ML20235V568

From kanterella
Jump to navigation Jump to search
Exam Rept 50-062/OL-87-01 on 870914-16.Exam Results:Two Reactor Operators Passed & One Failed Written & Operating Exams
ML20235V568
Person / Time
Site: University of Virginia
Issue date: 10/05/1987
From: Brockman K, Munro J
NRC OFFICE OF INSPECTION & ENFORCEMENT (IE REGION II)
To:
Shared Package
ML20235V548 List:
References
50-062-OL-87-01, 50-62-OL-87-1, NUDOCS 8710150225
Download: ML20235V568 (65)


Text

- - _ - _

4 4

' ENCLOSURE 1 EXAMINATION REPORT 62/0L-87-01 Facility Licensee:

University of Virginia Facility Name:

University of Virginia Reactor Facility Facility Docket No.: 50-62 Written and operating examinations were administered at the UVAR and CAVALIER reactors near Charlottesville, Virginia.

j m.

Chief Examiner:

1 M

.c._ s A - _

/o 7

Keri E. Byman

()

[VatvSigned l

NJf[k?

Approved by:

J John F. Harfro, Section Chief Date Signed Summary:

Examinations were administered on September 14-16, 1987.

Written and operating examinations were given to 3 Reactor Operators (R0s).

2 R0s passed the written examination cnd 2 R0s passed the operating examination.

Based on the results described above, 2 of 3 R0s passed the over:11 examination.

Of the 4 technical corrections to the examination, 2 (50%) were due to inaccurate / incomplete material provided to the Commission for examination i

preparation. The facility is encouraged to ensure the accuracy and completeness of facility reference mater :als.

1 9710150225 071006 PDR ADOCK 05000062 V

PDR l

4 l

i 1

1 i

REPORT DETAILS 1

1.

Facility Employees Contacted:

R. U. Mulder. Director J. P. Farrar, Reactor Administrator o

P. E. Benneche, Reactor Supervisor i

  • Attended Exit' Meeting 2.

Examiners:

K. E. Brockman, Region II l

D. C. Payne, Region II i

  • Chief Examiner

{

3.

Examination Review Meeting:

At the conclusion of the written examinations, the examiners provided your training staff with a copy of the written examination and answer key for f

review. The comments made by the facil$ty reviewers and the NRC resolutions to these comments are listed below.

a.

Question A.09

)

Utility Comment: The term "Startup Rate" is not utilized at the UVAR.

Power rate increases and decreases are monitored by reactor period.

Because of this, the candidates would not be familiar with calculating Startup Rate, unless this knowledge had been attained from another l

training experience. Recommend that the question be deleted for any candidates who do not understand the term.

NRC Resolution:

Comment accepted. The question will be graded upon the individual responses of the candidates.

If a candidate demonstrates an understanding of the term and how it should be calculated, the question will be retained; however, if the candidate obviously does not l

understand the term, the question will be deleted from that exam.

l Section and total exam points will be adjusted accordingly.

b.

Question B.05 Utility Comment: The minimum distance from the top of the core to the i

pool surface should be 19' 3-1/2" (part e).

Also, the core " differential i

temperature scram" referred to in part "f" does not apply for the UVAR.

1 It is recommended that the setpoint for minimum pool level be changed and that the reference to a " delta T scram" be deleted.

I 1

)

+

7.

i NRC Resolution:

Comment accepted.

The technical errors noted above will be corrected / deleted as requested; however, the facility supplied reference material gives the minimum distance from the top of the core to the pool surface as 19' 3-1/4".

Answer key will be modified accordingly.

c.

Question F.02 Utility. Comment: The described induced currents in the Source Range instrumentation do not occur in the instrument circuitry as question distractor "b" states, but instead occurs in the detector element itself.

'Because of this, the "b" response is not truly correct.

Recommend that either answer "a" or "b" be accepted, since "a" is the only response that addresses a dytector malfunction, even though it discusses BF-3 burnout, which is not the basis for de-energizing the instrument.

NRC Resolution:

Comment partially accepted. Wnile the "b" response does not specifically limit the candidate to the detector, when compared to the other distractors of the question, it is obviously the correct response. However, in order to not enfairly penalize a candidate, the question will be deleted frcn the examination, since there is no unequivocally correct response. Section and total exam points will be adjusted accordingly.

J d.

Question F.10

{

l Utility Comment:

Since the submission of reference material to the Commission, a modification to facility indicating equipment has been l

installed; this was in response to an operational occurrence at the j

facility.

The op.erator now has indicating lights.on the Reactor Control l

Panel to alert him to whether the North and South Beam Parts are fillad i

with water, or not. It is recommended that these alternative indications i

be added to the answer tey as answers for how the Beam Port status is I

verified.

]

l NRC Resolution:

Comment accepted.

The new indications provided to the j

operators will be accepted as alternative correct responses.

The

{

facility is reminded t6 ensure that their reference materials are kept j

updated and that any modifications are brought to the attention of the examination writers prior to the examination administration.

e.

Question G.01 Utility Comment:

The answer key is incomplete in that there are two i

conditions described which are not Federal guarterly exposure limits.

The 500 mR limit per gestation period response (part "b") should be added to the answer key as an alternative response.

l NRC Response:

Comment accepted.

Both responses "b" and "d" are not Federal quarterly exposure limits and either, will be accepted for full credit.

~

3 j

e x

.ji, i

l

,f.

fQuestion! G.09-L

' Utility Comment: One of the Beam Ports is now normally filled with Helium when it is drained;. because of. this,'the radiation problem of.

. greatest concern is Na-24, as opposed to Ar-41.. Recommend that Na !

. production be accepted as an alternative response 'to, the questio', since~-

n

a. particular. Beam Port was not specified.

NRC Resolution.. Comment accepted.. The specific concern expressed by the facility is not discussed in the SAR; however, it_was verified by the

-examiner at the facility. Since He is normally'used in one Beam Port when draining, Na-24. does become the dominant radiation concern. The a

answer key.will be modified to accept this alternative response. The facility is encouragedito ensure that all reference material is updated

.to reflect this change.

3.

Exit Meeting-g

.At the conclusion of the site visit, the examination team met with members of your' staff to discuss the' items which were pertinent to the operating exam and the examination process, in general.

LSome of the deficiencies which were noted in the training materials, as 1

discussed above, were brought to the attention of the staff; it was emphasized that the materials sent to the Commission for examination preparation need to be both current and accurate.

(1 Additionally,'some' areas in which the facility could provide more explicit guidance to its operating staff were identified. These areas were primarily administrative in-nature, but were noted as consistent areas of uncertainty and weakness in the candidates.

Examples of these areas are:

1) Tagging Procedures
2) Emergency Communications (after building evacuation) l
3) Sampling Procedures (especially with respect to contaminationcontrol)

The facility is encouraged to investigate these areas for applicability to

. operations activities.

If improvements in consistency and safety could be.

. attained, implementation of corrective actions would seem to be appropriate.

The cooperation given to the examination team to ensure an atmosphere

-conducive to the examination process was noted and appreciated.

The licensee did not identify as proprietary any of the material provided to', or reviewed by, the examination team.

l

,A 0

J U.

S.

NUCLEAR REGULATORY COMMISSION i

REACTOR OPERATOR LICENSE EXAMINATION I

FACILITY:

~ UNIVERSITY OF VIRGINIA

. REACTOR TYPE:

TEST DATE ADMINISTERED: 87/09/14 EXAMINER' PAYNE.

C.

CANDIDATE:

~ M M O "'

INSTRUCTIONS TO CANDIDATE:

.Use1 separate' paper'for the: answers.

Write answers on one side only.

' Staple question sheet on top of the answer sheets.

Points for each question are indicated in parentheses after the question.

The passing grade requires at least 70% in each category.

Examination papers will

.l be picked up six (6) hours 'after the examination starts.

l l

% OF CATEGORY. % -OF CANDIDATE'S CATEGORY VALUE TOTAL

_ SCORE VALUE CATEGORY 15100 15.08 A.

PRINCIPLES OF REACTOR OPERATION E13.99

'13.07 9.

FEATURES OF FACILITY DESIGN 13.00 13.07 C.

GENERAL OPERATING CHARACTERISTICS 13.'50 13.57 D.

INSTRUMENTS AND CONTROLS 15.00

_15.08 E.

SAFETY AND EMERGENCY SYSTEMS 15.00

._1 5. 0 8 F.

STANDARD AND EMERGENCY OPERATING PROCEDURES 15.00 15.08 G.

RADIATION CONTROL AND SAFETY 99.50 Totalu Final Grade All work done on this examination is my own.

I have neither given nor received aid.

Candidate's Signature J

NRC RULES AND' GUIDELINES FOR LICENSE EXAMINATIONS hu'lngfthe administration of this examination the following rules. apply e

.1 ;. Cheating on the examination means.an automatic denial of your application land could result in more severe penalties.

2.

,Restroom trips.are to be limited and only one candidate at a time may leave.

You must avoid all contacts with anyone outside the examination room to avoid even the appearance or possibility of cheating.

1 3.

Use black ink or dark pencil only to facilitate legible reproductions.

45 E rint.,your name inLthe blank provided on the cover sheet of the P

examination.

S.-

Fill.in the date on the cover sheet of the examination (if necessary).

6.-

Use only the paper provided for answers.

7.

-Print your name in the uppe'r right-hand corner of the first page of each section of the answer sheet.

Consecutively number each answer sheet, write "End of Category __" as appropriate, start each category on a new page, write on_l,y on one side

.cf the paper, and w~ite "Last Page" on the last answer sheet.

9..

. Number each answer as to category and number, for example, 1.4, 6.3.

10. Skip at least three lines between each answer.

11.. Separate answer sheets from pad and place finished answer sheets face down on your desk or table.

i 12 ~Une abbreviations only if they are commonly used in facility literature.

13. The point value for each question is indicated in parentheses after the question and can'be used as a guide for the depth of answer required,
14. Show all calculations, metheds, or assumptions used to obtain an answer lto mathematical problems whether indicated in the question or not.

'15.. Pa r t i a l credit may be given.

Therefore, ANSWER ALL PARTS OF THE QUESTION'AWD DO NOT LEAVE ANY ANSWER BLANK.

16. If parts of the examination are not clear as to intent, ask questions of the examiner only.

117v-Ycu must sign the statement on the cover sheet that indicates that the work is your own and you have not received or been given assistance in completing the examination.

This must be done after the examination has been completed.

i

/W; 1

1 jf o,

1,

$ 8 0...When'you completeoyouriexamination,.youshall:

.t.

- a'. ' Assemble your examination as follows:

((1)

Exam l questions on.ctop.

(2). Exam aids;'- figures, tables,.etc.

g (3)' ' Answer:pages including figures which'are part of the answer.

-b.

Turn 'in?your:, copy' of. the exainination and all pages used to answer l7 the examination questions..

c.

Turn'in all scrap paper and the. balance of'the paper that you did not;use.for' answering the questions.

d.

Leave.the: examination. area, as; defined.by the examiner.

.If:after leaving', you.are found in this area while'the examination is still in progress, your. license may be denied or revoked.

1 i

I j

I 1

1 I

Qu m..

.,Y...

'l

~

l

~

} ".far: PKINCIPLES OF REACTOR-OPERATZGN PAGE 2

1..

E

! /.'p,'

't,

c QUESTICiN :. ' A.LO1?

(1100) d

.:WHICH,0NE'of the'following factors has the LEAST'effect'on the;value.

~ j of;ro'd worth?.

'd.: Number and: location of adjacent control rods.

I J

eb. Temperature of the moderator,

j
c. Tem per a tu re..l o f the'fuei.

,f l'

d.

Core age.

i 0UESTION -A.02

('1100)'

WHICH ONE"of the following statements most accurately describes the'

effect-of the doppler coefficient of' reactivity asi temperature
increases?

'a.

'More neutrons'are absorbed in the resonance absorption region because the capture cross section peaks become broader.

b. M' ore neutrons are absorbed'in the. resonance absorption. region because the capt.tre cross section peaks become narrower.

c.

Less neutrons are absorbed in the resonance absorption region-

'because the capture cross section peaks become broader,

d. ' Less neutrons are absorbed -in-the. resonance absorption region ja because the capture cross scttion peaks become narrower.

l l

l

(*****

CATEGORY A CONTINUED ON NEXT PAGE *****)

l 7

____J__._.m_.m.__________m___ _ _ _ _.. _ _. _ _ _ _ _. _ _

m

g 3y=- -

3_ - - - -

7 Ih.' PRINCIPLES'OF REACTOR OPERATION PAGE 3

\\

hg

-i-F cOUESTION.A.03 (i.00)'

f' an extended period.of' time at 50%

A

.A reactor'has'been operating o

' reactor power.

.WHICH'ONE of,the.following statementsLmost accurately-E-

, describes the' concentration of' samarium-149 if power were increased to

-andEmaintained'at 75% reactor' power?!

t I

a.'The concentration of Sm-149 initially increases and then.

