ML25203A330
| ML25203A330 | |
| Person / Time | |
|---|---|
| Issue date: | 08/01/2025 |
| From: | Etter N NRC/RES/DSA/AAB |
| To: | |
| References | |
| Download: ML25203A330 (1) | |
Text
1 Methodology for Generating MACCS Site-Specific Input Files to Support Risk-Informed Radiological Consequence Assessment Noah Etter Accident Analysis Branch Division of Systems Analysis
2 CONTENTS 1
INTRODUCTION.......................................................................................................4 2
BACKGROUND........................................................................................................4 3
METHODOLOGY......................................................................................................6 3.1 Assumptions.......................................................................................................6 3.2 Summary of Inputs.............................................................................................8 3.2.1 Definition of Source Term Input File............................................................8 3.2.2 Definition of Meteorological Input File.........................................................9 3.2.3 Definition of Site File.................................................................................12 3.2.5 Definition of Emergency Response Input Parameters..............................15 3.2.4 Generic (non-site-specific) emergency response input parameters.........15 3.2.5 Site-specific emergency response input parameters................................17 3.2.6 Definition of Other Site-Specific Parameters.............................................22 4
EXAMPLE CASE....................................................................................................24 4.1.1 Definition of Non-Site-Specific Input File...................................................24 4.1.2 Definition of Source Term File...................................................................30 4.1.3 Definition of Meteorological File................................................................31 4.1.4 Definition of Site File.................................................................................32 4.1.5 Definition of Emergency Response Input Parameters..............................32 5
SUMMARY
AND CONCLUSIONS..........................................................................34 6
FUTURE WORK......................................................................................................35 7
REFERENCES........................................................................................................37 Appendix A. MACCS Emergency Planning Parameters for All U.S. Sites..............39 Appendix B. Case Study Inputs and Outputs for MACCS Pre-Processors.............44 B.1 Non-Site Specific Inputs...................................................................................44 B.2 Source Term Inputs..........................................................................................60 B.3 MacMetGen Input.............................................................................................72 B.4 Abridged MacMetGen Output (Single Day)......................................................72 B.5 SecPop Inputs..................................................................................................74 B.6 Abridged SecPop Output..................................................................................76 B.7 Site-Specific Input............................................................................................76
3 FIGURES Figure 1. Excerpt from MacMetGen.exe Input................................................................11 Figure 2. Excerpt from Example MACCS.MET File.......................................................12 Figure 3. SecPop User Interface....................................................................................14 Figure 4. MACCS Population Input Excerpt...................................................................15 Figure 5. Loading Times and ETEs for Representative Small Sites, Sourced from NUREG/CR-7269 Figure 3-6..........................................................................................21 Figure 6. Loading Times and ETEs for Representative Medium Sites, Sourced from NUREG/CR-7269 Figure 3-7..........................................................................................21 Figure 7. Loading Times and ETEs for Representative Large Sites, Sourced from NUREG/CR-7269 Figure 3-8..........................................................................................22 TABLES Table 1. Categorization of MACCS Input Parameter Files and Associated Parameters..6 Table 2. Source Term Parameters...................................................................................9 Table 3. Time Distribution for Notifying the Public, Sourced from ETE Reports............16 Table 4. Small, Medium, and Large ETE Summary and Loading Times, Sourced from NUREG/CR-7269 Table 3-12.........................................................................................20 Table 5. Cohort-Specific, Site-Specific Parameters........................................................23 Table 6. Site-Specific Parameters..................................................................................23 Table 7. Non-Site-Specific Input Parameters Used in Example Case............................25 Table 8. L3PRA Derived Source Term Parameters (5D ISLOCA).................................30 Table 9. DLTEVA for Reference Plant Emergency Cohorts...........................................33 Table 10. Emergency Response MACCS Input Parameters for the Example Reference Plant................................................................................................................................34 Table 11. Site-Specific CHRONC Input Parameters for the Example Reference Plant.34 Table 12. U.S. Fleet Locations.......................................................................................39 Table 13. U.S. Reactor Fleet 90th and 100th Percentile ETEs......................................41 Table 14. U.S. Fleet MACCS Emergency Response Parameters..................................42
4 1
INTRODUCTION MACCS requires a set of input parameters to define the characteristics and response framework of a nuclear reactor site [1]. These inputs span across several domains, including meteorological data which can be processed via MacMetGen.exe [3], regional population and land use which can be processed via SecPop [4], and emergency response behaviors. While certain parameters depend on the accident scenario and source term (e.g., release duration, radionuclide composition), others remain site-specific constants independent of the initiating event [5]. These fixed inputs define the physical, demographic, and procedural environment in which a radiological release would occur and must be provided to MACCS for any consequence assessment.
Although the datasets needed to develop a MACCS input deck are generally available through sources such as the NRC-mandated evacuation time estimate (ETE) reports for emergency behavior [6], site-specific meteorological observations for weather data [7],
the U.S. Census Bureau for population demographics [8], MACCS requires them to be processed, structured, and encoded into its input formats. This includes transforming bulk meteorological observations into hourly weather data, mapping census block group data into radial ring sectors, and converting evacuation distributions into cohort-specific timing delays, durations, and speeds. The task of collecting, consolidating, and formatting this information for each site presents a barrier to rapid deployment and consistency in consequence modeling across the U.S. reactor fleet.
To address this, the methodology developed in this report proposes a structured process for generating predefined files of MACCS site-specific inputs that can be used immediately in risk assessments or emergency simulations. These files capture each site's key environmental, demographic, and response characteristics using formatting conventions and modeling assumptions grounded in previous guidance such as NUREG/CR-7270 [5]. By streamlining input development, this methodology supports rapid, traceable, and transparent probabilistic consequence assessments.
Additionally, this work contributes to the creation of a centralized reference database of MACCS site inputs, which can be utilized in large-scale consequence comparison, regional risk screening, or integration into Level 3 PRA/Radiological Consequence projects. The ability to standardize and rapidly deploy inputs across multiple sites allows for a more scalable, data-driven approach to radiological risk management and emergency preparedness.
2 BACKGROUND MACCS is designed to simulate the atmospheric dispersion and deposition of radioactive material following a severe reactor accident and evaluate the resulting dose and economic consequences to the surrounding population. Central to its modeling approach is a Gaussian plume dispersion model, which generally requires hourly
5 meteorological data to generate weather trials [1]. These trials allow MACCS to simulate a broad range of dispersion conditions, capturing both average-case and the statistical distribution of outcomes. To support this, MACCS accepts meteorological input in the form of either a simple wind rose or a detailed year-long file containing hourly observations of wind speed, direction, atmospheric stability, precipitation, and mixing height. Although the traditional source for this information is observational data from site meteorological towers, the development of the MacMetGen tool allows use of archived NOAA forecast data to develop these inputs. In this report, NOAAs North American Mesoscale 12km x 12km (NAM12) data for the year 2020 is used [11]. The NAM12 dataset was selected for its spatial coverage and compatibility with post-2015 mixing height data fields.
MACCS also relies on spatially resolved demographic and land use information to estimate the number of individuals impacted by a radiological release and to quantify economic damages to agriculture, infrastructure, and commerce. This input is prepared using SecPop, a tool distributed with MACCS that overlays U.S. census data onto a radial grid of user-defined sectors and distance rings [4]. Through this, MACCS can account for population density variations and regional economic activity. For instance, if a reactor is sited near a population center, the ability to account for the population distribution in the spatial grid allows MACCS to produce more accurate results then simply assuming a uniform population density.
Beyond environmental and demographic inputs, MACCS supports detailed emergency response modeling. Although these models can be defined using the WinMACCS graphical user interface (GUI), WinMACCS also supports the definition of these inputs through user-defined text files [1]. These files specify evacuation timing, cohort behavior, transportation speeds, sheltering delays, relocation triggers, and more.
Parameters such as OALARM, DLTEVA, DURBEG, and ESPEED1 are used to simulate how different segments of the population respond following notification of a release. This flexibility enables MACCS to incorporate site-specific evacuation dynamics that reflect anticipated conditions documented in each site's ETE report.
As part of the modular input structure developed in this methodology, the emergency response parameters are housed within the site-specific input parameter file. This organization ensures that evacuation dynamics remain decoupled from the other non-site-specific modeling assumptions, allowing the same site configuration to be reused for different accident scenarios. When combined with the non-site-specific input parameter file (which defines fixed modeling options) and the source term-specific input parameter file (which defines accident progression variables), this structure supports scalable and repeatable consequence modeling. It also supports the traceability of the modeling assumptions, as emergency response parameters are explicitly sourced from site ETE reports and integrated through a clearly defined interface with MACCS input modules.
Table 1 provides a visual summary of how inputs are categorized in this methodology. It distinguishes between two types of inputs: discrete input files (e.g., the Dose Coefficient
6 File or SECPOP site file), and input parameters that are compiled into a.txt file and directly imported into MACCS.
Note that source term-specific inputs do not require a separate external file in this methodology. Instead, those parameters are included in the.txt parameter file.
Table 1. Categorization of MACCS Input Parameter Files and Associated Parameters Input Type Non-Site-Specific Site-Specific Source Term-Specific Files Dose Coefficient File COMIDA File Meteorological File Site File (SECPOP)
N/A Input Parameters Model configuration parameters Dispersion model parameters Dose response parameters Economic parameters Other non-site-specific parameters Emergency response model parameters Site-specific economic parameters Other site-specific model parameters Core inventory Release fractions Plume buoyancy parameters Other source-term specific parameters Through the combination of weather data, demographic information, and behaviorally-grounded emergency response inputs, MACCS enables analysts to perform site-tailored consequence assessments. This methodology ensures that three notable inputs, meteorology, population, and protective actions, are prepared using transparent, repeatable processes.
3 METHODOLOGY 3.1 Assumptions
- 1. Site-specific accident release inventories must be determined separately before using this method. These inventories vary between reactor sites and depend on the specific accident sequence. Since the determination of source terms requires a detailed accident progression analysis, it is beyond the scope of this approach.
7
- 2. The NAM12 weather data set [11] used in this analysis corresponds to the year 2020. This year was chosen for two primary reasons. First, the 2020 census data is available for use in SecPop, ensuring consistency between population and meteorological inputs. Second, starting in 2015, the NAM12 database began including the inversion layer height, a parameter relevant to atmospheric dispersion modeling. Thus, the 2020 data fulfilled both the census year and the mixing height availability requirements.
- 3. Meteorological data is assumed to be representative of long-term site conditions.
The 2020 NAM12 dataset is used as a proxy for typical site weather conditions, despite potential yearly variations. The use of a single years data assumes no significant anomalies that would make it unrepresentative of long-term trends.
- 4. Population and economic data are based on the 2020 census and are assumed to remain valid for consequence modeling. While demographic and economic shifts occur over time, this analysis does not account for future population growth, migration patterns, or changes in land use.
- 5. There are 13 radial distances explicitly modeled, with ring one being the exclusion area boundary (EAB) distance, ring three being one mile from the EAB for QHO computation, ring 7 being 10 miles from the site for QHO computation and evacuation zone definition, ring 13 being 50 miles from the site and ring 14 being 100 miles from the site which is used for boundary conditions.
- 6. MACCS modeling assumptions include: Pasquill-Gifford stability class lookup, Regulatory Guide (RG) 1.145 plume meander, stratified random weather sampling with 24 hourly weather points per day, density and flow plume rise, Briggs buoyancy flux downwash, and Linear No-Threshold dose response.
- 7. Emergency response parameters are assumed to be predefined and applicable to the modeled scenarios. While MACCS allows for emergency response customization, this approach does not account for real-time decision-making or changes in response strategies that may occur during an actual event.
- 8. The gaussian plume model within MACCS is assumed to be appropriate for radiological consequence assessment. While alternative atmospheric dispersion models exist, this analysis assumes that the gaussian model sufficiently captures dispersion behavior for the given site conditions.
- 9. The methodology for generating MACCS site input files is assumed to be generalizable across reactor sites. While this approach is demonstrated using a reference site, it is assumed that the same methodology can be applied to other reactor sites with similar input structures and available data sources. Further, all MACCS parameters are assumed to fall into one of the three input categories, non-site specific, site-specific and source-term-specific.
10.Evacuation delay values (DLTEVA) are derived from scenario-averaged trip generation times reported in the site-specific ETE reports. These values are based on graphical and tabular data provided in the ETE reports and are assumed to accurately represent the delay between population notification and mobilization for
8 each cohort. No additional sub-cohort stratification or uncertainty distribution is applied to these values.
11.Evacuation cohorts are simplified into three categories: a 90th percentile cohort, a 100th percentile (evacuation tail) cohort, and a non-evacuating cohort. This structure does not account for finer resolution such as time-of-day stratification, special needs populations, or multi-modal transportation users (e.g., pedestrians or transit-dependent evacuees).
12.This methodology assumes a radial evacuation. Evacuation distances are interpreted radially and uniformly across all scenarios and cohorts, with a generic 10-mile Emergency Planning Zone (EPZ) used as a generic evacuation zone for modeling purposes. Variations in road network topology, choke points, or detour routes are not explicitly modeled, and all travel distances are assumed to follow a straight-line.
3.2 Summary of Inputs 3.2.1 Definition of Source Term Input File The source term input file is reserved for MACCS parameters that vary with accident progression and radiological release characteristics. These include values such as radionuclide inventories, release durations, plume rise heights, release fractions, timing of release onset, and emergency notification time (OALARM), if driven by source term recognition. These parameters correspond to NUREG/CR-7270s [5] User-Defined category, as they require explicit evaluation for each modeled sequence. One site can have many different accident scenarios and thus, many potential source terms. In this methodology, the source term file is designed to encapsulate all accident-specific parameters that may change between cases, allowing for scenario switching without altering base modeling assumptions or site geography. This structure supports comparative risk assessments, sensitivity studies, and regulatory evaluations by allowing source terms to be cleanly swapped while holding other variables constant.
Parameters in this file are typically derived from Level 2 PRA, mechanistic source term calculations (e.g., MELCOR), or bounding accident scenarios. To illustrate application of the methodology in this report, source term parameters were extracted from the U.S.
NRC Level 3 PRA Project, Volume 3d: Reactor, At-Power, Level 3 PRA for Internal Events and Floods [9], though it is acknowledged that these are specific to a reactor design and are developed outside of the scope of this project.
The structural building parameters BUILDH (height), BUILDW (width), and BUILDL (length) refer to the physical dimensions of the reactor containment building [5], which can typically be found in publicly available Final Safety Analysis Reports (FSARs) or generic safety evaluation reports. These reports often include tabulated design specifications for containment systems, including internal diameter, height, and occasionally concrete thickness and roof type. For cylindrical containment buildings, the internal diameter may be used as both BUILDW and BUILDL, while BUILDH
9 corresponds to the total vertical height from base to dome. It is important to note that parameters such as BUILDH may vary depending on the plume segment and, in such cases, should be defined within the source term-specific input set The OALARM parameter is defined as the reference time for protective actions, in this case being the general emergency declaration time for a given source term plus the amount of time it takes to communicate this declaration to an offsite response organization. Note that this is prior to dissemination of the emergency notice to the public, as that parameter considered DLTSHL.
Table 2 contains parameters that are dependent on the source term, such as the number of plume segments, what these segments contain and buoyancy parameters related to release conditions.
Table 2. Source Term Parameters Parameter Description NUMREL Number of Plume Segments MAXRIS Index of risk-dominant plume segment CORINV Inventory of each radionuclide present at the time of accident VDEPOS Dry deposition velocities for each particle size group (m/sec)
PLHEAT Plume segment heat content (W)
PDELAY Start time of each plume segment from accident initiation (s)
PLHITE Height of each plume segment at release (m)
PHTRAP Specifies trapped plume release height to use REFTIM Representative time point for dispersion and radioactive decay PLUDUR Duration of each plume segment (s)
RELFRC Release fractions for each of the plume segments for each of chemical group BUILDH Building Height (m)
BUILDW Building Width (m)
BUILDL Building Length (m)
BUILDA Angle from North for Width Dimension (deg)
OALARM Time from accident initiation to communication with offsite response organizations (s) 3.2.2 Definition of Meteorological Input File By using MacMetGen, analysts can generate site-specific meteorological input files suitable for use in a wide range of MACCS consequence modeling scenarios. The meteorological input file is an important component of any MACCS consequence analysis, as it governs the behavior of atmospheric dispersion for released radionuclides. Each record in the input file contains wind direction, wind speed, atmospheric stability class, precipitation, and mixing height. These parameters are used within MACCS to conduct randomized weather trials that simulate a variety of plume transport conditions. Wind direction and speed determine horizontal transport, while the
10 stability class and mixing height influence vertical and crosswind dispersion and atmospheric dilution. Precipitation allows for wet deposition and can affect modeled evacuation behavior by reducing travel speeds through predefined multipliers.
To generate meteorological inputs in the required format, MACCS includes a utility called MacMetGen.exe, which extracts and formats meteorological data from supported datasets such as NAM12 (North American Mesoscale, 12 km resolution), GDAS0P5 (Global Data Assimilation System, 0.5-degree resolution), and WRF27 (Weather Research and Forecasting, 27 km resolution) [3]. MacMetGen was originally developed to enable use of the MACCS-HYSPLIT option, which couples MACCS with the HYSPLIT Lagrangian atmospheric dispersion model. However, it can also be used to generate meteorological input files for the standard MACCS Gaussian plume model.
MacMetGen requires the user to supply site-specific configuration details such as latitude, longitude, time zone, grid definitions, and the method for calculating atmospheric stability. The utility processes the bulk meteorological data in two stages:
first, it generates an intermediate.csv file containing extracted variables such as wind speed, direction, temperature, precipitation, and mixing height; second, it formats this data into a MACCS-compatible text input file. The validity of this approach is supported by the NCEP Final Feasibility Report [10], which found that the interpolated meteorological data generated by MacMetGen compares favorably with results derived from observational datasets.
For this report, the NAM12 dataset for the year 2020 was selected (https://www.ready.noaa.gov/data/archives/nam12/) [11]. This year was chosen to align with the 2020 U.S. Census data used in SecPop, for consistency across population and weather modeling. The 2020 dataset also includes mixing height, which is used dispersion modeling. NAM12 data from prior to 2015 does not include mixing height
[12], in which case MacMetGen assigns a default value of 100 meters, a simplification that may underestimate or overestimate plume dilution in actual scenarios. While the methodology does not require this specific dataset-year combination, the 2020 NAM12 data provides a reasonable, broadly applicable basis for generic consequence assessments. MacMetGen requires a complete year of hourly data (i.e., 8,760 records),
and if fewer hours are available, the utility will automatically loop the available data to complete the year [3].
The intermediate.csv file generated during processing also serves as a diagnostic tool, allowing users to inspect or validate extracted meteorological variables prior to conversion. The final MACCS input file, produced from this intermediate, is formatted for direct MACCS integration. Figures 1 and 2 contain the MacMetGen input and output respectively.
11 Figure 1. Excerpt from MacMetGen.exe Input
12 Figure 2. Excerpt from Example MACCS.MET File 3.2.3 Definition of Site File SecPop is a utility included in the standard MACCS/WinMACCS 4.2.0 distribution and functions as a tool for generating population and economic input files for consequence modeling [4]. It leverages publicly available U.S. Census and land use datasets to define spatially resolved demographic and agricultural parameters surrounding a nuclear facility. These include population density, economic region classifications, land use types (e.g., cropland, pasture, developed land), watersheds, and distribution of agricultural activity such as dairy and produce farming. Each of these factors contributes to the assessment of both radiological health impacts and economic consequences following a severe reactor accident.
13 The primary function of SecPop is to translate geospatial and demographic data into a format readable by MACCS. This is accomplished by allowing the user to define a circular polar grid centered on the nuclear site of interest. The grid is configured in terms of radial distance rings and compass sectors (typically 16, 32, or 64 sectors), forming a site-specific spatial mesh. Population and economic attributes are then aggregated within each grid cell. MACCS uses this grid to model dose distribution and to estimate both individual and collective health risks, including early fatalities, latent cancer fatalities, and economic losses from land interdiction or agricultural contamination.
To begin the site setup, the user inputs the site's latitude and longitude and defines the radial ring boundaries based on regulatory or operational needs. The first radial distance typically corresponds to the EAB, which is the zone around the reactor where public access is tightly controlled [4]. For the purposes of this analysis, a second radial distance was specified one mile from the origin and a third radial distance for one mile from the EAB distance. This outer radius is used to support Quantitative Health Objective (QHO) assessments. The QHOs are given by The risk to an average individual in the vicinity of a nuclear power plant of prompt fatalities that might result from reactor accidents should not exceed one-tenth of one percent (0.1 percent) of the sum of prompt fatality risks resulting from other accidents to which members of the U.S.
population are generally exposed. The risk to the population in the area near a nuclear power plant of cancer fatalities that might result from nuclear power plant operation should not exceed one-tenth of one percent (0.1 percent) of the sum of cancer fatality risks resulting from all other causes. The QHOs are commonly evaluated at the one-mile beyond the EAB mark and the ten-mile mark [13]. Beyond these initial rings, additional default radial distances extending out to the 50-mile region or further can be added to match the extent of the MACCS modeling grid.
SecPop automatically assigns population values to each cell based on the latest census data available for the specified year, in this case, the 2020 decennial census.
Agricultural land use and economic productivity indicators are overlaid using datasets provided with the tool. These features allow MACCS to account not only for health effects due to plume exposure but also for secondary effects, such as loss of farmland or displacement of economically significant populations.
Once configured, SecPop produces several output files that define regional attributes for a given site. For MACCS consequence modeling, the primary output is the.inp site file commonly referred to as the SECPOP file, which defines the population distribution, regional economic valuation, and land-use data in a format compatible with MACCSs economic consequence model [4]. Although SecPop is also capable of generating additional outputs including files tailored for use with the RDEIM model, these were not used in this methodology.
Note that SECPOP provides options for scaling both population and economic data to account for temporal or data source discrepancies [4]. This functionality is particularly useful when there is a mismatch between the year of the census data used in SecPop and the year of the meteorological or economic data used elsewhere in the MACCS
14 analysis. In the example case, both the population and economic scaling factors were applied to adjust 2010 baseline census data and 2012 baseline economic data to better reflect conditions in the year 2020.
Figures 3 and 4 contain the SecPop input GUI and output file respectively.
Figure 3. SecPop User Interface
15 Figure 4. MACCS Population Input Excerpt 3.2.5 Definition of Emergency Response Input Parameters MACCS includes a suite of emergency response parameters that govern the timing, extent, and behavior of protective actions during the early phase of a radiological emergency. These parameters are configurable at the cohort level. To facilitate both standardization and site realism, this report distinguishes between parameters that can be generically applied across all reactor sites and those that require derivation from ETE studies or other site-specific sources. For all analyses, three evacuation cohorts are defined: a cohort representative of the 90th percentile evacuation behavior, a cohort capturing the slowest (100th percentile) evacuation tail, and a non-evacuating cohort that represents populations unable or unwilling to evacuate.
3.2.4 Generic (non-site-specific) emergency response input parameters For this methodology, it is assumed that several of the parameters in a MACCS emergency response model may be defined on a generic, standardized basis. These parameters include NUMEVA, LASMOV, DLTSHL, DURMID, ESPEED2, ESPEED3, ESPGRD, ESPMUL, CRIORG, DPPEMP, DOSNRM, and DOSHOT.
