RBG-46358, Thirteenth Fuel Cycle Core Operating Limits Report (COLR)
| ML043290011 | |
| Person / Time | |
|---|---|
| Site: | River Bend |
| Issue date: | 11/17/2004 |
| From: | Lorfing D Entergy Operations |
| To: | Document Control Desk, Office of Nuclear Reactor Regulation |
| References | |
| G9, G9.25.1.5, RBFI-04-0221, RBG-46358 | |
| Download: ML043290011 (129) | |
Text
U--
\\
IEFEnte-r~gy Entergy Operations, Inc.
River Bend Station 5485 U. S. Highway 61 N St. Francisville, LA 70775 Fax 225 635 5068 November 17, 2004 U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555
Subject:
River Bend Station - Unit I Docket No. 50-458 License No. NPF-47 Thirteenth Fuel Cycle Core Operating Limits Report (COLR)
File Nos.:
G9.5, G9.25.1.5 RBG-46358 RBFI 0221 Ladies and Gentlemen:
Enclosed is Revision 0 and Revision I of the River Bend Station (RBS) Core Operation Limits Report (COLR) for the thirteenth fuel cycle. This report is submitted in accordance with Technical Specification 5.6.5 of Appendix A of the Facility Operating License NPF-47. This COLR report will support operation through the end of the fuel cycle. Revision 0 was not used for plant operation.
There are no commitments in this letter. For further information, contact Mr. B. M. Burmeister at (225) 381-4148.
Sincerely, D. N. Lorfing Manager - Site Licensing (Acting)
DNL/BMB OkcD' Enclosure
-r thirteenth Fuel Cycle Core Operating Limits Report (COLR)
RBG-46358 RBF1-04-0221 Page 2 of 2 cc:
Mr. Michael Webb U. S. Nuclear Regulatory Commission M/S OWFN 07-DI Washington, DC 20555 NRC Resident Inspector P. 0. Box 1050 St. Francisville, LA 70775 U. S. Nuclear Regulatory Commission Region IV 611 Ryan Plaza Drive, Suite 400 Arlington, TX 76011
Core Operating Limits Report Cycle 13 Revision 0
Page 1 of 63 RBS CYCLE 13 COLR Revision 0 RIVER BEND STATION, CYCLE 13 CORE OPERATING LIMITS REPORT (COLR)
PREPARED BY:
REVIEWED BY:
Go~
-"~,-"YDate:
Responsible Engineer Refiew Engineer Date: /r I to vIt APPROVED BY:
APPROVED BY:
APPROVED BY:
Date:
/4z/4 y 1 1--12-04 Date:
irector, Engineering River Bend Nuclear Station
- Pt Date
Rn-site Safetynd N
Q6mmSe River Bend Nomr Station f/l-s02"
Page 2 of 63 RBS CYCLE 13 COLR Revision 0 TABLE OF CONTENTS INTRODUCTION AND
SUMMARY
3 CONTROL RODS...............................................................
4 TECHNICAL SPECIFICATION 3.2.1...............................................................
5 TECHNICAL SPECIFICATION 3.2.2...............................................................
6 TECHNICAL SPECIFICATION 3.2.3...............................................................
7 TECHNICAL SPECIFICATION 3.2.4...............................................................
8 TECHNICAL SPECIFICATION 3.3.1.1...............................................................
9 TECHNICAL SPECIFICATION 3.3.1.3..............................................................
10 TECHNICAL REQUIREMENT 3.3.1.1...............................................................
- 1. 1 TECHNICAL REQUIREMENT 3.3.2.1..............................................................
12 REFERENCES/ANALYTICAL METHODS DOCUMENTS......................................... 13 TABLE 1. ALIGNED DRIVE FLOW..............................................................
15 APPENDIX A - OPERATING LIMITS FOR EQUIPMENT OUT OF SERVICE OR LOOP MANUAL MODE..............................................................
53
Page 3 of 63 RBS CYCLE 13 COLR Revision 0 INTRODUCTION AND
SUMMARY
This report provides Cycle 13 values for the following Technical Specifications:
- 1. AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR) limits,
- 2. MINIMUM CRITICAL POWER RATIO (MCPR) limits,
- 3. LINEAR HEAT GENERATION RATE (LHGR) limits,
- 4. FRACTION OF CORE BOILING BOUNDARY (FCBB),
- 5. REACTOR PROTECTION SYSTEM (RPS) APRM Flow Biased Simulated Thermal Power - High Allowable Values,
- 6. REACTOR PROTECTION SYSTEM (RPS) APRM Flow Biased Simulated Thermal Power time constant.
- 7. PERIOD BASED DETECTION SYSTEM (PBDS) region boundaries.
Technical Specification section 5.6.5 requires these values be determined using NRC-approved methodology and are established such that all applicable limits of the plant safety analysis are met. The references for the pertinent methodology used by FANP are listed in the section titled Analytical Methods Documents.
This report also provides Cycle 13 values for the following Technical Requirements:
- 1. REACTOR PROTECTION SYSTEM (RPS) APRM Flow Biased Neutron Flux Power - High Allowable Values and Nominal Trip Setpoints',
- 2. CONTROL ROD BLOCK INSTRUMENTATION APRM Flow Biased Neutron Flux High limits.
In some cases limits in the COLR differ from the limits in the core monitoring system.
This is sometimes due to limitations in the core monitoring system to model the actual limits, in which case the core monitoring limits may be more conservative than the COLR limit at the given conditions. In other cases the limits in the COLR are presented in less detail than in the core monitoring system.
The Cycle 13 COLR supports power operation with FHOOS, FFWTR, PROOS, SLO and Loop Manual Operation. In addition to the specific requirements listed in the Sections 3.2.1 to 3.2.4, the MCPRp and LHGRFAC-p limits as shown in Appendix A shall be used for the applicable modes of operation. For Loop Manual Operation, the MCPRf as shown in Appendix A shall be used. Figures 42 and 43 are applicable to FHOOS or PROOS but not for simultaneous FHOOS and PROOS.
The reload analyses were performed in accordance with FANP methodology and its applicability to Cycle 13 was confirmed by Reference 5.
'Note that for Figures 30 to 37, the Nominal Setpoints should be used for indicating the entry into a particular stability region as allowed and appropriate actions be taken prior to the entry
Page 4 of 63 RBS CYCLE 13 COLR Revision 0 CONTROL RODS The River Bend core utilizes both GE control rods and ABB CR-82M bottom entry cruciform control rods.
These Control Rod designs are discussed in more detail in Reference 7.
DEFINITIONS MOC - Middle of Cycle (Core Exposure 26,352 MWd/MTU).
EOC - End of Cycle (Core Exposure 27,455 MWd/MTU).
EEOC - Extended cycle with Increased Core Flow (Core Exposure 27,772 MWd/MTU).
EEEOC - Extended cycle with Increased Core Flow and Final Feedwater Temperature Reduction (Core Exposure 27,930 MWd/MTU).
FFWTR - Final Feedwater Temperature Reduction.
FHOOS - Feedwater Heater Out of Service.
PROOS - Pressure Regulator Out of Service.
SLO - Single Loop Operation.
FANP - Framatome ANP KAN - The designator for the reconstituted ATRIUM-1O assemblies.
REFERENCE CORE LOADING PATTERN -
The Core Loading Pattern Used for Reload Licensing Analysis.
REVISION HISTORY Revision 0 is to provide the thermal limits for Cycle 13 power operation.
Page 5 of 63 RBS CYCLE 13 COLR Revision 0 TECHNICAL SPECIFICATION 3.2.1 POWER DISTRIBUTION LIMITS AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)
The limiting APLHGR (sometimes referred to as Maximum APLHGR, or MAPLHGR) value for the most limiting lattice (excluding natural uranium) of each fuel type as a function of AVERAGE PLANAR EXPOSURE is given in Figures 2 through 7. Two sets of MAPLHGR are provided herein for ATRIUM-10 and GE-I 1. The GE-I set was determined with the SAFER/GESTR LOCA and GESTR-Mechanical methodology described in GESTAR-II (Reference 1).
The ATRIUM-10 set was determined with the FANP methodology (Reference 5).
The ATRIUM-10 APLHGR is further divided into two subsets: the reconstituted (marked by the designator KAN listed in the relevant figure), and the regular ATRIUM-l0. Core location by fuel type is provided in Figure 1 and is the reference core loading pattern in reference 5. The limits of these figures shall be reduced to a value of 0.79 and 0.83 times the two recirculation loop operation limit when in single loop operation for GE-il and ATRIUM-10, respectively (Reference 5). Thermal power and core flow dependent multipliers are provided.
The value of the exposure dependent limit is reduced by the value of the multiplier at a given offrated power or flow condition. The multipliers for single loop operation are shown in Appendix A.
The APLHGR limits for GE-i1 in the core monitoring system are in more detail than the limits that appear in the COLR due to their proprietary nature. The core monitoring system has APLHGR limits for each lattice in a bundle rather than listing only the most limiting value for the entire bundle. References 4 and 5 list the core monitoring system limits.
Page 6 of 63 RBS CYCLE 13 COLR Revision 0 TECHNICAL SPECIFICATION 3.2.2 POWER DISTRIBUTION LIMITS MINIMUM CRITICAL POWER RATIO (MCPR)
The MCPR limits for use in Technical Specification 3.2.2 for flow dependent MCPR (MCPRF) (Reference 5), power dependent MCPR (MCPRp) (Reference 5) are shown in Figures 13 and 14 and Figures 17 to 24, respectively. Figures 46 and 47 are used in lieu of Figures 13 and 14 when the Reactor Recirculation System is operating in Loop Manual Mode. The most limiting value from the applicable MCPRf and MCPRp figures is the operating limit. These values were determined with FANP methodology as described in Reference 5 and are consistent with a Safety Limit MCPR from Technical Specification 2.0.
At a power level greater than 40%, the power dependent MCPRp (Figures 23 and 24) shall be increased by 0.02 for Single Loop Operation. At a power lower than 40%, the most limiting MCPRp value is the operating limit, and it shall be increased by 0.02 for Single Loop Operation.
Page 7 of 63 RBS CYCLE 13 COLR Revision 0 TECHNICAL SPECIFICATION 3.2.3 POWER DISTRIBUTION LIMITS LINEAR HEAT GENERATION RATE (LHGR)
The limiting LHGR value for ATRIUM-10 and for the most limiting lattice of each GE-I 1 fuel type as a function of AVERAGE PLANAR EXPOSURE is given in Figures 8 through 12. Core location by fuel type is provided in Figure 1 and is the reference core loading pattern in reference 5. The LHGR limits for GE-11 and ATRIUM-10 in the core monitoring system are in more detail than the limits that appear in the COLR due to proprietary nature (References 9 and 10).
Thermal power and core flow dependent multipliers for ATRIUM-10 and GE-Il are provided in Figures 25, 26 & 27 and Figures 15 & 16, respectively. The value of the exposure dependent limit is reduced by the value of the multiplier at a given offrated power or flow condition.
Page 8 of 63 RBS CYCLE 13 COLR Revision 0 TECHNICAL SPECIFICATION 3.2.4 POWER DISTRIBUTION LIMITS FRACTION OF CORE BOILING BOUNDARY (FCBB)
Restricted Region Boundary Note: The boundary of the Restricted Region is established by analysis in terms of thermal power and core flow. The Restricted Region boundary is defined by the "non-setup" APRM Flow Biased Simulated Thermal Power - High Control Rod Block Setpoints, which are afunction ofreactor recirculation drive flow.
The Restricted Region boundaries as a function of aligned drive flow are given in Figures 30 through 33 in terms of aligned drive flow. The aligned drive flow is calculated from the input drive flow using the relationship given in Table 1.
Flow Biased Simulated Thermal Power - High Limits The APRM Flow Biased Simulated Thermal Power - High Scram setpoints as a function of aligned drive flow are given in Figures 30 through 33. The aligned drive flow is calculated from the input drive flow using the relationship given in Table 1.
- a. Case I - Normal Feedwater Heating Operation or Low Reactor Power:
TFW (at rated) 2 TFWs"' (at rated) - 500 F, and rated equivalent at off-rated reactor conditions.
OR P < 30%
- b. Case 2 - Reduced Feedwater Heating Operation TFW (at rated) < TFw's (at rated) - 500 F, and rated equivalent at off-rated reactor conditions.
AND P>30%
Where:
TFW is feedwater temperature in 'F, and P is reactor power in percent of rated.
Page 9 of 63 RBS CYCLE 13 COLR Revision 0 TECHNICAL SPECIFICATION 3.3.1.1 INSTRUMENTATION REACTOR PROTECTION SYSTEM (RPS) INSTRUMENTATION AVERAGE POWER RANGE MONITORS APRM Flow Biased Simulated Thermal Power - High Limits The APRM Flow Biased Simulated Thermal Power - High scram setpoint Allowable Values are given in Figures 30 through 33 in terms of aligned drive flow. The aligned drive flow is calculated from the input drive flow using the relationship given in Table 1.
- a. Case 1 - Normal Feedwater Heating Operation or Low Reactor Power:
TFW (at rated) 2 TWsIGN (at rated) - 500 F, and rated equivalent at off-rated reactor conditions.
OR P <30%
- b. Case 2 - Reduced Feedwater Heating Operation TFW (at rated) <TFW (at rated)-50 F, and rated equivalent at off-rated reactor conditions.
AND P>30%
Where:
TFW is feedwater temperature in OF, and P is reactor power in percent of rated.
APRM Simulated Thermal Power Time Constant The simulated thermal power time constant for use in Technical Specification Table 3.3.1.1-1, SR 3.3.1.1.14, is (Reference 6):
6 4 0.6 seconds.
The maximum simulated thermal power time constant for use in Technical Specification surveillance Table 3.3.1.1-1, SR 3.3.1.1.14 is:
6.6 seconds
Page 10 of 63 RBS CYCLE 13 COLR Revision 0 TECHNICAL SPECIFICATION 3.3.1.3 INSTRUMENTATION PERIOD BASED DETECTION SYSTEM (PBDS)
Monitored Region Boundary The Monitored Region Boundaries as a function of core flow are given in Figures 28 and 29.
