.39 0.54 0.73 0.77 0.77

> 60 0.33 0.42 1 TBPOOS SLO 60 0.22 0.39 0.54 0.77 0.77

  • 60 0.33 0.42 TCV Slow Closure SLO  : 60 0.22 0.39 0.48 0.54 0.73 0.77 0.77

> 60 0.33 0.42

  • CP is the cutoff power level and is equal to 59.25% for Base Case SLO, 70% for PLUOOS SLO, 69.25% for TBPOOS SLO, and 70% for TCV Slow Closure SLO.

Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 28 Table 6-20 LHGRFAC(P) for Westinghouse Fuel (Reference 3)

Core Thermal Power (% of rated)

EOOS Combination 0 25 38.5 38.5 41 50 60 80 100 ]I3l10 I LHGRFAC(P) Multiplier Base 0.50 0.50 0.50 0.70 0.72 0.76 0.82 0.91 1.00 1.00 Base SLO 0.50 0.50 0.50 0.70 0.72 0.76 0.82 0.91 1.00 1.00 PLUOOS 0.50 0.50 0.50 0.61 0.61 0.64 0.72 0.90 1.00 1.00 PLUOOS SLO 0.50 0.50 0.50 0.61 0.61 0.64 0.72 0.90 1.00 1.00 TBPOOS 0.43 0.43 0.43 0.70 0.72 0.76 0.82 0.91 1.00 1.00 TBPOOS SLO 0.43 0.43 0.43 0.70 0.72 0.76 0.82 0.91 1.00 1.00 TCV Slow Closure 0.50 0.50 0.50 0.50 0.50 0.52 0.58 0.79 1.00 1.00 TCV Slow Closure SLO 0.50 0.50 0.50 0.50 0.50 0.52 0.58 0.79 1.00 1.00 Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 29 Table 6-21 LHGRFAC(F) Multipliers, GE Fuel, DLO (Reference 3)

Flow lLHGRFAC(F) 1

(% rated) Multiplier 100.00 1.00 80.00 1.00 50.00 0.77 40.00 0.64 30.00 0.55 0.00 0.28 Table 6-22 LHGRFAC(F) Multipliers, GE Fuel, SLO (Reference 3 and 13)

Flow LHGRFAC(F)

(% rated) Multiplier 100.00 0.77 80.00 0.77 50.00 0.77 40.00 0.64 30.00 0.55 l 0.00 0.28 Table 6-23 LHGRFAC(F) Multipliers, Westinghouse Fuel (Reference 3)

Flow LHGRFAC(F)

(% rated) Multiplier 110.00 1.00 100.00 1.00 80.00 1.00 60.00 0.80 40.00 0.59 -

20.00 0.43 0.00 0.27 Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 820

7. Rod Block Monitor The rod block monitor upscale instrumentation setpoints are determined from the relationships shown below (Reference 8):

ROD BLOCK MONITOR UPSCALE TRIP FUNCTION ALLOWABLE VALUE Two Recirculation Loop 0.65 Wd + 56.1%

Operation 0.65____+_51.4%

Single Recirculation Loop 0.65 Wd + 51.4%

Operation I _ _ __ _ __ _I__ _

The setpoint may be lower/higher and will still comply with the rod withdrawal error (RWE) analysis because RWE is analyzed unblocked.

The allowable value is clamped with a maximum value not to exceed the allowable value for a recirculation loop drive flow (Nd) of 100%.

Wd - percent of recirculation loop drive flow required to produce a rated core flow of 98 Mlb/hr.

Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page :71

8. Stability Protection Setpoints The OPRM PBDA trip settings (Reference 3):

Corresponding Maximum PBDA Trip Amplitude Setpoint (Sp) Confirmation Count Setpoint (Np) 1.16 17 The PBDA is the only OPFM setting credited in the safety analysis as documented in the licensing basis for the OPRM system.

The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCPR and the power dependent MCPR limits. Any change to the OLMCPR values and/or the power dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings.

The OPRM PBDA trip settings are applicable when the OPRM system is declared operable, and the associated Technical Specifications are implemented.

Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 132

9. Modes of Operation The allowed Modes of Operation with the combinations of EOOS are as described below:

Operating Regio EOOS Optionsi. . { Standard MELLLA ICF Coastdowi?

Base, TSSS, ISS, or NSS Yes Yes Yes Yes Base SLO, TSSS, ISS, or NSS Yes Yes No Yes TBPOOS, TSSS, ISS, or NSS Yes Yes Yes Yes TBPOOS SLO, TSSS, ISS, or NSS Yes Yes No Yes PLUOOS4 , TSSS, ISS, or NSS Yes Yes Yes Yes PLUOOS SLO4 , TSSS, ISS, or NSS Yes Yes No Yes TCV Slow Closureo, TSSS, ISS, or NSS Yes Yes Yes Yes TCV Slow Closure SLOb, TSSS, ISS, or NSS Yes Yes No Yes 1 Each OOS Option may be combined with up to 18 TIP channels OOS provided the requirements (as clarified in Reference 12) for utilizing SUBTIP methodology are met and up to 50% of the LPRMs OOS with an LPRM calibration frequency of 2500 Effective Full Power Hours (EFPH) (2000 EFPH +25%). For operation under all limit sets, a 1200F reduction in feedwater temperature throughout the cycle was analyzed and Is subject to the restrictions In Reference 10 (Final Feedwater Temperature Reduction or Feedwater Heaters OOS).

