ML20244A695

From kanterella
Jump to navigation Jump to search
Tech Spec BVS-396,Revision 3:High Temp Cables Mfg by S&W
ML20244A695
Person / Time
Site: Beaver Valley
Issue date: 11/07/1972
From:
DUQUESNE LIGHT CO.
To:
Shared Package
ML19273B971 List:
References
NUDOCS 7906180630
Download: ML20244A695 (22)


Text

f; n L

l.'

l

.l

l a

4 I

T.

.J.O. No. 11700 November 17, 1970 Q

o.F.E. No. 8700 c.0. Iio. -3468 Rev..#1 February 26, 1971 Specification No. SVS-396 Rev. #2. S eptemb er 24, 1971 P.O.

.o. cV-317 Rev. #3 Ilovember

.7, 1972 S P E C I F I C A T I O N.

FOR HIGH Ehr N"URE CA3LES f.

FOR 3 EATER VAIIEY PC*nTR S28. TION - UNIT NO. l' DUOUES"E LIGET COW!&f SUPPLIER '

6' CERRO WIRE & CABLE 'CO.,

b REV[SIONS REV.O REV.1 REV.2 REV.3 Prepared By,

i*rr I ' '

mQ'[

^/)d

<* N ;)]

f Project Engineer Apprc ai

,j,h/

/7-

,pd

[Y W

.k Equipmen+ Sp.ecialist Review N

i Quality Assurance Review

..ff.,n.tr i

i STONE Ee WEUSTER ENGINEERING CORPORATION l

4

.).

I r

)

A h

e 1

L1 J.O.No.

11700 9

BVS-396 10 BV-317 11 J

=

SPECIFIC REQUIREMENTS 14 TOR HIGH TEMP:FATUR CABL7 15 2

SCOPE 18 i

This specification covers the furnishing of single and 20 multiple conductor high tempe rature cable rated at 200 C and 1,000 v as specified in the cable schedules, for use on a-c or 21 6-c power, and control, where the maximem a mbient tempe ra tu:e 23 will not exceed 138 C.

~The cables shall be suitable for use in 24 i

wet or dry locations, inde rs, in

trays, conduits, underground ducts.

Installation of the cables will be by others.

25 l

The material covered by this specification will be used 28

/

in a nuclear power plant.

}

2 S TAND ARDS 30 Ihe cables covered in this specification shall be manu-32 i

factured in accordance with all the latest applicable standards 33 j

of ASTM, IpCEA, and IEEE. 3.

WORKMANSHIP ANb MATERIALS 35 r

  1. l All workmanship and material shall be first-class, the 37 l

best of their respective kinds, and shall be in accordance with the most modern electrical and mechanical engineering practice.

38 4

QUANTITY REOUIRED 40 Ihe attached schedules of requirements give the sizes 42 and lengths of the cables required, as well as other design and l

engineering data.

The Purchaser is to have the privilege of un increasing or decreasing the quantity of any item of cable 'not more than 10 percent at the unit price before manufacture is u5 actually started.

5.

CONDUCTORS 47 l

All cable conductors shall be made from stranded,

tin, u9 l

or alloy coated annealed'cepper wires.

Ihe stranding shall be 50 j

concentric round standard class 3 or X as noted in the Schedule i

of Requirements which forms part of this specification.

51 I

1 1

I NSULATION 54 Ihe individual conductor insulation material shall 56 consist of a

silicone rubber with fibre glass fillers as 57 necessary to inprove its physical and electrical properties and to make it suitable f or operatien at high tempe ra ture s.

Ihe 60 l

MG(c LRet;%

J.O.Mo. 11700 2

i SVS-396

(,

SV-317 insulation material shall be applied directly to the conductor and shall a dhere tightly to that surface.

I The insulation shall be resistant to heat, noisture, 62 radiatien7 flame, and fire, and shall be capable of retaining its 63 electrical properties under the environmental conditions stipulated in paragraph 11 of this specification.

t 1

The insulatien thickness shall be in accordance with the 65 l

applicable standards for the rated voltage and size indicated in (6 '

l the attached cable schedule.

l 7.

S HIELDING 68 f

Ehere stated in the Schedule of Requirements, which 70 T

forms part of this specification, the overall conductor shielding gaterial shall be copper backed mylar tape having a minimum of 71 0.25 tape width lap and shall have 100 percent coverage.

i A No.18 AWG solid copper drain wire shall be in contact 73 with the shield throughout the length of the cable.

74

~

t..\\4 q, 8.

CABLE ASSEMBLY 76 i

In multiconductor cables assembled from individual 78 insulated conductors, the insulation over each conductor shall be covered with a

glass braid.

The inter stices between the 80 insulated conductors shall be filled and rounded with a

fibre glass filler and shall be nonhygroscopic and flane resistant.

81 Silicone coated glass binding tape shall be applied over tne 82 cable assembly to hold together the insulated conductors and 83

~

fillers, and form a complete surf ace for the overall jacket.

e i

9.

