ML20237L296

From kanterella
Jump to navigation Jump to search
Generators
ML20237L296
Person / Time
Site: San Onofre Southern California Edison icon.png
Issue date: 05/26/1978
From:
ABB COMBUSTION ENGINEERING NUCLEAR FUEL (FORMERLY
To:
Shared Package
ML20237K741 List:
References
FRN-52FR6334, RULE-PR-50 SS-310, NUDOCS 8708280040
Download: ML20237L296 (147)


Text

{{#Wiki_filter:)' {l ~" N r . Y; *%/usen ' '3 ~ 2,' COMGUSTION ENGINEERIN2,INC. p: J. [~ sNo NsamNo ospAMTutMT.cmarTaM 1 M aggy .e, h ' i>;mru f-E( ~~ 76 "k. cHAnaaNo,' 71A70 oy CAN ONontE cWAN STNERFM 'M a v CHacx OATS ,( y, ogJ,ou +. 4, J 3 l r- ~. ( ,2 t -} l 1. !. INTRODUCTION l. p { The purpose of this arplysis is.to pe=ohstrate the sti.ur- - t' ural adequacy of the Southp. California Edison, San j Onotre Unit No. 2 stBam' generator tubes and tube supports when" the unit is sub,jected to a bypotheticaI large pipe b reak aOcide.nt. Both combined LOCA..' Loss of Frina ry Cocl-t SSE ($afe Shutdown E*arthqE:akel and MSLB { f i ant A:cidgnt) + { (Main Steam Line Break) + SSE loadings were :ensi,dered 1 in independent evaluat1*ons. In addition,.ap,propriate' . safety *=argiris with regard to differential pressures

  • i s

i were maintained during normal operation and accident .l , oonditions. a. j i ~he LCCA,-SSE arfalysis considers stresses produced by , various hydraul,1 phenomena associated w1:n rapit' flow j through the.:ube's, the dynamic response due to -he i=- i.' pulst /e load occurring at, 'th'e. pipe b reak opening, sq.f e i snatdown, earthquake induced a:c'elerations, and dif feref.- l are combined elastica 11y in a 2'ing, h0,m these ice.dir4s ] tial p redsure. Stresters resul 4' conservative =,inne r and j, 'j eval.:ated a6ains; ar. allowable from Appen, dix F, Section q ~I'. of the ASME Cod e. Because of the. variation in tube j'

> 1 support configursti
n, four representative tubes weie l

1 f analyz ed. ^ l ' h* g ',

  • U.

The MSL3 & SSE analysi.s :ensiders tne effe:t ' f se.:enda ry 4 l flok through' the tube b'undle and.across tr.e separs:cr { deck at accident ficw. rates. Ike tubes interact wi:n cr!e l' 'g'5 ano*her according to their relattve stiff:. esses,. connec-l i f; tions and support arrang.e=ents. loadings due te i= pulse .I, k cpening, safe shutdcwn ear r. quar.e in-4 i at the pipe bregbns,i and differential pre'ssures arir also j duced pecelerat. i considered. v. An evaluatipn of the' differential pressures wni:n exist during' nor$1 oper' tion 'and accident condi:1 cts / s con-a i 2. f du'cted per the, criteria -set forth by the EC sta. f. I . For completeness, thq bundle.is considered for vitratory. j j excitation when leaded by the higlier 'than nor.a1 s e c onda.'"y flow' rates'due to a steam Line rupt.ure accident concition. i ) h w' E _ Yd 5 a,0 52FR633) pgg ~.n,1

~ :._.a m a n, g3., y n

V d.

COMBUST!ON ENGINEEMgNGilNC. ..qflouessen e u .^ ,y sN9eeesmna osPAmTMuNr. paeaceA. rumpgT.,,.-gg.,gr

o.,

..e.. d' ' ;; Mnet 'NO'. 71, C'W 7" i+MII'- lC**Ecx o'ATs 4 ' Ma T' NSfMI ~N sY' 'N Y U N ^ N01M" "' A V '.3'.9,essemrtipN 5' (

. 3 3.
v..

.{ j 2.

SUMMARY

AND ! CON'CLUSIdNS } It was found that cojdiderable bending,, stress could be l .b rc%.c to bear'inythe bend regi,on during a combined LCCA mSSE accident. However, it ws,a f'Jrtg estab- ] 11shed that very 'little bending would e'xist at the tcp eggerate or lower into the bundle. Stresses *were cal-l f~ culated in the tube with greatest length extending above its uppermost eggerate support for the varicus.' l vertical strip

  • support configura tions.

That is, t ub e f rev 49 is the representati d foi' tub'e rows with but i one vertical strip supporting it; while tube row 62 i.' f has three, tube few 114 has five, and tube rew 1-7 is d suppo rtesi 'by seven ve,rtical strips. The =axi=um stress s!.ntensities for these tube rows during a gostula ed ".CCA + SSE. e0ent were calculated to be: 3 i 2' Tube Row '5 tress Intensit.y N 51 5 n.s .M. g 114 29 9 1 l - 147 38.2 \\ 'l 5 . For a cctbined4fS'3 .iSE accident.the high.st r,es s re-giori in tne tube burdle is.in. the 'c'ross 'fl'ow regior.. ', 'D2e wo r s t case tube Nw for 9.S".3 e S4E cor.s'ideratiens

  1. was found to be rgy 2.5"with a maximum stress intensity n

,. o f. 2 2. 4 k si. Tube e ro'w 25 is ch,e shortest tube row that ,is. secured by vertical strips and, the verti:a'. =c;,e=ent. j of the trmdle during a postulated MSLB + SSE ac:ident I 4 r causes the stress. to' be. highest in this relatively stiff i C.' tube. ,.s 2 ^ ~' Stres1yas were caletilated for* tubes h4hinned walls f:r 'I~ both EOCA.+ SSE and MSLB + SSE.

  • Thdse g, tresses were, $cm-i pared to approprhte allowables ih orilbr t'o estabitan a a

" tube plugging criteria". The R Staf f s C ri t e.ria f o r e Minimum AccepWble Tube Wall Thickness' wa s also invoked. The plu4ginga c'riteria so deten ined iridieges that in .4 Tr /. ' ' C -the straight re61on alt tubes are allowed 'to degrade j 6 4.of the' nominal tube wall. thickness. The 6 J ) 's 7 ys.., A.. *:. s - ^^ c-g: . w. n.: s...a.. 4.,

1.;.. y ,, n

      • ,z>

-.c[';s COMEUSTION ENGINU5MINO lNC..

    • fungsta -

p-

  • l P

M .4 'irNo MusassHs beeAR903ter.cMATTMecoeA.7sNed. sw or d EA'I N '"? MM 'M" i"

eiygs"-['b7A

_, ' i,l k .' J.< 3 - - cH$$oa No. 716'80 l & av cHackma'Tu #~# # av ~ .h ',.osscmrtion s k. l = I 4 2. SUMMA.PY ANC CONCLUSIONS (Cont'd) 4, h allowable degradation al'ao, applies in the benii region for tubes

  • from tube rows 1 through 91.

The tybe plug-V ./ ging criteria is presented graptiicalIy 'in Figure 1. I For tubes from tube, rows 92 through ;.y,the graph =ust be. read. in orQer to det'er=ine allowable tube wall de-i gradation.

t should b'e acted that 98.6)'or the tube's g

=ay degrade 50% or = ore. That is, tube rows 1 through 190, which nu=ber 9223 tubes of the total of 9g50, are ~ c.11 owed, such degradation. The =ajority of tubes ar,e permitted to' degrade 64%. j J' j f 9 80 g g. s N. ) To N "C Staff Criterta s .l g0 09 s [ o.63 h g$#g M T2 50 ea e on ? . Acceptab.le.$egion O go .v ce e4 4 g 3Q'. o s M r=1 g ~' ~ .i ..1b. i .+ + t Q e 5 i 20 N' 60 '80 100 120' 140 ~ 13 rube aow Numeer 1 v. A + ..=.. 4. an. FIGURE 1. y E PLU$GING CRITERIA j [ -s p \\- 8 .s n' . h'

  • 9 i

..ev- '11 ag

  • 'o q,.A l
y. -

.,c .tlch, _w.o .,,,.s.., .e,. i. ,~.p.. a -.~.-:q. %. e. i,,.,.. n ~ s- . b. _ ..r f .s ,,, 2.. (. ,'t,, MUSTION ENGiPeEERING. Il%C..i f,.*l,gy.;astussen * .u nm. aur.euarvanoo.m. v er _ / 'si. 6"d ~ 7d 6'afgg, _ ;71' 70 6 oATr av l .,. D ' es'sdwTeow SAN CNOfRE'STEAX GENERATOR cssex oars S 8 " 8 av 8 , td,5 ' 3 s j j- .J 2.

SUMMARY

ANDCONCLU1dNS(Cont'd) r / .,/ A fatigue a'nalysis for a desisdedJtube wa's ' performed.... ' The =ax1=um usag'e. factor tops. 64,de6raded tube was ' con-servatively determined to be t..= 0. The upper portion of thg' shroud and,.the stj4: sepa ra,;c r deck we.re analyzed tg. insure that durinVan M3'3 + S'I I accident the's'e components wotild not fail in such a manner so as to dama6e the. tube bun'dle. Th'e fat;1ted-allowab2.es were met at a? 1 re61cns within the sepa ra-ter-shroud structure with the exception of the b r.ts:es i tetween the ' drain pipes, compressive leads 'in the p'ipe I traces were found t xceed tfie.pr.edicted bu2kling ':ad f or the se mee.b er'. Hence, the ' analysis was perfbr:e: without the braces and tne stresses were...found to be-g D within the allowable limits.' b s,i 1. i +. s e i a 4 g, <[, ~. t l g i o 4 { f.. a e = g ,T i.. r s

  • t e

8. \\ = s es. 4 ..y / '4 db g

  • h b

s, s. a s. .-p f. L $,,., a f J g .s 4; t. .4, g .g - . w, ,,.l. .c %I-t ?.epgj, a...4...

-4 1',. .I.. E i ~ l NUSlNM ' h,.., k, ~-s. podneUSDON ENGWEBRMG, WC, e Ne tNE E RtMS G RPARTMENT. CMATTANCOGA. 75DSh" e ^ S'955 r ~3 o 8' T Y' 1/ I cu$hos No. 71670 h7, S -1 ;, -58 ..d8Lg ~ ' ysenimen se Poksm e n M' cHac,x oars.5MOsv q o [ Q.4 j s s l 1 3 GECMETSY i ~ \\ I-The San Onofre 2 steam generator tube bundle (0.750 9 j. inch 0.D.., 0.04 inch wall tubes) is supported by grid ype (eggerate) tube supports' in the axial flow regien. 1,1 I (See Figure A.l.) ~ dg !n the cross e w regicn (see Figure,A.2), the tube, 1, g bundle is supported by three different :ipes cf tube j'- suppo rt s. The vertical s* raight legs are suppcrted by .q, f the grid type titbe supports.. "*he horizontagd,e spans j l inside thE'90 arc,10 inch radius be,,nds'aret.;yppe rted 0

f, s l

with slotted vertical st'ips with horizcn strips . j r ] welded into the aligned, slots. J';st qut si e. the ice h t er.d s, " batwing" support s are. positioned. This supper, ~ 5 asse=bly ie unique to the C-E design and, due to its -3f. fir: attachment tci the restrair.ing I-beams, prevides excellen lateral as wel1 as ver.ti::a1 support tc the s -{ ", 9 tubes. 3 j Figure A.2 illustrates -h,e different groups of tubes 2 sha ring ec==cn suppo rc elements. Ecr example, tube i . rows 25 - 5c are supper ed by one vertical strip, tute f t. rows 51 - 32 by.chree, tube rows 33 - 114 by f11e.and 1 tube rows 115 - 147 are suppor:ed by seven verti:al {

f strips.'

he different norizental supp~ ort arra!.gements a re also depicted. 1 The shroud is Jt pped by a two in' h plate ;shi.:h is per. c j forated for attaching the sten: separater car.s. These 4 cans extract wat The wa. f rom the. ste..a=...knd enar.nel it te j-thedec( er then drains, int 2 the dd'wnecter re61'on at the ' deck 9 periphery or through a drain.well ~ at the cenWr of the deck, then into drain pipes wni:h 'W carry the. kater through the shroud. This sqometry is depicteddin Figure A.3 ? ~. + o ? 'I ' _ s,.v. m g A,. e g. q.

  • ?

1

.p. g). I~ d c ( f *." h. Qh ~ S.r, ' 4

  • J-4 r

s .s ..P s x 4

6....

4 ..w dO945USTICkN ENG) .'h S5' Wu p; 3 I

  • 4_

q asomaanise t>gir'mjrmater exA7pmocH(A. rim. '.susy *. O. . ; s~v m oArl, s.,. m.. ce'seggyh' ~<:HAnor ao. d3TEb4MFMO ' AM q07' I " h, ' .. "I I

  • sy,'T, t oA re' d
  • F'

.es v

t. -

.d[ * ), I g,.. .#( i. 's / 8 ? _ - - ), r. 1, s*'~ y', y ~~ t- 'm .i,. f,r. } g j e f,8 ' i' 7 W e \\ . f ',, t e / b.,.DEVE.0FMENT 'dNi h'GMULIC ' CAff NG t'! ) {J.4 = ~ L t6 4 s t. B.' MAIN STEAdLI fE BdEAK. I . I, ,1 - ' Ic i 4 ..m

3. g

) i. [ E rdraulic dode4. ]). ' 'y 4 ../ .4 e t j A c:'.e-di=ensiopal, two-ppse flow model, of &p San

  • On66'e !! steag gd.erator has Men "gr ulated and f

.its 'cicydown chara'ctefistics have been simulated 4 i ~Q I.' .using the' CF.FL15H 4A ce=pu er cbde. The FLASH t' ode;.$ ' [ is shown 1.it'ikufe.5.l'. - Since th.y purpose of' this f axialysis is to deter t.i'ne th,e steat ge.a.e rator inte r. '} ), e nal loading following a.=ai.n stea 1?ne tr.eak', the ( 3 \\ seconda ry flow regio *. wa s, divide.' d -* - nod,e s ?- ,1 5 wNe,reas chly 2' nodes represent the, p rin.'.ry ficws. ) ('} y ~'he nedal rep presentation is ae foll:ws : Nodes 1 j,. y throui;h - represent the stea= deme; Noces 5, :. j fa'nd 23 the riser;.' Nodes.7.tdrcush if the eva'po ra-g n tori Nodes,17 through 23 the downcemer cegien; 3 N, ode 24 "hs feedwater ring *; Nede 25 the.:ents%n

  • p

. ment; and Nedes 26 and 27' the prinary.:ide of the ~ evaporatcc / ube tundle). Flow patns b througf. 25 ,t connect t.3 internal nodee, flow pae';n 26* is +ne leak path, and flow path 2rf carrie:: feedwater. i 2 11. Ocndi'tions ArAlyzed o i ~ a' d

  • Three Main Stearline Br4ak, (MSLE T.a.: cider.Mendi-

. 4.. t?cns were' analy::ed: 0%,.15%,' and 100% power 1 cads. i. 3 I The operating' bonditiens use'd ' for tr.ece analyses.~ g,,,4 4 ',,. were is,a,ao, sp 2 1 - .s 4 1 o. 04 c' d * ' y La 4,* l. p. r steam Flow. Bate = 0 3 ~, i

  • 4

. Saturation'Pressgre =s1000 psi ~- 3. N.. , Tota [l~3 eat Load ='O f 6eW 'hter Level - 2 f.t. below 3eparator Deck s, y c:. .,y g, v 7 + _... f.. s b;;;g,.% V..' . e. ~ v. x..1.... - w..., ,.. y.j,; t ghQ c') 7 * + e ...g \\, (. p 8 ,Y Y d' 1 ' 2. I .c s.. ' t&- A *C f3 { , _.,_,___ 3 d

ggw 31fi. .A O :.jf.n. s .f

f.,

y ... : -.~ -{_ : ' - k.

  • ,,-y.

, ~. 9.' .C@ABUSTbN E INS 4. RANG. INC. ,,4, mu 7...: .e e i;;. ' NNelkNEMNG Den %8rrM 'CHATTAMCOS'A. TE3Wif $

  • h,gy ' *e,4 u O' s

op 5 T-h,. ;, l ggju, go, 71670 T/'4 7 o,7,_ sy d* ' cascherioN 'SMi OffCFM, STEAM GENERATOR 'lA'd74 - O essex oxte sy i ..k

s.

i c ? a. j a. i \\. g 4 DEVELOPMENT OF HYDRALP'IC LOADING ~ 3. MAI STEAMLINEBEkK t s ~.J ( q' a-k s

  • i.

1 .s \\ 11. Conditions Aralysed (Cont'd) r t 9 15W loa? f Q .Y .g Stea:: F. tow F te = 0 9397 st 10' lbm/nte. S4r.ura ti '.ressure = 957.0 psi 'Circulat["onPatio-20.'77- [, l Totcl Heat Eced = 0.97E85',x 10 S tu/hr.. *. 8 - Feed.4ter Temperature = 2s90F 1 Noz9al._Wa*ler' Level = 2 ft!.,belok Separator rgek i s 100kLoads -s St.eam. Flow F. ate ='f. 555 x '10' lbm/hr.j-j' Seturatfon Pressu're = 900 psi. , Ciccul'a'ticn Ratio = 3.38,' '. j o[,,. - 3' Total Heat, Load = _5.919 x :.0" Stu/h - belowSe/ 0 F' edwa.te q Temp.ya tu re =. ac 5 p ~ pa.rator Deck J j e No r=al JWate r Level = ' 2 f t. '^ s 1 ' T(' t. s, . g,, iii. A s's'unp tion s ^ ^ N

g y

OR cal'hulations" we re made.a ss,pmind ho? l . T,f - a. A al.tp between the liquid and steam phases. r, 3 /. b,. 'I'wo;phe,se pressure drcps xe' e calculated r

d...

by ffrst spEcify'ing constant liquid-phase F g f'riction factors base.d on 't,he' Moody diagr.sm: 1 {, $'[,l'Thestweretthenmultipifedbythe'Thomtw6-phase.ydg.rstoredwithIn'the. code 88 . b i he' moinentum flux term wa.s iacluded in N11 Y,.. T j .~. internal,fiow pat $s.' ' q S ', N f g ~j' ' e - 'd. Ploy. zt$rctsh the br.eak was':xdell,ed usiing, s. the Todtf critical flow coIreld,pon. 1 s s y f

e., A b reak o'peAin6. time of ~ 0.00 pee'cond.' was 9}<, y '..,

j. used/ for the rupture !;f the 38 : inch stea:*. I outlat,ebg"le.

  • Thi a time ls. tNJed ' cri a

% ;. ', 4 I ;iy.} 1,.p$.,;., h> ~ r. ~, " - .Y n,. 3 v. "M' ns u

  • e':.

t .e 'Y { g . m. g g

'.G'

  • ..g...p*. c o r a-CH3CK D*t

~,r. o n ce m son

k. v -n -- r' '

= ,,.. i. Q . e 'sg v z u..-. 5.,.- t t.. g. =. .:f.. y-

. 3. -

i g.. .y, n. DE*GLOPMEIC CF liY"'RA1TLIC LCAMNG u 6 1 ,f' i 'b' 3. MA171 ETEAMLINE BREAK, c [ ('ont'd) 111; Assumptions ( 4 C w o ." = echani's t' 'i;anafy' sis',of-sidt rup tures,' j Since the brgak opening area used rsp re l j s,the rupture of..the fu]'l cro'ss- ./ s icnal area.of a'.tteamline wh1 9, opens [l s i,,,. more slowly than' a" slot rupture, the b reak ,, opent.ig' time used is conservat'ite. The i ef-Cect' of chan6e's, in break cpenin6*. tine 15 I' discusse.d in Se'etion 3.iv.d. s ~' f. The brea'4 o'penir,g area"of 7'.376 f t was*used 2 l except in Sectico B.1v.c where the.effect ' of changes in this parameter is discussed. I g. A, discharge.. coefficient of' l.0 was u. sed. iv. Main Steamline'Sreak'Palametr,1c Study _.8 p J e 4(pa ramptric study was *pe"fermed to. determine thi fect upon results of.vartations. ih several para-myters and th finalize the mode $ used at diff'erent h, ~ power le. veli.T. $1Psult's of this stutly are. tabulated 1$' Figure 3.3.. t ~ '" a. Heter 8keneous vs. Hecogeneous No' des,,', ) i Hemogenhoug nodes model,the".-liquidr and va'po r ,o 4 phases as throughjy =1xed ghereas in hetero 6enecus,. e e ?

  • nodes a 're61on of pt;re;4apor, may exist above the l

_{ re61cn *conta,ining :iind 112:uid, und vapor.'

The, f',

two typ.es a re. dist.inguished' in M gure 3. 2. r s. $i

  • At':ero percent'lc4d the water levelsin'the i

' evaporator is two. feet bel"ow the s4parator dech. ~ .e , Jhis may 3e modelled ' enAirely witd tomogeneQtls I ~ s f , n, odes' ty choosing a ' boundary b,e$we'ed two ngdes g -T 4'. ..g rI.. t j m.'. ~ '. ~ w i = ~ . m' - - - ~s *? *s nn ..***n .,ft. s.. e .,. u..g .e w.

  • N.

t... E gp 1 (

71570 - QATGV ,,*e .--g .a . T.H ARG E NQ. eV r 'M.'. ' OescRIPTICN CMtCM DATE ' f Y e v '\\ " \\ d Y Fft c - 9 'l _4 ty. .W. / .g,- x a. W- .h s, d. DE*.'E" CpMENT- 0F HYDRAULIC ECADING 1 r l 3 ~ t S. MAIN STEM 1INE BREAK ,F s f t iv. Main Steamline Break paramet'ric Stud 9 J ja a. Heterogeneous vs. Homogeneous Nodes ,( Cont ' dj k '(, -T coincident with the water level, wi,th steam in the y node above and water in the node below this bound- .i a ry. Alt'ernately the water 1svel may be positi.oned within a ' heterogeneous node. Theresultsfrc=c'f [ culati'ns sing both models are shown as Items 1 o ya and 2 in Fi'6ure 3 3 However, the calculation..s. E y using the heterogeneous node contained unr altJPhic' j discontinuous changes in the steam quality f the f1pw)hrough the separators 'causefi by the 1.ter- @{ action of the mi;cture level and upttream ele,ation f of that flowpath.' Hence the heterogeneous =o el N ~.. ' j-of the water ldve.1 is rejected... 'A At n'on-zero ' power levels.no'Tilstinct wate r level f exists below the separators. In*this case.modelg lin6 choices must be made to. provide realistic f.p/ representa.t1on of sepa ator pelfor=ance.

  • This r.e-\\

i ~ \\ Y ~ p qui.res that flow tcva rds the dr drs be high quali.ty. / steem, while the recirculating fluid enterin6 the U 4cwncomer is saturated liquid'. This may be' easily \\ 3 [j 7,. 1.' modelled if the s.eparster node is. heterogeneous. \\ However, resulting pressure histories for nodes g .,...* '. above the separators are unstable. b.ecause of the i y T. j.k-disc'ontinuous enthalphy/ quality change when the \\.. 75 mixture level reaches the top of the separator f.,

  • * ' t nod a..

An alternate methoq to achieve the desired (3 flow' conditions exitins the separators that yields

  • stable.solutichs. is to use a homc6eneous separator Q.g *

. node with* 50% i.nitial.qualit and a density gradient .of 1.0. plis modelling 'provides 'for quality varia ; (' g. tion from the bottom to the top of the node. There-fort flow le41ng,fewards the d'ryerstis of the de'-the top of ths, node containi 7.. WWpd rators movin6 ' g (' *., ,,. sired high steam quality.(98 3%) wh.tle tha.t leaving . -,..,f a p e 1,: V s, g -f Q} g%, s"'

s \\ J k

'.\\ ', b ... + ~ n , d:~t'd

m' y$.w,.L ynl-L

~ ^ ~ .. = > s +.... 2 g_w e m e w :.. r r...- w -

NY' ,,,cdf ' sA ldf' uE STEAM GT'MT'AAT'OR ~ fesseCK O N fI24I'# 50#' W ..g gj.., ~. .o. f m., .e h ] ?. D.' 'x. e-1 c 2-x

  • U u

'4. DEVEI;3PMEN OF HYDRAULIC LOADING

p 3.

MAIN STFAMLINE BREAK iv. Ms.in Steamline Break parametric Studv - \\ t I a. H6te&gendo'us 'vs. Homogeneous Nedes (Cont'd) s. Y 1 the, bottom of the node for.the downco=er is sa'tdrated liquid. This. =cdelling incer'rectly represents the initial.=asa in,the l separator - 7 node but has 1ittle ef'fec,ti upon resblts as shown average qualities of 50% and 98 9 are.co%,. i!h in Figure E.3 (Item 3 an( 4) where results w e',' .~ ^' ~ 4 i at 0% load. Since such an excess of ' water if.,g' ~ high quality region has little effect on respl(s, ample justification exists for using an average j' quality cf 50$ snd a density gradient factor of ,1.0 at non-lero. load whefe moderate amounce qf s s' water are presenty n J b. Sclution Ccnvergen'ce i > \\' the solution was conv' rged wds, inves tigated - M That e by =aking additional computer runs with differ 6nt 3 ~, [J cc=putational :ite s teps. These additional runs-were made with the ec=putatior) time steps (AT) 'l (1) 0.00003 second, and (ii)'O.0002.5. second. All v.. other ana19ses except in thig sect).on'were per-a. %. '.? - formed with 6T'of 0.00010 second.' r o. N., .. g,-

  • [hareduction'ofAT by 215 timee in case (1) re-l ' \\a.h sul d in e decrease of pressure. differential 8

a separatof de'c,k,*by l'.3%. wheraas the increase N act

  • \\* '

of 'by 2,,5 t1 s in, case (11),resulted.in an increase of p$@ssure differential across the deck Wy, 5%. Therefora,", the selection df '.sT equal to 01 second was justi'fiel since the, smaller time ,7, at ad**little effect or)'the results. This co,m-parischii* sho in Itema 5P6 ang i in Figure 3,3 j

d. :.,,.

s,;,, '. 3,., "P 6 i a te ~.' 0.

  • 8'

,..,y ,, 4*L;Q -, ~. g" ,,6 -l.... ,,,. -.5.' s

  • ' ~.,t

[,, * ,, f I e- .,.4 'r.,- .,... e :: M*'(p. e y s4... _.n -..... %

  • h '.'.,,M k

4 A e Q. ,j g .r p ,s, - y a h. " Y' fJ2 v.. c/O 4 4 m 3 _,

-( wmsmsmme.awy aswrcum b.f( exf po, 71670 P as av "#73

  • k. othe.'

^1T '"r3cu aniv mrmma .,y, rl

  • i l 7 P',,9 # !

ef- ? T T v .L.. '. ' 4,. :. y,,. ,p 2 .r.~ t. .w p_ f:. % ,'A f t = -\\ 3 4. "E'/ELOPME?r!' 0F HYDRAtJLIC LCADING 3 9. .MA~N STEAMLINE BPJ,.AK 6,, iv. Main Steamline Br%ak Parametric Study c, Break Opening Area.. ,a, The sensitivity of the results to' the break ,j, cpening area was stu' died by =akingadditional computer runs with break opening a_tssps of (1) 'and (ii) 2.625 ft'. p.e actual cress 5 261 ft8 sectional area of the 38" outlet nozzle is 7.876 / fta. The reduction of the break opening areas by ' factors of one-third and two-tEirds resulted in reduciions of the pressure differentials across the sepa n tor, deck'by 25.45 and 39 1%, respectively. Items 5, 8, and 9 in Figure 3 3 w.s b rize this comparisen. Y + d. Break Coening Time C. The variation of the p ressure drcps across.the ( separator deck with differ'ent treak' opening times wa s, d e;,e r?.ined. Additional analyses were performed wit,h b reak opening ti :es of 0.0025 and . 0.0001 sec'onds. For all other calculations .01.009..seccnd was used as is =ention d in section 3.111.e. The reductions in break-ening times by 72% and 9% affected the, pressure differentials through th tube, bundle and across the separator deck by less than 1%. Thus, results aiay f

n. '" [i the nozzle'are not sensitive to the b reak' '

n5.:'g' T / time. These results are compared in I,te6

  • 1CT

N and'll in Figure B.3.. .S 4 y, Hoat Transter' f rom ' Prima r'/ to Secan

  • ry FluK

'3 [ g e.. [ The-sensitivity of the results to the"hea,t 1:ht3f rom the primary flui ~ cg y.,~. f *:.. ,U' yp. f,e; .k % puter.run with no heat transfer between th,e p ~ y;':.e,- j ' l' e.nd secondary fluids. Pressure drops acrosas.th.e /* x r b g {,..f,; ? $ ../.N 5 * .e q 't .f ~. f'

    • 7 h

'\\ l* g.f.;.N .,. ?;':L ^* a; i. g*,.. % g/'.< 7 .8 p -l,.g [, Ne g

i

,s.4,.,,7 u. b* M i

.. ~ "R as.eems sauna oss' Antnaam. cMATTM.meM. . e6 sat QP .,y .. n.a u...f.. +,._.,m. .... ~. ~

jli-(oan,

' A' ~ " [ 71670 , ov g,h. M .iAN ONQFPI '!*RA M C L'WM' net.(- .-k.MSCM DATE i ! l *)" PY u A ,~ ~- g 4, ~ l

e t

.s. \\ { t-s 1 4 tE', ELOPMEN" 0F NTOMUI'.IC COADING'. l I F B. ' GIN STEAMI.INE BRf.AK l iv Main SteL411ne Break Parametric Study (Ocnt'd) y e. Heat ' Transfer from primary to Seconda ry 71uid t y sepa,rator deck and* tdbe bundle, differed by lese than 1% from the same pressure diffe rentials' ot-1 tained 'with nor ::a1 hart transfer, as shown ir ~tems 5 and 12,.in Figure B.3 4 9 ,f. Resul.ts of the Pa rar.ehic Studies M ] Significant resuiks, obtained from the parametri,: studies,are presented in Figure B.3 '~he desfgna- ~ l tions SP -s_, APas - s, and.1?.. i e are the pressure ? 41 4 -{ differentials across sepaFator de'ck, upper shroud, ., 4 U ~' and throuEh the tube bundles in the cross flow re-I., E1on, respectively.. b'1 . g,3.'. .e ,S Negative pressure differentials m dhe pressure e in the second mentioned node is hi r than id the i preceding nede e.g., negative AP Jg.mear.s the j, pressure in Nede 5 is higher tha.n 'the press _re in ~ Node '4 AnalyseAperformed for Items 6 tnr006h l '12 used the samd parameters as ~ tem 5 except .j as ' "h noted. i e.:+. s' f v. Main Steamline Break Results I[ [,31grpant-kults at (15fe rent power levelg [ ff re ghen in Figure, B. 4 Th'e d'signations in this tat!e 4 are ch'e samt as'in' Figure 4 The opera ting clndi-h'#,' ~ 4 y f ti n,s at-tarioys povp-loads were,yf sented it. dectiod *,I { r nn ,B. 1.,,.. g, I, .e - t,. - ,/ a tb pass f1pw roughh.he k he 15[.I. 5 f et g

  • O

. power c.ond41 tion',provides. the manfmum p.ressure f ) g e, 4fffgrent als across separa; torde'ck an'd gpe$ shroud.. c ' "?' 5 .h" ' Jt r = .%....c' y 2+- 9..Vb *9 _ .f. "s-; v g.x. .er h. f, J j. ~ Q , r.- s 'y, y to . -y,_ y. . 6 4 'g# A e

  • - hviFM.MM/M h y4 Q M k M h, Q l

w ,a MAIN STEAM t.INE BREAR PMtAMETRIC STUDY o [ .at oc. / . Max Max Max tn AP.5 6P;3 5 aP6-10 peet:cn 4 4.S.lv Pa r.im et e r (psis (psi) (psti ~. ati) No lead, homogeneous model 227 4.a.138.19 -3.2,45 - r-~ atii) ?)o load, heteroge.neous model- -39.60'I +30.91 -42.78 a(tu) No icad, node 4 average quality ~ 99.94 -28.50 +38.16 -33.17 l l a (iv) No load, node 4 average quality 49.8% -25'.78 +36.80 -32.26 / ,/ ~. " Standard 15% Power, a; = 0.0001 sec., -48.42 -54.28 -29.14 7.876 ft2, B.O.T. B.O.A. = = 0.009 sec, heat transfer from primary to secondary 0.00004l.sec. -47.79 -)7.02 -29."M b(i) 156 load, 1: = 0.00025 sec.. -51.3'2 '-48.59 - 2 &.' ' l b(ii) 15% load, 1: = + 2 156 l o a,d, -36.15 -42.03. -21.98 c (i t.-, B. 0.. A. =,5.261 ft i c (b:[ 15%, lead, B.O.A.'= 2.625 ft - L9. 8 0 - 17. 5 6' -13. 6 4 2 0.0025 sec. -48.77.-54 4 -29.16 d (1) 154. lead, B.O.T. = / 'O.00'01 sec. -48.81-[4.35-29.16 d(if) 156 lo'a d, B.O.T. = e 15% load, no heat transfer from / -48. C -53.59 -37.63 primary to secondary- ,/ i / B.O.[.*BreakopeningArea i B. 0,lT. = Break Opening Times / i rigure B.3 / / / 9 'j l p j i / I g s, y, \\ \\ " t I ~. k e

  • r MW t d '

'. gh " ... . w :- i pi, e ~. ,o44, I a m.

a c-r E ./ . ~.. g ( \\ 1 - \\- ,rigure s. 4 M.A.IN STEAM LINE BREAK RESULTS Max Max Max Mex hP $P LP 4 4-5 23-5 6-10 3 ( ps i.) ( ps i') (psi) (L2n's ec ) Power Load 5 .% load -25,78 -36.80 -32.26 49,886 s 15% load s48.42 -54.28 -29.14 44,133 1 / 100% load -23.65 -27.23 - p l. 2 6 33,437 7 s e I. 'r%. -) y 5 ~ .'t s% ' N .s .8-i . 't.

  • s'
  • I t

a 8

  • P I

d.a.", p, yg * ".4gp*=. 4 A o

1. ,~ '

f?'? ( . 9e r,. Qumus@NiaNe tNk.5NIUG,.lNC.'., ', Nuwega

l

s J.,. a wom'ussWe. Oa. PM.tTN,eNT. CH A.cTTAtecogi.TEMM. ' - SM5th J 4 ,m r f,a . Data $*. "n. v4 '

4. ('

m a.No. _w ev M FRE ?M

    • AT^"

c' Hack oAte a os sc arntos R' - c. s 3 .:.~ . b' ? o a ' I' '. 1 E. ' A~ If'4:2LI 3RESS 'DE*I?AIMAT!CN r y + Ihebasisforthe.allowablesh,ressesusedinthis i j } ar.alysis.,is Seption III of the ASXE Code, for Nuclear ?n er Flan?. Components. Values for Sm, yield strer-6th and ulti=a'te stre.ngth at operating tempe raturef a re r. tiden direc.tIy f rom the app ropri* ate tables in the Cb'.e. l. 3 l A. Allowable Stresses for Tubes i l-j 0 One maximumgpe ratin6 'tempe rature of 611 F tr.e . y [ At i ulti= ate stren, h fc.r the SB-163 Incenel tubir.g is e r-su = S0.0 ksi. From Appendix F tc section III -he meibhtne stress allewable for the faulted conditionc t . ensidered in this report.is: M S=e=b " 0 7 S s l ./ u f or i "i i b b 56.0 kai }" Sme /.b ~'he memb rane plus t ending stre,s s s lowable-is de-l % veloped by applying a shape factol-for an annular section. This shape factor is 6'iven.by: ~ e.: .) 3e - r[ lo r r e ,,3' r#. 3r to-r{. z y T g.e me=brghe, plus.bendin6 allovable is

s..

25 3:ne'mb + bend " f S s

memb, and for 'a tube of nccinal dimensions a.,

3 S=emb + bend "> 75.9 ksi. 1 l g. It should be noted that for dedraded sections the ? shape factor dec.reases the re.by reducing the memb rsne 1 plus banding allowable. l d .J l I s' f. )'. f _.....w'. e. d g .g a 4. v $p '2-s.f g y'

f I j i COMBUST)ON ENGINEERING. INC. . NUM551R dI~i- 'f, f.g ( gf Sy' 71670 s' olyf%" 2 ', W , %}y/ Ali.,. r. * .t x .ENGIN54mh4 DSPARTMENT. CHAT"rAN@OGA,TapsM, *

y..... '

,f. .Q p 1_ e ,m. esanag so, m. 3 RAN.ON0fnD ATMS EEQATd cusNoare M*M er y ([;. ossemeriqn f, e: \\. ',,~ }f Q. p. %,s^y^' 'I 5 'r' %. y.', y X b .r P 'e LN ( AL'.0W'A.5LE STREJS DETER!C NATICN (Cont'd) Ye s,. 6. ,y, i g- .e.f r., I 3. Allowab'le Stresses fot Stess Secarator Cec'k" ' l~ 'Y. -1 '# f - [/ -The' upper port [*'on of the shroud ahd can deck are j =ade f rom SA-5 5, Gr. 73 materia).: A't the secondary )*

3 d

design te=perature of 560 p j',, .l ? 4 4 i i /- 'i o'. Su = 70 kai, y, e ~ ', - i If t f:

    • d l,

Q,mg - 0. 7 5, f, j- {q ~.. l ~ d S=emb = 49 0 kai. 4 q' g-3e ceEb ne plus.$ending di9lowable is iJ 2 7* , f *y[,y., 4 (... I 3 nc. ~ .M" (' Smemb + b end " 1

  • 5 Smer.b' Uf a

t. '~ l S=emb + bend = 73. 5 ksi Of f .l The allowables for the drain pipes - material SA 0,- g J . T' J Gr.'S - are il [* j. q .s su = 60.0 ass, 4 e -s 't..; l' r,')g./ Sme=b = 42.0 ksi, y .G e, J; and b e % = 63.o kst. .l [q m 7,.

  • , e

', The drain well la cade f rom SA-36 caterial with allew.i-7' / P ' S 47 I ' J d u/ r. j ables. t 'c, -= ..'. ; * : f*.,'r 6 ~f 1, ,"f Su=44.6ks1( / j .p g .I I- / 6' 4 3 S=emb a 42.0 ksi, I. / and' (eg = %6.8 kai. / / g ) s l C

  • I e

l-y )<.b} / 4 ~~ . 'Di w;*

y e -. ~^j ( COMO USTIO E N G IN EQ, RING.)NC.. 881#885A i w'. ' sNotNasntNa oaa KTwaNT. CHATTANOC4A,TENN Sp6987 O l'... b ol 71670 f ~ d'~

  • 4 oAta an ~

cuano r No. 'AN C'40FFE Nt GENEP.AT'18 cHacx04TEI'U~'^ I N, s ca scamrios y \\- s E, L. 'N- ... ~.. o .4

  • J.

"i* 3 - 0.32 TUBE Bf, D STRUCTUPAL ANALYSIS e u; t A.

  • osding-N. -

6 } b, 1. '4 5- *4 Imp el.s e I.ca'd. r i ] ..s defined in Se'etien 5.3, an MS"S aediderp pro-( ~ 2 i d.uces an exter. ally applied i.mpulse which is 3

lassified as MZ' 3 shak.ing.

.' he displacement. l. dis,orj shown in F.eference 6 was spplied to.he J 3 i finite ele =ent model ' F'16ure E. ll at One ' tut e-sheet, and displace ents ir.d stresset.wer'e :al: - i t I t la te d a s a fun : tion s o f ti.=e.. p 3. 4 ) 'l l tt. A es it: lew a ds' } 1 + 4 'I Tr.e tub <. s in t h e O rcss ficw re -icn we re sub 'e::ed e tc an.exte rnal flow'.ndged p ressure drop.' -ne, I'. 1 } p,,. p re suu re d rep se t in r.is ar.alysis,wa,s tar.e'n _ it frc: Fi.;u re B 7 ~;e pesk. talue of. M = 32,.20 j ] psi access :he'berd r.egi n <.;a s ' ne s en b e,caus s - s~ the d.ra';i.:n of thi s pea r. talue was len6 enougn j j tha.: i: culd te Ocr.s.dered.:chstant a:,r.is ma ximus ta '.n e,. ?.13 1 F .<a 3 applied 0: One.;cel l 1 snewn in Figure I.1 at :he.orizo'ntal tube spa:. j regicn. t1< -,.:pe l l 6 f

F
r.

As defined in lecti:n 5.A, 10. SSE load cf*l.~ ' e I ]' was applied,t6 the fihite ele ent =cdel of Fig.:re } E.1. Since, the natural f requency Of the tube l e;- bundle is a:ove 33 c.ps this lead <as applied y statically in the. vertical lirectien. 3 iv. Pressure Lead w. j Q*,

  1. Mring the MhL3, epent,' the tube differer..isi 4

preasure was conce,rutively acnsidered to be 1j -sk. I 225C psi. This 13 tesed on th : cp e ra ti ng p ri

  • E' #

=ary. p res sure with ene. assumption.that the l +- 8 ""*rY Pr'"'* h* d * **7 'd ' t o, *

  • r -

7* 5 a pe y I '~, .g s .il, g s 3 $d*'g ', a - m.= ..-,.lii.. a. 41 .o g O y y a A' .-..n~a LS vl0 a A.' OI A

._....,..,v .L".--- ~ s. . ~, ,W M NEHdSSR - (j w COMeUSfloN: ENDANGERING. INC. - a w stehw epreea caputriesMt.MhWTAhcosA.TSMM. ' l ar - / y_ 5-4* .71670 - ^ eat <_ av ansees no. casex om rm _ 0 ', ' ~75 c,emmeh .rAN "10FFE ' STEAM '0ERWTOR ev i s f ._.'._n.,- 4 ' +/*.y.p. 1, 9 l MR.3 MSE TUBE 9tRitLE STRUCTUNA1. ANA TE~.~. 0 .l s u. w l l 3. Finite Element Model ) J Th e finit e el e..ent c omp ut e r p rog ra'm ' " AN.5Y3 " i s M ed ,- l a to perfor this "scalysis. A planN sefpfen cf the i I tube bundie hontaining every" third tube row is a-i 1 .Xeled sta rtin6 with. row 19, Figure I. l' Mid A l tyri:a1 tube row shown th F16u're r E. 2. The tubes 4 [ anh., /ertical strips a re mo' dele.d with' the 3.' ela sti_: I 'c eam e!:ement. t i ~ne, tube bundle geometry parametet s ind flew icads } aer weighted such that the overall stiffness Of,*.he 3 ( h tube tundle and all interact 16n, bet, ween tubes and

  • ve r.ical strips are conside qed i ( see F16ures E.3

{. N ,and'I.w). { .\\' e .A

n. ass Pesults

+ e. )J 1, tydraulic Flew ~~ 'l o f-I ) The maxi =um' bendir.g st res s due te-MSL3 ficw 1 Me I is 5.3 ksi and :::urs at tutie row 25 in the cen er iof the horizontal Lte span. Tube,reh,25 is :he

7 '

fi rst tube row :ac.urert;r the center vertical l M f j s t rip.' This re sult s.J.s a. point load a: ths' cer.:e r of the hori:ortal tube span, due to the intera,1cn 'j between tube row 25/.ithe tube bundle, e.nd ne vertical strip., Tub'si row 2 5. ha s a. sho rt e r un.iup - / ported tube span, thus stiffer, than the other tube rows capture'4 Yyf' the ' center vertical strip. This resulfh in tqbe. 25 having the maximum .,, bendi,ng stress due %c,rew flow loads. o g . :. y 11. SSE 7 .s 'Ihe maximum stress for SSE, load of 1.5 G' applied in the vertical' direction is 2.7 kai at tube rew M;,,._ 25 k r ,: w .e. 4,.. 7 g j [,f N

C*
ys.

s

  • N%. 1,.
q. W..c.

i s .p ,.y

7' COMOUSTION ENGINUEh, 4 % F

  • 'EN64Na t 8t*N4 OSP AMTtesNT. CHAT'rANCCOA.1"OMM.