The DLTSHL parameter represents the delay in seconds, between the protective action reference point (e.g., OALARM) and the moment individuals begin sheltering. It reflects the distribution of time required for the public to receive the emergency notification and
16 enter shelter [5]. To capture differences in response behavior, this report defines DLTSHL separately for each evacuating cohort. The 90th percentile DLTSHL value is assumed to be 33 minutes, while the 100th percentile value is taken as 45 minutes, both of which can be derived from ETE reports, as seen in Table 3.
Table 3. Time Distribution for Notifying the Public, Sourced from ETE Reports Elapsed Time (Minutes)
Percent of Population Notified 0
0.0%
5 7.1%
10 13.3%
15 26.5%
20 46.9%
25 66.3%
30 86.7%
35 91.8%
40 96.9%
45 100.0%
The DURMID parameter denotes the duration of the middle phase of evacuation, during which the greatest number of evacuees are on the road and congestion is most pronounced [5]. Because the modeling framework used here assumes a two-phase evacuation structure consisting only of an evacuation delay in which the population is assumed to be sheltering (DLTEVA), an initial evacuation phase in which the evacuees are on the road network within the 10-mile evacuation zone (DURBEG), and a final evacuation phase in which the evacuees are assumed to be beyond the 10-mile evacuation zone on an uncongested road network, DURMID is set to zero and ESPEED2 is unused. This simplification reduces input complexity while still capturing notable evacuation dynamics via the initial phase parameters.
ESPGRD is a cohort-and grid cell-specific multiplier that modifies the base evacuation speeds (ESPEED1-3) to reflect localized road network performance [5]. Values greater than 1.0 denote faster movement (e.g., open rural roads), while values less than 1.0 represent slower movement due to bottlenecks or urban congestion. For this analysis, ESPGRD is set to 1.0 across all cohorts and grid cells, assuming uniform evacuation speed without road quality degradation. ESPEED3 was assumed to be free travel time, and a value of 25 mph was chosen based on a conservative federal highway average speed [14].
ESPMUL accounts for adverse weather conditions by scaling evacuation speed during precipitation events [5]. This parameter multiplies ESPEED by a constant value when rain, snow, or ice is recorded in the meteorological input. An ESPMUL value of 0.7 is used, consistent with guidance from NUREG/CR-7702 [15], to reflect a 30% reduction in speed during inclement weather.
17 DPPEMP defines the dose projection window, in days, for early phase relocation decision-making [5]. This parameter governs how long early phase doses are accumulated before evaluating whether relocation thresholds have been exceeded. A value of 4 days is selected in alignment with the EPA Protective Action Guide (PAG)
Manual [16], which uses a 4-day projected dose basis for early phase decisions.
CRIORG specifies the organ or dose metric used in early phase relocation decisions [5].
In this analysis, L-ICRP60ED is selected, representing the effective dose model for adults under ICRP Publication 60 [18]. This choice aligns with current EPA Protective Action Guideline (PAG) recommendations [16] and provides a consistent metric for comparing projected doses against relocation thresholds.
DOSHOT and DOSNRM define the early phase dose thresholds that trigger early phase relocation actions for hotspots and normal regions, respectively [5]. DOSHOT is set to 5 rem, matching the upper bound of the EPAs 4-day PAG. DOSNRM is set to 1 rem, the lower bound the upper bound of the EPAs 4-day PAG [16].
NUMEVA and LASMOV define the spatial extent of protective actions [5]. NUMEVA sets the outer boundary (in MACCS ring indices) for evacuation and sheltering. For this report, it is set to the ring corresponding to a generic 10-mile evacuation zone, ring 7.
LASMOV defines the farthest distance an evacuating cohort can travel within the simulation. For evacuating cohorts, LASMOV is set to the 50-mile ring index, ring 13 to ensure population movement is captured beyond the evacuation zone. The non-evacuating cohort is defined by setting LASMOV set to zero. For this cohort, the MACCS early phase relocation parameters (e.g., TIMHOT, TIMNRM) govern their protective actions instead.
3.2.5 Site-specific emergency response input parameters The remaining parameters DLTEVA, DURBEG, ESPEED1, TIMHOT, and TIMNRM, are all site-specific and may be derived from a given sites ETE report. The process for defining these parameters is described below, and the resulting site-specific values for the existing fleet (and three generic locations) are provided in Table 14.
The DLTEVA parameter in MACCS defines the delay, in seconds, between the beginning of sheltering and the initiation of evacuation for a given cohort [5]. It represents the mobilization period required for individuals to begin evacuation. This includes time preparing to leave work, travelling from work, gathering family members and preparing homes, and other personal actions necessary before departure. DLTEVA is site-specific and may be derived from the site's ETE study rather than assumed from generic guidance. In this analysis, DLTEVA was calculated using data derived from Appendix J of the site-specific ETE reports identified in Table 14, which presents mobilization time curves for each modeled scenario. These curves separately track cumulative trip generation (the time at which evacuees are ready to depart) and cumulative evacuation (the time at which evacuees have exited the evacuation zone).
For each scenario, the time between the trip generation and evacuation curves was
18 measured at the 90th percentile. This difference represents the travel time component of the ETE. Subtracting this value from the total evacuation time at the same percentile yields the DLTEVA for that scenario. The final DLTEVA values were then computed by averaging across all modeled scenarios at each percentile, producing one representative DLTEVA for the 90th percentile cohort. Because tail behavior exists asymptotically on these curves, the 100th percentile cohort was instead derived by assuming a free traffic speed of 25 mph and back calculating to derive the trip generation time. This approach ensures that DLTEVA captures the full mobilization behavior as observed in multi-scenario ETE modeling, rather than relying on a simplified or idealized value. It also enables consistent cohort-level parameterization across different sites using a repeatable methodology.
Figure 5 contains an example trip generation and evacuation time curve sourced from the reference plant ETE report.
Figure 5. Example of trip generation and evacuation curves for a summer, midweek, midday, good weather scenario (Scenario 1), sourced from ETE report for the reference plant DURBEG defines the duration, in hours, of the initial evacuation travel phase following the end of the sheltering delay [5]. In this analysis, DURBEG is approximated using the 90th and 100th percentile evacuation time estimates (ETE90 and ETE100) and the corresponding delay-to-evacuate values (DLTEVA90 and DLTEVA100) from the sites ETE report. The 90th percentile represents the time needed for the majority of the population to evacuate under realistic, non-extreme conditions, while the 100th percentile captures the remaining tail of the population. These percentiles are used to reflect the total time by which evacuees are assumed to have cleared the 10-mile emergency planning zone (EPZ). This approach allows for simplification while still
19 aligning with the site-specific evacuation dynamics. This value is cohort-specific and was derived through the DLTEVA parameter which itself was derived from the averaged scenario data in Appendix J of each ETE report. The sum of DLTEVA and DURBEG was assumed to equal the ETE for the cohort, i.e., the sum of DLTEVA and DURBEG for the 90th percentile cohort should equal the 90th percentile ETE, and the sum of DLTEVA and DURBEG for the 100th percentile cohort was assumed to equal the 100th percentile ETE.
ESPEED1 corresponds to the average evacuation speed, in miles per hour, during the initial phase defined by DURBEG [5]. It reflects the average rate of travel for a given cohort from their point of departure to their exit from the evacuation zone during the early phase of the evacuation. For this analysis, ESPEED1 was calculated by dividing the assumed evacuation distance (10 miles, consistent with the assumed evacuation zone radius) by the average travel time, defined as the difference between total evacuation time and trip generation time, as reflected in the definition of DURBEG.
These values were extracted from the sites ETE curves and averaged across all modeled scenarios. By grounding ESPEED1 in observed data rather than assuming a fixed value, this methodology captures both local road conditions and population behavior, allowing for site-specific variation in evacuation speed.
TIMHOT defines the time, in seconds after plume arrival, at which residents in hotspot areas (locations where projected doses exceed the hotspot relocation threshold (DOSHOT)), are assumed to be relocated. Rather than using a generic or assumed value, TIMHOT was calculated by summing the 90th percentile ETE with a 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> buffer time to allow for identification of plume characteristics and communication with members of the public within hot spot zones. This approach models the time required for public notification, mobilization, and early evacuation under worst-case conditions and reflects a conservative timeline for initiating hotspot relocations, while grounding the input in observable, site-specific behavior.
TIMNRM defines the time assumed for relocation for areas where the projected dose exceeds the lower general relocation threshold (DOSNRM) [5]. It represents the time at which populations in non-hotspot areas are removed from the dose calculation and assumed to have relocated. According to NUREG-CR/7270 [5], TIMNRM is calculated as the sum of TIMHOT and an additional 6-hour buffer time to allow for identification of plume characteristics and communication with members of the public outside of hot spot zones, as this ensures that hotspot evacuations are completed before normal relocation begins. This approach models a staggered relocation response, where limited emergency resources are first directed toward high-risk populations, followed by broader population movements.
Figure 6 contains a sample of the site-specific input deck used in this methodology.
20 Figure 6. Example Site-Specific Parameter Input Deck 3.2.5.1 Note on Development of Generic MACCS Emergency Response Input Parameters To broaden the applicability of the methodology, emergency response parameters were developed for representative small, medium, and large sites in accordance with the guidance provided in NUREG/CR-7269 [17]. This guidance provides a method for categorizing generic sites based on their respective sizes. These are split among 3 categories, small, medium, and large, with the small site having an EPZ population of 0-50,000, a medium site having an EPZ population of 50,000-200,000, and a large site having an EPZ population of <200,000 [17].
Table 4. Small, Medium, and Large ETE Summary and Loading Times, Sourced from NUREG/CR-7269 Table 3-12 10-Mile ETE (h:mm) 10-Mile ETE (h:mm)
Population Site Model 90%
100%
Small 1:44 2:31 Medium 4:59 7:22 Large 4:40 9:02
21 Figure 5. Loading Times and ETEs for Representative Small Sites, Sourced from NUREG/CR-7269 Figure 3-6 Figure 6. Loading Times and ETEs for Representative Medium Sites, Sourced from NUREG/CR-7269 Figure 3-7
22 Figure 7. Loading Times and ETEs for Representative Large Sites, Sourced from NUREG/CR-7269 Figure 3-8 Table 4 and Figures 5, 6 and 7 summarize the ETEs and corresponding loading curves for each representative site size. These resources were used to identify the 90th and 100th percentile evacuation times (ETE90 and ETE100), as well as the delay to evacuation at the 90th percentile (DLTEVA90), which serve as the basis for deriving additional response parameters.
The intent of these values is to establish a consistent, generic set of emergency response inputs that can serve as both a reference baseline and a practical alternative in cases where site-specific ETE reports are unavailable.
3.2.6 Definition of Other Site-Specific Parameters In addition to MacMetGen-derived meteorological file, the SecPop-derived site file, amd and evacuation-related parameters from the sites ETE report, several other site-specific values may be explicitly defined to support consequence modeling in MACCS. These parameters capture fixed physical and economic attributes of the reactor site that influence plume dynamics, source term behavior, and economic impact assessment.
Additionally, economic valuation inputs such as VALWNF (non-farm wealth per capita) and VALWF (agricultural wealth per hectare) are used in MACCS land condemnation model [5]. These values are specific to the sites geographic and economic context.
The CHRONC economic parameters, VALWF (value of farm wealth per person) and VALWNF (non-farm wealth per person), can be derived from the Site File output generated by SecPop after defining the site and associated economic regions. This file reports farm and non-farm economic data across radial rings [4]. To compute
23 representative values for use in MACCS, users may account for the economic region configuration specified in SecPop. Both values are reported in the Site File and were used in the example case. This approach ensures that the final CHRONC values are internally consistent with the spatial and economic segmentation defined in SecPop and reflected in the MACCS input deck.
Table 4 contains parameters that are both cohort-specific and site-specific. Table 5 contains other site-specific parameters that are not directly related to the emergency response model.
Table 5. Cohort-Specific, Site-Specific Parameters Parameter Description DLTSHL Delay from the time represented by REFPNT to the start of sheltering (s)
DLTEVA Delay from the beginning of the sheltering period to the beginning of evacuation ESPEED1 Evacuee travel speed during initial phase (m/s)
DURBEG Duration of initial phase of evacuation (s)
TIMNRM Normal Relocation Time (s)
TIMHOT Hot Spot Relocation Time (s)
Table 6. Site-Specific Parameters Parameter Description LATITUDE Site Latitude (deg)
LONGITUDE Site Longitude (deg)
VALWNF Value of Non-Farm Wealth
($/person)
VALWF Value of Farm Wealth ($/ha)
24 4
EXAMPLE CASE In this section, the methodology is illustrated by application to a reference plant selected from the plants listed in Table 12. For this example reference plant, each of the three core input categories the meteorological file, the site file providing the site-specific population and economic data, and the site-specific MACCS input parameters including the emergency response parameters are fully developed using the tools and methodologies outlined in this report. The resulting input files and setup configurations are included below to illustrate a comprehensive and repeatable framework for consequence modeling that can be applied to other reactor sites.
4.1.1 Definition of Non-Site-Specific Input File Table 5 provides the list of non-site-specific input parameters necessary for a MACCS calculation. These values can vary depending on the application, as best practices evolve, and as code capabilities are enhanced.
NUREG/CR-7270 categorizes MACCS parameters into three distinct groups, standard parameters that represent modeling choices that should not be changed without good reason, generic parameters that represent modeling choices that are considered reasonable generic choices that may be changed, and user-defined that should be evaluated by the user. This methodology adopts and builds upon that structure by incorporating both standard and generic parameters along with output control statements, radionuclide definitions (excluding inventory magnitudes and other release-specific data), late-phase (CHRONC) settings, and other globally applicable modeling options, into a unified non-site-specific input deck. This set of non-site-specific inputs do not need to change to model different sites or source terms. It ensures internal consistency and repeatability across consequence assessments. In this structure, only parameters that vary by site or by source term such as meteorology, evacuation behavior, radionuclide inventories, or plume release geometry, are excluded from the non-site-specific deck and instead delegated to their respective modular input parameter files (site-specific or source-term-specific). This division aligns closely with the intent of NUREG/CR-7270 [5] to preserve model fidelity through consistent core assumptions while allowing for flexibility in user-evaluated inputs. Note that non-site-specific economic parameters for 2012 are available in NUREG/CR-7270. These values were updated for 2020 using the change in CPI.
To demonstrate the ability to create a MACCS project for rapid, site-specific consequence assessments, Table 5 provides the set of proposed input values of non-site-specific parameters used for the example case. To the extent possible, the values are based on NUREG/CR-7270 for MACCS v3.10. Although these inputs do not necessarily represent updated values, and these proposed modeling choices may need to be evaluated for specific applications, Table 5 provides a basis for identifying a common database of generally applicable non-site-and non-source-term-specific parameter values. Review of these parameters for specific applications, and
25 development of a technical justification for the selection for each parameter, is left as a potential task for future work.
Table 7. Non-Site-Specific Input Parameters Used in Example Case Parameter Description Value IRSEED Initial seed for random number generator 66 NSMPLS Number of hourly weather samples per day 24 LIMSPA Last special interval for recorded weather, beyond use boundary weather 13 NUMFIN Number of fine-grid subdivisions used by model 7
NUM_DIST Number of entries in the dispersion lookup table 78 NUMISO Number of isotopes 71 CORSCA Core scaling factor 1
APLFRC Specifies how release fractions are applied to daughter ingrowth products (PARENT,PROGENY)
PARENT IDEBUG Specifies set of debug results to report 0
NUCOUT Name of the nuclide to be listed on dispersion listing Cs137 GRPNAM Chemical Group Names XE, CS, BA, I, TE, RU, MO, CE, LA, CD MSMODL Multi Source Term model FALSE WETDEP, DRYDEP Flags for wet and dry deposition, group dependent See Appendix B.1 NUMSTB Number of pseudostable radionuclides 16 NAMSTB List of pseudostable radionuclides See Appendix B.1 NUCNAM, IGROUP Chemical group associated with each nuclide See Appendix B.1 CWASH1 Washout coefficient number one, linear factor (1/s) 1.89E-5 CWASH2 Washout coefficient number 2, exponential factor (1/s) 0.664 NPSGRP Number of particle size groups 10 PSDIST Particle size distribution for each element group See Appendix B.1 SKINDV Skin dose deposition velocity 0.01
26 Parameter Description Value WASHTM Time of residence of radionuclide on skin (s) 28800 PSMEQ1C Point Source model equation 1 coefficient 0.5 PSMEQ2C Point Source model equation 2 coefficient 3
NRINTN Number of rain intensity breakpoints 3
RNRATE Rain intensity breakpoints for binning 2, 4, 6 BNDWND Boundary weather wind speed (m/s) 5 PLMMOD Plume Rise model (DENSITY,HEAT)
DENSITY MAXHGT Determines mixing height model, DAY_AND_NIGHT indicates both day and night mixing heights will be used DAY_AND_NIGHT NORGANS_SEL Number of organs selected 16 ORGANS_SEL List of organs selected See Appendix B.1 ENDEMP Duration of emergency-phase period (s) 6.048E+5 (or 7 days)
RELMOD Early relocation dose projection model (ORIGL, TOTAL, AVOID),
where ORIGL indicates dose projected from 0 seconds ORIGL RESCON Initial value for emergency phase resuspension concentration (s/m) 1.0E-4 RESHAF Emergency-phase resuspension concentration coefficient weathering half-life (s) 1.82E+5 (or 2.11 days)
NUMEFA Number of early fatality effects 3
- ORGNAM2, EFFACA, EFFACB, EFFTHR Early fatality effect settings See Appendix B.1
- EINAME, ORGNAM3, EISUSC, EIFACA, EIFACB Early injury effect settings See Appendix B.1 NUMACA Number of latent cancer effects 8
ACTHRE Used for non quadratic model, always 0 0
DDTHRE Dose threshold for applying dose-dependent reduction factor (Sv) 0.2
27 Parameter Description Value
- ACNAM, ORGNAM4,
- ACSUSC, DOSEFA=1, DOSEFB=0, CFRISK, DDREFA Latent effect settings See Appendix B.1 IPRINT Amount of detail of output reported, zero is used for standard reporting 0
WTFRAC Weighting fraction for cohort 0.8955, 0.0995, 0.005 EVATYP Indicates if evacuation model is radial or network RADIAL TRAVELPOINT Determines whether boundary or centerpoint of destination is evacuee objective CENTERPOINT ESPMUL Multiplicative factor affecting ESPEED during times of precipitation 0.7 DURMID Duration of middle phase of evacuation (s) 0 NUMEVA Outer boundary of middle phase of evacuation 7
LASMOV Outermost spatial interval of evacuation movement zone 13, 13, 0 CRIORG Critical organ for relocation decisions during evacuation-phase period L-ICRP60ED ESPEED2 Evacuee travel speed during intermediate phase (m/s) 0 ESPEED3 Evacuee travel speed during late phase (m/s) 11.176 (25 mph)
FRNDL Fraction non-farmland decontamination dose due to labor 0.35, 0.35, 0.35 TFWKF Fraction of the decontamination period that a farmland worker spends in contaminated area 0.15, 0.15, 0.15 TFWKNF Fraction of the decontamination period that a non-farmland worker spends in contaminated area 0.15, 0.15, 0.15 NGWTRM Number of terms in the groundshine weathering relationship 2
GWCOEF Groundshine weathering equation coefficient 0.4, 0.6
28 Parameter Description Value TGWHLF Groundshine weathering equation half-lives (s) 4.7E+07, 1.58E+09 NRWTRM Number of resuspension terms 3
RWCOEF Resuspension weathering equation coefficient (1/m) 1E-05, 7E-09, 1E-09 TRWHLF Resuspension weathering equation half lives (s) 8.56E+05, 2.99E+07, 1E+10 CSFACT Cloudshine shielding factor 0.95, 0.75, 0.6 EVACST Daily cost of compensation for evacuees and short-term relocation ($/person) 238 RELCST Daily cost of compensation for individuals due to intermediate-phase relocation ($/person) 167 POPCST Per capita removal cost for temporary or permanent relocation of population and businesses 8471 DUR_INTPHAS Duration of the intermediate-phase period (s) 3.15576E+07 (or 1 year)
DECDPP Projected dose period used for cleanup (s) 3.15576E+07 (or 1 year)
EXPTIM Long-term phase period (s) 1.577E+09 (or 50 years)
DSCRTI Maximum allowable direct-exposure dose commitment in the intermediate phase period (Sv) 0.02 TMPACT First long-term phase dose projection period (s) 3.15576E+07 (or 1 year)
DECCRLT Cleanup dose criterion used in decontamination and interdiction 0.005 DSCRLT Maximum allowable direct-first long-term phase dose projection criterion (Sv) 0.005 LTDPDL First long-term phase dose projection period delay 0
LVLDEC Number of decontamination levels (1, 2, or 3) 3 TIMDEC Time required for completion of each level of decontamination (s) 3.15576E+07, 3.15576E+07, 3.15576E+07 (or 1 year)
CM2THY Comida2 thyroid organ L-Thyroid CM2EFF Comida2 effective organ L-ICRP60ED
29 Parameter Description Value FRFIM Fraction of farm wealth due to improvements (sourced from SecPop 2020 Data) 0.2 FRNFIM Fraction of non-farm wealth due to improvements (sourced from SecPop 2020 Data) 0.68 CDFRM Farmland decontamination cost
($/ha) 4329, 44460, 44460 CDNFRM Non-farmland decontamination cost
- 91260, 2.1528E+05, 3.1473E+05 DLBCST Labor cost of decontamination worker ($/man-yr) 84000 DSRFCT Effectiveness of the various decontamination levels in reducing dose 2, 4, 8 DOSEMILK Maximum allowable food ingestion dose from milk crops during the year of the accident (Sv) 0.0025, 0.025 DOSEOTHR Maximum allowable food ingestion dose from non-milk crops during the year of the accident (Sv) 0.0025, 0.025 DOSELONG Maximum allowable long-term annual dose to an individual from ingestion of milk and non-milk crops (Sv) 0.005, 0.05 NAMWPI, WSHFRI, WSHRTA, WINGF Radionuclide, washout fraction, annual washout rate (1/yr), lower bound of water ingestion factor See Appendix B.1 TYPE1NUMBER Number of Type 1 Outputs 3
TYPE1OUT Health effect cases by interval See Appendix B.1 TYPE2NUMBER Number of Type 2 Outputs 1
TYPE2OUT Maximum distance to which early fatalities are possible See Appendix B.1 TYPE3NUMBER Number of Type 3 Outputs 6
TYPE3OUT Population subject to doses See Appendix B.1 TYPE4NUMBER Number of Type 4 Outputs 6
TYPE4OUT Average individual early fatality risk See Appendix B.1 TYPE5NUMBER Number of Type 5 Outputs 4
TYPE5OUT Collective effective committed dose (ED)
See Appendix B.1 TYPE6NUMBER Number of Type 6 Outputs 0
TYPE7NUMBER Number of Type 7 Outputs 0
TYPE8NUMBER Number of Type 8 Outputs 2
30 Parameter Description Value TYPE8OUT Population-weighted individual early fatality risk See Appendix B.1 TYPEANUMBER Number of Type A Outputs 2
TYPEAOUT Peak total effective committed dose (ED)
See Appendix B.1 TYPEBNUMBER Number of Type B Outputs 0
TYPECNUMBER Number of Type C Outputs 0
TYPEDNUMBER Number of Type D Outputs 0
TYPEENUMBER Number of Type E Outputs 3
TYPEEOUT Population exiting region See Appendix B.1 TYPEFNUMBER Number of Type F Outputs 5
TYPEFOUT Peak projected dose See Appendix B.1 TYPE9NUMBER Number of Type 9 Outputs 2
TYPE9OUT Collective committed effective dose from long-term pathways See Appendix B.1 TYPE10NUMBER Number of Type 10 Outputs 2
TYPE10OUT Economic costs See Appendix B.1 TYP11FLAG11 Maximum action distance for decontamination or interdiction.