CA3LE FINISH 85 l

4 A

finishing cover over the cable assembly shall be used 87 j

8 en all single-conductor and multiple-conductor cables.

It shall 88 j

consist of an asbestos braid with silicene varnish finish.

For 89

)

cables with jackets applied directly over the insulation,

[he 90 jacket material shall be compatible with the insulation so that l

neither she insulation nor jacket shall experience harmful 91 effects cf a

chemical, mech anical, or electrical nature due to 92 the contact between jacket and insulation.

i 10.

CAELE AND COUDCCTOR IDENTIFICATION 95 s-311 insulated conductors in each multicenductor cable 97 l

shall be marked in accordance with IPCIA Method 1 consisting of l

colcr coding f or conductor circui; identification.

Color coding 99 i

by painting shall not be acceptable.

1 1

i

}

, ].

1 J.O.No. 11700 3

BVS-396 i

)

f,,

BV-317 f

l ess' j

gach length of cable shall be permanently marked 102

)

throughout its entire length in accordance with the specification 103

{

under which it is manufactured.

Where not covered bv such sceci-104 fication, the manuf acturer shall nevertheless provide permanent markings.

The, markings shall include pertinene vo2 rag 3, 105 conductor size number of conductors, and insulation date, a', ucl1 f

as manufacturer's identification, and shall be

effect, by 107 printed tape applied under jacket.

11.

ENVIRO!T.'4E::TAL CO!DITIONS 110 11-1.

Oceratine Conditions f

113 i

11-la.

Temperature - Norm.a1 - 7 0 F to 120 F 115 L

Minimum - 60 F 116

(

Maximum continuous - 28u F (13 8 C) 117 1

e i

~

11-1b.

Pressure - Minimum - 9.5 psia 120 4

The ecuipment will also be capable of operating 122 r"6}

under normal atmoshperic site pressure of about 123 14.3 psia.

124

'd 11-1c.

Humidity - about 50%

127 i

i 11-1d.

Radiation - 2 x 107 rads accumulated over 4.0 year 129

{

life of the plant.

(130 l

I 12.

RESTS 135 j

311 teste shall be made by the manuf acturer, who shall 137 provide the Engineers with certified cable test

reports, as 138 required by QCD 101 EF3.

Each type of cable shall be tested in 139 accordance with the applicable standards and tests specified in 141 this specification which include radiation and flame testing.

142 61ternating current dielectric tests shall be made between each 143 condu ctor and ground and between conductors of the completed cable.

144 i

l

_ 12.1 Vertical Flame Test 148 1

t bil in dividual'_ y insulated conductors shall pass a

150 vertical flame test in accordance with IPCEA S-19-81 paragraph 151 6.19.6.

The completed cable shall pass a

cable tray firej 153 propagation and electrical integrity test as described below.

154

-6 g

p.

?

a

__.__.___.___________a

swa_.

3 e.

l i

J.O.No. 11700 6

BVS-396 BV-317

(.}'

manufacturer's name, cable description, length on reel, ourchase 253 order number, item number, mark number, and reel number.

geel 254 numbe rs shall be consecutive starting with 1,2,3, etc. for each item of cable.

Both ends of cables shall be made available on 255 reel for Furchaser's field testing.

I 26.

OUALITY ASSURANCE 257 The physical and electrical characteristics of the cable covered by this specification are summarized below.

259 All fill-in 260 data are to be ccmple ted by the Seller.

In addition to the 261 tabulated data, each bidder shall subnit supporting lest data to 262 substantiate the claims that their product meets the requirements for radiation, flame, and heat rasistance of the insulating and 263

(

jacket materiel over the entire length.

264

17. Cable Characteristics i

1 Guaranteed Data 267

{

A.

Toltage classification I

1,000 269 3.

Conductor Tinned Stranded Copper 271 1.

Strand hardness temper soft 273 i.

)

2.

Copper conductivity, %

100 274 sw C.

Insulation 1

f 276 1.

Easic insulation material 2.

Type Silicone Rubber 278 Methyl-Vinyl 279 3.

Tensile strength, min psi 800 t

4 Elongation, min %

280 250 5.

After 96 hr in air oven at 250 C:

281 Tensile strength, min %

283 original 284 75 i

Elongation, min % origina) 75 285 3

6.

Heat distortion, 250 C, max 20 286 i

288 J

7.

Water absorption, 7 days, 75 C water, mg/ina 291

}

8.

Max % change in SIC, 75 C water 15 292 i

1-14 days 295

]'

10 7-14 days 296 3.0 Insulation resistance constant, 297 l

9.

min (6 0 F) 300 4,000 10.

Test voltage, 5 min a-c, v/ mil 301 4

in sulaticn 303 E

100 4

11.

Cold bend, -80 C 304 h

F Passes 12.

U-bend - 125 v/ mil 305 y[,

Passes 13.

Temperature rating, C 306 307 Normal rating 200 s

308 F

Emergency rating 250 309

['.'

