ML20216J161
ML20216J161 | |
Person / Time | |
---|---|
Issue date: | 07/12/1999 |
From: | King T NRC OFFICE OF NUCLEAR REGULATORY RESEARCH (RES) |
To: | Holahan G, Matthews D, Strosnider J NRC (Affiliation Not Assigned) |
References | |
NUDOCS 9910040207 | |
Download: ML20216J161 (97) | |
Text
I
{ fpfw ybb
, e ,, , s ,
O >t UNITED STATES
[ k,. ,,Q j NUCLEAR REGULATORY COMMISSION OM gg' e wassisovoN o c roumi
%v j At.,$ W CH-
- A
- A
e n.
- , r..
S o
> E
- q l
~ \
- m. @
$5 I
?
i ABSTRACT This report documents an analysis of the performance of safety-related turbine-driven pump assemblies (turbine driver, pump, and governor subcomponents) used in the pressurized water reactor (PWR) auxiliary feedwater (AFW) system and in the i boiling water reactor (BWR) reactor core isolation cooling (RCIC) and high pressure f coolant injection (HPCI) systems in U.S. commercial power reactor plants. !
l Both a risk-based analysis of operating data and an engineering analysis of trends and patterns were performed to provide insights into the performance of turbine j driven pump components on an industry basis and comparison of results with data j used by plant-specific probabilistic risk assessments. The data used in this report I was from the 1987-1995 period for engineering analysis of the PWR AFW system and the BWR RCIC and HPCI systems. Failure probability estimates used combined engineered safety features (1987-1998) and surveillance test data (1987- ,
1995) for the BWR RCIC and HPCI systems, while PWR AFW system used j engineered safety features failure and demand data from licensee event reports only (1987-1998).
)
1 t
EXECUTIVE
SUMMARY
This study provides the performance evaluation based on industry experience during the 1987 through 1998 period for turbine-driven pumps (TDPs) in the pressurized water reactor (PWR) auxiliary feedwater (AFW) system and in the boiling water reactor (BWR) reactor core isolation cooling (RCIC) and high pressure cooiant injection (HPCI) systems. The objectives of component performance studies are: (1) to determine the reliability of risk important components and compare the results with estimates in probabilistic risk assessments (PRAs) and individual plant examinations (IPEs) and (2) to review the operational data from an engineering perspective to determine trends and patterns and gain insights into component performance.
TDP failure and estimated demand data was obtained from two databases. The Nuclear Plant Reliability Data System (NPRDS) provided component failures and surveillance test frequencies for the 1987-1995 period. The Sequence Coding and Search System (SCSS) provided Engineering Safety Features (ESF) failure and ,
demand data for the 1987-1998 period and limited surveillance test failure data for !
the 1987-1995 period. l l
For the PWR AFW system, the TDP probability of failure on demand e. stimate was based on ESF failure and demand data from LERs for the period 1987-1998. For BWR RCIC and HPCI systems, the TDP probability of failure on demand estimates were based on the combined ESF and surveillance test data for failures and demands from LER and NPRDS data sources. The ESF data (LERs) was from the 1987-1998 period, while the surveillance test data (NPRDS) was from the 1987-1995 period. Table ES-A lists the TDP probability of failure on demand estimates developed in this study for the AFW, RCIC, and HPCI systems and the generic values referenced in this study (NUREG-4550). Table ES-B provides the standby failure rates for each system.
TABLE ES-A TDP PROBABILITY OF FAILURE ON DEMAND (19871998)
SYSTEM / SOURCE LOWER BOUND MEAN UPPER BOUND NUREG-4550 1.1E-3 3E-2 1.1E-1 AFW System 2.2E-2 4.0E-2 6.4 E-2 j RCIC System 9.1 E-6 2.0E-2 8.7E-2 HPCI System 1.6E-3 3.3E-2 9.7E 2 TABLE ES-B I
TDP STANDBY FAILURE RATE (1987-1995) ,
SYSTEM / SOURCE LOWER BOUND MEAN UPPER BOUND l AFW System 14 E-5/ hour 1.8E-5/ hour 21E 5/ hour q 1.3E-5/ hour 1.7E-5/ hour j RCIC System 9.1 E-6/ hour HPCI System 21E 5/ hour 2 9E 5/ hour 3 8E 5/ hour 1
L
1 The'TDP mean probabilities of failure on demand'used in plant-specific IPE studies were compared with the results of this study. For BWR RCIC and HPCI systems, all of the IPE mean values for the TDP failure on demand probability were within the range of this study and NUREG-4550. However, for the AFW system, half of the j IPE mean values were outside the probability of failure on demand range that was estimated in this study. The difference is believed to be due to the use of only engineered safety features (ESF) failure and demand data in this study. We found that the surveillance test failure and demand data were nr* statistically in the same ;
population as the unplanned ESF failure and demand datr Moreover, we are j aware that the surveillance tests for AFW TDPs were usuxily preconditioned (i.e., j warmed-up), while TDP ESF demands experienced the more stringent " cold quick '
starts." The AFW TDP values used in IPEs were consistent with the probability of failure on demand values estimated from the surveillance test data. RCIC and HPCI TDP surveillance testing generally prohibited the use of preconditioning. Figures ES-1, ES-2, and ES-3 show these comparisons for the AFW, RCIC, and HPCI systems, respectively f
r---
- uw.7 PROBABILITY OF FAILURE ON DEMAND l 1.000E + 00 1.000E 01 ,
1.000E 02 .
1.000E 03 . . l 1.000E 04 u- > o g o g m x > > 2 3 4 x w w e r g w x w . r w x 2 -
IS Eb U 6946o
!O $$b E5 e xou h I
,bct@@@ $
$$$ [ ! 5f!!N h REPORT / PLANT l
FIGURE Es-1 ,
PWR AFW SYSTEM TDP PROBABILITY OF FAILURE ON DEMAND l COMPARISON WITH VALUES UsED IN IPEs AND OTHER STUDIES ii l
l l
l I
i
- veas ';
I PROBABILITY OF FAILURE ON DEMAND -'
1000E 4 00 1.000E-01 1.000E-02 '
1.000E -03 .
1.000E-04 1.000E 05 1.000E-06 > a >m a w ox a> acxo u.
m o o e-J 0
- 2 2 I Ox Z0 Z D O@ $U
- O o5EOE m a Qo$oE$-[O 2 od I NN$
- E hEhEOo$$m6hkE$
w g z92 o o a 3zr <E cO -Z o 2 a
< a S S m.Eo S E $
REPORT / PLANT FIGURE ES-2 PWR RCIC SYSTEM TDP PROBABILITY OF FAILURE ON DEMAND COMPARISON WITH VALUES USED IN IPEs AND OTHER STUDIES BWR HPCI SYSTEM-TDPs PROBABlUTY OF FAILURE ON DEMAND 1.000E + 00 1.000E 01 .
. 1.000E-02 . . .
1.000E-03 ';
1.000E-04 1000E-05 > o >m e y 3 2 ay e 7 gr- y a 5m OS$NEo m
- oSm wa m zo 9wd $E E Okb 4
a Q3 odO I< >*$ay s m 1 I) @Mm-@" o$@w i C
$$u
$Z OZ Eh'ggggga 1
kEEO hE e i 5 a e W REPORT / PLANT FIGURE ES 3 PWR HPCI SYSTEM TDP PROBABILITY OF FAILURE ON DEMAND COMPARISON WITH VALUES USED IN IPEs AND OTHER STUDIES l iii l
l l
l
[L l
I Failure trends for the PWR AFW system during the 1987-1995 penod were relatively constant, except for an upward peak in 1989 and 1990. For BWRs (RCIC and HPCI combined), there was a marked decreasing trend after 1991. Figure ES-4 shows the TDP failure trends for the 1987-1995 period.
l PWR TDP FAILURES BWR TDP FAILURES AFW SYSTEM RCIC AND HPCI SYSTEMS NO OF FAILURES NO OF FAILURES 18 16 15 -
1[ "
15 14- ,
13 V 7 j
l 11 p,'~ 10 N F 10 I
- 10 ;
r y-10 h.- 9 ' j 8 8 7 l-
~
8 1
S? - ',:l -
d5' 2 :
- F s
75 Sn S s 7p
, , S o, l -
r u n , ^
h-
/
c jhhhm
, /
h7 7 / / /
/ t { f,
[
4':- OPUMP j_ [f[ w[k k k I OPUMP' ;: # 'I[lI 87 88 89 90 91 92 93 94 95 OTURBINE 87 88 89 90 91 92 93 94 95 OTURBINE O GOVERNOR CALENDAR YEARS OGOVERNOR CALENDAR YEARS 101 No BWR failures 92 No PWR TDP ta.
FIGURE ES-4 TDP FAILURE TRENDS Failure rates, as a function of component-years, were compared among the PWR and BWR plant age groups (3 groups, of approximately equal size, from older to newer plants by commercial operations date). For both PWRs and BWRs, the l review of plant age groups did not show clear evidence of component aging or plant age effects on TDPs.
(
IV l
l l
F r The evaluation of TDP subcomponent failure patterns demonstrated that failures of governor subcomponents were significant contributors to the TDP failures in the BWR RCIC system, while both turbine and governor subcomponent failures were significant contributors to the PWR AFW system and BWR HPCI system. Pump l subcomponent failures were relatively insignificant.
L Failure causes for TDP assemblies in AFW and RCIC systems'were mainly due to j , both age / wear and maintenance / procedural deficiencies, while l
maintenance / procedural deficiencies was singularly predominant for the HPCI system. Figure ES-5 shows the TDP assembly failure causes for the AFW, RCIC, and HPCI systems.
i l
PWR AFW SYSTEM TDP ASSEMBUES BWR RCIC SYSTEM TOP ASSEMBUES l ALL SU8 COMPONENTS Att SUBCOMPONENTS '
BWR HPCI SYSTEM TDP ASSEMBUES t _
Att SUBCOMPONENTS_ _
" *U Mrt roc
[ 26% ' ' ' 3% ,_
g j
";n
/'N'T 3 ,
- - Y%
og. **g *' Sy* -
uag-a ,o o., ,, o.,
- 5%
l i
FIGURE Es-5 TDP ASSEMBLY FAILURE CAUsEs l
L - During the study period, TDP failures remained high relative to other risk important L component types, such as motor-driven pumps. Governor subcomponent failures j were mainly due.to maintenance / procedural deficiencies. However, the existing j programs under the Maintenance Rule should improve overall performance of
! TDPs.
v i
l L'
f l
l l
)
ACKNOWLEDGMENTS l
We thank our colleague Dr. Dale M. Rasmuson for his technical assistance in the i review and presentation of the statistical data.
1 1
I 1
1 1
vi I
L
c l'
l l CONTENTS ABSTRACT EXEC UTIVE S UMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . .......... ... .i A C K N OWL E D G M E N TS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi ACRONYMS................................................... . . . . . ix
- 1. I N T R O D U C TI O N . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Purpose .. . . . 1 1.2 Background . . .. . 1 1.3 Overall Study Structure . . . . . 3
- 2. S C O P E OF STU DY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 Risk-Important Systems . . . . . . . . . . 3 2.2 TDP Assembly Description and Boundaries . . . . 4 2.3 Data Collection . . . . . . . . 4 2.4 Operational Data Analysis . . 8
]
i
- 4. ENGIN EERING ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.1 Failure Trend Analysis .. . . . . . .. 15 4.2 Component Trends in Time . . . .. . . 17 4.3 Failure Characteristics and Their Causes . . 22 4.4 Related Issues - Information Notices . . 27 !
- 5. S UMMARY OF RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.1 Failure Probabilities . 28 5.2 Engineering Insights . . 28
- 6. REFERENCES...............................................30 l
vii t
o CONTENTS (CONTINUED)
FIGURES 1 NPRDS Database TDP Failures . . . 6 2 SCSS Database TDP Failures . 6 3 PWR AFW System TDP Probability of Failure on Demand -
Comparison with Values Used in IPEs and Other Studies 12 4 BWR RCIC System TDP Probability of Failure on Demand-Comparison with Values Used in IPEs and Other Studies 13 5 BWR HPCI System TDP Probability of Failure on Demand-Comparison with Values Used in IPEs and Other Studies , 14 6 PWR and BWR TDP Failure Trends . . . . .. ... ... 16 7 PWR AFW System TDP Component Trends in Tirne .. . 20 8 BWR RCIC/HPCI Systems TDP Component Trends in Time 21 9 TDP Subcomponent Failure Apportionment ........ 23 10 PWR AFW System TDP Failure Causes . . 24 11 BWR RCIC System TDP Failure Causes .
25
)
q 12 BWR HPCI System TDP Failure Causes .. 26 TABLES A TDP Probability of Failure on Demand (1987-1998) . . . . 10 B- TDP Standby Failure Rate . . . . .... . .. . .. 11 C NRC Information Notices (ins) Concerning TDP Assemblies (1986-1998).. .. . .... . .. ... 27 APPENDICES I Failure Probabilities-TDP Assembly ll TDP Assembly - Component Trends in Time lll TDP Assembly - Engineering Insights IV Data Source inputs For Reported Failures and Estimated Demands - )
TDP Assemblies !
l i
i VIII i
i
ACRONYMS AFW - Auxiliary Feedwater system
-AOV - Air-Operated Valve
.BWR - Boiling Water Reactor ESF Engineered Safety Features HPCI - High Pressure Coolant injection system INEEL - Idaho National Engineering and Environmental Laboratory
'IPE - Individual Plant Examination LER - Licensee Event Report MDP - Motor-Driveri Pump MOV. - Motor-Operated Valve NPRDS - Nuclear Plant Reliability Data System NRC - United States Nuclear Regulatory Commission ORNL - Oak Ridge National Laboratory PRA - Probabilistic Risk Assessment PWR - Pressurized Water Reactor RCIC - Reactor Core Isolation Cooling system
- SCSS- - Sequence Coding and Search System TDP -Turbine-Driven Pump Assembly 1
)
l ix l l
j l~
L
- t. )
COMPONENT PERFORMANCE STUDY - TURBINE-DRIVEN PUMPS, 1987-1998
- 1. INTRODUCTION 1.1 - Purpose
. This study provides the performance evaluation of turbine-driven pump (TDP) assemblies in the pressurized water reactors (PWR) auxiliary feedwater system and in the boiling water reactors (BWR) reactor core isolation cooling (RCIC) and high pressure coolant injection systems during the period 1987 through 1998. The objectives of this study are: (1) to determine the reliability of TDP assemblies and compare the results with estimates in probabilistic risk assessments (PRAs) and individual plant examinations (IPEs) and (2) to review the operational data from an engineering perspective to determine trends and patterns and gain insights into component performance.
This study provides an engineering analysis of the factors affecting j component reliability and determined whether trends and patterns were present in the TDP operating data for the 1987-1995 period. This study v.as l
based on the actual operating history of TDPs for these safety-related systems. The reliability parameters calculated in this study are the probability of failure to start on demand and failure rate per standby hours (i.e., standby '
failure rate). Supplemental failure and demand data for 1996-1998 from
- operational events (Engineered Safety Features actuations reported in Licensee Event Reports) was added to the 1987-1995 data for estimating the TDP probabilities of failure on demand.
1.2 Background
The U.S. Nuclear Regulatory Commission (NRC) has undertaken efforts to ensure that the stated NRC policy to expand the use of probabilistic risk ;
assessment (PRA) within the agency is implemented in a consistent and predictable manner. As part of this effort, the Office of Nuclear Regulatory Research (RES), Division of Risk Analysis and Application (DRAA) has undertaken efforts to monitor and report upon the functional reliability of risk-important systems in commercial nuclear power plants. The approach is to compare estimates and associated assumptions utilized in PRAs to actual operating experience. The first phase of the review involves the identification of risk-important systems from a PRA perspective and the performance of reliability and trending analysis on these systems. As part of this review, a risk-related performance evaluation of the turbine-driven pumps for the AFW, RCIC, and HPCI systems was performed.
1
I Over the past decade, the NRC has issued studies applicable to TDP risk-important systems, TDP components or their subcomponent failures, failure on demand probabilities, and trends and patterns. The following provides a ,
listing and description of the studies:
NUREG - 1275, Vol.10 " Operating Experience Feedback Report -
Reliability of Safety-Related Steam Turbine-Driven Standby Pumps," ,
dated October 1994 (Ref.1) documented a detailed analysis of failure )
initiators, causes and design features for steam turbine assemblies 1 (turbines and their related components, such as governors and valves) .
which are used as drivers for standby pumps in the auxiliary feedwater systems of pressurized water reactor plants, and in high pressure q safety injection and reactor core isolation cooling systems of boiling >
water reactor plants (1974-1992).
. AEOD/S95-02, "High-Pressure Coolant Injection (HPCI) System Performance, 1987-1993 Final," dated February 1995 (Ref. 2) documented an analysis of the performance of the BWR HPCI system during the period 1987-1993. Both, a risk-based analysis and an engineering analysis of trends and patterns were performed from HPCI system operational events data (reported by LERs) to provide insights into the performance of the HPCI system throughout the industry and at a plant-specific level.
