RBG-46184, Twelfth Fuel Cycle Core Operating Limits Report (COLR)
| ML032890074 | |
| Person / Time | |
|---|---|
| Site: | River Bend |
| Issue date: | 10/09/2003 |
| From: | Leavines J Entergy Operations |
| To: | Document Control Desk, Office of Nuclear Reactor Regulation |
| References | |
| G9.25.1.5, G9.5, RBF1-03-0190, RBG-46184 | |
| Download: ML032890074 (74) | |
Text
-
Entergy Entergy Operations, Inc.
River Bend Station 5485 U.S. Highway 61 RO. Box 220 St. Francisville, LA 70775 October 9, 2003 U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555
Subject:
River Bend Station - Unit 1 Docket No. 50-458 License No. NPF-47 Twelfth Fuel Cycle Core Operating Limits Report (COLR)
File Nos.:
G9.5, G9.25.1.5 RBG-46184 RBFI-03-0190 Ladies and Gentlemen:
Enclosed is Revision 1 of the River Bend Station (RBS) Core Operation Limits Report (COLR) for the twelfth fuel cycle. This report is submitted in accordance with Technical Specification 5.6.5 of Appendix A of the Facility Operating License NPF-47. This COLR report will support operation from 5200 MWd/MTU through the end of the fuel cycle.
There are no commitments in this letter. For further information, contact Mr. B. M. Burmeister at (225) 381-4148.
Sincerely, Manager - Site Licensing JWL/BMB Enclosure bW
Twelfth Fuel Cycle Core Operating Limits Report (COLR)
RBG-46184 RBFI-03-0190 Page 2 of 2 cc:
Mr. Michael Webb U. S. Nuclear Regulatory Commission M/S OWFN 07-Dl Washington, DC 20555 NRC Resident Inspector P. O. Box 1050 St. Francisville, LA 70775 U. S. Nuclear Regulatory Commission Region IV 611 Ryan Plaza Drive, Suite 400 Arlington, TX 76011
Core Operating Limits Report Cycle 12 Revision 1
Page of 71 RBS CYCLE 12 COLR Revision I RIVER BEND STATION, CYCLE 12 CORE OPERATING LIMITS REPORT (COLR)
PREPARED BY:
REVIEWED BY:
APPROVED BY:,
APPROVED BY:
APPROVED BY:
6Ž
,Z./
Responsible Engineer Review Engineer
- Nuclear Engineering Date:
-/#f-2-003 Date:
- I 1t6 63 Date:
_C Date: -/2 7/03 Date:
X Director, Engineering River Bend Nuclear Station dn-siVafety Re Committee River end Nucle Station
Page 2 of 71 RBS CYCLE 12 COLR Revision I TABLE OF CONTENTS INTRODUCTION AND
SUMMARY
3 CONTROL RODS..............................................................
4 TECHNICAL SPECIFICATION 3.2.1..............................................................
5 TECHNICAL SPECIFICATION 3.2.2..............................................................
6 TECHNICAL SPECIFICATION 3.2.3..............................................................
7 TECHNICAL SPECIFICATION 3.2.4..............................................................
8 TECHNICAL SPECIFICATION 3.3.1.1..............................................................
9 TECHNICAL SPECIFICATION 3.3.1.3.............................................................
10 TECHNICAL REQUIREMENT 3.3.1.1.............................................................
11 TECHNICAL REQUIREMENT 3.3.2.1.............................................................
12 REFERENCES/ANALYTICAL METHODS DOCUMENTS......................................... 13 TABLE 1. ALIGNED DRIVE FLOW.............................................................
15 APPENDIX A - OPERATING LIMITS FOR EQUIPMENT OUT OF SERVICE OR LOOP MANUAL MODE.............................................................
58
Page 3 of 71 RBS CYCLE 12 COLR Revision 1 INTRODUCTION AND
SUMMARY
This report provides Cycle 12 values for the following Technical Specifications:
- 1. AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR) limits,
- 2. MINIMUM CRITICAL POWER RATIO (MCPR) limits,
- 3. LINEAR HEAT GENERATION RATE (LHGR) limits,
- 4. FRACTION OF CORE BOILING BOUNDARY (FCBB),
- 5. REACTOR PROTECTION SYSTEM (RIPS) APRM Flow Biased Simulated Thermal Power - High Allowable Values,
- 6. REACTOR PROTECTION SYSTEM (RPS) APRM Flow Biased Simulated Thermal Power time constant.
- 7. PERIOD BASED DETECTION SYSTEM (PBDS) region boundaries.
Technical Specification section 5.6.5 requires these values be determined using NRC-approved methodology and are established such that all applicable limits of the plant safety analysis are met.
The references for the pertinent methodology used by FRA-ANP are listed in the section titled Analytical Methods Documents.
This report also provides Cycle 12 values for the following Technical Requirements:
- 1. REACTOR PROTECTION SYSTEM (RPS) APRM Flow Biased Neutron Flux Power - High Allowable Values and Nominal Trip Setpointsi,
- 2.
CONTROL ROD BLOCK INSTRUMENTATION APRM Flow Biased Neutron Flux High limits.
In some cases limits in the COLR differ from the limits in the core monitoring system.
This is sometimes due to limitations in the core monitoring system to model the actual limits, in which case the core monitoring limits may be more conservative than the COLR limit. In other cases the limits in the COLR are presented in less detail than in the core monitoring system.
When these situations exist the core monitoring limits will be explained or be referenced by the COLR and will be made available to Operations.
The Cycle 12 COLR supports power operation with FHOOS, FFWTR, PROOS, SLO and Loop Manual Operation. In addition to the specific requirements listed in the Sections 3.2.1 to 3.2.4, the MCPRp and LHGRFAC-p limits as shown in Appendix A shall be used for the applicable modes of operation. For Loop Manual Operation, the MCPRf as shown in Appendix A shall be used. Figures 49 and 50 are applicable to FHOOS or PROOS but not for simultaneous FHOOS and PROOS.
The reload analyses were performed in accordance with FRA-ANP methodology and its applicability to Cycle 12 was confirmed by Reference 5.
lNote that for Figures 35 to 42, the Nominal Setpoints should be used for indicating the entry into a particular stability region as allowed and appropriate actions be taken prior to the entry
Page 4of71 RBS CYCLE 12 COLR Revision 1 CONTROL RODS The River Bend core utilizes both GE control rods and ABB CR-82M bottom entry cruciform control rods. These Control Rod designs are discussed in more detail in Reference 7.
DEFINITIONS BOC - Beginning of Cycle (Core Exposure 14,857 MWd/MTU).
MOC - Middle of Cycle (Core Exposure 29,157 MWd/MTU).
EOC - End of Cycle (Core Exposure 30,157 MWd/MTU).
EEOC - Extended cycle with Increased Core Flow (Core Exposure 30,563 MWd/MTU).
EEEOC - Extended cycle with Increased Core Flow and Final Feedwater Temperature Reduction (Core Exposure 31,146 MWd/MTU).
FFWTR - Final Feedwater Temperature Reduction.
FHOOS - Feedwater Heater Out of Service.
PROOS - Pressure Regulator Out of Service.
SLO - Single Loop Operation.
FRA-ANP - Framatome ANP KAN - The designator for the once-burnt ATRIUM-10 assemblies.
REVISION HISTORY Revision 0 provided the thermal limits from BOC to 5200 MWD/MT.
Revision 1 extends the thermal limits from BOC + 5200 MWD/MT to EEEOC.