Diagnostic output for long term population dose and economic costs See Appendix B.1 TYP12NUMBER Number of Type 12 Outputs 2
TYP12OUT Impacted area and population results See Appendix B.1 TYP13NUMBER Number of Type 13 Outputs 0
TYP14NUMBER Number of Type 14 Outputs 0
4.1.2 Definition of Source Term File As noted earlier, source term input data must be developed externally. For the purposes of this example, a representative source term was drawn from the NRCs Level 3 PRA Project [9] to illustrate the methodology. It is important to acknowledge that this source term corresponds to the reference plant used in the Level 3 PRA study and does reflect the reactor located at the reference plant location, nor does it imply any actual accident scenario associated with that facility. The selected scenario, labeled 5D, involves an interfacing systems loss-of-coolant accident (ISLOCA) characterized by a double-ended, eight-inch uncovered break. The corresponding input parameters are summarized below in Table 7 and the full tabulated data is available in Appendix B.2.
31 Table 8. L3PRA Derived Source Term Parameters (5D ISLOCA)
Parameter Description Value NUMREL Number of plume Segmentss 86 MAXRIS Index of risk-dominant plume segment 1
CORINV Inventory of each radionuclide present at the time of accident See Appendix B.2 VDEPOS Dry deposition velocities for each particle size group (m/sec)
See Appendix B.2 PLHEAT Plume segment heat content (W)
See Appendix B.2 PDELAY Start time of each plume segment from accident initiation (s)
See Appendix B.2 PLHITE Height of each plume segment at release (m)
See Appendix B.2 PHTRAP Specifies trapped plume release height to use See Appendix B.2 REFTIM Representative time point for dispersion and radioactive decay See Appendix B.2 PLUDUR Duration of each plume segment (s)
See Appendix B.2 RELFRC Release fractions for each of the plume segments for each of chemical group See Appendix B.2 BUILDH Building Height (m) 55, 14 BUILDW Building Width (m) 43 BUILDW Building Length (m) 55 BUILDA Angle from North for width dimension (deg) 0 OALARM Time from accident initiation to communication with offsite response organizations (s) 2700 4.1.3 Definition of Meteorological File As shown in Figure 2, the MacMetGen.exe input for the example reference plant includes a range of configuration parameters necessary to generate a valid meteorological input file for MACCS. Notable parameters include the latitude and longitude of the site, the source and format of the weather data (NAM12), the angular resolution of the dispersion grid (64 compass sectors), and the temporal resolution (60-minute intervals, consistent with hourly meteorological data). The atmospheric stability class calculation method is set to Solar Radiation, Delta T, and the time zone is specified as UTC-5 for a site in the region of the reference plant. Additional parameters determine the naming conventions, file paths, and formatting options for intermediate and final output files.
Once this input configuration is finalized, MacMetGen.exe can be executed via a command line terminal, provided that the executable and input files reside in the same working directory. Upon execution, MacMetGen extracts the required meteorological variables from the NAM12 dataset, generates an intermediate surface condition CSV file, and compiles a complete MACCS-compatible meteorological input file in plain text format. The generated MACCS input is available in Appendix B.
32 4.1.4 Definition of Site File The site-specific population and economic input file for MACCS is generated using SecPop.exe, a tool included with the MACCS/WinMACCS 4.2.0 distribution [4]. To begin, a new project is created in SecPop 4.4.1, where users define the geographic location and grid structure of the analysis domain. The latitude and longitude of the example reference plant was used to develop the site file. The spatial grid is configured with 64 compass sectors, consistent with the meteorological input file, and a series of radial distances that define concentric rings extending from the reactor site.
The first radial distance corresponds to the EAB distance, which marks the innermost zone for emergency planning. The EAB can be found in a sites Final Safety Analysis Report and have been compiled in Table 12 below. The second radial distance is set to one mile from the origin, and the third ring one mile beyond the EAB, intended to support evaluation of the QHOs. Additional ring boundaries are selected based on default values provided in the SecPop example problem, allowing for adequate spatial coverage for both near-field and far-field consequence assessment. The rings are as follows: EAB Distance, 1-mile, EAB + 1 mile, 2, 5, 10, 15, 20, 25, 30, 40, 50, and 100 miles. The economic regions are as follows: Exclusion Area from 0 miles to EAB, Exact Economic Values from EAB to 10 miles, Radially-Averaged Economic Values from 10 miles to 50 miles, and Uniform Economic Values from 50 miles to 100 miles.
Once all parameters are defined, the user executes the SecPop analysis, which generates the MACCS-compatible site input file containing population distribution, economic valuation, land use, watershed information, and agricultural activity relevant to the specified grid. A copy of the generated input file is provided in Appendix B.4.
4.1.5 Definition of Emergency Response Input Parameters Some emergency response parameters for MACCS simulations are site-specific and may be derived from ETE reports published for each licensed nuclear power plant, compiled in Table 14. These reports characterize population groups, evacuation routes, traffic dynamics, and timing behaviors across multiple scenarios. For this example case, values are extracted from these compiled results.
DLTSHL The DLTSHL parameter is the time, in seconds, between emergency notification and the point at which individuals enter shelter. This value is cohort-specific but, in this methodology, non-site-specific. It is derived from ETE studies as the time needed for message dissemination. As discussed in section 3.2.2.2, this is defined as an input of 1,980 seconds (90th percentile) and 2,700 seconds (100th percentile).
DLTEVA
33 The DLTEVA parameter defines the delay, in seconds, from the start of sheltering to the beginning of evacuation. It reflects the mobilization time required for residents to prepare and begin movement. This value is both cohort-specific and site-specific.
DLTEVA values for each reactor site are included in Appendix B. The values for the reference plant, taken from Appendix B, are provided in Table 8.
Table 9. DLTEVA for Reference Plant Emergency Cohorts Cohort DLTEVA (Seconds) 90th Percentile Evacuation 8,820 100th Percentile Evacuation 14,220 Non-Evacuating 3,456,000 DURBEG The DURBEG parameter represents the duration of the initial travel phase. This value is both cohort-specific and site-specific. DURBEG values for each reactor site are included in Appendix B. The values for the reference plant, taken from Appendix B, are provided set to 2,640 seconds for the 90th percentile and 1,440 seconds for the 100th percentile.
ESPEED1 Evacuation speed during the initial travel phase is defined by the ESPEED1 parameter.
It is calculated as the evacuation zone (10 miles) divided by the DURBEG value, as given in Table 14. Using this method, the derived ESPEED1 for the reference plant is 13.64 mph (90th percentile), while the 100th percentile was standardized across sites as a free travel speed of 25 mph [15].
TIMHOT The TIMHOT parameter specifies the initiation time for early-phase relocation of individuals in areas where the received dose exceeds the defined hotspot threshold (DOSHOT). The value is expressed in seconds following plume arrival. For this analysis, TIMHOT was derived by adding 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> to the 90th percentile ETE, representing a conservative delay to account for plume characterization and public communication, as given in Table 14. For the reference site, this resulted in a TIMHOT value of 54,660 seconds.
TIMNRM The TIMNRM parameter indicates the relocation time for populations exposed to doses exceeding the normal relocation threshold (DOSNRM). It was calculated by adding an additional 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> to the TIMHOT value to account for extended assessment and
34 notification timelines in non-hotspot areas, as given in Table 14. For the reference site, this yielded a TIMNRM value of 76,260 seconds.
Table 10. Emergency Response MACCS Input Parameters for the Example Reference Plant Parameter 90th Percentile 100th Percentile Notes DLTSHL 1,980 s 2,700 s Time to notify public after ORO activation DLTEVA 8,820 s 14,220 s From ETE-Derived trip generation as complied in Appendix A DURBEG 2,640 s 1,440 s ETE - DLTEVA ESPEED1 13.64 mph 25 mph Based on 10 miles / DURBEG TIMHOT 4,140 s 54,660 s ETE90th + 12 hrs TIMNRM 15,600s 76,260 s TIMHOT + 6 hrs The CHRONC parameters VALWF (value of farmland wealth) and VALWNF (value of non-farm wealth) can be derived using a customized SecPop run configured with a single radial ring and a uniform economic region. This setup ensures that the economic values are consistent across the entire analysis area. In the resulting output file, the values for VALWF and VALWNF appear in the final two columns of the population tabulation section. These values represent the economic inputs for farm and non-farm wealth, respectively, and are suitable for direct use as an input for MACCS.
Table 11. Site-Specific CHRONC Input Parameters for the Example Reference Plant Parameter Description Value VALWNF Value of Non-Farm Wealth ($/person) 405755.0 VALWF Value of Farm Wealth ($/ha) 9618.0 5
SUMMARY
AND CONCLUSIONS This report establishes a structured and replicable methodology for generating site-specific input files for the MACCS consequence modeling code and demonstrates its application using the a reference plant as an example. The primary motivation is to enable rapid and risk-informed deployment of radiological consequence assessments by consolidating meteorological, demographic, and emergency response data into MACCS-compatible formats.
The methodology utilizes existing tools in the MACCS/WinMACCS 4.2.0 distribution including MacMetGen for meteorological file generation and SecPop for population,
35 economic, and agricultural input preparation. Site-specific emergency response parameters, however, are developed manually by extracting and interpreting timing data from NRC-mandated ETE reports. This includes derivation of variables such as DLTEVA, DURBEG, and ESPEED1 based on scenario-averaged trip generation and evacuation curves.
By maintaining consistency across meteorological (NAM12 2020 data), demographic (2020 census), and emergency behavior datasets, this methodology supports rapid deployment for risk-informed applications. Parameters are either generic, or derived through site-specific evidence. Emergency response modeling is developed through the use of standardized percentile-based evacuation cohorts (90th, 100th, and non-evacuating).
The application of this approach to an example reference plant demonstrates that all necessary input files can be assembled in a modular and repeatable fashion. The resulting inputs reflect localized atmospheric conditions, population distributions, infrastructure considerations, and protective action dynamics. Further, the framework allows for scaling across the U.S. reactor fleet to enable the development of a centralized, preconfigured MACCS site input database that can be rapidly accessed in support of regulatory evaluations or emergency response. Furthermore, the inclusion of emergency parameters for a generic small, medium, and large site in Appendix B allows the application of this methodology to develop a scoping analysis for a site at a location other than those of the existing commercial reactor fleet 6
FUTURE WORK The methodology developed in this report provides a foundation for the consistent and site-tailored generation of MACCS input files. However, its utility can be expanded. To enhance its utility, several targeted areas for future refinement and application are proposed below.
One area for future refinement involves a review of how input parameters are categorized across the source term-specific, site-specific, and non-site-specific input bins. Although the current binning scheme was developed based on known MACCS conventions and considerations, a more detailed evaluation could help validate or revise parameter assignments. For example, parameters like PLMMOD and PSDIST may be changed for a different use case. As such, the methodology has the capacity to be tailored to particular uses, though these are not defined in the presented methodology.
To support integration into broader risk-informed frameworks, future efforts could align this MACCS input methodology with existing NRC tools such as the Standardized Plant Analysis Risk (SPAR) models. While SPAR focuses on event frequencies (e.g., Core Damage Frequency, Large Early Release Frequency), it does not currently incorporate detailed offsite consequence modeling. By developing a link between SPAR scenarios and MACCS consequence results such as early dose contours or time-to-evacuation
36 thresholds, this methodology could support future development of full-spectrum risk metrics that combine frequency and severity dimensions. This integration would benefit from an initial application using a representative SPAR model and could begin with simple consequence overlays to assess feasibility.
To validate and calibrate the developed input assumptions, a benchmarking comparison with the NRCs Level 3 PRA Project (L3PRA) is also recommended. The L3PRA provides a comprehensive, modern framework for evaluating radiological consequences across multiple reactor sites and accident scenarios. Comparing notable assumptions such as plume rise models, evacuation delay distributions, and sheltering times, could help align this site database methodology with state-of-the-art practice and ensure it remains technically defensible in future applications.
While the methodology is not designed for any specific licensing use case, the approach may support generic consequence evaluations or emergency preparedness analyses for advanced reactors. For example, by comparing outputs across a representative subset of U.S. reactor sites, it may be possible to identify bounding or representative reference sites that help inform risk-informed decisions. Any use of the methodology to support risk-informed activities should be guided by NRC-endorsed frameworks such as Regulatory Guide 1.247 [19], which provides technical guidance for applying the ASME/ANS Non-Light Water Reactor PRA Standard in non-LWR contexts.
As this MACCS input methodology matures, its impact may extend beyond deterministic consequence evaluation. It could become a tool for comparative policy analysis, environmental justice screening, emergency preparedness optimization, and dynamic, risk-informed response modeling under uncertainty.
37 7
REFERENCES
[1] Accident Consequence Modeling and Analysis Department, MACCS User Guide
- Version 4.2, SAND2023-01315, Sandia National Laboratories, Albuquerque, NM, prepared for the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, Washington, DC, March 2023.
[2] N. Bixler, R. Gauntt, J. Jones, M. Leonard, State-of-the-Art Reactor Consequence Analyses Project Volume 1: Peach Bottom Integrated Analysis, NUREG/CR-7110, Rev. 1, Sandia National Laboratories, Albuquerque, NM, and U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory research, Washington, DC, May 2013.
[3] Sandia National Laboratories, MacMetGen 1.1.0 Users Guide, Sandia National Laboratories, Albuquerque, NM 87185.
[4] S. Weber, N. Bixler, and K. McFadden, SecPop Version 4: Sector Population, Land Fraction, and Economic Estimation Program - User Guide, Model Manual, and Verification Report, NUREG/CR-6525, Rev. 2, Sandia National Laboratories, SAND2019-5976R, prepared for the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, Washington, DC, June 2019.
[5] N. Bixler et al., Technical Bases for Consequence Analyses Using MACCS (MELCOR Accident Consequence Code System), NUREG/CR-7270, Sandia National Laboratories, SAND2022-10265R, Albuquerque, NM, prepared for the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, Washington, DC, October 2022.
[6] U.S. Nuclear Regulatory Commission, Appendix E to 10 CFR Part 50 -
Emergency Planning and Preparedness for Production and Utilization Facilities, Code of Federal Regulations, Title 10, Energy. Washington, D.C.
[7] National Oceanic and Atmospheric Administration (NOAA), READY - Real-time Environmental Applications and Display sYstem: Meteorological Archive Access Portal, Air Resources Laboratory, College Park, MD.
https://www.ready.noaa.gov/READYcmet.php.
[8] U.S. Census Bureau, 2020 Decennial Census of Population and Housing, U.S.
Department of Commerce, Washington, D.C., 2021.
[9] U.S. Nuclear Regulatory Commission, U.S. NRC Level 3 Probabilistic Risk Assessment (PRA) Project: Volume 3d - Reactor, At-Power, Level 3 PRA for Internal Events and Floods, April 2022.
[10]
Sandia National Laboratories, Use of National Centers for Environmental Prediction (NCEP) Data to Support Severe Accident Consequence Analysis at Locations Without Onsite Meteorological Data, SAND2024-12539, September 2024.
[11]
National Oceanic and Atmospheric Administration (NOAA), NAM12 Meteorological Archive Data, NOAA Air Resources Laboratory, College Park, MD
[12]
National Oceanic and Atmospheric Administration (NOAA), README:
NAM 12 km (May 2007 - Present) Meteorological Dataset, NOAA Air Resources Laboratory, College Park, MD
38
[13]
U.S. Nuclear Regulatory Commission, Safety Goals for the Operation of Nuclear Power Plants; Policy Statement; Republication, 51 Fed. Reg. 30028, August 21, 1986.
[14]
U.S. Department of Transportation, Speed Limit Setting Handbook, FHWA-SA-24-063, Federal Highway Administration, Washington, DC, January 2025.
[15]
J. Jones, F. Walton and B. Wolshon, Criteria for Development of Evacuation Time Estimate Studies (NUREG/CR-7002), Sandia National Laboratories, Albuquerque, NM, 2011.
[16]
U.S. Environmental Protection Agency, PAG Manual: Protective Action Guides and Planning Guidance for Radiological Incidents, Office of Radiation and Indoor Air, Radiation Protection Division, Washington, DC, EPA-400/R-17/001, January 2017.
[17]
B. Wolshon, N. Herrera, E. Tuncer, J. Jones, S. Parr, and T. Smith, Enhancing Guidance for Evacuation Time Estimate Studies, NUREG-CR-7269, Louisiana State University, Embry-Riddle Aeronautical University, and U.S.
Nuclear Regulatory Commission, Office of Nuclear Security and Incident Response, Washington, DC, March 2020.
[18]
ICRP, Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 21 (1-3), 1991.
[19]
U.S. Nuclear Regulatory Commission (NRC), Regulatory Guide 1.247:
Acceptability of Probabilistic Risk Assessment Results for Non-Light-Water Reactor Risk-Informed Activities (For Trial Use), NRC, Washington, DC, March 2022.
[20]
ASME/ANS, RA-S-1.4-2021: Probabilistic Risk Assessment Standard for Advanced Non-Light Water Reactor Nuclear Power Plants, American Society of Mechanical Engineers, New York, NY, 2021. ISBN: 9780791874370.
39 Appendix A. MACCS Emergency Planning Parameters for All U.S. Sites Table 12 contains a list of all commercial reactor sites, their geographic location, and the ADAMS accession number for the ETE reports used to develop the emergency response data and models provided in Tables 12 and 13.
Table 12. U.S. Fleet Locations Reactor Location Latitude Longitude ADAMS Accession number of ETE Report Arkansas Nuclear Russellville, AR 35.3104
-93.2316 ML22255A202 Beaver Valley Shippingport, PA 40.6233
-80.4306 ML22251A137 Braidwood Will County, IL 41.2434
-88.2297 ML22269A408 Browns Ferry Athens, AL 34.7049
-87.1186 ML22258A101 Brunswick Brunswick County, NC 33.9597
-78.0114 ML22258A031 Byron Ogle County, IL 42.075
-89.2819 ML22269A404 Callaway Callaway County, MO 38.7589
-91.7788 ML22178A162 Calvert Cliffs Lusby, MD 38.4344
-76.4417 ML22269A412 Catawba York County, SC 35.0516
-81.07 ML22258A034 Clinton DeWitt County, IL 40.172
-88.8342 ML22269A407 Columbia Benton County, WA 46.4711
-119.3339 ML22242A210 Comanche Peak Glen Rose, TX 32.2984
-97.7855 ML22238A339 Cooper Nemaha County, NE 40.3628
-95.6408 ML22229A051 Davis Besse Oak Harbor, OH 41.5967
-83.0861 ML22255A182 DC Cook Bridgman, MI 41.9783
-86.5583 ML22244A113 Diablo Canyon San Luis Obispo County, CA 35.2075
-120.8542 ML22255A196 Dresden Grundy County, IL 41.4097
-88.2733 ML22269A411 Farley Columbia, AL 31.2269
-85.1125 ML22262A071 Fermi Monroe County, MI 41.9631
-83.2581 ML22278B020 Fitzpatrick/NMP Oswego County, NY 43.5181
-76.4072 ML22269A415 Ginna Ontario, NY 43.2769
-77.3083 ML22269A410 Grand Gulf Port Gibson, MS 32
-91.05 ML22255A202 H. B. Robinson Hartsville, SC 34.395
-80.07 ML22258A040 Hatch Baxley, GA 31.9492
-82.3461 ML22262A071 Indian Point Buchanan, NY 41.27
-73.9533 ML22252A170 LaSalle LaSalle County, IL 41.24
-88.67 ML22269A414 Limerick Limerick, PA 40.23
-75.58 ML22269A413 McGuire Huntersville, NC 35.4333
-80.95 ML22258A038 Millstone Waterford, CT 41.3125
-72.1608 ML22258A278 Monticello Monticello, MN 45.35
-93.85 ML22251A171 North Anna Louisa County, VA 38.05
-77.79 ML22258A090 Oconee Seneca, SC 34.8
-82.9 ML22258A039 Palisades Covert, MI 42.3167
-86.3 ML22250A524 Palo Verde Tonopah, AZ 33.3892
-112.8658 ML22091A307 Peach Bottom Delta, PA 39.7583
-76.27 ML22269A409 Perry North Perry, OH 41.8
-81.15 ML22256A284 Point Beach Two Rivers, WI 44.2783
-87.535 ML22256A127
40 Reactor Location Latitude Longitude ADAMS Accession number of ETE Report Prairie Island Red Wing, MN 44.6
-92.63 ML22251A171 Quad Cities Cordova, IL 41.7
-90.31 ML22269A416 River Bend St. Francisville, LA 30.7281
-91.31 ML22255A202 Salem/Hope Creek Salem County, NJ 39.4667
-75.5333 ML22258A124 Seabrook Seabrook, NH 42.8933
-70.86 ML22258A235 Sequoyah Soddy-Daisy, TN 35.2
-85.1 ML22258A101 Shearon Harris New Hill, NC 35.6
-78.95 ML22052A063 South Texas Bay City, TX 28.7967
-96.0483 ML22257A279 St. Lucie Jensen Beach, FL 27.35
-80.24 ML22245A012 Surry Surry, VA 37.17
-76.68 ML22258A300 Susquehanna Salem Township, PA 41.1
-76.15 ML22258A138 Turkey Point Homestead, FL 25.43
-80.33 ML22258A229 V.C. Summer Jenkinsville, SC 34.2967
-81.3175 ML22215A271 Vogtle Waynesboro, GA 33.1375
-81.7656 ML22262A071 Waterford Killona, LA 29.9933
-90.4833 ML22255A202 Watts Bar Spring City, TN 35.6
-84.8 ML22258A101 Wolf Creek Burlington, KS 38.245
-95.6883 ML22257A277
41 Table 13 contains each reactor sites ETE 90th and 100th in hh:mm format as well as seconds, sourced from the ETE reports and processed using the methodology in Section 3.2.5.1. It also includes EAB distance for each reactor, sourced from each sites FSAR.