. levels.cff to a1new equilibrium;' level higher.than the

' equilibrium level at'50%,reac. tor power.

b.-The concentration of Sm-149 init.ially, increases but then

. decreases toJan equilibrium leveliequal'to the equilibrium 1

' level'at.50% reacto-power.

~

c. The concentration of'Sm-149finitially decreases and,then

' levels'off to a new equilibrium' level lower than the-

, equilibrium level a t: 50%. reactor. power.

d.:The concentration of Sm-149 initially decreases but then

_g increases to an equilibrium level equal to the equilibr.ium

' level:at 50%' reactor power.

GUEST 10N' A.04 (2.50).

DEFINE EACH of the following terms:-

a.

Subcritical multiplication-g b.

Reflector

, c:. Xenon burnout d.IDecay' heat

<e.

Differential rod worth

.GUESTION' A'.05 (1.50)

a.-. P E F ) N E " delayed neutron".

(0,5) b.; EXPLAIN WHY delayed neutrons'are important.

(1.0)

(*****

CATEGORY.A CONTINUED ON NEXT PAGE

          • )

,=g u

s p; Ab " PRINCIPLES;, OF? REACTOR : OPERATION' PAGEz 4

Vl %jo-,

l

, ; r;.,,

,m,

7 z' L 5

/

r h,

l: QUESTION:.A106

'(1250) 9

')

~

yaTf DEFINE.. " thernialL non leakage j f ac tor" t.

t

_0 5)

(

Lb.;EXPL'AIN HOWcthe thermalunonleakage, factor;can be

( 1.' 0 )

fgreaterithan;one.

i..

W_

.7.

l_?dUESTIONI-A'.07.'

.(2;50)

K3 Ja/ STATE theLtype ofLneutron source ' installed in the UVAR.

3 P

INCLUDE:the; equations.which show ho': neutrons'are produced.

. (1.0) l w

q 1

L

b. STATE
the. type'of neutron' source; installed'in.the Cavalier.

j INCLUDE.the' equations which show Jhow.the neutrons are produced.

~(1.0)

c. ' STATE the.purposeJof. Installing-these neutron, sources in the R

reactor.

(0.5)

E q

-)

L l

' QUESTION A.08

,(1.00)-

y Reactort power is 100 watts and increasing with a constant reactor aperiod. FOUR (4) minutes later, reactor power is 2 KW. CALCULATE the re' actor: period during the last four minutes. SHOW ALL WORK!

QUESTION A.09-L(1.00) i 1 Reactor H poi +# is - 2kA wi th ~ rods in'the following positions:

Rod.A 80% withdrawn Rod.B 80% withdrawn

' Rod-C180% withdrawn

-CALCULATE: the SUR one (1) minute after a scram.

SHOW ALL WORK!

~

(ASSUME a Lambda of'O.0124 and a Beta Effective of 0.0065.)

LNOTE: APPLICABLE GRAPHS ARE-ATTACHED

(*****

CATEGORY A CONTINUED ON NEXT PAGE *****)

m

' ' n '
:.
r. '

Q A."-PRINCIPLES?OF' REACTOR OPERATION-PAGE 5-

';k

.:'e 8

, i..
-t.

q

.j _

~'

-p; s

"f 00E STI ON. } A','10 '.

-(2.00)'

- R'eactivity..lin'the.coreihas been" determined.to.be -0.1230 delta-k/k.

y' CALCULATE how much. Rod /A*must.be withdrawn to increase the present'

. count rate by'SP%.

SHOW ALL WORK!

' NOTE '. APPLICABLE CURVES ARE ATTACHED FOR REFERENCE

~

i..,

^

f 4

j

(

i 1

[ '. :

1 l

j i

)

'***** END OF CATEGORY A

          • )

z '.

B' FEATORES OF' FACILITY' DESIGN P ' GEE

'6 o

1.

E-19

..n

, ;. g

.OUESTION. B.01

- ( 1. 00 ).

t'

~ WHICH ONEcof-'thesfallowing statements most correctly' describes the I

differences /between the shim control-rods <and theJregulating control.

2 rod.

a'. Th'e shim. control. rod has a higher' total rod worth than the regulating control rod'because the absorbing section of the-shim! control rod.is? larger than that of the regulating controlDrod.

.I

~

b.,The shim control rod has a higher total rod. worth than the

~

regulating 1 control rod because the absorbing section of.the shim'. control rod contains baron whereas the. regulating. control-

{

rod does.not.

c.LThe shim control rod has a' lower total rod worth than the regulating.contro1~ rod because the absorbing section of the

.{

shim control rod is smaller than that'of the regulating control rod.

d..The shim control rod has a lower, total rod worth that

t. ie -

regulating control rod because the absorbing section of the shim. control: rod is less borated than the absorbing.section of the regulating' rod.

-OUESTION B.02 (1.00)

,WHICH ONE'of the following core loading arrays will give the HIGHEST

' thermal ~ neutron. flux and the GREATEST power density in the UVAR?

a.

4x4 array-of fuel elements including 4 control rods loaded in q

the ' center crf-the grid plate with 48 graphite reflectors 1

surrounding all four side, b.

4x5 array of fuel elements-including 4 control rods loaded in i

the corner of the grid plate with water as a moderator around

.it, c.'4x5 array of fuel elements including 4 control rods loaded in

{

the center of the grid plate with water as a moderator around j

-it.

d.

4x4~ array of fuel elements including 4 control rods loaded in the corner of the grid plate with 48 graphite reflectors in remaining sites of the grid plate.

i

(*****

CATEGORY B CONTINUED ON NEXT PAGE

          • )

L l'

j iVgp i FEATORES'/OF FACIl.1TY'DESIGNL

PAGE 7
-

l 1

r m n; I

.l x

9'

[ k, *,

p., y l l> GOESTION IB.03 (1.00)-

i 1

j-8 p ?.WHICH, ONE f of 1 the ' 1ol lowing i r easons 'most accurately describes why'the j

(UVAR'-is designed.withl.downflow through'the core?:

L a'x Downflow designLrest:.'ts11n minimal-burnout, i.

5b.EBetler.. flow' stability 'is achieved'due' to the ef.fects of; d

thermal' buoyancy and. decreased pressure l loss with'subcooled

~ nucleate boiling.

t; g c.:Downflow, design-minimizes the problem with' nitrogen-16 activity.

H

d. The hotter exit fluid at.the bottom of'the' core lowers lthe

~

neutron! flux resulting in

a. flatter power distribution, i

I i GUESTION B.04 (1~00)

LWHICH;ONE'ofLthe:following. statements best' describes the relative iseverityLbetween a flat plate fuel element _and a curved plate' fuel element upon a Loss of Coolant Accident?

'{

a.

A curved plate-fuel,e.tement LOCA is more severe'since it is

' loaded with more. fuel and has a smaller. critical size for Keff=1.

b.

A flat-plate. fuel element LOCA is'more severe since it is loaded wAth more' fuel per plate and has a smaller criticel

size for1Keffal.

c.uA curved plate fuel element LOCA is less severe due to its greater heat transfer area and lower power density per plate.

d..A flatEplate fuel element LOCA is less severe due to its

' larger moderators percentage and lower'overall power density.

i,

(*****

CATEGORY ~B CONTINUED ON NEXT PAGE *****)

JB5 { FEATURES OF FACILITY DESIGN PAGE:

l8.

. 3 T

s i

i l., <

v t; s ;

1L't:

y q I

GUESTIGNl.' B. 0 5 -

..(4..00) 1

dsing Nttachment.B.1',' answer EACH of the following questions.

t

a..IDE!di1FY dhe components marked A.through:F.

(0.25 each) t ab.l STATE'thefdiameter of.the piping.and.the nominal

f. low rate at-

'4 point G.:

(0.5).

c'.nSTATE the diameter of: the piping-and the nominal flow. rate at

. po i n t L H.-

(0.5)c d'

STATE'the. diameter of the piping and the nominal. flow rate at point ~I.

-( 0. 5 ) -

e.J STATE Lthe ' distance indicated by.J.

(0,5).

l f./ STATE thefplant parameter, measured by1the temperature detector

" marked K.

. INCLUDE how this. pari. meter is utilized in the-

- 1 Ereactor' safety. system.

(0,5) l

'i QUESTION ~

B.06-(2.00)

IDENTIFY-EACH of theifollowing rod and rod control characteristics as y

being, associated-with_either the UVAR, the Cavalier or both.

s 1

Ja.L3LofL4 rods-are inserted on a scram.

L b.' Hydraulic shock absorbers.

c.: Stainless steel absorber regulating rod.

d._-. Rod pon-i tion 'indic ation follows rod on a scram.

. OUESTION~ B.07 (2.00) a.

Per Technical Specifications, STATE the. primary coolant pH and conductivity specifications.

'b.

STATE the two reasons why chemistry control is maintained in the primary coolant' system.

g l

I n

I

(*****

CATEGORY B CONTINUED ON NEXT PAGE *****)

l l

I l

I

a;

.i...

i

.[,B1 ' FEATURES OF" FACILITY DESIGN PAGE

'9 l*'p.,

e g !.

QUESTIONL B 08

'(1;00)

W JSTATE:the. minimum height of.'the'. pool'above the. reactor core for zero

't. power-natural convection operations AND.the.' BASIS for,this minimum specification'.

=

\\

.I I

(*****

END OF CATEGORY B

          • )

j 4

1

____.l___--__-.___-__

[ lCi TGENERAYSOPERATING CHARACTERISTICS

.PAGE 10 o

L

'A J.

l: lOUESTION.

C.01-

- ( 1. 00 ).

l u

o 3 WHICH!ONE'of.:.the following i's a correct' specification'for reactor l

operationsfin Cavalier?

p a.

The' minimum shutdown margin provided by. control' rods with

~

securedcexperiments:infplace snd referred to the cold, xen'un f

g 0.2%qcondition.with'the highest worth control free is greater than.

j h

y delta k/k.

b.'AnyLexperiment with a reactivity worth greater than'O.45%

' delta:k/k.must be a secured experiment, j

f

c. 'The; total reactivity worth.of'al1 experiments is less-than 1.6%' delta k/k and.the'reactivityfworth of a single experiment.

l

is limited to 0.4%. delta k/k.

i d.

The excess reactivity including experiments in the core at any j

time shall be-less than 1.6% delta k/k.

q l

(fGUESTION C.02 (1.00) l l

'1 iDuring a reactor startup, equal' amounts of reactivity are added after 3

allowing the count' rate.to. reach equilibrium'following the previous reactivity addition.

WHICH ONE of the following statements best describes what the operator should observe on the source range j

" instrument?-

j a.

The change in the equilibrium count rate is larger while the time to. reach equilibrium is the same for later reactivity 1

. additions.

4 b.

The change in'the equilibrium count' rate is smaller while the time..to reach equilibrium is the same for later reactivity j

additions..

f c.

The; change in'the equilibrium count rate is larger while the time to reach equilibrium is longer for later reactivity additions.

d.

The change in the equilibrium count rate is smaller while the time to reach equilibrium is longer for later reactivity

' additions, l

1 1

(*****

CATEGORY C CONTINUED ON NEXT PAGE *****)

a

I, h thENERAL OPERATING CHARACTERISTICS.

S E

PAGE

'i l -

^

F e

(

4 I

'r 1

e TOUESTION C503 (1.00);

  • WHICHiONE o.f'the following. statements is a correct limit'for'UVAR jreactor operations:at power levels greater thanl1.KW?-

La. TheJminimum s'hutdown. margin"provided by. control rods, with

~

secured exp'eriments in place and. referred to.the cold xenon free can'ition with the' highest. worth ~ control rodjfully d

Yi thdrawn,..'is.. greater ; than. 0. 2% del ta k/k.

2

.b."Any experiment with a.. reactivity worth greater than;0.5% delta k/k must be?a secured experiment.

<c..

The total reactivity worth.of the two experiments having

.the-highest reactivity worth is less than 1.6% delta k/k.

d.

The total reactivity worth of.all experiments is less than

.4.0% delta'k/.k.

QUESTIONCIO4-(1.'00)-

.. Refer'"td Attachment C.2.

WHICH ONE.of theEreactor period vs time sgraphs'best correlates'to the given reactivity vs time plot for a-rod withdrawal of a critical reactor BELOW the point of adding heat.

IQUESTION.;C.05 (2.50)

IDENTIFY EACH of the following statements as TRUE or FALSE:

o NEW experiments at.UVAR with measured worth greater than 0.1%

a..2 delta-k/k must be inserted or removed 1 with the reactor

~

shutdown.

b.

PREVIOUSLY TRIED' experiments.at UVAR with measured worth i greater than 0.1% delta k/k must be inserted or removed with

.the. reactor shutdown,

c. Movable experiments at both UVAR and Cavalier must be worth less than 0.1%. delta k/k.

d./PREVIOUSLY TRIED experiments at Cavalier with measured worth

'less than.0.4% delta k/k may be' removed with the reactor 2%

. delta k/k:or more subtritical..

n,e.rUnder no condition'can experiments worth more than 0.4% delta i

k/k be inserted in the UVAR reactor.

