ML23201A051

From kanterella
Jump to navigation Jump to search
AOS-FM9054, Revision J-3, Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages
ML23201A051
Person / Time
Site: 07109316
Issue date: 07/19/2023
From:
Alpha-Omega Services
To:
Office of Nuclear Material Safety and Safeguards
Shared Package
ML23201A049 List:
References
FM9006.1-072023-008 AOS-FM9054, Rev J-3
Download: ML23201A051 (1)


Text

AOS-FM9054 Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages Prepared by Alpha-Omega Services, Inc.

Bellflower, CA

Revision Date Description of Changes

  • Consolidation of Revisions H - H7 (Revision I intentionally skipped)
  • Subsection 1.2.2 and Section 7.1 - Clarified that the shoring materials are structural
  • Paragraphs 2.5.3.1.2 through 2.5.3.1.4 - Calculations revised to correct minor errors and typos
  • Subsection 2.6.7 - Removed stale note created in Revision H-5
  • Figures 3-18 through 3 Replaced thermal transient plots for J January 31, 2021 AOS Model-025 fire condition
  • Figure 4 Changed port cover torque requirement
  • Chapter 9 - Updated with current requirements, approval letter, and certificate
  • Applied miscellaneous corrections (table of changes included with cover page of the submittal)
  • Revised Subsection 1.2.2 (added discussion related to cask loading temperature and backfilling pressure)
  • Revised Subsection 2.2.3 (expanded discussion related effects of radiation),

Paragraph 2.6.1.1 (revised initial conditions for NCT pressure calculations),

Table 2-31 and Table 2-54 (omitted footnotes b and c, respectively; updated calculated pressures); added new Reference [2.35]

  • Revised Subsection 3.2.2 (update calculated NCT pressures and elaborate on initial conditions and mechanisms that can increase internal cask pressure)

J-1 April 20, 2021

  • Revised Table 4-6 and Table 4-7 (omitted footnotes b and c, respectively; revised pressure calculations based on updated initial conditions)
  • Revised Paragraph 7.1.3.1 (revised instructions for wet-loading cask),

Figure 7-4 (updated to reflect current equipment), and Paragraph 7.1.3.3 (revised leak testing procedure)

  • Revised Table 8-1 footnote (clarified test procedure sensitivity),

Subsection 8.1.4 (revised fabrication leak testing requirements), Section 8.2 (removed statement regarding pre-shipment leak testing because this belongs in Chapter 7), Subsection 8.2.2 (updated leak testing requirements)

  • In Paragraph 7.1.3.3, changed title of Test B - Tracer Gas:

to Test B - Helium Mass Spectrometer Leak Test:

  • In Paragraph 7.1.3.3, Test B, step a, changed The cask lid seal, and vent J-2 June 22, 2021 and drain threaded pipe plugs must be leak-tested in accordance with ANSI N14.5-2014 [7.8]. to The cask lid seal, and vent and drain threaded pipe plugs must be leak-tested in accordance with test method A.5.3 or A.5.4 from ANSI N14.5-2014 [7.8].
  • Changed Cask Lid Attachment Bolt - All Models preload torque requirements with a minimum / maximum value
  • Clarified that cask lid attachment bolts must be lubricated prior to use J-3 July 19, 2023
  • Replaced Appendices 4.5.2 and 4.5.3 with new Appendix 4.5.2, Cask Lid Attachment Bolt Evaluation
  • Clarified Chapter 4 and 8 Reference lists

CONTENTS

1. General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-1 1.1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1.2. PACKAGE DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 1.2.1. Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8 1.2.2. Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12 1.2.3. Special Requirements for Plutonium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17 1.2.4. Operational Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17 1.2.5. Fabrication Codes, Standards, and Acceptance Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17 1.3. APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-23 1.3.1. AOS Transport Packaging System, Certification Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . 1-23 1.4. REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-45
2. Structural Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-1 2.1. DESCRIPTION OF STRUCTURAL DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 2.1.1. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 2.1.2. Design Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8 2.1.3. Weights and Centers of Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23 2.1.4. Identification of Codes and Standards for Package Design . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27 2.2. MATERIALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29 2.2.1. Material Properties and Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29 2.2.2. Chemical, Galvanic, and/or Other Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-36 2.2.3. Effects of Radiation on Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-37 2.3. FABRICATION AND EXAMINATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-38 2.3.1. Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-38 2.3.2. Examination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-42 2.4. GENERAL REQUIREMENTS FOR ALL PACKAGES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-43 2.4.1. Minimum Package Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-43 2.4.2. Tamper-Indicating Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-43 2.4.3. Positive Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-43 2.5. LIFTING AND TIE-DOWN STANDARDS FOR ALL PACKAGES . . . . . . . . . . . . . . . . . . . . . . . . . 2-44 2.5.1. Lifting Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44 2.5.2. Tie-Down Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-51 2.5.3. Other Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-51 2.6. NORMAL CONDITIONS OF TRANSPORT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-74 2.6.1. Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-74 2.6.2. Cold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-79 2.6.3. Reduced External Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-80 2.6.4. Increased External Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-80 2.6.5. Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-81 2.6.6. Water Spray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-82 2.6.7. Free Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-82 2.6.8. Corner Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-83 2.6.9. Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-83 2.6.10. Penetration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-83 2.6.11. Structural Evaluation Results Summary and Minimum Margins of Safety under Normal Conditions of Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-86 2.7. HYPOTHETICAL ACCIDENT CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-92 2.7.1. Free Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-93 2.7.2. Crush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-145 2.7.3. Puncture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-145 2.7.4. Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-147 2.7.5. Immersion - Fissile Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-152 2.7.6. Immersion - All Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-152 Radioactive Material Transport Packaging System Safety Analysis Report v for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

2.7.7. Deep Water Immersion Test (for Type B Packages Containing More than 105 A2) . . . . . . . 2-152 2.7.8. Summary of Damages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-153 2.8. ACCIDENT CONDITIONS FOR AIR TRANSPORT OF PLUTONIUM . . . . . . . . . . . . . . . . . . . . 2-158 2.9. ACCIDENT CONDITIONS FOR FISSILE MATERIAL PACKAGE FOR AIR TRANSPORT . . . . 2-158 2.10. SPECIAL FORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-158 2.11. FUEL RODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-158 2.12. APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-159 2.12.1. Data CDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-160 2.12.2. Structural Evaluation Results - Models AOS-025, AOS-050, and AOS-100 . . . . . . . . . . . 2-161 2.12.3. LIBRA Finite Element Analysis Program and Verification Problems . . . . . . . . . . . . . . . . . 2-696 2.12.4. Description of LIBRA Files and Post-Processors: AOS Safety Analysis Report . . . . . . . . 2-727 2.12.5. Selected Material Properties References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-753 2.12.6. Impact (Free-Drop) Test Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-805 2.12.7. Dimensional Inspection Report. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-881 2.12.8. Analysis of Content-Cask Lid Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-891 2.12.9. Comparison of Libra Static and Dynamic Impact Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 2-895 2.12.10. Effect of Ribs on Stress at Foam-Cask Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-913 2.12.11. Analysis of 30-Ft. Drops with Shipping Cages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-917 2.12.12. Analysis of Tie-Down Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-926 2.12.13. Certificate of Conformance, General Plastics FR-3700 Series Foam -

AOS-165A Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-947 2.12.14. Analysis of Shipping Cage Lifting Bars - Models AOS-050A and AOS-100 . . . . . . . . . . 2-949 2.12.15. Shielding/Spacer Component Evaluation -

Models AOS-050A, AOS-100A, and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-967 2.13. REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-985

3. Thermal Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-1 3.1. DESCRIPTION OF THERMAL DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3.1.1. Design Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3.1.2. Contents Decay Heat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 3.1.3. Summary Tables of Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.1.4. Summary Tables of Maximum Pressures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11 3.2. MATERIAL PROPERTIES AND COMPONENT SPECIFICATIONS. . . . . . . . . . . . . . . . . . . . . . . 3-12 3.2.1. Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12 3.2.2. Component Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19 3.3. THERMAL EVALUATION UNDER NORMAL CONDITIONS OF TRANSPORT. . . . . . . . . . . . . . 3-20 3.3.1. Heat and Cold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20 3.3.2. Maximum Normal Operating Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21 3.3.3. Thermal Finite Element Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21 3.3.4. Normal Conditions of Transport Thermal Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-45 3.4. THERMAL EVALUATION UNDER HYPOTHETICAL ACCIDENT CONDITIONS . . . . . . . . . . . . 3-46 3.4.1. Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-48 3.4.2. Fire Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-48 3.4.3. Maximum Temperatures and Pressures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-48 3.4.4. Maximum Thermal Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-48 3.4.5. Accident Conditions for Fissile Material Packages for Air Transport . . . . . . . . . . . . . . . . . . . 3-48 3.4.6. Hypothetical Accident Conditions of Transport Thermal Results . . . . . . . . . . . . . . . . . . . . . . 3-49 3.5. APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-51 3.5.1. Data CDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-52 3.5.2. Thermal Evaluation Results - Models AOS-025, AOS-050, and AOS-100 . . . . . . . . . . . . . . 3-53 3.5.3. LIBRA Finite Element Program Heat Transfer Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-262 3.5.4. Analysis Modeling Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-268 3.5.5. LIBRA File Input Showing Material Property Assignation. . . . . . . . . . . . . . . . . . . . . . . . . . . 3-388 3.5.6. Justification for Use of Uniformly Distributed Decay Heat throughout Cask Cavity . . . . . . . 3-411 3.5.7. Thermal Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-425 3.5.8. Heat Test Report - AOS-165A Prototype. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-439 vi Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

3.5.9. Copper Seal Locations with Analytical Model (with Cask Lid Metallic Seal). . . . . . . . . . . . . 3-861 3.5.10. Garlock Helicoflex Report, Helicoflex Seal Temperature Limit -

Cask Lid Metallic Seal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-865 3.6. REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-881

4. Containment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-1 4.1. DESCRIPTION OF THE CONTAINMENT SYSTEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 4.1.1. Containment Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 4.1.2. Containment Penetrations (Port Plugs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 4.1.3. Cask Lid Seal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 4.1.4. Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 4.1.5. Keensert Device Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18 4.2. CONTAINMENT UNDER NORMAL CONDITIONS OF TRANSPORT . . . . . . . . . . . . . . . . . . . . . 4-29 4.2.1. Containment of Radioactive Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-29 4.2.2. Pressurization of Containment Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-29 4.2.3. Containment Criterion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-30 4.3. CONTAINMENT UNDER HYPOTHETICAL ACCIDENT CONDITIONS . . . . . . . . . . . . . . . . . . . . 4-31 4.3.1. Containment of Radioactive Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-32 4.3.2. Containment Criterion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-32 4.3.3. Fission Gas Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-32 4.4. LEAKAGE RATE TESTS FOR TYPE B PACKAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-32 4.5. APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-33 4.5.1. Garlock Helicoflex Cask Lid Metallic Seal and AOS Cask Lid Elastomeric Seal Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-35 4.5.2. Cask Lid Attachment Bolt Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-43 4.5.3. DELETED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-115 4.6. REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-116
5. Shielding Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-1 5.1. DESCRIPTION OF SHIELDING DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 5.1.1. Design Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 5.1.2. Summary Table of Maximum Radiation Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 5.2. SOURCE SPECIFICATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 5.2.1. Gamma Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7 5.2.2. Neutron Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8 5.3. SHIELDING MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9 5.3.1. Configuration of Source and Shielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9 5.3.2. Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16 5.4. SHIELDING EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17 5.4.1. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17 5.4.2. Input and Output Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-19 5.4.3. Flux-to-Dose-Rate Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-19 5.4.4. External Radiation Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-20 5.5. APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-29 5.5.1. AOS Cask Isotopic Heat Load Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-29 5.5.2. Isotope Values for Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-31 5.5.3. MCNP6 Input and Output Files for Dose Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-42 5.5.4. Cobalt-60-C Volume Source Calculation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-42 5.5.5. Shipments of Multiple Isotopes under 10 CFR 71.47(a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-45 5.5.6. Isotopes Insignificant to External Dose Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-49 5.5.7. 10 CFR 71.47(b) Exclusive Use Activity Limits for Models AOS-100A and AOS-100A-S . . . 5-52 5.5.8. Evaluation of Dose Rate Tally Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-58 5.6. REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-82 Radioactive Material Transport Packaging System Safety Analysis Report vii for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)
6. Criticality Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-1
7. Package Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-1 7.1. PACKAGE LOADING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6 7.1.1. Preparation for Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6 7.1.2. Loading of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8 7.1.3. Preparation for Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10 7.2. PACKAGE UNLOADING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-18 7.2.1. Receipt of Package from Carrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-19 7.2.2. Removal of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-20 7.2.3. Installing the Cask Lid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-20 7.2.4. Removing the Cask from the Staging Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-21 7.2.5. Securing the Cask Lid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-21 7.3. PREPARATION OF EMPTY PACKAGE FOR TRANSPORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-22 7.3.1. Inspecting the Cask Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-22 7.3.2. Installing and Securing the Cask Lid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-22 7.3.3. Leak Testing to Verify the Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-23 7.3.4. Preparing the Empty Cask for Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-23 7.4. OTHER OPERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-24 7.4.1. Records and Reporting Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-24 7.5. APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-25 7.5.1. Dose Rate and Decay Heat Limit Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-25 7.6. REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-28
8. Acceptance Tests and Maintenance Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-1 8.1. ACCEPTANCE TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 8.1.1. Visual Inspections and Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3 8.1.2. Weld Examinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3 8.1.3. Structural and Pressure Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3 8.1.4. Leakage Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 8.1.5. Component and Material Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 8.1.6. Shielding Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-14 8.1.7. Thermal Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-15 8.1.8. Miscellaneous Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-16 8.2. MAINTENANCE PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-17 8.2.1. Structural and Pressure Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-17 8.2.2. Leakage Tests [8.4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-17 8.2.3. Component and Material Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-19 8.2.4. Thermal Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-19 8.2.5. Miscellaneous Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-19 8.3. APPENDIX (NONE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-20 8.4. REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-21
9. Quality Assurance Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9-1 9.1. U.S. QUALITY ASSURANCE PROGRAM REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 9.2. IAEA QUALITY ASSURANCE PROGRAM REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 9.3. APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 9.3.1. U.S. Nuclear Regulatory Commission Quality Assurance Program Approval for Radioactive Material Packages No. 0086, Revision 9, Dated August 7, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 9.4. REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5 viii Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

FIGURES

1. General Information Figure 1-1. Isometric View - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 Figure 1-2. Isometric View - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 Figure 1-3. Isometric View - Models AOS-100A and AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 Figure 1-4. Isometric View - Model AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
2. Structural Evaluation Figure 2-1. Assembled Transport Package Cutaway - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 Figure 2-2. Assembled Transport Package Cutaway - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4 Figure 2-3. Assembled Transport Package Cutaway - Models AOS-100A and AOS-100B . . . . . . . . . . . . . 2-5 Figure 2-4. Isometric View - Typical Cask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 Figure 2-5. Isometric View - Typical Impact Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 Figure 2-6. Axisymmetric (2D) Model - Models AOS-025, AOS-050, and AOS-100 . . . . . . . . . . . . . . . . . 2-15 Figure 2-7. 3D Model - Models AOS-025, AOS-050, and AOS-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16 Figure 2-8. 3D Rendered Model - Models AOS-025, AOS-050, and AOS-100 . . . . . . . . . . . . . . . . . . . . . 2-16 Figure 2-9. Pm and Pb Stress Monitoring Points - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17 Figure 2-10. Center of Gravity - Model AOS-025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24 Figure 2-11. Center of Gravity - Model AOS-050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25 Figure 2-12. Center of Gravity - Model AOS-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26 Figure 2-13. Trunnion Area Cross-Section and Force Diagram Associated with Lifting Loads . . . . . . . . . . . 2-44 Figure 2-14. Mesh Diagonal Tension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-52 Figure 2-15. Side Drop Impact Forces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-59 Figure 2-16. Cask and Impact Limiter FEA Model - Model AOS-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-61 Figure 2-17. Cask and Impact Limiter Deformed FEA Model - Model AOS-100. . . . . . . . . . . . . . . . . . . . . . 2-61 Figure 2-18. Critical Stress at Skin and J-Bolt Box Connection - Model AOS-025 . . . . . . . . . . . . . . . . . . . . 2-66 Figure 2-19. Critical Stress at Rib Connector Pins Bearing - Models AOS-050 and AOS-100 . . . . . . . . . . 2-67 Figure 2-20. LIBRA Liner Model - Model AOS-025. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-70 Figure 2-21. Equivalent Stress Due to Longitudinal Acceleration - Model AOS-025 . . . . . . . . . . . . . . . . . . 2-71 Figure 2-22. Equivalent Stress Due to Transverse Acceleration - Model AOS-025 . . . . . . . . . . . . . . . . . . . 2-72 Figure 2-23. DELETED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-73 Figure 2-24. DELETED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-73 Figure 2-25. Typical Corner Cask Cavity Shell Weld Joint Configuration - All Models . . . . . . . . . . . . . . . . . 2-78 Figure 2-26. Fixed Points for Shock and Vibration Analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-81 Figure 2-27. Head-On, Side, and Slap-Down Free-Drop Orientations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-83 Figure 2-28. Rod Impact Analysis Load Distribution - Model AOS-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-84 Figure 2-29. Rod Impact Time History Displacement at Impact Node - Model AOS-100 . . . . . . . . . . . . . . . 2-85 Figure 2-30. Head-On, Side, and Slap-Down Free-Drop Orientations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-94 Figure 2-31. Test Setup (Head-On Orientation Shown) - AOS-165A Prototype . . . . . . . . . . . . . . . . . . . . . . 2-96 Figure 2-32. Finite Element Model of Impact Limiter - Model AOS-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-98 Figure 2-33. Head-On Drop Force and Energy - Model AOS-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-98 Figure 2-34. Head-On Drop, Maximum Foam Displacement (Deformed Model) - Model AOS-100 . . . . . . . 2-99 Figure 2-35. Head-On Drop, Maximum Equivalent Stress in Foam - Model AOS-100 . . . . . . . . . . . . . . . . . 2-99 Figure 2-36. Head-On Drop Analysis Load Distribution - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-100 Figure 2-37. Sectioned Impact Limiter Used in Head-On Drop - AOS-165A Prototype . . . . . . . . . . . . . . . 2-103 Figure 2-38. Impact Limiter after Head-On Drop - AOS-165A Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . 2-104 Figure 2-39. Rendered LIBRA Deformed Head-On Drop - AOS-165A Prototype. . . . . . . . . . . . . . . . . . . . 2-105 Figure 2-40. Photograph Frames from High-Speed Video of Head-On Drop - AOS-165A Prototype . . . . 2-106 Figure 2-41. Impact Response for Damping, = 0.06 - AOS-165A Prototype . . . . . . . . . . . . . . . . . . . . . . . 2-107 Figure 2-42. Head-On Drop Force and Energy - AOS-165A Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-108 Figure 2-43. Side Drop Force and Energy - Model AOS-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-109 Figure 2-44. Side Drop, Maximum Foam Displacement (Deformed Model) - Model AOS-100 . . . . . . . . . 2-110 Figure 2-45. Side Drop, Maximum Equivalent Stress in Foam - Model AOS-100 . . . . . . . . . . . . . . . . . . . 2-110 Figure 2-46. Side Drop, Maximum Principal Strain in Foam - Model AOS-100 . . . . . . . . . . . . . . . . . . . . . 2-111 Figure 2-47. Side Drop Analysis Load Distribution - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-113 Radioactive Material Transport Packaging System Safety Analysis Report ix for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Figure 2-48. Slap Finite Element Model - AOS-165A Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-116 Figure 2-49. Maximum Support Displacement versus Offset - AOS-165A Prototype. . . . . . . . . . . . . . . . . 2-117 Figure 2-50. Slap-Down Analysis Support Displacements versus Time - AOS-165A Prototype . . . . . . . . 2-117 Figure 2-51. Cg/Corner Drop Analysis Load Distribution - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-119 Figure 2-52. Head-On Drop Cask Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-122 Figure 2-53. Side+Slap-Down and Cg/Corner Drop Cask Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-123 Figure 2-54. Force-Displacement for Head-On Drop at 75°F - Model AOS-025 . . . . . . . . . . . . . . . . . . . . 2-124 Figure 2-55. Force-Displacement for Side Drop at 75°F - Model AOS-025 . . . . . . . . . . . . . . . . . . . . . . . . 2-125 Figure 2-56. Force-Displacement for Cg/Corner Drop at 75°F - Model AOS-025 . . . . . . . . . . . . . . . . . . . 2-126 Figure 2-57. Force-Displacement for Head-On Drop at 75°F - Model AOS-050 . . . . . . . . . . . . . . . . . . . . 2-127 Figure 2-58. Force-Displacement for Side Drop at 75°F - Model AOS-050 . . . . . . . . . . . . . . . . . . . . . . . . 2-128 Figure 2-59. Force-Displacement for Cg/Corner Drop at 75°F - Model AOS-050 . . . . . . . . . . . . . . . . . . . 2-129 Figure 2-60. Force-Displacement for Head-On Drop at 75°F - Model AOS-100 . . . . . . . . . . . . . . . . . . . . 2-130 Figure 2-61. Force-Displacement for Head-On Drop at -40°F - Model AOS-100 . . . . . . . . . . . . . . . . . . . . 2-131 Figure 2-62. Force-Displacement for Side Drop at 75°F - Model AOS-100 . . . . . . . . . . . . . . . . . . . . . . . . 2-132 Figure 2-63. Force-Displacement for Cg/Corner Drop at 75°F - Model AOS-100 . . . . . . . . . . . . . . . . . . . 2-133 Figure 2-64. Impact Load Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-134 Figure 2-65. Circumferential Impact Load Distribution for Side and Cg/Corner Drops . . . . . . . . . . . . . . . . 2-134 Figure 2-66. Side Impact Slap-Down Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-138 Figure 2-67. FEA Model of Puncture Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-146 Figure 2-68. Generalized Model of Impact I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-891 Figure 2-69. Dynamic Analysis FEA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-896 Figure 2-70. Cask Displacement Time-History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-897 Figure 2-71. Ground Impact Forces in Dynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-898 Figure 2-72. Total Ground Impact Force in Dynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-899 Figure 2-73. Deformed Dynamic Model at Maximum Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-900 Figure 2-74. Displacement Contours n Deformed Dynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-900 Figure 2-75. Foam Static Analysis FEA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-901 Figure 2-76. Deformed Foam Static Model at Maximum Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-901 Figure 2-77. Energy and Force Plots for Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-902 Figure 2-78. Energy and Force Plots for Static Analysis with Bi-Linear Stress-Strain. . . . . . . . . . . . . . . . . 2-903 Figure 2-79. foam-cask.t5 LIBRA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-910 Figure 2-80. FEA Model Used in Rib Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-913 Figure 2-81. FEA Model Section Showing Rib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-914 Figure 2-82. Z-Cask Section Z-Displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-915 Figure 2-83. Cask Section Z-Stress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-916 Figure 2-84. Configuration of Cask and Pallet Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-917 Figure 2-85. AGS Model and Typical Input File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-918 Figure 2-86. Bilinear Representation of Head-On Force-Displacement - Model AOS-100. . . . . . . . . . . . . 2-920 Figure 2-87. Trilinear Representation of Cg/Corner Force-Displacement - Model AOS-100 . . . . . . . . . . . 2-921 Figure 2-88. Model AOS-100 Cg/Corner Pallet and Cask Displacements. . . . . . . . . . . . . . . . . . . . . . . . . . 2-924 Figure 2-89. Model AOS-100 Cg/Corner Pallet and Ground Impact Forces . . . . . . . . . . . . . . . . . . . . . . . . 2-924 Figure 2-90. Tie-Down Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-926 Figure 2-91. Bearing Traction Along Line = 0 - 180 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-927 Figure 2-92. Schematic of Lateral Bearing Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-929 Figure 2-93. Tension Cables - Model AOS-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-931 Figure 2-94. Bearing Pressure and Cable Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-933 Figure 2-95. FEA Model of Tie-Down Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-935 Figure 2-96. Lateral (Z) Displacement in Conical Shell - Model AOS-100 . . . . . . . . . . . . . . . . . . . . . . . . . 2-937 Figure 2-97. Maximum Principal Membrane Stress - Model AOS-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-937 Figure 2-98. Maximum Principal Membrane Stress - Model AOS-050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-944 Figure 2-99. Tie-Down Strap Load - Model AOS-025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-945 Figure 2-100. Lateral (Z) Displacement in Conical Shell - Model AOS-050 . . . . . . . . . . . . . . . . . . . . . . . . . 2-946 Figure 2-101. Shipping Cage and Lifting Bar - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-950 Figure 2-102. Lifting Bar - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-950 Figure 2-103. Deformation of Frame and Lifting Bar under Inertia Loading - Model AOS-050A . . . . . . . . . 2-952 Figure 2-104. Equivalent Stress within Shipping Cage Frame and Lifting Bar - Model AOS-050A . . . . . . . 2-953 Figure 2-105. Lifting Bar First Buckling Mode - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-955 Figure 2-106. Shipping Cage and Lifting Bar - Model AOS-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-957 x Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Figure 2-107. Lifting Bar - Model AOS-100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-957 Figure 2-108. Model of Lifting Bar Bolted Connection - Model AOS-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-957 Figure 2-109. Shipping Cage Vertical Displacements - Model AOS-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-960 Figure 2-110. Shipping Cage von Mises Equivalent Stress - Model AOS-100 . . . . . . . . . . . . . . . . . . . . . . . 2-960 Figure 2-111. Lifting Bar von Mises Equivalent Stress - Model AOS-100. . . . . . . . . . . . . . . . . . . . . . . . . . . 2-961 Figure 2-112. Deformation of Frame and Lifting Bar Under Inertia Loading - Model AOS-100 . . . . . . . . . . 2-962 Figure 2-113. Lifting Bar First Buckling Mode - Model AOS-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-966 Figure 2-114. Lifting Bar Second Buckling Mode - Model AOS-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-966 Figure 2-115. Model AOS-100A-S Co-60-C Configuration with Axial Shielding Plates and Cavity Spacer Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-968 Figure 2-116. Axial Shielding Plate ANSYS Model - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-971 Figure 2-117. Axial Shielding Plate End Drop ANSYS Stress Results - Model AOS-050A . . . . . . . . . . . . . 2-973 Figure 2-118. Axial Shielding Plate Side Drop ANSYS Stress Results - Model AOS-050A . . . . . . . . . . . . . 2-974 Figure 2-119. Axial Shielding Plate Corner Drop ANSYS Stress Results - Model AOS-050A . . . . . . . . . . . 2-974 Figure 2-120. Axial Shielding Plate - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . 2-975 Figure 2-121. ANSYS Model Contact Elements - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . 2-976 Figure 2-122. ANSYS Surface Effect Elements - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . 2-977 Figure 2-123. Axial Shielding Plate Hypothetical Accident Conditions of Transport End Drop Stress Intensity Results (psi) - Model AOS-100A and AOS-100A-S . . . . . . . . . . . 2-979 Figure 2-124. Axial Shielding Plate Hypothetical Accident Conditions of Transport Side Drop Stress Intensity Results (psi) - Model AOS-100A and AOS-100A-S . . . . . . . . . . . 2-980 Figure 2-125. Axial Shielding Plate Hypothetical Accident Conditions of Transport Corner Drop Stress Intensity Results (psi) - Model AOS-100A and AOS-100A-S . . . . . . . . . 2-980 Figure 2-126. Cavity Spacer Plate Stress ANSYS Model -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-981 Figure 2-127. Cavity Spacer Plate End Drop ANSYS Stress Results -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-983 Figure 2-128. Cavity Spacer Plate Side Drop ANSYS Stress Results -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-984 Figure 2-129. Cavity Spacer Plate Corner Drop ANSYS Stress Results -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-984

3. Thermal Evaluation Figure 3-1. Analytical FEA Model - Normal Conditions of Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22 Figure 3-2. Cask Assembly External Surface Identification, Normal Conditions of Transport -

All Models (Typical; Surfaces 5, 6, 7, and 8 are not used on Model AOS-025) . . . . . . . . . . . . 3-32 Figure 3-3. Cask Assembly External Surface Identification, Fire Condition -