. AEOD/S97-02, " Reactor Core isolation Cooling Reliability, 1987-1993,"
dated June 1997 (Ref. 3) documented an analysis of the performance of the BWR RCIC system during the period 1987-1993. Both, a risk-based analysis and an engineering analysis of trends and patterns were performed from RCIC system operational events data (reported by LERs) to provide insights into the performance of the RCIC system throughout the industry and at a plant-specific level.
. NUREG/CR-5500, Vol.1," Reliability Study: Auxiliary / Emergency l Feedwater System. 1987-1995," dated August 1998 (Ref. 4) l documented an analysis of the performance of the PWR AFW system during the period 1987-1995. Both, a risk-based analysis and an I engineering analysis of trends and patterns were performed from AFW system operational events data (reported by LERs) to provide insights into the performance of the AFW system throughout the industry and at a plant-specific level l
l 2
1.3 Overall Study Structure This study is arranged in four sections as follows. Section 1 provides the introduction. Section 2 describes the scope of the study, risk-important systems, the TDP assembly and its subcomponent boundaries, and the methodology used for operational data collection and analysis. Section 3 provides the risk-based analysis of operational data, the calculation results for estimating TDP probabilities of failure on demand and standby failure rate, the sensitivity analysis for the data population, the comparison of TDP probability values with those in IPEs and other sources, and the regulatory implications of this component performance study. Section 4 provides the engineering analyses including failure trend analysis, component trends in time, the failure characteristics and their causes, a brief discussion and listing of NRC regulatory initiatives related to TDPs, and engineering insights resulting from the various analyses. .<
The appendices provide related data used in this study and evaluation results.
Appendix I provides the estimated probabilities of failure on demand and calculated standby failure rates. Appendix 11 provides tables of data for the combined total and for each plant age group used to plot the component trends in time and evaluation of aging effects on TDPs. Appendix Ill provides data used for engineering analysis and insights for failure trends and patterns.
Appendix IV provides operational data inputs for reported failures and estimated demands from the NPRDS database and LERs (SCSS database).
- 2. SCOPE OF STUDY -
2.1 Risk-Important Systems and Components The PWR Risk-Important (RI) system that uses the TDP is the auxiliary / emergency feedwater (AFW) system (Westinghouse, Babcock &
Wilcox, and Combustion Engineering reactor plants). The main safety function of the AFW system is to provide feedwater to the steam generators to maintain a heat sink in the event of a loss of main feedwater, a reactor trip or loss of offsite power, and a small break loss of coolant accident. The AFW system is typically a multi-train system, one train with a TDP and one or more trains with motor-driven pumps (MDPs). However, some plants have more TDPs and a few plants have no TDPs (i.e., motor-driven pumps and diesel-driven pumps are used).
The BWR Risk Important systems that use TDPs are the Reactor Core Isolation Cooling (RCIC) and the High Pressure Coolant injection (HPCI) systems. The RCIC system is a single train system that supplies high pressure makeup water to the reactor vessel when the reactor is isolated from 3
l l
I i
i l
the main condenser and the condensate and feedwater system is not available. The HPCI system is a single train system that maintains adequate ;
i reactor vessel inventory for core cooling in the event of small break loss-of- j coolant cccidents (LOCAs), and assists in the depressurization of the reactor l vessel to allow low pressure emeroency core cooling systems (ECCS) to inject on intermediate break LOCAs. It also provides a backup function to the isolation condenser or RCIC system under reactor isolation conditions.
1.2 TDP Assembly Description and Boundaries For this study, a TDP assembly is comprised of pump, turbine driver, and governor subcomponents. The pump is typically a horizontal, split case, single stage centrifugal pump. The turbine is a single stage " Terry Turbine" (now supplied by Dresser-Rand), with piece parts including a turbine trip and i throttle valve, mechanical overspeed trip mechanism , and a lubrication l system. The various types of governors, used for turbine speed control in ;
AFW, RCIC, and HPCI system TDPs, are manufactured by the Woodward I Corporation. For the AFW system TDPs, the governors are predominantly ,
mechanical / hydraulic, pressure compensated, with pneumatic remote speed setting capability (Woodward types include PG-PL, PGA, PGD, PGG, and l UG). For the RCIC and HPCI systems, the TDPs have Woodward type EG- l I
M electric / electronic governors and EGR actuators. Piece parts of all governors include a turbine stop valve and governor valve, while the EG-M usually includes a ramp generator / signal converter and other electrical controls. Detailed descriptions of the turbine and various type governor subcomponents are included in NUREG-1275, Vol.10 (Reference 1).
The component boundaries are limited to the TDP assembly, its subcomponents, and piece parts described above, that are supplied as part of the TDP assembly. Other system components, such as steam inlet valves to the turbine, pump suction and discharge valves, flow instrumentation and controls and remote electrical controls, are considered outside the component boundary in this study.
2.3 DATA COLLECTION The data collection and reporting for the NPRDS was terminated at the end of 1996. Therefore, the NPRDS does not have any failure information for the period 1997 and beyond. It was also evaluated that the failure data reported in NPRDS for 1996 was not of the same reporting consistency as for the 1987-1995 period, as the industry was transitioning for the termination of NPRDS. INPO has recently implemented a new component database called Equipment Performance and Information Exchange (E?lX). This system is intended to replace the NPRDS system with additionalinformation, 4
[
such as demands. In its present stage of development, the EPIX system was l not considered to be sufficiently mature to provide a complete data source for the 1996-1998 period for this study. Where applicable in the development of probability of failure on demand estimates for this study, the SCSS database l (LERs) ESF failure and demand data were used from the 1996-1998 period.
The NPRDS database was used to obtain the number of TDP assembly subcomponents and the estimated testing frequency for each subcomponent in each plant. The number and testing frequency of Application Coded pump subcomponents were compared with the number and testing frequency of Application Coded turbine driver and governor subcomponents for each TDP assembly. This was done for the AFW system in PWRs and for the RCIC and HPCI systems in BWRs for each plant. This comparison was made to assure ,
that number of TDP assemblies was correct for each ' plant, as each assembly I is comprised of one pump, one governor, and one turbine driver. The values developed in Appendix IV were also used for in the development of all other appendices.
The term " Application Coded" used in this study refers to risk-important components or subcomponents that are functionally designated within a specific system by the NPRDS. RCIC system TDP subcomponents that were separately Application Coded in NPRDS are as follows:
C O M P.' SuBCOMP. REACTOR TYPE RISYSTEM APPLICATION ASSY CODE DESCRIPTION 1
TDP Pump BWR RCIC RCIC Turbine i Driven Pump ;
TDP Turbine BWR RCIC RCIC Turbine i' Driver TOP Governor BWR RCIC RCIC Governor A detailed review and evaluation was performed of the licensee event reports (LERs) and the NPRDS failure histories to determine the total number of TDP failures used in this study. Only " complete" (i.e., catastrophic) failures were included in the failure count. For TDP subcomponents, the NPRDS " Fail to Start" (FS) and " Fail to Run" (FR) failure modes were both included for estimating probability of failure on demand. For the TDP governor subcomponent, the " Failure to Control (FC) and " Failure to Run" (FR) failure modes were used. Because these failure modes occurred in a relatively short period, these various subcomponent failure modes were considered as 5
r equivalent to " Fail to Start." Figure 1 illustrates the relationship between various NPRDS database failure data subsets.
A1- All TDP assembly subcomponent failures as " complete"/ catastrophic Ai failure category (1987-1995).
81- Subset - TDP failures for risk-BI important systems.
C C1- Subset - TDP failures occurring during I
surveillance tests.
FIGURE 1 i NPRDS DATABASE TDP FAILURES The SCSS database was used to determine the number of TDP failures, reported in LERs, that occurred during surveillance tests or that were associated with an Engineered Safety Features (ESF) actuation. The NPRDS database was used to obtain the number of surveillance test failures for each TDP subcomponent. Surveillance test failures that were reported in LERs were excluded from the NPRDS failure counts, but included in the LER failure counts. This was done to prevent " double count" of failures. Figure 2 illustrates the relationship between various SCSS database (LERs) failure data subsets.
A2- All TDP assembly failures (1987-1998).
B2- Subset - TDP failures for risk-important systems. j Ba ;
C2- Subset - TDP failures associated with l Ca ESFs or occurring during surveillance l tests.
FIGURE 2 SCSS DATABASE TDP FAILURES TDP failures that occuned during surveillance testing were directly linked with surveillance test dernands to assure that surveillance test probability of failure on demand estimates were valid. Similarly, ESF failures were linked with ESF demands to estimate ESF probability of failure on demand. For the few plant AFW systems with more than one TDP (te, more than one train with a 6
o TDP), those TDPs that might have been actuated during pre-test or post-test system train alignment were not included in the surveillance test failure counts used in this study.
When it was determined by statistical means that the ESF failures and demands were in the same population as the surveillance test failures and demands, the total number of demands was the sum of the ESF demands and the surveillance test demands. Otherwise, the ESF demands (and associated failures) were used to calculate the TDP unreliability.
1 The first step for estimating ESF demands was to determine ESF actuations, and then to determine which component type and how many components of each type were actuated by this type of demand. Other demands that may have occurred during plant operation, startup or shutdown that did not result in ESF actuations were not included in the ESF demand determination, nor were any associated failures included. However, inadvertent and spurious i demands and manual actuations associated with an ESF (e.g., a reactor trip) l were considered ESF demands. The SCSS LER database was used for the !
PWR AFW system and BWR RCIC and HPCI systems LERs that were coded with "ESF Actuations" and those coded as " SCRAMS and Shutdowns." Each LER full text was reviewed to determine whether the selected systems were actuated, the number and type of trains (e.g., for AFW, the turbine-driven pump train (s) and/or the motor-driven pump train (s) actuated by the ESF; and the best estimate of the number of each TDP actuated based on the ;
I plant-specific train configuration).
The second step in estimating the total number of demands was the use of NPRDS testing frequencies as the basis for surveillance test demands. This was done for the NPRDS Application Coded, functionally designated TDP assembly subcomponents in the AFW, RCIC, and HPCI systems (see Section 2.1 for the description of the TDP assembly). The review of the NPRDS testing frequency was performed for each subcomponent of the TDP assembly (i.e., pump, turbine driver, and governor). When the NPRDS reported testing frequency differed among the subcomponents, an estimate was made for the TDP assembly testing frequency that included ASME Boiler and Pressure Vessel Code,Section XI Inservice Testing interval requirements (as required by the Technical Specifications), the system, and the subcomponent function in the TDP assembly. 'When no frequency was provided by NPRDS, a minimum frequency of once per quarter was used.
Demands associated with a surveillance test that occurred during train alignment and return to the "as found" condition of a system / train were not included in the total number of demands, nor were corollary failures included in the failure count. Although the Technical Specifications generally require a full flow test once per refueling cycle, no additional demands were included 7
i i
because the surveillance test frequencies used in this study (e g monthly or quarterly) were assumed to envelope these refueling cycle demands.
The total number of demands for the TDPs in a specific system was the sum of ESF TDP demands and surveillance test de.mands, where the latter is the sum of the products of the TDPs and their estimated testing frequencies over the 9-year period (1987-1995) and the former (ESFs) is extended to the 12-year period (1987-1998). However, this method is applicable when the ESF data and surveillance test data determined by statistical methods to be in the same population (see Section 4.1 for sensitivity analysis). Otherwise, the ESF demands (and associated failures) were used to calculate the TDP unreliability.
I The probability of failure on demand for TDPs was estimated by dividing total TDP failures by total TDP demands (i.e, ESF failures + Surveillance Test failures /ESF demands + Surveillance Test demands) as long as the ESF data i and surveillance test data were statistically shown to be in the same l population. I 2.4 Operational Data Analysis A sensitivity analysis was performed to not reject or to reject the hypothesis j that failure and demand data from surveillance testing of Application Coded ]
TDPs were in the same population as ESF failure and demand data. The i analysis was performed using data for the TDPs in the PWR AFW system and in the BWR RCIC and HPCI systems during the 1987-1995 period.
The approximate method for contingency tables (chi square, one degree of freedom, 0.95 quantile), was used for the not reject / reject hypothesis that the ESF and surveillance test data are from the same population ()(2 < 3.84). The contingency table provides a short-cut method of computing chi-square using the following 2X2 table and formula:
X * = n i ad- bc) * , where: n = a + b+ c+ d and k = (a+b)(c+d)(a+c)(b+d)
A EsFs SURVEILLANCE TEST TOTAL N O. of a b (a+b)
FAILURES NO. of c d (c + d)
SUCCESSES TOTAL (a+c) (b + d) n (DEMANDS) 8
i l
l l
Alternate Method (to correct for continuity), formula:
X' = n iIad-bcf - n/2L' k
Bayes Method The Bayes method (Reference 6), as applied to this study for TDPs by plant system, assumes that the probability of failure on demand varies from plant to plant according to a beta distribution. The parameters for this distribution were estimated from the pooled data by maximum likelihood. For each plant, this distribution was used as a Bayes prior distribution, and updated with the plant specific failure data. This method was used in this study for the PWR i AFW system and BWR RCIC and HPCI systems.
Standby Failure Rate The average standby failure rate (A) for TDPs in each system is based on the data for the 9-year period (1987-1995), using the following equation:
A= f , failures per component-hour (nc)(coy)(8760) where: f = the number of failures during the period nc= the number of TDPs in each plant for the system coy = the actual number of calendar operating years during the 9-year period 8760 = the number of hours in a calendar year The 90% confidence interval wa:, also calculated for A in each system.
- 3. RISK-BASED ANALYSIS This section provides the risk-based analysis of operational data,if .
calculation results for estimating TDP probabilities of failure on demand and standby failure rate, the sensitivity analysis for the data population, the comparison of TDP probability values with those in IPEs and other sources, and the regulatory implications of this component performance study.
3.1 Calculation Results Appendix I provides tables applicable to the TDP Probability of failure on demand by the selected systems in the 69 PWR and 31 BWR plants. The summary of results are as follows:
9 L
I For PWR plants with the AFW system TDPs, during the 1987-1995 period, the contingency test rcjected the hypothesis that the ESF failures and demands were in the same population as the surveillance test failures and demands (see Section 4.1). The basis for this disparity appears to be inconsistent surveillance testing methods, where preconditioning (e.g.,
draining condensate from inlet steam lines and gradually heating the TDP steam inlet) may have been used, while ESF demands are assumed to be all
" cold quick starts"(see Table A, IN 97-16 on subject of preconditioning).
Therefore, the Bayes 90% intervals for ESF probability of failure on demand, with updated LER data through 1998, was used.
For BWR RCIC and HPCI systems the contingency tests did not reject the hypothesis that the ESF failures and demands were in the same population as the surveillance test failures and demands (see Section 4.1). Therefore, the Bayes 90% intervals for ESF + Surveillance Test (1987-1995) + ESF (1996-1998) probability of failure on demand was used.
The generic failure probabilities used in PRAs are presently provided in terms of probability of failure on demand and probability of failure per operating hour. In this study, probability of failure on demand was chosen as the more useful measure of component performance for TDPs because data was available to allow matching failures to demands. Sufficient data on run times from LERs and NPRDS was not available to compare with generic failure to run data. The generic failure probability on demand values used in this study are from NUREG/CR-4550 (Reference 5).
s Table A shows the TDP probability of failure on demand values for thu 1987- l 1998 period.
TABLE A TDP PROBABILITY OF FAILURE ON DEMAND (1987-1998)
SYSTEM / SOURCE LOWER BOUND MEAN UPPER BOUND l NUREG-4550 1.1E-3 3E-2 1.1E-1 AFW System 2.2 E-2 4.0E-2 6AE-2 RCIC System 91 E-6 2.0E-2 8.7E-2 HPCI System 1.6E-3 3.3E-2 9.7E-2 The results shown in Table A indicated that the Bayes 90% interval probabilities of failure on demand were within the referenced generic value range for TDPs (NUREG-4550) used in this study.
Table B shows the average standby failure rates based on 1987-1995 failure data for combined ESF and surveillance tests.
10
TABLE B TDP STANDBY FAILURE RATE (1987-1995)
SYSTEM / SOURCE LOWER BOUND MEAN UPPER BOUND AFW System - 14E 5/ hour 18E-5/ hour 2.1E 5/ hour RCIC System 9.1 E-6/ hour 1.3E-5/ hour 1.7E-5/ hour HPCI System 2.1E-5/ hour 2.9E-5/ hour 3.8E-5/ hour 3.2 Comparison With IPEs and Other Sources The TDP failure probabilities on demand developed for the PWR AFW system, BWR RCIC and BWR HPCI systems were compared with the results .
from previous studies (References 1 through 4) and with a selected group of l
- plant-specific Individual Plant Examinations (IPEs) as shown in Figures 1,2, and 3, respectively The TDP probability of failure on demand values used from the RCIC and HPCI studies (References 2 and 3) were " failure to start, other than injection valve" (FTSO).