'l

(*****

CATEGORY C CONTINUED ON NEXT PAGE *****)

j i.

t...

/ L.

~

<XE T

4-i lC.1.4GENERALIDPERATING CHAR 4CTERISTICS-PAGE ;~

- o

~

n

'i a

']

ya" 1

p 1

g

,,f,4'

[a[,b

'N ' '

t ic.

uEST_ ION ;C.06 (3.00)

,+

  1. STATE [whether EAC'H 'of' the. following parameters wil1 cause the critit.al

- rod.'heightDto.beJHIGHET, LOWER.or.the SAME.

EXPLAIN your answer.

ai Moderator: temperature prior;to startup is;1ower.

q (p. nTicne Esintui shutdown.t'o startup}is7 1onger'(greater than 1 day ).-

V,cc.; Average? power 1 history prior to-the last shutoown'is: lower.

]

di.' Star tup conducttade. At core's end of life vice core's beginning of li.fe; 4 GUESTION C.P7.

(1.00)J i

)he'UVARLhss.been just. started up after.an. extended shutdown. period Land thelcperater is maintaining. constant power.

Assuming. temperatures a ref cons t en t',

STATE whether the' operator wil,1 have to periodically

' drive rods in, out or leave them alone in. order to maintain constant-power.

EXPLAIN your answer.

I j[OUESTION. C.08 (2.50)

J

._Using Athachment C.1,' answer.EACH of the'following questions'.

a.~1f'1 reactor power were,100%'at the. time of. scram and a total 3

of:12% negative. reactivity were'added, CALCULATE the power lhvel after.the prompt drop. (ASSUME Beta eff = 0.0065)

(1.0)

- b.

STATE.what~ determines the. rate of powercdecrease at point A.

-(0.5).

c, ST4TE what determines the rate of power decrease at point B.

(0.5) d.: STATE what the' approximate reactor period is at point B.

(0.S)

-1

(*****.END OF CATEGORY C

          • )

I l'

bkW N A:

O ^' i

'l $ MIFJSTRUMENTS/AND CONTROLS.

- PAGE' '13

'5 o

% E T 4.-

]

(

a s

}?- ;\\

Hi<.; 4,'%;.,QQl? j s

,o 'it J-j

, i. :

n:

.c 1h i>..-

a r

GUESTIDN; 0101.

(;t.00).

t t,..

/.

,tWHICH,ONE ofLthe f ollowireg ; parame t.brn is NOT
an input to the L,p Mixer Drive relay..'
4.n.,

g-9 - v, g 3-se," pooli l eve l'.;

.g it g',

t

. b.,P r; r i o d..

- E

.I L, ' y f' * ' d....E d.(nlmum 2 -cps signal f rom SR ; circuitry.

J f

OL j

.d., Pool.temperat. ore..

,i m; ?:r

jM

~

c

]'

'g LOUESTION D202 (2 LOO)

%, IDENTIFY EACHLof.the following statements as TRUE or FALSE.-

y

a. ' Transistor gate NA-45 consists of S separate'4 input negative j

t

logic ANDl.yaties.

, ' b. The auxiliar'y' con trol module. takes logic inputs'from the.NA-4S*s

]

erlt pro'vides a relay output capable of handling.110 vac and 2 a m p f..

.J e a., o :,

is a 28 input OR gate.

';c._The Mixer Drive relay i

d.

The solid state relay module requires an inputifrow, the NA-45 to.

]

scram"the' reactor.

n-K

]

1

. QUESTION D.03-

~ (2.00) i I

tSTATE whether'EACH uf the 1ollowing'WILL or WILL NOT cause'the

)

Jregulating rod to shift 1 rom' automatic control to. manual control.

j 1

' Attempt.to move regulating rod with.the normal control switch a.

b '. ' Reg u l a t'ing rod is at its top or. bottom limit I

L ti The error: signal as displayed in the deviation meter exceeds 3.75%

d a. The -1:inear recorder is turned off.

1

(*****

CATEGORY D CONTINUED ON NEXT PAGE *****.

l 1

i i

96

[fNSYRUMENT'SANDCONTROLSl

'PAGE.1141 I

ya 7', ' ;,

Lo,

uc,..

'l-

'.l$_

70'

,>, a i

J jyt 1

1

G,UENT ION D.04-(3.50) 4, oljsing Attachment D.1,.. answer EACH of the'following questions.

' f a. ;i STATE the t!ypes of' Source Range ^ neutron detectingLdevices utilized:b'y UVAR and.Cavalfur.

- ( 1. 0 ) -

d A IDENTIFY and.:STATEJthe'. purpose.of the components labeled A.

~

('s A E 1 throughiC. 3 1 ( 1. 5 ).

,q. ic. IDEN1IFY~the.threeocutputs',from Amplifier S and'the one output'

-l from the' bistable trip indicated-on Attachment D.1.

( 1. 0 ).

lb P

u

..s l }' '

3

-a bdUESTION !D.05 (1.50) 1 a.3

. STATE'the type of neutron detecting. device utilized by UVAR Iritermediate Range circui.try.

(O.3)

W STATE.TWO'(2) bir, table trip outputs of the Intermediate Range LN b; L'

. circuitry.

(1.0)

,GUESTION D.06~

(2.50)

I a'. ESTATE'the type of neutron detecting device utilized by the UVAR Power Range' circuitry.

(0,5) b.-EXPLAIN WHY the-PR detectors'ARE'or ARE~NOT corrected for. gamma-flux.

(0.5) c.

IDENTIFY THREE-(3) outputs of the Power Pange circuitry.

(1.5)

OUESTION - D.07 (1.00).

EXPLAIN the reason for placing the_ CAVALIER'S linear power channel poss ble?

. amma-ray chambers as far from the core as s

g

't

s

(*****

END OF CATEGORY D

          • )

t

- )

'PAGE 15

!L:E.-,: SAFETY ^AND-EMERGENCY SYSTEMS

,; L ir.;

3. l-

,i.

,-l,.

i 1

1 4

?OUESfION. E.01' (i.00)

A I

? WHICH ONE ot[thelfol' lowing is NOT a' surveillance requirement for the q

ireactor safety system?

]

a.UA channsintest of each'of the reac+or safetyrsystem measuring-i

' channels shal1.ibe-performed before each day's operation or beforeLeach operation extending for moreLthan'one day.

b..A channel check of each of,the reactorLsafety< system measu' ring c

channels sha'll be'. performed daily when the~ reactor.istin operation.

- c. A channel calibration of the reactor. safety system reasuring j

channel <shall be. performed annually.

'd, PowerLRange channel 1.and 2 shallIbe checkedtagainst a primary

(

I heat' balance at least once each week the reactor is in.

operation above 100 KWLin:the-forced convection-mode.

4 i

j

' QUEST 1ON-E.02 (l'.00)

'WHICH ONE of the statements bhlow regarding the ARIS (Alternate L

Reactivity' Injection. System) is INCORRECT?

,a.

The time necessary for the tank to completely.orain from the q

25 gallonimark is 60 seconds or less.

l b.

The minimum ARIS volume is 24 gallons and minimum boron i

concentration ~is.0.129:lb/ gal.

o c.

Based on the Minimum system' flow rates and minimum gravity s

-head in the system s 'suf ficient negative - reac tivity is E

'available to compensate for a 0.0160 positive reactivity

. insertion in less than-one minute.

d.

'If the ARIS system is not in operation, reactor power is

~

limited to 5 watts provided it-is used only for measurement of theDreactivity worth:of experiments.

l l

l l

1.

I l-l:

E

(*****

CATEGORY E CONTINUED ON NEXT PAGE

          • )

V u

l-L__m =s-_--__

1

Ui',

f f. t, f

MM[ti'SAFETh,.N'.bND'ENERGENCY/ SYSTEMS'-

,t.t

' l '-

'PAGE -16 '

b1

a r j 964 E

s

/yW Lp

,.:1-

}

j

/'s 1

i-i i X...-

...~E;03-(1;00) l l

GUESTION a

t failures.will give a "can't. scram" W WHICH ONE of1thef1olicwing sets'of 4

H ds'itdStion t iril thef Caval f er?'

H N k,' 1 s a,;ONEl-(1)4M1.xeriDriver' fails.l

.I t.

m l-.

dioJes-in EACH. Solid State Relay' fails.

h b.LTWO;;(.2)?,.

(9 1 l

Ol

-c.. TWO L(2). diodes in ONE Solid State Relay :.f ails.and-ONE Mixer

'l

- Driver..falIs.

,f

' d., NONE'of:the"above.

=..

4 i<i LGUESTIONf'E,,04.

(2.50)'

-l a

i l

{ < FILL IN.1THE. BLANKS (numerica l,. v.a l ues..'on l y ).

The UVARespecification.Jforithe emergency _ removal.of decay heat

'.r'e q u i r e s '.t h a t t h e r e s h a l l' b e J( a )

separate emergency core: spray

.q

systems; each' capable of maintaining, flow'of.at.least (b) gpm over

~

t (the 64.fuellelement positions.for..the.1irst.(.c),

minutes ? and a,t.

.j H fleas t f( d ).

gpm ovar the 64, fuel element positions for the next

'(e)?

minutes"followingLa'. total loss of coolant' accident.

.d p(GUESTION

_E.05' (2.00) f

' : LIST: FOUR (4 )D automatic scrams and their corresponding setpoints for

the: Cavalier.

{

LOUESTION E.06

_(2.00)

LIST EIGHT'(8). items whicn will cause an intermittent tone by the

.J

, common. alarm. panel on the primary console,.

.. j 4

l 0UESTION E.G7 (2.00) l i

~ LIST.'FOURI'(4)' automatic actions that occur when the reactor bridge

,)

radiation monitor. exceeds its setpoint.

]

1

--(*****' CATEGORY E CONTINUED ON NEXT PAGE *****)

~

I

's

c E;- SANETV-AND/ EMERGENCY SYSTEMS'

.'PAGE-17.

liit lL

.c 7, y.;

'(.

L";,-Q U E S T I O N 'E.08 (1.50)-

l LIST <.the'.ilocations'for the monitors of'the;Th'ree Channel Gamma

Sensit'ive Area Monitoring. System in'the Cavalier.'

i j

..f

.' QUESTION' - E. 09.-

-(1.00)-

.c.

.. a. WHENTmust.the remote,_coupleribe. leak tested?

3

'b. DESCRIBE HOW the:. remote coupler. is verified NOT to. be l ea i< i n g..

u.,

J TOUESTION' E.10' (1.00)'

You're inlthe UVARLreactor' room when the room door shuts and the i-hig b(.' rad ia t ion level alarm sounds.

Can you rescue yourself and if so,

.HOW:'and TO.WHERE'do'you escape?

i L

l l-

.l Op 1

1 i

}

i

'I lt J

L p

L.

(*****

END OF CATEGORY E

          • )

i l

j..

.;\\'

.ll 1

l

"}FJ iSTANDARDlAND' EMERGENCY O'PE' RATING' PROCEDURES PAGE 18 j

Kg

=.-

o 3

b-$ -'

I:

iQUESTION i ' F. 01 '

-(1.00)

L l

l11 Lthe minimum estimated critical rod position for rods f.,;B, & C.is (10.5",~qWHICH-ONE of_the statements below applies to rod c'ontrol ac'tions during the startup?

a.. Shim 1 rods must'be withdrawn _ individually after they reach 10".

t b.' Shim 1 rods'.may:be withdrawn 2 at a time up tos.10,5".

c.' Shim rods may.be withdrawn 2 at time up to 9.5",

then must be withdrawn. individually.

d.EShim rods:must be withdrawn individually:during the entire s t a r.tu p.

' QUESTION. F.02 (1.00) 1 E LE% ~

[ LIn'a Cavalier startup, WHICH ONE of the statements below best

~

. describes why high'vol.tage is secured,to the Source Range channel if readings exceed i million counts?

a.

Prevent accelerated' burnout of BF3 in the detector thus extending the. usable life of the detector.

b.

Prevent damage to the Source Range detector circuit y due to the' increased induced current-from the higher neutron flux.

c. Prevent inadvertently losing capability to shim rods out due to the minimum count rate interlock, d.

Prevent pegging the Source Range power level meter which will result in the need to recalibrates the Source Range channel, i

i

(*****

CATEGORY F CONTINUED ON NEXT PAGE

          • )

F.

STANDARD AND EMERGGNCY ' OPERATING PROCEDURES FAGE 19 GUESTION. F.03 (1.00)

WHICH ONE,of.the following statements is NOT procedurally correct fo-

- I unloadI<ig the core?

l l

a.' Fuel elements are removed one at a time and monitored for

~.1 l

radiation hazards.

l l

4 I

b.

Control rod fuel elements are removed last.

c.

Redundant i n s t ru.nen ta t i on is not required to be operating but l

an operator must be monitoring operating instrumentation continuously.

d.