Restricted Region Boundary Note: The boundary of the Restricted Region is established by analysis in terms of thermal power and core flow. The Restricted Region boundary is defined by the "non-setup " APRM Flow Biased Simulated Thermal Power - High Control Rod Block Setpoints, which are a function ofreactor recirculation driveflow.
The Restricted Region boundaries as a function of aligned drive flow are given in Figures 30 through 33 in terms of aligned drive flow. The aligned drive flow is calculated from the input drive flow using the relationship given in Table 1.
- a. Case 1 - Normal Feedwater Heating Operation or Low Reactor Power:
TFW (at rated) 2 TFsIG (at rated) - 50° F, and rated equivalent at off-rated reactor conditions.
OR P<30%
- b. Case 2 - Reduced Feedwater Heating Operation TFW (at rated) < TFWs"' (at rated) - 500 F, and rated equivalent at off-rated reactor conditions.
AND P>30%
Where:
TFW is feedwater temperature in OF, and P is reactor power in percent of rated.
Page 11 of 63 RBS CYCLE 13 COLR Revision 0 TECHNICAL REQUIREMENT 3.3.1.1 INSTRUMENTATION REACTOR PROTECTION SYSTEM (RPS) INSTRUMENTATION AVERAGE POWER RANGE MONITORS APRM Flow Biased Simulated Thermal Power - High Limits The APRM Flow Biased Simulated Thermal Power - High scram setpoint Nominal Trip Setpoints are given in Figures 30 through 33 in terms of aligned drive flow. The aligned drive flow is calculated from the input drive flow using the relationship given in Table 1.
- a. Case 1 - Normal Feedwater Heating Operation or Low Reactor Power:
TFW (at rated) 2 TFWIGN (at rated) -
50° F, and rated equivalent at off-rated reactor conditions.
OR P<30%
- b. Case 2 - Reduced Feedwater Heating Operation TFW (at rated) < TFsIG (at rated) -
50° F, and rated equivalent at off-rated reactor conditions.
AND P>30%
Where:
TFW is feedwater temperature in IF, and P is reactor power in percent of rated.
Page 12 of 63 RBS CYCLE 13 COLR Revision 0 TECHNICAL REQUIREMENT 3.3.2.1 INSTRUMENTATION CONTROL ROD BLOCK INSTRUMENTATION AVERAGE POWER RANGE MONITORS APRM Flow Biased Neutron Flux - High Limits The APRM Flow Biased Neutron Flux - High rod block Allowable Values and Nominal Trip Setpoints are given in Figures 34 through 37 in terms of aligned drive flow. The aligned drive flow is calculated from the input drive flow using the relationship given in Table 1.
- a. Case I - Normal Feedwater Heating Operation or Low Reactor Power:
T, (at rated) 2 TFW (at rated)-50 F, and rated equivalent at off-rated reactor conditions.
OR P<30%
- b. Case 2 - Reduced Feedwater Heating Operation TFW (at rated) <TFW (at rated)-50 F, and rated equivalent at off-rated reactor conditions.
AND P>30%
Where:
TFW is feedwater temperature in IF, and P is reactor power in percent of rated.
Page 13 of 63 RBS CYCLE 13 COLR Revision 0 REFERENCES
- 1)
NEDE-2401 I-P-A-14 and US Supplement, "General Electric Standard Application for Reactor Fuel," June 2000.
- 2)
Letter, J.S. Charaley (GE) to M.W. Hodges (NRC), Recommended MAPLHGR Technical Specifications for Multiple Lattice Fuel Designs, March 9,1987
- 3)
J I1-03660SRLR Rev. 2 Supplemental Reload Licensing Report for River Bend Station Reload 9 Cycle 10" November 2000.
- 4)
J I I-03660MAPL, Revision I "Lattice Dependent MAPLHGR Report for River Bend Station Reload 9 Cycle 10" November 2000.
- 5)
EMF-3 100 Revision 0, "River Bend Station Cycle 13 Reload Analysis."
- 6)
Letter, R.E. Kingston to G. W. Scronce, "Time Constant Values for Simulated Thermal Power Monitor" GFP-1032 November 30, 1995.
- 7)
- 8)
CEO 2003-00047, "River Bend Station Unit I El A Stability Power Uprate Evaluation."
- 9)
RBC-48838, "Transmittal of River Bend Cycle 10 LHGR/MAPLHGR Relaxation Results."
- 10)
EMF-3075(P) Revision 0, Mechanical Design Report for River Bend Unit I Reload RBEI-13 ATRIUM-IO Fuel Assemblies, Frarnatome ANP, April 2004.
ANALYTICAL METHODS DOCUMENTS (TS 5.6.5):
- 1)
XN-NF-81-58(P)(A) Revision 2 and Supplements I and 2, RODEX2 Fuel Rod Thermal-Mechanical Response Evaluation Model, Exxon Nuclear Company, March 1984.
- 2)
XN-NF-85-67(P)(A) Revision 1, Generic Mechanical Design for Exxon Nuclear Jet Pump BWR Reload Fuel, Exxon Nuclear Company, September 1986.
- 3)
EMF-85-74(P) Revision 0 Supplement I (P)(A) and Supplement 2 (P)(A), RODEX2A (BWR) Fuel Rod Thermal-Mechanical Evaluation Model, Siemens Power Corporation, February 1998.
- 4)
ANF-89-98(P)(A) Revision I and Supplement 1, Generic Mechanical Design Criteria for BWR Fuel Designs, Advanced Nuclear Fuels Corporation, May 1995.
- 5)
XN-NF-80-19(P)(A) Volume 1, Exxon Nuclear Methodology for Boiling Water Reactors -
Neutronic Methods for Design and Analysis, Exxon Nuclear Company, March 1983.
- 6)
XN-NF-80-19(P)(A) Volume 4 Revision 1, Exxon Nuclear Methodology for Boiling Water Reactors: Application of the ENC Methodology to BWR Reloads, Exxon Nuclear Company, June 1986.
- 7)
EMF-2158 (P)(A) Revision 0, Siemens Power Corporation Methodology for Boiling Water Reactors: Evaluation and Validation of CASMO-4/MICROBURN-B2, Siemens Power Corporation, October 1999.
- 8)
XN-NF-80-19(P)(A) Volume 3 Revision 2, Exxon Nuclear Methodology for Boiling Water Reactors, THERMEX: Thermal Limits Methodology Summary Description, Exxon Nuclear Company, January 1987.
- 9)
XN-NF-84-105(P)(A) Volume I and Volume I Supplements I and 2, XCOBRA-T: A Computer Code for BWR Transient Thermal-Hydraulic Core Analysis, Exxon Nuclear Company, February 1987.
Page 14 of 63 RBS CYCLE 13 COLR Revision 0
- 10)
ANF-524(P)(A) Revision 2 and Supplements I and 2, ANF Critical Power Methodology for Boiling Water Reactors, Advanced Nuclear Fuels Corporation, November 1990.
- 11)
ANF-913(P)(A) Volume I Revision I and Volume I Supplements 2, 3 and 4, COTRANSA2: A Computer Program for Boiling Water Reactor Transient Analyses, Advanced Nuclear Fuels Corporation, August 1990.
- 12)
XN-NF-825(P)(A) Supplement 2, BWR/6 Generic Rod Withdrawal Error Analysis, MCPRp for Plant Operations within the Extended Operating Domain, Exxon Nuclear Company, October 1986.
- 13)
ANF-1358(P)(A) Revision 1, The Loss of Feedwater Heating Transient in Boiling Water Reactors, Advanced Nuclear Fuels Corporation, September 1992.
- 14)
EMF-1997(P)(A) Revision 0, ANFB-10 Critical Power Correlation, Siemens Power Corporation, July 1998.
- 15)
EMF-1997(P) Supplement I (P)(A) Revision 0, ANFB-10 Critical Power Correlation: High Local Peaking Results, Siemens Power Corporation, July 1998.
- 16)
EMF-2209(P)(A) Revision 2, SPCB Critical Power Correlation, Siemens Power Corporation, November 2003.
- 17)
EMF-2245(P)(A) Revision 0, Application of Siemens Power Corporation's Critical Power Correlations to Co-Resident Fuel, Siemens Power Corporation, August 2000.
- 18)
XN-NF-80-19(P)(A) Volumes 2, 2A, 2B, and 2C, Exxon Nuclear Methodology for Boiling Water Reactors: EXEM BWR ECCS Evaluation Model, Exxon Nuclear Company, September 1982.
- 19)
ANF-91 -048(P)(A), Advanced Nuclear Fuels Corporation Methodology for Boiling Water Reactors EXEM BWR Evaluation Model, Advanced Nuclear Fuels Corporation, January 1993.
- 20)
ANF-91-048(P)(A) Supplements I and 2, BWR Jet Pump Model Revision for RELAX, Siemens Power Corporation, October 1997.
- 21)
XN-CC-33(A) Revision 1, HUXY: A Generalized Multirod Heatup Code with 10 CFR 50 Appendix K Heatup Option Users Manual, Exxon Nuclear Company, November 1975.
- 22)
EMF-CC-074(P)(A) Volume 4 Revision 0, BWR Stability Analysis: Assessment of STAIF with Input from MICROBURN-B2, Siemens Power Corporation, August 2000.
- 23)
EMF-2292(P)(A) Revision 0, ATRIUMT-10 Appendix K Spray Heat Transfer Coefficients, Siemens Power Corporation, September 2000.
- 24)
NEDE-2401 1-P-A-14 and US Supplement, "General Electric Standard Application for Reactor Fuel," June 2000.
Page 15 of 63 RBS CYCLE 13 COLR Revision 0 Table 1. Aligned Drive Flow WD
=
Where:
Wb WD)
A 40 A1 00 1O1.209 -A °-31.028
- A'°° + 70.181
- W_
70.181 -
( A 0 -
t i40)
= FCTR card input drive flow in percent rated,
= Aligned drive flow in percent rated,
= Low flow drive flow alignment setting, and
= High flow drive flow alignment setting.
Page 16 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 1. REFERENCE CORE LOADING PATTERN 29 31 33 35 37 39 41 43 45 47 49 51 53 55 28 24 26 23 23 24 26 23 26 17 26 23 26 14 16 17.1 0.0 14.5 20.2 17.0 0.0 19.4 0.0 14.6 0.0 19.3 0.0 37.4 21.0 26 26 23 26 22 26 23 26 23 26 23 26 22 21 16 0.0 19.5 0.0 19.3 0.0 20.1 0.0 18.5 0.0 20.6 0.0 19.7 19.0 21.7 24 23 26 22 24 22 24 23 26 23 26 23 25 16 16 15.2 0.0 19.9 18.1 18.0 13.7 14.6 0.0 20.4 0.0 20.9 0.0 22.9 21.9 22 23 22 24 24 26 22 25 23 26 23 26 22 21 16 20.1 19.7 18.1 15.6 0.0 13.9 0.0 17.7 0.0 16.4 0.0 17.6 18.1 22.5 20 24 26 22 26 22 26 17 23 17 26 18 25 16 17.0 0.0 17.8 0.0 20.2 0.0 13.0 19.9 14.0 0.0 25.7 0.0 22.2 18 26 23 24 22 26 24 26 22 26 23 25 23 16 0.0 20.5 14.0 14.1 0.0 17.5 0.0 15.9 0.0 19.3 0.0 16.9 22.2 16 23 26 23 25 17 26 22 25 16 26 20 21 16 19.5 0.0 15.2 0.0 13.0 0.0 18.1 0.0 22.9 0.0 17.9 18.4 22.8 14 26 23 26 23 23 22 25 18 23 23 22 14 0.0 18.7 0.0 18.1 20.4 16.2 0.0 17.1 20.0 18.0 15.9 39.1 12 17 26 23 26 17 26 16 23 24 23 14 14.6 0.0 20.6 0.0 13.5 0.0 22.9 20.1 15.8 18.7 35.4 10 26 23 26 23 26 23 26 23 23 17 0.0 21.4 0.0 16.9 0.0 19.7 0.0 18.2 19.1 14.6 8
23 26 23 26 18 25 20 22 14 19.2 0.0 21.2 0.0 25.8 0.0 17.8 16.2 35.4 6
26 22 25 22 25 23 21 14 0.0 19.6 0.0 17.8 0.0 17.8 18.6 39.2 4
14 21 16 21 16 16 16 Nuclear Fuel Type 37.5 18.7 22.9 17.3 22.7 22.1 22.8 BOC Exposure (GWd/MTU) 2 16 16 16 16 21.1 21.6 22.2 22.5 Fuel Type Description Cycle Loaded 14 GEll 3.88B-13GZ-120T-146 9
16 GEll 2.25B-NOG-120T-146 9
17 GEll 1.47B-NOG-120T-146 10 18 GEll 2.57B-9GZ-120T-146 10 20 ATRIUM-10 A10-3552B-12GV60 11 21 ATRIUM-10 A10-3899B-12GV60 11 22 ATRIUM-10 A10-3996B-11G45 12 23 ATRIUM-10 A10-3981B-15GV75 12 24 ATRIUM-10 A10-1997B-OGd 12 25 ATRIUM-10 3.775B-9GV60 13 26 ATRIUM-10 3.747B-13GV70 13
Page 17 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 2. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FOR ATRIUM-10 13 12 r-z 0
1=
z 10 w
CD I-w< 9 wz 6
z C-w C,
5 I
ti 13 gIII I I I _I
-l
-n
-k= _ 1
.3
rn 4+jj LA ';fŽ I
12 11 I
I N
K-10 F -----
9 8
7 6
r -
=.-
I1--1' 1 '
-- r -
~
-4 1*~I 1-. [7
-1I 7-:1 1 i-T
._t_.
t 1
__t
__1
t l
- -t -
-5 f
l
-- 1-- l
-I---
5 0
10 20 30 40 50 60 Average Planar Exposure (GWd/MT)
Page 18 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 3. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FOR ATRIUM-10 (KAN FUEL) 13 12 i
1 z0 9
zID w
CD
< 9 w
z 8
CD W.
13 12 11 10 9
8 7
6 5
W 5 I- - i-- I-
. i I,
1 V
I 0
10 20 30 40 50 60 Average Planar Exposure (GWd/MT)
Page 19 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 4. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FOR GE11-P9SUB225-NOG-120T-146-T 14 13 0
I--
Ii 0~
'U C,-
12 10 01/2M0Lt FKW MBB
¶ X i S 0 T l H SL U
A A b f M I D S R d t 7lt 1
- S CX~E ll:44I~L i hI S1 E L I R4H HS 4I.