Page 5 of 71 RBS CYCLE 12 COLR Revision I TECHNICAL SPECIFICATION 3.2.1 POWER DISTRIBUTION LIMITS AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)
The limiting APLHGR (sometimes referred to as Maximum APLHGR, or MAPLHGR) value for the most limiting lattice (excluding natural uranium) of each fuel type as a function of AVERAGE PLANAR EXPOSURE is given in Figures 2 through 5. Two sets of MAPLHGR are provided herein for ATRIUM-10 and GE-11. The GE-i set was determined with the SAFER/GESTR LOCA and GESTR-Mechanical methodology described in GESTAR-IH (Reference 1).
The ATRIUM-10 set was determined with the FRA-ANP methodology (Reference 5). Core location by fuel type is provided in Figure 1 and is the reference core loading pattern in reference 5. These figures are used if alternate calculations are required. The limits of these figures shall be reduced to a value of 0.79 and 0.83 times the two recirculation loop operation limit when in single loop operation for GE-Il and ATRIUM-1O, respectively (Reference 5). Thermal power and core flow dependent multipliers are provided.
The value of the exposure dependent limit is reduced by the value of the multiplier at a given offrated power or flow condition. The multipliers for single loop operation are shown in Appendix A.
The APLHGR limits for GE-1 in the core monitoring system are in more detail than the limits that appear in the COLR due to their proprietary nature. The core monitoring system has APLHGR limits for each lattice in a bundle rather than listing only the most limiting value for the entire bundle. References 4 and 5 list the core monitoring system limits.
Page 6of71 RBS CYCLE 12 COLR Revision 1 TECHNICAL SPECIFICATION 3.2.2 POWER DISTRIBUTION LIMITS MINIMUM CRITICAL POWER RATIO (MCPR)
The MCPR limits for use in Technical Specification 3.2.2 for flow dependent MCPR (MCPRF) (Reference 5), power dependent MCPR (MCPRp) (Reference 5) are shown in Figures 10, 11, 12 and Figures 15 to 29, respectively. Figures 53, 54 and 55 are used in lieu of Figures 10, 11 and 12 when the Reactor Recirculation System is operating in Loop Manual Mode. The most limiting value from the applicable MCPRf and MCPRp figures is the operating limit. These values were determined with FRA-ANP methodology as described in Reference 5 and are consistent with a Safety Limit MCPR from Technical Specification 2.0.
At a power level greater than 40%, the power dependent MCPRp (Figures 27, 28 and
- 29) shall be increased by 0.02 for Single Loop Operation. At a power lower than 40%, the most limiting MCPRp value is the operating limit, and it shall be increased by 0.02 for Single Loop Operation.
Page 7 of 71 RBS CYCLE 12 COLR Revision 1 TECHNICAL SPECIFICATION 3.2.3 POWER DISTRIBUTION LIMITS LINEAR HEAT GENERATION RATE (LHGR)
The limiting LHGR value for ATRIUM-10 and for the most limiting lattice of each GE-i 1 fuel type as a function of AVERAGE PLANAR EXPOSURE is given in Figures 6 through 9. Core location by fuel type is provided in Figure 1 and is the reference core loading pattern in reference 5. These figures are used if alternate calculations are required.
The LHGR limits for GE-i in the core monitoring system are in more detail than the limits that appear in the COLR due to proprietary nature (Reference 9). Thermal power and core flow dependent multipliers for ATRIUM-10 and GE-Il are provided in Figures 13, 30 & 32 and Figures 14 & 31, respectively.
The value of the exposure dependent limit is reduced by the value of the multiplier at a given offrated power or flow condition.
Page 8 of 71 RBS CYCLE 12 COLR Revision 1 TECHNICAL SPECIFICATION 3.2.4 POWER DISTRIBUTION LIMITS FRACTION OF CORE BOILING BOUNDARY (FCBB)
Restricted Region Boundary Note: The boundary of the Restricted Region is established by analysis in terms of thermal power and core flow. The Restricted Region boundary is defined by the "non-setup " APRM Flow Biased Simulated Thermal Power - High Control Rod Block Setpoints, which are a function of reactor recirculation drive flow.
The Restricted Region boundaries as a function of aligned drive flow are given in Figures 35 through 38 in terms of aligned drive flow. The aligned drive flow is calculated from the input drive flow using the relationship given in Table 1.
Flow Biased Simulated Thermal Power - High Limits The APRM Flow Biased Simulated Thermal Power - High Scram setpoints as a function of aligned drive flow are given in Figures 35 through 38. The aligned drive flow is calculated from the input drive flow using the relationship given in Table 1.
- a. Case 1 - Normal Feedwater Heating Operation or Low Reactor Power:
T, (at rated)
T 51""' (at rated) - 500 F, and rated equivalent at off-rated reactor conditions.
OR P<30%
- b. Case 2 - Reduced Feedwater Heating Operation TFW (at rated) < T:"
(at rated) - 500 F, and rated equivalent at off-rated reactor conditions.
AND P> 30%
Where:
TFW is feedwater temperature in F, and P is reactor power in percent of rated.
Page 9 of 71 RBS CYCLE 12 COLR Revision 1 TECHNICAL SPECIFICATION 3.3.1.1 INSTRUMENTATION REACTOR PROTECTION SYSTEM (RPS) INSTRUMENTATION AVERAGE POWER RANGE MONITORS APRM Flow Biased Simulated Thermal Power - High Limits The APRM Flow Biased Simulated Thermal Power - High scram setpoint Allowable Values are given in Figures 35 through 38 in terms of aligned drive flow. The aligned drive flow is calculated from the input drive flow using the relationship given in Table 1.
- a. Case 1 - Normal Feedwater Heating Operation or Low Reactor Power:
TFW (at rated) 2 TwSs'N (at rated) - 500 F, and rated equivalent at off-rated reactor conditions.
OR P <30%
- b. Case 2 - Reduced Feedwater Heating Operation TFW (at rated) < Tw'sI (at rated) - 500 F, and rated equivalent at off-rated reactor conditions.
AND P>30%
Where:
TFW is feedwater temperature in 'F, and P is reactor power in percent of rated.
APRM Simulated Thermal Power Time Constant The simulated thermal power time constant for use in Technical Specification Table 3.3.1.1-1, SR 3.3.1.1.14, is (Reference 6):
6 i 0.6 seconds.
The maximum simulated thermal power time constant for use in Technical Specification surveillance Table 3.3.1.1-1, SR 3.3.1.1.14 is:
6.6 seconds
Page 10 of 71 RBS CYCLE 12 COLR Revision 1 TECHNICAL SPECIFICATION 3.3.1.3 INSTRUMENTATION PERIOD BASED DETECTION SYSTEM (PBDS)
Monitored Region Boundary The Monitored Region Boundaries as a function of core flow are given in Figures 33 and 34.
Restricted Region Boundary Note: The boundary of the Restricted Region is established by analysis in terms of thermal power and core flow. The Restricted Region boundary is defined by the "non-setup" APRM Flow Biased Simulated Thermal Power - High Control Rod Block Setpoints, which are a function of reactor recirculation drive flow.
The Restricted Region boundaries as a function of aligned drive flow are given in Figures 35 through 38 in terms of aligned drive flow. The aligned drive flow is calculated from the input drive flow using the relationship given in Table 1.
- a. Case 1 - Normal Feedwater Heating Operation or Low Reactor Power:
TFw (at rated)
TIG (at rated) - 500 F, and rated equivalent at off-rated reactor conditions.
OR P <30%
- b. Case 2 - Reduced Feedwater Heating Operation Tw (at rated) < TFWGN (at rated) - 500 F, and rated equivalent at off-rated reactor conditions.
AND P> 30%
Where:
TFw is feedwater temperature in F, and P is reactor power in percent of rated.
