ML21341A484

From kanterella
Jump to navigation Jump to search
WCS Consolidated Interim Storage Facility Revision 0 to Final Safety Analysis Report, Chapter 2, Attachment F, Evaluation of Halite Dissolution in the Vicinity of Waste Control Specialists Disposal Site, Andrews County, Tx, Part 2 of 3
ML21341A484
Person / Time
Site: Consolidated Interim Storage Facility
Issue date: 11/22/2021
From:
Consolidated Interim Storage Facility
To:
Office of Nuclear Reactor Regulation, Office of Nuclear Material Safety and Safeguards
Shared Package
ML21341A497 List:
References
E-59638
Download: ML21341A484 (63)


Text

{{#Wiki_filter:69 OCCURRENCE OF GYPSUM AT THE WCS SITE Outcrops of the Dockum Group in the RCRA landfill at the WCS site contain minor amounts of gypsum. Gypsum appears to be confined to a ~20 ft thick horizon roughly 30 ft below the caliche caprock and is absent from this horizon where calcic alteration has penetrated the upper Dockum surface. The gypsum horizon does not occur throughout the RCRA landfill excavation and is limited to the southern-most outcrops. Gypsum is contained within burrowed, mottled red, silty to sandy mudstone displaying blocky fabrics consistent with paleosol formation and pedogenic movement of clays. Slickensides are also common within the mudstone. Dockum Group cores from the site area show little evidence of gypsum to depths of up to 270 ft, indicating that the gypsum occurs only locally. The gypsum displays a variety of morphologies including fibrous antitaxial veins, lenticular gypsum rosettes, and passive pore-filling cements in fractures. In the following, we discuss describe each of these gypsum morphologies and then comment on its origin. GYPSUM MORPHOLOGIES Poorly preserved, discontinuous, arcuate to planar, subvertical to subhorizontal, antitaxial gypsum-filled veins occur within the gypsum-bearing interval at the WCS site (Figure 1). Crystals within the veins are blocky and are primarily oriented perpendicular to the edge of the vein, indicating that minimum principle stresses were oriented subvertically when the veins formed (e.g., Durney and Ramsay, 1973; Ramsay, 1980). Gypsum crystals within the veins appear to be partly corroded or fluted and may show local overgrowths or recrystallization (Figure 2), indicating a complex fluid history since the veins first formed. Medial lines,

70 commonly associated with antitaxial veins, are poorly preserved due to gypsum dissolution, overgrowth, and possible recrystallization. At the WCS site, lenticular gypsum rosettes occur in elongated zones along some fractures, in cylindrical zones (possible rizoliths) (Figure 3), and as irregular masses (Figure 4). Gypsum crystals range up to ~1 cm and contain inclusions of the mudstone host rock. The morphology of the gypsum crystals provides some information about their origin. Lenticular gypsum crystals form from alkaline fluids (pH >7.5) in the presence of soluble organic materials at relatively high temperatures (greater than ~ 35° C) (e.g., Cody, 1979; Cody and Cody, 1988). Lenticular penetration twins observed at the WCS site also require the presence of high concentrations of terrestrial humic substances in the pore fluids (Cody and Cody, 1988). Large (several cm), interlocking gypsum crystals occupy some fractures at the WCS site (Figure 5). Some crystals contain small inclusions of mudstone, while the surfaces of other crystals are lenticular. The large crystal size indicates that most of this gypsum grew passively into and filled existing void space associated with fractures. Limited displacive and incorporative growth may have occurred as the crystals began to encroach on the boundary of previously open fractures. DISCUSSION Widespread occurrences of antitaxial gypsum veins have been attributed to stresses induced by large-scale processes such as unloading (Holt and Powers, 1990 a, b; El Tabakh et al, 1998) and collapse due to regional-scale dissolution (Gustavson et al., 1994). The limited vertical and areal extent of gypsum at the WCS site, however, eliminates unloading and dissolution as a potential cause of the gypsum veins found at the site. Because the veins are typically small in

71 length (< 1 m), discontinuous, subvertical, and often arcuate, they likely developed below the water table in response to localized stress conditions within ductile Dockum mudstones. Under these conditions fracturing is not required to produce antitaxial gypsum veins, as the force of crystallization is sufficient to open the space required by the vein, and the orientation of veins and their fibers reflect local stress conditions (e.g., Means and Li, 2001; Elburg et al., 2002; Hilgers and Urai, 2005). Furthermore, it is difficult to maintain open fractures within a water-saturated mudstone. The original fibrous texture of the veins has been altered by recrystallization and overgrowth, and later gypsum undersaturated fluids dissolved and corroded vein fibers. Because other forms of gypsum are also present within the same limited area, it is likely that these veins developed within the same hydrologic environment as the other forms of gypsum present at the site. This does not represent a new concept as syndepositional gypsum veins have been reported elsewhere (e.g., Holt and Powers, 1990 a,b; Aref and Morsy, 2000). The forms of gypsum present at the WCS site reveal additional information about the hydrologic system in which they formed. Crystal habits suggest that lenticular gypsum rosettes at the WCS site formed displacively in soft sediments containing warm and alkaline groundwater with high amounts of humic substances (e.g., Cody and Cody, 1988), requiring the decomposition of large amounts of plant matter. The lenticular habit of some of the passive pore-filling crystals suggests that they are coeval with the rosettes and also formed in warm, alkaline, humic-rich groundwater. The limited extent of gypsum and its proximity to the caliche caprock at the WCS site suggest that hydrologic environments that formed gypsum were also of limited vertical and areal extent. Because abundant humic substances are required to form lenticular gypsum rosettes, the gypsum formed in a shallow, phreatic aquifer in a warm climate with abundant vegetation.