', M ay _. 6 /. ', ' - ,p y-t ,,.r.yg./p . g, - DAT4- ... 4 se v f cNAMGS NC, .1AN O!f0FRE STEAK IE'G.RktCF'"1,. _..psh. car [.YI-7'n eM' ogwyfoy . e e. \\

9,.

":c, e t i e ,t l ?. M39 + SSE(-TGr hU'dLE 3?ROCTL7A.. ANA1.YSIS 3 e i stress Result's FCo'nt '.d ) "b.'. [ .i ,j, l- + tii. Ms 3 Imuulse.- ,a y i The maximum stress ak t'ube rov 25 a s' a re suj'.: {. of M'S:.3 shaking is 5 7'ksi.. [' p I i 'i ' i 1.. Pressure s ,s The stress due to.dif r.entiai pressure of 2250 i pai in the axial., hoop pi. radia,1 %ecticna are: l s PRi " 7'.I A81 ~ I

  • axia1 " 2:

, a.. i =* 1 ;_..4 ksi r ~ { i ?9(hocp) " 5. racial " D ' " 0 ,J x I ' '.. Fesults + 1 'Th e re sulta,nt m e stress intensity is b r:ed by the l tcmbinatien of t.e te al tecsile bending stress and f J., the radial pressure a ress. Figure E.5 presents the stress intensity, deter ined for the heal?hy tube 4 geometry. The Jesulting st'resh in, tensity is 21 9 / .i k a i*. This is less than, the memb'rane - bendid.g alf w-t able st,ress intensity of 75.9 ksi. E. Vib ra tions Cross flow velccities.tesulting from steam lige bres,k e ' are predomina'tely manifested 'in the tube : ur.re ' n l ~ l* r i che ' form of fpiid.elas tic ac tion in t Ae ber.d re l'. n. ( The ai6nificar.ce of. this phenomenon was recen.ly demonstrated in vibration flow testind perfdr :ed oy j Combus tion Eng ine e ring. These t'est results Indtnt.6 a critical flew velocity of 34 f.t/' ee i n t he c.re s

1..

>v v. h, i l 1 fg. e: J +f, k$ H,,.. v n.: 4 :._ A q J,:.3.I4-W '" * '.2 ?- 'l' p> e,g ;(. - Y , 5 .W., f. ., per, . p g.gg.g. gyg ., v

l .m ....-......)..., .t Q. ..a i l s, w s \\ e y / C O Y B U STIO N E N GIN E E RIN G..lN C'., NUMea Est.rdnu NG aspArrnqN r caATT4mpoaA. rENA senar w_-...- ko. -. ' -V "' ^R SATs ~ u. ,,,c,,,,'. .:s A ms a r .i -8 .y.. J / r :.m rwt as., es.cx.q r e 'f -l 4 . L.. .t ? fl:w ' regd.on c f -he bund *_e. The predteted Isxiau::' [ [ fic..w' veictiO., during stasm line.b rea r. ic li *;s sec u ' wich is appreciably less than tHe.criticale velscity. [ ] The experimentally verified. expressi.cn fcr predi:';ing

he threshcid velecity for fluid-elas tie ?;cu;rlinz
d. s -

.'g.',' I r ?[ n M QY' t .w' 7critical c 4 i.

i..

' t '4he're : K Experimental.ly verified. cons'; ant i fn - Tube. natural frequency - i I. l l' D %$ side diameter 1* J ) , \\, s s /

  • Mc

.'lir.tual, :s se T. / . l p,- Flu d density r. e - Leg,,\\pecragent (5e=h) 6 ~ * ( 'Dac:p.i .s ing rati6 f t v :... t i Q, ~ 'V *. q = 3h Tt sec f. or te bend yegion cri.ic. l 3 a .?; i u ..n Although test data! has shcwn nat/ , ddksi. exist'. n,'Migh Reynolds nu=beI crtex snecding "' s' ],fthrou6h.th ,'buridl s, thp magnit(de of the forcing i high de.qsity fics 5, s functie. rr is. nauf f,$c '.g nt td overdote the systeh I i 4 da::jpihg *aiid only? . low 'a :plitude vibration results. 'a., {

.;7 f

I I 's I' f . s .f a .M g o s y1 ..s, s

  • y

.,, 'f. ..2* e ..*Ad d-6 8 e ,,y, )" c,... ~

  • gI

.,, [t s.' 3f -r r.s r.: L. .i. ' t \\ .l y)

J.
4..

.:l., ? ). i. e ~ g J e' .x._ :.h -g % ?,., ,., ' i ) _m

t s

u ..m

gg U"

  • I COMSUSTION ENGINEERING. INC Numa32

-_4 , y"h= n s. e sgms mNo c e,pasm s NT CH ATTANcOGA. TE AN. ggggy-g m A' c,sar,es No. cAta - ar-M ( AN NW "mM'A curew oira f-G 47 s dr.M, ,oggeniptics +% s ,,. 4 A l - ' '. t. y t 1 a r I ~ t. l .._3 + 3.3 E.? ~'EA.M 'SE._PA'lATC R t E '5' 3??.UCTWA '. AN A LYZ 3 '1. li ( .s s- ...[, K ,"Model De sc rio.tien ',;e A.- .f d; <.,.Q.,'S m,% 'o. 1 A partion of the, ateam isepa rater deck and shroud /e re f i,} 'N' ? i. medeled en tr.e ANSYS Einite Element Cc=puter Progra: i Feference 4). The section ecdel.ed is depicted in l Figures G.1 and.3.2. Cye :: symmetry, only a 50 de- 'gr,ee se p.ent of *he stru:ture was required.. The appropriate ' boundary condicians were appliec to main- \\ f '(' separatc r deck as shown in Figure G.2 was modeled sin the structure'in a sy==etrical ccpditi:n. The with noles. This was done in order to el1=inate =edeling the sepa rator deck as an effecti.ve plat,e with modified mate rial p ropertie s :' E+ and *.i+ ). 'The c horizontal' b races were assumed t'c b l.'s.le and are not included in the model. The I-beams ' tube bundle sup-T o.cr:s} Were not included in One structure. ,?revicus analys es show :ha t 'the I-t eacs ". ave a maximum, stress ," O

nsiderably less tnan the elas tc allowab.les.

In the.

    • h._

AN3?3 model, shell elecer.ts we re used to }'ep resent * *,hh shroud and d rain tank. and a pipe ele-( sepa rator deck, ment was defir,ed foY drain pipe.s. .c.,..,, 2. Mcdel *. cads The.1: ads for this *gnalysis are results of a =ain steam ' line break ' MSG)' Accide.5.t and saf e shut'dowr} earthquake *. T;.;,

  • ine b reak a ccident 16ad s (. MSG) '+t,ere determined from' s

I CI FLASH analpsgs presentdd in Secti'on.5..The most. g severe Icacing dondf*, ion for mig occur.ed at '5% lead 'd %f ter steam line.bfeak.' A pressure drop of 48 5 psi. '- (upwa rd) was, applied acrhss, the separator' deck while

  • a p ressyre drop,.ct - 54: 1.p si (cu twa rd ).wa s ap.pl.ied '

across th( sh'roud @ ~ .- m n.

a. -

h,iw /gs defD:ted' R,efdrence 2, an SSE ac

  • is r,equired for, seismic conditlins. celeration' of' 2. 5 0-

\\ + The acceleration 4 'i ,J 2 necessary to c.yercome dead weigtit Of strticture is 1.0 G. EU Therefore, a 1.S'G accele ra tion 'is*applie to th'e cdmbined

k.,

wei6 hts of, separapor deck a' d 'sepa ratok, to determine the 'j, g; n .*/4.. 53E load. The sefsnio lokd is applied as. arl.19 psi lea {' '. l ?.7..M.1., ' '. g N in the verti. cal. direct 4cn' (y'up. ward). The combined - r I .s .s-c v,,g n...' g,' n. g. M s.t. \\ .g v 1. y

W a.

. t.c s~ e s ..\\ . r G. %s ' $e. sa_... 1

v...

'.'..,.p.',.,. q. ., e

r. *
. a g

n y ) .v N be.*

e.,:

'%-*. c p - Y

  • [

.,p.3 g g," h E , \\ h'en

  • \\

Y

' ~ ' f-ccMif uSTidN ENG NEE >tlNG. INC. Muusam ono w:mmo,ospawTwa uT. cH ATTANOCS A. T MN gggy ', o p ~ g ~ 716 %- .5~; ?4

7. Y...* * &.

~ cwAnes wo. . oats SAN CNCFRE ATEA.'4 1ENE: A 7 ~ - EHECMOATE ~~ S' 7 ca scais Ttos i 3 s,,_ -l %~ .i v 7-

, y'.
  • 4 11.

!.W ? - J'!E STEAM SEF AAATCR DE X l'IEUCTUEA' A AU !!d ~~ ,/ s S. n. Nodal Leads (Cont'd) s .0

MSLS
  • SSE load in the vertic'al direction is 9/09 psi.

i l 1 t O.

Material All'owab le s g

l '/ .The,' stress 'allowa5J.ea a'rs 'tleff.ned in A5ME Ccde, ;197%,, 2ectien C :, Appendix'.F,' Table F-1322.2-1. For elaatic j ) a Ilysis the faulted all.owable for ferritic ta,teria' is 0. 7. Su. The =etbrap,e ( Pm3 ?;) and.::lemb rane p123, i l' bendin'g ( ? + Pb, PL t Pb) stress allcwable lor ferrit.1: i materials at temperature are presented below. } o* 1 l Cla ssif1:a tion. i P, Pm

  • Pb, F.Lt Pb at 560*?

j 0 P= at 360 L Mater'al (ksi) (ksi) I i r S,. 1 j s J 1 SA-515-GR70 'O.7 Su=90 1.5 (0.7 Su) = 73 5 u t s 5A-36 0.7,'Su =31.2 l':5 (.0,7 s ) = *. 3 u sA-lo6-cP.S. 0.7 s.,="2.0 1.5 (o.7'Su) = 63 0 4 p i j ,D. Cc=penent Stresses An evaluation of the stress results f rot > the finite elecent analysis shews acceptable stressys' with tne ( e xc ep tien c f. th's ho ri z en tal b r,a c e s s.nd upp e r s up'po rt' lug,s. The resulty of the stress a.calysis,is presented t ' in g follosin' 6 paragraphs. 5 on Braces'('4" SCH 40 Pi ) S' ..t 9 The horizontal brac*es shown in' Figilre O.1', buckle undef compressive load, This stater.ent 1's based on pre'vious' a'eside. nt analysis. Sidee the b ri. ces. buck.le, they were removed f rom the. structural,. ' # nA model. This approach c'onservati.vely ne41ects the - 3 D'* Icad carring capacity o'f the buckl.ed meinber.,, r)viwl YL .*;<. g.a. i s y

  • v..

}Y te . '. '.{ '..y r. %. af.

s...

..,{ s ,. f, j h-Am .-a as ,. m.a I .A t -._-.__.8____u.- 2--- -U-A S' ^- f

^ r. j COMG UCTlQf4 ENGINE ERING lNC. Numssp o e / b g 1 ' E NG IMR E N NQ OEPAMTtusENT. CH ATT 4NCC G A. T E NN. g g g g,y,,, op 71670 .oS '# 24 W ard, W.-. s __r cum no, JA.N OEN 2 TEAM E RA N.? ' I~ 2 b-N e rN CHtcK Oafs ossc w T:0N ':r! l ..o-e.e.. e m / a e i 11; MSLB

  • SSE STEAM SEFA?.ATOR CE2 STRI.!C"'ilRAL ANALYSIS t

3 1 C. Co=pon e r.t S t re s se's .,/ j .l ' Mo ri s en ta l B rae'e s 14 ".6C"d 50 Pipe) ' C o n ", ' d ) i. s ~'h e refo re, the. load i's caffled by.t.he remaining I s truc tu're, resulting in larger. stress levels in the r maining stincture. r u.- k l.' e - I ~ dea =s

  • 'la X c M p

s The !-beams.used to'suppo'.rt,the tube bundle pre l excluded frc=.+.he =odel. '"hwe exc Lusicn was based on previous at:1 dent' analyses which indi- 'I

sted =e=brane plus-bending st ress levels that a re consi'derably. le's's than :ne ela sti: allowbles 3.e r removal'fr0= the structure al.so adds sc=e

.:cd. tist'. 'tc th. e s tres se s calculate <i. In the ~ ( \\ l* stru .re< 3 1'11. Dra.in ' PI.6 e t 3"._ M 40 Pipe) ".n ( * ~ 'f Re drain pipes werre evalaated without the inter-e connect 1r.;.horizdntal b rac. es. b.e. stre ss re. sult s.. .I obtained f rom AN$Y,S, analysis are: .J .x s s. ( Me=b rane l l P l '/,- .< m = 2 2.1 Rai < (.7. Su) 42.0 ksi fo r SA-lC6-OP.B. j ', %.j fk?' "M ' 'h '- '~k W t +.$ .37 6 m,)< 1.'5.(.7 S l = 63 ksi for SAelo6-Gasfpyi y r Igt"~.M _ P u s t, n . < ' l. .h. *. iv. Shre/r of Cain Pipe '4 elds n / The shear stres; in the weld at the d rain' pipe,- I taffle interface

  • was determined ty applyin6 the r

17,S. load' is the drain pipe to the did. The shear strest is: Q )e ... -l'. \\ e / .' s,* . :w. - V 4.- I* '. g,. 3 g w g .e . s.. A..

r 7 .q w tr COMDUOTION ENGINEERING. INC. *

  • W3 888 ENGLNE ERING DeFANTMeNT. CM ATTAN000 A. IENN.

ggggy op _ 71670

  1. ~ #4~ '7 -

J'-v' 3, eg,,, e o4T ay )~g'9' _ 3,3eme n *t 1Nren: ""av w ir'3A W, -syh s

sgeg oarg f

j l ~ e. t l '.. E 3 + d d E J'E.A.V. SEPARATOR DECK STRUCTURAE. AMAT Y.il2 = C. Component Stresses i .l ( 1 t. Ehear of train Pipe Welds (Cont'd) '1 Prece'rties of a;' SCH to Pipe p i d ' = '7 981. in. - do = S.625 in., i a 2 ,I =.72.49 in A = 5,399.!.r, r x ' Area of Weld at Baffle Interface. \\ \\ A =~r "(B.625) (. 5 ) (.,707 ) = 9..'58 in" s ,- g Force in Fire 'from AN3YS) ( 4 s Fx =.18 5,5~7 lbs. ' = 19 5 577 kips .t 7 = b.19 5. 577 = 19. 37'h X 16.' (.T Su k= 2 5. 2 ksi a A 9 58 'for SA-T6-GB k* i s. t

v. ' 'Separa te r Deck the separator deck.%es In *.he finite element model,

' ', t r,ea t ed a's a p e rf o ra t e d p la t e8.- 'The =ax1=u= htre h%. ~.$ [.W94 g W. f '

  • i'.s,the penter,of.!}.he~I '.$ ', '.' ' '. #

due. v.SSE. loads occured at ,.. t -.. c. +- (g. p 1 ?

r...,-

". st. e- %.f. ,1 Sksi-9 O',7f,3u ' M. N.k dsfor SA-Si5,-GR70 ?, s ., #r d. .e '(Membidtfe 4, Bending') '. s r b = q.oe ksi < 1 5 (o 7.s j,='73 5g. ~ u t'rdr sA-515-GR70 .v+P m 1*s. ,x ~

  • ' 'T

' ff.. '4, ,.g,. .g'.'. .e .. v.. .w ,e 4- .b e. w. ~.

s. J.

3 ..p [.

3 1 -7s. ..* 3COMSUSTtOM ENGINEERING. INC Nuessa

  • l ' '--

) 3 x; w 'O> sNmNasntNe oePAmmeNT. CNAr7ANooGA. fgNN. ggggr op t h,,fg h. 'N70

  1. AT gM o 4r g.__

S Aff CN% E S O " : EWS ATOC f ' i c7 sex oars ' a r *- ogscwymn m ~ l 4. ' ~ .l 7 1 Pb f 11. MStS

  • SSE STEAM SEPARATOR DECK STRUCTtJRAL Af A;YS"3

) l ? l 0 Opcoonent Stresses (Cont'd) I vi. Sh roud The sembrarie stress in the shroud is formed pri-d mar 117 by a ec=pressive hoop stgess and =eridional )

  • b e

stress. The maximum membrane stress in the shroud g ] oc' cured be. tween the drali pipe to shroud junctures. j A.,kI'ie hTSLB t SSE stress 'is; compared to fr ulted allow-- 3, { ..ab le.s : j n I -( Memb rant ) i J = 38. 2 kai < ' A7 Su = 49 0 kst for.5A*-515-GR70 P O l !^ 1 s ( ) vii. Orain Tank { ~' j, 'i. .i,.,,. 5-J NV *he drain tank is sub,jected to an inward pgssure...- \\'i and the load from the drain pipes. This condition ' produces a =egbrane stress which is primarily a loca'1. membrand attess and is compargble to P t allowable. l (Membrane) s P; = -31.02 tsi < l.'5 (0 ; 7 Su ) '- M. 8 k si fo r sA-36 .Y W+' v111'.-; 'Opper' SuNport I,ug s Thef,, ,,rator. deck is constr'a14d at eight, l'ocations arourti' the circumfe r'ence of the dtek..Since the. atMidtstral mode 1Gof this analysis is'.a 60 ' pod el, and' symme t ry i s cont rolling c riterian,,the. uppe r support lugs wers' structurally represented 's ong a 0 l'ug pe,r 60 segment.,.This restraint existed at'the outer circumference of the deck in a, vertical platn' g, drawn through the drain pipe. The const diht relative j jy to the overall structure reprepent 'some conservatism. 'q 7 From previous accident analysis it has,been dbjermined 37 )b ,i 4.~.N ) I that.the 'ldg will fsi1, however, this failure dll not -k l , critically et.fect* the tubes or structQts.;nl* ' '- l T g ., ? . y y ,.Y. . /,' a j . l i

I' irg , a 0 .s . 4 4 m. a --.a.-- .h--,. e i i . e.i .( . : 6. w 4 0 4, s'

  • e e
  1. 4 l

'm een ( .sh J $ $ 4= I f 'I ....t (d C / % 4'

  • d-.f '
  • M 's

<[4 &Li I f-e t = ' ' s, o s a i '"a 1 s e j i e f 1 e

  • i o

eg 4 l&h ~_ e T t .l e q c.Mpe rod 5.< - -s e ' 's + t

i e

l l l /l k% !' / / 6 l 1 < <l e ~*'r I

44 s A..

&. ' 7:

  • 3 ~ i m 4 '

'l s .'/ j.: g 3 .e. ,f,,' a ~.. c, ,~ i g d. '9 s D 8* / ). //*/ e s s 3 9 '

  • 0, O $ j f A
  • Se @, ' '

"'*"======'* y l/ .l l& 9 A.. 9** d) %y n. t 's e T 9 e p e i ( P 's.. 9 0 e. . 140)ah e g

  • s' j

e 1, t. o i / 4 y e. bOf I 3 =, a1 ,g S 4 4.vr, ;, t.

== g .s 'w N4h ,g ./ 4,/ t

  • /

.s. e t 1 0 4 ,e e a--h e F' l. \\ e s l -raj,$'. e i_ .s = s. ..,, s;. n. g-C s ,., 4, e, / g e e e ) g 8 + e e e fe 4 p e .e ,g, 's t / e., e

  • %l f

e e s -3 e r e 4 ) 8e g' \\ s *. g 0 - _. A - - _ -. _ ~.

w,. w- ' '. /)N,.7/3. . V 04 'id.-- 6&/ / 66.* 'MCl?ft i t i i. 1 .n. s. g .. s.. 'c '.~ .g,., - . 4' - e ~ s g ,. a.oMQ<m.g DA C 4 ... ".s%. '. '#.' i k i e s g ,.v. % ~d 1 2pw'Ml M.N:#. 'V. we =.w M Q.,M ^. Y'.\\.[ m. k. Y, v :.,,. v m... N.% % Q*:'.:.'l. l., ,. ' y Q/ ~<!, & ' ' i/ u '. G. y t y k-.. .g %,s,.,. 4l..f:.*,. *Ze --J'. ~g 9,' % w' ?yss c Q~<_y.w .' N N t 't s /.%** s @Ri%.W,i. YNW?' McG.j, iD. Y<T.' ~y % \\ I e e .y.,,.~ y 9 3 3 p m

z. m m L 4,, M.. m,j -

/ -- r g m,. w-v..~ .y 9 t ( d '~ .i t

  • w f

,N ; s,- -i, - /./ A ,s At A ~* .7 [' M /O / W M ] V.x..-./ \\ j/ ' ' k\\{ /n-* /. "-, .:ui.vbi..w /% p f / 5 %.v % ^ i 9l ;,\\ ' v. ~, - -I j'/ Mst.' \\; ,' \\ '. .lf = . N,,

  • .\\ \\-

'l / I.g g i .j, / - .. j g \\' l< l,( 'I.V. x

.is[

\\, l.?.,lj i \\ /; .~ -if \\ .,u + ,j i g, ,.A j 'O .\\ e. \\\\"\\,7 g- , ~r#00D i ./ k1 + e \\ ,,s.f a . p. J e 4 ~ ...V 1 e + + D 0 D'. 3 M' ef.

  • s.

I 8 .g, O s g I p g,,. . t1 J. ...,e, v$, . '. 's '. n s - L 1.M - 4 6 o

m .4 ) .c e s. I - 9 '~ ^ w ,, $z( t ' ,5 n. CQ N, ENG EEP@G C. 'R ' 2( J ~ t & a WHeitgtmqmgr carApween cmarr4p A; 7 sum,. ,, 'M ay 38 4 w' ..c, s n.c ,..y 0 ,~ N.pAmes.N6. 7ID70' .?. ' I ' '.,b ., a - 8Y hrf. v 0 47 'd e.,cnMing SAN ONOFRE.S' TEAM UEUEPIid8.h'.c.asxo47 I. t' s.,.. t ..,,,ge .. r.... ,4 w,, c. e e j s. e. ,.f.% q N 4 j?$ .)Q q, Q.r:3 l.'.. . o ;;f[, .10. TU$E PLUGGIMG CRITERIA C h,,. g. w .' The variations of st'ress intensitj vithtube wall d6- \\p d , gradati'o.n f'br the.' four tub. es which s' re analyzed fo r .p s. -LOCA.+ SSE and for the,bi6 hest stressed tube with'respe.ct D',4.'I 'to MSLB + SSE conside' rations were calculated. - These'styess '$j ' ntensities were' compared to 'allowgb.les in &de'r to de-i p termine mini =um acceptable tube' wall, thicknesses. s Y, The' =a'ximum.streis intensities broduce& by LCCA + 'c:' .f.f.. " loadings for, tubes from tut >e~ r.ows '49c 82,114 and 147 p versus tubd wall degradation aire shown in Figure F.1. 4 i' Maximum,s'tres,s intensity in the highest' stressed tube t

1 (tute row 23) due~ to MSLB + SSE loadings is also shopn
2. '5
  • as 'a f unc tipo

'o'f., tub e wall d egradation. The allowable

  • 't re s s int dsity ' taking int o a c c ount *.he va ria tf on in..

i s yN shape factor is plotted, versu's. thbe wall' degradation. ). Y5 q~ These plots along with the'IGC Staff Criteria. were used W ' to deter =ine the tube plugging criteria. u.o t ,Qs,l The tube, p, lugging, criteria is shown on Fd.gure F. 2. ,.i ( Tubes.in tube. rows 1 through 91 are control. led by the

w..

,N ' ' NRC Staff CrihEis with arj all6wable. ' degradation of i N.: 64%..'The remaining tube / rows are contro.l. led by. ,r*- .p, y LOCA + SSE considerations.. ' The crit'E,ria:'for. tube. rows s y W a92.through.lh74 was estab'lished by p2ntting the allow-d.'s;. able degndatiorfs based cp LCCA + SSE' for the fodr., tube e k' rows '(49; 82,1, ell $,nd 147) and fitting the curve through

d..f(r.\\

them. degrade. 50% 'oi.! aio re.- 'The =ajord ty'of tiubes have a'n allow-It should'be hoted that 98.6% of' the tubes ' ray

  • ;f r

3.f.'. able, degradation:of 6 %., ,.e .A ' fatigue analy.. sis c't a degraded tube is' given in Appendix cc: H. The maximum usag'e factor for a. 64% degraded, tube was f conserva tively. deterhin'ed to bei U io..f y .%.y. 1 t. ,s .q.h'.., 9,' ~. . <.f N.. 3 '3 1 ".. . E..,. ' e ' ',S." 1 M. =

s..e.3 1,

.n.. o

4..

g:.., 5%4 s.% c,. 3, g .g.. g ~.

    • {

. M'*' 8 6 y g c ;d,.as i ,e ( y{ a"u ' [.c. , yr '.g g's.W Mr.. ( . v. y

.4' 4..

-p;p ' r o.i y., - yT,.:' $d[ ;.'g'S. s , +,.,. j.:Q.'W [c: ,. 7,. ; :, ,, ' t. .i i \\. _ l,. p [, =. t *'v.. >.Q.. ._g, , d,

...' j). di '

h

-j a

  • %[p r-s 4.

n. & '- % N

  • W*,*WS*

e '%"3r-- e ,"P" 't 7 ' W. "" " ' ' ' ' " ' '". J,,9,.T,,_,, ' Y*I.h

  • S- ;~ #.

m a

s

'/;(; ~ M.'ipN / r I 4 a S' ~~, *? D ;'"i c.. S 7>ys3 J s'dL ffl3

g. M.$ r
. WJ5$' -

7[sfd r l h. 4i / s s~ i,~',.WY Tudd f ,6,#3 4 / a.thM 2 < c HT. - / e C A O //4 G 7Yg M 3M .'YTM (,c.f.[, ; . t. l = r /A ~~ dE Aes)iMo L M.546._._ j , M2d Zht.N.2 ~ W 'y/d f.i. ~7 <w.... t l 3St!. M-T'tri 4 .'u.,f

27 I

am (,, _._.t.__._.._...... V saa 5'2*3&'E&,,

,
eoic

,C4 + I PACtM 3 L ,._a' s s J.' ,5~i&=.:0 27ym/:s 7~/ a L - SJ - S~ 7-2. ? ,~,*' S: ;= ;, & u-- t I 4 t a i e a e e o g e I e e s Re .,) lQ 4 f" = i-6 b-T e n % p

  • e c.

9 a h y ( h . p s....

  • )

A =.c"; .~'. W. - s .._._m____

iggggggggggg ,~ g %s g _gg g,g j,y $ M,g k S Q _@ g @w %s g, gggy my dd j "] H v g ~M M i. a kp p yf[j a gg,p

y n.

y ", 7 ? h,h $a. u; gf g. T 9, ,v ~ ^ yg p$d sw gBR d .i . k g? ypgMag@w? ' [ A ~ c gA ~3 ~ isp c %a v. g$ h h h h ' e { F @ h; h; j [ } ,$ d h,q gqq

q y,y 43 y

y v j k i h ( & 3 8 @ _g N P,R,, *, ? D C, e -.n t ww,wwpgp &' . 44, y.,g,gg % -w nnsw 8 44 namp 4APEm%mspe,&y *b)hPMA aP 1 A Nb ~g gg y j 4 t ag@w@gq M~ykM, q.. R< gG%,w@G t..!N* 's,.y Vl#$e@a N s r w s ^v ~3 ~'~ 4  % ? D.14,,ge A a + n El} %e 2

6. M. h.d,k,2.64;cMf 4...

p m,% c.: . p@.y@ffd; d +. g s 1< .:? NMv j, . r %,A a 9 3 y., -,4,-4.,,,4(f.,ha,kyf.n@'y p j h i? a $.'h f Ab fo;dM&. _. g <.+: ?!fp & J f k. fs ~,! ' ?f -ly.h ..,g f g 3 a va ~[ Am v y: 9 3pk E

a. ;

Jh, y E a n,f s Mpp y+{, %ybp%*~w_y ,4 Eg g w.:o. s'j' $m e n;'Nlief. ? :,.,qy%n d..m

s. m n.

d %gsp'f.a t m t-i Qb: JOhk S)i&U?50 f 4Yh 'JU n ' l. . ap}, s ww 2 + e.x a ~ u. $yf fIhjf@ k kfk5 $ i ,a,vpp.,s , _+ q._~, _. w

._nf e

v& 9 fn:(...m y. m9'4 m;,;Rg; .';2,".. g m ;,gv-_,, . Q :' 4 )o f t.;s p W'[. Q + y ;,, r W 4a* W< .So3 ln +. : Ql. ;,y 'yr e ;ig,:,w f,q. :g.v s n ';.yn r, ,y n yp

._.y

. p'.p.t 4 ,t.- ,,, p s e. 4.+- c ~ t,r s. -4 .b

zC,r o. it ;.3,.' G.,, f

. Q a '? i n. ,s,.y' . :;,y,i. ;-) y. 5 y.i ,, e c. o; ;>. :, A.. s-a -( 3. 5h h s [- (hf 'f ./, .x

t ., ; d. 4 s h o 3, i i e '.J v..- 6fi 4 q 4

4 y-c,..

,,?,,,. ,s. 1 l 4

m..

.rl i 5 4(. i ,g,=.e 4 ..s v. 1 q',;

e.. 3, s

m 2 e >.st .g. y, ..9.J .s Op 'u ,rm i b ;'N a a s -/ > ',I#., N, ' ' ; ) h O2, g 4*-, 3 y. s [,f ( e 1 ^ (,. ", f [. b 3 q . a/ k; n'1 ? PP;M) ~',M. I ;'. 't l 's .. nye r 6&.,, i r r n 1, o.. %.. g. ;m ' '.t. 3 %. + i* w:p'y u A s

,4. -

eu m. ') .. n$W.M] 9 k .[.' fr , f / 7, ". + .. e-3.. ~.. q. 'L' .w .s ' b y [ f. f 6 [ ' k '., nf 1. ,. _w. e4,-.. ( i J ] - 1 [ ',. [.'I.+%. v{ ,, [ ...L n,.

s

- m t .p- ,,g w Me W,f + ) 't ^ ^. ..- 3 ow 4 .' ATTACHMENT 4 .o..v.yr,gP:s , s .e. & w ' J :<.b.h .d, h h h MSLB LONDING 3 g s- ,8 Q 2 .e. .r,- ..2; ,.O, w :eT,UBE DEGRADATION LIMITS + v..... i n v. y e ,,c 8 j W' N. Met

x...

+ p' s: -wt. u, < *.,,x u s4 y, ) e u .y n w 9; ~o' ?,, ,', g m .. m&; s-yw,,. y.',4 ~, SOURCE: A. SAN ONOFRE STEAM GENERATOR PIPE BREAK ACCIDENT-ANALYSIS 4 ,i Mg@ .. e - o 1CENC 1,327 t y COMBU3 TION ENGINEERING INC. W CHATTANOOGA, TN. 1.u.- i t. i 7 1 s .,,- e -+ .B. " LIMIT LOADS FOR TUBES UNDER INTERNAL PRESSURE, BENDING MONENT, v at + AXI AL FORCE, AND TORSION", BY STOKEY,,PETERSON, AND WU,NDER; ' ~ n tNUC. ENG. AND DESIGN: '4(1966)193-201 1 . 1-4 9 r J 2. k"< t. 1 4 7 '{'" L, l M + i,..n 4[(/, -. a, f ~ ~ 1 p A (g, y

  1. s a

j 1 x ,,.', j r $ i 6"' h,

  1. .'I u,

5 i

  • a A

g/~ ' ' - (* ~;;-_, mys .t e 3 f.g i. ~y,,+ = 6 A c w I' -t 9 .,t: 1 t. i 4" .h.

  1. t A.

g ( ' '.8 y. y.7 y,, g g,, ,i * ' -4 7 a ...i 'j,(.4 J.'Jc; dQ54 v.,r gp, Q'.. ,s c 3 '1.. J g,- g w# ,r.,.. ,>.,t, 6 ,,,.n. s ..e, .* i o -j

  • <g j:

n'l' A 3 (' : ej y p '.r4*g.f5 ~..% re. u. i,.,, 1 r a 4.. /i,, + <g< ,m., ,F ,i.t 4 'x'

p..[m.$y>& '.w,
x. <

~ x r.,/,* ( h 3.T' a q % 4.<,,.w.,. wa.a., n,.,.n.A. n r., r x + s r,p ,- - %%,,. m.sp w; h +.

  • ? 2 w
s, yguw n o g, m...,.

i

2 "Q.;

~ y ?.. *, i < h/s

  1. Zi

,3 \\t.,,, c.~* ',i _ ~ s 4 ...+ -e sys W ~- ',, < >., i 6 i r, 6 ,.i,., r F \\.'.) e 5 y i i. I -g y l E s4'. .g s'% j[ p. h( W T s 4 - . f. j j '- - - P r y:, n' - _j 1 g ,,v--. c, s _.O tg . Q f #[".[ tl'[ {f[}' ' ' i .L e-4 T i ) 4.',y,.[',,., f .,g ' f:, y [.', Y f 4. m 6t. p.} %,~,'t,g y m ig l 7.6, n y* 4 e.%$ m 4 ,. 3. i, 4 -,4;< q, 4 f- & v k J-n..,,, 4 !-t s,. ( Q % > [h.,.j'[%' s.'[ Q 5 U.) Q, 3d T* - q'im.pygy g # %.wo, u, e-

  • s e

f o 3, g .( ., - m vr n.3s v

  • r=,

7ga .,.V ' ; is .se p /

  1. ^=

4 v 7 /h ~ c ,I ,e .,,s l{ J (-<.

  • 2tw= %; ~.

/g 9 su f4' ,s m ~ ~ ' *

  • W.
e. e...

WT l y e x a,. q w j 9f t 7" r i y a v 4 Q R ~ s .e .g Q ~ "l k ( k' s 4 4 jj g.- O m f .s 'P= .D l. g i i t . n. ~ I :./ . %> -' ~% I# m' tu 4 k 4 q i r. u .a t k w L r. Q \\ w ~2'> n y g 5 g i ~ x 3 N N g u

  • e

't W I N ~ N,' g .. kn { Q' %n s 6' \\ 3 . Q p. N .o T u s \\ q )' ,e q w? n 9 \\ 3 [ ' h *' u 7, D 'V,, n t f. % M, 4,,, \\ .Q y \\ ~ a Q y \\ \\ \\ Q t.. C Q w .u .. e z .~ D 4 \\ / N se ~ e { \\ [ T (l, . J-

  • s o

I l j F ,,,9 / 1 e / C. '. 9 e C o~ g o ,o e, c z .x w s + g / h, l/ ~ isx ~ A.usuh.uw ss.nzs .'j*- j, a y?d .l. /'

.-b 8UCLEAR ENGINEERING AND DESIGN 4 (1964) 183-201. NORTH-HOLLAND PUB 1JSHING COMP.. AMSTERDAM 8P LIMIT LOADS FOR TUBES UNDER INTERNAL PRESSURE, BENDING MOMENT, AXIAL FORCE AND TORSION

  • W.F.IrICKEY Department of Mechanical Engtnaering, Cornette institute of Tecinology, Pittsbumh, Pennsylsasnia.. USA

,8 D.B.PETERSON and R. A.WUNDER Bettis Atomic Poaver Laboratory 1, Pittsbumh, Pennsylsenia, USA Received 18 May 1966 is 1 Under certain simplifying assumptions as commonly made in design practice, expressions are de-rived for the loads to cause complete yielding of thin and thick-walled tubes under internal pressure, bending moment, axial force and torque. The analyses have been done, using the Treses yield criterion. on the basis of statically admissible stress distributions, which give conservative aveults. Results are presented as cherts which give the limit loads for a wide range of conditions. t

1. INTRODUCTION g

under pressure, axial load, and torque. There has been much woYk done by many investigators ~' l In the design of structures, it sometimes is on the behavior of thick walled cylinders sub-desirable to know the combination of loads that jected to pressure, both with and without axial l wsl cause complete yielding of a structural ele-loads, and for various kinds of materials. While j men *. For many shapes and combinations of ap-the results presented here do not represent an plied forces, the load necessary to cause com-exact answer to the problem, they are conserva-4 plete yielding at a section is considerably larger tive agd should be useful for design purposes. than the load that will initiate yielding. A well-It can be shown [3] that the loads to cause l known example is a beam with a rectangular complete yielding, when determined by a stati-(A. 3 cross section, for which the bending moment to cally admissible stress field, represent a lower { cause comolete yielding is, with perfect plastic bound of the actual loads to cause yleiding. A g malcrial, fifty percent greater than the moment statically admissible field is a set of stresses to initiate yielding. It is sometimes permissible that satisfies the following conditions: i j' to design a structural element so that it may (1) They are in internal equilibrium. y1cid partially under the maximum load to which (2) They are in equilibrium with the external J tt may be subjected, if it is expected that this loads. j maximum load will occur only avery small num-(3) At all points in the body the stresses are 1 ber of times during its lifetime. such that they form a combination that is a j in this paper the loads to cause the complete lower than or equal to a set of stresses that yielding o \\ pressure,f tubes under combinations of internal will cause yielding of the material. bending moment, axial force and tor-The solutions presented are based on stress dis-51on are found. Such tubes approximate pipes tributions which, wsth the exception of the radial ( tarrying steam or water under pressure, when stresses, that will be discussed later, satisfy g suh)ceted to mechanical loads. Hill and Siebel [1] these conditions. haw discussed the combined bending and twist-It will be assumed that the material is rigid-l 5N ni thm tubes ig the plastic range. Hodge and plastle, without strain hardening, its deformation l Panarelli [2] havd analyzed cylindrical shells loading diagram being as shown in flg.1. The 5, i Tresca, or maximum shear stress, theory of l , i

  • AntMed in T. A. J accer, yieldmg wl!! be applied.

iA I Operated l'or the U.S.A.E.t* b3 wounghouse Eier. The analysis is carried out for thin-walled f b w corporation. and thick-walled tubes. In both, the loading is as t,

194 W. F.STOKEY D. B. PETEIGON and R. A. WLt(DEht 'O)

(

STRESS Sc Sy r N l h I l y y STRAIN ' rig.1. Load deformation curve for a rigid-plastic ma-Fig. 2. Zoads appiled to tube. 3 terial without etnin hardening. 18 18 Sm e

5. Eleanec 4-3, TENSILE Rllh0N St TENSILE REC 40s j

~ and thic f 8 j 4 . For thG 8 Sm g Tonding ~ j . f the max 0 S. X Se k 0" Of YiG P S tha -)p, ic Z COMPRESSIVE REG.ON Z C 5, t 3, COMPRESSIVE REGION S* d F2g. 3. Stress distribution assumed to exist in thin-Fig. 4. ltress dirtritntion assumed to exist in thick-walled tubes. walled tubes. re S is @ y equation t shown in flg. 2, where the tube is subjected to section ir.to two zonas, the upper being in nne internal pressure p, an axial force N, a bending state of stress, and the lower in a second state. _t, g 3 S moment M, and a twisting moment T. For the Again it is assumed that the shear stress and the y thin-walled tube, the stress distribution at com-circumferential stress are uniforrn. While these pleto yielding is assumed to be as shown in flg. 3. assumptions are not exact, they do represent a 04 ~ The shear stress Ss that results from the torque set of stresses which are in equilibrium, except is considered to be uniform. In the upper part of for the radial stress, with the extern.s! loads, the tube, abe, one state of stress exists, the and thus are statically admissible. As in,the ~ stresses being, in addition to Sse Sm the circum-thira walled tube, the axial stresses are S and t 04 ferential membrane stress, the radial stress, Se in tlw upper and lower zones, respectively. ~ which is discussed later, and Sg the axial stress Fce both the thin and thick-walled cylinders which is tensile. In the lower part cf the tube, the radial stress has been assumed to be equal adc, the stresses are the same, except that the to {p throughout, in the determination of the "3 axial stress is S which is compressive. If the yield conditions. This is, of course, not true. e circumferential stress Sm is assumed to have a since the stress varies frotn p at the inner wall [ fixed value, pr/t, t%tn thi problem is reduced to to atmospheric pressure at the outer wall. In g two parameters: $ the angle defining the sepa-practical situations, when the thickness of the at ration between the ten.rre snd compressive NN wall is'small compared with the tube radius, torque. The bending moment M, and the longitu- ~.the radial stress is small compared to the other zones, and Ss, the shear stress caused by the swesses. Therefore, the effect of the radial ~ dinalload N, can each be expressed in terms of stress on the yielding cd the interial is small. S,S and 9. Note that the force N includes both The assumption is equivalent to one that is com-t e the axial load caused by the pressure, and the conly made in the design of pipes. mechanicalload, but these can be reactly sepa-rated. O~ For thick walled tubes., a similar assumption

2. STRESSES N TUBES Lo is made about the state of stress, as shown in I

flg. 4. The angle e defines, at the inner radius, a Under the assumptions that have been made, l horizontal line which is assumed to dirle'e the the values of S and Se that exist in both the thin-t I l i 1 j

hfli ' N 4 gl .c 12MrI IDAD6 FOR TUBE 0 UNDER INTERNAL PRE 85URE 195,5 s, s. s. s. k Se o s, s. s, f ..e i 8m si S* S* s* @ 'Y' h sg Q) sg p,, .j t rig. s. Element of material in tension and its Mohr's Fig. 6. Element of material in compression and its pct,E circle. Mohr's circle, wal'ed and thick-walled tubes at yield will be the where S = 1 - p/2S. y same. For the tensile region, an element and its For any value of Sm/Sy, corresponding values l of Ss/ and S /Sy can be detumined. Curves ,' corresponding Mohr's circle are shown in fig. 5. t .x yor the maximum shear stress criterion, the are pl ed in flg. 7 for Sm/S " }, } and j dd y cundition of yielding, if S is algebraically great-for p/S = 0 and 0.10. 2 y l er than -sp, is: For the compressive region, the state 'of stress and the Mohr's circle are shown in fig. 6 sytyg S a i) = f(S + S )* [5(S

  • S )}
  • Ss * $# " S.