Page 11 of 71 RBS CYCLE 12 COLR Revision 1 TECHNICAL REOUIREMENT 33.1.1 INSTRUMENTATION REACTOR PROTECTION SYSTEM (RPS) INSTRUMENTATION AVERAGE POWER RANGE MONITORS APRM Flow Biased Simulated Thermal Power - High Limits The APRM Flow Biased Simulated Thermal Power - High scram setpoint Nominal Trip Setpoints are given in Figures 35 through 38 in terms of aligned drive flow. The aligned drive flow is calculated from the input drive flow using the relationship given in Table 1.
- a. Case 1 - Normal Feedwater Heating Operation or Low Reactor Power:
TFW (at rated) 2 TFW,,s' (at rated) - 500 F, and rated equivalent at off-rated reactor conditions.
OR P 30%
- b. Case 2 - Reduced Feedwater Heating Operation T,, (at rated) < TSI' (at rated) - 500 F, and rated equivalent at off-rated reactor conditions.
AND P> 30%
Where:
TFW is feedwater temperature in 'F, and P is reactor power in percent of rated.
Page 12 of 71 RBS CYCLE 12 COLR Revision 1 TECHNICAL REOUIREMENT 3.3.2.1 INSTRUMENTATION CONTROL ROD BLOCK INSTRUMENTATION AVERAGE POWER RANGE MONITORS APRM Flow Biased Neutron Flux - High Limits The APRM Flow Biased Neutron Flux - High rod block Allowable Values and Nominal Trip Setpoints are given in Figures 39 through 42 in terms of aligned drive flow. The aligned drive flow is calculated from the input drive flow using the relationship given in Table 1.
- a. Case 1 - Normal Feedwater Heating Operation or Low Reactor Power:
TPW (at rated) 2 T' (at rated) - 500 F, and rated equivalent at off-rated reactor conditions.
OR P <30%
- b. Case 2 - Reduced Feedwater Heating Operation TFW (at rated) < TSwN (at rated) - 500 F, and rated equivalent at off-rated reactor conditions.
AND P> 30%
Where:
TFw is feedwater temperature in IF, and P is reactor power in percent of rated.
Page 13 of 71 RBS CYCLE 12 COLR Revision 1 REFERENCES
- 1)
NEDE-2401 1-P-A-14 and US Supplement, "General Electric Standard Application for Reactor Fuel," June 2000.
- 2)
Letter, J.S. Charnley (GE) to M.W. Hodges (NRC), Recommended MAPLHGR Technical Specifications for Multiple Lattice Fuel Designs, March 9,1987
- 3)
J 1-03660SRLR Rev. 2 Supplemental Reload Licensing Report for River Bend Station Reload 9 Cycle 10" November 2000.
- 4)
J I1-0366OMAPL, Revision I "Lattice Dependent MAPLHGR Report for River Bend Station Reload 9 Cycle 10" November 2000.
- 5)
EMF-2848 Revision 1, "River Bend Station Cycle 12 Reload Analysis."
- 6)
Letter, R.E. Kingston to G. W. Scronce, "Time Constant Values for Simulated Thermal Power Monitor" GFP-1032 November 30,1995.
- 7)
- 8)
CEO 2003-00047, "River Bend Station Unit 1 EIA Stability Power Uprate Evalutaion."
- 9)
RBC-48838, "Transmittal of River Bend Cycle 10 LHGR/MAPLHGR Relaxation Results."
ANALYTICAL METHODS DOCUMENTS (TS 5.6.5):
- 1)
XN-NF-81-58(P)(A) Revision 2 and Supplements 1 and 2, RODEX2 Fuel Rod Thermal-Mechanical Response Evaluation Model, Exxon Nuclear Company, March 1984.
- 2)
XN-NF-85-67(P)(A) Revision 1, Generic Mechanical Design for Exxon Nuclear Jet Pump BWR Reload Fuel, Exxon Nuclear Company, September 1986.
- 3)
EMF-85-74(P) Revision 0 Supplement 1 (P)(A) and Supplement 2 (P)(A), RODEX2A (BWR) Fuel Rod Thermal-Mechanical Evaluation Model, Siemens Power Corporation, February 1998.
- 4)
ANF-89-98(P)(A) Revision 1 and Supplement 1, Generic Mechanical Design Criteria for BWR Fuel Designs, Advanced Nuclear Fuels Corporation, May 1995.
- 5)
XN-NF-80-19(P)(A) Volume 1, Exxon Nuclear Methodology for Boiling Water Reactors -
Neutronic Methods for Design and Analysis, Exxon Nuclear Company, March 1983.
- 6)
XN-NF-80-19(PXA) Volume 4 Revision 1, Exxon Nuclear Methodology for Boiling Water Reactors: Application of the ENC Methodology to BWR Reloads, Exxon Nuclear Company, June 1986.
- 7)
EMF-2158 (P)(A) Revision 0, Siemens Power Corporation Methodology for Boiling Water Reactors: Evaluation and Validation of CASMO-4/MICROBURN-B2, Siemens Power Corporation, October 1999.
- 8)
XN-NF-80-19(P)(A) Volume 3 Revision 2, Exxon Nuclear Methodology for Boiling Water Reactors, THERMEX: Thermal Limits Methodology Summary Description, Exxon Nuclear Company, January 1987.
- 9)
XN-NF-84-105(P)(A) Volume 1 and Volume 1 Supplements 1 and 2, XCOBRA-T: A Computer Code for BWR Transient Thermal-Hydraulic Core Analysis, Exxon Nuclear Company, February 1987.
- 10)
ANF-524(PXA) Revision 2 and Supplements 1 and 2, ANF Critical Power Methodology for Boiling Water Reactors, Advanced Nuclear Fuels Corporation, November 1990.
Page 14 of 71 RBS CYCLE 12 COLR Revision 1
- 11)
ANF-913(PXA) Volume 1 Revision 1 and Volume I Supplements 2,3 and 4, COTRANSA2: A Computer Program for Boiling Water Reactor Transient Analyses, Advanced Nuclear Fuels Corporation, August 1990.
- 12)
XN-NF-825(PXA) Supplement 2, BWR/6 Generic Rod Withdrawal Error Analysis, MCPRp for Plant Operations within the Extended Operating Domain, Exxon Nuclear Company, October 1986.
- 13)
ANF-1358(P)(A) Revision 1, The Loss of Feedwater Heating Transient in Boiling Water Reactors, Advanced Nuclear Fuels Corporation, September 1992.
- 14)
EMF-1997(P)(A) Revision 0, ANFB-10 Critical Power Correlation, Siemens Power Corporation, July 1998.
- 15)
EMF-1997(P) Supplement 1 (P)(A) Revision 0, ANFB-10 Critical Power Correlation: High Local Peaking Results, Siemens Power Corporation, July 1998.
- 16)
EMF-2209(P)(A) Revision 1, SPCB Critical Power Correlation, Siemens Power Corporation, July 2000.
- 17)
EMF-2245(PXA) Revision 0, Application of Siemens Power Corporation's Critical Power Correlations to Co-Resident Fuel, Siemens Power Corporation, August 2000.
- 18)
XN-NF-80-19(PXA) Volumes 2, 2A, 2B, and 2C, Exxon Nuclear Methodology for Boiling Water Reactors: EXEM BWR ECCS Evaluation Model, Exxon Nuclear Company, September 1982.
- 19)
ANF-91-048(PXA), Advanced Nuclear Fuels Corporation Methodology for Boiling Water Reactors EXEM BWR Evaluation Model, Advanced Nuclear Fuels Corporation, January 1993.