The TDP mean probabilities of failure on demand used in plant-specific IPE studies were compared with the results of this study. For BWR RCIC and HPCI systems, all of the IPE mean values for the TDP failure on demand probability were within the range of this study and NUREG-4550. However, for the AFW system, half of the IPE mean values were outside the probability of failure on demand range that was estimated in this study. The difference is believed to be due to the.use of only engineered safety features (ESF) failure and demand data in this study. We found that surveillance test failure and demand data were not statistically in the same population as the unplanned ESF failure and demand data. Moreover, we are aware that the surveillance tests for AFW TDPs were usually preconditioned (i.e., warmed-up), while TDP ESF demands experienced the more severe " cold quick starts." The AFW TDP values used in IPEs were consistent with the probability of failure on
- demand values estimated from the surveillance test data. The probability of failure on demand values estimated in this study, based on the AFW system surveillance test data (Figure 1, TDP-SURV) are plotted for I information. RCIC and HPCI TDP surveillance testing generally prohibited the use of preconditioning.
l 11
a
. . . o 8 8 8 8 8 ;
@ @ @ @ + !
2 8 8- 9 8 l TDP-ESF -
]
TDP-SURV o
s NUREG4550 -
E T ANO-1 y I I
CALLAWAY -
o CALVCLIFFS $ m >
T COMANCHEPK -
g BEAVVALLEY -
p: I m CRYSTALRIV - C .
g)
@ DIABLOCAN -
@ f -<
o FARLEY -
o E M
$ GINNA -
z M g HADDNECK -
a m
g r- HARRIS .
OCONEE h H z -
U H PALISADES - -
Z U
POINTBEACH -
A PRAIRIEISL -
KEWAUNEE -
MAINEYANK -
McGU1RE -
TMI-1 -
TURKEYPT -
VOGTLE -
WOLFCREEK -
ZION -
l PWR AFW SYSTEM TDP PROBABILITY OF FAILURE ON DEMAND -
COMPARISON WITH VALUES USED IN IPEs AND OTHER STUDIES FIGURE 3
! 12
A A A J J A J 5$55$8 o o o o o o 8
m T T T T T T +
8 8 8 8 8 8 ,
TDP-ESF+ SURV - 3 l
- - O NUREG4550 .
3 y
~
a O RCIC SYS STDY F:
- 9
-~~ ~ d I NUREG1275 . .:
' O
'- ~ ~"
COOPER O n
$ ,O BRUNSWICK C x
g m BROWNSFERRY y [ g O DUANEARNOLD
@ --{
eT m FITZPATRICK -
@ g 5 K H z GRANDGULF
> O H z O
NINEMILEPT -
]
PEACHBOTTOM PILGRIM -
i j
HATCH i
VERMONTYANK l i
RIVERBEND t
BWR RCIC SYSTEM TDP PROBABILITY OF FAILURE ON DEMAND -
COMPARISON WITH VAUES USED IN IPEs AND OTHER STUDIES FIGURE 4 13
a o
.8 8 8 8 o
8 o
8 o o o m T T T T T +
8 2 8 8 8 m
TDP-ESF+ SURV t x
0 i
' NUREG4550 .<: .
to i= C HPCI SYS STDY "
R &
~
- < I NUREG1275 O
' I COOPER -
m T BRUNSWICK -
$ 9 m
c ,
w m BROWNSFERRY y l <
O
= 0) m DRESDEN -
@ .-l ITI d g m DUANEARNOLD -
h H z FITZPATRICK z O H
O NINEMILEPT -
]
PEACHBOTTOM PILGRIM -
HATCH l VERMONTYANK RIVERBEND ,
I l
i BWR HPCI SYSTEM TDP PROBABILITY OF FAILURE ON DEMAND -
COMPARISON WITH VALUES USED IN IPEs AND OTHER STUDIES FIGURE 5 i
14
- 4. ENGINEERING ANALYSIS This section provides the engineering analyses including failure trend analysis, component trends in time, the failure characteristics and their causes, a brief discussion and listing of NRC regulatory initiatives related to TDPs, and engineering insights resulting from the various analyses.
4.1 Failure Trend Analysis Appendix Ill provides applicable data for trending of TDP failures. Failure trends of TDPs, shown for failures and failure fractions during the 1987-1995 period are illustrated in Figure 4.
As indicated in Section 2.3, NPRDS failure data for 1996 was reported inconsistently by licensees and, therefore, was determined to be insufficient for trending purposes. LER data from 1996 through 1998, without NPRDS data was insufficient for trending purposes as well. Therefore, failure data for trending in this study used NPRDS and LER failure data for the 1987-1995 period.
Failure trends of TDPs for the PWR AFW system showed no discernible trend, except for an upward peak in 1989 and 1990, with an average failure fraction (i.e., number of failures over the 9-year period divided by the number of TDPs x 9 years) of 0.15. For the BWR systems (RCIC and HPCI combined), there was a marked decreasing failure trend after 1991, with an average failure fraction of 0.17, similar to AFW TDPs.
l l
4 j
9 15
{
V PWR TDP FAILURES BWR TDP FAILURES l AFW SYSTEM RCIC AND HPCI SYSTEMS NO Of FAILUnES NO OF F AILUAES po - - - _ _ _ _ . - _ - . po. __
18 l
l- 16 15 14' f 15 -
S) 12 12 13 12
/ -~ ,_
11 /
10 [p 10 b 9
E 8
, /
/ g g
/ / /
/
7 /
/ /
/
~}
5 S e 7 SS -
/ '/ 7 / /
/ / / / - /
5 n 5 /7 7
/ / / / ,/ / / / A.
/ / /
7 / / / 7/ / e
/ ,/ / / / / /
~
's / // // / // // 7 7 / / / / / / /
/ / '/ / / / / / /
/ / / / ,/ / / / // // / / ,/ / / / / V w
/ / / /
g / / / / / / /j
/ /
/ C. CPUMP / /, . ,/ / /
p p j j j y' '
CPUMP 87 88 89 90 91 92 93 94 95 OTuReine 87 88 89 go ,, ,,93 4 93 O TuRe:Ne CALENDAR YEARS 6 GOVERNOR CALENDAR YEARS O GOVERNOR No PWR TDP fad ; 101 No BWR fadures. 92 PWR TDP FAILURE FRACTION BWR TDP FAILURE FRACTION AFW SYSTEM RCIC AND HPCI SYSTEMS FAILURE FRACTION FAJLURE FRACTION 0.25 03 0.25 0.2 0.15, 0 15
,'a ,
0.1 **
0.1
- Q. : '
O,, /
. . 0 ,5 .. .. .
.. .. e*
j " PUMFS ** " PUMPS
/ \ /
- TUROJNES ---# T unBiNE S O
' I- O %
B7 88 89 90 91 92 93 94 95 " TDP ASSYS 87 88 89 90 91 92 93 94 95 " TDF ASSYS CALENDAR Y&ARS
- GOVERNORS CALENDAR YEARS ;
7 l
l-
.4,2 Component Trends in Time Methodology The initial assumption made'in this study, relative to aging effects on component assemblies, is that the rate of failure events over time (A) is
. constant. - When individual failure events are arranged in chronological order, a cumulative plot helps to show whether A is constant throughout the period.
This study used an average failure' rate, A4w., equal to the total number of TDP failures (ESF and surveillance test) for the 1987-1995 period,' divided by
' the cumulative number of TDP-calendar years of standby operation during the period. . Failure data from the 1996-1998 period was not included as it was for ESF failure and limited surveillance test data only.
Plots of the cumulative number of failures versus the number of TDP-calendar years since the beginning of the study period (i.e.,1987) were made for comparison with A,w This was done for PWRs and BWRs for combined plant age groups (i.e., total PWR and total BWR plants) and for Plant Age Groups "A", "B", and "C". These groups include 109 plants used as a basis for component studies, of which 100 plants had TDPs (69 PWR plants with AFW system TDPs,31 BWR plants with RCIC system TDPs, and 28 BWR plants with HPCI system TDPs). The following table shows the definition of each plant age group and its apportionment, with the 109 plant basis:
PLT AGE COMMERCIAL TOTAL NUMBER OF NUM8ER OF PWR NUMBER OF BWR GROUP: OPERATION DATA PLANTS PLANTS PLANTS l A 12/31/74 and Earlier 36 24 12 B 01/01/75 through 37 25 12 03/31/84 C' 04/0184 and later 36 24 12 l
The. assumption (i.e., null hypothesis) that A,w. is constant during the study period for each plant age group and for the combined plant age groups was evaluated. The failure rates (A,w ) are the slope of the plots for each plant ,
age group. Comparison between plant age groups were made to determine whether there was any indication of plant aging (e.g., higher slope for the older plant age groups than for the newer plant age groups). Another test for the null hypothesis that the failure rate is constant is the Laplace Test. For i
. this test, U2 is defined as the midpoint of the cumulative number of TDP-years during the 1987-1995 period. If A is constant, about half of the events should occur before U2 and half afterwards. If A is increasing, the number of
. failures in the second half is expected to be larger than the number of failures 17
I in u.e first half. Therefore, the null hypothesis of a constant failure rate is l l rejected and possible aging ex'ists.
l l The mean time between failures was provided for information, using the l reciprocal of the A,ve. applicable to each PWR and BWR plant age group and combined plant age groups.
i Results Appendix ll provides tables applicable to component trends in time evaluations for TDPs. These analyses were performed to determine whether the failure rates were constant over time and whether the failure rates I
between older and newer plant age groups increased as an indication of possible " aging." The plots of cumulative TDP failures over time compared to the applicable average failure rate (Am.) plots for PWRs and BWRs indicated the following:
PWRs (see Figure 5)- For the AFW system, a review of plant age groups did not show clear evidence of component aging or plant age effects on TDPs in PWRs.
- For plant age group "A," the assumed hypothesis that the failure rate was constant was rejected. The failure rate increased after the midpoint (U2) and more events (17) occurred in the latter half of the period. This indicated possible aging.
- For plant age group "B," the hypothesis of a constant failure rate was also rejected. The failure rate decreased after the midpoint, with more events (31) occurring in the first half of the period. Since the failure rate decreased, possible aging was not indicated.
. For plant age group "C," the hypothesis of a constant failure rate was not rejected, with the number of events approximately the same for each half of the period.
. When the average failure rates were compared among the plant age groups, plant age effects were assumed to be reflected by highest average failure rates for the older plant age group "A", ranging to the lowest average failure rate for plant age group "C." However, the reverse order occurred, where Am. for "A" (0.10) was lower than "B" (0.15), and both were lower than "C" (0.22). Therefore, there was no evidence of plant age effects among the plant age groups.
l 18
I i
- When the failure causes for PWR TDP assemblies were reviewed, i age / wear causes (26%), maintenance / procedural deficiencies (24%)
and "other" causes (24%) were the more significant causes. Therefore, component aging was not considered as the predominant cause of failure.
BWRs (see Figure 6)- For the combined RCIC and HPCI systems TDPs, the review of plant age groups did not show clear evidence of component aging or plant age effects on TDPs in BWRs.
- For the plant age group "A," the hypothesis of a constant failure rate was not rejected, with approximately half of the events (15) occurring on each side of the midpoint.
- For plant age group "B," the hypothesis of a constant failure rate was rejected. The failure rate decreased after the midpoint, with more events (30) occurring in the first half of the period. Since the failure rate decreased, popsible aging was not indicated.
- For plant age group "C," the hypothesis was not rejected, with approximately half of the events (7-8) occurring on each side of the midpoint
- When the average failure rates were compared among the plant age groups, plant age effects were assumed to be reflected by highest average failure rates for the older plant age group "A", ranging to the lowest average failure rate for plant age group "C." Although both plant .
I age groups "A" (0.20) and "B" (0.22) were higher than "C" (0.11), plant age group "B" was slightly higher than "A.". Therefore, there was no clear evidence of plant age effects among the plant age groups.
- When the failure causes for BWR TDP assemblies was reviewed, j
age / wear causes (30%), maintenance / procedural deficiencies (27%)
l and " unknown" causes (23%) were the more significant causes.
Therefore, component aging was not considered as the predominant cause of failure.
l 19
- t. .
O-PWR PLANT AGE GRP "A" COMUL ATIVE NO FAILURES 30, I
-i I .'
25F- '
l U2. ./
+
3 20h- r-t
- e
/ .
15 -
f
/ '( - . avl
/
10 -
- s .
/
- s 5 - ,,.- .
./
O' ' ' ' ' ' ' ' ' ' ' ' '
O 2 4 6 8 10 12 14 16 18 20 22 24 TDP COMPONENT YEARS a 10 PERIOD: 1987+1995 No isH.: 26 PWR PLT AGE GRP *8* PWR PLT AGE GRP *C" CUMUL ATIVE NO. FAILURES CUMULATIVE NO. FAILURES 50 40
.I
. /
40 - j "
O2
- 30F. L/z -- ,.
i
. / *
/ . /
/ ls 30 -
/ v '
. / r $
8 s n 20~' /*
20 ,0 ' / [ av - ,
/
k a.1 s l,' '
a I
/
f
, . -s /
t 10-
/-
-10 -
4 '
l
. / .'
e
. /
J f
- s O' ' '" ' ' ' ' ' ' ' '
OC' ' ' ' ' ' =
0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 TDP COMPONf N1-YE ARS a 10 TDP COMPONENT.YE ARS a 10 PERIOD: 1987 1996 P( RIOD: 1987-1995 No. fe#uees; 39 No. f ailure s' 37 PWR'AFW SYSTEM TDP COMPONENT TRENDS IN TIME FIGURE 7 20
p7
(;
L
' BWH PLT AGE GRP A"' l L
CUMULUL ATIVE NO F AILUHE S 30 --
i i .26 -
L/2
.' +
/
..' [
20 -
a/ ,
/ I 15 -
I'
,.' h *v t
.'/
10 - = ^
- /
/ a
/
5- ' < ' '
- /
/
/
0' ' '
O 2 4 6 8 10 12 14 TDP COMPONENT-YEAHS a 10 1
PERIOO-. 1987 1995 No. failures: 29 BWR PLT AGE GRP "B" ,
BWR PLT AGE GRP 'C" - {
l CUMULULATIVE NO. FAILURES I SO CUMULULATIVE NO. FAILURES
./ l L/2 : ? l.
/- i
'40 -
'- 4
/ ; I L/z, . ,
n
,. / 15 .
. . t.
. /
/
/
30 -
l ,' < /
1 1
l
, , . /
e E / e k ., 10f /- -
- a 20 -
h av >
, }
.i .
/
- / i a /
.- . /
- f- '
10 - -
5 -
- j
=
, /
. . /
s' / .
0'
l 0 2 4 6 8 10 12 14 16 18 20 OC ' ' ' ' * ' *.
l IDP COMPONENT YE ARS a 10
~
TDP COMPONENT YEARS a 10 P1RIOD. 1987-1995 j No' f ailuees: 47 PEHIOO- 1987 1995 i
No, f adure s* 16 I
i BWR RCIClHPCI SYSTEMS TDP COMPONENT TRENDS IN TIME FIGURE 8 21
r 4.3 Failure Characteristics and Their Causes Methodology The TDP assembly failures and causes were identified on a subcomponent levelin the NPRDS database. For LER reported fa,ilures (SCSS database).
sufficient information was provided to identify failed subcomponents and causes within the LER narrative and group these failures using the NPRDS categories: The apportionments were determined to provide insights into the predominant subcomponent failures and their causes by reactor type (i.e.,
The subcomponent parts were also grouped by PWR and BWR, with the percentage of failure causes for the subcomponent calculated. The cause categories of failure used are similar to those defined in NPRDS.
The failure cause categories used in this study were as follows:
-Age / Wear (AW) Dirt / Contamination / Corrosion (DC)
-Design Deficiency (DD) Manufacturing Defect (MF)
Unknown (UK) -Debns/ Foreign Material (DF)
-Out-of-Adjustment (OA) -Mechanical Linkage (ML)
-Other Devices (OD) - -Setpoint Drift (SD)
-Maintenance / Procedural Deficiencies (MP) .
Results Figure 7 shows the TDP subcomponent failure apportionment for the PWR AFW system and BWR RCIC and HPCI systems. For BWRs, the evaluation of TDP subcomponent failure patterns determined that governor failures (70%) were predominant in the RCIC system, while both turbine (53%) and governor (47%) failures were approximately equal for the HPCI system.
- Pump subcomponent failures were relatively insignificant. For PWRs, the evaluation of AFW system subcomponent failure patterns determined that governor (50%) and turbine (42%) failures were approximately equal.
Failure causes for all TDP assemblies are illustrated in Figures 8,9, and 10.
For the PWR AFW system, the causes were mainly due to age / wear (26%)
and maintenance / procedural deficiencies (24%). For the BWR RCIC system.
the causes were also mainly due to age / wear (30%) and maintenance / procedural deficiencies (27%), while the cause was predominantly maintenance / procedural deficiencies (45%) for the HPCI system.