72 These conditions suggest that the gypsum likely developed beneath or at the margins of a small saline lake or wetland. The source of dissolved gypsum within the groundwater need not be the deep evaporites that occur over 1,500 ft below the gypsum horizon. Low permeability mudstones separate deeper Dockum aquifers from the gypsum horizon, and current groundwater age dating (Darling, 2006) supports hydrologic separation. During the Triassic and throughout most of the Cenozoic, eastward-draining fluvial systems associated with the Dockum Group and Ogallala Formation crossed evaporite-bearing rocks exposed west and northwest of the WCS site. Groundwaters associated with these fluvial systems were likely to be enriched in dissolved gypsum. Sulfate may also have been derived from sulfide minerals within the Dockum group mudstones (e.g., Joeckel et al., 2005), atmospheric sulfer (e.g., Dultz and Kühn, 2005), Cretaceous seawater, or shallow saline groundwaters associated with saline lakes (e.g., Wood and Jones, 1990). Gypsum at the WCS site could not have formed in the Holocene. The relationship to pedogenic carbonate indicates gypsum formed earlier than the calcretes. The OAG interval at the WCS RCRA landfill currently contains no groundwater. Nearby, the pH of groundwater in two samples from the OAG aquifer is 7.36 and 7.15 (Darling, 2006), too low to generate lenticular crystals (Cody and Cody, 1988). Furthermore, OAG waters are undersaturated with respect to gypsum, and the vegetative cover cannot provide sufficient humic substances to generate gypsum rosettes. The gypsum horizon predates the development of the caprock caliche. Gypsum is absent where calcic alteration associated with the caliche caprock has penetrated the upper Dockum surface. The caprock developed on a long stable topography. In the vicinity of topographically low areas, downward percolating fluids dissolved gypsum, reducing the areal extent of the

73 gypsum horizon. The gypsum horizon was preserved in topographically high areas where gypsum was beyond the depth of high amounts of infiltrating precipitation. Some etching and corrosion of gypsum veins likely occurred during the development of the caprock. In the vicinity of the WCS site, conditions suitable for the development of warm, alkaline, saline lakes or wetlands bounded by vegetated environments have existed several times prior to the development of the caprock. Dockum mudstone textures observed at the WCS site are consistent with a wetland or a shallow lacustrine environment, and the Dockum environment was sufficiently warm to produce lenticular gypsum. Abundant burrowing attests to significant biological activity, and soil textures suggest subaerial exposure and the presence of plants. During the accumulation of the Dockum, fluvial systems drained evaporite terrains west and northwest of the site (McGowen et al., 1979). Groundwaters associated with these systems were likely sufficiently alkaline and saline to lead to localized gypsum accumulation in the vicinity of wetlands and lakes. These conditions persisted after Dockum deposition. Eastward drainage of evaporite terrains likely continued after Dockum deposition until the accumulation of the Antlers Formation during the Cretaceous. While this period of time is dominated by net erosion, localized wetlands or saline lakes capable of accumulating the WCS gypsum may have developed. During the Cenozoic, eastward drainage over evaporite terrains again resumed, and localized wetlands or saline lakes could have formed.

SUMMARY

There are three major summary points from this examination of gypsum occurrences at the WCS site and a review of literature:

74

  • Because the gypsum is limited in areal extent and occurs within a limited horizon near the upper surface of the Dockum redbeds, the occurrence of gypsum cannot be related to large-scale processes such as unloading or dissolution of underlying evaporites.
  • Antitaxial gypsum vein morphologies suggest that the veins developed in response to localized stress conditions.
  • Gypsum morphologies indicate formation in shallow, warm, alkaline groundwaters. The most likely setting and time of formation is syndepositional, as sulfate, organic activity, and warm temperatures should have been present at and near the surface; other possible periods of exposure or near-exposure occurred between Dockum deposition and the deposition of the Cretaceous Antlers Formation and in the Cenozoic prior to the accumulation of the caprock.

REFERENCES Aref, M. A., and M. A. Morsy, 2000, Polygonal shrinkage cracks filled with gypsum in the Upper Eocene, Fayum, Egypt, Sedimentology of Egypt, vol. 8, p. 89-103. Cody, R. D., 1979, Lenticular gypsum: Occurrences in nature, and experimental determinations of effects of soluble green plant material on its formation, Journal of Sedimentary Petrology, vol. 49, no. 3, p. 1015-1028. Cody, R. D., and A. M. Cody, 1988, Gypsum nucleation and crystal morphology in analog saline terrestrial environments, Journal of Sedimentary Petrology, vol. 58, no. 2, p. 247-255. Darling, B. K., 2006, Letter report on findings related to the age-dating of groundwater at a proposed treatment and disposal facility for low-level radioactive waste, Andrews County, Texas, unpublished report, LBG-Guyton Associates, Lafayette, LA.