- 20)
ANF-91-048(P)(A) Supplements I and 2, BWR Jet Pump Model Revision for RELAX, Siemens Power Corporation, October 1997.
- 21)
XN-CC-33(A) Revision 1, HUXY: A Generalized Multirod Heatup Code with 10 CFR 50 Appendix K Heatup Option Users Manual, Exxon Nuclear Company, November 1975.
- 22)
EMF-CC-074(P)(A) Volume 4 Revision 0, BWR Stability Analysis: Assessment of STAIF with Input from MICROBURN-B2, Siemens Power Corporation, August 2000.
- 23)
EMF-2292(PXA) Revision 0, ATRIUM1"-10 Appendix K Spray Heat Transfer Coefficients, Siemens Power Corporation, September 2000.
- 24)
NEDE-2401 -P-A-14 and US Supplement, "General Electric Standard Application for Reactor Fuel," June 2000.
Page 15 of 71 RBS CYCLE 12 COLR Revision 1 Table 1. Aligned Drive Flow W =
101.209. AO-31.028 A'00+ 70.181
- WD 70.181 -
(
100 _ &40 )
Where:
Wb
= FCTR card input drive flow in percent rated, WD
= Aligned drive flow in percent rated, A40
= Low flow drive flow alignment setting, and A'00
= High flow drive flow alignment setting.
Page 16 of 71 RBS CYCLE 12 COLR Revision FIGURE 1. REFERENCE CORE LOADING PATTERN 29 28 19 32.7 26 21
- 17. 0 24 23
- 0. 0 22 20
- 18. 6 20 23
- 0. 0 18 20
- 16. 9 16 23 0.0 14 20 17.8 12 23 0.0 10 24 0.0 8
23 0.0 6
23 0.0 4
14 32.8 2
15 26.3 31 21 17.2 23
- 0. 0 21
- 14. 3 23
- 0. 0 24
- 0. 0 23
- 0. 0 21
- 18. 4 23
- 0. 0 21
- 18. 2 23
- 0. 0 19
- 32. 4 23 0.0 21 18.9 14 33.2 33 23
- 0. 0 21
- 14. 3 1 9
- 32. 6 21
- 13. 5 19
- 33. 7 20
- 17. 5 23
- 0. 0 21
- 17. 5 23
- 0. 0 24
- 0. 0 23 0.0 22 0.0 14 32.6 14 34.9 35 20
- 18. 7 23
- 0. 0 21
- 13. 6 23 0.0 21 18.0 23 0.0 21 15.7 23 0.0 20 17.5 22 0.0 24 0.0 22 0.0 14 31.1 15 28.2 37 23
- 0. 0 24
- 0. 0 19
- 33. 8 21
- 18. 4 23
- 0. 0 21
- 17. 4 19 33.4 21
- 14. 8 19 33.2 15
- 32. 0 23 0.0 21 17.7 14 31.8 39 20
- 18. 9 23
- 0. 0 20
- 17. 9 23
- 0. 0 21
- 17. 6 22
- 0. 0 19
- 31. 1 22 0.0 15
- 31. 8 22
- 0. 0 24 0.0 21 18.1 15 26.4 41 23 0.0 21
- 18. 5 23
- 0. 0 21
- 15. 9 1 9
- 33. 6 19
- 30. 5 22
- 0. 0 21
- 17. 3 22
- 0. 0 14
- 35. 9 22 0.0 14 32.6 15 30.4 43 20
- 18. 3 23
- 0. 0 21
- 17. 5 23
- 0. 0 21
- 14. 9 22
- 0. 0 21
- 17. 4 22
- 0. 0 19
- 33. 5 21
- 15. 9 15 30.2 14 34.2 45 23
- 0. 0 21
- 18. 7 23
- 0. 0 20
- 17. 5 19
- 33. 6 15
- 31. 9 22
- 0. 0 19
- 33. 6 19
- 32. 9 15 30.4 14 33.7 47 24
- 0. 0 23
- 0. 0 24
- 0. 0 22 0.0 15 32.2 22 0.0 14 36.0 21 16.0 15 30.5 14 35.8 49 23 0.0 19 32.5 23 0.0 24 0.0 23 0.0 24 0.0 22
- 0. 0 15
- 30. 1 14
- 32. 4 51 23
- 0. 0 23 0.0 22
- 0. 0 22
- 0. 0 21
- 18. 5 21 18.1 14 34. 9 14
- 33. 9 53 14
- 32. 8 21
- 19. 3 14
- 33. 5 14
- 31. 1 14
- 32. 6 15
- 26. 9 14 31.6 55 15
- 26. 0 14
- 35. 7 14 35.2 15 28.2 Nuclear Fuel Type BOC Exposure (GWd/MTU)
Fuel Type 14 15 19 20 21 22 23 24 Description GE11 3.88B-13GZ-120T-146 GE1l 4.OOB-13G2-120T-146 GE11 3.36B-12GZ-120T-146 ATRIUM-lO A1O-3552B-12GV60 ATRIUM-10 A1O-3899B-12GV60 ATRIUM-10 A1O-3996B-11G45 ATRIUM-10 A1O-3981B-15GV75 ATRIUM-10 A1O-1997B-OGd Cycle Loaded 9
9 10 11 11 12 12 12
Page 17of71 RBS CYCLE 12 COLR Revision 1 FIGURE 2. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FOR ATRIUM-10 13-13 12 12
____1_.____
11 z0 z 10 10 au
'Ii 9
z z
8
~~~~~~~~~~~~~~~~~8 Di 7
6 6
0 10 20 30 40 50 60 Average Planar Exposure (GWd/MT)
Page 18 of 71 RBS CYCLE 12 COLR Revision I FIGURE 3. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE GEll-P9SUB336-12GZ-12OT-146-T 13 13 12 12 z
I-0 z
°10
- zzz; 4
S; 6~_______
10
'Ii z
z uj sj i H i Iit11111111111 ll 5
5 0
10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/MT)
Page 19 of 71 RBS CYCLE 12 COLR Revision I FIGURE 4. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FOR GE11-P9SUB400-13GZ-120T-146-T 13
- 13 L
11LII I Il II I I I II I l I I IIIIIIIl IIILlI IIIIIII l l l 1 11111 12 1
owR e X11-- 111l11 1111111I-uTIl In I
InTTIIIrSr ~
Zn r1 2 IIIIIlll___II1r z
6 lo 8~~~~~~~~~~~~~~~~~~~
IL 16 6
55 0
10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/MT)
Page 20 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 5. MAXMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FOR GEll-P9SUB388-13GZ-120T-146-T 13 13 12 ----
12 01 F
11LLe 1111 i!4 X III41111 9
..~~~~~~~~~~~~~~~~9 2
7 ---- ~~~~~~~~~~~~~~~~~
5 5
0 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWdlMT)
Page 21 of 71 RBS CYCLE 12 COLR Revision I FIGURE 6. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE FOR ATRIUM-10 14 13 12 E11 t
c 10 0
c c,
8 0
I-i9 14 13 12 11 10 9
8 7
6 5
7 6
5 0
10 20 30 40 Average Planar Exposure (GWd/MT) 50 60
Page 22 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 7. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE GE11-P9SUB400-13GZ-120T-146-T 15 15 14 14 13
__13
~12 12 Di z~l1 Ii 10-------
Di z
6 6
5 58
=__
1 20 3
40 0
60 4O llll_
ll 1
'l_
ll_
r T
z T
s ^
- 7.