22
7_
l PWH AFW SYSTEM TN - --. . _
Turbines 42 %
y ^ ~ .
/ .,
4 A ~ Pumps 8%
'N Governors 50%
No failures' 101
. BWR RCIC SYSTEM TDPs BWR HPCl SYSTEM TDPs _ _ _
Turbines Turbines 53%
27 %
/[ \
f* yh Governors 3 70% Governors 47%
No f adures 30 No taalvve 62 TDP SUBCOMPONENT FAILURE APPORTIONMENT FIGURE 9 23 l
r l-e PWR AFW SYSTEM TDP ASSEMBUES PWR AFW SYSTEM TDP ASSEMBUES' GOVERNOR SUBCOMPONENT ALL SUBCOMPONENTS Maint/ Proc.
24%
AgeMear Maint/ Proc # E# Q ^9' ""'
' 24%' j .
' db x
y 3w s ~
l'
[ Other 11 %
A Other Unknown 15% 24 %
Unknown 19 %
7-~~ Design Def -
'T~ Design Def. Dirt /Contm. 11 %
Dirt /Contm. 8% 10%
8%
f PWR AFW SYSTEM TDPs PWR AFW SYSTEM TDPs PUMP SUBCOMPONENT _
TURBINE SUSCOMPONENT Maint/ Proc.
Age / Wear 13%
34% .
Age / Wear
/ 25%
s Def Unknow
- I Y 25 %~: l
' ' 2% ' ign Def
/ .\ g 12%
j -
,/
/ s /
Unknown f" p( 'l~
Dirt /Contm.
12% Dirt /Contm 25%
.2%
PWR AFW SYSTEM TDP FAILURE CAUSES FIGURE 10 24
BWR RCIC SYSTEM TDP ASSEMBLIES ALL SUBCOMPONENTS
. Age / Wear -
.- 30%
c-}-
/pf3 Maint/ Pro 27% /,/.
_ Other 3%
\- sign Def.
10%
/s Unknown e DWContm.
, 23 %
BWR RCIC SYSTEM TDPs BWR RCIC SYSTEM TDPs GOVERNOR SUBCOMPONENT TURBINE SUBCOMPONENT Age / Wear # I I/ / 28% .
p Maint/ Proc. ,
24 % / ':,9:
G-
/ /- - Maint/ Pro
- / :/b J.9e fj ,$ I y w o = ~. g s , , _ _
- Other
..."..-- 12%
4s
' A .,
. e.
'/ Dirt /Contm.
- 9I" 10% . , , " ;.;@
"33
."*" Design Dei i 25 %
BWR RCIC SYSTEM TDP FAILURE CAUSES FIGURE 11 25
BWR HPCI SYSTEM TDP ASSEMBLIES ALL SUBCOMPONENTS I Maint/ Proc.
45% __X,
, -h Age / Wear
/,/;/.^ 14 %
4 Other 10%
i>
x .'s 1 A Unknown 7_
j " J' es g
' birt /Contm. 6%
5%
8 BWR HPCI SYSTEM TDPs BWR HPCI SYSTEM TDPs GOVERNOR SUBCOMPONENT TURBINE SUBCOMPONENT
- Maint/ Proc.
35%. Maint/ Proc Age / Wear 55 % /
i-
[/ / jg/G'/jM, ;fe/ Wear j,_/ /
Y _ Other '
x 4% )
{ Other .
c T /
15%
'4 Unknown \
, ~ . > ~ ^.
Design Def .X , , ,
17% "--~ 17%
U*SI9 " O'f' Dirt /Contni 3% 15%
10%
BWR HPCl SYSTEM TDP FAILURE CAUSES FIGURE 12 26
4.4 ' ~ Related issues -Information Notices The review of NRC regulatory initiatives related to TDP assemblies and their subcomponents included Generic Letters, Circulars, Bulletins, and Information Notices (ins). This review determined that there were no regulatory initiatives other than the 12 ins (some with supplements) listed in Table C, applicable to TDP assemblies and their subcomponents, during the 1987-1998 period, IN 86-14 and its supplements were also included in the review, since they were both near the beginning of the study period and they addressed overspeed trips in AFW, RCIC, and HPCI. Other than overspeed trips, the concerns expressed in the ins were generally directed toward potential problems rather than complete (i.e., catastrophic) failures that were a basis for this study. One complete failure, reported in LER 278-90010, was directly related to overspeed trip failure described in IN 88-67. As a potential generic issue, IN 97-65 addressed preconditioning of PWR AFW system TDPs. This study also identified preconditioning of AFW TDPs as an issue with surveillance testing practices, rather than subjecting TDPs to " cold quick i starts"(see Section 3.1, Qalculation Results).
TABLE C NRC INFORMATION NOTICES (ins) CONCERNING TDP ASSEMBLIES (1986-1998) j IN 86-14 PWR Auxiliary Feedwater Pump Turbine Control Problems IN B6-14 (Supp.1) Overspeed Trips of AFW, HPCI, and RCIC Turbines !
IN 86-14 (Supp. 2) Overspeed Trips of AFW, HPCI, and RCIC Turbines IN 88-09 Instability of Woodward PG-PL Type Govemors IN 88-67 PWR Auxiliary Feedwater Pump Turbine Overspeed Trip Failure IN 89-14 Inadequate Dedication Process for Commercial Grade Components Which lead to Common Mode Failure of a Safety System IN 89-58 Turbine-Driven Auxiliary Feedwater Pump Disablement from Closure of One Parallel Steam Supply Valve IN 90-45 Auxiliary Feedwater Pump Turbine Overspeed and System Overpressurization IN 90-51 EGM Governor Voltage Dropping Resistor Failures
~ IN 90-51 (Supp.1) EGM Govemor Voltage Dropping Resistor Failures IN 90-76 Failure of Turbine Overspeed Trip Mechanism Because of inadequate Spnng Tension IN 93-51 Repetitive Overspeed Tnpping of Turbine-Dnven Auxiliary Feedwater Pumps IN 94-66 Overspeed of Turbine-Dnven Pumps Caused By Govemor Valve Stem Binding IN 96-66 (Supp.1) Overspeed of Turbine-Driven Pumps Caused By Govemor Valve Stem Binding IN 94-84 Air Entrainment in Terry Turbine Lubricating System
!N 9716 Preconditioning of Plant Structures, Systems, and Components Before ASME Code Inservice Testing or Technical Specification Surveillance Testing IN 98 24 Stem Binding in Turbine Governor Valves in Reactor Core Isolation Cooling (RCIC) and Auxiliary Feedwater (AFW) Systems 27
- 5.
SUMMARY
OF RESULTS 5.1 Failure Probabilities For the PWR AFW system, the TDP probability of failure on demand estimate was based on ESF failure and demand data from LERs for the period 1987-1998. The resulting mean probability estimate was 4.0E-2 This value is generally consistent with the generic mean value for TDPs ( 3E-2) from l NUREG-4550. ]
1 For BWR RCIC and HPCI systems, the TDP probability of failure on demand estimates were based on the combined ESF and surveillance test data for I failures and demands from LER and NPRDS data sources. The ESF data {
(LERs) was from the 1987-1998 period, while the surveillance test data
{
(NPRDS) was from the 1987-1995 period. The resulting mean probability estimates for RCIC and HPCI TDPs were 2.2E-2 and 3.3E-2, respectively. j These mean values were also consistent with the generic mean value for TDPs (3E-2) from NUREG-4550. <
The TDP mean probabilities of failure on demand used in plant-specific IPE studies were compared with the results of this study. For BWR RCIC and HPCI systems, all of the IPE mean values for the TDP failure on demand probability were within the range of this study and NUREG-4550. However, for the AFW system, half of the IPE mean values were outside the probability of failure on demand range that was estimated in this study. The difference is believed to be due to the use of only engineered safety features (ESF) failure and demand data in this study. We found that surveillance test failure and ;
demand data were not statistically in the same population as the unplanned l ESF failure and demand data. Moreover, we are aware that the surveillance j tests for AFW TDPs were usually preconditioned (i.e., warmed-up), while TDP i ESF demands experienced the more severe " cold quick starts." The AFW TDP values used in IPEs were consistent with the probability of failure on demand values estimated from the surveillance test data. RCIC and HPCI TDP surveillance testing generally prohibited the use of preconditioning.
5.2 Engineering Insights The engineering insights gained from this study are summarized as follows:
- Failure trends for the PWR AFW system during the 1987-1995 period were relatively constant, except for an upward peak in 1989 and 1990 For BWRs (RCIC and HPCI combined), there was a marked decreasing trend after 1991, 28
Failure rates, as a function of component-years, varied among the PWR and BWR plant age groups (3 groups, of approximately equal size, from older to newer plants by commercial operations date). For both PWRs and BWRs, the review of plant age groups did not show clear evidence of component aging or plant age effects on TDPs.
- The evaluation of TDP subcomponent failure patterns demonstrated that failures of governor subcomponents were significant contributors to the TDP failures in the BWR RCIC system, while both turbine and governor subcomponent failures were significant contributors to the PWR AFW system and BWR HPCI system. Pump subcomponent failures were relatively insignificant.
- Failure causes for TDP assemblies in AFW and RCIC systems were mainly due to both age / wear and maintenance / procedural deficiencies, while maintenance / procedural deficiencies was singularly predominant for the HPCI system.
- During'the study period, TDP failures remained high relative to other '
risk important component types, such as motor-driven pumps.
Governor subcomponent failures were mainly due to -
maintenance / procedural deficiencies. However, the existing programs under the Maintenance Rule should improve overall performance of TDPs;
- The use of preconditioning (prewarming and draining steamline condensate)in PWR AFW system TDP surveillance testing is considered as a basis for the difference between surveillance testing failures and ESF actuation failures that resulted from " cold quick starts."
29
- 6. REFERENCES
.1 NUREG-1275, Vol 10. Operating Experience Feedback Repon - Reliabatty of Safety-Related Steam Turbine-Driven Pumps, October 1994.
- 2. . AEODIS95-02, High-Pressure Coolant Injection (HPCI) System Performance, 1987-1993 Final, February 1995.
- 3. AEOr ,' 37-02, Reactor Core Isolation Cooling Reliability, 1987-1993, June 199) 4.. NUREGICR-5500, Vol.1, Reliability Study: AuxiliaryEmergency Feedwater System,1987-1995, dated August 1998.
- 5. NUREG/CR-4550, SAND 86-2084, Vol.1, Rev.1 (Sandia National Laboratories), Analysis of Core Damage Frequency: IntemalEvents Methodology, published January 1990.
- 6. Martz, Hariy F., and Ray A. Waller,1991, Bayesian Reliability Analysis, Malabar, FL:. Krieger, Section 7.6.
1 1
30
l I
)
APPENDIX l FAILURE PROBABILITIES TDP ASSEMBLY
p l
l APPENDIX l- TDP ASSEMBLY FAILURE PROBABILITIES L
TABLE NO, DESCRIPTION I AFW System TDP Assemblies Probability of Failure on Demand 11 RCIC System TDP Assemblies Probability of Failure on Demand ill HPCI System TDP Assemblies Probability of Failure on Demand i
I.
l
['
I
- APPENDIX 1 TABLE I AFW SYSTEM TDP ASSEMBLIES PROBABILITY OF FAILURE ON DEMAND PROBABILITY OF FAILURE ON DEMAND NO. N O. 90% CONFID. INTERVALS BAYES 90% INTERVALS FAILa pEMANDS PLCB PHAT PUCB PLO MEAN PUP l 1987-1995 PERIOD ESF 21 617 - 2.7E 2 41E 2 5 BE-2 8 OE 3 4.2E 2 9 7E 2 SURV. TEST 80 6208 1.1E 2 1.3E 2 1 6E-2 8 4E-4 1.5E.2 4 3E-2 ESF + SURV.
TEST 101 6791 NOT USED SEE NOTE 2 2.1987 1998 26 647 2.8E-2 4.0E 2 5.5E-2 2.2E 2 4.0E 2 6.4E 2 PERIOD ESFs NOTES:
- 2. In calculating the statistics for the table of outcome by plant,65% for ESFs (19871998) and 50%
for Surveillance Tests (1987-1995) of the cells had expected counts of less than 5. Therefore, the Chi-Square may not be a valid test for either of these populations..
- 3. For the 19871995 period, the contingency test rejected the hypothesis that the ESF failures and demands were in the same population as the Surveillance Test failures and demands.
Therefore, the Bayes 90% intervals for ESF probability of failure on demand, using updated LER data through 1998, was used as the more conservative values that included " cold quick starts." ]
- 4. Ave. Standby Failure Rate (A), failures per comp.-hour: A = t 1.4E-5/ hour; A = 1.8E 5/ hour and Au = 2.1E 5/ hour (Based on 19871995 failure data for combined ESF and surveillance tests).
l i
i 1
i l
\
j I
i
APPENDIX l - TABLE 11 I RCIC SYSTEM TDP ASSEMBLIES PROBABILITY OF FAILURE ON DEMAND PROBABILITY OF FAILURE ON DEMAND NO. N O. 90% CONFID. INTERVALS BAYES 90% INTERVALS EAlla DEMANDS PLCB PHAT PUCB PLO MEAN PUP l 1987-1995
,PE RIOD ESF + SURV 30 1919 1.1 E-2 16E-2 2.1E 2 9.7E-6 2 OE-2 8 6E-2 TEST 2.1987 1998 30 1935 1.1E-2 1.6E-2 2.1 E-2 9.1E-6 2.0E-2 8.7E-2 i
/
PERIOD ESF + SURV.
TEST (ITEM 1.)
+ ESF (1996-1998)
NOTES:
- 2. In calculating the statistics for the table of outcome by plant,50% of the cells had expected counts of less than 5. Therefore, the Chi-Square may not be a valid test.
- 3. The contingency test did not reject the hypothesis that the ESF failures and demands were in the same population as the surveillance test failures and demands (19871995 data), in addition, another contingency test that compared the combined 1987-1995 data with the later ESF data (19961998) also did not reject the hypothesis that this data was in the same population. Therefore, the Bayes 90% intervals for ESF + Surveillance Test (1987-1995) + ESF (19961998) probability of failure on demand is recommended as the more useful values as
" pooled data.".
1
- 4. Ave. Standby Failure Rate (A), failures per comp.. hour: A = 9.1E-6thour; A = 1.3E-5/hout and t
Au = 1.7E-5/ hour. l l
l I
i APPENDIX 1 - TABLE Ill HPCI SYSTEM TDP ASSEMBLIES l PROBABILITY OF FAILURE ON DEMAND PROBABILITY OF FAILURE ON DEMAND N O. NO. 90% CONFID. INTERVALS BAYES 90% INTERVALS Fall. ' DEMANDS PLCB PHAT PUCB PLO MEAN PUP )
i 1987-1995 PERIOD ESF + SURV. 62 2190 2.2E 2 2.8E 2 3.5E-2 1.6E-3 3.3E-2 9.8E-2 TEST i
2.1987 1998 62 2206 2 2E-2 2.8E 2 3.5E 2 1.6E-3 3.3E-2 9.7E 2 PERIOD ESF + SURV.
TEST (ITEM 1.)
+ ESF (19961998)
NOTES:
1
- 2. In calculating the statistics for the table of outcome by plant,50% of the cells had expected counts of less than 5. Therefore, the Chi-Square may not be a valid test.
- 3. The contingency test did not reject the hypothesis that the ESF failures and demands were in the same population as the surveillance test failures and demands (19871995). In addition, another contingency test that compared the combined 19871995 data with the later ESF data (1996-1998) also did not reject the hypothesis that this data was in the same population.
Therefore, the Bayes 90% intervals for ESF + Surveillance Test (19871995) + ESF (19961998) probability of failure on demand is recommended as the more useful values as " pooled data."