Table 13. U.S. Reactor Fleet 90th and 100th Percentile ETEs Reactor ETE90 Average
[hh:mm]
ETE100 Average
[hh:mm]
ETE90 Average
[sec]
ETE100 Average
[sec]
EAB Distance
[mi]
Arkansas Nuclear 3:11 4:21 11460 15660 0.65 Beaver Valley 3:08 4:55 11280 17700 0.28 Braidwood 3:54 5:52 14040 21120 0.30 Browns Ferry 3:03 5:11 10980 18660 0.76 Brunswick 4:20 6:18 15600 22680 0.57 Byron 3:41 5:59 13260 21540 0.26 Callaway 2:05 4:27 7500 16020 0.75 Calvert Cliffs 6:44 9:14 24240 33240 0.67 Catawba 3:31 5:15 12660 18900 0.47 Clinton 3:24 4:40 12240 16800 0.60 Columbia 1:47 5:10 6420 18600 1.21 Comanche Peak 2:29 4:10 8940 15000 0.96 Cooper 2:13 6:10 7980 22200 0.68 Davis Besse 2:25 4:51 8700 17460 0.45 DC Cook 2:27 4:47 8820 17220 0.38 Diablo Canyon 3:13 5:05 11580 18300 0.50 Dresden 5:07 9:10 18420 33000 0.50 Farley 1:44 3:18 6240 11880 0.78 Fermi 2:06 4:14 7560 15240 0.57 Fitzpatrick/NMP 2:57 4:07 10620 14820 0.57 Ginna 2:08 3:59 7680 14340 0.29 Grand Gulf 2:11 4:55 7860 17700 0.43 H. B. Robinson 2:35 4:36 9300 16560 0.27 Hatch 2:39 3:25 9540 12300 0.78 Indian Point 4:02 6:34 14520 23640 0.20 LaSalle 3:00 4:21 10800 15660 0.32 Limerick 8:31 10:25 30660 37500 0.47 McGuire 4:11 5:56 15060 21360 0.47 Millstone 3:45 5:19 13500 19140 0.34 Monticello 2:29 4:20 8940 15600 0.30 North Anna 2:24 5:48 8640 20880 0.84 Oconee 4:00 5:39 14400 20340 1.00 Palisades 2:08 4:48 7680 17280 0.04 Palo Verde 2:07 5:10 7620 18600 0.54 Peach Bottom 3:35 5:01 12900 18060 0.51 Perry 3:03 4:50 10980 17400 0.55 Point Beach 2:32 3:47 9120 13620 0.74 Prairie Island 2:52 4:20 10320 15600 0.43 Quad Cities 4:27 6:31 16020 23460 0.50
42 Reactor ETE90 Average
[hh:mm]
ETE100 Average
[hh:mm]
ETE90 Average
[sec]
ETE100 Average
[sec]
EAB Distance
[mi]
River Bend 3:13 5:03 11580 18180 0.57 Salem/Hope Creek 2:25 5:22 8700 19320 0.56 Seabrook 4:08 6:15 14880 22500 0.57 Sequoyah 3:43 5:13 13380 18780 0.35 Shearon Harris 2:50 4:40 10200 16800 1.26 South Texas 2:15 5:40 8100 20400 0.89 Surry 3:53 6:08 13980 22080 0.31 Susquehanna 2:23 4:14 8580 15240 0.34 Turkey Point 6:40 9:49 24000 35340 0.79 V.C. Summer 2:15 4:55 8100 17700 1.01 Vogtle 1:49 3:23 6540 12180 0.68 Waterford 3:09 4:30 11340 16200 0.57 Watts Bar 2:48 4:18 10080 15480 0.75 Wolf Creek 1:53 4:33 6780 16380 0.75 Small Site 1:44 2:31 6240 9060 0.47 Medium Site 4:59 7:22 17940 26520 0.47 Large Site 4:40 9:02 16800 32520 0.47 Table 14 contains the MACCS emergency response parameters sourced from the above data and processed using the methodology in Appendix 3.2.5.1. Note that ESPEED100th was assumed to be a free travel speed of 25 mph to allow for differentiation between the trip generation and the evacuation time curves, and as such, DURBEG100th was also constant (1440 seconds) because of this standardization.
Table 14. U.S. Fleet MACCS Emergency Response Parameters Reactor DLTEVA 90th [sec]
DURBEG 90th [sec]
DLTEVA 100th
[sec]
ESPEED1 90th [mph]
TIMNRM
[sec]
TIMHOT
[sec]
Arkansas Nuclear 8820 2640 14220 13.64 76260 54660 Beaver Valley 9536 1744 16260 20.64 76080 54480 Braidwood 10542 3498 19680 10.29 78840 57240 Browns Ferry 9951 1029 17220 34.99 75780 54180 Brunswick*
N/A N/A 21240 N/A 80400 58800 Byron 9450 3810 20100 9.45 78060 56460 Callaway 5000 2500 14580 14.40 72300 50700 Calvert Cliffs 11100 13140 31800 2.74 89040 67440 Catawba 10350 2310 17460 15.58 77460 55860 Clinton 5700 6540 15360 5.50 77040 55440 Columbia 5400 1020 17160 35.29 71220 49620 Comanche Peak 5940 3000 13560 12.00 73740 52140 Cooper 7200 780 20760 46.15 72780 51180 Davis Besse 7800 900 16020 40.00 73500 51900
43 Reactor DLTEVA 90th [sec]
DURBEG 90th [sec]
DLTEVA 100th
[sec]
ESPEED1 90th [mph]
TIMNRM
[sec]
TIMHOT
[sec]
DC Cook 6960 1860 15780 19.35 73620 52020 Diablo Canyon 9000 2580 16860 13.95 76380 54780 Dresden 17220 1200 31560 30.00 83220 61620 Farley 5500 740 10440 48.65 71040 49440 Fermi 6900 660 13800 54.55 72360 50760 Fitzpatrick/NMP 8820 1800 13380 20.00 75420 53820 Ginna 6600 1080 12900 33.33 72480 50880 Grand Gulf 6600 1260 16260 28.57 72660 51060 H. B. Robinson 8700 600 15120 60.00 74100 52500 Hatch 9000 540 10860 66.67 74340 52740 Indian Point 10920 3600 22200 10.00 79320 57720 LaSalle 10200 600 14220 60.00 75600 54000 Limerick 23460 7200 36060 5.00 95460 73860 McGuire 13260 1800 19920 20.00 79860 58260 Millstone 9300 4200 17700 8.57 78300 56700 Monticello 7920 1020 14160 35.29 73740 52140 North Anna 6240 2400 19440 15.00 73440 51840 Oconee 13200 1200 18900 30.00 79200 57600 Palisades 6900 780 15840 46.15 72480 50880 Palo Verde 6780 840 17160 42.86 72420 50820 Peach Bottom 10500 2400 16620 15.00 77700 56100 Perry 8100 2880 15960 12.50 75780 54180 Point Beach 6720 2400 12180 15.00 73920 52320 Prairie Island 9126 1194 14160 30.15 75120 53520 Quad Cities 14340 1680 22020 21.43 80820 59220 River Bend 9050 2530 16740 14.23 76380 54780 Salem/Hope Creek 7620 1080 17880 33.33 73500 51900 Seabrook 9480 5400 21060 6.67 79680 58080 Sequoyah 9279 4101 17340 8.78 78180 56580 Shearon Harris 7740 2460 15360 14.63 75000 53400 South Texas 7140 960 18960 37.50 72900 51300 Surry 10860 3120 20640 11.54 78780 57180 Susquehanna 7140 1440 13800 25.00 73380 51780 Turkey Point 6000 18000 33900 2.00 88800 67200 V.C. Summer 7491 609 16260 59.11 72900 51300 Vogtle 5940 600 10740 60.00 71340 49740 Waterford 7825 3515 14760 10.24 76140 54540 Watts Bar 8443 1637 14040 21.99 74880 53280 Wolf Creek 6180 600 14940 60.00 71580 49980 Small Site 5364 876 7620 18.37 71040 49440 Medium Site 9000 8940 25080 1.8 79080 61140 Large Site 11088 5712 31080 2.82 76800 60000
- Note that the Brunswick ETE Report does not include the data required to determine DLTEVA 90th, DURBEG 90th, or ESPEED1 90th.
44 Appendix B. Case Study Inputs and Outputs for MACCS Pre-Processors B.1 Non-Site Specific Inputs
- NON-SITE SPECIFIC PARAMETERS
- IRSEED, initial seed for random number generator M4IRSEED001 66
- NSMPLS, used for no input, always 0 M4NSMPLS001 24
- LIMSPA, last spatial interval for recorded weather, beyond use boundary weather M2LIMSPA001 13
- NUMFIN, number of fine-grid subdivisions used by model MINUMFIN001 7
- NON-SITE SPECIFIC SOURCE TERM PARAMETERS
- NUM_DIST, number of entries in the dispersion lookup table NUM_DIST001 78
- NUMISO, number of nuclides ISNUMISO001 71
- CORSCA, scaling factor to adjust the core inventory RDCORSCA001 1.
- APLFRC, Specifies how release fractions are applied to daughter ingrowth products (PARENT, PROGENY)
RDAPLFRC001 PARENT
- NUCOUT, name of the nuclide to be listed on the dispersion listings OCNUCOUT001 Cs-137
- MAXGRP, number of chemical groups ISMAXGRP001 10
- GRPNAM, chemical group names ISGRPNAM001 Xe ISGRPNAM002 Cs ISGRPNAM003 Ba ISGRPNAM004 I
ISGRPNAM005 Te ISGRPNAM006 Ru ISGRPNAM007 Mo ISGRPNAM008 Ce ISGRPNAM009 La ISGRPNAM010 Cd
- MSMODL, multi source term model (TRUE, FALSE)
ISMSMODL001
.FALSE.
- WETDEP, DRYDEP, wet and dry deposition flags for each nuclide group ISDEPFLA001
.FALSE..FALSE.
ISDEPFLA002
.TRUE.
.TRUE.
ISDEPFLA003
.TRUE.
.TRUE.
ISDEPFLA004
.TRUE.
.TRUE.
ISDEPFLA005
.TRUE.
.TRUE.
ISDEPFLA006
.TRUE.
.TRUE.
ISDEPFLA007
.TRUE.
.TRUE.
ISDEPFLA008
.TRUE.
.TRUE.
ISDEPFLA009
.TRUE.
.TRUE.
45 ISDEPFLA010
.TRUE.
.TRUE.
- NUMSTB, number of pseudostable radionuclides ISNUMSTB001 16
- NAMSTB, list of pseudostable radionuclides ISNAMSTB001 I-129 ISNAMSTB002 Xe-131m ISNAMSTB003 Xe-133m ISNAMSTB004 Cs-135 ISNAMSTB005 Sm-147 ISNAMSTB006 U-234 ISNAMSTB007 U-235 ISNAMSTB008 U-236 ISNAMSTB009 U-237 ISNAMSTB010 Np-237 ISNAMSTB011 Rb-87 ISNAMSTB012 Zr-93 ISNAMSTB013 Nb-93m ISNAMSTB014 Nb-95m ISNAMSTB015 Tc-99 ISNAMSTB016 Pm-147
- NUCNAM, IGROUP, chemical group associated with each nuclide ISOTPGRP001 Kr-85 1
ISOTPGRP002 Kr-85m 1
ISOTPGRP003 Kr-87 1
ISOTPGRP004 Kr-88 1
ISOTPGRP005 Xe-133 1
ISOTPGRP006 Xe-135 1
ISOTPGRP007 Xe-135m 1 ISOTPGRP008 Cs-134 2
ISOTPGRP009 Cs-136 2
ISOTPGRP010 Cs-137 2
ISOTPGRP011 Rb-86 2
ISOTPGRP012 Rb-88 2
ISOTPGRP013 Ba-137m 3 ISOTPGRP014 Ba-139 3
ISOTPGRP015 Ba-140 3
ISOTPGRP016 Sr-89 3
ISOTPGRP017 Sr-90 3
ISOTPGRP018 Sr-91 3
ISOTPGRP019 Sr-92 3
ISOTPGRP020 I-131 4
ISOTPGRP021 I-132 4
ISOTPGRP022 I-133 4
ISOTPGRP023 I-134 4
ISOTPGRP024 I-135 4
ISOTPGRP025 Te-127 5
ISOTPGRP026 Te-127m 5 ISOTPGRP027 Te-129 5
ISOTPGRP028 Te-129m 5 ISOTPGRP029 Te-131 5
ISOTPGRP030 Te-131m 5 ISOTPGRP031 Te-132 5
ISOTPGRP032 Rh-103m 6 ISOTPGRP033 Rh-105 6
ISOTPGRP034 Rh-106 6
ISOTPGRP035 Ru-103 6
ISOTPGRP036 Ru-105 6
ISOTPGRP037 Ru-106 6
ISOTPGRP038 Co-58 7
ISOTPGRP039 Co-60 7
ISOTPGRP040 Mo-99 7
ISOTPGRP041 Nb-95 7
ISOTPGRP042 Nb-97 7
ISOTPGRP043 Nb-97m 7
ISOTPGRP044 Tc-99m 7
ISOTPGRP045 Ce-141 8
ISOTPGRP046 Ce-143 8
ISOTPGRP047 Ce-144 8
46 ISOTPGRP048 Np-239 8
ISOTPGRP049 Pu-238 8
ISOTPGRP050 Pu-239 8
ISOTPGRP051 Pu-240 8
ISOTPGRP052 Pu-241 8
ISOTPGRP053 Zr-95 8
ISOTPGRP054 Zr-97 8
ISOTPGRP055 Am-241 9
ISOTPGRP056 Cm-242 9
ISOTPGRP057 Cm-244 9
ISOTPGRP058 La-140 9
ISOTPGRP059 La-141 9
ISOTPGRP060 La-142 9
ISOTPGRP061 Nd-147 9
ISOTPGRP062 Pr-143 9
ISOTPGRP063 Pr-144 9
ISOTPGRP064 Pr-144m 9 ISOTPGRP065 Y-90 9
ISOTPGRP066 Y-91 9
ISOTPGRP067 Y-91m 9
ISOTPGRP068 Y-92 9
ISOTPGRP069 Y-93 9
ISOTPGRP070 Sb-127 10 ISOTPGRP071 Sb-129 10
- CWASH1, washout coefficient number one, linear factor (1/s)
WDCWASH1001 1.89E-05
- CWASH2, washout coefficient number two, exponential factor (1/s)
WDCWASH2001 0.664
- NPSGRP, number of particle size groups DDNPSGRP001 10
- PSDIST, particle size distribution of each element group RDPSDIST001 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 RDPSDIST002 0.029788 0.007348 0.076456 0.268094 0.3376 0.15887 0.074471 0.037732 0.009036 0.000606 RDPSDIST003 0.032345 0.006974 0.074797 0.262799 0.353768 0.17183 0.066711 0.025269 0.005155 0.000354 RDPSDIST004 0.038812 0.004578 0.068668 0.278651 0.368218 0.149277 0.060706 0.024880 0.005772 0.000438 RDPSDIST005 0.046063 0.001903 0.055076 0.220302 0.360494 0.220302 0.073100 0.019026 0.003405 0.000330 RDPSDIST006 0.015845 0.011884 0.071301 0.198059 0.257477 0.188156 0.138641 0.088136 0.026738 0.003763 RDPSDIST007 0.008013 0.000691 0.012019 0.051082 0.170274 0.330532 0.270435 0.130210 0.025040 0.001703 RDPSDIST008 0.015075 0.012060 0.078392 0.221106 0.271357 0.170854 0.120603 0.083417 0.025126 0.002010 RDPSDIST009 0.033000 0.006500 0.066000 0.240000 0.350000 0.190000 0.077000 0.030000 0.007000 0.000510 RDPSDIST010 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
- Skin dose deposition velocity.
MISKINDV001 0.01
- Time of residence of a radionuclide on the skin.
MIWASHTM001 28800.
- PSMEQ1C, Point Source Model Equation 1 Coefficient PMPSMEQ1C01 0.5
- PSMEQ2C, Point Source Model Equation 2 Coefficient PMPSMEQ2C01 3.
- DISPMD, dispersion long-range model
47 DPDISPMD001 LRTIME
- METEOROLOGICAL PARAMETERS
- IPLUME, dispersion code determines wind shift and rotation flags MIIPLUME001 3
- MNDMOD, plume meander model (OLD, NEW, OFF, RAF)
PMMNDMOD001 NEW
- METCOD, meteorological sampling model (1, 2, 3, 4, or 5)
M1METCOD001 5
- DISTANCE, SIGMA_Y_A, SIGMA_Z_A, downwind distances (m), A-stability dispersion table A-STB/DIS01 0.1 0.046 0.022 A-STB/DIS02 0.14 0.062 0.03 A-STB/DIS03 0.2 0.086 0.043 A-STB/DIS04 0.3 0.123 0.062 A-STB/DIS05 0.4 0.16 0.081 A-STB/DIS06 0.6 0.231 0.119 A-STB/DIS07 0.8 0.299 0.156 A-STB/DIS08 1.
0.366 0.192 A-STB/DIS09 1.4 0.496 0.263 A-STB/DIS10 2.
0.684 0.367 A-STB/DIS11 3.
0.987 0.537 A-STB/DIS12 4.
1.28 0.703 A-STB/DIS13 6.
1.84 1.03 A-STB/DIS14 8.
2.39 1.34 A-STB/DIS15 10.
2.93 1.66 A-STB/DIS16 14.
3.97 2.27 A-STB/DIS17 20.
5.47 3.17 A-STB/DIS18 30.
7.89 4.63 A-STB/DIS19 40.
10.2 6.06 A-STB/DIS20 60.
14.8 8.86 A-STB/DIS21 80.
19.1 11.6 A-STB/DIS22 100.
23.4 14.3 A-STB/DIS23 140.
31.7 18.9 A-STB/DIS24 200.
43.8 28.6 A-STB/DIS25 300.
63.1 51.7 A-STB/DIS26 400.
81.9 83.4 A-STB/DIS27 600.
118.
172.
A-STB/DIS28 800.
153.
294.
A-STB/DIS29 1000.
187.
448.
A-STB/DIS30 1400.
254.
920.
A-STB/DIS31 2000.
350.
1950.
A-STB/DIS32 3000.
505.
4580.
A-STB/DIS33 4000.
655.
8360.
A-STB/DIS34 6000.
945.
19600.
A-STB/DIS35 8000.
1220.
35700.
A-STB/DIS36 10000.
1500.
57000.
A-STB/DIS37 14000.
2030.
1.15000E+05 A-STB/DIS38 20000.
2800.
2.44000E+05 A-STB/DIS39 30000.
4040.
5.69000E+05 A-STB/DIS40 40000.
5240.
1.040000E+06 A-STB/DIS41 60000.
7560.
2.430000E+06 A-STB/DIS42 80000.
9800.
4.440000E+06 A-STB/DIS43 1.00000E+05 12000.
7.080000E+06 A-STB/DIS44 1.40000E+05 16200.
1.43E+07 A-STB/DIS45 2.00000E+05 22400.
3.02E+07 A-STB/DIS46 3.00000E+05 32300.
7.07E+07 A-STB/DIS47 4.00000E+05 41900.
1.29E+08 A-STB/DIS48 6.00000E+05 60500.
3.02E+08 A-STB/DIS49 8.00000E+05 78400.
5.51E+08 A-STB/DIS50 1.000000E+06 95900.
8.79E+08 A-STB/DIS51 1.400000E+06 1.30000E+05 1.78E+09 A-STB/DIS52 2.000000E+06 1.79000E+05 3.75E+09 A-STB/DIS53 3.000000E+06 2.59000E+05 8.78E+09 A-STB/DIS54 4.000000E+06 3.35000E+05 1.6E+10 A-STB/DIS55 6.000000E+06 4.84000E+05 3.75E+10
48 A-STB/DIS56 8.000000E+06 6.27000E+05 6.84E+10 A-STB/DIS57 1.E+07 7.67000E+05 1.09E+11 A-STB/DIS58 1.4E+07 1.040000E+06 2.21E+11 A-STB/DIS59 2.E+07 1.430000E+06 4.66E+11 A-STB/DIS60 3.E+07 2.070000E+06 1.09E+12 A-STB/DIS61 4.E+07 2.680000E+06 1.99E+12 A-STB/DIS62 6.E+07 3.870000E+06 4.65E+12 A-STB/DIS63 8.E+07 5.020000E+06 8.5E+12 A-STB/DIS64 1.E+08 6.140000E+06 1.36E+13 A-STB/DIS65 1.4E+08 8.320000E+06 2.74E+13 A-STB/DIS66 2.E+08 1.15E+07 5.79E+13 A-STB/DIS67 3.E+08 1.66E+07 1.35E+14 A-STB/DIS68 4.E+08 2.15E+07 2.47E+14 A-STB/DIS69 6.E+08 3.1E+07 5.78E+14 A-STB/DIS70 8.E+08 4.01E+07 1.06E+15 A-STB/DIS71 1.E+09 4.91E+07 1.68E+15 A-STB/DIS72 1.4E+09 6.65E+07 3.41E+15 A-STB/DIS73 2.E+09 9.18E+07 7.19E+15 A-STB/DIS74 3.E+09 1.32E+08 1.68E+16 A-STB/DIS75 4.E+09 1.72E+08 3.07E+16 A-STB/DIS76 6.E+09 2.48E+08 7.17E+16 A-STB/DIS77 8.E+09 3.21E+08 1.31E+17 A-STB/DIS78 1.E+10 3.93E+08 2.09E+17
- DISTANCE, SIGMA_Y_B, SIGMA_Z_B, downwind distances (m), B-stability dispersion table B-STB/DIS01 0.1 0.034 0.019 B-STB/DIS02 0.14 0.047 0.025 B-STB/DIS03 0.2 0.064 0.035 B-STB/DIS04 0.3 0.093 0.051 B-STB/DIS05 0.4 0.12 0.067 B-STB/DIS06 0.6 0.173 0.097 B-STB/DIS07 0.8 0.225 0.127 B-STB/DIS08 1.
0.275 0.156 B-STB/DIS09 1.4 0.373 0.213 B-STB/DIS10 2.
0.514 0.296 B-STB/DIS11 3.
0.742 0.43 B-STB/DIS12 4.
0.962 0.56 B-STB/DIS13 6.
1.39 0.814 B-STB/DIS14 8.
1.8 1.06 B-STB/DIS15 10.
2.2 1.3 B-STB/DIS16 14.
2.98 1.78 B-STB/DIS17 20.
4.12 2.47 B-STB/DIS18 30.
5.94 3.59 B-STB/DIS19 40.
7.7 4.68 B-STB/DIS20 60.
11.1 6.8 B-STB/DIS21 80.
14.4 8.87 B-STB/DIS22 100.
17.6 10.9 B-STB/DIS23 140.
23.9 14.5 B-STB/DIS24 200.
32.9 20.1 B-STB/DIS25 300.
47.5 30.1 B-STB/DIS26 400.
61.6 40.6 B-STB/DIS27 600.
88.8 62.8 B-STB/DIS28 800.
115.
86.
B-STB/DIS29 1000.
141.
110.
B-STB/DIS30 1400.
191.
159.
B-STB/DIS31 2000.
263.
234.
B-STB/DIS32 3000.
380.
364.
B-STB/DIS33 4000.
493.
498.
B-STB/DIS34 6000.
710.
776.
B-STB/DIS35 8000.
921.
1060.
B-STB/DIS36 10000.
1130.
1360.
B-STB/DIS37 14000.
1530.
1960.
B-STB/DIS38 20000.
2110.
2910.
B-STB/DIS39 30000.
3040.
4530.
B-STB/DIS40 40000.
3940.
6220.
B-STB/DIS41 60000.
5680.
9700.
B-STB/DIS42 80000.
7370.
13300.
B-STB/DIS43 1.00000E+05 9020.
17000.