75 Durney, D. W. and Ramsay, J. G., 1973, Incremental strains measured by sysntectonic crystal growths, in Gravity and Tectonics, K.A. de Jong and R. Scholten (eds), John Wiley and Sons, New York, p. 67-

96.

Dultz, S. and P. Kühn, 2005, Occurrence, formation, and micromorphology of gypsum in soils from the Central-German Chernozem region, Geoderma, vol. 129, p. 230-250. El Tabakh, M., B. C. Schreiber, and J. K. Warren, Origin of fibrous gypsum in the Newark Rift Basin, Eastern North America, Journal of Sedimentary Research, vol. 68, no. 1, p. 88-99. Elburg, M. A., P. D. Bons, J. Foden, and C. W. Passchier, 2002, in Deformation mechanisms, rheology and tectionics: Current status and future perspectives, S. de Meer, M. R. Drury, J. H. P. de Bresser, and G. M. Pennock (eds), Geological Society, London, Special Publications, vol. 2000, p. 103-118. Gustavson, T. C., S. D. Hovorka, and A. R. Dutton, 1994, Origin of satin spar veins in evaporite basins, Journal of Sedimentary Research, vol. 64, no. 1, p. 88-94. Hilgers, C., and J. L. Urai, 2005, On the arrangement of solid inclusions in fibrous veins and the role of the crack-seal mechanism, Journal of Structural Geology, vol. 27, p. 481-494. Holt, R.M., and D. W. Powers, 1990a, Geotechnical activities in the air intake shaft (AIS): DOE/WIPP 90 051, US Department of Energy, Carlsbad, NM. Holt, R.M., and D. W. Powers, 1990b, The Late Permian Dewey Lake Formation at the Waste Isolation Pilot Plant, in Geological and Hydrological Studies of Evaporites in the Northern Delaware Basin for the Waste Isolation Pilot Plant (WIPP), D.W. Powers, R. M. Holt, R. L. Beauheim, and N. Rempe, (eds) Guidebook 14, Geological Society of America (Dallas Geological Society), p. 45-78. Joeckel, R. M., B. J. Ang Clement, L. R. VanFleet Bates, 2005, Sulfate-mineral crusts from pyrite weathering and acid rock drainage in the Dakota Formation and Graneros Shale, Jefferson County, Nebraska, Chemical Geology, 2005, vol. 215, p. 433-452. McGowen, J. H., G. E. Granata, and S. J. Seni, 1979, Depositional framework of the lower Dockum Group (Triassic) Texas Panhandle, Report of Technical Investigations No. 97, Bureau of Economic Geology, The University of Texas at Austin, 60 p.

76 Means, W. D., and T. Li, 2001, A laboratory simulation of fibrous veins: Some first observations, Journal of Structural Geology, vol. 23, p. 857-863. Ramsay, J. G., 1980, The crack-seal mechanism of rock deformation, Nature, vol. 284, p. 135-139. Wood, W. W. and B. F. Jones, 1990, Origin of solutes in saline lakes and springs on the southern High Plains of Texas and New Mexico, in Geologic framework and regional hydrology; upper Cenozoic Blackwater Draw and Ogallala Formations, Great Plains, T. C. Gustavson (ed), proceedings of the Symposium on geology and geohydrology of the Tertiary Ogallala Formation (Group) and Quaternary Blackwater Draw Formation, Lubbock, TX, p. 193 - 208.

77 APPENDIX A FIGURES

Figure 1. Antitaxial gypsum veins found in the WCS RCRA landfill are discontinuous and display planar (P) and arcuate (A) morphologies. 78

Figure 2. Gypsum crystals within antitaxial veins appear to be partly corroded or fluted and show local overgrowths and possible recrystallization. Figure 3. Rosettes of gypsum crystals display lenticular crystal habits. This example occurs in a roughly cylindrical zone and could be a rizolith. 79

Figure 4. Some lenticular gypsum rosettes occur in irregular masses within the host mudstone. Figure 5. This gypsum fracture filling from the WCS site displays large interlocking crystals with lenticular surfaces. Note that some wall rock mudstone has been incorporated within the crystals, especially along crystal boundaries. 80

81 APPENDIX B BASIC STRATIGRAPHIC DATA FROM OIL AND GAS WELLS AT AND AROUND THE WCS SITE

Stratigraphic Data at WCS Site (Figures 14-19) Depth Data Elevation Data Thickness Data (ft below reference elevation) (ftamsl) (ft) c E E 0 E E E 0 '.l:l

u.
u.
u.

ftl

u.

c IL c c GI 0 GI GI GI QI ~ -g QI Q; iii iii iii ~ 0

0 Ill
r 0

"iii Ill

  • r 0

E E 0 "C ..c QI

r a:

o~ (/)

r a:

0.!!! ftl (j ~ E u_ a: a: fti

u.
u.

c- ~i

  • ~

RI

r

~ ~ 0 0 0 0,, (/) GI 0 0 l/J z 0 QI QI 0 QI GI >. QI t; QI QI 0: ~ co Q. IG Ill J; Kl Q. IG Ill J; lG co IG Ill QI it= 0 ftl c 0 ftl c

I ii ct a:~

I-* m CD ct m I-m m ct m a: en m _g 25-06572 3417 1272 1472 2254 2565 2145 1945 1153 852 200 1093 301 125-06769 3420 1324 1523 2293