LILIT E l 1411 iH ti X _
9 8
7 6
5 0
10 20 30
. 40 50 AVERAGE PLANAR EXPOSURE (GWd/MT) 60
z0 z
w w
w CD Page 20 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 5. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE GE11-P9SUB147-NOG-120T-146-T 14 13 124 tY U
ll4 fL[
- iLAxi 8
T V1tF 1LiI4 _t IthE RIL_ _4lI 1Lhit '
U--.H 6
5
IflThFI P4
)
10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/MT)
Page 21 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 6. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE GE11-P9SUB257-9GZ-120T-146-T 14
IK Th[L LWd LId lB H us z0 zw L-w z
z
-Ja.
wi LI
>1 13 12 11 10 9
8 7
i
. I..
. I I
. .. I..
. I-
- I -. - -
- -..- - i I.
I..
I..
.I.
.I.
6 41f V LI 5
0 10 20 30 40 50 AVERAGE PLANAR EXPOSURE (GWd/MT)
Page 22 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 7. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FOR GE11-P9SUB388-13GZ-120T-146-T 13 ff 12 z
°11 I-9 zwCD10 w
wz 28 1lw 0
7 a:
6
..J-7
-Y U
U
.4-ft Hr LIHr LH~t i
XIIU 11434 t141 liin 11EKEK A ^
13 12 11 I t 9
8 7
J 6
5 5
0 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/MT)
Page 23 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 8. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE FOR ATRIUM-10 14 13 12 E 11
.4 c 10 0
L.
a) 0)
CD lE -I[ 3--_
-J
-E'I55+/-f--
_~
- I A
F-I-F I
I
-7=
I-vu X -77 Xi N
P N
_~~
_=.
X I
I 14 13 12 11 10 9
8 7
6 5
N 7
LII
i::Lr
I
-
I
- It 7KrV 4iIII;jK3z-;
-
r w r=-1- - ! ---
5 - I -,
-I-t--- --
K 0
10 20 30 40 50 60 Average Planar Exposure (GWd/MT)
Page 24 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 9. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE GE1 1-P9SUB225-NOG-120T-146-T 15 14 gutFEDY tufts BLEW~~4 t-S-L
- 4-1l L 12 oZ 11 0
e 10 zw C,
w 8
w z
3 7 143f1 L; Tii4f pI
- 7=e AW X X-fi tt4l4 h Ullil-JL4kb t =
1 Ft1A i44 t2tU4
~kT~
LLEILI 1AI1I4J LLI4~Y ~LlELL IIIL'I 6
5 0
10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/MT)
Page 25 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 10. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE GE11-P9SUB147-NOG-120T-146-T 15 14 z0 z
w wu z
13 12 LLR7E1lX411 [tid Il
~F~tL l H--M--
I--IUS:--
11ii 3 E I
1-5 --_
a v-
--- I IlI I Z Ll --:
1u 9
8 7
~ I ItIU I~t I L
~1X--kI H
_7 R+/-
_Ff~ f E----l l hfflVV IFd-j-tT[I-t-hi
- 4IiL-EEtltll:-
-- --t=- - -- 1
- ht
-h1 I -I-I-t~t-H-F-t-I-f -
T--I4
--t- --I Th-J-74 --I
_~~~~~~~
tE.--=t-Hfi1HDffjlhSEt{li-St-6 5
0 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/MT)
Page 26 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 11. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE GE1l-P9SUB257-9GZ-120T-146-T 15 14 0
F I-13 12 11 10 9
77-7
- --X X
A I~-0I-
-M-
-flW t-
~L~P IL
~jj4ZL 4~tIL-LJ
'1-11
--1-~
1-
-- -tl_-§-tt--_-
e-tt -tlt-r s X tl2-t-_--r t- - i-t rt-II Q 1-
-- -iL fIdi'll W4 II'I L-I4141
- --, -I,l J
U tittiL t11 t-IELI-1d+Wt tHIt-HA LX+U H H-Fl t4 +-tit H W
-
Z I
6 5
M ES ttitS~~~ ---
-Z-t-t ll:3 i 4TF T$1 f f 14T.
0 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/MT)
Page 27 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 12. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE GE11-PSUB388-13GZ-120T-146-T 15 14 13 me 12 z0 11 I-w 10 zw w
I 8
w Z
7 6
5 i1T fT n f i ff { F-T tlT h + 1 t 1 411 J 1n I m 2 - S i[ I l t101 4 [UI
[
ID-1:7
-t17 4
I 411
-F-1t tl 3
4 1+ ek I\\
Ti-- t'IW W
-31f-'-1i1--1 S~f1=
Wm~g14-7 15 14 13 12 11 10 9
8 7
6 5
0 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/MT)
Page 28 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 13. OPERATING LIMIT MCPR (MCPRF) VERSUS CORE FLOW FOR ATRIUM-10 FOR RECIRCULATION SYSTEM IN LOOP AUTO CONTROL, ALL EXPOSURES 1.40 -
1.30 1.m Q:tE 0
1.10 1.00 0
10 20 30 40 50 60 70
- 8) 90 100 110 12)
OoeFRON, % red
Page 29 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 14. OPERATING LIMIT MCPR (MCPRF) VERSUS CORE FLOW FOR GE-li FOR RECIRCULATION SYSTEM IN LOOP AUTO CONTROL, ALL EXPOSURES 1.60 1.50 1.40 E
it" 1.30 1.20 1.10 1.00 0
10 20 30 40 50 60 70, 80 90 100 110 120 Core Flow, % rated
Page 30 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 15. LHGR MULTIPLIER VERSUS CORE FLOW FOR ALL ATRIUM-10, ALL EXPOSURES 1.10 V~~~~
~ 1:.0tlilfl0 I
LI I iEL IX HA -T1-1 X
-1 X f[ L-0.70$
I II 0
10 20 30 40 50 60 70 80 90 100 110 120 Core Flow, % rated
Page 31 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 16. LHGR AND MAPLHGR MULTIPLIER VERSUS CORE FLOW FOR GE-li, ALL EXPOSURES 1.10 V 1 4 11 i V K 4l VftN I
1.00 0.70 -fl tfitt+/-46"4 fit4 IL I
0 470 4 X
0 W
all1-fla TOA I
By-1-1 0.60 n-X 0.50 0
10 20 i
30 40 50 60 70 80 90 100 110 120 Core Flow, % rated
Page 32 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 17. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR ATRIUM-10, EXPOSURE RANGE BOC TO MOC 2.3 -
2.2 t
2.1 1-...
ThiI7TFFIU-- hA1144IL -H 1 i Fl
-I:L
-[1-4[ 1-X-1 I -11 U-I---
1Ct -t JJ I..... Il.L I _=L
_ I... I...L. I...._1-
.4 I Z-.lb-1 -;.*V_
_L a- -_-
IT11 I
TI1I~l-
- 1 _
I
_ 1L '
StI VWA I hmiFF
_Ifi thi hi 2.0 -
1.9 -
1.8.
j 1.7-1.6-1.5 1.4 -
1.3 -
1.2 1.1 -
1.0 4-4
4-4
-
-
H f 1
f
-I pf1 I
173 I IFFi I
tI---I L
.5.
L -
I.
I.
.5I.
I. -
- Lhtt
-M--
I-
- Vt44:
- J~J~[94L~[
Vhfk[
4~lL~k I
1 T 1r~r iV J-- -1 fl
- -t
-lk5!:
-1
--if --
_T I
II+-; K -T ml 4 T h 13iH FF I-_
I A:
I hi1-IE 4__LI I I -I-IL - d-l 4--1-I -- : -I-- -
g S
1 LT-l : -I- -a-Ii-:R-
_LI I
- T R
1 IS a- --- 1'. I I I ~- -
I Kfl-L 1 fif-T-LI !fl. 17I-.S 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 33 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 18. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR GE-li, EXPOSURE RANGE BOC TO MOC 2.1 I. -
I'm, V
V -
V -
- I
.1-I TItIU$
-1
_-t I
]41- -. T1-
'FIT 2.0
___I.-: t-tF'TFFFIT
'_ik _-
i l
<21~i tI1i T144 Lk I 11 1.9 1.8 1.7 0.!
0 1.6 1.5 1F114 I V I 3 1L r7FI i F
-S--1 f A-t-I-XX MT1-J11W-t t 4tt-1iX-L~[1.hF-- -- 1-0 flS i
F1F-t -ETITII W --TIt I -1 I I
_ r- _
I_-
R+
Itq l -t -1 tIt-t It I I I_ -I
+ _t Itt f
1.4 1.3 1.2 1.1 1.0 11L14-I II I I I t-IT-0 10 20 30 40 50 60 Power, % rated
' 1 liT-70 80 90 100 110
Page 34 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 19. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR ATRIUM-10, EXPOSURE RANGE MOC TO EOC 2-3 I -
I -
- U -
I -
I -
I -
I -
F -
iX10
~
~
~
1 tI+XI-t-iI--L4--
I-W :-1---
1 :1-1 l1-1 -F-T Z.L h *
.T -
l-.
i tt--
N -i-1 2.1 2.0 1.9 1.8
.t_Ei 1.7 0L 1.
a-1.6 A-_ :1-
.9 1-alf ]ITT, 4
I#1` -
I. -
I. -
I* -
'Rhl
~ti aL-pq4 1 E1 4-R:I H.I f __
L M i u -11 I R
WlHflI 1M-1 14 I
IH I$Niz-
-1X-1SM t1X1-1--:
I. l~~.......
w...
- E 1~I1 ThL
't 1T21$~i jIJ~+[ jej-§t f1tV TfI-V1-4V111d 4-1 1HEL2L;l J0IIf X-
' 4 t
143
~~fI-i
- 4lt--
1.5 1.4 L
I -1 I I-]
I -1.IT-I I
1.3 1.2 1.1 1.0 mm-rH-1tim~ ~irI~
-EI-t-r 9.-.9..
i
~~..i
... 1 f
- 1. 1-111
.. f r
r i........
I...
.............. -.......... I......
........... I.....
I
[1.At I. t T t _ _.'
L--
-tI iIEf.7L
[-1 3 0 10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 35 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 20. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR GE-ll, EXPOSURE RANGE MOC TO EOC 2.1 2.0 1.9 1.8 1.7 E
- . 1.6 0.Q-C 1.5 1.4 1.3 1.2 1.1 Ff1-~tH-f 4W T hE tfi 14 dfi f1i 40IE 4:LLL IT I
IX th-H---
i m#1 I TT
~I Thl-
- t h-fh1+/-
VA -
TIT t T lt i :1 0-1-[-
Itfl tI t I r_-
-I-IS T I T -I -1 ffi WAI I
R 1 R I
LT
LIT 1.0 -1 I
I 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 36 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 21. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR ATRIUM-10, EXPOSURE RANGE EOC TO EEOC 2.3 -
I -Jf
-J
*
-
I-,.
-T-tf-E
-L1 44TELI 4itt d--1H
'1.1.4I 2.2 2.1 2.0 1.9 1.8 L-E j 1.7 ca.
Q~
1.6 1.5 1.4 1.3 1.2 1.1 1.0
-rt-r-r-T-
-T - -
-- I F- -- -r--
2 6-1 I
-T-I v--t
_T rT I
_T r --
i
- T- -I-
-_ i
+
~~~83-++iXHX L
I
-L 4-t 9i44Tt A I4Th TL4 1 X 9 41 Hl0 Ith l4 3/4-L I-4 T k h F T 4 ' Y 4 1
I Ih tL R
IL i
~
WTiX EH jiA 1117k 4. I I
I I.
.bc i~l 4- -t h-- 1h 2
I-p flt-ML
-j
--- tf
-.-- --- I--
-W --- -- v --
I-
---41.j m T[ li---r I [t -- -1 1-
-I 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 37 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 22. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR GE-il, EXPOSURE RANGE EOC TO EEOC 2.1 2.0 1.9 1.8 1.7 E 1.6 Ca.
a-1.5 1.4 1.3 1.2 1.1 fT J 44
.A t il 2O8 it~
- VLL 11 t1---tll-lU t l 4H
- [l 4tl 4410 1
idi-tH~~~kM tm1E1-X L
-j --
H4 i l 1
4 4
4 4
4 4
Htlll -IfTlX t-1 0 kI-1 - N-
-la-Sltiftl l-l t[dX --0-1 1
4 M
T 1
1 4
4
.4 f 4
[
4 4
.4 4
{4 4 4-1 2 1 1 SthHL i 1 2 44 I V 1 1 t1 T
W
~ ~
~
~
~~---
U Efi f
lti 01
[
F L -I
--Ii I1*1
. 1_:
4I Hr
-4 1.0 -
0 10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 38 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 23. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR ATRIUM-10, EXPOSURE RANGE EEOC TO EEEOC 2 '3 -
2.2 -1II Th
- k1.1+/-'
T.
-I Ii-:
I 4 1I-- m
>-SOP/4
2.1 2.0 1.9 1.8 3 1.7 0_
L1.6 1.5 1.4 1.3 1.2 1.1 1.0
,1tI T ~-I _lT 1_
ELtEVL
-W V--T h
-jETI 4+/-fI Il
-i IThM. ---[t-t-Jfl--t-J4-1~ --
i-IStrlll-lll-t X
_....,- I.....
rL-LT I l Ih
+-F-l F--
vL 4 L tI iVFL t t1 1 I-
- LF 1LiI~b
~L
_'F ;& L4 4+
m JI ttL
- iEfiH E
1-tAiEi-1 W
-t W~-I
- -ftL
. f..lt.
I t.