4

s 5

s

}

  • J.O.No.

11700 7

.i DVS-396

~

^ BV-317 k

r, H

r Q

Short-circuit rating 300 310 f

14 Radiation resistance 311

(

overall threshold of damage

>10e 312 l

Highest dose still serviceable

>108 313 L.'

15.

Heat resistance - Useful life in 314

[

years at normal rating 40 315 L

16.

Flame Resis'tance Passes 316 17.

Fire Resistance Good 317 s

18.

Meets requirements of para. 11 Yes 318 i

D.

Jacket 321 E

'1.

Individual conductor Mone 323 l

2.

Individual conductor material 324

?

characteristic WA 325

[

j

{ _

3.

Type Asbestos 326

[c 4

Material characteristics Braid 327 5.

Heat resistance Good 329 f

6.

Radiation resistance i

330 F

overall threshold of damage

>100 331 h

Highest dose still serviceable

>10e 332 p?

5.

Flame resistance Non burning 333 6.

Oil resistance Good 334

[.'

7.

Weather resistance Good 335

!. (

'[i

[h j

E.

Fillers 338 1.

Material type Glass fibre 340 t

2.

Flame resistance Flame Retardant 341 f;

k.?j F.

Einding Tape 344 i

+

1.

Material type Silicone Coated Glass 346 L

2.

Flame resistance Good 347 p-r-

G.

Shielding 350 U

l 1.

Item 1 and 3 Yes 352 2.

Item 2,4,5, and 6 No 353 r.

H.

Identification Method 356 1.

Individual Conductor Color Braids 353 h

2.

Cable Marking tape 35 9 t

Data furnished by seller are included herein for 363 r

Furchaser's informa tion and use.

The Seller is not relieved of 363 responsibility for the correctness of design and details E

represented by the data.

Ehe Seller shall be re sponsible to 365

(

Tdvise the Engineers promptly in writing of a..* changes in the h

i

-'V l


y y--

-g

n 1

1

  • c T.O.No. 11700 November 17, 1970 6'3 i

VS-39o Rev. No. 1 February 26, 1971 64

)

aV-317 Rev. No. 2 September 2 4, 1971 65 e

Rev. No. 3 Novertber 7, 1972 66 l

k-Rev. No. 4 August 23, 1974 Schedule of Requirements 69 I

For 71 I

i HIGH TD'PERATURE CABLES 73 For 75 Beaver Valley Power Station - Unit No. 1 77 Duquesne Light Company 78 j

Pittsburgh, Pennsylvania 79 i

em No.

1 2

3 4

5 6

7 82 Mark No.

NFB-68 NFB-69 NFB-70 NFB-75 NFB-71 NF3-6 6 173-65 84 Volts 1,000 1,000 1,000 1,000 1,000 1,000 1,000 86 Quantity, ft 2,000 37,000 5,000 6,000 2,000 2,000 2,500 93 l

l

). of conduc-95

~l i

. ors 4

1 6

6 8

3 1

96 y#

e I

Conductor size, 16 6

16 2-68 12 4

500 98 AWG/MCM 4-12 99 l

Overall shield Yes No Yes No No No

'o 101 rand class B

B K

D D

B B

103 1

Insulation 105 j

thickness, 106 j

tils 45 80 45 60 60 80 110 i4 107 1

l

  • Jacket thick-109 l

ness, mils 40 40 40 40 40 40 50 110 1

  • Max overall 112 diameter. in.

0.59 0.48 0.71 0.95 0.99 1.18 1.16 113

  • Weight, lb/

115

)

1,000 ft 190 157 250 521 528 652 1,857 116 i

l i

l l

  • Length on 118

{

I reel, ft 2,000 4,000 2,500 2,000 1,000 2,000 1,250 119 i

l ael size, in. 32x24 32x24 40x24 24x16 32x24 50x32 48x24 121

.! j

$Il i

k-11700-105 08/30/74 145

[l rI 6 I o

c r. m

- ---_ ar_mr.r.,

^

Item-No.

1 2

3 4

5 6

7 n

-(

  • Maximum pull-ing. tension, Ib q

124 125.

)

Straight runs 83 210 124 473 418 1,000 _4,000 126

' Bends 83 2 10 124 473 418 1,000 4,000 127 i

  • 2ending Rad-130 ius G'.in. )

4 4

4 4

4 4

7 131 I

t

.Ampacity at 18 120 18 e8-58 24 160 672

'133

{

30 C

$12-29.

134 Ampacity at 10 72 10 88-35 14 96 403 b

136 99 C

  1. 12-17 137 Ampacity at 7

47 7

58-23 10 63 266 139 i

121 C

  1. 12-11 2

^

140

,7 Ampacity based on conductor temperature of 138 C for six or more 106

)

cables spaced horizontally from 1/4 to one cable diameter apart 147 in a ladder support.

