ML20217H329

From kanterella
Jump to navigation Jump to search
Rev 0 to Calculation M-778, Evaluation of RPV Flange to Adjacent Shell 145 Deg F Differential Temp Limit
ML20217H329
Person / Time
Site: Pilgrim
Issue date: 02/23/1998
From:
BOSTON EDISON CO.
To:
Shared Package
ML20217H272 List:
References
M-778, M-778-R, M-778-R00, NUDOCS 9804030273
Download: ML20217H329 (76)


Text

{{#Wiki_filter:RTYPE A2.20 NUCLEAR OR2ANIZATION CONTROLLED DOCUMENT CHANGE NOTICE (CDCN) CDCN Log No. 77. A A 6 fTY/f 3 '/. O I MANUAL-TITLES DOCUMENT TITLE: Evaluation of RPV Flange to Adjacent Shell 145 Deg.F Differential Temperature Limit DOCUMENT NO.: M-778 l NEW DOCUMENT X REVISION O EDITORIAL 0 RETIRE O l REVISION NO.: 0 OTHER KNOWN DOCUMENTS AFFECTED NO. OF PAGES ATTACHED: 72 (6*9d rA u) " r/4-

                                                                                               --~~~

SECTION(S) AFFECTED: i J E O $.N.ihT.iil _ _ M-GENERAL REASON FOR CHANGE Use resIricrea to reference , O Change in Work Process O Change in Related Document or Procedure O Errorin Previous Revision O Editorial Change Only Other: Calculation SPECIFIC PURPOSE AND

SUMMARY

OF CHANGES Determine the maximum differential temperature permitted between the reactor vessel lower flange and adjacent shell when the thermal stresses and fracture toughness associated with this temperature gradient reach the limits prescribed by the original construction code (ASME B&PV Code Section Ill)[13]. The differential temperatures are a result of transient heatup and cooldown conditions at the 100 F/hr. Technical Specification limit [2]. Signature of Initiator:

                               '         f     74 '                Owner: A Qg)                  7 s
                   /, . P,[//##-
                                                                                                                   ~

Date Initiated: u Date issued by DCC -n//fe,/97 Approval to Retire NOP Senior Vice President, Nuclear /Date NOP 83A7 Rev.12 Exhibit 1 NOTE: RETURN ORIGINALS TO MECHANICAL / CIVIL / STRUCTURAL ENGINFFRING 9804030273 980325 PDR ADDCK 05000293 p PDR

CALCULATION COVER SHEET ,, PILGRIM NUCLEAR POWER STATION l SHEET 1 OF (of l n w' i:) CALC. NO.M-778 REV.0 FILE NO. SR @ RTYPE NSR O

Subject:

Evaluation of RPV Flange to Adjacent Shell 145 Deg. F Preliminary Calc. O Differential Temperature Limit Finalization Discipline Division Manager: T. White Due Date: Approval /s/: ] gg , Date:ggg Final Calc. @ Independent Reviewer: 'h- s/ Statement Attached @ Page(s) By: TJ.'/N/?//g(_ Date Ch*k'd 6~, E. o 'Co a a o r- Date Agreed

                                     $         h/fC               00' yYM/Y. ,

Al( n 95 ,N.s This design analysis O DOES, @ DOES NOT require revision to affected design documents. Affected Design Documents: A PDC O IS, @ IS NOT Required. A Safety Evaluation O IS, @ IS NOT Required. See attached preliminary evaluation checklist. This design analysis O DOES, @ DOES NOT affect the piping analysis index (PAI). If the PAlis affected, initiate a revision to Calculation M561. Minor revis5ns made on pages of this calculation. See next revision. Replaces Calc. No. Voided By Calc. No. O Or Attached Memo I 1 M778_cV. DOT NEs0 3 05 Rev 19

CALCULATION SHEET CALC NO. M-778 PREPARED BY JSR PRELIMINARY BOSTON EDISON DATE 2/6/98 COMPANY i __JL_ FINAL REV 0 DATE 2/6/98 - SHEET 2 OF 61_

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F Differential Temperature Limit 1.0 STATEMENT OF PROBLEM The purpose of this analysis is to determine the maximum differential temperature permitted between the reactor vessel lower flange and adjacent shell when the thermal stresses and fracture toughness associated with this temperature gradient reach the limits prescribed by the original construction code (ASME B&PV Code Section 111)[13). The differential temperatures are a result of transient heatup and cooldown conditions at the 100 'F/hr. Technical Specification limit [2]. The absolute limits for flange to shell differential temperatures determined in this calculation are compared to the predicted differential temperatures at the " worst case" 100 'F/hr heatup or cooldown rates obtained from the reactor vessel analysis of record CENC-1139[5]. This comparison is used to establish whether the 145 'F flange to shell differential temperature (AT) limit is an unnecessary, redundant operational restriction.

2.0 BACKGROUND

i The closure region consists of an integral upper head and flange, bolting and integral l lower flange and shell. The transient heat transfer analysis performed by the vessel  ! manufacturer (CE) and the results reported in Ref. [5] conclude the thermal response of the reactor vessel metal will result in stresses well below code allowable limits when l the fluid heatup/cooldown rates do not exceed tha transients described in Ref's.11 and 12. Thermocouples attached to the RPV outer f!snge surface and to the outer surface of the adjacent shell monitor actual metal temperature response to heatup/cooldown transients and provide assurance that the maximum differential temperature specified in Tech Spec Sect 3.6.A1 is not exceeded. Temperature measurements recorded over several outages confirm that the analytical results are representative of actual conditions during startup and cooldown events [15]. Some variation was expected. The temperature measurements of the reactor vessel outer surface, as recorded by the thermocouples, may be adversely influenced by the condition of the vessel surface and attachment such as variations in convective film, exposure to the harsh environment, localized drywell cooling in the vicinity of the vessel, and deterioration of the temperature sensing element over time due to aging. Discrepancies could develop between actual vessel surface temperatures and the measurements recorded by the thermocouples. There is recent evidence that the accuracy of the of the reactor vessel lower flange thermocouple instrumentation has deteriorated and is no longer reliable [7,8,9). M778cic8 doc 2 2/18M8

CALCULATION SHEET CALC NO. M-778

 ' -                                                                PREPARED BY ISE PRELIMINARY                 . BOSTON EDISON                  DATE       2/6/98
  • COMPANY

_X_ FINAL REV 0 DATE 2/6/98 SHEET 3 OF 61.

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F Differential Temperature Limit the lower flange and adjacent shell calculated stress levels and fracture toughness must remain within the conservative ASME Section lll[13) code limits. The reactor vessel stress report [5] states that the secondary stresses developed from the differential thermal growth of the flange and adjacent shell do not exced the maximum range of stress intensity specified in the ASME B&PV Co6 Sect til 1965 Ed. when combined with other appropriate primary mechanical loadings. - However, the maximum differential thermal stresses associated with the lower flange and adjacent shell, was calculated to be 38 Ksi. This stress represents the " worst case design" heatup/cooldown transient provided in this report and is less than 50% of the maximum allowed by code. Therefore there appears to be a significant margin between stresses calculated for the lower flange and adjacent shell using the differential temperatures reported in CENC-1139 [5] and the maximum differential temperatures necessary to reach the maximum code allowable stress of 80 Ksi. This calculation establishes a maximum differential temperature that can be developed when associated thermal stress reach code allowable limits. PNPS Tech. Spec. Sect. 3.6.A.1[2] requires that the maximum temperature difference between the (lower) flange and adjacent shell shall not exceed 145 *F (when averaged over a one hour interval) during heatup and cooldown transients as measured at the thermocouple locations. The Tech. Specs, also require that reactor vessel (lower) flange and adjacent shell temperatures be monitored and recorded every 15 minutes during plant heatup and cooldown conditions. Reactor vessel closure region metal temperature measurements provide an indirect method to assure that the associated thermal stresses related to structural integrity and fracture toughness remain within ASME Code acceptable limits. The thernal response of the vesse! lower flange is slower than the response of the adjacent shell (due to variations in geometry and heat transfer characteristics) when subjected to a fluid transient.' This lag in thermal response produces differential thermal growth and stresses between the components which make up the reactor vessel closure region.

              . This analysis will'also determine the relationship between the " flange-to-adjacent i

shell" surface temperatures at thermocouple locations and calculated metal temperatures based'on the thermal response of the fluid transient. Note that metal M778cic8 doc 3 2/l8/98 g 4 ([

I CALCULATION SHEET CALC NO. M-778 PREPARED BY JSR PRELIMINARY BOSTON EDISON DATE 2/6/98 - COMPANY l _X_ FINAL REV 0 DATE _2/6/98 SHEET 4 OF fi4_

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F Differential Temperature Limit I temperature is redundant to fluid temperature because of transient heat transfer relationships. 3.0

SUMMARY

OF RESULTS and CONCLOSIONS Engineering evaluated the condition reported in Problem Reports Ref.'s 7,8 and 9. The structural integrity of the PNPS RPV was determined to be unaffected by the loss of temperature indication reported in the referenced PR's since reactor vessel metal i l temperatures are dependent on the recirculation fluid heatup or cooldown ramp rate which are also measured and controlled. The results of this analysis show that as long as the fluid ramp rate is under 100 degrees per hour then the thermal response of the reactor vessel metal at the outer surface of the lower flange and adjacent shell is within acceptable stress limits specified by ASME Section Ill. This analysis also shows that the fracture toughness requirements specified in ASME Section ill Appendix G have also been met. i The maximum outer surface differential temperature between the lower flange and adjacent shell, when measured at the thermocouple locations, was calculated to be 166 *F* This temperature is 83*F higher than the differential temperature reported in Ref. 5 and is 21*F higher than the 145 "F AT limit stated in the Tech. Specs. Stresses will reach, but remain within, code acceptable limits at this higher differential

                                                                                                    =

temperature. Therefore the Tech Spec requirement to limit the flange to adjacent shell to less than 145 *F is unnecessary and the requirement to measure this differential temperature during heatup and cooldown is redundant to fluid ramp measurements.

  • The maximum flange to adjacent shell differential temperatures reported in Ref,5 are listed below ( See Pg.1 & 2 in spreadsheet Tab " Temp Dist")

Flanae to Adiacent Shell Differential Temperature Calculations Per CENC 1139 At@ T/C's Max AT @ Flange /Shell Heatup -74 *F -107 *F Cooldown 83*F 117*F Flance to Adjacent Shell Maximum Allowable Differential Temperature Calculations Perm 778 At@ T/C's Max AT @ Flange /Shell Heatup -149 *F -214 'F Cooldown 166 F 236 *F Note: The location of the thermocouples do not (necessarily) reflect the thermal response of the flange to adjacent shell for the "wcrst case" condition because the locations of the thermocouples are subjective. For example: If the distance M778cicx doc ' 4 2/1R/98 i

CALCULATION SHEET CALC NO. M-778 PREPARED BY J3E PAELIMINARY BOSTON EDISON DATE 716/98 - COMPANY X_ FINA . REV 0 DATE 2/6/98 SHEET 5 OF 64.

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F Differential Temperature Limit between lower flange and adjacent shell thermocouples were shortened (i.e. spacing less than the current locations), the differential temperature measurement would be lower and, conversely, if the thermocouples were placed farther apart then the differential temperature would be greater. Hence the 145'

               'F AT requirement is " relative" to specific locations which have not been clearly identified and defined in both the CE stress report [5] and the GE design specification 21 A1110 AB.

Based on the results of this analysis the following conclusions are reached: It is unrealistic to expect that the reactor vessel shell (or flange) will reach metal temperatures whose stress levels exceed the values reported for the transients analyzed in CENC-1139[5]. The thermal analysis of the vessel is based on conservative heat transfer coefficients and the " maximum" rate of heatup/cooldown was used. Two conditions would have to occur for the reactor vessel temperatures to increase over those reported in Ref. 5 and approach, but not reach, the limits provided in this report

1. The ramp would have to exceed 100 *F/hr. Pilgrim is limited to a 100 *F/hr.

maximum rate per licensing requirements [2] and cannot exceed this rate.

         ~ 2. The maximum fluid temperature would have to exceed 546 *F at the 100 *F/hr.

rate for the vessel wall temperature to increase above the Ref. 5 values. This is also not possible based on the physical limitations of the plant. Although the heat transfer conditions may vary (deteriorate) over time, any temperature rise would not , be significant. l This report demonstrates that the thermal stresses resulting from differential temperature  ; at the reactor vessel lower flange to adjacent shell cannot exceed the values reported in j CENC-1139[5). Ref. 5 reports that the maximum differential temperature between the  ! lower flange and adjacent shell (at the thermocouple locations) is 83 "F for a " worst case"  ; cooldown event. This statement is based on the known physical relationship between  ; metal thermal response to a fluid input which assumes transient heat transfer between I bodies is conservative and valid. Reactor fluid temperatures are measured and recorded ] every 15 minutes. Since the ramp rate cannot exceed 100 F averaged over any one hour interval, there is no need to measure the flange /shell metal temperatures because they are redundant to the fluid ramp. Also, continual measurement of flange to adjacent shell l differential temperature during heatup or cooldown is unnecessary once initial startup I M778cic8 doc 5 2/18/98

CALCULATION SHEET CALC NO. M-778 PREPARED BY LSR PRELIMINARY BOSTON EDISON DATE 2/6/98 " COMPANY _X_ FINAL REV 0 DATE _2/6/98 SHEET 6 OF 54

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F Differential Temperature Limit testing had documented that actual metal temperatures are representative of the analytical values. The startup test report [15) confirmed that the analytical results of Ref. 5 are reasonable. The results of this analysis do not affect the conclusions reached in the design basis analysis for reactor vessel integrity. This analysis determined that the upper bound limits on differential temperature for the flange /shell juncture do not change the conclusions reached in the reactor vessel stress analysis [5), the reactor vessel fatigue analysis [6] or the fracture toughness analysis [14). The attached fracture toughness calculations were performed to show that the pressure

   / temperature limits on plant subcritical-critical heatup/cooldown and hydrostatic testing are unaffected by removal of the 145 *F restriction on RPV flange to lower shell differential temperature.

4.0 METHOD OF SOLUTION The shell interaction technique used to perform the attached calculations and the resolution of resulting stresses is consistent with the requirements of ASME Sect. Ill 1965 Ed. as supplemented by addenda through 1966. The analytical procedure follows the method of Ref. 5 and is described below: The RPV Closure Region is "decoupled" into several bodies consisting of: Body 1 - upper spherical head, Body II - upper flange, Body lli Lower flange and Bolting, and Body VI -lower cylindrical portion of the vessel shell. The upper and lower bodies are integrally connected by circumferential welds. Bodies 11 and ill are fastened together by studs which form a non-integral connection. The connected assembly forms the structure defined as tha vessel closure region. The structure considered in the analysis is shown in Fig.1 (Geometry). Different solutions are required for the loadings considered in the analysis. J Mechanical loads such as " Bolt-Up and hydrostatic (pressure) loads result in primary stresses and are handled separately from stresses resulting from restraint of free thermal displacement. This analysis is primarily concerned with the latter. However, when calculating the " maximum range of stress intensity", both thermal and mechanical loads must be considered. M77NdcM doc 6 2/18N8

CALCULATION SHEET CALC NO. M-7.78 PREPAREp BY DiB

   = PRELIMINARY               BOSTON EDISON                        DATE         2/6/98 -

COMPANY _X_ FINAL-REV 0 DATE 2/6/98 SHEET 7 OF 64_

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F Differential Temperature Limit

     ' The procedure used to solve for redundant forces and moments caused by either thermal or mechanical loads, however, is essentially the same. The solution relies on the force-displacement relationship in matrix format " l F l = l K l l 6 l " Where "K" represents the individual stiffness of a body such as sphere, cylinder, or ring element.

Free body displacements "6" caused by known loads "F" such as pressure or expansion are calculated. This method is also used to describe the behavior of the bodies due to " Redundant" forces "B" and moments "M" which act at the connecting interfaces. 'In equation form l H/M l = l K l l A l . Both series of equations, when combined, require compatibility of displacements at the juncture of the intersecting - shells or bodies. This solution is usually defined as the " continuity" equation. In matrix format l K l is a l9x9] matrix, l F l (or) lH/M l and l A l (or l 8 l ) are l9x1l matrices which are solved by shell interaction analyses using displacement compatibility. In order to calculate thermal loads and stresses resulting from restraint of free thermal displacement at any particular location, unit 1 Kiplin circumferential radial forces and unit 1 in-Kiplin circumferential radial moments were applied to the edges of the two integral shell/ flange bodies. In this manner the resulting radial edge displacements and rotations were used to calculate section stiffnesses. The bodies are represented J as shells of revolution for matrix solution in the computer program " Seal-Shell" used in Ref. 5. Unit deformations and rotations were determined at the non-integral (bolted) connections and radial shears and moments were generated by requiring elastic continuity at these junctions. The calculation of free body displacements and rotations expressed as a function of thermal expansion (per degree F temperature rise) for the individual sections were then combined with the unit load analysis from the " Seal Shell" output to determine stresses associated with individual (i.e. heatup/cooldown) transients. Resulting thermal stresses were then combined with the appropriate mechanical (pressure, hydrostatic, boltup, etc.) stresses to determine the maximum ranges of stress intensity. These ranges were then compared to the ASME Section 1113Sm limit of 80 ksi. 1 5.0 - DISCUSSION j The specific technique used to perform the analysis of the closure region is described  ! in detail in Ref. 5. Additional details are provided in the attached calculations. l Specific details on the stiffness relationship of individual bodies and their relationship i between connecting bodies for compatibility of displacement at their respective edges or */Nts", is explained further in the " Analysis" section of this calculation.  ! h177McicK ifoc ' 7 2/1R/9K l

l CALCULATION SHEET CALC NO. M-778 l PREPARED BY LSR PRELIMINARY BOSTON EDISON DATE 2/6/98 - COMPANY X FINAL IWV 0 DATE 2/6/98 - SHEET 8 OF 61

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F Differential Temperature Limit The equations used in the analyses of the flanged connections and in the determination of bolt preload are taken directly from the CE stress report [5]. Thermal analyses of the "heatup/cooldown" transients are performed directly in this report. The design " mechanical" loads such as pressure, hydrostatic test and bolt preload are taken directly from Ref. 5 since these loadings are unaffected by temperature change in the closure region. The stress resulting from the " mechanical" loadings are necessary, however, to establish the maximum range of stress intensity when combined with stresses resulting from differential thermal growth. The governing transients used in this analysis are the same as those used in the CE stress report [5). Statements describing the most critical transients are taken directly from the CE stress report. Excerpts from the CE stress report follow:

           " The heatup transient is from 100 *F to 546 *F at 100 *F/hr., with the critical time at end of heatup. Cooidown is at -100 *F/hr. from 546 F to 375 *F, when flooding starts. The temperature of the water and steam drop to 330 *F in 10 minutes. The shutdown transient then continues at -100 *F/hr. to 100 *F. The critical time is at end of shutdown. The flanges are flooded at 1.81 hours, when the temperature has dropped to 348 *F" "The maximum difference between the average wall temperature above and below the water-steam interface is given by assuming the wall contacting the steam has not changed in temperature while the wall below has cooled with the water. The surface is at 375 F, the fluid temperature, while the average wall temperature is 30 degrees higher or 405 *F. This gives a maximum difference in average wall temperature of 141 *F. Maximum skin stresses occur at the moment of flooding." Note: Skin stresses (or peak stresses) are used in evaluations for fatigue which is not a limiting condition for the maximum temperature gradient. Thus peak radial thermal stresses are not a consideration in this report since only secondary stresses associated with temperature effects are of concern.
           "Heatup rates of 100 *F/hr. or less are assumed to have the same range and rate of       l temperature change at the ' normal startup' condition. Due to lack of similarity with any other condition, the shutdown flooding condition is treated as a separate condition. Temperature distributions in the structure for this condition are determined from the finite difference solution described in section T-101-F" [5).
           "Heatup rates of greater than 100 F/hr. are assumed to be step temperature changes and are combined into a composite condition called ' rapid heating'.

M778cicR doc 8 2/18NN

1 CALCULATION SHEET . CALC NO. M-778 PREPARED BY ISE PRELIMINARY BOSTON EDISON DATE 2/6/98 - COMPANY l

._X_ FINAL

.REV 0 DATE 2/6/98 SHEET 9 OF 6_4

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F Differential Temperature Limit Cooldown rates greater than -100 *F/hr. are treated in a similar manner and combined under a composite condition called ' rapid cooldown'. Step changes in temperature do not govern when calculating maximum primary plus secondary stress levels since they are isothermal and for short duration. Consequently the

            ' Normal Startup/ Shutdown' conditions remain the most severe for primary plus secondary stress calculations". The heatup/cooldown transients of Ref. 5 are shown graphically in Fig's 2 & 3. Stresses resulting from bolt loadings are also required for the calculation of the maximum range of stress intensity. " Maximum bolt loads were taken from the 'Bisch' stud tensioner manual and are 33% higher than the load required for preload". The bolt loads are described in Ref. 5 and this report as Design Bolt Tension, Design Bolt Preload, Design Pressure Test, " Hydro Bolt Tension, Hydro Bolt Preload and " Hydro Pressure Test.

The resulting forces / moments from the interaction analyses will be used for the determination of stresses in the Stress Summary portion the workbook. This method also follows closely the techniques used in Ref.[5] with the.following exception: The CE stress report analyzed the thermal conditions prescribed by GE [11&12) and reported the results without regard to " optimization" of stress levels. For example, during the heatup transient CE determined that the maximum differential thermal growth between the lower flange and adjacent shell occurred at the end of the fluid ramp-up. Successive iterations were performed for a fluid (moderator) heatup rate of 100 *F/hr starting from 100 *F and ending at 546 *F. Maximum differential temperatures between bodies occurred at end-of-ramp, in this case,4.46 hours into the transient. Similar calculations were performed for cooldown, the most critical thermal transient. The maximum differential temperature between the lower flange and adjacent shell (83 *F) occurred at 4.18 hours, the end of the cooldown ramp. CE also stated in Ref, [5] that: "the differential thermal stresses developed between the lower flange and adjacent shell reached 38 Ksi". The comparable cooldown stress reached 31.4 ksi with no stress reversal. Therefore the stress intensity range recorded in the CE stress report for this region is 38 Ksi which is roughly 50% of

        . allowable. NOTE: The highest stress intensity range for the lower flange-to- adjacent shell region occurs during " Hydrostatic-Bolt Tension" and was reported as 74.4 Ksi.

Since there is no stress reversal, this stress intensity was combined with ambient (0 ksi stress) and recorded in the CE stress report an the maximum range of stress

        . intensity which is < the 80 Ksi allowed. The calculation of maximum thermal stress     I due to transient conditions is therefore unaffected by the maximum rance calculation and can be increased until thermal stresses associated with thermal expansion reach and override the aovernina " Hydrostatic Bolt-up" condition.

l M778cics. doc. 9 2/1Es3

                                                   't

CALCULATION SHEET CALC NO.- M-778 PREPARED BY ISE 1 PRELIMINARY BOSTON EDISON DATE 2/ff98 - COMPANY _2L. FINAL REV 0 DATE 2/6/98 SHEET 10 OF 64

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 ?F Differential Temperature Limit To facilitate the analyses of the closure region, computer application " EXCEL" was used where calculations are divided into several spreadsheets which make up a workbook . The workbook spreadsheets are described in section 7. 6.0 INPUT DATA AND ASSUMPTIONS Input data was obtained from the original design report of the stress analysis of the Pilgrim reactor vessel, CENC-1139[5]. To reconstruct the original analysis and preserve the original design basis, this calculation required the same assumptions made in the original report. When performing the convergence analysis to extrapolate to the maximum differential temperature gradient between the flange and shell most design basis assumptions remained in effect. Any additional assumptions or modifications to original assumptions are described in the body of the workbook. However the assumptions are consistent with the requirements of the design specification [11) and those contained in ASME Sect.lli. 7.0 CALCULATIONS / ANALYSIS The method used in this analysis is the same as the method used in the analysis of the Pilgrim reactor Vessel [Ref. CENC-1139 [5] with some modifications. The CE analysis of the Pilgrim reactor vessel was provided to assure compliance with the requirements of ASME Section ll11965 Ed. with 1966 Addenda, whereas this calculation is an evaluation to determine a maximum hypothetical differential temperature between the flange and adjacent shell limited by the ASME Section ill code requirements. Computer (spreadsheet) program " EXCEL version 6.0" was used to perform this analysis and a " workbook" prepared to document the results. The workbook consists of a series of calculations which have been separated into several" spreadsheets" or

        " Tabs. The procedure is described below.