When S2 is algebraically smaller. than -lp, a 'l t t m t m y gg,) conditloh that always exists if Sc la negative, the - condition of yleiding is:

t

.l' where S is the yield stress in simple ter.sion. y j This equation reduces to: t

  • $8 *

(2) m " {$(Sm *8c y { {_S2,g(g /8 l*(I /8 m y s y This reduces to: ( b "' Y S /S = S /8 e y m y* I *II8 /S ) s y reprc j ES {

tum, i

4 g i 3 i i ernel s,.8/4 s /s,

  • Us s rsy a 3/4 u

u St l sectivs r y \\,' 'a- [ / / d cytt j ,/ l ,s* to be l, s tion of' j ,s ,/ f s' / s' e e inntr / [// er wn!! } j nets at ,j ,s tube at to the e u i / al is a f// 08 .h:t is l f naciAt. sintss = 0 _ ma0 ai. sincss. -per t' 0 LO 0.9 0,s 07 06 0.5 04 0.3 02 Cl g ,stes, e th$ Ils T 3 /S versus 4'f for tensile region. s y y m aies-a

194 W. F.STOKEY. D. B. PETERSON and R. A. WUNDER 05 ,a i i a i 1.0 Se/Syel/4 i

0. 4

/ g Sw/Syal/2 ~ 08 f Y / ~ R [ Ses/Sy* 3/4 g / ) \\ / x O2 g / 7 0.4 0.1 02 - 0 - 0.3 -a7 -c4 -0.5 -04 -03 -0.2 - 08 0 Sc/Sy d O Fig. 8. 5,/S versus S /S for compression region. -Os, y e y Curves of Ss/Sy versus Se/S y = r sin 9 and dA = tr di. Sm/S = ), } and j, in flg. 8. y are plotted for y p g J' S r sin t trdi + [ S r sin

  • tv d(

M=2 t e ~# j 3. T10N-WALLED TUBES g cfy**% 8 + Next, expressions are found for M/Mu and I N/Nu for the thin-walled tubes. The subscript u refers to the load to cause connplete yielding un. 2 = 2tr cos # (Sg -S ) - (6<1 c der the specified load acting alone. Referring to N' I *

  • I"*

The load for cotuplete yielding under bending oc. Ce N = 2rt{(}w - 0)S + (k' + 8)S } t c y = 2rt{}s(S + S ) - 8(S

  • S )} -

(3) t c t c TENSILE 0.6 REGaON 3 The load for complete yielding, Nu, occurs when 5

  1. = -fr and S = S :

8 t y a4 Nu = 2rrfS. (4) y a f Combining eqs. (3) and (4) and simplifying gives: a2 -l N N 1 S S g Sg S 17; g(4 + g) ;(; 4)- t e e (5) d Referring again to fig. 9, the bending moment 0 is found as follows: -as gg,og l REG 60N M = f Sy dA, j a rig s. c cry or thin-nit.d tubes. l V> 4

i IDHT I4 ADS FOR TUBE 8 UNDER DGERNAL PRE 88URE i 80 ~ a a e s a e 4 a i M gg T/Tv an-s 04 T/T e 0. 2-u g T/Tu'O.h 04 / / T/Tv=0.6/ \\ 02 i / \\ l 0 0 -08 -06 -04 -02 0 0.2 04 06 08 0.0 l ys (s. NINu = fr d9, Fig.10a. Limit loads for S /S = j and gS = 0. m y y S r sin t tr e I sin t dt ' if 80 e i i i i e i i i AS N cader bending os M ~ ::::::x /A/ ~ ~ / r 0, i [ T/7 0.4 g,4 9 t /// T/Tu.o.s/ K / s \\ s g I e e i e i - 0. s - 0.6 - 0.4 -02 0 0.2 0.4 06 Ce 1.0 I () stes0N

  1. /#u Fig.10b.1.Jmit loads for S /S = { and gS = 0.1,

<alled tubes. 3 m y y

J 198 W. F.STOKEY. D. B. PETERSON and R. A. WUNDER .n E T/ Tu = 0.4 0.8 [/ T/Ty*C N r '""'" N T, 7,. 0,3 o, r < ~ j / / N 3 / \\,( ~ 0.2 g f I I I I 0 -08 -06 - 0. 4 - 0.2 0 02 04 06 0.0 10 NINu Fig.11a. Limit loads for Sm/S = l and p/S = 0. y y ,~ (,.,; i i i i i i 5 0e T/Tu 0-a 2 0.6 T/Tu 0.2-a / f O.4 l /

=

MN 0.2 0 -08 -06 -04 -02 0 02 Q4 0.6 Os .0 N/Ny Fig.11b. Lit-it loads for Sm/3y = } and p/Sy = 0.1. / s ,l

IDUT IAAD6 TOR TURE8 UNDER IN'!ERNAL PRESSURE gw k 1.0 4 4;. 4

  • 0.0
0. 8 P
  • 0. 5 0.6
  1. N T/Tye 0.4 I

3 T/Tu' T/ Tu'O L. T/Tu 0.2% / 0.4 a /7 V \\ O T 0.2 l i / / \\ \\ k 'E ki ki i t i e O 8 '" 4 0 N - 0. 8 -06 - 0.4 - 0.2 0

0. 2 04 06 0.8 1.0 Fig.12a.14mit loads for Sm/S
  • l and gS = 0.

y y I 4 I 6 1 ( l 4 l l - g Os T/Ty eO 4 7---T/ T

  • 0.6 y

gg .. T/ Tu' 0* s 2 7/ Ty* 0.23

  • h,,

y \\k ~ ~ ~ k-! l , /, / \\ \\~ J -'O 08 -06 -04 -02 0 0.2 04 0.6 08 40 } y y NIN u Fig.12b. Limit loads for Sm/S,g = l and p/S = 0.1. y m.. n

y h 200 W. r.STOKEY, D. B.PETERSON and R. A.WUNDER I. cuts when 8 = 0 and S " -Se

  • S :

Performing t e integration, simplifying, and t y ij factoring out leads to: l' M " 4ff S * (7) u y 1 -( I A=r }r 1-( sin 0 t Combining eqs. (G) and (7) gives: (8) - sin-1 +( sine [1-sin 6]I I 2 y =2 ( 2 l Because the shear stress is assumed to be

  • f rg l*

\\ j uniforrn, T/Tu " Ss/fy = 2Ss/S, since, for the y Tresca criterion, the shear stress at yielding, r, is half the tensile yield stress, S. Curves The area of the tube in axial compression is: y y and 12, for Sm/S "1,are plotted in figs.10,11} and }, for various val-Ac"'o I-( of M/M versus N/N u y

  • A*

t ues of T/Tu The longitudinal load to cause complete yielding I

4. THICK-WALLED TUBES is:

2-in flg.13, where e is the argie, measured at the -I*( S* For thick-walled tubes the geometry is shown N"" u y A S /S +A 8 /8 inner radius, to the separation line between the g tt y cc y (9) tensile and compressive zones. The axial force = ar [1-(rg/r )2) 2 u is: o e nding moment for me thick-waned N = f S dA

  • tube, using the same expressions for dA, is, g

( when lyl < rg: s-- When lyj < rg an element of area is dA m e dy c = 6 - a = /(r. y g. /(q y ). When - M = [Sy dA 2 2 2 where lyl > r), dA = bdy = /(rj -y')dy. The area of the tube that is under axial tension is, when lyl < rg. . rg = 2Sg!f y(/r,.y2 /r.7 )gy 2 2 2 A = j (r,2. y ) - 2 /q,gn, (/r,. y - /rf - f)dy. "l 'h 8 2 2 2 t 7 + f y lr3 -/ dy 0 a ft y + 2S ;[ g sin 8 y(/y2.g /,p.y ) dy ,r 2 e o TENsit.E -rg REGoN vg y/r.72 2 dy -dy + o 1 "i Performing the integration, simplifying, and \\Y

  • A y

gr g n V

r. A factoring out r,3 leads to'

'==-- o -~Q: } N r sin 0)&I i g -b M = j (S

  • S I ' ',1 ~

N t c y, -(Q)' tI-sin,3q. 2 COMPRE5$nON h ultimata motDent, when 8 = 0 sad S = -Se = ; t Fig.13. Geometry of thick-walled tubes. = S is: y .s, I

i a i l ) / LD4!T IDADB FOR TUBE 8 UNDER INTERNAL PRE 8BURE sol

5. CONCLUSION mplifying,

-1 * (rg 3 Mu " $8yo The curvec for thin-walled tubes are nearly the same as those for thick-wslled tubes with I 1.( fo E 2 (S rg/ro = 0.8. Since the latter is similar to the M dimessions of fairly heavy pipe, the curves u. y g.(r1 sin #)1I(r should be valid for use in estimating the loads to 3 2 I. 2 j (1 - sin gj cause complete yielding for the usual pipe sizes. B# {1 - in pj 70 (10) x r 3 1-REFERENCES Because of the stress distribution that has [1] R. Hill and M. P. L.81ebel. On combined bending and twisting of thin tubes in the plastic range, Phil. been assunned, T/T = 2Ss/Sy as was the case u for thin-walled tubes. Values of M/Mu and N/Nu (2) Jr.a J.Panarelli. Plastic analysis of L. A* [ have been calculated for rg/r = 0.8. The result-cylindrical shells under pressure, axial load and t o 61[ ing curves are indistinguishable from the ones torque. Proceedings of the Eighth Midwestern I for thin-walled tubes when plotted to the scale Mechanics Conference (1963). used in figs.10,11 and 12. (3] P.G.Hodge Jr., Plastic analysis of structures T (McGraw-Hill Book Comp.. Inc.1959) p. 201, h* k(-, \\ le thick-walled ma for dA, is, A-r')ny f M amplifying, and (1 - sin pj } 2 j e -Sc.k @a I

A ..K btL ~7R - r g_ wM 'mAFAfserkw *ihrk'EvilpeienE%. ,%gm SMUNf .} Q-p :s x39

,
g#.: -

5,3,, ~ 1 - g 3 . s ..s 5 Y f . j *. 4 ,,.? 3 .4..,., \\ i,

7..

s-6, AIt.0w/BI) gBISS/Ds.ird.illEATION .w.... 'c The. basis for the.allowabN s(rosse, 'used in th4s 5: s analysis.,14 SJption III c( the ASIG, Code,for Nuclear.

[f Power Plant Components.

Yklues (or Sm, yield stren6th 3,- And ultima *te s'trength at opemting tengperaturef are, taken direc.try from the appregirfa*'te tables in the Code.. A. Allowable Stresses for Tubes e, At the maximum operating ' temperature of 6110F tne ultimate strength fpr the SB-163 Inconel tubir.g is Su =.80.0 ksi. From Appendix F to sectdon III the me& Fa n stress allewable for the faulted conditions e conside.ed in this report.is: 9 ex Sme,3 - o. 7 s, u ( or Smemb s 56.o kai 4 1 ( i The membrane p3us bending stre,ss a11owable is de-veloped by applying a chape, factor for an annular section. This shape factor is 6'iven.bf: s 16 r r* - r[ e 3r re - rf Qememb

e. plus bending allowable is Sme'mb + bend
  • I S

s

memb, j

and for 'a tube of nominal dimensions 3memt + bend " 75 9 E31

  • l 1* ehould be neced that for dedraderd se t: n.i ' h e shape factor decreases thereby reducing the :te:nbrane -

~ plus bending all'owable. .j. (.)aj - + .g ._. 2._ _ r.... t./.. u

p. /..e

.o.4., ag ,... f..*c . t v. Ib. g ......e . '. g' i ,***i,'- I., ".

  • I

,,s h '. e.', .1 C*, 4 Q.~... 5 4. . ', g.3,.."'. J[ G IS. v*p. : .w k.g. 4 '?.).%..' h$b*f* ' F. ge 'p ' e. w 'g q a .a, .....p. 8 .V N.;,. W

  • .. ' < ? ?

.<.w n.- 4 '[ I h, g, f x..

w..e NN*
  • a ar

+*. 's e o E' a ~ g-S:'e 2 -o ' - m.A 4 4-e,. ss +,s y,g O vg g .o,,,... w y&. y c.- o w. ~ .c w x ur

a.. a.

=..,..$.. 2 ~ s. ,t. ~ o. i- ,; y s r 2-o - g o. ,o. o z A.._. e.1 g. n; . 'b '. ' :2 t v b b 7 m e .a .a a w,g ,g. - l ', ' .a .., 'y. 6, e .O f o-,,*'s* = ..,\\ O 3, i

3

,,.S -% G,, 8;y .= <f sc a e e - C.t,. N e .M- .s; f-- C w. rs r** .,a nt

  • e r

.T.; g.

  • ~

f* a. y -y e .5 O., ai C .,,, ~ .g g .s ?, i-x D gl Oh. :0 l ~ A' 7* 4 :;; ' i f,, 5 Q- - %d' <, C, c, r: m q,- o s Q '- y;1. =

' - o E

2 . n . = 0 c o s 2

  • 1 e.

s

  • g V'

h ,1 p w

  • yl7l r*

. t.. ~ ct; I .0 I L' ti, L' g,, g E ^# n' d w w^ w ' :f.d e w A 1 O. ,,.E = = .'.s .** G M Z j.,. i.e. O g 5 s ,e* c. ... T. /.=. = t m a a,_ 't /. t w g 5 x s e-e. v w g = .m e -g. -O s., e. g r"- C. O C , y, ,ar

  • ==

N aC .F. t-c 3 o .c f e E 4 s

  • o.

's g C: .r y [/ D, IN O O ,O ,.ar1 .s y, el a n v. = n ai u, u u 9 .4 a w a v. .q. 1 = O _m ~. m .+ q,,. .= 4em $ 's - uma S y ~- e;. a.s.~ ~~~ ~ .m, _ m w ac.e., .~ "t ,tre* V. e.c; + oKc a ..m w w s. s p'g ' g. c ,.. ;.,.,g,,,, .g.,: c .3.. gg. ; a. ~,

'tY, Wk;h'4 l. _.,. ' '.*j ; " $h. p s, ~ 'e' .4;. '. y l. ' '...' v '- *.$ ^ h .f.. .f f.j ). M:. 0 g k .,J b b, l. ' l. j.Q, it 's W,. 'Y g [ C,. kg Q, o g .;) **O!**'$,*.',h :^ t (( i s. ,?.*'..., ~ ! W 3, 3 ' h, l' g e, zy, ur ' '.*'.+;.. 4p f. i 1.* ',4. / g. ' 'l i. (a g p.,, ,1 : .,e

yk,A \\. ' ' f ' !* * *.,'s p. K
3..n. 4 g'

g. /.N...-.. e 1 ~ ~,, M' .,'f,. ns N : n.,. ...e T, '

  • f'..

. i : bym..at;. ..5., VS .n -.' E. Q < pl '# k eyA,, qf. ' *. '.y. _, t 4 ..:.,'I.', ,. ' f;,*l - . f g y '% , ' ' q g&( ,- n , k hs, -., o n. e- ..t v.;. a .A Y %' ' O 'dq',.( g *: " ", ( E;.

  • J 3

b ',,,, ~ y; ,8: ['t.g.. - i ,"q. j ' ,*f .n - qga :* .-[.". i at .., /,. 4, '...* t, . \\. sh *.,', '. f s, n l g i ^ ')'.. ', - ', .,',l".,. 6 NW !.@g,,kf. Y ;([.. ' : ' ;..:,';.1. . =. .f.;,g p. ;;..,,. ^, .e - n. f ! ' g.4 e, g '.: -j g [,- < i ),g.l;.. z..

  • s.%

x. ' ?.',[ ] I

e..

,1 .y,- y- ,y K.g p9 5.: .3 r. s. i. -.... - <. s ' Md /;(e %'4 '.,C.[h, f sa, - A.., '.i. % v; f.,y...,3 .,r g.,' * { 5:$)'f,,,.Q,eQ,.[

^.

1, '.;b,

. e [. '

(*,- ,f., 1 .(,. ,s. ^ 4%.', wi

  • 3 ;s.
f..,

,g ( m ', #p ; J,'. j ',. ' '.g - ',,;,1 j { r y ..U .r. ' r .?., s g. iN M. f + +, N. p,. @ '44. ?. ',,, b Y b h %..i o u. h'ce,' ' g%. ; L'. ao_gl;a.(u_qQ,14g,. w.C'-. W.i,,, L.- Ej-70.% - 6 , @ig. <,,,6 g

u...

? G:.fpi?.' '.. 7: .c :... '.. J, u..';@fy.:. ntfl,%l.'. Q, ; (.4c}.. ;. p. ..@* %,f 4: gf. .;MY.qy%y. - { b 7,". ,;,. ",a 4

st..

Q. b.,s:!, y[,,? : bl ? ~. q:

g f.

>..g .c ' 4n., %n. cw, ~. n, 1 c.c. e

W y:A g %uQpp,;r <1%' %WT 2:/ W '_% M d. ,ai .e m ny p g m ,y 4 v n-rg ',r ,a y, %x m, + t w ;m

n. < w.,

^ ~ .., om l \\ f l 7 b 7,- 3- [ h ib,. 3 #uf 'k. h: h ,o g 4 .g, i yyWgh gy@g gMagp M k p g qvgdp %Wigypc;;#gg e) r%gnpq hh hhkhl Mg %qQy[d@m g &gm N %yykL)p%m kNg.gA4 <, p%'W&' y $x ..A 31 p %g A n;. -'>y ~e pg' +. A, Q ;hyb J y x c AW & %u m&q.sg%p%.y ' W4 . WA4W 6 1py JhgtW % w$gpg.A,ghgu p79 gATTACHMEN g 4u 4, w r.,' M M y; w Nhpqqn gg my-W c 2 p9 xy ~ n T N [# M@M MdM kp,;' g g4 g p %dhMMMh2f;@ggMMd MM$@N$%e$yW 4R y ^ M M WWP#NM@s %mpll he M $ h fy M Wr$ WM

W.

yLBL0C.A9LO I m M y w9 3AD NG W W g4 , yy%%m$g$g$yy gsgMM b%$ a%nAmfwa %Wu %W@9pN#es%ghgM N e yW y n w ~m SAN ' ONOFRE ' STEAM ' GENERATOR ;P I PE BREAK ACC I DENT +: ANALYS I S ggn DJ 500RCE: w y g g 3 g,CENC-1327. 7 g g g g g gy g g g g g g g c e a: - y pg:n w i ggp3 ,avam m bu k h k T w a y: Knw wwwvM 3 "e,z;p y n m4mg ~p a g 4y %y p q% pM p& y%g e g. @ M M &ghpp g e& w; g ug%;ge g

  • s m

f vW-AM 4% Q r m e & d g# COMBUST 10NLENGINEERING lNCr W D U L N W @x hm M 6MMq idsg"%mp4Wphd L C W, ~ WF hp,q@ddMhkCHATTANOOGA,5TND$[M@hihM< 4 NY pp% m a p w$m j e y g 5 m: y&g p %p%g p, m n pw e #n y m.g q %pappm 9 e 4n:jn qc gg pp m p , > w w& g & q & v m e % p & e d a } y } p q w9 g 9 gqp,pg ~ nnqua y py ~ m ew;4u d g ppgy g g ygg fkg%;$gw&p~aggypf ]g a[ h f f 77 gyg;g gn w s N$ mnymykm s M w M p g A m%g g6,4 4., w. %%9

  • g use %

r r wghwha. e%w%am+& me,4Qgy,4;4fyyggeg Qm,ggyQ g w v y,g%ma%n W gf m n W pg gg w j 7 f@ g gD%$;,nl ^$60 e 1. ye?Q &g s p l p ,O Mj,G $c W-W9 N Md Md hhg

w. ugnapm ny m %$MpN

, a n y w &@s m,io.,c,v a u %w y, q &bpQQ" N QQ?sfQ,menrgqm s a g wn a gp p . a :h w,&a w w w ,p mw nw r Q fM$sf f f.y f ? _ pr Q y Q y Q g >;g 7 4 y ;pi K Q Q , m Mw e%m,e#pgigh#$y@hh h pw % . 1, ( % e,gpgues , %s q ~, a . g% h M h k@%.,.,,, m _ ,ywm p ~p q e w p w yeL;V g[q in NMk[p,jt J.y?Q46t# q,g @hMh M gpgggg ? h i jd g b y g w e$ $ g e 3 MyJ y. M [.)y bph %w pp m yn-A@V@y;gygh %ghMn @m%ng jj w$1nwiy+Qmhqpg mm gNn gap p ps %m - m e. w a p a g, p g%eg% a s:a gap s g y -(, Mix M M L $we 9;w wi&gangppi T "w', wm cm.v pd e t.. t mpA w w yn a m @Jg 1%ga @gjQgegggggg., g gg L q, ag MM @MM@&n g&g MWW@W m&$( g L gh ' ; um ag W WNW %wmp esen wnm Mdm&W%&W8%@@$g&@ A @ @s % MWMm _ N N _$$ M MM _b d _b E N I, _W sb M M M M 6 d M M

  • I _M E -

- _D M _D # $$ hS M NC M

2-3 .,.rr L' I uessan-COMOUGTION ENGINGERINO. IN N v,' cNG ANr Enthe D2P AAtTMINT. Cha7TAMcQ6a. ggggy op _ , Y'6 cMamet NO.71b70 k il'i@ S' ~ U" ~ 70 eY l 3 RAM ONorRE STPAQ ' cuge,oxyg SWW ev 'l ( ' O.. y. os*T"N .e. .m. ( J j l' ( g .i 1. UfTRODUCTION i l. l Th[ purpose of ths arplysis is.to peinohstrate t;he stru:r-t' ural adequacy of the Southp. California Edison, San f Onofre Unit No. 2 st8am' generator tubes and. tube supports when* the un4t is subjected to a hypothetical large pipe b reak accide'nt. Both combined LOCA.l l' SSE (Safe Shutdown E, Loss. of Frimary Cocl-3 arthquake) and MSLB l ant A:cidgnt) + a ? ( (Main Steam Line ' Break) + SSE loadi.ngs were Ocnsidered I in independent evaluati~ons. In addition,. ap,propriate' 1 . safety *margids with regard to differential pressures

  • j were maintained during nor: cal operation and a:cident j

'oonditions. 4 ] = \\ ( "'he LCCA 4 SSE arfalysis considers stresses produced by l , various hydraul.1 : phenomena associated witn rapid " flow j throu6h the. tubes, the dynamic response due to tr.e 1=- puls$.v'e load occurring at the. pipe break opening, safe l

  • i andtdown earthquke induced acc'elerations.: and differef.-

l (', tial p redsure.' Stresters resul ing, hem these loadings 4' I \\.1 are combined elastically in enserva'tive mar.ner and evaluated against an allowable.from Appen, dix 7, Je tion l III of the ASME Code. Because of the. variation :.n. tube i j g* support confi6urstior., four representative tubes were i r l analyzed. The MSb + SSE s.nalysi.s I f ', [g ' f s e.:enda r/ nsiders tne effe: flos through the tube bundle and.across tne separator 'isg deck at accident ficw rates. Se tubes intera:t with crie .t i' ano her according to their relattve stiff.g. esses, connec-F tions and support arrange =ents. Loadings due to impulse at the pipe bregk 6pening, safe shutdewn ea rtr. quake in-duced pccelernt bns,i and differential pre'ssures are a,lso considered. <. /. y An evaluatipn of thi. lifferedtial pressures wni:n exist 4 during norati operatior1 *and accident conditicts 'is con-du'eted per Q.e, :riteria set forth by the :i?.0 sta.if. l .. For completeness, thq bundle "is,co,nsidered Ter vitratory, j* excitation when loaded by the higher 'than normal secondary S flow' rates'due to a steam 1.tne rupture accident concition. i s t ~. ~. ;. r( ~ .V ~ 'i. g.:.,.. e., $, s .,w.

  • b '#

_Q s= A m

s.. m '[ COMGUST!ON ENGINEGR$kGilNC. 'h%53 0 '",H - 2 _ s N p e s m m o s c ramin c wr. - ..,_ m vangvJ, p't yL.7a op- [., g, - 71k. f(4 ' " ' ~

9) I

,y ~' MAT m e s m v m m n,

ce seg o4rs' W4 Me,

a J , os,cwr,93 9 ..).' .y... . j. ~ t s a 2.

SUMMARY

AND ! CON'CLUSIdNS It was found that co id.erable bending,,sitress could be brc%.c to bear 41n he bend regi,oh during a conbined I.CCA rSSE accid However,.it was f3rty estab-lished that very'little bending would e'xist at the tcp i eggerate or lower into the bundle. Stresses were cal-culated in the tube with greatest lerygth extending g l above its uppermost eggerate support for the various ; vertical strip

  • support c6n. figurations.

That is, tube" row 49 is the representatid fo' tub'e rows with but r one vertical strip supporting it; while tube row 62 has three, tube few lik has five, and tiube rew 1-7 is supported 'by seven vertical strips. The maximum st re s s intensities for these tube rows during a gostulated LOCA + SSE event,were calculated to be: 5 4 Tube Row Stress Intensity 'Msi -3 .f 49 17.2,g, "~~~ r ez 23.7 a 114 29 9 147 38.2 .For a combineddSI.3 + 53E accident..the high,stz;es s re-giori in tne tube bundle is in. tne 'c'ross 'f1'ow region.

The worst case tube faw for 9.S~ B + S4E cons'iders,tions s

.gwas found to be rey 25"with a =aximum stress intensity 1 of. 22. 4 ksi. Tube erow 25 is th,4 shortest tube r:w that ,is. secured by vertical strips a.nd, the vertical =cvement of the bundle during a postulated MSLB + SSE a::ident l t causes the stress to' be highest in this relatively stiff i ,g (.. tube. S ? Stressa' s Uere caletilated for' tubes sith< thinned walls f:r - 'F both EOCA.+ SSE and MSLS + SSE. ' These 3, tresses were, $c=- pared to appropriate allowables ih or4tr t'e establish a t " tube plugging :riteria". The NR; Staffs Criteria for e Mini =um AccepWble Tube Wall Thickness was also invoked. 4 i The plugging

  • criteria so d'eter ined indic4tes that in 4..,' %,r

r d?" the s'traight region a4 tubes are ' allowed to degrace { 64%,of, the' nominal tube wall. thickness. The 6 4 ,t "'l* h .. %Y._,. .e u.'.'- ' W J.,Q.. s' , + = [_,** u 6. o o .*'*0 a

I '[I-COMOUSTION ENGINUgMIN3,1Ny.. 'O 'Lt - ,}, 30~313 %,.e e,. p.,as.m. y.,._27e- , g'g f- ,f w .y o, Icaf 7S 5 av g cdnoa teo;

  • U6E

),-, CM A b ~5 '*2 ~ 77 AN #'ITO N 'STdAM'#'UITEATON *, / SV ,h .osscmp1noN j-1 n ? o; 2.

SUMMARY

AND CONCLUSIONS (Cont 8d) 3 g al.lowable degradation al'so, applies in the bend region i g for tubes *.from tube rows 1 through 91. V ging criteria is presanted graptitc'alIy. The tybe plug-in Figure 1,. For tubes from tube rows 92 through P'[,the graph must -l. be., read.in orQer to det' ermine allowable tube wa13'de, gradation. It should b'e acted that 98.65 of.the tubei g j =ay degrade 50% or more. That is, tube mws 1 through 190, which nu=ber 9223 tubes of. the total of 9650, are allowed, such degradation. The majority of tubes are permitted to' degrade 64%. f s p. f 60 \\. (m. y I N. 4 7Q ' ' ~ ' Staff Criter$a\\ 'N' gO s Q, ~ ~ ~~~~ o.$3 -.... c d's., % g +> N.' I bt.

  • So.

) o + - n w v c. go . Acceptable Region .G M A 1 30' o a w a + ( a ' 1b Y. ~ ,M e o c 20 40 60 '80 100 120' 140 .I Tube Row Number T F. A + y B... 4 g.. ,.l FIGURE 1.** T.FBE PI.UGGING CRITERIA l . e, ? \\- '.~ s

  • g

.~ *hs .y ty,s. ,t ~. ~v, v il '.,yr. - 3 J A 1.44'- '.. ,W hs - v

~~. ~;3., ,i, ' p'. 't,. * * (,. ' ' ', , {' .j .i.

  • > m W...usTION E, NGIMSEMING. IAC.'.i...*., m a n * " -

o y ;~$ steemammens osamerpswr.cmarreooe49 ppm, p=..,. :-; g g ~ sweer pr e.l

    • p..

v-gag '78 - p.... Qy.. 4 CHAN&s)Mlh DATE SY ~ ' 04'S dRIPTio gg OM CHECK OATE b-4 .$ ~ .'6 .s x.w 7

SUMMARY

ANDCONCLUTdNS(Cont'd) t / 2. ~ ./ A. fatigue a'nalysis for a' degi1Lded.' tube wds 'p' rformed. / e p The =aximum usag'e. factor foi's 64% degTaded tube was ' con-servatively de.termined to be t..= O[ /, i The upper portion o,f the, shroud and,the st h separa;or 'an MS'.3 e 3 2 I deck we.re analyzed te, insure that, duri accident these components would not. fall in such a manner so as to dama6e the. tube bun'dle. Th'e faulted-allowables were met % a'll re61cns within the* sepa ra-l tor-shroud structure with the exception of the b race:; i tetween the drain pipes, compressive loads 'in the p'ipe I t races were found toA6tceed the.pr.edi:ted bu.:klir.6 ':ad for these members [ Hecce, the analysis was perrcrmec ~ -ithout the braces and the stresses were found to be within the allowable limits. ' 4 A. i t 4 > d,' l., t .t,. i ~. g a f 9 z' y 4 / s

  • .4 y

f f 8 9 q t' d g 'k 4 3- . fa, / ( 9 l l f. b;' p 7., ' ' i

=

J s m g . b'!k; s. s o '. ;.,..a, e

{; . ww. . e..,, . _.. g

v..

m n... p ' ' Q,f 'E L .. -.~ ,a '*'g / Q.. a g, a

q. r l

E E R,f M S.I N C..' t - 4."ess.we e n ^u- ~~ COMBUSTION ENel C \\ 6 I anoissumsa espantmaur.cweranossa.rsm suesy o, 1 v! u ! l,' 71670 -aj-s 1 SY cwAnos NO; f yArt-9;f. og se',, mon SAN ONOFEE STMM GENERATOR cdsexoArs s/ 2 p sy h h. d fa"-. a ..g .,. w.. 4 4 i ~ g ,. y ) l ~ + DEVELOPMENT'0F. HYDRAULIC LCADING 1.i A..'INTRODUNT'W' ? j' o In this section the hydraulic load,ing on steam srenerator internals for.two indepe:v:!ent hypothetical a. 1 dent con-di.tions is dev. eloped. Separa.te models were developed for a complete ' rupture of the =ain steam.line at :t.4e j r y .nofzle (MSG), and a loss of pr10&Fy Occlan: %: ident

1. ~

( LCCA).. In addition, so=e. details of the mete.cdology ~ y 2 , employed and cheir, justification are in.cluded. Appli, ".* 4 f. cation of th'e results presented herein to structural a ' calculations.*wi11 be discussed in 'later ' sections. h', .3, E h'.ollowing the' pc'stdia;;ed MS'3 *.he, tvo-phast se::r.da.ry i e fluid in the $eneratdr accelerates towards the break { a rea, initiating j Differential pire. a loss,gt secondary = ass an:i cresscre. ( ssure loadicg' restilts f rom tr.e relative '~ l h. thtes at'which' fl:w secele dtps'through the: a;tailabla T . flow areas a :c*rdir.g to tned k:ical resistante. Fu. ex - l s e' l t q '? ample,- ).

  • ng across + ne st.roud depends en tne, ryiative i

.M.. depress icn of tr..4cwntoiter and evapora::i reg'icns. i. esining subecoled ligi A r' main's 7, 9 The pri syste: 00: e , int 4pt dtpr ng a* MSLB, i s \\

  • 1 i

in centrast, a 'CCA is,' character,1 zed by rapid fepres j suri:atien of the.subcooled li juid within tne, primary . tubing while the two-phas's secondary flow is cirtual'y uhaffec ted,durinj; / the f Tr.e ffr.ite p'repagation spee'd and h"ne o. inte' rest..*iti g.reITectices cf tne ra r e'- fronet6e,wa're which moves,'througn try. primary f,luid awacy faction .Ar -break location cause differ.entig' ' pressure ') l 2 hi ,,..,w -dhtn the, primary tubing..

  • t

? Both MSG' and LOCA tqodels have,b.e'en analytec,usi.:*-6 'the / ,,NCEFLASH 4A co=puterprggramT Time dependent ber.avior b[ paths modelled' a re pro 11.ded,by.this prc.jsan. * ::. -?i i. of the f141d. s' tate and 'f1'ow ra.te in the node s.W.d f1< ret-T MSI.B :acdel,

  • the vast majority of detiil ha s tv-n devoted
  1. d.'

.to the steam Genera' tor spo'ndary., fluid.. Yhe. *.CG model [ p; devotes almost all detail to the v61ume of prica ry t fluidy. .+ o. o

  1. ' s'.

a l.. t

s. J a

e t .4 k..; j)., --P, 1 L. w

  • r*

.= ..e ,.s..v gb a, ' X. 4-i l

m. r- . j+., e so. ~) f.' y sw ' Q--' y. a. 9 l p. - c' ; ~' y.'. : il ^~ - " ~ ~ ~ ~ CCI4tilVSTION ENGINEEMifMLlNp.pb .. y' '. s.. u Nuvesad S.0- M I im 2, a Nown s mlNo o s P ARTM a tfr. CHATTANCook. TE hN.. 7 3Hgg7 op 5 \\ b I I SY M 71670 l T oATE .cuinsu NO. I d, -[ osscnieTi,oM '

  • UN NM O E-oATE SY CH).
  • h e.%

.' ~ j J .i b j. / / 4 s s /.* f 4 rEVEf@ MENT dF!NYDRAULIC I4AOING N' a j, l:. ' d8. A. INTRODUCTION (Cont'd)' i CSFLASH kA 1s a 'one dimensional, two phase transient ~ thermal-hydraulic code that contains its own water t property t' ables. Models are developed-by dividihg h[ 1 I +he desired 6eometry ini;o nodes and cenn.ectin6 these s. ,8 by flowp.aths. 3e solution procedes by numeri:sily i, inte6ratiin6 the momentu.s. equation applied to flewpaths !g ' d.,, 1 while.edintainin6 =a s.s. and. ene rgy ba**.ance s in the ncde s. ' e. Heat transfer between the primary and second,ary fluids. is also chleulated', / 5; w. I "'he LEFLA2H'--A compute r program used in this analysis ,f ,f 'Referer.te 13 ) it a version of that ccde app roved 'c;, One NRO.for use.in performin$ loss of coo?ar.

alcula-('

tiens" '". 'if fe redce s be tween, the two ::ces'inclade N i' input-outpu'; for.at, maximum number of ncdes ar.d ficw. paths pe rmit ted, and details.of reactor.T.edellin,j;. o Singe, the rea::or is.not needed in the F'* -ad-t, 4.. while its impsc. is.:inical even in the '.07A ana'yzis as shown belcw in lection C.iv.a Onese, df(erenges had 3 ) no effect en results. A direct compa rd,s tr. 'c f :ne - ac codes for a blowdown model. involvin6 no' t. eat O rsns fe r = f shows' results to be in e'xcellent agre. ament ' 5 i 6 J- he coden used for the p re sent. analysi s al'. ws a r,utt e'r. {' of user-selected options.. Ord" "'." l ow 'T.: d e '. s,i n-2, ('S clude the Moedy, Henry-Fauske, and modifiec sen,ry-Eauske/ Moody" correlations. Fiic', ion factsrs ~a.y'be i ~ i Qie,r spycified, or. cede calculated to c:nform te ';he [- j 5 ,1 jn(tial conditipns. The fric, tion facto,r: ms.y be either cofistant or Reynolds Number dependent ducir.f -.e :a u - ,,t - ~ a lation. Available two-phase multiplibr: ins'.ude tnese, of Martin.e$.1-Nelsch and Thom. The momentu f'.:x te rm. ~ which accounts for 'the pressure

  • drop resultir.; f rc s

spatial-changes in density and v,eloci ty, 04:. be seie..- / N,( ,,.tivel.y, included in the sbmentdT.,equatien. T '.na l ',.. bqth homogeneous (mixqd.pnase) and neterggenedus E.;.s:'j. 1 separated phasei nodes may be cnosen, i. j. 4

[,

d' f k kr. : u c . o > g.i ' w,. ~ .i-4 **:,'.E t.- ~ %I.! . >.o e O[ e P .&2 .c

p.y.. 'x c..- Mc

.COMOUOTION ENCI tN 4,tN 4.j,,3. * - sadmeHut

,J 3 3,.,'. .. 7,. - s 4 }., ', ansa 2a::mo espamusw.cMarrAmocea.is4eN.E. ".- Wess? 15 " o s' h[ 71I70' N ,. exames no. ears - av n g. mM.

  • M N ONern.E WP1tA M orb A uf y', M 'DATu I/ " I 4 ' t[

. m.. e ?. - l. s /- e Y I< g k e j Dr*ELO? MENT 'OF 'MYDRALT.!C LCADING r \\ s.p. '5 ~ i b 's B. MAIN STEAMI.INE BREAK g v. Main Steamline 5 teak Re#alts .(, Cont ' d ) j ' a -5 Therefore, this condit16n was chosen for structursi I 'evalcation. Figgrps *B.5 througif B.9 show the :AL me " i plots of aP .s, AFa3-s, ape.to, App and App,, r,espec ti.ely.at 155 power load conditior$,. p' 5 ' h i [ / ": c-OF-CCCMN"q-A CCT EEN* 2. .J 4-i. ,( i 1. Hydraulic Model

  • The the'rbal-hydraulic conditd.ons in the p ri:A ry system during the loss-of-coolant.%ccident also were generated usin6 CFFLASH 1A.

Th'e4asic input da.a 3 a4 were developed for the Final Safety Analysis Repert required. for the origina]. plant operating license. I The =odel of :the :omplete. Nuclear Steact Supply O ste: 'da j 'NSSS) used in the Final Safety Analysis is sno Figure B.lE The FMSH m'odel of a stes,m generstor ~ developed for tt.e pre.se'nt analysis is shown in Figur.e' l ~ B.11 where additional noding,was added to pre.ide , i more refined tube modelling in'that steam generator I nearer the clocstion of the pipe break. The purpose.. I y. cf this gnal'ysip is, to obta,in the assure leading on the primary tubing ir;;the be re61on of the I i-6eners,or resu$ ting f rc:p the' far cti,on wa've wnich j,, propagates away from the' peak location. I i f t.was. postulated that the pressure.jiifferentials in e tube regj,on within a steam gederator would not f 1 E end !iignifiegntly o'rt.mqp'e,.k).ingh. model, k a f.:rther,*: 'detaili far f rom { -/p p },1s. region. ther'efqrar,Mu?lp .the; 4 i 7,, A g $5e4;i ffcipg1 l/ )Trhjadp/)he :;,pmber of nodes b't. i effprt ce-g g g ,, g. _ M.1 cnoujL ya' he 'results., Thii 'a "si fm .l. andr. su tantiad sa Ar.gA reewlt.dtf ' omp6te'r noe.g'i'he FMSidg$el is snowr/in 't 4' g // i - ; h' *r p, gure%.12..The Npti od sist of.Iha,

  • d d/

+ ..j pumps'Y 4 foreing pri d to,rce.reaeto F,.M ,, > pipt.kiy ,y. . * * * *

  • l ' ' ' % " " *.