JCerro letter October 19, 1972) 148 j

JJote:

  • Indicates information to be supplied by vendor 151 a

Li D

i i

L I

?

t

?-

g<

l r

E E'I f

f.

I P

k-11700-105 08/30/74 145 t-

3Vs-396 I

INSPECTION REPORT I

'~'QCD 1011J3 11/70 STONE & WEBSTER ENGINEERING CORPORATION Ff NAL REPORT j

, TRIP ntpoRT No.

SHOP QUALITY CONTROL I

swert or Dr uesne Light Ccanany f

11700 l......

....e 3eaver Yn" ey ?crer Stction - Unit No. 1

,.. e i. -.

. Ev_317 l n- -.

c......C erro Wire & Cable Co.

..... m.

I.....

i t

n. c.....p.

n.-cn,e pc c.tt.ro Cables l...... -.

...~.............

\\

l-......,

.r.

et. n,...

l l

.o I a

I t 4 n i

i d@

CATCRECCRO$ENT INSPECTION AND

-e4

,, "g av oATE j

ca to DOCUMENT RECORD c"O d

se' ton

,, se.e,en

.)

s o

=

,a 3..

C

cnducter Tests U.5T 1 B e)

X l Il i 6

i i

tysical and Arinc Tects en Insulation and I Y I N i i

i l

i. sip ete (See. 2.12)*

I i

l i

I V:ltcee Tects en Ce. r,leted Cable 1

i 3 1

i e

{

45ee a.3-1?>*

3 i

i i

i i

t I n ru' t.:1en Eeris.:inee Test (Sec. IS-21)'

X i N i

i Accelerated Weter Abser,tien Tects 6 I I N I

i i

l (5=, ?c-3c)*

i i

i i

I Vertieel F1:L e Test en Individual i

I I

I f

'eniucterr ( ASTN U7633) l I

i i

-le Trt Fire F er, etien Test I

fEC 1

4

....'Eaddp.;ien Fetistance Tests r

i 7 6

1

".Welae-I ci de-t (.;elifien. tie:Jpsts I

N :1 i

i 74eu 7 I e-r: e ti e-afd Ve-dfic=tirn ef

' Y T -i i

i O'-e-ic-.

I 1

e i

1 i

i

_~~r+ eratien fer Shir ont i Y i Y i i

i h_

i i

i i

I I

I i

I l

l q

s i

i l

I i

a

)

j l

i I

I l

l l

l l

l i

i i

t I

i

..,ue--.

e ~

f I.

I I

l l

l I

l l

..w+

---w-I f

I l

l ncr:cw :s*

' Lis'T d LL DEYt AT,0NS F ACM Sp O ' F r..,

  • n Det CR AwsNCs.14 AME Cr E NGIN EER C8vlNG eramoV AL AND CAtt.

I

!.=ber ef certifie

-est reperts to te sent to Besten li 2

  • Sectica n=:ers fer test precedres refer to ASTM D!.70
    • 1pplicable vnen included in cyc:1fic requirements en17
  1. '.:, In::pecter; I, Ingineer; C, Client; N, Not to be Witt.rssed E.d C =ay or may not witne ss te st si c'

'n m

  1. 7 F tC E n E port f g o cAfg 8--'

Or i

f 31f*.Nf C f r P'N A L )

u_.___________________________________--_-_--_-----

3-J I

t W

W l

f 1

l 1

l l

i

)

i I

g I

c

.I

  • r.

1 1

1 l

i i

f l

1

~

(J., : 27 1..,'

-e.*'S A T' (<.

0312: Cr k? I';.

0 9.'~e

... ~

1^.;..'.y C :.:r ;*:e {'l ?I 7.~< n A h *!) Ch=** C:r.'.:?/1%; '

D*

  • ?

I 0;,: 1rie.tica T.O.

AO.W6 W.c:tC@

A//

l 1

D2.W.; tics /// /I? a.e Ru*.=tity

/f/_t 2*7d.,M l

i

\\

t.

i I

1

.l It is her::by certified tMt the mterial ec= plies vith al.1 cypliceble

  • r;uire..a.nts of the pr.::bce de== t in the c::stity chipp:d.

'"::t d:ts c.re cs file.

,1 e-C i f W

{

g.,.

_ __ d e't ",,1 l / :.

j g44

.s g,...

p,.

.l... 3 s

i...

j& /%) t.A d ( l)* !. ft e_

G. O/ N

'w c. /d /,

+

l't.::cci, Q=lity /.scurn.aa:

t:.t')

l

+

...a..*<

t....s

" day of SWCL*l to bef oro ma this

.- )

l

'L l h,

,.'..s Ins e e a,. -

./

I'd 5.'.bl k b.kiC l

l

- -+....... -.

l

i t

.of.

.j,,,.

s_

.-.J i-

.-2 :

_.s i

ua pg,

f~

1

""I

--i H. 11.!.. % ut,,nnsen ccAn ct,w

1..<, J'.. r.'o~QEU7 k r*

e =.e we U e,e <are, C ar er,a.e*.e r

n.

v 4..