The vessel is broken up into a series of elements or " Bodies" which are usually defined by the geometry. These bodies for the RPV are the Upper Head (Dome), Upper Flange, Lower Flanga, Shell Taper (Cone)and Shell (Cylinder). The bodies are connect at their respective intersections. The relationship between redundant edge forces and moments and body displacements are then determined, based on shell stiffness relationships (i.e. F="K" M778cicx1 doc 10' 2/1x/98

I CALCULATION SHEET CALC NO. M-778 l PREPARED BY ISR PRELIMINARY BOSTON EDISON DATE 2/6/98 - COMPANY X FINAL REV 0 DATE 2/6/98 SHEET 11 OF 64

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 'F Differential Temperature Limit A). " Free Body" displacements are then calculated for thermal and mechanical loading conditions. A description of the " EXCEL" workbook sections (spreadsheet tabs) follow: 7.1 Geometry- The geometry and dimensions of the shells and the bolted / flanged connection (which make up the PNPS reactor vessel closure region) were taken directly from the CE stress report CENC-1139 [5). The model is shown in Fig.1. This portion of the workbook is used to provide dimensional input to the detailed calculations for the specific components. Actual drawings and drawing numbers are listed in Ref.[5] and not repeated in this report. The analytical model was developed from this geometry and follows closely the details described in the referenced CE report. 7.2 Continuity - This spreadsheet contains the calculations necessary to determine the head, flange and shell stiffness coefficients per the equations listed in Ref. [5). 7.3 Loadings- A spreadsheet consisting of equations necessary to solve the head / flange-to-bolt /shell interaction analysis. The spreadsheet also provides calculations necessary to determine displacements / rotations for various thermal and mechanical loads and establishes the parameters necessary for macro's to perform the iterations described further on in the report. The spreadsheet provides a method to successively iterate the " normalized" loads described in the Thermal portion of the workbook. Thermal loads are then incrementally increased until convergence to maximum allowable stress values are reached. 7A Stress Sum- This spreadsheet records the stress levels for the " Design Basis" normal heatup/cooldown transients, hydrostatic boltup loads and pressure loads. These stresses were determined directly from the requirements addressed in GE specification 22A1110AB [11) and the transient thermal conditions shown on BECo drawing M-1 A12-2 [12). The stress calculations (summarized in stress tables listed as

              " original" in this spreadsheet) are performed independently from Ref. 5. The results closely agree with the analysis of record [5] and confirm that the method presented in this report is consistent with the CE stress report (5). The spreadsheet aisc lists the results of the stress analysis for the " worst case" maximum differential temperature between the lower flange and adjacent shell associated with a hypothetical heatup/cooldown transient. The stress and temperature results are listed in tables M778cic8 doc                                 11                                          2/18/98

CALCULATION SHEET CALC NO. M-778 PREPARED BY LSR j PIWLIMINARY BOSTON EDISON DATE 2/6/98 - COMPANY X FINAL IGV 0 DATE 2/6/98 SHEET 12 OF 64

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F Differential Temperature Limit labeled " Revised" and identify the location where the maximum stresses converge to 80 Ksi, the maximum allowed by code. 7.5. Thermal- All " discontinuity" thermal stress analyses of the type described in Ref. 5 require that average (or bulk) component temperatures be used to define relative thermal growth. However most transient heat transfer computer programs (which existed during the timeframe when the vessel was analyzed) utilized a " grid" with time and temperature dependent heat transfer characteristics. A finite difference technique was used to established temperature distribution patterns throughout the component at any given time during the transient. However, since components require a mean or average bulk temperature for thermal expansion, various weighted average techniques are used to translate body temperature profiles (at grid locations) into mean or average component bulk temperatures. Appendix B of the CE stress report [5] listed the end results of the transient heat transfer temperature profiles at the grid points but did not provide details on how the average component temperatures were determined (other than to defined the general expressions). Spreadsheet " Temp Dist" was developed to determine, by use of weighted area averaging rules, the linear and mean body temperatures to be used in the thermal analyses. These temperatures were based on the profiles provided in Ref. 5 for the significant locations in the flange and vessel shell. Once average and linearized temperatures can be established for the critical flange and shell locations then thermal expansion can be computed, discontinuity stresses calculated and, finally, body temperatures and stresses can be extrapolated to limiting values. The average body temperatures, determined in this j I rnanner, are then ratioed to the unit thermal loads of Ref. 5. The unit loads represent forces and moments applied to the Seal-Shell model which have been normalized to the bulk body temperatures obtained from Appendix B of Ref. 5. An association is j then established between the normalized unit loads obtained from the CE stress report ) [51 and the spreadsheet mean body temperatures. This association provides the j necessary relationship between temperature and deformation which allows for the 1 determination of reactions and subsequent stresses. Successive iterations are then  ! performed which increase vessel temperatures until the correspondina stresses converae to the maximum stress allowed by code. This method is consistent with the method used in the CE stress but differs in objective. The " extrapolation / convergence" technique is used herein to maximize differential temperatures between the lower flange and adjacent shell by optimizing the maximum stress allowed by code. There was no criteria to determine this gradient in the design basis. This spreadsheet establishes the relationship between the Ref. 5 Appendix B temperature distributioris M778cic8 doc I2 2/lM/98

CALCULATION SHEET CALC NO. M-778 PREPARED BY JSE PRELIMINARY BOSTON EDISON DATE 2/6/98 - COMPANY .J__ FINAL REV 0 DATE 2/6/98 SHEET 13 OF 64

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F Differential Temperature Limit and the thermal analysis of Section C. The heatup and cooldown rates used in the design report for the reactor vessel fluid was +/- 100 'F/hr. Note: The reactor vessel metal temperature is a delayed response to the fluid ramp temperature during a given transient and is predictable. Therefore the reactor vessel flange to adjacent shell differential temperature will be in direct proportion to fluid ramp rates greater or less than the design transients. 7.6. Temp Dist- The CE report [5] also included a model of the grid used for the finite difference analysis of the flange and shell juncture. However the stress analysis portion did not provide the details as to how the average temperatures were determined or where the average temperature was assumed to exist. Thus the purpose of this spreadsheet was to linearize and average the temperature profiles for all significant locations in the flange and vessel shell as reported in Ref. 5 and, and also determine the locations used in this report. Once body temperatures had been established in this manner, an iterative procedure was developed to extrapolate out to a maximum average temperature corresponding to the allowable stress limit of 80 Ksi. This spreadsheet provides tables of the temperature profiles taken from Ref. 5 and determines the average (or mean) body temperatures. Figures 8 and 9 show the temperature profile of the Pilgrim reactor vessel flange and adjacent shell outer i surface at the end of heatup and end of cooldown respectively. The temperatures lj were obtained from Appendix B of Ref. 5. Figures 10 and 11 show the respective axial and radial temperature profiles through the flange at end of heatup. Figures 5 & 6 I show the comparable through wall temperature profile for the adjacent shell at end of heatup. Temperature profiles for shutdown flooding and end of shutdown are also shown. 7.7 Macros- Macro's were written to perform the iterations necessary to reach convergence to either the maximum stress limit of 80 Ksi (or 145 *F) by incrementally increasing the " unit load" ratio. Several different Macro's were developed which depend on assumptions used. The " Goal Seek" method from EXCEL was incorporated into the macro to automate this procedure. 8.0 COMMENTARY This analysis considers the Tech Spec. limitation of 145*F on the maximum differential temperature, permissible between the vessel lower flange and adjacent shell, as based  ; M77McicM doc 13 2/18/98

CALCULATION SHEET CALC NO. M-778 PREPARED BY JER PRELIMINARY BOSTON EDISON DATE 2/6/98

  • COMPANY 2L FINAL REV 0 DATE 2/6/98 SHEET 14 OF 64

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F Differential Temperature Limit  ; on stress level. Another consideration is that the fracture toughness limits described in I 10CFR50 Appendix G must not be exceeded. Fracture toughness is also dependent on stress and temperature. Brittle fracture, however, is generally a consideration for the closure region only during boltup at ambient temperature. However, a review of the basis for the Tech. Spec. reactor vessel pressure-temperature limits (Ref.14 Sect. 3.6) indicates that the closure region may govern for temperature and stress conditions other than " Cold" boltup. The "Floodup" event described in Ref. 5 was also considered as a basis for the Tech. Spec. limit but was not found limiting in either Ref. 5 or this analysis. ( As described in Section 2.0 of this report.). The rational for the flange to adjacent shell differential temperature of 145 *F was determined to be based on stress levels associated with thermal growth. These stress levels are limited by code which effectively limits the stress intensity values associated with fracture toughness. This analysis also reiterates the conditions in Ref. 5 which shows that any differential temperature gradient between the lower flange and adjacent shell is dependent upon plant heatup/cooldown rates. Excessive differential temperatures cannot develop between the RPV lower flange and adjacent shell as long as plant heatp/cooldown events are restricted to rates no greater than 100*F/hr. Excessive reactor fluid ramps are precluded by station procedures which control and restrict plant heatp/cooldown rates to less than 100*F/hr. Reactor vessel metal temperature is a predictable response to fluid transient conditions based on classical heat transfer and , therefore, actual temperature measurements should approximate temperatures reported in the design basis analysis [5]. Initial startup testing results reported in Ref.15 are comparable to the results for the 100

     *F/hr fluid ramp reported in Ref. 5. The maximum differential temperature between the lower flange and adjacent shell reported in Ref. 5 is 83*Ffor the 100 *F cooldown condition and the results from initial startup testing show 90 *F for a similar cooldown condition. Since Pilgrim cannot procedurally exceed the 100 F/hr. restriction, the 145
     *F AT Tech. Spec. requirement for this maximum differential temperature cannot be exceeded. It is unlikely that the 145 F temperature restriction is in the Tech Specs. for purposes other than to limit maximum range of stress intensity for code compliance on stress and/or fracture toughness. Another important consideration for removal of the Tech. Spec. restriction on RPV flange to adjacent shell differential temperature is addressed in the NRC Standard Tech. Specs bases (NUREG1433 Sect. 3.4.10) which does not require that BWR's monitor flange-to-adjacent shell temperatures.

M778cicH da: l4 2/l8/98

CALCULATION SHEET CALC NO. M-778 PREPARED BY MR PRELIMINARY BOSTON EDISON DATE 2/6/98 - COMPANY X E FINAL REV 0 DATE 2/6/98 SHEET 15 OF 64

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F Differential Temperature Limit The PNPS normal heatup and cooldown transients which occur during scheduled or ~ forced outages are roughly +/- 20 to 40 *F/hr. Thus the thermocouple readings taken for these outages have not approached the maximum conditions of +/- 100*F/hr. Temperature measurements taken from initial startup testing [15), however, provide the most accurate results available for the RPV lower flange to adjacent shell differential temperature due to fluid ramp rates approaching 100 *F/hr. This report states that " The maximum rate of temperature change obtained was 90 F/hr during the RHR shutdown cooling test of July 7,1972. The maximum temperature difference between the reactor vessel adjacent to the flange and the flange during the startup was 00 *F, which occurred during the heatup on July 11,1972. The 90 *F AT is within reasonable agreement with the analytical results reported in Ref. 5. The reactor vessel was reanalyzed in 1994 [6] to determine a more realistic number of thermal cycles and reassess the amount of cumulative fatigue damage that would occur during plant lifetime. The advanced methods used in Ref. 6 for " finite element" modeling and transient heat transfer produced stresses and usage factors significantly lower than those reported in the more conservative CE analysis [5), The stress results obtained in Ref. 6 were used specifically to revise the cumulative fatigue usage factors and number of cycles presented in the analysis of record [5]. However, if the more accurate and realistic primary plus secondary stress results of Ref. 6 were used in the following analysis, the reactor vessel flange to shell maximum differential temperature gradient could be greater than the reported 166 *F differential temperature. The results from Ref. 6 were not used in this report because Ref. 5 remains the analysis of record for determination of ASME Sec. lll stress intensities

9.0 REFERENCES

[1] FSAR Sections 4.2 and 7.8 " Reactor Vessel Mechanical Design and instrumentation" [2] PNPS Tech Spec's Section 3.6 A.1 " Primary System Boundary Thermal and Pressurization Limits" [3] GE SIL 430 " Reactor Pressure Vessel Temperature Monitoring" Dtd. 8/27/1985 [4] Telecon between JS Roberts (BECo) and D. Drendel (GE) 12/17/1997

Subject:

Purpose of RPV Flange / Adjacent Shell Temperature Monitoring [5] CE Report No. CENC 1139 " Analytical Report for Pilgrim Reactor Vessel" Dtd 3/9/1971 M778cic8 doc 15 2n8/98

CALCULATION SHEET CALC NO. M-778 PREPARED BY . ISE PRELIMINARY BOSTON EDISON DATE 2/6/98 - COMPANY , .X_. FINAL REV 0 DATE 2/6/98 SHEET 16 OF 64

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 'F Differential Temperature Limit [6] Altran Technical Report No. 93177-TR-03 Vol's I thru IV " Pilgrim Reactor Vessel Cyclic Load Analysis" Did August 1994 (SUDDS/RF 94-101) [7] PR 97.974712/03/1997, "RPV Flange to Adjacent Shell Temperature Indications Exceeded Tech Spec Limits" Dtd.12/02/1997 [8] PR 97.9771 12/07/1997, "TR-163-104 Tracking Erratically During i'lant Cooldown" [9] PR 97.977912/10/1997, " Vessel Heatup Stopped Due To Reactor Vessel Metal Temp. Approaching Tech. Spec. Limit of 145 *F"

  - [10) CE Drawing 232-352 " Vessel External Attachments" (41500-1325)

[11) GE-APED Specification 21 A1110 AB Dtd. Aug. 19,1970. [12] BECo Drawing (formerly GE Drawing ) M1 A12-2 " Reactor Vessel Thermal Cycles" [13] ASME Boiler and Pressure Vessel Code Section lil 1965 Edition, including January 1966 addenda and various Code Cases [14] Teledyne Technical Report TR-2318 Dated June 2,1976 " Evaluation of Pilgrim Reactor Vessel Boundary to Appendix G, ASME Code Section Ill" [15]NEDO 20262 "Startup Test Results- Pilgrim Nuclear Power Station Dtd. Feb.1974 10.0 ATTACHMENTS

1. PNPS Heatup/Cooldown Transients for RFO#10, RFO#11, and Dec. 2,1997 Outage Heatup ( File T_ Ramps.xis)

M778cic8 doc - 16 2/18/98

CALCULATION SHEET CALC NO. M-778 PREPARED BY JSR PRELIMINARY BOSTON EDISON DATE 2/6/98 ) COMPANY

         .l_ FINAL REV 0 DATE 2/6/98                                                          SHEET /7 OF                              SI

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F DifferentialTemperature Limit G' **'N lPNPS RPV Closure Region l p= 1.000 ksi Ref. CENC.1139  ;;g ti r33 = 5 Rt = 114.28 -

                                                                       'g                                                        ai =       112.44 Rii = 111.2                                                          %       t                                            a s i=       108.3 R2 = 117.36                                                      /               :o                                        a2 =        112.1 R3 = 118.48                                                                                                               a3 =       112.34 R4 = 116.75                                                                                                              Roi =            114 Rr = 120.125 Re
4) ,

Eref = 28.9E+06 29.9E+06 He Cut C or 27.6E+06 Re = 114.75 oc 'Q j Rc = 106.86 Rii fuc igjg at ref = 6.66E-06 t i = 3.25 .0 8 Ri We 1 3 M t*i= 3.5 l SQ Cut] ^ ^ 14 = 6.5 , y g, e s; j t*4 = 7 ..

                                                                                                                 ,g
                                                                                                                             ,              e2o lii = 6.25              !                                                                 d                  E                   v       26.t1 13 3 = 8.375 s

R2 E . Mh 14 A eaa = 8.819 g Guo i {j$ 032 e33 = 8.618 e Gno MI hr  !, "? y y Oc = 64.25 =- Oi = 69.25 Roi Y M2 2 4 5/1s h2 . 23.6125 + Da El 664 9/16

                                     + Du                        El. 6601/4                     :d:t           ws            5   ifE            AA r33 = 5                                                                                                                                             t 6 3/16 A

e2a = 12.542 R3 ggg;pp;p e30 t g* A e23 = 13.771 l gunp ; _e 4 e22 = 16.542 + A*,6*

                                     + A,6                             a.,

[Y[ a b.j , , ..q;;gd@!g w.p.r u- m b e33 12.M y f 2

                                                                                                   @MI
  • For Continuity Only \ V l Cut lil H3 ,Q 33 1/16 $

j NOTE: "TE" identifies location of W *}t > 33 Lower Flange & Adjacent 25 3/4 AMi 1 s/s A h so 1/16 Shell ThermocoupleS Hv Hf Y My Cut V M My Hv  : r- g R4 O4 14 23 7/16  ; , y --' . j.1 TE , Iggv_ .

                                                                                                    ;,jJ - ~ ~-- ' Y -           --~----~~Y El 6341 r2 ~ ~- ^~ ~

RPVFINLF.XLS Continuity /

CALCULATION SHEET CALC NO. M-778 PREPARED BY ISE.__ PRELIMINARY BOSTON EDISON DATE 2/6/98 COMPANY

           .X._. FINAL REV 0 DATE 2/6/98                                               SHEET     /[OF        M SUBJECT Evaluation of RPV Flange to Adjacent Shell 145 *F DifferentialTemperature Limit Continuity This section is presented to reconstruct the method used in the CE stress report (CENC-1139) Ref. 5.

(Refer to Ref. 5 Sect;on C.3 Pages 40 & 46 for details] Displacements due to Redundant Loads ShellInteraction Model(Cvlinder & Sphere) Seal Shell @ Flanae to Vessel Interfaces EA.,= KonH. + K nM. + K H. + Kon.iM. EA. = (Dn)onnHn/GR.+ (Dn) unMn/GM. EA*.. = K H. + Kon.iM.+ K H. + Kn 5M. EA* = (Du)onnHn/GR.+ (Du)ounM /GM. Free Body Movements due to Applied Loads fThermal Expansion) E5.. = ER.a(T...-70) GR = 2xR.Hn E(Amn4.n) = E(Dn)onn E5*.. = ER.a(At/Ax) GM. = 2xR.Mn E(A*.n-5*. ) = E(Du)oun (at/Ax) =rn (Flin) Dn= Displacement function- Seal-Shell Output Du= Rotation function-Seal-Shell Output Compatibility of displacements EAi,- EA21 = E5 1- E55 , EA22 - EA32 = E532- E522 EA33- EA43 = E543-E53 3 EA*,, - EA*21 = E5*2, - ES'i, EA*22 - EA*32 = E5*32 - E5*22 EA*33 - EA*43 = E5*43 - E5*33 Example EA33 - EA43 = E543 - ES 33 EA*33 - EA*43 = E5*43 - E5*33 Body 3 (Flanoel (per tab

  • Loadings")

Dime!Kements press ._startup

                                            +                   i Shut'dof.d  $_ hut'dnEDd Free     533 =     -1.09E-04 3.65E-04 3.97E-04 1.41 E-04 Reactions     A33   =     1.66E-04 0.000192 0.0001824 4.664 E-05 R9lations            press       f_Statius   Shut'dnFid  Situt'dnEnd Free    5*23 =     -2.01 E-05    8.33E-07    -9.58E-08    -9.08E-07 Reactions     A*33 =      1.91 E-05     1.02E-05    9.78E-06     2.55E-06 Body 4 (Shell)

Dtsplacernents press l + startup l Shut'dnFld l Shut'dnEnd l Free 543 = 5.61E 05 7.79E-04 7.87E-04 2.36E-04 Reactions A43 = 8.46E-07 -2.22E-04 -2.08E-04 -4.82E-05 Botations press _+ Stariup Shut'dnFid Shut'dnEnd Free 5*43 = -4.03E-09 5.60E-07 -2.01 E-07 -6.24E-07 Reactions A*4 3 = -1.01E-06l 1.05E-05l 9.89E-06l 2.26E-06l RPVFINLF.XLS Continuity

CALCULATION SHEET CALC NO. M-778 PREPARED BY JSR PRELIMINARY BOSTON EDISON DATE 2/6/98 COMPANY _X_ FINAL REV 0 DATE 2/6/98 SHEET /7 OF k

SUBJECT:

Evaluation of'RPV Flange to Adjacent Shell 145 *F DifferentialTemperature Limit Bodies 3&4 (Flance & Shell) Displacement EA33 - EA43 = E643 - E633 A3 = Check Dress 1.65E-04 = 1.65E-04 5.69E-05 5.69E-05

          + startuo           4.14E-04          =         4.14E-04     5.57E-04        5.57E-04 thyt'dnFid           3.90E-04          =         3.90E-04     5.79E-04        5.79E-04 Shut'dnEnd            9.48E-05          =         9.48E-05      1.88E-04       1.88E-04 Rotation            EA*33 - EA*43 = E5*43 - E5*33                0=

3 Check Dress 2.01E-05 = 2.01 E-05 -1.02E-06 -1.02E-06

          + startuo          -2.73E-07          =        -2.73E-07      1.11 E-05      1.11 E-05 shurdnFid           -1.05E-07          =        -1.05E-07      9.69E-06       9.69E-06 shurdnErg             2.83E-07          =         2.83E-07      1.64E-06       1.64E-06 Thermal Free Body Displacements The purpose of this section is to determine the body temperatures used in the " Unit Load" anslysi of Ref. 5 The bulk body temperatures were not listed and have to be derived from the " Seal-Shell" results of Ref. 5.