441- :t A: I -.iI- +-
E111: 1 t- :I I
0 10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 39 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 24. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR GE-ll, EXPOSURE RANGE EEOC TO EEEOC 2.1 2.0 1.9 1.8 1.7 W-E 1.6 L 1.5 1.4 1.3 1.2 i4141 1 --
1 [4 It 4Th IL] A ff-ist kft 1-14tE 4:11 t-11
_4 R41-T :1 k14T -tk 41 41 t Ij I
t 2 4 6fts f i
fi i_
I EI III1
- 1Tl
[4;I I;,I.=
+-tl,-'
tlii,. I3___
6 4-4-6-4 I It 444; 41 :41T4-I 1.3 4II I
I II
_11
_I
... I 1
V-I--t-tL i 444I'
-alt-441o' 4t
-t-I I ltt 1M ItV-1.1 10 o 1T Ti t1F-I--1
--1t1
[I
-IV fI#--_
JtX--
-JtH-4-f----1 1 f l 1-0 10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 40 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 25. LHGR MULTIPLIER VERSUS CORE POWER FOR ALL ATRIUM-10, BOC TO EEOC 1.10 1.00 0.90 0.80 M.
0 LL (9
-J 0.70 0.60 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 41 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 26. LHGR AND MAPLHGR MULTIPLIER VERSUS CORE POWER FOR GE-Il, ALL EXPOSURES 1.10 1
r r
.I...
.. ~I.~.
Im_7
-1
-- T-I T-ITT11,-1'1fUT I.U;D 1.00 0.95 0.90 0.85 0.
C.)
< 0.80 IL 0 0.75 0.70 0.65 0.60 0.55 4
fW-g.
i fL l----
o-t
-Xf-. -t-Xi--
a -
T -Ift-T h 11t f 1 I i-01 KEFiXk1i l 2TV 9fIEhLh! bil-tH-11'-1, HIA'I
- 4X kk.94
- 1 14-1 1':JII:
411:kH3 22114 I 44441T:1 I
__14
-fi<= 5t T-m-
/ Flowi-0.57 -
- 064 ~
I-M-IT I
R-t1-41-1f-WLT-W -S 1
- t-ITk-T IWWWWX kH
-.1ft 53-l144N uH1-t 0.50 -
0.45 -
-F=-I I I I I I1-H li+/-+/-HIl+/-[H-I-HH-I-H-H+~--i-H-I
'i 1
-H-
+
F+_
+
l t-t~t-1#411 I
-I, ft I tk ffif-F I T- -]T44TI
. I_
t i
i 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 42 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 27. LHGR MULTIPLIER VERSUS CORE POWER FOR ALL ATRIUM-10, EEOC TO EEEOC 1.10 1.00 0.90 0.80 0.
-J 0.70 0.60 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 43 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 28. MONITORED REGION BOUNDARY (CASE 1) 120 110 100 90
'a80 1A 70 WL 60 0
0.. 50 w
o 40 30 20 10 0
-L-MONITORED
- I REGIO
-i 0
10 20 30 40 50 60 70 CORE FLOW (% rated) 80 90 100 110
Page 44 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 29. MONITORED REGION BOUNDARY (CASE 2) 120-I I
I I
I I
I a
I I
I I
I I
I I
a I
I I
I 110 -
100-.
0 -
CY,
, /
M ONTORED
/
LL 60-
______f_
REGION CL. 5 0
- - - - - - - -I- - - - - - - - - --.
I I
I I
I I
I I
34 0
- - -..- - -g,,, ___,
I I
I a
a I
I I
I a
I I
I I
I I
30 O
I MOiTORED I'I I'
w 0 10 REGIO 00 w
0 2
0 4
0 60 7
0 9
~
1 CORE FLOW (% rated)
Page 45 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 30. APRM FLOW BIASED SIMULATED THERMAL POWER
- HIGH SCRAM SETPOINTS AND RESTRICTED REGION BOUNDARY (TWO RECIRCULATION LOOP OPERATION - CASE 1) 120 110 eo0 90 11 70 X60 4 0.
30 20 0
e0 A...............
.. I I
r..
t...
.Noia Vau
............................................. l 4
r..
90
,0
,~
,1I a
10 20 30 40 50 60 7
ALIGNED DRIVE FLOW rA 0
'. rated)
Page 46 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 31. APRM FLOW BIASED SIMULATED THERMAL POWER
- HIGH SCRAM SETPOINTS AND RESTRICTED REGION BOUNDARY (SINGLE RECIRCULATION LOOP OPERATION - CASE 1) 120 110 100 90 80 70 j: 60-0wj 60 -
0 IL Uj 50 40 30 20 10 0
.......I.
~~~........
A.....
r..........
r.........T......................
Nomhial~alue.......
Alowable Value o
SLORestnctedRejon BoundaryHghEndpoint S
Setup Scram
.NS Non-Setup Scram RR RestictedRegon I
+-
I.
s--......
I..........I
-I 0
10 20 30 40 50 60 70 ALIGNED DRIVE FLOW CA rated) 80 90 100 110 120
Page 47 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 32. APRM FLOW BIASED SIMULATED THERMAL POWER
- HIGH SCRAM SETPOINTS AND RESTRICTED REGION BOUNDARY (TWO RECIRCULATION LOOP OPERATION - CASE 2) 120
-r--
r --
110 100 90-6-
70~
a a
a aNominal Value Boundary aHigh Edon IL
-~
a S
Setup Scrama a
a a
a N
N'on-Sctup a
040-
--r RR Restricted Region 30 0
4 -
0 10 20 30 40 s0 60 70 so 90 100 110 120 ALIGNED DRIVE FLOW (% rated)
Page 48 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 33. APRM FLOW BIASED SIMULATED THERMAL POWER
- HIGH SCRAM SETPOINTS AND RESTRICTED REGION BOUNDARY (SINGLE RECIRCULATION LOOP OPERATION - CASE 2) 120 110 100 70 Eu W 6 U 0 0~
U 50 0
(0 40 30 20 10 0
4 4
Nominal4 Vau Allowable Valu SLO4 4
R 4tce Reio Boudar Hgh ndpin 4
.4----.~
4 Setup.Sc-ra-4 4N Non-Setup4 RR Restrict 4
d Regio a
10 20 30 40 50 60 70 ALIGNED DRIVE FLOW (% rated) 80 90 100 110
Page 49 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 34. APRM FLOW BIASED NEUTRON FLUX - HIGH ROD-BLOCK SETPOINTS (TWO RECIRCULATION LOOP OPERATION - CASE 1)
- 120, 110.........
.. C.....
10...
90 -
.. I l
- j...
I.
I L...
1e 0jBl
....,..... jjj 90
- s Setup Rod-Block
- NS NnStup Rod-Block 10...
0 60 ---- -tr-----tU- ---------t---1-----r-- _ --- I----+------....--...
0
'10 20 30 40 50 60 70 s0 go
'100 110 120 ALIGNED DRIVE FLOW CA rated)
Page 50 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 35. APRM FLOW BIASED NEUTRON FLUX - HIGH ROD-BLOCK SETPOINTS (SINGLE RECIRCULATION LOOP OPERATION - CASE 1) 120 110 100 90 80 70.
tu 60.
0 30 wi 50.
0 U 40 20 10.
0I
.1.
. i.
r Nominal JAllowable S
Setup Roi NS Non-Setu
aIue }
i...........
Value
-Elock p Rod-Elock
.. j
,i-j..........
r..........
j...........
i..........
j..........
t..........
i--..-....
l l
l l
l I
I I
i
-I 0
10 20 30 40 50 60 70 80 90 100 110 ALIGNED DRIVE FLOW rA rated) 120
Page 51 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 36. APRM FLOW BIASED NEUTRON FLUX - HIGH ROD-BLOCK SETPOINTS (TWO RECIRCULATION LOOP OPERATION - CASE 2) 120 I
I I I Nominal Value I
I I I
Allowable Value LU 60S Setup Rod-Block 0
CL NS II No-eu Ro-lc 10
- 40.
-L
--I 0.
0 10 20 30 40 50 so 70 s0 90 100 110 120 ALIGNED DRIVE FLOW (% rated)
Page 52 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 37. APRM FLOW BIASED NEUTRON FLUX - HIGH ROD-BLOCK SETPOINTS (SINGLE RECIRCULATION LOOP OPERATION - CASE 2) 120 110---
I I
I I
-I -I I
I Nominal Value I
Allowable Value I
60NS onSetup Rod-Block 0
10 40----
~
I 0D 0
10 20 30 40 so 60 70 so 90 100 110 120 ALIGNED DRIVE FLOW (% rated)
Page 53 of 63 RBS CYCLE 13 COLR Revision 0 APPENDIX A OPERATING LIMITS FOR EQUIPMENT OUT OF SERVICE OR LOOP MANUAL MODE The operating limits listed in this appendix shall be used as indicated when operating in any of the following conditions:
Feedwater Heater Out of Service (FHOOS)*
Pressure Regulator Out of Service (PROOS)*
Single-Loop Operation (SLO)
Reactor Recirculation System in Loop Manual control.
- At a power level greater than 40%, the power dependent MCPRp (Figures 38 and 39) shall be increased by 0.02 for concurrent SLO and FHOOS. At a power lower than 40%, the most limiting MCPRp value is the operating limit, and it shall be increased by 0.02 for SLO and FHOOS.
At a power level greater than 40%, the power dependent MCPRp (Figures 40 and 41) shall be increased by 0.02 for concurrent SLO and PROOS. At a power lower than 40%, the most limiting MCPRp value is the operating limit, and it shall be increased by 0.02 for SLO and PROOS.
Page 54 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 38. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR ATRIUM-10, ALL EXPOSURES, FEEDWATER HEATER OUT OF SERVICE (FHOOS) 23 -
2.2 -I F- -tL Au -
.~t
- 1 H.1 1 E l.l
- l l -
- 4:I 1IIt
-VIT 1 W-d;I A t I I kt ' lI H.I I I
I.
al.
1
- I II
=wImul 1iThtMIU1a Z.1 2.0 1.9 1.8
.t_Ei 1.7 0.
r 1.6 1.5 1.4 1.3 1.2 1.1 1.0 WT l
+-
K IZI PR- _
4111 I
E1TP-I #4# 114 it
~IJ
..T.ll 4T. -I-HI t
I-iXal~
HQt FX1 E- ~
--llt4 I__
V
-fl-- _-
JAA -I-F I u___
IT-R1 1 -- ___
W-1-:14 1
jV 1--
- p 9
.9-
.9-i
.9
_j
- _4IL~~fL t-l IR -4 1-4u-I
~m_ I _
w---
TH4___
9T-1ITI fl$I 1 I IhR-IPITI 14T+/-I4I II I:1
... 4-4-1
-
-4 1411H 4-1-Ij-41 I__1-t-~
f Ia Irn I
I I
i-t 1-14 P-
_ _ T JT
_M -F It -t
- 1
I -
I -
- I -
.t I-IEI
_ 4 l
If-5l 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 55 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 39. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR GEll, ALL EXPOSURES, FEEDWATER HEATER OUT OF SERVICE (FHOOS) 2.1 2.0 1.9 1.8 1.7
-:D 1.6 CL O' 1.5 1.4 1.3 1.2 1.1
.1 1,II4T1ID- -tl'-I L-- I -- _
oLTh
/f IMI4 -r~i
--- -I
.i, II 41A
.....t14i44
--- 1-it- -1 I I =1-lk I.
I
.=.
I
. I FT 1 Th-IT I L 44_-
W II 4 1 -- f-4 1k -I I
-L I14ST IT 31 H~~~~~~1 211ii4WifW-
[J[tE
-141 I -fi1~ItI1i I 1114-Vf-
£.AA...
£ 1
t I11I[t111
-T+E IL LIl-i-i LI -1-lit T[1.-!
1.0 1:
0 10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 56 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 40. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR ATRIUM-10, ALL EXPOSURES, PRESSURE REGULATOR OUT OF SERVICE (PROOS) 2.3 Y -
Y -
Y -
Y -
-
Y -
Y -
I -
I -
Wrn19TEIf4 I41VlT 1 II 1ITLF 2.2 -
2.1 -t 2.0 -
1.9 -
1.8 -
Ej 1.7-Wc' Q-1.6-0 I
1.5 i 1.4 -
1.3 -
1.2 -
1.1 1 1.0 -
I5I.z I1 1
I I
I I
I I-
--?2.-l
,, IYu I-d-1. I J-11i]T~It1-ff t-I _ L 19- _I Mr_ f:
rt I-I--lj-2 --T- -7 Ij-1-_
I t
TI- - r-tG+-
I fI~
t1----28II-14-r
-t-H-t-IfiH1~i1W t-1 tF I
F-lt-F1 I
I t
tI II ii-tL v-T-r r-t-l-T t H
-f1-P+tL H
t--
t-X-11 i
- EFt-FR
--t -
-l
- P-F+-tt-tfl t1 -- S t-l ---t-h-.-[t t--l-3--t-l-j-t I1
-1i-4
- 1
't-tA-Il-l fi I 11-1-7-t 41
-- 44 1-l
+ ll- -LI 114 1 1-i -I 1 I! 4Ltz- :_:-~
t -t 4 I -I
~ ~ I E d 4 § Y 1
-4 It L J L +-[1 l1.-
LJta
- I m--L-H-I 99
-
959
2-fl-I [--
$1t-h t-_
IIT r
.1 1**1I 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 57 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 41. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR GE11, ALL EXPOSURES, PRESSURE REGULATOR OUT OF SERVICE (PROOS) 2.1 2.0 1.9 1.8 1.7 E
Q.
0~
0 1.6 1.5 1--1-4--1--110-~rnl4-llE<0-fJ-1l-1-Df-LI X --- IIf --
1--i--
flf 4ld LI t 6-I I ItY-LL-ll-f--5l--,- [----
UfT F-T i~
Il-t lf l-
-1l-R- --ll--T
-:-I IF t fl-141 I ThIhWI44: 4jL-1 L-H 1441: 1-1 I4-+T L 1 41 I-t It-1
-1 A i.
W SWW1-WitEfS 22 I I 1 k -I t 00 1-1 I0
-F 11tit:i t-f0l t-ti It. I I
-I 1.4 1.3 1.2 1.1 1.0 l I1 IP 1-+A+L[I t I 1 4 +I III 1-J I
i 0
10 20 30 40 50 60 Power, % rated 70 80 90 100 110
Page 58 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 42. LHGR MULTIPLIER VERSUS CORE POWER FOR ALL ATRIUM-10, ALL EXPOSURES FHOOS OR PROOS 1.10 1.00 0.90 0.80 0.