TO E;,,.

... )J A /r n.:c

...,;gn, W.r.nrylvauia 1 EL9 a-" -

~ aau'~

5 p

r.

F d

O sa es.

f

  • 5, c.c... #

E C

w.

L

....,.m....w,

.0 simn PLAAtt n:ic

.:...ee-.

q,

,m...

w.....w...,.,..

I G - <.

D....

Q.a.

O, Q

..a' c:.

H,.

, a -,,

u..~...,

, ~,,

I. *. *.,

m. a r.

C a.s s**

Csa C-d'i.:. '*::

~ L. *;:* L.** :'.**.-

.Q O,.** =-~' O

.Q g

  • s g.

O cac.... e fI(

L ' : u t A-.,.. WO N l'; C.P

~suue, e.. L.

.. Q Cg".p_ 'TO TP C FCRCWr G-i C.~.

.au 1.,

.i T3.u.=

e O

}1

=,

u.

= _ -, -

.. ~.. -

I-na s.. - e.e..

e..%

.e a n e..- a e sw s ;.

. w r. w............

3 am

.uw64 sa w.

j C.e..w.,

.e w e..

...~. s w,.. r m.

i 4....w e.....,,,.. a r....

.,..* % 4. w

.e,,

8,i

\\'

-.A Inst) On., N's. *.- =.. ewes.

  • r w.

..e e.e...%.e

.. e. 4.... rn v.e.

c.s..e.t.a sc we se. eve.,n i v,e.r ee.n. e*e.w 4

. e.

  • *s..

v.e.s o.te. N.. aces t. t..a es..e.t..

6 cc..S. s c a,...

w

wr ca

.e e

- r.e...,, s

r. c s cr swrco.i ser. vw sw ce.4rt

.i, s.sta c v.s.o s r

CERTIFICATE CF Col::'LIA':C3 Cl?.RO W.2E & CABLE COMP /diT EEAvn VALLN 00'<T-"a STATION - TMT? TIO.1 l

Atteched i: a copy of the " Certificate of Co..plianco" dated 6-20-74 Co:pany;.eeverin ; " All Ite=s" en P.O. EV-317 rupplied by Cerro Wire & C.Ablo T

i Picase refernce to Trip Report No. 2 dated 4-17-73 cnd Trip acport 3o.3 dated 5-22-73 and retain for your use and files.

~

i Very t.~.11y yours l

i w

B.A. Plant i

DC s1 Manager - Procurement Quality Control Iy

  • Copies of data attached Copies tot J

HAVanWassen* *"4

,,O C;I Arz:::ong* 3,,,,."

BPeddersen*1

, t se JACapon:eli-1 l

"-8 / 'I JDTra=entcna*2 R;.P1an:-1 RD".lr i ght-3 TC;ully-1

) :.. t.i '.' p 3 $ 01 L**-~~1 DCnandler-1 a,

.J.$

tu;il @

af

n. -

s Lxa.

I ed. O

.._...f....,,

' i I

f t

n.

i.

i

, 0.,.

O b

T b

Final Report l

F-C2857

\\

- 'l run. -

_a_.

. =_.

?-

\\

Report

\\

TEST OF ELECTRIC L casLE5 UNDED 5:PLLATID v

POST-A;; DENT :EA;TO:. t;sT:.1,;v.E.iT SE;,' ICE V

by LeEcy E. Wittner d

W. H. Steigelmann i

September 1970 1

Prepared for

  • E30 WIFE A.iD CABLE COMPANY

' sew Haven, Connecticut

-J le t >- 170 A m

Cit 2 0 F 3 y,

t

/

IllTHE FRAN ALIN INGTTTtTT; ntOZA20M L.A:'OMATC3253

  • e.
  • 8=.*=-
  • e..6.

e.....,

6. osse.

4, p g 4,

l

fj I

I

~

i i

p%

s I

l t'

l

.g.

F.C2057

(

i i N

(

iY O I !l 1

.t I

TABLE OF CCNTE!GS 1

R l

E' P,agg l I Section Title _

1 (

l l.

INTRODUCTION..................

I 2.

IRRADIATION....................

5 l

3.

STEAM AND C!!EMICAL ENVIRCSME!UAL EXPOSURES..

9 4

ELECTRICAL PERFORMANCE TESTS.,.........

14 5.

CONCLU5!CNS...................

Al APPENoix....................

1 l

5 I'

O

{

l l

l 1

{

)

I I

i i

1 O

/, / 7 * / 2d

)

su 3 op 3Y

^II!IIXE f1A. C N.... 6 C\\,toi gu;;c I

t

l-m a

-e4 F.C2657

~J

\\

l i

1.15T 0F FIGURES Fio. No.

Title

.P, a ge, 1.

Structure for Holding sample and Irradiation Source Pins.....................

3 q

a

(.~

2.

Exterior View of Autoclave.............

7 l

3.

Interior View of Auteclave.............