[ Refer to pages 40 through46) BTdy 1 (Domel-Thermal Only + Startup Shut'dnFid Shut'dnEnd + Startu.p l Shut'dnFid l Shut'dnEnd E5i , = (Dn)th.nn i . = 10937 10423 2925.8 T.vo ES's, = (Du)rn.nnai = -28.794 21.9715 31.2380 533.4 l 472.3 l 112.4 too*/hr 376*-330' 100*!hr Tico un, j 4.46 hrs 1.81 hrs 4.33 hrs 528.8 475.5 117.1 ] (@ cut 20) ATgi.r> = -190.9 60.1 213.6 Body 2 (Upper Flanoel.-Thermal Only + Startup Shut'dnFid ShurdnEnd E6ri = Ea[RiiTr-Rie s rimr] Tr 422.9 517.4 235 ) E5*ri = Ea[Riim r.ero(Tri-Tr2)/(Rr-Rs)] Tri 450 511.9 204.2 E5r = Ea[RrTr.Rrm rr e 2] Trr 354 530.4 309.8 E5'rr = r ro En[Rrm .e (Tri-Trr)/(Rr-Re)) m 1.271 -0.0879 -1.32 (@ Node 344) Tr<o4un3 337.9 535.6 330.7

                                                                                                  +_Startup t       Shut'dnFid   Shut'dnEnd Body 3 (Lower Flanoel-Thermal Only                           T3       453.9          513.7       198.4 ES3 r = En[RrT -Rr 3 3re m3+1s(e37-le)(T328-T32r)/(Rr-Re)              T32s          476.9         508.1       173.5 ES*32 = Ea[Rrm3.(e32-Is)(T3 :e-T32r)/(Rr-Re)] -                       T3rr        420          523.1        235 ES 23 = En[R T4 +R 3    m3e33]

4 T338 496.9 502.6 151.7 ES*33 = En[R m3-(e33)(T 4 338 T33r)/(Rr-Re)) T33r 441.7 518.9 211.3 m3 1.83 -0.347 -1.9857 (@ Node 336) Two4 uni 398.2 528.3 258.7 RPVFINLF.XLS Continuity [ i I

CALCULATION SHEET CALC NO. M-778 PREPARED BY LSR PRELIMINARY BOSTON EDISON DATE 2/6/98 COMPANY X__ FINAL REV 0 DATE . 2/6/98 SHEET c'to OF @

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F Differential Temperature Limit Body 4 (Shell)-Thermal OnlV + Startup Shut'dnFid Shut'daEnd E(On) = E(-A43-643) & E543 =E (Dn)th.rmai 22515 22749 6813.7 E(Dm) = E(-A*43-6*43) & E5*43 =E (Dm)Th.,m. 16.184 -5.7952 -18.0424 EA43 = E[(Dn)/GnoH3R4-(Dn)GmM3R4] = -6409.79 -6001.28 -1391.97 EA*43 = E[(Dm)/GnoH3 R4-(Dm)GmM3R4] = 303.8808 285.7628 65.45362 100*/hr 375*.330* 100*/hr x1000 + Startuo Shut'dnFid Shut dnEnd 4.46 hrs 1.81 hrs 4.33 hrs (Dn) = 0.55727404 -0.57949005 -0.18760398 l TE(@ cut 8) 477.3 508.5 170.5 (Dm) = -0.01107491 -0.00968746 0 00164053 (@ cut 0) ATuj = -60.1 13.2 66 TE(@ cut c)\ ATm>= -79.1 19.8 88.2 E543 = ER4a(T'...-70) + Mt/2()*D HU Flange 5= Ra(Tave)= 0.358162 0.365195 0.980742 E5'43 = ER4a(At/Ax) + Mt/ lid Tave = 453.9 (for Mt=0.00) Comparison with Ref[5)(Calculated) values T'. (Design Conditions) T'. (Revised Conditions) r

                                                     .ijta.typ     Shut'dnFid      Shut'dnEnd     + Startup      Shyt'dnEld   Shut'dr1End E543 /ER4a+70= CENC-1139 values =              497.2          502.4           150.5         565.6            481.4        74.0 -

Values fr0m[5] App. B (& Thermall) 498.3 500.9 149.1 498.3 500.9 149.1 E6*43 /ER4a = (At/Ax)' = m'4 = 0.357 -0.128 0.398 0.720 -0.258 -0.803

                                                                                                                           ,              )

Heatup/Cooldown =" Current Analysis Stress = 80 Ksi (Linked to Ramps 2.xis) , Flange /Shell Bodies 3&4 Flange /Shell Surfaces 3&4 (Bulk) Temperatures T/C iTE) Temperatures Design Flange Shell ATng/sh.n Design Flange Shell ATne sn.n s __ + Startup 476.4 565.8 -89.4 + Startup 435.5 584.9 -149.4 Shut'dnFid 507.2 481.4 25.8 Shut'dnFid 518.6 481.0 37.6 Shut'dnEnd 173.4 74.0 99.3 Shut'dnEnd 217.1 50.8 166 Heatup/Cooldown="Deslan" 100'/Hr. Maximum _c180 Ksi Limit) Flange /Shell Bodies 3&4 Flange /Shell Surfaces 3&4 (Bulk) Temperatures T/C (TE) Temperatures Ravised Flange Shell ATnaish.n Revised Flange Shell ATnorsh.n

  + startup          476          566     -89.4                      + Startup            435               585    -149.4 Shut'dnFid          507          481      25.8                     Shut'dnFid            519               481     37.6 Shut'dnEnd            173           74     99.3                    Shut'dnEnd             217                51     166.3 RPVFINLF.XLS Continuity                                         [

CALCULATION SHEET CALC NO. M-778 PREPARED BY JSR PRELIMINARY BOSTON EDISON DATE 2/6/98 COMPANY X__ FINAL REV O DATE 2/6/98 SHEET 2/ OF W

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F Differential Temperature Limit Heatup/Cooliiown to 1458 AT Flance/Shell (Limiti Flange /Shell Bodies 3&4 Flange /Shell Surfaces 3&4 (Bulk) Temperatures T/C (TE) Temperatures R; vised Flange Shell ATng.w Revised . Flange Shell ATav.n.n

        + startup          471        549        -77.9             + startup               426        556   -130.2 shut *dnFW              509        486         22.5            shut'dnFW                521        488    32.8 shut *dnEnd              180          93        86.6           shut'dnEnd                228          83   145.0 Heatup/Cooldown= "Desian" e 1008/Hr. o = 74.4 Ks Flange /Shell Bodies 3&4                                        Flange /She.1 Surfaces 3&4 (Bulk) Temperatures                                            T/C (TE) Temperatures Design              Flange       Shell    ATng.n.a             Design                Flange      Shell    ATav.n.n
        + startup     453.9       498.3           44.4              + startup          397.9      472.0      -74.1 shut'dnFW          513.7       500.9           12.8            shut'dnFW            528.8      509.4       19.4 Ehut'dnEnd          198.4       149.1           49.3           shut'dnEnd            259.0      176.5       82.6 Heatup/Cooldown a 33'/Hr.(Representative RFO's 10&11&Dec'97)

Flange /Shell Bodies 3&4 Flange /Shell Surfaces 3&4 (Bulk) Temperatures T/C (TE) Temperatuses R3 vised Flange Shell ATno/in.n Revised Flange Shell ATnvin.u

        + startup          439        454        -1'4.6             + startup              373        398    -24.5 shut'dnFW               518        514          4.2            Shut'dnFW                534        528       6.2 t hut'dnEnd              215        199         16.3           Shut'dnEnd                287        259     27.2 I

l l l 1 i RPVFINLF.XLS Continuity /

CALCULATION SHEET CALC NO. 34-lZF ~ ' i PREPARED BY JSR PRELIMINARY BOSTON EDISON DATE 2/6/98 i COMPANY _)L. FINAL REV 0 DATE .. 2/6/98 SHEET N OF

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F DifferentialTemperature Limit REACTOR VESSEL FLANGE TO SHELL TEMPERATURE DISTRIBUTION Ref. CE RPV Stress Report CENC-1139 (Appendix B & ppb-31 thru B-39) Cut @ Flange (Ligament) Region NOTE:Prordes assume equal element height. Outside surface Metal Temps.(*F) l' Fin sa cut i Aa Heatup Cooldown (Fig Ligament) A Element Flood End l Node Baw (4.4s Mrs.) 1.81 Hrs 4.18 Hrs Y Ar 338 1 390.3 529.3 267.4 l 337 2 6jii f %3B FED if(

,-                               g                336             3      E;gNi : i;4p 7.; kJ C'               J c                335             4             404.7          527.4        251.9
!                               $                 334             6             409.6          526.7        246.6 243.6 8                                                 333             6             412.3          526.2 315             7             416.8          525.1        238.6
l. 296 8 446 518.2 206.4 295 9 462.3 514.1 188.3 l Cut til 294 10 476.1 510.3 172.8 e 138 11 480.6 508.6 167.2 Cut V bij ,
'                                                 366             14            492.4          505.4        154.5 Fig (Min / Max) Temp Min Temp           492.4          505.4        154.5 l
 ,                                Shell(Min / Max) Temp Max Temp             390.3         529.3        267.4 RPV Closure               l Maximum Surface AT                       -102.1          23.9        112.9 Ligament Ts Fig              401.0         527.4        255.8      ,
'                                                             TE Shell        472           509          176 Ts(AT)          -71            18           79       1 l
                                                  @ TE's AI                  -85.8           19          94.6 RPVFINLF.XLS Temp Dist                                     y
                                                                                                                     ]

CALCULATION SiiEET CALC NO. M-778 PREPARED BY JSR PRELIMINARY BOSTON EDISON DATE 2/6S8 COMPANY X FINAL , l REV 0 DATE 2/668 SilEET 23 OF W-

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F DifferentialTemperatt.re Limit 1 I l

  • l Cut @ Flange " Bolt" Region l Outside surface Metal Temps.(*F) '

8b Cut il Heatup Cooldown I l (Fig @ Bolts) l Flood End l Node gh (4.44 Hrs.) l 1.81 Hrs l 4.18 Hrs a 177 1 385.9 529.9 271.5 i h 1 y 174 4 403.7 527.7 253 173 5 409.3 526.8 246.9 172 6 412.2 526.2 243.7 l 151 7 416.8 525.2 238.7 e 141 8 446.2 518.1 206.2 I g 140 9 462.3 514.1 188.2

     '                                            139         10               476.1          510.3          172.7    l
  • 138 11 480.6 508.6 167.2 l
     !                   !                        366          14      l M BERRR M 492.4l         505.4l         164.5 l                               Fig (Min / Max) Temp Min Templ         492.4      l  505.4      l  154.5 t                             Shell(Min / Max) Temp Max Templ          385.9      l  529.9      l  17_1J l Maximum Surface AT                   t. . ! y e 4 ~ i : **d 9             ;2i l                                                Bolt TE Fl!        l J.; l li'Ll1.7e . !
     '                                                     TE Shell [ERhiW'L:f dLa LOf1122q                          !

I 1 259

     ,                                                   Avg. TE Fig         398           528 Avg. TE Shell           472           509            176 lTE(AT)           -74.1          18.7          82.6      l i

l RPVFINLF.XLS Temp Dist [

CALCULATION SHEET CALC NO. Mall PREPARED BY JSR PRELIMINARY BOSTON EDISON DATE 2/668 COMPANY .2 FINAL REV 0 DATE 2/6S8 SHEET 2 I OF k/

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F DifferentialTemperature Limit Cut @ Flange " Bolt" Region Element Heatup (4.46 Hrs.) Metal Temps.('F) (cut) Ti Tm Tm Tm Tm Tw T. Tavg 1 533.4 489.1 450.4 404.55 385.9 386.4 385.9 429.3 2 533.4 489.4 452.6 423.56 397.1 392.7 391.4 436.3 3 533.6 490.6 455.6 - 418.35 403.6 399 398.2 438.8 4 534.4 493.3 463.5 443.2 418.2 406.2 403.7 448.9 5 534.9 496.7 465.6 442.4 423.5 411.8 409.3 452.0 6 535.5 499.7 469.8 447.6 431.4 416.8 412.2 456.5 Avg 410.21 402.26 410.21 430.715 459.48 492.88 534.15 443.80 Cut @ Flange (Ligament) Region _ Element Heatup (4.46 Hrs.) Metal Temps. (*F) (cut) Ti Ta Tm Tm Tm Tu T. Tavg 1 533.5 489.8 451.5 420.8 402 39E 390.3 436.3 2 533.5 489.9 452.4 423.8 406.2 396.6 '395.5 438.9 3 533.7 488.9 454.3 427.7 411.1 403.2 406.4 442.5 4 540.7 480.2 456 433.7 416.3 406.6 404.7 444.3 5 534.7 493.8 463 439.9 423.1 412 409.6 450.7 6 535.3 498.9 469 446.8 431.1 416.8 412.3 456.1 Avg 535.5 402.1 411.5375 428.8875 454.9875 487.7 454.9375 444.51 Cut @ Flange (Ligament) Region Element Cooldown-Flood (1.81 Hrs.) Metal Temps. (*F) (cut) Ti Ta Tm Tm Tm Tu T. Tavg 1 491.9 504.6 514.6 522 526 528.8 529.3 517.77 2 491.9 504.6 514.5 521.6 525.9 528.2 528.5 517.50 3 490.5 504.7 514.3 521.2 525.2 527.2 526.3 516.83 l 4 482.3 507.1 514.3 520.2 542.6 527 527.4 519.34 5 489.3 503.3 512.7 519.1 523.4 526.1 526.7 515.43 6 489.8 502.1 511.3 517.6 521.7 525.1 526.2 514.30  ; Avg 411.5 402.1 401.6 442.3 488.8 505.1 514.2 450.47 i RPVFINLF.XLS. Temp Dist /[

CALCULATION SHEET CALC NO. M-778 PREPARED BY JSR .. PRELIMINARY BOSTON EDISON DATE 2/698 COMPANY X._ FINAL REV 0 DATE 2/6/98 SHEET OF 0

SUBJECT:

Evaluation of RPV Flange to Adjacent SheE 145 *F DifferentialTemperature Limit Fig. 8 Vessel Temp.Profil Fig. 9 Vessel Temp. Profile [ Bolting] Outer Surface [ Ligament - Outer Surface] fh3 2 [--{ U j. rl Heatup {$ 2i h K 4 _ _ _.__g

                                                                                                                              .[

d 5' # -- h E [I' 5' f --"- I]>l1Zh ' k-3 ' j- _ Heatup v 10 i - C{ k- -.

                                                               --o-- Cidn      U)M     9 jf:-                                )   r CD Flood C
                                                                                         ]Z                                 f[      --o--- Cidn lh12                                        "

12 -- - 13: 14 : k - 13 T-14 % . k r--- hhkkkhkhbh Temperature

  • F Temperature
  • F Fig.10 [ Flange Ligament] Fig.11 Flange (Ligament]

Axial Temp. Dist. Radial Temp. Distribution "Heatup" "Heatup" p 1

                                                 =                  .-s-T 1/6                          550
                                                                    --&-T 1/3                    .u.I          . _

j2 - _, _. _e_ . , ,,, , 500

      $ 3
               - - -               _       _.__o_                    --M-T 2/3                    f 8

450 _

                                                                    -+- T 5/6
                                                  \                                                            --
                                                                                                                                  .$_ l + Rm 1 f   4-   ----          >     -c-       -.        --o-               To                     f400
                                                                                                                                        -=- Row 2 350 Q 5-                           -n ,     - .           _ .o_                                                                       -Row 3 0 1/ il il 2/ 5/

6 --- f - f=%H 63236 - - Row 4

                                                                                                                                        -M- Row 5

) 350 400 450 500 550 Juncton Temperature

  • E  % Thickness -+- Row e I

l l

                                                                                                                                                     )

l 1 I RPVFINLF.XLS Temp Dist fd l l

e gd F n a iu l 0 l F 0 F 1 s r H t 7 7 n . s 8 e H r r i s / inh 3 1 i t n a F

  • m2 i

m r 0 F o T 7

  • t 8 -

L 2 0 7 8 e ) 3 7-MJ R S S 6 I r u t a n ' 3 -

                                                                                         < 4 S

i

     /

2 a r d ) 9 ~ }Efj8 e o q Y

  .B           F p

m l F o A. 9 p n

                                                                              ~
                                                                                         +-    ?

O e s OD T ( n 3

  • w) o .r r
                                                                                                     .H NE    E        0     l a

1 1 s 7 d H s r 7 7 s CR T 2 i t n w o C N 3 t u/g H 1 H r LA A e d E h e S D 1 4 1 8 AP D CE T fe r l o C r 4 /j.0 I 7 1 1 R E f o e m1 0 - e < P E i D C P( uh 4 H - N 6 S 'F -

                                                 -                                     0 T                    5 4

F

                                                           .F E                                               *
                                                                                                                    /

1 E 6 s 3 4 H Y l l e . 5 u S g N h S i N NA t F O OP n e I T SM I c A DO j a L EC d U N A C O t o L T e A S g C O n a B l F V P l d R \ Y 8 9

               /

6

               /

f o n ) 5 n w o d n w o h - o R t 2 l i . d o A E t a f e l o o N T l u R o C I A a ( C M v 9 / I L D E: 3 t e 4 A L E R N I 0 T C 1 1 t S a gH ) r P F E C y g V J B N d D e E a X E U C t e 0 0 R S r S 1 e / p s_ I (+ l p s t u a

                                                    /w    ',

a m r p e - e m H F p s

                                                                                                .                   h a         l u                      F.
                                                                                       -      r                     T R             a .g me                t a

D g e - H 6 S - d r D e / 00 4 4 L H i u o6 X. l N4 5 5 F F .. 1 L t l  !! lIfi N n I F e is V n 2 P a r ig R T F

l s k c e h C i t 7 m 7 i 9 8 L 1 7 8 e 7 R 9

 -    /

S 6 I r u MJ / 3 [,. t a r e 3 Y p 4

   .B         F     m                                    1 O     e                                    5 OD                 T NEE           7    l a

CR T A i t LA A n e 7 AP D CE T f r e 3 R E f i 5 4 P E D H ll S *F ' i T 5 4 s n h8

                                     )

r E 8 E 2 8 5 7 3 6 5 h-1 p 2 3 9 8 3 E d't 1 5 3 5 9 3 l 3 4 9 3 3 1 1 5 8 9 5 9 H Y l e m u4 t 8 S N h S e h d T s n ( 2 0 2 0 3 1

                                                     -    d 7

1 2 5 1 1 2 3 6 1 1 l i 0- 4 s M N NA t e E e g M i s y O OP n g s Tl ll l I T SM I e c a r ) n: & a n A DO j a e n h r 9 @ 9 A L EC d v d S. t 4 9 4 7 J 1 1 6 9 7 9 9 8 U N A A 'tu 1( 7 1 0 8 3 8 3 2 8 6 3 6 0 4 3 0 1 8 9 E C o e 1 1 3 0 1 0 2 0 1 5 5 0 0 2 1 C L O t g h s doo 5 5 5 0- 6t 5 5 5 5 0- ) 6 6 1 n A T S e g n J t n - i n a l F u @ l) C O a l F C h ll l a B

                                                                                             @ nl8 l

F . V r e p )r 9 1 9 6 9 0 9 7 5 0 ( 4; 2 4 W 3 l P w u h 0 4 7 3 0 s p 8 5 4 e R o ttar 64 22 5 5 2 6 6 1 0 3 8 4 7 s 6 m 94 0 4 3 7 2 9 4 9 8 4- - 8 f L s (4 4 1 4 4 4 4 4 2 4 1 s 9 e e Y

              /

6

              /

o n d n 4 T 4 ll V ( ll R 2 io a e

                                                                                                            )
                                                                                                                 )  4 r y A      E t

a e 0 0 0 0 0 0 0 0 0 0 0 h S 6 T4 T y N u p d e a t 3D d e a 6 T 6 6 6 6 6 6 6 6 6 6 T( I l a p t 4 4 4 4 4 4 4 4 4 4 4 0 4 5 0 ( E o M A v U s s 5 t 5 5 5 5 5 5 5 5 5 5 B I L D E =T 4 r L A T T 3 o E N f R I 0 C s p An d P F E ) ) ) g i k e V J B m ) n n n v S s e h i s F s , i l i l u X E U 6 T c 2 s 2 2 l 2 F 3 2 2 3 3 a 2 F 3 4 A R S 2- e ke T T T *( T T T T T T T *( t 3 3 3 3 T *F s g s 3 3 ( 4 a B n e m m m w la g l a e 6 m p F s( r t u e h C T E S T L s O X. e F r N u ) 5 L t a . N I r f e F e p R V P m re e R - T P(

7 8 1 5 4 3 6 2- 7-d d 8 988 0 1 00 i u 6676 889 8 001 0 i u 6766 n 444 4 44 4 4 000 0 n 4444 4 444 0 000 3 333 T 5555 333 3 1 1 1 1 T 5555 1 1 1 1 484 4 4 828 t e p 60 64 745 6 80 4 4 505 4 829 2 693 3 t p e 6 1 21 8 8 664

3. 7 1

4 382 8922 1 1 87 763 1 c 4 066 1 776 0 599 c r b 223 3 99 8 8 1 1 1 1 r b 5 433 6 648 1 000 e 5555 444 4 1 1 1 e 555 4 4 4 1 1 1 t t I n i n 48 62 864 4 48 4 6 6 328 8 822 2 888 85 9 5 664 8 846 7 0 1 50 4 231 0 204 i t e p 89 5 6 64 3 0 33 8 7 e p 1 0 09 8 930 1 328 7664 2222 876 4 0 31 0 01 3 0 1 3. 2 m o m 0000 o m - 01 0 000 001 i l 0000 000 0 l L S S - - 8 7 7- R 8 9 I e r

      /
  • u MJS 6
      /

t a r l Y 2 e p 0 0 o 38 87

4 2

1 52 6 q5 72 4 2 8 /5 y5 64 0 0 o T 3 2 886 889 3547 959 1 1 1 66 3786

  .B         F    m     1  T     56        m9   1 1         . 0 9     1              1          5 200         678 5        1 1 34 OD NE O T e              44 M

4 55 g5 1 11 7 - 554 444 1 1 1 2 CR LA A AP T D E Yi l t a n e r 4 1 9 1 4 1 1 45 468 5 4 51 53 568 8 1 772 CE T e 5 w 520 4 31 74 56 61 2 5 5 v 3027 84 8 7 2545 R E f f 7 T 678 9 1 5 05 50 5 87 7 T 331 5 5554 67 44 4 05 1 1 39 1 1 1 1 P i 444 4 1 1 1 E D H F S

  • T 5 4

E 1 l 3953 1 487 79 3 5427 7758 1 487 E l 8 0 l a 0 m 1 643 8620 61 23 m 41 60 7361 1 409 H Y l e W 5 T 88 9 0 000 0 1 65 4 5 T 331 8 6780 1 1 36 V S N h 44 4 5 555 5 1 1 1 5554 4445 1 1 1 1 S N NA t O OP n e I T SM I c A DO j a L EC d 23 61 9 8 2 61 1 1 686 90 33 61 75 U N A 5 m 58 3 8 0 0 85 4 29 3 8 5 m 9 3 673 3 71 5 698 4 C o 2 T 00 1 1 5 94 49 49 433 2 2 T 5 320 6 4 89 001 L O t 55 55 1 1 1 1 555 4 4 4 1 1 1 1 A T e g S C O n B la F V P 0 Ti 81 77 6778 389 5 875 4 391 988 0 7 0 Ti 5833 21 95 1 21 6 6 665 1 851 3361 8 R 33 3 3 88 8 8 000 1 4433 5555 4 678 444 0001 9 f 555 5 44 4 4 1 1 1 1 1 1 1

             /

6 o Y / n R 2 io m 1 9 57 A l t E a 7 36 3 8 71 9 6 87 d l a 1 4 1 5 3 3 66 5 4 72 N u 2- 0 3 08 6 2 41 9 2 62 I T l a T 72 89 8 7 54 9 0 00 0 8 9 1 5 65 9 4 8 3 W T 6 3 3 27 6 7 80 0 27 M A v B 44 4i 5 55 6 4 1 1 1 1 5 5 54 4 4 45 1 1 1 1 1 L D E g  % l. l A T p ' M $ E N R 0 C ) ) ) ) ) P R E J

                            )

d e 6 5 9 9 M 6 9 5 9 M 6 5) 9 9 M

                                                                                          )

d e _ o 5/ 2 42/ 2 /2 2 2 V B l 1 r e

                                              )

5 5 r 4 t 8 t ) 5

                                                                 / /

5 4 t t s 5

                                                                                )      e No 9                 9            9 l

N X E U e ( 9 9 3 6 9 9 3 6 9 9 3 s m ( 1 035 1 03 5 1 0 35 o 2( 2 ( (1 3( 2( 2 ( 3 2 2( 3 . o o - 222 1 R S h 1 ( ( ( ( ( - 222 - 222 S N %% s 8 %% % 8 %% % 8 D N 0 0 0 t 5 0 u 2 6 0 5 0 0 5 0 o t u l a 5 2 6 5 2 6 s C 03 6 03 6 03 6 C mr

                                                                                         )

e

                           )                                                                                                               h F                          n                    n             F                         n                  n    T p                          f
  • f p f