B-STB/DIS44 1.40000E+05 12200.
24600.
B-STB/DIS45 2.00000E+05 16900.
36400.
B-STB/DIS46 3.00000E+05 24300.
56800.
49 B-STB/DIS47 4.00000E+05 31500.
77900.
B-STB/DIS48 6.00000E+05 45500.
1.22000E+05 B-STB/DIS49 8.00000E+05 59000.
1.67000E+05 B-STB/DIS50 1.000000E+06 72100.
2.13000E+05 B-STB/DIS51 1.400000E+06 97700.
3.08000E+05 B-STB/DIS52 2.000000E+06 1.35000E+05 4.56000E+05 B-STB/DIS53 3.000000E+06 1.95000E+05 7.12000E+05 B-STB/DIS54 4.000000E+06 2.52000E+05 9.76000E+05 B-STB/DIS55 6.000000E+06 3.64000E+05 1.520000E+06 B-STB/DIS56 8.000000E+06 4.72000E+05 2.090000E+06 B-STB/DIS57 1.E+07 5.77000E+05 2.670000E+06 B-STB/DIS58 1.4E+07 7.82000E+05 3.860000E+06 B-STB/DIS59 2.E+07 1.080000E+06 5.710000E+06 B-STB/DIS60 3.E+07 1.560000E+06 8.920000E+06 B-STB/DIS61 4.E+07 2.020000E+06 1.22E+07 B-STB/DIS62 6.E+07 2.910000E+06 1.91E+07 B-STB/DIS63 8.E+07 3.770000E+06 2.62E+07 B-STB/DIS64 1.E+08 4.620000E+06 3.34E+07 B-STB/DIS65 1.4E+08 6.260000E+06 4.84E+07 B-STB/DIS66 2.E+08 8.630000E+06 7.16E+07 B-STB/DIS67 3.E+08 1.25E+07 1.12E+08 B-STB/DIS68 4.E+08 1.61E+07 1.53E+08 B-STB/DIS69 6.E+08 2.33E+07 2.39E+08 B-STB/DIS70 8.E+08 3.02E+07 3.28E+08 B-STB/DIS71 1.E+09 3.69E+07 4.19E+08 B-STB/DIS72 1.4E+09 5.E+07 6.06E+08 B-STB/DIS73 2.E+09 6.91E+07 8.97E+08 B-STB/DIS74 3.E+09 9.96E+07 1.4E+09 B-STB/DIS75 4.E+09 1.29E+08 1.92E+09 B-STB/DIS76 6.E+09 1.86E+08 3.E+09 B-STB/DIS77 8.E+09 2.42E+08 4.11E+09 B-STB/DIS78 1.E+10 2.95E+08 5.25E+09
- DISTANCE, SIGMA_Y_C, SIGMA_Z_C, downwind distances (m), C-stability dispersion table C-STB/DIS01 0.1 0.026 0.014 C-STB/DIS02 0.14 0.035 0.02 C-STB/DIS03 0.2 0.049 0.027 C-STB/DIS04 0.3 0.07 0.039 C-STB/DIS05 0.4 0.091 0.051 C-STB/DIS06 0.6 0.132 0.073 C-STB/DIS07 0.8 0.171 0.095 C-STB/DIS08 1.
0.209 0.116 C-STB/DIS09 1.4 0.283 0.157 C-STB/DIS10 2.
0.391 0.217 C-STB/DIS11 3.
0.563 0.314 C-STB/DIS12 4.
0.731 0.407 C-STB/DIS13 6.
1.05 0.587 C-STB/DIS14 8.
1.37 0.762 C-STB/DIS15 10.
1.67 0.932 C-STB/DIS16 14.
2.26 1.26 C-STB/DIS17 20.
3.13 1.75 C-STB/DIS18 30.
4.51 2.52 C-STB/DIS19 40.
5.84 3.27 C-STB/DIS20 60.
8.43 4.72 C-STB/DIS21 80.
10.9 6.12 C-STB/DIS22 100.
13.4 7.49 C-STB/DIS23 140.
18.1 10.2 C-STB/DIS24 200.
25.
14.1 C-STB/DIS25 300.
36.1 20.4 C-STB/DIS26 400.
46.8 26.5 C-STB/DIS27 600.
67.4 38.4 C-STB/DIS28 800.
87.4 49.9 C-STB/DIS29 1000.
107.
61.1 C-STB/DIS30 1400.
145.
83.
C-STB/DIS31 2000.
200.
115.
C-STB/DIS32 3000.
288.
166.
C-STB/DIS33 4000.
374.
216.
C-STB/DIS34 6000.
539.
313.
C-STB/DIS35 8000.
700.
406.
C-STB/DIS36 10000.
856.
498.
C-STB/DIS37 14000.
1160.
676.
50 C-STB/DIS38 20000.
1600.
936.
C-STB/DIS39 30000.
2310.
1350.
C-STB/DIS40 40000.
2990.
1760.
C-STB/DIS41 60000.
4320.
2550.
C-STB/DIS42 80000.
5600.
3310.
C-STB/DIS43 1.00000E+05 6850.
4060.
C-STB/DIS44 1.40000E+05 9280.
5510.
C-STB/DIS45 2.00000E+05 12800.
7630.
C-STB/DIS46 3.00000E+05 18500.
11000.
C-STB/DIS47 4.00000E+05 23900.
14300.
C-STB/DIS48 6.00000E+05 34500.
20700.
C-STB/DIS49 8.00000E+05 44800.
27000.
C-STB/DIS50 1.000000E+06 54800.
33000.
C-STB/DIS51 1.400000E+06 74200.
44900.
C-STB/DIS52 2.000000E+06 1.02000E+05 62100.
C-STB/DIS53 3.000000E+06 1.48000E+05 89900.
C-STB/DIS54 4.000000E+06 1.92000E+05 1.17000E+05 C-STB/DIS55 6.000000E+06 2.76000E+05 1.69000E+05 C-STB/DIS56 8.000000E+06 3.58000E+05 2.20000E+05 C-STB/DIS57 1.E+07 4.38000E+05 2.69000E+05 C-STB/DIS58 1.4E+07 5.94000E+05 3.66000E+05 C-STB/DIS59 2.E+07 8.19000E+05 5.06000E+05 C-STB/DIS60 3.E+07 1.180000E+06 7.32000E+05 C-STB/DIS61 4.E+07 1.530000E+06 9.52000E+05 C-STB/DIS62 6.E+07 2.210000E+06 1.380000E+06 C-STB/DIS63 8.E+07 2.870000E+06 1.790000E+06 C-STB/DIS64 1.E+08 3.510000E+06 2.190000E+06 C-STB/DIS65 1.4E+08 4.750000E+06 2.980000E+06 C-STB/DIS66 2.E+08 6.560000E+06 4.120000E+06 C-STB/DIS67 3.E+08 9.450000E+06 5.970000E+06 C-STB/DIS68 4.E+08 1.23E+07 7.750000E+06 C-STB/DIS69 6.E+08 1.77E+07 1.12E+07 C-STB/DIS70 8.E+08 2.29E+07 1.46E+07 C-STB/DIS71 1.E+09 2.8E+07 1.79E+07 C-STB/DIS72 1.4E+09 3.8E+07 2.43E+07 C-STB/DIS73 2.E+09 5.24E+07 3.36E+07 C-STB/DIS74 3.E+09 7.56E+07 4.86E+07 C-STB/DIS75 4.E+09 9.81E+07 6.32E+07 C-STB/DIS76 6.E+09 1.41E+08 9.14E+07 C-STB/DIS77 8.E+09 1.83E+08 1.19E+08 C-STB/DIS78 1.E+10 2.24E+08 1.46E+08
- DISTANCE, SIGMA_Y_D, SIGMA_Z_D, downwind distances (m), D-stability dispersion table D-STB/DIS01 0.1 0.018 0.01 D-STB/DIS02 0.14 0.025 0.014 D-STB/DIS03 0.2 0.034 0.019 D-STB/DIS04 0.3 0.05 0.027 D-STB/DIS05 0.4 0.064 0.035 D-STB/DIS06 0.6 0.093 0.05 D-STB/DIS07 0.8 0.12 0.065 D-STB/DIS08 1.
0.147 0.079 D-STB/DIS09 1.4 0.199 0.106 D-STB/DIS10 2.
0.275 0.145 D-STB/DIS11 3.
0.397 0.208 D-STB/DIS12 4.
0.514 0.268 D-STB/DIS13 6.
0.742 0.383 D-STB/DIS14 8.
0.962 0.493 D-STB/DIS15 10.
1.18 0.601 D-STB/DIS16 14.
1.59 0.808 D-STB/DIS17 20.
2.2 1.11 D-STB/DIS18 30.
3.17 1.58 D-STB/DIS19 40.
4.12 2.04 D-STB/DIS20 60.
5.94 2.91 D-STB/DIS21 80.
7.7 3.75 D-STB/DIS22 100.
9.41 4.57 D-STB/DIS23 140.
12.8 6.29 D-STB/DIS24 200.
17.6 8.64 D-STB/DIS25 300.
25.4 12.2 D-STB/DIS26 400.
32.9 15.4 D-STB/DIS27 600.
47.5 21.2 D-STB/DIS28 800.
61.6 26.6
51 D-STB/DIS29 1000.
75.3 31.5 D-STB/DIS30 1400.
102.
39.9 D-STB/DIS31 2000.
141.
50.6 D-STB/DIS32 3000.
203.
65.4 D-STB/DIS33 4000.
263.
78.
D-STB/DIS34 6000.
380.
99.2 D-STB/DIS35 8000.
493.
117.
D-STB/DIS36 10000.
603.
133.
D-STB/DIS37 14000.
817.
161.
D-STB/DIS38 20000.
1130.
196.
D-STB/DIS39 30000.
1630.
244.
D-STB/DIS40 40000.
2110.
286.
D-STB/DIS41 60000.
3040.
355.
D-STB/DIS42 80000.
3940.
414.
D-STB/DIS43 1.00000E+05 4820.
466.
D-STB/DIS44 1.40000E+05 6530.
557.
D-STB/DIS45 2.00000E+05 9020.
672.
D-STB/DIS46 3.00000E+05 13000.
831.
D-STB/DIS47 4.00000E+05 16900.
967.
D-STB/DIS48 6.00000E+05 24300.
1190.
D-STB/DIS49 8.00000E+05 31500.
1390.
D-STB/DIS50 1.000000E+06 38600.
1560.
D-STB/DIS51 1.400000E+06 52300.
1860.
D-STB/DIS52 2.000000E+06 72100.
2230.
D-STB/DIS53 3.000000E+06 1.04000E+05 2760.
D-STB/DIS54 4.000000E+06 1.35000E+05 3200.
D-STB/DIS55 6.000000E+06 1.95000E+05 3950.
D-STB/DIS56 8.000000E+06 2.52000E+05 4580.
D-STB/DIS57 1.E+07 3.09000E+05 5140.
D-STB/DIS58 1.4E+07 4.18000E+05 6120.
D-STB/DIS59 2.E+07 5.77000E+05 7360.
D-STB/DIS60 3.E+07 8.32000E+05 9080.
D-STB/DIS61 4.E+07 1.080000E+06 10500.
D-STB/DIS62 6.E+07 1.560000E+06 13000.
D-STB/DIS63 8.E+07 2.020000E+06 15100.
D-STB/DIS64 1.E+08 2.470000E+06 16900.
D-STB/DIS65 1.4E+08 3.340000E+06 20100.
D-STB/DIS66 2.E+08 4.620000E+06 24200.
D-STB/DIS67 3.E+08 6.660000E+06 29800.
D-STB/DIS68 4.E+08 8.630000E+06 34600.
D-STB/DIS69 6.E+08 1.24E+07 42600.
D-STB/DIS70 8.E+08 1.61E+07 49500.
D-STB/DIS71 1.E+09 1.97E+07 55500.
D-STB/DIS72 1.4E+09 2.68E+07 66000.
D-STB/DIS73 2.E+09 3.69E+07 79400.
D-STB/DIS74 3.E+09 5.33E+07 97800.
D-STB/DIS75 4.E+09 6.91E+07 1.13000E+05 D-STB/DIS76 6.E+09 9.96E+07 1.40000E+05 D-STB/DIS77 8.E+09 1.29E+08 1.62000E+05 D-STB/DIS78 1.E+10 1.58E+08 1.82000E+05
- DISTANCE, SIGMA_Y_E, SIGMA_Z_E, downwind distances (m), E-stability dispersion table E-STB/DIS01 0.1 0.013 0.008 E-STB/DIS02 0.14 0.018 0.011 E-STB/DIS03 0.2 0.024 0.016 E-STB/DIS04 0.3 0.035 0.022 E-STB/DIS05 0.4 0.046 0.028 E-STB/DIS06 0.6 0.066 0.04 E-STB/DIS07 0.8 0.086 0.052 E-STB/DIS08 1.
0.105 0.063 E-STB/DIS09 1.4 0.142 0.0845 E-STB/DIS10 2.
0.196 0.115 E-STB/DIS11 3.
0.282 0.164 E-STB/DIS12 4.
0.366 0.211 E-STB/DIS13 6.
0.528 0.3 E-STB/DIS14 8.
0.684 0.385 E-STB/DIS15 10.
0.837 0.468 E-STB/DIS16 14.
1.13 0.628 E-STB/DIS17 20.
1.56 0.856 E-STB/DIS18 30.
2.26 1.22 E-STB/DIS19 40.
2.93 1.57
52 E-STB/DIS20 60.
4.22 2.23 E-STB/DIS21 80.
5.47 2.86 E-STB/DIS22 100.
6.69 3.48 E-STB/DIS23 140.
9.07 4.72 E-STB/DIS24 200.
12.5 6.36 E-STB/DIS25 300.
18.1 8.79 E-STB/DIS26 400.
23.4 11.
E-STB/DIS27 600.
33.8 14.8 E-STB/DIS28 800.
43.8 18.3 E-STB/DIS29 1000.
53.6 21.5 E-STB/DIS30 1400.
72.6 27.3 E-STB/DIS31 2000.
100.
34.4 E-STB/DIS32 3000.
144.
43.4 E-STB/DIS33 4000.
187.
50.5 E-STB/DIS34 6000.
270.
61.6 E-STB/DIS35 8000.
350.
70.3 E-STB/DIS36 10000.
428.
77.7 E-STB/DIS37 14000.
581.
89.8 E-STB/DIS38 20000.
801.
104.
E-STB/DIS39 30000.
1160.
122.
E-STB/DIS40 40000.
1500.
136.
E-STB/DIS41 60000.
2160.
159.
E-STB/DIS42 80000.
2800.
177.
E-STB/DIS43 1.00000E+05 3430.
191.
E-STB/DIS44 1.40000E+05 4650.
216.
E-STB/DIS45 2.00000E+05 6410.
245.
E-STB/DIS46 3.00000E+05 9250.
281.
E-STB/DIS47 4.00000E+05 12000.
310.
E-STB/DIS48 6.00000E+05 17300.
355.
E-STB/DIS49 8.00000E+05 22400.
391.
E-STB/DIS50 1.000000E+06 27400.
421.
E-STB/DIS51 1.400000E+06 37200.
470.
E-STB/DIS52 2.000000E+06 51300.
528.
E-STB/DIS53 3.000000E+06 74000.
602.
E-STB/DIS54 4.000000E+06 95900.
660.
E-STB/DIS55 6.000000E+06 1.38000E+05 752.
E-STB/DIS56 8.000000E+06 1.79000E+05 824.
E-STB/DIS57 1.E+07 2.19000E+05 884.
E-STB/DIS58 1.4E+07 2.97000E+05 984.
E-STB/DIS59 2.E+07 4.10000E+05 1100.
E-STB/DIS60 3.E+07 5.92000E+05 1250.
E-STB/DIS61 4.E+07 7.67000E+05 1370.
E-STB/DIS62 6.E+07 1.110000E+06 1550.
E-STB/DIS63 8.E+07 1.430000E+06 1700.
E-STB/DIS64 1.E+08 1.760000E+06 1820.
E-STB/DIS65 1.4E+08 2.380000E+06 2020.
E-STB/DIS66 2.E+08 3.280000E+06 2260.
E-STB/DIS67 3.E+08 4.730000E+06 2560.
E-STB/DIS68 4.E+08 6.140000E+06 2800.
E-STB/DIS69 6.E+08 8.850000E+06 3170.
E-STB/DIS70 8.E+08 1.15E+07 3460.
E-STB/DIS71 1.E+09 1.4E+07 3710.
E-STB/DIS72 1.4E+09 1.9E+07 4110.
E-STB/DIS73 2.E+09 2.63E+07 4590.
E-STB/DIS74 3.E+09 3.79E+07 5200.
E-STB/DIS75 4.E+09 4.91E+07 5680.
E-STB/DIS76 6.E+09 7.08E+07 6430.
E-STB/DIS77 8.E+09 9.18E+07 7020.
E-STB/DIS78 1.E+10 1.12E+08 7520.
- DISTANCE, SIGMA_Y_F, SIGMA_Z_F, downwind distances (m), F-stability dispersion table F-STB/DIS01 0.1 0.009 0.008 F-STB/DIS02 0.14 0.012 0.011 F-STB/DIS03 0.2 0.017 0.014 F-STB/DIS04 0.3 0.024 0.02 F-STB/DIS05 0.4 0.032 0.025 F-STB/DIS06 0.6 0.046 0.035 F-STB/DIS07 0.8 0.059 0.044 F-STB/DIS08 1.
0.072 0.053 F-STB/DIS09 1.4 0.0978 0.0697 F-STB/DIS10 2.
0.135 0.0932
53 F-STB/DIS11 3.
0.195 0.13 F-STB/DIS12 4.
0.252 0.164 F-STB/DIS13 6.
0.364 0.228 F-STB/DIS14 8.
0.472 0.288 F-STB/DIS15 10.
0.578 0.345 F-STB/DIS16 14.
0.783 0.454 F-STB/DIS17 20.
1.08 0.607 F-STB/DIS18 30.
1.56 0.845 F-STB/DIS19 40.
2.02 1.07 F-STB/DIS20 60.
2.91 1.48 F-STB/DIS21 80.
3.78 1.88 F-STB/DIS22 100.
4.62 2.25 F-STB/DIS23 140.
6.26 2.98 F-STB/DIS24 200.
8.64 3.99 F-STB/DIS25 300.
12.5 5.51 F-STB/DIS26 400.
16.2 6.89 F-STB/DIS27 600.
23.3 9.43 F-STB/DIS28 800.
30.2 11.7 F-STB/DIS29 1000.
37.
13.9 F-STB/DIS30 1400.
50.1 17.9 F-STB/DIS31 2000.
69.1 22.3 F-STB/DIS32 3000.
99.7 27.7 F-STB/DIS33 4000.
129.
31.7 F-STB/DIS34 6000.
186.
37.8 F-STB/DIS35 8000.
242.
42.4 F-STB/DIS36 10000.
296.
46.1 F-STB/DIS37 14000.
401.
52.
F-STB/DIS38 20000.
553.
58.7 F-STB/DIS39 30000.
798.
66.8 F-STB/DIS40 40000.
1030.
73.
F-STB/DIS41 60000.
1490.
82.2 F-STB/DIS42 80000.
1930.
89.1 F-STB/DIS43 1.00000E+05 2370.
94.8 F-STB/DIS44 1.40000E+05 3210.
104.
F-STB/DIS45 2.00000E+05 4420.
114.
F-STB/DIS46 3.00000E+05 6380.
126.
F-STB/DIS47 4.00000E+05 8270.
135.
F-STB/DIS48 6.00000E+05 11900.
149.
F-STB/DIS49 8.00000E+05 15500.
160.
F-STB/DIS50 1.000000E+06 18900.
168.
F-STB/DIS51 1.400000E+06 25700.
182.
F-STB/DIS52 2.000000E+06 35400.
197.
F-STB/DIS53 3.000000E+06 51100.
216.
F-STB/DIS54 4.000000E+06 66200.
230.
F-STB/DIS55 6.000000E+06 95500.
251.
F-STB/DIS56 8.000000E+06 1.24000E+05 267.
F-STB/DIS57 1.E+07 1.51000E+05 280.
F-STB/DIS58 1.4E+07 2.05000E+05 300.
F-STB/DIS59 2.E+07 2.83000E+05 324.
F-STB/DIS60 3.E+07 4.08000E+05 352.
F-STB/DIS61 4.E+07 5.30000E+05 373.
F-STB/DIS62 6.E+07 7.64000E+05 405.
F-STB/DIS63 8.E+07 9.90000E+05 429.
F-STB/DIS64 1.E+08 1.210000E+06 449.
F-STB/DIS65 1.4E+08 1.640000E+06 480.
F-STB/DIS66 2.E+08 2.270000E+06 515.
F-STB/DIS67 3.E+08 3.270000E+06 557.
F-STB/DIS68 4.E+08 4.240000E+06 589.
F-STB/DIS69 6.E+08 6.110000E+06 638.
F-STB/DIS70 8.E+08 7.920000E+06 674.
F-STB/DIS71 1.E+09 9.690000E+06 704.
F-STB/DIS72 1.4E+09 1.31E+07 751.
F-STB/DIS73 2.E+09 1.81E+07 804.
F-STB/DIS74 3.E+09 2.61E+07 868.
F-STB/DIS75 4.E+09 3.39E+07 917.
F-STB/DIS76 6.E+09 4.89E+07 990.
F-STB/DIS77 8.E+09 6.34E+07 1050.
F-STB/DIS78 1.E+10 7.75E+07 1090.
- YSCALE, linear scaling factor for sigma-y DPYSCALE001 1.
54
- ZSCALE, linear scaling factor for sigma-z DPZSCALE001 1.27
- WINSP1, wind speed where the meander factor changes from constant to decreasing(m/s)
PMWINSP1001 2.
- WINSP2, wind speed where the meander factor reaches one (m/s)
PMWINSP2001 6.
- MNDIST, distance where the effect of meander begins to diminish (m)
PMMNDIST001 800.
- MNDFAC, plume meander factor used to calculate sigma-y PMMNDFAC001 1.
PMMNDFAC002 1.
PMMNDFAC003 1.
PMMNDFAC004 2.
PMMNDFAC005 3.
PMMNDFAC006 4.
- SCLCRW, scaling factor for entrainment of buoyant plume PRSCLCRW001 1.
- SCLADP, scaling factor for the A through D stability plume rise formula PRSCLADP001 1.
- SCLEFP, scaling factor for the E through F stability plume rise formula PRSCLEFP001 1.
- SCLCRW, scaling factor for entrainment of buoyant plume PRSCLCRW001 1.
- SCLADP, scaling factor for the A through D stability plume rise formula PRSCLADP001 1.
- SCLEFP, scaling factor for the E through F stability plume rise formula PRSCLEFP001 1.
- BNDMXH, boundary weather mixing layer height (m)
M2BNDMXH001 1000.
- IBDSTB, boundary weather stability class index M2IBDSTB001 4
- BNDRAN, boundary weather rain rate (mm/hr)
M2BNDRAN001 5.
M4RNRATE003 6.
- BNDWND, boundary weather wind speed (m/sec)
M2BNDWND001 5.