Tl'_o-7
_Tf., l,f,
,,f
,f, L~~~~~~~~~
- -ITT T7IiTIIIIII 6- _=_=_____1 E+IIlI-FA iI1 0
10 20 30 40 I0 I60rt X FL III IIIIIlltIIIIII1 1 AVERAGE PLANAR EXPOSURE (GWdIMT)
Page 23 of 71 RBS CYCLE 12 COLR Revision I FIGURE 8. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE GEll-P9SUB330612GZ-120T-146-T 15 15 14 r14 13 13 Wu 12--
ZiI z
09 8
-~~~~~~~~~~~~~~~~~~8
~~~.,,,.,.,,
..,,z
,.,7
..1 6
6 5
5 0
10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWdMT)
Page 24 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 9. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE GEll-PSUB388-13GZ-12OT-146-T 15 15 14 14 13
-13 LuI 112 12 z
011~~~~~~~~~~~~~~~~~~~~~~~~1111X _m
¢l 11
[t 10
_10 z
8 9
LUI Z 7
~~~~~~~~~~~~~~~~~~~~7 6
6 5
TH
.5 0
10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWdIMT)
Page 25 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 10. OPERATING LIMIT MCPR (MCPRF) VERSUS CORE FLOW FOR NON-KAN ATRIUM-10 FOR RECIRCULATION SYSTEM IN LOOP AUTO CONTROL, ALL EXPOSURES 1.60 I I I I I I I I I I I I I I I I I I I I I I I
l I I I I El I I I I I I I I I I I I I I I I i I I 14-4-I-I.
I.
.I....................................
I I.
.I.I..I...
I.
.I...
H I I
l I
I I I I I I 1.50
.... I I I I 1 I
I I
I
.I..I I
II.
I I
I-----I
-I I...
I 1.40 E
t 1.30 0
1.20 1.10 I
I I I I I I I
I I I I I I I I I I I I I I iI I i-I I I I I I I l I I I I l
I I I I
....I I.
I I I I
......... _ __l l l l l l l l l l l l l l l l l l l I1 II1 II I11 II II1 II11 I II 1
I II1 1
II1I11II 1I1 r11I1 IF-I-4 -U 4 -
I 4--- -Il 111 IE-----I I II I I I IlI I I II I I I I I IIlI I I IIlI I
I I I I I I I I I I lII11 A
i Ii i i I ii i i i i " i i A i i A llll ll I i i iti lf 111 1111l 11 1 :11.11111 1
111 1 11 11 11 11111111110121 0
80 90 100 110 12 1.00 0
10 20 30 40 50 60 70 Core Flow, % rated
Page 26 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 11. OPERATING LIMIT MCPR (MCPRF) VERSUS CORE FLOW FOR KAN ATRIUM-10 FOR RECIRCULATION SYSTEM IN LOOP AUTO CONTROL, ALL EXPOSURES
~llllll~ll~ll~llilll lll 11111 11111 11...
111 II
........1 1 1 1 1 1 1 1 1 1 1 1 1.40 I_ I..
...I II _ _ I.
...1 1.1..1..1.1 1.1..1.
i~ 1.3-a.C.)
.1 O-I A'
.1.1 I I I
_~~
~~
I.,
I~~~ ~
I I I I
I I I
IA I
I I 1.16 1.10 1.
-- 111 I
2ms t.11 I
.l I I. I I l I. I ll.I I I
-I I
I I
II I l I l l I L
I.
I.
I 1 1 1 l l 1 1 1 ]
1 1 1 1 I..
I 1.1_
I 1 I-F
.4 PW%
0 10
- 2) 30 40 50
- 6) 70
- 8)
- 9) 10 110 12)
GtreRw, %ried
Page 27 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 12. OPERATING LIMIT MCPR (MCPRF) VERSUS CORE FLOW FOR GE-li FOR RECIRCULATION SYSTEM IN LOOP AUTO CONTROL, ALL EXPOSURES 1.60 -
- 1.
Jill 1.4
_ II I I I IF 1 1 I I I 1 I
I I
1.40 E-J iZ 1.30 a-L) 1.20 1.10 1.00
+F
+ _*
I I
I I I I I I
I I
11 11 11 111 1 i I 1
1 I I
11 11 11 1111 11 I
1111111 - -
I H
11 II.1 I 11 I 11 l11 I111111 11 I 1 III 11 11N -1.
II.1I I1 I
I liii 11 11 111 1111 11 111 I II I I T
I III I I III I I II I H I III III I X 0
10 20 30 40 50 60 70 80 Core Flow, % rated 90 100 110 120
Page 28 of 71 RBS CYCLE 12 COLR Revision I FIGURE 13. LHGR MULTIPLIER VERSUS CORE FLOW FOR ALL ATRIUM-10, ALL EXPOSURES 1.10-1.00 0.90 0
t11~t10121 10-IlllllllI1111111' lllllllll4c2]
-J 44MS II 11 III 11 III 11 III H iml 11 III 11 III 11 III 11 III 11 III 11 III 11 III 11j]
I 0.80 0.70 I.........................
111111
....I
...... 1:1 I......
1111 llill.
lill.
l 0
10 20 30 40 50 60 70 80 90 100 110 120 Core Flow, % rated
Page 29 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 14. LHGR AND MAPLHGR MULTIPLIER VERSUS CORE FLOW FOR GE-ll, ALL EXPOSURES 1.10 1 111111111111111111ll111111111111111111,-lilll11I 1111 1.00...1 1 1 1. 1 1 1 1 1 1 1 1 1 1. 1 1 1 1 1. 1 1. 1 1 1. 1 1. 1 1 111............
1.1I I 111 111 11111111111
!I1 11 11111111111 111 0.90 U-
- 0.80 0I-0 0.70
..I I I I I I I I. I I I I I. I I I I I. I I.
.II.
I I I.I..
I. l..
I. I. I I.I.I I
.I.I..I.I 111111111111111-11= IAiIi 11IM 11 111 1111111 11111 0.60 I.........
111111.11 iI..........
I...I I 1l11 HIMAMlllllllllll AH11 MIMM MIMAMA111! !!I 0.50 0
10 20 30 40 50 60 70 80 90 100 110 Core Flow, % rated 120
Page 30 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 15. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR NON-KAN ATRIUM-10, EXPOSURE RANGE BOC TO BOC + 5200 MWD/MTU 2.3 2.2 2.1 2.0 1.9 1.8 XI 1.7 CL
'L 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 31 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 16. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR KAN ATRIUM-10, EXPOSURE RANGE BOC TO BOC
+ 5200 MWD/MTU 2.3 I
I LIL 2.2 I I 2.1 2.0 1.9 1.8
.E
-3 1.7 0.
a 1.6 1.5 1.4 I
1.3 1.2 1.1 1.0 I I
I 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 32 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 17. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR GE-l, EXPOSURE RANGE BOC TO BOC + 5200 MWD/MTU 2.1 2.0 1.9 1.8 1.7 E:i 1.6 C.
-0 l.5 I.;
I..
1A 1.3 1.2 1.1 1.0 I
I I
I I
I I
0 10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 33 of 71 RBS CYCLE 12 COLR Revision I FIGURE 18. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR NON-KAN ATRIUM-10, EXPOSURE RANGE BOC +
5200 MWD/MTU TO MOC 2.3 2.2-2.1 2.0 1.9 1.8 E
M 1.7 a.