( ( o d ou d o *d S ot u f p *d d 't p 't d L m t a t uo d u m d a t uo h o d u t e ne h ol nh e ne l nh X. T EH SF ES T EH SF ES F L 4 67 N 291 I 1 67 F 234 V 720 P 9 05 R 4 51

                       )     )                                         )

e 4 6 8

                                                                 )

e e 4 4 8 o Wsn d d 2 2 3 3 d is 8 4 N 0 0 7 5 o Q n 6 6 9 ( L 4 5 6 4 0 1 N ( L 3 5 8 4 0 1 "0 T T 2 5"

                       "                                         2 C e        4 4       3         4 20       i e  5    3    6 7        2 2  5 7           2 u va t                                         t u va      3 3 3 3 2 7 7 4 2 2                   8 7 7 7 1

0 3 2 2 7 3 C T 5 5 4 1 1 1 1 C T 4 4 5 6 1 7 1 d d a a e e H l r l r l r H l r l r l r a a a a a a a a a a a a 1 y u e tu e tu e i y u e tu e tu e d t c n c n c n i i i d t c i n c n c n i i o A L A L A L o A L A L A L B B f p n n f p n n d do f f i t out d d o od't out od't s s s k k k ul o d u

                                                                                      't ul o d u
                                             't                              da m              d a                                                                            c      c      c i

L ne hF nh ne hF nh e e e 8 EH S EH 7 7- R 8 9

       /

7 e r u E S S E S h C h C h C M S6 J / d- t a ) ) e

                                                                                                              )

9 2 r 6 8 8 0 0 2 6 4 e Ws 7 5 6 i k 4 0 9 Ws 5 5 3 Y p n 8 1 7 s n 9 1 6 n 2 8 3

   .B           F    m         i(      2           9         1 i

( 2 9 1 i ( 3 8 1 O e L L L 5 4 OD T T 5 4 1 T 5 4 1 T 1 NE E f l a CR LA A T 2 i t n 4 2 0 6 6 8 6 1 e e 3 3 7 8 6 e 6 6 1 3 1 e 3 9 1 AP D CE T r e v a 7 9 5 9 4 1 9 v a 2 4 4 3 9 6 3 v a 8 5 9 0 0 2 0 9 7 7 R E f f i T 84 8 0 5 0 6 5 T 94 9 0 3 5 0 4 1 5 T 94 9 5 0 4 1 4 P E 4 5 1 1 4 1 4 5 1 D 5 H F S

  • T 5 2 2 E 4 1 3 2 1 6 7 5 2 8 8 1 6 7 6 5 4 6 4 89 5 3 0

E 0 9 2 0 0 2 l 0 8 5 2 1 0 2 5 6 0 0 7 6 9 6 2 H S Y N l h S e 1 5 9 4 4 4 5 1 8 1 5 9 0 1 2 1 7 9 6 5 4 4 5 1 1 5 7 1 9 1 1 4 6 4 0 5 1 1 5 7 1 8 1 [ N NA t O OP n I T SM I e c A DO j a

                                                                   )               8         0             )

9 2 7 L EC d 1 3 1 9 4 6 e 9 0 0 0 3 0 e 1 0 4 0 8 U A 6 5 5 d 5 2 2 1 5 d 5 0 3 1 N o 5 7 5 9 3 1 5 0 o 7 7 7 1 9 8 2 6 o 7 8 8 7 0 6 8 6 6 4 C O t ) 6 6 4 4 1 5 1 8 1 8 N 4 7 5 0 1 7 N 4 4 5 50 1 L T e e 5 1 ( 4 5 1 ( 1 A S g d " " n 3 6 C O a o " " B l F N ( ll ll V V

                         "               4         2                               4          4         6             8     6       1 V     0          3   3     1 9    0 6        t u        9 0       4 3        9 6     t u     5   5  8  2   9   7 P     "    0     1         8         8 9        C     0    6 6       6 3        2 3     C  0   4      2 0    2 R     l    5     8 9       0     4   6 5              5    8 4       0 0        5    5 5   9 9 9  0 0    5   7 4

8 f i l 4 8 5 0 1 1 l 4 9 5 1 l 4 5 5 1 9 4 5 5 1 l 4 1 o t le 4 e Y

                /

6 n u h h _ R

                /

2 i o C S S _ A t l 4 7 9 4 7 5 2 50 0 5 6 4 l a e 3 9 1 6 0 8 4 1 N E u h 5 2 6 y 5 8 1 2 8 1 3 2 y 5 3 5 4 3 5 T l 5 0 8 2 8 d 2 7 5 d 2 6 0 _ a S 2 0 9 I 0 9 3 1 9 9 3 M A v 5 0 0 5 9 4 3 1 o 5 5 4 9 1 3 o 5 1 4 4 1 3 _ L E 5 4 B 4 1 B 5 1 D 4 I 1 _ L A T y _ E R N 0 C d _ I F E o _ P J B 6 6 4 9 _ V B 8 6 3 8 3 8 1 9 8 0 1 2 7 9 1 7 5 6 0 9 5 5 3 E U 0 6 8 8 9 0 7 3 7 8 6 0 7 2 5 8 8 3 _ X_ R S 3 2 8 1 0 7 3 9 8 1 0 3 8 0 - 4 9 3 4 8 1 4 9 1 1 5 5 1 5 2 4 1 5 5 4 1 1 4 1 5 1 la m r e _

                                                                         )                                    )                         h
                              )           r         r          r                    r   l      r   l     r             r l    r l     r T la a a a l

la l

                              %     la a a a a a                         %          a a a a a                 %                  a    a     .

( u e tu e tu e ( u e tu e tu e ( u e tu e tu e S _ k t n c n c n k t n c in c n k t c n c n c n L h c i h c h i i T A L A iL A iL T A iL A L A iL T A iL A L A L X. F l L f p n n f p n n f p n n N I d do d do f f d do ou f ou o 'd ou o d o 'd F t t

                                                                                        't              't            t
                                                                                                                         't             V ul o d u
                                              *t                                              o                           ul o d u t

d a t da ul d u d a P ne hF nh ne hF nh ne hF nh R EH S E S EH S E S EH S E S

l F 3 g '"C7 UC "tu "n Tu t e sr D h 5 i - 1 6 83 5 0 1 0 ,0 4- 1 g n id )= ]

                                                           =                                                                  M os          r e

lor f e1 h w o t

                                                                                                                          ' h              I       5 7

g8 L- s n 1 r iD e

                                                                                                                               \

la*r w-p i t Fh / t o0 U p p* m e m 0 ( i s1 ) p e( 8 7 8 e s i6 - e v T"* e , 0 5 7- R 9/ M S6 J / 2

           @L t r

u ar e

                      )

d e 4 4 2 l r4 e 5 vr e o T ( a

                                                            =

t ' a "" e H" OD NE CR Y

 .B E

T F O 8 T l p m e a is i ( L T n 6 2 3 5 4 7 8 4 3 1 1 L d i l F u T l A "  %- 5 2 8 i LA A AP D CE R T f t n e r e e 8 v a 7 8 3 9 6 6 8 8 7 7 8 8 7 0 s N P E f i T 0 5 0 9 4 9 3 1 3 e E D 5 4 1 t H uF 5 F n . in .  ! 0 S ' img m== ig 0 0 T E 5 4 1 4 2 4 8 5 6 0D e

0. f)r r
                                                                                 )

f F 5 5 Eo00 09 54 5 4 E 0 1 2 9 1 0 uu l 0 2 6 5 8 4 r 0 ss igl" H Y I c 0 0 5 0 o 0 1 ( ( S N h 1 9 8 4 4 5 5 1 6 1 f 1 go t=TT P N NA S int n@@ wt O OP t n d r occ t I T SM I e c oH o . d aa A DO j a l g pnn t t L U EC d A

                  )

d e 4 5 7 5 7 0 5 2 0 F nD e moo aCC _ p N o o 5 7 4 7 4 3 2 9 e r m a C O N 9 9 0 0 5 4 h 0 mre T R L T t e ( 4 4 5 5 1 1 t 0 laat 5 A "e g T . A S g " F1 - ine a 0 p o

  • n le e l

v F S W t C O B l n a 8

                  "                                          g n e e               y y 4
                                                                                         =       h r           o L
  • h S T a

F V Dh t d d g V t u 3 8 3 7 6 8 3 8 0 5 oo 1) 4- D e P C 0 3 9 0 7 3 7 7 F B B B 8 R 5 0 0 0 9 4 3 3 g

                                                                      .                          4 3             -                               7                      _

f l l 5 5 5 4 1 o e g 90 9 o e 1 P ~ / D 0 0

           /                                                t 6      h                                                                      r        p Y     /    n                                          F                             e                                                      1
                                                                                                                                                /

2 R 2 o S . 0 p m 2 1 A N E it a u 4 y 5 1 1 0 2 65 1 4 1 o e3 g3 g e ( R' a 7 1 m Do t 8 4 2 8 ~ 9

                                                                                                                                                / 0 I     T  l a d 2         1 9     2   5                                            D       s                                               00 M   L A    v   o     1 5   2  4 94  1   2          a 6 s                  6560              'p @                                             1
                                                                                                                                                / 0 D  E   B           5            1 R 4 p                   47 43                                                             2 m1 I

L A T n 5 or n535 +  ; 1 E N md Te31 R P I F 0 C E J d w n o r e r im===f

                                                                             ) ) ) r
0. rf rf e u
                                                                                        )

d - iu 7

                                                                                                                   ~

I 7 9 0 9

                                                                                                                                                 /     0  e V B            7   4 6  5 4 4 0 2 f

lo r .t u 0 uu vs RM d / 2 2 1 im T X E U 0 8 4 7 7 3 o H a r = (s( ( sa( T &O 1 R S 3 2 8 0 1 C / e t T 3 8 g p 7 5 5 4 4 1 1 id e lu Dm n@TT=_ w ot @ d )e lao y t e e ~ i 90

                                                                                                                                                 /

9 0 a t e l a e d ec t o v Mg 2 0 D

                                                                                                                                                 /

m _ F0 Ba r Vt a t 1 0 d p er (

                                                                                                                   ~

e - P u h

                      )   l   r  l   r l    r 1 i
                                                               -   lu     medi dp y eT         R                                                7 T
                      %    a a a a a a                                    aiS                                                                   G. 00

( k t h c u e tu e tu e n c n c n i l a e mr r e f r s lame pd r Uo B ~ J E 8/ 2 2 1 1 S L T A iL A L A iL i at X. Z r it oh a e F N w I neWt w 7 L _

S o ~ S0 8/ 0 N _

f p n n n L _ I ou d do f o 'd w 4 0 0 0 0 2 O 1 F t

                                 't                         o                                    . 0 6         ' 3 2 0 0                              V ul o d u t                                                                                           1 d a                              id                                 ig                                                                P ne    hF     nh                  o                                                    l;;{                                           R EH     S     E S                  o                              _  F C                                 !        l           !;!                           l'             i
                                                            "0 "tu    M CC O
                                                            -                              0 0

1

                                 )

EA" , t 9 _ 3 _ s1 . iD C-1 l l

                                                               -                           5 e     -

7 pN E [fj mC e i t Te rp s s m d e i nl a l n 1 5 L { 0 k EW 5 c T' 8

 - R S      I     e r

u nu d hr ih T MJS 6

       /

2 0 t ar 't T u n e he Y p Sh S

    .B         F     m O     e            (                                                         5 OD                 T                                               1                        2               .

NE E / l a - CR LA A T 2 i t n e AP D CE T f r e R E f i 0 P E j D 0 0 0 0 0 H F 0 0 0 0 0 0 0 0 S ' I 0 e 4 3 2 1 0 2 1 1 1 1 1 1 T 5 4 9' E e F E 1 l b - H Y l e S N h A S N NA t O OP n e _ I T SM I c a " A DO j O" 3" 8

                                                              " " ~

L EC d A t u u u t t U N o CC C C O t L T e A C S O B l F V n g a

0
  • 0 P 0 1

8 R f 6 6 o t s9 3

                                   )

Y / n i R 2 i o D1 1 - A E t a pC l 5 7 N I T l u a mE N M A v eC I L D E Tr e s L A T d p s e E N ol n R I 0 C oa l 0 k P F E l W 5 ic J F h V B nru T X E U d Th  % R S 't  ! ut e l a hh SS( l 5 2 m r e h T S L q d 0 X. 0 F 0 0 0 0 L 6 0 2 0 1 0 0 0 8 N I g S 5 S 4 4 F iF e f* V P R i

l

                            )

r 1 1 1 n nh o 222 i k 35 d 81

                      -t 5

4 1 5 3 8 9 9 3 9 5 5 0 0 0 i t a 555 1 1 1 S 003 1 8 52 hu (4 s n d 2 91 141 0 4 2 8 1 R 000 1 1 1 w 3 1- 4 e - E 222 N r h T n1 5 o d 8 47 9 3 8 7 D 099 i 1 04 767 6 x w 8 22 1

                      -t u(  1   7 3 0 6                 2                                              t a 6 4.6 e 2       05 h d       1 1 0 6 s oo      5 55 4                  1 8 1      t s N 21 2    - -      R 111 l

F l E p )r 9 9 3 1 5 T uh 4 2 D 2. 1 5 n 1

6. 2 t

r 6 23 8 6 4 1 s 31 t 52 i k 9 4 0 t a 4 2 5 9 3 4- 4 i 1 5 1 S 8 7 - 12 s(4 4 4 4 5 7- x 1 - - 1 - i t E m 6 6 6 6 8 i L 4 4 4 4 4 4 Udd 7 y d e 5 5 5 5 & & s HFinE 7- R 8 9

       /     I      e r

u a W 3 3 ie 2 D D MS J 6

       /

3 0 t a r t e t s S s s e e o& d C C e i i Y p d d B1

    .B       F      m    s o o                         3   6      9                                 )

OD O e p) B B 3 2 0 h r

             ?    T      me                                .

f 6 0 8 F NEE l a e T ei t 2 3 . , g v u r 9 6 0 g CR T Te i TTTT 9 7 1 D e LA A t t n e eS g n a Se A S 0- 0 0 AP D CE T f r e l F e T T A A 0 1 R E f ( ( P i 4 7 4 d E D 4 6 2 n H F E 8 83 S

  • 8 0 1 r n 5 T 5 7

3 6 0 3 1 o-dt 2 2 4 u 9231 E 1 h E l S H Y l e 2 5 6 3 3 6 9 S N h d N NA S t s e 3 0 2 2 0 3 2 2 8 0 8 7 3 6 9 2 0 6 0 8 0 l F n 3 2 2 7 C O OP n u ) 1 . 4 9 7 , r d ot u 4 9 I T SM I e c a la 0

                                             =     )

x 1 0 1 1

                                                                                   -  0-   0 1       ,

i RR 0 1 A DO j V k D m i i h S 1 2 L EC d ( HM U N A 3 9 s ( ly C o 1 n 6 2 2 2 4 7 4 n L O t 1 o 8 6 2 2 8 5 0 4 6 2 2 3 o ou A T e g C

                                         - i t

0 9 8 0 1 6 4 7 9 4 S a 5 5 6 7 6 0 l a t C O n a N m '0 1 1 9 2 3 3 1 5 8 2 2 n ra 3 r t 9 7 B l E r 1 1 0 r e S 0 8 F C f o )x 0 0 h + 1 2 - V e Dn T _ P D ( R Y / 8 9

              /

6 f o n o ) 5 9 6 1 3 8 4 8 2 6 5 x 4 5 2 1 8 R 2 i 1 3 )

                                                                                           )

r 8 1 o 0 5 A t a e n 2 r. h 2 5 4-N E u a # i in h 0 - I T l a d

                                            )s i        n '0 '0           /
                                                                       #              6 1

8

                                                                                                  )

r. M A v E s io 1 1

                                                                                  =   4 I

L L A D E. b ly a t '0 ) 6 4 ( 1 ( h 3 E N T u An ip r = = 1 E g 3 R I 0 C H d c n s . 0 p n u d 4

                                                                                                               =                    =

a u i P F E t a s 1 t ( J a o e G G =, (x a o r o n V B ( L D t p n w X E R U e itn d da e n e z t S F o l S m U a o r n d r G o K o L m t u h o s / w u i s s D 0 L e g M s f f F o h i s i $ i g o d S n $ e 0 0 d d e r t A *A S '5 n r e w 0 o 01 hu a l i 1 e 1 i e E g P d h i a S m i y p t u lp l d l B o o p a E a S r d i e la la o L o r u A da la m E E t s B e p e r u rm m N S O a p l R id n t s o s o r L n U le a i N X. i ( h R e r N F d S. P L a la N o ' e I L S F V P R _ I

1 6 5 9 5 0 1 1 )r 4 h

                                                                                                                /

9 F 3 g 4 o 5 D 3 0 t - 0 i 1 i m 66 64 0 d 8 L 000 7 En9 57 8 70 5 7 8 V + + - 9 7- R 9 e r u EE E6 429 0 1 r n5 o*d 4 1 3 9 3 MJS / 2 d t a r e 9 9 8 22 6 9.6.1 tu 3 9 9 6 h 5 1 5 1 S Y p

  .B          F    m       = = e =

O e d OD T ,m m m m i0 F NE E 8 o e a n5 27 1896 72 E En naa tn l a r d9 CR LA A T 8 i t n E s i i i , , o *t 0 4 1 u , , 4 4 e RRRR h 1 6 1 6 RRRR AP CE D T fe r i i HMHM 2 2 S 1 2 HMHM 2 3 3 R E i f 5 5 y P E H D 7 7 3 9 8 2 2 2 2 3 2 2 1 3 8 8 5 l n o 9. 1 otu 2

7. 92 5 8

6 2 6 5 5 9 4 3 9 4 4 6 62 1 7 7 8 7

             'S *F                 3 1    1 1    1   5   5        7 0 t    r 6 9 3 7 e ta4                         002 320     2 1                                                     1                      8 8    6 T                 5 4   3        1    3 8    8   9    1   2   6        0. 010 1        mS7       5 129 3 E

E 1 t n e g 3 1 1 1 0 0 0 0- - t w+8 r

                                                                                                        -     1   -

1

                                                                                                                         - 00 0 H         Y l

l e e n 7 S h m a = = = = = = = = E N S e F s a o3 33 23 2 o2 22 l 26 2 9 5 8 5 3 5 1 6 2 N NA OP t l E R l e e e e e e 3 8 3 8 62 1 3 2 x 0 7 9 7 5 7 9 2 5 8 O n o 1 1 2 3 2 5 3 3

2. 1 I

SM e 1 4 3 4 6 2 7. 2 T I c 1 20 n A DO j a 1- 0 1 0- 8 0 0-L EC d U A N o 5 C O t 2 L T e 3 8 4 9 8 2 2 7 9 8 9 6 9 1 6 A S g 1 2 4 6 7 6 8 8 7 21 60 x 1 5 4 51 9 0 5 5 C O n " 1 5 1 2 28 7 7 B l F a 4 V

                         "              6 5

4 1 2 1 7 0 0 0 1 0 F 0 7. 5. 7 7 1 0 2 3 2 0 2 0 t n ut 5 2 8 1 1 0 0- 0 0 - 3 2- 5 2 - - 0 0 0 V e C 7 1 4 P 6 8 R m 1 ll 0 1 8 f l e 1 7 2 1 1 9 2 9 3 3 6

              /    o E   "    4         5                 2   3        4 6 3 3               x 5      3 7

4 7 69 53 85 6 11 3 Y / o n l

  • 2 7 1 8 6 7 6 67 8 8

5 41 41 1 9 2 5 7 R 2 i t 1 3 1 0 27 0 1 0 o 1 1 1 5 0 6 0 A E t a u 1 8 1 1 1 - 0 3 2- 4 2 - 6 28 - N u C - 0 I T l a M L A v = = = = = = = = I D E 3 a 3 . r 3 L A T a R *3 t R R R i a i E N / /s R I 0 C t i i i

                                                                             =                         =                     =

P F E J R a ) ) ) V B f

f. f.

X E U e e e R S R R R 1 2 3 4 s 2 2 4 i 2 4 2 2 3 s

                                                 )

t ln i r 2 2 2 i r 2 2 2 2 3 3 3 3 3 g l o e eS *

  • 4 )

e g B h s e g A *A A *A g S S S eg A *A A *A in

                         &                                         a                        a                       a                      d 2      n3     /e    4                                                                                    a 3          y    l a y      g n  y a l

P ( P ( P ( o d F d a d ic r L

2. o e o F o r l d E E E n S t

s B pB p e B r i i v L n U ( w e 2 3 X. - e o. r y y F m L ( e L d d - le w

o. o o N I

E t f B B F V - P R

T A 4.8 3 s 429 t i 41

                                                                                       -          4 x

E Udd i HF nE D D _ C C -

                                            )

v h F g e D - 0 - t 0 i 1 ( i m 6 1 3 9 1 1 - d 8 L 8 7 0 7 5 8 - n 7. 33892 3 - 3 7 7- R 8 9

     /      V    e r

u r n0 E od t69 327 2 s 01 e 0 6 2 3 4 0 7 2 9 9 0 9 0 3 MS62J / S t a u 0 6 u )xu 30 0 0 0 0 0

                                                                                        -     0      0 h 5 3- 4 2-l r

e a la D - Y p S i n V (

  .B        F     m                                ig 9            7      6     6     1       2      7 O     e      d                      )    r 3           5      8     6     6 6 OD                        R 1

n80. 07 6 7 T 3 0 1 0 O 3 8 0 6 0 1 NEE l r

                         *d0893 47 6             =     1
                                                           -  0    1      6                             -

CR LA T A W i t a n o t u21 4- 1 2- 1 7 k ( s C 1 N )x 8 3 0-6 5 8 3 9 3 AP D e r h S n E Dn CE R T f e i o C ( P E f i r t 6 1 3 6 5 5 E D h D a 2 d 4 H otn u8 1 4 8 m 3 0 8 7 0 2 0 4 5 5 0 3 En 7. 2 S *F r 9 8 5 8 r s 1 63 30 0 0- 0 4 r n3 4 l a a2 5 5 0 o 0 0 2 o*d1 0 u )x T 5 t mS2 0 0 4 f e 2 6 t 8 8 E 4 1 r e + 9 3 1 2 e D de a D l m 0- 0 0 0 0 hu 6 1 - E h S is V l ( H Y l e T 7 6 6 6 6 2 S N h v 8 d N NA S 9 97 77 1 9 R e 7 7- '0 5 8 8 0 6 0 6 0 6 4 9 6 R 9 n 4 9 2 5 # y32 9 69 OP t 1 6 1 7 r O n 6 M x 8 1 3 6 9 o 'd 7 I T SM I e c 5 2 5 ) 0-5 7 7- 8 7 5 3 4 RR 4 t u 2 7 DO a 6 1 1 1 n h 2 5 - A EC j - - - D 7- 2- 3 3 L d A ( HM U N o ly C O n L T t e 2 4 8 4 3 4 o o u 1 A S g x27 5 7 ) 5 9 5 5 i a tr 5 1 8 4 C O n 9 1 9 1 #- )

                                                                                               )

6 0 a 5 a "I m r B l F F 7 27 2 I # in 'n h r h 0 0 r e t

                                                                                                                              $, 22 16 8-  21 2
  • i 0 0- h + 1 V "

I ) s n 0 0 /

                                                                                 #    6 8 1      )

r T P e i s o 1 1 4 8 R o ly a ip i t

                                                                               '01 4

( 1 ( h 3 I f 3 9 o 1 3 1 d n r = = p n g 3 4 5 3. 7 4

             /

6 x64 9 0 9 E A c o o x Y / o n d s a u u i d 4 ( 6 8 5 6 0 6 o 6 1 4 1 1 R 2 i 4 8 1 8 b a e u o. D G G t

                                                                                   =, a r       o n              4  0         P 26   1 A      E t

a 25 3 - H it d tn p S t o w 1 0 - 1 0 u 1 l N T l d a e e F o - a a Un a Lo m ru hr I t M A v n dt I L D E ( o K L e o s