All Models (Typical; Surfaces 5, 6, 7, and 8 are not used on Model AOS-025) . . . . . . . . . . . . 3-34 Figure 3-4. Expanded View of Thermal Model Defining Component Interfaces . . . . . . . . . . . . . . . . . . . . . 3-44 Figure 3-5. Thermal Finite Element Model - Fire Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-47 Figure 3-6. Selected Nodal Locations for Normal Conditions of Transport - Model AOS-025A . . . . . . . . . 3-57 Figure 3-7. Load Case 101, 100°F Ambient, Maximum Decay Heat, Entire Model - Model AOS-025A. . . 3-60 Figure 3-8. Load Case 101, 100°F Ambient, Maximum Decay Heat, Cask Model - Model AOS-025A . . . 3-61 Figure 3-9. Load Case 102, 100°F Ambient, Maximum Decay Heat, Maximum Insolation, Entire Model - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-64 Figure 3-10. Load Case 102, 100°F Ambient, Maximum Decay Heat, Maximum Insolation, Cask Model - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-65 Figure 3-11. Load Case 103, -20°F Ambient, Zero Decay Heat, Zero Insolation, Entire Model - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-67 Figure 3-12. Load Case 104, -40°F Ambient, Zero Decay Heat, Zero Insolation, Entire Model - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-69 Figure 3-13. Load Case 105, -40°F Ambient, Maximum Decay Heat, Entire Model - Model AOS-025A . . . 3-72 Figure 3-14. Load Case 105, -40°F Ambient, Maximum Decay Heat, Cask Model - Model AOS-025A. . . . 3-73 Figure 3-15. Load Case 106, -20°F Ambient, Maximum Decay Heat, Entire Model - Model AOS-025A . . . 3-76 Figure 3-16. Load Case 106, -20°F Ambient, Maximum Decay Heat, Cask Model - Model AOS-025A. . . . 3-77 Figure 3-17. Selected Nodal Locations for Fire Condition - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . 3-79 Radioactive Material Transport Packaging System Safety Analysis Report xi for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Figure 3-18. Fire for 30 Minutes and Post Fire Cool Down for 7.5 Hours, Temperature versus Time, for Cask Cavity Shell, Cask Lid, Cask Lid Plug, Bottom Plate, and Tungsten Alloy - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-80 Figure 3-19. Fire for 30 Minutes and Post Fire Cool Down for 7.5 Hours, Temperature versus Time, for Cask Lid Seal Area, Cask Vent Port, Cask Drain Port, and Test Port - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-81 Figure 3-20. Fire for 30 Minutes and Post Fire Cool Down for 7.5 Hours, Temperature versus Time, for Cask Outer Shell and Impact Limiter - Model AOS-025A . . . . 3-82 Figure 3-21. Load Case 111, Fire at 30 Minutes, 1,475°F Ambient, Maximum Decay Heat, Entire Model - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-85 Figure 3-22. Load Case 111, Fire at 30 Minutes, 1,475°F Ambient, Maximum Decay Heat, Cask Model - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-86 Figure 3-23. Load Case 112, Post Fire at 60 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Entire Model - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-89 Figure 3-24. Load Case 112, Post Fire at 60 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Cask Model - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-90 Figure 3-25. Load Case 112, Post Fire at 90 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Entire Model - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-93 Figure 3-26. Load Case 112, Post Fire at 90 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Cask Model - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-94 Figure 3-27. Load Case 112, Post Fire at 120 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Entire Model - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-97 Figure 3-28. Load Case 112, Post Fire at 120 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Cask Model - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-98 Figure 3-29. Load Case 112, Post Fire at 150 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Entire Model - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-101 Figure 3-30. Load Case 112, Post Fire at 150 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Cask Model - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-102 Figure 3-31. Load Case 112, Post Fire at 180 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Entire Model - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-105 Figure 3-32. Load Case 112, Post Fire at 180 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Cask Model - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-106 Figure 3-33. Selected Nodal Locations for Normal Conditions of Transport - Model AOS-050A . . . . . . . . 3-110 Figure 3-34. Load Case 101, 100°F Ambient, Maximum Decay Heat, Entire Model - Model AOS-050A. . 3-113 Figure 3-35. Load Case 101, 100°F Ambient, Maximum Decay Heat, Cask Model - Model AOS-050A . . 3-114 Figure 3-36. Load Case 102, 100°F Ambient, Maximum Decay Heat, Maximum Insolation, Entire Model - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-117 Figure 3-37. Load Case 102, 100°F Ambient, Maximum Decay Heat, Maximum Insolation, Cask Model - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-118 Figure 3-38. Load Case 103, -20°F Ambient, Zero Decay Heat, Zero Insolation, Entire Model - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-120 Figure 3-39. Load Case 104, -40°F Ambient, Zero Decay Heat, Zero Insolation, Entire Model - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-122 Figure 3-40. Load Case 105, -40°F Ambient, Maximum Decay Heat, Entire Model - Model AOS-050A . . 3-125 Figure 3-41. Load Case 105, -40°F Ambient, Maximum Decay Heat, Cask Model - Model AOS-050A. . . 3-126 Figure 3-42. Load Case 106, -20°F Ambient, Maximum Decay Heat, Entire Model - Model AOS-050A . . 3-129 Figure 3-43. Load Case 106, -20°F Ambient, Maximum Decay Heat, Cask Model - Model AOS-050A. . . 3-130 Figure 3-44. Selected Nodal Locations for Fire Condition - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . 3-132 Figure 3-45. Fire for 30 Minutes and Post Fire Cool Down for 7.5 Hours, Temperature versus Time, for Cask Cavity Shell, Cask Lid, Cask Lid Plug, Bottom Plate, and Tungsten Alloy - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-133 Figure 3-46. Fire for 30 Minutes and Post Fire Cool Down for 7.5 Hours, Temperature versus Time, for Cask Lid Seal Area, Cask Vent Port, Cask Drain Port, and Test Port - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-134 Figure 3-47. Fire for 30 Minutes and Post Fire Cool Down for 7.5 Hours, Temperature versus Time, for Cask Outer Shell and Impact Limiter - Model AOS-050A . . . 3-135 Figure 3-48. Load Case 111, Fire at 30 Minutes, 1,475°F Ambient, Maximum Decay Heat, Entire Model - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-138 xii Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Figure 3-49. Load Case 111, Fire at 30 Minutes, 1,475°F Ambient, Maximum Decay Heat, Cask Model - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-139 Figure 3-50. Load Case 112, Post Fire at 60 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Entire Model - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-142 Figure 3-51. Load Case 112, Post Fire at 60 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Cask Model - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-143 Figure 3-52. Load Case 112, Post Fire at 90 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Entire Model - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-146 Figure 3-53. Load Case 112, Post Fire at 90 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Cask Model - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-147 Figure 3-54. Load Case 112, Post Fire at 120 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Entire Model - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-150 Figure 3-55. Load Case 112, Post Fire at 120 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Cask Model - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-151 Figure 3-56. Load Case 112, Post Fire at 150 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Entire Model - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-154 Figure 3-57. Load Case 112, Post Fire at 150 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Cask Model - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-155 Figure 3-58. Load Case 112, Post Fire at 180 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Entire Model - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-158 Figure 3-59. Load Case 112, Post Fire at 180 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Cask Model - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-159 Figure 3-60. Selected Nodal Locations for Normal Conditions of Transport - Model AOS-100 . . . . . . . . . 3-163 Figure 3-61. Load Case 101, 100°F Ambient, Maximum Decay Heat, Entire Model -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-166 Figure 3-62. Load Case 101, 100°F Ambient, Maximum Decay Heat, Cask Model -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-167 Figure 3-63. Load Case 102, 100°F Ambient, Maximum Decay Heat, Maximum Insolation, Entire Model - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-170 Figure 3-64. Load Case 102, 100°F Ambient, Maximum Decay Heat, Maximum Insolation, Cask Model - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-171 Figure 3-65. Load Case 103, -20°F Ambient, Zero Decay Heat, Zero Insolation, Entire Model - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-173 Figure 3-66. Load Case 104, -40°F Ambient, Zero Decay Heat, Zero Insolation, Entire Model - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-175 Figure 3-67. Load Case 105, -40°F Ambient, Maximum Decay Heat, Entire Model -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-178 Figure 3-68. Load Case 105, -40°F Ambient, Maximum Decay Heat, Cask Model -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-179 Figure 3-69. Load Case 106, -20°F Ambient, Maximum Decay Heat, Entire Model -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-182 Figure 3-70. Load Case 106, -20°F Ambient, Maximum Decay Heat, Cask Model -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-183 Figure 3-71. Selected Nodal Locations for Fire Condition - Model AOS-100 . . . . . . . . . . . . . . . . . . . . . . . 3-185 Figure 3-72. Fire for 30 Minutes and Post Fire Cool Down for 7.5 Hours, Temperature versus Time, for Cask Cavity Shell, Cask Lid, Cask Lid Plug, Bottom Plate, and Tungsten Alloy - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . 3-186 Figure 3-73. Fire for 30 Minutes and Post Fire Cool Down for 7.5 Hours, Temperature versus Time, for Cask Lid Seal Area, Cask Vent Port, Cask Drain Port, and Test Port - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-187 Figure 3-74. Fire for 30 Minutes and Post Fire Cool Down for 7.5 Hours, Temperature versus Time, for Cask Outer Shell and Impact Limiter -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-188 Figure 3-75. Load Case 111, Fire at 30 Minutes, 1,475°F Ambient, Maximum Decay Heat, Entire Model - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-191 Figure 3-76. Load Case 111, Fire at 30 Minutes, 1,475°F Ambient, Maximum Decay Heat, Cask Model - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-192 Figure 3-77. Load Case 112, Post Fire at 60 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Entire Model - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . 3-195 Radioactive Material Transport Packaging System Safety Analysis Report xiii for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Figure 3-78. Load Case 112, Post Fire at 60 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Cask Model - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . 3-196 Figure 3-79. Load Case 112, Post Fire at 90 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Entire Model - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . 3-199 Figure 3-80. Load Case 112, Post Fire at 90 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Cask Model - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . 3-200 Figure 3-81. Load Case 112, Post Fire at 120 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Entire Model - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . 3-203 Figure 3-82. Load Case 112, Post Fire at 120 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Cask Model - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . 3-204 Figure 3-83. Load Case 112, Post Fire at 150 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Entire Model - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . 3-207 Figure 3-84. Load Case 112, Post Fire at 150 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Cask Model - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . 3-208 Figure 3-85. Load Case 112, Post Fire at 180 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Entire Model - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . 3-211 Figure 3-86. Load Case 112, Post Fire at 180 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Cask Model - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . 3-212 Figure 3-87. Load Case 101, 100°F Ambient, Maximum Decay Heat, Entire Model - Model AOS-100B. . 3-216 Figure 3-88. Load Case 101, 100°F Ambient, Maximum Decay Heat, Cask Model - Model AOS-100B . . 3-217 Figure 3-89. Load Case 102, 100°F Ambient, Maximum Decay Heat, Maximum Insolation, Entire Model - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-220 Figure 3-90. Load Case 102, 100°F Ambient, Maximum Decay Heat, Maximum Insolation, Cask Model - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-221 Figure 3-91. Load Case 103, -20°F Ambient, Zero Decay Heat, Zero Insolation, Entire Model - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-223 Figure 3-92. Load Case 104, -40°F Ambient, Zero Decay Heat, Zero Insolation, Entire Model - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-225 Figure 3-93. Load Case 105, -40°F Ambient, Maximum Decay Heat, Entire Model - Model AOS-100B . . 3-228 Figure 3-94. Load Case 105, -40°F Ambient, Maximum Decay Heat, Cask Model - Model AOS-100B. . . 3-229 Figure 3-95. Load Case 106, -20°F Ambient, Maximum Decay Heat, Entire Model - Model AOS-100B . . 3-232 Figure 3-96. Load Case 106, -20°F Ambient, Maximum Decay Heat, Cask Model - Model AOS-100B. . . 3-233 Figure 3-97. Fire for 30 Minutes and Post Fire Cool Down for 7.5 Hours, Temperature versus Time, for Cask Cavity Shell, Cask Lid, Cask Lid Plug, Bottom Plate, and Carbon Steel - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-235 Figure 3-98. Fire for 30 Minutes and Post Fire Cool Down for 7.5 Hours, Temperature versus Time, for Cask Lid Seal Area, Cask Vent Port, Cask Drain Port, and Test Port - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-236 Figure 3-99. Fire for 30 Minutes and Post Fire Cool Down for 7.5 Hours, Temperature versus Time, for Cask Outer Shell and Impact Limiter - Model AOS-100B . . . 3-237 Figure 3-100. Load Case 111, Fire at 30 Minutes, 1,475°F Ambient, Maximum Decay Heat, Entire Model - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-240 Figure 3-101. Load Case 111, Fire at 30 Minutes, 1,475°F Ambient, Maximum Decay Heat, Cask Model - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-241 Figure 3-102. Load Case 112, Post Fire at 60 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Entire Model - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-244 Figure 3-103. Load Case 112, Post Fire at 60 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Cask Model - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-245 Figure 3-104. Load Case 112, Post Fire at 90 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Entire Model - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-248 Figure 3-105. Load Case 112, Post Fire at 90 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Cask Model - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-249 Figure 3-106. Load Case 112, Post Fire at 120 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Entire Model - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-252 Figure 3-107. Load Case 112, Post Fire at 120 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Cask Model - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-253 Figure 3-108. Load Case 112, Post Fire at 150 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Entire Model - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-256 xiv Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Figure 3-109. Load Case 112, Post Fire at 150 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Entire Cask - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-257 Figure 3-110. Load Case 112, Post Fire at 180 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Entire Model - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-260 Figure 3-111. Load Case 112, Post Fire at 180 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Entire Cask - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-261 Figure 3-112. SS304 Stainless Steel Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-270 Figure 3-113. SS304 Stainless Steel Specific Heat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-271 Figure 3-114. Tungsten Alloy Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-272 Figure 3-115. Tungsten Alloy Specific Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-273 Figure 3-116. SA-105 Carbon Steel Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-275 Figure 3-117. SA-105 Carbon Steel Specific Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-276 Figure 3-118. Air Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-278 Figure 3-119. Air Specific Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-279 Figure 3-120. Air Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-280 Figure 3-121. Normal Conditions of Transport Model Dimensions - Model AOS-025 . . . . . . . . . . . . . . . . . 3-281 Figure 3-122. Normal Conditions of Transport Model Dimensions - Model AOS-050 . . . . . . . . . . . . . . . . . 3-282 Figure 3-123. Normal Conditions of Transport Model Dimensions - Model AOS-100 . . . . . . . . . . . . . . . . . 3-283 Figure 3-124. Applied 30-ft. Drop Deformations - Model AOS-025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-284 Figure 3-125. Applied 30-ft. Drop Deformations - Model AOS-050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-285 Figure 3-126. Applied 30-ft. Drop Deformations - Model AOS-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-285 Figure 3-127. Hypothetical Accident Conditions of Transport Model Dimensions - Model AOS-025 . . . . . . 3-286 Figure 3-128. Hypothetical Accident Conditions of Transport Model Dimensions - Model AOS-050 . . . . . . 3-287 Figure 3-129. Hypothetical Accident Conditions of Transport Model Dimensions - Model AOS-100 . . . . . . 3-288 Figure 3-130. Cask Assembly External Surface Identification, Normal Conditions of Transport - Model AOS-025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-289 Figure 3-131. Cask Assembly External Surface Identification, Normal Conditions of Transport - Model AOS-050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-290 Figure 3-132. Cask Assembly External Surface Identification, Normal Conditions of Transport - Model AOS-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-291 Figure 3-133. Cask Assembly External Surface Identification, Hypothetical Accident Conditions of Transport - Model AOS-025 . . . . . . . . . . . . . . . . . . . . . 3-292 Figure 3-134. Cask Assembly External Surface Identification, Hypothetical Accident Conditions of Transport - Model AOS-050 . . . . . . . . . . . . . . . . . . . . . 3-293 Figure 3-135. Cask Assembly External Surface Identification, Hypothetical Accident Conditions of Transport - Model AOS-100 . . . . . . . . . . . . . . . . . . . . . 3-294 Figure 3-136. Configuration 1, Impact Limiters with 30-Ft. Head-On Drop Deformation -

Model AOS-100A FEA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-297 Figure 3-137. Configuration 2, Impact Limiters with No Deformations -

Model AOS-100A FEA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-298 Figure 3-138. Configuration 3, Impact Limiters with Full Crush Deformations from Three (3) Directions of Drop Applied Simultaneously - Model AOS-100A FEA Model . . . . . . . . . . . . . . . . . . . . . . 3-299 Figure 3-139. Analysis FEA Model, Normal Conditions of Transport - Model AOS-025. . . . . . . . . . . . . . . . 3-302 Figure 3-140. Analysis FEA Model, Normal Conditions of Transport - Model AOS-050. . . . . . . . . . . . . . . . 3-303 Figure 3-141. Analysis FEA Model, Normal Conditions of Transport - Model AOS-100A . . . . . . . . . . . . . . 3-304 Figure 3-142. Analysis FEA Model, Hypothetical Accident Conditions of Transport - Model AOS-025 . . . . 3-305 Figure 3-143. Analysis FEA Model, Hypothetical Accident Conditions of Transport - Model AOS-050 . . . . 3-306 Figure 3-144. Analysis FEA Model, Hypothetical Accident Conditions of Transport - Model AOS-100A . . . 3-307 Figure 3-145. Equivalent Conductivity at Enclosed Gaps 0.0118, 0.0124, 0.0176, 0.0147, 0.0403, and 0.0108 in. - Model AOS-025A. . . . . . . . . . . . . 3-310 Figure 3-146. Equivalent Conductivity at Enclosed Gaps 0.0140, 0.0150, 0.0250, 0.0190, 0.0710, and 0.0120 in. - Model AOS-050A. . . . . . . . . . . . . 3-312 Figure 3-147. Equivalent Conductivity at Enclosed Gaps 0.0170, 0.0200, 0.0290, and 0.0130 in. - Model AOS-100A. . . . . . . . . . . . . . . . . . . . . . . . . . 3-314 Figure 3-148. Equivalent Conductivity at Enclosed Gaps 0.0400 and 0.1310 in. - Model AOS-100A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-315 Figure 3-149. Equivalent Conductivity at Enclosed Gaps 0.0170, 0.0200, 0.0290, and 0.0130 in. - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . 3-318 Radioactive Material Transport Packaging System Safety Analysis Report xv for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Figure 3-150. Equivalent Conductivity at Enclosed Gaps 0.0400 and 0.1310 in. - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-319 Figure 3-151. Air Kinematic Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-321 Figure 3-152. Cask Assembly External Surface Identification, Normal Conditions of Transport - Model AOS-025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-326 Figure 3-153. Surface Convective Coefficients at 100°F Ambient Temperature, Normal Conditions of Transport - Model AOS-025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-328 Figure 3-154. Surface Convective Coefficients at -20°F Ambient Temperature, Normal Conditions of Transport - Model AOS-025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-330 Figure 3-155. Surface Convective Coefficients at -40°F Ambient Temperature, Normal Conditions of Transport - Model AOS-025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-332 Figure 3-156. Cask Assembly External Surface Identification, Normal Conditions of Transport - Model AOS-050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-334 Figure 3-157. Surface Convective Coefficients at 100°F Ambient Temperature for Surfaces 1, 2, 3, and 11, Normal Conditions of Transport - Model AOS-050 . . . . . . . . . . 3-336 Figure 3-158. Surface Convective Coefficients at 100°F Ambient Temperature for Surfaces 4, 5, and 6, Normal Conditions of Transport - Model AOS-050 . . . . . . . . . . . . . 3-337 Figure 3-159. Surface Convective Coefficients at -20°F Ambient Temperature for Surfaces 1, 2, 3, and 11, Normal Conditions of Transport - Model AOS-050 . . . . . . . . . . 3-339 Figure 3-160. Surface Convective Coefficients at -20°F Ambient Temperature for Surfaces 4, 5, and 6, Normal Conditions of Transport - Model AOS-050 . . . . . . . . . . . . . 3-340 Figure 3-161. Surface Convective Coefficients at -40°F Ambient Temperature for Surfaces 1, 2, 3, and 11, Normal Conditions of Transport - Model AOS-050 . . . . . . . . . . 3-342 Figure 3-162. Surface Convective Coefficients at -40°F Ambient Temperature for Surfaces 4, 5, and 6, Normal Conditions of Transport - Model AOS-050 . . . . . . . . . . . . . 3-343 Figure 3-163. Cask Assembly External Surface Identification, Normal Conditions of Transport - Models AOS-100A and AOS-100B . . . . . . . . . . . . . . . . . . 3-345 Figure 3-164. Surface Convective Coefficients at 100°F Ambient Temperature, Normal Conditions of Transport - Models AOS-100A and AOS-100B . . . . . . . . . . . . . . . . . . 3-347 Figure 3-165. Surface Convective Coefficients at -20°F Ambient Temperature, Normal Conditions of Transport - Models AOS-100A and AOS-100B . . . . . . . . . . . . . . . . . . 3-349 Figure 3-166. Surface Convective Coefficients at -40°F Ambient Temperature, Normal Conditions of Transport - Models AOS-100A and AOS-100B . . . . . . . . . . . . . . . . . . 3-351 Figure 3-167. Cask Assembly External Surface Identification, Hypothetical Accident Conditions of Transport - Model AOS-025 . . . . . . . . . . . . . . . . . . . . . 3-352 Figure 3-168. Surface Convective Coefficients at 100°F Ambient Temperature, Fire Condition - Model AOS-025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-354 Figure 3-169. Cask Assembly External Surface Identification, Hypothetical Accident Conditions of Transport - Model AOS-050 . . . . . . . . . . . . . . . . . . . . . 3-356 Figure 3-170. Surface Convective Coefficients at 100°F Ambient Temperature for Surfaces 3, 4, 5, 6, 8, and 11, Hypothetical Accident Conditions of Transport - Model AOS-050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-358 Figure 3-171. Cask Assembly External Surface Identification, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100B. . . . . . . 3-360 Figure 3-172. Surface Convective Coefficients at 100°F Ambient Temperature, Fire Condition - Models AOS-100A and AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-362 Figure 3-173. Surface Convective Coefficients under Fire Condition at 1,475°F Environment - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-364 Figure 3-174. Maximum Decay Heat, 100°F Ambient, 24-Hour Transient with 12-Hour Solar Heat and 12-Hour Cool-Down Cycle, Maximum Temperature for Foam Inside Impact Limiter, Node 9952 - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . 3-371 Figure 3-175. Maximum Decay Heat, 100°F Ambient, 24-Hour Transient with 12-Hour Solar Heat and 12-Hour Cool-Down Cycle, Maximum Temperature for Foam Inside Impact Limiter, Node 9413 - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . 3-372 Figure 3-176. Maximum Decay Heat, 100°F Ambient, 24-Hour Transient with 12-Hour Solar Heat and 12-Hour Cool-Down Cycle, Maximum Temperature for Foam Inside Impact Limiter, Node 9079 - Model AOS-100A . . . . . . . . . . . . . . . . . . . . . . 3-373 xvi Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Figure 3-177. Maximum Decay Heat, 100°F Ambient, 24-Hour Transient with 12-Hour Solar Heat and 12-Hour Cool-Down Cycle, Maximum Temperature for Foam Inside Impact Limiter, Node 9079 - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . 3-374 Figure 3-178. Case 1 - Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-419 Figure 3-179. Case 2 - Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-420 Figure 3-180. Case 3 - Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-421 Figure 3-181. Case 1 - Maximum Principal Stress at Cask Lid Corner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-422 Figure 3-182. Case 2 - Maximum Principal Stress at Cask Lid Corner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-423 Figure 3-183. Case 3 - Maximum Principal Stress at Cask Lid Corner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-424 Figure 3-184. Typical Thermal Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-426 Figure 3-185. Test Cask Modeling Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-428 Figure 3-186. Instrument Cask Inside Pit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-429 Figure 3-187. Temperature versus Time - Heat Cycle for Thermocouples 3 through 12 . . . . . . . . . . . . . . . 3-431 Figure 3-188. Temperature versus Time - Heat Cycle for Thermocouples 10 through 16 . . . . . . . . . . . . . . 3-431 Figure 3-189. Temperature versus Time - Cooling Cycle for Thermocouples 3 through 12 . . . . . . . . . . . . . 3-432 Figure 3-190. Temperature versus Time - Cooling Cycle for Thermocouples 10 through 16 . . . . . . . . . . . . 3-432 Figure 3-191. Verification Analysis - Axisymmetric (2D) Model of Test Cask . . . . . . . . . . . . . . . . . . . . . . . . 3-433 Figure 3-192. Verification Analysis - Heat Cycle Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-434 Figure 3-193. Verification Analysis - Cooling Cycle Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 3-434 Figure 3-194. Comparison Test Data versus Analytical Results - Center, Cask Bottom . . . . . . . . . . . . . . . 3-435 Figure 3-195. Comparison Test Data versus Analytical Results - Center, Inside Cask Lid Surface. . . . . . . 3-435 Figure 3-196. Comparison Test Data versus Analytical Results - Center, Outside Cask Lid Surface . . . . . 3-436 Figure 3-197. Comparison Test Data versus Analytical Results - Middle, Cask Cavity Wall . . . . . . . . . . . . 3-436 Figure 3-198. Comparison Test Data versus Analytical Results - Middle, Outside Wall. . . . . . . . . . . . . . . . 3-437 Figure 3-199. Comparison Test Data versus Analytical Results - Cask Drain Port Area . . . . . . . . . . . . . . . 3-437 Figure 3-200. Comparison Test Data versus Analytical Results - Cask Vent Port Area. . . . . . . . . . . . . . . . 3-438 Figure 3-201. Comparison Test Data versus Analytical Results - Test Port Area . . . . . . . . . . . . . . . . . . . . 3-438 Figure 3-202. Boundary Nodes Excerpt, Copper Seal Locations - Model AOS-100. . . . . . . . . . . . . . . . . . . 3-861 Figure 3-203. Cask Lid Metallic Seal, Test Port, Cask Vent Port, Cask Vent Port Seal, and Cask Vent Port Conical Seal Boundary Node Detail - Model AOS-100 . . . . . . . . . . . . . 3-862 Figure 3-204. Cask Drain Port, Cask Drain Port Seal, and Cask Drain Port Conical Seal Boundary Node Detail - Model AOS-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-863

4. Containment Figure 4-1. Containment Boundary (Cask Lid Metallic Seal Shown) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 Figure 4-2. Typical Corner Cask Cavity Shell Weld Joint Configuration - All Models . . . . . . . . . . . . . . . . . . 4-3 Figure 4-3. Typical Port Plug Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 Figure 4-4. Cask Lid Elastomeric and Metallic Seals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 Figure 4-5. Cask Lid Showing the Cask Lid Metallic Seal Installed -

Attachment by way of Four (4) Screws, and Leak-Testing Hole . . . . . . . . . . . . . . . . . . . . . . . . . 4-7 Figure 4-6. Cask Lid, Cask Lid Attachment Bolt, and Cask Temperature Evaluation Nodes . . . . . . . . . . . . 4-8 Figure 4-7. Impact Response Spectrum for SDOF System -

Half-Sine Pulse Shape, No Damping, All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-50

5. Shielding Evaluation Figure 5-1. Cross-Sectional View of Cask Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 Figure 5-2. Cask Component Half-Height - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 Figure 5-3. MCNP6 Geometry Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9 Figure 5-4. MCNP6 Point Source Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12 Figure 5-5. Shielding Model Tallies for Top Source Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13 Figure 5-6. Shielding Model Tallies for Side Source Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14 Figure 5-7. Shielding Model Tallies for Corner Source Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14 Figure 5-8. MCNP6 Volume Source Location/Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-44 Figure 5-9. Exclusive Use MCNP Tally Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-57 Figure 5-10. Simplified 1D Dose Rate Calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-58 Figure 5-11. Impact Limiter Gap Dose Rate Locations - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . 5-61 Radioactive Material Transport Packaging System Safety Analysis Report xvii for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Figure 5-12. Impact Limiter Gap Dose Rate Locations - Models AOS-100A, AOS-100A-S, and AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-61 Figure 5-13. Impact Limiter Gap Dose Rate Locations -

Ir-194 (Model AOS-050A) and Co-60-C (Models AOS-100A and AOS-100A-S) . . . . . . . . . . . 5-65 Figure 5-14. Example Cross-Sectional View Showing Impact Limiter Recessed Regions -

Models AOS-100A and AOS-100B Shown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-66 Figure 5-15. Transport Package Surface Tallies - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-69 Figure 5-16. Transport Package Surface Tallies - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-71 Figure 5-17. Recessed Region Model - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-74 Figure 5-18. 1-m TI Tallies - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-76 Figure 5-19. 1-m TI Tallies - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-79

6. Criticality Evaluation There are no figures in Chapter 6.
7. Package Operations Figure 7-1. Isometric View - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 Figure 7-2. Isometric View - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3 Figure 7-3. Isometric View - Models AOS-100A and AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 Figure 7-3a. Isometric View - Model AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5 Figure 7-4. Typical Vacuum Drying System Setup and Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11 Figure 7-5. Latch Pin Security Seal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-15 Figure 7-6. Turnbuckle Security Seal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-16 Figure 7-7. Shipping Cage Security Seal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-17 Figure 7-8. Example Dose Rate/Decay Heat Calculation Sheet (Model AOS-100A Non-Exclusive Shipment Version Shown). . . . . . . . . . . . . . . . . . . . . . . . . . 7-27
8. Acceptance Tests and Maintenance Program Figure 8-1. Typical Thermal Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-16 Figure 8-2. Cask Lid Showing the Cask Lid Metallic Seal Installed -

Attachment by way of Four (4) Screws, and Leak-Testing Hole . . . . . . . . . . . . . . . . . . . . . . . . 8-18

9. Quality Assurance Program There are no figures in Chapter 9.

xviii Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

TABLES

1. General Information Table 1-1. AOS Transport Packaging System Dimensions and Maximum Authorized Package Weight - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 Table 1-2. 10 CFR 71.47(a) Activity Limits (All Isotopes Except Ir-192 and Ir-194) - All Models. . . . . . . . 1-14 Table 1-2a. 10 CFR 71.47(a) Ir-192 and Ir-194 Activity Limits - All Models. . . . . . . . . . . . . . . . . . . . . . . . . 1-15 Table 1-2b. 10 CFR 71.47(b) Activity Limits - Model AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . 1-16 Table 1-3. Content Limitations - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16 Table 1-4. AOS Transport Packaging System Analyses Summary - All Models . . . . . . . . . . . . . . . . . . . . 1-18 Table 1-5. AOS Transport Packaging System Certification Drawing List - All Models . . . . . . . . . . . . . . . 1-23
2. Structural Evaluation Table 2-1. Summary of Load Combinations for Normal and Hypothetical Accident Conditions of Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10 Table 2-2. Buckling Stress Values - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 Table 2-3. Pm and Pb Stress Monitoring Section Elements - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18 Table 2-4. Load Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19 Table 2-5. Load Case Designation Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20 Table 2-6. Load Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21 Table 2-7. AOS Transport Packaging System Maximum Authorized Package Weight and Cg Locations - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23 Table 2-8. Applicable Codes and Standards for Design, Fabrication, and Testing of the AOS Transport Packaging System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27 Table 2-9. Stainless Steel Mechanical Properties (Reference [2.5]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-30 Table 2-10. Cask Lid Attachment Bolt Mechanical Properties (Reference [2.5]) . . . . . . . . . . . . . . . . . . . . 2-31 Table 2-11. Tungsten Alloy Material Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-32 Table 2-12. Carbon Steel (SA-105) Material Mechanical Properties (Reference [2.5]). . . . . . . . . . . . . . . . 2-32 Table 2-13. Trunnion Screw Mechanical Properties (Reference [2.5]) - All Models . . . . . . . . . . . . . . . . . . 2-33 Table 2-14. LAST-A-FOAM FR-3700 Series Foam Dynamic Strength, psi, Parallel to Direction of Rise - All Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34 Table 2-15. LAST-A-FOAM FR-3700 Series Foam Dynamic Strength, psi, Perpendicular to Direction of Rise - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-35 Table 2-16. Permanent Dissimilar Metal Joints within Cask Component . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-36 Table 2-17. Temporary Dissimilar Metal Joints within Cask Component . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-36 Table 2-18. Material Selection of Major AOS Transport Packaging System Components (Typical) . . . . . . 2-39 Table 2-19. Examination Program Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-42 Table 2-20. Lifting Load Analysis - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-47 Table 2-21. Average Bearing Stress - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-49 Table 2-22. Maximum Shear Stress, SV - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-50 Table 2-23. Calculation of Shipping Cage Margins of Safety - All Models. . . . . . . . . . . . . . . . . . . . . . . . . . 2-53 Table 2-24. Boundary Forces - Model AOS-025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-62 Table 2-25. Boundary Forces - Model AOS-050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-63 Table 2-26. Boundary Forces - Model AOS-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-64 Table 2-27. Mechanical Connector Impact Load Summary - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-65 Table 2-28. Mechanical Connector Loads for 10g Inertia Force - All Models . . . . . . . . . . . . . . . . . . . . . . . 2-65 Table 2-29. Transport Package Thermal Environment Conditions - All Models . . . . . . . . . . . . . . . . . . . . . 2-74 Table 2-30. Temperature Summary of Normal Conditions of Transport - All Models . . . . . . . . . . . . . . . . . 2-76 Table 2-31. Maximum Cask Cavity Pressure Due to Normal Conditions of Transport - All Models . . . . . . 2-76 Table 2-32. Stresses Resulting from Load Combinations Associated with Heat Environment under Normal Conditions of Transport - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-79 Table 2-33. Stresses Resulting from Load Combinations Associated with Cold Environment under Normal Conditions of Transport - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-79 Table 2-34. Free-Drop Distance - All Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-82 Table 2-35. Maximum Displacements in Free Drops, Normal Conditions of Transport - All Models . . . . . . 2-82 Table 2-36. Load Cases under Normal Conditions of Transport Structural Evaluation Results - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-87 Radioactive Material Transport Packaging System Safety Analysis Report xix for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 2-37. Load Combinations under Normal Conditions of Transport Structural Evaluation Results - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-88 Table 2-38. Min MS for Normal Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . 2-90 Table 2-39. Min MS for Normal Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . 2-90 Table 2-40. Min MS for Normal Conditions of Transport - Model AOS-100A and AOS-100A-S . . . . . . . . . 2-91 Table 2-41. Min MS for Normal Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . 2-91 Table 2-42. Side-Drop Analysis and Test, Radial Displacement at Impact Limiters 1 and 2 - AOS-165A Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-114 Table 2-43. Support Displacements - AOS-165A Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-115 Table 2-44. Slap-Down Drop Analysis and Test, Radial Displacement at Impact Limiters 1 and 2 - AOS-165A Prototype . . . . . . . . . . . . . . . . 2-118 Table 2-45. 9-m (30-ft.) Drop Analyses Conducted upon Each Cask Model . . . . . . . . . . . . . . . . . . . . . . . 2-121 Table 2-46. Shipping Cage Weights Used in LIBRA-AGS Dynamic Response Analyses . . . . . . . . . . . . . 2-137 Table 2-47. Loads and Accelerations Determined in Drop Analysis Impact - Model AOS-025 . . . . . . . . . 2-139 Table 2-48. Loads and Accelerations Applied in Cask Stress Analyses - Model AOS-025. . . . . . . . . . . . 2-140 Table 2-49. Loads Determined in Drop Impact Analyses - Model AOS-050 . . . . . . . . . . . . . . . . . . . . . . . 2-141 Table 2-50. Loads and Accelerations Applied in Cask Stress Analyses - Model AOS-050. . . . . . . . . . . . 2-142 Table 2-51. Loads Determined in Drop Analysis - Model AOS-100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-143 Table 2-52. Loads and Accelerations Applied in Cask Stress Analyses - Model AOS-100. . . . . . . . . . . . 2-144 Table 2-53. Temperature Summary of Fire Condition - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-148 Table 2-54. Maximum Cask Cavity Pressure Due to Fire Condition - All Models . . . . . . . . . . . . . . . . . . . 2-148 Table 2-55. Load Cases Associated with Thermal Stresses under Hypothetical Accident Conditions of Transport - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . 2-150 Table 2-56. Load Combinations Associated with Thermal Stresses under Hypothetical Accident Conditions of Transport - All Models. . . . . . . . . . . . . . . . . . . . . 2-151 Table 2-57. Stresses Resulting from Additional Increased External Pressure under Hypothetical Accident Conditions of Transport - All Models. . . . . . . . . . . . . . . . . . . . . 2-152 Table 2-58. Load Cases Associated with Allowable Stresses under Hypothetical Accident Conditions of Transport - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . 2-154 Table 2-59. Load Combinations Associated with Allowable Stresses under Hypothetical Accident Conditions of Transport - All Models. . . . . . . . . . . . . . . . . . . . . 2-155 Table 2-60. Min MS for Hypothetical Accident Conditions of Transport - Model AOS-025A . . . . . . . . . . . 2-156 Table 2-61. Min MS for Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . 2-156 Table 2-62. Min MS for Hypothetical Accident Conditions of Transport -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-157 Table 2-63. Min MS for Hypothetical Accident Conditions of Transport - Model AOS-100B . . . . . . . . . . . 2-157 Table 2-64. Load Cases Associated with Allowable Stresses under Normal Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . 2-162 Table 2-65. Load Combinations Associated with Allowable Stresses under Normal Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . 2-163 Table 2-66. Load Case 101, 100°F Ambient, Maximum Decay Heat, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-164 Table 2-67. Load Case 102, 100°F Ambient, Maximum Decay Heat, Maximum Insolation, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-166 Table 2-68. Load Case 103, -20°F Ambient, Zero Decay Heat, Zero Insolation, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-168 Table 2-69. Load Case 104, -40°F Ambient, Zero Decay Heat, Zero Insolation, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-170 Table 2-70. Load Case 105, -40°F Ambient, Maximum Decay Heat, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-172 Table 2-71. Load Case 106, -20°F Ambient, Maximum Decay Heat, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-174 Table 2-72. Load Case 201, Internal Design Pressure, 207 kPa (30 psia),

Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-176 Table 2-73. Load Case 202, Minimum External Pressure, 24 kPa (3.5 psia),

Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-178 Table 2-74. Load Case 203, Maximum Increased External Pressure, 140 kPa (20 psia),

Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-180 xx Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 2-75. Load Case 204, Additional Increased External Pressure, 2 MPa (290 psia),

Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-182 Table 2-76. Load Case 211, Fabrication Stress, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-184 Table 2-77. Load Case 215, Compression Load (5x weight),

Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-186 Table 2-78. Load Case 216, Rod Drop onto Cask, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-188 Table 2-79. Load Case 221, Forward 10g Vibration Inertia Load, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-190 Table 2-80. Load Case 222, Lateral 5g Vibration Inertia Load, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-192 Table 2-81. Load Case 223, Vertical 2g Vibration Inertia Load, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-194 Table 2-82. Load Case 231, 4-ft. Head-On Drop, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-196 Table 2-83. Load Case 232, 30-ft. Head-On Drop Impact Test, Normal Conditions, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-198 Table 2-84. Load Combination 101, Hot Environment, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-200 Table 2-85. Load Combination 102, Cold Environment, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-202 Table 2-86. Load Combination 103, Increased External Pressure, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-204 Table 2-87. Load Combination 104, Minimum External Pressure, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-206 Table 2-88. Load Combination 105, Cold Environment with Maximum Decay Heat, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-208 Table 2-89. Load Combination 106, Maximum Pressure, Hot Environment, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-210 Table 2-90. Load Combination 107, Maximum Pressure, Cold Environment, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-212 Table 2-91. Load Combination 215, Compression Load, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-214 Table 2-92. Load Combination 216, Rod Drop, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-216 Table 2-93. Load Combination 217, Rod Drop, Cold Environment, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-218 Table 2-94. Load Combination 221, Forward Vibration, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-220 Table 2-95. Load Combination 222, Lateral Vibration, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-222 Table 2-96. Load Combination 223, Vertical Vibration, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-224 Table 2-97. Load Combination 224, Forward Vibration at Cold Temperature, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-226 Table 2-98. Load Combination 225, Lateral Vibration at Cold Temperature, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-228 Table 2-99. Load Combination 226, Vertical Vibration at Cold Temperature, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-230 Table 2-100. Load Combination 231, 4-ft. Head-On Drop, Normal Conditions, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-232 Table 2-101. Load Combination 232, 30-ft. Head-On Drop, Normal Conditions (Impact Test),

Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-234 Table 2-102. Load Combination 233, 4-ft. Drop at Cold Temperature, Normal Conditions of Transport - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-236 Table 2-103. Load Cases Associated with Allowable Stresses under Hypothetical Accident Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . 2-238 Radioactive Material Transport Packaging System Safety Analysis Report xxi for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 2-104. Load Combinations Associated with Allowable Stresses under Hypothetical Accident Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . 2-239 Table 2-105. Load Case 111, Fire at 30 Minutes, 1,475°F Ambient, Maximum Decay Heat, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . 2-240 Table 2-106. Load Case 112, Post Fire at 60 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . 2-242 Table 2-107. Load Case 112, Post Fire at 90 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . 2-244 Table 2-108. Load Case 112, Post Fire at 120 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . 2-246 Table 2-109. Load Case 112, Post Fire at 150 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . 2-248 Table 2-110. Load Case 112, Post Fire at 180 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . 2-250 Table 2-111. Load Case 301, 30-ft. Head-On Drop, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . 2-252 Table 2-112. Load Case 302, 30-ft. Side Drop + Slap-Down, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . 2-254 Table 2-113. Load Case 303, 30-ft. Cg/Corner Drop, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . 2-256 Table 2-114. Load Case 304, 30-ft. Head-On Drop at -40°F, Low Temperature, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . 2-258 Table 2-115. Load Case 305, 30-ft. Side Drop + Slap-Down at -40°F, Low Temperature, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . 2-260 Table 2-116. Load Case 306, 30-ft. Cg/Corner Drop at -40°F, Low Temperature, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . 2-262 Table 2-117. Load Case 311, 4-ft. Drop onto Rod, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . 2-264 Table 2-118. Load Combination 301, Head-On Drop Orientation, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . 2-266 Table 2-119. Load Combination 302, Side Drop Orientation, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . 2-268 Table 2-120. Load Combination 303, Cg/Corner Drop Orientation, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . 2-270 Table 2-121. Load Combination 304, Head-On Drop Orientation at -40°F, Cold Environment, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . 2-272 Table 2-122. Load Combination 305, Side Drop Orientation at -40°F, Cold Environment, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . 2-274 Table 2-123. Load Combination 306, Cg/Corner Drop Orientation at -40°F, Cold Environment, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . 2-276 Table 2-124. Load Combination 310, Additional Increased External Pressure (290 psi),