L)1.6-1.5 1.4 1.3 1.2 1.0 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 34 of 71 RBS CYCLE 12 COLR Revision I FIGURE 19. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR KAN ATRIUM-10, EXPOSURE RANGE BOC + 5200 MWD/MTU TO MOC 2.3 1 I
L I 2.2 II 2.1 2.0 1.9 1.8 E
- 3 1.7
- 0. 1.6 1.5 1.4 1.3 1.2 1.1 1.0 I
7
... I
.. I I.... I... I I.... I..
l
. I I... I.... I
... 1...,
0 10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 35 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 20. OPERATING LIMT MCPR (MCPRp) VERSUS CORE POWER FOR GE-1, EXPOSURE RANGE BOC + 5200 MWD/MTU TO MOC 2.1 I
I 2.0 1.9 1.8 1.7
,W EE 1.6 a.
0 1.5 1.4 1.3 1.2 1.1 1.0 I
I 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 36 of 71 RBS CYCLE 12 COLR Revision I FIGURE 21. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR NON-KAN ATRIUM-10, EXPOSURE RANGE MOC TO EOC 2.3-2.2 --
1TrF 2.1 --
ne ll lI l I I *1
_ _1. n o _.___IIIIZ.
rx____.____________li I
2.0 1.9 1.8
.E 1.7r a 1.6 1.5 1.4 1.3 1.85 1.2 1.1 1.0 I
I I
I I
I 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 37 of 71 RBS CYCLE 12 COLR Revision I FIGURE 22. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR KAN ATRIUM-10, EXPOSURE RANGE MOC TO EOC 2.3 2.2 2.1 2.1 2.0 1.9 1.8 E
X 1.7 CL a-1.6 1.5 1.4 1.3 1.2 1.1 1.0 I
I 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 38 of 71 RBS CYCLE 12 COLR Revision I FIGURE 23. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR GE-l, EXPOSURE RANGE MOC TO EOC 2.1 2.0 1.9 1.8 1.7 E
_, 1.6 a
o 1.5 1.4 1.3 1.2 1.1 1.0 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 39 of 71 RBS CYCLE 12 COLR Revision I FIGURE 24. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR NON-KAN ATRIUM-10, EXPOSURE RANGE EOC TO EEOC 2.3 i
I I
I I I I
I ijL Al J
I I
I I
I l
I I
I I
I I
2.2 4 A.
2.1 I I I1 I I I I I I I I I IT 2.0 1.9 1.8 E
-i 1.7 Ca a 1.6 1.5 1.4 1.3 1.2 1.1 1.0 l
I I
I 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 40 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 25. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR KAN ATRIUM-10, EXPOSURE RANGE EOC TO EEOC 2.3 2.2 2.1 2.0 1.9 1.8 I=.
0 1.7
'L 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 41 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 26. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR GE-l, EXPOSURE RANGE EOC TO EEOC 2.1 r,.,a Y..
1^ 1 I1 I I I E
.I I
L 11 1 1
_4-t 2%c%
l II 2.0 1.9 1.8 1.7
.E M 1.6 a.
0 1.5 1.4 1.3 I
1.2 I
1.1 I
1.0 I
I I
I I
0 10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 42 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 27. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR NON-KAN ATRIUM-10, EXPOSURE RANGE EEOC TO EEEOC 2.3 2.2 2.1 z.L 2.0 I
1.9 1.8 E
Xi 1.7 CL a-1.6 1.5 1.4 1.3 I1 8 I..
1.2 1.1 1.0 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 43 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 28. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR KAN ATRIUM-10, EXPOSURE RANGE EEOC TO EEEOC 2.3 2.2 2.1 2.0 1.9 1.8 E
_i 1.7 L 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 44 of 71 RBS CYCLE 12 COLR Revision FIGURE 29. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR GE-l, EXPOSURE RANGE EEOC TO EEEOC 2.1 2.0 1.9 1.8 1.7
.E
>D 1.6 C-o 1.5 1.4 1.3 1.2 1.1 1.0 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 45 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 30. LHGR MULTIPLIER VERSUS CORE POWER FOR ALL ATRIUM-10, EXPOSURE RANGE BOC TO EEOC 1.10 1.00 0.90 0.80 0.77 0.70-0.60-0.
0
-J 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 46 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 31. LHGR AND MAPLHGR MULTIPLIER VERSUS CORE POWER FOR GE-l, ALL EXPOSURES 1.10 1.05 1.00 0.95 0.90 0.85 C,
0.80 C 0.75
-J 0.70 0.65 0.60 0.55 0.50 OA5 0
10 20 30 40 50 60 Power, % rated 70 80 90 100 110
Page 47 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 32. LHGR MULTIPLIER VERSUS CORE POWER FOR ALL ATRIUM-10, EXPOSURE RANGE EEOC TO EEEOC 1.10 1.00 l]
0.90~~~~~~~~~09 0.9 I~~~~~~~~~~~I 0.80 0
0.70 0.60 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 48 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 33. MONITORED REGION BOUNDARY (CASE 1) 120 -------------
O-n-
1 11 20 30 40 5.0 7
0 9
0 1
9 0
10 - --
go so ---
-- ------- '------------ INFhE O
r s
~~~REGION{
l/
IL 50----
- ------------ X-- -
IZ 40--
___l_J J_ _____
u_____
I C3 30 -------s- --------------
4- ------
20 -- - - - --
0~~~~1 20 30 40 so 0
70 so 9
10 11 CORE FLOW(% rated)
Page 49 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 34. MONITORED REGION BOUNDARY (CASE 2) 120 110 100
__ 90 zC i
so a 70 60 2 so 0 30 20 0
20 0
10 20 30 40 50 60 70 CORE FLOW (% rated) 80 90 100 110
Page 50 of 71 RBS CYCLE 12 COLR Revision I FIGURE 35. APRM FLOW BIASED SIMULATED THERMAL POWER
- HIGH SCRAM SETPOINTS AND RESTRICTED REGION BOUNDARY (TWO RECIRCULATION LOOP OPERATION - CASE 1) 12 11 10 9
9 we 0
0U84
... I..
... I.....
r---------r e@
r......
o T O R srce R o
ID.....
5----
sa.
^.-----'-----...
. t----'.--........
i3 t--- -----
t -- Ai- -k-Mt ----5--.
o TL
&-sticedReion
/ 7 ss
...,............. N o----- ---........................
i---
--- --- -- -------- t ---
l-------
a 2
I 9
10 20 30 40 so 60 70 ALIGNED DRIVE FLOW (% rated) 00 98 too 110 120
Page 51 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 36. APRM FLOW BIASED SIMULATED THERMAL POWER
- HIGH SCRAM SETPOINTS AND RESTRICTED REGION BOUNDARY (SINGLE RECIRCULATION LOOP OPERATION - CASE 1)
I C
w 0U 120 Il 1 0.
..I.
so............
4...................
J,--------,----
- -------- {i' r.........
110,9
+..1..i*-:-
Alowable Valur
.0 a
SLO Reskicted Rejon
.BoundatyHo Fa i--
e........
NS Non-Setup Scriam R RestrictedReon
.0 0.
ID -H --- ---------- --------------- ----------- ---------------------
...............................---------........... t-------
0 10 20 30 40 so so 70 so 9o 100 110 129 ALIGNED DRIVE FLOW (% red)
Page 52 of 71 RBS CYCLE 12 COLR Revision FIGURE 37. APRM FLOW BIASED SIMULATED THERMAL POWER
- HGH SCRAM SETPOINTS, AND RESTRICTED REGION BOUNDARY (TWO RECIRCULATION LOOP OPERATION - CASE 2)
TO~~~~~~~~~~~~~~~~Nn'al, Vale.