If the <nadera tor tank i ?. drained, the neutron source must be removed from the source drite system and stored in a parafin

)

container, l

l l

GUESTION F.04 (2.00)

TDENTIFY whether EACH of the fol~1owing measuring channels CAN or l

CANNOT be out of service for a period not exceeding 7 days without requirin0 the reactor shutdown.

R.

Bridge radiation monitor, b.

Reactor room constant air monitor, c.

Core gamma monitor.

d.

Reactor f ace inonitor.

j.

QUESTION F.05 (1.00)

WHICH CNE of the following 4 ailures does NOT require the shutdown of the reactor as an IMMEDIATE ACTION?

a.

Failure of the pool water level monitor.

l l

l b.

ON'i (1) solid state relay failu e light tomes on.

I 1

l c.

ONE (1) stuck rod.

l

(

d.

Pool temperature continues to rise after system has stabilize.

l l

l l

1 l

(*****

CATEGORY F CONTINUED ON NEXT PAGE *****)

u_

. =,

LFJ LSTANDARD AND/ EMERGENCY' OPERATING PROCEDURES

~PAGE'.

20'

i 4

117

> v o

g j

I

?i

(

j

,j' y

M OdESTION:

F. 06 '

% CO)

T

. f

A 3

J~

L

' STATE; the UVAR i criteria L f oE dethmiriing; that ys. coreis' xenon. f ree ~ for -

, purpocesl-of. making recuired,'rtek tivity measurementrJ. ;

~- -

t 1:

g

.. q y'

1:'

hy.

l

.\\

L

-QUESTION F

0.7..-

1( 1 00 )L--

.n j

During ' aL reaci.o'r stat' tup, WHAT should~ reactor period' be' limited ito for f

SEACH00f? theLf.311owing situations:

b t

Ta. l Bef ors.:.a ' risingi neutron flux is indicated'on theLIntermedia'm.

Range and.1inears. power meters.

~

1

...;g;b.L Af ter' a rising neutron ' f lux is' indicated on the Intermediate.

Range'and linearipower meters.

f 5f l VOUESTION F.08 (1.00) a.1. STATE-WHEN'. critical red position d'ata.is recorded.during a;startup'.

4 b.

STATE the maximum. power limitatf ort sf f critical. rod positions'are

~

beloW ths minimum' permissible roy:po31tions determined prior to-

-utartup..~

i

.t iQUESTION' F.09 (1.00)

During reac tor ' opera tions a t - power,. the fission chamber is withdrawn las far as possible.

1.-EXPLAIN WHY'the fission chamber is withdrawn.
6.~ STATE ALL 9 imitations ~on' withdrawing the fission chamber, i f any.

(do'not' include physical limitati%,

i..e.

physical stops) i l

1

--GUESTION F.10 (1.50):.

I al Ir1 accord 6nce:with UVAR SOP, ETATE WHEN the neutron beaia ports are checked to determine whether.or not they are filled.

1 I

-b.. STATE WHEN the south. beam port;would'be filled.

c.! STATE.WHEN the north beam por,t would be'1111ed.

(*****

CATEGORY F CONTINUED ON NEXT PAGE

          • )

r

.u_____________._____

y diW

,,4..

g..._

.. ' STANDARD"AND. EMERGENCY.' OPERATING PROCEDURES PAGE-21 q

'i F.

( '

n.

s j

G, p

u...'OUEST I ON ! ; F.11'-

(2.00).

l c a.

LIST) the
IMi1EDI ATE ' ACTI'ONS required when an area moni tor alarms.

p, i-i GUESTION F.i2

( l '. 50 )

c

'a?' Ate.WHAT, LEVEL of Ir133:and/or Xe-135 AND at WHAT LEVEL of I-131

- must thsLreactor.be' shutdown?

(1.0) 6.

During a fuel element. failure, HOW is it determined which element-1

-'is?' leaking.11ission ' pro' uc ts? =

(0.5) d

.(

b

\\

9 1

i

'(*****

END OF CATEGORY F

          • )

_hm-i-m___m_..-

. a,. &,.

,Y j

+ f jin w -

/[J.

j ;W L}:

.p..

c3 v 3

s G ". " RADIATION CONTROL"AND! SAFETY

- [-

.PAGEf722i gL o

.u c

l 1*

A'_

' 'j_z J

1 i

=

, r1e

_/ ;,

- g

$ hj?

.p 'f/

t i

q y'

)

a I

r i

o

. =_

sw p;OUESTION-f G.01L

-n,1(1.00)-

i 4'

c.

'Y ti O

(NHICH ON'E; ofl? thecf ollowing, limits. in NOT 'a f ederjQ quarterly, limj ti?

L

' i'

^

8 - )

-(,

X a '. J1801SiremlhandsLand 1orearm exposure.

'5:A!

m Lb. 500Lmr exposureiper I month gest'ation period.

il c.

7.5trem1 skin exposure.

~'

/ -

,j a

)

d.oS rem'esposure to'wh'cle. body with.NpC form 4 ahd lifetime dose

~

/

^

lets than:5(N718)e N=Tage.

a y_

.h 2

4 3

W

. 'G.02:

.( 1 L 00 ) ;

. /f Y

f0UESTION j

d

,r 3

?WHICH ONE-of.the fpilowing. statements is'NOT.a> correct guideline for.

' Determining 11 cu]tamination is pres.ent?

1

~

?

a.

A. frisk'ofypersonnel;or' material in;the step down Area of the

'UVAR reactor roomicantrolled areaWrevealingian getivity of-j

10,000.dpm.or; greater'above' background.

j b,.A frisk-ofLpersonnellor material'at the hand and -1oot monitor-revealing an activity of L10,000 dpm or greater above -

'7

'beckground.

s, personnel ~or' material or an area revealing an.

c.1A'~ swipe of activi y of 2200.dpm-or greater'.of. gross beta'or gamma above 1

background per. 100 square cm when" counting on a low background count ling system.

d. A' frisk of personnel'or material using a suitable Instrument reveals an activity of 5000dpm-or. greater above background.

' QUESTION G.03 (1.00)

"WHICH QNE of the following radiation / contamination survep is NOT-f lpedforded week 1y7

'a.

Corridors adjacent to controlled areas.

j. tf/ Uncontrolled areas, t

c.

Radiation level surveys around the outside of the building, I

d., Airborne as civity concentration surveys.

.'c3(

(*****

CATEGORY G CONTINUED ON NEXT PAGE'*****)

y 1, M y

.by

j.G.

RADIATION CONTROL AND SAFETY PAGE 23 s

s' GUESTION G.04 (1.00)

I WHICH ONE of the following statements most correctly describes the method to frisk with a hand-held rate survey meter?

a.

The probe should be in contact with the body to maximize sensitivity and the frisk rate should be slow to allow time for the meter to detect possible contamination.

r:

b.

The probe should be in contact with the body to maximize senstivity and the frisk rate should be fast to detect i

radioactivity before some of it decays away, c.

The probe should be close but not in contact with the body to prevent possible contamination of the probe and the frisk rate should be slow to allow the RM3 to detect possible L

contamination.

d.

The probe should be close but not in contact with the body to prevent possible contamination of the probe and the frisk rate

~~ ~

should be fast to detect radioactivity before some of it l

decays away.

QUESTION G.05

(.50)

LIST radiation monitoring devices which must be worn in a high radie. >so area.

l GUESTION G.06 (1.00) a.

STATE the annual whole body dose limit established by 10CFR20.

b.

STATE the local annual whole Dody dose limit established by UVAR j

and Cavalier.

O QUESTION G.07.

(3.00) i l

LIST the FOUR (4) area (radiation) monitors.

INCLUDE their associated SETPOINTS and STATE whether or not a scram will 1-l occur if they exceed their setpoint.

l l

(*****

CATEGORY G CONTINUED ON NEXT PAGE

          • )

~ ~

,g.

n.

- ~ - -

- - - - - - - ' - ~ - ~ ~ ~ - - ~ - - -

~ -- - - - -

E Y.. < #. 4...N'.

'O:

t-O GNKRAD7ATION1CONTROLHAND-:5AFETYl.,'lc

~

PAGE; :. 24..'

.+

r.

.n ; g' L r.

1-y f l.5 7.I,, -,,

, RO f.

~

i.

7 g

'\\ l r.

QUESTIONL: G.08 (4'00)

'l

DEFINEJEACH offthe'following terms.

a ;.4 Roen t! gen -

Eb2 Rad-

.c.) Rem

-l FLd.;; Duality-f actor

/<e.fHigh radiation' area

f.. Ra'd i a ti on.,. a r ea J

4g. Controlled' area h'.iuncontballed: area.

i ra, j

1, on

. QUESTION. G.09

(.50)

' WRITE the equation for the production of the pr.imary radioactive j

isotope lprciduced during neutron beam port operations.

l 4

. QUESTION G.10 (2.00)

'l

< a '. The radiation. level from a point source six feet away is 500 mr/hr.

j HOW FAR from the point source will the radiation level drop to 180

inr/ hr? '

j b.cA-lead slab.is placed betwen a point-. source and a radiation worker 1

causing the radiation level to drop'from 500 mr/hr to 100 mr/hr as detec ted,' by the.. worker. -If two more identical slabs were placed between the point source and the worker, what would be the radiation level detected by the worker?

d

,., e i

1 11 M

J i

l

(*****

END OF CATEGORY G

          • )

(*************

END OF EXAMINATION

                              • )

i 5

' ' die,' <>

Ny 3. [,I[

(y

^

.(

$N.w
PRINC'IPLES OF2REACTDR" OPERATION'-

'PAGE, 25.,_

E K'

. j.

<4b, q

K fNSWER$p $ UNIVERSITY;OFfVIRGINIAL,

-87/09/14-PAYNE,~C.

A.

< >. :; ' y y-g.

f..'

b) s I'

(

4

}

n g

JNSWER:

A'. 01'

-(1,00)

Jj

)

.j g:

m

' c 3,

'4: REFERENCE t,,

M r.

f

': General ' Elec tric ', ; Reac tor Theory, Chap. 5 l-1

-1 iL ANSWER-

'A.02 (1.00) a 1

l REFERENCE-

-Westinghouse; Design Technical Manual, Chapter 2 ANSWER

.A'.03 (l'.00)

I g

i) y 1 cll

' REFERENCE po[ Westinghouse Design Technical Manual, Chapter 2

'(

N

f 4,

f-c.

1 1

1

'1 A

(. '

j

ra w,

,. l( F1 A :-Mi

.s

'PAGE 2 61

[l4 L A'.

" PRINCIPLES ' OFT REACTOR OPERATION -

l.

' ?R

'-87/09/14-PAYNE, C.=

'j

['ANSWERSi%-LUNIVERSITY.0F VIRGINIA.

, m
x u

li_

s e

i. "

i ANSWER A,04'

(2.50)

%y g?)

I V 'a. : Steady: state' neutron.leve1~ higher than' source alone'due'to th'e

'T.-multiplication of: fissionable fuel.

P sb. Materia 14at core edgesEwhichLreduces. neutron leakage by. scattering neutrons back intoethe core.

p,ic. Removal?of Xe-137:from'the core by absorption of a neutron.' toc i-

, p-Xe-136.

H L'

d.' Heat produced by the. decay.of radioactive'nucliden.

n

> ' e. Reactivityjchangefper unit'ofErod motion.

' REFERENCE.

? General Electric,. Reactor Theory, App.'G

.i ANSWER

'A.05'

,.(1!50) ta.'A neutron. born sometime.after fission (time greater than 10E-14 sec).from the. decay of fission fragments (delayed-neutron g

precursor).

I b.. Delayed neutrons allow control of.'the reactor by increasing the

, average neutron lifetime.

t

REFERENCE

(

LGeneral Electric, Reactor Theory, Chap. 4 1

4 e,

i

y p

J.,

..PAGE:

27 l

f}Ab ' PRINCIPLES OF4 REACTOR: OPERATION ~

Q, _. 4.;

-87/09/14-PAVNE, C.'

x.

p LANSWERS?-

UNIVERSITY OF VIRGINIA J

[

l

+

ll:

4 w

ANSWER:

.A. 06" (1.50).

y W

i the' mal, l

ha.;Theffraction.of thermal' neutrons,that escape leakage while r

I (0.5) 1 t:

.ti.

111:a reac tor had g a-reflec to'r,. f as t neutrons which escaped from,the L

. core can'be thermal 1~ zed and.then reflected back into the. core

~

(0,5)'.

'The nettresult'can' be that more thermal neutrons enter the.

' core?than' leak from it.'(0.5) l.

Wr REFERENCE'

<GeneralDElectric,fReactor Theory,. App. G 13:

l i

[

ANSWER A.07

-(2.50')'

J o

a

!4

. I, t

L a.<UVAR:uses a1Sb-Be' source.

. (0.S)

Sb-124 e->.