' 3 1 } }." M 'ij Q [y g g*y - ,, _ r=-

r, y.,. 9 3

.y ,.3.., q i - 4 '" COM O USTION. E NGINE E RING. INC, ;. P8We81-W k i'.[ st+cmesm3.o ou'eurrucper aturramoedlL%gMeer , shpy .o,_ 59

  • M 7M" d

.t:3.. mars' 4 k(fk ,cxames y.

of 1"' essemenoce

. SAN ONOFRE STvut nurFEATM . casen,oAta Sb 'M sv .. h.... s 1 x,. z i s ?*. j l j1 r-4 4 DEVELOPMENT OF HYERAULIO LCADING .i., 9 i s 2. LOSS-OF-COOIANT-ACCIDENT l i a: 5 g-t i. Hydraulic Model,'(Cond d)'- ~ ~ rekilmoing the, pres'aurizer and cto r ffow c. ann 1s. ' ""he optimi.ze4 model was made 'to significantly l -i si:aplify modelling and rdduce co::fputer time wi~hout -l sacrificing ' ths accuracy of.the res,ilts.

n this
i. l

/ way the number.s of' nodes and floypaths.were reduced plj g' from 47 to 56 to 27 and 30, respectively. The come i t 1 parable computer time was reduced from 'p.: :PU - - ) i 4econds to 15.1 CPU seconds. j s p Only tube row 49 kas analyzed dsing-both tP.e. original i and op+;1mized models. Nodalfhai;ien in. the FLNSH l model of the' steam generator for tube rois other l ~ ~ than.kO. is. shown ilb. Figure 3.13'. The' nu:.ber of nodes I there was increased to account for the 1crger' length (,.,' r. 4 . of the ott;er tube rows analyzed. I[ 11." Condi:1'ons Analyzed W y ij The los's-o'f-coolent-accident ( LCCA i s.r.u,1ysea we re j; . perfor:;ed. for.va rious postulated prima ry icap pipe

j breitks and sd/e ral tube rows,. These operating condi-j f

tions were used for the analyses y ,M s. Primary flow ra:tk = 74 x. los ibm /hr I Prima ry. side '1f.let. tempe.rature = 61,1.1'C,7 l l1 0 j Pr1=ary' side outlet temperature = 553 F i Primhry s4'de, operating @ressure = '225c paia e }.j s ., g e. s 9.,. 3 ( 511 %hese' conditions ate.discussend in detail in, Se,;t'icn 7 s o ' n.. V). %[ ' , c

  • g y *.,

t Q .k 3 i? i .,1 '/ 111..Mssumptikns .d' (

  1. b

. ;.. c 4a. Two-p.. L.. e , v. A)n[, I.A4. ; ~ .m hase ]fressure-w. trop were calculated 1st ' .g 3 M g.4. .g first traing a specified Ii'qukd-phase f riptic'ri {,f y ,I.., 4 factgr payd on 4he 'NIfody. diagram and tgeq / n '"j.. ,, :. 5 .3 JLw r. p__ e + p 1... 3 m. .....e... g- .e, ..g i .18('.g tf .J' [ ',I * ' ' $. h ',[ / fet L.,.,.- w, o.. m m

k. Y en:aduwson nuamank.a. mt. . Q; s, 71,? e s-Y-s u e

r. omn r

c eats $, ' '. '. av .h' y..

  • emase see.

716*to ' .s f gy Y 9't ONCFRE S'M.AM '3E'GRATC1 c,ge,w 'ong IlN/7f casem. nox 7 w m. ~;. y i '...2 n i 4 'E'/E* 0FMENT OF HTDRAULIC IDADING q.,2,. i b' C. LOS3 -OF -COCLANT'-ACCCENT, t. k y g g i 4 111. Assumptient*** (Cont' d) ); P I 1 the Thom two-phase multiplier. The sit 618 phase f.riction factofs were cons

  • tant through-out the calculation.c,

{ s s. lj

b. The gomeptum ficx.*~erm was included in all.

') internal flow pathh of 'the steam generator. ') Y Flow;through the break was modelled using c. .N I* the modified Henrf-Fausky/Xoody critical /, I flow cor' relation.- f t 4 s k *

d. I^ discharge coefficient of 0.7 ws,s used'.

i Q M( s

e. Pdssib1'e break 1ccations, brhak aress add a

D\\_ f

  • break opening 01 t s wene @,osen accord.thd 8

k,. , to ec=pany 's*:anda rd s These b reak areas v,.. 23 5 and rupt'.tre' times .tsed for various postu- .1-P lated accident :endit"cns aie tabulat.ed.belpv 4 s. ,' Break Areak.(Per Bregk ' t Type of Break, M osed Surface) Opening,!1:e (fta) .(3,c,) u Cold Leg. 3 a.) Double-Endad' Guillotine 4 909 'O. 0'. 2 b) Slot ' 3.680, 3 0.0051 2 w e' d d. , Hot Laa. I u s l P, 7,&..- a) Col.tble-Ended Guillotine 2.951. 0.01'5' q 5,6.39 o.0075 C ..g Slott. 4;,, y A. 'd:; M.h JL 3 'p g, * +.. y. '. sV,, g. . F. ,,n

  • g r f

.a ',( t ;l. 1, ;. ,v, s' 5,-...*. e, .e ,y .s.- . v. Y,, }.

  • 4 M'

a' .. s.,.

  • s

- + .,,,Y h. ) .Q. j "g.- M-e h; .,, fe"' ' /

  • {.

1,1 V .f I r 1.... 4 c,.. / .e -4 .c. 2 ,.3,. 1 %8' 'fi- ,.,. ( 4 .t, i ,4 y f.,. "y, I.f.. (. ' ' ' al.. 4 y.h..

*.x. 1 i-

M.. COMGUOTION IENGifCNNd. IN.rI.. [J 8" # M. wean 4 . g, alvowcemme sIeswmeWF/CMaT7aMOOGA. QF d.T. wI,.,gggtWY. ' 't-M y- [ oy, j W g, 71670 4 chcmnion SAN ON M 2 ST M 3ENZPM OR 'ow ca any, @di, t i x 1 f l h. "E7tLOPMENT OF HYDRAULIC LCADING i I 5 t C. LOSS-OF-COOLA NT-ACCIDENT i {. .LCCA Ptrametric ' Study iv. 's, 1 4 a. Model Oetimiza. tion .3 i 1 Tube row'u a analyzed for a cold leg, dou'ble-l l j ended gui lotine break to yield detailed results for 4 . the tube row I. This tub ( row was selected by 9 .,j '

  • structural analysts because it is the row ith I

the ler. gest span, which. has only one vertical f I strip support in the cross-ficw region. y., y s

  • 4 a'rubejr w 49 was a6 alt analyzed for old leg, j
  • doubie-ended guillotine b reak wit,h single e; iva-J lent node which si=ulated the reactor vessel, pressurizer, and the other stkam 6'enerator.

.x-cellent agreement between the results for br.e two mod els wa s cb se sved. Maximum pressure drop i i in the^heri:enia'l spa'n of the tube row in tne l 3 j initial, medel was 36.9 psi whereas this value, i l was 36.5 Ssi in One opt).dned odel. 1 '. The ar.aly's i s qa s pb rf o rmed f or the se.me :a s e a s I P' ~' above with :n*1y tne volume of* the equivalent bulk. node changed'. In this case the' volume of th.} s code wa s 68 5' 5 f t' whereas it was 565. 5 f t* l q / previously. Tnis '<a s don,e to check the ser si-j z tivi.ty of the results to the bulk volume. As l expe.ct ed, tnis para =eter did not sbificar.tly .j A' 7 i affect the* resuJ.,t', p.e pressure Tr$ in"the j

  • f

) horizontal span'of the tube row #a 36.S psi in .j 'e ,thid case whereas this qtiantity was 36. 5 psi in j ,c ~ the previous case; A d 7 An ana,1ysis was' 1).so performe# with a la rge bulk ^' .L ,A 3 node volume of 1371.1 ft to de::enstrate gut j f ty result's were no't sensitive to,the, g.agnitude k i/S' s q$.this,volkme. ' The p ressure.diffe rential... y.' J j ,f p ,i.- .. -. 1, o ~ hs n.s t .y* d

f*'},Q k.

,. e h ** 'q-h 'h

  • u.

3 .Y N. '>.4-g . f._ '*,.f, } d ' '. p 9..i. . _it_',,5} % '<.- y 4: ' ~ s 4'. .} N, s ug s-r 5 n. 3., e. y' L

f 7 p.tw

,y .u ,d b .J. J % 'N h s s1 u. u t..x R'

1 m w,..~ ,,y-- ~. ~ + NG,fQ' . ^}bMEE * 'qCO908USTlON E 6 374 t geemassmens espA . set &TTW 7988s. equat -ok ,,,,,[ 71670 N wys - 6/2d71 sy N #' er ygegynm AAN CNcFD4 aTa.lx cm%L*cR ~ eggeg o47, 1,. n 8 . $.f' +. a l 3 i. l t .r s

a.
  • OT.710FMENT CP'HYDRAUI.IC I.CiADING

'9 i 1 ..j 0.\\ < LOSS-CF-CCOLANT-ACCIEE?fT [ ~ s o iv. LCCA P racetrie Study i l,- i -) a. Model Optimization (Cont'd) g across the horizcntal span of thes bend did not I change =oraphan O.1% 'trem *the previous case. l@ l g a This volume of 137121 f t*,' wa s no t u' ed els e-I s where in the' ar.alysis. Ex;:egt yhere noted, la g g bulk node volu=e of 685 5.ft,was used., ), b. Tube ' Rows ' A'nalyzed .4 The optimized CEF!. ASH mode,1 was modified 'to . f *g si=ulate additional tube rows.c,. Cold leg; O ?, dcuble-ended guillotine break analyses were, perto.ed for tube rowh 49e' rent,ials.in the82,11h an( lth 'r. As e cted, pressurg diffe l bend varied substan-tally f rhe one. tube r,cw r to'anotner tube New. P,esulf s will be. dis-q" c cussed in Secti.:,n I.l. ./ hi g':,';, j', \\ \\s c. Fi.pe Breaks Analyzed / The analyses 'were perfc/rted 'for tube row 11* for various postulated Tipn break acc$ent ccnditions. i The ac,cident conditic/.f analyzed were as folicws: (1)* C61d 4eg dI.uble-ended guillotine break" ~ s (11) Hot leg' d uble-ended ' guillotine b rear 0 e ,(iii) Cold le slot break les,/ slot break i (iv) Hvt -y a e s Maximum pressuye differentials ac ro'ss the hori- . ' ~ 4

.,.I$$ f zorhtal portion of thd primary tube row was 108

^ }S pai for the ep.'d leg double-ended guillotine Y 1 g

4t ! 3..a.-.. r .a. '.,- G s. . < ~ 't~- '* 9, n COMBUST 10N EhetME5NMW.!$#C.'. ~5-s, ro o r..,2 4 - r. w e p", k ' 2 - 't r' M;.4d e, z'] 71670 'k hy, f/ : ey egg,,,,,, m el N MM,IOR cumex oErs I bf 7*'av 4 W 1 I;. ',- og,emmon ~ Q,. / i 2 T<..e,' / 7 j ]_ 17 4,.' 2.. l , 7 g. ~.

  • 4 CEVC.3FRENT CP HYDRAUTJC I4A ING

'M ~ ' i. 5 - l' i 2. LCS S-CF-COCLANT-ACCIDENT

s *
  • s s

y iv. LOCA Farametnic Study 9 o ) l t c. Fice Breaks Analyzed ( CCF d }. p .9 f b reak, and 'L11.6 psi. 'for hot' ).eg; slot;le.g douye - p These presgure Acadings for the hot, break. y ended guil otM brea2 and the coldfleg slot' break were 99 6 and 104.l' psi respectively.' ${ '4 2 d. Sci,ition Ocnvergenc'e = = ,The tide steps used for all analyses except for I Mi this sensitivity study werp:, r, = 3 - ';' ' at = 0.'000 2.5 s ec.) 0.<tK 0.05 sec. 4 4 9 l = 0.00050 sec., g>0,05 ~ 'I g 4 The convergence of the sclution wa's in'vestigated -d by repeating the catalations w6h the @ lcwir.g 'i time steps: (1). as. = 0.0005 sec., 05T50.35 / ^: = 0.001'sec., . t > 0.05 g b '.00'0125.sec 05T.$'0.0 k9 (ii) AT O i 3. *. = 0.00025 sec.l 0.05 < t < '- .10 a = 0.0005 sec. 'T>0.10 ~ s shown in Figure B.14 doubling 'the cal:uistional 4' step size.(. Item 1.2) reduced 'the.peikk ice. ding by -? 2.8%,yhile hplvin6 the'Atep size (Item 13)~;.r.- ( ~ 'stanhard circulation.(It,e= 3 ) '3%' cc=pa red to' the i c'reased the loading by @.ly i* (', .','C e standdyd step 'i size *was therefore justified. . s o .\\ -a,**,n, . Y,, a g A E-a

g - - ~. - -, ~' ' Ege m,,p, u' AN & FFI Tild M9p' cnaca cara if ' 'f 7h.?ev. t%] es,,,,'w No, - can __ s.r -f l V ~. < ,s ? 2 .h7ELCFM.ENT OF HYDRAULIC LOADING w J J. ,j i. i l lc.3C-09 iQO M NT-ACC C ENT e 3 t e l i tv. LOCR Pa ramet ri: S t.:d y, j 1 r 'p' i .s i. l l

e. #$eeak Opening A rea I

{ s 4 v. N 1 ,. 8 j i ' he b reak opening a rea of 3 909 f t was eashd for all cold leg double-ended guillo,ine b resa '.r.al'/ses i j e.x:ept in this sectioh. I s J ( j 4 The sensitivity of the pea:k, pressure.,1cadings' to a . the. break opening a rea was studied by.aking additional, runs vith double-ended cold '.e6 Guil-j l. lotine b r.eak openin6 ared.s cf 'il 2. 45-5 f " and i j i.

11) 7 3639 f t' fo r tub e row 1.14

?he red.-tion" 'f i i i, j of b,reak, opening a rea~by 1005 reduced :.. r peak' f j l Icadin6'dnly.by 1.3% and the increaae in area by j s i l, 5.0;5 increaced.the peak loadi.".g.in rne tend re-y;j t gior, only by 1.4%.. i ,i (' t i ',j f.' reak '; enir.g Ti'".e J ( i l 1 4 l A b reak cpening *;;de o f 0.01 sec..,was '..ce : for ali / ' cold leg dc ; le-ended Su111ottne'.b rear. Ina.y:e.i / l. ,j 3. exdept for. r.is sensitivity study." The effect af / a ngg 1n c read Opening.ti:!e'Nas 3.. die /] j . n6 addi 1:nal runs with t$e b reak cp ining ' times of i1) ]. 'M t ec., ar.d' ( 1'i i 0..y s e :.. f o r j tube row 11-. for ac1d leg double-ende? f aillotine-l ,j i 1 b reak acsi. dent :cndi. ti.pns.. r, i 4 7 i I g f The redu: tion of b/eak openir.; ti er by 1::, in. l b creasefd ne peak., fressure 1 cad'i.n6 in ?.ne t end' region by'less enan 1% wheregs the increase f'- I ' break open1:;g time by 100%. decreasec this ica.i'ne i by 1eas thin 2%. .'i 3 4 a/ o n, z 2 .) 1 a. -n. s s L n m 1 .2 i 1 s ( I l

    • /*

J C y p. A.- a

f... \\-

g A w A.. ..4 .. W,

a:.,.,9 3

i _ _.__ m W '0 1 ' es.

o __ ~_ ,A g e. teto ~ ^ nw m cunas so. ,r Wll 4._. e f f._%, h'",", .' 4 Y N ME Gi!AN GEMEFATCR og n. e,7b s _ -,"y cage,, p rii e ,4 s ',3, ..,*'e,.. l 1 j /.,.. 1 ~ .j I CE.*~E' C oFE.'C GF h*CRAU1'IO LOAMNG. t 4 l ..U

  • .'F -CCO* A.'C -A CCILENT

/ ~ 4 3 v.

J'0A Results *

- s.: The p taf. p r' essure Ibadings Q. '1:,3 i d 4 \\ ^* ~ ' xy a t t. are sunrir.ed i r. g..E.' 3 fo r vyrious coriditicns, he s e.' p r e's du re 1.. s .dif.ecentials a r'e nsed in conjunction with the' f ric-l l icn an% :entr'ifugal; force's b,deternine the.nd: ?r6 . Nydraulir loading (n ~the p ette.ry, tubing in On,e bend l region, of' tde, steer: gene rsto r. 1 9 a 1 Fig 0 re 3.13 s'*ows the optimized F' A.3H e.odel cf Sne 4 p rima ry loop for tube rods other than 9 Figu re s various Oaaes. ',.f ; ;. a is the p.ressure,diffesencial 2.15 *:nrough E. h "show CA2.CdMP pidts of M.; 'ts,f0r { across the horiz:e.:a1 span in :ne,ber.J regfg.. ?.. I, '. ' A and ?>3 are.the. lab sdlute pressure. s. of ?.cded. yl sad 4[ 13. M.: and, M. 3, a re mass flow ra.es, t(. rough fl.r.. 3, patha 10 and.13 The plot 2 of M c and,M;3 are, shewn. t fcr a few cases 5nly. R e s' '. 2 have 'been u::ed :: " cading ci *the p rima ry l ') ' de e:nins :he ne: hyd rauli y tutj..g in -he ber.d region of.'the. steam ge30:9 Or-i rjirefactir. { ~he p re ek.;re dif fe y :nce caused t'y. :r's e '. p wave pr:pagating a.ta; fec .tne. b rearf,' 2e t rj fb r:e - i, ,tapsed by f ri::i:n :e ween c'ne ti;bing. g.nd ' ne a ::e' e r-t V i ating fluid,.ar.d ne :ent;ifugal forces' exer:ed.,ty . t.he fluid 17 nesc-ia :ing the bends, all. od ribute to { this leading. Ef.:n lont ributi,on was, indivi:ua'ly calculated as a f t n r:1on-of. time gro: CFM--k ..ou,tput. The p ressu re loading resul:1ng ',$r*c= :ne. rarefaction. aave wa s esta::lished.,by the 'p resture l 1 '. differenc.e, acting between nodes 11'and '.3.-l he l t'i=e. varying a,ve rage flyid f rittion f'o rce per u.ni: f .le,4th wa s ba ned upon t,he :;a s s ' flow ra t e in the N

c. enter of the horizontat span $!owpath 33' and' i 'i..

_ i ?

  1. given )y 2

F,0th =.2fw v .. I

f..

fr D E .f s a < a 3 p s 3 e, 4 i 5 4 s \\; e

.c
f. ' y,#

f i ,a s s,e. g, y,..

  • .: m.., A.-

. y, ~,. A 9 ., s 3 5. . ~. ~ ~_ m. ~ \\b. D

a

,.l.g s, y, 3, c y, COMDUSTION ENGIN3GNINd. INC. Numets) 39 s -(No.Masres osPARTMaNT. CHATTANCCoA.TkNN. gpggt M 7I6'70 , g4Tig [ k h '

  • I-r o.

y. ganas.so. cwhen gj@al p e FWe y 0 W thM,,,, I EAN McFRE HEAM GENERA MR ,,,e,,,,,, t.,<,. ~ x, .w .N [ l Ar a .y 7 y. ,, y 4 t j i .t e.. l 3 i DE'. ELOF.U.NT OF HYD A'.,CC LOACINFr i

  • ~

v. 'CCA Results ( Cent d.) ' 7; y Here if' the. f riction facter (0.012 f rom the. Moody 8 diagram for a Reynol'd's number of 0.847 x 10 ), w the' = ass flow iate'.per. tube (lbm/seci r v the specific.- I< ~' vo bme'(ft*/lbs) in flowpath 33, and ; the ttte 1.ia-s meter ift). Multiplication, by'the horizontal leng,.h l between t!Ee ascending and. descending tube.1egs I l yields the total friction force, or drhg or that sec-tion Qf tht tube. g. r u I The magnitud4 of t,he horizontal' component of the centrifugal f6rce is given by, r I a . P (f4 1.2'73 w y / c 3a g. .his for'ce was computed for each 900 bend 'and the algeb rai.c sum applied to the tube..' These computa. tiens are summar.,1zett ir..*1ggre 5. 45. The retarding .' force exerted, by the se.cepdirg fluid on.the, nbe is t .r nor, snown.in this figure and An's, not includh4 in .. v.t,his analysis.. Its emission is cons.ervative. + ,P,ressure differentials.1.$ -he bend region between 6 riedes 11 and 13 are shown 1'n Fidures B.24, 3 3'2. ' L 377,'and a.40 for tube row l'la for various postu- . lated accident conditions.' The worst cases in l tenns of triesVp'r# essure differ.entials are the' ;cid leg, double'-en'ded.guil ine break and hot, leg slet, p

s.,

N ' b realc c'onditions '.<.~ corresponding pressure for:e, the fluid ff,1ction, a centrifugal force histcries 7 for these two 'ca'ses.a re 'shown in Figures B. : o.i.nd ~

  • B.771 The algebr"ic sur.mation of these compenent i

f v forces to produce tne ' net LOCA induegd hydraulic loadin6 on the horizontal port}'os of i;rie tuca is o- ~ piso presented in Figures B.46 and.B.47. The ma xi ' I mi:n resSitant ' loadings for cold leg double-ended.~ r e + ? I

  • I guillotine.and hot'
  • leg slot b reak accident contitions ar,e 33.2 and 38,2 lbf..respectj. polys

,'![ 3 v 1 s h.;e -j - c, _. u n

  • ~.

3-i.!

s COMOUSTIO.N ENQlNGERINd. lNC. NUM3sa. - -. ? 2 ,g . y. steCgt ettvG 04 P ARTweNT. CMATTANoo G A. Ts. hep 0 guasT CP, l, a ,..g eg,3ag gg. 7WG un N%-M a s N cGeFRE STE M E EF TOR- .' cxai::x oarr.. ~8 os s em py6oN.. + a, 3 i s ) j. ,t { l 5. DE*IEI.0FXENT OF MEOMAMTCAr.'LCACING 1 i. l( s 1 ll A ' Safe Shutdown Eartriquake (,. tu'r,ing the LOCA evept lateral loading is the leadi,ng

  • of concern..This 1s becauqe the* rarefaction wave pgoduces'sfzable bending =ccents at the uppermost

~ '] '. e6de ra te tub.e *eupports.... H,ence.'the he ri z enthi dire 0-I l' tion is the sig,nific' ant direction for evalpating i !0CA -SSE.. A ikte'ral ' load fattor was applied to l i-each 5f the single tube'.'** ode?s in acecrdar.ce witn { d-the.?rbjec.t $pecific'ation f,o.r ltea: hnerator Assem 3 f..tlies for' San 'Cnofre L' nit No. 2d for design casis l '7ErthWuakecondiric'n. The specification sta es tt:a-t I'." horizontal 'accele ratien' pa rallel tc tne hot le.i; of 4. 1 30 i for ' elevations up to 17.7 375 in:F.es above the Y support skirt flange, and 1.'75 0 for a 6 e', e ra ticris. ,fe r elevatiens.4reate.r than 650. 25 inches above One 4 support skirt flande, and linearly interrelated <3 ' va' lues of ho"izental e. acceleration for intermediate ic' eleva tion s". ~hq lead factors applled to tne single l 1 tube models we re ':cnse rva tive17. take.'f. a s the ;.aximum i 1 values' al,o:ig their ler.6ths. Thera values.kere de.-

  • l ter ined to be:

g i S e 1 r Tube Row Horizontal Acceleration ~'s r \\ i 49 1 54 j e s S2 1 57 3 114 1,.60 - J 147 -1.62 p 4Cy \\

  • @* f2pw load,s in the ve rtical direction.

~ 1,, e postulated MSG ac'cident resuits in significant ' This means q ~, i that determination of the seismic loads in the

  • h

' vertical direction is required. The verticQ 23F I J, fagtor of 2.5 G as defined in the Project cpe ci fi ca-tion

  • wa s applied.. The MSG accident ficw loads are directed up. 'Therefore, the load factor applied te cE *..

g t' e.atructural models was decreased by 1.0 0 to h

  • l

_j.- g account for " dead weight". l ,,4.. - ), t. g i p e 8 /e h l ?. .: -et l :,

  • $bi h ~.'
  • l'

'C +'

..-o. v w.- w. ,m COMOU$TI,ON ENOINEIMING. INC. i Nusvaam ] ( 1 "... sNaissamN3 03mmanstfr.cw477AmoosA.ruier-smaar op .i .cggff go. 7M70 * . cars f-20-70 sy M cascx oats 8T24*II'v MN * *'ICFFE TEAM D'~NEDATM a ,,3cyr,o g i, e up + i a, 6 ? 6, l' 5 "Tv~di.0?MST ' 0F MECMANICA.I., C.CALING i j a S. .L'CCA and M'SLB f= pulse.*Ren ense j t a f = "~ The LOCA ei.b. l. cr,the MSLB accident produces.2.t external.ly a%11ed i= pulse to the steam generator g

aused by the fluid 'escaptng fro = the r.e'spe: t/e loop. 5.e responses of the system to t'hese inpulies i

i ,/ ae,re':alculated egploy'ing the 'STRL*DL :0mpute r.:cde, l f ) (see' Reference 6)/ For LOCA che'strec3es d'.;e 50 6 LMA impulse were, calculated by impo$ing the tima I dependent displacements as deter:1ned abote at t r.e l l upper two egscrate, supports en :ne four single tube i, l' model.s. In the case of an MSLB accide,nt ':n e te r-i - cal' displace =entg,df the tube sheet were i= posed on.,,. l - j l the tube btundle model.

  • t

.l i 1 C.

  • fressure i

A' p+.. ,'ut. ring the

  • 0:'A event a tube is subjected to a

'a [, net,p ressure for":e prcducing an axial load in the ~ ,,, vertial st raight portion of$he tube. The se'cond-ary pressure was assumed to remain at the operating j k ~ /alue of 700 psi' dur*,ng LOCA. A " blow-off" dif f eren tial pressure ce r c ut. time history was -alcu'a:ed,by l taking tne primaiy' pressure f rom the "CE-FL;ird" 're- ' *i 1 ,, su'lts and sub tro: ting the, constant seconda ry p ressure. ~ 3* This net pressun vas converted to a " blow ~eff '. cad which was.*t.pplied to One ANSYS.model.' ), The pressure differential for MSL5 is conservatively l taken, to be 2250 psi. This is based on the opery;.ng i primary press'ure with 'the 4ssumption that tne 4econd.- ] J;' ary pressure has decayed to zero. .ij \\ yp; 7 ( i, ..j i. .'\\ 3 ~ ,j 3 [ a s ~ 6 {- <r ,d e a .a'_. ,~ -w--- ^~

k .f)#-y :.? k ~ M-j's} !.! -Q ~ copWSTIOgaNGINEERtNG.)M.' r

s. '

1 q h, /. sNon,NeS8tlNG OSSAffrMe 436ATTA T58#8 ki suggy t on' { ' N , [.$ 'N 7167D _ / fara 8 -1k 2 N %d vM.. 3 duandbmo.oFRE STEAM OENdffD cyacM OAT ey ,Y ,,,,og MN I N Y0 %FN. ' >, f,Tsa. E EV-o 4 ~ : [g < f.., ~ y;r. 2.. .r [.i .Y:lih Y.u~hb % Yl'Y h.. A ? ]. h.f$ N l ~ l '& * $ frup.eiRdvs" Anal /11r4. s.. *,i, ..e. n,;..,. .9 ~- v'- /, - .l rs a. i' - [ 7".4 ow's were sep& rated int,o groups according to the 3 r )9 er of['ver;ticalfgips that provide support. That '*j ,g 9 <), . is,' tute's,'in tube' rows 25 through $ are. supported py j . 4 r I.' ii l' , one, vertical. strip, ' Hence, the$e 'ttth e yows.ee re 1 (* t group'ed gegethert'and designitic/fsjGr.'osp'l., 3rcup 2 p' 16 ! - / (ponsists.of tube rows. 51 through 3 2 y.high a re,21 p- ' ' i f;r p ported by three vertical-str:ips, ge).rgis*p7Ft.rbugh l 4,- i, y f ,I, - ) ?lt constitute. Group 3 arg are :ssppojee by. 5 y.1 g.c t ..g.." l, ,A. cal strips. G'roup h :engins. tube rowsjl5. t

. lW whic!>are support,ed by seven vertica..-st F./.

A g*, 2 representative tube frem each group was analyz2dWor

  • CCA + SSE.

2e representative tube rey was':hosen '%. n 4 / tased upon the.axi'=um Aingth above the ' resp'ective i ~ upper =ost egge rate sup[6rt. Hence, tubes..f ros *tte , e ('- ,,J following tube rows were analyzed: i.

  • o

.,v *f p..,

    • h.

Gro.tp Tube Row- ..ot m .f. .. + n. 3 g, p h. g g. 2' S2 ,7. h 5; 3 f,118Q,.! j,'..* 4 14[ J., s .. u. j ..g m

  • j

~ S. Finite Element Mcdels ,.The representative tubes were modeled u'ing thr'e-s e dimen,sional pipe elements of the' ANSYS cecputer godt. A sketett of the finite el'ement model for a single tube from tube row 114 1.s shown in Figure ?.'l'. The sketch shows the node nu=bers as well as 'the boundary 4 ,l conditions which were 1::iposed at the egge rat'e and i j 4 vertical strip locations and at the tubesheet. The. di:qnsions for tube row 114 are given in Figure T. I. i Sic:1la'r models were constructed for the other three i tt.be rows. I

, r g

u l Re ANS.vf dyna. ic

  • analyses were performed for healthy

.t. m , ness.el hubec .750 inen Q.D. X.0 % inch wall inick-Incon M 1.., f '3he tube elements are attributed an' equivalent i v ~. 1 [7 4.h.? .J %c::; 9 m

p*Q "CCMPEU5FpN ENGINKKMINU IMG.',, 3 3 rapps/

  • swasr

-Y .o*

  • me ossaagvwat<r.pra are y

,(

  • fu,1,,, [ k1670

~ N f.2 l. I'R,, _.oy' p' M S 'a N. 'N 2AN nNOPRE '5%DM 0CGl. TORd g'

iif,-//e v

%{- DATE t .g ps,$C8H PTWDM g.,, 3 -lt' J ?V> 4 ,e)z. ..4 .y g. ~ ~ f., J i m,, W h j Jf'. e f \\ d' ' ',; V ~- ( \\ t t

. :.y

'r s ',%'k

$ ?

', ' ' ' ' + 4.:.' a H r. - j, e.- ' #Y '+bo..o, N../.. g .w z.4 I Y, 7. LOCA +'SEE STRUCTNNAL LYSIS N ..V g.,. '

h. Q 5,

r ..s p,. ?. Finite Element Modsla (Cont'd) ,,,-a. es s h

  • dynsity, p, formulated frh c', c.,e[

Te' ' /.,, 4 3.. s 7 s i ' Is ,g s.. j e 6 +c ,A,)

g..

, y. .. o -., h

.a,
  • g4 Ac-y pT,. + ps 9

1 -ar A t y -{ -q '. . p. w n e re,. g = T,ensit{I6f, tube mat,erial =.305 lbs/ inh - 1 k <g ' fi.,.! I (k' ' I r 2.: f p = tensitf of fluid n,, tub e =. 0 2 59 lb a/fn*., g'. ? j s ~ f Q '7 pg *' Den (itif_ yof displaceli fluid =.0042 lbs/in T ,s. 7 ,.~ h$. .,4 x ~ A, = Area of tQbe cat'e'r'1al =.106 in' .N., s s 3 j(. _ ' lI /2, = In si e a rea of tub e, =. 336 in* r s

x. I r

a. . A, = cy.tside.a rea 'c f tub e =. 4 42 in" . p i, s ..; V. l N' ', v ~. /p. s \\ c n Y '., Y. '% 5y S = Virtdal :. ass :cefficient l 0 ? . At &. g. y tb n, s i. l g. Y; l r i

  • A virt, aMk:tkrQeff
  • 0ient 0 = 1.7 baf,edg'on the work

'I %.'Q'I ". y

  • g,, by Moret'ti' anti I'owrywa,sapfliedto'thevertical'.egs

( s was neglected in,he -{ Thest;r ql g/fts J: g of the inbb. j the 4.n64 densities become. n . horizontal tube span, ' 'f.

p -

4173 lbs/in* for the veq8,le ,.d.3s72. cat s/in : .j / 3 f for the.norizontal spars. The.cor ..dtng; tass den-l sities a re,001080 its-sec /i: andi s 0'01004'@ s:Is ee.8 /in, j '. q a e,j 4 //*/ * "r ') respectively.

  • f4 /h..

L h .f ~~ A iF.truetura1 ditmping of 2% 'of 0ritical ha=p$1'ns'was-id. i A used'for the s=all dikmeter pipi 6.in accordance wi.tn. 3' AEC llegQtory Guide 1M1. A'/aLable data f rola s(lef .g [- 4 4 test.a c krcted with tube arrays similar to 3dn Cref re 2 warra ed the use of' viscous damping cf 23. 2 J 4, x bt .Q?..* .: s ( C. _A ) 4.s 1 o m. e %,2%. 1 a .U.t $.k: e Wf ...y' =_N. N

CCMGV TlO OlNEE 7" jut 8 Ed D ' 4 a vr-5 e m.w. m.e-rr .r.- % Men w. U670 my, x.f 6. 7F ' .,,, 4v' 1 j' m ' fE UPN S*AM U*'Sl""Eh 23 ' '#4 # s v M b osdm I c8*44K OquY %:& n

h q'

o t .Aa-

f. b I

~ 4 4 j*k

s ! asr smCEm nat.ystN. '*'

A * ? -e " I.d(1 ** i a- ..I / if 4 ) I ), N F "~ g ].,, : ITai, \\ .y ' I h [ . '.) h. I g Fe.sult at , n, .w. ,i 'h g*{lY hhe fisLd dynadic 1cada ve'rsu's time for the 'four ' 5 y? . tubes, a6> show(in Figures 0.3, C. 4, C.5 and'e.6, ~ /were a,ppLLe4 as Concentrated forces in the horizons I ~ hl directlien acting 'at be center ngdes of the '( j - { **' <

lo,pe 214).

OO k respectiya h*grizontal spans p In tM case of t2 e e g d 1 fcir 114,716ure C.1, ths for 8 was applied at l \\, s. .\\ e . ),Tg,e blew-off loads a sqfunctions pf ti=e f '.de re applied ' 'at ':ne pppermost nodes of the vertical. leg (. Agafn g referr4F6 to Ejigure C.1 fpr tube, row!1$, the.ie' loads ', 4 g 3 were app'li'ed' to * <tes.13 and 29., C'he resulting r.axi- =um bending ltre and 'dirget.stre s-' "istoMies a re 4 -l, ~ 4 , also : depicted in Figures C , C..L D 95 an4 0.6.' l h [. 'TM,se figui es sdw th4t the =axi=tI=.=agr4tt. des that g the.bendir;g stresses bsu=e durin6 I.CCA due ste 4;ne -t rarefaction wave are, as tabu,Ipted below. .k. l s' 5.; '.', r Max,t=,mfarefaM[. u on.0 ave c [,7~' .g ,( T;;be Row g Bending Stress 8 k'si

4).

g g9 7,4 f% '( ',f ^r~

  • 5%

42 d"13.1 i l-

1..

( 4,,, 114 <18. 3

  • j 25 0 147 i-5 j'-

If ~each case the axial stress due te bipw*-off,1 dads at t1=es near the$1mes corredpondin6 tb ax1=u= bend i- { i. 1; .ing stFess is 'less.'than 2 3 ksi. f e r. n d .v A plot of the. maximu;n rarefaction bending 3:ress for Q 3 a member of tube row 11W vejsus distance f ren t.'.e tub,eapet is also presented in FA6ure C.2. Tne lo- ,d-Y' calf 2!dt1 nature 'of tj'.e relatively 'high ra refac tion I bandin~g stress is'. depicted in this figure. 'The 1cea. f tion at which' the tiendir.d. stress attains its' max 17.tdc f ( value ('theWop partial eggerage) is also shown. / j T, j Oq 8 t = 7 + a a.,g i ) i t g e W 4). b '.j'c *..., \\ \\ ,, 9 ..p a

k. Wp;+.

P.. - .s... P M: m- ' - ,_ z

,,,.-....a.,

r.,. -

1.,...; T . w,,.,. .i,T., ,T_, T, u. s /, y. > c,o m.o u g io g m,etse p i *..:g ,pygg. --e.-/ f, ' f L, - ~ er,aw m m.m me.oew+apv, e,.nar

  • T1ho L

een t'W - M-. o,' T* ^ '. ! h. h';:g', aye;lmj'j(_m Nso. , yd&on(RIDE a v&. (,,,- m MWW& [ ,1 'y s

L, /,-

l-J -,J. ) b M i h ic N M I b ;.b. ":. M /.' X 9 e 2. , y c:. f,^ S. p. _. x,. ' '4 I f ', +: + ,e b c., I3.f.. s k h )!I~ =. y[.' i .,d...ydy. ae ~... '.~'s .T"' py. ' i i1ts (ch.tej y,t - f ? . s.+ - .t t. r. ,' k WNg. sfresses prodticed fh$he LOCA l'=pul;se.,padia.g., ,I were calcuf6.ted byrehribing displacem,ent nis t e rie s. 'j "f J ' 7'; ' ' ' f rom *.ne STP.$'DL analyU.s kt r3 odes locatydf'a t 3 the tw(s t.\\ - 4 Uppermo.st gge, rate supports for, each r.epr ;sentative, g t.$ e. Th models used' for thqfse pda'l' ati':ge we re h. h ~I f stb reviatec*in t.5t th,ey incifed q.ly/*ne 'p,c rt):n f. j d Of the tubes above the pIany containing tret 5.econd f, e. + 3 "' . g - uppermostp egg rate. Maximum bendit.g stressos 3 the g tespehive, upper =ost eggeraires were,ca;.:ulag,,d O'c.te n.,.,, g i Q ,e s q, 3 ..l. '.. " Maximum'I g.f oA,Impiflse t 1 i, j4 .h 1 L t/ w. 4 4 .y. '"ub e f.Few - = Bending C resss 'k. i 'q s t

j. -

j. h 9 4 ,r

1. I

,r 4 1.'5 s I g s 4Q s \\.I

1. 6.A A

8 9 4 4 114 /e 2-i 1.. y .s .,ar s.(w.)'; d-l' V. E'2 l147 - 4 .g y a n ,g. ?.e safe shutdown ea r.,hquake,[ qismic-stresses.we re 'o b ( det. ermined by appby't.[;he appfchte late ral zei mi l / ...ANSYS cdels. {,4s de's.:ribed in dec t1cn 5, tc' tne f ur acceleration's 8 i j .I,, 1 ,c, 7.% res.:lting ':ending 1 stresses werg b. ."[ i / 3 b

  1. fot3*d stgt

.y 9: k , ': [ 3-4 .i 1 4 2 . o. f, /- I i

- j./

T -f 1 3 .{ 8 M d Tube h;ow SSE 3ending 'Siress ksi. s l r .,1 \\ y (.6 49 x A 5 3 i e 82 5 3.- u 114 q + o. 7, 5 ~g a 147 , g,'t ; 7.8 ;k -1' d ( The resultartt stress intensities for: tubes of nominal 4 dimensions Were formed by appropriately a.ddir.g the individual st.gess cc:ponents :see Fidures 1 7 and 5.; .J, '.,J j,',i p This yields the following values for maximum strees )

  • j

'= intensity for the tubes: i. ~ = a a s s g g q '[ g .s ' a a ~ v,.* A-- - e M, t e, .'\\ c. ......<.n f '1'

  • a.

u .. e z.n.. -, m.. v, N s

9 g-g .,g w. ..,..s.s. C' CCEM 8 hit dff.ENGI - NO.1 .I 8 C-i l l @' s c.maamh onyiewsw.4cHanAmocea.rsawe. - ( emmab~ u ^ ] 15 '.k .. fp, h 'o4 d *.#" 3 _s f l l 8 )a a b % 71670m u w i M , 2 4. +,,*

  • r. Mv' fs.

i ~ .g, 3- %,fa A g.. N w. N y .j.- 4,, s f( w. x y 8.. .h 6 - x-. .N ws

  • ., 'r

+ ~,, I - \\', y' 3.,% 3, ~ a..

s. "; 3 ?A ; + SSE STRifC"".7A L ANA TSI5,.,

Nf,, l. .g,. sw, z i. ~... ['/, ' m dit s[gnt[' 7( .e d M l

s. a 4

h ' h. hf} t. 3 - Q;n g s. f u.:. t,z m.,. 3'i t y t c 2 E ~.. ff. f d, Yuber-Row ~ ,Stresss !ntiens kri j 5 4 > ; $ s' '4 d'.

..f. ' '

\\ ,? ~ 17.2 \\. --c h p ^. M-ife 5524 /.. '1 2 3.' 7 s., ] ir 2.['

29. ?, 4.,,

,#'~ A- " n ,114 ,, W I I 's q, .. [ 30. 2 T{

  • Ff ;,

S ' '.* l ii7 j .. -l* ( [, N Jeebnif :et,sekis:.s$he.f$g vf*J E ' s'r sia anmld %.1 4, v v.,, r .3 I( ...9 N. nk.ed. c Flyd f'riction ha s, peig.. tF.e ca:r,1=w. b endingst ress.pc'cre'pe ds,let~r.e ,I ya 's, 4*

Alsc, he me"/i.hical f rictio'n* has beSq: 'egnsfeerh; d

1 9 l s' .. M ,,, r 3 . e - e.,,.. g .r j "F' The 'rs'ref s:-icr. w a te te. 'ng s tres se s, SFi:*. na ~e :eer. 4 dI previi;dsly repcrted, $ re ' lie s ed on the f h

  • 3 17.s:10

> %g lbad,ing& :rresper.dir.3 te Ithe Oc1, d' ~_e@ cWie-End e t. rcw lla fcr th&.i. sse' :f the %ie esicuf ates G r '.;0e '*1d@.2' 1: Sine. Bre e r.. 4-t re s s e s I -.7 .h Hod ~.e5 31ot Br e.t r. 1: 4-additi:n to the X.;E'i3, the =axi=um. bending stressas // .se re fcund t o 'c e 10.,! ?.s i s.nd 13 3 .<s i re s pe c t ive 1/. 3 Ex,h gf these 1:edings have first pulse' duw ' ;ns T less than one-half tho' fundamenta:. peried~t.f -he" the'and the dLL3 3. h$s. a pu.lse duratien'g.4 ter tnan y' f t h's t ter the HL'i3. Hence, the ab:ve r.cted rela-i;,r. ,for bending stress is substantiated. These re' a ti:ns s.would,te the same"for hil tubes. Th'eref:h, the,' { Coli Leg Co.uble Ended Guillotine Break produceipthe more severe rarefaction wave leading.. i ^ s j ~F .A*.. 4 :m - ~ 4 y 5 i ~ 4,9 e s a-J T* ~ I i 5 l 4 t'8 i s< I, r- = = = -.. -.

, g.

.p . 1. g ?} Q.%:i OR* ' a. k.i. - } a u ,.t-q( .'g e

u W J. n !. y ~~~~h..;..ep.. .g .,,,.. m.. 4.... d-%L, s R ID it$. '*? y .~ ..,..w r 'i 4'. . g.;' .c 3 r ( 4 A.. s ' r?, s i, r. .i UfP$R TUdf BUNDLE -*g A g + t g - p 4 l. f /G -

e. - l G

/G - s< = V U u U 4-1 4 a ,j {---#g 80 w M7 .s shwac .9 i Rcw 120 ' C 7 l 1 f RCW ltS~ ~. t $N fy&RTICAL . = - a. .] .RO W s3-p n. s

/

g. , 1C .A., -

1.,

ym o ,n.. - .30.75 v5 i }. 'r f'- .n.3w gi 1 e gow 99 s o n J L. 7 ( p; 30.7S V q /- ~ ROW ZS~ \\' q g f..{, N /

f. _'

r R9W /8*- v h s 6. A. s e ..A'o w // .1..s 6.* J 7- ? ,.. x.,.,30. 75 y y.'.~. i (. 4 l gg-

m.. *

\\

  • J*

i '1 i E.. \\ ,u v. Jb y j , t g5 1 . e. ,b ~ ,y se o i ..T t$'. ~ l ? .A [:.;. ,4 y.. f o0CRMS GC 5 41 % $.~... [P;2-fy-

3.,,,.,.1

((./.. , "y h

  • =...