2 Each EOOS option except TBPOOS requires the opening profile for the turbine bypass valves provided in Reference 15 to be met. These conditions also support 1 Turbine Bypass Valve OOS if the assumed opening profile (Reference 15) for the remaining 8 Turbine Bypass Valves is met. If the opening profile is not met with 8 or 9 operating Turbine Bypass Valves, or if more than one Turbine Bypass Valve is OOS, utilize the TBPOOS condition.

3 Coastdown operation is defined as any cycle exposure beyond the full power, all rods out condition with plant power slowly lowering to a lesser value while core flow is held constant. Coastdown analysis has been performed with bounding assumption of full power operation up to cycle exposure of 16,000 MWD/MTU.

4 If the Base Case limit set (DLO only) is being used and the PLU is taken OOS for a surveillance and the surveillance is done at 280% rated reactor power and 280% rated reactor flow, an administrative limit of 0.98 on MFLPD and 0.93 on MFLCPR for scram time greater than ISS but less than or equal to TSSS, or 0.92 on MFLCPR for scram times less than or equal to ISS limit can be used instead of the PLUOOS (DLO) thermal limit set. The MAPRAT limit is not impacted by PLUOOS and thus continue to monitor to 1.00 in this condition.

5 Operation up to 108% rated core flow is licensed for this cycle.

6 For operation with a pressure regulator out-of-service (PROOS), the TCV Slow Closure limits should be applied. For operation with a PROOS and TCV slow closure, the TCV slow closure limits are applicable.

For operation with a PROOS and PLUOOS, the PLUOOS limits are applicable. (Reference 3) 7 A single MSIV may be taken OOS (shut) under all OOS Options, so long as core thermal power Is maintained 575% of 2957 MWth (Reference 3).

e The cycle specific stability analysis may impose restrictions on the Power-to-Flow map and/or restrict the applicable temperature for feedwater temperature reduction. See Reference 3.

9 For Base DLO and Base SLO cases, as well as all EOOS conditions, operation for both nominal and up t*)

1200 F reduction in Feedwater temperature are supported. For both Base DLO/SLO and EOOS conditions, for operation at nominal feedwater temperature, the OLMCPR limit is applicable to a variation of +/- 10F in feedwater temperature, and a steam dome pressure band of +/- 15 psi is applicable.

Quad Cities Unit 2 Cycle 19

COLR Quad Cities 2 Cycle 19 Revision 0 Page 33

10. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents:
1. Commonwealth Edison Topical Report NFSR-0085, Revision 0, "Benchmark of BWR Nuclear Design Methods," November 1990.
2. Commonwealth Edison Topical Report NFSR-0085, Supplement 1 Revision 0, "Benchmark of BWR Nuclear Design Methods - Quad Cities Gamma Scan Comparisons," April 1991.
3. Commonwealth Edison Topical Report NFSR-0085, Supplement 2 Revision 0, "Benchmark of BWR Nuclear Design Methods - Neutronic Licensing Analyses," April 1991.
4. Commonwealth Edison Company Topical Report NFSR-0091, "Benchmark of CASMO/MICROBURN BWR Nuclear Design Methods," Revision 0 and Supplements on Neutronics Licensing Analysis (Supplement 1) and La Salle County Unit 2 benchmarking (Supplement 2), December 1991, March 1992, and May 1992, respectively.
5. Westinghouse Topical Report CENPD-300-P-A, "Reference Safety Report for Boiling Water Reactor Reload Fuel," July 1996.
6. Westinghouse Topical Report CENPD-390-P-A, 'The Advanced PHOENIX and POLCA Codes for Nuclear Design of Boiling Water Reactors," December 2000.
7. Westinghouse Report WCAP-16081-P-A, "10X10 SVEA Fuel Critical Power Experiments and CPR Correlation: SVEA-96 Optima2," March 2005.
8. Westinghouse Report WCAP-1 5682-P-A, 'Westinghouse BWR ECCS Evaluation Model:

Supplement 2 to Code Description, Qualification and Application," April 2003.

9. Westinghouse Report WCAP-1 6078-P-A, 'Westinghouse BWR ECCS Evaluation Model:

Supplement 3 to Code Description, Qualification and Application to SVEA-96 Optima2 Fuel,"

November 2004.

10. Westinghouse Topical Report WCAP-1 5836-P-A, "Fuel Rod Design Methods for Boiling Water Reactors - Supplement 1," June 2002.
11. Westinghouse Topical Report WCAP-1 5942-P-A, "Fuel Assembly Mechanical Design Methodology for Boiling Water Reactors, Supplement 1 to CENP-287," October 2004.
12. NEDE-24011 -P-A-14 (Revision 14), "General Electric Standard Application for Reactor Fuel (GESTAR-I1)," June 2000.
13. NEDO-32465-A, "Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload Applications", August 1996.

Quad Cities Unit 2 Cycle 19