- plume rise model set to DENSITY (DENSITY, HEAT)
RDPLMMOD001 HEAT
- MAXHGT, determines mixing height model M1MAXHGT001 DAY_AND_NIGHT
- EARLY PARAMETERS
- NORGANS_SEL, number of organs selected by user MINUMORG001 16
- ORGANS_SEL, list of organs selected by user MIORGNAM001 A-STOMACH MIORGNAM002
'A-LOWER LI' MIORGNAM003
'A-RED MARR' MIORGNAM004 A-SKIN
55 MIORGNAM005 A-THYROID MIORGNAM006 A-LUNGS MIORGNAM007
'L-BONE SUR' MIORGNAM008 L-BREAST MIORGNAM009
'L-BLAD WAL' MIORGNAM010
'L-LOWER LI' MIORGNAM011 L-LIVER MIORGNAM012
'L-RED MARR' MIORGNAM013 L-THYROID MIORGNAM014 L-LUNGS MIORGNAM015 L-ICRP60ED MIORGNAM016 L-TEDE
- ENDEMP, duration of the emergency-phase period (s)
SRENDEMP001 6.04800E+05
- Early relocation Dose projection models: 'ORIGL', 'TOTAL', 'AVOID' EZRELMOD001 ORIGL
- RESCON, initial value for emergency-phase resuspension concentration factor (s/m)
SERESCON001 1.E-04
- RESHAF, emergency-phase resuspension concentration coefficient weathering half-life (s)
SERESHAF001 1.82000E+05
- NUMEFA, number of Early Fatality Effects EFNUMEFA001 3
- ORGNAM2, EFFACA, EFFACB, EFFTHR, early fatality effect settings. Columns are target organ, alpha factor (Sv) and beta factor for hazard function, and threshold dose (Sv)
EFATAGRP001
'A-RED MARR' 5.6 6.1 2.3 EFATAGRP002 A-LUNGS 24.
9.6 14.
EFATAGRP003 A-STOMACH 12.
9.3 6.5
- EINAME, ORGNAM3, EISUSC, EITHRE, EIFACA, EIFACB, early injury effect settings. Columns are injury, target organ, population fraction, threshold dose (Sv), alpha factor, and beta factor.
EINJUGRP001
'PRODROMAL VOMIT' A-STOMACH 1.
0.5 2.
3.
EINJUGRP002 DIARRHEA A-STOMACH 1.
1.
3.
2.5 EINJUGRP003 PNEUMONITIS A-LUNGS 1.
9.2 17.
7.3 EINJUGRP004
'SKIN ERYTHEMA' A-SKIN 1.
3.
6.
5.
EINJUGRP005 TRANSEPIDERMAL A-SKIN 1.
10.
20.
5.
EINJUGRP006 THYROIDITIS A-THYROID 1.
40.
240.
2.
EINJUGRP007 HYPOTHYROIDISM A-THYROID 1.
2.
60.
1.3
- NUMACA, number of latent cancer effects LCNUMACA001 8
- ACTHRE, used for non quadratic model, always 0 LCACTHRE001 0.
- DDTHRE, dose threshold for applying dose-dependent reduction factor, DDREFA (Sv)
LCDDTHRE001 0.2
- ACNAME, ORGNAM4, ACSUSC, DOSEFA =1, DOSEFB = 0, CFRISK, CIRISK, DDREFA, latent cancer, organ, population fraction, alpha factor, beta factor, risk for death (1/Sv), risk for cancer (1/Sv),
reduction factor LCANCERS001 Leukemia
'L-RED MARR' 1.
1.
0.
0.0111 0.0113 2.
LCANCERS002 Bone
'L-BONE SUR' 1.
1.
0.
1.9E-04 2.71E-04 2.
LCANCERS003 Breast L-BREAST 1.
1.
0.
0.00506 0.0101 1.
LCANCERS004 Lung L-LUNGS 1.
1.
0.
0.0198 0.0208 2.
LCANCERS005 Thyroid L-THYROID 1.
1.
0.
6.48E-04 0.00648 2.
LCANCERS006 Liver L-LIVER 1.
1.
0.
0.003 0.00316 2.
LCANCERS007 Colon
'L-LOWER LI' 1.
1.
0.
0.0208 0.0378 2.
LCANCERS008 Residual
'L-BLAD WAL' 1.
1.
0.
0.0493 0.169 2.
- IPRINT, amount of detail of output reported. Zero is used for standard reporting.
MIIPRINT001 0
- IDEBUG, specifies set of debug results to report OCIDEBUG001 0
56
- DOSHOT, defines the hot-spot relocation dose threshold (Sv)
SRDOSHOT001 0.05
- DOSNRM, defines the normal relocation dose threshold (Sv)
SRDOSNRM001 0.01
- CSFACT, cloudshine shielding factor SECSFACT001 0.95 SECSFACT002 0.75 SECSFACT003 0.6
- PROTIN, inhalation protection factor SEPROTIN001 0.98 SEPROTIN002 0.46 SEPROTIN003 0.25
- BRRATE, breathing rate (m3/s)
SEBRRATE001 2.66E-04 SEBRRATE002 2.66E-04 SEBRRATE003 2.66E-04
- SKPFAC, skin protection factors SESKPFAC001 0.98 SESKPFAC002 0.46 SESKPFAC003 0.25
- GSHFAC, groundshine shielding factors SEGSHFAC001 0.52 SEGSHFAC002 0.34 SEGSHFAC003 0.19
- CHRONC PARAMETERS (2020)
- CHNAME, late consequences description CHCHNAME001
'Your CHRONC Name Here'
- LPROTIN, inhalation protection factor (0 means complete protection)
CHLPROTIN01 0.46
- LBRRATE, breathing rate for longterm calculation (m3/s)
CHLBRRATE01 2.66E-04
- LGSHFAC, longterm groundshine shielding factor (0 means complete protection)
CHLGSHFAC01 0.34
- CRTOCR, long term phase critical organ CHCRTOCR001 L-ICRP60ED
- DPRATE, depreciation rate applies to improvements (1/y)
CHDPRATE001 0.2
- DSRATE, rate of return from land, buildings, equipment (1/y)
CHDSRATE001 0.07
- FRFDL, fraction farmland decontamination cost due labor CHFRFDL0001 0.35 CHFRFDL0002 0.35 CHFRFDL0003 0.35
- FRNFDL, fraction nonfarmland decontamination cost due labor CHFRNFDL001 0.35 CHFRNFDL002 0.35 CHFRNFDL003 0.35
- TFWKF, fraction of the decontamination period that a farmland worker spends in the contaminated area CHTFWKF0001 0.15 CHTFWKF0002 0.15 CHTFWKF0003 0.15
57
- TFWKNF, fraction of the decontamination period that a nonfarmland worker spends in the contaminated area CHTFWKNF001 0.15 CHTFWKNF002 0.15 CHTFWKNF003 0.15
- NGWTRM, number of terms in the groundshine weathering relationship (1 or 2)
CHNGWTRM001 2
- GWCOEF, groundshine weathering equation coefficient CHGWCOEF001 0.4 CHGWCOEF002 0.6
- TGWHLF, groundshine weathering equation half-lives (s)
CHTGWHLF001 4.7E+07 CHTGWHLF002 1.58E+09
- NRWTRM, number resuspension terms (1, 2 or 3)
CHNRWTRM001 3
- RWCOEF, resuspension weathering equation coefficient (1/m)
CHRWCOEF001 1.E-05 CHRWCOEF002 7.E-09 CHRWCOEF003 1.E-09
- TRWHLF, resuspension weathering equation half lives (s)
CHTRWHLF001 8.56000E+05 CHTRWHLF002 2.99E+07 CHTRWHLF003 1.E+10
- EVACST, daily cost compensation for evacuees and short-term relocation($/person-d)
CHEVACST001 238.
- RELCST, daily cost of compensation for individuals due to intermediate-phase relocation
($/person-d)
CHRELCST001 167.
- POPCST, per capita removal cost for temporary or permanent relocation of population and businesses ($/person)
CHPOPCST001 8471.
- DUR_INTPHAS, duration of the intermediate-phase period (s)
DUR_INTPHAS 3.15576E+07
- Projected dose period used for cleanup.
CHDECDPP001 3.15576E+07
- EXPTIM, long term phase period (s)
CHEXPTIM001 1.57788E+09
- DSCRTI, maximum allowable direct-exposure dose commitment in the intermediate phase period (Sv)
CHDSCRTI001 0.02
- First Long-term phase dose projection period (s)
CHTMPACT101 3.15576E+07
- Cleanup dose criterion used in decontamination and interdiction.
CHDECCRLT01 0.005
- DSCRLT1, maximum allowable direct-First long-term phase dose projection criterion (Sv)
CHDSCRLT101 0.005
- First Long-term phase dose projection period delay CHLTDPDL101 0.
- LVLDEC, number of decontamination levels (1, 2 or 3)
CHLVLDEC001 3
- TIMDEC, time required for completion of each level of decontamination (s)
CHTIMDEC001 3.15576E+07
58 CHTIMDEC002 3.15576E+07 CHTIMDEC003 3.15576E+07
- CM2THY, Comida2 thyroid organ CHCM2THY001 L-THYROID
- CM2EFF, effective organ CHCM2EFF001 L-ICRP60ED
- FRFIM, fraction of farm wealth due improvements, sourced from SECPOP 2020 data CHFRFIM0001 0.20
- FRNFIM, fraction nonfarm wealth due improvements, sourced from SECPOP 2020 data CHFRNFIM001 0.68
- CDFRM, farmland decontamination cost ($/ha)
CHCDFRM0001 4329.
CHCDFRM0002 44460.
CHCDFRM0003 44460.
- CDNFRM, nonfarmland decontamination cost ($/person)
CHCDNFRM001 91260.
CHCDNFRM002 2.15280E+05 CHCDNFRM003 3.14730E+05
- DLBCST, labor cost decontamination worker ($/man-y CHDLBCST001 84000.
- DSRFCT, effectiveness of the various decontamination levels in reducing dose CHDSRFCT001 2.
CHDSRFCT002 4.
CHDSRFCT003 8.
- DOSEMILK, maximum allowable food ingestion dose from milk crops during the year of the accident (Sv)
DOSEMILK001 0.0025 DOSEMILK002 0.025
- DOSEOTHR, maximum allowable food ingestion dose from non-milk crops during the year of the accident (Sv)
DOSEOTHR001 0.0025 DOSEOTHR002 0.025
- DOSELONG, maximum allowable long-term annual dose to an individual from ingestion of milk and non-milk crops (Sv)
DOSELONG001 0.005 DOSELONG002 0.05
- NAMWPI, WSHFRI, WSHRTA, WINGF, radionuclide, washout fraction, annual washout rate (1/y), lower bound of water ingestion factor CHWTRISO001 Sr-89 0.01 0.004 0.
CHWTRISO002 Sr-90 0.01 0.004 0.
CHWTRISO003 Cs-134 0.005 0.001 0.
CHWTRISO004 Cs-137 0.005 0.001 0.
- OUTPUT STATEMENTS TYPE1NUMBER 3
TYPE1OUT001
'ERL FAT/TOTAL' 1
12 NONE
'CAN FAT/TOTAL' 1
12 NONE
'CAN FAT/TOTAL' 1
13 NONE
- Total latent fatality cases within model domain TYPE2NUMBER 1
TYPE2OUT001 0.
NONE
- Maximum distance to which early fatalies are possible. Diagnostic output for early fatality risk estimation.
59 TYPE3NUMBER 6
TYPE3OUT001
'A-RED MARR' 1
NONE
- Population subject to high (100 rad) acute doses.
Diagnostic output for early fatality risk estimation.
TYPE3OUT002
'A-RED MARR' 0.25 NONE
- Population subject to acute doses exceeding 25 rad TYPE3OUT003 L-ICRP60ED 0.25 NONE
- Population subject to committed doses exceeding 25 rem TYPE3OUT004 L-ICRP60ED 0.10 NONE
- Population subject to moderate or high (>10 rem) committed doses TYPE3OUT005 L-ICRP60ED 0.05 NONE
- Population subject to committed doses exceeding upper early phase PAG limit (5 rem). Diagnostic output for evaluating effectivness of protective actions.
TYPE3OUT006 L-ICRP60ED 0.01 NONE
- Population subject to committed doses exceeding lower early phase PAG limit (1 rem). Diagnostic output for evaluating effectivness of protective actions.
TYPE4NUMBER 6
TYPE4OUT001 1
'ERL FAT/TOTAL' NONE
- Average individual early fatality risk within EAB TYPE4OUT002 2
'ERL FAT/TOTAL' NONE
- Average individual early fatality risk from EAB to 1 mile TYPE4OUT003 3
'ERL FAT/TOTAL' NONE
- Average individual early fatality risk from 1 mile to EAB+1 mile TYPE4OUT004 4
'ERL FAT/TOTAL' NONE
- Average individual early fatality risk from EAB+1 mile to 2 miles TYPE4OUT005 5
'ERL FAT/TOTAL' NONE
- Average individual early fatality risk from 2 miles to 5 miles TYPE4OUT006 6
'ERL FAT/TOTAL' NONE
- Average individual early fatality risk from 5 miles to 10 miles TYPE5NUMBER 4
TYPE5OUT001 L-ICRP60ED 1
12 NONE
- Collective effective committed dose (ED) within 50 miles. State-of-practice output for NEPA analyses (?)
TYPE5OUT002 L-ICRP60ED 1
13 NONE
- Collective effective committed dose (ED) within model domain.
TYPE5OUT003 L-TEDE 1
12 NONE
- Collective effective committed dose (TEDE) within 50 miles.
TYPE5OUT004 L-TEDE 1
13 NONE
- Collective effective committed dose (TEDE) within model domain TYPE6NUMBER 0
TYPE7NUMBER 0
TYPE8NUMBER 2
TYPE8OUT001
'ERL FAT/TOTAL' 1
3 NONE
- Population-weighted individual early fatality risk within one mile of site boundary. Used as a state-of-practice surrogate for early fatality QHO metric.
TYPE8OUT002
'CAN FAT/TOTAL' 1
6 NONE
- Population-weighted individual latent fatality risk within ten miles. Used as a state-of-practice surrogate for latent fatality QHO metric.
TYPEANUMBER 2
TYPEAOUT001 L-ICRP60ED 1
13 NONE
- Peak total effective committed dose (ED) over model domain TYPEAOUT002 L-TEDE 1
13 NONE
- Peak total effective committed dose (TEDE) over model domain TYPEBNUMBER 0
TYPECNUMBER 0
TYPEDNUMBER 0
TYPEENUMBER 3
TYPEEOUT001 4
900 NONE
- Population exiting 2 mile region, 15 minute increments.
Used to verify evacuation parameters against 2 mile ETE.
TYPEEOUT002 5
900 NONE
- Population exiting 5 mile region, 15 minute increments.
Used to verify evacuation parameters against 5 mile ETE.
TYPEEOUT003 6
900 NONE
- Population exiting 10 mile region, 15 minute increments.
Used to verify evacuation parameters against 10 mile ETE.
60 TYPEFNUMBER 5
TYPEFOUT001 L-ICRP60ED 3600.
- Peak projected 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> dose. Used to estimate dose in absence of protective actions.
TYPEFOUT002 L-ICRP60ED 7200.
- Peak projected 2 hour2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> dose. Used to estimate dose in absence of protective actions.
TYPEFOUT003
'A-RED MARR' 86400.
- Peak projected 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> acute dose. Used to estimate dose in absence of protective actions; may be useful for EPZ sizing analyses.
TYPEFOUT004 L-ICRP60ED 3.45600E+05
- Peak projected 96 hour0.00111 days <br />0.0267 hours <br />1.587302e-4 weeks <br />3.6528e-5 months <br /> committed dose. Used to estimate dose in absence of protective actions; may be useful for EPZ sizing analyses.
TYPEFOUT005 L-TEDE 2.59200E+06
- Peak projected 30 day committed dose. Used to estimate dose in absence of protective actions; may be useful for LMP applications. Requires ENDEMP >30 days TYPE9NUMBER 2
TYPE9OUT001 L-ICRP60ED 1
12 NONE
- Collective committed effective dose from long-term pathways within 50 miles. Diagnostic output for OVERALL Type 5 population dose TYPE9OUT002 L-ICRP60ED 1
13 NONE
- Collective committed effective dose from long-term pathways within 50 miles.
TYP10NUMBER 2
s TYP10OUT001 1
12 NONE
.TRUE.
- Economic costs within 50 miles. State-of-practice output for NEPA analyses (?)
TYP10OUT002 1
13 NONE
.TRUE.
- Economic costs within model domain.
TYP11FLAG11
.TRUE.
NONE
- Maximum action distance for decontamination or interdiction.
Diagnostic output for long term population dose and economic costs TYP12NUMBER 2
TYP12OUT001 1
12 NONE
- Impacted area and population results within 50 miles.
Diagnostic output for long term population dose and economic costs.
TYP12OUT002 1
13 NONE
- Impacted area and population results within model domain.
TYP13NUMBER 0
TYP14NUMBER 0
B.2 Source Term Inputs
- SOURCE TERM-SPECIFIC PARAMETERS
- EANAM1, identifies the EARLY calculation MIEANAM1001
'YOUR_EARLY_NAME_HERE'
- ATNAM2, source term description RDATNAM2001
'YOUR_SOURCE_NAME_HERE'
- NUMREL, number of plumes RDNUMREL001 86
- MAXRIS, index of risk-dominant plume segment RDMAXRIS001 1
- CORINV, inventory of each radionuclide present at the time of accident initiation (Bq)
RDCORINV001 Kr-85 2.75E+16 RDCORINV002 Kr-85m 1.07E+18 RDCORINV003 Kr-87 2.13E+18 RDCORINV004 Kr-88 2.82E+18 RDCORINV005 Xe-133 7.54E+18 RDCORINV006 Xe-135 1.89E+18 RDCORINV007 Xe-135m 1.56E+18 RDCORINV008 Cs-134 3.30E+17 RDCORINV009 Cs-136 9.52E+16 RDCORINV010 Cs-137 2.63E+17 RDCORINV011 Rb-86 5.32E+15 RDCORINV012 Rb-88 2.86E+18 RDCORINV013 Ba-137m 2.51E+17 RDCORINV014 Ba-139 6.76E+18
61 RDCORINV015 Ba-140 6.53E+18 RDCORINV016 Sr-89 3.92E+18 RDCORINV017 Sr-90 2.03E+17 RDCORINV018 Sr-91 4.88E+18 RDCORINV019 Sr-92 5.19E+18 RDCORINV020 I-131 3.57E+18 RDCORINV021 I-132 5.32E+18 RDCORINV022 I-133 7.47E+18 RDCORINV023 I-134 8.49E+18 RDCORINV024 I-135 7.13E+18 RDCORINV025 Te-127 2.79E+17 RDCORINV026 Te-127m 2.27E+16 RDCORINV027 Te-129 8.85E+17 RDCORINV028 Te-129m 1.30E+17 RDCORINV029 Te-131 3.10E+18 RDCORINV030 Te-131m 6.40E+17 RDCORINV031 Te-132 5.13E+18 RDCORINV032 Rh-103m 5.01E+18 RDCORINV033 Rh-105 2.87E+18 RDCORINV034 Rh-106 1.42E+18 RDCORINV035 Ru-103 5.06E+18 RDCORINV036 Ru-105 3.28E+18 RDCORINV037 Ru-106 1.18E+18 RDCORINV038 Co-58 2.33E+07 RDCORINV039 Co-60 2.35E+11 RDCORINV040 Mo-99 6.84E+18 RDCORINV041 Nb-95 6.25E+18 RDCORINV042 Nb-97 6.56E+18 RDCORINV043 Nb-97m 6.20E+18 RDCORINV044 Tc-99m 6.28E+18 RDCORINV045 Ce-141 6.12E+18 RDCORINV046 Ce-143 5.86E+18 RDCORINV047 Ce-144 3.79E+18 RDCORINV048 Np-239 6.46E+19 RDCORINV049 Pu-238 4.67E+15 RDCORINV050 Pu-239 9.51E+14 RDCORINV051 Pu-240 1.07E+15 RDCORINV052 Pu-241 2.79E+17 RDCORINV053 Zr-95 6.42E+18 RDCORINV054 Zr-97 6.52E+18 RDCORINV055 Am-241 2.67E+14 RDCORINV056 Cm-242 6.61E+16 RDCORINV057 Cm-244 3.74E+15 RDCORINV058 La-140 6.64E+18 RDCORINV059 La-141 6.17E+18 RDCORINV060 La-142 5.98E+18 RDCORINV061 Nd-147 2.39E+18 RDCORINV062 Pr-143 5.87E+18 RDCORINV063 Pr-144 3.83E+18 RDCORINV064 Pr-144m 6.03E+16 RDCORINV065 Y-90 2.11E+17 RDCORINV066 Y-91 5.01E+18 RDCORINV067 Y-91m 2.88E+18 RDCORINV068 Y-92 5.25E+18 RDCORINV069 Y-93 5.80E+18 RDCORINV070 Sb-127 0.
RDCORINV071 Sb-129 0.