Hypothetical Accident Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . 2-278 Table 2-125. Load Combination 311, 4-ft. Drop onto Rod, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . 2-280 Table 2-126. Load Combination 312, 4-ft. Drop onto Rod at -40°F, Cold Environment, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . 2-282 Table 2-127. Load Combination 350, Fire at 30 Minutes, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . 2-284 Table 2-128. Load Combination 351, Post Fire at 60 Minutes, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . 2-286 Table 2-129. Load Combination 352, Post Fire at 90 Minutes, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . 2-288 Table 2-130. Load Combination 353, Post Fire at 120 Minutes, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . 2-290 Table 2-131. Load Combination 354, Post Fire at 150 Minutes, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . 2-292 Table 2-132. Load Combination 355, Post Fire at 180 Minutes, Hypothetical Accident Conditions of Transport - Model AOS-025A . . . . . . . . . . . . . . . . . . . . 2-294 xxii Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 2-133. Load Cases Associated with Allowable Stresses under Normal Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . 2-296 Table 2-134. Load Combinations Associated with Allowable Stresses under Normal Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . 2-297 Table 2-135. Load Case 101, 100°F Ambient, Maximum Decay Heat, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-298 Table 2-136. Load Case 102, 100°F Ambient, Maximum Decay Heat, Maximum Insolation, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-300 Table 2-137. Load Case 103, -20°F Ambient, Zero Decay Heat, Zero Insolation, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-302 Table 2-138. Load Case 104, -40°F Ambient, Zero Decay Heat, Zero Insolation, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-304 Table 2-139. Load Case 105, -40°F Ambient, Maximum Decay Heat, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-306 Table 2-140. Load Case 106, -20°F Ambient, Maximum Decay Heat, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-308 Table 2-141. Load Case 201, Internal Design Pressure, 414 kPa (60 psia),

Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-310 Table 2-142. Load Case 202, Minimum External Pressure, 24 kPa (3.5 psia),

Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-312 Table 2-143. Load Case 203, Maximum Increased External Pressure, 140 kPa (20 psia),

Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-314 Table 2-144. Load Case 204, Additional Increased External Pressure, 2 MPa (290 psia),

Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-316 Table 2-145. Load Case 211, Fabrication Stress, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-318 Table 2-146. Load Case 215, Compression Load (5x weight),

Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-320 Table 2-147. Load Case 216, Rod Drop onto Cask, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-322 Table 2-148. Load Case 221, Forward 10g Vibration Inertia Load, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-324 Table 2-149. Load Case 222, Lateral 5g Vibration Inertia Load, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-326 Table 2-150. Load Case 223, Vertical 2g Vibration Inertia Load, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-328 Table 2-151. Load Case 231, 4-ft. Head-On Drop, Normal Conditions of Transport - Model AOS-050A . . 2-330 Table 2-152. Load Case 232, 30-ft. Head-On Drop Impact Test, Normal Conditions, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-332 Table 2-153. Load Combination 101, Hot Environment, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-334 Table 2-154. Load Combination 102, Cold Environment, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-336 Table 2-155. Load Combination 103, Increased External Pressure, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-338 Table 2-156. Load Combination 104, Minimum External Pressure, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-340 Table 2-157. Load Combination 105, Cold Environment with Maximum Decay Heat, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-342 Table 2-158. Load Combination 106, Maximum Pressure, Hot Environment, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-344 Table 2-159. Load Combination 107, Maximum Pressure, Cold Environment, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-346 Table 2-160. Load Combination 215, Compression Load, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-348 Table 2-161. Load Combination 216, Rod Drop, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-350 Table 2-162. Load Combination 217, Rod Drop, Cold Environment, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-352 Radioactive Material Transport Packaging System Safety Analysis Report xxiii for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 2-163. Load Combination 221, Forward Vibration, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-354 Table 2-164. Load Combination 222, Lateral Vibration, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-356 Table 2-165. Load Combination 223, Vertical Vibration, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-358 Table 2-166. Load Combination 224, Forward Vibration at Cold Temperature, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-360 Table 2-167. Load Combination 225, Lateral Vibration at Cold Temperature, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-362 Table 2-168. Load Combination 226, Vertical Vibration at Cold Temperature, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-364 Table 2-169. Load Combination 231, 4-ft. Head-On Drop, Normal Conditions, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-366 Table 2-170. Load Combination 232, 30-ft. Head-On Drop, Normal Conditions (Impact Test),

Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-368 Table 2-171. Load Combination 233, 4-ft. Drop at Cold Temperature, Normal Conditions of Transport - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-370 Table 2-172. Load Cases Associated with Allowable Stresses under Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . 2-372 Table 2-173. Load Combinations Associated with Allowable Stresses under Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . 2-373 Table 2-174. Load Case 111, Fire at 30 Minutes, 1,475°F Ambient, Maximum Decay Heat, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . 2-374 Table 2-175. Load Case 112, Post Fire at 60 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . 2-376 Table 2-176. Load Case 112, Post Fire at 90 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . 2-378 Table 2-177. Load Case 112, Post Fire at 120 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . 2-380 Table 2-178. Load Case 112, Post Fire at 150 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . 2-382 Table 2-179. Load Case 112, Post Fire at 180 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . 2-384 Table 2-180. Load Case 301, 30-ft. Head-On Drop, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . 2-386 Table 2-181. Load Case 302, 30-ft. Side Drop + Slap-Down, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . 2-388 Table 2-182. Load Case 303, 30-ft. Cg/Corner Drop, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . 2-390 Table 2-183. Load Case 304, 30-ft. Head-On Drop at -40°F, Low Temperature, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . 2-392 Table 2-184. Load Case 305, 30-ft. Side Drop + Slap-Down at -40°F, Low Temperature, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . 2-394 Table 2-185. Load Case 306, 30-ft. Cg/Corner Drop at -40°F, Low Temperature, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . 2-396 Table 2-186. Load Case 311, 4-ft. Drop onto Rod, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . 2-398 Table 2-187. Load Combination 301, Head-On Drop Orientation, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . 2-400 Table 2-188. Load Combination 302, Side Drop Orientation, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . 2-402 Table 2-189. Load Combination 303, Cg/Corner Drop Orientation, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . 2-404 Table 2-190. Load Combination 304, Head-On Drop Orientation at -40°F, Cold Environment, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . 2-406 Table 2-191. Load Combination 305, Side Drop Orientation at -40°F, Cold Environment, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . 2-408 xxiv Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 2-192. Load Combination 306, Cg/Corner Drop Orientation at -40°F, Cold Environment, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . 2-410 Table 2-193. Load Combination 310, Additional Increased External Pressure (290 psi),

Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . 2-412 Table 2-194. Load Combination 311, 4-ft. Drop onto Rod, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . 2-414 Table 2-195. Load Combination 312, 4-ft. Drop onto Rod at -40°F, Cold Environment, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . 2-416 Table 2-196. Load Combination 350, Fire at 30 Minutes, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . 2-418 Table 2-197. Load Combination 351, Post Fire at 60 Minutes, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . 2-420 Table 2-198. Load Combination 352, Post Fire at 90 Minutes, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . 2-422 Table 2-199. Load Combination 353, Post Fire at 120 Minutes, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . 2-424 Table 2-200. Load Combination 354, Post Fire at 150 Minutes, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . 2-426 Table 2-201. Load Combination 355, Post Fire at 180 Minutes, Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . 2-428 Table 2-202. Load Cases Associated with Allowable Stresses under Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . 2-431 Table 2-203. Load Combinations Associated with Allowable Stresses under Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . 2-432 Table 2-204. Load Case 101, 100°F Ambient, Maximum Decay Heat, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-433 Table 2-205. Load Case 102, 100°F Ambient, Maximum Decay Heat, Maximum Insolation, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-435 Table 2-206. Load Case 103, -20°F Ambient, Zero Decay Heat, Zero Insolation, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-437 Table 2-207. Load Case 104, -40°F Ambient, Zero Decay Heat, Zero Insolation, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-439 Table 2-208. Load Case 105, -40°F Ambient, Maximum Decay Heat, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-441 Table 2-209. Load Case 106, -20°F Ambient, Maximum Decay Heat, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-443 Table 2-210. Load Case 201, Internal Design Pressure, 1,930 kPa (280 psia),

Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-445 Table 2-211. Load Case 202, Minimum External Pressure, 24 kPa (3.5 psia),

Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-447 Table 2-212. Load Case 203, Maximum Increased External Pressure, 140 kPa (20 psia),

Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-449 Table 2-213. Load Case 204, Additional Increased External Pressure, 2 MPa (290 psia),

Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-451 Table 2-214. Load Case 211, Fabrication Stress, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-453 Table 2-215. Load Case 215, Compression Load (5x weight),

Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-455 Table 2-216. Load Case 216, Rod Drop onto Cask, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-457 Table 2-217. Load Case 221, Forward 10g Vibration Inertia Load, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-459 Table 2-218. Load Case 222, Lateral 5g Vibration Inertia Load, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-461 Table 2-219. Load Case 223, Vertical 2g Vibration Inertia Load, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-463 Table 2-220. Load Case 231, 3-ft. Head-On Drop, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-465 Radioactive Material Transport Packaging System Safety Analysis Report xxv for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 2-221. Load Case 232, 30-ft. Head-On Drop Impact Test, Normal Conditions, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-467 Table 2-222. Load Combination 101, Hot Environment, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-469 Table 2-223. Load Combination 102, Cold Environment, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-471 Table 2-224. Load Combination 103, Increased External Pressure, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-473 Table 2-225. Load Combination 104, Minimum External Pressure, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-475 Table 2-226. Load Combination 105, Cold Environment with Maximum Decay Heat, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-477 Table 2-227. Load Combination 106, Maximum Pressure, Hot Environment, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-479 Table 2-228. Load Combination 107, Maximum Pressure, Cold Environment, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-481 Table 2-229. Load Combination 215, Compression Load, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-483 Table 2-230. Load Combination 216, Rod Drop, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-485 Table 2-231. Load Combination 217, Rod Drop, Cold Environment, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-487 Table 2-232. Load Combination 221, Forward Vibration, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-489 Table 2-233. Load Combination 222, Lateral Vibration, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-491 Table 2-234. Load Combination 223, Vertical Vibration, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-493 Table 2-235. Load Combination 224, Forward Vibration at Cold Temperature, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-495 Table 2-236. Load Combination 225, Lateral Vibration at Cold Temperature, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-497 Table 2-237. Load Combination 226, Vertical Vibration at Cold Temperature, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-499 Table 2-238. Load Combination 231, 3-ft. Head-On Drop, Normal Conditions, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-501 Table 2-239. Load Combination 233, 3-ft. Drop at Cold Temperature, Normal Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . 2-503 Table 2-240. Load Cases Associated with Allowable Stresses under Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . 2-505 Table 2-241. Load Combinations Associated with Allowable Stresses under Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . 2-506 Table 2-242. Load Case 111, Fire at 30 Minutes, 1,475°F Ambient, Maximum Decay Heat, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . 2-507 Table 2-243. Load Case 112, Post Fire at 60 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . 2-509 Table 2-244. Load Case 112, Post Fire at 90 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . 2-511 Table 2-245. Load Case 112, Post Fire at 120 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Hypothetical Accident Conditions of Transport -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-513 Table 2-246. Load Case 112, Post Fire at 150 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Hypothetical Accident Conditions of Transport -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-515 Table 2-247. Load Case 112, Post Fire at 180 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Hypothetical Accident Conditions of Transport -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-517 Table 2-248. Load Case 301, 30-ft. Head-On Drop, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-519 xxvi Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 2-249. Load Case 302, 30-ft. Side Drop + Slap-Down, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . 2-521 Table 2-250. Load Case 303, 30-ft. Cg/Corner Drop, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . 2-523 Table 2-251. Load Case 304, 30-ft. Head-On Drop at -40°F, Low Temperature, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . 2-525 Table 2-252. Load Case 305, 30-ft. Side Drop + Slap-Down at -40°F, Low Temperature, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . 2-527 Table 2-253. Load Case 306, 30-ft. Cg/Corner Drop at -40°F, Low Temperature, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . 2-529 Table 2-254. Load Case 311, 4-ft. Drop onto Rod, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-531 Table 2-255. Load Combination 301, Head-On Drop Orientation, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . 2-533 Table 2-256. Load Combination 302, Side Drop Orientation, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . 2-535 Table 2-257. Load Combination 303, Cg/Corner Drop Orientation, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . 2-537 Table 2-258. Load Combination 304, Head-On Drop Orientation at -40°F, Cold Environment, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . 2-539 Table 2-259. Load Combination 305, Side Drop Orientation at -40°F, Cold Environment, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . 2-541 Table 2-260. Load Combination 306, Cg/Corner Drop Orientation at -40°F, Cold Environment, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . 2-543 Table 2-261. Load Combination 310, Additional Increased External Pressure (290 psi),

Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . 2-545 Table 2-262. Load Combination 311, 4-ft. Drop onto Rod, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-547 Table 2-263. Load Combination 312, 4-ft. Drop onto Rod at -40°F, Cold Environment, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . 2-549 Table 2-264. Load Combination 350, Fire at 30 Minutes, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-551 Table 2-265. Load Combination 351, Post Fire at 60 Minutes, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . 2-553 Table 2-266. Load Combination 352, Post Fire at 90 Minutes, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . 2-555 Table 2-267. Load Combination 353, Post Fire at 120 Minutes, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . 2-557 Table 2-268. Load Combination 354, Post Fire at 150 Minutes, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . 2-559 Table 2-269. Load Combination 355, Post Fire at 180 Minutes, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . 2-561 Table 2-270. Load Cases Associated with Allowable Stresses under Normal Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . 2-564 Table 2-271. Load Combinations Associated with Allowable Stresses under Normal Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . 2-565 Table 2-272. Load Case 101, 100°F Ambient, Maximum Decay Heat, Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-566 Table 2-273. Load Case 102, 100°F Ambient, Maximum Decay Heat, Maximum Insolation, Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-568 Table 2-274. Load Case 103, -20°F Ambient, Zero Decay Heat, Zero Insolation, Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-570 Table 2-275. Load Case 104, -40°F Ambient, Zero Decay Heat, Zero Insolation, Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-572 Table 2-276. Load Case 105, -40°F Ambient, Maximum Decay Heat, Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-574 Table 2-277. Load Case 106, -20°F Ambient, Maximum Decay Heat, Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-576 Radioactive Material Transport Packaging System Safety Analysis Report xxvii for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 2-278. Load Case 201, Internal Design Pressure, 1,930 kPa (280 psia),

Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-578 Table 2-279. Load Case 202, Minimum External Pressure, 24 kPa (3.5 psia),

Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-580 Table 2-280. Load Case 203, Maximum Increased External Pressure, 140 kPa (20 psia),

Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-582 Table 2-281. Load Case 204, Additional Increased External Pressure, 2 MPa (290 psia),

Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-584 Table 2-282. Load Case 211, Fabrication Stress, Normal Conditions of Transport - Model AOS-100B . . . 2-586 Table 2-283. Load Case 215, Compression Load (5x weight),

Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-588 Table 2-284. Load Case 216, Rod Drop onto Cask, Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-590 Table 2-285. Load Case 221, Forward 10g Vibration Inertia Load, Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-592 Table 2-286. Load Case 222, Lateral 5g Vibration Inertia Load, Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-594 Table 2-287. Load Case 223, Vertical 2g Vibration Inertia Load, Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-596 Table 2-288. Load Case 231, 3-ft. Head-On Drop, Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-598 Table 2-289. Load Case 232, 30-ft. Head-On Drop Impact Test, Normal Conditions, Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-600 Table 2-290. Load Combination 101, Hot Environment, Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-602 Table 2-291. Load Combination 102, Cold Environment, Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-604 Table 2-292. Load Combination 103, Increased External Pressure, Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-606 Table 2-293. Load Combination 104, Minimum External Pressure, Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-608 Table 2-294. Load Combination 105, Cold Environment with Maximum Decay Heat, Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-610 Table 2-295. Load Combination 106, Maximum Pressure, Hot Environment, Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-612 Table 2-296. Load Combination 107, Maximum Pressure, Cold Environment, Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-614 Table 2-297. Load Combination 215, Compression Load, Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-616 Table 2-298. Load Combination 216, Rod Drop, Normal Conditions of Transport - Model AOS-100B . . . . 2-618 Table 2-299. Load Combination 217, Rod Drop, Cold Environment, Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-620 Table 2-300. Load Combination 221, Forward Vibration, Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-622 Table 2-301. Load Combination 222, Lateral Vibration, Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-624 Table 2-302. Load Combination 223, Vertical Vibration, Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-626 Table 2-303. Load Combination 224, Forward Vibration at Cold Temperature, Normal Conditions of Transport - Models AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-628 Table 2-304. Load Combination 225, Lateral Vibration at Cold Temperature, Normal Conditions of Transport - Models AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-630 Table 2-305. Load Combination 226, Vertical Vibration at Cold Temperature, Normal Conditions of Transport - Models AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-632 Table 2-306. Load Combination 231, 3-ft. Head-On Drop, Normal Conditions, Normal Conditions of Transport - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-634 Table 2-307. Load Combination 233, 3-ft. Drop at Cold Temperature, Normal Conditions of Transport - Models AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-636 xxviii Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 2-308. Load Cases Associated with Allowable Stresses under Hypothetical Accident Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . 2-638 Table 2-309. Load Combinations Associated with Allowable Stresses under Hypothetical Accident Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . 2-639 Table 2-310. Load Case 111, Fire at 30 Minutes, 1,475°F Ambient, Maximum Decay Heat, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . 2-640 Table 2-311. Load Case 112, Post Fire at 60 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . 2-642 Table 2-312. Load Case 112, Post Fire at 90 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . 2-644 Table 2-313. Load Case 112, Post Fire at 120 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . 2-646 Table 2-314. Load Case 112, Post Fire at 150 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . 2-648 Table 2-315. Load Case 112, Post Fire at 180 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . 2-650 Table 2-316. Load Case 301, 30-ft. Head-On Drop, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . 2-652 Table 2-317. Load Case 302, 30-ft. Side Drop + Slap-Down, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . 2-654 Table 2-318. Load Case 303, 30-ft. Cg/Corner Drop, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . 2-656 Table 2-319. Load Case 304, 30-ft. Head-On Drop at -40°F, Low Temperature, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . 2-658 Table 2-320. Load Case 305, 30-ft. Side Drop + Slap-Down at -40°F, Low Temperature, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . 2-660 Table 2-321. Load Case 306, 30-ft. Cg/Corner Drop at -40°F, Low Temperature, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . 2-662 Table 2-322. Load Case 311, 4-ft. Drop onto Rod, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . 2-664 Table 2-323. Load Combination 301, Head-On Drop Orientation, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . 2-666 Table 2-324. Load Combination 302, Side Drop Orientation, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . 2-668 Table 2-325. Load Combination 303, Cg/Corner Drop Orientation, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . 2-670 Table 2-326. Load Combination 304, Head-On Drop Orientation at -40°F, Cold Environment, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . 2-672 Table 2-327. Load Combination 305, Side Drop Orientation at -40°F, Cold Environment, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . 2-674 Table 2-328. Load Combination 306, Cg/Corner Drop Orientation at -40°F, Cold Environment, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . 2-676 Table 2-329. Load Combination 310, Additional Increased External Pressure (290 psi),

Hypothetical Accident Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . 2-678 Table 2-330. Load Combination 311, 4-ft. Drop onto Rod, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . 2-680 Table 2-331. Load Combination 312, 4-ft. Drop onto Rod at -40°F, Cold Environment, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . 2-682 Table 2-332. Load Combination 350, Fire at 30 Minutes, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . 2-684 Table 2-333. Load Combination 351, Post Fire at 60 Minutes, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . 2-686 Table 2-334. Load Combination 352, Post Fire at 90 Minutes, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . 2-688 Table 2-335. Load Combination 353, Post Fire at 120 Minutes, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . 2-690 Table 2-336. Load Combination 354, Post Fire at 150 Minutes, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . 2-692 Radioactive Material Transport Packaging System Safety Analysis Report xxix for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 2-337. Load Combination 355, Post Fire at 180 Minutes, Hypothetical Accident Conditions of Transport - Model AOS-100B . . . . . . . . . . . . . . . . . . . . 2-694 Table 2-338. STIF1 Element Property Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-912 Table 2-339. Generalized Stiffness Properties - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-919 Table 2-340. Generalized Pallet and Cask Mass Properties - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . 2-919 Table 2-341. AGS Analysis - Model AOS-025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-922 Table 2-342. AGS Analysis - Model AOS-050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-923 Table 2-343. AGS Analysis - Model AOS-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-923 Table 2-344. Increased Ground Impact Forces - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-923 Table 2-345. Model AOS-100 Cable Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-931 Table 2-346. Maximum von Mises Stress in Shipping Cage Frame - Model AOS-050A. . . . . . . . . . . . . . . 2-951 Table 2-347. Maximum von Mises Stress in Lifting Bar - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . 2-952 Table 2-348. Bolt Stresses - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-952 Table 2-349. Contact Forces - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-952 Table 2-350. Convergence of Elastic Stability Analysis, Mode 1 - Model AOS-050A . . . . . . . . . . . . . . . . . 2-954 Table 2-351. Maximum von Mises Stress in Shipping Cage Frame - Model AOS-100 . . . . . . . . . . . . . . . . 2-959 Table 2-352. Maximum von Mises Stress in Lifting Bar - Model AOS-100 . . . . . . . . . . . . . . . . . . . . . . . . . 2-959 Table 2-353. Displacements and Forces within Contact Elements - Model AOS-100. . . . . . . . . . . . . . . . . 2-963 Table 2-354. Displacements and Forces within Bolt Elements - Model AOS-100 . . . . . . . . . . . . . . . . . . . . 2-963 Table 2-355. Convergence of Elastic Stability Analysis, Mode 1 - Model AOS-100 . . . . . . . . . . . . . . . . . . 2-964 Table 2-356. Convergence of Elastic Stability Analysis, Mode 2 - Model AOS-100 . . . . . . . . . . . . . . . . . . 2-965 Table 2-357. Additional Required Shoring Components -

Models AOS-050A, AOS-100A, and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-967 Table 2-358. Stress Criteria - Models AOS-050A, AOS-100A, and AOS-100A-S . . . . . . . . . . . . . . . . . . . . 2-970 Table 2-359. Axial Shielding Plate ANSYS Model Loads - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . 2-972 Table 2-360. Axial Shielding Plate Stress Analysis Results during Hypothetical Accident Conditions of Transport - Model AOS-050A . . . . . . . . . . . . . . . . . . . . 2-973 Table 2-361. Axial Shielding Plate ANSYS Model Loads - Models AOS-100A and AOS-100A-S . . . . . . . 2-978 Table 2-362. Axial Shielding Plate Stress Analysis Results during Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . 2-979 Table 2-363. Cavity Spacer Plate ANSYS Model Loads - Models AOS-100A and AOS-100A-S . . . . . . . . 2-982 Table 2-364. Cavity Spacer Plate Stress Analysis Results during Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100A-S . . . . . 2-983

3. Thermal Evaluation Table 3-1. Transport Package Thermal Environment Conditions - All Models . . . . . . . . . . . . . . . . . . . . . . 3-2 Table 3-2. Contents Decay Heat - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 Table 3-3. Maximum Temperature Summary, Normal Conditions of Transport - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 Table 3-4. Maximum Temperature Summary, Hypothetical Accident Conditions of Transport (Condition 3) - All Models . . . . . . . . . . . . . . . . . 3-7 Table 3-5. Type 304 Stainless Steel (SS304) Thermophysical Properties (Reference [3.16]) . . . . . . . . . 3-13 Table 3-6. Tungsten Alloy Thermophysical Properties (Reference [3.3]) -

Models AOS-025A, AOS-050A, AOS-100A, and AOS-100A-S. . . . . . . . . . . . . . . . . . . . . . . . . 3-14 Table 3-7. Carbon Steel Properties - Model AOS-100B (Reference [3.16]). . . . . . . . . . . . . . . . . . . . . . . 3-15 Table 3-8. Air Thermophysical Properties (Reference [3.4]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17 Table 3-9. LAST-A-FOAM FR-3700 Series Foam Thermophysical Properties - All Models (Reference [3.19]), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18 Table 3-10. Heat Flux Values - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-24 Table 3-11. Thermal Properties Used in Analysis as Function of Temperature, with Respect to the Air Gaps - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-29 Table 3-12. Cask Assembly External Surface Orientation and Size, Normal Conditions of Transport - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-31 Table 3-13. Cask Assembly External Surface Orientation and Size, Fire Condition - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-33 Table 3-14. Polynomial Coefficients Used in Equivalent Convective Property of Ambient Temperature and External Surface, Normal Conditions of Transport - All Models. . . . . . . . . . 3-36 xxx Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 3-15. Polynomial Coefficients Used in Equivalent Convective Property of Ambient Temperature and External Surface, Steady-State Leading to the Fire and Cool-Down Conditions - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-39 Table 3-16. Solar Heat Application to Cask Outside Surfaces - All Models. . . . . . . . . . . . . . . . . . . . . . . . . 3-42 Table 3-17. Temperature Monitoring Points by Condition - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . 3-54 Table 3-18. Normal Conditions of Transport Thermal Evaluation Results - Model AOS-025A . . . . . . . . . . 3-56 Table 3-19. Load Case 101, 100°F Ambient, Maximum Decay Heat - Model AOS-025A . . . . . . . . . . . . . . 3-58 Table 3-20. Load Case 102, 100°F Ambient, Maximum Decay Heat, Maximum Insolation -

Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-62 Table 3-21. Load Case 103, -20°F Ambient, Zero Decay Heat, Zero Insolation - Model AOS-025A . . . . . 3-66 Table 3-22. Load Case 104, -40°F Ambient, Zero Decay Heat, Zero Insolation - Model AOS-025A . . . . . 3-68 Table 3-23. Load Case 105, -40°F Ambient, Maximum Decay Heat - Model AOS-025A . . . . . . . . . . . . . . 3-70 Table 3-24. Load Case 106, -20°F Ambient, Maximum Decay Heat - Model AOS-025A . . . . . . . . . . . . . . 3-74 Table 3-25. Fire Condition Thermal Evaluation Results - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . 3-78 Table 3-26. Load Case 111, Fire at 30 Minutes, 1,475°F Ambient, Maximum Decay Heat -

Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-83 Table 3-27. Load Case 112, Post Fire at 60 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-87 Table 3-28. Load Case 112, Post Fire at 90 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-91 Table 3-29. Load Case 112, Post Fire at 120 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-95 Table 3-30. Load Case 112, Post Fire at 150 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-99 Table 3-31. Load Case 112, Post Fire at 180 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-103 Table 3-32. Temperature Monitoring Points, by Condition - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . 3-107 Table 3-33. Normal Conditions of Transport Thermal Evaluation Results - Model AOS-050A . . . . . . . . . 3-109 Table 3-34. Load Case 101, 100°F Ambient, Maximum Decay Heat - Model AOS-050A . . . . . . . . . . . . . 3-111 Table 3-35. Load Case 102, 100°F Ambient, Maximum Decay Heat, Maximum Insolation -

Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-115 Table 3-36. Load Case 103, -20°F Ambient, Zero Decay Heat, Zero Insolation - Model AOS-050A . . . . 3-119 Table 3-37. Load Case 104, -40°F Ambient, Zero Decay Heat, Zero Insolation - Model AOS-050A . . . . 3-121 Table 3-38. Load Case 105, -40°F Ambient, Maximum Decay Heat - Model AOS-050A . . . . . . . . . . . . . 3-123 Table 3-39. Load Case 106, -20°F Ambient, Maximum Decay Heat - Model AOS-050A . . . . . . . . . . . . . 3-127 Table 3-40. Fire Condition Thermal Evaluation Results - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . 3-131 Table 3-41. Load Case 111, Fire at 30 Minutes, 1,475°F Ambient, Maximum Decay Heat -

Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-136 Table 3-42. Load Case 112, Post Fire at 60 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-140 Table 3-43. Load Case 112, Post Fire at 90 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-144 Table 3-44. Load Case 112, Post Fire at 120 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-148 Table 3-45. Load Case 112, Post Fire at 150 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-152 Table 3-46. Load Case 112, Post Fire at 180 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-156 Table 3-47. Temperature Monitoring Points, by Condition - Model AOS-100 . . . . . . . . . . . . . . . . . . . . . . 3-160 Table 3-48. Normal Conditions of Transport Thermal Evaluation Results -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-162 Table 3-49. Load Case 101, 100°F Ambient, Maximum Decay Heat -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-164 Table 3-50. Load Case 102, 100°F Ambient, Maximum Decay Heat, Maximum Insolation -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-168 Table 3-51. Load Case 103, -20°F Ambient, Zero Decay Heat, Zero Insolation -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-172 Table 3-52. Load Case 104, -40°F Ambient, Zero Decay Heat, Zero Insolation -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-174 Radioactive Material Transport Packaging System Safety Analysis Report xxxi for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 3-53. Load Case 105, -40°F Ambient, Maximum Decay Heat -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-176 Table 3-54. Load Case 106, -20°F Ambient, Maximum Decay Heat -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-180 Table 3-55. Fire Condition Thermal Evaluation Results - Models AOS-100A and AOS-100A-S. . . . . . . . 3-184 Table 3-56. Load Case 111, Fire at 30 Minutes, 1,475°F Ambient, Maximum Decay Heat -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-189 Table 3-57. Load Case 112, Post Fire at 60 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . 3-193 Table 3-58. Load Case 112, Post Fire at 90 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . 3-197 Table 3-59. Load Case 112, Post Fire at 120 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . 3-201 Table 3-60. Load Case 112, Post Fire at 150 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . 3-205 Table 3-61. Load Case 112, Post Fire at 180 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . 3-209 Table 3-62. Normal Conditions of Transport Thermal Evaluation Results - Model AOS-100B . . . . . . . . . 3-213 Table 3-63. Load Case 101, 100°F Ambient, Maximum Decay Heat - Model AOS-100B . . . . . . . . . . . . . 3-214 Table 3-64. Load Case 102, 100°F Ambient, Maximum Decay Heat, Maximum Insolation -

Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-218 Table 3-65. Load Case 103, -20°F Ambient, Zero Decay Heat, Zero Insolation - Model AOS-100B . . . . 3-222 Table 3-66. Load Case 104, -40°F Ambient, Zero Decay Heat, Zero Insolation - Model AOS-100B . . . . 3-224 Table 3-67. Load Case 105, -40°F Ambient, Maximum Decay Heat - Model AOS-100B . . . . . . . . . . . . . 3-226 Table 3-68. Load Case 106, -20°F Ambient, Maximum Decay Heat - Model AOS-100B . . . . . . . . . . . . . 3-230 Table 3-69. Fire Condition Thermal Evaluation Results - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . 3-234 Table 3-70. Load Case 111, Fire at 30 Minutes, 1,475°F Ambient, Maximum Decay Heat -

Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-238 Table 3-71. Load Case 112, Post Fire at 60 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-242 Table 3-72. Load Case 112, Post Fire at 90 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-246 Table 3-73. Load Case 112, Post Fire at 120 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-250 Table 3-74. Load Case 112, Post Fire at 150 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-254 Table 3-75. Load Case 112, Post Fire at 180 Minutes, 100°F, Maximum Decay Heat, Maximum Insolation - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-258 Table 3-76. Summary of Heat Transfer Exact Solution Properties and their Results. . . . . . . . . . . . . . . . . 3-264 Table 3-77. Comparison of Heat Test GE Model 2000 and LIBRA Results . . . . . . . . . . . . . . . . . . . . . . . . 3-265 Table 3-78. SS304 Stainless Steel Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-269 Table 3-79. Tungsten Alloy Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-272 Table 3-80. SA-105 Carbon Steel Thermal Properties, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-274 Table 3-81. Air Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-277 Table 3-82. Fire Condition Impact Limiter Crushed Geometry 30-Ft. Head-On Drop Analysis Results - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-284 Table 3-83. 30-Ft. Drop Deformations - Model AOS-100A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-296 Table 3-84. Impact Limiter Foam Properties - Model AOS-100A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-296 Table 3-85. Compare Results Provided in Configuration 1 Versus Configuration 2, after 30 Minutes of Fire at 1,475°F - Model AOS-100A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-300 Table 3-86. Compare Results Provided in Configuration 1 Versus Configuration 2, 7.5-Hour Cool-Down Transient - Model AOS-100A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-300 Table 3-87. Compare Results Provided in Configuration 1 Versus Configuration 3, after 30 Minutes of Fire at 1,475°F - Model AOS-100A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-301 Table 3-88. Compare Results Provided in Configuration 1 Versus Configuration 3, 7.5-Hour Cool-Down Transient - Model AOS-100A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-301 Table 3-89. Total Conductivity - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-309 Table 3-90. Total Conductivity - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-311 Table 3-91. Total Conductivity - Model AOS-100A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-313 xxxii Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 3-92. Total Conductivity - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-317 Table 3-93. Maximum Grashof Number - All Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-320 Table 3-94. Grashof Number Evaluation at All Air Gaps - Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . 3-322 Table 3-95. Grashof Number Evaluation at All Air Gaps - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . 3-323 Table 3-96. Grashof Number Evaluation at All Air Gaps - Model AOS-100A . . . . . . . . . . . . . . . . . . . . . . 3-324 Table 3-97. Surface Measurements and Descriptions, Normal Conditions of Transport - Model AOS-025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-325 Table 3-98. External Convection Coefficients at 100°F Ambient Temperature, Normal Conditions of Transport - Model AOS-025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-327 Table 3-99. External Convection Coefficients at -20°F Ambient Temperature, Normal Conditions of Transport - Model AOS-025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-329 Table 3-100. External Convection Coefficients at -40°F Ambient Temperature, Normal Conditions of Transport - Model AOS-025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-331 Table 3-101. Surface Measurements and Descriptions, Normal Conditions of Transport - Model AOS-050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-333 Table 3-102. External Convection Coefficients at 100°F Ambient Temperature, Normal Conditions of Transport - Model AOS-050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-335 Table 3-103. External Convection Coefficients at -20°F Ambient Temperature, Normal Conditions of Transport - Model AOS-050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-338 Table 3-104. External Convection Coefficients at -40°F Ambient Temperature, Normal Conditions of Transport - Model AOS-050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-341 Table 3-105. Surface Measurements and Descriptions, Normal Conditions of Transport - Models AOS-100A and AOS-100B . . . . . . . . . . . . . . . . . . 3-344 Table 3-106. External Convection Coefficients at 100°F Ambient Temperature, Normal Conditions of Transport - Models AOS-100A and AOS-100B . . . . . . . . . . . . . . . . . . 3-346 Table 3-107. External Convection Coefficients at -20°F Ambient Temperature, Normal Conditions of Transport - Models AOS-100A and AOS-100B . . . . . . . . . . . . . . . . . . 3-348 Table 3-108. External Convection Coefficients at -40°F Ambient Temperature, Normal Conditions of Transport - Models AOS-100A and AOS-100B . . . . . . . . . . . . . . . . . . 3-350 Table 3-109. Surface Measurements and Descriptions, Hypothetical Accident Conditions of Transport - Model AOS-025 . . . . . . . . . . . . . . . . . . . . . 3-352 Table 3-110. External Convection Coefficients at 100°F Ambient Temperature, Hypothetical Accident Conditions of Transport - Model AOS-025 . . . . . . . . . . . . . . . . . . . . . 3-353 Table 3-111. Surface Measurements and Descriptions, Hypothetical Accident Conditions of Transport - Model AOS-050 . . . . . . . . . . . . . . . . . . . . . 3-355 Table 3-112. External Convection Coefficients at 100°F Ambient Temperature, Hypothetical Accident Conditions of Transport - Model AOS-050 . . . . . . . . . . . . . . . . . . . . . 3-357 Table 3-113. Surface Measurements and Descriptions, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100B. . . . . . . 3-359 Table 3-114. External Convection Coefficients at 100°F Ambient Temperature, Hypothetical Accident Conditions of Transport - Models AOS-100A and AOS-100B. . . . . . . 3-361 Table 3-115. External Convection Coefficients at 1,475°F Environment, Fire Condition - All Models. . . . . 3-363 Table 3-116. Plate Temperature and Length Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-365 Table 3-117. Air Property Values at 172°F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-365 Table 3-118. Curved Vertical Plates Used as Flat Vertical Plate Evaluation for Thermal Condition 1 at 100°F Ambient, Maximum Decay Heat, Maximum Insolation (Load Case 102) - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-369 Table 3-119. Maximum Foam Temperature, 24-Hour Solar Heat Transient . . . . . . . . . . . . . . . . . . . . . . . . 3-370 Table 3-120. Configuration 1 and Configuration 2 Inside Plate and Cylindrical/