2585 2096 1897 1127 835 199 1062 292 25-07890 3566 1615 1826 2607

.2896 1951 1740 959 670 211 1070 289 25-07894 3577 1621 1834 2605 2890 1956 1743 9 72 687 213 1056 285 25-09969 3380 1120 1342 2260 2038 222 25-12111 3406 1582 1820 2628 2913 1824 1586 778 493 238 1093 285 25-12112 3399 1565 1804 2590 2882 1834 1595 809 517 239 1078 292 25-12114 3362 1365 1600 1997 1762 235 25-21104 3377 1330 1555 2390 2684 2047 1822 987 693 225 1129 294 25-21105 3386 1364 1595 2440 2734 2022 1791 946 652 231 1139 294 25-22768 3362 1416 1656 2499 2796 1946 1706 863 566 240 1140 297 25-22796 3483 1560 1786 2553 2837 1922.9 1696.9 929.9 645.9 226 1051 284 25-22883 3458 1557 1786 2584 2878 1901 1672 874 -580 229 1092 294 25-22969 3463 1547 1773 2570 2862 1916 1690 893 601 226 1089 292 125-22977 3428 1520 1752 2572 2867 1908 1676 856 561 232 1115 295 125-22980 3363 1338 1558 2418 271 1 2024.5 1804;5 944.5 651.5 220 1153 293 25-24841 3339 1175 1400 2237 2535 2164 1939 1102 804 225 1135 298 25-25158 3465 1177 1406 2256 2572 2288 2059 1209 893 229 1166 316 25-25479 3382 1196 1424 2227 2530 2186 1958 1155 852 228 1106 303 25-25644 3368 1186 1410 2220 2517 2182 1958 1148 851 224 1107 297 25-27902 3434 1404 1613 2397 2fl79 2029.5 1820.5 1036.5 754.5 209 1066 282 25-30005 3572 1631 1840 2615 2888 1941 1732 957 684 209 1048 273 25-33347 3583 1629 1845 2619 2897 1954 H38 964 686 2.16 1052 278 25-34171. 3421

  • 1190 1408 2195 2499 2231 2013 1226 922 218 1091 304 25-36130 3408 1563 1800 2591

.2881

  • rn45 1608 81'7 S27 237 1081 290 25-37203 3411 1207 1404 2223 2524 2204 2007 1188 887 197 1120 301 25-37483 3372 1279 1500 2291 2580 2093 1872 1081 792 221 1080 289 3-00975 3422 1668 1903 2725 3000 1754 1519 697 422 235 1097 275 3-01209 3496 1620 1832 1876 1664 212 3-01811 3441 156l 1798 2596 2877 1874 1643 845 564 231 1079 281 3-01812 3466 1560 1790 2597 2877 1906 1676 869

.589 230 1087 280 3-01 81.3 3491 1612 1833 2623 .2917 1879 1658 868 574 221 1084 294 3-01814 3465 1616 1830 2613 2905 1849 1635 852 560 214 1075 292 3-02591 3368 1510 1742 2565 2847 1857,5 1625,5 8025 520.5 232 1105 282 3-03756 3359 1630 1890 2595 2850 1728,5 146815 7635 508,5 260 960 25& 13-03757 3340 1600 1800 2551 2810 1740 1540 789 530 200 1010 259 3-04076 3554 1604 1816 2600 2880 1950 H 38 '954 '674 212 1064 280 3-05102 3366 1603 1784 2547 2805 '1762.7 15817 818.7 560.7 181 1021 258 3-05.500 3386 1630 1830 2582 2850 1756 1556 804 536 200 1020 268 3-05906 3380 1545 1770 2.568 2852 1'835 1610 81i2 528 225 1082 284 3-06707 3332 1582 1796 2570 2835 1750 1536 762 497 214 1039 265 82

Stratigraphic Data at WCS Site (Figures 14*19) Depth Data Elevation Data Thickness Data (ft below reference elevation) (~amsl) (ft) c E E 0 E E E .£ i

11.
u.
11.
11.

Qj c:

11.

c: c: ~ Qj <IJ 0 Q; QI QI <IJ ~ ~ "O ~ ~ "C Qj iii IQ t; 0 ~ 0 (II

s 8.s iii
J 8.&

"C E E 0 "O ..c QI

I 0:::

U)

I 0:::

Ill 0..!!! E u_ 0:: 0:: -a

u.
u.