0 LL
-J 0.70 0.60 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 59 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 43. LHGR AND MAPLHGR MULTIPLIER VERSUS CORE POWER FOR GE-1l, ALL EXPOSURES FHOOS OR PROOS 1.10 1.00 0.90 0.
u-,
W 0.80
-j 0.70 0.60 0.50 0
10 20 30 40 50 60 Power, % rated 70 80 90 100 110
Page 60 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 44. LHGR MULTIPLIER VERSUS CORE POWER FOR ALL ATRIUM-10, ALL EXPOSURES SINGLE LOOP OPERATION (SLO) 1.10 1.00 0.90 0.80 0L 0
(9
-J 0.70 0.60 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 61 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 45. LHGR AND MAPLHGR MULTIPLIER-VERSUS CORE POWER FOR GE-li, ALL EXPOSURES SINGLE LOOP OPERATION (SLO) 1.10 1.05 -
1.00 0.5 0.90 0.'85-0a
< 0.'80
-jx 0.70 -
0.65 0.60-0.55-0.50-WF1 U-'l h I WU4t4 4___1 1 1_
_-T-Ifa 2 hI II4,I I
~ l df-I_
t flhL
...I....I A-L I 'I ;
-u_--
I T__
I ff---
H__
-I -I --k I -
69-U
Li S -
S -
I -
b.4-6w m
Irt ~I _
Th] : If 4___N I
TIT-1
-r_
! -4Th I lIi P
V 44 l lmlIhIm42 UIl 4th 14T
-I f l
-4
~~j4 114t114T
~t~h2144 ikI I 2!L t2L4
~14 42_1215 I--
- __ --
f I
_W
- IT -
1-1:11-14 1fl-I I 1EZt4Uh1I izUI 22I41UI21t
- +/- i f i i i # (
- '53
.1.
- 1. 1.,.. 4+ -I
-- - 44TIfl- __
kT 4 -
- 1 +4 a I
I$- 1 fl -__
J1-I Tf-,_
'ITh__
IIit 0.45 -1 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 62 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 46. OPERATING LIMIT MCPR (MCPRF) VERSUS CORE FLOW FOR ATRIUM-10 FOR RECIRCULATION SYSTEM IN LOOP MANUAL, ALL EXPOSURES 1.5
-i
& 1.2 IL m.
0 10 20 30 40 50 60 70 80 90 100 110 120 Core Flow, % Rated
I Page 63 of 63 RBS CYCLE 13 COLR Revision 0 FIGURE 47. OPERATING LIMIT MCPR (MCPRF) VERSUS CORE FLOW FOR GE-1l FOR RECIRCULATION SYSTEM IN LOOP MANUAL, ALL EXPOSURES 1.5-1.4 -
1~ 4 1.3 - t~4t~Tt~~li E
1.1 1.00 0I I illil 0.90mW 0
10 20 30 40 50 60 70 80 90 100 110 120 Core Flow, % Rated
Core Operating Limits Report Cycle 13 Revision I
Page 1 of 63 RBS CYCLE 13 COLR Revision I RIVER BEND STATION, CYCLE 13 CORE OPERATING LIMITS REPORT (COLR) i PREPARED BY:
REVIEWED BY:
APPROVED BY:
APPROVED BY:
APPROVED BY:
Respons e Engineer Fteview Engineer 7-Date:
I' 6 ?
Date:
11A65/Dy Date: Al /Q.Y/o Date:
I /
/ts7o 1
Date:
4//4*<//
,Avanafer - Nuclear Engineering
-f I n/l Director, Engineering River Bend Nuclear Station Oh-site Safety Rev
- v mi e
River Bend Nucle ta ion
Page 2 of 63 RBS CYCLE 13 COLR Revision 1 TABLE OF CONTENTS INTRODUCTION AND
SUMMARY
3 CONTROL RODS..............................................................
4 TECHNICAL SPECIFICATION 3.2.1...............................................................
5 TECHNICAL SPECIFICATION 3.2.2..............................................................
6 TECHNICAL SPECIFICATION 3.2.3..............................................................
7 TECHNICAL SPECIFICATION 3.2.4..............................................................
8 TECHNICAL SPECIFICATION 3.3.1.1..............................................................
9 TECHNICAL SPECIFICATION 3.3.1.3.............................................................
10 TECHNICAL REQUIREMENT 3.3.1.1..............................................................
11 TECHNICAL REQUIREMENT 3.3.2.1.............................................................
12 REFERENCES/ANALYTICAL METHODS DOCUMENTS.......................................... 13 TABLE 1. ALIGNED DRIVE FLOW.............................................................
15 APPENDIX A - OPERATING LIMITS FOR EQUIPMENT OUT OF SERVICE OR LOOP MANUAL MODE.............................................................
53
Page 3of63 RBS CYCLE 13 COLR Revision 1 INTRODUCTION AND
SUMMARY
This report provides Cycle 13 values for the following Technical Specifications:
- 1. AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR) limits,
- 2. MINIMUM CRITICAL POWER RATIO (MCPR) limits,
- 3. LINEAR HEAT GENERATION RATE (LHGR) limits,
- 4. FRACTION OF CORE BOILING BOUNDARY (FCBB),
- 5. REACTOR PROTECTION SYSTEM (RPS) APRM Flow Biased Simulated Thermal Power - High Allowable Values,
- 6.
REACTOR PROTECTION SYSTEM (RPS) APRM Flow Biased Simulated Thermal Power time constant.
- 7.
PERIOD BASED DETECTION SYSTEM (PBDS) region boundaries.
Technical Specification section 5.6.5 requires these values be determined using NRC-approved methodology and are established such that all applicable limits of the plant safety analysis are met. The references for the pertinent methodology used by FANP are listed in the section titled Analytical Methods Documents.
This report also provides Cycle 13 values for the following Technical Requirements:
- 1. REACTOR PROTECTION SYSTEM (RPS) APRM Flow Biased Neutron Flux Power - High Allowable Values and Nominal Trip Setpoints',
- 2. CONTROL ROD BLOCK INSTRUMENTATION APRM Flow Biased Neutron Flux High limits.
In some cases limits in the COLR differ from the limits in the core monitoring system.
This is sometimes due to limitations in the core monitoring system to model the actual limits, in which case the core monitoring limits may be more conservative than the COLR limit at the given conditions. In other cases the limits in the COLR are presented in less detail than in the core monitoring system.
The Cycle 13 COLR supports power operation with FHOOS, FFWTR, PROOS, SLO and Loop Manual Operation.
In addition to the specific requirements listed in the Sections 3.2.1 to 3.2.4, the MCPRp and LHGRFAC-p limits as shown in Appendix A shall be used for the applicable modes of operation. For Loop Manual Operation, the MCPRf as shown in Appendix A shall be used. Figures 42 and 43 are applicable to FHOOS or PROOS but not for simultaneous FHOOS and PROOS.
The reload analyses were performed in accordance with FANP methodology and its applicability to Cycle 13 was confirmed by Reference 5.
'Note that for Figures 30 to 37, the Nominal Setpoints should be used for indicating the entry into a particular stability region as allowed and appropriate actions be taken prior to the entry
Page 4of63 RBS CYCLE 13 COLR Revision 1 CONTROL RODS The River Bend core utilizes both GE control rods and ABB CR-82M bottom entry cruciform control rods.
These Control Rod designs are discussed in more detail in Reference 7.
DEFINITIONS MOC - Middle of Cycle (Core Exposure 25,921 MWd/MTU).
EOC - End of Cycle (Core Exposure 27,025 MWd/MTU).
EEOC - Extended cycle with Increased Core Flow (Core Exposure 27,341 MWd/MTU).
EEEOC - Extended cycle with Increased Core Flow and Final Feedwater Temperature Reduction (Core Exposure 27,881 MWd/MTU).
FFWTR - Final Feedwater Temperature Reduction.
FHOOS - Feedwater Heater Out of Service.
PROOS - Pressure Regulator Out of Service.
SLO - Single Loop Operation.
FANP - Framnatome ANP KAN - The designator for the reconstituted ATRIUM-1 0 assemblies.
REFERENCE CORE LOADING PATTERN - The Core Loading Pattern Used for Reload Licensing Analysis.
REVISION HISTORY Revision 0 is to provide the thermal limits for Cycle 13 power operation.
Revision I changes the MOC, EOC, EEOC and EEEOC exposure points consistent with Reference 11.
Page 5 of 63 RBS CYCLE 13 COLR Revision I TECHNICAL SPECIFICATION 3.2.1 POWER DISTRIBUTION LIMITS AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)
The limiting APLHGR (sometimes referred to as Maximum APLHGR, or MAPLHGR) value for the most limiting lattice (excluding natural uranium) of each fuel type as a function of AVERAGE PLANAR EXPOSURE is given in Figures 2 through 7. Two sets of MAPLHGR are provided herein for ATRIUM-10 and GE-I 1. The GE-1I set was determined with the SAFER/GESTR LOCA and GESTR-Mechanical methodology described in GESTAR-II (Reference 1).
The ATRIUM-1 0 set was determined with the FANP methodology (Reference 5).
The ATRIUM-10 APLHGR is further divided into two subsets: the reconstituted (marked by the designator KAN listed in the relevant figure), and the regular ATRIUM-10. Core location by fuel type is provided in Figure 1 and is the reference core loading pattern in reference 5. The limits of these figures shall be reduced to a value of 0.79 and 0.83 times the two recirculation loop operation limit when in single loop operation for GE-Il and ATRIUM-10, respectively (Reference 5). Thermal power and core flow dependent multipliers are provided.
The value of the exposure dependent limit is reduced by the value of the multiplier at a given offrated power or flow condition. The multipliers for single loop operation are shown in Appendix A.
The APLHGR limits for GE-1I in the core monitoring system are in more detail than the limits that appear in the COLR due to their proprietary nature. The core monitoring system has APLHGR limits for each lattice in a bundle rather than listing only the most limiting value for the entire bundle. References 4 and 5 list the core monitoring system limits.
Page 6 of 63 RBS CYCLE 13 COLR Revision i TECHNICAL SPECIFICATION 3.2.2 POWER DISTRIBUTION LIMITS MINIMUM CRITICAL POWER RATIO (MCPR)
The MCPR limits for use in Technical Specification 3.2.2 for flow dependent MCPR (MCPRF) (Reference 5), power dependent MCPR (MCPRp) (Reference 5) are shown in Figures 13 and 14 and Figures 17 to 24, respectively. Figures 46 and 47 are used in lieu of Figures 13 and 14 when the Reactor Recirculation System is operating in Loop Manual Mode. The most limiting value from the applicable MCPRf and MCPRP figures is the operating limit. These values were determined with FANP methodology as described in Reference 5 and are consistent with a Safety Limit MCPR from Technical Specification 2.0.
At a power level greater than 40%, the power dependent MCPRp (Figures 23 and 24) shall be increased by 0.02 for Single Loop Operation. At a power lower than 40%, the most limiting MCPRp value is the operating limit, and it shall be increased by 0.02 for Single Loop Operation.
Page 7 of 63 RBS CYCLE 13 COLR Revision 1 TECHNICAL SPECIFICATION 3.2.3 POWER DISTRIBUTION LIMITS LINEAR HEAT GENERATION RATE (LHGR)
The limiting LHGR value for ATRIUM-10 and for the most limiting lattice of each GE-1I fuel type as a function of AVERAGE PLANAR EXPOSURE is given in Figures 8 through 12. Core location by fuel type is provided in Figure 1 and is the reference core loading pattern in reference 5. The LHGR limits for GE-I l and ATRIUM-lO in the core monitoring system are in more detail than the limits that appear in the COLR due to proprietary nature (References 9 and 10). Thermal power and core flow dependent multipliers for ATRIUM-10 and GE-i1 are provided in Figures 25, 26 & 27 and Figures 15 & 16, respectively. The value of the exposure dependent limit is reduced by the value of the multiplier at a given offrated power or flow condition.
Page 8 of 63 RBS CYCLE 13 COLR Revision I TECHNICAL SPECIFICATION 3.2.4 POWER DISTRIBUTION LIMITS FRACTION OF CORE BOILING BOUNDARY (FCBB)
Restricted Region Boundary Note: The boundary of the Restricted Region is established by analysis in terms of thermal power and core flow. The Restricted Region boundary is defined by the "non-setup" APRM Flow Biased Simulated Thermal Power - High Control Rod Block Setpoints, which are a function of reactor recirculation drive flow.
The Restricted Region boundaries as a function of aligned drive flow are given in Figures 30 through 33 in terms of aligned drive flow. The aligned drive flow is calculated from the input drive flow using the relationship given in Table 1.
Flow Biased Simulated Thermal Power - High Limits The APRM Flow Biased Simulated Thermal Power - High Scram setpoints as a function of aligned drive flow are given in Figures 30 through 33. The aligned drive flow is calculated from the input drive flow using the relationship given in Table 1.
- a. Case I - Normal Feedwater Heating Operation or Low Reactor Power:
T, (at rated) > T,'GN (at rated) - 500 F, and rated equivalent at off-rated reactor conditions.
OR P*30%
- b. Case 2 -Reduced Feedwater Heating Operation T, (at rated) < TX IsG' (at rated) - 500 F, and rated equivalent at off-rated reactor conditions.
AND P>30%
Where:
TFw is feedwater temperature in 'F, and P is reactor power in percent of rated.
Page 9of63 RBS CYCLE 13 COLR Revision I TECHNICAL SPECIFICATION 3.3.1.1 INSTRUMENTATION REACTOR PROTECTION SYSTEM (RPS) INSTRUMENTATION AVERAGE POWER RANGE MONITORS APRM Flow Biased Simulated Thermal Power - High Limits The APRM Flow Biased Simulated Thermal Power - High scram setpoint Allowable Values are given in Figures 30 through 33 in terms of aligned drive flow. The aligned drive flow is calculated from the input drive flow using the relationship given in Table 1.
- a. Case I - Normal Feedwater Heating Operation or Low Reactor Power:
T, (at rated) 2 TXrIGN (at rated) - 50° F, and rated equivalent at off-rated reactor conditions.
OR P5 30%
- b. Case 2 - Reduced Feedwater Heating Operation T, (at rated) < TIGN (at rated) - 50° F, and rated equivalent at off-rated reactor conditions.
AND P>30%
Where:
TFW is feedwater temperature in 'F, and P is reactor power in percent of rated.