Conical Ring Thicknesses - All Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-375 Table 3-121. Maximum Component Temperatures, Normal Conditions of Transport -

Load Case 102, 100°F Ambient, Maximum Decay Heat, Maximum Insolation, Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-376 Table 3-122. Maximum Component Temperatures, Hypothetical Accident Conditions of Transport - Load Case 111, Fire at 30 Minutes, 1,475°F Ambient, Maximum Decay Heat, Model AOS-025A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-377 Table 3-123. Maximum Component Temperatures, Hypothetical Accident Conditions of Transport - Load Case 112, 7.5-Hour Cool-Down Transient, Model AOS-025A . . . . . . . . 3-377 Radioactive Material Transport Packaging System Safety Analysis Report xxxiii for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 3-124. Maximum Component Temperatures, Normal Conditions of Transport -

Load Case 102, 100°F Ambient, Maximum Decay Heat, Maximum Insolation, Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-378 Table 3-125. Maximum Component Temperatures, Hypothetical Accident Conditions of Transport - Load Case 111, Fire at 30 Minutes, 1,475°F Ambient, Maximum Decay Heat, Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-379 Table 3-126. Maximum Component Temperatures, Hypothetical Accident Conditions of Transport - Load Case 112, 7.5-Hour Cool-Down Transient, Model AOS-050A . . . . . . . . 3-379 Table 3-127. Maximum Component Temperatures, Normal Conditions of Transport -

Load Case 102, 100°F Ambient, Maximum Decay Heat, Maximum Insolation, Model AOS-100A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-380 Table 3-128. Maximum Component Temperatures, Hypothetical Accident Conditions of Transport - Load Case 111, Fire at 30 Minutes, 1,475°F Ambient, Maximum Decay Heat, Model AOS-100A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-381 Table 3-129. Maximum Component Temperatures, Hypothetical Accident Conditions of Transport - Load Case 112, 7.5-Hour Cool-Down Transient, Model AOS-100A . . . . . . . . 3-381 Table 3-130. Maximum Component Temperatures, Normal Conditions of Transport -

Load Case 102, 100°F Ambient, Maximum Decay Heat, Maximum Insolation, Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-382 Table 3-131. Maximum Component Temperatures, Hypothetical Accident Conditions of Transport - Load Case 111, Fire at 30 Minutes, 1,475°F Ambient, Maximum Decay Heat, Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-383 Table 3-132. Maximum Component Temperatures, Hypothetical Accident Conditions of Transport - Load Case 112, 7.5-Hour Cool-Down Transient, Model AOS-100B . . . . . . . . 3-383 Table 3-133. Foam Density Properties - Nominal, 115% Nominal, and 85% Nominal, Model AOS-100A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-384 Table 3-134. Comparison of Maximum Component Temperatures with Varying Foam Densities -

Model AOS-100A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-385 Table 3-135. Nominal, 115% Nominal, and 80% Nominal Foam Specific Heat Properties -

Model AOS-100A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-386 Table 3-136. Comparison of Maximum Component Temperatures with Varying Specific Heat Values - Model AOS-100A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-387 Table 3-137. Case 1, Maximum Component Temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-412 Table 3-138. Case 2, Maximum Component Temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-412 Table 3-139. Case 3, Maximum Component Temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-412 Table 3-140. Case 1, Stress (psi/MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-413 Table 3-141. Case 2, Stress (psi/MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-415 Table 3-142. Case 3, Stress (psi/MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-417

4. Containment Table 4-1. Cask Lid Attachment Bolt Features and Properties - All Models . . . . . . . . . . . . . . . . . . . . . . . 4-12 Table 4-2. Cask Lid Attachment Bolt Results Summary - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17 Table 4-3. Keensert Evaluation - Model AOS-025. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-20 Table 4-4. Keensert Evaluation - Model AOS-050. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23 Table 4-5. Keensert Evaluation - Model AOS-100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26 Table 4-6. Maximum Cask Cavity Pressure Due to Normal Conditions of Transport - All Models . . . . . . 4-30 Table 4-7. Maximum Cask Cavity Pressure Due to Fire Condition - All Models . . . . . . . . . . . . . . . . . . . . 4-30 Table 4-8. Weights of AOS Transport Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-43 Table 4-9. AOS Transport Package Accelerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-44 Table 4-10. Model AOS-025A Cask Lid Attachment Bolt Input Parameters. . . . . . . . . . . . . . . . . . . . . . . . . 4-64 Table 4-11. Model AOS-025A Cask Lid Attachment Bolt NCT Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-66 Table 4-12. Model AOS-025A Cask Lid Attachment Bolt NCT Load Combinations. . . . . . . . . . . . . . . . . . . 4-68 Table 4-13. Model AOS-025A Cask Lid Attachment Bolt HAC Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-69 Table 4-14. Model AOS-025A Cask Lid Attachment Bolt HAC Load Combinations. . . . . . . . . . . . . . . . . . . 4-72 Table 4-15. Model AOS-050A Cask Lid Attachment Bolt Input Parameters. . . . . . . . . . . . . . . . . . . . . . . . . 4-73 Table 4-16. Model AOS-050A Cask Lid Attachment Bolt NCT Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-75 Table 4-17. Model AOS-050A Cask Lid Attachment Bolt NCT Load Combinations. . . . . . . . . . . . . . . . . . . 4-77 Table 4-18. Model AOS-050A Cask Lid Attachment Bolt HAC Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-78 xxxiv Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-19. Model AOS-050A Cask Lid Attachment Bolt HAC Load Combinations. . . . . . . . . . . . . . . . . . . 4-81 Table 4-20. Model AOS-100A Cask Lid Attachment Bolt Input Parameters. . . . . . . . . . . . . . . . . . . . . . . . . 4-82 Table 4-21. Model AOS-100A Cask Lid Attachment Bolt NCT Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-84 Table 4-22. Model AOS-100A Cask Lid Attachment Bolt NCT Load Combinations. . . . . . . . . . . . . . . . . . . 4-86 Table 4-23. Model AOS-100A Cask Lid Attachment Bolt HAC Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-87 Table 4-24. Model AOS-100A Cask Lid Attachment Bolt HAC Load Combinations. . . . . . . . . . . . . . . . . . . 4-90 Table 4-25. Model AOS-025A Cask Lid Flange Separation NCT Evaluation ft-lb Torque . . . . . . . . . . 4-98 Table 4-26. Model AOS-025A Cask Lid Flange Separation HAC Evaluation ft-lb Torque . . . . . . . . . . 4-98 Table 4-27. Model AOS-050A Cask Lid Flange Separation NCT Evaluation - 62.4-ft-lb Torque . . . . . . . 4-100 Table 4-28. Model AOS-050A Cask Lid Flange Separation HAC Evaluation - 62.4-ft-lb Torque . . . . . . . 4-100 Table 4-29. Model AOS-100A Cask Lid Flange Separation NCT Evaluation - 400-ft-lb Torque . . . . . . . . 4-102 Table 4-30. Model AOS-100A Cask Lid Flange Separation HAC Evaluation - 400-ft-lb Torque . . . . . . . . 4-102 Table 4-31. Model AOS-025A Cask Lid Attachment Bolt Fatigue Analysis Results. . . . . . . . . . . . . . . . . . 4-106 Table 4-32. Model AOS-050A Cask Lid Attachment Bolt Fatigue Analysis Results. . . . . . . . . . . . . . . . . . 4-110 Table 4-33. Model AOS-100A Cask Lid Attachment Bolt Fatigue Analysis Results. . . . . . . . . . . . . . . . . . 4-114

5. Shielding Evaluation Table 5-1. Cask Component Dimensions, Outside Radius and Half-Height - All Models . . . . . . . . . . . . . . 5-2 Table 5-2. Cask Component Dimensions, Cavity Height and Axial Shield Thickness - All Models . . . . . . . 5-3 Table 5-3. Cask Component Materials Important to Shielding - All Models. . . . . . . . . . . . . . . . . . . . . . . . . 5-4 Table 5-4. Maximum Radiation Level Summary for Normal Conditions of Transport - All Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 Table 5-5. Maximum Radiation Level Summary for Hypothetical Accident Conditions of Transport - All Models . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 Table 5-6. Isotopes Analyzed for AOS Transport Packages - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 Table 5-7. AOS Cask Components - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11 Table 5-8. Point Source Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12 Table 5-9. External Surface Deformation Used for Dose Calculation in Axial Direction - End Drop . . . . . 5-15 Table 5-10. External Surface Deformation Used for Dose Calculation in Radial Direction - Side Drop . . . 5-15 Table 5-11. Distances from Center of Cask Used for Dose Calculations - Axial Location. . . . . . . . . . . . . . 5-16 Table 5-12. Distances from Center of Cask Used for Dose Calculations - Radial Location . . . . . . . . . . . . 5-16 Table 5-13. Maximum Radiation Levels (All Isotopes Except Ir-192 and Ir-194) - Model AOS-025A . . . . . 5-22 Table 5-14. Maximum Radiation Levels (All Isotopes Except Ir-192 and Ir-194) - Model AOS-050A . . . . . 5-23 Table 5-15. Maximum Radiation Levels (All Isotopes Except Ir-192 and Ir-194) -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24 Table 5-16. Maximum Radiation Levels (All Isotopes Except Ir-192 and Ir-194) - Model AOS-100B . . . . . 5-25 Table 5-17. Maximum Ir-192/Ir-194 Radiation Levels - Model AOS-025A. . . . . . . . . . . . . . . . . . . . . . . . . . 5-26 Table 5-18. Maximum Ir-192/Ir-194 Radiation Levels - Model AOS-050A. . . . . . . . . . . . . . . . . . . . . . . . . . 5-27 Table 5-19. Maximum Ir-192/Ir-194 Radiation Levels - Models AOS-100A and AOS-100A-S . . . . . . . . . . 5-28 Table 5-20. Maximum Ir-192/Ir-194 Radiation Levels - Model AOS-100B. . . . . . . . . . . . . . . . . . . . . . . . . . 5-28 Table 5-21. AOS Cask Isotopic Heat Loads (Reference [5.2]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-30 Table 5-22. AOS Cask Isotopic Heat Load Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-30 Table 5-23. Isotope Photon per Decay - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-31 Table 5-24. Co-60 Gamma Spectra Used in Shielding Models - All Models . . . . . . . . . . . . . . . . . . . . . . . . 5-31 Table 5-25. Cs-137 Gamma Spectra Used in Shielding Models - All Models . . . . . . . . . . . . . . . . . . . . . . . 5-32 Table 5-26. Hf-181 Gamma Spectra Used in Shielding Models - All Models . . . . . . . . . . . . . . . . . . . . . . . 5-32 Table 5-27. Ir-192 Gamma Spectra Used in Shielding Models - All Models . . . . . . . . . . . . . . . . . . . . . . . . 5-33 Table 5-28. Ir-194 Gamma Spectra Used in Shielding Models - All Models . . . . . . . . . . . . . . . . . . . . . . . . 5-35 Table 5-29. Zr/Nb-95 Gamma Spectra Used in Shielding Models - All Models . . . . . . . . . . . . . . . . . . . . . . 5-38 Table 5-30. THIS TABLE INTENTIONALLY LEFT BLANK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-38 Table 5-31. Yb-169 Gamma Spectra Used in Shielding Models - All Models . . . . . . . . . . . . . . . . . . . . . . . 5-39 Table 5-32. Volume Source Analysis - Source Geometry Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-43 Table 5-33. Volume Source Analysis - Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-43 Table 5-34. 10 CFR 71.47(a) Dose Rate Acceptance Criteria for Multiple Isotopes . . . . . . . . . . . . . . . . . . 5-45 Table 5-35. Multiple Isotope Calculation Reference Value Summary -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-46 Table 5-35a. Multiple Isotope Calculation Reference Value Summary - Model AOS-025A . . . . . . . . . . . . . 5-47 Table 5-35b. Multiple Isotope Calculation Reference Value Summary - Model AOS-050A . . . . . . . . . . . . . 5-47 Radioactive Material Transport Packaging System Safety Analysis Report xxxv for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 5-35c. Multiple Isotope Calculation Reference Value Summary - Model AOS-100B . . . . . . . . . . . . . 5-48 Table 5-36. Low-Energy Gamma External Dose Rates - Models AOS-100A and AOS-100A-S . . . . . . . . . 5-49 Table 5-37. Example Low-Energy Gamma and Beta Emitter Decay Heat Values . . . . . . . . . . . . . . . . . . . . 5-51 Table 5-38. Additional Exclusive Use Dose Rate Locations and Activity Limits -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-52 Table 5-39. Exclusive Use Activity Limit Maximum Dose Rates and Decay Heat -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-54 Table 5-40. Exclusive Use Maximum Activity Dose Rates and Decay Heat -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-55 Table 5-40a. 10 CFR 71.47(b) Dose Rate Acceptance Criteria for Multiple Isotopes . . . . . . . . . . . . . . . . . . 5-56 Table 5-41. Multiple Isotope Exclusive Use Calculation Reference Values -

Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-57 Table 5-42. Approximate Change in Side Dose Rates - Models AOS-050 and AOS-100. . . . . . . . . . . . . . 5-59 Table 5-43. Side Dose Rates - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-62 Table 5-44. Side Dose Rates - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-63 Table 5-45. Side Dose Rates - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-64 Table 5-46. New Isotopic Dose Rates and Limits - Models AOS-050A, AOS-100A, and AOS-100A-S . . . 5-64 Table 5-47. Impact Limiter Offset Distance Differences - All Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-67 Table 5-48. Projected Dose Rate Increase within Recessed Regions of Upper and Lower Impact Limiters - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-68 Table 5-49. Full Transport Package Surface Dose Rates/Ci - Model AOS-025A . . . . . . . . . . . . . . . . . . . . 5-70 Table 5-50. Maximum Transport Package Surface Dose Rate within Recessed Region of Upper and Lower Impact Limiters - Model AOS-025A . . . . . . . . . . . . . . 5-70 Table 5-51. Full Transport Package Surface Dose Rates/Ci - Model AOS-050A . . . . . . . . . . . . . . . . . . . . 5-72 Table 5-52. Maximum Transport Package Surface Dose Rate within Recessed Region of Upper and Lower Impact Limiters - Model AOS-050A . . . . . . . . . . . . . . 5-73 Table 5-53. Dose Rates within Recessed Region of Upper and Lower Impact Limiters - Model AOS-050A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-75 Table 5-54. 1-m TI Dose Rates/Ci - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . . . . . . . . . . . . 5-77 Table 5-55. Maximum 1-m TI Dose Rate within Recessed Region of Upper and Lower Impact Limiters - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . 5-78 Table 5-56. Maximum Dose Rates within Recessed Region of Upper and Lower Impact Limiters - Models AOS-100A and AOS-100A-S . . . . . . . . . . . . . . 5-78 Table 5-57. 1-m TI Dose Rate/Ci - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-80 Table 5-58. Maximum 1-m TI Dose Rate within Recessed Region of Upper and Lower Impact Limiters - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-81 Table 5-59. Maximum Dose Rates within Recessed Region of Upper and Lower Impact Limiters - Model AOS-100B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-81

6. Criticality Evaluation There are no tables in Chapter 6.
7. Package Operations Table 7-1. Additional Required Shielding -

Models AOS-025A, AOS-050A, AOS-100A, and AOS-100A-S. . . . . . . . . . . . . . . . . . . . . . . . . . 7-9 Table 7-2. Cask Lid Attachment Bolt Size and Preload Torque - All Models. . . . . . . . . . . . . . . . . . . . . . . 7-11 Table 7-3. Maximum Distance from Loaded Cask Surface to Take Transport Package Surface Dose Rate Measurements - All Models . . . . . . . . . . . . . . . . . . . . 7-14 xxxvi Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

8. Acceptance Tests and Maintenance Program Table 8-1. Acceptance Test Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 Table 8-2. Type 304 and 316 Material Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 Table 8-3. Bolting/Screw Material Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7 Table 8-4. Casting Pipe/Casting Material Requirements (Type CPF-8, CF-8) . . . . . . . . . . . . . . . . . . . . . . . 8-8 Table 8-5. LAST-A-FOAM FR-3700 Series Foams - Testing Program . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10 Table 8-6. LAST-A-FOAM FR-3700 Series Foam Dynamic Crush Strength Limits, Parallel to Rise - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-12 Table 8-7. LAST-A-FOAM FR-3700 Series Foam Dynamic Crush Strength Limits, Perpendicular to Rise - All Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-13 Table 8-8. Fabrication Examination Program Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-14
9. Quality Assurance Program There are no tables in Chapter 9.

Radioactive Material Transport Packaging System Safety Analysis Report xxxvii for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

THIS PAGE INTENTIONALLY LEFT BLANK xxxviii Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

1 GENERAL INFORMATION

1.1 INTRODUCTION

This safety analysis report (SAR) is for a Type B(U)-96 non-fissile transport package, hereafter identified as a Radioactive Transport Packaging System, AOS Transport Packaging System, or transport package (in general). The transport package is configured in three (3) different sizes, identified as Models AOS-025, AOS-050, and AOS-100. These package models consist of three (3) main components - cask, impact limiter, and cask lid seal - as presented in Section 1.2. The transport packages will be used to transport Type B quantities of encapsulated solid materials or solid metals that meet Normal or Special Form criteria. The authorized quantities of material to be transported is dependent upon the type of material being shipped and the associated decay heat load, or the radioactive shielding requirements, as appropriate, to provide containment and radiation shielding protection of the contents during Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC) of Transport, as required by Title 10, Code of Federal Regulations, Part 71 (10 CFR 71) [1.1]. The AOS Transport Packaging System components are designed, fabricated, examined, and tested to the applicable requirements of the ASME Boiler and Pressure Vessel (B&PV) Code [1.2] (hereafter referred to as the ASME Code), as summarized in Subsection 2.1.4, Identification of Codes and Standards for Package Design.

Methods and analysis for demonstrating compliance with the requirements of References [1.1] and [1.2]

are present within this SAR. Chapter 2, Structural Evaluation, documents compliance of the design and construction with the requirements of References [1.1] and [1.2]. Compliance is demonstrated by structural analyses and engineering evaluations for Normal and Hypothetical Accident Conditions of Transport requirements, and physical tests upon a prototype packaging, in accordance with 10 CFR 71.71 and 10 CFR 71.73 [1.1]. The mechanical properties for construction materials that affect the structural behavior of the transport packages are also included in Chapter 2.

In addition to the design criteria presented in Chapter 2, allowable stresses are evaluated for possible failure modes, including brittle fracture, fatigue, and buckling. Brittle fracture is not a consideration for the containment vessel, because the structural components are made of 300 series austenitic stainless steel, ASME/ASTM Type 304 or Type 316, including all components of the containment boundary. Austenitic stainless steels are not susceptible to brittle fracture at the minimum design and transport temperature, and their mechanical properties are relatively stable over the range of temperature required by regulations (References [1.1] and [1.4]).

The cask lid attachment bolts are fabricated from ASME SB-637, UNS N07718. This material is also excluded from brittle fracture consideration, in accordance with ASME Code Section III, Division 1, paragraph NB-2311(a)(7) in Reference [1.2].

The structural analyses presented in Chapter 2 fully evaluates the mechanical requirements of the regulations (References [1.1] and [1.4]), and include the applied temperature effects generated by the thermal analyses. The evaluation results verify that the transport packages meet the performance requirements specified by 10 CFR 71 [1.1] and IAEA TS-R-1 [1.4].

Chapter 3, Thermal Evaluation, documents the thermal evaluation required by the regulations, and verifies that the transport packages meet the performance requirements specified by References [1.1]

and [1.4].

Chapter 4, Containment, documents the AOS Transport Packaging Systems containment boundary and capabilities. The chapter also includes the cask lid attachment bolt evaluation.

Radioactive Material Transport Packaging System Safety Analysis Report 1-1 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

1.3 APPENDIX 1.3.1 AOS Transport Packaging System, Certification Drawings Table 1-5 lists the certification drawings for the AOS Transport Packaging Systems assembly, impact limiter, cask, liner, axial shielding plates, and cavity spacer plates, by model.

Table 1-5. AOS Transport Packaging System Certification Drawing List - All Models Drawing Part Number and Revision, by Model Component AOS-025A Rev. AOS-050A Rev. AOS-100A Rev. AOS-100B Rev. AOS-100A-S Rev.

Assembly 166D8142 K 105E9718 K 105E9711 L 105E9711 L 105E9711 L Impact 105E9722 J 166D8138 I 105E9713 J 105E9713 J 105E9713 J Limiter Caska 166D8143 K 166D8137 K 105E9712G001 N 105E9712G002 N 105E9719 N Liner 183C8485 H - - - - - - - -

Axial Shielding - - 183C8519 A 183C8491 I - - 183C8491 I Plates Cavity Spacer - - - - 183C8518 B - - 183C8518 B Plates

a. The G00x number appended to select drawing numbers represents a group within the drawing.

Radioactive Material Transport Packaging System Safety Analysis Report 1-23 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

AOS Drawing No. 166D8143 Model AOS-025A Cask (Left Blank)

Proprietary Information withheld from public disclosure per 10 CFR 2.390(a)(4).

1-28 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

AOS Drawing No. 166D8137 Model AOS-050A Cask (Left Blank)

Proprietary Information withheld from public disclosure per 10 CFR 2.390(a)(4).

1-34 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

AOS Drawing No. 105E9712G001 Model AOS-100A Cask (Left Blank)

Proprietary Information withheld from public disclosure per 10 CFR 2.390(a)(4).

1-40 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

AOS Drawing No. 105E9712G002 Model AOS-100B Cask (Left Blank)

Proprietary Information withheld from public disclosure per 10 CFR 2.390(a)(4).

Radioactive Material Transport Packaging System Safety Analysis Report 1-41 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

AOS Drawing No. 105E9719 Model AOS-100A-S Cask (Left Blank)

Proprietary Information withheld from public disclosure per 10 CFR 2.390(a)(4).

1-42 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

2.1.3 Weights and Centers of Gravity Table 2-7 lists the package weight and center of gravity of each AOS Transport Packaging System model.

The package is defined as the assembly of two (2) impact limiters and their mechanical connectors, the cask, and the cask contents. The content weight includes the weight of the radioactive materials, plus the weight of any shielding devices and shoring devices, if used in the assembly. The content weight excludes the weight of the shipping cage, pallet or shipping cradle, and tie-down hardware.

Figure 2-10, Figure 2-11, and Figure 2-12 illustrate the AOS Transport Packaging System center of gravity for the Model AOS-025, AOS-050, and AOS-100 transport packages, respectively.

Table 2-7. AOS Transport Packaging System Maximum Authorized Package Weight and Cg Locations - All Models Maximum Authorized Package Weight Cg Locationsa (kg / lbs.) (cm / in.)

Category Pallet, Shipping Cage, and Impact Tie-Down Model Packageb Limitersc Caskd Contents Devices X Y Z 100 13 64 4.5 24.9 19.05 26.97 22.86 AOS-025A I 220 28 140 10 55 7.50 10.62 9.00 681 56 480 27 135.2 45.41 46.22 41.57 AOS-050A I 1,500 123 1,058 60 298 17.88 18.20 16.37 5,675 467 3,850 227 1,685.1 77.39 87.68 77.39 AOS-100A I 12,500 1,029 8,481 500 3,715 30.47 34.52 30.47 4,994 467 3,192 227 1,685.1 77.39 87.68 77.39 AOS-100B II 11,000 1,029 7,030 500 3,715 30.47 34.52 30.47 5,675 467 3,850 227 1,685.1 77.39 87.68 77.39 AOS-100A-S I 12,500 1,029 8,481 500 3,715 30.47 34.52 30.47

a. AOS Transport Packaging System center of gravity. Refer to Figure 2-10, Figure 2-11, and Figure 2-12 for the Model AOS-025, AOS-050, and AOS-100 transport packages, respectively.
b. Authorized package weight includes the components listed in this table; however, not all components will be at maximum weight.
c. Includes the weight of both impact limiters.
d. Includes the weight of the contents.

Radioactive Material Transport Packaging System Safety Analysis Report 2-23 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 2-20. Lifting Load Analysis - All Models Model AOS-025A AOS-050A AOS-100Aa Item Units Metric English Metric English Metric English Weight kg lbs. 76 168 536 1,181 4,314 9,510 A cm in. 4.14 1.63 8.26 3.25 16.51 6.50 B cm in. 0.84 0.33 1.65 0.65 3.30 1.30 C cm in. 0.19 0.08 0.41 0.16 0.84 0.33 D cm in. 1.65 0.65 3.30 1.30 6.60 2.60 E cm in. 1.91 0.75 3.81 1.50 7.65 3.01 L cm in. 0.71 0.28 1.45 0.57 2.69 1.06 1/2L cm in. 0.36 0.14 0.72 0.29 1.35 0.53 FT N lbf. 518 116 3,640 818 29,308 6,589 FH N lbf. 259 58 1,820 409 14,654 3,294 FV N lbf. 448 101 3,152 709 25,382 5,706 Bolt Size 1/4-28 UNF - 2A x 0.5L 3/8 - 24 UNF - 2A x 0.75L 3/4 - 16 UNF- 2A x 1.50L Material SA 193 Grade B6 SA 193 Grade B6 SA 193 Grade B6 Pre-Torque Nm lbf-ft. 5.42 4 16.27 12 135.58 100 Bolt Circle cm in. 2.90 1.14 5.77 2.27 10.80 4.25 Su MPa ksi 758 110 758 110 758 110 Sy Pa psi 5.86E+08 8.50E+04 5.86E+08 8.50E+04 5.86E+08 8.50E+04 Quantity 6 6 6 KNH 428J KNH 624J KNH 1216J Keensert 1/4-28 UNF - 3B x 0.37 3/8-24 UNF - 3B x 0.50 3/4-16 UNF - 3B x 1.12 Dnominal cm in. 0.64 0.25 0.95 0.38 1.91 0.75 Atensile cm2 in2 0.23 0.036 0.57 0.088 2.41 0.373 Mx Nm lbf-in. 9 77 122 1,083 1,953 17,283 CL cm in. 1.25 0.49 2.50 0.98 4.67 1.84 Ix-x per b cm2 in2 6.29E+00 9.75E-01 2.49E+01 3.86E+00 8.74E+01 1.35E+01 unit area Fb N lbf. 1.73E+02 3.89E+01 1.22E+03 2.75E+02 1.04E+04 2.35E+03 Ft N lbf. 4.31E+01 9.70E+00 3.03E+02 6.82E+01 2.44E+03 5.49E+02 Ebolt Pa psi 2.01E+11 2.92E+07 2.01E+11 2.92E+07 2.01E+11 2.92E+07 Emember Pa psi 1.95E+11 2.83E+07 1.95E+11 2.83E+07 1.95E+11 2.83E+07 I cm in. 9.40E-01 3.70E-01 1.27E+00 5.00E-01 2.84E+00 1.12E+00 kb N/m lbf/in. 6.78E+08 3.87E+06 1.13E+09 6.45E+06 2.02E+09 1.15E+07 km N/m lbf/in. 5.26E+09 3.00E+07 8.76E+09 5.00E+07 1.56E+10 8.93E+07 kb / (kb + km) 1.14E-01 1.14E-01 1.14E-01 1.14E-01 1.14E-01 1.14E-01 Radioactive Material Transport Packaging System Safety Analysis Report 2-47 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 2-20. Lifting Load Analysis - All Models (Continued)

Model AOS-025A AOS-050A AOS-100Aa Item Units Metric English Metric English Metric English P N lbf. 2.16E+02 4.86E+01 1.53E+03 3.44E+02 1.29E+04 2.90E+03 Fpreload N lbf. 4.27E+03 9.60E+02 8.54E+03 1.92E+03 3.56E+04 8.00E+03 FB N lbf. 4.29E+03 9.66E+02 8.72E+03 1.96E+03 3.71E+04 8.33E+03 ST Pa psi 1.83E+08 2.65E+04 1.54E+08 2.23E+04 1.54E+08 2.23E+04 FS = Sy / ST 3.20 3.20 3.81 3.81 3.81 3.81

a. Model AOS-100A is the heaviest of the AOS-100 models and is therefore the bounding case.
b. This method is shown in Equation 6-25, Section 6.12 of Reference [2.28].

Typically in a bolting joint design, a preload torque is assigned to the bolt(s). This is to ensure that the joint will have the capability to react to the applied working load. Therefore, the working load in the bolt must be within the magnitude of, or less than, the resultant load from the preload. In the analysis presented in Table 2-20, the resultant bolt load due to the preload (Fpreload) is 8.00E+03 lbf., while the working load is 330 lbf.a Hence, the preload value of 100 lbf-ft is an adequate value applied to the Model AOS-100 trunnion design. In addition to applying a preload, the bolts are coated with anti-vibration compound prior to installation, to enhance the bolted joints efficiency.

a. The working load value of 330 lbf. is obtained by subtracting the preload force (Fpreload) value of 8.00E+03 lbf.

from the total force (Fb) of 8.33E+03 lbf [2.28].

2-48 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

2.6.5 Vibration Vibration and shock loads are analyzed using the 3D model in three (3) separate analyses. The vibration and shock loads are, conservatively, assumed to be:

  • Load Case 221 - Forward 10g Vibration Inertia Load
  • Load Case 222 - Lateral 5g Vibration Inertia Load
  • Load Case 223 - Vertical 2g Vibration Inertia Load In each analysis, displacements are fixed at the trunnions, and vertical displacement is fixed along the cask and truck bed contact line. The fixed nodes are illustrated in Figure 2-26. The inertia loads are applied as body forces.

The fatigue analysis is presented in Paragraph 4.5.2.6, Cask Lid Attachment Bolt Fatigue Analysis. This analysis considers operating cycles and vibration loads and is based on the ASME Code provided in Reference [2.14].

Trunnion Fixed Meridian Figure 2-26. Fixed Points for Shock and Vibration Analyses Radioactive Material Transport Packaging System Safety Analysis Report 2-81 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.1.4 Closure A set of cask lid attachment bolts, ASME SB-637, UNS N07718, attaches the cask lid to the cask.

The cask lid bolted joint is recessed within the cask body, to protect the joint from transportation loads. The cask lid attachment bolt stress evaluation is presented in Appendix 4.5.2 and follows the methodology and acceptance criteria specified in NUREG/CR-6007 (Reference [4.6]). The cask and bolt features and properties required for the analysis are listed in Table 4-1.

A bolting analysis is performed for Normal and Hypothetical Accident conditions of transport. Ambient conditions of 38°C (100°F) and -40°C (-40°F) are considered. The cask lid and cask lid attachment bolt head are protected in the cask lid design. Cask loadings for pressure, temperature, impact, and vibration are considered in this evaluation. Design conditions for minimum gasket loads and bolt preload are also considered. The Hypothetical Accident conditions of transport ambient temperature of 800°C (1,475°F) is a combination of fire and cool-down transient conditions, following a 30-ft. drop accident event. There are no impact accelerations associated with cool-down, and the evaluation results show that bolting loads are not significant.

Temperatures within the cask lid, cask lid attachment bolts, and cask are used to perform the evaluation, at the locations indicated in Figure 4-6.

Tlo Tlo CASK LIDLID Tl Tl Tb Tb TTli li Tc Tc CASK CASK CASK LID CASK LID ATTACHMENT ATTACHMENT BOLT BOLT Figure 4-6. Cask Lid, Cask Lid Attachment Bolt, and Cask Temperature Evaluation Nodes Note: In Figure 4-6, the cask lid plug is removed for clarity.

4-8 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

where:

Tb = Temperature of cask lid attachment bolt, node 4995 Tc = Temperature of cask wall, node 4995 Tl = Temperature of cask lid, node 3557 Tlo = Temperature of outside surface of cask lid, node 3309 Tli = Temperature of inside surface of cask lid, node 3233 Note: All temperature changes are measured from the stress-free temperature (70°F).

Radioactive Material Transport Packaging System Safety Analysis Report 4-9 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Normal Conditions of Transport, Maximum Stress Analysis The following stress limits must be met, per NUREG/CR-6007 (Reference [4.6]):

  • Tension
  • Average stress < Sm (Allowable stress)
  • Shear
  • Average stress < 0.6 Sm (Allowable stress)
  • Tension plus shear
  • Stress ratio = Computed average stress/allowable average stress
  • Rt = Stress ratio for average tensile stress
  • Rs = Stress ratio for average shear stress 2 2
  • Rt + Rs < 1.0
  • Tension plus shear plus bending plus residual torsion
  • For bolts having minimum tensile strength (Su) greater than 100 ksi
  • Maximum stress intensity < 1.35 Sm where:

Sm = Basic allowable stress limit for the bolt material, equal to 2/3 of Sy at the room temperature -or-2/3 of Sy at the operating temperature, whichever is less Sy = Minimum yield stress or strength of the bolt material Normal Conditions of Transport, Fatigue Stress Analysis The following stress limits must be met, per NUREG/CR-6007 (Reference [4.6]):

  • Maximum cumulative usage factor (U) due to alternating stress intensity < 1.0
  • For bolts with minimum yield strength greater than 100 ksi
  • Use ASME Code,Section III Division 1 (Reference [4.13]), Appendix I, fatigue curves I-9-4 4-10 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-1. Cask Lid Attachment Bolt Features and Properties - All Models Model and Ambient Temperatures, by Conditiona, b AOS-025 AOS-050 AOS-100 38°C -40°C 38°C -40°C 38°C -40°C Item (100°F) (-40°F) (100°F) (-40°F) (100°F) (-40°F)

Geometry Definitions Seal Type (Cask Lid)c Metallic Metallic Metallic Metallic Metallic Metallic Quantity of Bolts 8 8 10 10 14 14 Cask Lid Diameter at 3.9 3.9 7.414 7.414 14.064 14.064 Bolt Line (in.)