c: - b ~.i: Ill

r QI Cll -

0 "C 0 0 o~ ii) Qj 0 0 UJ z ... E 0 ~ <IJ >. <IJ 0 <IJ QI >. <IJ "O <IJ <IJ ii: ~Ill CL Cll &; (II CL (II l3 "E I/I \\I) IQ (II (II ~~ {!. ftl c IQ {!. .Ill ftl ~ Iii ftl Ill <C m m <C m m m <C Ill llJ m..c 3-07838 3345 1587 1793 2560 2815 1758 1~52 785 530 206 1022 255 3-10364 3378 1613 1802 2554 2810 1765 1576 824 562 189 1014 282 3-10503 3378 1623 1806 2550 2816 1755 1572 828 562 183 1010 266 3-10806 3480 1601 1807 2587 2860 1879 1673 893 620 206 1053 273 3*11054 3525 1612 1827 2623 2911 1913 ' 1698 902 614 215 1084 288 3-30290 3312 1600 1810 2587 2853 1712 1502 725 459 210 1043 266 3-31132 3557 1610 1825 2626 2898 1947 1732 931 659 215 1073 272 3-31589 3360 1644 1894 2590 2845 1716 ' 1466 770 515 250 951 255 3-32910 3428 1654 1682 2688 2968 1774 ' 1546 740 460 228 1086 .280 3-33854 3435 1700 1918 2711 2983 1734..5 1516.5 723.5 451.5 218 1065 272 J..33882 3337 1720 1942 2710 2970 1617 1395 627 367 222 1028 260 3-34548 3540 1604 1614 2590 2867 1936 1726 950 673 210 1053 2.77 3-36041 3447 1637 1836 2608 2869 1810 1611 839 578 199 1033 261 3-36094 3471. 1650 1895 2685 2966 1815 1576 786 505 239 1071 281 3-36289 3456 1724 1942 2703 2974 1732 ' 1514 753 482 218 1032 271 3-36567 3435 16'38 1838 2610 2875 1797 1597 825 560 200 1037 265 3-36967 3477 1661 1865 2639 2906 1816 16'12 838 571 204 1041 267 3-37072 34138 1627 1810 2588 2856 1840.5 ' 1657.5 879.5 611.5 183 1046 268 3-37214 3446 1654 1842 2621 2887 1792 1604 825 559 188 1045 260 3-37580 3382 1624 1854 2648 2930 1757.5 1527.5 733.5 451.5 230 1076 282 3-37680 3456 1673 1875 2650 2920 1783 1581 806 536 202 1045 270 3-37698 3438 1705 1935 2734 3010 17-33 1503 704 428 230 1075

  • 275 3.3n34 3364 1620 1809 2540 2795 1744 1555 824 569 189 988 255 3-37880 3402 16'36 1878 2700 2975 1766 1524 702 427 242 1097 275 3-38605 3410 1653 1854 2604 2864 1757 1556 806 546 201 1010 260 3'39026 3328 1545 1744 2507 2769 1783 1584 821 559 199 1025 262 Uncertain contacts or uninterpretable log intervals show as blank valL!es 83

84 APPENDIX C BASIC STRATIGRAPHIC DATA FROM OIL AND GAS WELLS ACROSS A SECTION OF THE MESCALERO RIDGE, NM

Basic Drillhole Data from Mescalero Ridge for Figures 25-27 ru =- 0 0 =- =- ~ (/) ~ Qi (/) _c~

- Q)

. ~ E o._ o._ 0 E o ~ (/) (/) c: 0"' B B Ol TI o~ Ol= o._ ¢' ""!!l ro c: _c Q) ~ BE .8 E ';;;' E ro

It' o._ @

E :5 E~ I I Q) ~ ~er c: (/) 0 c:

t? u_
t? u_

(/) u_ '°

.c c e ~

o~ c: 0 ~ Q) -o Q) ~ .Q 0 _Q 0 N (/) Q) 0 ~ ~ (/) x Q) ;;;:; c: Q) ro o._ ro o._ 0 c: Ol Q) ~ "' _c TI ..\\< - o::a 3: c:

g as o Q) 3:

Q) > o_ :ra 15_~ .9 w 0 > 0 0 ~LE :S~ Q) ~ I-I- 1D ~ Q)

J Q) "'

_c :::J Q) ~ Q) ~ <{ ~ I-er u_ 0

J
J erw oer 0(1)