                                                                                      /          w u L   A        :                               l s F          o h S

T e 00 d dg M e d l E N R I 0 C = h 01 e E e g P 0 r 0 t u l a = = P F E S( h J ) ilp l d l 1 S m V u p ia E a t B . l r m a o ) f p l X E R U R e t u A da a e l m a N f e S m 4 O R id In ro t o r R 4 ra 2 3 3 f l e a N N 5 3 3 3 3 s 3 3 3 h R 4 4 4 4

  • 4 g eS*S S*S g S-e A *A S S id n

a l a g P e a a ( S P o ( L E E E S L 4 X. y F d L o N I B F V P R u

2 8 1 I Ie c g n ig n t a i h i m C 8 L y 7 7- R 8 9

     /

V e r u is d b i $ r r MS6 k er 4

                                                                          $               4 J /

2 0 t a r oi t s i RRRRRR i i 2 2 3 3 e HMHMHM Y p n oD e

  .B         F    m                                                           5 6 9 0                   dn0 1 63 69 40 08              6 O    e                             de p                          8 5 9 9 OD                                         )

r s m 7 7 2 3 E2 0 2 10 74 8 1 0 NE E ) CR LA T AP A D WT l i t a n e r

                                     )

h s 4 r h 1 8 1 ( d h t 1 4 ( r a b e

                                                 )

r h o 8 t T 0 0 0 2 7 3 1 0 1 0 0- 0 0 r n4 2 o*d t h S u 2 1 - 5- 2 CE e 4 o dn 1

  • R T f

( p o E 4( 7 E f l 4 0 7 2 8 s tu F n d 8 3 1 0 9 i P E i d H D F K tar d d-t En n* L 5 5 6 9 5 7 1 2 r dn2 i F 4 5 0 7 222 0 77 0 s ru u nl 1 0 l S ' 8 h s d h e 0 0 6 3 2 7 8 2. 4 1 o *t 7 5 1 1 1 1 3 T 5 4 r s 't c 0 h u6 1 E o ut - 1 h e S E l F lll S s H Y l e

  • 2 6 1 6 02 9 0 1 4 S N h S

k e 3 2 4 3 5 5 p0 u 8 3 1 6 0 C N NA 3 8 2 9 7 7 t 9 8 5 3 19 79 645

                    )                        8 t   c n      n 4                    e        6 6 4 0 3 20              2              r OP           n       r a1 2 - 4 4 O

I T A L SM I DO EC j d A e c a L o ud y imS i x w 24 2 n a e A M N ( 1 9 3 gS l G" a o 7 0 0 0- 0 0 1 2 0- 0 0 t 2 1 S -

                                                                                                          +

1 - U N o e 6 2 3 5 9 5 9 7 1 9 0 7 6 0 7 7 C O 0 4 5 8 L A T S t e g 3n 4 6 3 mu s 3 2 1 2 5 2 5 7 8 4 6 0 x 1 2 1 9 4 6 4 4 6 2 5 9 . C O n a )

                     'sZS fk   i 9

4 7 6 6 gtu e r 6 1 8 1 8 1 6 - o1 0 6 1 1 1-P - - B l 1 3 1 1 - F E~ - 1 a 0- + - w r V P tee ( N e p 8 R m 2 2 0 0 7 9 0 8 4 9 f e 3 1 8 8 1 51 7 9 5 7 _ o t x0 MT

             /

6 1 0 4 9 1 2 6 7 8 9 1 Y / n ) 7 6 7 t e 7 0 1 0 F 37 2 73 0 4 7 2 R 2 i o 2 o 6 4 6 s 0 3 1 0 2 1 2 A t a 2 t a i 1 1 1 o 1 0 0 0 + - - N E u 1 0 0 - I T l a G R

  • M L A v l l
  • 3 3 0 0 9 2 3 5 6 9 I

L A D E : C e 1 7 6 5 2 3 9 6 3 6 x03 400 07 641 0 7 E N T 4 8 2 1 7 1

                                                                                 -   7 P 8 1 2 5 6 7 8 R    I 0  C               n    7                           1 1 0           0                                 0 3 4 5 P    F     E   M"                  - 1  8                                       0                    =            2 -

V J B U k i 4 0 ) . S S ) f e X E U lll f. R S S 2 1 2 2 e R S 2 2 2 1 1 R 8 s - E 1 1 1 7 4 g R 5 5 5 4 = e in T o 1 1 1 e g d S t i 0 0 0 g a

                    "            a                          a                                      P                                          a  _

R 2 2 2 ( = o B lll P ( l - A5 ) r ) ) ) S - T1 T h 3 2 c

                                                                                                                  )          )

2

                                                                                                                                        )

3 L - O 2 ) 3 ) x) ii 2)

  • 2 T 0 2 a.

4 8 3 F x )t * ) 3 X. gv 9 5 9 g e r E A - A - A n *A Au *A i

  • t S- 2 4

3

  • 3 S F xA 8
                                        - 2  9          D          -        t    -     2   -     3      E4           1 42      2 4u*c-     L N

Ot Gs e w 0 0 A i i s

  • 2 2
  • A( A( A (A (A 2 3 3
  • 3 S

i r

  • 2 3
  • S 5 S S S 3

I ( E N 1 ( ( ( ( ( ( ( ( F ( V - P R _

t i i m 8 L 7 7- R 8 9

     /

I e r u MS6 J / 2 t a r e Y p l

  .B          F   m     005661                    599708                       9 5 5 1 7 5 O   e                                                       d En72 79 78 87 6      8 2 8533              575303 OD               T 0073 42665.7 NE E                             7790 299 71                                  4 l

a 0 6 4.4 n9 9 4 5 3 0 CR T F( i t n 1 23 4. 3 1 1 06 d 9 0 6. 3 7 4

                                                                          't LA A                e 0
                                      - 1 0       0-                       u9 95 0 73 h 5 2 8 7 81 AP D CE             T r

e 00 S 6 - 1 3 - - R E ff P E i 0031 99 354240 i 6 9 7 8 3 4 D 5599 851 41 0 k 0 8 9 4 1 1 H F 5752 542527 F 1 5 6 1 n 1 9 S

  • 622131 7 1 54635 d 271 8 3 3 4 T 5 4

8

                                  - 040 - -

01 0 2 3.0 00000 - s3 t 22 79 24 7 5 3 6 E 1 - - h S 3 3 43 - - E l H Y l e 1 6 8 9 8 9 S N NA N S h 32261 6 384355 662977 576927 627443 56 p0 6 0 7 8 8 u6 0 6 4 3 8 C. O OP t n 704020 001 32 67986 8 4 5. 2 2 7.1 4 2. 1 4 t r 7 4 1 8 t 7 3 3 5 40 4 8 a I T SM I e c a 002 - 00 0 04 - ] sS 2 9 4 7 0 9 A DO j n + 8- 4 44 55 4- -6 L EC d o U N A i t o 326235 327649 c 4 2 7 7 2 9 C O 80458 95671 5 a 8 1 4 6 27 L T t e 625257 1 773926 e x2 418 54 91 1 1 A S g 1 1 460 01 44 0 0 0.19 5 0.1 R 7 8 5 3 5 8 9 3 C O n a 1 8 1 81 1 o0 7 3 7 9 3 B F l 062

                                   - -            000 --         x P 0 8 8 6 1                4 V

6 + [ 2. 6 7 20 9 2 1 5 7 1 2 P = - - - - 8 R 562200 222359

                                                                     ]

s 9 8 9 5 7 7 9 f 2088 r o 005757 5 4 0 0 5 8

              /

6 n 91 26 037442 o x7 1 8 9 0 Y / o 701 0 1 8 1 756 t cF 66 8 1 3 1 3 1 R 2 i 03 1 0 1- 3 0. 4 1 3 e 1 0 0 8 5 1 A E t a 1 0.0 0- 0 - 0 V + 01 - 1 1 4 - N u 00 - d 7 7 I T l a a M A v 753300 523535 o 7 1 9 2 9 7 L D E: 3 009685 x 1 7 05 8 9 9 T L A 2266 59 807654 L xP 367 99 371 55 5 E N T 27 1

                                  - 7             21 081 0           1 R   I 0 C       1 0         0             01     0204 6         7 6 3 0 9 2 P          E       1 1 0                 - 0000         [ = 9 9 3 6 3 9 F_     J 40                                 -       -           1 9 - - -

_ V B ] , x E U 1 t n X_ R S M M ] I , I o s e g ix s r = Mi n r t e 6 i d a v x a M I n 6 [ = o l S i

                                                                                         , r          4 L

i, $ 4 X. R,R,R Rr R R 2 3 3 F HMHMHM L N I F V P R

d 2 En2 88 5 0 1 1 5 1 n5 6 5 d 3 1 4 3 1 8

                       't hu
9. 6 5 38-5 4 5 2 1 07 1

1 - S - -

                                                                           )r                          )

r 3 d h h_ 0 i F7 4 5 0 3 6 F F 9 8 1

                   + n07 33 6 2 5 2 Ed9 g

e g e 0 't 2. 0 9 93 1995 D D 0 1 S u h 0 3 3 2 3- 5 - l 0 0 ( 1 l 0 0 1 ( p 9 1 8 7 dn59 75 83 07 dn 07 33 38 29 u 8 7 8 7 E4 1 3 9 n 6 2. 7 2 3 1 E t r 4 7 8 1 9 2 n3 9 9 6 9 3 0 6 a 9 4 t S 4 3 6 6. 2 8 74 4 9 d

                                                         't u

5 1 5 1 d

                                                                                  't u

5 3 - 4 2 -

                         +    - 4 3 4 3- -5              h                        h i

t S S m l 5 3 l 8 7 6 3 8 i L d I 9 7 0 2 9 4674 6 d 1 8 0 7 7 7 8 7- R 9

    /       7   e r

u F d n 1 1 4 9 2 F n 20 3 4 6 d 1 9 4- 1 1 7 MJS 6

    /

2 6 t a r

                                                          -t h

u 6 1 6 1 h

                                                                                   't u                  2-e                                         S                       S Y             p l                        l
 .B         F   m                                                          9          4     1 4 8                         6     9 OD           0   e       d                      9            ,6 9 272 1                o 0 8 5 8                    s d 2 03 5

0 1 NEE 7 T l a En26 4 n5 9 6 1 3 0 5 1 8 41 e 8 1 9 1 1 s 74 5 92 39 7 t u 3 5 5 r a 2 0 0 4 0 n 0 8 o 1 73 07 5 8 9 1 CR LA A T 8 i t n d 3 1 t 9 6 4 0 5 8 1 5 1 t S - - t S 9 3 1 2 i t x 1

                                                                                                                                         -    9 AP D              e r      hu 5 2- 51 3           7- -        +                        +

c )m n F CE R T f e S u ( P E f i 8 6 l l J 4 7 2 5 E D d 0 H Fi 8 0 2 5 @d0 9 2 2 0 S *F n d 0

                        't 77    3 9 0 6 2 4    93 958521                                                               s 1 4 d x 5 7     5 5

7 0 2 8 0 T 5 u 2 3 3 a )n 4 8 9 9 1 9 4 ) - E 1 h 23 5 s o E l S 3 - - R- L F ( - H Y l e r S N h o 9 1 8 8 7 R a S N NA u t 3 1 7. 2 8 7 (

                                                                                      /
                                                                                      )

O OP t n r 4 r ) 4 7 3 8 9 4 6 9 2 2 a 2 " #- #- I T SM I e c t S 7- 44 36 4 43 59 8 3 T )s C

                                                                                                             "                    n # in A    DO        j a       +
                                                 - -                                    sRr
                                                                                        -             )

s e # 6 i 6 L EC d 2 - R-

                                                                                                                 )

n 6 0 6 0 U N A )s ) TR 3 d a s is o 0 1 1 0 1 1 o s ( ( r . C O t R- R- ) / R E ly a i t p L T e a 9 9 5 8 3 r Is )r ( e n r = = A S g 7 7 18 49 7 31 5 R r - 2 /

                                                                                                      )       r i      =           =

e A n o 2 3 C O n o 91 1 5 4 0 8 2 ( R e T-3 r 3 c n u u o e u a h da s

                                                                   /       (

P 0 1 0 6 0 5 ) 3 G G G

                                                                           /

B l F 2 2

                                                                           )

2 ( 1s 8 2 T- p o e G

                         +

0- 0 0- 0 2 2 T 2 3 s S L D d t t V a n

                                                                                      +3 T                                            d         n 2 T n m12 2 2-ly                       ly                 3    3 a

it e e a Un da 3 t P 1 1 n m ()s eT 3 o o R O 2 T e2 T L m L m e K Lo 3 ( 8 O 3 2- m )(3 2 I o o 9

            /

f o x 93 5 0 6 7 5 3 8 8 1 1 l a R e. (c 2 mr 2 (c l e a r 3 4 3 m 00 d e g M g M e Y 6

            /   n o       F   5     6 85 7      1 2         m         e. R. e.2 2             m  R    (e3 R  + 3 (e      o 0 e       d E g E g e   d e R       2                                                                                   .

9 0 9 3 5 r 2 - . A i t a + 0 1 0 5 1 3 e Tm2 m i ,Tr r 3 r 3 e T m T3 m D 1(t p i l l d E a E l d p p ia E u 0 - 0 0 0 - h h r r u N T l T RRRR i T RR RR 4 4 d i d a u A a ia a is I t l  ! M L A v O R d R d I D E L A T

x 5 2 3 00 63 42 8 0 l

l e a - E N 0 C P 7 6 3 2 5 2 a a h R R R I F E = 7 9 8 0 3 9 E E S-P 1 8 2- 5 - -3 7 l

          . J                                         )                        )                                a V                                                                                                      e

_ B f

f. S E U e e X__ R S R R r 2 4 e1 r e4 4 2 4 2 3 d s he me in mle 1

t 2 2 3

                                      =                         z
  • 2 2
  • 2 3
  • 3 3 3 g S eS S S S g eS S S S g pl l in R a a SE yE d E P P C a

( ( o W E E L - S S N L A i i 2 2 3 3 2 3 X. HMHMHM y y F L d d o o N I B B F V P R

l d 9 4 !M 9 5 n 1 8 I 01 E 5 E n 8 n51 8 1 d 3 6 d

                                                't 9         1                                     't   5 4 u 5        6                                      u 7 1 h                                                  h     -

S 2- S 1 l 67 8 6 W 6 3 M 25 F 0 3 F 8 1 n 9 7 n 5 2 d d

                                                 't 2 0                                             't  9 5 u            3                                     u 1 9 h                                                  h 35 t                             S                                                  C - -

i i m l 9 0 3 5 8 L g8 1 o 87 7 u u 8 7 7- R 8 9

      /

V e r u t r 3 1 a 4 7 t r a 9 2 4 S 2 8 t S 6 t 4 3 M J / 2 t a r S 7

                                                  +

4 4 9

                                                                                                     + 3 5 e                                    - 4                                             - -

Y F p l TB m e 8 8 l29 d 85 d 1 4 OD O T 6 x91 1 n x 3 5 n28 En93 71 NEE CR LA T A Y1 - i t a n e 0 4 0 o P 0 0

                                                   +

0 1 5 E 71 n 52 d

                                                                        't 1 4 u

P o 8

                                                                                                     +

7 1

0. 52 0- 2 d 55
                                                                                                                     *t u    AP D CE            T     fe r

1 h S h S R E f l 9 5 07 01 P E i

                          =                                             M                                            M     99 D      c                        x 5       5          F 92                         x91 1 1         F 06 H                                                           n 29 dn 32 9 6 S    7      R l,                       F     0     0         d 1 3
                                                                        't F    3 2 1 5          t 58 T                   5       ,
                                                   +

0 1 - u 03

                                                                            -                        +                u21 E                    4 1    R                                              h                                0 3-        h S
                                                                                                                           - 1 E                                                                        S                                                       -    -

l H Y l e l 61 82 S N h o63 p54 7 NA S x 84 2 u 26 x 2 3 u 91 N t 2 3 t 51 4 0 t 1 9 O OP n 1 4 6 r a P 3 2 5 8 r a 72 I SM e c 1 P 7 9

  • S 23 t

S 22 T I DO a 1 = 7 8 +

                                                                                                     =   3 9          +    - 1 A     EC j

d 1 - 7 - L U N A =

                                               ]                      ~

32 28 C o 1 6 L O t , 83 x03 x93 A T g e R 00 03 S , , C O n , i o 00 3 3 3 3 o 02 B l a HM

  • HM P - HM HM P -

F + + V P 8 R 57 99 38 f 8 5 40 40 1 1 9 o 6 3 8 x 51 2 01 x 54 7 6

             /

6 8 50 8 34 Y / n 1 39 8 6 F 04 0 9 F 1 2 R 2 o 6 4 3 4. 0 00 03 A i t 0 0.7.0 + - 0 9 + - a 1 0 0

                                                          =     7-                     0- 0 N      E        u             -                   0 I      T     l a                                  n A

l M v = is 07 05 I L D E c 2 3 = = ,$ x 32 2 0 x 585 L A T R 0 2) 82 60 2 7 0 5 33 4 E N C 7 5 36 0 ( )0 R 3 3 87 0 5 P 32 9 soi0 (n /25 43 4 P 0 R I F E 03 8 8 P J 0 0 3CS s20 = 2-0 1

                                                                                                                       =   - 7 V      B                                    o -

X E U c l I R S 2, i

                                                                    =

5 a5 S 2 p- 7. i o = = g

                                   =                                        =                                                         n 4 5 7 t a                                                                         i 67 1                                                                              d 7

R a 1 o l L 1 ) 4 = 4 S 5 O x t t L

"                          n "C             .            p                        n "V  v y e       e cg                                     ec    e                                       V v       X.

m "t m "t

                                                         =

u HMp i HM u HM HM F L e C e d le C N l e E s (

                                                        '                        E                                                  I F

l V

                       -                                                                                                            P R

((' , ' ,

d 47 9 0 9 7 3 7 n9 71, 8 95 E3 0 4 8 4 27 9 0738

  • n0 5 68 4 9 8 6 9
                                                                    'd 6 9 1 1 5 9 6 1 7 t

u1 1 3 3 67 3 -1 3 h 1 t s - i m 8 0 0 1 9 8 8 1 8 7 8 7- R 9 Ii L e d I 1 1 6725 4 05 F n0 4 5 0 9 28 7 6 MJ

      /

S 6

      /

S r u t a d0 6 1 3 0 698 1

                                                                    't 7 34 2 3 0 2 u           2 3 1 3 8 3 0       5 2            r                                                h                                      5 e                                                S              -      Y              p l
   .B          F   m       292 8 5 0 1 21 8                            5 7 8 9 1 8 2 1                             1 0   e    d OD NE E         f  T l

a n 855 8 5 1 5 1 21 E 71 3 6 4 3 1 873 n529 1 5 85 4 9.5 t D7 75 u 8 2 r 4 9 914 0 233 9 97 3 7 7 IL a 4 9 8 23 0 2 9 9 2 CR LA A T i t n d

                        *t u

1 45 61 0 7 1 52 2 3 - 1 - - t 0 9 S 1 2 3 6 8 8 7 3 9

                                                                               - - 1 3 6                   8 9

9 AP CE D T er e h S

                                           -                         +   - -              5 7 -            5 2-R          E f

f l P E i D d 077 4 8 0 3 601 i920 3 4 9 8 1 99

                                                                        = = = = = = = = =                           =                      6 0

H , 2 3 u3 4y u 6 + S F Fn 29 9 7 6 25 206 A n2 u3 1 3 A A 3 E T 5 d 1 3. 2 0 3 3 9 532 t u 030 3 9 392 13 5958 EA EEEEEEA A A A A *A E E E 5 2 B 7 E 4 h 21 4 2 7 1 - - - 1 0 2 0 E l S - 0 9 H Y l e l S N h 61 9 1 8 78 782 p63 3 1 8 1 8 754

                                                                                                                                = = =           V a"
                                                                                                                                           ]

S N NA t u 264 7 9 4 9 291 i *

                                                                                                                                           )

o-O OP t n r 51 43 6 62 81 9 a j ]

                                                                                                                               ) )

I T SM I e c S 2374 t 3 4 4 972

                                     - 4             3 5 22 2
  • t 4 o( 1 A DO j a + - - - 1 2 4 1 - 2 L EC d -

R( 1 U A l ( 3 /[ N o 25 9 9 5 8 3 5 88 /

                                                                                                                               )
                                                                                                                                     /
                                                                                                                                     ]'4 C    O                    3 1 7 7 1 9 3 1 1 6                      d                6                 9       4             2       ) t L    T t

e x83 9 1 8 4 7 2 1 3 n 2 8 o2 4 E A C S O g n o 03 1 5 4 0 8 5 93 000 1 0 6 0 2 0.0 2 E 2 5 91 357 986 n 51 4 1 5 5 1 8 6 3 5 1 0 4 8 8 8 5 ) (

                                                                                                                                 - t 1 2     4    =

B l a P 00 0 0 0 0 0

                                                                    *d t  6    0 9      3 7 43 0 7 81                     "V 3

[ ( RD F u " = [

                         +                                          h 5 25- 2    1 1 0 5 7 2 62 3 62                                  =

V S - - - r e p p P / R l d 1 8 f 523 5 0 6 7 1 48 d 2 2 in 9 90 9 5 3 8 8 1 34 9 7 6 8

               /

6 o x 545 6 8 7 1 2 54 i F 4 4 2 8 0 1 9 1 7 8 4 0 5 ly Y n n 6 1 0 8 3 3 6 5

               /           5 00 - 09     0 5 9 3 5 32                                                                    C R        2   o    F                                           d 7 8

9 1 0 0 4 77 5 5 5 7 8. 4 29 1 0 5 1 3 1 3 't 5 6 r 4 60 i A t a + 0 0 - 0 0 0 u 4 e E h 3 3 6 6 2 N T h i S - 7- -1 3 - w = I a l o M L A r 07 8 2 0 8 2 3 05 o 6 8 L D I D E x 328 3 0 2 4 0 85 u 4 7 3 3 9 9 5 6 9 4 3 4 3 (  ? L A T 606 6 3 6 5 8 54 t r 0 1 1 0 4 5 6 2 1 8 3 4 E N 8 7.7 9 8 2 3 2 33 7 0 4 4 2 7 6 8 8 2 R I 0 C P 03 - 8 2 0 3 9 32 t a 1 20 t n

                                                                                                                           )

6 / v P F E = 2- - 7 7 S 2 4 5 7 1 6 3 7 9 2 e 6 M V J B

                                                                     + 1 5 3-        5 4 2        1 3        m 5&
                                                                                                                -                          E X  E R

U l le 4 + S E e r g O o a ' s

                                              =                                           =                            f P               2 g

n s d e

                                                                                                                                           /

v id a Se H a o ( E o L L

                                                                                                                                            =

e y S n A L cc i 2 2 3 3 vv c c i i i 2 2 3 3 vv im E X. MMt MHMHMHM

  • HMt *MHMHMHM r e

F L t e N I D F V P R f

y c i 3 3 MMMMM 7 6 0 0 5 0 2 4 5 4 7 1 6. 6 93 n 8 7 2 2 9 0 7 6 i

                                                                      /

0 s pi

                                                   -                         s ik k 1 5 5
                                                            ]
                                                            )               2 2 s             1    6 E                    5
                               +                            /                    1
                          +            . + +

i t y c HM&HH 3 3 ( m A 8 i L 1 1 3 4 0 E

                                                                         = =

0 9 7.5 5 8 o . 2 1 MJ R S 8 9

     /

6 t e r u a 5 2 63 6 7 1 1 7 7 1 4 31 -

                                                        +45 p.