I I
I 0
~~TLO Restricted Region I
I I
I
~~~~Boundary High EndpointI I
o 40
~~~~~~~
I RR Restricted Region I
30 0
10 20 30 dO 50 60 TO so s0 100 110 120 ALIGNED DRIVE FLOW (V. rated)
Page 53 of 71 RBS CYCLE 12 COLR Revision I FIGURE 38. APRM FLOW BIASED SIMULATED THERMAL POWER
- HIGH SCRAM SETPOINTS AND RESTRICTED REGION BOUNDARY (SINGLE RECIRCULATION LOOP OPERATION - CASE 2) 120 110
+
I-F 4
s
+
q II I
I I
I I
I I
I I
I Allowable Value J
0~~
III,
I I
I Ricted Region U---I BoundaryHigh Endpoint 0 ---
T--n------
-- 4 X----------
_____W____9_____1__
/X///
4_____'N Noneta~up 0
o 20 30 40 so T4 l l
RestrictedRegon 0
10 20 30 40___
RR 60~
7o 60 1
0 1
2 ALIGNED DRIVE FLOW % rated)
Page 54 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 39. APRM FLOW BIASED NEUTRON FLUX - HIGH ROD-BLOCK SETPOINTS (TWO RECIRCULATION LOOP OPERATION - CASE 1)
E F.
lu 9I 0U 1U f U - - - -
110
.4 4-----------
- I
~~~~~~~~NominalValue eo - -- - -- - -- - -- -
AlloWable Value S
Setup Rod-Block
..~~+
-.t So
A -
- J :J f
/
' ~~~~~S NoSeup Ro-Block 40.................
i-i -. f-
... I-- - - -
30............
.....--------- l-'''
i
20.........
... L...
.a
.... -- - -- I....
I.... I.....I.......
... I.
... I..
0 10 20 30 40 50 00 7e ALIGNED DRIVE FLOW % rted) so 90 10 110 120
Page 55 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 40. APRM FLOW BIASED NEUTRON FLUX - HIGH ROD-BLOCK SETPOINTS (SINGLE RECIRCULATION LOOP OPERATION - CASE 1) 120 110 eGo f
V 1.
I l
0A.
Ii 0C, 0
10 20 30 40 so 09 70 Eo 90 100 110 120 ALIGNED DRIVE FLOW (% rated)
Page 56 of 71 RBS CYCLE 12 COLR Revision I FIGURE 41. APRM FLOW BIASED NEUTRON FLUX - HIGH ROD-BLOCK SETPOINTS (IWO RECIRCULATION LOOP OPERATION - CASE 2) 120 1 1 0
_ _ F _ _ _
_ 4
_ ~~~~~~~
~ ~ ~ ~ ~ ~ ~ ~
to I
I I
I I
I I
Nominal Value I
90 I2 J
_j_
e 0
-a
- - - - -/
Noialau j//
//
-~~~~~~~~~~~~~~~AowableValue OJ 8
Setup Rod-1Bck L
- - - - -L NS Non-Setup Rod-Block I
l ~~~~~~~~~~~~~~~~~~~~I I
0 0
40 - -~~~~~~
-I- -
I
-I
- - I-
-I -I I- -
I--
20 -
100 1
1 0
10 20 30 40 so so To so 90
____L___1
__J 120__
ALIGNED DRIVE FLOW (% rated)
Page 57 of 71 RBS CYCLE 12 COLR Revision FIGURE 42. APRM FLOW BIASED NEUTRON FLUX - HGH ROD-BLOCK SETPOINTS (SINGLE RECIRCULATION LOOP OPERATION - CASE 2) 120 110 - - -~~ ~~
-I-I-
-I---I I
10 -- -
- -L L
I I
I I
I I
-~~~~~~~~~~~~~Nominal Value I
I I
I I
I I
I I
~~~~~~~~~~~~Aowable Value I
0 0
0 10 20 30 40 so 60 TO s0 g0 100 110 120 ALIGNED DRIVE FLOW (% rated)
Page 58 of 71 RBS CYCLE 12 COLR Revision I APPENDIX A OPERATING LIMITS FOR EQUIPMENT OUT OF SERVICE OR LOOP MANUAL MODE The operating limits listed in this appendix shall be used as indicated when operating in any of the following conditions:
Feedwater Heater Out of Service (FHOOS)*
Pressure Regulator Out of Service (PROOS)*
Single-Loop Operation (SLO)
Reactor Recirculation System in Loop Manual control.
- At a power level greater than 40%, the power dependent MCPRp (Figures 43, 44 and 45) shall be increased by 0.02 for concurrent SLO and FHOOS. At a power lower than 40%, the most limiting MCPRp value is the operating limit, and it shall be increased by 0.02 for SLO and FHOOS.
At a power level greater than 40%, the power dependent MCPRp (Figures 46, 47 and 48) shall be increased by 0.02 for concurrent SLO and PROOS. At a power lower than 40%, the most limiting MCPRp value is the operating limit, and it shall be increased by 0.02 for SLO and PROOS.
Page 59 of 71 RBS CYCLE 12 COLR Revision I FIGURE 43. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR NON-KAN ATRIUM-10, ALL EXPOSURES, FEEDWATER HEATER OUT OF SERVICE (FHO OS) 2.3 2.2 2.1 2.0 1.9 1.8 E
- 8 1.7 a-1.6 1.5 1.4 1.3 1.2 1.1 1.0 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 60 of 71 RBS CYCLE 12 COLR Revision I FIGURE 44. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR KAN ATRIUM-10, ALL EXPOSURES, FEEDWATER HEATER OUT OF SERVICE (FHOOS) 2.3 2.2 2.1 2.0 1.9 1.8 E
':: 1.7 cL 0-1.6 0.
1.5 1.4 1.3 1.2 1.1 1.0 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 61 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 45. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR GEll, ALL EXPOSURES, FEEDWATER HEATER OUT OF SERVICE (FHOOS) 2.1 2.0 1.9 1.8 1.7
- 3 1.6 a.o 1.5 1.4 1.3 1.2 1.1 1.0 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 62 of 71 RBS CYCLE 12 COLR Revision I FIGURE 46. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR NON-KAN ATRIU1M-10, ALL EXPOSURES, PRESSURE REGULATOR OUT OF SERVICE (PROOS) 2.3 2.2 -
2.1 2.0-1.9 1.8 E1-1.7 0.
EL1.6-1.5 1.4 1.3-1.2 1.0 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 63 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 47. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR KAN ATRIUM-10, ALL EXPOSURES, PRESSURE REGULATOR OUT OF SERVICE (PROOS) 2.3 2.2 2.1 2.0 1.9 1.8 E
-i 1.7 cL c 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 64 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 48. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR GEll, ALL EXPOSURES, PRESSURE REGULATOR OUT OF SERVICE (PROOS) 2.1 2.0 1.9 1.8 1.7
.E i 1.6 0-o 1.5 1.4 1.3 1.2 1.1 1.0 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 65 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 49. LHGR MULTIPLIER VERSUS CORE POWER FOR ALL ATRIUM-10, ALL EXPOSURES FHOOS OR PROOS 1.10 r
- r. r r....
I I I I..
...I...
I.I I
.I..I I
I....
I I
I I I I
..I 1 1 1 1 1.. I..
- l.
l.... l l l.
I I I I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I.I..
.I.
I I I
I I I I I I I I I I I I I
I..
. I I
I I I I I I I I I I III1111111 II I
1111111 11111 I 11zbl 1 11 1 111 I I III i 1.00 I.
I I I I I..
1 1 1.....
II I I I I.
I I I I I 1 1 1 1 1 1 1 1 1 1 1 1 I............
I I
I I I I I I I I 1
1 1 1 1 1 1 1 1 I I I I
I1 I I I I I I I I I 1
1 1 1 1 1 1 1 1 1 I I I
I I I I I I I I I I I I I I
I I I I I I I I
.o I I I I I I I I I I I I I I I I I I I a-0
-j 0.90 0.80 F1 1 1 1 1 1 1 1 1 1 1 1 1. 1
.1
- 1.