8",..e T[ f l

  • l d.*6s - 2.?.., *

.. E' r u, L

  • mg,t ;;,.

e s. ~ s., i ,,f ', .) T'

..s, A.,J+

.c './ g

t..

a 4 t. D \\ ...1 1 e l 1 1 \\ s.h Q .Ne .p _,r

x exa
Net

=. c. a. w.. e .A b g .N / I F.x. ' 4, e y,x ( ) ~ Y gt s \\ J %~.. ~... ,_s. ~ ~ ;~~ 4 i kNk; NN \\ 1 FIGURE B. 45: FI/JD FC?.:ES ACI:M .N T ~c E :'; Rh... A..C. A, :..C ,.s m r. s 4 fs d* Y gip. d.cle' ', t '5- /- 'A .g %/ / g (E. ~.k ' 8 4

~ _,- 7 ._yo_ ..o.. ..c,. o, 6- ~ v., LOSS OF C00f. ANT ACCIDENT RX5 ULT 8 ( .h ( \\ Case No. j in T Mu Section . t tsu ~ p. No. 4.C lv Paramater 11-13 l' a,( 2 ) 5ub'e row 49 P eold let; D.E.G. break, ini,0ial 2 modet +36.90. ' 4 24 a (ii) Tuberow49,cogd. leg'D.E.G. bfeak, bulk g +36.50 node A=585'.5.ft 4Q;co{dl'egD.E.G. break, bulk j 3 a(iii) Tube row , node A=685.5.ft +36.80 . l 4 b (i) Tube ' row 4 9',. cold leg D.". f.G. brea)c +36.80 N s ~ ' - ~ 5 b(ii) Tube row S2, co.ld leg D.E.G. brea~k +72.22 i 6 b (i,i.i) Tub'e' row 114, cold leg D.E,.G. break +108.62 7' b (iU) Tube fow 147, cold 1,eg D.E.G. br,eak ', +143.10 J 8'* c (i) ' Cold leg D.E.G. break' +108.02 -99.62 9, c(ii) Hot leg D.E.G. break - \\ ' +104.08 ~,') 0 c(iii) Cold leg slot break, k.. - c(iv) Hot leg slot break, -111.60 ,~ 12 d (1). ,at= 0. 0 01)5 (T<0.05 sec); a = 0.001 (:>0.05 sec.) -104.97 13 d ( i.i),, at= 'O.000125 sec '(t<0.05 sec); ' ~ .At= 0.40025 (0.05<t< 0.1 sec) ~ s. AT= 0.0005 (t >0.1 s9c) t109.39 2 14 e (i) Break opdning area = 2.4545 ft +106.'06 4 2 1 ".,. e (ii) Break-opening area ='7.363,E ft +109.28 16 , f,( 1 ) . Break opening time = 0.'005 sec. ' 9 +108.84 if S 't(ii) Break op'eging time '= 0.02 sec.

  • 106.12

/ 4 ' ~~~~'t31 item r3. I max,isum aP.3 8 ' 4 0 i' P#,esented inktead.of iP ' 11,13 Hodes 37 through 41'are shown in Figure, A.12

  • I tr.ms ' 8 through,r '. 7' were ge rf ormed fo r ', tube row' 514.

A cold leg double-ended' guillotine break was modelled for~ items 12 through 17. c , ' ' Figure B.14,' g' {. 4 / ,t ,t YJ w'," -: 1, j' - :. ; .e j I'*~ r a

m g%e .,7 M.> E. tu N s, 4 ...J....,.. .4. f%, s a 1 ~.. \\ F. SAN CNCF7.E :~ - LC'.:A -.,,, A.L,. c.. s. y,,,,.. .. -.... s .,c nm CUSLE,ENIES JL*!L* '*:il E ?la? s, s

h. l i

l e 31l f i g. I F re s sure' 2 B '- \\ \\, g g 44 I i r.

ie

~.c a d u. r 8 ^ ~. \\ I. r s 6; } e 4 r t i. v ., ~. \\, g ( e i 2 i N 4 2 7 \\\\ ~ n i i ' \\ S' } f N s s t 3

  • s

./ 3 N 4 \\ .s s r. r e ^ ~ 1\\' '.,\\. h ~ 0_ - - r./. ./ ' 19 ". G"T' 'f a l- / i I Y l t ..t. f ] ..a.. - 06 cs 10 ' - 12. l+ 't 13 O 'I A' o 01 s e, .a 3 g. s ., 2. e .ec.. ti -w. e 9 e 8 e e .e .m e. eew

  • - i,. s y r. r.. s }}.

+C" ., tr y g,, : r 4. ~ )i l, .8 y E' l .C. 6 '/ .m..... .m. .,,,O . en

s.c.y : ,...- %2. e ym g g 4,h. , 7. ' g4 .u..... m. e.. u1 . no ,ns p :.. .v - t. y.. .. 3 ~' ' SA.Y ONOFRB U - LOCA ~ .'r.....>,., FLUID. DYNAMIC. LCADIE . 2 J. C,- . TUBE.RCW 111P ~ .....,. HOT...' ', SLOT BRE.AK,* 3+ m 1 1 r -. = o s gg '] y' --. - f 6-


".~:.

~ ^

  • e J

.s e q. e 9 / Pre.s.sure. ... g.. 1 r " Net Load s -\\-- ._... _ 4 s Q. i i o Wy,. .u g a u C. N VG' .>...m.- f-r Fluid '.,,,ric ticn s c ~ x. t \\ D l

f.. j r

K..' .. _ fq _g

t...a.,

e .e .r .,,y y

  • ',c;7

-'~~- I'

t,

( * *

  • w..'s.,..,

.1 I ....YW ... ' ~, e:. e .. s.o

-~..

a <( .g 'g A, ~. g s.. n pye. - g. Q .. c.:.. s..

.y -.

t i _ g. 3 -28 - ~ ~ - '*~

  • m.-

~ . f; e e ,e. . w... ...yz.. ; - 7 .s 4* t e. p a 's , g' d p,. .. 3f -t O f a a 8

  • i

.4' ~*.cz 6.ca cs og .so a.It .y. .& tG' 1 io '1 3M s (4 s c. 7 7.- ,' Ti m e * (. S 9 C,.., s-. y i , g,- s y,. e, s,. .( N , IIOk O. N - f. ~ w

s. !
  • r-l.-

6 J*. dL, /, E

f

+3 A.*-

~ ,n . a '., s-

  • -... - ~

I ,4WahleR d%USTICP RhfNSEMNS,if4C ; p .,,e -... a am-, .w. CHAAGE NO.' DATS SY oasenwrioN cuacg oars umy p* . T.

'}

I, j ,' T 4 7 APPEKDI'I C i s f Figure 0.1 ANSYS Finite Element Model with.' lode :M::t e rs - Tube Rcw 114 8 51 .g C.2 Tube Rcw 114 [ a 1 O.3-LCCA Rarefactio.n Stress Tube Rcw 49 l ~> ~ 'C. 4 LCCA Rarefaction Stress - Tube Ro'w 52 y t 9 r' C 5., LCCA Rarefa.c. tion Stress - Tube Rcw.114 i ( i s 0.6 LCCA. Rarefaction Stress - I. ube Row la? .m l 0.7 Su:dary of Stresses - ?ube Rows '49 and 32 [ s,- .6 Su==p r? o f S t re s s e s - Tube, Rcws 113! and 147 s' 4 (

  • t

-tl. 9 9 "N i -) 4 .i e l i ( ) .7 J ..^. ~ .. s s s.,, t s ~ e .-14.) s %;6f.&.. j' t, ~ .. a s r.. p,".. e. = - i i 3 '.ri. a cojg %... e. ,)s-12b7 .-;g. -~y .)

  • ~

~~

c y', .. s :... .g a,, WiF (t NCh- %.,;-, E.'.' - ~:p g#1-

  • TJ

^ *,, J m w ~ a. L.. 1 "*~~L' -t y yj_ gyg,y} Qggy ye ~ ' jf ; *- *, ;';' e. ix s ( ) NtJHGEC - Tudt" ?0k/ il4I . ' werM. M006 g

  • 352.y 14.14, u n u n u a u a a u. Eu ' ' '

w b f.: q j.. Lt. - ~ , so g 314 ( 4 e**. e . a u. ,o [t Lo ~ a 6. ~ 281. 'f >. tu,;.cLG1693.ptr Tut 6 - 33 Di=Md5lQEl..$1'Ots%Mi~P/Pf i E42 HEN 75', 57*/F '9 .EsGgfr a46 YNc5E.7DW/d dobes., /5.if M 34 },. [ .~, ' f $ /S', <1 l 23,+ so k h ] / f .i WM!CN' 4RE J'itAEC - te.redim ~ CURVO P/Pl* EZC 46Vr? Ell ST/N EN. j y 33 NCMS 2.3, % 6 5,8 3, $, // m '75 31,n,3f,II ss,57,56,19, P i ~ g 4cc Eccc.,z4727 ucA(1w1 4 WorH w t :s o I' NOMS / 7,19, Zl, Z3, 6 y 37 ,g ,gnyt srat? Abetriks Hfiry J7 = 0 us A ss p. +

  • 2, Ik j

e' B as ,n ? M .a n. ~% S A,, ss ,e Y' 9 I, ' 40 ~ A' ', 'i 3

1. -. '.

M I 1_.g e z E t -al i 11

__s,

-u J4 ./g Ag3 Igg a...;. .p .;e - - = }(.,2 N 9.Y M NOW 114 - 4 i* a + j

,v 4

. Uk vl ,n rh. ?Ns ~ ? $.e *'.i- - ~ r [i:. A.sg ~- . o..,,, b

j see.:.,3, %.y 1. a,g.y.S,3,,yg,,,,j + o 1 I 1. e Tll8&~ MM/, //5 i 88" j =i i .t l l I s v. 3:0 I ) V,. \\ ( l f l + 1 1

80 --

EGGcjenrE rues now in.b. i N y 'l / A. I T m.. .j.,- l i + [, o' _f s i [M I, ) I ./ I s i 5 l 'g% f .a 3S/.1/ 9 E j y.. e g 3 I ' I N s (9 ~ i do ~ 1 l }- I IP =n.. ~ ~.. .s j O f /0 f> ZQ rygs,5 g(y gENor?)G $ 1'R E S $ 51 Y.n. e s., + ..s. ___Au____.._____z__L__..m__

!I ~ ORh%G g o O ; 5 j.S s I l , i + . j ji8 -,

i,-

. i Q-i

  • e s

h., =. t s i. C ' ES gO O ~ Z. C f S i j ' S E ~ R O l.G S T S S S S 7E. /. E CR y R ET I T RS Md I S D O f / T W G ..._0 t' O N y ,. 2 s I A N D ~ / F N ~..,l C 4 t S E S / 3 s f N U T ) M. A C p** o = t G ~ \\ N ID 4 0 s l O /, 90 / L ~ ~ \\ l N 3* -r 3 .e 2 g. N O ,y 6 2 i / 1 ~ s9 Q. oWNQk)L 3 t ~ e ,g 3 i' i, a t

o 4 N g OM t 0 5 0 gg, ' m* 1 5 .t > 3 Q4o irf 8-9 . z. t 5 1:? cr p-g,., *. s. O ~ O ~ Z. f ~ m 5 e .r 5 E. 6 f.R S Q < /. 0 T ,S 'S G. S E

  • ,,R T E CR v.

/ 7 T ET s6 S R S o / q ,.c e. t U i 7w N 0 ( C o I 2 A R D /. d/_ F N E eh' E B }_, 4 A3 f Nu ( ~ T ) A r ^ \\o n. 0 (s \\ rII L N / I D A \\ O O V h O. L \\ u '[ g .l 6 2 d 9 4 g 7 / 1 f e y l g %h Wb t A ~'Y 1 , e 41 6 7

v - g e u -o 0-t g y ,o o' y s ....Q ...I, t. t /= Q 8 4 ,m. p .e-.. y e. g t i A - ~ ~ e' O.= e. r e. . ~ } .h e 3.= sC* /

  • '. s m,. p m o w o e

/, 4 89. w w t-9 q .,.1..... l.. 2 u q N. a e s e i [ ,M~ 4... _.= -s r - ~ 9 l . {, $ l - e r a l'.. Q t m s ..Y, w q . kr>) Y @.v) f. s m N a

2. '.

s k / 7 k S .g t t s c W % t < t y s f T i g*. / t / a O o e' t s s h f. q w / Q w g w 1. C / / / 9' h ' " * = I "f ( t h & h GO ' on. b e i d e O dg I e t h %( 4 I asaames p. s

w [, s s 4 r.- ~ ~ r ^ us M. . = ~ 'f e , ~ 0 0 0 t .n. 3 2 / ~ 5.... a $ =- + ... a o.N. k .N[ o . a n1 w.,. - 4,E C .g ~ S w ~. ~. u /- .E 9.. t .g .e'^0 S p 0 S 4-2 7 r ~ y' A o R ~ p. / '. T S., S =S S E.. S. . a. R. .T E .y O ^ T C R G T I. N7 S E S ~ Oy R / t G (J f M r fD Cw N ~ Ao E 9- -o FN B ./ \\ ; k [-

a. j'

'E RE w ,i-Ws t Ai y S t \\ 7 o. h so c s x O yi s g g / \\ \\ \\ e \\ \\ o e, d c N \\, \\ / o \\ \\ n s-o ( l 5 z ~l l l l e o Y [g [ 4-0 g g 3 y 2 - 2 ~ ~ - 3 o wg T '.,, s+ s ). t e s ~ i . ^ p d

7 .i W .. H&f A.9Y ., rR c. : S f-C. I m 3 TCS.i ' :vj 5 r'9 e' 32 v- ~q .[ l r 't A t i i El l f- .3 i e g Q 'M T- .,, 5 &, % Ai-1' i,-- 4 l a_ Tf:_S5 i I e i. T c e. <..J i i, ~.s~ t ~ 1 Dt.25C T/CN i mi,yr a p 3;,y -- 5 y ..g......v, ,. m t. , 79 j g. y-2 I \\. ~ si ,..: x, A.L f_ g l .',,,3.-

'= 4 5.2 5. 55 -

I A < tA g3. i .i .k; i I.MOCP ..; g - y..y i 4 - s.'. - c.) -c> d s y O '. - l 8 k l ~. --f . (C, h .: g. ... / c...-o.= :. e .;. i .., 17 z e.5, ) J- .z....,- ,a. 8 ~,i., c: a i. 3.<a ~, i rues ac n s: ~. p- - i. a. <.; t c f 9. : q -r a- -. i (c ;7. g _.. i 1 Di x:....,QN . n,y s ;. l' :...,s. - .s,

C A CA ni,-j JcN

.4 x!M ,'3.,. l.. ; s - C Cli s'MPUL. 5 E,. .i g t4;. ,l 4 FRE'$5 'JN { A X/AL. _;3 ,. ; 3 4co? f,y. o, \\e a RA DIA ' -f.; ,I -c) \\ i S S E. '45,$ - r. 3 j na-.- ..r. J .,s < p: S S e 9. :,v a / .t. g r pop;7-4;' .c r. ' - 23. 7 ' M' .( ) .~ v. A r Powir *34 5. Q. ~ ' '5. 5 ] .r m ~ y s v; e. ~ W__

~.

.' " -~~.--_~ ' ' " " --~- 1,. t} SuffMARY cf t Tcug.g E* TUBE A'LWs //4 $ /M7 ~ I i I ~ A l 8 i l M ) YUS$ R2w il / l r, w,:: w wc e a., s a t e C/4. ~ 4 i w w L On,/h.O. o ,.CtRit T/Ct4 l'=cin? l 'a gi. c 5 j ' c c A e'A A :~. ~: Q:n l Asi AL l 7, g, 3 _,3 5 j. i '..A ~ 5 ~ 'y lA,GA4 _ l +j7 f ', DCA _,7

g,3 -

,3 P RE,S,5., =E s t. AL +- 4. fo .$ e.?' HPON t,'. (> .^ %) kAq4:. {.'O9 - 09 O $^ A ' ,.7, l '-[ 7 $$5

4x s

r .= 7p. g.e, s r. j e ;- V A' .:h-- A.

, i. * >.....?

iG 1

  • AT.

Oth T d

5. 3. =. ' O. g s t

~ ,4 ) rueE paw in \\ w. I> ,p-ae:c tv ..'. TP_e

  • c

<' 'I c-m J..:, i 4 . I ~- w e- , #0/.Al T k, AC/.f4 Y 8, L CC A RA.9 E."A CT;ctf A rt m ~- _, e..n. LD C'ANMPUL SE.'

  • Mi,ql.

+ Z. 2 - 2.*Z ^ . FRESS UR E 4X/A' r 2. 2 r x >. ~ - 4., ' WCoP' t i,t. (, r. .O.. RA Die! .0. 9 88- 'x m q s , c '. y * $ ??5S $, /N?5fikl7'f 6 s' 'j r,: ctr i-J': 1 !. = 'A ? # p. a r poinr 's

. r. e 3 7 3 : % ':... ;

y '4'iiNed [ E. .' [ h

..r.., f v a. .i.n a m e ~w. (.., . l \\ cw. I ...u... .u. e.mn ,,,g7 ur. _ 4... i

wecx 04re av 3

~.. _. .....t .-.'.e.. s.. e.. I ' e I ~...a.gy . a., =. o...r.e w .- s .4.. s ,.} r. / 3 so y f l ,\\. s,'. ~. .p,.. L. s y 4 ..L . / p. i e I e (,/ i y. ( ; s.., .. ~ .1 ,t g f a

  • g

/.; x - ,, / n--.... -....,..

7..... -. f.

_a %. d-

4. g/.

g .y g. ..,/. -N.

s.,.

a ., * :,x s so m m m. x . a m.. -

,.a .w s y.. .m., 7 A 1 i i-COMOUSTION ENGINEERING. INO. muMoen-8 .5 NN:sRING 03PAMM3MT,f,H TTAN M A. MNN. macy . o r._. k cHAnos No. 716'IO ~ "om f''.." sy k .' A M '1?FS.E S'"EAM GENERATOR cHacn oary JI'*M *M ov.dI.alv:l- ./ s ossemnios ...e. 4 I i; a. r., p 7.. ru... n<.em..;. f t.v..t.'.4 A ". m.. w* M.. 9'M .e ..a.. .;p. : J + ,.,..3..,_,, j 3 w....... a c. c o '1 Mbes wi.th detected accep' table' defects will et / J / te stresed during the full. range of ncrtal 'g l rea :tsr operati*cn b.eyond the elastic. rs.nge.:: 'l .j j . t ;be ca.e rial. j I

  • t 2.

.e fa cto r :f safety against.fsilure ey burs.ir. ; i* ,.d er nc real.cpe ra *.ing ;ond.i ;i:f.s is .c :. leu s than -hree at any tube location wnere d.:fec;s. / ns.'e been de,w ted. i l '3

rack-type defe: s that Oculd lead tc tu:,e rup, i

ture either during nerc.al opera:1:n er under postulated accident conditi:ns wculd no; te i i 10:eptable. \\. i These c riteria 'tre taken frce Reference $ ar.d trhy ::.cs: '.). I also 5,e met in 'adcition c :ne faulted al;cwacles f rc.: ' S e e :1 c n ~ ~ ~... Figure :. l' p resents the :.inip.u= r'e quired a f

t. hick:. esses for tub es ba se d on the above.c gitelia.

%I ? V /- ,f ). .g o s., l .4 Is-f / c ,/. l i .J j a, / -I t j' N s s

  • W

'p M - v -l.<, h. * ' e*, P.

  • e me*
  • a

'O %c. , mm e e se. ++peee o s' .) 1 3-0g

. /s s a.,,

.(+ hY*-- _1___._ __ A e m h. A g o 7. ,o

-x m;, m,.,; a a y2,4 ;, ,,,;;,;aa,.;,w.v.s;r; .\\ ~ i 4 4 ~1 d i 0 t I m) ,,0. a w tQD N i

  • y ei

.:in i 4 4 g .{ i ^ 4 + .s. 4.: lw I.. - a y I a = !.. ~. n a O I r - i 1-e. ..,,,x .-ls z-4 O l '-O 6 0 er ) yf, F.* 3 ~. ~. =, ?*. ..a M* ~ n Z 1 .e

== .l - W ~ 5 f a*r. -,-,i ., {I q J. t= .=s l 9 i w. e 't a v' 6 L L i, 9 N, 'T l %fe, i e a ,mes ,e 6 ~e e a J 5 =. .e h =

  • N

' t. e 9 'a= 0 ! L., l i -a -a. .g .ee .= 9 = <=.

== .a =.=, g .i,,, (

== .w .,,.e . v e

m.. a g

== l -.1 r w iii,e

==I,,l .f . g c. 7 - Y "r or. = I-=. .I ) ..** ;, i j '*' J 9,. I ( :- .' a *. 1.' .~. a 2 ~ 2 - s.

)

j' ,i i ,t I =l (g, l <=* a

  • e b,

i U ? N ?a () 6 =- w. =,. g g g x. s 1 .J.,* gI .f = l- ,2 O I,- .=. a e,< '[.a l m' .g e e a=g t /. e. ,.r 7 0 8 -e e.,,, ." > ;<l

  • =* I '.

f. .id .i = O .'Wh ',')8F i,

=

w .e y: m.s

' J N.

== 'a' g P C. 3-61 .w SP. g 8 h. [., U, t<N O O 6 [ al ll .l s/

  • 1

'1 6 y ? Y

  • d N

%4 s N .is., ~ b

  • O e

e P g e e

    • 4 e

< **7 4

  • J Z O O

h am.. ,s e b e I e.( l g w < ) m- '.) C::.' 1 '1 .'g W W M. ')% C:Q 'y y 't s. f . e .g

  • y,

w 4 e e- "i '.f' *.21L". d' g

  • * * * * ~ o f

.#8 * *

  • a 8

3 . d'

  • 8

_ M.__ :AL o _ _ 't ' /. 4 e a. o q- .-1 n -) 4-e

o

y e
  • 9 r'k 1

y .. pq COMBUSTION ENGINEERING. jNC. . T U*4 8 8 H --- --- -4 ")

  • ... a e. t.a.NG 3 E
  • A NTME NT CM A TT ANOCG A T E NN SHetT

_.- - ;F " m a g,i t No O A T E __ _ .0' CH E C M O AT E. -... HV J d,. ' i e' * 's ( / g p p e... v. r. e e .i :N d !' M 2 .C..:.ab'.e.Nirs at.:r. fC r LC C A - < .) .s,.,., au e '\\ t a a

  • 4 e

ge.4 .~gp=< ..g w ?.- 0 4 ,f \\ e f 0 e e q I / g l l i i i I I a i h I 8, IS s l i s s i l .1 9 e I i San y I e s 1 8 4 b g l e e t i k f i e 4 e s g a 6 + a / i il h s .Av. t 4 .n

7 g y,. mg -v,- - -- --- sq pr -, ;"77- , -.-.i --- ;j t( s.a.3 rm $o .,,1. c.

f...

~ ,g .v N. COMU.. STION ENGINEeeina C ~u~ E-E NGiN Es sjNG C 45 P A,Ai M* P8 T y,H A TTANOC A.1 E NN: SHi c.,r.. 3 'i'*I

  • j-OAT f 5*O.

.,. 5 9.2.b'r cpagg so ,p / otsC.hPflGN

  • , 'u

. si

  • m r'

'k

  • g '..

.- ; ', t.y f,,.'4. g OY f M 4 ' i CHE K Q A,I$ g. .>t s _7r. ^,p I 4 .,L 4 n 3 M. ,.,..;.c..... n.r. 4 u...m. R,.. i. i a 3.. A i he variations of stress intensiti vi:P, tuce wall N- . gradatien $r the four tubes whicn sere analy::ed f a: LOCA *- SSE and for'-he tighest stressed tute wite rerpe.c: I to M312 - 33I :ensiderations were calculated. These. stres.: intensities were~.:cmpa red tc allowab.les ir. Srder Oc de-

srmine minimum accec;fole tube'wa11,thif.e.nesse2.

n i a M l The maximum st ress intensities broduced. by ~ CCA - 3.i2 1 l ~ loadings for tubes f rom u:>e rows 49,'32, 114 and 1-7 7 i versus tubd wall de;radation e-ra shown in Figure F.i. i, '/.aximu., st re s s in en si:y in the.'igne s stressed ;uce _a ( tut e row 25) du.e ;c v.S;3 - 3"I leadings is als : c '. ; y.- 'l a s a f un : i pr. c'f. ut - wall d egradatien. 'he al'. cwa:1e l i 4 o resa -,. e n".,. 4.. . _./.a... as...,,..... .w...e ..a _a._ .s...e ... o. W l sha p e f a c *. c r i s.p l o t t e d. t e r s u s t'ab e wa ll d e g rada :i :.. _p i These plo:A along wi-h :he P.C Stif f Critei ta we re ;3ed I to de ermine the tube c.'.22-in6 criteria. I ). u.. I. -e

1 r

"he tube plu661ns. : r ' te ria is shown en Figure. F. 2. ! s ?;bes in tube rays 1 through 31 are controlled by ne j M tGO 5ta.ff Criteria with an all6wable ' degradation af 'M Y 6d. The remaining tube r6ws are controlled by. g ~ 0CA + 33I conside ra tions. The criteria Tor. tube reea f' 92 througn ih7 vas es:ablished by p htting the a'. low-j' able [degrs.,datierfs ba sed cr. ICCA e SSE' for the fcur -' ' e c rows (h9; 82, l11$nd lh7) and fitting the curve nr:ugn + 9 i them. It should be hcted that 98.d4 oft ne tubes r.ay 2 \\ degrade. 58 'oir. cio re. 'The majord ty' of f.ubes nave a'n allew-j abfe. degradation of 606., i., -i-l A fatigue analfsis of a de6raded tube is giv.en in Append 1.x 'f; H. The maximum usage factor for s. 64% degraded tute was conservatively. dete rm.in'ed to bei U = 0. 4 v. p. t 5, I ' ' ~ ~ ~. - f ,.i:, .p ..) r.j.;. 54 a i e.- g 5, l A m.- ~ j3e,'M.,, ( f. g s T. t "if. u*..' d, 'T,,,.. .)l8 ' ( 1 Y e .e ~ - n. ,.v. s s M . ] [ f... '. t

1 s l i e 4 g .w 'a t e v w

  • 1 s

y t a u n O Q /. g

f..'

l e l,* l \\ i E Nw I .~' x .L s t Q. 1 )- h 1 3 s n 2 N N E s s z 'R i k' E N N ( (' .- ! N, e w w; s i ~ +. _ g, e. g m . b d N 2 N s N. \\ s s N W v \\ s a w 9 s y k y c. \\ s q e \\ s q' r + 7 ..j -+ 'u s [j* k 'i 1 'l 9 { \\ ~- 4. e \\ m s 11. v ') 4-N T) .c F .\\i t ~ s s )= yl ,a 0 fO g ( u N.. ) e .*r~s $e 9 o pe m e 5 1

.r ' w s,.

  • ~. w - --

,~ g, W IQ I I EU I --m mmmm-i =' ' ' )e C,, 4 A 4.t .g . v '.

  • f
  • f, f s, t '. t I

e ( l / a e m

  1. d h

4 l ~ e 1 4 p I e 4 i 7 O ) r i A t 5 ' 'b ? ]; \\..% 4 4 e P r, of L' g D v .a 0 e c i 4 l n ~ s 4 %a (m 0 ) N 9 i A r'*, k N s / f a 1 ,?) l ,N N .O st. y'n L i O .s., 1 e i t /.A9 W g q, 4 ~s s q 4 W N I s y k A ~ t l ,o I s9 l Q.' k' l. s q R t, Q = T g s V s ^ l l i 1 Q Q* d D' i m ~ n v .+ (,, ~,, ? e y pry j gel u,y y eu ? ?79Wh107 w 3.,. I' g i a I t

  • l.a.,

-- /, L;.,g. g.4 ? a. s.

)o.. ,,y y s 3rr - [ 4

] tj F

j gg h ,,c ..- - m_ t 'S" a w i n. .( g q i 9 [ g m =- __ yp mne 1 t f f 1 e l p, l i J -l. 1 .= r-1, ,i L 'O J t (, f;y rd 3 a#

h hh ,a,. a

  1. g. #w.,:u w &-

mg n, v, - +. n :&a e w. V. v, '. w,.. c_. 1' 7m ~ e .x v 3 'Lw -) . = = mny n w +.{ '.g m,. ; .s'. ,. ; j< <r nbm qyd w

v e :,

[s.'., .. ; p'h', k I %,,.. h 7 . j ',- ,4 lw y.t n !,. I 5r I ) E 3 ~.' t -) I I/ y "'f..,',\\ ...e.,..)', -kA .,4..'8-.?;d d I(E M '' f )f. w f p';_.7,f'l Q

t p 'u i -

f' ' ' ', '3

1

,h 'n .t _f' ,[ _ ) [ j' l, ~l % if j .[ [- g 'Q l__ L >

kp
w.7 n

ap I i~ 1 .x g; j;by*. ' ;pe _4 1 y ?,. JQ i i (* a pc'g,p q 7, ' .yz 'S' .p,.),, 9.%],, ' W g \\ q.g <w3 _f- [g

  • i

,o w s, c w.g-f Mg.;l f ' ~ V G ( de .% ' A ; 'ti Q:./ _g. a,4_ r

w l

[c-3+T

  • Q

-.4. s,.q. Qt g i dQ,n, %,,~

y. o IM$ 4 W l, (o

m$, n

m. c :_. ~ m> a,,n:~..

<c + .v.. lu m o , y,, y

c

. n .m.y y. .y. a m,7 c. 3}: v 'g.o r r 4.y,h, 1 ~ ' '

e..

L'

g i,a,.a,
  • q} g'+p y,;.

.g3q a, o ; y},wwynxy,%.c fjfy jj.? p.3. Q q,, s y __ ,gg

;)

W y 3,( t Jgyt,3 y, y, y,c w g.g w g +m.g e, sw n m, n, p t wgpy ,x ~ y ;% q,.w,, g{.,,y g y w w m; p p,~p@g.,n,~.w m ng gg %m o w ew m .. e ,a mp , v_ A.e(c ,wA g s. w p ' < M D w,' r;. 39 37 py%qw.4m, pygg x sM v e,m. m y e s , A+ >,m;y ay, ga.o, weve p x< o, y,#y.s po. gp.a.4 o ..,a + sq %. o, m m A,3 3, m.a%.qs, gg.g; m%. wf e g g .- p/ -3 .o,w., u +,...,+ f es . yyr s ey gy s ? i so en ,w

g. g. v, w 4.y u,#,,

4 s s y (g # g4 a, . 6 . Q, }ts p5: 7.y ms e y ~, i

~

9 .,r p _* g;p.g.m%

g

.p g . c,.g w',.., (N%,w.W)(y < pt,J-..s; n .,,,. ; j, e,, y-s w ps N wh s p wg, ri - > s i vm p;$ ., ' fq _ 4< ..g . p n.m.g ~(y* m,+d,j g,p j.' '. i, s y.i. O HT,.,q.f d,p -. a ; 3,,. f~p,,. 5 %) . s o s. e 9 m w h ' < % /: i 2 4 c.c, T s u /. i ~u gaf 't (. l;. A w .g ') - i y, ' y,J e > p;m w;p#p&,',&qf-fy.a.4 L,;e&g%lp ~ +g,, ,p 3, #. ~ v .,; u a g ,bh ' (' ,.n p,;~ 2 al.._ h, _d [ .v

9..

i ~s .,.j v.y.. q %j ;;.i'.

) { tuyL l l jf,
. i q K.' '

,. h._h.h ,e:Q, d,n, e.Qd % j yJ. p.. i 1 t' g fdR_ , h_O. 4 y p.Qy ;w.,- .s l wr 4; m: Q ' m.s %,s i s. i s,n', g, >,gg.3. t g .m o s.ps .c m c. u.. - f ? g. !... v m u

9
ary.up y g g 3,; y(

4wn.v v.;qQ.,gs ( .m,yk w -Qggg p; gyp y -. s.::q ,y q sp ;qp. . g y.~ y A9 W O $ ml M M W (W W W ..g , 3 w. 4. W A W W M. $p >M W p M W @ % m. k Y O g W e M W !1 U %m /.hsW JW WNmu %3w m.AW - e w, % w o M 9.<,p y% w,)

  1. eWWAwd wn.m.M,1.ym

+ *

W(<e. w. v g%m 2.m,qy;f,Ky Qm.

, g' g g -.tg., w~uh #:.p,n%. yaw s : s cw pm owp %.a w g my c w-s1 p poe.- - t e g9.W.g, yn.: y, Uh.g g., my.p,g.g m~w us 4 v., sn v, u 49 g ,/ a, o ON,pi W, y((. jg w, g y

pg t pyg, a

9 ggggg g n n - n, , n, ,q q, q.; y Mg,,m. yg y, s j .g 7 . n in os g -, w %,,4 4 n e..~. a /.Se w,,, a y 47 d 4 s ;. y 9.7pg g 3., ,q 94 .a 1 ,, vf 4 i,, e,;; m'.s( y (n +,; h 1 g j e (' m a, f{ t , ( t ,f.. k ",sp' S. .k,. - m. ww-n., M M N S W ATTACHMENT'_6d'j$g [e% p&. w p'.'.g m e$[Ny[$ D;';4r+.% FEA,y.W o 9% s ve :. " [@fp@k. dJ pmm a.ns 4 l Y' ^ s--

  • tm A.dmN m iw1W

$fM/dd!A Ml[WE($Md, $w W 4fMW

  • 9QM M hp@ff Mjk[j'jk.k[. 4-s.W -. ' ' '

lop 2? N W. r,v gg$M.[MM' ! 4d@@@A sm, Mb. 1, kM N i yJ Mf)jD W .y y q. y upgpp@ppqgggg $,0Ck LOddlNGE8 Nhk O^$lh[IMh 17 iWMWM gggggeg ; ggg b MhhhhhhhhM.ffhME P ?# # % @ W ? W W N tTUBE; DEGRADATION! LIMITS y % W e, WM %@%so;n@MQ MglA ' Q-w e n % p ?, s b,,y - g,: ;, [ p q,. g ' ~, "F, M K@, Q s , _ m ...o 4 m m-A. ' SAN ONONRE STEAM GENERATOR PIPE BREAK ACCIDENT ANALYSIS' %m.m #wp ESOURCE: M _ CENC-1327 M. w ~ n ~ 7J.' > .g', s,,w A 2 COMBUSTION ENGINEERING INC. ]y NM ,' CHATTANOOGA TN. W, >a 4@,.. r,s!M u: w. q r Wi t t .g

[.,, n..,

&l .,l l {j. .c ..} r 1 y ,47

g, t

._q 'N." g H/S/EBh" LIMIT LOADS' FOR Tb2ES'Utd;W '; INTERN L PRESSURE,, BEND t:D f [ y

)
;

l bR i Q,, W v n w ER AXl AL FORCE, AND TORSION,"l BY STOKEY,,PETERSON,tAND WUNDER:l NUC. T 2 ENG. AND DES lGN 4 1966)103.-201.... + Wf, w6%.., n 1- .n 4, ' y %a; /," 9 J.. -i;[ ' QA, f,s jy-w p $ yF,j [_:9; [ > > Q ' ~ r $g:h,wp y c 10 +y ,.-Ag t., @g o }Q g;w, ;p m t,7/d ghpkg7.p r: , L... t j to ,.,,,q# . p gv J.QW .y y i ,..m ,4 4 @ f 7 QNyc p.y,yg.pygg;w-' Q.yy,, ' :- i - u a g 1, u ' ' ,A., r e me k,W m(p h y w M m,,:?.!g @p%;.,m w w: t C(} h.. 'M. ,p.; 4: ,4,; ;g , s M, g 3

.yw.m Aggggg<q w & +
q w m & g y
3p'

. u, '?g .. a., , -w&y nig y 3g W ; yV gg y m $p-ge,g,g'd.g%gg.gy Q)y &',.1ggggg < YO.p w s, n d, f f &*w +,W 4, s.. s 3.. n y.%,,n R: \\ . pm; e n w.w - G. . w. ? 'r

W@ %

, at w g m-m 2; s 4ss q ,m g .g fyfQ;ygg) e t , l 4 e , h. !. f 0,.i'E, .f, sfc.?*h-1 'l g (,.= .' hf.. 'bl.' V . 'k ,,rs3 V ( 2 [c. 1n @3 My U. ,,. p'yf@ Q Mk.h ]h'/Mh g4(gg ;m:4 y,r (>, v,a$f ig aw gw. ... j ; t., g e

, m
we ggq : e q %pw.gm.w%.glg, :g.g;o.y, :

vs ); e,

}. ' *. m.

1 ;- p a ( _v g .w - k_p 1 sp .g,qq j 4.g w m fgggg y g, .. 7 w t.r 4.p.m g w.p, i >* ry y 'zN c s gg 4 t a

s. mm #<,

r y + .m -m ~ ~ ..w s s < s y wyg ,gj r .wg. g.,. s s

y.;s nr.a.vn,.m a w w, s.u n., w -

.F. t 4, y jg yggigyg+yg gg y Qp gg,,(%g - , m]gg e w s V3 ',, p q4 W.7 3 ',4 : y mt 4 .~,c ur ucwp ,~ g y gg'ggggg g4, g. 4 'y

  • xy
.., gjg,..

u y.p{ .p + ggf r n,. 3.,,h w&m, p. p. ; y. v. m

g. gsk n

n-s

.y,s w,,, e... n

..e =.wy; n; f j,, RJ t r w p

,.g.

.4e a,, qy _ af a M W W,y '.4 m' g ~

S, f,4dy g

i s s, i 4 ,i a}4ie --,, m A) .I Itr ,'?,,. R;- y (' 1I. 3 t i <,o p %'.4 ' l- \\N, 5.' nft r , 1, 1, 3 .n.., 4 . i 'h'(,(h \\ h r hi,,5 i p, [ j.; j w x, Q! g,C fad Jg e.> .ql y w. 1

f n4 1k,,'

,[ h ' i* 'l, ?. .yi" [v;) - + h ' Ih, { i,M l l g A i E v -: 4.; ; pg ,l. M f

  • MM
p. rag @0gMN}f l f.

, k ^l=p me"$ e * [ 'kh fNY; l< Ofl W Y $' e < my}e n gggg+ (

  • k$
f. h t_

7,,, -~,,, y : r- < Wpj, gjA g,;/c;W w; MQb_ q@gg.$$q%g: ,..W$ 9 'hWl, 0 c b 6d 6} g,,) ya. > 'l - y+er$wy%'$w;Wqg'*k.p.n w !:'RgjW, ed' SQpg'bg &j, %j',,- %), . g;, p ,,,, h y my pgy,q -pgg~ g., y, y, w9 ,n ym e,p a gv..p-a v. 7sv. q, 3,' t ~ a iM. h. 3, 3'.7, [ /* 1[f' t. 'L ~ + c,m n n, M :;'. s, a . x, M $ ?' c( u s / o, u ,. W+ G.y, m t ....,1 y, p-j I, N., y t ~ o e t rh' 5.e r 3., j

pJ. g; b W A Q'Mj

.. j,- ms &p,'! h *.f yJ.e 1% 9 -3.x*t %@ :p{ ' 91M7phh.,fk's di! kk.. /.? A t '1 /' d.*l' #

  1. / EN 1'h spW

,s B \\ '\\ j?f i \\- /;d ,.r.- wwa at A.a 'w-.--- ~ L h

"N

  1. \\

h e,- .~ e S., j ~ 1 / / X ,[ g. - n. s 4,. x.- z. -f- - ~ ~ "* p. s

    • "*J7 e

3 2',. g M y.. i t 7-e' y M j, u n ~a O ,/ i. , k. ,~, <Q e" ,.f .j .G V r -- "; 7-q_. ' w.. -k 1 m 3 b 7.. ap l y t \\ l : v' - %e :E %= \\ ~ W 6 4 4 \\- 1 U .o q t k, q ) $N l c ~ s N q \\ Y. W x y n ~ + I. N, 1 ..g,. q s , q.. l .<- N x uf 3 s_ g M s N O v s i A ) w w s \\ d"N e a w k \\ E n\\ 2 g .i.. s g y t M L i 'O c-- n \\ }. ..w k %y u, e ~ \\ y Q,. .u u; 1,- ~ o \\ '~ tv a' .y (t 4 j z 7 ~ e j ;;' q f 1, 's =~ ~ s c. c Q c e c c r ,s

7.. g Q

q

  • g T'.