8 4.

Circuit for Current and Potential t.cading of Cable Samples.......,.............

10 5.

Method of Connecting Conductors for Electrical Leading.......................

11

\\,

6.

Metnod of Connecting Conductors for insulation

' l Resistance and hign-Voltage Tests..........

.12 LIST OF TABi.E5 s

lable flo.

Ti tle Pace 1.

Icenti fiution of Cable Sar.ples...........

2 2.

Cerro P>er Catle Specirens - Radiation Exposure..

4 3.

Catie 3.!acket *eeperature Curing Third Irradiation Field........................

5 4

inspectic1 c' Ca:ies After lrractation..

6 5.

Leatace 'sreent weassrec in losulatten Breakecwn Tests........................

13 l

.3' p,0-nch u

I#

e =rumo-o

.= acc u m u x: m o,:c,

--__-.-2

.m_________

. _ -m_____

r i

1 1

1 s

i

[

1 I

9 F-C2857 l

l l

1.

!NTacDUCtrcN The Qualification Test Program described in this report was con-ducted to determine whether eight types of cable manufactured by the s

Cerro Vire and Cable Ce:pany would function properly under simulated post-accident reactor centain=ent environmental conditions. The program included subjecting cable samples to a steam and chemical spray environ-ment while the cables were electrically loaded. The performance of the insulation was also tested at various points during the program.

The sa:ples tested'are identified in Table 1.

2.

IRRADIATION Three 5-fict lengths of each cable sa:ple were e;c:ect to irradiation

\\

frc= a Ct-10 scuree. The speciruns were sdentiftec by a: Jing the i

des 1Enatien L1, L2 and L3 to each.f th4 Franklin "ns::tute numbers

  • A #
tven in Table 1; thu., the speci ens.f 3 ample 1 vere Ill. IL
and IL3.

The cables were scund arcund a dru= cf galvaniced sheet (10 in.

dia. x S-1/4 in. high), and placed inside an alu-inu ccntainer (12 in.

1 1.4. x 15 in high, appr:xiestely). A lid was sealed to the pot with KT'.' siliccne rubber te keep the centents dry during their exposure to pa==4 radiatien. The irradiation was perfor:ed in a water pool at f acilities* of the indust rial Feacter Laboratory (!KL). Cobalt-60 source pins were placed in a circular pattern inside the irradiater structure sh vn in Tigure 1 and the :entainer was suspended inside the attacture with the pins surreundtng s c.

To assure unifer=1ty of irradiation, the tentainer was rctat ed by a =ctor at the t.p and of the s uspendicg wire at a rate of ' rev hr.

4 i, r?-po A v

liiPh nur_, m-.v. r=mu u,m,_,

5# I #F U

s s or e

a o af p d

l t l

ne O

gs gi e y

r e r en r

eb e t a

b s h - l t

i a t

sl e

f I aa i

l l r r

dl d ge p

e a e r v o

t r t e o r

a e ab p

t ov oih t

c o cf t i

t 1

i 3

l 1

1 1

w e n e

e n e

t e

e i

rd rd w a

e b a l

b ae l

n l

l l

d b

p b

p p

i p

p p

e e

u e m

uea m

e m

m m

m r p a

r pt a

f a

a a

r a

S a

S r

S s

S o

et et s e

f n

s n

o.

s p

s s

s or.

a ort t a

x a

a a

e r ed c es e F

d ek e

(

e e

e l

t d l e

i m

r l

nb c m

i an na m

h l

a a

i r

a i i s a a

)

t.

i.

C N

I b

S Sb aJ S

S e.

S e

t n

d d

o iv e

e i

k n

k

)

s t

r nh o

n n

l a

a l

yl l

g S

e i t id i

i F.

p l i t

e l

i y

ng u

l p

-- w ar 5

s h

e r s

h e n

i l

e s

1 e

t r

rr vd uv s

d ed pb i

f f

A oe s o o

s n

S G

h r r nc r

u y

e l i

1 a

l f 5 r t

c e i

c l

r 0 r y

0 e W

F.

A i

v

)

p a

0b h,

1 b t

t 4

t n

- b M

w u

r0 7

1 r

e0 n

n e

- s e o F u A

1 1

e h4 a,

o i

S a mi C r C

e l

n h s d n i

r El t

l t

o uK r o t

p g

5 a ge F

n a

l i r

al a

o s r 2 l n n 0 U l

i t d d t t l

r o e 0 u i o O

!t0 o

n s

u o or u

n ef

. i u

- i.

e nl e a u

p t b 9 s nc f

s il n ua rl s

si n

ri ol t

e l

b o

Ci I

i r

-s r pb es i

A r

r nid l

m mn n

i.

k N r sd T

s e n,

C o

o i

l i

t a

lai R e t

c e e

w es i

l P r n

o n F b el a f

e E p e

R o Gb D y r I

t t

me n.

s l.

c u

nb F

e c

nr e r n

o m

i f

r f

e I

u u

f eb n r t

e f

e i

f T

l' d

ol let e el on r

ol o

oh s y

e i

e p a N.

n n

y s sh D

c c

lsh o i b I

l i

l I

a o

s et sli sf p

s s s n s -

l t

t o

x t

l e.

il g

T i e s l k i c l

E i l i cd t

y r e

n a s

(

my mil eh e 7

h mtt b i ch my t

c ot l

i n

l a

t t

e a

h os 5 R i 0 ep 3 m 6 v t

sb 6 ef 0I 0i 0

3 0 ei i r 1

v E

3, p a 4( w a

L E h B

e A c T

1 b

n a

o)

I c

i.