- VDEPOS, dry deposition velocities for each particle size group (m/sec)
DDVDEPOS001 1.07E-03 DDVDEPOS002 9.85E-04 DDVDEPOS003 1.29E-03 DDVDEPOS004 2.18E-03 DDVDEPOS005 4.26E-03 DDVDEPOS006 8.71E-03 DDVDEPOS007 1.68E-02 DDVDEPOS008 2.75E-02 DDVDEPOS009 3.41E-02 DDVDEPOS010 5.15E-02
- PLHEAT,
62 RDPLHEAT001 2.10E+07 RDPLHEAT002 1.50E+06 RDPLHEAT003 4.90E+02 RDPLHEAT004 4.10E+02 RDPLHEAT005 2.50E+02 RDPLHEAT006 1.30E+06 RDPLHEAT007 7.80E+06 RDPLHEAT008 5.90E+05 RDPLHEAT009 4.90E+05 RDPLHEAT010 9.80E+06 RDPLHEAT011 1.60E+04 RDPLHEAT012 6.30E+06 RDPLHEAT013 1.50E+04 RDPLHEAT014 8.10E+06 RDPLHEAT015 2.10E+03 RDPLHEAT016 4.30E+06 RDPLHEAT017 3.50E+06 RDPLHEAT018 2.80E+06 RDPLHEAT019 2.60E+06 RDPLHEAT020 2.50E+06 RDPLHEAT021 1.00E+04 RDPLHEAT022 2.60E+06 RDPLHEAT023 1.70E+04 RDPLHEAT024 2.50E+06 RDPLHEAT025 1.60E+04 RDPLHEAT026 3.60E+06 RDPLHEAT027 8.70E+04 RDPLHEAT028 5.30E+04 RDPLHEAT029 6.10E+05 RDPLHEAT030 1.80E+04 RDPLHEAT031 2.70E+06 RDPLHEAT032 2.50E+04 RDPLHEAT033 2.70E+06 RDPLHEAT034 2.10E+06 RDPLHEAT035 2.20E+06 RDPLHEAT036 3.10E+06 RDPLHEAT037 8.40E+04 RDPLHEAT038 7.60E+04 RDPLHEAT039 9.50E+05 RDPLHEAT040 2.50E+06 RDPLHEAT041 3.70E+06 RDPLHEAT042 3.90E+06 RDPLHEAT043 3.80E+06 RDPLHEAT044 3.80E+06 RDPLHEAT045 3.80E+06 RDPLHEAT046 3.80E+06 RDPLHEAT047 3.90E+06 RDPLHEAT048 3.90E+06 RDPLHEAT049 3.90E+06 RDPLHEAT050 3.90E+06 RDPLHEAT051 3.90E+06 RDPLHEAT052 3.90E+06 RDPLHEAT053 3.80E+06 RDPLHEAT054 3.80E+06 RDPLHEAT055 3.80E+06 RDPLHEAT056 3.80E+06 RDPLHEAT057 3.80E+06 RDPLHEAT058 3.80E+06 RDPLHEAT059 3.80E+06 RDPLHEAT060 3.80E+06 RDPLHEAT061 3.70E+06 RDPLHEAT062 3.60E+06 RDPLHEAT063 3.10E+01 RDPLHEAT064 3.60E+06 RDPLHEAT065 3.80E+06 RDPLHEAT066 3.50E+06 RDPLHEAT067 3.10E+06 RDPLHEAT068 3.10E+06 RDPLHEAT069 3.50E+06 RDPLHEAT070 3.10E+06 RDPLHEAT071 3.10E+06
63 RDPLHEAT072 3.20E+06 RDPLHEAT073 3.20E+06 RDPLHEAT074 3.10E+06 RDPLHEAT075 3.30E+06 RDPLHEAT076 3.10E+06 RDPLHEAT077 3.10E+06 RDPLHEAT078 3.10E+06 RDPLHEAT079 3.50E+06 RDPLHEAT080 3.40E+06 RDPLHEAT081 3.20E+06 RDPLHEAT082 3.30E+06 RDPLHEAT083 3.20E+06 RDPLHEAT084 3.50E+06 RDPLHEAT085 3.20E+06 RDPLHEAT086 3.30E+06
- PDELAY, start time of each plume segment from accident initiation (s)
RDPDELAY001 9840 RDPDELAY002 11200 RDPDELAY003 11459 RDPDELAY004 11459 RDPDELAY005 11459 RDPDELAY006 11459 RDPDELAY007 13468 RDPDELAY008 14800 RDPDELAY009 15045 RDPDELAY010 17073 RDPDELAY011 18400 RDPDELAY012 20600 RDPDELAY013 22000 RDPDELAY014 24200 RDPDELAY015 25600 RDPDELAY016 27800 RDPDELAY017 31400 RDPDELAY018 35000 RDPDELAY019 38600 RDPDELAY020 42200 RDPDELAY021 43600 RDPDELAY022 45800 RDPDELAY023 47200 RDPDELAY024 49400 RDPDELAY025 50800 RDPDELAY026 53000 RDPDELAY027 54400 RDPDELAY028 54700 RDPDELAY029 56600 RDPDELAY030 58000 RDPDELAY031 60200 RDPDELAY032 61600 RDPDELAY033 63800 RDPDELAY034 67400 RDPDELAY035 71000 RDPDELAY036 74600 RDPDELAY037 76000 RDPDELAY038 76300 RDPDELAY039 78200 RDPDELAY040 81800 RDPDELAY041 85400 RDPDELAY042 89400 RDPDELAY043 92400 RDPDELAY044 96400 RDPDELAY045 99400 RDPDELAY046 103400 RDPDELAY047 107400 RDPDELAY048 110400 RDPDELAY049 114400 RDPDELAY050 117400 RDPDELAY051 121400 RDPDELAY052 125400 RDPDELAY053 128400 RDPDELAY054 132400
64 RDPDELAY055 135400 RDPDELAY056 139400 RDPDELAY057 143400 RDPDELAY058 146400 RDPDELAY059 150400 RDPDELAY060 153400 RDPDELAY061 157400 RDPDELAY062 161400 RDPDELAY063 162400 RDPDELAY064 164400 RDPDELAY065 168400 RDPDELAY066 171400 RDPDELAY067 176800 RDPDELAY068 180800 RDPDELAY069 184800 RDPDELAY070 188800 RDPDELAY071 192800 RDPDELAY072 196800 RDPDELAY073 200800 RDPDELAY074 204800 RDPDELAY075 208800 RDPDELAY076 212800 RDPDELAY077 216800 RDPDELAY078 220800 RDPDELAY079 224800 RDPDELAY080 228800 RDPDELAY081 232800 RDPDELAY082 236800 RDPDELAY083 240800 RDPDELAY084 244800 RDPDELAY085 248800 RDPDELAY086 252800
- PLHITE, height of each plume segment at release (m)
RDPLHITE001 11.
RDPLHITE002 6.
RDPLHITE003 42.
RDPLHITE004 25.
RDPLHITE005 16.
RDPLHITE006 0.
RDPLHITE007 11.
RDPLHITE008 6.
RDPLHITE009 0.
RDPLHITE010 11.
RDPLHITE011 6.
RDPLHITE012 11.
RDPLHITE013 6.
RDPLHITE014 11.
RDPLHITE015 6.
RDPLHITE016 11.
RDPLHITE017 11.
RDPLHITE018 11.
RDPLHITE019 11.
RDPLHITE020 11.
RDPLHITE021 6.
RDPLHITE022 11.
RDPLHITE023 6.
RDPLHITE024 11.
RDPLHITE025 6.
RDPLHITE026 11.
RDPLHITE027 6.
RDPLHITE028 0.
RDPLHITE029 11.
RDPLHITE030 6.
RDPLHITE031 11.
RDPLHITE032 6.
RDPLHITE033 11.
RDPLHITE034 11.
RDPLHITE035 11.
RDPLHITE036 11.
RDPLHITE037 6.
65 RDPLHITE038 0.
RDPLHITE039 11.
RDPLHITE040 11.
RDPLHITE041 11.
RDPLHITE042 11.
RDPLHITE043 11.
RDPLHITE044 11.
RDPLHITE045 11.
RDPLHITE046 11.
RDPLHITE047 11.
RDPLHITE048 11.
RDPLHITE049 11.
RDPLHITE050 11.
RDPLHITE051 11.
RDPLHITE052 11.
RDPLHITE053 11.
RDPLHITE054 11.
RDPLHITE055 11.
RDPLHITE056 11.
RDPLHITE057 11.
RDPLHITE058 11.
RDPLHITE059 11.
RDPLHITE060 11.
RDPLHITE061 11.
RDPLHITE062 11.
RDPLHITE063 42.
RDPLHITE064 11.
RDPLHITE065 11.
RDPLHITE066 11.
RDPLHITE067 11.
RDPLHITE068 11.
RDPLHITE069 11.
RDPLHITE070 11.
RDPLHITE071 11.
RDPLHITE072 11.
RDPLHITE073 11.
RDPLHITE074 11.
RDPLHITE075 11.
RDPLHITE076 11.
RDPLHITE077 11.
RDPLHITE078 11.
RDPLHITE079 11.
RDPLHITE080 11.
RDPLHITE081 11.
RDPLHITE082 11.
RDPLHITE083 11.
RDPLHITE084 11.
RDPLHITE085 11.
RDPLHITE086 11.
- PHTRAP, Specifies trapped plume release height to use. (meters)
RDPHTRAP001 0.00 RDPHTRAP002 0.00 RDPHTRAP003 0.00 RDPHTRAP004 0.00 RDPHTRAP005 0.00 RDPHTRAP006 0.00 RDPHTRAP007 0.00 RDPHTRAP008 0.00 RDPHTRAP009 0.00 RDPHTRAP010 0.00 RDPHTRAP011 0.00 RDPHTRAP012 0.00 RDPHTRAP013 0.00 RDPHTRAP014 0.00 RDPHTRAP015 0.00 RDPHTRAP016 0.00 RDPHTRAP017 0.00 RDPHTRAP018 0.00 RDPHTRAP019 0.00 RDPHTRAP020 0.00
66 RDPHTRAP021 0.00 RDPHTRAP022 0.00 RDPHTRAP023 0.00 RDPHTRAP024 0.00 RDPHTRAP025 0.00 RDPHTRAP026 0.00 RDPHTRAP027 0.00 RDPHTRAP028 0.00 RDPHTRAP029 0.00 RDPHTRAP030 0.00 RDPHTRAP031 0.00 RDPHTRAP032 0.00 RDPHTRAP033 0.00 RDPHTRAP034 0.00 RDPHTRAP035 0.00 RDPHTRAP036 0.00 RDPHTRAP037 0.00 RDPHTRAP038 0.00 RDPHTRAP039 0.00 RDPHTRAP040 0.00 RDPHTRAP041 0.00 RDPHTRAP042 0.00 RDPHTRAP043 0.00 RDPHTRAP044 0.00 RDPHTRAP045 0.00 RDPHTRAP046 0.00 RDPHTRAP047 0.00 RDPHTRAP048 0.00 RDPHTRAP049 0.00 RDPHTRAP050 0.00 RDPHTRAP051 0.00 RDPHTRAP052 0.00 RDPHTRAP053 0.00 RDPHTRAP054 0.00 RDPHTRAP055 0.00 RDPHTRAP056 0.00 RDPHTRAP057 0.00 RDPHTRAP058 0.00 RDPHTRAP059 0.00 RDPHTRAP060 0.00 RDPHTRAP061 0.00 RDPHTRAP062 0.00 RDPHTRAP063 0.00 RDPHTRAP064 0.00 RDPHTRAP065 0.00 RDPHTRAP066 0.00 RDPHTRAP067 0.00 RDPHTRAP068 0.00 RDPHTRAP069 0.00 RDPHTRAP070 0.00 RDPHTRAP071 0.00 RDPHTRAP072 0.00 RDPHTRAP073 0.00 RDPHTRAP074 0.00 RDPHTRAP075 0.00 RDPHTRAP076 0.00 RDPHTRAP077 0.00 RDPHTRAP078 0.00 RDPHTRAP079 0.00 RDPHTRAP080 0.00 RDPHTRAP081 0.00 RDPHTRAP082 0.00 RDPHTRAP083 0.00 RDPHTRAP084 0.00 RDPHTRAP085 0.00 RDPHTRAP086 0.00
- REFTIM, representative time point for dispersion and radioactive decay RDREFTIM001 0 RDREFTIM002 0.5 RDREFTIM003 0.5
67 RDREFTIM004 0.5 RDREFTIM005 0.5 RDREFTIM006 0.5 RDREFTIM007 0.5 RDREFTIM008 0.5 RDREFTIM009 0.5 RDREFTIM010 0.5 RDREFTIM011 0.5 RDREFTIM012 0.5 RDREFTIM013 0.5 RDREFTIM014 0.5 RDREFTIM015 0.5 RDREFTIM016 0.5 RDREFTIM017 0.5 RDREFTIM018 0.5 RDREFTIM019 0.5 RDREFTIM020 0.5 RDREFTIM021 0.5 RDREFTIM022 0.5 RDREFTIM023 0.5 RDREFTIM024 0.5 RDREFTIM025 0.5 RDREFTIM026 0.5 RDREFTIM027 0.5 RDREFTIM028 0.5 RDREFTIM029 0.5 RDREFTIM030 0.5 RDREFTIM031 0.5 RDREFTIM032 0.5 RDREFTIM033 0.5 RDREFTIM034 0.5 RDREFTIM035 0.5 RDREFTIM036 0.5 RDREFTIM037 0.5 RDREFTIM038 0.5 RDREFTIM039 0.5 RDREFTIM040 0.5 RDREFTIM041 0.5 RDREFTIM042 0.5 RDREFTIM043 0.5 RDREFTIM044 0.5 RDREFTIM045 0.5 RDREFTIM046 0.5 RDREFTIM047 0.5 RDREFTIM048 0.5 RDREFTIM049 0.5 RDREFTIM050 0.5 RDREFTIM051 0.5 RDREFTIM052 0.5 RDREFTIM053 0.5 RDREFTIM054 0.5 RDREFTIM055 0.5 RDREFTIM056 0.5 RDREFTIM057 0.5 RDREFTIM058 0.5 RDREFTIM059 0.5 RDREFTIM060 0.5 RDREFTIM061 0.5 RDREFTIM062 0.5 RDREFTIM063 0.5 RDREFTIM064 0.5 RDREFTIM065 0.5 RDREFTIM066 0.5 RDREFTIM067 0.5 RDREFTIM068 0.5 RDREFTIM069 0.5 RDREFTIM070 0.5 RDREFTIM071 0.5 RDREFTIM072 0.5 RDREFTIM073 0.5 RDREFTIM074 0.5
68 RDREFTIM075 0.5 RDREFTIM076 0.5 RDREFTIM077 0.5 RDREFTIM078 0.5 RDREFTIM079 0.5 RDREFTIM080 0.5 RDREFTIM081 0.5 RDREFTIM082 0.5 RDREFTIM083 0.5 RDREFTIM084 0.5 RDREFTIM085 0.5 RDREFTIM086 0.5
- PLUDUR, duration of each plume segment (s)
RDPLUDUR001 3628.3 RDPLUDUR002 3600 RDPLUDUR003 21641 RDPLUDUR004 21641 RDPLUDUR005 21641 RDPLUDUR006 3585.6 RDPLUDUR007 3604.4 RDPLUDUR008 3600 RDPLUDUR009 3655.1 RDPLUDUR010 3527.3 RDPLUDUR011 3600 RDPLUDUR012 3600.1 RDPLUDUR013 3600 RDPLUDUR014 3599.9 RDPLUDUR015 3600 RDPLUDUR016 3600.1 RDPLUDUR017 3599.9 RDPLUDUR018 3600.1 RDPLUDUR019 3599.9 RDPLUDUR020 3600 RDPLUDUR021 3600 RDPLUDUR022 3600.1 RDPLUDUR023 3599.8 RDPLUDUR024 3599.9 RDPLUDUR025 3600.1 RDPLUDUR026 3600 RDPLUDUR027 3600 RDPLUDUR028 3600.1 RDPLUDUR029 3599.9 RDPLUDUR030 3600.1 RDPLUDUR031 3600 RDPLUDUR032 3600.1 RDPLUDUR033 3600.2 RDPLUDUR034 3599.9 RDPLUDUR035 3599.9 RDPLUDUR036 3600.1 RDPLUDUR037 3599.9 RDPLUDUR038 2600 RDPLUDUR039 3600 RDPLUDUR040 3600 RDPLUDUR041 4000.1 RDPLUDUR042 2999.9 RDPLUDUR043 4000 RDPLUDUR044 3000 RDPLUDUR045 4000 RDPLUDUR046 3999.9 RDPLUDUR047 3000.1 RDPLUDUR048 4000 RDPLUDUR049 2999.9 RDPLUDUR050 4000.1 RDPLUDUR051 4000 RDPLUDUR052 2999.9 RDPLUDUR053 4000 RDPLUDUR054 3000 RDPLUDUR055 4000.1 RDPLUDUR056 3999.9 RDPLUDUR057 3000
69 RDPLUDUR058 4000 RDPLUDUR059 3000.1 RDPLUDUR060 3999.9 RDPLUDUR061 4000.1 RDPLUDUR062 2999.9 RDPLUDUR063 22400 RDPLUDUR064 4000.1 RDPLUDUR065 3000 RDPLUDUR066 5400 RDPLUDUR067 4000 RDPLUDUR068 4000 RDPLUDUR069 3999.9 RDPLUDUR070 4000 RDPLUDUR071 4000.2 RDPLUDUR072 3999.9 RDPLUDUR073 4000 RDPLUDUR074 3999.9 RDPLUDUR075 4000.2 RDPLUDUR076 3999.8 RDPLUDUR077 4000 RDPLUDUR078 4000 RDPLUDUR079 4000.1 RDPLUDUR080 4000 RDPLUDUR081 4000 RDPLUDUR082 4000 RDPLUDUR083 4000 RDPLUDUR084 3999.9 RDPLUDUR085 4000.1 RDPLUDUR086 6400
- RELFRC, release fractions for each of the plume segments for each chemical group RDRELFRC001 1.80E-01 1.10E-01 1.30E-03 1.10E-01 1.10E-01 1.80E-03 2.60E-02 3.20E-08 3.20E-08 0.00E+0 RDRELFRC002 8.30E-03 2.00E-03 3.10E-05 2.00E-03 1.90E-03 2.90E-05 5.00E-04 5.30E-10 5.30E-10 0.00E+0 RDRELFRC003 2.30E-07 9.20E-08 8.50E-07 1.70E-07 8.50E-08 1.30E-13 4.50E-12 2.20E-07 5.70E-09 0.00E+0 RDRELFRC004 2.00E-07 7.90E-08 7.30E-07 1.50E-07 7.30E-08 1.10E-13 3.90E-12 1.90E-07 4.90E-09 0.00E+0 RDRELFRC005 1.20E-07 4.90E-08 4.60E-07 9.10E-08 4.50E-08 7.00E-14 2.40E-12 1.20E-07 3.00E-09 0.00E+0 RDRELFRC006 4.70E-03 1.20E-03 2.00E-05 1.10E-03 1.00E-03 1.50E-05 2.90E-04 2.80E-10 2.80E-10 0.00E+0 RDRELFRC007 4.50E-02 8.90E-03 1.20E-04 9.90E-03 1.00E-02 3.20E-04 2.30E-03 6.00E-09 6.10E-09 0.00E+0 RDRELFRC008 3.90E-03 2.10E-04 3.60E-06 2.60E-04 2.40E-04 1.30E-05 5.50E-05 2.40E-10 2.40E-10 0.00E+0 RDRELFRC009 3.00E-03 1.40E-04 2.50E-06 1.70E-04 1.60E-04 9.20E-06 3.60E-05 1.70E-10 1.70E-10 0.00E+0 RDRELFRC010 6.00E-02 5.70E-03 1.00E-04 8.70E-03 7.00E-03 4.20E-04 1.40E-03 7.60E-09 7.60E-09 0.00E+0 RDRELFRC011 1.00E-04 3.70E-06 7.80E-08 5.50E-06 5.00E-06 3.20E-07 9.40E-07 9.50E-12 5.80E-12 0.00E+0 RDRELFRC012 3.70E-02 6.30E-04 1.80E-04 1.10E-03 8.60E-04 5.50E-05 1.50E-04 4.10E-05 1.00E-06 0.00E+0 RDRELFRC013 8.50E-05 1.10E-06 4.50E-07 2.30E-06 1.50E-06 8.00E-08 2.30E-07 1.00E-07 2.80E-09 0.00E+0 RDRELFRC014 4.50E-02 3.50E-04 2.00E-04 1.10E-03 7.40E-04 1.90E-05 6.70E-05 4.20E-05 1.30E-06 0.00E+0 RDRELFRC015 1.20E-05 6.60E-08 3.40E-08 1.90E-07 1.40E-07 3.70E-09 1.30E-08 7.10E-09 2.20E-10 0.00E+0 RDRELFRC016 2.20E-02 7.50E-05 3.80E-05 1.80E-04 3.70E-04 2.80E-06 1.60E-05 5.10E-06 1.60E-07 0.00E+0 RDRELFRC017 1.80E-02 4.10E-05 1.70E-05 6.90E-05 2.90E-04 1.00E-06 9.50E-06 1.90E-06 5.90E-08 0.00E+0 RDRELFRC018 1.30E-02 2.20E-05 8.30E-06 2.70E-05 1.70E-04 4.10E-07 5.30E-06 7.50E-07 2.30E-08 0.00E+0 RDRELFRC019 1.20E-02 1.50E-05 5.60E-06 1.60E-05 1.20E-04 2.30E-07 3.60E-06 4.20E-07 1.30E-08 0.00E+0 RDRELFRC020 1.10E-02 9.00E-06 3.50E-06 9.80E-06 7.90E-05 1.30E-07 2.20E-06 2.40E-07 7.70E-09 0.00E+0
70 RDRELFRC021 4.60E-05 3.30E-08 1.30E-08 3.60E-08 2.90E-07 4.90E-10 8.00E-09 8.80E-10 2.80E-11 0.00E+0 RDRELFRC022 1.10E-02 5.80E-06 2.30E-06 6.60E-06 5.20E-05 8.70E-08 1.40E-06 1.60E-07 4.90E-09 0.00E+0 RDRELFRC023 7.50E-05 3.60E-08 1.40E-08 4.10E-08 3.20E-07 5.30E-10 8.70E-09 9.60E-10 3.00E-11 0.00E+0 RDRELFRC024 1.10E-02 3.80E-06 1.50E-06 4.40E-06 3.40E-05 5.50E-08 9.10E-07 1.00E-07 3.20E-09 0.00E+0 RDRELFRC025 6.80E-05 2.20E-08 8.80E-09 2.60E-08 2.00E-07 3.20E-10 5.30E-09 5.90E-10 1.90E-11 0.00E+0 RDRELFRC026 1.50E-02 3.60E-06 1.40E-06 5.20E-06 3.20E-05 5.20E-08 8.60E-07 9.40E-08 3.00E-09 0.00E+0 RDRELFRC027 3.60E-04 8.30E-08 3.30E-08 1.10E-07 7.40E-07 1.20E-09 2.00E-08 2.20E-09 6.90E-11 0.00E+0 RDRELFRC028 2.10E-04 4.60E-08 1.80E-08 6.00E-08 4.20E-07 6.80E-10 1.10E-08 1.20E-09 3.90E-11 0.00E+0 RDRELFRC029 2.30E-03 4.10E-07 1.60E-07 8.80E-07 3.50E-06 4.90E-09 9.70E-08 9.90E-09 3.20E-10 0.00E+0 RDRELFRC030 6.90E-05 1.20E-08 4.40E-09 2.70E-08 9.90E-08 1.50E-10 2.70E-09 2.80E-10 9.20E-12 0.00E+0 RDRELFRC031 1.00E-02 1.40E-06 5.20E-07 3.20E-06 1.10E-05 1.80E-08 3.10E-07 3.20E-08 1.10E-09 0.00E+0 RDRELFRC032 9.60E-05 1.20E-08 4.50E-09 3.00E-08 1.00E-07 1.60E-10 2.70E-09 2.80E-10 9.30E-12 0.00E+0 RDRELFRC033 9.80E-03 1.00E-06 3.70E-07 2.70E-06 8.30E-06 1.30E-08 2.30E-07 2.30E-08 7.70E-10 0.00E+0 RDRELFRC034 7.70E-03 6.30E-07 2.20E-07 1.90E-06 4.90E-06 7.70E-09 1.30E-07 1.40E-08 4.50E-10 0.00E+0 RDRELFRC035 7.70E-03 4.70E-07 1.60E-07 1.60E-06 3.50E-06 5.10E-09 9.50E-08 9.90E-09 3.30E-10 0.00E+0 RDRELFRC036 1.10E-02 5.50E-07 1.60E-07 2.40E-06 3.40E-06 5.40E-09 1.10E-07 9.20E-09 3.20E-10 0.00E+0 RDRELFRC037 2.90E-04 1.20E-08 4.00E-09 5.60E-08 8.80E-08 1.30E-10 2.50E-09 2.40E-10 8.20E-12 0.00E+0 RDRELFRC038 1.80E-04 7.20E-09 2.50E-09 3.00E-08 5.50E-08 8.50E-11 1.50E-09 1.60E-10 5.10E-12 0.00E+0 RDRELFRC039 3.10E-03 2.10E-07 3.80E-08 1.50E-06 7.70E-07 9.30E-10 3.50E-08 1.90E-09 7.80E-11 0.00E+0 RDRELFRC040 8.00E-03 5.30E-07 8.10E-08 3.50E-06 1.60E-06 2.10E-09 7.80E-08 3.80E-09 1.60E-10 0.00E+0 RDRELFRC041 1.30E-02 2.40E-06 2.40E-07 4.40E-06 2.40E-06 2.30E-09 6.00E-07 4.60E-09 2.30E-10 0.00E+0 RDRELFRC042 9.90E-03 4.70E-06 4.20E-07 2.80E-06 2.70E-06 1.40E-09 1.30E-06 2.90E-09 2.40E-10 0.00E+0 RDRELFRC043 1.30E-02 9.30E-06 8.70E-07 3.00E-06 5.00E-06 1.20E-09 2.60E-06 3.10E-09 3.90E-10 0.00E+0 RDRELFRC044 9.30E-03 8.20E-06 8.10E-07 1.70E-06 4.50E-06 9.30E-10 2.30E-06 1.80E-09 3.00E-10 0.00E+0 RDRELFRC045 1.20E-02 1.20E-05 1.30E-06 1.80E-06 6.80E-06 4.70E-10 3.20E-06 1.80E-09 3.90E-10 0.00E+0 RDRELFRC046 1.20E-02 1.20E-05 1.40E-06 1.40E-06 7.20E-06 4.70E-10 3.40E-06 1.30E-09 3.60E-10 0.00E+0 RDRELFRC047 8.70E-03 9.50E-06 1.20E-06 8.60E-07 5.70E-06 0.00E+00 2.60E-06 7.70E-10 2.60E-10 0.00E+0 RDRELFRC048 1.10E-02 1.30E-05 1.70E-06 1.00E-06 7.80E-06 2.30E-10 3.60E-06 8.20E-10 3.30E-10 0.00E+0 RDRELFRC049 8.20E-03 9.80E-06 1.40E-06 6.70E-07 6.00E-06 2.30E-10 2.70E-06 5.20E-10 2.40E-10 0.00E+0 RDRELFRC050 1.10E-02 1.10E-05 2.00E-06 8.20E-07 8.30E-06 0.00E+00 3.00E-06 6.20E-10 3.10E-10 0.00E+0 RDRELFRC051 1.00E-02 6.80E-06 2.00E-06 7.90E-07 9.00E-06 0.00E+00 1.90E-06 5.70E-10 3.10E-10 0.00E+0 RDRELFRC052 7.50E-03 3.50E-06 1.60E-06 5.40E-07 7.60E-06 0.00E+00 9.60E-07 4.20E-10 2.50E-10 0.00E+0 RDRELFRC053 9.70E-03 3.40E-06 2.50E-06 7.20E-07 1.20E-05 0.00E+00 9.30E-07 5.80E-10 3.50E-10 0.00E+0 RDRELFRC054 7.10E-03 1.90E-06 1.90E-06 5.20E-07 1.00E-05 2.30E-10 5.10E-07 4.70E-10 2.80E-10 0.00E+0 RDRELFRC055 9.10E-03 1.90E-06 2.30E-06 6.70E-07 1.60E-05 0.00E+00 5.30E-07 6.00E-10 3.90E-10 0.00E+0