C 3 g s F /w ' J-isx ~ wswiugnss.raus .U n. y; ~,_ h . 1

  1. . j V 3-

.s a 1 .,c, ! ' I, k s. 1 h/1 r ,b a

s,. i i e I a NUCLEAR ENGINEEIUNG AND DESIGN 4 (1966) 193-201. NORTH-HOLLAND PUBLISHING COMP., AMSTERDAM f( Iw LIMIT LOADS FOR TUBES UNDER INTERNAL PRESSURE, l- ) i BENDING MOMENT, AXIAL FORCE AND TORSION * .h W. F. STOKEY Department of Mechanical Engineenng. Canegie Institute of Technology, }, i Pittsburgh, Pennsylvania, USA C k I. th D. B. PETERSON and R. A. WUNDER Bettis Atomic Power Laboratory 1, Pittsburgh, Pennsylvania, U.L4 q, l,,p .i 1 ; Received 18 May 1966 ,f;- la 1 and s ( G: I Under certain simplifying assumptions as commonly made in design practice, expressions are de-l \\ t rived for the loads to cause complete yielding of thin and thick-walled tubes under internal pressure. F-bending moment. axial force and torque. The analyses have been done using the Tresca yield criterion. 3

  • f on the basis of statically admissible stress distributions, which give conservative results. Results are presented as charts which give the limit loads for a wide range of conditions.

g ',h ,3 h ~ 1 \\

1. INTRODUCTION

( under pressure, axial load, and torque. There SN has been much woVk done by many investigators ' k J s. l In tne design of structures, it sometimes is on the behavior of thick walled cylinders sub-D3 i desirable to know the combination of loads that jected to pressure, both with and without axiG M, l wiu cause complete yielding of a structural ele-loads, and for various kinds of materials. While d k. mnt. For many shapes and combinations of ap-the results presented here do not represent an f 4 phed forces, the load necessary to cause com-exact answer to the problem, they are conserva-plete yielding at a section is considerably larger tive ap should be useful for design purposes. p i I than the load that will initiate yielding. A well-It can be thown (3j that the loads to cause l known example is a beam with a rectangular complete yielding, when determined by a stati-y j! y i

cross-section, for which the bending moment to cally admissible stress field, represent a lower

{ cause complete yielding is, with perfect plastic bound of the actual loads to cause yielding. A 6.& ,.[ tnaterial, fifty percent greater than the moment statically admissible field is a set of stresses ( to mittate yielding. It is sometimes permissible that satisfies the following conditions k j tt design a structural element so that it may (1) They are in internal equilibrium. h;' ynld partially under the maximum load to which (2) They are in equilibrium with the external 1 - ') it may be subjected, tf it is expected that this Inads. M. d. i maximum load will occur only avery small num-(3) At all points in the body the stresses are l' ! :l! '. ber of times during ita lifetime. such that they form a combination that is !I d q'g l In this paper the loads to cause the complete lower than or equal to a set of stresses that fielding o g \\ pressure,f tubes under combinations of internal will cause yielding of the material. . (( bending moment, axial force and tor-The solutions presented are based on stress dis-y i slon are found. Such tubes approximate pipes tributions which, with the exception of the radial 4 I

q tarrying steam or water under pressure, when stresses, that will be discussed later, satisfy fl e

g subjected to mechanical loads. Hill and Siebel [1] these conditions. g j . I hac discussed the combined bending and twist-It will be assumed that the material is rigid-l [4 ig the plastic range. Hodge and plastic, without strain hardening, its deformation . L ina of thin tubeti g " j panarelli [2] have analyzed cylindrical shells loading diagram bemg as shown in fig.1. The k i Tresca, or maximum shear stress, theory of kq r; y " ' ' ~ l

  • Accepted to T. A.Jarcer.

yieldmg will be applied. 4 I } Operated for the t;.s.A.Er. to Wenhnghouse Eice. The analysis is carried out for thin-walled h t { f Mc corporation, and thick-walled tubes. In both, the loadmg is as I ,h l a t uy a m a

194 W. F.STOKEY, D. B.PETERSON and R. A.WUNDER \\ -- STRESS f I Sm Sy p rN L s i j q o STRAIN , Fig.1. Load deformation curve for a rigid-plastic ma-Fig. 2. Loads applied to tube. 3 terial without strain hardening. Y Y h h Sm b

8. Eiement St TENSILE REGloN 3' TENSILE REGION f

l D 5 ed and thict g 6l j k , For the i s

x sponding 3

[L, j } the maxia ~ Sm 5 S 8e k ~ tion of yiea tban ' is S8 f Z COMPRES$lVE REGION Z S g So COMPRES$1YE REGION g 5* a Fig. 3. Stress distribution assumed to exist in thin-Fig. 4. Stress distribution assumed to exist in thick-re S is tho walled tubes, wailed tubes. equation to y shown in fig. 2, where the tube is subjected to section into two zones, the upper being in one g g O internal pressure p, an axial force N, a bending state of stress, and the lower in a second state. t_, g S Q moment M, and a twisting moment T. For the Again it is assumed that the shear stress and the y thin walled tube, the stress distribution at com-circumferential stress are uniform. While these plete yielding is assumed to be as shown in flg. 3. assumptions are not exact, they do represent a 08 The shear stress Ss that results from the torque set of stresses which are in equilibriurn, except is considered to be uniform. In the upper part of for the radial stress, with the external loads, ~ the tube, abc, one state of stress exists, the and thus are statically admissible. As in the stresses being, in addition to Ss Sm the circum-thin-walled tube, the axial stresses are S and t O' ferential membrane stress, the radial stress, Sc in the upper and lower zones, respectively. which is discussed later, and Sg the axial stress For both the thin and thick-walled cylinders which is tensile. In ;he lower part of the tube, the radial stress has been assumed to be equal ade, the stresses are the same, except that the to lp throughout, in the determination of the 03 "~~ axial stress is Se which is compressive. If the yield conditions. This is, of course, not true. circumferential stress Sm is assumed to have a since the stress varies from p at the inner wall J fixed value, pr/t, then the problem is reduced to to atmospheric pressure at the outer wall. In } ~ two parameters: 9, the angle defining the sepa-practical situations, when the thickness of the n2 ration between the tensile and compressive tubewall is small compared with the tube radius, zones, and Ss, the shear stress caused by the the radial stress is small compared to the other torque. The bending moment M, and the longitu-stresses. Therefore, the effect of the radial dinalload N, can each be expressed in terms of stress on the yielding of the material is small. S.S and 8. Note that the force N includes both The assumption is equivalent to one that is com-t e the axial load caused by the pressure, and the monly made in the design of pipes, mechanicalload, but these can be readily sepa-rated. For thick-walled tubes, a similar assumption

2. STRESSES IN TUBES

\\o-is made about the state of stress, as shown in l flg. 4. The angle e defines, at the inner radius, a Under the assumptions that have been snade, the values of S and Se that exist in both the thin-j hor %ontal line which is assumed to divide the t t / l l { l

LDdTT IDAD6 TOR TUBES UNDER INTERNAL PRESSURE 195 i Ss S' 3* Sm 8 { I Sg S, p gy 3, 3, f f.7e Sen S I Sc 4,3 Sn ui T St @ sg 3, 3, Sm rig. 5. Element of material in tension and its Mohr's Fig. 6. Element of material in compression and its t atSILE circle. Mohr's circle. walled and thick-walled tubes at yield will be the where S = 1 - p/2S,. same. For the tensile region, an element and its Tor any value of Sm/Sy, corresponding values t of Ss/Sy and S /Sy can be determined. Curves d '[ correspon ing Mohr s circle are shown in fig. 5. t .x For the maximum shear stress criterion, the are plotted in flg. 7 fc,r Sm/S = }, } and j and y condition of yielding, if S is algebraica!!y great-for p/S = 0 and 0.10. 2 y er than -lp, is: For the compressive region, the state of BSivE stress and the Mohr's circle are shown in fig. 6. S + lp = 5(S + S )+ [5(S -S d + s + 5# " S When Sg is algebraically smaller than -sp, a j i t m t m y, g3,) conditioh that always exists if Se is r.egative, the ,) condition of yleiding is -l .let in 1 '( y is the yield stress in simple tension. l where S 1' m"![$ ism "S ) +

  • SS *

(2) 8 l This equation reduces to: T c y 2 f g S. g(S /S )

  • IS /S I m y s y This reduces to:
  • ""5 Y
  • Y S /Sy=Sm/S 4(S /S )2 c

y g y eprase { um, i e i i i i i g g rnal Sy.1/4 s,fs,.1/2 S /Sv 3/4 .f a eSt \\ Yi ;

ctivelf, l

,e y r cy ,/ ^ / lon of ' " f ~ / / i' to be l j ,/ j

j. :

, not r 7 j j f ? inner f p p 'l / (e ss*$* T E / 's at ),/ // ,s v 0.2 ube rad $y o the / g the M ~ / / is smaN 4 f/ / matis l g/ f/ RADIAL STRESS. O g RADIAL STRESS * -p/2 y f/ 1 9 i e i i i e i g, j o LO 0.9 08 07 0.6 0.5 04 0.3 02 08 Sr/Sy 1 een( h b Fig. 7. S,/S versus S /S for tensile region. b thi, y g y ] i gi

198 W. F.STOKEY. D. B. PETERSON and R. A. WUNDER QS-a e i i i 6 1.0 ~ Sw/Sy al/4

0. 4

/ g y.,,,y ~ 0.3 5 / R/ ~ ~ ~ }

0. 2 f

f ~ 0.4 0.6 02 t I i f I t .Os -0.7 -Os -0.5 -0.4 -03 -0.2 -01 0 3c/37 o Fig. 8. 5,/S versus S /S for compression region. -08 y e y Curves of Ss/Sy versus Se/S y = r sin + and dA = fr d+, Sm/8 = j, } and {, in fig. 8. y are plotted for j, S r sin + tr d+ + / p y S r sin + tv d+ M=2 ] i c ~# ( ) 3. THIN-WALLED TUBES p 6 h [ * * # + 8c f y *

  • k Next, expressions are found for M/Mu and N/Nu for the thin walled tubes. The subscript u refers to the load to cause complete yielding un-

= 2td cos 8 (S "S ) * ) ~ t c . der the specified load acting alone. Referring to flg. 9, the axial force is: The load for complete yielding under bending oc-08 N = 2rt{(fr - 0)S + (lw + 6)S } t e y = 2rt{}s(Sg + S ). 8(S -S )} * (3) 0.6 c t c TENSILg REGON 3 The load for complete yielding; Nu, occurs when 9 = - As and S = S : a t y a4 Nu e 2rrtS. (4) y e 9 Combining eqs. (3) and (4) and simplifying gives: 0.2 E. 1 t Ses 8 8 n = i(8s. Y. 8 (5. Y. t cs (s) u Referring again to fig. 9, the bending enoment s 0 - 0. 8 is found as follows: p ppg 33 p REGION M a f Sy dA, A } f g. 9. Geometry of thin walled tubes. 1 ws

LSUT 14 ADS IVR TUBES UNDER INTERNAL PRESSURE 197 ~ 80 i i a a e i e i gg T/Ty s0 M / f ~ og T/T e o.t-A u f T/Ty.0.4 04 T/Tg'0,6/ 6 ) ) Q2 q 0 ~ ~ 0 .ca -06 -04 -02 0 0.2 04 06 08 1.0 .I' ] N/ny n tv d l Fig. los. Limit loads for S m/S = j and p/S = 0, y y hrsinttrd9-sin t d e 80 i i e i i i i i AM x tder bending oc 08

.x /A&MN

~ ~ 0. y// / T/ To.0.4 l Tir.0.sd y l e i ~ / / \\N ~ ~,/ N, ~ - 0. a -Os - 0.4 - 0. 2 0 0.2 0.4 as ce i.0 ) N/Ny lisd tune'. m/S

  • 5 *# #S = 0.1.

l 'a Fig.10b. Limit loads for S y y l

198 W. F.STOKEY, D. B. PETERSON and R. A. WUNDER ( l.0 ..o i 5 T/Tua 0.4.

0. 8 0.8 T/Tu C e

\\ O6 0.6 T/Tu 0.2 e

0. 4
  1. /

N\\\\N 7 0 -08 -06 - 0. 4 -02 0 02 04 06 0.8 to - 0. 8 N/Nu Fig.11a, Limit loads for Sm/S = } and p/S = 0. y y t0 s.o 3 3 08

0. 8 T / T e 0-u 06 T/ Tue o.2-

/' i f/W3% i 06 QN /// i 08 -06 -04 -02 0 02 04 0.6 08 to 0.8 N/Nu j Fig.11b. Limit loads for Sm/Sy * $ *^d #/3

  • 0,1.

y f. J ( r. q,

I, ~ 8' ) LWIT LOAD 6 FOR TUBES UNDER TNTERNAL PRESSURE 193 ~., I 0 0 l I I l l l i O.4 , r,

0. 8

'06 O.6 T/ Tu' O.4 i 3 1 2 T/Tu 0 s T/ Tu' OL 1k T/Tu 0.2m 0' 4 e [ / O~t Y 1 / / \\ \\ l j- \\' \\ ' .0 0 .? -08 -06 -04 - 0.2 0

0. 2 04 06 08 t

(' t o f. 5 1 N/Nu 1 i Fig.12a. Limit loads for S /S = l and p/S = 0. m y y l l l l l I i i i t i l 6 'jj-.- 7 08 l ~" c'- T/Tu'0 4 .i fy-T / Tu 0.6 e 'I 06 T/Tus om D 2s T/Tu 0.2 a e c 0.4 l Y f l ,f 02 / \\ s s i [ l l l 40 e. 0 w -08 -06 -04 - 0.2 0 02 04

0. 6 08 to 6.

N/N y Fig.12b. Limit loads for Sm/8 = } and p/S = 0.1. 3 y 6

i e W. F.STOKEY, D.B.PETERSON and R. A.WUNDER q. ggoO = i cuts when 0 = 0 and S = -Sc = S : Performing t integration, simg lifying, and ,l factoring out leads to: Ms t y M = 4#T S * (7) ( sin 0 1 -(tg sin 0)2-} =i({~y' u Y i rg } St Sc g = rf }r lr Combining eqs. (6) and (7) gives: o (8) -sin *1( +( sin t' [1 - sin,j g. (# 2 l 1 ( h = 2 2 Because the shear stress is assumed to be

  • (rg y

\\ [' uniform, T/Tu = Ss/fy = 2Ss/Sy, since, for the Tresca criterion, the shear stress at yielding, Because of ' r, is half the tensile yield stress, S. Curves The area of the tube in axial compression ist y

assumed, o M/Mu versus N/

are plotted in figs.10,11 and 12, for Sm/S =, } and }, for various val-Ac = gr 'g, ( am m 2 y ,j, ,n alcu ues of T/Tu thin-walled The longitudinal lot.d to cause complete yielding in figs.10, I

4. THICK-WALLED TUBES is:

2-For thick-walled tubes the geometry is shown N * *f I~ S in flg.13, where e is the angle, measured at the y* u A S /S + Ac c/S S inner radius, to the separation line between the y tt y y (9) tensile and compressive zones. The axial force 'q- = gr [1 -(rg/r )2; 2 u n is: The bending moment for the thick-walled N=[SdA* tube, using the same expressions for dA, is, j when lyl < rg: C!When lyl < rg an element of area is dA = c dy - y ). When __ M = f Sy dA 2 where c = b - a = /( -/( ' ~ ' lyl > q, dA = bdy = /( )dy, e area of the tube that is under axial tension is, when lJl < rg: r = 2S ;/ g. 7(/r2-72. /rl.y 3 gy i 2 t o o - rf) - 2 /y e, /r. y, /rf - y ) dy.

  1. *I" 0 A a h"If 2

2 2 1 ( t o 7 0 + f ylr -y2 3 dy n fi y I g ain e 7(/foy2. /yp.y ) dy 2 + 2S l fg c TENSILE REGloN rg ylrS - y dy E -dr + o 0 1h N , We4 u i Performing e integration, simplifying, and 4 g A Y U factoring out leads to' ".- o -a- \\ { M = j (S - S ) rh 1 - (f sin 0 2d I i ~ i +- b V g c 7g -( [1 - sin ej T z REGCN The ultimate moment, when 0 = 0 and S * *Se

  • t Fig.13. Geometry of thick-walled tubes.

=S is: y

G

O A t 5

I g

LIMIT IDADS FOR TUBES IJNDER INTERNAL PRESSURE 201 rg 3

5. CONCLUSION

{

311fying, u
  • kS d I -

y The curves for thin-walled tubes are nearly { the same as those for thick-walled tubes with i E. 2 (S_t, h rg/ro = 0.8. Since the latter is similar to the I I 1 }. N ro,, u y dimensions of fairly heavy pipe, the curves i 1 -(r sin &}2' $ 3 should be valid for use in estimating the loads to ) (1 - sin 8) ' I I [1. sin g) cause completeyielding for the usual pipe sizes. j r0 (10) x r 3 1 -(F REFERENCES Because of the stress distribution that has (1) R. Hill and M. P. L.Siebel. On combined bending and been assumed, T/T = 25,/Sy as was the case tly f,3yl" Ibes in the plastic range. Phil. f' u y 2 for thin-walled tubes. Values of M/Mu andN/Nu [2] P.G.Hodge Jr. and'J.Panarelli. Plastic analysis of h, have been calculated for rg/r = 0.8. The result-cylindrical shells under pressure, axial load and o q ing curves are indistinguishable from the ones torque. Proceedings of the Eighth Midwestern 9 for thin-walled tubes when plotted to the scale Mechanics Conference (1963).

    • I*

used in figs.10,11 and 12. [3] P. O. Hodge Jr.. Plastic analysis of structures (McGraw-Hill Book Comp., Inc.,1959) p. 201, 7* (9) + e thick-called a for dA, is, 1 k - y ) dy k 2 ~ aplifying, and S I [1 - sin 8],... N, , a -s $ ta e %J 1 ..c ...r.....

i 's - z._ n. :. ; w. 7.s y p .q. y.. m...t 3 s 4 j .}; g e a

q,.

\\ ,i, . y.. 6. ALtdwysQt (gRE558"/bl*D!itRIMATION a 3 e. } ..v,... ,.y The. basis for the.silowab N ssIrosses used in th4s }2,- lj L snalysis.,is SJption III of the ASME. Code. for Nuclear Power Plant Components. Yklues (or Sm, yield stren6th and ultima *te s'trength at operating tengpef sturef a rg H j taken directl~y from the approprfa*lte tables in the Code. - l A. Allowable Stresses for Tubes 1 At the maxim operating ' temperature of 611 ? tr.e l ultimate stre h for the SB-163 Inconel tubir4 is l Su =.80.0 ksi. From Appendix F to Aect*Jon III the I medibhtne stress allewable for the faulted conditions . considered in this report.is: 9 l IA i Smemb = 0.7 S s u -~ / ( or ~ Smemb s 56.o ksi 4 'Ihe membrane plus bending stre,ss s'11owable is de- % veloped by apply 1.yg a shape. factor for an annular section. This shape factor is 6'iven.bf: l l I.'. 16 r to - rl o 31r ro - rf Qe membhe, plus bendin6 allowable is Sme'mb + bend " I S s

memb, and for 'a tube of nocinal dimensions Smemt + bend " 75.9 ksi.

should be noted t::a t for dedraderd se t' l shape factor decreases the reby reducin6 the ce::b rane ' plus bendin6 all'owable. .j. j O I 4___. ~ D-

). ]. >

til 9 p q = '.a,,.

  • Q-

.e. c. gr " y*. 4 9e . Yi.',.

1.. 't,

,d .g n, .<.. a ;. ,+ Y .* y s'. '.g,ers'- .g' / h.- t ) % q *. ,rs. a es =; +.- 96 u. .. $d . T s [a.M[. ' 1 '

  • , M 8*'

g .r n sw; u. a. g.

4..,.

e -t at.t,, g w JC . Sa. .A +. v l,' '._s-y, e e ~' a \\ t% m g ,'O p O m % N r ~ g; A 1C 1 m.A e . e,t 'g A,. E. g C 4. 4 '( Id 'ir 2: <3 ' & as. Q b", g ..g

  • N t

as * '. c'- 'IA e o i '^ - h.* ' *=f 5 C s- ,. 3 . d'* ' f. N. . cl

  • 5 Q

a=( N + 0 q + cm .,A si N D'- y.y ,8 9 o o o 2 M' gj. g'r a ".' g g v 8e b 3,. r t. C .a s .,a g g ,g. , ----~ - ,e 'i k O / f'..,#**',* ~y, ~,; a A.

==., ,.3 6,, a = sy <c N 5 es L,< N e

    • 8

-=8 2 E* C =r. t% t**' b s; 'C .ad a P e j g. . T, fa E. ", A r t N. g -a- -g .i 62 : g P.' n,- .@.,,a

  • 0.:

A' 6 ,7*. 4r, <. -O. 6'. s a:, - t' e-K o. c.

  • Q-ri. m

's e 9 ~ is

y,R

' M g ~6 'i

s

-- o

c 0

~ ,e.e o. . grl .e e x g \\f il p ,-e t'i, L' 'C

  • O 2:

i L L N n_ - a a g g g q w L L' 00g = s. '1 b9 2" Q: l.m /, A b" C 6, m g 1 g

  • 'C

..g A a s c e e g -h 1d' a f** 4,."'. at p' ,, 7. ' .,--' '.n"' -e .w e u w 'ts: - o. O m .' O t. f o o e n J N a:' .V.

  • d' g
  • N o.

..= *.; r CB. g R

6

,o. ...2 e s a. I. f IN O o , o.

  1. t 2:

ej g ff d -e V A n 43 g L. L L ?

  • E J

'b W Y .g .'A r 1 "w 6('. f, E y 'd.,) c

a..

.e 'g E[ s $, ^ 1... s. ~ .. o

a, 6-.

6-e aC.h .N 5-M p 's p 8 5 %. 8' m 8 '$r m.o 1. .s t 9*Me,f i ' ' 6,+".'.7 ( ', ,,.:.i. y.l. ,f

J i f '. f s 5 . nr.y c p,:n ~.. +.. n. ~.. w l. . ' s/ ' i nw. , Q;,j'd < &m,. c M s s. .N n \\ '.c x., n. r ,3 1 .*J e. ' F ..j,. ' ( p '.j. } I .] th ni ' ; 4 d I- .e i ... '. /-' '4 - 1;'f { my 3p +/, j v. s m': . 0: ep-n. W' f1 c' ~ ' / ' _ '.. d. 'A a; 17 , 4 _1 v.. (. ;j, j[ f .g e f.'..'i p y 4 4 e ~"k h h ' ...k'.g ., i.* [ $4 i 1: . 1 ',.y._ '. 'f.g s y ud.v. .c.w% ;.. g. ;n....%;..... pk y %:. ., r a .7 , e -( ) L; e ., k; s; ;; & m %e.'k,nyy,. _ 'vej >w. s. . ;.' y w,9 - V ' ['s. 4 ' Q L' f i- ' - ~ k L.?. f>(f' M.i Q g 6;} m.v.y j ',vl ~, '...' ...Y .s .m i e s j.;m b; -) og / , m ~ f' h .h.,h'. n.' ^ ,b ,.:) ~ . ~ ym/a.x. a p,t e,.. n.:e. n... n ,.w ~ ;. ' 1. , V., s y g .I. i ' ,'..'.'ti..,,[ uu rm. t,.s,).... ' 5'. 8',* a ...e.<, - v..-. - .c'

  • T r

e~ .. s i ...y y }. "y g'.L .. I $,',; : i p.,.. ' *%.,.. -.- \\ '. y 'y ,*no. .1 ',* ? ",.1.'j.f J., ? .e..y. ;- .m .=g .. s h ;, : ';' <f ' f(s;. y '.. .[. .a w .c 4 '^ .y_. +.

w..,

s a y.,.., 4

y
w v c

., h ;., g..,,n /.m,, n 3 7 ,.s .y 4' y.....,,, ; 3 ~ 4. , y .o, ..,g)a.

  • ts-(.p t.
3..

y r v. }., .,i, 1 g. ( A.,, N' '? h ~ m.a._,. a ~ : s ~.. - .['g',. 9 b i/.h ..._:, e .. ' ~ ~ .g . x.y b y ' [J 't ;h'$ - 4 .y g y g. 3. w.w 3 g, C,,ferg.(.y, 4.. v;.u p - w........, 1* p, ~ 6 e m .,y y ;,

q.,

.,.. 1 '3 c ,s E'* W '? 4 e v.> t h, - d. l, 'l : 1 , : =. 6 li,,.m, a ..h - l':... _ q. a ..."4',ui i[' '< a e., c W, ,y,Yt ',,% .m- 'g 8 y v /5[ l }. y5,,%y y;,.. L. . _.c.. : c, - r.n.a zg /

e. p,:. w....

g .u ; r 'I " ' ' / &f &, ;$^,, lm.l, L . C. 6 'L8 Q:e%QW)e;,;. 3 ' 's,

5 '

,6 < g., :_. F '%.. ~ . r.:. < J di f Aq y v,,. 7 "... J e g,* .,\\>, L f, f J( g .' g ,Z, r.. i y.. <2, .,, ;,. :.3 g.g ya,,

p... :

p,*., 4..........

t. c

...,m 3

  • f...-,

.c i..., 1.- ,..,'g. ,u,',,.,.. .9 .,.s ; n- ' s., 7:s.,) 9[,,, o N, 5 j,T' j h *; N' 4, .,j p 4 \\?j ' l l.ll ; ]; [,j, l*,: q,e g & w e. n.c w(,,. 3, j.;g-[ l._ (_ +y %y w; %, g, g c:n m g g v+

J w.y s

(p 1 y, 'r ?,3 } 1 .4 h .p;. c f -'J 'j'M ' M[h, $k . d!L ' W' i ' i' M^d~' s

a. 1
Y k W b h $ $

Ox?$$$ ? n W l

,W d[ha m. .. wwmV M:q d %,,y.yg 5.%,1 ~P-?g;P.M.sw..h 5 u .vu/a d J y4: 6.. . 2 ~ k wg.1 m4 ry{:@,f; $$:-?-+riY.,.y > v.n,.(k :.W" WM ?* W NV,s~. @n-. ~'"

mhu, WJ vi n

y iM 7 g';A"i:.W

  • w ; d' '. W '~ <, ' y

% hm

y ii u

6 pp! M r.t m e ? n e Mq.p;:qt a e m n, y sm ,A m ..gy " J f + pr " g g$ M Npf i:p > mpy c '#a ~ E)'.g f, 'q' r.m '.e,0.%m , n r.t. - g2' ^C y a 4 s Y ^ 8 s 1, s' m .. ;,. 1i(c x, N's n.i.f si

s. y.

.P-s ([a ._g K }' ,,'1 ",'t'a t i e n

  • T

.m.. w < r ~ g' y s' g 't ,'i 1 w). ( jy , j F ( p ,g 9, JP, - t f4 ,,y y -'I 3 Fl. @.7.J Gb g ,.,y' + m

a. M d k '
  • i f I,i m >.. i. N,

g .?J - l

!f

$'+1' e . '. b ,h [. g ej ~, *

  1. 6

,a t v ,ty a t d _yh i 1 , g g 4..l m' t :, ~r Q' f T C'Q ~... m.- n _l _ l_ \\ 3'h N' _ ' j^., f t ~~ n wm / s,, w N, w,, f %.,? g ,j't ,g 4 g v j N

  • h'f ii '. ym ju

,y .y 9 4) 5 ~M : r r,~. 'I ' 4.,. t % 41! s Je tm Le f ,.b.. / - t w% v3s7%). - Q',j [w ',* - o,b,g b he A,. ' N,hb [ 4 - g& ,,a, gd]g t -p 7 V fi 9 L,.,g 9 9 i .Q h.; [ -- w - n., e a @ m w a,% .ge i s s r ri e [f Dhh 9;. 9 ~\\.;;g WQ N @<%,.gf Q [,, W[$ f mg-4 H v

4 W
f; f 4

-e. i an A.p[w g) y A.e w 8 ~ Sp%y. > q MM.ac. -. 4. 8 M,p. lbugM. m e. *

  • m., g : y Ed.,

w' ' q. 1' m , -M,j 4(g i p + M ( e'. < ~..,w'. M-sW$ tp,. a ym.gy.W peb:Q>.q![,u.c p4 - i i n. m e s Pt m g s p e,w .. -, c, q.cf f~~. 8,w:,'W - ?v-An %'"i

ew _ t y,

s a cg, - h. y V.. k.. par 4 4 Aa;'. ;a r. + y f

l. ' % e+y9 y

" + >p

.A

.m n r s j;.' r4 3 4 g p g, ge: v< r r 1 A \\ i s 4 'j k s ?'? ' 4 Ma

  • ?,..

...,'l s m,Qp':f )y a.. W< ~.g.~W'd [, '-- . I, Q.i j;&.)wllhf ')f e. m o 4 g i e c- ,A - -5> "' '~-i-. 0)l1, p&.:

n., t p % h } 'd..'JiC- " '[r.S 4

.;f.. r @'f*;. v . ( ba ji [ 6 y . ' 9 a'8 4,% .i,<. w.w~ s. -. ,, +, . t: 4 ' ' 4 p y. wm,, y L e m. Ls ,t. pi : +.n w. 9, y n . ;, 3 e 4-.' .,A wm%,, g.,as &&m42@p %.,'L-j C c [],ggspy g ~- 4 ' - ,,.yle - n m... < 3, g;,t y m &y 3 m $ m' g& g' q.y , qpg .w t Q, 4 it 4, (. ' ge, j~ggA 3 + a W %~. a,,;,W, ya 7 W t p M n w #e % W M P,'

-. mn s a
m. >.%m y bQ7,%v.~hw w w w...'[yhk.M, ye,s a m.~o w.s%v% n, p m

a wm s s n xm Q yN q P Wl Q Q g y;Q ",, ~h 'o dqsV ..,"y a w + n m m4 t o y + m w J.m,a.y T,,p e.. <-J v.....

4

,. s,y'n s, e 9 7, ggp/ '. .J c x .,~,.3.c~ ve,- A e em'w[ _kh < '..s.[ -.I !b

  1. [b
  2. .my. <

w., ,umw %g h2d ' ~[ m mm[,.p%Nh,IYMk[T$D,NfhhND.h,M.)@y'N m, - t % N 4 M ;r q ua% . kh >

  • YhN w,,ww w.Mh.% t i

' I T,9M b wq'; bk[p[m$ f ] T waympmgag w i w w "M, emp@,@,h,Nbh$,hNTYkbbb b h N k N b " i M. W y g, a N bh w hk n yMg d p y n ; g.;; W g ' n n gyggggg,34p@qwww.g w; - e S P s-q x.a gggy ~ + h.n.w m w s w m v ~ - a. A g MWh&gg & q ww w:p,e. aw r.m c gg lSCURCE: J^ M "SANONOFRELSTEAM' GENERATOR' REVISED"LOCA7UBE", ANALYSIS"-' ~ x 1 , yWp3ga 30MBUSTIONENGINEERINGLINCi,SHATTAN00GA,TNk4 JULY,fl984L N,f Q w w ! s n}; , w.

e..,, t i

ms t. .t e e p y3 r .Ut '; p', i N $ NI5) } .i + ...%,og 'q '..d.. a I - :n j y'. l 1 y :.g.

4.r;,

v ',T4 ,s r' s i ~i md. +'n. e s o r a

m....r 9'. :

-w -'<h'#,

  • k w

, M )H." ' ' c hkN/ V,.. n .it 2 .,,,i t, ', zJ a u v '.x. a ( ,+ 4 1 d A ~ 3 t$1 1 / l C', at $.}p y, w; y,m y.'&" g %"; ? s c y j ?% j r y 9..7 ,P + 'y' i.- = n&y.lk i'lN .q, 4 m.g -g p7r; N, fQ. ,,a .gny t ^t d p yolw 3.' ;. .o jQ y,f og ou ( > 9 eip.y j s 1- ...y-f !.s9 g,t, ,q!6 g z.3.*~g w,e s+* J

r sq t

o

  • lg, M(

i i ?" b c .' o of- .g-e ' t 4, [ %7-

  • e

'4

a. i 3

ik g 9, .S v. c'(m. r s,. [ m't? ^Q h,. ih, g'.,,I f,', s ~. f ", $,3 .) bi f if- -.' % x. + : - .! y-. g[ \\ 4 O d.,. .y , 2 s, i ,t

  • jWt W 4%v r hy>

y. M yi i p gg ',4.,( p+., y

  • y,.. gn l

? d ) i d-a y .. "M' 'd ~e l d,p ; h';hM -sag. Mf '" 5i P - / Ii-h to 4gg tA h !Y 1 M' q"U f k'Y y .fg j5 v. i a, w, ap:; a;, %m:w'#h[=..en:yy,s m%h' yw h,. ld.'y. ( I. @ 't I ,6 @' 4/ % gj. " k g,j j4, s:M.' N %, q 'u ,., n 1 m*. n ~a a m?' f : w:q % p Qn,L ~v a w b, L .c y g, p, p 9A.im.g.g:. wn ~g, u - e . ja.+ pn A,g es nwp y ww c 1.1n ty aj s m.e..; w ny q .L n 5-4 < %w,d.n,.ng s t c: w w>, a, m

w.. 4 -

.; w i W s . :p. y.; W e f.it ; "j 3 f; .{ r.'y)mypj wp[4?@*,q'/ c,1 rte p'...-w +t 3, / /',, g J, ) ( -J 1 1 w ~ ,.y > s u.M d,un,M@M&.A p9 cog p~, s,.b :: ', .c< w.~,...e

.yJy.3m m,pygsp y g h.yp? pi q

1., g.g g n, a..,, y 4 ,s2 q hi t t ,.g g ,, a. u y pQwgM&py;,q,g,%y p % y

. i;a

_'9; u;. e %.m -# 4, o s e os l y gip y 9 4 9 y, g y9 e uy.y _ t > t J1 w,, e4

v

\\' yny~}: g; '. @ 4.'a.v +wm,., i, n m m m e na,g p g3 a:.;cg1 q ,y a e ,m 7ph 'd J; [Q ggyj.y i j Sp.M P," 4, 3 y anmn.~, Q n( ( n m,. '., e, a owm.n.gr.,i, n.,, a,.. y~4.. d v.w@ g, 9;;%yw ;:; 9py(; > > , ys _. n. m

m. '.

< m<y o\\: 3a s 9 gg pn9.y.?mw<wwe:(3., c p 4 ,,g &w a ny( v.n, r m; -m e m,, . a,; y :A ,xyn n,ws, .a m:,4r.c gf( o w pj [r,. y p.w.py w. 1y4v i ytt g: gv y,. a.: n;p,t y x, .3 q., s.,, l' g i - g,.f a 97.pgp ,.w. ,t y. 7 , i u q p p-.uq c. r F..V,. ;., t r'y' / d.m A e E' im .-,.e t ?< r a.4 " M, .. Q N'

. i...

? a y g Mr W g gh. y, f 5 u g.. i

MsW 'cg, s

s i g,g n, % + m

gg T

,. e s, p' 3' $w' ' . r< y d( 4 q, \\,.,4(.i6etv : fh! !] t

Q '

l' kl '

  • d

( 7.?o M.QNa m Qm, {dc,4 Dile k. e,% h,'E [ Ur), } c Js ' hn"h.

  • h=.y3e,

w)s., Uv 'h4 kl.' ia b k.[ c h f _ ha j ,5 r' / d'N ~, stb ,m _e n, 2. h.v ',r. + ~ ~.<s;,:u j +u ..w....t + q:p w,.#ngv7 p q: p, n..i W ws - n 5 3 e i 3,m,u r a .s,f Q f, w y+ & w &. pl,Q fhd Eh &,S& mlhflQ1a ,? gh s e ', ~ i.9v ./ \\ h $$,h, %. p&d,'h f QQf > c,%y.s ,Ay' i W& b fl,& W: ?h&lh n k[ 9 m&t&vff, $) 'a,z,h; y., w4:. c 4;, khi n o y- > g o.#. ,.,y u, u, ~ e w w s ---, a. + ( I ..v ....v t. J.. ,y pT v 4-9Jd i, .9 J 4sf,. E^ U $ ph Mf!M'b'g@'h'<@' Vp@M' 7 f,I'IWeW'I 9 f f < MiWWMM M p'M'd w ch. rv, e.. f h, %l 5 k .l m $@Q'@yn u y@ N,Ii w@ba M,5'w M T M %m w u p m a n a :Q W" W i.'." ^ .J s 'l /,n , W' QW') l

  • I.

.J -{S.En N I w n, m %e w; y @ w u , m gy e m p~,,.. e. n w g 8 e w \\'d ~ qq.s , p - i %y.w i ; 4y m m, %:wA.,

.. A.. -_t; ye y

~ g' c, f yg. - - s

i. 3,,W t;

...a ; 5 .>a a s ..n ,._U rt.p 4 g y.. s .g+ ,\\.,,'o, l, y - - t , / ,g a- /{. _n.. hah-~'-n' ,i j - js.~s - "v"' ,p. 4 ,. {. / s - w w.cn 4 ,s.'y ,s g[, o. 3 ,4 y g gMhygr5,g g,,d.L'plaiL fM.4bM=MM'

b' b REPORT NLP8ER C JC 16 45 b ~ f-T 'i SL'BJECT CATEGORY: 1 "A'ALYTICAL STUDY" fq. 4 s - A..

g..

,c 1 i b, t. l-n n g o ('..'?,4 'l

  • I 1

i f P r 1 y.. l mp

a..2 1

e

v..-

COh!~ :'.'. E *;G:'.E E R ! *;G. : *.C. '..CLE : MAER SYS~E"5 F... C07 0' E'.7 E *.G :E.E : : *.G w.- C..,... r s,.,....a.... a '.y ^ h2 j h- 'l L.. 7...

  • .5 9

[.'. ~ 4 o 4 ** .1 .] \\

r. ::....: - e.r
.,...c I

V *% h i d .q ? . 1 E. H. 10. :. : j F. . 5. t a. l .a v-i ? j .' l I '"' l i i t o J

o I

a I l l t I i 1 he l a 4 i Y

  • t 4

a 'e 7,3, 3-. -. i-7 r'.- r --s - r -*~~ - ~ s. i A.. t 'I y ~ =., 3 . a c,o l ] 1

.l [k 1!'5 b M ' I*b

.g.

'a * *a a *

  • COMBUSTION ENGINEERING,1NC.

Chattanooga Nuclear operations '"**' i 11 T'Nb 7-4-I Y

  • " * ~ ~

~ 4.,e case.e. COMPONENT ENGINEERING h ..vs e.,..e,. 997a0055 8 g se SAN ONOFRE STEAM GENERATOR REVISED LOCA ANALYSIS j d '. :.. 1 K", " * ' i SLMtARY f.g.1? ;". $l 1;3. In Report CENC-1327. fiay 1978, it was established that for tube I ~ rows 1 through 91, the allowable tube wall degradation was 64". .z 1 F For tube rows 92 throuch 147. the allowable percentage degrada- . ~.... tion gradually decreases to 47'. In this report lateral fric-tional resistance was not taken into account and the stresses a resulting by a LOCA and SSE events were algebrica11y sumed, hl d ,e The objectives of this project were (1) to establisti lateral frictional resistance by the vertical tube support inatrix on the tube and (ii) as pernitted by the present reculatory ) y w. guidelines usine a square-root of the sun-of-the-souares rnethod 4 to sum the stresses resulting fro. the LOCA and SSE events. t 1 ~- The tests were performed usino five and seven supports config. urations. The frictional forces were evaluated by anolving i vertical loads on a tube and reasurino the required horizontal e loads to r.ove the tube laterally. The results of the friction 7 J j tests indicated the esistance of bindino of the tube in the 1 Theso biccinc forces were previously reasured in the [ supports. CE/ err 1 orogran 51'3-1, LXA Bloudown S'nulation. It was observed [ t j that the bindino of a it.oe in the st.poorts reduces the LOCA b bendino stresses by 25. A trief su~aev ef the CE/E'PI urocre"

.-Q' i

1 j k. 5144-1 is presented in Arpendix B for information only. If the findincs of $184-1 crocra-were incorrerated into this report. the LOCA tending stresses could have been further lo.ered, -i 8j 't.e res.slts of the tests v.ere censervativelj incorporated into

  • i

) tne revi*ed LOCA analjsis. The stresses associated t.itn the I Y, t LCCA and SSE events i.ere thf.n so-ed usine tre tware. coot of tne i s o -o f-the-sq,.a res Pet':cd. Based on the ecsults, it uas snown I I 1 that it.r all tb.c t ?.es in the San i n.ofre ster cererators the 5 r allc..atle t Ac wall dccradation is 02 :.ric9 is "cVerned tv the i ravi r,ressure differential durina tne rar al cr.oretien. E the stre:te: e.c to tre: - !(f events n c ~ cil:..at,lv tLLo wall 1,wrati:n. T mse?t covern the b H f.; > ..p.; ~ f,*; r I L l u-t g .) arvloateI lcwtc< lcafa j ' " " ~ ' i av. arv av cHecx my cava av c rex i F 'l l l l [, } ( I s .r..., ~ V' g

1, .-r.w. 1 .h-. de r,/ 4/d/* COMBUSTION ENGINEERING,INC. ( i /

  • ats Chattanooga Nuclear Operations ii
    • ii

) .C.., l f*/ 4 (l l J )p/, case. a.. CENC-1645 6. COMPONENT ENGINEERING y. cascase eats

e. v. ace ae 99740055 g '. '.

j TITL.E f 5c.. SAff Oft 0FRE STEAM GENERATOR REV!5fD I0r.4 ANALYSIS t ] 1- .1 3 { .c. w O I.4 T' I I ?., l TABLE OF COPJTEfiTS l i, j t. t g q I SECT!0rj Pace T'" l .j 1. Jf4TRODUCT!0's.................... 1 I I s 2. .{ TEST EQUlff;Ef:T A' 0 PERFOT'i'.?' ACE........... 2

~,

^ t 3. T E S T RE S UL TS 3 1 y 1 4 PC'.':!ED LOCA t*: LYS 5 7 -l .r. a, L-i 4 5. (0';CL US:0'.5 ,1 19 + a l 6. Fir;* E *.CE S..., i 21

  • ' l' F-d

' rt'.: : t,: TirT ur E;.:.T A-1 thru A-11 l ) h. r;, y g. g;. nr- ;; r;t.21*..~4 f or.'.1 T r t.:/ r r. B.1 thru E ~ ) Tr r=:.*E1:a.1 I' t ' ' f '. :.* C : 'li":l LMD E*/; in Tt!! L l'!!*CH C 1 thru C-i i g-1 !'. Tr; Tl EE [J."JLE 1 ~ l t L. a \\ I i k i w.i s t 't d M., g a-( l 3 p* 1 l } ) g' - ntv I eatt I av ' Catcg nty lOAft -. -..Y. -l CHt C.K __.....y I s 5; - l I - _n(v... OATE ! S _V...C..Mi.c o-i p B .q + i 4 J ~~ y A ,,i -. - -- -w gym, 4 o

y 1 Ifry/ t/4 f-COM8USTION ENGINEERING,INC. ^ / M.' 1

    • 21 L

'a***"**

    • 's Chattanooga Nuclear Operations k

N /.h ~ '- ^ COMPONENT ENGINEERING .,s e..,..c,.. 99740055 N'. s cascaso

h.., y' TITI.E t

SAN ONOFRE STEAM GENERATOR REVISED LOCA AhALYSIS m y '.',..a j ; t-SECTION 1 b' 1

'J j

N-5 l 5 INTRODUCTION D '.I Eij I l i, j _.Cj CE*:(-1327. P.eference 1. established the allowable defect size - l for the San Onofre 2 and 3 steam generators. The allowable s - 1 ~ defect size was developed for the loads orcduced by LOCA in F j .~ l combination with SSE. The analysis, CENC-1327, was based on l f j the following conservative assumptions: The frictional or binding restraint on the tube t"

. f provided by the vertical tube suports was.neg-p j

lected. j 1 l i The peal. loads due to LOCA were added to 'the reak i t. j SS~ loads (curecnt rules perrit a suuarc-roct of h i 4 i %j l the su'-cf tne squares. SRSS. combination). t l Th. objective of the proposed scope of work is to re'"Ove the L' j ccove conservati$rs fro 1-the previous analysis an:l to estab-l l j r -4 lisn a r. ore (cvoiable tube plugginc criteria. y .J l The following tasks were perforced to acco piith t'e objectives a ,] of this procro,: 7 j i 1 J ;q (1) friction Test - Tne San Onofre tubes of interest Y4 (tube rows 8' and above) are supported in the tori-r . l rental portion of the tube by S vertical strips i ? (ross F,4114) and 7 vertical strips (rows 115-147). ? l Durinn nneral operation the vertical suoports irnose I 4 loads on the tubes via risratch in ther al e vansion t. botueen the sncet and long t.bes. If there e/.ist { i frictioral and Lindin: forces ir, tno vertical supacets, i theri the vertic11 forces due to the chorral risratch ~- b woulti also irp::se lateral rastraint to LOCA loads, y a i t, Hence. '.he purpose of the friction test was to identif> %,l the coefficient of friction. Which also includes bintiinq l i ,, j l bot..een the ite and'suDnort, h R' i (2) Pcvised LOCA Analysis - The next tasi was to incorporate the lateral f rictional resistance irroscri by the verti-

i;, ]

s l F. cal surport in tne LOCA analy'.is and add various apoli-l cable peak LO*A and SSC loads usinn a square root-of the l j sur-of the squares (SRSS) method. ? i 7 ! catca: lcatt - s* Mv catt av Mv el cMELg,,at v,, oyt, c t,c =, i i n e fr / ""t .e, 'i f M '. .y.,-.-- r .r ,r ), I

I .~:. M.< /I, COMBUSTION ENGINEERING, INC. h-I.