Te-124-

-F beta' +

gamma

.( 0. 25 )'

. De-9

+ gamma

-~>

l2 He-4.

+' neutron (0.25)

,l

~The' alphas 1(helium nuc' lei) produced above can further react as

'follows (NOT REQUIRED for full. credit):

He-4

+?

Be-9

~C-12'

+ neutron bl' Caval'ier uses a Pu-Be source.

(0.5)

PuE238 U-234 + alpha (0.25)-

I Alpha'+ De-9

~~)

C-12 + neutron (0.25).

c.

The neutron source is used for initial startup and to provide a background level for startup instrumention.

(0.5) x IREFERENCE

' Cavalier'SAR, sec. 3.1.7

< General Electric, Reactor Theory, Chap 2 l

D i

l k

.AL PRINCIPLES OF REACTOR OPERATION PAGE 28.

'. {

~

i

. ANSWERS'--. UNIVERSITY OF., VIRGINIA

-87/09/14-PAYNE, C.

1 1

AN'SWER A'.00 (1.00).

,P,= Po*exp (t/T)

(0.4)

T m'.t/In(P/Po)

(0.4).

T = 240/In(2000/100) 80 sec (0.2)

=

REFERENCE, l

General Electric,-Reactor Theory, Chap. 3 i

ANSWER

'A.09 (1.03)

'Neg. reactivity added by all rods dropping (from IRW curve)

=

-0.0500 (Rod-A) - 0.0390 (Rod'B) - 0.0465 (Rod C)

-0.1355 (0.4)

=

([eff - p)

(0.4)

SUR =.26.06 * (lambda

  • p + dp/dt) /

SUR = 26.06 * (0.0124*[-0.1355) + 0) / (0.0065 - [-0.1355])

(0.1)

SUR = -0.31 DPM

(+- 0.02 DPM)

(0.1)

REFERENCE Westinghouse Design Technology Manual, Chap. 2 II '5 RR ? s.x,ons de b e.&.

p d.4, p w w (a

- DbMan.A %dh $V k t.r2 kt% %

gg

\\.,, s.x - a-s-a

ei k

r W,L A, ' PRINCIPLES'_OFEREACTOR' OPERATION PAGE-29 j

' 1 %.. :... '.

1

=

, A!l.1 ANSWERS --: UNIVERSITY LOF VIRGINI A-

-87/09/14-PAYNE, C..

rm ;,

11 p

g.

uw

k,-1

}<s q($NSWEfi

'A.10 (2.00)-

m

': Subscript.1 refers to values when all rods are inserted. Subscript'2 refersito values-when Rod A is withdrawn.

1 l

l IKeffi =: 1/(1-pl)

J

. }.

1/(1+0.1230) q

=

= 0. 89,-

(0.3)-

l

<e ^.

.l

<l6 [CR1'/CR2 = [( 1-Kef f2 ) / ( 1-Kef f 1 ).

=>

l g

Kef12 = 1-[CR1/CR2-*.(1-Keff1)]'

j

= 1-(2/3'* (1-0.89)]

l

=c0.927 (0.6) l

'p2 = (Keff2-1)/keff2

.i

=-(0.927-1)/0.927

=.-0.0790 (0.3).

R'equired reactivity addition rieeded = p2 p1 =.+0.0440 (0.6)

[FromlIRW curve, Rod ALmust be 56% (+- A%) ' withdrawn.

(0.2) f ftEFERENCE 4

General Electric, Reactor Theory,- Chap. 3 o

1 f

L i

i t

m 1

S tI, '

f:

-I' g,...d s

\\ iB.

FgAllJ,RESilO[, Ff3CI_LI TtiDESIGN O

"PAGE: 130-

.,. o. x : -

10f~ VIRGINI A :

-87/ 09 /14--P4YNE,. C. : '

% M NSWERSL.4 ; UNIVERSITY..

3 dd<

,o '

m c-l-

i f

(

.j Y'g. ;\\ };

ll g ~

'1 4

-t,,

,..y

?ANSWERi..

.. B. 01:

(t.00)

I

.u

_j e

.1-i i

bJ' H

11

'REFE.RENCE.c.

s

.l.

, UVAR)SAR,'sec.

3.'S :

l

.i EANGNE8; D.02

.-(.1.00) s g.

ir j

REF.C...RENCE

<UVAR;SAR, sec.~3 3 1

4 --

' ANSWER.-

,. B.' 0 3

( 1. 00.).

i i

is

)

.. c.-

'i i

REFERENCE i

UVAR.SAR section.9.A.4-3

. ANSWER

'D.04.

( 1 00 )-

l c.

l REFERENCE

.'UVAR;SARg section 9,B.4

.l 1

i 1

~

...______.m__=.

W

,b

s c>. c.,<'

i s4.

FEAlklRC1,,0f!LFftC$f1TYlDJmigfj'

.h 1

tl. y,

  1. .e

't.5 y

.r '.-

idi

'P'GES $1-6Tb

.r

~

A 4

e c

(h;;

W..., M W ' h~

,-87/09/14kPAYNE,.C.

4 ANSWERS W. U,NIWRSITY. ;OFj VIRGINI A ;

i i

1 Q:.,

1 +

3 i

_ ht J ij i.;....<,

. i

)

J t

(ANSWet

?B;03-

(4J00f

-l y

-a.s

'^

f.

... Demineralized-W.1 A: ;,

!*MB! Ca r* tsord 'f iller g

~CrLCooling; Tower',

.i

.. D L Sallris tyf(conductiv'ity ) cell'

* EbFlowmeterb" l

F: Mosb le Shielcfi {Acce.w T4.r My ) '

(0.2seach[

l s,ig.f,,:6"<,.e10SS --g pm L ( +b SO Tg pm).

( 0.' 15/ 0,3 5 )

c. 6" 31200'gpm'.!'(+--50 qpm)-

.(0.15/0.35)l ~

. (d, s 1;",
20 [ g pm.

.(+

.-1.gpm) f(0.15/G.3S) l

< e. J19"M5 y

. ( e. e ).

"if.iTemperaturs det.ector'is,used to: measure' core' outlet temperature

,.l y ; ancf[i ts. Lou tput ' 'in ~' con.j unc tion with. core temperature inlet will mo Un rc 4+

d4++-on+-4 1 u ~- - + + m 4'

-m

-He wi p g.

1. y _ -

3 wg w.gg&. g% g 44(pg4%

a 4, wJ.,

(0.5) m j

REFERENCE

ljVAR S AR, P sec '. 4'.3'through.4.7

E MNSWER B.06 (2.00) l

.I

.a;'UVAR.

j b.'Cavelier

c. UVAR

d. : CaVa1ier -

l

.)

..,...FEF ERENCE

.j LCsvalier:BAR, sec. 3.1.5 & L 1.6

..tNAR GAR, nec.

S & 3.6.~6

~*

^

r*

L

'L_-._-___m

_..a.

L_.

_m m

mxm:r o 3't., > ;{ f 4

7(.[$ lFfATURES dF FACILITY' DESIGN [

n; PAGE-32'

?

L

,4

... 4 4 1..,

C, L. g; A.N. S W E R S..i, - -: U N I V E R S I T Y. O F O V I R G I N I A

% 87./09./14-PAYNE; P

,,h i

.t i ).

1

j L.

p q

1 l.

' ANSWER

D.07L

'(2.00)

p
i. ~ { ' ;

t, R.

f"a., pH. between S.0 ; and 7. 5 pf conductivity. <- S micro mhos.

-(1,0) m

~

--1 tC'.If)il.imit.'the' rake Lof '. corr osion (do increate longevity = and i.14...,,... ;

integrity of' fuel' cladding 1

( 0. 5 )'

<a" o(2). Limit.. concentrations lof. dissolved material thus. reducing

(?

Jthe 'rieutron ' activation 'of ' these materials. '

(0~S) w REFERENCE jUVARETS;: -sec "3.11 x

lANSWEFC

'B.h81

(,1',00) 2 Miniinum height in 1.'f t-~ ( 0. 5) to' ensure a continuous. flaw path for natursl'gonvection'cualing. (0.5)

.REFERENdE (UVAR tsp weca 3.0-

7--

-7 l),':: 1.,.,.{.q.,,.,.,,)

.3

...t g,..

p m.

.a.

t WlC dl/ r..Q E N E R A L O P E R A T I N G C H A R A C l g ff ~t S T I,p ~a '

.PAGE.33

~ ~ ~ '

g' ms' L F < x,,

4.,

487/09/14PPAYNE,'C'

[j' t'

+

l,;A.N(intRS H : ONIVER$17Y ' OF; VIRGIh{ t A I., /m,

. r, :

k'.*

y q

._l s,'l..

I s'

,U.r

.s

,. - i

.,e

ANSWEH

, C.,01 t (1.00) t

'e.

y.

.3 3.? -y'

?..

o.n. :,m, J ftEFERENCE

..;m, a

' Cavalier.!Ta :sec. 3.2-r

t T

l

/-

,s..i.i,A,NSWERJ C.02-

.(1.00)

.t.--

[,

u,'; 3 c-p

.i..

'i REFr:RENCE 7

General' Electric,' Reactor 1 Theory,, chap,.7 i

Vi:

ANSWER-C, 0 J.

-(1.,00):

'i

, y pc f

4 5 l REFERENCE I

i UVAR'TS,c sec.-3 1:

g..

n q

. ANSWER C.04

.(1.00) i)'

.j h[

REFERENCE j

1

.g y

.js, General Eloct.ric, Reactor Theory 3 Chapter 7 j

(

\\

4 j

t.)

i N

j i

. i-o I-I y'i i

y.

O

,Y,,

-s s

gi > >.

34-t, :.__

Mf@y GENER M(.. OLE;R6 TIN' GiCHO' ACTEGLS.UEsi lF#/

PAGE-f W., f,, i l. '

VIRGINIA "B7/09/.14LPAYNE,'C.

~'

M :: ANSWERS UNIVERSITYLDE':.

l

?

1

,y e.g y 4

.(-

i

  • l l

f) ribANSWER

.;C 05-

_ (2.50) g-

-if. -TTROE1 a

b.sF;ALSE iC5.'Tf UE,

k i

l ;d5--'TRUE-e, FALSti 1

a LREFERENCE' i

UVAR.TS.ssec.: 3.6 3

.. Caval ier" TS,.. sec. 3.S

.. )

I q

' ANSWER; C 06 (3,00)i j

t

.a.

LowerD. CRH ' :( 0. 25 )

- l.ciWer'. ( moderator ) temperature --> more reactivit'y added ->.less 1

- reactivity required by control rocs --> lower critical control rod R

-height. (0.5)

b. Leiwer CRH (0.25)-

q Longer. time:since shutdown'

, poisons present at time of shutdown

.has more time to decay --> less poisons ~present'at startup -

')

less i

negative reactivity added "-> -less reactivity required by control q

'3ower critical rod height..(0.S)

, rods

'i c, Lower CRH.(0.'JD)

]

Lower. power history

  1. r lower steady state poison --> less poison at. time of shutdown --> less painon present at startup -~)

less j

f.

nege t tve reactivity added - > lesn reec ti vi ty required by control

)

rods'." > lower critical rod height. ( O..S )

d,_ Higher CRH ( 0. '2 S )

>j-

. Core age increaset - -. ' lower eacess reac tivi ty ---> CRH increases to compensate. (0.b)

.f az____________________.________._____

C.gd,@gSE[Ml.i pfffBT,,1NG CHARACIERISTICG PAGE. :.* U

.c
  • i
ANSWERS -- <UNIVERS.t TY OF VIRGlNI A

-87/09/14-PAYNE, C.

i.. -

REFERENCE f3eneral E l ec t.ric, Reactor Theory, Chapter.7' IANSWER.

C.07

'(1.00) fprive rods. cut (O 5) to conipensate for Xenon buildup upon initial reactor startup.. (0.S)

)

REFERENCE Germral Electric, Reactor Theory, Chapter 7 r

ANSWER C.OG

(.2.S0)

.0065(1-[pyp)

@(1 p)/(

  • Po-

. a.

P. m

.1200])/(.0065-C.1200])

"115'KW or 5.75%

DD)

(O' b.

Delayed neutron precursors (O' N

.r;. Longest lived delayed neutron precursors

'd.

80 sec.

REFERENCE i

4 General Electric 3 Reactor Tneory, Chap. 'i, i

p N,:F~-2lij,i;'

g;

~ ' ' @s; - ~

+

~

~

'i

.,. '+:

.c

  • .h,., = : 1NSlfigyISTS,i. GND'! CpNTMOLG PAGE'.3$.

s q

,.;;Q

,

  • a,.. -

.?

  • , :'i ANSI 4E'R' [-di LINIVERSITY OF.. VIRGINI A

-87 /0% 14-PA'yNE,

C.-

S.

~

.\\

  • l.l c:j Cl, '

(; e

'i 1

t

.,a n'~

0, 0 11 L ( 1. 00 ).

o ! ANSWEf0

,j, 1

3 c.

rif

.R E.F E R E. N C E,

, UVAR!- SAR,, sec tion,-3. 6 '6 ANSWER D,02" (2.'00) j.n

?

q,,J TRUE

\\.,n:.