- 4. Ave. Standby Failure Rate (A), failures per comp. bour: At= 2.1E-b/ hour 2.9E-5/ hour,and Au = 3.8E-5/ hour.
l i
L
1 r
l 1
i i
1
)
APPENDIX 11 TDP ASSEMBLY COMPONENT TRENDS IN TIME
APPENDIX 11
'TDP ASSEMBLY COMPONENT TRENDS IN TIME - TDP ASSEMBLIES 4
TABLE NO. DESCRIPTION I PWR AFW System TDP Assembly Failures Versus Component-Years -
All Plant Age Groups - ESF and Surveillance Test Failures ll PWR AFW Systern TDP Assembly Failures Versus Component-Years -
Plant Age Group "A"- ESF and Surveillance Test Failures 111 ,
,PWR AFW System TDP Assembly Failures Versus Component-Years - i
Plant Age Group "C"- ESF and Surveillance Test Failures Distribution From 01/01/87 V BWR RCIC and HPCI System TDP Assembly Failures Versus Component-Years - All Plant Age Groups - ESF and Surveillance Test Failures VI BWR RCIC and HPCI System TDP Assembly Failures Versus Component-Years - Plant Age Group "A" -ESF and Surveillance Test Failures Vll BWR RCIC and HPCI System TDP Assembly Failures Versus Component-Years - Plant Age Group "B" -ESF and Surveillance Test Failures Vill BWR RCIC and HPCI System TDP Assembly Failures Versus Component-Years - Plant Age Group "C" -ESF and Surveillance Test Failures j
J
1 APPEN0ly 11 1ABLE I PWR AlW SY51EM 1DP ASSEMBLY f AILURES VERSUS COMPONEN1 Vf ARS l All PLANI AGF CROUP 5 E SF AND SURVE ILL ANCF TE S1 FAILURES EVEN1 NO. CUMUL A11 VE E VE NT NO. CUMULATIVE EVEN1 NO. CUMULAllVE M I Alt . 1DP YfARS QM Fall, 1DP YfARS QA.11 WL IDP YFARS 1/87 0 6 1/90 1 218 1/93 2 444 2/87 1 12 2/90 2 224 2/93 2 450 3/87 0 17 3/90 2 231 3/93 1 456 4/87 1 23 4/90 0 237 4/93 0 462 5/87 3 29 5/90 2 243 5/93 1 468 6/87 1 34 6/90 0 249 6/93 3 4 74 ,
7/87 1 40 7/90 2 255 7/93 0 480 j 8/87 0 46 8/90 4 261 8/93 0 486 9/87 0 9/90 l 52 2 268 9/93 1 492 1 10/87 2 58 10/90 1 274 10/93 1 498 1 11/87 1 63 11/90 1 280 11/93 1 504 12/87 69 12/90 286 l
1 1 12/93 0 510 1/88 2 75 1/91 '3 292 1/94 0 516 2/88 1 81 2/91 0 299 2/94 0 522 3/88 0 87 3/91 2 305 3/94 1 528 i 4/88 0 93 4/91 1 311 4/94 0 534 l 5/B8 2 98 5/91 0 318 5/94 1 540 6/88 0 104 6/91 , 0 324 6/94 2 546 7/88 0 110 7/91 0 330 7/94 2 552 8/88 1 116 8/91 1 337 8/94 1 558 9/88 1 122 9/91 2 343 9/94 2 564 10/88 0 128 10/91 0 349 10/94 1 570 11/88 0 134 11/91 0 356 11/94 1 576 l
12/88 0 140 12/91 0 362 12/94 1 582 1/89 2 146 1/92 1 368 1/95 1 588 2/89 3 152 2/92 1 375 2/95 0 594 3/89 1 158 3/92 0 381 3/95 0 600 4/89 1 164 4/92 0 387 4/95 0 606 5/89 2 170 $/92 0 394 5/95 1 612 6/89 1 176 6/92 1 400 6/95 1 618 7/89 1 182 7/92 1 406 7/95 1 624 -
8/89 0 188 8/92 3 413 8/95 1 630 9/89 0 194 9/92 2 419 9/95 0 636 10/89 2 200 10/92 1 425 10/95 0 642 11/89 1 206 11/92 0 432 11/95 2 648 12/89 0 212 12/92 0 438 12/95 1 654 totals: 101 i
NOTES:
- 1. A.a =
1Q1 a 0.154 failures per component-year (1987-1995).
654
- 2. The mean time between failures = 1/0.154 = 6.5 conponent years.
- 3. This combined data is for information only. Tables 11, 111, and IV are used for evaluation.
l
I l
L h
APPENDIX 11 1ABLE il l PWR AFW $YS1[M IDP ASSEMBLY FAILURES VERW5 COMPONINT Yl ARS l PLANT AGE GROUPS "A" ESF AND $URVEILLANCE ff51 FAILURES
-(VENT NO.' CUMULAllVE EVENT NO. CUMUL AllVE IVE N T NO. CUMULAllVE p_A1AQ - {& TDP YEAR $ QMi F A ll'. 1DP-YEARS QA14 - QL IDP-Y[AR$
1/87 0 2- 1/90 0 83 1/93 0 164 2/87 .0. 4 2/90 2 86 2/93 0 167 3/87 0 7 3/90 1 88 3/93' O 169 1
.4/87' 0 9, '4/90 0 90 4/93 0 171
- 5/87
- 0 11- 5/90 0 92 5/93 1 1 73 6/87 : O. 14 6/90 0 94 6/93 2 175 7/87 0 16' 7/90 0- 97 7/93 0 178 d
8/87 0 18 8/90 0 99 .8/93 0 180
'1 9/87 0' 20 9/90 1 101 '9/93 1 182 10/87 0 22 10/90 0 104 10/93 0 184 11/87 1 25 11/90 0 106 11/93 0 187 12/87 '0 27 12/90 0 108 12/93 0 189 ,
l 1/88~ 0 29 1/91 1 1W 1/94 0 191 f
2/88 0 32 2/91 0 112 2/94 0 193 ,
3/88 0 34 3/91 , 0- 115 3/94 1 196 4/88 0 36, 4/91 0 117 4/94 0 198 5/88 1 38 . 5/91 0 119 5/94 0 200 6/88 0 41 6/91 0 122 - I/P 6/94 2 202 7/88 0 43 7/91 0: 124 7/94 1 205 8/88 1- 45 8/91~ 0 126 8/94 1 207 9/88 0 47 9/91 1 128 9/94 0 209 10/88 0 50 10/91 0 131 10/94 1 211 11/88 0 52 '11/91 0 133 11/94 0 214 12/88 0 54 12/91 0 135 12/94 0 216 1/89 0 56 1/92 0 137 1/95 1 218 2/89 0 58 2/92 0- 140 2/95 0 221 3/89 0 61 3/92 0 142 3/95 0 223 4/89 ~0 63 4/92 'O 144 4/95 0 225 5/89 0 65 5/92 0 146 5/95 0 228 6/89 0 5 68 6/92 0 148 6/95 0 230 7/89 0 70 7/92 0 151 7/95 0 232 8/89 0 72 8/92 1 153 8/95 0 234 9/89' .0 74 - 9/92 1 155 9/95 0 237 10/89 0 76 '10/92 1 158 10/95 0 239 11/89 0 ~ 79 11/92 0 160 11/95 1 241 12/89 -0 81 12/92 0 162 12/95 1 243 Totats: 25 NOTEF:
1
- 1. Q = I = 0.103 f ailures per consponent-year (1987 8995). l 243
- 2. The mean time between failures = 1/0.103 = 9.7 cons onent years.
'3 lFaltures are for the PWR AFW system only in Plp9t Age Group "A" (12/31/74 1 and older Conmercial License dates).
'4 . L/P indicates the midpoint of the cunulative 1DP years, f or use in the Laplace fest (see text).
I
- 5. See Figure 5 in test.
l l.
! i i
APPEN0lX 11
- TABLE !!!
PWR AlW 5YS1[M 10P AS$fM8tY f AILURE S VERSUS COMPONEN1 YE ARS PL ANT AGi GROUPS "B" '
E$f AND SURVEILL ANCE TEST F AILURES L VE NI NO. - CUMULAllVE (VENT NO>- CUMULATIVE EVEN1 NO. CUMUL AllVE QAH fJl .IDP VfAR$ p_AJ{ h TDP YEf.R$ D111 FAIL, TDP YEARS 1/E7 0 2 1/90 1 89 1/93 0 176 2/87 1 5 2/90 0 92 2/93 0 1 79 3/87 0 7 3/90 1~ 94 3/93 0 181 4 4/87 1. 10 - 4/90 0 97 4/93 0 183 5/87 2 12 5/90 2 99 5/93 0 186 6/87 0 14 6/90 0 102 6/93 0 188 f
1/87 -' O 17 7/90 0 1D4 7/93 0 190 8/87 0 19 8/90 '4 106 8/93 0 193 9/87 0 22 9/90 1 109 9/93 0 195 10/87 1 24 10/90 1 111 10/93 0 197 11/87 .0- 27 11/90 1 114 11/93 0 200
- 12/87 1 29 12/90 '1 116 12/93 0 202 1/88 2 31 1/91 1 118 1/94 0 204 2/88 0 34 2/91 0 121 2/94 0 207 3/88 0 '36 3/91 '2 123 3/94 0 209 4/88 0. 39 4/91 0 126 4/94 0 211 5/88 1 41 5/91 0 128 - 1/2 5/94 1 214 6/88 0 44 6/91 0 131 6/94 0 216 7/88 0 46 ' 7/91 0 133 '
7/94 1 218 8/88 0 48 8/91 1 135 8/94 0 221 9/88 1 $1 9/91 0 138 9/94 1 223 10/88 0 53 10/91 0 140 10/94 0 225 ,
11/88 - 0 56 -' 11/91 0 143 11/94 0 228 12/88 0 58 12/91. 0 145 12/94 0 230 l 1/89 0 60 1/92 0 147 1/95 0 232 2/89 1' 63 2/92 1 150- 2/ 95 0 235 3/89 '1 65 3/92 0 152 3/95 0 237 4/89 1 68 4/92 0 155 4/95 0 239 5/89 1 70 5/92 0 157 5/95 0 242 6/89 0 72 6/02 0 160 6/95 0 244 7/89 0 75 7/92 1 162 7/95 0 246 8/89 0 77 8/92 1 1 64 8/95 1 249 9/89- 0 80 9/92 0 167 9/95 0 251 10/89 1 82 10/92 0 169 10/95 0 253 11/89 1 85 11/92 0 172 11/95 0 256 12/89 0 87 12/92 0 174 12/95 0 258 Totals: 39 N01E si )
- 1. Am *
. J9_ = 0.151 f ailures per component year (19871995).
258 2 .' The mean time between f ailures = 1/0.151 = 6.6 component-years.
4 l /2 indicates the midpoint of the cumulative TDP years, for use in the Laplace Test (see test).
- 5. 'See figure 5 in test.
I L
-' E
]
I APPENDIX 11 1ABLE IV PWR AFW SYS1[M IDP A55fMBLY FAILURES VERSUS COMP 0hENT YEARS PL ANT AGE GROUPS "C" 15f and SURVf 1LL ANCE TES1 F AILURES EV[NI NO. CUMULAllV( Evtk1 NG. CUMULATIVE EVENT NO. CUMULAllVI Q,A,1J, F All . ]pqP-YEARS QAIJ Fall. IDP YFARS QM{ ML 10P-YEARS 1/87 0 1 1/90 0 46 1/93 2 104 2/87 0 2 2/90 0 47 2/93 2 105 3/87 0 3 3/90 0 48 3/93 1 107 4/87 0 4 4/90 0 50 4/93 0 109 5/87 0 5 5/90 0 52 5/93 0 110 6/87 1 6 6/90 0 53 6/93 1 112 7/87 1 8 7/90 2 54 7/93 0 114 8/87 0 9 8/90 0 56 8/93 0 115 9/87 0 10 9/90 0 58 9/93 0 117 10/87 1 11 10/90 0 59 10/93 1 119 11/87 1 12 11/90 0 61 11/93 1 120 12/87 0 13 12/90 0 62 12/93 0 122 1/88 0 14 1/91 1 64 1/94 0 124 2/88 1 15 2/91 0 65 2/94 0 125 3/88 0 17 3/91 0 67 3/94 0 127 4/88 0 18 4/91 1 65 4/94 0 129 5/88 0 19 5/91 0 70 5/94 0 130 6/88 0 21 6/91 0 72 6/94 0 132 7/ 88 0 22 7/91 0 74 7/94 0 134 8/88 0 23 8/91 0 75 8/94 0 135 9/88 0 24 9/91 1 . 9/94 1 137 10/88 0 26 10/91 0 79 10/94 0 139 11/88 0 27 11/91 0 00 - t /P 11/94 1 140 12/88 0 28 12/91 0 82 12/94 1 142 1/89 ? 29 1/92 1 84 1/95 0 144 2/89 2 31 2/92 0 85 2/95 0 145 l 3/89 0 32 3/92 0 87 3/95 0 147 4/89 0 33 4/92 0 89 4/95 0 149 5/89 1 35 5/92 0 90 5/95 1 150 6/89 1 36 6/92 1 92 6/95 1 152 7/89 1 37 7/92 0 94 7/95 1 154 4 l
8/89 0 39 8/92 1 95 8/95 0 155 9/89 0 40 9/92 1 97 9/95 0 157 l l
10/89 1 41 10/92 0 99 10/95 0 159 11/89 0 43 11/92 0 100 11/95 1 160 12/89 0 44 12/92 0 102 12/95 0 162 Totals: 37 i
NOTES: l
- 1. A.,, n JI = 0.228 f ailures per component-year 1987 1995).
162
- 2. The mean time between f ailures a 1/0.228 e 4.4 component years.
1
- 4. L /2 indicates the midpoint of the cumulative 1DP years, f or use in the laplace test (see text
- 5. See F igure 5 in text.
l
F--
r APPE ND I X jj - 1ABLE V BWR RCIC AND HPCI SYS1EM TDP ASSEMBLY FAILURES VERSUS COMPONENT
- YEARS All PL AW1 AGE GROUPS ESF AND SURVElLL ANCE TEST F AILURES EVEW1 NO. CUMULAIIVE [VEN1 h0i CUMULAllVI E VE N1 NO. COMULAllVE A
QAH .& TDP VEAR$. p A]f, - [A1 TDP YEARS QAff g 1DP-YEAR $
1/87' 2- 4. 1/90 1 165 1/93 2 336 2/87 :2 8 2/90 2~ 169 2/93 1 341
- 3/87 1 12' 3/90 1 174 3/93 0 345 4/87 0 17 4/90- 0 179 4/93 0 350 5/87 1- 21 5/90 0 184 5/93 1 355 6/87 -1 25 6/90 2 '188 6/93 0 360 7/87 4 29 7/90 1 193: 7/93 1 364 8/87. 0 33 8/90 1 198 8/93 1 '369 9/87 1 38 9/90 2 203 9/93 0 374 10/87- 0 '42 10/90 1, 208 10/93 1 379 11/87 2 46 11/90 0 212 11/93 0 383 12/87 1 50 12/90 1 217 12/93 1 388 ;
1/88 1 54 .1/91 3 222 1/94 2 393 2/88 0 59 2/91 0 226- 2/94 1 398 3/88 1 64~ 3/91 0 231 3/94 1 402 4/88, 2 68 4/91 2 236 4/94 0 407 5/88' 0 73 5/91 1. 241 5/94 0 412 6/88 1 78 - 6/91 2 246 6/94 0 417 7/88 1; 82 . 7/91 1 250 7/94 0 421 8/88 1 87 - 8/91: 2 255 8/94 1- 426 9/88- 3 ' 91 9/91 0 260 '9/94 1 431 10/88 1 96 10/91 2 265 10/94 0 436 11/88 0 -- 101 11/91 2 269 11/94 2 440 12/88 2 '105 12/91- 1 274 12/94 0 445 1/89- 1 110 1/92 0 279 1/95 1 -450 2/89 1- 114- 2/92 1 283 2/95 0 455
-3/89 0 119 3/92 0 .288 3/95 1 462 4/89 0 123 4/92 4 293 4/95 0 467 5/89 1- 128 5/92 0 298 5/95 0 472 6/89 0 132- 6/92 1 302 6/95 0 477 7/89 0. 137 7/92 1 307 7/95 0 481 8/89 0 142 8/92 2 312 8/95 0 486 9/89 1 146 9/92 0 317 9/95 0 491 10/89 0. 151- 10/92- 1 322 10/95 0 496 11/89 0 156 11/92 0 326 11/95 0 500
.12/89 2 160 12/92 0 331 12/95 2 505 Totals: 92 I
NOTES: )
i
- 1. A = . E = 0.182 f ailures per conponent-year 1987-1995).
505 )
- 2. The mean time between failures = 1/0.182 = 5.5 conponent-years.