Arc Length per Bolt (in.) 1.53 1.53 2.33 2.33 3.16 3.16 Cask Lid Diameter at Gasket (in.) 3.07 3.07 6.09 6.09 12.172 12.172 Bolt Diameter (in.) 0.375 0.375 0.5 0.5 0.875 0.875 Cask Lid Diameter - Inside (in.) 2.61 2.61 5.51 5.51 11.02 11.02 Cask Lid Diameter - Outside (in.) 4.65 4.65 8.90 8.90 16.59 16.59 Cask Lid Thickness (in.) 0.37 0.37 0.75 0.75 1.49 1.49 Cask Lid Flange Thickness (in.) 0.48 0.48 0.97 0.97 1.92 1.92 Cask Wall Thickness (in.) 1.02 1.02 1.695 1.695 2.785 2.785 Bolt Length (in.) 0.15 0.15 0.41 0.41 1.04 1.04 4-12 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-1. Cask Lid Attachment Bolt Features and Properties - All Models (Continued)

Model and Ambient Temperatures, by Conditiona, b AOS-025 AOS-050 AOS-100 38°C -40°C 38°C -40°C 38°C -40°C Item (100°F) (-40°F) (100°F) (-40°F) (100°F) (-40°F)

Material Properties (Provided at the component temperature resulting from the specified Thermal Condition)

Young Modulus - Cask Lid (psi)d 27.3E+06 28.3E+06 27.0E+06 28.3E+06 27.0E+06 28.3E+06 Young Modulus - Flange (psi)d 27.3E+06 28.3E+06 27.0E+06 28.3E+06 27.0E+06 28.3E+06 Young Modulus - Cask (psi)d 27.3E+06 28.3E+06 27.0E+06 28.3E+06 27.0E+06 28.3E+06 Young Modulus - Bolt (psi)d 28.0E+06 29.2E+06 27.8E+06 28.9E+06 27.8E+06 28.9E+06 Poissons Ratio - Cask Lid 0.3 0.3 0.3 0.3 0.3 0.3 Poissons Ratio - Cask 0.3 0.3 0.3 0.3 0.3 0.3 Cask Lid - CTE, in/in/°F 9.1E-06 8.6E-06 9.2E-06 8.6E-06 9.2E-06 8.6E-06 Bolt - CTE, in/in/°F 7.3E-06 7.0E-06 7.3E-06 7.0E-06 7.3E-06 7.0E-06 Cask Wall - CTE, in/in/°F 9.1E-06 8.6E-06 9.2E-06 8.6E-06 9.2E-06 8.6E-06 Basic Allowable Stress Unit -

95 100 94 100 94 100 Bolt, Sm, ksi Yield Strength - Bolt, Sy, ksie 142 150 141 150 141 150 Ultimate Tensile Strength -

176 185 174 185 174 185 Bolt, Su, ksie Radioactive Material Transport Packaging System Safety Analysis Report 4-13 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-1. Cask Lid Attachment Bolt Features and Properties - All Models (Continued)

Model and Ambient Temperatures, by Conditiona, b AOS-025 AOS-050 AOS-100 38°C -40°C 38°C -40°C 38°C -40°C Item (100°F) (-40°F) (100°F) (-40°F) (100°F) (-40°F)

Mechanical Loads Inside Pressure at Cask Lid (psia) 30 30 60 60 280 280 Outside Pressure at Cask 15 15 15 15 15 15 Lid (psia)

Inside Pressure at Cask Wall 30 30 60 60 280 280 (psia)

Outside Pressure at Cask 15 15 15 15 15 15 Wall (psia)

Temperature Change across 103°C -19°C 120°C 8°C 124°C 9°C Cask Lid (185°F) (-34°F) (216°F) (15°F) (223°F) (16°F) 103°C -19°C 120°C 8°C 124°C 9°C Temperature Change across Bolt (185°F) (-34°F) (216°F) (15°F) (223°F) (16°F)

Temperature Change across 103°C -19°C 120°C 8°C 124°C 9°C Cask Wall (185°F) (-34°F) (216°F) (15°F) (223°F) (16°F)

Temperature Change at outside 103°C -19°C 120°C 8°C 124°C 9°C of Cask Lid (185°F) (-34°F) (216°F) (15°F) (224°F) (16°F)

Temperature Change at inside 103°C -19°C 120°C 9°C 124°C 9°C of Cask Lid (185°F) (-34°F) (216°F) (16°F) (224°F) (16°F)

Weight of Cask Contents + 10 + 4 10 + 4 60 + 35 60 + 35 500 + 278 500 + 278 (Plug Weight) (lbs.) = 14 = 14 = 95 = 95 = 778 = 778 Weight of Cask Lid (lbs.) 2 2 14 14 105 105 4-14 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-1. Cask Lid Attachment Bolt Features and Properties - All Models (Continued)

Model and Ambient Temperatures, by Conditiona, b AOS-025 AOS-050 AOS-100 38°C -40°C 38°C -40°C 38°C -40°C Item (100°F) (-40°F) (100°F) (-40°F) (100°F) (-40°F)

Mechanical Loads (Continued)

Head-On Drop Drop Angle of Impact (Degrees) 90 90 90 90 90 90 Impact Acceleration (g)f 883 1,173 314 439 156 218 Side Drop Drop Angle of Impact (Degrees) 0 0 0 0 0 0 Impact Acceleration (g)f 1,286 1,798 335 469 172 240 Cg/Corner Drop Drop Angle of Impact (Degrees) 52 52 52 52 52 52 Impact Acceleration (g)f 1,019 1,419 224 314 113 158 Dynamic Load Factor 1.15 1.15 1.15 1.15 1.15 1.15 Puncture Load 0 0 0 0 0 0 Puncture Angle of Impact 0 0 0 0 0 0 (Degrees)

Axial Vibration Acceleration (g)g 10 10 10 10 10 10 Transverse Vibration 5 5 5 5 5 5 Acceleration (g)

Vibration Transmissibility 1.0 1.0 1.0 1.0 1.0 1.0 Preload Torque, minimum (ft-lb) 29 29 62.5 62.5 400 400 Preload Torque, maximum (ft-lb) 35 35 68 68 500 500 Nut Factor for Preload Torque 0.15 0.15 0.15 0.15 0.15 0.15 Gasket Seating Width (in.) 1.0 1.0 1.0 1.0 1.0 1.0 Gasket Seating Stress (psi) 3,000 3,000 3,000 3,000 3,000 3,000 Gasket Factorh 9.53 9.53 3.18 3.18 0.54 0.54 Radioactive Material Transport Packaging System Safety Analysis Report 4-15 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-1. Cask Lid Attachment Bolt Features and Properties - All Models (Continued)

Model and Ambient Temperatures, by Conditiona, b AOS-025 AOS-050 AOS-100 38°C -40°C 38°C -40°C 38°C -40°C Item (100°F) (-40°F) (100°F) (-40°F) (100°F) (-40°F)

Geometry Loads Number of Threads per Inch 16 16 13 13 9 9

a. The conditions are defined in Table 3-1, Transport Package Thermal Environment Conditions - All Models.
b. Temperature changes are measured from the stress-free temperature of 70°F.
c. Garlock Helicoflex drawing numbers H-309854 (Model AOS-025), H-309852 (Model AOS-050),

and H309850 (Model AOS-100). Only the cask lid metallic seal was considered in this analysis, because it requires a higher gasket factor than the cask lid elastomeric seal.

d. Material properties for Models AOS-050A and AOS-100A are documented at temperatures of 86°F and 300°F for hot and cold properties, respectively. Material properties for Model AOS-025A are documented at temperatures of 255°F and 36°F for hot and cold properties, respectively. Basis: The casks seal areas have NCT hot temperatures of 255°F , 286°F, and 293°F for Models AOS-025A, AOS-050A, and AOS-100A, respectively, and cold temperatures of 36°F, 85°F, and 86°F for Models AOS-025A, AOS-050A, and AOS-100A, respectively, as documented in Chapter 3, Thermal Evaluation.
e. Room temperature properties are used for the temperature range of -20°F to 100°F. Because yield and tensile strength properties are inversely proportional with temperature, room temperature properties are conservatively used for lower temperatures. Additionally, the room temperature properties of ASME high strength bolts do not change significantly up to 100°F.
f. Accelerations are obtained from the impact forces defined in the drop analysis results provided in Paragraph 2.7.1.5.2.1, Impact Load Tables.
g. Normal conditions of transport accelerations, g, are:

Axial 10 Lateral 5

h. Helicoflex spring seal (cask lid metallic seal), per Helicoflex calculations, for gasket factor, m:

Model AOS-025 cask m = Y1 / (2

  • P) = 286 / (2 * (30 - 15)) = 9.53 Model AOS-050 cask m = Y1 / (2
  • P) = 286 / (2 * (60 - 15)) = 3.18 Model AOS-100 cask m = Y1 / (2
  • P) = 286 / (2 * (280 - 15)) = 0.54 where:

Y1 = Linear load on the seal, to maintain sealing in service at low pressure P = Pressure inside the cask cavity 4-16 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-2. Cask Lid Attachment Bolt Results Summary - All Models Model and Ambient Temperatures, by Conditiona AOS-025 AOS-050 AOS-100 38°C -40°C 38°C -40°C 38°C -40°C Item (100°F) (-40°F) (100°F) (-40°F) (100°F) (-40°F)

Bolt size (in.) 3/8 1/2 7/8 Number of threads per in. 16 13 9 Number of Bolts 8 10 14 Torque, ft-lb 35 68 500 Normal Conditions of Transport Axial Stress / Sm 0.09 0.08 0.19 0.16 0.41 1.35 Shear Stress / 0.6 Sm 0.01 0.01 0.03 0.03 0.17 0.16 Rt2 + Rs2 0.01 0.01 0.04 0.03 0.20 0.15 Se / 1.35 Sm 0.55 0.52 0.49 0.45 0.81 0.75 Accumulated 0.20 - 0.19 - 0.72 -

Fatigue Usage Hypothetical Accident Conditions of Transport Head-On Drop Axial Stress / 0.7 Su 0.64 0.83 0.72 0.87 0.81 0.92 Shear Stress / 0.42 Su 0.00 0.00 0.02 0.02 0.13 0.13 Rt2 + Rs2 0.41 0.68 0.52 0.76 0.67 0.86 Side Drop Axial Stress / 0.7 Su 0.07 0.06 0.15 0.12 0.31 0.27 Shear Stress / 0.42 Su 0.06 0.08 0.07 0.08 0.17 0.18 Rt2 + Rs2 0.01 0.01 0.03 0.02 0.13 0.10 Cg/Corner Drop Axial Stress / 0.7 Su 0.62 0.79 0.47 0.54 0.60 0.64 Shear Stress / 0.42 Su 0.03 0.04 0.04 0.05 0.15 0.15 Rt2 + Rs2 0.39 0.63 0.22 0.30 0.38 0.43

a. The conditions are defined in Table 3-1, Transport Package Thermal Environment Conditions - All Models.

Radioactive Material Transport Packaging System Safety Analysis Report 4-17 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5 APPENDIX This appendix includes a lists of references, applicable pages from referenced documents, supporting information and analysis, test results, and other supplemental information:

  • Garlock Helicoflex Cask Lid Metallic Seal and AOS Cask Lid Elastomeric Seal Drawings
  • Cask Lid Attachment Bolt Evaluation Radioactive Material Transport Packaging System Safety Analysis Report 4-33 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2 Cask Lid Attachment Bolt Evaluation The following analyses document the bolting evaluation [4.14] of the AOS transport packaging systems cask lid attachment bolts per NUREG/CR-6007 [4.6]. The required thread engagement length is also evaluated.

Note: All references to bolt within this appendix are to the cask lid attachment bolt.

4.5.2.1 Package Accelerations The cask accelerations are required as input for the bolt stress calculations under Hypothetical Accident Conditions (HAC). The cask accelerations are calculated using the total impact load, P, and total cask weight. The weights and impact loads of the packages are documented in Subsection 2.1.3. The total cask weight includes the cask itself, its contents, and the impact limiters, as documented in Table 4-8. The accelerations are calculated by dividing the impact load by the casks overall mass. The Model AOS-025A, AOS-050A, and AOS-100A accelerations are documented in Table 4-9.

Table 4-8. Weights of AOS Transport Packages Model Item Units AOS-025A AOS-050A AOS-100A Cask + Contents lbs. 140 1,058 8,481 Impact limiters (x2) lbs. 28 123 1,029 Total Cask Weight lbs. 168 1,181 9,510

\

Radioactive Material Transport Packaging System Safety Analysis Report 4-43 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-9. AOS Transport Package Accelerations Impact Load, P Weight Acceleration Model Load Case (lbs.) (lbs.)a (g)b Head-on drop hot (100°F)/Case 301 1.40E+05 168 833 Head-on drop cold (-40°F)/Case 304 1.97E+05 168 1,173 Side drop hot (100°F)/Case 302 1.08E+05 84 1,286 AOS-025A Side drop cold (-40°F)/Case 305 1.51E+05 84 1,798 Cg/Corner drop hot (100°F)/Case 303c 8.56E+04 84 1,019 Cg/Corner drop cold (-40°F)/Case 306c 1.19E+05 84 1,419 Head-on drop hot (100°F)/Case 301 3.71E+05 1181 314 Head-on drop cold (-40°F)/Case 304 5.18E+05 1181 439 Side drop hot (100°F)/Case 302 1.98E+05 591 335 AOS-050A Side drop cold (-40°F)/Case 305 2.77E+05 591 469 Cg/Corner drop hot (100°F)/Case 303c 1.32E+05 591 224 Cg/Corner drop cold (-40°F)/Case 306c 1.85E+05 591 314 Head-on drop hot (100°F)/Case 301 1.48E+06 9,510 156 Head-on drop cold (-40°F)/Case 304 2.07E+06 9,510 218 Side drop hot (100°F)/Case 302 8.16E+05 4,755 172 AOS-100A Side drop cold (-40°F)/Case 305 1.14E+06 4,755 240 Cg/Corner drop hot (100°F)/Case 303c 5.35E+05 4,755 113 Cg/Corner drop cold (-40°F)/Case 306c 7.49E+05 4,755 158

a. The full model is used for head-on drop impact load calculations, whereas a half model is used for the side and Cg/Corner drops as documented in Paragraph 2.7.1.5.2.1.1, Paragraph 2.7.1.5.2.1.2, and Paragraph 2.7.1.5.2.1.3 for Models AOS-025A, AOS-050A, and AOS-100A, respectively. Therefore, the weight of the full and half models are used in calculating the accelerations of the Head-on drops, and the Side and Cg/Corner drops, respectively.
b. Acceleration = Impact load / weight.
c. The resultant impact load is calculated using the square root of the sum of the squares of the x and y components.

4-44 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.2 Dynamic Load Factors The equivalent-static acceleration loads for the free drops are equal to the peak rigid body accelerations of the packaging multiplied by a Dynamic Load Factor (DLF) that accounts for possible dynamic amplification within the packaging. The Dynamic Load Factors for the transport packages are determined in the paragraphs that follow.

The DLF is a function of the general shape of the rigid-body acceleration time-history pulse and the ratio of the duration of the rigid body acceleration to the components natural period (t / T). The general shape of the rigid-body acceleration time-history curve is characterized as a half-sine wave. The DLF (or Dynamic Amplification Factor, DAF) for a half-sine wave pulse from NUREG/CR-3966 [4.9], Figure 2.15, is shown in Figure 4-7.

The DAF graph shown in Figure 4-7 is truncated at the ratio of pulse duration (t) to natural period (T) of six (6). However, for ratios greater than one (1), DAF is generally inversely proportional with frequency as shown in Figure 4-7. Therefore, for t / T ratios greater than six (6), the DAF value at ratio of t / T = 6 is conservatively considered.

4.5.2.2.1 Model AOS-025A Transport Package Lid Dynamic Load Factor 4.5.2.2.1.1 Natural Frequency The cask lids natural frequency is calculated by considering the cask lid as a simply supported circular plate using Reference [4.10], Table 11.1, Case 2, as follows:

f = = 3,131 Hz, Natural frequency where:

ij = 4.98, dimensionless parameter (for i = j = 0), Reference [4.10], Table 11.1, Case 2 a = 2.325 in., cask lid radius h = 0.37 in., cask lid thickness Eb = 27.3 x 106 psi, modulus of elasticity

= 0.3, Poissons ratio

= = 7.50518E-4 = mass density

= 0.29 , density

= h x = 2.78E-4 = mass per unit area The corresponding natural period of vibration (T) is 1 / f = 0.00032 seconds.

Radioactive Material Transport Packaging System Safety Analysis Report 4-45 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.2.1.2 Impact Duration The impact duration (t) is approximated using the mass, impact initial velocity and impact loads, per methods presented in Reference [4.9], as follows:

t = = 0.0012 sec.

where:

M = 168 lbs./386.4 in/sec2 = 0.43 lb-sec2/in, mass Fmax = 1.97 x 105 lbs., Impact load maximum Vo = = 527 in/sec, initial velocity at impact g = 386.4, in/sec2, gravitational acceleration h = 360 in., drop height (30 ft.)

Accordingly, the ratio of impact duration to the natural period (t / T) = 3.75. Therefore, the corresponding DLF from Figure 4-7 is approximately 1.15.

4-46 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.2.2 Model AOS-050A Transport Package Cask Lid Dynamic Load Factor 4.5.2.2.2.1 Natural Frequency The cask lids natural frequency is calculated by considering the cask lid as a simply supported circular plate using Reference [4.10], Table 11.1, Case 2, as follows:

f = = 1,723 Hz, Natural frequency where:

ij = 4.98, dimensionless parameter (for i = j = 0), Reference [4.10], Table 11.1, Case 2 a = 4.45 in., cask lid radius h = 0.75 in., cask lid thickness Eb = 27.0 x 106 psi, modulus of elasticity

= 0.3, Poissons ratio

= = 7.50518E-4 = mass density

= 0.29 , density

= h x = 5.63E-4 = mass per unit area The corresponding natural period of vibration (T) is 1 / f = 0.00058 seconds.

Radioactive Material Transport Packaging System Safety Analysis Report 4-47 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.2.2.2 Impact Duration The impact duration (t) is approximated using the mass, impact initial velocity and impact loads, per methods presented in Reference [4.9], as follows:

t = = 0.0031 sec.

where:

M = 1,181 lbs./386.4 in/sec2 = 3.06 lb-sec2/in, mass Fmax = 5.18 x 105 lbs., Impact load maximum Vo = = 527 in/sec, initial velocity at impact g = 386.4, in/sec2, gravitational acceleration h = 360 in., drop height (30 ft.)

Accordingly, the ratio of impact duration to the natural period (t / T) = 5.34. Therefore, the corresponding DLF from Figure 4-7 is approximately 1.1. However, a DLF value of 1.15 is conservatively used in the analysis for the Model AOS-050A.

4-48 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.2.3 Model AOS-100A Transport Package Cask Lid Dynamic Load Factor 4.5.2.2.3.1 Natural Frequency The cask lids natural frequency is calculated by considering the cask lid as a simply supported circular plate using Reference [4.10], Table 11.1, Case 2, as follows:

f = = 984.4 Hz, Natural frequency where:

ij = 4.98, dimensionless parameter (for i = j = 0), Reference [4.10], Table 11.1, Case 2 a = 8.295 in., cask lid radius h = 1.49 in., cask lid thickness Eb = 27.0 x 106 psi, modulus of elasticity

= 0.3, Poissons ratio

= = 7.50518E-4 = mass density

= 0.29 , density

= h x = 1.12E-3 = mass per unit area The corresponding natural period of vibration (T) is 1 / f = 0.001 seconds Radioactive Material Transport Packaging System Safety Analysis Report 4-49 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.2.3.2 Impact Duration The impact duration (t) is approximated using the mass, impact initial velocity and impact loads, per methods presented in Ref. [2]

t = = 0.0063 sec.

where:

M = 9,510 lbs./386.4 in/sec2 = 24.61 lb-sec2/in, mass Fmax = 2.07 x 106 lbs., Impact load maximum Vo = = 527 in/sec, initial velocity at impact g = 386.4, in/sec2, gravitational acceleration h = 360 in., drop height (30 ft.)

Accordingly, the ratio of impact duration to the natural period (t / T) = 6.18. The DAF graph shown in Figure 4-7 is truncated at the ratio of pulse duration to the natural period of 6. However, for ratios greater than 1, DAF is generally inversely proportional with frequency as shown in Figure 4-7. Therefore, for the ratio (t / T) values greater than 6, the DAF value at t / T = 6 is conservatively considered. The corresponding DLF from Figure 4-7 is approximately 1.1. However, a DLF value of 1.15 is conservatively used in the analysis for the Model AOS-100A.

Figure 4-7. Impact Response Spectrum for SDOF System -

Half-Sine Pulse Shape, No Damping, All Models 4-50 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.3 Cask Lid Attachment Bolt Stress Analysis 4.5.2.3.1 Acceptance Criteria The cask lid attachment bolts are subjected to operational loads such as gasket seating and operating loads, bolt tightening preload, vibration, internal pressure, differential thermal expansion, and the loads associated with free drops.

NCT Acceptance criteria is as documented in NUREG/CR-6007 [4.6], Table 6.1 and Table 6.2, which are based on ASME B&PVC,Section III, Subsection NB [4.12]. HAC acceptance criteria are as documented in Reference [4.6], Table 6.3.

NCT acceptance criteria are that the average tensile stress must be less than the basic allowable stress in tension, and the average shear stress must be less than 60% of the basic allowable stress per Reference [4.6], Table 6.1. In addition, stress ratio is calculated for all bolts per that table. The sum of the squares of the stress ratios for average tensile stress and the average shear stress must be less than 1.

Further, the maximum stress intensity must be less than 1.35 times the allowable stress for bolts having a minimum tensile strength greater than 100 ksi, and 1.5 times for bolts that have a minimum tensile strength of less than 100 ksi.

HAC acceptance criteria is based on Reference [4.6], Table 6.3. In accordance with that table, the average stress in tension must be less than the smaller of 0.7 Su or of Sy at temperature T. The average stress in shear must be less than the smaller of 0.42 Su or 0.6 Sy at temperature T. Additionally, the sum of the squares of the HAC stress ratio for average tensile stress and average shear stress must be less than 1.

4.5.2.3.2 Equations for Bolt Loads and Stresses per NUREG/CR-6007 [4.6]

4.5.2.3.2.1 Forces and Moments Generated by Preload Preload for the bolts is calculated using the equation presented in NUREG/CR-6007 [4.6], Table 4.1, which is the non-prying axial bolt force per bolt, Fa, that is generated when the bolt is torqued:

Fa =

where:

Q = Applied torque (in-lb) for the preload K = Nut factor for empirical relation between the applied torque and achieved preload Db = Nominal diameter (in.) of the cask lid attachment bolt The torsional bolt moment per bolt, Mt, is defined by the following formula:

Mt = 0.5 Q Radioactive Material Transport Packaging System Safety Analysis Report 4-51 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.3.2.2 Forces and Moments Generated by Gasket Loads NUREG/CR-6007 [4.6], Table 4.2, lists the formulas for calculating the forces and moments generated by gasket loads. The axial force produced by the gasket seating is evaluated by use of the following equation:

Fa =

where the minimum design seating stress (y) and the effective gasket seating width (b) are defined in accordance with ASME B&PV Code [4.13], Appendix E:

Dlg = Face seal diameter (in.)

Nb = Number of cask lid attachment bolts The torsional bolt moment (Mt) due to the gasket seating is as follows:

Mt =

where:

Db = Nominal diameter of the cask lid attachment bolt (in.)

Additionally, the non-prying tensile bolt force per bolt produced by the operating gasket load is determined by the following equation:

Fa =

where the gasket factor (m) and the effective gasket seating width (b) are defined in accordance with ASME B&PV Code [4.13], Appendix E, and:

Dlg = Face seal diameter (in.)

Nb = Number of cask lid attachment bolts Pli = Pressure inside the cask lid (psi)

Plo = Pressure outside the cask lid (psi)

The effective gasket seating width, b, is calculated using the method in ASME B&PV Code [4.13],

Appendix E. As documented in ASME B&PV Code [4.13], Table E-1210:

b = bo for bo 1/4 b = for bo > 1/4 where:

Cb = 0.5 4-52 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

The basic gasket seating width, bo, is calculated using the design contact width, N, of the gasket.

As documented in ASME B&PV Code [4.13], Table E-1210:

bo =

The gasket factor (m) and minimum design seating stress (y) for various gasket types are provided in ASME B&PV Code [4.13], Table E-1210-1. Values for self-energizing types (O-rings, metallic, elastomeric, other gasket types considered as self-sealing) are used in the calculation.

4.5.2.3.2.3 Forces and Moments Generated by Pressure Loads NUREG/CR-6007 [4.6], Table 4.3, is applied to determine the moments and forces that are generated due to the pressure difference between the inside and outside of the cask. The associated equation for the axial force due to pressure loads is as follows:

Fa =

where:

Dlg = Face seal diameter (in.)

Nb = Number of cask lid attachment bolts Pli = Pressure inside the cask lid Plo = Pressure outside the cask lid Radioactive Material Transport Packaging System Safety Analysis Report 4-53 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

The shear bolt force per bolt is as follows:

Fs =

where:

El = Youngs modulus of the cask lid material Ec = Youngs modulus of the cask wall material tl = Thickness of the cask lid tc = Thickness of the cask wall Nb = Number of cask lid attachment bolts Dlb = Cask lid diameter at the bolt circle Pci = Pressure inside the cask wall Pco = Pressure outside the cask wall Nul = Poissons ratio of the cask lid material The fixed-edge cask lid force generated by internal pressure is as follows:

Ff =

where:

Dlb = Cask lid diameter at the bolt circle Pli = Pressure inside the cask lid Plo = Pressure outside the cask lid 4-54 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

The fixed-edge moment is as follows:

Mf =

where:

Dlb = Cask lid diameter at the bolt circle Pli = Pressure inside the cask lid Plo = Pressure outside the cask lid 4.5.2.3.2.4 Forces and Moments Generated by Temperature Loads NUREG/CR-6007 [4.6], Table 4.4, provides the formulas for bolt forces/moments that are generated by thermal expansion difference between the cask lid, cask lid attachment bolt, and cask wall. The axial force due to a temperature difference between the cask lid attachment bolt and cask lid is as follows:

Fat =

where:

Db = Nominal diameter of the cask lid attachment bolt (in.)

Eb = Youngs modulus of the cask lid attachment bolt material al = Thermal expansion coefficient of the cask lid material ab = Thermal expansion coefficient of the cask lid attachment bolt material Tl = Temperature change (T) of the cask lid Tb = Temperature change of the cask lid attachment bolt Radioactive Material Transport Packaging System Safety Analysis Report 4-55 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

The shear force acting on each bolt is as follows:

Fs =

where:

El = Youngs modulus of the cask lid material tl = Thickness of the cask lid material Dlb = Cask lid diameter at the bolt circle al = Thermal expansion coefficient of the cask lid material ac = Thermal expansion coefficient of the cask wall material Tl = Temperature change (T) of the cask lid Tc = T of the cask wall Nb = Number of cask lid attachment bolts Nul = Poissons ratio of the cask lid material Fixed-edge force and fixed-edge moment due to temperature difference between the inner and outer surface of the cask lid is determined by use of the following equations:

Ff = 0 lb/bolt Mf =

where:

El = Youngs modulus of the cask lid material al = Thermal expansion coefficient of the cask lid material tl = Thickness of the cask lid Tlo = T outer surface of the cask lid Tli = T inner surface of the cask lid Nul = Poissons ratio of the cask lid material 4-56 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.3.2.5 Forces and Moments Generated by Impact Loads The equations in NUREG/CR-6007 [4.6], Table 4.5, are used to calculate the bolt loads due to impact. The non-prying tensile bolt force per bolt due to impact is as follows:

Fa =

where:

ai = Maximum rigid body acceleration (g) of the cask DLF = Dynamic load factor xi = Impact angle between the cask axis and target surface Wl = Weight of the cask lid Wc = Weight of the contents Nb = Number of cask lid attachment bolts The shear bolt force per bolt is as follows:

Fs =

where:

ai = Maximum rigid body acceleration (g) of the cask xi = Impact angle between the cask axis and target surface Wl = Weight of cask lid Nb = Number of cask lid attachment bolts Radioactive Material Transport Packaging System Safety Analysis Report 4-57 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Further, the fixed-edge force and fixed-edge moment are defined as follows:

Ff =

Mf =

where:

ai = Maximum rigid body acceleration (g) of the cask DLF = Dynamic load factor xi = Impact angle between the cask axis and target surface Wl = Weight of the cask lid Wc = Weight of the contents Nb = Number of cask lid attachment bolts Dlb = Cask lid diameter at the bolt circle 4.5.2.3.2.6 Forces and Moments Generated by Vibration Loads Although vibration loads are not significant, they are considered during normal conditions of transport. The loads that are generated due to vibration are outlined in NUREG/CR-6007 [4.6], Table 4.8.

The accelerations recommended for tie-down in the regulations, 10 CFR 71.45(b)(1) [4.1], are considered in calculating the maximum loads due to vibration acceleration. Accordingly, 10-g axial and 5-g transverse vibration accelerations are considered for calculating the tensile and shear bolt forces, respectively.

The tensile bolt force per bolt is as follows:

Fa =

where:

VTR = 1, Vibration transmissibility of acceleration between the cask support and cask lid ava = 10g, Maximum axial vibration acceleration at the cask support Wl = Weight of the cask lid Nb = Number of cask lid attachment bolts 4-58 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

The shear bolt force per bolt is as follows:

Fs =

where:

VTR = 1, Vibration transmissibility of acceleration between the cask support and the cask lid avt = 5g, Maximum transverse vibration acceleration at the cask support Wl = Weight of the cask lid Nb = Number of cask lid attachment bolts The fixed-edge force and fixed-edge moment are defined as follows:

Ff =

Mf =

where:

VTR = 1, Vibration transmissibility of acceleration between the cask support and the cask lid ava = 10g, Maximum axial vibration acceleration at the cask support xi Impact angle between the cask axis and the target surface Wl = Weight of the cask lid Dlb = Cask lid diameter at the bolt circle Radioactive Material Transport Packaging System Safety Analysis Report 4-59 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.3.2.7 Prying Action Forces Generated by Applied Loads From NUREG/CR-6007 [4.6], Table 2.1. the axial bolt force per bolt that is caused by the prying action of the cask lid is as follows:

Fap-c =

where:

C1 =1 C2 =

Lb = Bolt length between the top and bottom surfaces of the cask lid at the bolt circle B = Ff if Ff > P; otherwise, B = P In calculating C2, El and Elf are the Youngs modulus of the cask lid and cask lid flange, respectively.

Because the cask lid and its flange are the same material, El is the same as Elf.

Eb = Youngs modulus of the cask lid attachment bolt material Db = Nominal diameter of the cask lid attachment bolt Dlb = Cask lid diameter at the bolt circle Dlo = Cask lid diameter at the outer edge Dli = Cask lid diameter at the inner edge Mf = Fixed-edge moment of the cask lid at the bolt circle that is caused by the applied loads (per unit length of the bolt circle)

Ff = Fixed-edge force of the cask lid at the bolt circle that is caused by the applied loads (per unit length of the bolt circle)

Nb = Number of cask lid attachment bolts Nul = Poissons ratio of the cask lid material P = Bolt preload per unit length of the bolt circle (the combined preload and temperature load (Fa-pt) is used to calculate P, per NUREG/CR-6007 [4.6], Table 4.9, II.3 tl = Thickness of the cask lid tlf = Thickness of the cask lid flange The prying action load is calculated for the combined load using the combined fixed-edge force (Ff - c) and the combined fixed-edge moment (Mf - c).

4-60 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.3.2.8 Bending Bolt Moment Generated by Applied Loads NUREG/CR-6007 [4.6], Table 2.2, includes the formula for calculating the bending bolt moment per bolt that is caused by the rotation or bending of the cask lid and is expressed as follows:

Mbb =

where:

Kb =

Kl =

Db = Nominal diameter of the cask lid attachment bolt Dlb = Cask lid diameter at the bolt circle Dlo = Cask lid diameter at the outer edge Dli = Cask lid diameter at the inner edge Eb = Youngs modulus of the cask lid attachment bolt material El = Youngs modulus of the cask lid material Ff = Fixed-edge force of the cask lid at the bolt circle that is caused by the applied load (per unit length of the bolt circle)

Lb = Bolt length between the top and bottom surfaces of the cask lid at the bolt circle Mf = Fixed-edge moment of the cask lid at the bolt circle that is caused by the applied load (per unit length of the bolt circle)

Nb = Number of cask lid attachment bolts Nul = Poissons ratio of the cask lid material tl = Thickness of the cask lid Radioactive Material Transport Packaging System Safety Analysis Report 4-61 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.3.2.9 Total Bolt Loads and Stresses To accurately combine total bolt forces, the method of NUREG/CR-6007 [4.6], Table 4.9, is applied. The total tensile bolt force is obtained by adding the total non-prying tensile bolt forces and the total prying tensile bolt forces, as documented in NUREG/CR-6007, Table 4.9, III.I.

The total shear force, as documented in NUREG/CR-6007, Table 4.9, is evaluated as the absolute sum of the shear forces generated by all applied loads.

The combined bending moment is obtained using the combined fixed edge moment and the formula in NUREG/CR-6007, Table 2.2.

As stated in NUREG/CR-6007, Table 4.9, the torsional bolt moment is calculated using the torsional bolt moments from preload.

Bolt stresses are calculated from NUREG/CR-6007, Table 5.1. From the nominal bolt diameter, Db, a new bolt diameter, D, is calculated for stress calculation.

For the tensile stress calculation:

D = Dba where:

Dba = Alternate Bolt Diameter for Stress Calculation = Db - 0.9743p Db = Nominal bolt diameter p = Bolt thread pitch, equals 1 / n n = Number of bolt threads per unit length For the shear stress calculation:

D = Dba (if maximum shear occurs in the thread)

D = Db (if maximum shear occurs in the shank)

For the bending stress calculation:

D = Dba (if maximum bending occurs in the thread)

D = Db (if maximum bending occurs in the shank)

The average bolt direct stress (Sba) that is caused by the tensile bolt force is calculated as follows:

Sba = 1.2732 Fa / D2 The average bolt shear stress (Sbs) that is caused by shear bolt stress is as follows:

Sbs = 1.2732 Fs / D2 The maximum bending stress (Sbb) that is caused by the bending bolt moment is as follows:

Sbb = 10.186 Mbb / D3 4-62 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

And, the maximum shear stress (Sbt) that is caused by the torsional bolt moment is as follows:

Sbt = 5.093 Mt / D3 Where Fa, Fs, Mbb, and Mt all represent total values of the tensile bolt force, shear bolt force, bending bolt moment, and torsional bolt moment, respectively.

The resulting stress intensity (Sbi) that is caused by tension + shear + bending + torsion is as follows:

Sbi =

Radioactive Material Transport Packaging System Safety Analysis Report 4-63 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.3.3 Model AOS-025A Cask Lid Attachment Bolt Load and Stress Analysis 4.5.2.3.3.1 Cask Lid Attachment Bolt Input Parameters Table 4-10 lists the Model AOS-025A cask lid attachment bolt input parameters. The Model AOS-025A minimum and maximum preload torque limits are 29 ft-lb and 35 ft-lb, respectively. The preload torque value used in the stress calculations is 35 ft-lb because the calculated bolt stresses are highest using the maximum preload torque.

Table 4-10. Model AOS-025A Cask Lid Attachment Bolt Input Parameters Parameter Variable Input Value Units Temperature T (38) 100 (-40) -40 (°C) °F Number of Bolts Nb 8 8 -

Lid Diameter at Bolt Circle Dlb 3.9 3.9 in.

Lid Diameter at Gasket Dlg 3.07 3.07 in.

Nominal Bolt Diameter Db 0.375 0.375 in.

Threads per Inch n 16 16 -

Lid Diameter at Inner Edge Dli 2.61 2.61 in.

Lid Diameter at Outer Edge Dlo 4.65 4.65 in.

Thickness of Cask Lid tl 0.37 0.37 in.

Thickness of Cask Lid Flange tlf 0.48 0.48 in.

Thickness of Cask Wall tc 1.02 1.02 in.