71 RDRELFRC056 8.90E-03 1.50E-06 2.20E-06 6.40E-07 1.80E-05 0.00E+00 4.10E-07 6.30E-10 4.10E-10 0.00E+0 RDRELFRC057 6.40E-03 9.50E-07 1.60E-06 4.60E-07 1.50E-05 0.00E+00 2.50E-07 4.70E-10 3.20E-10 0.00E+0 RDRELFRC058 8.30E-03 1.10E-06 2.20E-06 6.10E-07 2.30E-05 0.00E+00 2.90E-07 6.30E-10 4.30E-10 0.00E+0 RDRELFRC059 6.00E-03 7.30E-07 1.60E-06 4.50E-07 2.00E-05 0.00E+00 2.00E-07 4.80E-10 3.30E-10 0.00E+0 RDRELFRC060 7.70E-03 9.10E-07 2.10E-06 5.50E-07 3.00E-05 0.00E+00 2.40E-07 6.30E-10 4.50E-10 0.00E+0 RDRELFRC061 7.30E-03 8.50E-07 2.10E-06 5.50E-07 3.50E-05 0.00E+00 2.30E-07 6.30E-10 4.50E-10 0.00E+0 RDRELFRC062 5.20E-03 6.00E-07 1.50E-06 3.70E-07 3.20E-05 0.00E+00 1.70E-07 4.40E-10 3.30E-10 0.00E+0 RDRELFRC063 4.40E-07 5.50E-11 2.90E-09 1.70E-10 1.10E-08 1.50E-13 2.00E-06 2.90E-12 3.00E-12 0.00E+0 RDRELFRC064 6.70E-03 7.70E-07 1.80E-06 5.20E-07 5.10E-05 0.00E+00 2.20E-07 5.80E-10 4.40E-10 0.00E+0 RDRELFRC065 5.10E-03 6.00E-07 1.30E-06 3.70E-07 4.60E-05 0.00E+00 7.70E-05 4.40E-10 3.30E-10 0.00E+0 RDRELFRC066 8.30E-03 9.00E-07 1.90E-06 6.30E-07 7.90E-05 0.00E+00 7.40E-04 6.80E-10 5.40E-10 0.00E+0 RDRELFRC067 5.20E-03 4.90E-07 1.00E-06 3.90E-07 4.80E-05 0.00E+00 3.70E-04 3.90E-10 3.00E-10 0.00E+0 RDRELFRC068 4.90E-03 4.10E-07 8.80E-07 3.70E-07 4.60E-05 0.00E+00 2.50E-04 2.90E-10 2.40E-10 0.00E+0 RDRELFRC069 5.40E-03 4.20E-07 8.90E-07 4.20E-07 5.20E-05 0.00E+00 1.90E-04 2.90E-10 2.30E-10 0.00E+0 RDRELFRC070 4.70E-03 3.80E-07 7.70E-07 3.60E-07 4.70E-05 0.00E+00 1.20E-04 2.30E-10 2.00E-10 0.00E+0 RDRELFRC071 4.50E-03 3.50E-07 7.20E-07 3.30E-07 4.50E-05 0.00E+00 8.50E-05 2.20E-10 1.70E-10 0.00E+0 RDRELFRC072 4.60E-03 3.60E-07 7.00E-07 3.60E-07 3.90E-05 0.00E+00 6.40E-05 1.80E-10 1.50E-10 0.00E+0 RDRELFRC073 4.40E-03 3.30E-07 6.60E-07 3.60E-07 3.00E-05 0.00E+00 4.60E-05 1.70E-10 1.40E-10 0.00E+0 RDRELFRC074 4.10E-03 3.40E-07 6.10E-07 3.10E-07 2.20E-05 0.00E+00 3.20E-05 1.70E-10 1.30E-10 0.00E+0 RDRELFRC075 4.20E-03 3.90E-07 6.30E-07 3.30E-07 1.70E-05 0.00E+00 2.50E-05 1.50E-10 1.30E-10 0.00E+0 RDRELFRC076 3.80E-03 3.90E-07 6.10E-07 3.00E-07 1.20E-05 0.00E+00 1.70E-05 1.50E-10 1.20E-10 0.00E+0 RDRELFRC077 3.70E-03 3.70E-07 6.20E-07 3.00E-07 8.70E-06 0.00E+00 1.30E-05 1.40E-10 1.10E-10 0.00E+0 RDRELFRC078 3.70E-03 3.80E-07 6.30E-07 2.80E-07 6.30E-06 0.00E+00 9.50E-06 1.20E-10 9.90E-11 0.00E+0 RDRELFRC079 3.90E-03 4.40E-07 7.20E-07 3.10E-07 5.10E-06 0.00E+00 7.90E-06 1.40E-10 1.10E-10 0.00E+0 RDRELFRC080 3.70E-03 5.70E-07 7.30E-07 2.80E-07 3.50E-06 0.00E+00 6.30E-06 1.70E-10 1.40E-10 0.00E+0 RDRELFRC081 3.30E-03 5.70E-07 7.00E-07 2.80E-07 2.40E-06 0.00E+00 4.70E-06 1.60E-10 1.40E-10 0.00E+0 RDRELFRC082 3.30E-03 5.50E-07 6.60E-07 2.50E-07 1.80E-06 0.00E+00 3.80E-06 1.60E-10 1.40E-10 0.00E+0 RDRELFRC083 3.20E-03 5.50E-07 5.80E-07 2.70E-07 1.20E-06 0.00E+00 2.90E-06 1.50E-10 1.30E-10 0.00E+0 RDRELFRC084 3.30E-03 6.60E-07 5.80E-07 2.50E-07 9.20E-07 0.00E+00 2.50E-06 1.60E-10 1.40E-10 0.00E+0 RDRELFRC085 2.90E-03 6.60E-07 5.30E-07 2.50E-07 6.10E-07 0.00E+00 2.10E-06 1.50E-10 1.40E-10 0.00E+0 RDRELFRC086 4.60E-03 1.10E-06 8.40E-07 3.90E-07 6.60E-07 0.00E+00 2.80E-06 2.50E-10 2.20E-10 0.00E+0
- COHORT-SPECIFIC ALARM TIMES EZOALARM001 2700.
- OALARM, time after accident initiation that off-site alarm is initiated (s)
EZOALARM001 2700.
- OALARM, time after accident initiation that off-site alarm is initiated (s)
72 EZOALARM001 2700.
- OALARM, time after accident initiation that off-site alarm is initiated (s)
B.3 MacMetGen Input
! An input file for a MacMetGen run
! Generate surface data parameters
! Surface data file already created? (0=no, 1=yes) Skip to making output met file 0
! Surface data file name C:\\Your\\Path\\Here
! Latitude, Longitude 35.29890 -93.24220
! Number of groups to run 1
! First and last day for each group [YYYYMMDD]
20200101 20201231
! Meteorology directory C:\\Your\\Path\\Here\\NAM12_2020
! Weather file prefix
! Weather file suffix
_nam12.txt
! Output met file parameters
! Output met file C:\\Your\\Path\\[SITE NAME].MET
! Number of minutes between entries (15, 30, or 60) 60
! Number of sectors (16, 32, 48, or 64) 64
! Stability class type (0=dT/dz, 1=Turner's Method, or 2=SRDT) 2
! UTC time zone (-7=MST,UTC-7, -5=EST,UTC-5, 0=GMT,UTC+0, 1=CET,UTC+1)
-5
! Print mixing height data from file on each line (0=no, 1=yes) 1
! Morning mixing heights in m (for days 1-91,92-182, 183-273, 274-365) 590 530 430 500
! Afternoon mixing heights in m (for days 1-91,92-182, 183-273, 274-365) 1120 1800 1830 1010 B.4 Abridged MacMetGen Output (Single Day)
MET DATA FOR MACCS FROM C:\\Your\\Path\\Here\\[SITE NAME].MET DAY HR DR SPS RN (JULIAN DAY, HOUR, DIRECTION, SPEED, STABILITY, PRECIP)
/PERIOD 60
/UTCTIM -5
/MIXHGT 1 1 16 225 0 140.
1 2 16 196 0 116.
1 3 16 166 0 100.
1 4 16 136 0 100.
1 5 19 116 0 100.
1 6 23 106 0 100.
1 7 27 116 0 100.
1 8 26 76 0 100.
1 9 20 56 0 100.
1 10 5 56 0 100.
1 11 52 56 0 100.
1 12 45 66 0 100.
1 13 44 106 0 100.
1 14 47 116 0 100.
73 1 15 49 124 0 122.
1 16 52 142 0 177.
1 17 57 152 0 322.
1 18 61 213 0 466.
1 19 63 283 0 611.
1 20 64 333 0 660.
1 21 64 393 0 709.
1 22 1 453 0 758.
1 23 64 413 0 800.
1 24 63 374 0 843.
74 B.5 SecPop Inputs
75
76 B.6 Abridged SecPop Output SECPOP Version: 4.3.1 SVN:7606 FileType: MACCS_Site Project: "[SITE NAME].spproj" Census:
"C:\\Program Files\\SecPop 4.4.1\\Census\\Census2010.bin" County: "C:\\Program Files\\SecPop 4.4.1\\Census\\County2012.dat" Lat: 35d18'37 Long: 93d13'55 Latitude: 35.310276 Longitude: 93.23194 Population_multiplier:
1.03 Economic_multiplier: 1.35 Run_Time: 2025/06/25_10:33:35 14 SPATIAL INTERVALS 64 WIND DIRECTIONS 7 CROP CATEGORIES 4 WATER PATHWAY ISOTOPES 1 WATERSHEDS 83 ECONOMIC REGIONS SPATIAL DISTANCES KILOMETERS 0.7460 1.6093 2.3553 3.2187 8.0467 11.2654 16.0934 24.1402 32.1869 40.2336 48.2803 64.3738 80.4672 160.9344 POPULATION
- 0. 2. 2. 0. 276. 0. 0. 71.
- 53. 2. 4. 300. 997. 45426.
- 0. 0. 0. 0. 179. 1. 14. 11.
- 58. 20. 16. 233. 490. 23508.
LAND FRACTION 0.00 1.00 1.00 1.00 1.00 0.00 0.98 1.00 1.00 0.99 0.99 1.00 1.00 0.98
0.00 0.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.93 REGION INDEX 1 4 4 4 4 3 420201220202083
1 3 4 4 4 4 482121282828283 WATERSHED INDEX 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 CROP SEASON AND SHARE 1 PASTURE 90. 270. 0.4100 2 STORED FORAGE 150. 240. 0.1300 3 GRAINS 150. 240. 0.2100 4 GRN LEAFY VEGETABLES 150. 240. 0.0020 5 OTHER FOOD CROPS 150. 240. 0.0040 6 LEGUMES AND SEEDS 150. 240. 0.1500 7 ROOTS AND TUBERS 150. 240. 0.0030 WATERSHED DEFINITION -- INITIAL AND ANNUAL WASHOFF AND INGESTION FACTORS 1 Sr-89 5.00E-06 0.0 2 Sr-90 5.00E-06 0.0 3 Cs-134 5.00E-06 0.0 4 Cs-137 5.00E-06 0.0 REGIONAL ECONOMIC DATA 1 EXCLUSION.000.000.0.0.0
83 MIX_CNTY83.380.009 2069.1 9628.2 469555.6 B.7 Site-Specific Input
- SITE-SPECIFIC PARAMETER DECK
- ATNAM1, identifies this MACCS calculation RIATNAM1001
'YOUR_PROJECT_NAME_HERE'
- BUILDING DATA
- LATITUDE, indicates degrees of site latitude (deg)
M1LATITUD01 35.31028
- LONGITUDE, indicates degrees of site longitude (deg)
77 M1LONGITU01
-93.23194
- CHRONC PARAMETERS
- VALWNF, value of nonfarm wealth ($/person)
CHVALWNF001 3.23703E+05
- VALWF - value of farm wealth ($/ha)
CHVALWF0001 4577.0
- 90TH PERCENTILE EVACUATION TIME COHORT
- EANAM2, identifier of emergency response cohort EZEANAM2001
'90th Percentile Evacuation Cohort'
- WTFRAC, weighting fraction applied to results of emergency response cohort when WTNAME = PEOPLE or TIME EZWTFRAC001 0.8955
- EVATYP, indicates if evacuation model is radial or network EZEVATYP001 RADIAL
- TRAVELPOINT, determines whether boundary or centerpoint of destination is evacuee objective TRAVELPOINT CENTERPOINT
- ESPEED, evacuee travel speed during the three phases of evacuation (m/s)
EZESPEED001 26.82 EZESPEED002 11.2 EZESPEED003 11.2
- ESPMUL, multiplicative factor that affects ESPEED, applied during times of precipitation EZESPMUL001 0.7 EZESPMUL002 0.7 EZESPMUL003 0.7
- REFPNT, defines reference time point for actions in evacuation and sheltering zone EZREFPNT001 ALARM
- DURBEG, duration of initial phase (when first individual begins to evacuate) of evacuation (s)
EZDURBEG001 600.
- DURMID, duration of middle phase of evacuation (s)
EZDURMID001 0.
- NUMEVA, outer boundary of the sheltering and evacuation region EZNUMEVA001 7
- CRIORG, critical organ for relocation decisions during emergency-phase period SRCRIORG001 L-ICRP60ED
- LASMOV, outermost spatial interval of the evacuation movement zone EZLASMOV001 13
- DLTSHL, the delay from the time represented by REFPNT to the start of sheltering (s)
EZDLTSHL001 1980.
EZDLTSHL002 1980.
EZDLTSHL003 1980.
EZDLTSHL004 1980.
EZDLTSHL005 1980.
EZDLTSHL006 1980.
EZDLTSHL007 1980.
- DLTEVA, the delay from the beginning of the sheltering period to the beginning of evacuation EZDLTEVA001 5940.
EZDLTEVA002 5940.
EZDLTEVA003 5940.
EZDLTEVA004 5940.
78 EZDLTEVA005 5940.
EZDLTEVA006 5940.
EZDLTEVA007 5940.
- TIMNRM - normal relocation action time (individuals residing outside the emergency-planning zone) after plume arrival (s)
SRTIMNRM001 76260.
- TIMHOT, hot-spot relocation action time (individuals residing outside the emergency-planning zone) after plume arrival (s)
SRTIMHOT001 54660
- 100TH PERCENTILE EVACUATION TIME COHORT
- EANAM2, identifier of emergency response cohort EZEANAM2001
'100th Percentile Evacuation Cohort'
- WTFRAC, weighting fraction applied to results of emergency response cohort when WTNAME = PEOPLE or TIME EZWTFRAC001 0.0995
- CRIORG, critical organ for relocation decisions during emergency-phase period SRCRIORG001 L-ICRP60ED
- LASMOV, outermost spatial interval of the evacuation movement zone EZLASMOV001 13
- NUMEVA, outer boundary of the sheltering and evacuation region EZNUMEVA001 7
- DURBEG, duration of initial phase (when first individual begins to evacuate) of evacuation (s)
EZDURBEG001 1440.
- DURMID, duration of middle phase of evacuation (s)
EZDURMID001 0.
- DLTSHL, the delay from the time represented by REFPNT to the start of sheltering (s)
EZDLTSHL001 2700.
EZDLTSHL002 2700.
EZDLTSHL003 2700.
EZDLTSHL004 2700.
EZDLTSHL005 2700.
EZDLTSHL006 2700.
EZDLTSHL007 2700.
- DLTEVA, the delay from the beginning of the sheltering period to the beginning of evacuation EZDLTEVA001 10740.
EZDLTEVA002 10740.
EZDLTEVA003 10740.
EZDLTEVA004 10740.
EZDLTEVA005 10740.
EZDLTEVA006 10740.
EZDLTEVA007 10740.
- TRAVELPOINT, determines whether boundary or centerpoint of destination is evacuee objective TRAVELPOINT CENTERPOINT
- REFPNT, defines reference time point for actions in evacuation and sheltering zone EZREFPNT001 ALARM
- ESPEED, evacuee travel speed during the three phases of evacuation (m/s)
EZESPEED001 11.2 EZESPEED002 11.2 EZESPEED003 11.2
- ESPMUL, multiplicative factor that affects ESPEED, applied during times of precipitation EZESPMUL001 0.7 EZESPMUL002 0.7 EZESPMUL003 0.7
79
- CSFACT, cloudshine shielding factor SECSFACT001 0.95 SECSFACT002 0.75 SECSFACT003 0.6
- PROTIN, inhalation protection factor SEPROTIN001 0.98 SEPROTIN002 0.46 SEPROTIN003 0.25
- BRRATE, breathing rate (m3/s)
SEBRRATE001 2.66E-04 SEBRRATE002 2.66E-04 SEBRRATE003 2.66E-04
- SKPFAC, skin protection factors SESKPFAC001 0.98 SESKPFAC002 0.46 SESKPFAC003 0.25
- GSHFAC, groundshine shielding factors SEGSHFAC001 0.52 SEGSHFAC002 0.34 SEGSHFAC003 0.19
- TIMNRM - normal relocation action time (individuals residing outside the emergency-planning zone) after plume arrival (s)
SRTIMNRM001 76260.
- TIMHOT, hot-spot relocation action time (individuals residing outside the emergency-planning zone) after plume arrival (s)
SRTIMHOT001 54660
- NON-EVACUATING COHORT
- EANAM2, identifier of emergency response cohort EZEANAM2001
'Non-Evacuating Cohort'
- WTFRAC, weighting fraction applied to results of emergency response cohort when WTNAME = PEOPLE or TIME EZWTFRAC001 0.005
- CRIORG, critical organ for relocation decisions during emergency-phase period SRCRIORG001 L-ICRP60ED
- LASMOV, outermost spatial interval of the evacuation movement zone EZLASMOV001 0
- NUMEVA, outer boundary of the sheltering and evacuation region EZNUMEVA001 7
- DLTSHL, the delay from the time represented by REFPNT to the start of sheltering (s)
EZDLTSHL001 800.
EZDLTSHL002 800.
EZDLTSHL003 800.
EZDLTSHL004 800.
EZDLTSHL005 800.
EZDLTSHL006 800.
EZDLTSHL007 800.
- DLTEVA, the delay from the beginning of the sheltering period to the beginning of evacuation EZDLTEVA001 5000.
EZDLTEVA002 5000.
EZDLTEVA003 5000.
EZDLTEVA004 5000.
EZDLTEVA005 5000.
EZDLTEVA006 5000.
EZDLTEVA007 5000.
80
- TRAVELPOINT, determines whether boundary or centerpoint of destination is evacuee objective TRAVELPOINT CENTERPOINT
- REFPNT, defines reference time point for actions in evacuation and sheltering zone EZREFPNT001 ALARM
- ESPEED, evacuee travel speed during the three phases of evacuation (m/s)
EZESPEED001 6.1 EZESPEED002 11.2 EZESPEED003 11.2
- ESPMUL, multiplicative factor that affects ESPEED, applied during times of precipitation EZESPMUL001 0.7 EZESPMUL002 0.7 EZESPMUL003 0.7
- DURBEG, duration of initial phase (when first individual begins to evacuate) of evacuation (s)
EZDURBEG001 1440.
- DURMID, duration of middle phase of evacuation (s)
EZDURMID001 0.
- CSFACT, cloudshine shielding factor SECSFACT001 0.95 SECSFACT002 0.75 SECSFACT003 0.6
- PROTIN, inhalation protection factor SEPROTIN001 0.98 SEPROTIN002 0.46 SEPROTIN003 0.25
- BRRATE, breathing rate (m3/s)
SEBRRATE001 2.66E-04 SEBRRATE002 2.66E-04 SEBRRATE003 2.66E-04
- SKPFAC, skin protection factors SESKPFAC001 0.98 SESKPFAC002 0.46 SESKPFAC003 0.25
- GSHFAC, groundshine shielding factors SEGSHFAC001 0.52 SEGSHFAC002 0.34 SEGSHFAC003 0.19
- TIMNRM - normal relocation action time (individuals residing outside the emergency-planning zone) after plume arrival (s)
SRTIMNRM001 76260.
- TIMHOT, hot-spot relocation action time (individuals residing outside the emergency-planning zone) after plume arrival (s)
SRTIMHOT001 54660