- 3. This combined data is for information only. Tables VI, Vil., and V]Il are used for evaluation.
l l
1 l
l
h, l
i APF(NDjX j] 1 ABL F V) l BVR RCIC AND NPCI SYS1EM TDP AS$f MBLY f AILURES VERSUS COMPONE NT'YE ARS PLANT AGE CROUP "A"
, E$f AND SURVEILL AhCf 1151 FAILURES EVE NT NO. CUMULAllVt E VENT NO. . CUMULATlVi fVEN1 NO. CUMULAi!VC g' & TDP YEAR $ g LA,1 TDP YEAR $ QAT{ Fall, TDP YEARS
'1/87 2 1 1/90 0 52 1/93 1 104 2/87 1 3 2/90- 0 54 2/93 0 105
.3/87 1 4 3/90: 0- 55 3/93 0 106 6/87 0 6 4/90 0 57 .4/93 0 107 5/87 0 7 5/90 0 58 5/93 1 108 6/87- 0 8' 6/90 0 60 6/93 0 110 7/87 0 10- 7/90- 0 61 .7/93 1 111 8/87 0 11 8/90 0 62 18/93- 1 112 9/87- 0 13 9/90 0 64 9/93 0 113 10/87 0 14 10/90 - 1 65 10/93- 0 115 11/87 2 16 11/90 0 67 -11/93 0 116 12/87 0 17 12/90 0 68 12/93 0 117 1/88- 0 18 1/91 1 69 - 1/94 1 118 2/88 0 20 2/91 1 : 71 2/94 0 119
.3/88 1 21 3/91 0 72 - L/P 3/94 0 121 4/88 1 23 ~4/91 -0 74 4/94 0 122 5/88 0 24 5/91 2. 75 5/94 0 123 :
6/88 0 26 6/91 0 76 6/94- 0 -124 i 7/80 0 27 7/91 0 78 7/94 0 125 l 8/88 1. 28 8/91 1 79 8/94 1 127 9/88 0 30 9/91 0 81 9/94 0 128 10/88. 1 31 10/91 0 82 10/94 0 129 11/88 0 ' 33 11/91 0 84 11/94 0 130 12/88 0 34 12/91 0 85 12/94 0 131 1/89 0 35. 1/92 0 86 1/95 1 133 2/89 0 37 2/92 1 88 2/95 0 134 3/89 0 38 3/92 0 89 3/95 1 135 4/89 0 40 - 4/92 1 91 4/95. 0 136 5/89 0 41 5/92 0 92 5/95 0 137 6/89 0 43 6/92 0 94 6/95 0 139 7/89 0 44 7/92 0 95 7/95 0 140 8/89 0 45 8/92 1 96 8/95 0 141 ,
9/89 1 47 9/92 0 98 9/95 0 142 i 10/89 0 48 10/92 0 99 10/95 0 143 11/89 0 50 11/92 0 101 11/95 0 145 12/89 0 51 12/92 0 102 12/95 1 146 l Totals: ,
29 i
NOTES: !
- 1. Am -a E = 0.198 f ailures per conponent year (19871995).
.146
- 2. The mean tine between f aliures = 1/0,198 = 5.1 conponent year.
- 5. See figure 6 in text, l
I i
y APPENDlE 11
-1/87 0 2' 1/90 1 71 1/93 1 '140 2/87 0 4 2/90 1 73 2/93 0 142 3/87 0 6 .3/90 1 75 - 3/93 0 144 4/87 0- 8 4/90 0 77 4/92 .0 146 5/87 0 .10 5/90 0 79 5/93 0 148 6/87 1 -12 6/90 2~ 81 6/93 0 150 7/87 3 13. 7/90 1 82 7/93 0 152 8/87 0 15 8/90- 1 84 8/93 0 154 9/87 '1 17 .. 9/90 2 86 9/93 0 156 10/87 0 19 10/90 0 -86 *0/93 1 158 11/87 'O 21 11/90 0 9s 11/93~ 0 160 12/87- 0- 23 12/90 0 92 12/93 0 162 1/88- 1 25 1/91 1 94 1/94 1 1 64 2/88 0 - 27.. 2/91 0- 96 2/94 1 166 3/88 0 29 3/91 0 98 3/94 .1 168 4/88 1 31 4/91 1 100 4/94 0 170 5/88 0 33 5/91 0 102 5/94 0 172 6/88 1 34 6/91 1 104 6/94 0 174 7/88- 0' 36 7/91 1 105 t/2 7/94 0 170 -
8/88 0 38 8/91 1 107 8/94 0 178
'9/88 3 40 9/91 0 109 9/94 0 180 10/88 0' 42 10/91 2- .111 10/94 0 182 11/88. 0 ' 44 11/91 1 113 11/94 2 184 12/88 ~1 46 12/91 1 115 12/94 0 186 1/89 1 48 1/92 0 117 1/95 0 188 2/89 1 50 2/92 0 119 2/95 0 190 3/89 0 52 3/92 0 121 3/95 0 192 4/89 0 54 4/92 1'. 123 4/95 0 194 5/89- 1 56 5/92' O 125 5/95 0 196 6/89 'O 58 6/92 1 126 6/95 0 198 7/89 0 59 7/92 0 128 7/ 95 0 200 8/89 - 0 61 8/92 1 130 8/ 95 0 202 9/89 0. 63 9/92 0 132 9/95 0 2D4 10/89 0? 65 10/92 1 134 10/95 0 2D6 11/89 0 67 11/92 0 136 11/95 0 208 12/89 2 69 12/92 0 138 12/95 1 210 Totals: 47 NOTE S:
- 1. A., = ,il = 0.224 f ailures per component year (1987-1995).
210 .
2 .' The mean time between initures = 1/0.224
- 4.5 component-years. l
- 4. E /2 indicates the midpoint of the cumulative 1DP years, for use in the laplace f est (see text
- 5. see figure 6 in, text. )
i i
i
)
APPENDIX ]l TABLE Vill s i BWR RCIC AND WFCI $r$1EM 1DP A55EMBL f F AILURES VERSUS COMPONENT-YE ARS PL ANT AGE CRDUP "C" ESI AND SURVE llL ANCE TE ST F AILURES EVENT NO. TDP YR$ . E VE N T TDP YR$ EVEN1- NO. TDP YRS RAij FAIL. OF OPER. QATL FAIL. -OF DPER. DATE Fall. OF OPE R .
1/87 0 i' 1/90 0' 41- 1/93 0 92 2/87 1 2~ . 2/90 1 43 2/93 1 94
'3/87 0: 2 =3/90 0 44 3/93' 0 95
-4/87- 0 3' 4/90 0 46 4/93 0 97 5/87 1 4 5/90 0 47 5/93 0 98 -
6/87 0' ..5 6/90 0 48 6/93 0 100 7/87 1. 6 7/90 0: 50 7/93 0 101 8/87 0 7 8/90 0' 51 8/93 0 102 9/87 0 8 9/90. 0 53 9/93 0 104 10/87 0 8 10/90 0 54 10/93 0 105 11/87' 0 '9 11/90 0 56 11/93 0 107 12/87 1 10 12/90 1 57 12/93 1 108 1/88 0 '
11 -1/91' O 58 1/94 0 110
'2/88 0- -12 2/91 0. 60 2/94 0 ill 3/88 , 0- 14 3/91 0~ 61 3/94 0 112 4/88 0 15 4/91 0 63 4/94 0 114 5/88 0 16 5/91 0 64 5/94 0 115 6/88 0 18 6/91 1 66 6/94- 0 116 7/88 - 1 19 7/91 0 67 7/94 0 118 8/88 0' 20 8/91 0 68 8/94 0 119 l
- 9/88 - 0 21 9/91 0 70 9/94 1 121 10/88 0 22, 10/91 0 ' II.- E /7 10/94 0 122 11/88 0 24 - 11/91 1 73 11/94 0 124 12/88 1 25 12/91 0 74 12/94 0 125 1/89 0 26 1/92 0 75 1/ 95 0 126 2/89 0 .28 2/92 0 77 2/95 0 128 3/89 0 29 3/92 0 78 3/95 0 129 4/89 0- 30 4/92 2- 80 4/95 0 131
-5/89 0 31 5/92 0 01 5/ 95 0 132 6/89 0 32 6/92 0 82 6/95 0 134 7/89 0 34 7/92 0 84 7/ 95 0 135 8/89 0 35 8/92 1 85 8/95 0 136 9/89 0 36 9/92 0 87 9/95 0 138
, 10/89 0 38- 10/92 0 88 10/95 0 139 11/89 0 39 11/92 0 90 11/95 0 141 12/89. 0 40 12/92 0 91 12/95 0 142 Totals: 16 N011$:
- 1. A,n -= 3 = 0.113 f ai Aures per conponent-year (19871995).
142
- 2. The mean time between f ailures = 1/0.113 = 8.8 component years.
4, L/2 indicates the midpoint of the cumulative 1DP years, for use in the Laplace f est (see text
' 5. see Figure 6 in text.
J APPENDIX lil TDP ASSEMBLY l ENGINEERING INSIGHTS I
APPENDIX lli TDP ASSEMBLY - ENGINEERING INSIGHTS TABLE NO. DESCRIPTION i PWR AFW System- Failures and Failure Fractions For TDP Assemblies and Subcomponents ll BWR RCIC, and HPCI Systems - Failures and Failure Fractions for TDP Assemblies and Subcomponents ill PWR AFW SystemTDP Assembly and Subcomponents- Failure Cause Apportionment .
IV BWR RCIC System TCP Assembly and Subcomponents- Failure Cause Apportionment V BWR HPCI System TDP Assembly and Subcomponents- Failure Cause Apportionment
i I
l APPEND!X 111 1ASIL 1 PWR AFW SYS1fM FAltuRES AND FAILURE FRAC 1lONS FOR 1DP A55EMBilE S AND sursCOMPONEN15 Pgd 1981 @ M }!9M MJ M 1993 1994 1995 Tot al 1
ho brv 'est f eilses 3 0 1
- ; 1 0 0 2 7 j hc (5( Fa'lu es C 0 0 C 0 0 0 t l Tot el hc F ailur es 3 0 1 ! C 1 0 0 2 7 ho FWs .?!
l Failure Fraction 040 0 013 0 0 013 0 0 02/ l Ave failure Fraction 010 - l TlHIN(5 [987 [96@ jjL8@ @ 199,1 M @ @ @ ota,,}
Tot No Surv. Test f ailures 3 2 2 4 5 3 7 9 2 37 No [5F Failures 1 0 2 0 0 0 1 0 1 5 l Total No Failures 4 2 4 4 5 3 6 9 3 42 No Turbines 75 -
Failure f raction 053 02? 053 053 067 040 107 !?0 040 3 i Ave f ailu re Fraction Ote l CovfRMR5 l@@7 19@@ g @ @ M M M @ 10.1 a]
No Surv. Test Failures- 1 3 6 12 2 4 4 2 2 36 ,
I No (5F Failures. 3 2 3 2 2 2 0 1 1 16 i
Total No Failures 4 5 9 14 4 6 4 3 3 52 No Governor s 75 railure Fraction 053 067 120 187 053 080 053 040 040 Ave f ailure fraction 077 TDP A55V 1,9@] g 19@9 1920 M_1 M 1993 1994 1995 Tot al (Incluces above suttomponents)
No Sury lest f ailures 7 5 9 lt 7 8 11 11 6 60 NC ($F Failures 4 2 5 2 2 2 1 1 2 21 Total No Failures 11 7 14 IB ? 10 12 12 8 101 No 11# Assys 75. .
Failure Fraction 147 093 187 240 120 133 160 160 107 l Ave Failure Fraction 150 Note See figure 1 in text
APPlNDlX ll1 1ABLE !!
BWR RCIC AND HPCI SYSifMS FAILURES AND FAILURE FRAC 110N F06 TDP ASSEMBilES AND SUBCOMPONENTS g jf]" J9+ 1949 1920 192) 1992 @ 1994 1995 tot al No Surv lest Fdilures C
. 0 0 0 0 0 i i ho (5F Failures C ( 0 0 0 0 C ( t C Total No f ailures '( '
0 0 0 0 0 1 l' i No Pgs 59. ..
Feilure Fraction 0 0 0 0 0 0 0 017 0 Ave failure Fraction . + - 002 . -
WINES 122? 120@ 12!!2 1229 12 122j 122} @ @ ljid No Sury Test failures 8 7 1 6 5 5 1 4 2 39 No (SF Failures- 0 1 0 0 0 0 0 1 0 2 Total No F411ufes' .8 8 1 6 5 5 1 5 7 41 1 No Turtine Drivers. - Failure Fraction IX 136 017 102 085 085 017 085 0 34 ) Ave f ailure Fraction- 077 - WIM*5 12E! 1222 1202 1229 1223 1222 1222 121! 12D letJ.! No 3ury Test failures 6 5 5 6 10 5 7 2 2 48 No.15F Failures. 1 0 0 0 1 0 0 0 0 2 Total No f ailures 7 5 5 6 Il 5 7 2 2 50 No Governors 59. - Failure Fraction 119 085 085 102 180 085 119 034 0 34 Ave f ailure Fraction 094 - W A55V5 1222 12 @ 1222 1229 1221 122l 1222 M 1222 121d 4 88 No Surv lest f ailures 14 12 6 12 16 10 0 7 4 No (5F Failures 1 1 0 0 1 0 0 1 0 8 4 92 Yotel No failures. 15 13 6 12 16 10 0 No TDP Assys Failure f raction 254 226 102 203 221 169 1 36 136 00P Ave Failure Fraction 173-- NOTE: See Figure 1 in text.
APPE NDI X !!!- TABLE lll PWR Af W SYSTEM TDP ASSEMBLY AND SUBCOMPDhiNTS F AILURE CAUSE APPORTIONMENT GOVERwoR$ TURB DRIVEPS PUMPS 1DP ASSLM E RS ho. No. No. FAllORE CAUSL fait. % Fail. % Fait. _}. igil, _jL Age / Wear / F a t . 10 20 14 34 2 25 26 26 Maint./ Proc. 12 24 11 26 '1 13 24 24 unknown 12 24 5 12 2 25 19 19 Dirt /Contam. '5 10 1 2 2 25 8 8 Design Defic. 6 11 1 2 1 12 8 8 other 6 11 10 24 0 0 16 15 Totals: 51 50 42 42 8 8 101 100 NOTE: See figure 7 and 8. APPENDIX 111 - TABLE IV BWR RCIC SYSTEM TDP ASSEMBLY AND SUBCOMPONENTS FAILURE CAUSE APPORilDNMENT GOVE RNDRS TURB. DRIVERS PUMPS TDP ASSEMBLIES No. No. No. FAILURE CAUSE Fall. ,_%_, & 1 & I fait. %
~
Age / Wear / Fat. 6 28 2 25 1 100 9 30 Maint./ Proc. 5 24 3 38 0 0 8 27 Unknown 7 33 0 0 0 0 7 23 Dirt /Contam. 2 10 0 0 0 0 2 7 Design Defic. 1 5 2 25 0 0 3 10 other 0 0 1 12 0 0 1 3 Totals: 21 70 8 27 1 3 30 100 NOTE: See Figures 7 and 9. APPENDIX lli - TABLE V BWR HPCI SYSTEM TDP ASSEMBLY AND SUBCOMPONENTS FAILURE CWISE APPORTIONMENT , GOVERNORS TURB. DRIVERS PUMPS TDP ASSEMBLIES No. No. No. TAILURE CAUSE fail. _}, Falls % Fail. % fall. % Age / Wear / Fat. 5 17 4 12 0 0 9 14 Maint./ Proc. 10 35 18 55 0 0 28 45 Unk nown 5 17 1 3 0 0 6 10 Dirt /Contam. 3 to 0 0 0 0 3 5 Design Defic. 5 17 5 15 0 0 10 16 Other 1 4 5 15 0 0 6 10 Totats: 29 47 33 53 0 0 62 100 N01E r See f igures 7 and 10.