APRM Simulated Thermal Power Time Constant The simulated thermal power time constant for use in Technical Specification Table 3.3.1.1-1, SR 3.3.1.1.14, is (Reference 6):
6 +/- 0.6 seconds.
The maximum simulated thermal power time constant for use in Technical Specification surveillance Table 3.3.1.1-1, SR 3.3.1.1.14 is:
6.6 seconds
Page 10 of 63 RBS CYCLE 13 COLR Revision I TECHNICAL SPECIFICATION 3.3.1.3 INSTRUMENTATION PERIOD BASED DETECTION SYSTEM (PBDS)
Monitored Region Boundary The Monitored Region Boundaries as a function of core flow are given in Figures 28 and 29.
Restricted Region Boundary Note: The boundary of the Restricted Region is established by analysis in terms of thermal power and core flow. The Restricted Region boundary is defined by the "non-setup" APRM Flow Biased Simulated Thermal Power - High Control Rod Block Setpoints, which are a function of reactor recirculation drive flow The Restricted Region boundaries as a function of aligned drive flow are given in Figures 30 through 33 in terms of aligned drive flow. The aligned drive flow is calculated from the input drive flow using the relationship given in Table 1.
- a. Case 1 - Normal Feedwater Heating Operation or Low Reactor Power:
T, (at rated) 2 T"' GN(at rated) - 50° F, and rated equivalent at off-rated reactor conditions.
OR P<30%
- b. Case 2 - Reduced Feedwater Heating Operation T, (at rated) < T IGN (at rated) - 50° F, and rated equivalent at off-rated reactor conditions.
AND P>30%
Where:
TFW is feedwater temperature in 'F, and P is reactor power in percent of rated.
Page 11 of 63 RBS CYCLE 13 COLR Revision 1 TECHNICAL REQUIREMENT 3.3.1.1 INSTRUMENTATION REACTOR PROTECTION SYSTEM (RPS) INSTRUMENTATION AVERAGE POWER RANGE MONITORS APRM Flow Biased Simulated Thermal Power - High Limits The APRM Flow Biased Simulated Thermal Power - High scram setpoint Nominal Trip Setpoints are given in Figures 30 through 33 in terms of aligned drive flow. The aligned drive flow is calculated from the input drive flow using the relationship given in Table 1.
- a. Case 1 - Normal Feedwater Heating Operation or Low Reactor Power:
T, (at rated) 2 TDIGN (at rated) - 500 F, and rated equivalent at off-rated reactor conditions.
OR P<30%
- b. Case 2 - Reduced Feedwater Heating Operation T, (at rated) <TFIGN (at rated) - 500 F, and rated equivalent at off-rated reactor conditions.
AND P>30%
Where:
TFw is feedwater temperature in 'F, and P is reactor power in percent of rated.
Page 12 of 63 RBS CYCLE 13 COLR Revision 1 TECHNICAL REQUIREMENT 3.3.2.1 INSTRUMENTATION CONTROL ROD BLOCK INSTRUMENTATION AVERAGE POWER RANGE MONITORS APRM Flow Biased Neutron Flux - High Limits The APRM Flow Biased Neutron Flux - High rod block Allowable Values and Nominal Trip Setpoints are given in Figures 34 through 37 in terms of aligned drive flow. The aligned drive flow is calculated from the input drive flow using the relationship given in Table 1.
- a. Case I - Normal Feedwater Heating Operation or Low Reactor Power:
T, (at rated) 2 TFI GN(at rated) - 50° F, and rated equivalent at off-rated reactor conditions.
OR P<30%
- b. Case 2 - Reduced Feedwater Heating Operation T, (at rated) < T
'GN (at rated) - 50° F, and rated equivalent at off-rated reactor conditions.
AND P>30%
Where:
TFW is feedwater temperature in 'F, and P is reactor power in percent of rated.
Page 13 of 63 RBS CYCLE 13 COLR Revision I REFERENCES I)
NEDE-2401 1-P-A-14 and US Supplement, "General Electric Standard Application for Reactor Fuel," June 2000.
- 2)
Letter, J.S. Charnley (GE) to M.W. Hodges (NRC), Recommended MAPLHGR Technical Specifications for Multiple Lattice Fuel Designs, March 9,1987
- 3)
JI 1-03660SRLR Rev. 2 Supplemental Reload Licensing Report for River Bend Station Reload 9 Cycle 10" November2000.
- 4)
J I1-03660MAPL, Revision 1 "Lattice Dependent MAPLHGR Report for River Bend Station Reload 9 Cycle 10" November 2000.
- 5)
EMF-3 100 Revision 0, "River Bend Station Cycle 13 Reload Analysis."
- 6)
Letter, R.E. Kingston to G. W. Scronce, "Time Constant Values for Simulated Thermal Power Monitor" GFP-1032 November 30, 1995.
- 7)
- 8)
CEO 2003-00047, "River Bend Station Unit I EIA Stability Power Uprate Evaluation."
- 9)
RBC-48838, "Transmittal of River Bend Cycle 10 LHGR/MAPLHGR Relaxation Results."
- 10)
EMF-3075(P) Revision 0, Mechanical Design Report for River Bend Unit I Reload RBEI-13 ATRIUM-I0 Fuel Assemblies, Framatome ANP, April 2004.
- 11)
Letter, J. L. Raklios to J. B. Lee, "Clarification of River Bend Cycle 13 Licensing Exposure Breakpoints.", JLR:04:178/FAB04-1371, November 14, 2004 ANALYTICAL METHODS DOCUMENTS (TS 5.6.5):
I)
XN-NF-81-58(P)(A) Revision 2 and Supplements I and 2, RODEX2 Fuel Rod Thermal-Mechanical Response Evaluation Model, Exxon Nuclear Company, March 1984.
- 2)
XN-NF-85-67(P)(A) Revision 1, Generic Mechanical Design for Exxon Nuclear Jet Pump BWR Reload Fuel, Exxon Nuclear Company, September 1986.
- 3)
EMF-85-74(P) Revision 0 Supplement I (P)(A) and Supplement 2 (P)(A), RODEX2A (BWR) Fuel Rod Thermal-Mechanical Evaluation Model, Siemens Power Corporation, February 1998.
- 4)
ANF-89-98(P)(A) Revision I and Supplement 1, Generic Mechanical Design Criteria for BWR Fuel Designs, Advanced Nuclear Fuels Corporation, May 1995.
- 5)
XN-NF-80-l 9(P)(A) Volume I, Exxon Nuclear Methodology for Boiling Water Reactors -
Neutronic Methods for Design and Analysis, Exxon Nuclear Company, March 1983.
- 6)
XN-NF-80-19(P)(A) Volume 4 Revision 1, Exxon Nuclear Methodology for Boiling Water Reactors: Application of the ENC Methodology to BWR Reloads, Exxon Nuclear Company, June 1986.
- 7)
EMF-2158 (P)(A) Revision 0, Siemens Power Corporation Methodology for Boiling Water Reactors: Evaluation and Validation of CASMO-4/MICROBURN-B2, Siemens Power Corporation, October 1999.
- 8)
XN-NF-80-19(P)(A) Volume 3 Revision 2, Exxon Nuclear Methodology for Boiling Water Reactors, THERMEX: Thermal Limits Methodology Summary Description, Exxon Nuclear Company, January 1987.
Page 14 of 63 RBS CYCLE 13 COLR Revision 1
- 9)
XN-NF-84-105(P)(A) Volume I and Volume I Supplements I and 2, XCOBRA-T: A Computer Code for BWR Transient Thermal-Hydraulic Core Analysis, Exxon Nuclear Company, February 1987.
- 10)
ANF-524(P)(A) Revision 2 and Supplements I and 2, ANF Critical Power Methodology for Boiling Water Reactors, Advanced Nuclear Fuels Corporation, November 1990.
- 11)
ANF-913(P)(A) Volume I Revision I and Volume I Supplements 2, 3 and 4, COTRANSA2: A Computer Program for Boiling Water Reactor Transient Analyses, Advanced Nuclear Fuels Corporation, August 1990.
- 12)
XN-NF-825(P)(A) Supplement 2, BWR/6 Generic Rod Withdrawal Error Analysis, MCPRp for Plant Operations within the Extended Operating Domain, Exxon Nuclear Company, October 1986.
- 13)
ANF-1358(P)(A) Revision I, The Loss of Feedwater Heating Transient in Boiling Water Reactors, Advanced Nuclear Fuels Corporation, September 1992.
- 14)
EMF-1997(P)(A) Revision 0, ANFB-10 Critical Power Correlation, Siemens Power Corporation, July 1998.
- 15)
EMF-1997(P) Supplement I (P)(A) Revision 0, ANFB-10 Critical Power Correlation: High Local Peaking Results, Siemens Power Corporation, July 1998.
- 16)
EMF-2209(P)(A) Revision 2, SPCB Critical Power Correlation, Siemens Power Corporation, November 2003.
- 17)
EMF-2245(P)(A) Revision 0, Application of Siemens Power Corporation's Critical Power Correlations to Co-Resident Fuel, Siemens Power Corporation, August 2000.
- 18)
XN-NF-80-19(P)(A) Volumes 2, 2A, 2B, and 2C, Exxon Nuclear Methodology for Boiling Water Reactors: EXEM BWR ECCS Evaluation Model, Exxon Nuclear Company, September 1982.
- 19)
ANF-91-048(P)(A), Advanced Nuclear Fuels Corporation Methodology for Boiling Water Reactors EXEM BWR Evaluation Model, Advanced Nuclear Fuels Corporation, January 1993.
- 20)
ANF-91-048(P)(A) Supplements I and 2, BWR Jet Pump Model Revision for RELAX, Siemens Power Corporation, October 1997.
- 21)
XN-CC-33(A) Revision 1, HUXY: A Generalized Multirod Heatup Code with 10 CFR 50 Appendix K Heatup Option Users Manual, Exxon Nuclear Company, November 1975.
- 22)
EMF-CC-074(P)(A) Volume 4 Revision 0, BWR Stability Analysis: Assessment of STAIF with Input from MICROBURN-B2, Siemens Power Corporation, August 2000.
- 23)
EMF-2292(P)(A) Revision 0, ATRIUMTM-10 Appendix K Spray Heat Transfer Coefficients, Siemens Power Corporation, September 2000.
- 24)
NEDE-2401 1-P-A-14 and US Supplement, "General Electric Standard Application for Reactor Fuel," June 2000.
Page 15 of 63 RBS CYCLE 13 COLR Revision 1 Table 1. Aligned Drive Flow WD =
101.209
- A40-31.028
- AX + 70.181 - WD 70.181 -
( A100 A'0 )
Where:
WD WD A,4 0
,A 0o
= FCTR card input drive flow in percent rated,
= Aligned drive flow in percent rated,
= Low flow drive flow alignment setting, and
= High flow drive flow alignment setting.
Page 16 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 1. REFERENCE CORE LOADING PATTERN 29 31 33 35 37 39 41 43 45 47 49 51 53 55 28 24 26 23 23 24 26 23 26 17 26 23 26 14 16 17.1 0.0 14.5 20.2 17.0 0.0 19.4 0.0 14.6 0.0 19.3 0.0 37.4 21.0 26 26 23 26 22 26 23 26 23 26 23 26 22 21 16 0.0 19.5 0.0 19.3 0.0 20.1 0.0 18.5 0.0 20.6 0.0 19.7 19.0 21.7 24 23 26 22 24 22 24 23 26 23 26 23 25 16 16 15.2 0.0 19.9 18.1 18.0 13.7 14.6 0.0 20.4 0.0 20.9 0.0 22.9 21.9 22 23 22 24 24 26 22 25 23 26 23 26 22 21 16 20.1 19.7 18.1 15.6 0.0 13.9 0.0 17.7 0.0 16.4 0.0 17.6 18.1 22.5 20 24 26 22 26 22 26 17 23 17 26 18 25 16 17.0 0.0 17.8 0.0 20.2 0.0 13.0 19.9 14.0 0.0 25.7 0.0 22.2 18 26 23 24 22 26 24 26 22 26 23 25 23 16 0.0 20.5 14.0 14.1 0.0 17.5 0.0 15.9 0.0 19.3 0.0 16.9 22.2 16 23 26 23 25 17 26 22 25 16 26 20 21 16 19.5 0.0 15.2 0.0 13.0 0.0 18.1 0.0 22.9 0.0 17.9 18.4 22.8 14 26 23 26 23 23 22 25 18 23 23 22 14 0.0 18.7 0.0 18.1 20.4 16.2 0.0 17.1 20.0 18.0 15.9 39.1 12 17 26 23 26 17 26 16 23 24 23 14 14.6 0.0 20.6 0.0 13.5 0.0 22.9 20.1 15.8 18.7 35.4 10 26 23 26 23 26 23 26 23 23 17 0.0 21.4 0.0 16.9 0.0 19.7 0.0 18.2 19.1 14.6 8
23 26 23 26 18 25 20 22 14 19.2 0.0 21.2 0.0 25.8 0.0 17.8 16.2 35.4 6
26 22 25 22 25 23 21 14 0.0 19.6 0.0 17.8 0.0 17.8 18.6 39.2 4
14 21 16 21 16 16 16 Nuclear Fuel Type 37.5 18.7 22.9 17.3 22.7 22.1 22.8 BOC Exposure (GWd/MTU) 2 16 16 16 16 21.1 21.6 22.2 22.5 Fuel Type Description Cycle Loaded 14 GEll 3.B8B-13GZ-120T-146 9
16 GEll 2.25B-NOG-120T-146 9
17 GE11 1.47B-NOG-120T-146 10 18 GE11 2.57B-9GZ-120T-146 10 20 ATRIUM-10 A10-3552B-12GV60 11 21 ATRIUM-10 A10-3899B-12GV60 11 22 ATRIUM-10 A10-39968-11G45 12 23 ATRIUM-10 A10-3981B-15GV75 12 24 ATRIUM-10 A10-1997B-OGd 12 25 ATRIUM-10 3.775B-9GV60 13 26 ATRIUM-10 3.747B-13GV70 13
Page 17 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 2. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FOR ATRIUM-10 13 12 r-i 1 z0 p
w LUs CD I-w
< 9 w
z z
8 EL w
CD 7
x n
6
+
.j.