3 tis-TRUE

,.<a

.! c. TRLIE t

,.., cf. " FALSE -

' REFERENCE.

j

'(.NAR'SAR,-section'3 6.6 i

y ANSWER.

D.03' (3.00).

i

)

'a.

Wil1 shift j

i db. Will' shift i

i

c. Will NOT shift I

r f:

Jci WilI~ shift l

ItEF ERENCE.

f

)

l UYAR LSfM3, 'siec tion 3. 8 i

t i

1,4 p

i.

h.

l-I

m

,.s.

c,a, a,,, ' +.:.

m m:

z 77 A,1

<.i m

, 3;,. ': t c ; r W., i. 2N

[ k II[j. NUh [h -! ANOdM3M ;.. '

Ei ~

P AGE.f ' 37'

~

s

~

$ 01... e

&
c @mNSvJERS --lUNiVERSITIDFJYIRS'INI AS -d7 / 09/14 -PAYNEi, C.

e y

)

" t J

l if.

d A

i

'" Ar4SWER -

D.MO X3.50)'

's p i

1 d..UVAff:iitili.;:en.a fission chamber.

- Cavh11erq-uti'11 des a : PF3 c hamber.

.( 0. 5 : eac h) h l

\\

,f'

$ln !AkDiNcriminator H acts as a jfilter to, allow only large. pulsesf -

- assocj ated ;with. neutron.interac tions to pass ;through

?(diserlminatep against smaller gamma, induced pulses).

(0,.5):

i } '.'

. B: LGcald of..two counter -idivides3 the input frequency by two.so

'f the.o6tput.is.'a squpre wave whose. frequency is'one-half the

, input;. f requenc y,

'( 0. 5 ) '

a.

f. Log;Integrata*s - provide a DC valtage proportional.to the

'llogarithmjof t'we input' frequency.

( 0. S')

4 p - t. l Anipl.ifier S ' outputs: power. level meter, record.er,. period meter.

J L

. Bist;able '.outpu t '- 1ow coun t rate ':j nterlock.

-(0.25 each)'

L

-BEFERENCE

-3 l

sUVAR SAR',.section 3.6.2 j

t

{

l LANShlER

.u.05-(1.30)

-:a.: : Compensated 1on chamber l

lb.

' Integrated,-power and IR period trip (0.5 each) 1 L

J

- REFERENCE

{

l

\\

- UVAR SAR, seetion 3.6.3 s.

3 l

1 J

j 1

'l 1

________________.__O

m--

)

f!)ipMP

.l..

V, bJfNSTRUMEffrGLAND CON 1ROLS.

...'38 ifD PAGE~

~w

. ANSWERS -- ' UNIVERSITY OF VIRGINI A '

-87/09/14-PAYNE, C.

[>

l hi-)

f w

.\\

l

')

D.' 0 6 (2.30)'

)

p, ANSWER i !'.

(0 5)

L.

'a. Uncompensated' ion chamber, p-b,'In tho' power range, neutron flux is many. times greater than gamma-

-flux.

-OR--

Gamma 11Ltx ~ is. proportional.'ta power and the' power range

' instruments are' calibrated by heat balance.

(0,5) '

i Qu'tputs: % power, integrated power, scram Logic high power trip.

(0$ e.a d f c.

i:

REFERENCE

' UVAR SAR,. sec t.ior).3. 6. 4 :

4 Westinghouse Design Technical. Manual, section 8.1 ANGWER D.07

.(1.00)

.i i

To maximize the minimize the

/ fission product'rarompt gamma. ray signal ~and (05 cuQt con t ribu tion.

REFERENCE-CAVALIERESAR, sec. 4.7 l

>4 1

15 i

1 i

l

___________m.

J

.u.

s y'

...,, l....

l~7 3 iJI ),,-

,. ' [ '

IS

.] [

k

,.,., 4 ~ i d i < .', t '., [f[!:.r s...

t r..

_j Ja. /

4

[Mid1J.3fETV:AND* EMERGENCY (SYSTEME PAGEu:39/

$%[ A. #EfWERG.' a--f, UNI (/ERSITV. ' DF,.:VIRGINI Al

%a -.nj 7:,...

1 i--

~<'

-87/09/14-PAYNE, CL mg]$iff j

1

.)

M;. y, /

m

'1 r

.,v.

T. y,

f $'.

Ij ?

,l g '

2

+

s 1 -.

j

,2g.AAN$WERL

, E. 010,.

(1.00);.

w;

.yp

'g'.ig.,

}

p,:

.,l

' REFERENCE 1.

.t l

UVAR' TOchnicpl# Sp6cifIcations, irsmition 4.2-y n

q

.:t-

.- E

  • 02

.(1.00)

.]

. ANSWEft l

q , 4-

).REf?ERENCE CavaIler"Technica'0$ specifications,'se:ction 3.0 1

.gy y ;m f.',

.tc

,Lj.

jANSWER:

Ji?;03 11.J30 )

j ps

b. '

il3EF~ ERENCE

I

' Cavalier SAR,'.soction 4.6.1

.o

.(

t I

- ANGWER

'E.04 (2.50).

2' j

[' : ;. a.

) :

i i

b.

10.

j. ' (; <. e 30 f l

., :-(

I c ry. l 7 '. B :

i

se. 60 I

@EFERENCE 1

ilNAR Technical Specifications, section

3. 1 0 l

i

. j:3 1-

g. MT g

,- _ g; g.

-(

J

~

i

.A._

u.

..m 4

1-a' gy m.

ff n i,>SAFETYLA %,.EMERGEtiCJ;3YSTEf1(-

PAGEi 4CO u ; 7 # :.

1,

NhhbhhERG$4UNIVERSITYDEVIRGINIAl, -87/09/14--PA'(NE ; ' C.

I 9 ' ' q% < '

'i 9

gn.

na m

. ;'y;- -

- 3. -

iY h,

..',.1 M, ! "

fhR..<i 1

.... :c E:.05.

' 32L30).

y h,.: fANSfER~'z. :

fy m -

'.k j m.,

, [ 1N Tin W ater[l' eve 1 I 7 I.10'."

'I,-i n

IN'2[ Tanyhtop.fradiation. 15 mr/hr a

"L

@[3."CICy;ehetor"pcWer: < >. 60,: Watts-

z

'oo

,I

(.

p.!4.6.CIC-l reactor, period : 9 - 1.1' s e c 1

j,

[" y$ppsmmai i enctort : power

>,.60 watts-gi' \\ ',.;%

i.

@4.Gammaireactor period 9-11~. sec..

( any 4. G : ki S eac h)

fE f.sREffERENCE i

yChvalier, SOP 1settion: 4.C, 7.1,c&77.2' 3

.c JCaV..alie..r.T.T92, 'section-3.4-i t

.g f gjg

~~

y,

.;j 4

t

.I i

MANSWER:

-E.06:

(2.00).

m gg

,$.h'Rogulating'rodshiftingfromautomatic-to. manual

.a

,7[flighjrediation on any area monitor or on either argon monitor, m (3.;HIgh4 radiation on1 core gamrna-manitor.

a W4C'High rad.tation.or) criticality monitor.

' O lS[:e r_HDih radia t..i on. on - cons tar t " air monitor.

o a og,,.

6;: Entry,into the dem.tneralizer room.

4 1, 7 Y NEritry; into. the heat exchanger room.

1 q g8 M[igh delta T across the reactor core.

N W-HiiahL -deminerali mnr coriduc tivity.

y..:7 t s o m S'10178econdary' pump de-energized.

(any B @ 0,25 each)

t g ',. - -.

.,Le,.

6 N

REFERENCE d'

%-OVA'RGARr.section3.7 q,

x, I

L"k

a

' d, k -

i q,1 -

)

,: \\ ?

jh,,,

- m ' q... '

>g

nr,

-4>

r g

q-1

- N...sa

.g

,.4T,

(,'

,,h

,.,,41.;

,e

'.PAGE:

N'e ~ ~ y,ff1I,b.6tiR.EMERGENCf SYG1.Et!!!

1 1

,g F. ;,

n,Z..,p.,.ANS. idRSQ6UNIVERSITYi.'OF VIRGINI As

-87/09/14-PAYNE, CJ

.e

'q%;; %

qyg

.x WM[ u l'

V1 g'

a ::

s Q[ ',...NSWER; E,07.

(2.00) s n.

o

':S no n

?.1;, ? Reactor pet ssons,1L door; closes.

n I

l 2'.', Ventilation E ritake and exhaust duc t door l

clanes.

y

3

.'R e a d t o r. -f a n d e e n e rtj,j. 7 2-s,

.l

" '.l.41,LResctor L sc rams's iREFERENCE-.

q s

LdVARLSDP, pg17.2G

?AN.sWER...

E.06

.(1.~D0) a

,,7 f, pyij..popfaf the mo'derator tank.

I

  • ')2 [ Equipment-area ofcthe. reactor. pit.

i 4

/

s3k/Near the! coritrol-console in'the operating area of.che reactor' room.

q..

REFERENCE ~

[Caval11'eN SAR,',. tec tion 4 S y

.+.

I p

q% A # 1W E R -

E.09 (1.00) g'

.(':

L y' sa. The, remote coupler must Se pressure tested'each time the reactor mbr dgdJisLmoved and-returned to'the high power position and the

'j i

.. g

coupler re-engaged,,

j

  1. ~.

holAn.-air. hose is connected to the coupler which is theh pressurized j

[l;

'Ltc unelhalf' psi les then the pressure'at which air Subbles wil1 l emerge from.Lthe' spray header -(approximate]y 7 psig)

The' absence j

l' l' uof' air. bubbles Will be A positive verification that the coupler is inot? leaking.

J FEFERFNCE D

4 I

s:

l i.-

i

_7

.1_.

f,t@ F E T Y 6t1 D _ E t1 E R G g M, O Y S Y # l E M S _

.PAGE.(42'

!: 1v.i.

1

) AtlJ9f4RRS ~~ IJNIVERS1TY; OFlVTRGINI/(

- -4U / 09 /14-P AYNE, C.

(

y LANSWER~

Ei,10

'(1.00)

(Oh YES.; Esit'via the. underwater escape hat <ih in the reactor room which.

[

ta h e s' t you outside the reactor building.[p).

REFERENCE:

. t$Afi SAR 'nection 6-1 3

i:

lIl

.?

I i

.l k

1 l

)

r i

l '

t-j:

l-i l

l I

i l

\\

- - - ~ '

. ~ ~ ~ ~ ' ~ ~ ' ' - ' - - - ~ - ~ ~~~ ~

" ' ' ~ '

~ ' ~ = ~ ~ ~ ~ ~ -

L'.%,,_STANDfjf3D AND' EMERGENgy OPERATING F;FfR[iEDUREE

>PAGEL 43 i

f i '

hNShERU'--UNIVERSI.TYOFVIRGINIS

-87/ fb9 /14-P AYNE,

C.

j ;.

j.

5 ANSWER F.01 (1.00)

.j r

.a REFERENCE OVOR BOP; st?ction S 1 i

)

i Yi t T_~ r1

?? rh %

( 't r* On \\

D6LET E i

b-j i

.f klRERENCE r*. 1

.1 7 gg g a r;',

+i_'..,

c.

-,c r

)

~

~ ANSWER F.03 (1.00)

}

-i

(,

l i

'IREFERENCE l

nettian 5.4 l

Cavaller SOP.

ANSWER-F.04 (2.00) i i

La, CANNOT b.

CAN i-j t.

CAN id.

CAN lO' REFERENCE I

l

.UVAR Technical Specificatjans.,

~T a bl e 3.'

I l -.

l~

l 1

4 l

l I

s l

i J

2: -

[

k}:[Lv.u.

IIM, M'[$TNNDARD'AND OMERG8NCY;OF$ PAT 1hG/PROCE)UREf[-

'l

,1 S i b5 I

i c:i "P(MElfdN !

'E

.,:. a,.

i yy: ANSWER'S.- MU<N!MERSITV;c0FL VIRGI, NI A'

-c87/09/14-PAYNEn.C.

J

+

}a{y-

';r' y.'.

k

. o,.. ' %>

4 -

c 1

?

, m..u s

.)*f'd. ANSWER F.:.0S Nii.00')!

,.c-s(

!$p. /,

,i r

?d'-

1.

s f:d RE.FERENCE:

).

. cg

'n; UVAR: SOP, section.fllM~

I 4

I i-I f, ;E -

,h,N,GWER E. C$6" t j. 00 ) '

m

~;( t :.

/If!al1#of.theffuel,in theo reactor nas not been oper ated in a ct.re at i tora. power.. grea tmr.:.than one;. kilowatt. during. the ' t revious ~96 hours, ' it' i

shall; be - c nnsidered 'ptenon f ree"..