e i APPENDIX IV l DATA SOURCE INPUTS FOR REPORTED FAILURES AND ESTIMATED DEMANDS TDP ASSEMBLIES l i 1 i
ABBREVIATIONS USED IN APPENDIX IV - TABLES I THROUGH IV APPL CODE - Application Coded (YES. All TDP Assys used in study are Application Coded) Numerical identifier assigned to each selected plant used with PLT ID NO. - NPRDS failure histories. When source is from LERs, a 3-digit docket number is used. DATA SRC - Data Source, either as NPRDS failure history (FHIS) or as a 5-digit LER number, as applicable. PLT AGE - Plant Age Group (A, B, or C) that indicates the plant commercial license date as follows: A 12/31/74 and earlier. B 1/1175 through 3131/86 C - 4/1/86 and later PLT SYS - The AFW, RCIC, or HPCI that has TDPs. NO. Fall- Number of same subcomponents failed with same failure mode, system, date, etc. DISC DATE - For NPRDS failures, this is the discovery date and for LERs, this is the event date, shown by month and year only (i.e.,0189 is January 1989). SUB COMP - Subcomponent of the TDP Assembly (PMP- Pump, TUB - Turbine Driver, and GOV- Governor) ESF/SURV. Engineered Safety Features Demand or Surveillance Test Demand Fall MODE - Failure Modes used are as follows: Failure to Start (FS)- Pump; Turbine Driver, and Governor Failure to Run (FR) - Pump; Turbine Driver; and Governor Failure to Control (FC) Governor Fall CAUS - Failure causes are as follows: Age / Wear (AW) Dirt / Contamination / Corrosion (DC) Design Deficiency (DD) Manufacturing Defect (MF) Unknown (UK) DebrisIForeign Material (DF) Out-of-Adjustment (OA) Setpoint Drift (SD) Other Devices (OD) MaintJProced. Deficiciencies (MP)
APPENDIX IV ) TDP ASSEMBLY - DATA SOURCE INPUT FOR REPORTED FAILURES { AND ESTIMATED DEMANDS ) TABLE NO. DESCRIPTION I l PWR TDP Assemblies - AFW System Data Source inputs - Failures IA PWR TDP Assemblies - AFW System Data Source inputs - ESF Failures (1996-1998) 11 , BWR TDP Assemblies - RCIC System Data Source inputs - Failures lll BWR TDP Assemblies - HPCI System Data Source inputs - Failures IV PWR TDP Assemblies AFW System Data Sources - ESF Demands { IVA PWR TDP Assemblies - AFW System Data Sources - ESF Demands (19961998) i i V BWR TDP Assemblies - RCIC System Data Sources - ESF Demands ! VA BWR TDP Assemblies - RCIC System Data Sources - ESF Demands - (1996-1998) VI BWR TDP Assemblies - HPCI System Data Sources - ESF Demands VIA BWR TDP Assemblies - HPCI System Data Sources - ESF Demands (1996-1998) Vil PWR TDP Asemblies - AFW System Data Source Inputs - Estimated Surveillance Test Demands Vill BWR TDP Assemblies - RCIC System Data Source Inputs - Estimated Surveillance Test Demands IX BWR TDP Assemblies - HPCI System Data Source Inputs - Estimated Surveillance Test Demands l l 1
APPENDIX IV - TABLE I PWR TDP ASSEMBLIES AFW SYSTEM DATA SOURCE INPUTS- FAILURES ITEM APPL PLT- DATA PLT PLT NO. DISC SUB ESF/ Fall Fall NO. CODE ID SRC. AGE SYS Fall DATE COMP SURV. MODE CAUS 1 YES 48 FHIS B AFW 1 0287 TUB SURV. FS AW 2 YES 389 87003 B AFVV 1 0487 GOV ESF FR UK 3 YES 282 87007 A AFW 1 0587 PMP SURV. FR DC 4 YES 72 FHIS B AFW 1 0587 PMP SURV. FR AW 5 YES 48 FHIS B AFW 1 0587 GOV SURV. FR AW 6 y.g3 400 87035 C AFW 1 0687 TUB SURV. FR MP 7 YES 382 87020 C AFW 1 0787 GOV ESF FR UK 8 YES 414 87026 C AFW 1 1087 PMP SURV. FR AW 9 yfS 74 FHIS B AFW 1 1087 TUB SURV. FR AW 10 YES 414 87029 C* AFW 1 1187 GOV ESF FR MP 11 YES 344 87037 B AFW 1 1287 TUB ESF FS UK 12 YES 302 88002 B AFW 1 0188 GOV ESF FC MP 13 YES 338 88002 B AFW 1 0188 GOV ESF FR UK 14 yES 89 FHIS C AFW 1 0288 GOV SURV. FR UK 15 YES 369 88008 8 AFW 1 0588 TUB SURV. FR MP 16 YES 28 FHIS A AFW 1 0588 TUB SURV. FR UK 17 YES 8 FHIS A AFW 1 0888 GOV SURV. FR AW 18 YES 58 FHIS B AFW 1 0988 GOV SURV. FC DC 19 YES 413 89007 C AFW 1 0189 PMP SURV. FS DC 20 YES 400 89001 C AFW 1 0189 TUB ESF FR MP 21 YES 424 89005 C AFW 1 0289 GOV ESF FR DC 22 YES 49 FHIS B AFW 1 0289 TUB SURV. FS AW 23 YES 87 FHIS C AFW 1 0289 GOV SURV. FC UK 24 YES 48 FHIS B AFW 1 0389 GOV SURV. FC AW 25 YES 368 89006 B AFW 1 0489 GOV ESF FR SD 26 yfS 368 89008 B AFW 1 0589 GOV ESF FR SD 27 YES 412 89015 C AFW 1 0589 GOV SURV. FC MP 28 YES 85 FHIS C AFW 1 0689 GOV SURV. FC AW 29 YES 414 89017 C AFW 1 0789 GOV SURV. FR DC
APPENDIX IV TABLE I (CONTINUED) PWR TDP ASSEMBLIES AFW SYSTEM DATA SOURCE INPUTS FAILURES ITEM APPL PLT DATA PLT PLT NO. DISC ~ SUB ESF/ Fall FAIL NO. CODE ID SRC. AGE SYS Fall DATE COMP SURV. MODE CAUS 30 YES 400 89017 C AFW 1 1089 TUB ESF FR UK 31 YES 64 FHIS B AFW 1 1089 TUB SURV. FR AW 32 YES 60 FHIS B AFW 1 1189 GOV SURV. FC SD , 33 YES 389 90001 B AFW 1 0190 GOV ESF FR DC 34 YES 35 FHIS A AFW 1 0290 GOV SURV. FC MP 35 YES 40 FHIS A AFW 1 0290 GOV SURV. FC MP 36 YES 40 FHIS A AFW 1 0390 GOV SURV. FR DD 37 YES 82 FHIS B AFW 1 0390 GOV SURV. FC DC i 38 YES 70 FHIS B AFW 1 0590 GOV SURV. FC MP 39 YES 76 FHIS B AFW 1 0590 PMP SURV. FR UK i 40 YES 412 90008 C AFW 1 0790 GOV ESF FR MP i l 41 YES 103 FHIS C AFW 1 0790 GOV SURV. FR DD 1 42 YES 44 FHIS B AFW 1 0890 GOV SURV. FC AW ,
)
43 YES 83 FHIS B AFW 1 0890 GOV SURV. FC MP 44 YES 361 90012 B AFW 2 0890 TUB SURV. FR MP 45 YES 2 FHIS A AFW 1 0990 TUB SURV. FR AW 46 YES 48 FHIS B AFW 1 0990 TUB SURV. FS AW 47 YES 70 FHIS B AFW 1 1090 GOV SURV. FR AW 48 YES 59 FHIS B AFW 1 1190 GOV SURV. FC UK 49 YES 368 90024 B AFW 1 1290 GOV SURV. FR MP 50 YES 2 FH!S A AFW 1 0191 TUB SURV. FS OA 51 YES 58 FHIS B AFW 1 0191 TUB SURV. FR MP 52 YES 96 FHIS C AFW 1 0191 TUB SURV. FR AW 53 YES 49 FHIS B AFW 1 0391 TUB SURV. FR UK 54 YES 316 91004 8 AFW 1 0391 GOV ESF FC UK 55 YES 103 FHIS C AFW 1 0491 GOV SURV. FR DD 56 YES 316 91006 B AFW 1 0891 GOV ESF FR UK 57 YES 106 FHIS C AFW 1 0991 TUB SURV. FS MF 58 YES 40 FHIS A AFW 1 0991 GOV SURV. FR OD l
APPENDIX IV - TABLE I (CONTINUED) PWR TDP ASSEMBLtES AFW SYSTEM DATA SOURCE INPUTS- FAILURES ITEM APPL PLT DATA PLT PLT NO. DISC SUB. ESFl Fall Fall NO. CODE ID SRC, AGE SYS Fall DATE COMP SURV. MODE CAUS 59 YES 103 FHIS C AFW 1 0192 GOV SURV. FS AW 60 ygg 361 92008 B AFW 1 0292 TUB SURV. FR MP 61 YES 87 FHIS C .AFW 1 0692 GOV SURV. FC AW 62 YES 344 92020 B AFW 1 0792 GOV ESF FR UK 63 YES 35 FHIS A AFW '1 0892 PMP SURV. FS UK 64 YES 272 92019 B AFW 1 0892 GOV ESF FC DD 65 YES 424 92007 C AFW 1 0892 GOV SURV. FR UK 66 YES 32 FHIS A AFW 1 0992 TdB SURV. FR MP 67 YES 87 FHIS C AFW 1 0992 GOV SURV. FC MP 68 YES 32 FHIS A AFW 1 1092 TUB SURV. FR 4 DF 69 YES 103 FHIS C AFW 1 0193 GOV SUR. FR AW 70 YES 105 FHIS C AFW 1 0193 TUB SURV. FR bD 71 YES 498 93007 C AFW 1 0293 TUB SURV. FR OD AFW 0293 TUB ESF FR OD i 72 YES 499 93004 C 1 73 YES 85 FHIS C AFW 1 0393 TUB SURV. FS AW 74 YES 35 FHIS A AFW 1 0593 GOV SURV. FR MP 3 75 YES 103 FHIS C AFW 1 0693 TUB SURV. FS UK 76 YES 41 FHIS A AFW _ 1 0693 GOV SURV. FR MP ) 77 YES 35 FHIS A AFW 1 0693 TUB SURV. FR OD 78 YES 40 FHIS A AFW 1 0993 TUB SURV. FR OD 79 YES 425 93007 C AFW 1 1093 GOV SURV. FC DD 80 YES 93 FHIS C AFW 1 1193 TUB SURV. FS MP 81 YES 304 94002 A AFW 1 0394 TUB SURV. FR OD 82 YES 49 FHIS B AFW 1 0594 TUB SURV. FR kW 83 YES 27 FHIS A AFW 1 0694 TUB SURV. FR AW 84 YES 89 FHIS A AFW 1 0694 GOV SURV. FR AW 85 YES 28 FHIS A AFW 1 0794 TUB SURV. FS AW I 86 YES 62 FHIS B AFW 1 0794 TUB SURV. FR AW I l 1
1 APPENDIX IV TABLE i (CONTINUED) PWR TDP ASSEMBLIES - AFW SYSTEM DATA SOURCE INPUTS FAILURES ITEM APPL PLT DATA PLT PLT NO. DISC SUB ESF/ Fall FAIL NO. CODE ID SRC. AGE SYS Fall DATE COMP SURV. MODE CAUS 87 YES 28 FHIS A AFW 1 0894 TUB SURV. FR AW 88 YES 423 94011 C AFW 1 0994 GOV ESF FR UK 89 YES 49 FHIS B AFW 1 0994 TUB SURV. FR DC 90 YES 10 FHIS A AFW 1 1094 TUB SURV. FR MP 91 YES 423 94014 C AFW 1 1194 TUB SURV. FR MP 92 YES 106 FHIS C AFW 1 1294 GOV SURV. FC DD ' 93 YES 280 95001 A AFW 1 0195 GOV SURV. FC MF 94 YES 107 FHIS C AFW 1 0595 TUB ESF FR MP 95 YES 445 95004 C AFW 1 0695 TUB' SURV. FR OD 96 YES 423 95014 C AFW 1 0795 TUB ESF FS OD 97 YES 49 FHIS B AFW 1 0895 PMP SURV. FS MP 98 YES 305 95001 C AFW 1 1195 PMP SURV. FS MP l 1 99 YES 305 95007 A AFW 1 1195 PMP SURV. FS DD { l 100 YES 35 FHIS A AFW 1 1295 GOV SURV. FC DF 1 Total No. Failures: 101 I J APPENDIX IV - TABLE lA l PWR TDP ASSEMBLIES - AFW SYSTEM DATA SOURCE INPUTS - ESF FAILURES (1996-1998) ITEM APPL PLT DATA PLT PLT NO. DISC SUB ESFl Fall Fall l NO. CODE ID SRC. AGE SYS. Fall DATE COMP SURV. MODE CAUS l I 1 YES 482 96001 C AFW 1 0196 PMP ESF FR AW 2 YES 250 96002 A AFW 1 0296 GOV ESF FC AW ) 3 YES 389 96002 B AFVV 1 0696 TUB ESF FS OD 4 YES 281 97001 A AFW 1 0297 GOV ESF FC DD 5 YES 250 97007 A AFW 1 0797 TUB ESF FS DD { Total No. Additional ESF Failures (1996-1998): 5
i l 1 f APPENDIX IV TABLE 11 BWR TOP ASSEMBLIES - RCIC SYSTEM DATA SOURCE INPUTS- FAILURES ITEM APPL PLT DATA PLT PLT NO. DISC SUB ESF/ Fall Fall NO. CODE ID SRC. AGE SYS Fall DATE COMP SURV. MODE CAUS 1 YES 265 87002 A RCIC 1 0187 TUB SURV. FR DD 2 YES 321 87011 B RCIC 1 0787 GOV ESF FC MP 3 YES 271 87018 A RCIC 1 1187 TUB SURV. FR AW l 4 YES 265 88003 A RCIC 1 0388 GOV SURV. FC UK 5 YES 17 FHIS A RCIC 1 0488 TUB SURV. FR DD 6 YES 325 88020 B RCIC 1 0988 GOV SURV. FC MP 7 YES 101 FHIS C RCIC 1 1288 TUB SURV. FR DD j 8 YES 373 90007 B RCIC 1 0690 GOV SURV. FC DC 9 YES 77 FHIS B RCIC 1 0690 GOV SURV. FC DC 10 YES 293 81001 A RCIC 1 0190 GOV SURV. FC AW 11 YES 254 91009 A RCIC 1 0491 GOV SURV. FC MP SURV. FS MP i 12 YES 53 FHIS B RCIC 1 0691 TUB 13 YES 81 FHIS C RCIC 1 0691 TUB SURV. FR MP 14 YES 373 91012 B RCIC 1 0791 GOV SURV. FC UK YES 293 91020 A RCIC 1 0891 GOV SURV. FC UK 15 16 YES 331 91007 B RCIC 1 0891 GOV SURV. FC MP l 17 373 91017 B RCIC 1 1091 GOV SURV. FC UK 7.EE 18 YES 77 FHIS B RCIC 1 1091 GOV SURV. FC DD YES 373 92005 B RCIC 1 0492 GOV SURV. FC UK 19 20 YES 78 FHIS C RCIC 1 0492 GOV SURV FC AW 21 YES 265 92020 A RCIC 1 0892 GOV SURV FC UK FHIS B RCIC 0193 GOV SURV. FC MP 22 YES 57 1 23 YES 374 93002 C RCIC 1 0293 GOV SURV. FC UK 293 93013 A RCIC 0593 GOV SURV. FC AW l 24 YES 1 373 93C16 B RCIC 0893 GOV SURV. FC AW 25 YES 1 YES 374 93010 C RCIC 1 1293 GOV SURV. FC AW 26 265 94001 A RCIC 0194 PMP SURV. FR AW 27 yfS_ 1 458 94023 C RCIC 0994 TUB ESF FR AW l 28 YES 1 l I l l
t APPENDIX IV - TABLE ll (CONTINUED) PWR TDP ASSEMBLIES RCI C SYSTEM DATA SOURCE INPUTS - FAILURES 1 ITEM APPL PLT DATA PLT PLT NO. DISC SUB ESFl FAIL Fall NO. CODE ID SRC. AGE SYS Fall DATE COMP SURV. MODE CAUS 29 YES 373 04013 B RCIC 1 1194 GOV SURV. FR OD 30 YES 254 95001 A RCIC 1 0195 TUB SURV. FR OD Total No. of RCIC Failures: 30 t NOTE: There are no RCIC TDP Assembly failures associated with ESF actuations for the 1996-1998 period. 1 i
\