147 17
A LtIIK
=1==I H-KAH FZK4 T
-
13 12 11 10 9
8 7
6 5
~7 1 - : - 1. I t-t- I :-
-- tI
---fI i
I i
0 10 20 30 40 50 60 Average Planar Exposure (GWd/MT)
Page 18 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 3. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FOR ATRIUM-10 (KAN FUEL) 13 12 11 10 9
8 7
6 13 12 11 10 9
8 7
6 5 4-IZE -=I ZF I-i a
L A_l to-.1
,.A1_1_-I
=
I
.1LL X=
5 0
10 20 30 40 50 60 Average Planar Exposure (GWd/MT)
Page 19 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 4. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FOR GE11-P9SUB225-NOG-120T-146-T 14 13 444-i4---r r-"411t 4:1 fH~eITT-I-Itt-I4AMUIEIAt us z
z 0
F z
LU CD Ul x
5' 12 11
...... I.,
I....
.I I
10 9 Utt E ill4ItE I
- L 0 1l0 I
q.0U21+
8
.i1-1 I
7 I I
I U
4
-
5 0
10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/MT)
Page 20 of 63 RBS CYCLE 13 COLR Revision I FIGURE 5. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE GE11-P9SUB147-NOG-120T-146-T 14 z0 13 Z
12 0
w LUl V0 8
(L 6
5 i-UgINFf 4hf-V444 r............
gI I.
.I 1it E 1 0
10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWdIMT)
Page 21 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 6. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE GE1I1-P9SUB257-9GZ-120T-146-T 14 I4..--W
-f;~
- I_ I_
-h tU-__
-f1 L
z0 w
IJJ zlu I-LuI w
z
-j z
-j LuJ 13 12 11 10 9
IHAI ffi~~~-1 u
W W-y1 IIFHITI~PV t 1S113 LftH1 LH4IifLU[ 1r to__ W 4Id fl: h t a
7 6
5 0
10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWdIMT)
Page 22 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 7. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FOR GEl1-P9SUB388-13GZ-120T-146-T 13 j
12 z
2 11 zwo 10 sI-w
< 9 wz Z
8 w
0 7
uj 26 R
I 13 12 11 10 9
8 I -i-i-A-4--4-t-+- l-f ttt-I
-+44-1-44-ft 11-t -if-i +
+/-f-I t
+-f-t -I-l-4 4-t 4
I I I I I -1 7
IEEE --
~titE --
hE-f 6
I 5
5 0
10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/MT)
Page 23 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 8. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE FOR ATRIUM-10.
14 13 12 4-a) 4-,
co I-0 0
4._
C.
LI)
I-Cu a) 11 10 9
8 1
1 1
1 LL 1
1 4--
.W; X X I X112W ft---
-+---
-7. 14 13 12 11 10 9
8 7
6 7
CZt 7 r--
I:-.
5 ---LI-
-:- i--.
0 t1 t - -
l
-I 4-.--
4-I --
=1
_S I
- i 5 0
10 20 30 40 50 60 Average Planar Exposure (GWd/MT)
Page 24 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 9. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE GEI I-P9SUB225-NOG-120T-146-T 15 14
= 13 ws 12 Z
1 1 I--
wo w
9 Lu w8 z
imy iEIELWt
-I X;2-
~~-
OF~~T E A Ag 6
5 0
10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWdIMT)
Page 25 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 10. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE GEll-P9SUB147-NOG-120T-146-T 15 14
,~~-t P-11-11 -11'EXgWf.
Ie l--;n-fi l,
- =
!iI
[Tlt If:-m T-mi -F --
Fut-T z0 z
w w
wCD I;:z =r-"
~--r 4
13 _
110- I--
I -#----
q 1 E4~
Sitf 12 11 10 9
8
~4 i+W14z m
- 1W71-4 tl 7m 7
- J73 WX 0017 7
6 5
0 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWdIMT)
Page 26 of 63 RBS CYCLE 13 COLR Revision I FIGURE 11. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE GE1 1-P9SUB257-9GZ-1 20T-146-T 15 14 13 U12 o 10 F
z 09 I
8 w
z 7
6 IT $I-h1t
- ifitRIIt ifif LI VI-
-XX~tt-r
- l fI0 l-l -l--
_I _FL _ILLI WI_
-L
-~~~t-Eth Wlt M1t tL Th1IFVt 4m j
z-EF-F-F
$,i _
--f
-:vfF 44~tt-W%
-l=-
ttl
-Jt---
- l----
-- t-14-1-1:
t- --- = = 11
-1 Ifl-
-Thi-E tT-k4
- im1 E
amX a..
f 5
0 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWdlMT)
Page 27 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 12. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE GE11-PSUB388-13GZ-120T-146-T 15 14 13 I-12 z011 w
U 10 zw 0
9 I
8 w
Z 7
I I -
I I
mTff-fm--i u-IVI jI 1:
15
-JIJ 14 THI tVI+/-111Th- -It I.
,4-
-EF-I-' -
, t-31-ikft I1 h
1 13 12 Rk-
-jj-t IIII
-fifffif g tI i m TI -1tHM
_ =tl1 t-J
- ff--
7
-fail 4z--
t-+t-Ai Itl FIL-ti tt
- tzIHI i
L--
l:l f-- If$X SzT-
£iti _l
~11 10 It-i
+ Iwn L j_ i
+/--t1 1--t-t
,z.-
AI fl-fal
~~~~-1IT
- I:0 N-3 fl F: MXfi 1X 2
9 8
7 6
5 6
5 0
10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/MT)
Page 28 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 13. OPERATING LIMIT MCPR (MCPRF) VERSUS CORE FLOW FOR ATRIUM-10 FOR RECIRCULATION SYSTEM IN LOOP AUTO CONTROL, ALL EXPOSURES 1.30 0i 0
BE 0
10 20 30 40 50 60 70 8D 90
- 10) 110 12D Ccre RO, %raed
Page 29 of 63 RBS CYCLE 13 COLR Revision I FIGURE 14. OPERATING LIMIT MCPR (MCPRF) VERSUS CORE FLOW FOR GE-li FOR RECIRCULATION SYSTEM IN LOOP AUTO CONTROL, ALL EXPOSURES 1.60 1.50 1.40 1.30 E
O-0 1.20 1.10 1.00 0
10 20 30 40 50 60 70 80 90 100 110 120 Core Flow, % rated
Page 30 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 15. LHGR MULTIPLIER VERSUS CORE FLOW FOR ALL ATRIUM-10, ALL EXPOSURES 1.10 1.00 U--
E 0.90 I
-J 0.80 0.70 0
10 20 30 40 50 60 70 80 90 100 110 120 Core Flow, % rated
Page 31 of 63 RBS CYCLE 13 COLR Revision I FIGURE 16. LHGR AND MAPLHGR MULTIPLIER VERSUS CORE FLOW FOR GE-li, ALL EXPOSURES 1.10 1.00 0.90 LL ar 0.80
-J 0.70 0.60 0.50 0
10 20 30 40 50 60 70 80 90 100 110 120 Core Flow, % rated
Page 32 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 17. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR ATRIUM-10, EXPOSURE RANGE BOC TO MOC 2.3 -
2 1 i I. I_ _
J~t.
_^_,_
_7I flT qh:
2 1-I_ I 2I.
14 NN_'$'
-W T _J
'_ __ --Uft J-111 VRM I let
'-'- 174 I:r-l _ M 2.0 -
1.9 -
1.8 -
II 4Fflw.
F--...l il zm a11 aaaaar I @1$
I laf-Itm ITal I
n 1.7-0.
1.6 1.5 1.4 -
1.3 -
1.2 -
1.1 1.0 1 44t1r-
--1j 41 4-4-f I -1t41411 -
4 1--1:-
I Th 1 tt:4t-Lti
...-T -r.-rIr-r 1.
-_ -T I II i 4+/-l 4+/- -1 I 4+ 1+
1
-4
-ki
-4]
4I 1
4 1-T 41 I
1TT__
J-T
-I2 tI-T 1-
-tt m S
-LtL a-4 i
1# 14. j %4-t-iii:
-I-f4 iaS-WS$ 40 1 Ilt-ll t~1I I t-#4 ~
IH I
1 0X 1:t j jE th gtl_fThu:
R__
I4444
__
i -_..
1- ___
I 1-I-t II-t 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 33 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 18. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR GE-il, EXPOSURE RANGE BOC TO MOC 2.1 2.0 1.9 1.8 1.7 1.6 Q.
a-L 1.5 1.4 1.3 1.2 1.1
-T t-14tt -t4i t
$tt4~
-14 11:
t L-t W J I U Mt #4-U L~
r ;I L i U N HI 1111 4it fL tH t - L F L L4t
- CI T 4 NK
-'I L Id--l i 1 Th0 t-I I-t-
-IV LT h 1Wtt-j-I#I#Lt h
-tX ThhL~h hvK 1+/- X W40A I44:
281 1-1 NiL -IKL LtIA Th 4
- S Lt - -t tL-L:
IX h
Ti Dt f
It~~~~~~ff
- L t-t-14 1 -
- 1:----: ttt --g-t 1 -
I 1.0 I-0 10 20 30 40 50 60 Power, % rated 70 80 90 100 110
Page 34 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 19. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR ATRIUM-10, EXPOSURE RANGE MOC TO EOC 2.3 2.2 2.1 2.0 1.9 1.8 M 1.7 1.6 1.5 1.4 1.3 1.2 LT-I~.16HE WLLLtl-~-II~
1L1ML i
,t1m1
[tl-t1t i9--I-- t4-t t-R4L[F-thi- -tit-- -Itl-K-1 L- [ I'l-t-h --tt-i i _-l-tIl-ITh T1t~t 1f#
-ut m-ll-V i-ml-f ll-fjrtl-ijitaid: l-X MWIL h -:t-f-t--
i-t-i-t-f -H fl~t-tl:-t: i
-f 43-f+/-t-1
-t-t-t
--- f--
t-t-M1
+EE
-E
+-T
$EI fEI ;41
-L
-E-1 4~
I
-F I
_n I
~
I I_
.- I + +
-I 1
A -
Il lI
, I-T t91T1 llXtI ftAd; I
[l-I Tl-I 1: ll21 2;l Ii.
-tt-l-t- -4I--11 1.1 I -
- 1**
.t -
--------
- 1 1.0 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 35 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 20. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR GE-ll, EXPOSURE RANGE MOC TO EOC 2.1 -
2.0 -
1.9 -
1.8 -
VI'M2~41~ -1 I I I0/1 q Fjoj 4:n-I I
I. OA 1.i3-4fj j441-1
-f4:j 11 -#fr-ltl I
7' _
I k4 V I I 4w-4.
tEI 1Th--IVLU -4_
Ii4:1thk47 1.7 E
m 1.6 o
1.5 I;
9 FL
tf-
[:lt711:
I
.L I I ti t 1.4 1.3 1.2 1.1 1.0 WXtS WW 1U441Ef0i W f l 47IS4_h
+/-44j 4 Wf00 10f
-Ft40 1
-l-t2-S fJ ith t--I[- -IH:I t j41i l: rbL MU
- 1 fX 1Jt-t-t4 Wt IIX F IIL L1 141k-4I KI--tt:l--
I-UH:
I UTff
-T I 4 '
I1th k-IL h-I4t1-41 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 36 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 21. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR ATRIUM-10, EXPOSURE RANGE EOC TO EEOC 2.3
-- L Mthf 2.2 2.1 2.0 1.9 r-rr-I
.2 11 -
==
1 ll-f +.[-- _-I I1+---IH Y
.9
I. -
9 -
U. 9.
I. ji11-4i1ff1f-E p-!
-1.I-
U. -4.
-6.
-6.
I. 9
FM Ihg
.1 I
WAtlHHt
.1. i
.... I..... 1....-1 7:11--ttj
--p--F4-I 1.8 E
1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 r
IL I-II M
rI UU u---
S I 4 f
T-t it
-H fl-- --
I 4$r LEAt JJIbh H-L E I1 t i t
t-
-t H-
-1 LAWW1 1
mFI--
-t I
0 10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 37 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 22. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR GE-il, EXPOSURE RANGE EOC TO EEOC 2.1 2.0 1.9 1.8 1.7 D 1.6 0"-1.5 1.4 1.3 1.2 1.1 01 U I t it
_t W - t44 1&
4 : i it 1-f1%t 111$ t -1k T
+L~1 f
X11ill t -TI 1I--
I-t-4
- { 4 :141 44 % 1 I --.
4 Itt-k lW l - E.. l iSt 411%
t I0tt I t t-l tIt 4I I T-I lt t-hi4 #1
-I %
Kl 44 1 -1t-t 4T B-tai M--
I I - fI T I Ell TX mt fl-l -
~
H-
! 4.-.
1fLSl-Xit - ;tSW t 1E
.~~~~~~~R I I+/- t-IL 4 1 4 1 --
4Th- -
Jckff- - I1 41-t B L I-t t I
0 10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 38 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 23. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR ATRIUM-10, EXPOSURE RANGE EEOC TO EEEOC 2.3 2.2 2.1 2.0 1.9 1.8
.t_E
- D 1.7 0L
- 1.6 1.5 1.4 X
H l-lfln II.
tl-l l
.. Ii I:t:1ThI Th1I ITI9 11tI
- 1
[lull WLTI Thiil WtI miimz V g
g g
B e
e 1It 4:
T IT~i
-1 4 19-t~ 4
- 4.
hŽ T-1 1
-U Th{-
ffi~I-
-T I
1XmWU G XbE 41X tL44 Wi
-XF-4riTh1 t
Tt hbi t-i f lL4 IT#
Thlz A
+E L 'Wt'fl W
LfII ViflF
~tk t
- 4
-1.
L t I4A -- 1
-:LI
- i33+V 4V Y4: -Rl 1.3 L-I
-l-Ih4-r-4
-H1-4:1-Fi:l &I -ET-IT
-t 4144I4I1
- TL
-t-t I
H-1.2 -
1.1 _
1.0 J fl--
f -
g- -l-'-H MIT~.
iV 1I1fEt
_ A m.
t
-II:. LffT 0
10 20 30 40 50 60 Power, % rated 70 80 90 100 110
Page 39 of 63 RBS CYCLE 13 COLR Revision I FIGURE 24. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR GE-il, EXPOSURE RANGE EEOC TO EEEOC 2.1 2.0 1.9 1.8 1.7 1:-.0-E--l_
II 4 W 41 Qas 3:-j 14-
~
14 I I
.t_
E 1.6 o-1.5 1.4 1.3 1.2 1.1 WE-~~I IIil-l I I f~
I~
I-i
.1-...........
iitrimtt
-1.4 rm: Th14 04 4-W
, [0iS fitA 4
P 3
3.