  • a s "

2 ., 21

    • 's Chattanooga Nuclear Operations ts, '

fG J ^l fl} ;(4 ca se. ~.. CENC-164S I ~re COMPONENT ENGINEE RING e.., = 4 e,.. 99740055 I

==ec=. . ave - z.4 TITLE L l .'j.'* SAN ONOFRE STEM 1 GEftERATOR REVISED LOCA ANALYSIS .1 r 't:. 6 f.. g". ' [ ?, ; ~. d ' - SECTION 2 I W fhl' h2?h, l TEST EQUIPt1ErlT A?:0 PERFORMAf!CE ,h ; 4,. l _.,' A l I (+-$.

.~

.- p l 2r- .1 The test orogram was perforced as outlined in Apoendix A. An f '. 1 interface load cell calibrated from 0 - 100 lbs. was used to 1 4 collect the load data, and a Gould Brush Strip Recorder was t F'*, f ,' d used to record the data. One, five and ten pound s; eights L.. were used to apply the vertical load. A plot of the hori-i 4,' '. i zental restraining (sliding) lead (Ln) vs. thq vertical load

f]

(Lv) is used to report the data. '$..d. j l f H "r. ' r .i l O.b : f 5.*. ew t .l t J $...1 . } f lf l ?* 4 i i f M '1 g j i .=.. $ f ( i .e..U h.. . %, ^ 3-J 1. i(. 1 ke r LE i w r d i REV ' u!.f t 8v CM(CK RIV DAff 8Y I CHtCM mfv Daft av ' ontC. ./ Y l } l l l =t. l ~ f s YA s -k- .w--g- ~~ r t g m._. ~ _

1 j ,j -; f ki..I J'/ 7 .M COMBUSTION ENGINEERING,1NC. i 6a * " 3

    • 21 l

A,q Chattanooga Nuclear Operations .L f,y,l.

  • y y y case m..

CENC-1645 / COMPONENT ENGINEE RING L.,4 c=ce. ..ve e..,..e,.. 99740055 S.e TITLE E 'O.I - [sij SAtt ONOFRE STEAL 1 GEtiERATOR REVISED LOCA ANALYS!$ H.. %d ? 1 %] t \\

  • ~ q SECTION 3 hC.3, h* -..

I r i n

)

TEST RESULTS f ""2 ge,. i l e - i 2 r ,3 l R* ';. j 3.1 Seven Tube Support Configuration l

s. 4 A

l A plot of the horizontal load (L ) vs, the vertical I-H l.. a load (LV) for the seven tube support configuration (,;Q can be found in Fiqure 3 1, alonQ with a sketch of N I the test arrangement. The data points were obtained ) from the vertical load (Ly) and the averane value of I b,.j l the horizont61 load (LH) recorded on the strip chart l 7 h recorder. A least staares fit of the data coints pro. 7 i duce a slope of 1.17. T y l 3.2 Five Tube Suoport Configuration 4y i n P. A plot of the horizontal load (LH) vs. the vertical I lead (Ly) for the five tube support Configuration can l j ,v be found in Fiquee 3 2 along with a sketch of the test i ca l arrange.ent. The data points were obtained in the sa e fashion as in the seven tube support conficaration. x.g A least scuares fit of these data points produces a g, slope of 1.27. ? ,'s i g.j 3.3 01scussion of Test Results i e u 1 W.erous tests were perforr:ed before the finalization i f.h.T of the testing procedure found in Appendix A. The I tube and the supports were tested in both wet and dry >v co r.di tions. As the tests were being perfo med, a lot o_f scatter was noticed in the data. Iurtner investi- .i 1:ation reveale'o w a i s scratches in the tube surface '.* Y 1 These scratches occur trom the horizontal movement of hi, w;{ iiTei mc.r.,gs s the (harn fdces of the tabe suonorts'. 3 e;Ae uatsurface rounnness tnus increasinn

  • Tn~c f e'1 c t ion c oe f fic ie n t. urice tnese scratchits only

,r s.. i i scur et tne points or 4.onT,3Ct between the tube and supnets.12 0' clock and 6 0' clock positions, a rota-

  • i tion of the tur.o of approximately 300 af ter each run

[ ' ].g l was der d nrcenary. ii.is' provider. a Sr"coth surface e contactir q the tube suronets fnr each run, After a AfV Daft pv cwtem Alv ! OATE l BY catrA Riv DATE ev I vi cs I I i l i l 'l v 9 l ? m

b, f.,_ -. M*u, a* .r . ~ - i w m_ ea I. n .1 a. I T i* f_ v- .a_ s N O '/ I T A t R U [r ,.x G I 5 ". i N O C y. t{ T R ~ O P U .N P S E a m BU r T N E VE S s i ~ ~ M 0 0 0 0 0 O 5 4 3 2 ?. 1 't "*A ? HOROZONTAL LOAD ? ei!' i I i 1 4 t { s 5 _ i l !80, 6 ? P"

g e s u,_ L 1 gi mll t1 0 , s 4 r .j ]_= n N } v O = I g h, a T j_ A = R i] ) = U t G jj 5 z. I F 0 t.& 3 O l %'I ' i. N i C a p T w R O P P U s, S 0 I E 2 B U . @w. T E iw V ~ I ~ F r gK g

  • 8 1

Q u; j u 5 t a.

  1. I_

~ 'O 8T, 0 0 0 0 0 0 ? 5 4 3 2 ) 1 CM. HOROZ0NTAL LOAD W-4I i l t, I \\' tf l t

f~d h j 4 COMBUSTION ENGINEERING. INC. sann 6 ., 21 ga'*c.- .O Chattanooga Nuclear Operations i f '/ / / ' ! t' c.6c a.. CENC-1645 t C. COMPONENT ENGINEE RING e.,.. e,. 99740055 l g,. cancas. ..Y s b .y. ; TITI.E Y SAN ONOFRE STEAM GENERATOR REVISED LOCA ANAL.YSIS P & T,$ '4 y :'. m... I t ,e w fh,, " SECTIO *J 3

r..."

^ f..o.v; TEST RESULTS l 3.3 Discussion of Test Results (Cont'd) p '" l instituting the tube rotation. the scatter of the i horizontal lead data was greatly reducc4 l [ e [ Another major concern was the appreciable difference I L 'a - i in the he*irontal load (LH) between the 5 and 7 tube surport configurations during initial testing. It was i )' espected for these load values to be similar. It was I I found that similar data could be obtained by using the I* ~ sare tube supports on the oJter trost ends of the 5 and i 7 tube support configurations, iht:, is tc::.ute the r. 4 tube bows or arches when loaded, forcir.9 the outer'"ost ~ tube suarorts to becoce tr.e : ain vertical succorts for { the load. SinCC l' is th0 greatest at those tun suD-I

  • e i

forts. they will relsist hori2cntal re.e-ent the rost. k' so L,, will aise be the createst at the c~

  • arrest sun; l

,. s I N ru. t cnange ir. >,rrdce conditions of these outer- } ( > u;;;o rt s co ld change the fricticn coc-fficient I 4 ,u. i i and cause a dif ference in La. For this reason it was I [. concluded tnat the outerrost tube suo: orts are critical, 1 g Because of rossible existance of srall surface discre- } ran:ies in tne t..te suo: rts the outer-*st tube succo ts s sh: '.c ec sin the s:-e for toth confi v attens. 't tlc cata rerorted is fro ta.e tes ts done in the '.:.et cca-( dition o' trie tube and tube suncert'. because it will i cro clnscly rcarcsent act..'31 tsa" oercrater conditiens.

.a L

j .4 e d"

  • )

i r .'~3.a l .j.

i..

43 1 4 Rik D'Af t ' SV C M L f. n REV DAvf 8v CMfta h(v U All_ WV ..C_H f c. a. e u 7 s_c= .e k 4: 9 .r

l - ~ ~. 0 j d b-k ' ~' COMBUSTION ENGINEERING,INC. 5 4

          • =**

= ~a '

  • 7
    • g Chattano >ga Nuclear Operations 1

1;. 7-Y A/ "M COMPONENT ENGINEE FilNG s:- 1 cnicas. g..,..c,.. 99740055 h.? TITLE M. SAN ONOFRE STEAM GENERATOR REYlSED LOCA ANALYSIS 3 e 1.'* :. D. gr @I SECTION 4 6*( - 1 i i x 1 REVISED LOCA ANALYSIS

m.,

1 I.'1 l 4.1 Backcround Inforriation Recardino Report CE'it-1327 [ 1 l In CEf1C-1327 San Onofre Steam Generator Pipe Break i [* l (LOCA) and Main Steam Line Break (f1SLB) accident con-l i Accident Analysis, Loss of Primary Coolant Accident i. ) ditions were analyzed in combination with Safe Shutdown l g l Earthquake (SSE) losds. In this analysis fluid dynanic } i l loads due to LOCA were found by usino CEFLASH com;' uter s f b ; code. Several tub,t rows were analyzed usino different ~ parareters; e.g., break opening area, break opening l le i N j time and location of break in the piping systen. The t l results were presented in Figure B-14 of CE* C-1327. j l For ccovenience the same results are again presented s in Table 4-1. Tube row 147 was identified as the cri-L' ] I tical tube row for the LOCA load. The net Ln t. load ( i on this tube row was presented in sheet C.6 of CE!.C-1327 t [' whidi is presented here in Figure A-1. l 'i A finite element structural analysis was perfor '.d ar.d i i the fluid dyna.ic LOCA loads were used as t9e drivinn i I '.i force. The bending stresses near the upperrost suDport l 1 were found from this podel. The strc.sses creduced by l the LOCA itpalse loading were calculated by the pre-1 l scrite ! displacer.ent histories from tne STRll0L analysis [.; i as described in Section 7.C of CE"C-1327. The safe shut-l 1 l dor.n earthquake seiscric stresses were deterrined by acoly-l 1 ing the acoropriate lateral s~eisric accelerations. This 15 described in Section 7.C of CE* C-1727. l o I 4 Tne abnve described stresses were then added and the re-c I sultant Stress Intensity (S.I.) was co7ared against the 1 allo..able per Appendix F of AS"E Code Section !!! (Refer-a ence a). The results for tube rows 114 and 147, which j i were oresented on sheet C-3 of CEf;C-1327 are reproduced in Table 4 2. The stresses were then appropriately ad-l', l justed for tube wall degradation. Usino the f;RC Reo. Guide 1.121 (Peference 5) in conjunction with the ASME i H4 I i i -m lCHECE RIV fOATI SY i RIV DAT( SY CHLCR REV QATC l $Y C*= (. al l i l i i i I ) ~ ' ~ ' ~ v-- m-w- ,3w-- e e .i

      • ~

-...w%...,,.emo .cm

i, I N: $ E D

b.d I' * * '

COMBUSTION ENGINEERIN'3,INC. k '^"'" "8 .-en, 8 ., 21 Chattanooga Nuclear Operations W M-C,,... ; +9 ca 6e. ne. - CENC.1645 1 COMPONENT ENGINEERING ce=,maceno 99740055 1 g casca+e ears ..A TITLE . 4 SAtl ONOFRE STEAt1 GEllERATOR REVISED LOCA A.*lALYSIS ' j.; i 4, &,: } NL. ! SECTION 4 ..,M l -- 1 REVISED LO!.A A*ML'r315 ~.. 1 .... ~ k g ', q l ~ s,. 4.1 Backoround Infomation Recardine Ranort CENC-1327 (Cont'd) .? E! I Code Appendix F a granh was develDned shouino the re-7 $$.,'l lationship between the allcwahle tube wall degradation ^,; vs. tube row nurber.. This craph was presented in Figure 1 of CENC 1327 which is also nresented herein i as Figure 4-2. l l . '. f i i n .; f l s , *. ~ s i N l ? "' M:TT 7::-4.-i d,. i y b -, 4 3 .~ ~5 1 b

g I

I \\{ ;. .~ s ~,. ,e-j ) i $?C [ E A : : c ; :. M e T.c.: 1 :.. ) e .a 5.' ^ ~ w .3 ~ i '1 9 y .':1 g l ...+ e m, l i g.. 9 1: .s .s ..s l yf }.y 4,%..:... :

'.* M...
.::1 c. ~

l-I f ~.. n r - y i ric;re a. - Tube blue;,ir.o triteria fro-rinure 1 o r r!.c-1:7 ,4.. p......, ' q v ! cATE..I..sv. .. cates L,,,... i ..V.- oaf t.,._.e v.... ..c a t c.r , m..v. .. o .t .u v cn t.:.. W At l O 1 I 4 d .r 7-g,, e f i p. A. 1 44 g [.. ? 8 s, ' t'

x.

h. ',

db\\ .d & T " COMBUSTION ENGINEERING,1NC. f y;...- ( . sev 9- .e 21 e.eea. Chattanooga Nuclear Operations

  • N a*/g f,,

q ca. c.... CENC 1645 } *, L-7 COMPONENT ENGINEERING -1 74n casense sava comenacvne k, TITLE k a.i 5 .,.,$ j SAN ONOFRE STFAM CEi.TRATOR REVISED LOCA ANAL.Y$!S A. a g. s... h .J 3./. J { P hd o r L*ff er C??*.A!:? te!!- ?.'* sttJi?s D r . y,J i ,, t. Case No. I f. a ".l p.i A. an Item se : ten Ptam V V d.*.*. ~.* d L 4.* Pars.+ter 2P.3,33 4 6 a 4 ? @;q a (1) Tato c:w 4,, c::j leg p.g.:. g r e g,3, 3;g;31

e. v.

3 6. n l 7,1 0 afia) ?;to r:w 49. ::'J Ie7 3.Z.0. treas. hulk ~ I . r 1 ncae Aal35.8 !s* +3C.50 l ]' 3 etaats T.te trw 49. c:;f le y 3.g.:. trcas, hulk f ncJe A*<il.5 !:*

  • )6.tc

.,- /j r.%.y 4 =o. 12:e r=,4..

a :.,2.:.:.,,er<

.u... t s I t aal "; c rt. (2. :: n ;4; :.:.O. tress +*2.:2 ..a..- g k y. .iy i 1..;.' T;te r:w !!4 :s:g ac; :.g.:. gt,34 3 8. 2 r .f ' n] c !. 7.te r:. 147 c:;: 1,,7 :. g. :. trc s .:42.:. r l 8" C ta. 04 J ;ci .E. . troan .. g,;; .,j 1 n:: :e r :.r.:.

u,.

.,,.o s.y.. e .I 7'.... C:;J att s!:t trap .;)4,.g [ .. i N:* 102 s;: 2:cas ..;j< 111.63 i t dM'

?* 'J. * *
S (t. :. :! scr. :

f l J d j 4** (*d.*! sec., 1;4,;; ( P .s Da '. * *. ;. ! r. : i

  • M :e:.,

k d l i ??* * *..

t t..:a:-

j. .*..s,, i l l I 9 2,=. .;;p, 3 i I b }{. 0 1r;2.; Fca.;.7 :sta

  • .4!4: gg

.;.4, 4 l "I e.. trie. :l e..* :. ::. f.; r .;;9,;g I a j ~ i M f. Ir>4< ::s t. : r. 7 t ;:" 2 =.;;! sc:. ..:g,34 ,L i .4 I J' .,4 3 :s. i;.:n..; .;-..t . ;; s c :, .6..'.* i. l 1 f .6-l l y",1 i d..-. ..4'

  • ... ;. r.; t. 3.,

.; f,.,.,3, 1 i j: i i ....y ..s T. .s '). j

..e. :.

g. .:. z. < ; < : ;..,...:, ,.:;.,,, 3 e.. v e ;.. :.. ..,.3 r1 < .s.

....... ::... u.. :.

l l r.% '. 1 i, i N :9 c d'. i i Tasle 1-1 LDCA Pesults, Figure B 14 of CET.13?7 i i l r.6. f i s 4 g C.~ mtv i DATE I Sv t CMfCK mfv Datt ; Sv 1 CMICK mfv DaTE BY Caf u .h 'I % *. ) I h l t anyt i A J,= '-~ _m y .,,,,4'. =.m. t -) 1 i

.L e

.e s.. .e 9, 4 e e .e ..4, e. .s ..e g p ,e ~ . eu.iu. .e.

k 1 {

3.,

i f. II 1 as'b k 4 ' ',' ' COMBUSTION ENGINEERING,1NC. ] a***

    • s yY l'8 ', p Chattanooga Nuclear Operations 10..

21

  • 3' -

c.6c.... CENC.1645 1 / COMPONENT ENGINEERING e s = T.. e,.. 99740055 I susenso eats

1..

,a TITLE e W....!! SAN ONOFRE STEAll GENERATOR REV! SED LOCA ANALYS!S f - a ' ~ " - - 3... i 's..s ]. - s a.v o. 7 )

e. ':. -

. ~. _ . _ -...S ? R ,S a ..... J. ., r,

  • i 9

j q .c. a- .a y'-r .g :.... 9 s V, ' f:, .....w.-.. -: uj R. c. -l i t' n. \\ + y LS 9 ..'..'..3.:...... .8 o .g l q l-* .. LJ ( c:.. e 'i L&. i - \\ 'E; I g i \\ F-o = g-I W

b. N w

g '.w i t :- -- g e .q /. .Q... vi l\\ i O 4 b) I g E g ;, .] N.N Q } .n.- l g i 2,

l

) E j. Y; 1 -[ b E S W ....._ '. g i i { . h.. G ... ~ 3 g s. 4 's \\

m. i e

l .7 'c ,1 <c n z y 1 ( 1 / z \\ ^ -l \\ 1 .v j C t' \\ *' N = / L. 0; 2. C 3 ) e k' /

      • /

1 j a w">

q.,

' *** % = e. ? O O .N tC w C tc N l 4 hi

  • a.

s e 8 3 e i 1 i

  • 4

/s.* -- 3 53l.*.:. 5 .. -) ,t a = - - -. -. - - i F4f b.. U.A.f.t.... t.i.v. CHE C.a; akv...D.A f.f.. t Y..- 4.C.n Alv DAff 8) . s I.Ch C* H t = .ma 4' sm. M .O O. ( c..

r. 1 (l't a .F j 4 .5 5 I b A 'V'*)' ~~ COMBUSTION ENGINEERING, INC. I f, [g. m es.s. ' ears Chattanooga Nuclear Operations ...., 11 21 pOg -34 ca6e.. CENC-1646 T " q

  • .4

/..vs, COMPONENT ENGINEERING 1 cascas. c....e,. 99740055 i TITLE 2 N ' I. " M 5AN ONOFRE STEAM GENERATOR REVISED LOCA A*iAl.YSIS &e,r a 's... 1 4.

  • .>^*?.

-w. T. ***** n ep- :-o e.a a a.o_ .e _s.., ....m. ge ?**$? S.^/l / /eJ / / 45y ,.e i m! r.; q..,. t

  • ,,e,.,. *3 s

,i a-8 a'g

  • 8 i

s I , w c

4.. *i e.,!

Al I'

2*

3

  • *j l'.'f f #," N // '

).. _ y,.;; C ~i'.1 l Z ~= E22 sl* _l .v.. ,, }' .g -"...,/ y

5. V.- 4

, s;,, f g y

  • *4 o ** J f **.:: :,*o
e,ct l,,,,

l,..., j r ..q l L. a l l ?.:'s '.'/..!! .. i,, i .J I i # 'I.* . #E

,,. j g

1

-
u i

j l..<., -i l r.:: r-i -:s

9 1

~:] i 3:r 1 C ' *t

~*!:~

i !..' > ~ f l

. - 4
= 35s p

i ,e - s.1 ( r*:,. t .. L w -se 4 . - 'gr.-..

2.* *..,, ;;

e l b .o

  • C !::

q I -- ~ 8;... ,e ,. - -.g 3 1 e y ,r 6 g., - t 3 b l= *:s

    • A...*

a 1 n .*....~a-i

r. r*.,

,1 t. s ?

    • 4 I

.. - i . c. (.] [Ci E*~ .. t 2 F. M./. j p Z... b = g., ;; p. .1 e r-*

t. ? -
9..

~..... :.: h.hg{ ...T.313 1.? C.. rW ry e, f $ rO' * * *, s f rn..a..f.9 n.{f f M.(j p> 7 _ _ _. 4 A i 1 i 2 - PEV DATC by

  • Daft.
  • 8v 7,

-* CHt:K . ht V._ _, . CH - -.Ket. sti v D_att. .a.v -.CMt p. f ,q l i i f 1 L s

  • =4sr===ur

\\# 4 g., g f', J..... h #,,4 I."-.. 9> 4

  • 6..e O

_b

4 A s r A.

att, e'.'

+. 3 s..; ya h, M A/k fy",7* COMBUSTION ENGINEERING,lNC. i SCs l -c Q,a" Chattanooga Nuclear Operations

  • ==<'

M 21 or 3 M7.g; y. 4te.ec se enes ,/ ./. p/,9 COMPONENT ENGINEER lNG c a e.... CE4C-1645 ( e..v.ae,.. 9 M40055 Q, ?,] MTLE )?, ir,~.. ,,,, y,. ' 9 /N ONOFRE STEAM GENERATOR REVISED LOCA ANALYSIS i l. y..., s -q.,;e, ' i ,( ' 4, ~.- I a-SECTION 4 f . s k' l V t j [\\' e,- - 1 a. \\q M VISED LOCA ANALY315 1 s .o a t f ~ t a s ~.. 4 k' '

  • i, 4.1 Backaround information Recardinc newrt CENC-1327 (Cont'd) -

s.* n ~ s g' ' 1 The rain objective of this project itas to take account f l of the frictials bedsten a tube and tube support and '+ r '- reevalucte the stress intensity usinn SRSS method and S. *. J l revise the graph shown in Figure 4-2, . 7. y l f 1 s i 'r- '1 I 4.2 'cadino and Frictinnal o sistance I ./ e e-1. /. -e f.I ' V, ' In order to tale account of the frictinnal resistance, s 1 i 1 I the first step would be to evaluate the vertical forces f 1[ t? at the mid. span of the tube row due to the e.f match in g .' i !~ _ thermal expansions. This vertical forces in renjunction y '.i l with the trict1[iii' coefficient, as established by the t ~ l tes ts described in, Sections 2 and 'i.' can then be apollea o ..] as' a lateral frictional resistance to the LOCf. loads. j ~ l .) ,T N therral e>.pansion stresses were evaluated in l /q 'j ' Analysis 55-113 of Peport CENC-1212. Reference 2. Frcr J 3 snec*. f,4 of 55-113. it can be seen tnat +u m arral g i j s t re s s e s a t e n d s pa,n,,,,.g f.Jyg_ rA s 6., Q no 26 is & Pi p'./.', I e.si a. iva power cordition. Fi:;ure 4 2 shows the vieu i } 6ne vt:rorrec tuFes ee to the tfer~al stresses. 61 q

    • ]

\\ - The therral stresses of 14.03 tst kod1d produ.e 115 lbs. 1 ? ~ \\ of vertical load at the frid-schn hf tube. rov 24 It can l be conservatively assur:ed that so-e of the vertical Icad t' i would also te transmitted to tee itw 147..' To perforn a 4 ' l,1 detailed an:1ysis te evaluate the erect vertical load at l l i, the center of tube row 147 is reyv.d the scope of the crojec*,. In order to simplify the analysis, a very conservative ass.r.ption was r.ade that the vertical load transr:itted to t4e row 147 is onl/' lbs. ~n satetantiate this assu--ife ;. 1 an aorroxicite and sirA finita clerent wat perforced. N '; o rodel enntiited of fose dif ferent tube rows. The vert 4al ,ps.. s, .b !oad on t..Le row 13.' tie to therral r;isratch i as found in 10 i ("' 'apr:!dra te 10 lt.s. Ire detail is ncesented in Aenendt. C. 1 "C' l 4rne rig. 3 1 and 24 it i' seen th3t the co efficient of D I friction is >I. This rat tie tocause of the bineino e' tee < ir e; i#' ! the sur.norts. It a c?nseriatively atstred tu t the en-eir h ot i-i i l{ j of f riction is ore and t - listeral fiiction focciis P 15s. 4 (

  • g I

= I I } 7,e MfV DMt ni Mt r k. I 5 -- - - . CH(C.K. R E V. -- Da f t.. . C54c% R( te ,V .. _O A TI... ga t-g .. _s. m j ,[* l 7 I 4 q l } L .] -~_ 7 s y, ./ I ] i '88. . e.gien i f t + q

1 7 7.-. - l .s b*,% ' E. '" .4 /9.'d COMBUSTION ENGINEERING,INC. [;$' w e ..so ' o es 13 ** 21 i Chattanooga Nuclear Operations . 6,... CENC-1645 4/ ' #/.e,s,,, COMPONENT ENGINEE RING f c= c.e. c o ,..ce 99740055 M-TITLE 8.e.. y SAtt O't0FRE STEAf1 GINERATOR RfVISED LOCA ANALYSIS F t,l .i .% c.%.'- ? r-

  • -d

? T, -i.r. SECT!0N 4 e 1:..I s .s.... .l l REVISED LOCA Af!ALYS15 %p r K.. J l b l 1 F. l, %.i. 4.2 Leadino and Frictional Resistance (Cont'd) ~m l i %;.?., e. l A f P .'.?. . j i Cis n e t c SnArt. oc rs48 s ..i. . h.l [ t (, . t, - i d a 4 I e....' ,i ~ T Q l i 2 .g

8

'. _, -,-~~~.__.- ' ** } d. F ,,s. s eme \\ i E l n } ,l'9 1 1i v-l t l B l \\ e, g. ~ r . - ~... 'd j k i ) n. y l = g 1 ] l 1 .e p 7 l )\\ f ,i. ~ i .!. 7. t. . u, s.mm t 'b [ z.. ~. - -..:. H ~ .4 k e 1 ,4 I' r 3 r 4 1 4 l-g t I ~

i... d fi':.ve.:-3. "i;natch in it.e.~al f.cansion of Tubes

$/ 1 5 7 i j H %4" 1 4., *s W 4% I + t p..... Mtv._c.aTL. et __CafCu _EV

  • L_ ATE. _...e.v.._i at u_..R C _v__..o.a t t__' _._e _n _. _c a t.
  • 8 f,,,

) 7 y g ~ _ m

x..,
y.......

g i 8 9 f +

I' .c.~ sh.' l Sr.2 4/' #' " COMBUSTION ENGINEERING. INC. ['. " i 14 eas"

    • 21 J
  • * " ^ * *
  • Chattanooga Nuclear operations

.3rb:'i >n ~Q gh t'l i J / gt.- c.6e.... CENC-1645 s I-COMPONENT ENGINEERING 1 99740055 -a c.sc.s. ..,e c. ,..n..

  1. ~#

M".I..i TITLE .W: j SAfl CNOFRE STEAM GENERATOR REVISED LOCA ANALYS15 Ic, ' s,t - l -. g.j k%.] SECT 10f4 4 .,i I :'. C-v..< REVISED LOCA A?:ALYSIS (Cont'd)

f. "..

i. /.? 4.3 Finite Elerent Model 1 i* i. t t N f After reviewing the results renorted in CE!:C-1327. " San [ '~^ ;j "c Onofre Steam Generator Pine Break Accident Analysis" i .i (Peference 1). the tube rov nurter 147 was selected as l k.,. i >.1 representing the worst case for this study rioure 4.3.1 i V.1 'is (.a element plot of the finite Af45YS (Reference 3) O i , f*" rodel with the, locations of each secrort marked. j l f + q l

t.. %.

I,

a..

... - [ [ 2 *: i t { j

c -

t u.- :

  • ,.~:.

--;--g--.- i i ,.f e i I ...1 r 8 L we.e 3.j N ' O -! i I L I g ry 4 i e l e. t E.. i I .4 i ~ l Fi,. - i 1- {- a rj., S. :< l ?. 1 1 1

h... '

-M i e I g p%f.. < t,' f I g .q

  • /.. : :..r a g.. ;;,.,,,;;,g ;p 7q;.g,;g;,7 t.,;;, y g,3 g,

g,, t j' f its.are 4. 3.1. r ini t e AT , "cW 1 o f Tut.e. Pnu !;n. M7 i r ] .~ Rs 88v __DATE ! !cntes part I e.,- av afv catt ev cwica utv cwic i 3, j I i i i t p V' j j 1 1 N-i l i

  • * " ~ ~ ~

i g;- s h['.. l lOM J/."r/,s~'i COMBUSTION ENGINEERING,1NC. .. J l *aseamso, e. ...., 15 ., 21 Y T!? ' Chattanoog6 Nuclear Operations ( [Qf { ll $ $ f. CALC hD. C{NCokbOS g ';,".j COMPONENT ENGINEE RING 3 caecm. ..,s ~, e..,.ac,.. 9974005S N. TITLE 3 .F 2 SA4 ONOFRE STEAM GENERATOR REVISED LOCA ANALYSIS i~ ' 4 ', h_9 Q.. . v. k. p,h ~ SECT!0N 4 n. Atq REY! SED LOCA ANALYSIS

, s I

r I' ] 4.3 Finite Element Model (Cont'd) l ." ( .k ' ' On the vertical section's of the tube, there are three ?.1 partial eggcrates (restrained the tube in the X-direction) k'. and on the horirontal section. there are seven vertical V, j

3) T supports (restrained the tube in the Y-direction). Also,

,. -,j the A';SYS nodel has one spring element (STIF fo' that re-l sist the horizontal novee nt of the tube and attached d

  • Y g

to the center of the horizontal span. This c;erent irn- .E/- a parts a limiting friction force of 8 lbs. STI F-9 1 (elastic straight pipe) and STif-29 (elastic curved I;, I pipe elbow) elcrer.t types are used elsewhere. It is L

  • - y j

conservatively assumed that an 8 lb. frictional load i .j l is imposed only at the center vertical support while the other st.pports ' friction loads are zero. g 4 i The LOCA load was taken from the graph on page C.6 of h CE.C-1327 and was irposed at the center of the horizontal j I span. Fir 1ure 4.3.2 is a duolicate of this race with tuo b.L i additional curves on it. To check the coatpatibility be-f K. tween the two finite eierent redels, one used in this L g. 1 j analysis vs. one used in CEl:C-1327, the sprinn element (Si1F-40) was removed and a linear analysis run was ] redelec. The original bencir.n stress curved is labeled Cenoing Stress per CE*;C-1327", and the one rade this time is labeled. "Cending Stress oer Current Linear Model". There curves cor. pare favorably within the uncertainty t '.. 4 of the inp.st loads and rodels, tiext the nonlinear F arolysis was r n and is also ploted. This is labeleo. 'q Ben 'ing Stress per Current *.onlinear flodel". Figure 4 4.3.3 shows the bending stress at the top partial ecc: rate (11 Bend) and each node in the left sice elbow. The note r at the 450 position is labeled "21 B21 and has the ([. j. l l hig'icst stresse' in the elbou. This also confirms that [ f j l the hi',nc* t st* esses are at the top partial e49erate. L ] I Table 4.2 list the sur-ary of the linear analysis result b o f CI'Z-1327. These results were added tor, ether and it'en b y ;.. - a Y,., 1 c m cod with the allowable. 'lotc that the square-rc.t-i e ] { g v l-b l_,arv' can,[ev i ogen aav l can l sv I c tc= arv oan ' , cur u ! u, y.' i l i I l I i 4 1 ~ r ,

  • NW'

,w yv v wmu y - ,y 7-- -r W m .MM ^ - - @ M i T 6 t j 4 C '. R. sY

I l i I "d {"9ff COMBUSTION ENGINEERING. INC. L

  • a's

..., 16 ,, 21 + L Chattanooga Nuclear Operations 5 ( pf ' (j l A l t4 ease.ne.CENC-1645 i COMPONENT ENGINEERING i A c emenac,.. 99740055 enecano eats 6 TITLE I L w.' ' '. '.) $AN Of40FRE STEAf1 GENERATOR REVISED LOCA ANALYSIS [

p. ',N.'*g.[

3 I s-l j j 1 v *:.., O. o' h4.' U. i W; p s t .v.;:. = ,,,~....,c..~ m, t;, * ' - agnees,e trasst eds .e f', .y,. ,.* i e fe#8eef ase(As enegge g ..r*'gs as er ase=6ses sa.8.eef a efs.*,*4 Sf ff14 88

    • ~l go

.%* 8, e g.'",.,,".

== or yervt es e'v#ss ) 4. j w-1 ' g dN. (IW. Ill? lg. \\ j

  • :.4 i

q as r 4 f l /. j r t . r.cs1 g 1 as s I. %... s.~,,.e~-~~~- a t. {. 'f.. a \\ ~ r-a 11 - ~ '.; 4 y j p. j . -e - u s p, p [ ! N \\ l 1 'r k f t p.c 4,3..*.L ' *! f es. *: ca '!. i f CN.13 7 L ) l p l j r - 1

g.. l i

4 r-1 l r t . '. ~ r i, q --. q I j 1.. ....~....-.g- [ - ) L g ._ /.. i j y g.. _... E a %y. t f ',,. .. _. / # b &'f. .r y L. r g r,3. e u. s.,.*w r r< m, ' : e.e, :n o A, l r. .t., C.: i l fCNICK l SV , coetCK mtv catt av c.4 tC n L .s, , arv l oatt l ey

  • tv i DAtt M&#

s i f I .6 [ t f I e, w. --,===.,+u are- = - m -- _. + ..,., w,., r 9 y - or / m.r' S => ~ n.

3 i i ".4 i I .t .d e M /,/ 9T 1-COM8USTION ENGINEERING,INC. 1 h '"#^"**

    • 's

. Chattanooga Nucien Operations

  • = ' "

17., 21 m { 4 M.4 O 14 l(4 COMPONENT ENGINEERING 4

e. e... CENC-1645 L.

{T.' cascaso cava cent.ac,=e 99740055 ] g TITLE I

  • a:

ifi SAN ONOTRE STEAM GENERATOR REVISED LOCA ANALYS!$ l hv; e J gN \\ j e-i 3 ki SECTION 4 f ~C ' ' ', 1 ?$ N REVISED LOCA A?tALYSIS l ' -- S.R ^ f) r j EY 4.3 Finite Eler:ent f*odel (Cont'd) I I 1 [s*7 i ~ q

th of the sum-of-the-squares (SRSS) method was not used in l

t.% Table 4.2. Table 4.3.1 shows the results for both the i linear and the nonlinear analyses usin9 the SRSS method. l l.... 1 w6

1 l

The LOCA + SSE and oressure stresses for 64~ wall dearada-f k-tion are presented in Table 4.3.1. The tube cross-sec-I f ,J tional properties listed below were used in deriving the l 4

' s

.i stresses for the case of 64 tube walls from the 1 6 d l stresses for a healthy tube. l l { [i, e. s i ?, ' 'i i

f 7t'CE (D055 SEC'!0!
PCO?icT!ES l

l r i ( .) Healthy Tut.e {Q !?all Occradation l "j l f R - Outside Radius 0.375 0.943 o ~ 9 R3 - Iriside Radius 0.327 0.327 'l 'I F1 i I ,; j l t - Well Thickness 0.040 0.0173 u 1 9 A - Area 0.1058 0.03648 H

- Section l'odslus 0.0175 0.005973

,,i I I f - .r e 'ac tnr 1.5 1.:: I l -.. - itre'.*. rat k .2 .Peroservatively l '~ j a s sir:ed ) 5 All' 'Fle 5 f. '.0 '.0. 0 ~ N A g N: 1 e i ,3 aiv o 1, .., Icica aiv o,5cl lotti sv i c ic. aav l c ,, j i i i. i I I I i. t 4 a i s ..n..,, ( o

.c 6.'-

k.. !

'*ryd 4//*/~" COMBUSTION ENGINEERING,1NC. g8 ,, 21 1 Chattanooga Nuclear Operations

  • = 8 "

i'" .j

  • a s** a s e

.i (,

  • A

() g l gt. e.6e. =e. CENC-1645 f*A.. COMPONENT ENGINEERING 99740055 casense eats - e.=vanet me. r TITLE s SAN ONOFRE STEAti GENERATOR REVISED LOCA ANALYSIS g)-?. ' y,. f.k ;;> .. y ' {',, SECTION 4 f:.".'.y;' REVISED LOCA ANALYSIS j-o % ; c'. -i cv 4.3 Finite Elenent ftodel (Cont'd) l se,4 y + l Table,4.3.1 presents the summary of stresses for Row d147. f'l The stresses for a healthy tube were taken from the analy.. s W. '.j sis. The cross sectional properties listed earlier were l <:e [.,p ' used to derive stresses for 64 ' wall degradation cases. 3p o t-e 4 f,% TABLE 4.3.1 i 'l P., > 4. St tapy or 5 oE5sES , i 1 r q e 3.- - s b Healthy 64 Will Occradation Pe 'l Tube Stresses Tube Stress .4 (Fsi) (ksi) ^ i Linear Nonlinear Linear Nonlinear j. y.,l LoadinQ loads; leeds-loads loads L Axial Stress l 9 LOCA Rarefaction 25.0 18.23 73.25 53.41 ...1 l e LOCA Shaking 2.2 2.2. 6.45 6.45 i SSE frpulse 7.8 7.8 22.85 22 ES s. d R"5 26.3 19.95 77.00. 58.45

e. e i

Pressure 2.3-2.3 6.67 6.07 1 i.- ] j Total A ial Stress 23.6 22.3 P3,67 66.12 j Hoop Pressure Strets 4.6 4.6 12.76 -12.76 g Radial Pressure Stress 0.9 -0.9 0.9 0.9 i, o o l Paxirum Stress Intensity 29.5 23.2 84.57 67.02 3 3* 80.6 t Allo'..abic 5.1. 84.0 E4.0 00.6 { i

  1. f v OAft l SV CetCK REV.

Daft SY l CHECK RIV l Daft Sv CMtCA j l l I L l l ..._,....m.., ?*. f 4. i Jtt i f .1 3 ( D, e .n u_ _ _

.{ f@.. 9h 'L' r. d 5 Yq i..#- COMBUSTION ENGINEERING,INC. i, ~* Chattanooga Nuclest Operations

  • =

19 21 eau..s. re J J L c'g (l U l.,f h' ' ;. "f e ace.... CENC-1645 t COMPONENT ENGINEE RING f 99740055 e.se... $s-2 TITLE F Jk.:..'; SAfl ONOFRE STEAfi GENERATOR REVISED LOCA ANALYS!$ L .yj. .e ~ J. k. SECTION 5 k C0'ICLUSIONS I i 2-l

s l

7 l In Sections 2 and 3 of this report, i't was shown that signifi-N i cant lateral frictional resistance exists between the tubes and E @dv 'j. vertical supports. This frictional force was conservatively in-ly i g "1 corporated into the non-linear transient dynanic analysis. In z l *M~ ' 9 Section 4, it was demonstrated that the bending stress in the ^ tube due to LOCA loads reduces to 18.2 ksi from 25.0 ksi. In h. ] the case of 64 ' tube wall degradation, the bending stress re-( gg du:es to 53.4 ksi from 73.2 ksi, i E. NRC Reg. Guide 1.121 criteria for minimum acceptable tube wall f b* ~ degradation were presented on sheet 33 of CENC-1327. 'These L 1 I critoria are related to primary nerabrane type stresses. On 5 h sheet D.1 of CENC-1327, it was shovin that based on this set of f i W l criteria a 64 tube :all degradation can be justified. In E ],.I addition. Deg. Guide 1.121 also states that the ASME C' 4 F j ""3 i Section !!!. Appendix F nust alf o be rnet for faulted cc. tion allouables. In Table 4.3.1, it is shown that when t..e frictional resistance is taken into acco.rit the Accendix F d ,T l allowable can also be satisfied for a tube with 64' wall de-J gradation. .{ In this report. Only tube row la7 is addressed since it is ttre tube whien ex;erior.ces the hiahest LOC;. tendine stress as shown d in Report CENC-1327. Hence the conclusions arrived for this i tube row would also be applicable to all the remainino tube j rou$. k Based on the findir!as of the fricticnal tests and the LOC 4 l [ anal sis. the Figure a-3 can be modified to reflect a uni' ort-j / 64 tube wall de1radation for all the tube rows. This is pre-p a i sented in the follouine Ficure 5.1. u M.'. k1 f 'l. ( d., i r. i I Y l v., a l l p r i lCHECs i l C**f CK n(v lCatt By 1 mfv oATE l BY htv i DAtt ! SY ca.t c x g F I l l l l i i i i 2 2.~ ) . -. - ~. - - g s e O n. W ~ ~ - - - s me .n

i ? 5 dr.J

"- f' COM8USTION ENGINEERING,INC.