I-er WO WO 26706 18 34 23 3305 660E 638315 3621782 3995 1843 2103 260 2152 1892 02370 18 34 28 19805 660E 635107 3620611 4028 1824 2085 261 2204 1943 02376 18 34 32 660N 1980W 632692 3619768 3927 1673 1950 277 2254 1911 26532 18 34 36 330N 1980W 638640 3619464 3986 1914 2183 269 2072 1803 26698 18 34 36 660N 660W 638740 3619867 3992 1907 2176 269 2085 1816 26817 18 34 36 380N 660E 639940 3619980 3969 1929 2200 271 2040 1769 03146 18 35 29 1980N 660W 641875 3621128 3948 1853 211 2 259 2095 1836 27333 18 35 29 6605 660e 643255 3620304 3927 1792 2052 260 2135 1875 27392 18 35 30 9908 330W 640235 3620407 3971 1929 2198 269 2042 1773 26287 18 35 30 19805 1980E 641106 3620710 3959 1905 2178 273 2054 1781 03149 18 35 31 6605 660E 641576 3618679 3921 1834 2101 267 2087 1820 26661 18 35 31 330N 330W 640241 3620000 3963 1923 2207 284 2040 1756 27618 18 35 31 6608 1980W 640762 3618694 3960 1910 2183 273 2050 1777 25839 18 35 32 1980N 660W 641933 3619885 3945 1860 2125 265 2085 1820 29121 18 35 32 6608 660E 643183 3618697 3935 1854 2126 272 2081 1809 29336 18 35 32 2280N 660E 643155 3619403 3931 1824 2090 266 2107 1841 26590 19 34 1 1980N 660E 639954 3617894 3962 1883 2165 282 2079 1797 22365 19 34 1 6608 660W 638736 3616930 3977 1863 2150 287 2114 1827 27827 19 34 2 1980N 1650E 638048 3617855 4020 1920 2209 289 2100 181 1 32435 19 34 2 5508 1980E 637932 3616902 3989 1861 2150 289 2128 1839 36680 19 34 3 16505 1650E 636407 3617293 4021 1872 2156 284 2149 1865 27181 19 34 3 1980N 660E 636735 3617784 3999 1871 2158 287 2128 1841 21156 19 34 3 718N 660E 636736 3618213 4003 1862 2142 280 2141 1861 36391 19 34 3 760N 660W 635534 3618183 4002 1830 2108 278 2172 1894 32963 19 34 4 23558 400W 633847 3617410 3892 1644 1923 279 2248 1969 26348 19 34 11 1980N 660E 638333 3616221 3977 1848 2130 282 2129 1847 26783 19 34 11 1980S 660W 637138 3615794 3992 1857 2145 288 2135 1847 26473 19 34 11 660S 660E 638345 3615415 3970 1838 2130 292 2132 1840 27096 19 34 11 6608 660W 637146 3615393 3992 1871 2160 289 2121 1832 26707 19 34 11 990N 990E 638226 3616521 3981 1850 2134 284 2131 1847 36902 19 34 11 1830N 1980W 637572 3616222 3993 1862 2149 287 2131 1844 02384 19 34 12 660N 660W 638730 3616631 3974 1855 2150 295 2119 1824 22719 19 34 12 19805 1980W 639147 3615833 3969 1845 2130 285 2124 1839 22984 19 34 12 19805 660E 639945 3615847 3956 1867 2155 288 2089 1801 23634 19 34 12 520N 520E 639976 3616696 3932 1845 2126 281 2087 1806 22519 19 34 13 23105 330W 638730 3614307 3965 1860 2162 302 2105 1803 22671 19 34 13 1980N 660W 638760 3614618 3954 1846 2142 296 2108 1812 28207 19 34 13 460N 990E 639854 3615102 3954 1856 2143 287 2098 181 1 22181 19 34 13 660N 660W 638755 3615020 3968 1850 2145 295 2118 1823 22717 19 34 13 6608 660W 638771 3613814 3878 1793 2098 305 2085 1780 22009 19 34 14 1320N 660E 638353 3614812 3973 1857 2160 303 2116 1813 25493 19 34 14 1980N 1680E 638044 3614604 3967 1865 2165 300 2102 1802 23029 19 34 14 20805 1980E 637957 3614233 3896 1800 2103 303 2096 1793 25506 19 34 14 660N 1980E 637946 3615004 39n 1852 2143 291 2125 1834 02386 19 34 15 3305 330W 635456 3613656 3777 1740 2048 308 2037 1729 26087 19 34 15 19808 660W 635550 3614160 3780 1753 2057 304 2027 1723 21286 19 34 15 660N 660E 636748 3614982 3928 1810 211 2 302 2118 1816 20812 19 34 15 6608 660W 635555 3613759 3801 1742 2050 308 2059 1751 23356 19 34 20 23105 1650W 632656 3612605 3714 1650 1973 323 2064 1741 27556 19 34 23 1980N 1980E 637974 3612996 3827 1810 2120 310 2017 1 IUI 85

Basic Drillhole Data from Mescalero Ridge for Figures 25-27 0 0 0

s

~ c: Iii 0 0 Iii = <1l .c Q) E (l_ (l_ 0 E E 0: t:.E {;) 0"' .8 .8 E ro ~ "'0 o- "' Q) o_ ;i::

!
:'.~

c: ~ Q) c: .8 E BE ';;;' E

!
:'. TI
if" (l_

E~ I I Q) - -{;) ro E-0 c: f"U...

Fu...

<1l u... c: :J c: ro II> E c: 0.c g~ c 0 Q) ~ Qo::

8 (/)

N <fl Q) ~ ~ x Q) :;:::; ~w £-8 c Q) 0 c Ol .Q

J

~ Ill .Y - ffi- ~o o::o 3: c 13 ~ 0 © 1i)

2'
2' Q) >

15._ U5 (l_ Ill 0 to > 0 Q) <1l 0 ro Q) Q) ~ Q) Q) f-f- 'fil~ Q)

J Q) (ii E
J Q)