3 8 8 1 9 2 F ap

                                                                              =
     /

r 1 p 3 3 6 _ e p 8

  .Y                                                     +

B F m = = = = = ) = v O e V. oD sE T AA y e u3 4 3 4 E/ 8 )

                                                                  .               t   5 2                3        7 E     d    l a       EE        AEEA *A            E     2    R                s 2 3 e 6 4 6     9     9 1 7 0 9
s. R T a

AA I i t n E 8 4 7 4 o F T. 5 6 8 1 0 9 2 9 2 6 0 s 1 s s 1 8 3- 9 rP oE D T f e r e 2 9 1 2

                                                                  +         d a   P e

r R E f 7 4 n l o P E i L 9 3 1 D 1 ( R 3 3 5 H F ( /

                                                         +         p          c dr       0 2     9 9

2 1 4 S ' p t 5 i t e 1 3 7 7 a 5 1 A (. a Pr 0 4 9 6 7 . 4 7, E) t 0 9 2 L ) 7 + F s o t l 9 3 3 L 1 l 4 5 7- pR o r B 9 a Y l e - = / d J N h 2 0 51 1( ) y 9 3 5 5 s 3 5 4 n 7 =.. S 0

g. =

t a NA h H s 4 5 9 2 7 1 OP t n p n 8 4 9 4 4 v p Y 7 e a e SM T 0 0 1 e r 5 9 a a I c f E 7- F

                                                          -              G        t 9 2     2       3 2      1 m    DO         j a                               e n RY h

t o 1 1 1 4-a EC d ( E c a B 9 v N A i B 9 o = 9 5 s O t V r e n 2 7 1 a n T S e g === 6

  • p l) d a h't 0 10 1 4 2 8 2

3 4-v O n c u4 4 6 ( 0 8 1 4 3. B l F a MR RR i 3 3 0 3 m S s re dn 0 2 2 6 4 9 V y MMM - d h E a T 0 7 7 1

                                                                                               - 2 P      M                                                  o  (

8 R 6 2 = L n ll 8 6 9 f o 7 2 G3 4 d o d r 5 7 8 7 6 1 4 Y

           /

6 n 0 1 5 5 9

                                                                 ]
                                                                 )       e  i t     F      4 5 7   9     7 0 6 7 9 8 5 5                                     .        a     n 8       7 i
           /

R A 2 i o t a 8 7 2 10 60 00 E lp r

                                                                 /. p         e p
                                                                                  *d h 0 t

1 4 4 4 7 9 4 7 2 2 1 8 7 E 0 0- 7 6 N u ) A O S I T l a .E

                                                               .(

M A v l I L D E

                           +   +++                          Vo48             a p       5 9 5

0 8 3 L A T m 0 1 6 4 E R N 0 C eRRR

                           -      u4         4        V
                                                       + .   +.1+             r tu c r      0 0

9 2 6 5 0 4 4 9 2 8 N Sa I E 8 P F V J B +HSHH H y 3 3 ],., F8 ( 2

                                                          , )
n. 7 t

1 3 8 0 3 5 3 2 X E R U 1 1 3 E l, e4 m

                                                                                                                            =

S 0 9 8 4 4 5 3 ,E[

                                                            /, /

1 r 5 2 8 65

                                                          . , p                                r e m .                s 7 1                             E       t. 1 p F B A p t                 p   g 8 6              [

p( E7 V F - 1 4 2 E o Ea E 4 0 n x F = 7 E i 1 0 = p7 d

                                                                   -                                                  a FF =                                                            o L
                      = = = = =                                     n v c            3 a                                               S AA       u4           3 4                    V                                                  L EE AEEA *A           E X.

F - L N FI V P R iiItI!I u

CALCULATION SHEET CALC NO. M-778 PREPARED BY JSR PRELIMINARY BOSTON EDISON DATE 2/6/98 COMPANY _X.__ FINAL REV 0 DATE _2/6/98 SHEET I OF W

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F Differential Temperature Limit Element 1 Cut "I" torleinal vasues per CENC-1139) Startup Shut'dn Flood End Shut'dn inside l Outside inside l Outside inside l Outside p 1.00 0.185 0.00 F 83.291 74.447 72.80 EA, 2802.76 550.73 2002.73 Hi -5.4968 7.63 13.37 M1 -51.44 -90.42 -108.21 pas' i /2R'istii 9.02 1.67 0.00 H1Cosel#ai -0.31 0.43 0.76 6Mil tii3+/- -7.90 7.90 13.89 13.89 -16.62 16.62 o, = I 0.81 16.61 -11.79 15.99 -15.86 17.38 paii /2R'istii 9.02 1.67 0.00 oH1Cos01/ti, 0.09 0.13 0.23 6uMil tii3+/- -2.37 l 2.37 -4.17 l 4.17 -4.99 l 4.99 EA,/Ris -25.20 4.95 18.01

o. = I -18.55 2.37 2.46 4.17 13.02 4.99 o,=-p/2 /+p/2 -1.00 0.00 -0.19 0.00 0.00 0.00 S,. = on o. 19.36 14.24 -14.24 11.82 -28.89 12.39 S , = on o, 1.81 16.61 -11.60 15.99 -15.86 17.38 S.,=o.e, -17.55 2.37 2.64 4.17 13.02 4.99 S mn. i= 48.2 22.3 Maximum Stress = 48.25 S.,(n. ,= 25.1 25.9 (including Hydro Cond.)

S ,in. 3= 30.6 6.7 l N RPVFINLF.XLG Stress Sum i

                                                                                                )

l

                                                                                                                        )

1 CALCULATION SHEET CALC NO. M-778 ; PREPARED BY JSR PRELIMINARY BOSTON EDISON DATE 2/6/98 COMPANY

             .X_. FINAL REV 0 DATE 2/6/98                                                            SHEET fdOF               0I

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F Differential Temperature Limit Element 1 Cut "I" (Revised Values pw Calc. MJ78) Startup Shut'dn Flood End Shut'dn inside l Outside inside l Outside inside l Outside p 1.00 0.185 0.00 F 83.291 74.447 72.80 EAi -2992.77 364.10 1950.77 Hi -7.1413 6.01 12.92 M1 -35.r.1 -74.59 -103.74 pa is '/2R'sit i, 9.02 1.67 0.000 H1Cos01/tii -0.40 0.34. 0.73 6M,/ti,8 +/- -5.44 5.44 -11.46 11.46 -15.93 15.93 o, = I 3.18 14.06 -0.45 13.47 -15.20 16.67 pa is '/2R'ist is 9.02 1.67 0.00 oH1Cos01/tsi -0.12 0.10 0.22 gumi ltsi +/-

                                       -1.63              l   1.63    -3.44      l    3.44         -4.78    l  4.78 EA$/ Rii                      -26.91                            3.27                      17.54
o. = I -19.52 -16.26 1.51 8.38 12.76 22.32 o,=-p/2 /+ p/2 -1.00 0.00 -0.19 0.00 0.00 0.00 S,. = o,-o. 22.70 30.32 -10.95 5.09 -27.96 -5.66 S,, = o, o, 4.18 14.06 -9.26 13.47 -15.20 16.67 S., = o.-o, 18.52 16.26 1.69 8.38 12.76 22.32 S,.<n. i= 50.7 35.97 Maximum Stress = 50.67 S ,$n.n 3= 25.79 25.88 (including Hydro Cond.)

S.,$n. 3= 31.28 38.58 i J RPVFINLF.XLS Stress Sum

CALCULATION SHEET CALC NO. M-778 PREPARED BY JSR PRELIMINARY BOSTON EDISON DATE 2/6/98 COMPANY X FINAL REV 0 D ATE __216118 SHEET I[OF vf,7

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F DifferentialTemperature Limit Element 1 Cut "I" Design Condition (per Original Ref. 5) Design Bolt Tension Design Bolt Preload Design Press. Test inside l Outside inside l Outside inside l Outside p 0.00 0.00 1.25 F 104.59 78.641 75.709 EA1 1113.5 659.64 -2176.9 H1 11.803 7.5432 -2.348 M1 127.17 -83.792 -69.452 paii /2R'sit ti 0.00 0.00 11.28 H1Cos01/tii 0.67 0.43 -0.13 6M ltii3 +/- i -19.53 19.53 -12.87 12.87 -10.67 10.67 o, = I -18.86 20.20 -12.44 13.30 0.48 21.81 paii '/2R'istii 0.00 0.00 11.28 uH1Cos01/tii 0.20 0.13 -0.04 6uMiilt s'+/- -5.86 l 5.86 -3.86 l 3.86 -3.20 l 3.20 EAi/Ri, 10.01 5.93 -19.58

o. = I 4.15 5.86 2.07 3.86 -11.50 3.20 o,=-p/2-/+ p/2 0.00 0.00 0.00 0.00 -1.25 0.00 S,. = a ,-o. -23.0 14.3 -14.5 9.4 12.0 18.6 S , = o,-o, -18.9 20.2 -12.4 13.3 1.7 21.8 So, = oe -o, 4.2 5.9 2.1 3.9 1
                                                                             -10.2           3.2 Sno<n.no.3 =      35.0         18.6                     Maximum Stress =             35.0 S ,tn.no.3 =      20.6         21.8                        (including Hydro Cond.)

Sern.no.i = 14.4 5.9 RPVFINLF.XLS Stress SLm l l

CALCULATION SHEET CALC NO. M-778 PREPARED BY JSR PRELIMINARY BOSTON EDISON DATE 2L6/98 COMPANY X FINAL REV 0 DATE 2L6/S3 SHEET I OF 0I

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F DifferentialTemperature Limit Element 1 Cut "I" Hydro Condition (per Original Ref. 5) Hydro Bolt Tension Hydro Bolt Praload Hydro Press. Test inside l Outside inside l Outside inside l Outside p 0.00 0.00 1.5625 F 119.840 90.103 86.431 EAi 1275.90 755.78 -2795.60 Hs 13.524 8.643 -3.7413 M1 -145.71 -96.005 -78.05 pa,$3 /2R'istii 0.00 0.00 14.10 H1Cos01/tii 0.77 0.49 -0.21 6Mil tii3 +/- -22.38 22.38 -14.75 14.75 -11.99 11.99 o, = I -21.61 23.15 -14.26 15.24 1.90 25.88 paii '/2R'istii . 0.00 0.00 14.10 uH1Cos01/tii 0.23 0.15 -0.06 6uMiltis'+/- -6.71 l 6.71 -4.42 l 4.42 -3.60 l 3.60 EAS/Ris 11.47 6.80 -25.14

c. = I 4.76 6.71 2.37 4.42 -14.64 3.60 o,=-p/24+ p/2 0.00 0.00 0.00 0.00 -1.56 0.00 S,e = o,-o. -26.4 16.4 -16.6 10.8 16.5 22.3 S.,= o n-o, -21.6 23.1 -14.3 15.2 3.5 25.9 So, = o. o, 4.8 6.7 2.4 4.4 -13.1 3.6 S,ogn. . 3 = 42.9 22.3 Maximum Stress = 42.9 S,,in. ., = 25.1 25.9 (including Hydro Cond.)

S ,tnano.) = 17.8 6.7

                                                                                                     )

RPVFINLF.XLS Stress Sum l

CALCULATION SHEET CALC NO. M-778 PREPARED BY JSR PRELIMINARY BOSTON EDISON DATE 2/6/98 COMPANY X FINAL REV o DATE 2/6/98 SHEET NF b

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F DifferentialTemperature Limit Element 1 Cut "C" (original values pw cENC 1139) Startup Shut'dn Flood End Shut'dn Inside Outside inside Outside inside Outside p 1.00 0.185 0.00 F 83.291 74.447 72.80 EAc -849.52 896.51 1659.12 He 2.1236 4.7189 5.8892 Me -59.27 -36.118 -26.53 pa,'/2R,t, 17.02 3.15 0.00 HcCos0/t, - 0.23 0.51 0.64 6 Mc/t,' +/- -33.67 33.67 -20.52 20.52 -15.07 15.07 o, = E 16.42 50.92 -16.85 24.18 -14.43 15.71 pa,'/2R,t, 17.02 3.15 0.00 uHcCos0/t, .0.07 0.15 0.19 u6Mc/t,' +/- -10.10 l 10.10 -6.16 l 6.16 -4.52 l 4.52 EAc/Re -7.95 8.39 15.53

c. = E -0.96 19.24 5.54 17.85 11.20 20.24 o,=-p/24+ p/2 -1.00 0.00 -0.19 0.00 0.00 0.00 S,o = o,-o. -15.5 31.7 -22.4 6.3 -25.6 -4.5 S., = o, o, -15.4 50.9 -16.7 24.2 -14.4 15.7 l So,= co-o, 0.0 19.2 5.7 17.8 11.2 20.2 l S,o<n.no.3 = 35.7 39.5 Maximum Stress = 67,78 S,,tn. .i = 29.5 67.8 (including Hydro Cond.)

Sorca.no.i = 11.2 32.8 1 I l RPVFINLF.XLS Stress Sum

CALCULATION SHEET CALC NO. M-778 PREPARED BY JSR PRELIMINARY BOSTON EDISON DATE 2/6/98 COMPANY X FINAL REV 0 DATE 2/6/98 SHEET I4OF bI

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 'F Differential Temperature Limit

   . Stress SummarV                                    Dement 4 Cuts *Ill&V'(Flange & Shell)   Element 1 Cut *1"(Dome) o nn = pan2/2Rnto +/- 6Mn/tn2                                    Cut "Ill"   Cut "V"                 Cut "1" o.n = pa n'/ Roto +/- BuMn/to
  • EAn/Rn a3 = 112.34 113.25 ai=

s 108.3 om = -p/2 -/+p/2 R4 = 116.75 Rii = 111.2 S, = o,-o. S,r = on -o, S., = o,-o, t*33= 8.375 l 6.5 tis = 6.25 01 =69.25 but 0,used = 69.25 Sin (01) = 0.9351 Cos(01) = 0.3543 (See pg. 54) Oc = 64.25 Sin (Oc) = 0.9007 Cos(Oc) = 0.4344 R', =Re Sin (Oc)= 96.2 R'i, =Rii Sin (01)= 104.0 E= 29.9E+06 Element 1 Cut "C" (Revised Values per Calc. M-778) Startup Shut'dn Flood End Shut'dn inside l Outside Inside l Outside inside l Outside p 1.00 0.185 0.00 F 83.291 74.447 72.80 EAc -1048.75 700.18 1603.98 He 1.2704 3.8764 5.6512 Mc- -54.02 -30.915 -25.05 pai'/2Rii t 17.02 3.15 0.00 HcCos0/t, 0.14 0.42 0.62 2 6Mc/ti +/- -30.68 30.68 -17.56 17.56 -14.23 14.23 o, = E 13.53 47.84 -13.99 21.13 -13.61 14.84 pa,2/2R tii 17.02 3.15 0.00

                                              ~

uHcCos0/t, 0.04 0.13 0.18 u6Mc/t '+/- i -9.21 l 9.21 -5.27 l 5.27 -4.27 l 4.27 EAc /Re -9.81 6.55 15.01 c=E -1.96 16.45 4.56 15.10 10.93 19.46 o,=-p/2 /+p/2 -1.00 0.00 -0.19 0.00 0.00 0.00 S,o = o,-oo -11.6 31.4 -18.5 6.0 -24.5 -4.6 ) S,, = o,-o, -12.5 -47.8 - -13.8 21.1 -13.6 14.8

      -So,= c o-o,            1.0            16.5          4.7           15.1         10.9          19.5 S,ocn.n..i =         35.7           39.56                      Maximum Stress =            67.78 S inn.. in       29.48           67.78                          (Including Hydro Cond.)

So,in.,, : = 11.88 32.83 l t- RPVFINLF.XLS Stress Sum

1 i

                                     ' CALCULATION SHEET              CALC NO.          M-778 PREPARED BY LSR PRELIMINARY               BOSTON EDISON                      DATE            2/6/98        i COMPANY X FINAL REV 0 DATE 2/6/98                                          SHEET       M OF        dI

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 'F DifferentialTemperature Limit Element 1 Cut "C" Design Condition (per Original Ref. 5) Design Bolt Tension Design Bolt Preload Design Press. Test inside Outside inside Outside Inside Outside p 0.00 0.00 1.25 F 104.59 78.641 75.709 EAc 1408.8 896.01 -445.8 He 6.70 4.40 3.16 Me -46.58 -31.61 -60.06 pai'/2R$i t 0.00 0.00 21.27 HcCos0/t, 0.73 0.48 0.34 6Mc/t '+/- i 26.46 26.46 -17.96 17.96 -34.11 34.11 oaE n -25.73 27.19 -17.48 18.44 -12.50 55.73 3/2R t $i 0.00 0.00 21.27 uHcCos0/ti 0.22 0.14 0.10 u6Mc/ts' +/- -7.94 l 7.94 -5.39 l 5.39 -10.23 l 10.23 EAcIRc 13.18 8.38 -4.17

c. = E 5.46 l 21.34 3.14 13.92 6.97 27.44 o,=-p/24+ p/2 0.00 0.00 0.00 0.00 -1.25 0.00 S ,. = o n-o , -31.2 5,9 -20.6 4.5 -19.5 28.3 S,, = on-o, -25.7 27.2 -17.5 18.4 -11.2 55.7 i S., = oe-o, 5.5 21.3 3.1 13.9 8.2 27.4 Sno<n.no.3 = 31.2 28.3 Maximum Stress = 55.7 S.,in.n,., = 25.7 55.7 (including Hydro Cond.)

S.,ta.n,.3 = 8.2 27.4 l RPVFINLF.XLS Stress Sum -

l CALCULATION SHEET CALC NO. M-778 PREPARED BY LSR PRELIMINARY BOSTON EDISON DATE 2/6/98 COMPANY X_ FINAL REV 3_ DATE 2161H SilEET YOF 5f

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 'F Differential Temperature Limit Element 1 Cut **C" Hydro Condition (per Original Ref. 5) Hydro Bolt Tension Hydro Bolt Preload Hydro Press. Test inside Outside inside Outside Inside Outside p 0.00 0.00 1.5625 F 119.840 90.103 86.43 EAc 1614.20 1026.60 -653.35 He 7.6745 5.0413 3.4880 Me -53.38 -36.221 -71.83 pa,3/2R its 0.00 0.00 26.59 HcCos0/t, 0.84 0.55 0.38 6Mc/t,8 +/- -30.32 30.32 -20.58 20.58 -40.80 40.80 o, = E -29.48 31.16 -20.03 21.12 -13.83 67.78 pai'/2Rii t 0.00 0.00 26.59 j 1 uHcCos0/t, 0.25 0.16 0.11 u6Mc/t ' +/- i -9.10 l 9.10 -6.17 l 6.17 -12.24 l 12.24 ' EAc /Re 15.11 9.61 -0.11 o=E 6.26 l 24.45 3.60 15.94 8.35 32.83 o r=-p/2-/+ p/2 0.00 0.00 0.00 0.00 -1.56 0.00 S,e = on -o. -35.7 6.7 -23.6 5.2 -22.2 34.9 S., = o,-o, -29.5 31.2 -20.0 21.1 -12.3 67.8 So, = on -o, 6.3 24.5 3.6 15.9 9.9 32.8 S,oca. . 3 = 35.7 34.9 Maximum Stress = 67.8 Sun n 3 = 29.5 67.8 (including Hydro Cond.) S.,in.no.3 = 9.9 32.8 RPVFINLF.XLS Stress Sum n'

CALCULATION SIIEET CALC NO. M-778 PREPARED BY JSR PRELIMINARY BOSTON EDISON DATE 2/6/98 . COMPANY X__ FINAL REV 0 DATE 2/6/98 - SilEET NOF 0[

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 'F DifferentialTemperature Limit Element 4 Cut "III" (original values per cENC-1139) pg 80 Startup Shut'dn Flood End Shut'dn inside l Outside inside l Outside inside l Outside p 1.00 0.185 0.00 F 83.291 74.447 72.80 EA3 742.63 -197.63 183.42 H3 5.5575 9.8541 11.894 M3 -223.14 -249.36 -245.83 pa33 /2Nt33 6.45 1.19 0.00 3

                 -19.09          19.09      -21.33            21.33       -21.03       21.03

_6M3/t:3 +/- o, = I -12.63 25.54 -20.14 22.52 -21.03 21.03 pa33 /Nt33 12.91 2.39 0.00 3 _6uM3/t33 +/- -6.40 6.40

                   -5.73    l     5.73                    l                -6.31    l   6.31 eau /N                  -6.36                    -1.69                         1.57
c. = I 0.82 12.27 -5.70 7.09 -4.74 7.88 o,=-p/2-/+ p/2 -1.00 0.00 -0.19 0.00 0.00 0.00 S, = o,-o. -13.45 13.27 -14.43 15.43 -16.29 13.15 S,,= o,-o, -11.63 25.54 -19.95 22.52 -21.03 21.03 S , = o -o, 1.82 12.27 -5.52 7.09 -4.74 l 7.88 S ,.< n.n..i = 27.21 40.67 Maximum Stress = 48.49 S ,,<n.n,., = 48.49 48.49 (including Hydro Cond.)

S.,<n.n . = 35.72 22.12 l l 1 l l RPVFINLF.XLS Stress Sum i l

CALCULATION SHEET CALC NO. M-778 PREPARED BY JSR .. .. PRELIMINARY BOSTON EDISON DATE 2/6/98 COMPANY _X.__ FINAL REV 0 DATE 2/6/98 SHEET N OF W

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F DifferentialTemperature Limit Element 4 Cut "III" (Revised Values per Calc. M-778) pg 80 Startup Shut'dn Flood End Shut'dn inside l Outside inside l Outside inside l Outside p 1.00 0.185 0.00 F 83.291 74.447 72.80 EA3 -6722.92 -6298.48 -1687.03 H3 -26.6694 -22.7616 2.085 M3 -273.82 -306.99 -267.82 3 pa3 /2Nt33 6.45 1.19 0.00 6M3/t:33 +/- -23.42 23.42 -26.26 26.26 -22.91 22.91 o, = E -16.97 29.88 -25.07 27.45 -22.91 22.91 pa33 /Nt33 12.91 2.39 0.00 3 gum 3/t33 +/- -7.03 l 7.03 -7.88 l 7.88 -6.87 l 6.87 EA3/N -57.58 -53.95 -14.45

c. = I -51.70 -37.65 -59.44 -43.68 -21.32 -7.58 o,=-p/2-/+p/2 -1.00 0.00 -0.19 0.00 0.00 0.00 S,. = o,-o. 34.73 67.53 34.37 71.14 -1.59 30.49 S ,, = o,-o, -15.97 29.88 -24.88 27.45 -22.91 22.91 S., = o.-o, -50.70 -37.65 59.25 -43.68 -21.32 -7.58 S,ognan 3 = 61.9 71.14 Maximum Stress = 73.69 S,rin.n 3= 48.49 48.49 (including Hydro Cond.)