' REFERENCO LNAR ' SOF3 ssec tion S.6 '

'l

' ANSWER-fr,07

.(1.00)

)

[.. ' a ;,.; 1 0 0 s e c p n d n,

y' Ji. b. :. 30 seconds.

f c.

- REFERENCE l 1UVAR SOP'5.1~ &.5..T l<

ANbi4ER F.09 (1.,00)

?

t.

.i a L At ter poser L thts risen,unt9 decade in the Linear power indication.

+ :.

.. D..'1 K W -

r

f1E( ERENCE

' s

-d lUVAR SDP S.?

)

i i

l

I i

)

mE...

  • w

.f 49 (

- e ;

y, l 1 indj]fWDetB[) AND Et}gR))g,N!1f1PERATIf;lq_FSQCEDQFigi PAGE J45 7Q w n x.

'1

%$NSWERSJ ~-TUNIVERSI T(: OF. VIRG1NT A ;

. --B'/ / 09/14-PAYNE,.C..,

w,e 9

s x

.L j

l o

JANSWER

. F. 09-

'(1.00)

]

n a.

Minifnizsithefburnup of U-235.

i

. b. ER Mt.ourit. mustis t t11 tm-abov-e 2 cpr. to allow withdrawal'of shim

' rods; REFERENCE.

1 UVAR SOP'S.2-i

'l NSWER-

'F.10 J(1.50)

La.' Checked daily subsequent to the day of reactor startup when operating f or s: tended ' periods.

i

. ti. L-I f - a water level is: observed'in the bottle on the' wall.abover the r se&s t.m$.g \\ % ow hP.

h beam port. *ot-bM qu+8

'c.:I:f,a' water. level is' observed 'in the vent'1ine connecting the beam bw p,A, wh4 Qw' a n EC O.' '

port to the holding tank.-ot-REFERENCE' UVAR SDP sect; ion 4.5 3

! " ANSWER ^

F~11

-(2.00) 1,:Velidate the-alarm'indicat. ion by using one or more or the b a c k'u p checks.

2.- Scram reactor'if alarm is confirmed valid and high radiation is not due to trruting or normal operations;-or the high= radiation levels 3

cannot be.enplained.

3L. If.high radiation levels persjsts after the reactor is chutdown,_

evacuate person.nel from the a.ffected area and,

.t f n.e c e s t a r y.

.indtlate the evacuation alarm.and evacuate the building.

(o.4"lem,e,N 1 REFERENCE UVAR SDP v e c t.1 o n 4.S q

1 f

%,616NDARD_8t4D EMERQEjNC'( OPERATING PRQQgDURE.S Pf)GE 46' i

..a

,1 ANSWERS 1 # UNIVERSITY'OF;VIFGINIA-

- 87 / 09/14-PAYNE,.C.

E j

[-:

l ri r-F.12-(1.DO) iANSWER

.ai-Th133 and/or J

Xe 13D -10.exp

-S. micro curies / ml.

I r.131 : 10 exp:-6' micro' curies /ml.

(0.5 each)~

l taken from'above each. fuel element; and, it -

,b

.. Water samples are an; element is leaking fuel, it will have a significant1y' higher 1ovel of.; fission product activity.

-(C.B)

~ REFERENCE 1

i

+

iUVAR SOP, sect. tan 11R L

a i

1 l

i

'1 1

I t

i 1

l 1

l

'G.

. RADI(LUQLLGONTROL, AND $AFETY-PAGE 4 ~7 q

j ANS(VEH5 '--- UNIVERSI T Y OF VIRGINIA

-87/09/14-PAYNE C.

3 l

e 1

3 ANSWER G.01

. ( 1. 0T d-of-h REFERENCE j

10CFR20 ANSWER G.02 (1.00) b

\\

' REFERENCE UVAR SOP,.section 10.4 l

.nNewEn e.es

<i..ee) b l

REFERENCE tiVAR ROF, section 10.4 l

l I

ANewER G.04 (1.00) c REFERENCE Rmli a t i on / Con tam i n a t.i on Protect. tan, G-10.:.

{ T,M g E g;v yp s1 j.

]

e....

l

,.s

@ tT$ DIf4TTOtOCONTF$,}laAND GAFETYl s

48' A

PAGE x;.

,u

,..i y,,

.~n.

-;, c W L A N S W E,R G.B D U, N I V E R S I T W O F.i: VIRGINIA W '-87/09,/14-PAYNE,jC 3 j

.g +.. -

2

-- - 4

..g g

7

":b'i l -~

f,

(

t my,

,...e

> i :;

'Ptt, i(**

g.

'3 l 4;

E,i,!

.p; i

a l't:; ANSWER '

,',G.000

'(,.50).

(

-,.-g (j.,

+

. Pj ).

F E

' N' i;3 j.Ihafilmf tIadgeI$nd ahiirect reading dosimeter.

e 1

-.,i<.

3-REFERENCE ft, 1

.a.

lj r.

't J UVARs SOP, ;sectiori 10.3 1

l u.

e 4

y

.fi, L

. (-A. N, SWER; G:. 0,6

-(1.00),

d-

.r.-

Es. 5.r e m 1

g i

g 2

l ib. 0..S' rem'.(SCO mr)

P 4

' / L..,.. REFERENCE' l

i.,4o..:

.w.o J.UVARf BAR. stsetion 7. S-

.i

- 10CMR20 '

'Q

' ANSWER:

Gs07

.(3,00)

(

'f Ji 1.e Reactor, bridge' l

30 - nir / hr '

1 hau. tscram ' f eature i

1 3

m 2.. c Reag tar:. face J

'2-mr/hr-J

)

nhas scram'featurtv

. 3. ' Hot cell _

2.mr/hr-has.nd stram feature I! ' J4. EDeminer.alizer m

p.,

300. n,r/ hr-

~

Ihas: ho scram. feature t..

(0.25 each)'

1

. REFERENCE l

LUVAR GOI?, section 4.5 t:

um_

W ; ; ' ps a g $ m..+ TION CONTROL ANDiSAFETY

~49 r.

y dBADIA PAGE ln, w 1

m : - :: -

  • 1.. <.

9

!ik;LANSWEf3S L-: UNIVERSITY OF 'VIRGINI A.

-87/09/14-PAYNE, C.

J y-g N ',

P e

i;.,

, bi.

,. s

! [ ANSWER.-z G.00'

. (4.00) t

.i h :%.fThajt'smount of' xhray or gamma ray that Will cause 1 esu in 1 cubic centimeter of. dry air.

s.

Hs '..

that will deposJt 100-ergs /gm of body,

L' Lb.ETh'at: amount of. radiation

' itissue, 1y

t. s the body in terms of c f. Measure of doce: c'f any lanizing. radiation.to 4

biological effact relative to

'1. roentgen of m-ray.

d'; Modifying factor that ir, used to convert absorbed dose to rem.

.~ e. Any area,. accessible to personnel, in which the;date to the whole e,

. '. body can exesed 100' mrem'in a one hour period.

i.

SfVAny' area, accessible to personnel, in which the dose to the whole

. b.od y/ can ~ exceed 5 mrem in

a. hour hour.' period'or 100 mrem in any S j

ff 2' consecutive days.'

g. Area of the UVAR.' room or research' laboratory Nhere radioactive materials are.-used : and. Icoce coritamination is 1-:nown to' exist or is i

pr o ba b.l e,

0 ; h,. ' Area where ' radioactive..matecrials are not used or where surveys show minimai'loone surface contamination, 0.50 (s

each)

REFERENCE i10CFR20

. UVAR SDP,'section 10.11 E

ANSt>qER

<G.09

-(

.S0)

Ar-40

+c n eu t r.on

/t r-41.

- o tt. - bl% 2. 'h 3 m vb o n - - > th. - 7.9 I

t

! REFERENCE i

U AR SAR.

4.9.1 i>

<(

t ti

- - - -. _ _ -. -. - - =.

wit 97R ;

- ;E, 9s

. a 17: '

.y W

~

11 7

c h.j::fc3

., g ;,CO.NTROJ hND. SAFE.T_Y.1 '

... c:y' y _

.,, f.x ;.

+

Mi Cy.. J. RAllAT. ION:.

PAGED: 5 01 1

w

~

e 9,

.~

..,a,s L,,.

s m. g,.,;p

.. v.

fil ANSWh 7.410NIVERSITWOf" VIRGINI A i!

-87/09)M-PAYNE,:C.<

1 v ~,0.v,.y'(i[{

,/

! < 'nI(,Q.j a h-p.

'f, f)

L, r.

1

,p -

9

.,q c cy/.'

.p

? 4

l 'd j t

- s{i l-

"fi.

ap((, o q,

. c, m..

7-<,

. a

$/WSWF;R1

,. 9) t0 %

..(2a00)'.';

.,f 1

4

,y,,,

< ; J.

~ ', :Qy

..-i J,n.

1 i

gi E :.,

Z fhlMR17dDR2 4,: d is tance2 '. squsred! Jfiutancel squer ed ' =>

['nidstance2f sc6 rt ; (DR1/DR2.t*1distanceiL.squ'ared j f[ m:.,.

=,3(.jt. [ C.00 /180 ':*..(s..squaredJa f

o

  • i:d '

w,10 ftC c.xy j.l _

The ' first slab reducen;

b? : Consider;.;eac h 316b ' es'a' fif th = thicknsss,,

' theT.levr 1sitoll/S af ' original ' or1 100mr/hr.,

The'. additign: of atWo.

2

'. !more ls15bs[will: reduci.l levels.?1/5 ' twice orf 1/20 cesul ting.in. a l -

F T

Aqe.,

raclih, tion :1ksel of-4.imr/hr.1 I ",

3..s, 8 1 9,

(

.;nEFERENCE

. c.Gsers1'.Elisb tric, :. Heal ty Phpsin7, :: Chap. J s

)

a C'

Q 0 >

I o'

t

,y

'l i

{ 'f r, i

4

(

a h

(

8 m

CM's '.g )g',Y f :$W y,

?J

' ll u p; g y.

i n

. o s2

,1:,

~

tf, iTEST,.CROSSzREFERENCE

- PAGE.

@l r

,, p.

.. +

o

l. 7M.....

t* 4.p <.1.... m r;A..,,..,

c u

$URSTION ".nlVALUEL,,: r REFERENCE ?

n s.

yn.m..

4

$. W.,gMm,-

l< M O) e.

s, 4-

DCP0001357,

@(gM

.00

(

, J % 02 hip;, 3 % 001 fDCP0001349-yn,; g3. e-

,1:, gg _

DCP0001349?

3

~.>

'w

,DCF.0001350~

12. (SE. F
s..m.;m. 04:

4 j"MM 0"$., '

V1.50f iDCP0001351-A)06)

E1}60; DDCP00013521

~

M)d;p.A iO7'e, (2., SOL [DCP0001353 i

1 A;OW

, H1.; 00 :

-DCP0001354>

QA. 09J '

$1". 00 ' /.NCP00M13SS'

;-- lJ.A 10

% 0. 0 ;

LCPOOO1356' qM. 1.P '.c. '

4

. !s; 1

>Ql.Y.15l00" '

',~

i ?B? oil if00) 3DCPO.001362:-

W. IDIO 2c

'1100-lDCP0001363

$[ 1 94;.

'CP0001364

0. 03 ).
f.00?

D 1

(f(,00 DCP00013.65

{y $J05l

  1. 00.-

DCP0001350=

\\SB,06 2100l DCP0001361 MBN7h:'

12300!

DCP0001399c VaB;081 01.00

DCP0001360

'[,,~

, a.-.a 9

m.

@O C. 015., '

1 20

.DCP0001369-

" C. 02 ' '

1.00 DCP0001367 L C.03L'

'ii00 DCP0001360g lb204

-1 00

.OCPOOO1372 n*i>./C,05.

2.30 DCP0001373 M..C.06

!.00 "DCP0001366

C.07 1.00
DCP0001370
  1. o.,

~

V2.50 LOCP0001371 EC.08

'13(00 FD.01 1'.00.

"DCP0001377

" Ds02;

.=2.00

.DCP0001378'

.Ds03 2<00-DCP0001379 i:D. 04 ~

!3;SO' DCP0001374 s

6 ; D.!OS 11,.50' DCP0001375-

/DT06;

2. ' 0 DCP000J376 5
D;07:.

.lf.00 DCP0001413

-13.50 a.

.g-

~ E. 01l 11.00 DCP0001384 E.02 1.00 DCP0001386 E.03J 1.00 LDCP0001382 1E.~ 0 4 '

2.SO DCP0001380 IG.06:

2.00.

DCP00013GY f

i 1

1 1

i l

i

.[

j

4.,

i

.-M y.

Hf g

ji>J.y.;

TEST.l CROSS
REFERENCE'

.PAGE.

2' l

r 1

ObESTfhN

$A _UE' REkERENCE,

__so__...w_;A___a

._L___

,,l-fs[M66

$i00J LDCP0001305' l

P j%Eitb7A

^ 2.00

.lDCP00013887

'i 0

'ikSO.