Bolt Length between the Top and Bottom Surface Lb 0.15 0.15 in.

of Cask Lid Youngs Modulus for Cask Lid El 27,300,000 28,300,000 psi Youngs Modulus for Cask Ec 27,300,000 28,300,000 psi Youngs Modulus for Bolt Eb 28,000,000 29,200,000 psi Poissons Ratio for Cask Lid Nul 0.3 0.3 -

Poissons Ratio for Cask Nuc 0.3 0.3 -

Lid Thermal Expansion Coefficient al 0.0000091 0.0000086 1/°F Bolt Thermal Expansion Coefficient ab 0.0000073 0.0000070 1/°F Cask Wall Thermal Expansion Coefficient ac 0.0000091 0.0000086 1/°F Weight of Cask Contents Wc 14 14 lbs.

Weight of Cask Lid Wl 2 2 lbs.

Bolt Torque (in-lb) 420 420 in-lb Q

Bolt Torque (ft-lb) 35 35 ft-lb Nut Factor for Preload Torque K 0.15 0.15 -

4-64 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-10. Model AOS-025A Cask Lid Attachment Bolt Input Parameters (Continued)

Parameter Variable Input Value Units Gasket Seating Width b 1 1 in.

Gasket Seating Stress y 3,000 3,000 psi Gasket Factor m 9.53 9.53 -

Minimum Yield Strength Sy 142,000 150,000 psi Minimum Ultimate Strength Su 176,000 185,000 psi Basic Allowable Stress Limit Sm 95,000 100,000 psi Initial Temperature Ti 70 70 °F Temperature of Cask Lid at Bolts Tl 255 36 °F Temperature of Bolts Tb 255 36 °F Temperature of Cask Wall Tc 255 36 °F Temperature of Cask Lid Inner Surface Tli 255 36 °F Temperature of Cask Lid Outer Surface Tlo 255 36 °F Transport Package Internal Pressure Pi 30 30 psia Atmospheric Pressure Pa 15 15 psia Radioactive Material Transport Packaging System Safety Analysis Report 4-65 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.3.3.2 Model AOS-025A Cask Lid Attachment Bolt NCT Results Table 4-11 summarizes the forces and moments from individual loads. Table 4-12 documents the NCT load combinations.

Table 4-11. Model AOS-025A Cask Lid Attachment Bolt NCT Loads Temperature Summary Bolt Loads from Individual Loads Variable Units (38°C) 100°F (-40°C) -40°F Preload Non-Prying Tensile Bolt Force Due to Preload Fa lbs. 7,467 7,467 Torsional Bolt Moment Mt lb-in 210 210 Gasket Non-Prying Tensile Bolt Force for Gasket Seating Fa lbs. 3,617 3,617 Non-Prying Tensile Bolt Force for Fa lbs. 345 345 Gasket Operation Torsional Bolt Moment Mt lb-in 102 102 Pressure Pressure inside the Cask Lid Pli psi 30.0 30.0 Pressure outside the Cask Lid Plo psi 15.0 15.0 Pressure inside the Cask Wall Pci psi 30.0 30.0 Pressure outside the Cask Wall Pco psi 15.0 15.0 Non-Prying Tensile Bolt Force Fa lbs. 13.9 13.9 Shear Bolt Force per Bolt Fs lbs. 23.2 23.2 Fixed-Edge Cask Lid Force Ff lb/in 14.6 14.6 Fixed-Edge Cask Lid Moment Mf (lb-in)/in 7.1 7.1 Temperature Temperature Change of Cask Lid at Bolts Tl °F 185.0 -34.0 Temperature Change of Bolts Tb °F 185.0 -34.0 Temperature Change of Cask Wall Tc °F 185.0 -34.0 Temperature Change of Inner Surface of Cask Lid Tli °F 185.0 -34.0 Temperature Change of Outer Surface of Cask Lid Tlo °F 185.0 -34.0 Non-Prying Tensile Bolt Force Fa lbs. 1,030 -175 Shear Bolt Force per Bolt Fs lbs. 0.00 0.00 Fixed-Edge Cask Lid Force Ff lb/in 0.00 0.00 Fixed-Edge Cask Lid Moment Mf (lb-in)/in 0.00 0.00 4-66 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-11. Model AOS-025A Cask Lid Attachment Bolt NCT Loads (Continued)

Temperature Summary Bolt Loads from Individual Loads Variable Units (38°C) 100°F (-40°C) -40°F Impact Maximum Impact Acceleration ai g - -

Impact Angle xi ° - -

Dynamic Load Factor DLF - - -

Non-Prying Axial Load Due to Impact Fa lbs. - -

Shear Load Due to Impact Fs lbs. - -

Fixed-Edge Load Due to Impact Ff lb/in - -

Fixed-Edge Moment Due to Impact Mf (lb-in)/in - -

Vibration Vibration Transmissibility of Acceleration VTR - 1.00 1.00 (cask support to cask lid)

Maximum Axial Vibration Acceleration (g) ava g 10.00 10.00 at the Cask Support Maximum Transverse Vibration Acceleration (g) avt g 5.00 5.00 at the Cask Support Axial Load Due to Vibration Fa lbs. 2.50 2.50 Shear Load Due to Vibration Fs lbs. 1.25 1.25 Fixed-Edge Force Ff lb/in 1.63 1.63 Fixed-Edge Moment Due to Vibration Mf (lb-in)/in 0.80 0.80 Prying Action Bolt Length between Top and Bottom Surface Lb in. 0.15 0.15 of Cask Lid Constant1 C1 - 1.0 1.0 Constant2 (for outward loads) C2 - 0.0802 0.0798 Bolt Preload per Unit Length of the Bolt Circle P lb/in 5,548 4,761 Non-Prying Tensile Bolt Force B lb/in 5,548 4,761 Combined Axial Load on Bolt Due to Prying Fap-c lbs. -7,813 -6,699 Radioactive Material Transport Packaging System Safety Analysis Report 4-67 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-12. Model AOS-025A Cask Lid Attachment Bolt NCT Load Combinations Temperature Loads/Stresses Variable Units (38°C) 100°F (-40°C) -40°F Temperature and Preload Non-Prying Axial Fa-pt lbs. 8,496 7,291 Load Axial Load Less Temperature and Preload Fa-al lbs. 361 361 Combined Non-Prying Tensile Bolt Force Fa-c lbs. 8,496 7,291 (Greater of Fa-pt and Fa-al)

Prying Axial Load of Bolt Fap-c lbs. -7,813 -6,699 Total Tensile Bolt Load (Fa-c + Fap-c) Fa lbs. 684 592 Total Shear Bolt Force Fs lbs. 24.5 24.5 Total Bending Bolt Moment Mbb-c lb-in 6.8 6.8 Total Torsional Bolt Moment Mt lb-in 210.0 210.0 Diameter Used for Stress Calculations Dba in. 0.314 0.314 Average Bolt Axial Stress Sba psi 8,825 7,638 Average Bolt Shear Stress Sbs psi 316 316 Maximum Bending Stress Sbb psi 2,221 2,227 Maximum Shear Stress Due to Torsional Sbt psi 34,511 34,511 Bolt Moment Maximum Stress Intensity Sbi psi 70,525 70,349 Allowable Tensile Stress Sm psi 95,000 100,000 Allowable Shear Stress 0.6 Sm psi 57,000 60,000 Allowable Stress Intensity 1.35 Sm psi 128,250 135,000 Axial Stress Ratio Rt - 0.09 0.08 Shear Stress Ratio Rs - 0.01 0.01 Combined Stress Ratio Rt2 + Rs2 - 0.01 0.01 Stress Intensity Ratio Ri - 0.55 0.52 4-68 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.3.3.3 Model AOS-025A Cask Lid Attachment Bolt HAC Results Table 4-13 documents the HAC forces from individual loads. Table 4-14 summarizes the corresponding load combinations.

Table 4-13. Model AOS-025A Cask Lid Attachment Bolt HAC Loads Drop Type, by Temperature (T)

Head-On Side Cg/Corner Summary Bolt Loads (38°C) (-40°C) (38°C) (-40°C) (38°C) (-40°C) from Individual Loads Variable Units 100°F -40°F 100°F -40°F 100°F -40°F Preload Non-Prying Tensile Bolt Fa lbs. 7,467 7,467 7,467 7,467 7,467 7,467 Force Due to Preload Torsional Bolt Moment Mt lb-in 210 210 210 210 210 210 Gasket Non-Prying Tensile Bolt Force for Fa lbs. 3,617 3,617 3,617 3,617 3,617 3,617 Gasket Seating Non-Prying Tensile Bolt Force for Fa lbs. 345 345 345 345 345 345 Gasket Operation Torsional Bolt Moment Mt lb-in 102 102 102 102 102 102 Pressure Pressure inside the Pli psi 30.0 30.0 30.0 30.0 30.0 30.0 Cask Lid Pressure outside the Plo psi 15.0 15.0 15.0 15.0 15.0 15.0 Cask Lid Pressure inside the Pci psi 30.0 30.0 30.0 30.0 30.0 30.0 Cask Wall Pressure outside the Pco psi 15.0 15.0 15.0 15.0 15.0 15.0 Cask Wall Non-Prying Tensile Fa lbs. 13.9 13.9 13.9 13.9 13.9 13.9 Bolt Force Shear Bolt Force Fs lbs. 23.2 23.2 23.2 23.2 23.2 23.2 per Bolt Fixed-Edge Cask Ff lb/in 14.6 14.6 14.6 14.6 14.6 14.6 Lid Force Fixed-Edge Cask Mf (lb-in)/in 7.1 7.1 7.1 7.1 7.1 7.1 Lid Moment Radioactive Material Transport Packaging System Safety Analysis Report 4-69 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-13. Model AOS-025A Cask Lid Attachment Bolt HAC Loads (Continued)

Drop Type, by Temperature (T)

Head-On Side Cg/Corner Summary Bolt Loads (38°C) (-40°C) (38°C) (-40°C) (38°C) (-40°C) from Individual Loads Variable Units 100°F -40°F 100°F -40°F 100°F -40°F Temperature Temperature Change Tl °F 185.0 -34.0 185.0 -34.0 185.0 -34.0 of Cask Lid at Bolts Temperature Change Tb °F 185.0 -34.0 185.0 -34.0 185.0 -34.0 of Bolts Temperature Change Tc °F 185.0 -34.0 185.0 -34.0 185.0 -34.0 of Cask Wall Temperature Change of Inner Surface of Tli °F 185.0 -34.0 185.0 -34.0 185.0 -34.0 Cask Lid Temperature Change of Outer Surface of Tlo °F 185.0 -34.0 185.0 -34.0 185.0 -34.0 Cask Lid Non-Prying Tensile Fa lbs. 1,030 -175 1,030 -175 1,030 -175 Bolt Force Shear Bolt Force Fs lbs. 0.00 0.00 0.00 0.00 0.00 0.00 per Bolt Fixed-Edge Cask Ff lb/in 0.00 0.00 0.00 0.00 0.00 0.00 Lid Force Fixed-Edge Cask Mf (lb-in)/in 0.00 0.00 0.00 0.00 0.00 0.00 Lid Moment Impact Maximum Impact ai g 833.0 1,173.0 1,286.0 1,798.0 1,019.0 1,419.0 Acceleration Impact Angle xi ° 90.0 90.0 0.0 0.0 52.0 52.0 Dynamic Load Factor DLF - 1.15 1.15 1.15 1.15 1.15 1.15 Non-Prying Axial Load Fa lbs. 2,567.3 3,615.2 0.0 0.0 2,474.8 3,446.3 Due to Impact Shear Load Due Fs lbs. 0.0 0.0 321.5 449.5 156.8 218.4 to Impact Fixed-Edge Load Due Ff lb/in 1,676.3 2,360.5 0.0 0.0 1,615.9 2,250.2 to Impact Fixed-Edge Moment Mf (lb-in)/in 817.2 1,150.7 0.0 0.0 787.8 1,097.0 Due to Impact 4-70 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-13. Model AOS-025A Cask Lid Attachment Bolt HAC Loads (Continued)

Drop Type, by Temperature (T)

Head-On Side Cg/Corner Summary Bolt Loads (38°C) (-40°C) (38°C) (-40°C) (38°C) (-40°C) from Individual Loads Variable Units 100°F -40°F 100°F -40°F 100°F -40°F Vibration Vibration Transmissibility of Acceleration VTR - - - - - - -

(cask support to cask lid)

Maximum Axial Vibration Acceleration ava g - - - - - -

(g) at the Cask Support Maximum Transverse Vibration Acceleration avt g - - - - - -

(g) at the Cask Support Axial Load Due Fa lbs. - - - - - -

to Vibration Shear Load Due Fs lbs. - - - - - -

to Vibration Fixed-Edge Force Ff lb/in - - - - - -

Fixed-Edge Moment Mf (lb-in)/in - - - - - -

Due to Vibration Prying Action Bolt Length Lb in 0.15 0.15 0.15 0.15 0.15 0.15 Constant1 C1 - 1.0 1.0 1.0 1.0 1.0 1.0 Constant2 C2 - 0.0802 0.0798 0.0802 0.0798 0.0802 0.0798 (for outward loads)

Bolt Preload per Unit P lb/in 5,548 4,761 5,548 4,761 5,548 4,761 Length of Bolt Circle Non-Prying Tensile B lb/in 5,548 4,761 5,548 4,761 5,548 4,761 Bolt Force Axial Load of Bolt Due Fap-c lbs. -2,352 996 -7818 -6,705 -2,549 636 to Prying Radioactive Material Transport Packaging System Safety Analysis Report 4-71 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-14. Model AOS-025A Cask Lid Attachment Bolt HAC Load Combinations Drop Type, by Temperature (T)

Head-On Side Cg/Corner (38°C) (-40°C) (38°C) (-40°C) (38°C) (-40°C)

Loads/Stresses Variable Units 100°F -40°F 100°F -40°F 100°F -40°F Temperature and Preload Fa-pt lbs. 8,496 7,291 8,496 7,291 8,496 7,291 Non-Prying Axial Load Axial Load Less Fa-al lbs. 2,926 3,974 359 359 2,833 3,805 Temperature and Preload Combined Non-Prying Tensile Bolt Force Fa-c lbs. 8,496 7,291 8,496 7,291 8,496 7,291 (Greater of Fa-pt and Fa-al)

Axial Load of Bolt Due Fap-c lbs. -2,352 996 -7,818 -6,705 -2,549 636 to Prying Combined Total Tensile Bolt Load Fa lbs. 6,145 8,287 679 587 5,948 7,927 (Fa-c + Fap-c)

Total Shear Bolt Force Fs lbs. 23.2 23.2 344.7 472.7 180.1 241.6 Total Bending Bolt Moment Mbb-c lb-in 703 990 6.1 6.1 678 944 Total Torsional Bolt Mt lb-in 210 210 210 210 210 210 Moment Diameter Used for Dba in. 0.314 0.314 0.314 0.314 0.314 0.314 Stress Calculations Average Bolt Direct Stress Sba psi 79,297 106,940 8,756 7,569 76,756 102,296 Average Bolt Shear Stress Sbs psi 300 300 4,448 6,100 2,324 3,118 Maximum Bending Stress Sbb psi 231,020 325,359 1,998 2,003 222,767 310,249 Total Tensile Stress Sbt psi 34,511 34,511 34,511 34,511 34,511 34,511 Minimum of Allowable Direct Stress psi 123,200 129,500 123,200 129,500 123,200 129,500 0.7 Su and Sy Minimum of Allowable Shear Stress 0.42 Su and psi 73,920 77,700 73,920 77,700 73,920 77,700 0.6 Sy Average Direct Stress Ratio Rt - 0.64 0.83 0.07 0.06 0.62 0.79 Shear Stress Ratio Rs - 0.00 0.00 0.06 0.08 0.03 0.04 Combined Axial and Rt2 + Rs2 - 0.41 0.68 0.01 0.01 0.39 0.63 Shear Stress Ratio 4-72 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.3.4 Model AOS-050A Cask Lid Attachment Bolt Load and Stress Analysis 4.5.2.3.4.1 Cask Lid Attachment Bolt Input Parameters Table 4-15 lists the Model AOS-050A cask lid attachment bolt input parameters. The Model AOS-050A minimum and maximum preload torque limits are 62.5 ft-lb and 68 ft-lb, respectively. The preload torque value used in the stress calculations is 68 ft-lb because the calculated bolt stresses are highest using the maximum preload torque.

Table 4-15. Model AOS-050A Cask Lid Attachment Bolt Input Parameters Parameter Variable Input Value Units Temperature T (38) 100 (-40) -40 (°C) °F Number of Bolts Nb 10 10 -

Lid Diameter at Bolt Circle Dlb 7.414 7.414 in.

Lid Diameter at Gasket Dlg 6.09 6.09 in.

Nominal Bolt Diameter Db 0.5 0.5 in.

Threads per Inch n 13 13 -

Lid Diameter at Inner Edge Dli 5.51 5.51 in.

Lid Diameter at Outer Edge Dlo 8.9 8.9 in.

Thickness of Cask Lid tl 0.75 0.75 in.

Thickness of Cask Lid Flange tlf 0.97 0.97 in.

Thickness of Cask Wall tc 1.695 1.695 in.

Bolt Length between the Top and Bottom Surface Lb 0.41 0.41 in.

of Cask Lid Youngs Modulus for Cask Lid El 27,000,000 28,300,000 psi Youngs Modulus for Cask Ec 27,000,000 28,300,000 psi Youngs Modulus for Bolt Eb 27,800,000 28,900,000 psi Poissons Ratio for Cask Lid Nul 0.3 0.3 -

Poissons Ratio for Cask Nuc 0.3 0.3 -

Lid Thermal Expansion Coefficient al 0.0000092 0.0000086 1/°F Bolt Thermal Expansion Coefficient ab 0.0000073 0.0000070 1/°F Cask Wall Thermal Expansion Coefficient ac 0.0000092 0.0000086 1/°F Weight of Cask Contents Wc 95 95 lbs.

Weight of Cask Lid Wl 14 14 lbs, Bolt Torque (in-lb) 816 816 in-lb Q

Bolt Torque (ft-lb) 68 68 ft-lb Nut Factor for Preload Torque K 0.15 0.15 -

Radioactive Material Transport Packaging System Safety Analysis Report 4-73 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-15. Model AOS-050A Cask Lid Attachment Bolt Input Parameters (Continued)

Parameter Variable Input Value Units Gasket Seating Width b 1 1 in.

Gasket Seating Stress y 3,000 3,000 psi Gasket Factor m 3.18 3.18 -

Minimum Yield Strength Sy 141,000 150,000 psi Minimum Ultimate Strength Su 174,000 185,000 psi Basic Allowable Stress Limit Sm 94,000 100,000 psi Initial Temperature Ti 70 70 °F Temperature of Cask Lid at Bolts Tl 286 85 °F Temperature of Bolts Tb 286 85 °F Temperature of Cask Wall Tc 286 85 °F Temperature of Cask Lid Inner Surface Tli 286 85 °F Temperature of Cask Lid Outer Surface Tlo 286 85 °F Transport Package Internal Pressure Pi 60 60 psia Atmospheric Pressure Pa 15 15 psia 4-74 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.3.4.2 Model AOS-050A Cask Lid Attachment Bolt NCT Results Table 4-16 summarizes the forces and moments from individual loads. Table 4-17 documents the NCT load combinations.

Table 4-16. Model AOS-050A Cask Lid Attachment Bolt NCT Loads Temperature Summary Bolt Loads from Individual Loads Variable Units (38°C) 100°F (-40°C) -40°F Preload Non-Prying Tensile Bolt Force Due to Preload Fa lbs. 10,000 10,000 Torsional Bolt Moment Mt lb-in 375 375 Gasket Non-Prying Tensile Bolt Force for Gasket Seating Fa lbs. 5,740 5,740 Non-Prying Tensile Bolt Force for Fa lbs. 548 548 Gasket Operation Torsional Bolt Moment Mt lb-in 215 215 Pressure Pressure inside the Cask Lid Pli psi 60.0 60.0 Pressure outside the Cask Lid Plo psi 15.0 15.0 Pressure inside the Cask Wall Pci psi 60.0 60.0 Pressure outside the Cask Wall Pco psi 15.0 15.0 Non-Prying Tensile Bolt Force Fa lbs. 131.1 131.1 Shear Bolt Force per Bolt Fs lbs. 245.6 245.6 Fixed-Edge Cask Lid Force Ff lb/in 83.4 83.4 Fixed-Edge Cask Lid Moment Mf (lb-in)/in 77.3 77.3 Temperature Temperature Change of Cask Lid at Bolts Tl °F 216.0 15.0 Temperature Change of Bolts Tb °F 216.0 15.0 Temperature Change of Cask Wall Tc °F 216.0 15.0 Temperature Change of Inner Surface of Cask Lid Tli °F 216.0 15.0 Temperature Change of Outer Surface of Cask Lid Tlo °F 216.0 15.0 Non-Prying Tensile Bolt Force Fa lbs. 2240 136 Shear Bolt Force per Bolt Fs lbs. 0.00 0.00 Fixed-Edge Cask Lid Force Ff lb/in 0.00 0.00 Fixed-Edge Cask Lid Moment Mf (lb-in)/in 0.00 0.00 Radioactive Material Transport Packaging System Safety Analysis Report 4-75 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-16. Model AOS-050A Cask Lid Attachment Bolt NCT Loads (Continued)

Temperature Summary Bolt Loads from Individual Loads Variable Units (38°C) 100°F (-40°C) -40°F Impact Maximum Impact Acceleration ai g - -

Impact Angle xi ° - -

Dynamic Load Factor DLF - - -

Non-Prying Axial Load Due to Impact Fa lbs. - -

Shear Load Due to Impact Fs lbs. - -

Fixed-Edge Load Due to Impact Ff lb/in - -

Fixed-Edge Moment Due to Impact Mf (lb-in)/in - -

Vibration Vibration Transmissibility of Acceleration VTR - 1.00 1.00 (cask support to cask lid)

Maximum Axial Vibration Acceleration (g) ava g 10.00 10.00 at the Cask Support Maximum Transverse Vibration Acceleration (g) avt g 5.00 5.00 at the Cask Support Axial Load Due to Vibration Fa lbs. 14.00 14.00 Shear Load Due to Vibration Fs lbs. 7.00 7.00 Fixed-Edge Force Ff lb/in 6.01 6.01 Fixed-Edge Moment Due to Vibration Mf (lb-in)/in 5.57 5.57 Prying Action Bolt Length between Top and Bottom Surface Lb in. 0.41 0.41 of Cask Lid Constant1 C1 - 1.0 1.0 Constant2 (for outward loads) C2 - 0.1962 0.1978 Bolt Preload per Unit Length of the Bolt Circle P lb/in 5,255 4,352 Non-Prying Tensile Bolt Force B lb/in 5,255 4,352 Combined Axial Load on Bolt Due to Prying Fap-c lbs. -9,841 -8,072 4-76 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-17. Model AOS-050A Cask Lid Attachment Bolt NCT Load Combinations Temperature Loads/Stresses Variable Units (38°C) 100°F (-40°C) -40°F Temperature and Preload Non-Prying Axial Fa-pt lbs. 13,160 11,056 Load Axial Load Less Temperature and Preload Fa-al lbs. 693 693 Combined Non-Prying Tensile Bolt Force Fa-c lbs. 13,160 11,056 (Greater of Fa-pt and Fa-al)

Prying Axial Load of Bolt Fap-c lbs. -10,610 -8,840 Total Tensile Bolt Load (Fa-c + Fap-c) Fa lbs. 2,550 2,217 Total Shear Bolt Force Fs lbs. 253 253 Total Bending Bolt Moment Mbb-c lb-in 35 34 Total Torsional Bolt Moment Mt lb-in 410 410 Diameter Used for Stress Calculations Dba in. 0.425 0.425 Average Bolt Axial Stress Sba psi 17,969 15,620 Average Bolt Shear Stress Sbs psi 1,780 1,780 Maximum Bending Stress Sbb psi 4,582 4,551 Maximum Shear Stress Due to Torsional Sbt psi 27,158 27,158 Bolt Moment Maximum Stress Intensity Sbi psi 62,114 61,290 Allowable Tensile Stress Sm psi 94,000 100,000 Allowable Shear Stress 0.6 Sm psi 56,400 60,000 Allowable Stress Intensity 1.35 Sm psi 126,900 135,000 Axial Stress Ratio Rt - 0.19 0.16 Shear Stress Ratio Rs - 0.03 0.03 Combined Stress Ratio Rt2 + Rs2 - 0.04 0.03 Stress Intensity Ratio Ri - 0.49 0.45 Radioactive Material Transport Packaging System Safety Analysis Report 4-77 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.3.4.3 Model AOS-050A Cask Lid Attachment Bolt HAC Results Table 4-18 documents the HAC forces from individual loads. Table 4-19 summarizes the corresponding load combinations.

Table 4-18. Model AOS-050A Cask Lid Attachment Bolt HAC Loads Drop Type, by Temperature (T)

Head-On Side Cg/Corner Summary Bolt Loads (38°C) (-40°C) (38°C) (-40°C) (38°C) (-40°C) from Individual Loads Variable Units 100°F -40°F 100°F -40°F 100°F -40°F Preload Non-Prying Tensile Bolt Fa lbs. 10,000 10,000 10,000 10,000 10,000 10,000 Force Due to Preload Torsional Bolt Moment Mt lb-in 375 375 375 375 375 375 Gasket Non-Prying Tensile Bolt Force for Fa lbs. 5,740 5,740 5,740 5,740 5,740 5,740 Gasket Seating Non-Prying Tensile Bolt Force for Fa lbs. 548 548 548 548 548 548 Gasket Operation Torsional Bolt Moment Mt lb-in 215 215 215 215 215 215 Pressure Pressure inside the Pli psi 60.0 60.0 60.0 60.0 60.0 60.0 Cask Lid Pressure outside the Plo psi 15.0 15.0 15.0 15.0 15.0 15.0 Cask Lid Pressure inside the Pci psi 60.0 60.0 60.0 60.0 60.0 60.0 Cask Wall Pressure outside the Pco psi 15.0 15.0 15.0 15.0 15.0 15.0 Cask Wall Non-Prying Tensile Fa lbs. 131.1 131.1 131.1 131.1 131.1 131.1 Bolt Force Shear Bolt Force Fs lbs. 245.6 245.6 245.6 245.6 245.6 245.6 per Bolt Fixed-Edge Cask Ff lb/in 83.4 83.4 83.4 83.4 83.4 83.4 Lid Force Fixed-Edge Cask Mf (lb-in)/in 77.3 77.3 77.3 77.3 77.3 77.3 Lid Moment 4-78 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-18. Model AOS-050A Cask Lid Attachment Bolt HAC Loads (Continued)

Drop Type, by Temperature (T)

Head-On Side Cg/Corner Summary Bolt Loads (38°C) (-40°C) (38°C) (-40°C) (38°C) (-40°C) from Individual Loads Variable Units 100°F -40°F 100°F -40°F 100°F -40°F Temperature Temperature Change Tl °F 216.0 15.0 216.0 15.0 216.0 15.0 of Cask Lid at Bolts Temperature Change Tb °F 216.0 15.0 216.0 15.0 216.0 15.0 of Bolts Temperature Change Tc °F 216.0 15.0 216.0 15.0 216.0 15.0 of Cask Wall Temperature Change of Inner Surface of Tli °F 216.0 15.0 216.0 15.0 216.0 15.0 Cask Lid Temperature Change of Outer Surface of Tlo °F 216.0 15.0 216.0 15.0 216.0 15.0 Cask Lid Non-Prying Tensile Fa lbs. 2,240 136 2,240 136 2,240 136 Bolt Force Shear Bolt Force Fs lbs. 0.00 0.00 0.00 0.00 0.00 0.00 per Bolt Fixed-Edge Cask Ff lb/in 0.00 0.00 0.00 0.00 0.00 0.00 Lid Force Fixed-Edge Cask Mf (lb-in)/in 0.00 0.00 0.00 0.00 0.00 0.00 Lid Moment Impact Maximum Impact ai g 314.0 439.0 335.0 469.0 224.0 314.0 Acceleration Impact Angle xi ° 90.0 90.0 0.0 0.0 52.0 52.0 Dynamic Load Factor DLF - 1.15 1.15 1.15 1.15 1.15 1.15 Non-Prying Axial Load Fa lbs. 5,274 7,374 0 0 2,965 4,156 Due to Impact Shear Load Due Fs lbs. 0.0 0.0 469 657 193 271 to Impact Fixed-Edge Load Due Ff lb/in 2,264 3,166 0.0 0.0 1,273 1,784 to Impact Fixed-Edge Moment Mf (lb-in)/in 2,099 2,934 0.0 0.0 1,180 1,654 Due to Impact Radioactive Material Transport Packaging System Safety Analysis Report 4-79 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-18. Model AOS-050A Cask Lid Attachment Bolt HAC Loads (Continued)

Drop Type, by Temperature (T)

Head-On Side Cg/Corner Summary Bolt Loads (38°C) (-40°C) (38°C) (-40°C) (38°C) (-40°C) from Individual Loads Variable Units 100°F -40°F 100°F -40°F 100°F -40°F Vibration Vibration Transmissibility of Acceleration VTR - - - - - - -

(cask support to cask lid)

Maximum Axial Vibration Acceleration ava g - - - - - -

(g) at the Cask Support Maximum Transverse Vibration Acceleration avt g - - - - - -

(g) at the Cask Support Axial Load Due Fa lbs. - - - - - -

to Vibration Shear Load Due Fs lbs. - - - - - -

to Vibration Fixed-Edge Force Ff lb/in - - - - - -

Fixed-Edge Moment Mf (lb-in)/in - - - - - -

Due to Vibration Prying Action Bolt Length Lb in 0.41 0.41 0.41 0.41 0.41 0.41 Constant1 C1 - 1.0 1.0 1.0 1.0 1.0 1.0 Constant2 C2 - 0.1962 0.1978 0.1962 0.1978 0.1962 0.1978 (for outward loads)

Bolt Preload per Unit P lb/in 5,255 4,352 5,255 4,352 5,255 4,352 Length of Bolt Circle Non-Prying Tensile B lb/in 5,255 4,352 5,255 4,352 5,255 4,352 Bolt Force Axial Load of Bolt Due Fap-c lbs. 41 5,737 -9,868 -8,098 -4,297 -300 to Prying 4-80 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-19. Model AOS-050A Cask Lid Attachment Bolt HAC Load Combinations Drop Type, by Temperature (T)

Head-On Side Cg/Corner (38°C) (-40°C) (38°C) (-40°C) (38°C) (-40°C)

Loads/Stresses Variable Units 100°F -40°F 100°F -40°F 100°F -40°F Temperature and Preload Fa-pt lbs. 13,160 11,056 13,160 11,056 13,160 11,056 Non-Prying Axial Load Axial Load Less Fa-al lbs. 5,953 8,052 679 679 3,644 4,835 Temperature and Preload Combined Non-Prying Tensile Bolt Force Fa-c lbs. 13,160 11,056 13,160 11,056 13,160 11,056 (Greater of Fa-pt and Fa-al)

Axial Load of Bolt Due Fap-c lbs. -728 4,969 -10,637 -8,866 -5,067 -1,068 to Prying Combined Total Tensile Bolt Load Fa lbs. 12,432 16,025 2,524 2,190 8,094 9,988 (Fa-c + Fap-c)

Total Shear Bolt Force Fs lbs. 246 246 715 902 439 516 Total Bending Bolt Moment Mbb-c lb-in 907 1,247 32 32 524 717 Total Torsional Bolt Mt lb-in 410 410 410 410 410 410 Moment Diameter Used for Dba in. 0.425 0.425 0.425 0.425 0.425 0.425 Stress Calculations Average Bolt Direct Stress Sba psi 87,611 112,930 17,783 15,435 57,037 70,386 Average Bolt Shear Stress Sbs psi 1,731 1,731 5,036 6,358 3,091 3,638 Maximum Bending Stress Sbb psi 120,313 165,386 4,274 4,245 69,505 95,070 Total Tensile Stress Sbt psi 27,158 27,158 27,158 27,158 27,158 27,158 Minimum of Allowable Direct Stress psi 121,800 129,500 121,800 129,500 121,800 129,500 0.7 Su and Sy Minimum of Allowable Shear Stress 0.42 Su and psi 73,080 77,700 73,080 77,700 73,080 77,700 0.6 Sy Average Direct Stress Ratio Rt - 0.72 0.87 0.15 0.12 0.47 0.54 Shear Stress Ratio Rs - 0.02 0.02 0.07 0.08 0.04 0.05 Combined Axial and Rt2 + Rs2 - 0.52 0.76 0.03 0.02 0.22 0.30 Shear Stress Ratio Radioactive Material Transport Packaging System Safety Analysis Report 4-81 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.3.5 Model AOS-100A Cask Lid Attachment Bolt Load and Stress Analysis 4.5.2.3.5.1 Cask Lid Attachment Bolt Input Parameters Table 4-20 lists the Model AOS-100A cask lid attachment bolt input parameters. The Model AOS-100A minimum and maximum preload torque limits are 400 ft-lb and 500 ft-lb, respectively. The preload torque value used in the stress calculations is 500 ft-lb because the calculated bolt stresses are highest using the maximum preload torque.

Table 4-20. Model AOS-100A Cask Lid Attachment Bolt Input Parameters Parameter Variable Input Value Units Temperature T (38) 100 (-40) -40 (°C) °F Number of Bolts Nb 14 14 -

Lid Diameter at Bolt Circle Dlb 14.064 14.064 in.

Lid Diameter at Gasket Dlg 12.172 12.172 in.

Nominal Bolt Diameter Db 0.875 0.875 in.

Threads per Inch n 9 9 -

Lid Diameter at Inner Edge Dli 11.02 11.02 in.

Lid Diameter at Outer Edge Dlo 16.59 16.59 in.

Thickness of Cask Lid tl 1.49 1.49 in.

Thickness of Cask Lid Flange tlf 1.92 1.92 in.

Thickness of Cask Wall tc 2.785 2.785 in.

Bolt Length between the Top and Bottom Surface Lb 1.04 1.04 in.

of Cask Lid Youngs Modulus for Cask Lid El 27,000,000 28,300,000 psi Youngs Modulus for Cask Ec 27,000,000 28,300,000 psi Youngs Modulus for Bolt Eb 27,800,000 28,900,000 psi Poissons Ratio for Cask Lid Nul 0.3 0.3 -

Poissons Ratio for Cask Nuc 0.3 0.3 -

Lid Thermal Expansion Coefficient al 0.0000092 0.0000086 1/°F Bolt Thermal Expansion Coefficient ab 0.0000073 0.0000070 1/°F Cask Wall Thermal Expansion Coefficient ac 0.0000092 0.0000086 1/°F Weight of Cask Contents Wc 778 778 lbs.

Weight of Cask Lid Wl 105 105 lbs.

Bolt Torque (in-lb) 6,000 6,000 in-lb Q

Bolt Torque (ft-lb) 500 500 ft-lb Nut Factor for Preload Torque K 0.15 0.15 -

4-82 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-20. Model AOS-100A Cask Lid Attachment Bolt Input Parameters (Continued)

Parameter Variable Input Value Units Gasket Seating Width b 1 1 in.