.1..1
- 1.
.1.
1 1
.1 1
1.1 1
..1 1.1 1..1..1 1.. 1.. 1 1.
I.....................I I I I I
I 1 0. 2f 1 1 I 1 1 I 1 1 1 1 I 1 1 1 1 I
I I I
I I
I I I
I I I I I I
I.
I I I..........
1.......................
- 1.
.........................I I
1111 I
I I II I
f.
0.76 1 1 1 1 1 1 1 1 1 I I..
I i I I I...... I I I I.
C l
I I I I I I I I I I I I I I I 7 X t A
1 1-1 1 1 1 I I I I I...................
I I I I I I I I 0.70 I......
l l l l l l l l l l l l I....l l
l l l l
....................................... I......... -
1l l
l l
l l l l l l l l l l l 0.60 I
I 0
10 20 30 40 50 60 70 80 90 100 110 Power, % rated
Page 66 of 71 RBS CYCLE 12 COLR Revision I FIGURE 50. LHGR AND MAPLHGR MULTIPLIER VERSUS CORE POWER FOR GE-11, ALL EXPOSURES FMOOS OR PROOS 1.10 1-1..........
I......-...
I 1
1 1.0
~~~~II..I.I.I.I.
II I
D I
II I
D I.
IAE 1I11I I
I.A 1.00 0.90 0.
i 0.80
-j 0.70 0.60 I I
~
~
~ 11111I1 Ill Ill 1
111 11 I 1 I Ill I 1 I 11 1 1 7 11 1 1 I I 11 11 I I I ! II..I
......... I
.- ~...........T I l l I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 I1 I lI1 1 1 11111 I
l! I l!HI 11 Hil 1 1 1 1III l Ii Ill 11
... I.... .........
i H iii ii H k i H i ll I 11 II111 11 111 11 111 11 I Il l M 1 11 111 11 11*I 0.50 0
10 20 30 40 50 60 Power, % rated I
I 70 80 90 100 110
Page 67 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 51. LHGR MULTIPLIER VERSUS CORE POWER FOR ALL ATRIUM-10, ALL EXPOSURES SINGLE LOOP OPERATION (SLO) 1.10 I
1.00
-- -I -
L-- __
- X m~~I r
0.90 0.80 0.70 0.60 0.
0
-j 0
10 20 30 40 50 60 Power, % rated 70 80 90 100 110
Page 68 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 52. LHGR AND MAPLHGR MULTIPLIER VERSUS CORE POWER FOR GE-l, ALL EXPOSURES SINGLE LOOP OPERATION (SLO) 1.10 1.05
.00 1.00 0.95 0.90 0.85 0.
f 0.80 C 0.75
-i 0.70 0.65 0.60 0.55 f0.53 0.50 0.45 0
10 1
20 I -
30 40 I
50 60 70 Power, % rated 80
-I 90 100 110
Page 69 of 71 RBS CYCLE 12 COLR Revision 1 FIGURE 53. OPERATING LIMIT MCPR (MCPRF) VERSUS CORE FLOW FOR NON-KAN ATRIUM-10 FOR RECIRCULATION SYSTEM IN LOOP MANUAL, ALL EXPOSURES r~~~~~~s.~~11 IlL IIIIII~ii Illll IT I I I IIIl II 1111 1.4 111111 111111 11111111 1111 111 1.3 C 1.2 Ji 1._2l ltl
¢ i1 C IIIIIIl r
IL
-T iilL-.FITlllll ii
- E
________4.111111111 1
111 11 k
I I
I I
I I
I I
ITI~
~
a~
I 14 I-FT I I
111 11 11 I I I 11 1-I sI IHIIIIII
- 1.
1.1 1.0
___IIII III IIIIIIII I
1 1....
1
_ I
... I I
+ _ _ _
I I I I I I
I
_+
_ I I..................
I I I I I
I I I I I I I I I I I I I..
I I II I l I I
I.
I I I I I
I
..l.
I I I I
I I I I I l
I I _
_ I I _
I. I I
I I I I I I I I
I.
I I
I I I I I I I I
I I
I I I I.
.... I I
' I I
'I I
I I_.....
l......
1I.
.. I 1 1 1 I 1 1 1 1 1_
1 I
1 11 I... I I M
- l.
. I I _ _ _
.... I
_I _ _ll I..
l II l
l l I I I I I I I
I I 111II I I I I 1 I
11 0.9 0
10 20 30 40 50 60 70 Core Flow, % Rated 80 90 100 110 120
Page 70 of 71 RBS CYCLE 12 COLR Revision I FIGURE 54. OPERATING LIMIT MCPR (MCPRF) VERSUS CORE FLOW FOR KAN ATRIUM-10 FOR RECIRCULATION SYSTEM IN LOOP MANUAL, ALL EXPOSURES
.5 I I I Il I I I I I I Ii I
1 l 11 1 1
1 I I III I I I I I
I I I I I I I I
I I
l Ii I I I I I I I I 111111111111111111111111:111111111111 111111111 11111111 II 1111 1.4 1.3 I I I I I I I......
I.......
II I
I I
I I I I.I.I 1111111111111111111111111111111111111111111111111111111 11 I11 II1 111 l iii Ill.i I..
I...
I 11111111111 T1111111111111111111111111111111
'1111 I
.1111 1
.1.1111 1111 111111 111 1111 11111111 1 11111 1 11111 11 1.2 I I I I I I
.I
.I I
.I I.I.I.II I I I I.II I I I..II I.l I......
I I
I 1.1 1.0
.111111111111111111111111111111111 11111111111111111111111 0.9 0
10 20 30 40 50 60 70 80 90 100 110 120 Core Flow, % Rated
Page 71 of 71 RBS CYCLE 12 COLR Revision I FIGURE 55. OPERATING LIMIT MCPR (MCPRF) VERSUS CORE FLOW FOR GE-li FOR RECIRCULATION SYSTEM IN LOOP MANUAL, ALL EXPOSURES 1.5 IIIIH HIIIII1 5
III LllL II H
11TIM III T111 III I H M II11 14X1I 111111 I I I.I I Tl H IMi III 1
II T 11TT11 11 I II I I 1.4 1.3lHll 1.3 - _
I 9
IIII II I I I IIIII IIIII I II I - 4A 1 1 1I I
11111 ii
& 1.2 0
1.1 1.0
_ _.11
_1:.
+I+_
+
I I
Ii I1............
I
_ I
............ I I.......
I I I I
I I
1 1
+
I I
I I I _ _ _
_ I I
I I I I 1 1
I 1 +
I I
I I I I I
_... I
...... I I I I I I I I I I I I I I I I I I I I.
I I I I i I I I I I
11 11 111 11 1 11 1 11 1' I
11 I
.I I
I I
I I I I
_ I _
I I I I _
_ I I
I.............
I I I I I I I
I I
I I I I.I.... I I
I I
..... Ill I
I I Ii I
I
- l.
II I.
I I.
I
_.....II I__1 1
1 1
1 1 1111 1
..I.
11 1 1 1 1 R~~~~~~~~~~~~~~~
. I......... I.....
1111
- 1.
11 11 111.
..I
- 11.
.I 11 1 1
. II I
._I I
1 I
I 1 1 1 1 1 I 11 I
_1.1.1. 1 1
I I.
I I I. 1 1 I.....I l
l l
l l l I 0.9 0
10 20 30 40 50 Core 60 70 Flow, %Rated 80 90 100 110 120