DCP0001389

.E*08--

F.-

EL O9.
1.00

'DCP0001381:

5/107

'.1. 00 '

DCP0001387' V

'\\

2

1S.00" a

j l F'. 01 L 1.'00 lDCP0001390-l

~ f~. 0 2 '

11.00 LDCP0001399 f.03',

1. 00;
DCP0001400

. FS O4 c2.00 DCP0001390 I

.M ak L1'. 00 ;

DCP0001391-O...

F'. 0 6 l

'1.00 DCPOOO1392 i

_ ' F!. 0 7 :.

"I'. 00.

DCP0001393 hl'gjFh.08.

':1.00.

'DCP0001394

!F.09?

'. 00 DCP0001395 i

E;10 1.SO

.DCP0001396f

F.;11 2.00 DCP0001397 F.12 1.50
DCP0001401

[

'15.00

'G 0i.

L 1~. 00

.DCP0001406-eG,.02 1.00 DCP0001408

.G? O3'

.1. 0 0 '

DCP0001409

.G.04

~1.00 DCP0001407

'G.05 30 DCP0001410 k

G 06~~

' 1'. 00 -'

DCP0001402-Of07.'

3.00 DCP0001403

.. ld/OG'

,4. 00_

DCP0001404 50 DCP0001411

.,G.09 Gi10 2.00.

DCP000140S LS,00.

Mh 44eW 4WpW Updh i.

l J

'--__.L_,.____-_N.__-_-__.

b.

..... +.

..e....

.g.

e..

.g

.y

.e e.

l

,e,

.D' m

],

es L

+

e.

.e

.,l.

...-.o.

+

3

..i p

a

(,

g f

e e

.a..,.0 4

..e~'.

,... i r ag

,.e -,,

4 a

.e

.ee e.

e U

l,..,'

.I

.l*

$,. ', l

,,. y @ p....

. p.$

n....

.e.,,

g; p.

..,.,.-..4,.%..

c.

..J.

s

.g..

')..:

m,-..cc g

g.

.1...t...

. 1,,-

..,g e...o-f-

f t.

8-

.y p..

......s g

..?1,.

i.

.i.

.t..

.......g l

,5

)

Z.

i.

........ I.

....).

.r.

a_s.

J.

{

i I

f...I......

3,_

1.

Z 4

l...

s..

l.

'g

...,j.,

Id'

, j '*

}'

* * ;N '

I.i.. !

.. '. ' ".'" O: ".***

(,)

s

_ __ '.t :

. ' e::C CY

..s'..'

..a.a..

. ~.1....................,.,..

...6-.

.I 4.\\....,..

,...J....

,i

..... l e.........

i.

1 -...

. t...6 4..

.,.s.

=

t

--<.3

..e.,.....,

.2

,,j.

..~..,...1,.....,........

..a.

. f.. s.

..., t

...f.s.....

.l

.s 1...t...f....

........1

-.....4..

e 5

.l..

.L

...,...........,....\\..........

.,,3 4.

.,...l.....#.........,...,...l........

..l

...........t..

..l

.l..

. l...

a

.. i.l..

..e.

4

.,..;...."T..

......s,.

- g.

.s....,..

1....... q.. q.

....g....

...f.

...,....7 g

..g....

i. l. 4.!..

..t e

. -. n.

L,,

I

. t.

..... t...i..........,h,,.,

.i.

...s.l......

......l.,.........l....., s.[.

...1.

.............t...,.

...e..< -

....J

.e..

e...m s

,e.-.......

0

,,.. l. {..

-.,,. [.,. 0....

6

.... t...

..:.................., e,.

......l....... -

3...g..,..

.,...i.,......

.......e...

b e

..t.,...i... f......,.g..,

3.

(

..'}

.'..I.

..[

....l..

........,.,.i..

..,g

.s.

,...,[.

q

~.

)

- 4,

..... g,,

.....l.

1, a. (M

............,1.e...,

......l..

.....s..

e...

..........,.... t.

f..........g.

.e...g,..............

. j

.p

...e.. J......

....e.

..J.

.l 4

1,t.t s.

s.r.

....... s.... g l-o

,...s........).,.a

......,~.

...)............,.....

.. e. lg g...,....

...,i..............

+...4...s.. 4.I

.....t.t.,.'l v..

.l.

G

... ~s e.

4 g,

. 1..

..a

'1") -

..,.. I

\\. \\.......... l.s...,..l....

4 l........,...

4...

.C

...t....

4........

r...g......t

.-e.........

...O 4

n

.4

.%.... L....

......,.....d.

...i..,1,.

....j.....

.o s..........,.....,

s-

.e..

.a.

..s....g...............

l.

s.a--

s 6.

s....

. i

.......l..,........O

-44.

l...-

...J.

4.

..\\.....l.......

...l,...,,............,\\..a....

4........

l...

.....,......l....

.... 1.m 1 e..

.6

..l...

c s....

(.f -

O

.n.

..........l......J...a.

..) \\-.... I.\\..t..,.......

. \\...

.+....1........

.l....

... l l..

ii 4

l...

'E l.4

.s

..)If.... i.. J r..

.I.f........

......l.

(.f

,8

...l...i,.....,..l...-......

i.........]

..J

.............,...l...............l....

-........_..,,......\\.......

..4 f 3.1 m

.s.

4...

...l.......a....

....e

.1.,

.s.....t..

... g...\\

....l...e..

i.,

gg.

....... c.

l..............

o....l...!......

...ll............~..!....._-.....

..a.

1

.)

.................... I., e...l....,

i

...6.

.I

.r

....... g...........

W.

..s.

e..3I........................

.A 6

...... s L..., y

.pg

..............f.....e..

......h.,

I.......

...y.,.l

.9......

Q

......r....

..4.

........l..........

).....!:.. a....

(4

.5.,

w.....

a.

......g..o

.e.-..,..

.I.,..I...................me..

..s3.

..1 e..

.I...,....s...,

e..

3-e

.i g..

p.

...Jg.a.

I

{..

e e........

.. g 1

.lh

..a.g...

.e..e. e.

.4 e r..le.

4-I 4

g.

D.* 6.

a.

r.J6 l....,.......M.......!.....A.-

l,......i.l

.s.

l..,.......J.

,. 3 Q

.i......,....

l l.

...j.........

g-

.. i i.

.,..p.

l....,.......

3

.e u.

.. t

.i

.. a Q e

..l. M

' I, l.....

6. t e.

4

.....s.

.................. -.i 1.s.

n g.... i. l e........,...

l

.es

.....c...

.I.

=

  • ..I..

.-i......F i... i......

..w.,...

e.e

{

i

..e--

...e........

l.

l...

..... _......,......l....,....... i.

.4..... e a 4

.f..

I f..,..

..l

....l.

.n,.

.l.

.... ~.

M di,-.

}

....i w

.,..,...,e.e.l i.i l.-

1,...,..

........9...g..

\\.

l...

s.t.

e e

,.e..

).

... J

..i...

... =.

.l.

...ge.

.. 1-......

4.)

....!.,j...,....:....l.......

.., I. e

=.

s.

I...

s

.l..

.l.,.

g._.

.o 4

s

...Jb

. b. e.,.

g s

.i. l..,........ _...........

...l....

.................a..3............ l.......

......l

.g.

...a........

s.

s

.6 M "I ' M,-

1,..

........[......g.

l.

. %. gg i

. 3 e.

. %......t..

1 3

.l..

i

...s.....

1 l..

........... _..... i.

s.~.....,a.......

....i.......

........ _.... o....

n.

s..o L....

,l.........

....i.......

..l....i..

,1...

.....L...

i

.....i.

.J......

-..... ~

4 1

.,.. aL.

i 4

n

... a....

l s.

.. l,

-....l-

..- ~.

.g.

3

(

I t.

g-

.l J

,t.

a.

...... t _._

.L.

t

........,....I...

....i

..l.

~.n....

.i........J.,.

i.....,.,..

....._. t.

.5...

i.

.... n.

n

....f.

e 4., O

-.4...

.... -l..

...)

l 1

1

?

"QI 1

J

li-

.:..I e

e

'O g

g p-9 5

  • 2' y:

5 5

< x.

Y

,3, s........w....

<z g

1 '

4 9

's :

L9 l

. s

~

b ','3'7 J '[

5,l n

l r

W h:

l e.+

{

v 1

4 l

J e

i

=

{

y 5

q j

+4 Lag.i s

e,+

?

u er :

[--

p

.:s w'

d

, [v,,'jg n' ' ',

  1. ' ' * * * 'NI

~

a

  • .... a, *
  • e u,,
  • e
  • w (y

14 p

..".* 4*. '. *.. * * *. ?* *,

1.* g,

  • yI s

e n

4 h

>j 6-q g<

1, 4

e 1

4 o a.6 s

+:

e w

5 I

T 3

e a

IT"" ', a e t-in j e ', '*

  • d 4 y

I i e y

m a

1 4

)

8 j

s 4

1 4

e 9e W.,, ;..

.5,,a. J. *.* t 3

h e

f

'9o

~

~

R

'b5

<a l

SCRAM P

=

PROMPT DROP P

A b

2:e g

8 i

t j

SOURCE LEVEL I

TIME Reactor Period after a Scram

'.6 g 's

' 6 e

.t i. (y.,

b*

200 OUTICTD8 M s.

s r/

-5' i

ac ;: g.

p.

u-V

<e g

.4 i

s..

' 4 Q.

'y4 TIME -

~

400 OUTWOTICh STARTS Q

a.

gs

+

T faut 1.

E b.

g r

N 8I C.

g F

t T

Ir d.

g x

E.

t

ml

]

1 i

~

j

, 5
  • 1 D

T i

t EM b

A R

T A

T V

A U

t u

p t

u

~

O 8

Y 6

^

8 LnC IoK h C Ct K

6A0 t

t 0I1 0

d u

u 1

p p

t

- BP t

u IAI u

O BW5 O

t 1

1 m

ILP p

1 M

8 A

tu

.C p

D t

5' V

u 20 f

S.00 O

R PN2 5

2 E

t I

n I

E GN AR E

C R

t0 S

C D

5 V

S.00 20 5

PP2 2

+

E PP RYU S

C00R S8W P

~

F R

_ R M

NC u

E A

O T

R L

E h

T t

I R

U r

F P

Ee c ND

/

EQUATIONS s.

E g, yf g),,g)

. f

. F Ps '.

Y

")P g

g,- A t dpst ANV=Aw Ao/A 1

2' 1 (r ) = Io/r Wages, Ao=.6023 x 102 8., A=ato.ac Sicight

. A (t) = V E pe-A t R/hr=6CE/d2 j

Q " V/ (1481) j I(x) = Io e UX j

P " I 4 y /(3.7x10 0) 3 Lgf )= An(n)/p t= (pp)/Ap i

-At.

I(t)=Io e v, (p, y 1

T /2 =tn(2)/A t=t/p+ - (p p)/Ap CP=(CP

) (Ks) (X )

v=V 3

g'+ xvg 1 x) h c(Vf +. xVfg) = yvg g

f 2

M = f L V /(D2ge) f M

f Re= vp / p 1 in = 2.54 es*-

p 1 9al = 3G705 liters Q" 4 At L PV #

1k9 = 2.20s lb op =. f D29c N = pA /g ia 64/P.e O

T = T T /(T +T )

l y

  • F ='(*C + 40) 9/5

'40 1 psi a 6.895 Pa i

I si = 2.036 " Hg (@ OC)

. l

  • C --(*F + 40) 5/9 - 40 P

1 psi = 27.68 " H O (9 4C) j 2

a 6

O A.4

%L O

e

,n..

t

p q +

k EQUATION SHEET

%g y._.

w =,o[

CR l

n =,an a

Q'=,UAAT:

-i 2x (ft) = xw 3 -'

x, t* = 10-8'sec.

-r x

P.

A.= AN-

.Q~=,mepAT in 2 O-A*t

-DNBR.=' c 1/2-

~A 2 (t)=Io e Pl=LP IOSUR(t)

N = N e(Ot) o 0.693 P- = P e /y t1/2 "

A t

o SUR = 7 R/ r " 60En 26.06 h

2 d

LT'= 8 - D A = 0.1 sec'~1 AP 9 l-2

  • h '~ h1 2
1. _ & y..,

T=P AP q=haat

?

.p,Keff - 1 d = xw Keff T 4 =in (2)/A -

K2-K

,c,'

p=

KE1+hi+Q12 = KE2 KK 2

CR1 1 - Keff 2 URT " l - Keff l where:

RR = IfSth

1).KE is Kinetic energy i
2) w is work done
3) q is the heat transferred 3

SCR = 1., g,77

4) h is the enthalpy M y 1/ O-kt 2 (x) = lo e W*

li(t ) = No e'

  • I,n/n)" 8"I")/W 2

2 (r ) ' = 20/x A(t) = v I pe~At I

1

. g = v/ (144) m _ ___

)