Sorta.n 3 = 73.69 65.81 RPVFINLF.XLS Stress Sum

i CALCULATIOI1 SHEET CALC NO. M-778 PREPARED BY JSE_ PRELIMINARY BOSTON EDISON DATE 2/6/98 COMPANY X FINAL REV 0 D ATE _2/4/11 SliEET N OF SUDJECT; Evaluation of RPV Flange to Adjacent Shell 145 *F DifferentialTemperature Limit Element 4 Cat "Ill" Design Condition (per Original Ref. 5) pg.80 Design Bolt Tension Design Bolt Preload Design Press. Test { inside l Outside inside l Outside inside l Outside p 0.00 0.00 1.25 i F 104.59 78.641 75.709 EAn -685.84 -317.59 -275.64 H3 17.857 10.372 5.792 M3 -494.7 -276.77 -167.41 pa33 /2Nt:3 0.00 0.00 8.07 l 3 6M3/t:3 +/- -42.32 42.32 -23.68 23.68 -14.32 14.32 ) o, = I -42.32 42.32 -23.68 23.68 -6.25 22.39 l 3 I pa3 /%t:3 0.00 0.00 16.13 GoM3t33/ 3 +/- -12.70 l 12.70 -7.10 l 7.10 -4.30 l 4.30 EAo/N -5.87 -2.72 -2.36 o=I o -18.57 6.82 -9.82 4.38 9.48 18.07 o r=-p/2-/+p/2 0.00 0.00 0.00 0.00 -1.25 0.00 S,e = on -o. -23.7 35.5 -13.9 19.3 -15.7 4.3 S,, = o n-o, -42.3 42.3 -23.7 23.7 -5.0 22.4 S.,= c o-o, -18.6 6.8 -9.8 4.4 10.7 18.1 S,o<n.n .i n 23.7 35.5 Maximum Stress = 42.3 S,,<n.n,.i = 42.3 42.3 (including Hydro Cond.) So,cn.no.i = 29.3 18.1 j 1 1 i RPVFINLF.XLS Stress Sum

CALCULATION SilEET CALC NO. M-778 PREPARED BY J3JL PRELIMINARY BOSTON EDISON DATE 2/6/98 ) COMPANY X FINAL REV O DATE J/6/18 SHEET M OF

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 'F Differential Temperature Limit Element 4 Cut "ill" Hydro Condition (per Original Ref. 6) Hydro Bolt Tension Hydro Bolt Preload Hydro Press. Test inside l Outside inside l Outside inside l Outside p 0.00 0.00 1.5625 F 119.840 90.103 86.431 EA3 -785.95 -363.88 -311.36 H3 20.46 11.883 6.1495 M3 -566.83 -317.11 -180.19 pa33 /2Nt33 0.00 0.00 10.084 6M/t333 +/- -48.49 48.49 -27.13 27.13 -15.41 15.41 o, = I -48.49 48.49 -27.13 27.13 -5.33 25.50 pa33 /Nt:3 0.00 0.00 20.17 6uM/t:3 +/- 3

                          -14.55               14.55     -8.14          8.14       -4.62         4.62 eau /N               -6.73                         -3.12                     -2.67
c. = I -21.28 7.81 -11.25 5.02 12.88 22.12 o r=-p/2-/+p/2 0.00 0.00 0.00 0.00 -1.56 0.00 S ,o = on-on 27.21 40.67 -15.87 22.11 -18.21 3.37 S ,, = o,-o, -48.49 48.49 -27.13 27.13 -3.77 25.50 S., = c o-o, -21.28 7.81 -11.25 5.02 14.44 22.12 S no<n.ne.i = 27.2 40.7 Maximum Stress = 48.5 S ,en.no.i = 48.5 48.5 (including Hydro Cond.)

I S ,ta.n .i = 35.7 22.1 I i l I I I RPVFINLF.XLS Stress Sum I

CALCULATION SIIEET CALC NO. M-778 PREPARED BY JSR  ! PRELIMINARY- BOSTON EDISON DATE 2/6/98 COMPANY _X FINAL REV 0 DATE '2/6/98 SHEET I8 OF k

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 'F DifferentialTemperature Limit Element 4 Cut "V" (Original Values per CENC-1139) Startup Shut'dn Flood End Shut'dn inside l Outside inside l Outside inside l Outside p 1.00 0.185 0.00 F 83.291 74.447 72.80 EA, -553.77 -50.923 289.55 HV 6.3170 10.00 11.62 Mv -210.82 -228.84 -221.56 pa43 /2R4tn 8.45 1.56 0.00 6M,lt4' +/- -29.94 29.94 -32.50 32.50 -31.46 31.46 o, = I -21.49 38.39 -30.93 34.06 -31.46 31.46 pa4'/R4t4 16.90 3.13 0.00 6uM/t4' +/- -8.98 l 8.98 -9.75 l 9.75 -9.44 l 9.44 EA/R4 -4.74 -0.44 2.48 o=I o 3.18 21.14 -7.06 12.44 -6.96 11.92 o,=-p/2-/+p/2 -1.00 0.00 -0.19 0.00 0.00 0.00 S,o = on -o. -24.7 17.3 -23.9 21.6 -24.5 19.5 S., = o,-o, -20.5 38.4 -30.7 34.1 -31.5 31.5 So, = co -o, 4.2 21.14 -6.9 12.4 -7.0 11.9 S,oin.no.3 = 48.49 55.64 Maximum Stress = 74.4 S,,in.no.i = 74.38 74.38 (including Hydro Cond.) Sorin.no.i = 45.13 31.92 Abs Max Stress = G7.8 , Location = Element 1 Cut "C" I Fig. G-2214-1 36 --w--s/sy 1.0 l ,l k h h h 3.2 --o- S/Sy=0.7 - W M7  ! E 2.8 -+-S/Sy=0 5

                             *             + S/Sy=0.1 24                            _              __      _       _

L L U 2 -- _ -.- 1.6-- -+ a  ! -t ._!_._;_ _ _ _ 1 1.2 1 4 16 18 2 2.2 24 26 28 3 32 34 36 38 4 -

                                                                        ,w RPVFINLF.XLS Stress Sum J

CALCULATION SHEET CALC NO. M-778 PREPARED BY JSR . PRELIMINARY BOSTON EDISON DATE 2/6/98 COMPANY 2L. FINAL REV 0 DATE 2/6/98 SHEET OF W

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F Differential Temperature Limit Element 4 Cut "V" (Revised Values per Calc. MJ78) Startup Shut'dn Flood End Shut'dn inside l Outside inside l Outside inside l Outside p 1.00 0.185 0.00 F 83.291 74.447 72.80 EA, -5899.73 -5501.645 -1379.38 Hy -19.2814 -15.85 3.88 MV 320.83 -346.45 -261.54 pa//2R4t: 3 8.45 1.56 0.00 6M,/t4' +/- -45.56 45.56 -49.20 49.20 -37.14 37.14

                                                                                  -37.14       37.14 o=I n             -37.11           54.01         -47.64         50.76 3

pa4 /R4t4 16.90 3.13 0.00 6uM,/t4' +/- -13.67 l 13.67 -14.76 l 14.76 -11.14 l 11.14 EA,/R4 -50.53 -47.12 -11.81

o. = E -47.30 19.96 -58.76 -29.24 -22.96 -0.67 o r=-p/2 /+p/2 -1.00 0.00 -0.19 0.00 0.00 0.00 S,e= o,-o. 10.2 74.0 11.1 80.00 -14.18 37.81 S,, = o n-o, -36.1 54.0 -47.5 50.8 -37.14 37.14 Ser = o -o, -46.3 -19.96 -58.6 -29.2 -22.96 -0.67 S,.cn.n 3 = 59.6 80.00 Maximum Stress = 80.0 S,nn. 3= 74.38 74.38 (including Hydro Cond.)

Sonn. .., = 77.81 61.15 Macro 3 Element 4 Cut "V" Abs Max Stress = s Element 4 Cut "V" Location = Element 4 Cut "V"

  • Notes on Macro's Note: To be Run with Macro " Goal 1" Maximum AT's Maximum Stresses & Location Options 'Conditio @Jrs p_Ma x_ tag Element 4 Cuts "m/V" Element 1 Cuts "l/C"
                                                                '                          80                         67.8 Realistic Answer       a> Macro 3   983             """*Mit Design (cENC.1139 Results)          b) MacroG    MiiM            !!!!EU!d@             74.4                       67.78 Tech. Spec. Requirements            c) Macros    dnM,              C]$                 74.4                       100.11 Vary All a          d) Macro 4   Mss %22%dh    kMis!!F$us              74.4                          80 Vary Lower shell a only e) Macro 2         *!;147tiPF *!PAlsge                     80                        123.2 RPVFINLF.XLS Stress Sum

4 CALCULATION SHEET CALC NO. M-778 : PREPARED BY JSR PRELIMINARY BOSTON EDISON DATE 2/6/98 i COMPANY X FINAL REV 0 DATE 2L6/t8 SHEET OF W

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F DifferentialTemperature Limit

       --             ___                       .,,..,....m..              .
                                                                               . . . - -     ,,.;.~--

Element 4 Cut "V" Design Condition (per Original Ref. 6) Design Bolt Tension Design Bolt Preload Design Press. Test inside l Outside inside l Outside inside l Outside p 0.00 0.00 1.25 F 104.59 78.641 75.709 EA, -364.4 -144.57 -162.53 Hv 18.476 10.64 6.0495 Mv -457.13 -25S.05 -155.16 pa//2.%t33 0.00 0.00 10.56 6M,/t4' +/- -64.92 64.92 -36.22 36.22 -22.03 22.03 o, = E -64.92 64.92 -36.22 36.22 -11.47 32.60 pa//R4t4 0.00 0.00 21.13 gum,/t43+/- -19.48 l 19.48 -10.87 l 10.87 -6.61 l 6.61 EA,IR4 -3.12 -1.24 -1.39

o. = E -22.60 16.35 -12.10 9.63 13.12 26.34 o,=-p/2-/+p/2 0.00 0.00 0.00 0.00 -1.25 0.00 j S , = o n -o. -42.3 48.6 -24.1 26.6 -24.6 6.3 i I

S,,= on o, -64.9 64.9 -36.2 36.2 -10.2 32.6 So, = ae-o, 22.6 16.4 -12.1 9.6 14.4 26.3 Sno< nano.3 = 42.3 48.6 Maximum Stress = 64.9 S,,vn.no.i = 64.9 64.9 (including Hydro Cond.) l S.,ta.no.3 = 37.0 26.3

                                                                                                             ]

RPVFINLF.XLS Stress Sum

1 M-778 l CALCULATION SHEET CALC NO. PREPARED BY JSR PRELIMINARY BOSTON EDISON DATE 2/6/98 COMPANY _X__ FIN AL REV _0_ D ATE 2/6/98 SHEET 8/ OF 0I

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F DifferentialTemperature Limit Element 4 Cut "V" Hydro Condition (per Original Ref. 6) Hydro Bolt Tension Hydro Bolt Preload Hydro Press. Test inside l Outside inside l Outside inside l Outside p 0.00 0.00 1.56 F 119.84 90.103 86.431 EA, -417.5 -165.64 -188.12 Hv 21.17 12.195 6.4428 MV -523.78 -292.22 -167.16 3 pa4 /2R 4t33 0.00 0.00 13.20 6M/t43 +/- -74.38 74.38 -41.50 41.50 -23.74 23.74 o, = I -74.38 74.38 -41.50 41.50 -10.53 36.94 pa43/R4t4 0.00 0.00 26.41 6uM/t43 +/- -22.31 l 22.31 -12.45 l 12.45 -7.12 l 7.12 EA/R4 -3.58 -1.42 -1.61

c. = E -25.89 18.74 -13.87 11.03 17.67 31.92 o,=-p/2-/+p/2 0.00 0.00 0.00 0.00 -1.56 0.00 S,. = o,-o. -48.5 55.6 -27.6 30.5 -28.2 5.0 S,,= o,-o, -74.4 74.4 -41.5 41.5 -9.0 36.9 S , = oe-o, -25.0 18.7 -13.9 11.0 19.2 31.9 S,.<n.no.3 = 48.5 55.6 Maximum Stress = 74.4 S ,$ nano.i = 74.4 74.4 (including Hydro Cond.)

So,ca.no.3 = 45.1 31.9 RPVFINLF.XLS Stress Sum 3

CALCULATION SilEET . CALC NO. M-778 PREPARED BY JSR . PRELIMINARY BOSTON EDISON DATE 2/6/98 COMPANY X _ FINAL REV 0 DATE 2/6/98 SHEET I7 0F bI

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F Differential Temperature Limit Fracture Touchness (Note: Sorne values rnodtfied to agree with TR 2318) Kim = Mm*om Kib = Mb*ob Mb = (2/3)*Mm Mm=f(t'") t= 7.0 t'" = 2.65 2Kimp+2Kibp+Kims+Kibs < Kia p= Primary stress (Mm)*[2*(omp+(2/3)obp)+ oms +(2/3)obs) < Kia s= secondary stress ownn.n =1.43Ea(AT) lor = [1/(1-u))Ea(T t.-T...)] or Node Condition a Tun.w., T4,, AT inside(s) outside(b)

         *20"        startup          7.10E-06            540.2          533.7               6.50        -2.0               2.0 Loc 1 Cut C    shut'dn Flood    6.97E-06            467.4          472.0              -4.64         1.4              -1.4 shut'dn End      6.17E 06             105.4         112.0              -6.64         1.8              -1.8 "25"       startup          7.08E-06             536.8         478.5             58.33        -17.7              17.7 Loc 1 Cut I   shurdn Flood     7.05E-06            486.4          501.6              15.11         4.6              -4.6 shut'dn End      6.46E-06             109.3         172.2            -62.91         17.4             -17.4 "0"       startup          7.08E-06             528.8         489.3             39.42        -11.9              11.9 Loc 4 Cut 111  Shurdn Flood     7.06E-06            491.6          504.9              13.34         4.0              -4.0 Shut'dn End      6.28E-06             117.7         159.6            -41.92         11.3             -11.3 "3"       startup          7.08E-06             529.4         494.6              34.79       -10.5              10.5 Loc 4 Cut v    shurdn Flood     7.05E 06            491.0          503.3            -12.33          3.7              -3.7    j Shut'dn End      6.48E-06             116.9         153.7            -36.74         10.2             -10.2 E= 29.9E+06                                                                                                     ;

Design Hydro Node 2.Stortw Shu.t'doD.4 l S. hut'dnEnd Bott PL Pres Test Pres Test

           *0"           inside (a)     -16.97            -25.07        -22.91          -23.68          -6.25          -5.33 Loc 4 cut ni       outside (b)        29.88           27.45         22.91           23.68          22.39 l        25.50      ,

Stress inside (a) -28.90 -21.04 -11.65 Totals outside (b) 41.81 23.43 11.65 3" inside (a) -37.11 -47.64 -37.14 -36.22 -11.47 -10.53 Loc 4 cut V outside (b) 54.01 50.76 37.14 36.22 32.60 36.94 Stress inside (a) +4 7.64 -43.92 -26.96 Totals outside (b) 64.54 47.05 26.96 l Kl=Mmo,n + Munn . Press + Preload Other ] Kin =2Kip ,i+Kl.., Ki p,,=Mm[au+( 2/3)on] Kim=Mm[om+( 2/3)an] i i i 1 l RPVFINLF.XLS Stress Sum i h l w .. .

CALCULATION SiiEET CALC NO. M-711 PREPARED BY JSR PRELIMINARY BOSTON EDISON DATE 2/6/98 COMPANY 2_ FINAL REV 0 DATE 2/6/98 SilEET OF 6

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F Differential Temperature Limit ASME Section 111 Appendix G (1986 Ed.) Note: Same as Sect. XI App. G for Ki. Kie= 33.2 + 2.81exp(0.02(T-RTuoy+100) Km=Ki. = 26.78 + 1.233exp(0.0145(T-RTwor+160) Fig G-2210-1 Fig. A-4200-1 (T-Rtndt) Kin orKi. Kic ASME Sect lli Fig. G.2210-1 160 28.01 34.05

                    -120        28.98          35.08              jN'                        f_j
                     -80         30.71         37.39              120                      f;- - >-   -g      g
                     -40         33.80         42.53              1N                      <         _

Mc 0- 39.33 53.96 $ r' [ 40 49.19 79.41 20 80 66.80 136.04 0 120 98.2S 262.08 !0@S

                                                                                          %00!

160 154.45 542.57 (T.RTndt) 176 187.40 732.35 180 197.40 793.10 181.44 201.00 815.29 fU;ues for Mm Sect 111 Ap). G-22141 oy l t t" 0.1 0.5 0.7 1 q 2.6 1.6 1.85 1.93 1.98 2.08 l Loc 1 Cut C 3.2 1.8 1.85 1.93 1.98 2.08 4.0 2 1.85 1.93 1.98 2.08 . 5.8 2.4 2.24 2.32 2.37 2.49 6.8 2.6 2.43 2.51 2.57 2.70 l Loc 4 Cut V 7.0 2.65 2.48 2.56 2.62 2.75 7.8 2.8 2.62 2.70 2.76 2.91 9.0 3 2.82 2.90 2.96 3.11 j 10.2 3.2 3.01 3.09 3.16 3.32 l 11.6 3.4 3.20 3.28 3.35 3.53 11.9 3.45 3.25 3.33 3.40 3.58 13.0 3.6 3.25 3.33 3.4 3.58 14.4 3.8 3.25 3.33 3.4 3.58 16.0 4 3.25 3.33 3.4 3.58 2 1.85 1.93 1.98 2.08 0.965517 -0.08103 3.45 3.25 3.33 3.4 3.58 0.965517 0,00103 0.97931 0.021379 . l Loc 4 Cut V Outside(b) lo=(1000/p.)[opo + o..c]+ own,.o 1.034483 0.011034

' RPVFINLF.XLS Stress Sum j

CALCULATION SHEET CALC NO. M-778 PREPARED BY JSR PRELIMINARY - BOSTON EDISON DATE 2/6/98 COMPANY _X_ FINAL REV 0 DATE 2/6/98 SHEET NF O

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F Differential Temperature Limit l Loc 1 Cut C Outside(b) jo=(1000/p.)[opri + o cl+ onoittp+s) og o 2.0 , Po ou os om on o n.egp.c oror 1000 17.2 0.0 -0.3 R$KRSE 18.44 Ref. Pt. 750 12.9 0.0 -0.2 10.6 18.44 43.7 500 8.6 0.0 0.0 7.1 18.44 36.1 250 4.3 0.0 - 0.0 3.5 18.44 26.3 RTndt = -10 Po o a oror/o y.io Mm Kipri Kisec

     -1000         50           N/A              N/A            N/A            N/A 750         50          0.87             2.04            51.3           16.6 500         50          0.72              1.99           41.5           12.0 250         50          0.53              1.94           32.1           46 Macro *Goalt" Loc 1 Cut C (b)                                                 P-T curve              Kic Revised                                 Kin       T-RTndt Temp.             (Goal Seek)

T p N/A N/A N/A N/A 142.9 1000 119.2 137.7 127.7 rin939# 127.7 750 94.9 116.7 106.7 jiS834M; 106.7 500 68.8 83.3 73.3 i!!!BBN5 lip' 73.3 250 4 48.8 185

                               -27.7               0                                    P-T Curve Original                                      ( /Qgcjf,gf4J 145.6            1000              e                                           + Elem 4 127.9             750              g 800                            q7         _.-Elem t 106.9             500               $ 600i                         -  -
                                                                                                              -e- 4 (Rev) 73.5             250               Eg                          ;    i    _
                                                                                                              -M- 1 (Rev) 62.3             185              E
                               -13.8               0 200               a./-

100 0 100 200 Temp (*F) w Current Analysis Lower Shell Scale Factor = 2.02 AT g TE's = 166 i Upper Shell Scale Factor = 1.00 AT @ Max. Loc.= 236 Maximum Stress = 80.0 Lower Shell Stress = 80.0 Element 4 Cut "V" Element 4 Cut "V" STRESS CONVERGES TO 80 KSI & T/C TEMP. CONVERGES TO 166 DEG F I RPVFINLF.XLS Stress Sum

CALCULATION SIIEET CALC NO. M-778 PREPARED BY JSR PRELIMINARY BOSTON EDISON DATE 2/6/98 COMPANY J__. FINAL REV 0 DATE 2/6/98 SilEET f O OF dY

SUBJECT:

Evaluation of RPV Fhnge to Adjacent Shell 145 'F DifferentialTemperature Limit Outside(b) Primary Secondary Loc 1 Cut C ou os om on _ or crev SU p 1000 anc.s 17.16 18.44 -0.3 12.5 2.0 49.82 SDF p=185 a=46 3.57 18.44 0 -0.9 -1.4 19.75 SD p=0 a=6.6 0.62 18.44 0.17 -4.4 -1.8 13.09 Run Macro "Goali" Loc 1 Cut C (b) Macro " Goal 1" Outside(b) o ys.io = 50 Ksl RTndt = -10 P-T curve Kle Loc 1 Cut C otor/oy a Mm Kipri Kisec Kl. T-Rtndt Temp. (Goal Seek) SU g.g.,_ p=1000 a=es 1.00 2.08 61.26 10.51 142.02 152.9 142.9 sq SDF ly$$$:hhI E p=1es a=46 SD 0.39 1.91 30.28 -4.34 56.23 58.8 48.8 [N Yhhh N! ! R p=0 a=6 6 0.26 1.9 23.88 -11.28 36.48 -17.7 -27.7 ((NiOM,I

                                            " Goat Seek" Per Sect 111 G-2210-1                     T (for Rtndt =)

(T+RTndt) (T-RTndt) Kla p -10 -5 5 10 122 142 125.50 0 132 137 147 152 126 146 131.60 250 136 141 151 156 145 165 164.70 500 155 160 170 175 148 168 170.30 750 158 163 173 178 156 176 187.40 1000 166 171 181 186 171 191 226.90 181 186 196 201 TR-2318 p T (T+RTndt) T+40*F 0 140 130 170 250 145 -135 175 500 170 160 200 750 175 165 205 1000 180 170 210' RPVFINLF.XLS Stress Sum L'

l i i I CALCULATION SliEET CALC NO. M 778 PREPARED BY JSR PRELIMINARY BOSTON EDISON DATE 2/6/98 COMPANY X_ITNAL' REV 0 DATE,J/6/98 SilEET N OF

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 *F Differential Temperature Limit Outside(b) Primary Secondary Loc 4 Cut V ou os o. os or oror SU p=1000 a=30 8.45 36.22 0 9.3 10.5 64.54 SDF p 185 a=12 1.56 36.22 0 13.0 -3.7 47.05 SD p=0 a=34 0;00 36.22 0 0.9 -10.2 26.96 Run Macro " Goal 1" Loc 4 Cut V (b) Macro "Goalt" Outside(b) o vi.io = 50 Ksl RTndt = -10 P-T curve Kle l Loc 4 Cut V otor/oy.e Mm Klpri Kisec Kin T-RTndt Temp. (Goal Seek)l SU p=1ooo a=36 1.29 2.88 93.84 38.14 225.8 190.6 180.6 SDF p=18S a=12 0.94 2.69 69.06 16.59 154.7 160.1 150.1 SD p=0 a=34 0.54 2.57 61.95 -15.83 108.1 128.9 118.9 ,- M Design Hydro Node 2startup Shid'dnDd E!LuGlnfind Bolt PL Pres Test Pres Test "20" inside (a) -13.53 -13.99 -13.61 -17.48 12.50 -13.83 Loc i cut c outside (b) 47.84 21.13 14.84 18.44 55.73 67.78 Stress inside (a) -15.50 -12.61 -11.86 Totals , 7 < side (b) 49.82 19.75 13.09

      *26" -      Inside (a)        3.18        9.45     -15.20      -12.44        0.48        1.90 Loc 1 cut i   outside (b)       14.06       13.47      16.67       13.30       21.81       25.88 Stress        inside (a)      -14.48        4.89       2.17 Totals       outside (b)       31.71        8.91      -0.71                                                        l
                                                                                                                       )

RPVFINLF.XLS Stress Sum 1 a

I J CALCULATION SHEET CALC NO. M-228 . PREPARED BY JSR l PRELIMINARY BOSTON EDISON DATE 2/6/98 l COMPANY X FINAL REV 0 DATE 2/6/98 SHEET dd OF bI SIIBJECT: Evaluation of RPV Flange to Adjacent Shell 145 *F DifferentialTemperature Limit oipr osec 10.5 Po om os o. on om,.c over 1000 8.5 0.0 0.0 -11.35 36.22 Ref. Pt. 750 6.3 0.0 0.0 -8.5 36.22 44.6 500 4.2 0.0 0.0 -5.7 36.22 45.3 250 2.1 0.0 0.0 -2.8 36.22 35.5 RTndt = -10 Po o ri.w cror/a,. Mm Kipri Kisec 1000 50 N/A N/A N/A N/A 750 50 0.89 2.70 82.4 3.6 500 50 0.91 2.71 76.9 8.8 250 50 0.71 2.62 68.8 -5.0 Loc 4 Cut V (b) Macro Goalt-Revised P-T curve Kic T p Kla T-RTndt Temp. (Goal Seek) 180.6 1000 N/A N/A N/A N/A 157.2 750 168.5 167.2 157.2 MJ i R$ 154.2 500 162.5 164.2 154.2 IJRB23 i5 137.1 250 132.7 147.1 137.1 WIS2;1 7F 150.1 185 118.9 0 Original P-T Curve T p (O'3 9 '"*')