(l_ Q) (l_ <( (2. f-0:: (/) u... 0 u... 3: o::w 00:: O<JJ f- 0:: w.8 w.8 29406 19 34 23 1980N 1980W 637580 3612988 3817 1794 2101 307 2023 1 f1t:i 29299 19 34 23 1980N 660E 638378 3613002 3832 1804 2110 306 2028 1722 30839 19 34 24 1650S 2310W 639295 3612516 3812 1805 2105 300 2007 1707 24413 19 34 24 1980N 760E 639955 3613031 3840 1803 2100 297 2037 1740 24390 19 34 24 330S 1700E 639681 3612121 3794 1799 2108 309 1995 1686 2393 19 34 24 660N 660E 639980 3613434 3862 1802 2100 298 2060 1762 23502 19 34 24 660S 660W 638794 3612205 3794 1804 2110 306 1990 1684 28571 19 34 24 760S 2080E 639563 3612249 3814 181 5 2123 308 1999 1691 21369 19 34 25 1980S 660W 638812 3610999 3753 1814 2120 306 1939 1633 25101 19 34 25 1670N 2310E 639504 3611508 3775 1795 2110 315 1980 1665 20889 19 34 25 1780N 1980W 639210 3611469 3771 1806 2117 311 1965 1654 25123 19 34 25 1800N 990E 639908 3611476 3772 1804 2113 309 1968 1659 22967 19 34 25 1980S 660E 640016 3611020 37()2 1803 2120 317 1959 1642 21098 19 34 25 2130N 760W 638837 3611356 3775 1808 2122 314 1967 1653 24868 19 34 25 330N 1650W 639102 3611909 3788 1807 211 3 306 1981 1675 23708 19 34 25 610S 1880W 639191 3610588 3745 1815 2132 317 1930 1613 27896 19 34 25 660N 1980W 639204 3611811 3798 1815 2120 305 1983 1678 02394 19 34 25 660N 660W 638800 3611803 3779 1800 2110 310 1979 1669 02396 19 34 25 660S 1980W 639222 3610604 3743 181 3 2126 313 1930 1617 02395 19 34 25 660S 660E 640022 3610618 3746 1808 2128 320 1938 1618 24069 19 34 25 760N 760E 639973 3611794 3786 1802 2108 306 1984 1678 24867 19 34 25 990N 1980E 639601 3611718 3781 1801 2110 309 1980 1671 21745 19 34 25 990S 1650W 639119 3610703 3737 1807 2123 316 1930 1614 21370 19 34 25 990S 400W 638736 3610696 3741 1817 2130 313 1924 1611 22081 19 34 26 1650S 1980W 637609 3610878 3751 1805 2122 317 1946 1629 36196 19 34 28 1980S 660W 633984 3610919 3714 1695 2032 337 2019 1682 32003 19 34 32 2310N 1980E 633195 3609597 3680 1512 1840 328 2168 1840 32783 19 34 34 19805 1980E 636418 3609349 3696 1677 2020 343 2019 1676 20096 19 34 36 660S 330E 640147 3609010 3702 1830 2153 323 1872 1549 20144 19 35 6 19808 660E 641585 3617492 3898 1830 2106 276 2068 1792 20322 19 35 6 1980S 1980E 639806 3617492 3900 1822 2096 274 2078 1804 20590 19 35 6 860N 660E 641557 3618217 3924 1840 2110 270 2084 1814 21171 19 35 6 560S 1880E 641213 3617059 3921 1850 2134 284 2071 1787 39842 19 35 6 660S 660W 640393 3617038 3950 1859 2140 281 2091 1810 29945 19 35 18 1780S 660E 641623 3614203 3919 1870 2159 289 2049 1760 29041 19 35 18 660N 1980W 640813 3615023 3949 1869 2159 290 2080 1790 03169 19 35 19 990S 660W 640400 3612349 3829 1808 2111 303 2021 1718 03168 19 35 19 6605 660E 643242 3613873 3802 1808 2110 302 1994 1692 33762 19 35 30 9905 700E 641678 3610736 3758 1808 2122 314 1950 1636 24034 19 35 30 20908 760E 641659 3611071 3778 1810 2120 310 1968 1658 23987 19 35 30 1980S 1980W 640881 3611010 3752 1810 2122 312 1942 1630 03259 19 35 30 2310N 330E 641757 3611332 3768 1800 2105 305 1968 1663 03260 19 35 30 660S 1980E 641288 3610635 3752 1812 2124 312 1940 1628 03256 19 35 30 330S 990W 640579 3610507 3738 1796 211 5 319 1942 1623 03258 19 35 30 1980S 660E 641690 3611038 3757 1803 211 5 312 1954 IO'+L UTM (NAD27) coordinates were calculated from the nearest section comer. 86

87 APPENDIX D BASIC STRATIGRAPHIC DATA FROM OIL AND GAS WELLS ACROSS A SECTION OF MONUMENT DRAW, NM (T21S, R37E)

Basic Drillhole Data from T21S, R37E for Figures 29-31 ~ 1ii 0 1ii w 1ii .s::.~ Q) .i:: E Q. Q. E E o 0: t::'. (/) (/) c o ro .8 E .8 E 2 ro 1]5 ro "fil a~ ro = a.. c c.s::. Q) ~ .8 LL .8 LL -; E c

l s (ii
it' Q.

~ E :5 E~ E .s Q) - a? w ~a ~O::'. c Cl) 0 c r.n LL ih

c c

0 0 o-c 0 s iii Q) o - o- -:;:o 0 0 N (/) Q) 0 (/) ..= (/) x Q) "" .s::. (/) c Q) ro a. ro a.