)

)

I )

a

)

t o L2 R4 I 6 P 9 R

l aN X0 S 0 2

E0 5

l c

- 0

- 0 l O

- 0 0

oO 0

l 3 l

l

)

)

A i o l

2 l

2 3

(

f r l

l H rt l

t 5

a f

i r n7 a2 T5 a4 t e w5 w5

- 5 w5 I.

w) 5 5

nC e6 e9 o6 e6 X

e1

(

(

e(

rC rC r C r C r -

d i P i P yP i

l' i 5 I

F(

F(

P(

F(

F(

.o ll 1

2 3

4 5

6 7

8 Lk l

F O

y y

WO 58

~

r s

4 f

.n.---~m-m.~..

.. - s ~.,- w; ug., y s.

m-.. e r,.

NV O

F-C2857 13," Di AM MCLC g

pt O-

'4 OUnD A

~ ##0 A'k A

~^

gu 3p6 g

r l

.AL

  • 6 O Oo 3 ciau scLts 6

Q i

Q 12 EQUAL SPACES f

I CN 141" 3C e

O e

j

'~

O o

O t

o0 0 1.N <-

O O

e

,\\

i -

O O

l G-Q

./

0:

O

../

E bwCLt5 NOT IN BOTTOW PLATE O

Figure 1.

Structure for Holding Sample and Irradiation Scurce Pins I

3

/,/7-/74 A Tiifh nucc., amn m.wucu===

5g 7073'/

n 3 1

R J

1 A

,l(

I

}y k

m.

8 5..- y 7-c:857 i

}

TABLE 2

[

h CERRO POWER CABLE SPECIMElis - RADIATIO't EXPOSURES l

s' h

Dese Rate Exoosure (Megarads)

Total Exposure Cable (Magarads/hr)

Period l ' !! !!!

IV (Mega racs )__

[ p; 55 b

IL1

.230 55 87 f

IL2

.230 55 32 IL3

.230 55 32 92 -

179

)

[g,

72 2L1

.300 72 l)',

.300 72 42 114 2L2 2L3

.300 72 42' 120 234 55 3L1

.230 55 f

87 3L2

.230 55 32 179 3L3

.230 55 32 92

~

72

.(

4L1

.300 72 114 j

'3 4L2

.300 72

'2 234

-) Q 4L3

.300 72 42 120 t

44 44 j

SL1

.230

.f 92 44 136 SL2

.230 32 92 44 168 SL3

.230 57 57 6L1

.300 120 57 177 6L2

.300 42 120 57 219 1

6L3

.300 4

44 44 7L)

.230 92 44 136 7L2

.230 32 92 44 168 7L3

.230 57 57 BL1 300 120 57 177 EL2

.300 l

42 120 57 219 SL3

.300 i

i 0

x Shs?-170R bl g ap 31 TiTRT.nuw m,,awa m m.m l

2

E g

{,

i

?

a I

b a

l

A

. ~.

t i

F-C2857 irradiation exposure was conducted in f our periods, with each

]

)

The j

specimen exposed for 1. 2. or 3 of the periods to obtain different The exposure history and total doses are tabulated total exposures.

Details of the dositetty are given in the Appendix.

1 in Table 2.

1 The te=perature of the jacket of one of the specimens of Sample 3 Just before the was monitored during the third period of irradiation.

start of irradiation, after the sa=ple container had been in the pool 4

outside the radiation field for 25 minutes, the jacket tes:perature was

(

l As shewn in 82*T. ene degree above the a=bient pool water te=perature.

1

)

/

Table 3, the measured values of Jacket te=perature at'various times j

i during the 9-day irradiation period utre all between 90 and 92*F.

i i

l TABLE 3 l

Cable 3 Jacket Tv perature Durine Third irradiation Field-1 itze After Start

)

of Irradiation Jacket Teep.

Ar.b t er.t Peol Te=p.

(Davs) Geurs) (Minut e s)_

('F)

(* F) l l

l 1(

I l

)

0 1

40 W

,0 14 30 91

  • %,,/

2 20 30 91 80.8 7

22 30 90 83.4 The observations : ade by visual exa=inatien of the cables following irradiation are piven in Table a.

i

}

3.