Gasket Seating Stress y 3,000 3,000 psi Gasket Factor m 0.54 0.54 -

Minimum Yield Strength Sy 141,000 150,000 psi Minimum Ultimate Strength Su 174,000 185,000 psi Basic Allowable Stress Limit Sm 94,000 100,000 psi Initial Temperature Ti 70 70 °F Temperature of Cask Lid at Bolts Tl 293 86 °F Temperature of Bolts Tb 293 86 °F Temperature of Cask Wall Tc 293 86 °F Temperature of Cask Lid Inner Surface Tli 294 86 °F Temperature of Cask Lid Outer Surface Tlo 294 86 °F Transport Package Internal Pressure Pi 280 280 psia Atmospheric Pressure Pa 15 15 psia Radioactive Material Transport Packaging System Safety Analysis Report 4-83 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.3.5.2 Model AOS-100A Cask Lid Attachment Bolt NCT Results Table 4-21 summarizes the forces and moments from individual loads. Table 4-22 documents the NCT load combinations.

Table 4-21. Model AOS-100A Cask Lid Attachment Bolt NCT Loads Temperature Summary Bolt Loads from Individual Loads Variable Units (38°C) 100°F (-40°C) -40°F Preload Non-Prying Tensile Bolt Force Due to Preload Fa lbs. 45,714 45,714 Torsional Bolt Moment Mt lb-in 3,000 3,000 Gasket Non-Prying Tensile Bolt Force for Gasket Seating Fa lbs. 8,194 8,194 Non-Prying Tensile Bolt Force for Fa lbs. 782 782 Gasket Operation Torsional Bolt Moment Mt lb-in 538 538 Pressure Pressure inside the Cask Lid Pli psi 280.0 280.0 Pressure outside the Cask Lid Plo psi 15.0 15.0 Pressure inside the Cask Wall Pci psi 280.0 280.0 Pressure outside the Cask Wall Pco psi 15.0 15.0 Non-Prying Tensile Bolt Force Fa lbs. 2,203 2,203 Shear Bolt Force per Bolt Fs lbs. 4,495 4,495 Fixed-Edge Cask Lid Force Ff lb/in 932 932 Fixed-Edge Cask Lid Moment Mf (lb-in)/in 1,638 1,638 Temperature Temperature Change of Cask Lid at Bolts Tl °F 223.0 16.0 Temperature Change of Bolts Tb °F 223.0 16.0 Temperature Change of Cask Wall Tc °F 223.0 16.0 Temperature Change of Inner Surface of Cask Lid Tli °F 224.0 16.0 Temperature Change of Outer Surface of Cask Lid Tlo °F 224.0 16.0 Non-Prying Tensile Bolt Force Fa lbs. 7,083 445 Shear Bolt Force per Bolt Fs lbs. 0.0 0.0 Fixed-Edge Cask Lid Force Ff lb/in 0.0 0.0 Fixed-Edge Cask Lid Moment Mf (lb-in)/in 0.0 0.0 4-84 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-21. Model AOS-100A Cask Lid Attachment Bolt NCT Loads (Continued)

Temperature Summary Bolt Loads from Individual Loads Variable Units (38°C) 100°F (-40°C) -40°F Impact Maximum Impact Acceleration ai g - -

Impact Angle xi ° - -

Dynamic Load Factor DLF - - -

Non-Prying Axial Load Due to Impact Fa lbs. - -

Shear Load Due to Impact Fs lbs. - -

Fixed-Edge Load Due to Impact Ff lb/in - -

Fixed-Edge Moment Due to Impact Mf (lb-in)/in - -

Vibration Vibration Transmissibility of Acceleration VTR - 1.00 1.00 (cask support to cask lid)

Maximum Axial Vibration Acceleration (g) ava g 10.00 10.00 at the Cask Support Maximum Transverse Vibration Acceleration (g) avt g 5.00 5.00 at the Cask Support Axial Load Due to Vibration Fa lbs. 75.00 75.00 Shear Load Due to Vibration Fs lbs. 37.50 37.50 Fixed-Edge Force Ff lb/in 23.76 23.76 Fixed-Edge Moment Due to Vibration Mf (lb-in)/in 41.78 41.78 Prying Action Bolt Length between Top and Bottom Surface Lb in. 1.04 1.04 of Cask Lid Constant1 C1 - 1.0 1.0 Constant2 (for outward loads) C2 - 0.2965 0.2990 Bolt Preload per Unit Length of the Bolt Circle P lb/in 16,729 14,626 Non-Prying Tensile Bolt Force B lb/in 16,729 14,626 Combined Axial Load on Bolt Due to Prying Fap-c lbs. -35,159 -29,982 Radioactive Material Transport Packaging System Safety Analysis Report 4-85 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-22. Model AOS-100A Cask Lid Attachment Bolt NCT Load Combinations Temperature Loads/Stresses Variable Units (38°C) 100°F (-40°C) -40°F Temperature and Preload Non-Prying Axial Fa-pt lbs. 52,797 46,159 Load Axial Load Less Temperature and Preload Fa-al lbs. 3,059 3,059 Combined Non-Prying Tensile Bolt Force Fa-c lbs. 52,797 46,159 (Greater of Fa-pt and Fa-al)

Prying Axial Load of Bolt Fap-c lbs. -35,159 -29,982 Total Tensile Bolt Load (Fa-c + Fap-c) Fa lbs. 17,638 16,177 Total Shear Bolt Force Fs lbs. 4,532 4,532 Total Bending Bolt Moment Mbb-c lb-in 673 668 Total Torsional Bolt Moment Mt lb-in 3,000 3,000 Diameter Used for Stress Calculations Dba in. 0.767 0.767 Average Bolt Axial Stress Sba psi 38,198 35,035 Average Bolt Shear Stress Sbs psi 9,816 9,816 Maximum Bending Stress Sbb psi 15,199 15,090 Maximum Shear Stress Due to Torsional Sbt psi 33,896 33,896 Bolt Moment Maximum Stress Intensity Sbi psi 102,440 100,773 Allowable Tensile Stress Sm psi 94,000 100,000 Allowable Shear Stress 0.6 Sm psi 56,400 60,000 Allowable Stress Intensity 1.35 Sm psi 126,900 135,000 Axial Stress Ratio Rt - 0.41 0.35 Shear Stress Ratio Rs - 0.17 0.16 Combined Stress Ratio Rt2 + Rs2 - 0.20 0.15 Stress Intensity Ratio Ri - 0.81 0.75 4-86 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.3.5.3 Model AOS-100A Cask Lid Attachment Bolt HAC Results Table 4-23 documents the HAC forces from individual loads. Table 4-24 summarizes the corresponding load combinations.

Table 4-23. Model AOS-100A Cask Lid Attachment Bolt HAC Loads Drop Type, by Temperature (T)

Head-On Side Cg/Corner Summary Bolt Loads (38°C) (-40°C) (38°C) (-40°C) (38°C) (-40°C) from Individual Loads Variable Units 100°F -40°F 100°F -40°F 100°F -40°F Preload Non-Prying Tensile Bolt Fa lbs. 45,714 45,714 45,714 45,714 45,714 45,714 Force Due to Preload Torsional Bolt Moment Mt lb-in 3,000 3,000 3,000 3,000 3,000 3,000 Gasket Non-Prying Tensile Bolt Force for Fa lbs. 8,194 8,194 8,194 8,194 8,194 8,194 Gasket Seating Non-Prying Tensile Bolt Force for Fa lbs. 782 782 782 782 782 782 Gasket Operation Torsional Bolt Moment Mt lb-in 538 538 538 538 538 538 Pressure Pressure inside the Pli psi 280.0 280.0 280.0 280.0 280.0 280.0 Cask Lid Pressure outside the Plo psi 15.0 15.0 15.0 15.0 15.0 15.0 Cask Lid Pressure inside the Pci psi 280.0 280.0 280.0 280.0 280.0 280.0 Cask Wall Pressure outside the Pco psi 15.0 15.0 15.0 15.0 15.0 15.0 Cask Wall Non-Prying Tensile Fa lbs. 2,203 2,203 2,203 2,203 2,203 2,203 Bolt Force Shear Bolt Force Fs lbs. 4,495 4,495 4,495 4,495 4,495 4,495 per Bolt Fixed-Edge Cask Ff lb/in 932 932 932 932 932 932 Lid Force Fixed-Edge Cask Mf (lb-in)/in 1,638 1,638 1,638 1,638 1,638 1,638 Lid Moment Radioactive Material Transport Packaging System Safety Analysis Report 4-87 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-23. Model AOS-100A Cask Lid Attachment Bolt HAC Loads (Continued)

Drop Type, by Temperature (T)

Head-On Side Cg/Corner Summary Bolt Loads (38°C) (-40°C) (38°C) (-40°C) (38°C) (-40°C) from Individual Loads Variable Units 100°F -40°F 100°F -40°F 100°F -40°F Temperature Temperature Change Tl °F 223.0 16.0 223.0 16.0 223.0 16.0 of Cask Lid at Bolts Temperature Change Tb °F 223.0 16.0 223.0 16.0 223.0 16.0 of Bolts Temperature Change Tc °F 223.0 16.0 223.0 16.0 223.0 16.0 of Cask Wall Temperature Change of Inner Surface of Tli °F 224.0 16.0 224.0 16.0 224.0 16.0 Cask Lid Temperature Change of Outer Surface of Tlo °F 224.0 16.0 224.0 16.0 224.0 16.0 Cask Lid Non-Prying Tensile Fa lbs. 7,083 445 7,083 445 7,083 445 Bolt Force Shear Bolt Force Fs lbs. 0.0 0.0 0.0 0.0 0.0 0.0 per Bolt Fixed-Edge Cask Ff lb/in 0.0 0.0 0.0 0.0 0.0 0.0 Lid Force Fixed-Edge Cask Mf (lb-in)/in 0.0 0.0 0.0 0.0 0.0 0.0 Lid Moment Impact Maximum Impact ai g 156.0 218.0 172.0 240.0 113.0 158.0 Acceleration Impact Angle xi ° 90.0 90.0 0.0 0.0 52.0 52.0 Dynamic Load Factor DLF - 1.15 1.15 1.15 1.15 1.15 1.15 Non-Prying Axial Load Fa lbs. 15,162 21,188 0 0 8,655 12,101 Due to Impact Shear Load Due Fs lbs. 0 0 1,290 1,800 522 730 to Impact Fixed-Edge Load Due Ff lb/in 4,804 6,714 0 0 2,742 3,834 to Impact Fixed-Edge Moment Mf (lb-in)/in 8,446 11,803 0 0 4,821 6,741 Due to Impact 4-88 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-23. Model AOS-100A Cask Lid Attachment Bolt HAC Loads (Continued)

Drop Type, by Temperature (T)

Head-On Side Cg/Corner Summary Bolt Loads (38°C) (-40°C) (38°C) (-40°C) (38°C) (-40°C) from Individual Loads Variable Units 100°F -40°F 100°F -40°F 100°F -40°F Vibration Vibration Transmissibility of Acceleration VTR - - - - - - -

(cask support to cask lid)

Maximum Axial Vibration Acceleration ava g - - - - - -

(g) at the Cask Support Maximum Transverse Vibration Acceleration avt g - - - - - -

(g) at the Cask Support Axial Load Due Fa lbs. - - - - - -

to Vibration Shear Load Due Fs lbs. - - - - - -

to Vibration Fixed-Edge Force Ff lb/in - - - - - -

Fixed-Edge Moment Mf (lb-in)/in - - - - - -

Due to Vibration Prying Action Bolt Length Lb in 1.04 1.04 1.04 1.04 1.04 1.04 Constant1 C1 - 1.0 1.0 1.0 1.0 1.0 1.0 Constant2 C2 - 0.2965 0.2990 0.2965 0.2990 0.2965 0.2990 (for outward loads)

Bolt Preload per Unit P lb/in 16,729 14,626 16,729 14,626 16,729 14,626 Length of Bolt Circle Non-Prying Tensile B lb/in 16,729 14,626 16,729 14,626 16,729 14,626 Bolt Force Axial Load of Bolt Due Fap-c lbs. -7,325 8,895 -35,298 -30,120 -19,331 -7,837 to Prying Radioactive Material Transport Packaging System Safety Analysis Report 4-89 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-24. Model AOS-100A Cask Lid Attachment Bolt HAC Load Combinations Drop Type, by Temperature (T)

Head-On Side Cg/Corner (38°C) (-40°C) (38°C) (-40°C) (38°C) (-40°C)

Loads/Stresses Variable Units 100°F -40°F 100°F -40°F 100°F -40°F Temperature and Preload Fa-pt lbs. 52,797 46,159 52,797 46,159 52,797 46,159 Non-Prying Axial Load Axial Load Less Fa-al lbs. 18,146 24,172 2,984 2,984 11,639 15,085 Temperature and Preload Combined Non-Prying Tensile Bolt Force Fa-c lbs. 52,797 46,159 52,797 46,159 52,797 46,159 (Greater of Fa-pt and Fa-al)

Axial Load of Bolt Due Fap-c lbs. -7,325 8,895 -35,298 -30,120 -19,331 -7,837 to Prying Combined Total Tensile Bolt Load Fa lbs. 45,472 55,054 17,499 16,039 33,466 38,322 (Fa-c + Fap-c)

Total Shear Bolt Force Fs lbs. 4,495 4,495 5,785 6,295 5,017 5,224 Total Bending Bolt Moment Mbb-c lb-in 4,038 5,343 656 651 2,586 3,331 Total Torsional Bolt Mt lb-in 3,000 3,000 3,000 3,000 3,000 3,000 Moment Diameter Used for Dba in. 0.767 0.767 0.767 0.767 0.767 0.767 Stress Calculations Average Bolt Direct Stress Sba psi 98,478 119,230 37,898 34,736 72,477 82,993 Average Bolt Shear Stress Sbs psi 9,735 9,735 12,528 13,633 10,865 11,314 Maximum Bending Stress Sbb psi 91,241 120,743 14,821 14,715 58,441 75,270 Total Tensile Stress Sbt psi 33,896 33,896 33,896 33,896 33,896 33,896 Minimum of Allowable Direct Stress psi 121,800 129,500 121,800 129,500 121,800 129,500 0.7 Su and Sy Minimum of Allowable Shear Stress 0.42 Su and psi 73,080 77,700 73,080 77,700 73,080 77,700 0.6 Sy Average Direct Stress Ratio Rt - 0.81 0.92 0.31 0.27 0.60 0.64 Shear Stress Ratio Rs - 0.13 0.13 0.17 0.18 0.15 0.15 Combined Axial and Rt2 + Rs2 - 0.67 0.86 0.13 0.10 0.38 0.43 Shear Stress Ratio 4-90 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.4 Cask Lid Attachment Bolt Thread Engagement Length 4.5.2.4.1 Model AOS-025A Cask Lid Attachment Bolt Thread Engagement Length The required threaded engagement necessary for the threaded joint to carry the applied loads without the threads stripping is calculated using the methods presented in Machinerys Handbook 26 ([4.11],

Page 1490). The Model AOS-025A cask lid attachment bolts are eight, 3/8 - 16 UNC, SB-637 bolts.

For materials of the same strength, the length of engagement to prevent stripping of external threads (Le) is as follows:

Le = = 0.250 in.

where:

Esmin = 0.3287, Minimum pitch diameter of external threads, class 2A ([4.11], Page 1718)

Dsmin = 0.3643, Minimum major diameter of external threads, class 2A ([4.11], Page 1718)

Enmax = 0.3387, Maximum pitch diameter of internal threads, class 3B ([4.11], Page 1718)

Knmax = 0.3182, Maximum minor diameter of internal threads, class 3B ([4.11], Page 1718) n = 16, Number of threads per inch For steels over 100,000 psi ultimate tensile strength, the screw thread tensile stress area is calculated as follows:

At = = 0.0747 in2 Radioactive Material Transport Packaging System Safety Analysis Report 4-91 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

The length engagement (Le) applies if the external and internal threads are made of materials of the same strength. If the materials of the internal and external threads do not have the same strength, the relative strength (J) is calculated to determine if the internal thread could strip before the bolt breaks.

The relative strength is calculated as follows:

J = = 1.385 where:

As =

= 0.149 in2, shear area of external threads An = [

2

= 0.211 in , shear area of internal threads Sut = 176.0 ksi, tensile strength of external threads Sut2 = 90.0 ksi, tensile strength of internal threads (insert material)

Because the relative strength (J) is calculated to be greater than 1, the required length of engagement (QL) to prevent stripping of threads is calculated by multiplying the J factor times the calculated length of engagement (Le):

QL = JLe = 1.369 x 0.250 in. = 0.35 in.

The actual length of engagement is calculated by subtracting the length of the cask lid attachment bolt that is embedded in the cask lid from the total bolt length (Lb = 0.63 in. - 0.15 in. = 0.48 in.). The actual length of engagement (Lb) is greater than the required length of engagement QL. Therefore, the engagement length is adequate.

4-92 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.4.2 Model AOS-050A Cask Lid Attachment Bolt Thread Engagement Length The required threaded engagement necessary for the threaded joint to carry the applied loads without the threads stripping is calculated using the methods presented in Machinerys Handbook 26 ([4.11],

Page 1490). The Model AOS-050A cask lid attachment bolts are ten, 1/2 - 13 UNC, SB-637 bolts.

For materials of the same strength, the length of engagement to prevent stripping of external threads (Le) is as follows:

Le = = 0.333 in.

where:

Esmin = 0.4435, Minimum pitch diameter of external threads, class 2A ([4.11], Page 1719)

Dsmin = 0.4876, Minimum major diameter of external threads, class 2A ([4.11], Page 1719)

Enmax = 0.4548, Maximum pitch diameter of internal threads, class 3B ([4.11], Page 1719)

Knmax = 0.4284, Maximum minor diameter of internal threads, class 3B ([4.11], Page 1719) n = 13, Number of threads per inch For steels over 100,000 psi ultimate tensile strength, the screw thread tensile stress area is calculated as follows:

At = = 0.1376 in2 Radioactive Material Transport Packaging System Safety Analysis Report 4-93 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

The length engagement (Le) applies if the external and internal threads are made of materials of the same strength. If the materials of the internal and external threads do not have the same strength, the relative strength (J) is calculated to determine the adequate length of engagement to prevent stripping of threads before the bolt breaks. The relative strength is calculated as follows:

J = = 1.396 where:

As =

= 0.275 in2, shear area of external threads An = [

2

= 0.381 in , shear area of internal threads Sut = 174.0 ksi, tensile strength of external threads Sut2 = 90.0 ksi, tensile strength of internal threads (insert material)

Because the relative strength (J) is calculated to be greater than 1, the required length of engagement (QL) to prevent stripping of threads is calculated by multiplying the J factor times the calculated length of engagement (Le):

QL = JLe = 1.396 x 0.333 in. = 0.47 in.

The actual length of engagement is calculated by subtracting the length of the bolt embedded in the lid from the total bolt length (Lb = 1.0 in. - 0.41 in. = 0.59 in.). The actual length of engagement (Lb) is greater than the required length of engagement QL. Therefore, the engagement length is adequate.

4-94 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.4.3 Model AOS-100A Cask Lid Attachment Bolt Thread Engagement Length The required threaded engagement necessary for the threaded joint to carry the applied loads without the threads stripping is calculated using the methods presented in Machinerys Handbook 26 ([4.11],

Page 1490). The Model AOS-100A cask lid attachment bolts are fourteen, 7/8 - 9 UNC, SB-637 bolts.

For materials of the same strength, the length of engagement to prevent stripping of external threads (Le) is as follows:

Le = = 0.587 in.

where:

Esmin = 0.7946, Minimum pitch diameter of external threads, class 2A ([4.11], Page 1723)

Dsmin = 0.8592, Minimum major diameter of external threads, class 2A ([4.11], Page 1723)

Enmax = 0.8089, Maximum pitch diameter of internal threads, class 3B ([4.11], Page 1723)

Knmax = 0.7681, Maximum minor diameter of internal threads, class 3B ([4.11], Page 1723) n = 9, Number of threads per inch For steels over 100,000 psi ultimate tensile strength, the screw thread tensile stress area is calculated as follows:

At = = 0.4519 in2 Radioactive Material Transport Packaging System Safety Analysis Report 4-95 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

The length engagement (Le) applies if the external and internal threads are made of materials of the same strength. If the materials of the internal and external threads do not have the same strength, the relative strength (J) is calculated to determine if the internal thread could strip before the bolt breaks. The relative strength is calculated as follows:

J = = 1.448 where:

As =

= 0.904 in2, shear area of external threads An = [

2

= 1.207 in , shear area of internal threads Sut = 174.0 ksi, tensile strength of external threads Sut2 = 90.0 ksi, tensile strength of internal threads (insert material)

Because the relative strength (J) is calculated to be greater than 1, the required length of engagement (QL) to prevent stripping of threads is calculated by multiplying the J factor times the calculated length of engagement (Le):

QL = JLe = 1.448 x 0.587 in. = 0.85 in.

The actual length of engagement is calculated by subtracting the length of the bolt embedded in the lid from the total bolt length (Lb = 2.25 in. - 1.04 in. = 1.21 in.). The actual length of engagement (Lb) is greater than the required length of engagement QL. Therefore, the engagement length is adequate.

4-96 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.5 Cask Lid Flange Separation Analysis 4.5.2.5.1 Model AOS-025A Cask Lid Flange Separation Analysis The flange separation is evaluated based on the bolt elongation due to the clamp load of the cask lid attachment bolt. The clamp load is evaluated as the difference between the absolute sum of the applied loads (other than preload and temperature load) and prying load, and the absolute sum of the preload and temperature loads. The flange separation is greatest for the lowest preload torque allowable; therefore, a preload torque of 29 ft-lb is used in the calculations that follow.

Bolt Clamping Force (BCF):

BCF = l Fa-al l + l Fap-c l - l Fa-pt l where:

Fa-al = Axial load less temperature and preload Fap-c = Combined axial ;oad on bolt due to prying Fa-pt = Temperature and preload non-prying axial load Bolt Displacement (BD):

BCF x Lb BD =

A x Eb where:

BCF = Bolt clamping force Lb = Length of bolt A = Cross-sectional area of bolt Eb = Modulus of elasticity of the bolt material The flange separation evaluations are documented in Table 4-25 and Table 4-26 for NCT and HAC, respectively. Accordingly, the bolt displacement remains below the allowable flange separation value/

gasket recovery of 0.003 in. for both NCT and HAC.

Radioactive Material Transport Packaging System Safety Analysis Report 4-97 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-25. Model AOS-025A Cask Lid Flange Separation NCT Evaluation ft-lb Torque Temperature Parameters Variable Units (38°C) 100°F (-40°C) -40°F Applied Load Less Temperature Load and Preload Fa-al lbs. 361 361 Load Due to Prying Action Fap-c lbs. -6,628 -5,514 Preload and Temperature Load Fa-pt lbs. 7,216 6,011 Bolt Clamping Force BCF lbs. -228 -136 Bolt Length Lb in. 0.15 0.15 Modulus of Elasticity of Bolt Eb psi 28,000,000 29,200,000 Cross-Sectional Area of Bolt BXA in2 0.0775 0.0775 Bolt Displacement BD in. -0.000016 -0.000009 Allowable Flange Separation BDA in. 0.003 0.003 Table 4-26. Model AOS-025A Cask Lid Flange Separation HAC Evaluation ft-lb Torque Drop Type, by Temperature (T)

Head-On Side Cg/Corner (38°C) (-40°C) (38°C) (-40°C) (38°C) (-40°C)

Parameters Variable Units 100°F -40°F 100°F -40°F 100°F -40°F Applied Load Less Temperature Fa-al lbs. 2,926 3,974 359 359 2,833 3,805 Load and Preload Load Due to Fap-c lbs. -1,167 2,181 -6,633 -5,519 -1,364 1,821 Prying Action Preload and Temperature Fa-pt lbs. 7,216 6,011 7,216 6,011 7,216 6,011 Load Bolt Clamping BCF lbs. -3,124 144 -225 -133 -3,020 -385 Force Bolt Length Lb in. 0.15 0.15 0.15 0.15 0.15 0.15 Modulus of Eb psi 28,000,000 29,200,000 28,000,000 29,200,000 28,000,000 29,200,000 Elasticity of Bolt Cross-Sectional Area BXA in2 0.0775 0.0775 0.0775 0.0775 0.0775 0.0775 of Bolt Bolt BD in. -0.000216 0.000010 -0.000016 -0.000009 -0.000209 -0.000026 Displacement Allowable Flange BDA in. 0.003 0.003 0.003 0.003 0.003 0.003 Separation 4-98 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.5.2 Model AOS-050A Cask Lid Flange Separation Analysis The flange separation is evaluated based on the bolt elongation due to the clamp load of the cask lid attachment bolt. The clamp load is evaluated as the difference between the absolute sum of the applied loads (other than preload and temperature load) and prying load, and the absolute sum of the preload and temperature loads. The flange separation is greatest for the lowest preload torque allowable; therefore, a preload torque of 62.5 ft-lb is used in the calculations that follow.

Bolt Clamping Force (BCF):

BCF = l Fa-al l + l Fap-c l - l Fa-pt l where:

Fa-al = Axial load less temperature and preload Fap-c = Combined axial ;oad on bolt due to prying Fa-pt = Temperature and preload non-prying axial load Bolt Displacement (BD):

BCF x Lb BD =

A x Eb where:

BCF = Bolt clamping force Lb = Length of bolt A = Cross-sectional area of bolt Eb = Modulus of elasticity of the bolt material The flange separation evaluations are documented in Table 4-27 and Table 4-28 for NCT and HAC, respectively. Accordingly, the bolt displacement remains below the allowable flange separation value/

gasket recovery of 0.003 in. for both NCT and HAC.

Radioactive Material Transport Packaging System Safety Analysis Report 4-99 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-27. Model AOS-050A Cask Lid Flange Separation NCT Evaluation - 62.5-ft-lb Torque Temperature Parameters Variable Units (38°C) 100°F (-40°C) -40°F Applied Load Less Temperature Load and Preload Fa-al lbs. 693 693 Load Due to Prying Action Fap-c lbs. -9,841 -8,072 Preload and Temperature Load Fa-pt lbs. 12,240 10,136 Bolt Clamping Force BCF lbs. -1,706 -1,372 Bolt Length Lb in. 0.41 0.41 Modulus of Elasticity of Bolt Eb psi 27,800,000 28,900,000 Cross-Sectional Area of Bolt BXA in2 0.1419 0.1419 Bolt Displacement BD in. -0.000177 -0.000137 Allowable Flange Separation BDA in. 0.003 0.003 Table 4-28. Model AOS-050A Cask Lid Flange Separation HAC Evaluation - 62.5-ft-lb Torque Drop Type, by Temperature (T)

Head-On Side Cg/Corner (38°C) (-40°C) (38°C) (-40°C) (38°C) (-40°C)

Parameters Variable Units 100°F -40°F 100°F -40°F 100°F -40°F Applied Load Less Temperature Fa-al lbs. 5,953 8,052 679 679 3,644 4,835 Load and Preload Load Due to Fap-c lbs. 41 5,737 -9,868 -8,098 -4,297 -300 Prying Action Preload and Temperature Fa-pt lbs. 12,240 10,136 12,240 10,136 12,240 10,136 Load Bolt Clamping BCF lbs. -6,246 3,653 -1,694 -1,360 -4,299 -5,001 Force Bolt Length Lb in. 0.41 0.41 0.41 0.41 0.41 0.41 Modulus of Eb psi 27,800,000 28,900,000 27,800,000 28,900,000 27,800,000 28,900,000 Elasticity of Bolt Cross-Sectional Area BXA in2 0.1419 0.1419 0.1419 0.1419 0.1419 0.1419 of Bolt Bolt BD in. -0.000649 0.000365 -0.000176 -0.000136 -0.000447 -0.000500 Displacement Allowable Flange BDA in. 0.003 0.003 0.003 0.003 0.003 0.003 Separation 4-100 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.5.3 Model AOS-100A Cask Lid Flange Separation Analysis The flange separation is evaluated based on the bolt elongation due to the clamp load of the cask lid attachment bolt. The clamp load is evaluated as the difference between the absolute sum of the applied loads (other than preload and temperature load) and prying load, and the absolute sum of the preload and temperature loads. The flange separation is greatest for the lowest preload torque allowable; therefore, a preload torque of 400 ft-lb is used in the calculations that follow.

Bolt Clamping Force (BCF):

BCF = l Fa-al l + l Fap-c l - l Fa-pt l where:

Fa-al = Axial load less temperature and preload Fap-c = Combined axial ;oad on bolt due to prying Fa-pt = Temperature and preload non-prying axial load Bolt Displacement (BD):

BCF x Lb BD =

A x Eb where:

BCF = Bolt clamping force Lb = Length of bolt A = Cross-sectional area of bolt Eb = Modulus of elasticity of the bolt material The flange separation evaluations are documented in Table 4-29 and Table 4-30 for NCT and HAC, respectively, for cases that use 400-ft-lb torque. Accordingly, the bolt displacement remains below the allowable flange separation value/gasket recovery of 0.003 in. for both NCT and HAC.

Radioactive Material Transport Packaging System Safety Analysis Report 4-101 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 4-29. Model AOS-100A Cask Lid Flange Separation NCT Evaluation - 400-ft-lb Torque Temperature Parameters Variable Units (38°C) 100°F (-40°C) -40°F Applied Load Less Temperature Load and Preload Fa-al lbs. 3,059 3,059 Load Due to Prying Action Fap-c lbs. -28,108 -22,943 Preload and Temperature Load Fa-pt lbs. 43,654 37,016 Bolt Clamping Force BCF lbs. -12,487 -11,014 Bolt Length Lb in. 1.04 1.04 Modulus of Elasticity of Bolt Eb psi 27,800,000 28,900,000 Cross-Sectional Area of Bolt BXA in2 0.4617 0.4617 Bolt Displacement BD in. -0.00101 -0.00086 Allowable Flange Separation BDA in. 0.003 0.003 Table 4-30. Model AOS-100A Cask Lid Flange Separation HAC Evaluation - 400-ft-lb Torque Drop Type, by Temperature (T)

Head-On Side Cg/Corner (38°C) (-40°C) (38°C) (-40°C) (38°C) (-40°C)

Parameters Variable Units 100°F -40°F 100°F -40°F 100°F -40°F Applied Load Less Temperature Fa-al lbs. 18,146 24,172 2,984 2,984 11,639 15,085 Load and Preload Load Due to Fap-c lbs. -273 1,5933 -28,246 -23,081 -12,279 -799 Prying Action Preload and Temperature Fa-pt lbs. 43,654 37,016 43,654 37,016 43,654 37,016 Load Bolt Clamping BCF lbs. -25,235 3,090 -12,424 -10,951 -19,736 -21,132 Force Bolt Length Lb in. 1.04 1.04 1.04 1.04 1.04 1.04 Modulus of Eb psi 27,800,000 28,900,000 27,800,000 28,900,000 27,800,000 28,900,000 Elasticity of Bolt Cross-Sectional Area BXA in2 0.4617 0.4617 0.4617 0.4617 0.4617 0.4617 of Bolt Bolt BD in. -0.00204 0.00024 -0.00101 -0.00085 -0.00160 -0.00165 Displacement Allowable Flange BDA in. 0.003 0.003 0.003 0.003 0.003 0.003 Separation 4-102 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.6 Cask Lid Attachment Bolt Fatigue Analysis Fatigue analysis is completed for NCT, using a minimum fatigue reduction factor of 4 and ASME fatigue curves I-9.4 [4.13] with elastic modulus adjustment per NUREG/CR-6007 [4.6], Table 6.2. The maximum cumulative usage factor due to alternating stress intensity should be less than 1.

4.5.2.6.1 Model AOS-025A Cask Lid Attachment Bolt Fatigue Analysis The fatigue analysis identifies two stress cycles - Normal operation and vibration cycles. Normal operation loads include preload, temperature, and pressure. The vibration loads are documented based on the applied axial and transverse vibration acceleration loads.

4.5.2.6.1.1 Normal Operation Cycles Fatigue due to operating loads is documented based on the maximum NCT cases. The direct stress is obtained by combining the axial and bending stresses. The shear stress is obtained by combining the average shear load and torsional bolt moment. The maximum principal stress (S1) is calculated from the combined direct and shear stress. Summary of normal operation cycles is documented in Table 4-31.

S1 = = 40,785.2 psi where:

= Sba + Sbb = 11,046 psi (direct stress, Table 4-12)

= Sbs + Sbt = 34,827 psi (shear stress, Table 4-12)

The corresponding alternating stresses (Sa) are calculated using a fatigue reduction factor (RF) of 4 [4.12].

Also, because the fatigue curve ([4.13], ASME Section III, Figure I-9.4) is based on a modulus of elasticity of 30 x 103 ksi, which is different than the modulus of elasticity of the bolt materials, a ratio of the modulus of elasticities is considered in calculating the alternating stress per [4.12], NB-3232.3.

Sa = = 87,396.9 psi where:

RF = 4, Fatigue strength reduction factor [4.12]

Edc = 30 x 103 ksi, Modulus of elasticity on design fatigue curve [4.13]

Ea = 28.0 x 103 ksi, Modulus of elasticity of the bolt materials Radioactive Material Transport Packaging System Safety Analysis Report 4-103 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Using the alternating stress calculated and the fatigue curve for a maximum nominal stress 2.7 Sm in

[4.13], ASME Section III, Figure I-9.4, the corresponding fatigue limits are calculated by interpolating the tabular data provided in [4.13], ASME Section III, Table I-9.0. The estimated fatigue limit, N1, for the 87.4 ksi alternating stress is 1,313 cycles. Based on a weekly transport for five (5) years, the number of normal operation cycles, n1, is 52 cycles/year x 5 years = 260 cycles. The corresponding usage factor (U1) for normal operating cycles is as follows:

U1 = = 0.20 where:

n1 = 260 cycles, operating cycles N1 = 1,313 cycles, allowable cycles 4.5.2.6.1.2 Vibration Cycles Fatigue due to vibration loads are documented based on the applied axial and transverse vibration acceleration loads. The maximum principal stress (S1) is calculated from the combined direct and shear stress. Summary of vibration cycles is documented in Table 4-31.

S1 = = 38.9 psi where:

= Sba = 1.2732 Fa / D2 = 32.3 psi, direct stress

= Sbs = 1.2732 Fs / D2 = 16.1 psi, shear stress Fa = 2.50 lbs., axial load due to vibration (refer to Table 4-11)

Fs = 1.25 lbs., shear load due to vibration (refer to Table 4-11)

D = 0.314 in. (bolt diameter for tensile stress (Dba); refer to Table 4-12) 4-104 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

The corresponding alternating stresses (Sa) are calculated using a fatigue reduction factor (RF) of 4 [4.12].

Also, because the fatigue curve ([4.13], ASME Section III, Figure I-9.4) is based on a modulus of elasticity of 30 x 103 ksi, which is different than the modulus of elasticity of the bolt materials, a ratio of the modulus of elasticities is considered in calculating the alternating stress per [4.12], NB-3232.3.

Sa = = 83.4 psi where:

RF = 4, Fatigue strength reduction factor [4.12]

Edc = 30 x 103 ksi, Modulus of elasticity on design fatigue curve [4.13]

Ea = 28.0 x 103 ksi, Modulus of elasticity of the bolt materials Using the alternating stress calculated and the fatigue curve for a maximum nominal stress 2.7 Sm in

[4.13], ASME Section III, Figure I-9.4, the corresponding fatigue limits are calculated by interpolating the tabular data provided in [4.13], ASME Section III, Table I-9.0. The estimated fatigue limit for the 0.08 ksi alternating stress is 3.4E+20 cycles. The vibration cycles are estimated based on an infinite cycle (1.0E+07). Using 1.0 x 107 vibration cycles, n1, and maximum allowable cycles, N1, of 3.4E+20 cycles, the corresponding usage factor (U1) for vibration is approximately 0.00. The summary results of vibration cycles are presented in Table 4-31.