  • - '+-

L- .s::.- 0 c OJ Q) ~ ..... ro

J ro a: 0 3:

c --a ~ ~ ~ >

a. O::'.
a. Cl) 0 1il 0

0 0 ltl ffl ~ c~ Q) I-I- Q) ~ Q) '+- Q) '+-

c :::J Q) -

Q) - <( ~ '+- '+- t-O::'. Cl) LL-= LL 0

i
i O::'. w 0

0 0 0 t-O'.'. w 0 w 0 34937 21 37 1 990s 2430w 676917 3597578 3527 1538 1744 206 1989 1783 34411 21 37 2 3800s 1200w 674926 3598426 3498 1389 1590 201 2109 1908 06373 21 37 2 660s 1980w 675164 3597469 3473 1349 1554 205 2124 1919 37725 21 37 3 330s 330w 673048 3597335 3476 1282 1489 207 2194 1987 35734 21 37 3 1300s 1980e 673956 3597664 3477 1305 1513 208 2172 1964 37727 21 37 3 1940s 1760w 673483 3597825 3437 1257 1460 203 2180 1977 06388 21 37 3 1980s 660w 673148 3597838 3450 1275 1495 220 2175 1955 35354 21 37 3 3448n 1576w 673389 3598560 3469 1299 1522 223 2170 1947 35225 21 37 3 3240s 1839w 673508 3598222 3458 1283 1490 207 2175 1968 35352 21 37 3 2310n 990w 673211 3598907 3488 1310 1520 210 2178 1968 06386 21 37 3 1582n 330w 673010 3599129 3490 1320 1527 207 2170 1963 35224 21 37 4 3196s 426e 672817 3598208 3450 1280 1490 210 2170 1960 35768 21 37 4 330s 1980e 672343 3597335 3477 1276 1493 217 2201 1984 37983 21 37 4 2630s 2310e 672243 3598036 3483 1303 1517 214 2180 1966 37463 21 37 4 2310s 350e 672840 3597938 3481 1293 1503 210 2188 1978 36314 21 37 4 130s 1270e 672560 3597274 3479 1273 1496 223 2206 1983 36141 21 37 4 2460s 990e 672645 3597984 3479 1299 1511 212 2180 1968 35341 21 37 4 3630n 810e 672662 3598505 3428 1265 1480 215 2163 1948 35557 21 37 4 1050n 150e 672863 3599291 3483 1330 1542 212 2153 1941 34737 21 37 4 2620n 116e 672874 3598812 3483 1306 1516 210 2177 1967 06400 21 37 4 1582n 990e 672607 3599129 3486 1320 1529 209 2166 1957 35493 21 37 4 3168s 1650e 672444 3598200 3473 1304 1520 216 2169 1953 34738 21 37 4 3810s 200e 672886 3598395 3445 1257 1470 213 2188 1975 35351 21 37 4 2310n 810e 672662 3598907 3463 1304 1515 211 2159 1948 06397 21 37 4 1980s 660e 672746 3597838 3483 1295 1506 21 1 2188 1977 36811 21 37 4 3480s 1650e 672444 3598295 3480 1296 1514 218 2184 1966 06399 21 37 4 4620s 660e 672746 3598642 3465 1282 1494 212 2183 1971 35895 21 37 4 330s 2050w 671968 3597302 3478 1295 1512 217 2183 1966 06389 21 37 4 660s 660w 671544 3597402 3498 1304 1524 220 2194 1974 35875 21 37 4 330s 760w 671575 3597302 3501 1303 1523 220 2198 1978 12759 21 37 4 1980s 1980w 671947 3597805 3487 1293 1513 220 2194 1974 37236 21 37 5 3630n 330e 671192 3598481 3488 1326 1549 223 2162 1939 27954 21 37 7 330n 660e 669540 3597073 3538 1347 1577 230 2191 1961 21621 21 37 8 1980n 1980e 670739 3596597 3548 1330 1552 222 2218 1996 35350 21 37 9 1980s 330e 672882 3596220 3487 1292 1502 21 0 2195 1985 06445 21 37 9 660n 585e 672769 3597033 3480 1274 1484 210 2206 1996 37028 21 37 10 2375s 505e 674440 3596376 3446 1265 1471 206 2181 1975 37026 21 37 10 330n 330e 674459 3597167 3457 1296 1502 206 2161 1955 35905 21 37 10 550n 740e 674334 3597100 3449 1285 1486 201 2164 1963 35637 21 37 10 704n 2208e 673887 3597053 3431 1277 1475 198 2154 1956 35545 21 37 10 1470n 1350e 674149 3596820 3426 1250 1450 200 2176 1976 34367 21 37 10 42n 2334e 673849 3597255 3427 1455 1972 37876 21 37 10 2360n 1650e 674057 3596549 3447 1260 1460 200 2187 1987 06553 21 37 12 660s 2310e 677097 3595907 3463 1460 1670 210 2003 1793 23953 21 37 18 660s 330e 669686 3594159 3509 1230 1443 213 2279 2066 21035 21 37 19 990n 884w 668478 3593627 3533 1257 1472 215 2276 2061 23494 21 37 30 1650s 660w 668461 3591214 3527 1199 1424 225 2328 2103 24084 21 37 30 660s 1820w 668815 3590912 3518 1200 1424 224 2318 2094 24120 21 37 31 330n 330w 668361 3590610 3523 1184 1405 221 2339 2118 Value in red indicates a ground-level elevation obtained from a topographic map. UTM (NAD27) coordinates were calculated from the map values of the nearest section comer. 88

89 APPENDIX E ELECTRONIC FILES OF GEOPHYSICAL LOGS OF DRILLHOLES AT AND NEAR THE WCS SITE

90 A CD-ROM is attached to the report with electronic files of geophysical logs from drillholes in the vicinity of the WCS site. These files are in TIFF format and are best viewed with software such as Quick View Plus because of the length of each log. There are no markings of stratigraphic contacts on these logs from this study. The files from the CD-ROM have been converted to PDFs and follow this page.}}