STE.'.* AND CMLw. CAI. EN'.*!R0!MNTA1 E'XPOSI;RES

  • .t.n 5-fe:t irradiated spect=en of each
'.c..
.. :

l esble ss=p'e vere -;;.are t: fare a 15-!:ct table. A high-temperature, self-fusing 5 ;;,ene t ape w s uswJ cr-the splices.

The..t '. s,..:

.".nted 1. the trat :ha tur :n a vire rack which l

struIate:.. r '. * :...

h, r,t -

---nt ir.g expose : the er. tire length 8

.senta'. eceditier.s crested in the test chamber.

l of e ac h..:..

  • te ins t

..cws.! the shader are stevn in figures 2 and 3, Interier a-a curr:e t

. ent e r. :nda. t er :f e ac h s.m 'e wa s grounded, and the l

respective.s.

  • .e ends cf t!e tnrce p.rs.f :1.t=4trtes!!y :;;: site tt:: waters of each I r~

l}l Tii?h nu=r.e T m.rua.mme,.u p 9 op 3'/

7

,.' iL 4

n

. '\\

l

-1

=

.T-C2857 d

O

]

'l TABLE 4 1

Inseectier, of Cables After Irradiation i

i i

Visus! Obser-estion 1

Sacole No.

No visible chansa in cable or jacket IL1 IL2 Jacket soft

[

Jacket soft 1L3 No visible change in cable or jacket 2L1 No visible change in cable or jacket 2L2 OL3-Jacket stiff l

Color cf insulation changed to Tan due to irradiation 3L1 3L2 Jacket lacks tensile strength Jacket brittle. Insulation ecler changed f

c 3L3 Jacket soft.

So visible char.ge in insulat:en.

Jacket lacks tensile strength

']

4L1

+4L2 4L3 Jacket and ins latter. very brittle Jacket brittle. Se effect on insulation I

SL1 SL:

Jacket br it t le. Insulati:n brittle Jacket brittle. Insulation brittle i

SL3 A;;earan.e very good 6tl A;;enrance very accd 6L:

Ar;earan:e very goed 6L3 Ar;earit. e very g:od 7L:

7L:

A;;e.1rance very gocc Art aran.e 'iery g od TL3 A;;e..r.nce very F cd g t,.

a<'

a t r c ' ? * :" c **YY I~,

,,7 ; e A r tr.. W veIY IE0 NO j,jp-173b E

gg jg ep 3Y m!!h :n rwcas =e-. r =~"n ecw:r:s

4

-..r-.--

..,y -,,

7.,,,,,..

.. =

x f.~

O F42357 Q

Using en insulation breakdown teeter, the insulation was su'ajsetaJ to 1

a potential dif ference of 6000 VAC f or S sinutes, and the las:t.s,s cunent J

was measured. The results are given in Table 3 Table $

Leshne.e Current Messured in insulatten BreaMm Tases 6000-VAC Potentist Feld'for 5 Minutes Sarele No.

Leskaae current (e) 1 1Li 0.9

/^

IL2 1.7 IL3-0.9 2L1 0.6 2L2 0.6 2L3 0.3 3L1 0.S j

  • > L 2 0.7 3L3 0.7 k

I 0.4

\\v

.o 4L2 0.3 4L3 0.6 3L1 30

  • 5L2 14 SL3 16 6L1 0.6 6L2 0.4 j

6L3 0.4 7L1 0.3 7L2 0.3 7L3 0.2 SL1 0.2 8L2 0.3 8L3 0.3 Too brittle

  • 1 K*.* t e s t only due to cr.. eked insulation f rom handling.

to separate conductors.

5 13 i

ldN700 a..> m n.e.=n z.=, -ve, tnewew

$1? 2? 0.0 3 y' s

i

-a 3

f i

. -. 7 -. --

-.. m

(.

F-C2::37 J

1 v

0 i

5.

CMLitstens I

Three specimens of each of eight types of electrical cable were subjected to total doses ranging between apprcrxiantely 50 to 200 Megarads of radiation f rom a Cobalt 40 sourcs. The same cables were then placed in a test chamber and subjected to steam and borated water spray for f,

an extended period. Subsequently, they were eunined and subjected i

to insulation tests. It can be concluded that the performance of ;ba -

cable will be acceptable for use under the conditions simulated in these tests without any loss of performance. '

I Q) hs..[.g

  • n. c) y r

/-

P P ro j e)c t LeMy.. Witcher

, _7 -

Manger

(

+.t n'.' -

f V-

~

' Jill ist H. Steigelrhna Manager, Heat and Fluid Mechanics Laboratory S.."9 b MJ :.:::. ted tetre me h'MM

$4 C.

^ 13./

b, m e.W t.u.u..c,,",

.u m m.m. n.:

c.

a,

.u...u w ww.un 1

O f,1)-170,A Pia ne r::xc=a.m...

=c=.uca t.eewom

$t) If.! Cl3 3 Y 1

_ _ _ _ _ _ _ _ _ _ _. _ _ _ _ _ _ _ _ _ _ _. _. _. _