U2 = = 0.00 Radioactive Material Transport Packaging System Safety Analysis Report 4-105 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.6.1.3 Cumulative Usage Factor Based on a weekly transport for five (5) years, the Model AOS-025A cask lid attachment bolts are expected to undergo 260 normal operating cycles and infinite (1.0 x 107) vibration cycles. The corresponding allowables are 1,313 normal operating cycles and 3.4E+20 vibration cycles. Under NCT, this analysis predicts that the Model AOS-025A cask lid attachment bolts can serve for five (5) years with a cumulative usage factor of 0.20, as documented in Table 4-31.

U = + = 0.20 + 0.00 = 0.20 Table 4-31. Model AOS-025A Cask Lid Attachment Bolt Fatigue Analysis Results Normal Total Operation Vibration Usage Parameter Variable Units Cycles Cycles Factor Fatigue Strength Reduction Factor RF - 4 4 Modulus of Elasticity Provided on Design Curve Edc psi 3.00E+07 3.00E+07 Modulus of Elasticity Used in Analysis Ea psi 2.80E+07 2.80E+07 Ratio of Modulus of Elasticity Edc / Ea - 1.07 1.07 Direct Stress psi 11,045.8 32.3 Shear Stress psi 34,827.2 16.1 Maximum Principal Stress S1 psi 40,785.2 38.9 Alternating Stress Sa psi 87,396.9 83.4 Number of Usage Cycles n cycles 260 1.0E+07 Maximum Allowable Number of Cycles N cycles 1,313 3.4E+20 Usage Factor U - 0.20 0.00 0.20 4-106 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.6.2 Model AOS-050A Cask Lid Attachment Bolt Fatigue Analysis The fatigue analysis identifies two stress cycles - Normal operation and vibration cycles. Normal operation loads include preload, temperature, and pressure. The vibration loads are documented based on the applied axial and transverse vibration acceleration loads.

4.5.2.6.2.1 Normal Operation Cycles Fatigue due to operating loads is documented based on the maximum NCT cases. The direct stress is obtained by combining the axial and bending stresses. The shear stress is obtained by combining the average shear load and torsional bolt moment. The maximum principal stress (S1) is calculated from the combined direct and shear stress. Summary of normal operation cycles is documented in Table 4-32.

S1 = = 42,333 psi where:

= Sba + Sbb = 22,551 psi (direct stress, Table 4-17)

= Sbs + Sbt = 28,938 psi (shear stress, Table 4-17)

The corresponding alternating stresses (Sa) are calculated using a fatigue reduction factor (RF) of 4 [4.12]

Also, because the fatigue curve ([4.13], ASME Section III, Figure I-9.4) is based on a modulus of elasticity of 30 x 103 ksi, which is different than the modulus of elasticity of the bolt materials, a ratio of the modulus of elasticities is considered in calculating the alternating stress per [4.12], NB-3232.3.

Sa = = 91,365 psi where:

RF = 4, Fatigue strength reduction factor [4.12]

Edc = 30 x 103 ksi, Modulus of elasticity on design fatigue curve [4.13]

Ea = 27.8 x 103 ksi, Modulus of elasticity of the bolt materials Radioactive Material Transport Packaging System Safety Analysis Report 4-107 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Using the alternating stress calculated and the fatigue curve for a maximum nominal stress 2.7 Sm in

[4.13], ASME Section III, Figure I-9.4, the corresponding fatigue limits are calculated by interpolating the tabular data provided in [4.13], ASME Section III, Table I-9.0. The estimated fatigue limit, N1, for the 91.4 ksi alternating stress is 1,383 cycles. Based on a weekly transport for five (5) years, the number of normal operation cycles, n1, is 52 cycles/year x 5 years = 260 cycles. The corresponding usage factor (U1) for normal operating cycles is as follows:

U1 = = 0.19 where:

n1 = 260 cycles, operating cycles N1 = 1,383 cycles, allowable cycles 4.5.2.6.2.2 Vibration Cycles Fatigue due to vibration loads are documented based on the applied axial and transverse vibration acceleration loads. The maximum principal stress (S1) is calculated from the combined direct and shear stress. Summary of vibration cycles is documented in Table 4-32.

S1 = = 119.1 psi where:

= Sba = 1.2732 Fa / D2 = 98.7 psi, direct stress

= Sbs = 1.2732 Fs / D2 = 49.3 psi, shear stress Fa = 14.00 lbs., axial load due to vibration (refer to Table 4-16)

Fs = 7.00 lbs., shear load due to vibration (refer to Table 4-16)

D = 0.425 in. (bolt diameter for tensile stress (Dba); refer to Table 4-17) 4-108 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

The corresponding alternating stresses (Sa) are calculated using a fatigue reduction factor (RF) of 4 [4.12].

Also, because the fatigue curve ([4.13], ASME Section III, Figure I-9.4) is based on a modulus of elasticity of 30 x 103 ksi, which is different than the modulus of elasticity of the bolt materials, a ratio of the modulus of elasticities is considered in calculating the alternating stress per [4.12], NB-3232.3.

Sa = = 257.0 psi where:

RF = 4, Fatigue strength reduction factor [4.12]

Edc = 30 x 103 ksi, Modulus of elasticity on design fatigue curve [4.13]

Ea = 27.8 x 103 ksi, Modulus of elasticity of the bolt materials Using the alternating stress calculated and the fatigue curve for a maximum nominal stress 2.7 Sm in

[4.13], ASME Section III, Figure I-9.4, the corresponding fatigue limits are calculated by interpolating the tabular data provided in [4.13], ASME Section III, Table I-9.0. The estimated fatigue limit for the 0.26 ksi alternating stress is 2.1E+17 cycles. The vibration cycles are estimated based on an infinite cycle (1.0E+07). Using 1.0 x 107 vibration cycles, n1, and maximum allowable cycles, N1, of 2.1E+17 cycles, the corresponding usage factor (U1) for vibration is approximately 0.00. The summary results of vibration cycles are presented in Table 4-32.

U2 = = 0.00 Radioactive Material Transport Packaging System Safety Analysis Report 4-109 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.6.2.3 Cumulative Usage Factor Based on a weekly transport for five (5) years, the Model AOS-050A cask lid attachment bolts are expected to undergo 260 normal operating cycles and infinite (1.0 x 107) vibration cycles. The corresponding allowables are 1,383 normal operating cycles and 2.1E+17 vibration cycles. Under NCT, this analysis predicts that the Model AOS-050A cask lid attachment bolts can serve for five (5) years with a cumulative usage factor of 0.19, as documented in Table 4-32.

U = + = 0.19 + 0.00 = 0.19 Table 4-32. Model AOS-050A Cask Lid Attachment Bolt Fatigue Analysis Results Normal Total Operation Vibration Usage Parameter Variable Units Cycles Cycles Factor Fatigue Strength Reduction Factor RF - 4 4 Modulus of Elasticity Provided on Design Curve Edc psi 3.00E+07 3.00E+07 Modulus of Elasticity Used in Analysis Ea psi 2.78E+07 2.78E+07 Ratio of Modulus of Elasticity Edc / Ea - 1.08 1.08 Direct Stress psi 21,487.4 98.7 Shear Stress psi 26,649.9 49.3 Maximum Principal Stress S1 psi 42,333 119.1 Alternating Stress Sa psi 91,365 257.0 Number of Usage Cycles n cycles 260 1.0E+07 Maximum Allowable Number of Cycles N cycles 1,383 2.1E+17 Usage Factor U - 0.19 0.00 0.19 4-110 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.6.3 Model AOS-100A Cask Lid Attachment Bolt Fatigue Analysis The fatigue analysis identifies two stress cycles - Normal operation and vibration cycles. Normal operation loads include preload, temperature, and pressure. The vibration loads are documented based on the applied axial and transverse vibration acceleration loads.

4.5.2.6.3.1 Normal Operation Cycles Fatigue due to operating loads is documented based on the maximum NCT cases. The direct stress is obtained by combining the axial and bending stresses. The shear stress is obtained by combining the average shear load and torsional bolt moment. The maximum principal stress (S1) is calculated from the combined direct and shear stress. Summary of normal operation cycles is documented in Table 4-33.

S1 = = 77,918.1 psi where:

= Sba + Sbb = 53,397 psi (direct stress, Table 4-22)

= Sbs + Sbt = 43,712 psi (shear stress, Table 4-22)

The corresponding alternating stresses (Sa) are calculated using a fatigue reduction factor (RF) of 4 [4.12].

Also, because the fatigue curve ([4.13], ASME Section III, Figure I-9.4) is based on a modulus of elasticity of 30 x 103 ksi, which is different than the modulus of elasticity of the bolt materials, a ratio of the modulus of elasticities is considered in calculating the alternating stress per [4.12], NB-3232.3.

Sa = = 168,168.6 psi where:

RF = 4, Fatigue strength reduction factor [4.12]

Edc = 30 x 103 ksi, Modulus of elasticity on design fatigue curve [4.13]

Ea = 27.8 x 103 ksi, Modulus of elasticity of the bolt materials Radioactive Material Transport Packaging System Safety Analysis Report 4-111 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Using the alternating stress calculated and the fatigue curve for a maximum nominal stress 2.7 Sm in

[4.13], ASME Section III, Figure I-9.4, the corresponding fatigue limits are calculated by interpolating the tabular data provided in [4.13], ASME Section III, Table I-9.0. The estimated fatigue limit, N1, for the 168.2 ksi alternating stress is 360 cycles. Based on a weekly transport for five (5) years, the number of normal operation cycles, n1, is 52 cycles/year x 5 years = 260 cycles. The corresponding usage factor (U1) for normal operating cycles is as follows:

U1 = = 0.72 where:

n1 = 260 cycles, operating cycles N1 = 360 cycles, allowable cycles 4.5.2.6.3.2 Vibration Cycles Fatigue due to vibration loads are documented based on the applied axial and transverse vibration acceleration loads. The maximum principal stress (S1) is calculated from the combined direct and shear stress. Summary of vibration cycles is documented in Table 4-33.

S1 = = 196.1 psi where:

= Sba = 1.2732 Fa / D2 = 162.4 psi, direct stress

= Sbs = 1.2732 Fs / D2 = 81.2 psi, shear stress Fa = 75.00 lbs., axial load due to vibration (refer to Table 4-21)

Fs = 37.50 lbs., shear load due to vibration (refer to Table 4-21)

D = 0.767 in. (bolt diameter for tensile stress (Dba); refer to Table 4-22) 4-112 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

The corresponding alternating stresses (Sa) are calculated using a fatigue reduction factor (RF) of 4 [4.12].

Also, because the fatigue curve ([4.13], ASME Section III, Figure I-9.4) is based on a modulus of elasticity of 30 x 103 ksi, which is different than the modulus of elasticity of the bolt materials, a ratio of the modulus of elasticities is considered in calculating the alternating stress per [4.12], NB-3232.3.

Sa = = 423.2 psi where:

RF = 4, Fatigue strength reduction factor [4.12]

Edc = 30 x 103 ksi, Modulus of elasticity on design fatigue curve [4.13]

Ea = 27.8 x 103 ksi, Modulus of elasticity of the bolt materials Using the alternating stress calculated and the fatigue curve for a maximum nominal stress 2.7 Sm in

[4.13], ASME Section III, Figure I-9.4, the corresponding fatigue limits are calculated by interpolating the tabular data provided in [4.13], ASME Section III, Table I-9.0. The estimated fatigue limit for the 0.4 ksi alternating stress is 7.8E+15 cycles. The vibration cycles are estimated based on an infinite cycle (1.0E+07). Using 1.0 x 107 vibration cycles, n1, and maximum allowable cycles, N1, of 7.8E+15, the corresponding usage factor (U1) for vibration is approximately 0.00. The summary results of vibration cycles are presented in Table 4-33.

U2 = = 0.00 Radioactive Material Transport Packaging System Safety Analysis Report 4-113 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.2.6.3.3 Cumulative Usage Factor Based on a weekly transport for five (5) years, the Model AOS-100A cask lid attachment bolts are expected to undergo 260 normal operating cycles and infinite (1.0 x 107) vibration cycles. The corresponding allowables are 360 normal operating cycles and 7.82E+15 vibration cycles. Under NCT, this analysis predicts that the Model AOS-100A cask lid attachment bolts can serve for five (5) years with a cumulative usage factor of 0.72, as documented in Table 4-33.

U = + = 0.72 + 0.00 = 0.72 Table 4-33. Model AOS-100A Cask Lid Attachment Bolt Fatigue Analysis Results Normal Total Operation Vibration Usage Parameter Variable Units Cycles Cycles Factor Fatigue Strength Reduction Factor RF - 4 4 Modulus of Elasticity Provided on Design Curve Edc psi 3.00E+07 3.00E+07 Modulus of Elasticity Used in Analysis Ea psi 2.78E+07 2.78E+07 Ratio of Modulus of Elasticity Edc / Ea - 1.08 1.08 Direct Stress psi 53,396.5 162.4 Shear Stress psi 43,711.3 81.2 Maximum Principal Stress S1 psi 77,918.1 196.1 Alternating Stress Sa psi 168,168.6 423.2 Number of Usage Cycles n cycles 260 1.0E+07 Maximum Allowable Number of Cycles N cycles 360 7.8E+15 Usage Factor U - 0.72 0.00 0.72 4-114 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.5.3 DELETED CONTENT DELETED Radioactive Material Transport Packaging System Safety Analysis Report 4-115 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

4.6 REFERENCES

[4.1] U.S. Nuclear Regulatory Commission (NRC), Title 10, Code of Federal Regulations, Part 71 (10 CFR 71), Packaging and Transportation of Radioactive Material.

[4.2] U.S. Department of Transportation (DOT), Title 49, Code of Federal Regulations, Part 173 (49 CFR 173), Shippers - General Requirements for Shipments and Packagings.

[4.3] International Atomic Energy Agency (IAEA) Safety Standards Series No. TS-R-1 (IAEA TS-R-1), Regulations for the Safe Transport of Radioactive Material, 1996 Ed.

(as amended 2003).

[4.4] American National Standards Institute, ANSI N14.5-2014, Radioactive Materials -

Leakage Tests on Packages for Shipment, June 19, 2014.

[4.5] American Society of Mechanical Engineers, ASME Boiler and Pressure Vessel Code (BPVC),

Section III, Division 1, 2004, No Addenda.

[4.6] Mok, G. C., L. E. Fischer, and S. T. Hsu, NUREG/CR-6007, Stress Analysis of Closure Bolts for Shipping Casks, Lawrence Livermore National Laboratory and Kaiser Engineering, Prepared for U.S. Nuclear Regulatory Commission, April, 1992.

[4.7] Jones, F. D., H. L. Horton, and E. Oberg, Machinerys Handbook 23, Fasteners Section, New York: Industrial Press, Inc., 23rd Ed., 1988.

[4.8] Alcoa Fastening Systems, Keenserts Inserts and Studs, Technical Information and Product Data Sheets, November 9, 2006, accessed July 3, 2011, http://alcoafastener.thomasnet.com/item/keenserts-reg-inserts-general-purpose-inserts/heavy-duty-insert/knh1409j?&plpver=10&origin=keyword&by=prod&filter=0.

[4.9] U.S. Nuclear Regulatory Commission (NRC), Methods for Impact Analysis of Shipping Container, NUREG/CR-3966, November 1987.

[4.10] Blevins PhD, R. D., Formulas for Natural Frequency and Mode Shape, New York: Van Nostrand Reinhold Co., 1979.

[4.11] Oberg, E., F. D. Jones, H. L. Horton, H. H. Ryffell, and R. M. Heald, Machinerys Handbook 26:

A Reference Book for the Mechanical Engineer, Designer, Manufacturing Engineer, Draftsman, Toolmaker, and Machinist, 26th Ed., New York: Industrial Press, Inc., 2000.

[4.12] American Society of Mechanical Engineers, ASME Boiler and Pressure Vessel Code (BPVC),

Section III - Rules for Construction of Nuclear Facility Components - Division 1 - Subsection NB

- Class 1 Components, 2004.

[4.13] American Society of Mechanical Engineers, ASME Boiler and Pressure Vessel Code (BPVC),

Rules For Construction of Nuclear Facility Components,Section III, Division 1 - Appendices, 2004.

[4.14] Orano, TLI Engineering & Packaging Services Division, Bolting Evaluation of AOS Transport Packages, Calculation Note No. CN-15008-22-201 Rev. 1.v1, June 9, 2023.

4-116 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

7 PACKAGE OPERATIONS The information within this chapter provides the operations used to load the AOS Transport Packaging System and prepare it for transport. These operations describe the fundamental steps needed to ensure the requirements of this SAR. The transport packages should be operated using detailed written procedures that are based upon, and consistent with, the operations described in this chapter and the certification drawings listed in Table 1-5, AOS Transport Packaging System Certification Drawing List -

All Models. During actual operation, these procedures can be supplemented with engineering personnel, training classes, and/or site-specific procedures, as applicable.

Figure 7-1 and Figure 7-2 provide isometric views of Models AOS-025A and AOS-050A, respectively.

Figure 7-3 provides an isometric view of Models AOS-100A and AOS-100B. Figure 7-3a provides an isometric view of Model AOS-100A-S.

Notes: Unless indicated otherwise, all information related to the Model AOS-100A is also applicable to Models AOS-100B and AOS-100A-S.

Package Operations as specified in this chapter also include the information specified by the certification drawings. (Refer to Table 1-5, AOS Transport Packaging System Certification Drawing List - All Models.)

Radioactive Material Transport Packaging System Safety Analysis Report 7-1 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

7.1 PACKAGE LOADING Note: The operational steps provided in this section apply to all AOS Radioactive Material Transport Packaging System models (Models AOS-025A, AOS-050A, AOS-100A, AOS-100B, and AOS-100A-S).

Any step specific to a given Model is identified within the step.

Part of the transport package loading preparation is to perform a Pre-Shipment Engineering Evaluation following IAEA TS-R-1, Paragraph 502, 10 CFR 71.87, and 49 CFR 173.475 (References [7.1], [7.2], and

[7.3], respectively). The evaluation is used to ensure that the packaging, with its proposed contents, satisfies the applicable requirements of the transport packages license or certificate. This evaluation includes, but is not limited to, the review of the following:

  • Proposed contents isotopic composition, quantities, and decay heat;
  • Proposed contents form, weight, and geometry. If the content is defined as Special form, verify its certification from the competent authorities;
  • Identify shoring device to be used. All structural shoring materials used within the cask cavity must have a melting point greater than (i) 600°F for Co-60 in metallic form and Cs-137 in the form of cesium chloride and (ii) 900°F for all other contents;
  • Shielding requirements (use of additional shielding devices may be required for shipment);
  • Structural requirements;
  • Thermal requirements;
  • Pressure requirements;
  • Shipping hardware (such as liners, racks, dividers, baskets, and shoring devices);
  • Maintenance records.
  • Personnel qualification.
  • Certification Drawing requirements.

In addition, operations at the loading facility must safely support a range of activities, from receiving and inspecting the package, to preparing the loaded transport package for shipment. Each loading facility must provide fully trained personnel and detailed operating procedures to cover these activities.

7.1.1 Preparation for Loading 7.1.1.1 Receiving and Inspecting the Empty Transport Package To receive and inspect the empty transport package:

a. Position the transport vehicle in the Receiving Inspection area.
b. Visually inspect the transport package for damage and proper labeling and marking.

Refer to the shipping paper for shipment category and compare the marking and labels on the package to the requirement of Reference [7.3].

7-6 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 7-1. Additional Required Shielding -

Models AOS-025A, AOS-050A, AOS-100A, and AOS-100A-S Certification Model Component Drawinga Comments Shielding liner is mandatory for all contents. (Refer to the AOS-025A Liner 183C8485 current revision of the current revision of the NRC Certificate of Compliance 9316.)

Axial Used when shipping Ir-192 and Ir-194 isotopes. (Refer to the AOS-050A Shielding 183C8519 current revision of the NRC Certificate of Compliance 9316.)

Platesb Axial Shielding 183C8491 Plates Used when additional shielding is required for Co-60. (Refer to AOS-100A the current revision of the current revision of the NRC Certificate AOS-100A-S Cavity of Compliance 9316.)

Spacer 183C8518 Plates

a. Refer to Table 1-5, AOS Transport Packaging System Certification Drawing List - All Models, for drawing revision levels.
b. If the Model AOS-050A axial shielding plates include threaded screw holes, each hole must be filled with a setscrew during shipment.

7.1.2.3 Installing the Cask Lid Note: Visually inspect the cask and lid sealing surfaces, as well as the cask lid seal to be used, for damage that can prevent proper sealing of the sealing joint. Refer to Subsection 8.2.2, Leakage Tests

[8.4], for detailed inspection of these items. If the metallic cask lid seal is replaced, prior to the shipment of Normal Form material, a Maintenance Test must be performed, in accordance with ANSI N14.5 (Reference [7.8]). The elastomeric seal option is acceptable for use only with Special Form contents, in which the cask contents provide containment for the radioactive contents.

To install the cask lid, after verifying that the cask lid seal is properly installed, use proper rigging to slowly lower the cask lid onto the cask. Carefully monitor this operation to ensure that the cask lid is properly aligned. During the placement of the cask lid, two lid guide pins may be installed in the cask lid threaded holes perpendicular to each other to maintain alignment of the cask lid attachment bolt holes with the cask lid threaded holes.

The cask lid attachment bolts must be lubricated with a lubricant such as Neolube No. 2 (note that the lubricant must be approved by AOS).

Radioactive Material Transport Packaging System Safety Analysis Report 7-9 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

7.1.3 Preparation for Transport 7.1.3.1 Securing the Cask Lid To secure the cask lid, in preparation for transport:

Note: Torque sequence is stamped on top surface of the cask lid, about the bolt location.

a. Lubricate the cask lid attachment bolts with a lubricant such as Neolube No. 2. The lubricant must be approved by AOS. In the case of wet loading, the lubricant must be applied after the cask has been removed from the pool and dried.
b. Torque the cask lid attachment bolts (refer to Table 7-2), using one of the two conditions listed below.
1. If the cask was dry loaded - Torque the cask lid attachment bolts in a crisscross pattern, with a final pass all the way around, to ensure even seal compression after the elastomeric seal has been visually inspected and installed, -or- a new metallic seal has been installed.
2. If the cask was wet loaded - To torque the cask lid attachment bolts:
a. Install the cask lid and a minimum of at least five (5) bolts in the cask lid, as the cask breaks the waters surface. Note that this step may be skipped with the approval of Radiation Protection.
b. Drain the cask over the pool area. After the water has drained from the cask, move the cask to the decontamination pad.
c. Remove the bolts (previously installed for the transfer) and cask lid.
d. Dry the cask lid attachment bolts and then lubricate with a lubricant such as Neolube No. 2.
e. Dry the sealing surfaces and the bolt threaded holes.
f. Install the cask lid elastomeric seal after it has been visually inspected, -or- a new cask lid metallic seal onto the cask lid, then re-install the bolts and torque the cask lid attachment bolts in a crisscross pattern, with a final pass all the way around, to ensure even seal compression.

Note: For shipments of Special Form material, a Maintenance Leak test is not necessary after replacing a cask lid elastomeric seal, provided that a Periodic Leak test has been performed on the casks containment system within the past 12 months.

7-10 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 7-2. Cask Lid Attachment Bolt Size and Preload Torque - All Modelsa Preload Torque Model Function Bolt Size / ASME and ANSI Standards N-m ft-lb AOS-025 3/8-16 UNC-2A / ASME SB-637, UNS N07718 39 to 47 29 to 35 Cask Lid AOS-050 Attachment 1/2-13 UNC-2A / ASME SB-637, UNS N07718 85 to 92 62.5 to 68 Bolt AOS-100 7/8-9 UNC-2A / ASME SB-637, UNS N07718 542 to 678 400 to 500

a. Refer to Table 1-5, AOS Transport Packaging System Certification Drawing List - All Models.

Figure 7-4 illustrates a typical Leak testing setup (vacuum drying system and its basic components) that can be used for all AOS Radioactive Material Transport Packaging System models (Models AOS-025A, AOS-050A, AOS-100A, AOS-100B, and AOS-100A-S).

Vacuum 'rying $ssembly HEPA Vacuum 3ump )ilter $ssHPEOy Vacuum +ose HEPA

)LOWHU$VVHPEO\

Cask 9ent

9alve (CVV-1) Pressure Gauge Helium 9ent 9alve(HVV-1)

Vacuum

  • auge Quick

&onnector Quick 3UHVVXUH Vacuum *auge &onnector 5HJXODWRU 9alve (VGV-1)

+HOLXP Helium

/eak

'etector Vent 1/4" +ose Test Port Line Helium Supply Valve (HSV-1)

Vent Port Helium

&DVN Helium Backfill $ssembly

&DYLW\ /eak

'etector Drain Port Figure 7-4. Typical Vacuum Drying System Setup and Equipment Radioactive Material Transport Packaging System Safety Analysis Report 7-11 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

8.1.1 Visual Inspections and Measurements Visual examinations of all component surfaces, including welds and dimensional inspections, are conducted during packaging fabrication. These inspections, as well any other NDE inspections, are conducted according to approved written procedures. Their objectives are to identify harmful discontinuities or indications (such as overlaps, seams, cracks, porosity, crevices, and excessive oxidation), and to verify that the component or item critical dimensions are met, as specified in the certification drawings. (Refer to Table 1-5, AOS Transport Packaging System Certification Drawing List -

All Models, for a complete list.)

Visual and dimensional inspection results are recorded in accordance with the Purchasers approved Quality Assurance and Fabrication plan. Refer to Subsection 2.3.2, Examination, for additional details.

8.1.2 Weld Examinations All welds within the cask component and impact limiters are visually inspected and liquid-penetrant tested (root and final passes). Also, the weld within the containment boundary must be ultrasonically examined and liquid-penetrant tested. These inspections are conducted to ensure that no cracks, incomplete fusion, nor lack of penetration exist. Parts that do not meet the established criteria are repaired or replaced, in accordance with written procedures issued by the Fabricator and approved by AOS.

The Model AOS-025, AOS-050, and AOS-100 transport packages use an ASME Code corner type C weld.

This weld configuration is presented in Figure 4-2, Typical Corner Cask Cavity Shell Weld Joint Configuration - All Models.

8.1.3 Structural and Pressure Tests In addition to the test described in Subsection 8.1.2, the cask cavity is hydrostatically tested, to verify that the containment boundary can support the Design Pressure, per the requirements of NB6200, Subsection NB,Section III, of the ASME Code [8.2]. The Test Pressure is 1.5 times (1.5x) the Design Pressure. If this test were to fail, each component of the containment boundary must be evaluated and replaced, if necessary.

Radioactive Material Transport Packaging System Safety Analysis Report 8-3 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 8-2. Type 304 and 316 Material Requirements (Continued)

Definition Requirements Test Frequency Remarks Inventory Material -

ASTM A262 Practice A - Modified -

10% of Material having ditching greater than 5%

Supplied Pieces is unacceptable. Can be waived by AOS After final solution Sensitization Test for material not exposed to reactor water heat treatment New Material -

environments at elevated temperatures One per Heat for extended periods of time.

and Heat Treat Lot Inventory Material -

10% of Surface sample after pickling or if pickling After final solution Supplied Pieces Intergranular is not used after final heat treatment - heat treatment Attack IGA or pitting in excess of 0.025 mm and oxide removal New Material -

(0.001 in.) deep is unacceptable. (if applicable)

One per Heat and Heat Treat Lot As required by the Base Specification Non-Destructive and/or applicable ASME Section III 100% -

Examination requirements (Reference [8.2]).

a. Nitrogen can be added, as necessary (up to the limits of the Base Specification), to achieve mechanical properties.

8-6 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 8-4. Casting Pipe/Casting Material Requirements (Type CPF-8, CF-8)

Definition Requirements Test Frequency Remarks Base Specification Suffix T ASME SA-451/ASTM A 451 Grade CPF8 - Cast Pipe Suffix U ASME SA-351/ASTM A 351 Grade CF8 - Casting One Chemical Chemistry As required by the ASME Specification. Analysis Required -

Modification per Heat Ferrite to be Controlled within the allowable limits of the One Analysis measured Base Specification, to produce a minimum ferrite Required per Heat on an actual Ferrite Content content of 5%, as determined magnetically by and Heat casting, after Practice ASTM A800, S1. Treat Lot final solution heat treatment Solution Heat Treat at 1,066 to 1,149°C (1,950 One per Heat to 2,100°F) for 15 minutes/25 mm (15 minutes/1 in.) Certification Heat Treatment and Heat of thickness, but not less than 15 minutes, Statement Treat Lot in accordance with the Base Specification.

One per Heat After final Properties at Room Temperature, Mechanical Tests and Heat solution heat as required by the Base Specification.

Treat Lot treatment One per Heat After final Hardness Test As required by the Base Specification. and Heat solution heat Treat Lot treatment Sensitization Test Not required. - -

Inventory Material - 10% of After final Surface sample after pickling or if pickling Supplied Pieces solution heat Intergranular is not used after final heat treatment. IGA treatment and Attack (IGA) or pitting in excess of 0.025 mm (0.001 in.) New Material -

oxide removal deep is unacceptable. One per Heat (if applicable) and Heat Treat Lot As required by the Base Specification, Non-Destructive Radiography per NB-2575, and additional 100% -

Examination applicable requirements of ASME Section III (Reference [8.2]).

Procedures require AOS approval prior Buyer to performance of the repair work.

approval Weld Repair - required Repairs to castings subsequent to solution for repair annealing must be documented and submitted procedure to AOS.

8-8 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 8-5. LAST-A-FOAM FR-3700 Series Foams - Testing Program Type of Test Applicable Number of Nominal Tolerance Sample Testa Description Reference Samples Value (of Nominal) size (in.)

Density, Each +/-15%

pcf ASTM D1622-03 3 18, 8, and 11b Increment +/-10%

2x2x1 General Plastics Static Crush Manufacturing 1x1x1 Strength, Company, 3d Report Value Report Value and psic TM-9704, 2x2x2 Rev. K Flame Burn length ASTM D1622-03 3 - 0.5 x 3 x 6 Retardancy 6 in.

General Plastics Manufacturing Company, Intumescence 2 50% Minimum 2x2x2 9952037-00 and TM-9704, Formulation Rev. K General Plastics Manufacturing Leachable Company, 1 1 ppm < 1 ppm 2x2x2 Chlorides GP-TM9510, Rev. B and EPA 300.0 Thermal 8.0 diameter Conductivity, ASTM D1622-03 1 0.349 Each +/-15%

x 1.0 L Btu-in/(ft2-°F-h)

Specific Heat, ASTM E1269-05 1 0.351 Each +/-20% As Required Btu/lb-°F 0.05 lbs. of Water Not to exceed Absorption ASTM E1269-05 3 water per ft2 nominal 6x6x3 in 96 hours0.00111 days <br />0.0267 hours <br />1.587302e-4 weeks <br />3.6528e-5 months <br /> Chemical 1 per

- Report Value Report Value As Required Composition formulation 8-10 Radioactive Material Transport Packaging System Safety Analysis Report for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

Table 8-5. LAST-A-FOAM FR-3700 Series Foams - Testing Program (Continued)

Type of Test Applicable Number of Nominal Tolerance Sample Testa Description Reference Samples Value (of Nominal) size (in.)

Density, Each +/-15%

pcf ASTM D1622-03 3 18, 8, and 11b Increment +/-10%

2x2x1 General General Plastics Static Crush Plastics Manufacturing Strength, Manufacturing Company, 3f Company, Increment +/-15% 2x2x1 psie TM-9704, Technical Rev. K Specification Flame Burn length 14CFR14.25.853 3 - 0.5 x 3 x 6 Retardancy 6 in.

Batch General Plastics Manufacturing Company, Intumescence 3 50% Minimum 2x2x2 9952037-00 and GP-TM9510, Rev. B General Plastics Manufacturing Leachable Company, 2 1 ppm < 1 ppm 2x2x2 Chlorides GP-TM9510, Rev.

B & EPA 300.0 General Static Crush General Plastics Plastics Strength, Manufacturing Manufacturing Company, 3f Company, Increment +/-15% 2x2x1 Pour psie TM-9704, Rev. K Technical Specification Density, Each +/-15%

pcf ASTM D1622-03 3 18, 8, and 11b Increment +/-10%

2x2x1

a. Formulation tests are conducted upon initial order or formulation change. Batch tests are conducted upon each batch required to fulfill each impact limiter. Pour tests are conducted upon each pour of every batch.
b. Density nominal values of 18, 8, and 11 pcf are associated with the Model AOS-025, AOS-050, and AOS-100, respectively.
c. The foam manufacturer will perform the Static Crush Strength test. In addition, a dynamic test will be performed by an independent testing laboratory as part of the Dedication Process toward a safety Category A. The dynamic test shall be per ASTM D1621-10, and will follow the recommendation of this Standard, with the exception of the strain rate. The test will use a controlled dynamic strain rate of 60s-1. The values obtained from this test must be less than or equal to the corresponding values in Table 8-6 and Table 8-7.
d. Three (3) samples are tested at -40, 75, and 250°F, at strains of 10, 40, and 60% in each direction; Parallel to Direction of Rise and Perpendicular to Direction of Rise.
e. Strain Rate value for this test is approximately 0.14 in./min. Each sample shall meet the tolerance for the indicated test. In cases where multiple samples are taken, the indicated tolerance applies to the numerical average result of the samples. For example, the results of each Static Crush test must be +/-20% of the nominal value, and the average of the three samples must be +/-15% of the nominal value.
f. Three (3) samples are tested at 75°F, at strains of 10, 40, and 60% in each direction; Parallel to Direction of Rise and Perpendicular to Direction of Rise.

Radioactive Material Transport Packaging System Safety Analysis Report 8-11 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)

8.4 REFERENCES

[8.1] U.S. Nuclear Regulatory Commission (NRC), Title 10, Code of Federal Regulations, Part 71 (10 CFR 71), Packaging and Transportation of Radioactive Material.

[8.2] American Society of Mechanical Engineers, ASME Boiler and Pressure Vessel Code (BPVC),

Section III, Division 1, 2004, No Addenda.

[8.3] DELETED.

[8.4] American National Standards Institute, ANSI N14.5-2014, Radioactive Materials -

Leakage Tests on Packages for Shipment, June 19, 2014.

[8.5] International Atomic Energy Agency (IAEA) Safety Standards Series No. TS-R-1 (IAEA TS-R-1), Regulations for the Safe Transport of Radioactive Material, 1996 Ed.

(as amended 2003).

[8.6] DELETED.

[8.7] NUREG/CR-6407, Classification of Transportation Packaging and Dry Spent Fuel Storage System Components According to Importance to Safety, Idaho National Engineering Laboratory, Idaho Falls, Idaho, February, 1996.

[8.8] General Plastics Manufacturing Company, Design Guide for Use of LAST-A-FOAM FR-3700 for Crash & Fire Protection of Radioactive Material Shipping Containers, Tacoma, WA, March, 1998 (revised October, 2003).

Radioactive Material Transport Packaging System Safety Analysis Report 8-21 for Model AOS-025, AOS-050, and AOS-100 Transport Packages, Rev. J-3, July 19, 2023 (Docket No. 71-9316)