                                                                  ' U                        '

165.4 1000 e 157.2 750 s 800i ,,f- -

                                                                                                         -<>--Elem 4      i
                                                               $ 600                                     -=- Elem 1
                          - 54.2              500                                        /-     -
                          ~
                               .37.1          250              $ 400 -                7
                          - 128.5                             E 185                  g                          l 109.2            0                       50 0   50 100 150 200 T emp (*F)

RPVFINLF,XLS Stress Sum J

1 Macros CALCULATION SHEET CALC NO. M-778 \ PREPARED BY JSR_ PRELIMINARY BOSTON EDISON DATE 2/6/98 COMPANY _X_ FINAL REV '0 DATE 2/6/98

                 -                                     SHEET 6I OF

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 "F DifferentialTemperature Limit c) Macro 4 c) Macro 3

 = WORKBOOK. SELECT (" Loadings"," Loadings")         = WORKBOOK. SELECT (" Loadings"," Loadings")

cSELECT("R91C2") = SELECT ("R91C2")

 = FORMULA ("3")                                      = FORMULA ("3")
 = SELECT ("R21C12")            .
                                                      = SELECT ("R21C12")
 = FORMULA ("= Loadings!R91C2")                       = FORMULA ("=1")

OWORKBOOK. SELECT (" Stress Sum"," Stress Sum") = WORKBOOK. SELECT (" Stress Sum"," Stress Sum")

 =SELECTCR119C7")                                    . = SELECT ("R119C7")
 = GOAL. SEEK ("R119C7",80,"loadingsl R91 C2")        = GOAL. SEEK ("R119C7",80," loading s! R91 C2")
 = SELECT ("R119C5")                                   = SELECT ("R119C5")
 = FORMULA (" Macro 4")                                = FORMULA (" Macro 3")
 =RETURNO.                                             =RETURNO b) Macro 2                                            e) Macro 5
 = WORKBOOK. SELECT (" Loadings"," Loadings")          = WORKBOOK. SELECT (" Loadings"," Loadings")
 =SELECTCR91C27                                        =SELECTCR91C27
 = FORMULA ("3") .                                     = FORMULA ("3")
 = SELECT ("R21C12")                                   = SELECT ("R21C12")
 = FORMULA ("= Loadings!R91C2")                        = FORMULA ("= Loadings!R91C2")
 = WORKBOOK. SELECT (" Stress Sum"," Stress Sum") = GOAL. SEEK ("R96C5",145,"R91C2")
= SELECT ("R12007") = WORKBOOK. SELECT (" Stress Sum"," Stress Sum")
 = GOAL.S EEK("R 120C7",80," Loading s! R 91 C2")      = SELECT ("R119C5")
. = SELECT ("R119C5")                                  = FORMULA (" Macro 5")
 =FORMULACMacro 2")                                    =RETURNO
 =RETURNO Macro 6
                                                       = WORKBOOK. SELECT (" Loadings",* Loadings")
                                                       = SELECT ("R91C2")
                                                       = FORMULA ("1")
                                                       = SELECT ("R21 C12")
                                                       = FORMULA ("= Loadings!R91C2")
                                                       = WORKBOOK. SELECT (" Stress Sum"" Stress Sum")
                                                       = SELECT ("R119C5")
                                                       = FORMULA (" Macro 6")                              '
                                                       =RETURNO
                                                                <                                         ]

G::ali

                             . CALCULATION SHEET              CALC NO.      M-778 PREPARED BY JSR _

PRELIMINARY BOSTON EDISON DATE 2/6/98 COMPANY '_X FINAL $ REV 0 ' DATE - 2/6/98 SHEET MOF

SUBJECT:

Evaluation of RPV Flange to Adjacent Shell 145 'F DifferentialTemperature Limit Goali nWORKBOOK. SELECT (" Stress Sum"," Stress Sum") uSELECT('[RPVFINLF.XLS] Stress Sum'lR191)

 = GOAL. SEEK ([RPVFINLF.XLS] Stress Sum *!R191,'[RPVFINLF.XLS]Stre
 = SELECT (*[RPVFINLF.XLS] Stress Sum'IR192)
 = GOAL. SEEK ([RPVFINLF.XLS] Stress Sum'!R192,'[RPVFINLF.XLS]Stre
 = SELECT ('[RPVFINLF.XLS] Stress Sum'IR193) nGOAL. SEEK ('[RPVFINLF.XLS] Stress Sum'!R193,'[RPVFINLF.XLS]Stre
  • SELECT ('[RPVFINLF.XLS] Stress Sum'll191)
 = GOAL. SEEK ('[RPVFINLF.XLS] Stress Sum'll191,'[RPVFINLF.XLS]Stres
 = SELECT ('[RPVFINLF.XLS] Stress Sum'll193)
 = GOAL. SEEK ('[RPVFINLF.XLS] Stress Sum'll193,'[RPVFINLF.XLS]Stres
 = SELECT ('[RPVFINLF.XLS] Stress Sum'll195)
 = GOAL. SEEK ('[RPVFINLF.XLS] Stress Sum'll195,'[RPVFINLF.XLS]Stres
 = SELECT (*[RPVFINLF.XLS] Stress Sum'!R224)
 = GOAL. SEEK ('[RPVFINLF.XLS] Stress Sum'IR224,'[RPVFINLF.XLS]Stre
 = SELECT ('[RPVFINLF.XLS] Stress Sum'IR225)
 = GOAL. SEEK ('[RPVFINLF.XLS] Stress Sum'IR225/[RPVFINLF.XLS]Stre
 = SELECT ('[RPVFINLF.XLS] Stress Sum'!R226)
 = GOAL. SEEK ('[RPVFINLF.XLS] Stress Sum'IR226,'[RPVFINLF.XLS]Stre
  = SELECT ('[RPVFINLF.XLS] Stress Sum'll225)
  = GOAL. SEEK ('[RPVFINLF.XLS] Stress Sum'll225,'[RPVFINLF.XLS]Stres
  = SELECT ('[RPVFINLF.XLS] Stress Sum'll227)
  = GOAL. SEEK ('[RPVFINLF.XLS] Stress Sum'll227,'[RPVFINLF.XLS]Stres
 = SELECT ('[RPVFINLF.XLS] Stress Sum'll229)
  = GOAL. SEEK ('[RPVFINLF.XLS] Stress Sum'll229,'[RPVFINLF.XLS]Stres
  =RETURNO
                                                                                                                                                                                  ~7 l

Attachment 10.113 Calc. M-778 R;v. O l l

1. RPV Metal & Fluid Temp's Outage (12/08/97-12/10/97) Heatup [ Rampa 29 Dogh j 600 i
                                                                                           /

r - 500-p-A-m . ._ . Loo, A Loop B { Flange T

g. _ __ ghg
u. ShedT

[ Tave. Ramp 300- - _ sNJ. s 100- - 0 12/8/97 0:00 12/8/97 12.00 12/9/970.00 12/9/97 12.00 12/10/97 0.00 12/10/9712.00 Date & Time 1a?A-A" RPV Metal & Fluid Temp's Outage (12/08/97-12/10/97) Heatup Ramp (-29 Ngh)

                                                                                                           /

500 4 450 pel / w ## 350- , f300 -- -

                                                                                                                                                    - Loop A g           ------                                                                                                                             ,,,,,

g 250- , p

       >-           ----"""'                                                                                                                           Flange T 200                                                                          ___.-.._q._._..-                                              Wil T 150                                            . . . - - . . + - - . - - - - - . _ --                    __                             T V9 100 12/9/97 9 00-           12/9/97        1219/97       12/9/97             12/9/97           12/9'97           12/9S7 10 30          12 00          13 30              15 00             16 30              18 00 Date & Time T_ RAMPS.XLSPlots                                                               Page 1/5                                                                              2/11/98 u                                                                                                                                        .                                      ..

Attachment 10.113 C:Ic. M-778 R:;v. 0

2. RPV Metal & Fluid Temp's j Ramp - 17 Dog /hr 400 H**"" "FOii 'd#141871 '
                                                                                                            /
                                                                                                              /

3%. .

                                                                                                     /
--w 300 ^--

u250-g __ l [ ~ * - Loop A L"PB

                                #         ^

g>00 f rC"'

                                                                        ]f                                                                                 Flange T Shell T Tave. Ramp g.

100-A-A 50 0 4/13/97 21:35 4/14/97 9.06 4/14/97 20:38 4/15/97 8:10 4/15/97 19:41 Date & Time 2a. 'A4" RPV Metal & Fluid Temp's Heatup RF011 (4/14A7) Ramp (-17 Deg/tw)

                                                                                                              /

350 ,g.

                                                                                                         /

33 /

                                                                                         /,_,

m: ./ A ...... O i

                                                                                                  /',,,                                          ~ ~ ' ~ Loop A 275                                                        _

j

                                                               /

j / Loop B Flange T 2% -

                                                -       /                                                                                                 Shell T F                                                                                                                                                   Tavg Ramp 225'                   ---                                                                           -
                                                                   /--#

we....s/ , f r! 200 ,

                                .-,J                                                     - . _ - . - - _ '_
                                                ,,pl-             ._ _.. ,_                                            . - . . . - -
                        ........~..r',                          ,

4/14/9718 00 4/14/97 21 00 4/15/97 0 00 4/15/97 3 00 4/15/97 6 00 4.'15/97 9 00 Date & Time T RAMPS.XLSPlots Page 2 /5 2/11/98 w . _ _ - -

i Attachm:nt 10.1 to C Jc. M-778 R:v. O l

3. RPV Metal & Fluid Temp's Ramps -33 to 47 Deg/hr Coordn RFO11(2/15/97) 550 500- **.'- 7 Ot** .. . *e _

450 g N  %

                                \
                                         .V                       'h:2                                           )

u. 400 - -\- htg

                                  ..,                                           'd:                                                           - - Loop A f 350                     .\                                                       k:'w.                                                   LMpB
                                        %                                                            a*t:                                           FWT
          ~                                     '                                              ^                                                    Shell T 300                                                                                                                                  Tave. Ramp
                                                                   .,                                        r
                                                                         %..,[                                                                      Senes6 p

250-f 200

                                                                                                         /

150 -

                                                                                                         '\h-100 2/15/97 0.00        2/15/97 6:00                         2/15/97 12.00                       2/15/9718 00           2/1G/97 0.00 DJ.ie & Time 3a "A-A" RPV Metal & Fluid Temp's Coordn RF011 (2/15/97)                           Ramps (47 Deg/hr)
                                                                                                                        /

400

                                                                                                                    /

2:2 4 350 D:n ' 300- f e 2 250 e

                                                                                           /

g M' i >/ r x

                                                                             \
                                                                                                                                            ~~'~
                                                                                                                                                    "P^

150 - - -

                                                                               'Ss                                         --

lmpB s l j Flange T 100 ' Shell T 2/15/97 6 00 2/15/9712 00 2/15/9718 00 2/10/97 0 00

                                                                                                                                          '~

Tm Rg Qate & Time

     ._..-_,m....                         _ . . . _ . . . _ . . ,         _                   . _ _ . .                 _ ._

T_ RAMPS.XLSPlots Page 3 /5 2/11/98

Attachment 10.113 Calc. M-778 R;.v. 0

4. RPV Metal & Fluid Temp's Ramp - 20 Deg/hr Heattep RF010 (6/2/96) 370 350 #
                                                                                       /

i l c 330 310 / / -- g

                                                                                                             /'-

290 #S _ . _ . Loop A 270 I - - lopB g 250

                                                    -       "g          .     ,.
                                                                             ,,,,5 a                  .

f Flange T

                                                                        ,                                                                Shell T

_ ,1 Tavg Ramp

                                                                   '      '~~

210 - - - - 190- -

                                 - s       -

gJ 170- g TsiiN 150 6/2&56/2/956/2/956/2/956/3/956/3/956/3/956/3/956/3/956/3/95 12:00 15:00 10.00 21:00 0.00 3:00 0:00 9.00 12:00 15:00 Date & Time da. "A-A" RPV Metal & Fluid Temp's Heatup RF010 (6/2/95) Ramp (-20 Deg/hr) 275 250 pf u. p / o 225 e-- p 200- > /

                                                        /.'                                                                  -
                                                                                                                                   - Loop A 175-                                                                                                                 F ng T Shell T Tavg Ramp 6/2/95 21 00   G/2/95 22.30              6G95 0 Ob              6/3/95 1:30                    6/3/95300 Date & Time T_ RAMPS.XLSPlot5                                                       Page 4 /5                                                           2/11/98 J

c_

Attachment 10.1 i) C:Ic. M-778 R:;v. O E. RPV Metal & Fluid Temp's Ramps -31 to -34 @ Coordo RF010 (3/25/96) 550 g I . . Loop A

                            ._                                                      /

Soo

                            ....;;- --- v . s.                                   /                             ' cop s
              ,             ch         -
                                           -g w.4.,
                                                               .. %            /                               nanoe T Shell T S                                   ,k k                                          Tave. Ramp
g. ' he .'

4 ._ [ \ E g 350-

                                                      \     '

P { E= k A4 's

                                                                         \.

250 --. - - g 200 , 150 3/25/95 6:00 3/25/95 9:00 3/25/95 12.00 3/25/95 15:00 3/25/95 18:00 3/25/95 21:00 Date & Time 6a. RPV Metal & Fluid Temp's Ramps -31 to -34 Deg/hr Coordn RF010 (3/26/95) 550

                       $00                                                                              - -
  • Loop A

[-.","*' -- .. Loop B 450 % ~~%* M, Flange T g gg ..,'

                                                           ~"4 4 s::an            /

j Shell T g h 350 - ( N Tave Ramp g u. s 250 - As A-A D\ 200-150 3/25/95 3/25/95 3/25/95 3/25/95 3/25/95 10 48 13 12 15:36 18 00 20 24 pate & Time T_, RAMPS.XLSPlots Page 5 /5 2/11/98

pn.kL,f e kL PRELIMINARY EVALUATION CHECKLIST RType A9.02

1. IDENTIFICATION: Document Number M-778 Revision 0 D:scription: Determine maximum differential temocrature that can exist between the reactor vessellower flanae and the adjacent shell vet remain within ASME Sect. Ill acceotable limits.
2. CLASSIFICATION:

X Yes No a. Does the proposed change involve Q listed equipment? O Yes X No b. For a new procedure, a new temporary procedure, or a major revision; does the new procedure, new temporary procedure, or the change proposed by the major revision contain procedural steps or requirements in the FSAR? If yes, identify FSAR sections. O Yes X No c. Is this a new procedure or temporary procedure that is Fire Protection Program related or a major revision that makes an existing procedure Fire Protection Program related?

3. PRELIMINARY EVALUATION O Yes X No a. Could this modify plant characteristics or procedural steps described in the FSAR? If yes, identify section:

0 Yes X No b. Could this affect the design of systems, structures or components described in the FSAR? O Yes X No c. Could this affect the function of systems, structures or components described in the FSAR? O Yes X No d. Could this affect the method of performing the function of systems, structures or components described in the FSAR? O Yes X No e. Could this indirectly affect the capability of safety related systems, structures or components described in the FSAR to perform their functions? O Yes X No f. Could this defeat an ESF or safety system interlock? [OE 95.0120] O Yes X No g. Could this create a new test not described in the FSAR that could affect plant safety? O Yes X No h. Could this change modify assumptions used in the accident analyses described in FSAR Chapter 14? If yes, identify sections: 0 Yes X No i. Could this change affect the ability of a system required to achieve and maintain safe i shutdown in the event of a fire? O Yes X No J. Could this change affect a requirement of, or major commitment to,10CFR50 Appendix R7 0 Yes X No k. Could this change affect a requirement of IE Circular 8018 (for Radioactive Waste Systems)? O Yes X No I. Could this affect the function of systems or components required for compliance with the l Limiting Conditions for Operation in the Technical Specifications? ] Yes X No m. In the judgment of the evaluator, is a Safety Evaluation required?

4. S AFET( EVALUATION REQUIRED? Yes X No if th3 answer to any question in Part 3 is "Yes", then a Safety Evaluation is required prior to implementation. If a Safety Evaluation is not required, provide an explanation below:

This analysis is an

  • Evaluation" solely to determine whether the reactor vessel thermal stresses may be capable of exceeding the results obtained from the design basic analysis of record and also remain within Code acceptable limits. If the results of this calculation are used to change the Technical Specifications, an FSAR change may be required.

GENERAL REFERENCE MATERIAL FSAR SectioJ Tech Specs Calculations /Desian Specs / Procedures Other Q 3.6A 1 Station Progedure 2.1.7 'Ocer 07" NUREG-1433 STS I6 TR-2318 Teledyne RPV P-T Analysis ENG-1139 Analysis of PNPS RPV

5. PREPARED BY: W // /J d Date E ff ~
                                                             ~
                                                                   /                               /'~

f f ' Title / APPROVED BY: ' M ~ A' V A bJ' bD Date: } //[/ff # I M Exhibit 4 NOP83E5 Rev.10 I

   .                                                                                                             ,enn hd$

Calculation - Ind:prndant V:rificction St t:msnt Record S. Revision # O has been independently verified by the following method (s), as Calculation # noted below: Mark each item yes, no or not applicable (N/A) and initial each item checked by you. . Design Review @1ncluding verification that: fa Design inputs were correctly selected and included in the calculation. kOAssumptions are adequately described and are reasonable, o MO Input or assumptions requiring confirmation are identified, and if any exist, the calculation has been identified as " Preliminary" and a " Finalization Due Date" has been specified. fry okO Design requirements from applicable codes, standards and regulatory do identified a'nd reflected in the design. o Applicable construction and operating experience was considered in the design. e The calculation number has been property obtained and entered.

  • An appropriate design method or computer code was used.

o A mathematical check has been performed. , o ECThe output is reasonable compared to the input. Attemate Calculation O including verification of asterisked items noted above. The attemate calculation ( - pages) is attached. Qualification Testing O for design feature including verification of asterisked items noted above and the following:

  • The test was performed in accordance with written test procedures.
            .        Most adverse design conditions were used in the test.
            .        Scaling laws were established and verified and error analyses were performed, if                     I I

applicable'.

            .        Test acceptance criteria were clearly related to the design calculation.
  • Test results (documented in ) were reviewed by the calculation Preparer or other cognizant engineer.

Independent Reviewer Comments lS/ oter m ck$YV Indep@ent Reviewer /Dat6 Preparer concurrence with /S/ ~

                                                                      #                   -    M7[F 

findings and comment resolution repar/r or Other Dognizant $ngineer' 1 Note: Exhibit 3.06-B (Sheet 3 of 3) may to used for additional comments by IV as a part of the l i Independent Verification for calculations. oocumerd3 NEs0 3 OG Rev 7 Page 1 of 1

c a &p oi n @ u<d S e frier B. WT52G) fryseed : t sc e<s e A m ea,Ino I h Becs roe t *rea t spec,pco / cia J.d A*/ 4 ffim*-a4e the so s

  • p p ap p n e f re t T e ../ pedif y 4. t. A .i Sar ee)/fo nc e Roya are, n4 e<J 8csis 3/+ .4.A gore w e ti: ;/

ASSESSMENT PERFORMANCE SHEET PNPS Self-Assessment ess FUNCTIONAL WORK AREA: lesu(= % Arrade PERFORMANCE AREA No.:tece-se /-~./,.~ / (Exhibit 4) TEAM MEMBER: .4'. ~>~. O(/s//7R DATE: ASSESSMENT METHOD: O Observation dument Review 0 Interview CONCLUSION: Mof Strength 0 Area forimprovement O Corrective Action Reqd. PR No. PREVIOUS OBSERVATION or ACTION ITEMS: O No O Yes - reference document OBSERVATIONS or COMMENTS Executive review of outgoing corresnondence. Document quality - er good, fair, poor (circle one) Did you have adequate time to review E NO Days until due date 7 O Is the regulatory strategy appropriate? No N/A I Comments: h ae 7" F Assess. dot computer generated version

O ev / pot <> NA'C l

  • lW 9 95'o23 Pr. pose.1: & ie a .se 4-. . Ja ,a 4 /o E x. rer/~e. f s/ <<s- 6 /
  • 3.4 4.i ,r.

E l s' i.,a 1 e 1 4 i9sar i?iye-n Mt i Tr-/* ~ 4~#< l// *~/ A' 4 1 4.c.A.i o

                                 ** d Be.s es 2ftf. 4. A sune;(fea re S#fsei<m"+ ASSESSMENT PERFORMANCE SHEET                                             ,-

PNPS Self-Assessment cs a FUNCTIONAL WORK AREA: R m (a.4e7 Ap ,;3 PERFORMANCE AREA'No.: die A- ,d-c4/ (Exhibit 4) TEAM MEMBER: V. o aefu [AIJ9[A

                                             -         r     j DATE:   3/Iz./M ASSESSMENT METHOD:                    O Observation       gDocument Review          0 Interview CONCLUSION:          O Area of Strength    O Area forimprovement      O Corrective Action Reqd.

PR No. PREVIOUS OBSERVATION or ACTION ITEMS: O No O Yes - reference document OBSERVATIONS or COMMENTS Executive review of outgoing corresnondence. Document quality - superior go fair, poor (circle one) Did you have adequate time to review? NO Days until due date A/ Is the regulatory strategy appropriate? No N/A Comments: Y0f( ( []f}8 fD A*)(,f) h fu I o u ~ Assess. dot computer generated version

                                                                                                           \

Licensina Correspondence Control Sheet Outgoing NRC Letter 2.98.023 Date: March 25,1998 Distribution:

  • Except for those personnel annotated with an *, the report was electronically distributed DCC*

Licensing File #1 H. V. Oheim EXE L. J. Olivier EXE N. L. Desmond #1 W. Riggs #58 NSRAC c/o B. Gaedtke #20 J. P. Gerety #33 T. A. Sullivan #CTC L. E. Wetherell #56 C. S. Goddard #56 J. F. Alexander #41 T. A Venkataraman #13 J. W. Keene #1 J. D. Keyes #1 D. W. Ellis #1 K. R. DiCroce #1 D. F. Tarantino #16 W. B. Stone EXE S. Brennion #1 T. McElhinney #57 M.T. Lenhart #1 J. Plummer FERC #16 L.Chan #6 C. Mathis #28 T. Trepanier #57 T. White #9 J. Roberts #5 E. Almeida #8 W. DiCroce #49 S. Wollman #44 J. Rogers #5 C. Martin #5

Title:

Proposed: License Amendment to BECo Technical Specification 3.6.A.1 to Eliminate the 145'F Differential Temperature Limit and Modify 4.6.A.1 Surveillance Requirement and Basis 3/4.6.A. Summag: This proposed change will modify PNPS-Technical Specification Section 3.6.A.1 by removing the limiting condition for operation pertaining to "The reactor vessel flange to adjacent reactor vessel shell temperature differential shall not exceed 145'F." It will also modify section 4.6.A.1 Surveillance Requirements for Thermal and Pressurization Limitations, and Basis section 3/4.6.A.' I I

                                                                                                             )

Lead Licensina Enaineer { C.S. Brennion [ Action: None - When approved, this change will be incorporated via the standard process.

Reference:

license / letters /298023 4 CSB/dcg l J}}