~ ) ...s, 20 ., 21

  • =asse ears Chattanooga Nuclear Operations

.L Q (f g J i r4-c. 6c.... CENC-1645 J L I L -9 COMPONENT ENGINEERING k" 9,- emsense eats cow?eact me. 99740055 a ?q e-r.:. g TITLE l SAN ONOFRE STEAM GENERATOR REVISED LOCA ANAiYSIS Er.! aj 9..:..+ l 7._, s. r.-. k.'? j t " SECTION 5 r @j >..a . :.p L,j CONCLUSIONS [ [,,,_,, .y 1 I ^a hi /

1..)

6 r h l

  • '? A 4

.,'s 1 d ] bb j ~ l -k-

..-{

7) i

?.

mer r:- rt:. i k l ,1 g. I. -...s k l p >. c ,,.1 -2 ) h k ~ f. g A::f.p:2.':* e.:.c;;i cr. F f. ,e.. 4 t .,4 g 23 - y i ,3 I. f@J ~ k 'd-( 3 j F l g ,a .] L .J O i ' i s.2 ~. .s l f') hi: e ?.c.......' e r i I -9 A riqure 5.1

  • cw Tute I'laq9tng Criteria j

[ c i g i .11 l 3* I CHECK REV i Daft SV l CHICK ME v. I DATE l SY CHECA F i i i Rtv ! Q t l l l l l L 8 i i I ) i ~. _--%e.,....-

1 l 1 I

T '.

.p+ ) %d.l byl 4/ ~ # COM8USTION ENGINEERING,1NC. j I l i

  • " * " Il

" 2I en.4 mse oars Chattanooga Nuclear Operations 7.. ;. . ' c.Q ht M (ll4j(4-ca6c.ao. crNC-1645 COMPONENT ENGINEERING 99740055-ensemas sava coavance ao g,.

    • . V

? TITt.E @,E : l SAN ONOFRE STEAM GENERATOR REVISED LOCA ANALYSIS [' r.g 1 1:.. Q i 1 I b. s .c Nf [* SECTION 6 W;. 1 l 2 ;. REFEREHCE?, y, ,W#. 7,., a l l ' ' h", 4l 1. CEtic-1327. " San Onofre Stean Generator Pipe Break I ' 3:3.' t Accident Analysis". H. Q. Gurley, J. W. Hiestand. l p "? F. A. Lehner B. K. Singh. f tay 26, 1978. 1 L-

f. 1 P

l 4 i ..a 2. CEf C-1272 " Analytical Report for Southern California i

  • 1 Edison San Cnofro Unit flo, 2 Steam Generators". N. C.

g Finch, J. C. Lowry. B. R. Rodgers. D. G. Slack. Septem-l I .. l l ber 1976. 3 F l 1 l t i l I l /, 3. AriSYS, Engineering Analysis System. Finite Elerent Com-c puter Program. Pevision 4.0, Jchn A. Swanson. l .f.b ej, j l 4 ASffE Boiler and Pressure Vessel Code. Section !!! for i )8 7.~. 1 4 clear Vessels 1983 Edition. 4 ,i n..< w 1 J 4 l }. 5.

  • DC Regulatory Guide 1.121. Easis for Plugoina Denraded b

i PA Stea-Generator Tubes. E d h"'. J 1 j L . Ii 4 i q I l a-I r i f: I i 1 -: l 1.. o 9 .' t- - i I . {s.- ~ i L ,q Q. 4 (- l s. 1 id 1-j f 1 I I p L [ arv l oAtt l sv lDAff SY lCH(CR Rgy l DAfg l gv catex a r v. C 0 1 l I l l I i i I t.,

s..<

i = = -. t s

  • W O este so 6 ansgu,,M e

'd p.g + g *, m__

_ _ _ _ _ _. _ - -. ~ t i l '4 *. . l I r.w \\ l 4g~.. 4 i 1 pr+N :. ~.,..,., a t i {.^

i..... ~ '

i ~- 2:. -

  • a 1

.,<pp:.9 t' g + 1 .., ~,..... - ' I 3. s ,, y.;. k.'% . f.w 4.- i p< - j

  • ia

...j g,.. ;. W.; " '4' -

  • 1 j

' h f. '. I m s-b .b x;- .r.

  • r,

.G...*,.,

..' i';, ;

s r.' s '.' ' t.t. w. .j /.PPCflDIX A 'M TEST PPOCEDUPC 4'. s I l l a . a .eI. l p -..e ? g_.. I i 9 N ~ ~. N f e .m 4 9 +5 O b r ) W 4 -e p 4 .m.

r"I

'n g j -9... W..

  • O e

p -1 r- . v-e i E i e s*% 9 e-d t s .= s..' I e Of

i t-P' l ..a* .s.. . k, is 3...,. s. \\ e. t R. m .J = l?' ? ? 4 d' ~ ~. 1 WJ s.. M. 1 ) ? ?' l 7.,a J n... D @i..'.'.2 VERTICAL TUBE SUPPORT '+ ' i va f-t 1, FRICTIOft TEST PP.0CEDURE a ht : ? ~ L 1 -[ q ? \\ 1 l, ? * \\ M* =, u l a 1 4 sy

  • 4 0

er \\ i .n n .. 1 L' b a y .4. . o 1 4 ,.4'" e i a a. ,l 1 i l 1 l l t

v.. ), VERTICAL TUBE SUPPORT I FRICTION TEST PROCEDURE ). A1 PURPOSE I sa a i@ } The purpose of this test is to determine the laterial restraint 4 e,bP'y provided by the vertical tube supports in a steam generator for g.. the combined effect of a loss of cooling accident (LOCA) and safe L'- hi, shutdown earthquake (SSE). { y.. y,'.;*- l A2 TEST N0 DEL 3. 1 The test fixture is designed to simulate the vertical restraint load h'$ on the straight tube portion of the cross-flow section at,the top of [.; " the tube bundle of the generator. During normal operation these hori-1 yM zental portions of the steam generator tubes experienced loading due to j' Fi.1 thermal expansion and nonnal fluid flow. These loads, acting normal to ? the tube axis, are transmitted through the vertical supports. The tube ,i j. 1 supports normally provide vertical restraint through enmbined effects of .} g,,j friction and tube deformation. i n. s b.", I. $ a A3 DESCPIPTIO'l ~ (,]", q The test fixture is designed to apply a horizontal load (L ) 10 \\ h i 4 the steam generator tebe once the.ertical load (Ly) is applied -x (see Fig. A-1). The load Ly is produced by adding equal amounts of kno.m weights to both ends of the tube. ~ j ff1 b.., p.- ~ Then a lateral force is applied b/ steadily pulling the lever. m - -] the tA e slides through the supports th is rteasured by a load cell

f and recorded on a strip chart.

d [ l Ti pre A.2 contains a sketch of a tube support used in this test. he saports were bolted to a beam at a distance of 16 inches apart l a t ? for both the 5 support tests and the 7 support tests. i 1 'i A Section t.-7 contains photographs of the testing arrangement and f ts varioJs crpunents including the equipment used in the test perfer. i mance. a ..l 1 k g

1 l i I I a 'N ; Le ..V' J 'l.. > I', A4 PERFORMANCE OF TEST L rb ';,' b The tube is centered in the seven tube support arrangement, and the f, wn

<s;.:s.

hooks for the weights are placed 77 inches from the center support [. y on either end of the tube. Weights are added in 3 lb. Increments F

  • jf..

j per hook per run. After the weights are added, the tube supports 5 b.

  • 11 ?

and tube are sprayed with water to simulate the wet steam generator. .. ~. .g Next, the tubo is pulled with a steady force until it has moved ) horizont411y approximately 2 inches along the tube supports, and i i '] the data from the load cell is recorded on the strip chart. The l e 3 T[,4.,... l test is performed again at the same weight to check repeatability. I. .'.. l. 0 e The tube is rotated approximately 30 before the test at the next .a weight is started. ,-f- - b,... .- 3

  • 4 4

,] For the five tube support configuration test, the outer supports are i i s g. ,,T moved towards the center and replace the supports next to their J -1 original position. The leaves the five tube support configuration c.' s with the same outermost tube supports as in the seven tube support i. f j configuration. The weight hooks are moved to 59 inches from the L- ~" center tabe support. The rest of the testing procedure is the sarre l. as the seven tube support configuration. g p ) d $f A5 TEST DATA a 1 O 9, Test data consists of a plot of the loads: F vs F. E 1 h V ,I w I l ~ h 1 ..i s>

  • aA i

4 4 a I k . :c .... '.l,., b

1..
  • q g(*

,k., E

i I

us. E. ~ n F 2 s-a t r-1<* 1 1 - v I L

%?. .5su.:. l W.. s k~ -l y ...1 e i 1 e,,% J v "' f ' 4 7 5. S $?}.' .1 g 1 g i b.' '. 9 Standard Tube Support Load - (.l 2 Tube Typ. Cell T. gi a i L gy..3 r n y %~.,.;,$ a ~ g k_. T.P.'.:. -)a; ////////// _l 1 .L yf .t '..l 2 .e v/g a..,a <i ) I ~,, ' .J 1 SEVEll TUDE SUPPORT AM A*. gel 1Cf.T j g 1 t b M i f. g. a. y %.,, # l q 59' e 4' ~ 4 a 16., Tube Support F a y, l r .b 1 b. 1 L/C 'u p 4 r* ') t p n 1

r.*

~ l [f' i 9 I i -t \\ ? ' L i A r . i. t. o.1 tj t L ye t-f 2 I~ y .e.- ~1 7 o if ' ~ ~<'. 4. ? Fl','t TUBC SUPP00.T APAfJiCCitEtiT ?_. t. [5 r",.. + - b-1 w. FICUP.C /e1 1 7 f 7 j += - .-.-...-..-.m.... i g.o y,

I 1 l

s..

ki-l. -? i i d '.:-

  • 4. :'.

'I r -4. 3 S.;[". 1 6..,. I ? p._, s ( h i 20 +* .- i b.s 4 1 e [# a D s. 6 L. 2 e. 1 I + 3.* n L t y is.- 9 t \\ =4 .i p.. V i ',.*e. er..,. rt p t;* [ f.7- + r , e_ ) l Q g r.n e q_ s , s,!.. .i t. I h,l \\.75"

r. -

. 5 0" o. i 1 r o 1 f \\ STRIPS =.090" THICrutSS OF \\J (. . F 4 e t r +2 i \\- 2. 0" __ C JJ 1

(

1.0",,, 7 1, t , %k V C- ',A TUBE SUPPORT SrETCri I .' E n o e a l ~ u l

=== E l f .ee o r L- ? a f! CURE A.? r t 1 m -. - 6, L 0 t l' ,,-iyr^Id- .,- - M N 4WGW 49M-dh eW E IIS 3-** J a w: .s. :.. u..: u. - - _____ dAA

i { ik:.1 [gt, '..$ A.7 PHOT 0 GRAPHS .i / / s.., 3 i

u

.. e -q. 'M s. .:.5.$ -Y; ..g g $;u' i.i i 1 ..sp lW, Q I \\ N

..?

~ l ,;, y

  • t<

~ .2 ) .g e J4' it vg Y '.s 1 1 - c 1 N' I 'e% m .A+ y 4 - ;y .'v 1.s,, g.1 t.,h 3 dh f, (s. .l.e f' t. s ~ l y \\ m ,.,../ 1

[. [

r ~) 3.... 2 1, fc i I .c ), y n 7r ' , ]\\, }3 - d.y.-. 4 i { n O .s .) .c 3 /jdi.'. . vk,, .h 1 %9 '3 s).... [, g

  1. .g

..d

mio, e,9
g. 2 M.3 k

\\ I [,.' jf p,,ag.t. i.Y. 1 ? ... s..C,. p, 5'. 1 k.k *% s .. g ,a .,A. e p' ,_h O' ~ .s. eM o \\ ^ ^ =g q ";.t 1su m.^-o ba;*.I y< ,, a 1 d 4 .e- , - ~ - l e* < %m

i* Y e w % y ;J.. W..< m: n.% ; x. w ,s. n.n*. m.m*' .w. .g l s. .p Ch. r 9 c .. t -. w-

c. a. -

, j /J .3 l h.n.w . It>. '. i.3 i. 4 h ci$.. :.s t-.. f, N. r

  • , 4,9.. ;.;..

-r a .t5.,g e.. %,e 4 .. m0...&..c,.,. a..a.. <.. s. : i. g: ,...... :'4 ( . g.. g/3 Y ': g 4. h. .. g

t., j

.y;- ,... y.e j ~ . i w., 1 L;*. I ? ?.- 1 } ,,Q: "%g.3...m~n..z: a:p K ;.;. 5-64 y <y

. hl'h-lg. p

_k,h

  • q u QhI-,
4. s.i

,c l ?*

4. '

.M e. I 1 8 r,: i "'o.' ?;;%:.: N... --- kl . f.

  • A%y* i '.4. 6 J'

V .N,.e..kIAT47TMCDg h)g - 6 t [3, 2: i { *'. &-.,o.a.w.c c :.. n.:.,,.. ~;h' s-- e ea .. i.: L h. hN h....t"%. e,t,,,.., fy'- .h s_ I sv : ~ 2 ". - 1 HOR!20!1TAL LOAD!flG APPARATUS I" f, Arid LOAD CILL I .,.4 t .) h q f.. s.. } V Q Q NI,Ca2 L n c.. M A w w.w w_ b .t d[n. a..d b.-a#. b P.) i U I t x p,s. a u... . ~.c 1... l. g.. i Q; i 6:t ;:::',: y n . g c; j t. c. y c,p.. ey: m r,.- tm gy.- c ~.' t.he Vl ..~m ~ >.w hQ.eg.&g;. c u % w t ., w.L, L, m {* 5 M, n {< c 3, }. 4p ,d A. x{ i%;gg:r.e ~0.. S,, y iLO ( r u p... 2 p %~y.i' m : pT hin{ h qw p:-y-c v -J e cqq. .j.4 g g ~1 l r -. _ ~ e., o d W J w. 1 6 COULO BRUSH Rtcor. DER 4 s. J W .i ~' f C ' ~ ' < J j g r 4 q P e m ~ ~ m--

e r; a- _ m --==--~*-===-'y* .;e.k e.,.,.-_ m- ) 2.'I \\k.o 4 ,,u,. l..t"'fil'.,. e. ,h 1 ,W e ~)M* '4 6. / J.,,, $ Y '. 5 1 N; e.' pt: *... ..2 <%,2.~ u ~ v. . r, 4* 4 .,t y {f 8 'y t 4 n ,h._ ... _I '_ _

  1. ~

~ ~ ^ ( a8 ^ 3 .x,.,.,. _ 3r 4.r.,'

  • j 1'r y'3 Lg

e '..h ' / . '1 - A. _P.*J. i f

  • ?

T iis ( i 5 s'

  • l. 1 it. g. iji'k T *,i
.<f;.*g ','. {*rv '

f.' ,} & '~ l 3;W,f.T. a?y.,NG' r$,$~cr$. wil M..,a s-- OO, u 6t% W %g ., t d.

    • v e$.v.

.ua y.W L* . %t. y:

  • T,.. '

c ) *:

  • I.,'.", Is.'h'2i h h b 'h b

.c. k. k 6. h*c.U ' 3v*1..1 n.4.tpv.t* *Scri, . k^* A "e.p. - 1 W .: 3re ;c f:n m...;.. ~.,.,. i [ i'r w a.. 4 4 s

k...

f 5-G.J &f... - i 21 TUBE SUPPORT

a... m.t

{ s ~ - ? V - .2. y t:i ijf.w. $s,?*tf%, ~'..f. J. ' '.8 ,. E e b en, $. :.- r-s g.' g B d*3 'Kiin.M ~@pg q.3.f,g.,fA J \\g. ~.- m... a. 1 m.. g. g ~ g r.- - aa 4g c -^l., - :.. L ig W ... n.+ a. :M5 7 1. 2 gi z ~ P.4 1.,l.,. ;v:.s' J .h '; e*,., - 3 1 W.4 - 3 e -2 i ..i .i

w..a s

^'~- - ' ?.I k'Q 28

  • j J b: 'g:M^'.)1.6 Mg '

,ig.,. b R-i (

v. -

= 1 > ~ t=m w i

    • . ',, '1*%: vs.g.b^

.=d 4 4 'A.*J)etg qu.h;4

Y.

t. tI~ 'W k - i eL. fi r a i. w':kgggggq vtp - j j b, I 'i .N ? , h.e (,. S'L~'. 'g J?.W_.,,o&*t w%. y _ mm m a _ i-l j 3 VERTICAL LO4if.G APPMATUS (Tjpics) Both Ends) i I s ~~%- .U., g, . v- -

  • r y

fegy, g ,,. v s <*o o.

e e-

,,,, }-

l \\ t L~, - ' l. 1 p. 3 APPENDIX B .-}.. " 1 y 7. IMPORTANT f!NDINGS FROM EPRI/CE l*0 JECT 5144 / r ~ $ n' D. i I" ~. A brief discussion regarding the above test program is presented in this )',p p] section. The objectives of the program are (1) to verify the CEFLASH M,,[ Code modeling of the fluid-dynamic loads in a steam generator tube during f ( w.rC..d a LOCA and (11) to verify the predicted structural responses. S ,g d The test loop simulated the primary side thermal-hydraulic conditions in i Tih an operational nuclear steam generator. The loop consisted of five full ( j 0 size double 90 bend tubes and steam generator plena, a pressurizer, a j E ', q, reactor resistance simulator, a heater, a pump, and associated pipes and ,'j valves to complete the system. The tubes used were of typical len;th and f' ( '.i the same outside diameter as those used in CE steam generators. Prototypical ; s 4 E.,1 supports were provided for the bundle of five tubes. See Figurt B.1 which -]3 is a photogrt.ph of the test stand. Cold leg guillotine breaks reore I e 4 ,j simulated using quick opening valve and rupture disks. Creak opening tiries i ranged from less than 1 msec to as much as 67 milliseconds. The loop { ( L"? g instru entatien was designed to measure the transient pressure history at i } various locations and conitor the structural response of the tube to the { r i h.$ LOCA hydrodynamic loading. i t. j ?. -.] ] A series of blewecun tests were performed for different operating and .- ) boundary conditions. The pararr.eter variations included fluid temperature, I s w pre-bloadewn flow rate, break op?ning time, break opening ares, and break P l .[ Iccation. Doth uniform and nixed length tube bundles were used ( I . )' f / [ Anal tically predicted transient pressure histories and the differential I r '4 N, 'd pressure history across the tube span were corpared with the experimental data. See figure B.2. Predicted structural responses in the bend region 9d were also compared with the test data. The transient pressure histories p- 'm E y' as predicted by CCFLASH were in excellent agreement with the test data. y. The calculated structural responses of tho tube also had good overall j {- agreement with the test data. [ e i, B-1 2"* <.A i Tr, .i \\

  • t P

m. i.-.,, p..,..,...,, a,

i l L. I t m.. i i %:.1

i. ?

u.. i

p[....

%,. q ,r. g During the course of the test program, mechanical tests were conducted ~ to measure the structural damping of the horizontal tube span. It was I M,' found to be 8% of the critical damping. It was also observed that the b- ,] Qf frictional and " binding" forces in the vertical support reduced the n predicted bending stresses an average 34.3!. See Table B.1. As shown s gf '*, < in Table 8.1. the analytically predicted bending stresses in this report p 0F were lowered 25.1% (34.3*. - 1 standard deviation 9.2% = 25.1%) to take 4.- p 4 o $..[t - . l account of the friction and binding. I e: :s g.a :..t : v J,'. m. l o .g %;e. a

  • 4

] ) n 1 DE -, l 6'. L pl' .] k 5 i* q b .I a h o i e t.% 1

i g-e

(. i 1 -f p ~' f

  • 1

. g p 5 ..d ~ Ni. I, [ -1 k ) E'I r h. ,. 6 4 Q t t,h 5 s '.~ .d.. n,y L ~. m e .~-. -r - ,__y- _ mp,,5 u _ V > e

d e-h.. - 1 r- - 5 w..

..w.:u: >:>..e,7. i

"%;.af.v_....,13.w.gy? w.,,. v. W t u, ., w... %,' *h.-- 4@_s.!fDb n .;m.u-ym;g'h;@h.y.,y.4!.-~ pN e @b[% g$p$$ I 7T 3 [F f, hh i.5h h -a ..,c<., ,3. e,.w.x.f., o, n, 7g. . h. s. gm.:S 2:-

.1
w. g.c g.

m a.:.s b.\\.M7-teiJ'.: },, W. .g@l - h;$hm&op h hf7 C lg 1 l j*:Y ' v 4.4 /... .a s.t., /.gg:;V. 9:' } sF;;@;q$lv.;,:" v w;W.. :)w @;~." t

n.C

. %.y. y y, kl.x.,- ;a v \\ g cyr er-yW." ; g-t . Q h 1 .k a s g.: v. L;.., u y e.,B g .~ p n.. j 1 U q-wi.cl.s,.,g,g.; g l

n.. k. i e.,J 7

i 4 t. um c... b:2 [a. %Rg,M; :,.,. F e f+f.4 l.ej), l# Q ?~' -c.s....1.Q.g%. R $.ng, 1 p ' ,': :e, q t-w t 3 w e i C T I t

kQ m--

k i V .i.. }i.r.Qi.p.- gi h d}~ .' ( 3 5} rn.i i qQ/Q h i-a A [N n. d I [',e.t f.[$ .u.: j

y. %,..

i F.' ,c n...-ef:hh

h. Wi d

,1 } 9.ta.d hi l 1 Q'Rr. lg%i..A, ? ij 4. 'gjjj [ ~.. M. r,E. : , 18 E N 8,n. n.. L r,.. np.m, S !,N. J -- [Q f) t gr. .y. m x s g. L. w +f,.g. r. A, w NT ^ \\l4 d"SG...';{ Q i p. f gC L r$ .a V .i = r h ggfy; R.- t.. j 4 j gf f. f'.g. 6 % V g p 1m%m.. m. A% g2..,${y n,.3.$q. y%j t, p 'OMSj':: h1 j. i" [ i [K. p e ,r e NN :. }a,Jp - k.H g w%...K.e.4 a c....m I ' a. (; g '7.;.h;T.,.k-..* ' g& g,..:-et,w.z.. q.pJ7.Q:.. p t ~ g >.4 4 .w / ,. h y4 c.. -*V, = . &7 t i 4 ~ i r p c; ~.t.; i r = m =.- u--,- -,.1 &:. p;;a..,g%.y.:..;... y ' > -p y' ~ a , 4,, / a c- ... ; a N 1,- ?-_-.~ ~ w n N. 4 ] ce. { m s.~ r, .k "h'.f a 1/CE Pro <;r e 51441 LOCA 01o..e.vn Sirulatten Tee: Stand v 1 rig. arc B.1. I: 4 t.- ~70 L .,- 3 D* i l i. W; 8) 1 n t 1 .r.. c.-- -~ p. / I ) .I e.. e*; .s.,....,g..... g = s L '.Tk 000 fh l - { g pg,., v s s1

mm

i-
50- * :

i .?." '.' C- [ l Peg}; p 7: h h '.*.

  • t,g... d e '.'. r 's t. c

[. M : I 7:~-) L s..> r ~ e, .g 3 - a. m,ss. ~< w ista.

g "c,~. -

w

i. ';

g,n:;;... ' l

o. m.

, ve.. I .\\ - i,.;. q 4 m \\ y, M.1 f l c;) ACCEL RQfICN C .e.... ea 001 g Mk.*d l l j } ~ j','3,y.4 k ' . ed as so j s: .l .m c '=e a e,o**t: 3, .. p. A, ;p,), '.yc ls ew e.s.,,,.,. I .es,, -.., y. ,~J.- .y, ~- r. c.,z \\ i l , i.,/ .g g 1 s o., %.@.,s a .,e .. e.f er 1 ..f. l v i a ss,., l g.** Q ur'"... ' 1 .f.y g;,;,, '.,4, ' l, q*/. 3 +w .c. j Q. +. ] L '.Td r t*: l-i 8 i f i c.'-. x ,f ]; ' ~ ' e y i l lf i, '# e t-i m,,. :... :.,,,--. m. i g' ' ;*j Baseline tkasured and Predicted Pressure I i r Differentials Betteeen Tube Bends p 1 Acceleration at Tu'se Midspan

f.. ;

Test A~,4 h y;.. 4 i { i hY u a 1 I f 4 f- , '- o -4. .. i.1 l I h i 7,' * **, } f' '. l g ,M 't j ,i w. V~.j,- f i i r a

I l

,/ \\ p p }- i 'd i ~ 1 P..-1 / s a us s v., .1 E i g.. a,;n_.-,,..,,.....___........_2 { P. g i 5 .n 4 -... [j Bending Stresses in T"'i Near Support P1 ate. Ter t A34 a 3 i . i l. FIGURE 0 2. C0ffARIS01 BETWEErl PPEDICTED AND MON.mED FLU 10 9,,..j DYt:AMIC LOADI';G AftD STRUCTURAL ESPC:iSE q-a .,[' i .. g'- B.4 j l j

d..> '

l. .... 3... ..,9 . s. / I l ~

i a et 7 7 3 6 3 2 1 uc 7 Di 6 2 3 4 4 3 3 &{- 2 r 4 3 3 2 3 2 IF 3., 'm t L rF ) 2 2 3 3 f( 4 A oF t N p as 2 1 0 6 ...'g A eo k 1 1 1 1 RN ( f{':g..' F S F 7 8 0 2 i Y ) S h i 0 9 9 4

,. N N

t ss 1 1 A i k .( W ( g, ~ S I t h. S c ) Y. T e i l S ras 7 6 0 7 d A E r k 5 6 6 0 NT_ T o ( e A S_ C h.,, r 1 e E AT C t. eI l RP t m RL I r ) 5 4 8 3 \\ O R o i 1 T - P pss 5 6 5 0 A E e k B 1 R n R ( q E t F r. r. NI t t Ce A t 1 T I T t A l' k ) E a n c 7 6 4 4 TG ee e 1 1 1 1 SN r p S 0 0 0 0 Sil BO ( t E T DA Ab S I L A P 0 ) n e e e o ac h l l i ei t d d t rf g n n p Ai n o o i r e B B T r kO L c a t t ) ) s e m k h) h e S e r a a ge gb D B e e i b i u r r teu leT r t B I T l t n v es g 1 n t d g d r o A 1 u r e n e o i ( h n c o x o xh t ?, eD h i L i S a e S( S H( M( e i u u v l Y. l e a a D Y v m D d d e r e I 8 1 7 7 g a t h t 7 3 3 3 a d c r n e W1 s A A A A e e a l T v t e A S S a a*u n 4 != k ,) i. i9 gi ,4 3 u s _g }. jg, s

.f fi: l~;}.4 7'

a. e <

' p** 1 s -. .:t t p g... APPENDIX C g-g,, IQQ VERTICAL LOAD DUE TO THERHAL MISMATCH A simple and approximate finite element analysis was performed to investigate k2-db.c u) the vertical. load on tube row 147 due to thennal mismatch in the tube L

.a '

bundle. Note that the finite element model referred in CENC-1272, p- !l Reference 2. encompasses the entire tube bundle; whereas only four tube f r .'g. rows were modelled in this approximate analysis. Figure C-1 shows the f -i g g M = details of the model. The span of the tubes were rigidly coupled in the i A "- -s 4 vfc.j vertical direction to simulate the vertical supports of the tube bundle. r j - ~ ~ - 'N but the vertical growth of the tube bundle as a whole was unrestrained. l , '.} Upper tm horizontal tube supports were modelled by coupling the X-direction [

',j growth at the support locations. Lower horizontal tube supports were not 5

of eny significance for this analysis. n .c Two load cases were analyzed: 100 power and 0 power. The prinary 'emper- }r j

]

ature was assumed to vary lineerly alono the length of the tub ts. The i ] displaced geometry of the tubes is shown in Ficure C-2. The rasults of this f finite eler. nt analysis confirmed that the assumption made regarding the -l e g,,..,.. vertical load on tube row 147 weie appropriate and conservative. h j g :,j t h lA c. 1 h F.r:.4, g i ... a ) ik: 4 A 1 [ j

  1. .:.1 a

t 9 '.M g T%1 i ca l g.y I,. .g$g, [ ...D h.<. j l } e f.f.. li C-1 ~6. 1 h p i +=d m m .m .*l

i i j (s' t i $rgs. '.k ~ 5 '?-

  • 3 3.... t g-

.h. E<..: ? Zs:: rmen vr(7 CAL suPPcRTs ,[ g-,--. N. -.t -y i l RCU l47 g, C. .w.. I . gi *s.,, ~* s u l 8 ,y20W 17C F I u. 1 'J /,7_ . y.;,, ') Hui4ctrAL l l l Yl 3M "'i,,gog eg g [ g.,.. { 50fPcRT f 1, lf -- T -- d;1.5-1 I I III .Y i i1 1 II I IJ i .[i ,! i i g *" {4 d.J

n. -

j jj t ( jjj .4 d e ) l l l l l l l l b

i. l. i.

i i

i. l. !.

e[

l. i. 1 1

I. I. I. I. s H- "

l. !. l.

i. I. I. I. ! t, g.... .a I. I. !. I. i. ..I. i. i. E,. l Ii 1 III 3, t. I. I. I. 1 1 I. I. I. I, lI I I III <~? i.i.:i i i. i.i.i. L .+- i I. I. i. .i i. i!i

1. I. I.

I. I. I. i 1 s.P i, .2 1 1. i. i. l.

1. i. l.

i,: - 1 l l .1 1 1 1 I. I i g N' r h,.*i j Os '.. SAN ONOFRE FRICTIONAL LOAD STUDY [, ' ~ =., Y y s. t 1 e I f Y

  • 7 FIGUPE C-1 FINITE ELCfC T N00tL a

1/ J },' ) E

y

.? c-2 (h ~ i 'h M d b a t,. t./ [ 'olk. A dAR.b-

a 1 l 7:- i-

y..

i 1 r.-5 ( $.4-.1. i.' s .F,. j\\ r

w. "..e -

g p. k '. 4 ; :- a v-

w.

p '. .-**t; SIE ~P1 ITER g.4 __>1 TIME r n :, 't-* i. 3 Wl.. ... -~3'g \\

  • ,1-

~- ) , g '..b

l1 r.

/ ll \\ t. i l;i ll -9: I l 1 J l 1

e. -

s

o. a. <

( , p, e i 1 .+ ; s, . ej j 1 1 1 h; 'y 1 q. p-I! 1[l, I I I i ',E PJ... s i,1 1 il I! l

i ! n{.
il ' '

.3 o.,. l i i j 1 M. i i l I I ll ll !l A .t "r { i 7' V l l 1 / ll lll { lI II ? ( il I l fe I l l I ll l' l i!: i j. 1 .-- J ll j j ll i' i e I'tj 1 1 ll i ) ll l'i,! i 1 t 1, 1 :1 l ll 'I i ,k,l l Q i, l !!ij ,4 r i., }il i I i i

s. I j!

!l l i4 ( -t i I I l i 1 Il i I I t{t i

  • i 1

l l ll i[ 'i- : i l l . t,. ). i e !ti I n l l t 1 I i I lI i i i 1 hI;I lg 'I I h, ~ . i. I I l SAN ONOFRE FRICTICNAL LOAD STUDY ."U l s FIGURE C-2 D15tt. ACED GIO"ETRY Or TUBES 4 C-3 t i, t ,e } ../ g i 9 i /

b hh h

(

~_m $5 ! j[ . edn '~1 i } T L i 9: 4 m ip g s .-sm_ i - $[ w[f +.y .e mas M ' t I-t !b i l _ __ , 1, 1 e 8 i 2

m n M y;z eJW%ran%~ W W1 WD+WWw ,, y' py Q,j"f. f : -W ?%h.O.WskWn M M % %A,n. PQ M.w-u n m, [y,, ~, a g n w a +n wy s. .p e x~ y wppny w e qq t 't V:ify nm,y ', w. Y s e-Gf ~ J., y; n# s -m [ 2 %.., M b 4 >, xA sw s 's i 2 ' >,j y:[o. Q M t M,f M.~ O+Y ; c 1 $+

  • p m nMN 5

P-r c wwd ~ .N ,. ::sn > ~ ' ~ + s n, ~ ' %. f l ; [6, y,', ' ,y l pl Li fy e W e ,Q ; W r > 4,t. ' ',g.. / f 4 t"Mh. + ,, apm N, .J O. . 7.s. Wv %s go ,' v fa c 7.$. fr;gd T' s s.... j. .nc .y f Y ? m , s.- l ,. a'

h

) s bV ^lE d; ~P y,') ~. s g +. 5

t c

,,,y: w( y' t i ; t u, .p, w w y n m{ g y sj. w. s, ,h,. ,.y h ) & a;f_; w ylnj Q fx h. J a$ f ', ,+ , w. >us qs ?_ w .;y e p qo/QcfhQp f,[ % 7,; y -y, , > & 9 & % -y f f y y Q Q ;n w,:w,&m 4 j Q da senxww n c ,. sw . s + m wn w Aea.n ..g..>h.%,' h,w w n, w. w , gc m, x. a.,. mm.s?. v, O.~ ' n.i., S,.U N & m i. n>v..s)<,,6 J:N>l M n. % MM&W'n .V ^ 4.w ?.m- , n m o m. = m..w, c.g;a...,_m.,,e,p, h R,e m... ~a, s 6aC 2 h X MM. ~% ,6.u h~Wl,Mw.-,.W.g 4.w% : n w n ge ~ w n. 1 6 mp. a nw. m aww . mwu,.o mmma w%w ,. _.w a...n .m ._, %x..s. %~.a..n.m. a.x, amy ,y... m m-w 1 l',$m@.w@v$.m.w%.h M@ @ @s?@i, 3MM P W M ?F. f M, p$w$ R$ N,iy @& b Mq~'M fM M n,, 'w w' +mn ,-,M7 W m M M v4$.*w+JW f W,; pl 2

OY'R"$

~

m. w.m.,w< w y e
  • % < 5%, fywdph44 l pgy yurn npl,w, ' a, m.y.N,(,s p M.

J c ww.ya. ,,,v c WWh. %wh; m >s l- ,s 3 mM M . wo ar 5m ete w %g u", aT&.;4,Q$fVM.~ saWWh&w$%lww,mp&g m ev p a %%kT&uh:W w ' ~ ly 4,h5: e W 6f b4 wlh Q ht <m 4 T %rdmm%,.k:vto,w Aw&A gn.nn.w aag D$ni.Q.a=9URVgp?Q ue w gmngMWsgm.w.w%. sne;ym.g%;M4m n m v.t. h

q.. ns.

yMM p W 4.# a ,z : g k y qffp; g y Q g g + g m a~n, y ; 3. x 9 9. ~4, 4 9 9 y qqgu M y n._ a6%gp m-- 9ygggggg gu..;u.g%G4p%gg%ggg. ww&yyg&gy%.,,qQ,E g gyy

n.,.w,..-,_m, nn.

p' n.- .v - Qg<n.qyy,h,,, ;, n y.;> g,' ' y,. f. y< + ';<.yy9 -, p,) < y ' %fy yo y. n v >'s

3g 3,

.t ne , w '. gt. v.. r w ~n <pm :: a .~..w y, es.;~5.3. :guMQ:hp1.*p. 4.. e.x..a, n.', tmp%' K. M ..{ w u y,~ m.s.~.Lg'. m,;'p v A s. c :n t D m my,u n; .y , uv.. _., ., a' > Men

.n

. n4s np. ,.s ...,v .o-s nn-mme'::h!b n b Q3 yf,, k kh fif. f?hk },1 Q) f)f ;h kh h m y.A.gtg l.y %.yj&nwe, pmap.,3 p u. . %Q }y. op - %..v%p@,q w%~7 gpyggp%g&.eq%$ p.MQ u m., pppggy Uk n4 wegmy .y m;mamn x g wyg s gpg 1 yg9gg g ggp

  • ~

apdgnagyp%qqJyep.9 qww w .. mpMw A~ u g % w e{w@erSOURCE %.m 494 mns t EPRI!NP-2652*pyg@g%ggge@em&@m@mw W MreeW sg pg Mgggg a@ e wg gpgghg e1 g q M 4g h p q n p y g p q q, g {~ g,y mwypewy > vmspwpg ym n v. L e,Q+. y gb S(qP_R0qECTg S144-1

A sg i"LOAuSONSTEAMGENERATOR?TUBESDURING" SIMULATED'LOCA! C cCOMBUSTION ENGIEERING INC., CHATTA.N00GA, TN.. NOVEMBER g1982 g y g.

gggg,. s.'.w, deo . g, 9 ; pw',. y p 4 .t. g. g . nfnw ~ m,, s. - J. e f 3 .i*, i n, - FV A. m-iMy-d ,.,sj ypgh Q&%, ' ' "

  • g '. 6 ' aM.

+@}$. $, QQ[j;h.'p,,0 i p _<f ,i ,4 A 'A' 4f o y W p %'#' Q'.q3 Wgiyy ,,6.. wy:.0 N;p ' d.g J > m ' % n y. s i ;%.f6;% '... < M &l, g o

v. c e

m en e7 m gw pbo.o ; o a n-.., .s g ~s-e.9 e p, t g psq% m q. m. vsA g<- wm_ pi ag 7 4 < Q.,,.W w. g.gny a.

.y t. 4 q

py geg gq fpggyG;g;QW@w;g;3;pp y-y;; e4;,4p.y e #pcg, p;@g yp y,qy Q,tyM;g m ug;Q:;wg g;y;.g g39,p;.

X wp.g pgp4g%ppgd 3

.xy. L y;g gagegg n. / w s x.my,,rg,g ggpp9 4 m u. n g y w,% y g ;; g pgg@g,. 3 m . m o y ws q W. S ~,m m .an 8 v.,. p P g,y e 7 [.. { / j.g P W W b;. $n$M $a#n%g$$jWW MjW g %~,,N $$n M 7 > g3.y .g p g <tc , (,. M,,1 f, fMjfy?id m 4nsyn y th Rypp p,f &h_j g+ y, w g;g@_,fWyQ +w(@.y n,a a ...+. U tu,g - g's 4 t / :' @g" e$c rp:1 W;se$%#g%g,g% a%

f. G
y. nd nQ % ;_.

Qm. , m W wvM s's,f q:wW* ..%"%%n,.y,v[e y nyW ' (qh' ?m n % q 9 v kk7.;g 3 1 ..gif4 t a m y n x p g g g [y m ;f ' % [ Q k p:q.p , gjW ge i QyuW.DqkMSb Mi W'g Q.W W Q Li g a A p L ; 4R q. L i bZ y 7, ~ $yWMQWQygg 7PghMc gggpg, ! y c wms w 4 agy g4pg / = . t /f ?p ',k.$ .qrJ.l :Gd 'C t .a. w( . t y., s <. - +, .n vs ,V$ yy' ',/ h p. h( 4' [ .-{_. i[E Q in s mm,m m ;, - wwwuam.7,ukaywwwas;w, n.3 m,,mmmgy -gy w asy m, y% 9%p; qw; wwmmy 4 y, an gc y py qqg,mm,,,p,qtglg,g,9gq, gggg:;ywqy ym g y pygg n.q w,g,[pmj w,Ammv a.4(w,,ij.(j p < cp n-mw ,p..... + m.n n,,g *,xdw.y.a a! u. pp;.yQgg,M,qy ca wm i u. sy Qq % :7j)a r- +' ylW,p 9 jg m 4 w 4 ,.y g.g. y q (.g g z:,p p;9 4 4 in g ap;w % ) y g g g y g g A@; %o.4 y, % a g < zg W j R M,e gh @$ Wp,),ey;;;pff s MSN@MhM W mm gn";og! r pe ; + y 3",, m%'.,. q%w@ar, e, .y #w. w py9 nm, ,c ru-A7 M GD >\\L ' @ V.;@ WM m g k m {%y. a.,ga. c.b.gey: m g 6 m,,y.m,f a & m w. a;m,,. o g_e., n nyn v .y ~> n q

n. e..s. ww,, gam.u wy, m

+. "t. s e s-e, m// m,,a a ew. w..~ m ,1 g 3n + 7; c s. . g e. c.ww - a 4 , ' }t . _' n ; a m. gp 4 7' t s M, 7.y a,.x% p 4,:9 gP ,e a3 n >u 9-g y W p.+/w y(f.p-s g 6;. 3 i -lf/ 4

  1. N 9.$$,
g m...tn,,

? l.., ,, ' W.D / 4,~ l v 3 + ,U p* r 4, A.gw#,y,$... m' A i p picif4 G g. O. S pk.QWy- ,,a, g p 5 n e,,-..c w. y ~.w #. m %s m n.x y y y m, s,, ssa ,sy, a+. ,w, y% ,y we, m. ., m s

y...;MWW MVMWW/dQs,%.4,,.

.,c.. 9 r. w., u. i .,% 9 w$y y$ g ', A [ m, M & ,x.'g g,#, 0. ' .t sm@,,,,,@,g p.y.g w .,4 p .agy .,5 MM M W W $W. f' + g3 gwygggg .d%yggm 3+%, 9 $p$.-, w% y [hh qf, M Mda@!hd%uMMMA. u, WY, MhM _Mh Wo $ b Qk h dMy~Mwkhh_M MN l, g& wm m 7 kh NhihhNM k hk 9% hl... $h - fj

  1. n',

" $ fy ":.&s s wQ,f h... v i wag,., ; =Na. dg% g.;, Q / &llh'! c 4 s n, ~...,. v dh hUQ t ND sh k AfiQ'/. _ e d'_f $+N;h hdMM %'%gg& k N Q[$wa e%%i-M (Df ' [M. b.g,3 / 4 y a c-

p. f.,. y p-g,6,,)

y,,yp..,. f.i 4 4 hWk:2 %jhdgQQ'8 .ki' p.ph g.i, g > Q 'e}, g', Mq@ggg;w@Q Qfg .rf/a M QMyypQt M p%ogmyp.m <MgMW;m@%@g&cw;Q.yMWi@pgDg$,,m;,thWy y, i MQfQ rwwWe # e dagg*y, bMM W;p.e s. n 2,, p w4 wgega 3:wymyyy p w.nmy ';;p:nfyppp%w&p:gggyp.4 - + gm qu p gy g y y f.yQ: s c s irL2 A;' " M 0,d O A b edAS O N %.dk N E.L h S k K - ~ ~ x '}}