-Tf-h1RF 7-l IT MflT I I l^-
1.0 r 0
10 20 30 40 50 60 Power, % rated 70 80 90 100 110
Page 40 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 25. LHGR MULTIPLIER VERSUS CORE POWER FOR ALL ATRIUM-10, BOC TO EEOC 1.10 1.00 0.90 0.80 0.0
-j 0.70 0.60 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 41 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 26. LHGR AND MAPLHGR MULTIPLIER VERSUS CORE POWER FOR GE-il, ALL EXPOSURES 1.10 1.05
- 444k 74Tt TI-11J t If
-it-h t-VhI4-4
r- "11
. -T---r-T-V-4-I0-4i 1.00
., -.,
-N W 'tm-Hf-H-0.95 0.90 0.85 0< 0.80 LL
(
0.75
-J 0.70 0.65 0.60 0.55 0.50 0.45 It lI 1TT W I
LU b1:I7m1T-h I
-. 1 -,1R
--1 It s1 T--:flt 1
14?sL-1; k --
T --I I.-i X~~~411I-
-U4 I H--1k -IlwXXwwlwww 1 -fil J
I4 WIfl t-i I -r1-
.. k.TI I-t -
Vfi1 RoW,
1Cdft
51:1-1: 4
.^.o fjIj4:14' U.1I I
- -t-Tf VI-k
44
-4 5.-
I -
I -
I -
.1II aX 4-H 4I-L-...._
i0.53 -+
I I i I IItU I 4I ITh iIIX a-.-
I t - I - I t
0 10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 42 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 27. LHGR MULTIPLIER VERSUS CORE POWER FOR ALL ATRIUM-10, EEOC TO EEEOC 1.10 1.00 0.90 0.80 C-LiL CD a:
-j 0.70 0.60 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated I
Page 43 of 63 RBS CYCLE 13 COLR Revision I FIGURE 28. MONITORED REGION BOUNDARY (CASE 1) 120 110 100 90 I-i 70 ULI 60 0
L 50 u-o 40 C-30 20 10 0
0 10 20 30 40 50 60 70 CORE FLOW(% rated) 80 90 100 110
Page 44 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 29. MONITORED REGION BOUNDARY (CASE 2) 120 110 100 90 n 80 am g
70 W 60 0
I 50 w
040 30 20 10 0
0 10 20 30 40 50 60 70 CORE FLOW (% rated) 80 90 100 110
Page 45 of 63 RBS CYCLE 13 COLR Revision I FIGURE 30. APRM FLOW BIASED SIMULATED THERMAL POWER
- HIGH SCRAM SETPOINTS AND RESTRICTED REGION BOUNDARY (TWO RECIRCULATION LOOP OPERATION - CASE 1) 0 10 0.
w 0
DU Aloaue au 80.........
0
.oaleVh U0.......I..........
r---
.I.......
I........h-'-
TL Resrite Re n......
0 10 20 30 40 50 60 70 ALIGNED DRIVE FLOW rA rated) 80 90 100 110 120
Page 46 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 31. APRM FLOW BIASED SIMULATED THERMAL POWER
- HIGH SCRAM SETPOINTS AND RESTRICTED REGION BOUNDARY (SINGLE RECIRCULATION LOOP OPERATION - CASE 1) 120 110 100 90 80 0 40 30 20 10 0
~
Afowable Value 0
SLO Restricted Region Bo.mday.igh Endpoint I...
I.....
- ..........F NS NnSe4u Scram 4.
RR Restricted~eo
...... I......
I.
.. I...
.. I I..
I 0
10 20 40 50 60 70 80 ALIGNED DRIVE FLOW VA rated) g0 100 110 120
Page 47 of 63 RBS CYCLE 13 COLR Revision I FIGURE 32. APRM FLOW BIASED SIMULATED THERMAL POWER
- HIGH SCRAM SETPOINTS AND RESTRICTED REGION BOUNDARY (TWO RECIRCULATION LOOP OPERATION - CASE 2) 120 110 100 90 80 C) 9-70 Wu 60 00.
X 50 O) 40 30 20 10 0
r 0
10 20 30 40 50 60 70 80 90 100 110 120 ALIGNED DRIVE FLOW (% rated)
Page 48 of 63 RBS CYCLE 13 COLR Revision I FIGURE 33. APRM FLOW BIASED SIMULATED THERMAL POWER
- HIGH SCRAM SETPOINTS AND RESTRICTED REGION BOUNDARY (SINGLE RECIRCULATION LOOP OPERATION - CASE 2) 120 11so' 11.:
100so.
70 Nominal Value....
Allowable Value 00 SLO Restricted Region 90....:.....
w Boundaiy High Endpoint S
Setup Scram
^J 40
....t./:../
O
/1 //
/SRR Restricted Region 20 30
=:/-*..
... RResrcdRgin...
0'.
0 10 20 30 40 50 s0 70 so 90 100 110 120 ALIGNED DRIVE FLOW (% rated)
Page 49 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 34. APRM FLOW BIASED NEUTRON FLUX - HIGH ROD-BLOCK SETPOINTS (TWO RECIRCULATION LOOP OPERATION - CASE 1) 12 11 IC 9
8 e
4..
7 lu"I L
LU6 0
0.
wJ 5 m0 4
2 2
0
.. I.
0..........
I.
I.
I.
I...
NominalValue r......r AiloWable Value s
Setup Red-Block 10...................
NS NmnSetup Rod-8tock 1..........
0 10 20 30 40 50 60 70 80 90 ALIGNED DRIVE FLOW (% rated) 100 110 120
Page 50 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 35. APRM FLOW BIASED NEUTRON FLUX - HIGH ROD-BLOCK SETPOINTS (SINGLE RECIRCULATION LOOP OPERATION - CASE 1) 120 110 100 90 80
'U 70
¢ 60 00 30 10 0
- a.
A A.
II......
Nominal Value Allowable Value S
Setup Rod-Block NS Non-Setup Rod-Block
.I.
l l
l l
l l
I I
0 10 20 30 40 50 60 70 80 ALIGNED DRIVE FLOW C%
rated) 90 100 I1o 120
Page 51 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 36. APRM FLOW BIASED NEUTRON FLUX - HIGH ROD-BLOCK SETPOINTS (TWO RECIRCULATION LOOP OPERATION - CASE 2) 120 1 1 0..
100 s o10 a
I........
100
,A Nominal Value Allowable Value W
60 S
5 Setup Rod-Block 0
50 NS Non-Setup Rod-Block 0
J0 40 0
10 20 30 40 50 60 70 80 90 100 110 120 ALIGNED DRIVE FLOW (% rated)
Page 52 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 37. APRM FLOW BIASED NEUTRON FLUX - HIGH ROD-BLOCK SETPOINTS (SINGLE RECIRCULATION LOOP OPERATION - CASE 2) 120 110 100 90 8a 0 s
0) 70 ILl 60 00~
Itl 50 0
O 40 30 20 10 0
0 10 20 30 40 50 60 70 ALIGNED DRIVE FLOW (% rated) 80 90 100 110 120
Page 53 of 63 RBS CYCLE 13 COLR Revision I APPENDIX A OPERATING LIMITS FOR EQUIPMENT OUT OF SERVICE OR LOOP MANUAL MODE The operating limits listed in this appendix shall be used as indicated when operating in any of the following conditions:
Feedwater Heater Out of Service (FHOOS)*
Pressure Regulator Out of Service (PROOS)*
Single-Loop Operation (SLO)
Reactor Recirculation System in Loop Manual control.
- At a power level greater than 40%, the power dependent MCPRp (Figures 38 and 39) shall be increased by 0.02 for concurrent SLO and FHOOS. At a power lower than 40%, the most limiting MCPRp value is the operating limit, and it shall be increased by 0.02 for SLO and MHOOS.
At a power level greater than 40%, the power dependent MCPRp (Figures 40 and 41) shall be increased by 0.02 for concurrent SLO and PROOS. At a power lower than 40%, the most limiting MCPRp value is the operating limit, and it shall be increased by 0.02 for SLO and PROOS.
Page 55 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 39. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR GEll, ALL EXPOSURES, FEEDWATER HEATER OUT OF SERVICE (FHOOS) 2.1 2.0 1.9 1.8 1.7
.t_
D 1.6 o 1.5 1.4 TLL WI WI 41 li44 TI I 4
.[ Lt t~i!9 1--t3-t X 1--~-0 4
44-4444 l--44 il-44 14 I-l4 W~~i1-owl~Xf-XlW~E1TMW ItfX oil UWXWX-f11X~i-l
+-i 1.3 1.2 1.1 1.0
, I I
~341 L:>_1123_t-14:-M-
- I I I W I 3#
I IW I: t 1 11Th
-4 I
E-t$
L-_
I I I Il IHILI H 1-_- ---4-- II-1-.-tL~
9 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 56 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 40. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR ATRIUM-10, ALL EXPOSURES, PRESSURE REGULATOR OUT OF SERVICE (PROOS) 2.3 -
-I-
_H ILf1 Lt 2.2 tin kEI-XT-I t~lA-l\\EXL~4I I 14-1-X1-1111XH-2.1 1
4 11i7 11117 ThL 1hEL 2.0 -
f-H -
1.9 LtL L m L T 1k1W j 4 31.4W 1.8
~I-
~
E j
1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 I I....
I....
I..wIII.S-I I
I
-1t ldl 41-HHE1- -1 1gX1-1 I+
1714 U 14 4311
-i-I o
o i
20 3
40 50 60 70 80 ff 90 1 1-0 10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 57 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 41. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR GEIl, ALL EXPOSURES, PRESSURE REGULATOR OUT OF SERVICE (PROOS) 2.1IJItf4l1
.II
-2.08X1,
--- t-ir-t lill'4-H-
EIL Z.U 1.9 1.8 1.7
- t-ED 1.6 Q-C) 1.5 1.4 1.3 1.2 1.1 244+
L z~h o
4z~
41 1
~ ztl iL 1 U 4ii it ft 1 T h m I -44rn h;6I-Xf I-0W 1 4--1X a a a 'ItrWUIIfi 9k k
IJITh14Th:m t-I I-
.:l4E I
q I
.,t
-I4lTl in LTIL
_ I1-4 j-V -t
.i t L
-Z1 4 ht 4 t iI 114 l
I V LT 41 tI l--
I I IS]I+- M[
-I-
.. t Ll
-*1 i
~ t h
--IL I IflTI _-t HI:TT1+I 1-1l-- -L_*1t 1.0 4-0 10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 58 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 42. LHGR MULTIPLIER VERSUS CORE POWER FOR ALL ATRIUM-10, ALL EXPOSURES FHOOS OR PROOS 1.10 1.00 0.90 0.80 (a.
0 LL
-j 0.70 0.60 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 59 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 43. LHGR AND MAPLHGR MULTIPLIER VERSUS CORE POWER FOR GE-1l, ALL EXPOSURES FHOOS OR PROOS 1.10 1.00 0.90 0.
m 0.80
-J 0.70 0.60 0.50 70 80 90 100 0
10 20 30 40 50 60 Power, % rated 110
Page 60 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 44. LHGR MULTIPLIER VERSUS CORE POWER FOR ALL ATRIUM-10, ALL EXPOSURES SINGLE LOOP OPERATION (SLO) 1.10 1.00 0.90 0.80 0L 0
<LL CD
-j 0.70 0.60 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 61 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 45. LHGR AND MAPLHGR MULTIPLIER VERSUS CORE POWER FOR GE-I1, ALL EXPOSURES SINGLE LOOP OPERATION (SLO) 1.10 --
$$ I I 1 1g411 1 1.U5 1.00 0.95
.1..
' _1 1
1-_
L dd-1 I
I H
1-
~
1 m00 R-i-i- --.
I-ji-+-4PT
-.tWI H--
H U-- 4i 4-T
- i.
i,..
-LLW~-ftL:
iif-Lg 0.90 0.85 0.
< 0.80 LL e 0.75
-J 0.70 0.65 0.60 0.55 0.50 0.45
- '9-
.6~
~- I
£ 1
w,..
l 6l wlrff T
- i I.,
t 1
I i
I,...
I M _ I 4 I WiU
-I tLLII I - RIII
_ 4 I tt l
- J WI4 i
l gE I X
FM _--
11_--4 iS 0 1 ug
-L.I
.1
.1_
-ER -1
-+...._I I- --
I I -A a
I I
I I i.
0.530-
.I _q: :4: 47-zl-
F-=
that m-
-f j4'
-- 1
-_1 I_
I..
I...I,.I I;;
. 4
--.H _T:J I 11 I[i. I II I- -I 571 T
- :[
- -444 I
i 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 62 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 46. OPERATING LIMIT MCPR (MCPRF) VERSUS CORE FLOW FOR ATRIUM-10 FOR RECIRCULATION SYSTEM IN LOOP MANUAL, ALL EXPOSURES 1.5 -
1.411 1111
~I14F -11 I-Th4V
-IL 1.3.2
- 4.
I 1'.
1-1-F -1 I
-1 1-1-1-1IIT E
1H2 -
44 v
HiH E1.1X 1.0 -
o9,
_1_1 f109 0
10 20 30 40 50 60 70 80 90 100 110 120 Core Flow, %Rated
Page 63 of 63 RBS CYCLE 13 COLR Revision 1 FIGURE 47. OPERATING LIMIT MCPR (MCPRF) VERSUS CORE FLOW FOR GE-1l FOR RECIRCULATION SYSTEM IN LOOP MANUAL, ALL EXPOSURES 1.5-1.4-
.3 1113
-111412$
tlhhfittfl
~1.2 1.2 -
1 1 [ 0 011 lil 111 1 1111t1 X
l 1.109
~ 4~~}WV II~ff j4 41 HHW 1111 itII1111 111 III UYII 0
10 20 30 40 50 60 70 80 90 100 110 120 Core Flow, %Rated