APPENDIX IV - TABLE lil BWR TDP ASSEMBLIES HPCI S'. STEM DATA SOURCE INPUTS. FAILURES ITEM APPL PLT DATA PLT PLT NO. DISC SUB ESF/ Fall Fall N O. CODE ID SRC. AGE SYS FAIL DATE COMP SURV. MODE CAUS 1 YES 265 87003 A HPCI 1 0187 GOV SURV. FC UK 2 YES 63 FHIS C HPCI 1 0287 TUB SURV. FR MP 3 YES 249 87002 A HPCI 1 0287 TUB SURV. FR SD 4 YES 265 87006 A HPCI 1 0387 GOV SURV. FC DC 5 YES 352 87015 C HPCI t 0587 GOV SURV. FC DC 6 YES 366 87004 8 HPCI 1 0687 GOV SURV. FC DD 7 YES 331 87023 B HPCI 1 0787 TUB SURV. FR MP l 8 YES 333 87010 B HPCI 1 0787 TUB SURV. FS MP 9 YES 341 87030 C HPCI 1 0787 GOV SURV. FC DD 10 YES 277 87020 B# HPCI 1 0987 GOV SURV. FC UK 11 YES 298 87024 A HPCI 1 1187 TUB SURV. FR DD 12 YES 352 87066 C HPCI 1 1287 TUB SURV. FR MP 13 YES 366 88001 B HPCI 1 0188 TUB SURV. FS MP 14 YES 331 88002 B HPCI 1 0488 TUB SURV. FC MP 15 YES 331 88004 B HPCI 1 0688 GOV SURV. FC MP 16 YES 69 FHIS C HPCI 1 0788 TUB SURV. FR MP 17 YES 298 88022 A HPCI 1 0888 GOV SURV. FC AW ) 18 YES 73 FHIS B HPCI 1 0988 TUB SURV. FR MP 19 YES 321 88013 8 HPCI 1 0988 TUB ESF FC DD 20 YES 237 88017 A HPCI 1 1088 TUB SURV. FC AW 21 YES 321 88017 B HPIC 1 1288 GOV SURV. FC MP 22 YES 331 89002 B HPCI 1 0189 GOV SURV. FC AW 23 YES 331 89007 B HPCI 1 0289 GOV SURV. FC AW 24 YES 277 89009 B HPCI 1 0589 GOV SURV. FC MP 25 YES 293 89028 A HPCI 1 0989 GOV SURV. FC UK 26 YES 331 89016 B HPCI 1 1289 GOV SURV. FC DD 27 YES 278 89009 B HPCI i 1289 TUB SURV. FS MP 28 YES 321 90001 B HPCI 1 0190 GOV SURV. FC AW
F APPENDIX IV - TABLE lit (CONTINUED) BWR TDP ASSEMBLIES - HPCI SYSTEM DATA SOURCE INPUTS. FAILURES l ITEM APPL PLT DATA PLT PLT NO. DISC 'SUB ESFl Fall Fall I NO. CODE ID SRC. AGE SYS Fall DATE COMF SURV. MODE CAUS l 29 YES 388 90001 C HPCI 1 0290 GOV SURV. FC MP 30 YES 387 90007 8- HPCI 1 0290 TUB SURV. FS DD
~
31 YES 333 90010 B HPCI 1 0390 GOV SURV. FC MP 32 YES 73 FHIS B HPCI 1 0700 tub SURV. FS AW 33 YES 278 90010 B HPCI 1 0890 TUB SURV. FR DD 34 YES 324 90013 B HPCI 1 0990 GOV SURV. FC MP 35 YES 278 90011 B HPCl 1 0990 TUB SURV. FS MP
' TUB SURV. FS MP 36 E Y_ES 293 90017 A HPCI 1 1090 ,
37 ygg 68 FHIS C HPCI 1 1290 TUB SURV. FR AW 38 ,Y_E_3 321 91001 B HPCI 1 0191 GOV ESF. FC UK 39 YES 265 91003 A HPCl 1 0191 GOV SURV. FC DD 1 40 yf3 278 91005 B HPCI 1 0491 TUB SURV. FS OD 41 YES 254 91012 A HPCI 1 0591 TUB SURV. FS MP 42 YES 341 91020 C HPCI 1 1191 GOV SURV. FC MP 43 YES 387 91015 B HPCI 1 1191 T,UB SURV. FC UK 44 YES 324 91020 B HPCI 1 1191 GOV SURV. FC MP 45 YES 2 54 92002 A HPCI 1 0292 TUB SURV. FC MP 46 YES 249 92011 A HPCI 1 0492 TUB SURV. FC MP 47 YES 388 92002 C HPCI 1 0492 TUB SURV. FC DD 48 YES 278 92004 B HPCI 1 0692 TUB SURV. FR AW 49 YES 352 92015 C HPCI 1 0792 TUB SURV. FC MP 50 YES 26 FHIS B HPCI 1 0892 GOV SURV. FC MP i 51 YES 26 FHIS B HPCI 1 1092 GOV SURV, FC DD 52 YES 265 93002 A HPCI 1 0193 GOV SURV. FC DC 53 YES 254 93010 A HPCI 1 0793 GOV SURV. FC MP 54 YES 237 93016 A HPCI 1 0893 TUB SURV. FR MP 55 YES 278 94001 B HPCI 1 0194 GOV SURV. FC AW 56 YES 333 94001 B HPCI 1 0294 TUB SURV. FR OD 57 YES 366 94002 8 HPCI 1 0394 TUB SURV. FR MF I i
I l APPENDIX IV - TABLE Ili (CONTINUL9) BWR TDP ASSEMBLIES HPCI SYSTEM DATA SOURCE INPUTS FAILURES ITEM APPL PLT DATA PLT PLT NO. DISC SUB ESF/ FAIL Fall , NO. CODE ID SRC. AGE SYS Fall DATE COMP SURV. MODE CAUS I 58 ' YES 237 94021 A HPCI 1 0894 TUB GURV, FR OD 59 YES 321 94013 B HPCI 1 1194 TUB SURV. FR MP 60 YES 254 95004 A HPCI 1 0395 GOV - FS MF 61 YES 254 05008 A HPCI 1 1295 TUB - FS MP 62 YES 331 95012 B HPCI 1 1295 GOV - FC UK Total No. HPCI TDP Assembly Failures: 62 NOTE: There were no HPCI TDP Assembly failures associated with ESF actuations for the 19961998 period, a l l
- i. APPENDIX IV - TABLE IV
!- PWR TDP ASSEMBLIES - AFW SYSTEM DATA SOURCES - ESF DEMANDS ITEM DKT LER PLANT EVENT NO. NO. NO. TDP ) O
. N_O; E ROO2 SYS. DATE ESFs TDPs DEMANDS 1 1 206 87003 AFW 0387 1 .1 1 2 206 89012 AFW 0589 1 1 1 .3 206 89019 AFW 0789 1 1 1 4 206. 89023- AFW 0989 1 1 1 5 206~ 91010 AFW 0591 1 1 1 6 206 91017 AFW 1091 1 1 1 7 213 90017 AFW 0990 1 2 2 8 213 90018 AFW 0990 1 2 2 9 213 95016 AFW 0795 1 2 2 10 '244 88005 AFW 0688 1 1 1 11 244 89004 AFW 0689 1 1 1 12' 244 90012 AFW 0990 1 1 1 13 244 92002 AFW 0292 1 1 1 14 244 92003 AFW 0292 1 3 3 15 244 93006 AFW 1193 1 1 1 16 244 94007 AFW 0494 1 1- 1 17 244 95008 AFW 0895 1 1 1 18 247 91001 AFW 0191 1 1 1 -19 250 87001 AFW 0187 1 3 3 '
20 250 88004 AFW 0388 1 3 3 21 250 89005 AFW 0289 1 3 3 22 250 89020 AFW 1289 1 3 3 l 23 250 90011 AFW 0690 1 3 3 24 250 95007 AFW 1095 1 3 3 25 251 87001 AFW 0187 1 2 2 26 251 88009 AFW 0888 1 2 2 27 251 88010 AFW 0888 1 3 3 28 251 89011 AFW 0989 1 3 3 29 251 90003 AFW 0490 1 3 3 30 251 90008 AFW 0890 1 3- 3 ! 31 251 91006 AFW 1091 1 3 3 32 251 92007 AFW 0992 1 3 3 33 255 87009 AFW 0387 1- 2 2 34 261 88001 AFW 0188 1 1 1 35- 269 88009 AFW 0788 1 1 1 36- 269 89001 AFW 0189 1 1 1 37 269 .89002 AFW 0189 1 1 1 38 269 91011 AFW 1091 1 1 1 39 269 94002 AFW 0294 1 1 1 40 270 87004 AFW 0487 1 1 1
-41 270 89004 AFW 0489 1 1 1 42 270 92004 AFW 1092 1 1 1 43 270 93001 AFW 0493 .1 1 1 44 270 94002 AFW 0494 1 1 1 45 270 94005 AFW 1294 1 1 1 46 272 90030 - AFW 0990 1 1 1 47 272 94011 AFW 0794 1 1 1
- j. 48 275 91002 AFW 0291 1 1 1 49 275 91007 AFW 0491 1 1 1 i
50 275 93011 AFW 1293 1 1 '1
APPENDIXIV TABLEIV(CONTINUED) PWR TDP ASSEMBLIES - AFW SYSTEM DATA SOURCES - ESF DEMANDS ITEM DKT LER PLANT EVENT NO. N O. ~ NO. TDP
' NO. NO. NO. SYS. DATE ESFs TDPs DEMANDS 51 275 94020 AFW -1294 1 1 1 52 '275 95009 AFW 0995 1 1 1 53 280 92001 AFW 0192 1 1 1 54 280 93001 AFW 0193 1 1 1 55 280 93002 AFW- 0293. 1 1 1 56 280 04006 AFW 0594 1 1 1 57 280' 95001 AFW 0195 1 1 1 58 280 95003 AFW 0495 1 1 1 59 281 88010 AFW 0588 1 1 1 60 281 89010 AFW 0989 1 1 1 61 281 92010 AFW 0992 1 1 1 62 281 93003 AFW 0893 1 1 1 63 281 93004 AFW 0803 1 1 1 64 281 93005 AFW 0893 1 1 1 65- 281 95004 AFW 0595 1 1 1 66 281 95005 AFW 0595 1 1 1 67 282 89010 AFW 0789 1 1 1 1 68 282 93005 AFW 0293 1 1 1 69 285 87036 AFW 1187 1 1 1 70 .285 92023 AFW 0792 1 1 1 71 285 94001 AFW 0294 1 1 1 72 286 88006 AFW 1088 1 1 1 I 73- 286 89015 AFW 1089 1 1 1 74 286 90002 AFW 0290 1 1 1 75 286 90004 AFW 0690 1 1 1 76 286 91004 AFW 0391 1 1 1 77 286 92015 AFW 0992 1 1 1 78 287 91007 AFW 0791 1 1 1 79 287 92001 AFW 0192 1 1 1 80 287 92003 ASW 0693 1 1 1 81 287 93001 AFW 0193 1 1 1 82 287 94002 AFW 0894 1 1 1 83- 287 94003 AFW -0894 1 1 1 84 289 89004 AFW 0889 1 1 1 85 289 91003 AFW 0991 1 1 1 '86 289 92001 AFW 0192 1 1 1 87 295 94005 AFW 0494 1 1 1 ' 88 302 88001 AFW 0188 1 1 1 89 302 88002 AFW 0188 1 1 1 90 302 88006 AFW 0288 1 1 1 91 302 89003 AFW 0189 1 1 1 92- 302 89022 AFW 0689 1 1 1 93- 302 89023 AFW 0689 1 1 1 <
94 302 90016 AFW 1090 1 1 1 l
-95 302 91003 AFW 0491 1 1 1 ;
96 302 91014 AFW 1191 1 1 1 j 97 302 91016 AFW- 1191 1 1 1
]
98 302 '91018 AFW 1291 1 1 1 99- 302 '92015 AFW 0792 1 1 1 100 302 92027 ' AFW 1292 1 1 1 1 l
e APPENDIX IV - TABLE IV (CONTINUED) - PWR TDP ASSEMBLIES - AFW SYSTEM DATA SOURCES - ESF DEMANDS ITEM DKT LER PLANT EVENT NO. NO. NO. TDP - M NO. NO. SYS. DATE ESFs TDPs DEMANDS 101 304 '88014 AFW 1288 1 1 1 102 305 91010 ' AFW. 1091 1 1 1
.103 305 . 92017 AFW 0992 1 1 1 104 305 93001 AFW 0193 1 1 1 105' 305 93018 AFW 1093 1 1 1 106 306 90004 AFW 0990' 1 1 1 107 306. 90005 AFW 0990 1 1 1 108 306- 94002 AFW 0794 1 1 1 i 109 306 95003 AFW 0695 1 1 1 110 : 311 90029 AFW 0690 1 1 1 111 311 93002 AFW 0193 1 1 1 112 ,311 93005 AFW 0393 1 1 1 113 311 94008 AFW 0694 1 1 1 114 313 87002 AFW 0587 1 1 1-115 313 87003 AFW 0887 1 1 1 116 313 87004 AFW 0887 1 1 1 117 313 87005 AFW 0887 1 1 1 118 313 88003 AFW 0288 1 1 1 119 313 89002 AFW 0189 1 1 1 120 313 89041 AFW 1289 1 1 1 121 313 89048 AFW 1289 1 1 1 )
122 313 91003 AFW 0491 1 1 1 123 313 91005 AFW 0591 1 1 1 124 313 92003 AFW 0492 1 1 1 125 313 94002 AFW 0494 1 1 1 126 313 95004 AFW 0495 1 1 1 127- 315 87008 AFW 0687 1 1 1 128 315 87021 AFW 1087 1 1 1 129 315 88001 AFW 0189 1 1 1 130 315 89001 AFW 0189 1 1 1 131 315 91004 AFW 0591 1 1 1 .132 316 87004 AFW 0687 1 1 1 133 316 87007 AFW 0787 1 1 1 134 316~ 87008 AFW- 0787 1 1 1 135 316 90012 AFW 1290 1 1 1 136 316 90013- AFW 1290 1 1 1 137 316 91004 AFW 0391 1 1 1 138 316 91006 AFW 0891 1 1 1 139 316 91010 AFW 1191 1 1 1 140 316 93007 AFW 0893 1 1 1 141 316 95005 AFW 0895 1 1 1 141 317 87012 AFW 0787 1 1 1 142 317- 91003 AFW 1091 1 1 1 143 317 91008 AFW 1291 1 1 1 144 317 92008 AFW 1192 1 1 1 145 317 94001 AFW 0194 1 2 2 146 317 94006 AFW' 0694 1 2 2 .147 317 94007 AFW 0794 1 2 2
.148 317 95002 AFW 0695 1 1 1 149 317 95005 AFW 1195 1 2 2 150 317 95006 AFW 1195 1 1 1
1 l APPENDtX IV - TABLE IV (CONTINUED) PWR TDP ASSEMBLIES - AFW SYSTEM DATA SOURCES - ESF DEMANDS l ITEM DKT LER PLANT EVENT NO. NO. NO. TDP I NO. NO. NO. SYS. DATE ESFs TDPs DEMANDS 151 318 87002 AFW 0587 1 1 1 152 318 87007 AFW 1187 1 1 1 153 318 87008 AFW 1287 1 1 1 154 318 88002 AFW 0188 1 1 1 155 318 88002 AFW 0188 1 1 1 156 318 88004 AFW 0488 1 1 1 157 318 92005 AFW 0891 1 1 1 j 158 318 93002 AFW 0693 1 2 2 159 318 94001 AFW 0194 1 1 1 , 160 318 94007 AFW 0992 1 1 1 161 318 95002 AFW 0195 1 2 2 162 327 88044 AFW 1188 1 1 1 163 327 88045 AFW 1188 1 1 1 164 327 88047 AFW 1288 1 1 1 165 327 89005 AFW 0289 1 1 1 166 327 90009 AFW 0590 1 1 1 167 327 90012 AFW 0690 1 1 1 168 327 90022 AFW 0990 1 1 1 169 327 90030 AFW 1190 1 1 1 170 327 92027 AFW 1292 1 1 1 171 327 94011 AFW 0704 1 1 1 172 327 94014 AFW 1194 1 1 1 173 327 95008 AFW 0695 1 1 1 174 328 88014 AFW 0388 1 1 1 175 328 88023 AFW 0588 1 1 1 , 176 328 88024 AFW 0588 1 1 1 177 328 88027 AFW 0688 1 1 1 178 328 88028 AFW 0688 2 1 2 179 328 89008 AFW- 0789 1 1 1 180 328 91001 AFW 0191 1 1 1 181 328 91006 AFW 1191 2 1 2 , 182 328 92001 AFW 0292 1 1 1 183 328 92012 AFW 0992 1 1 1 184 328 95007 AFW 1295 1 1 1 , 185 334 88007 AFW 0688 1 1 1 1 186 334 88008 AFW 0688 1 1 1 187 334 88009 AFW 0688 1 1 1 188 334 88014 AFW 0988 1 1 1 189 334 89001 AFW 0189 1' 1 1 190 334 89002 AFW 0289 1 1 1 191 334 90007 AFW 0390 1 1 1 192 334 91006 AFW 0291 1 1 1 J
'193 334 91022 AFW 0791 1 1 1 194 334 91023 AFW 0791 1 1 1 195 334 91029 AFW 1191 1 1 1 196 334 92009 AFW 1092 1 1 1 197 334 93013 AFW 1093 1 1 1 198 334 94005 AFW 0694 1 1 1 199 335 87011 AFW 0587 1 1 1 200 335 87017 AFW 1287 1 1 1
APPENDIX IV - TABLE IV (CONTINUED) PWR TDF' ASSEMBLIES - AFW SYSTEM DATA SOURCES ESF DEMANDS ITEM DKT LER PLANT EVENT NO. NO. NO. TDP M NO. NO. SYS. DATE ESFs TDPs DEMANDS 201 335 88003 AFW 0388 1 1 1 202 335 90007 AFW 0590 1 1 1 203 335 91002 AFW 0291 1 1 1 204 335 91005 AFW 0791 1 1 1 205 335 91006 AFW 0991 1 1 1 206 338 87017 AFW 0787 1 1 1 207 338 87020 AFW 1187 1 1 1 208 338 88002 AFW 0188 1 1 1 209 338 88005 AFW 0188 1 1 1 210 338 89005 AFW 0289 1 1 1 211 338 94005 AFW 0994 1 1 1 212 339 ,_ 88001 AFW 1188 1 1 1 213 339 90003 AFW 0890 1 1 1 214 339 90010 AFW 1190 1 1 1 215 339 93002 AFW 0493 1 1 1 216 344 87001 AFW 0187 1 1 1 217 344 87024 AFW 0887 1 2 2 218 344 87037 AFW 1287 1 1 1 219 344 88026 AFW 0888 1 2 2 220 344 88028 AFW 0988 1 2 2 221 344 88044 AFW 1188 1 2 2 222 344 89010 AFW 0989 1 2 2 223 344 89017 AFW 0889 1 2 2 224 344 90033 AFW 0790 1 2 2 225 344 90034 AFW 0890 1 2 2 226 344 91004 AFW 0291 1 2 2 227 344 92020 AFW 0792 1 2 2 228 344 92027 AFW 0992 1 2 2 229 344 92028 AFW 0992 1 2 2 230 346 87001 AFW 0187 1 2 2 231 346 87006 AFW 0387 1 2 2 232 346 91008 AFW 1291 1 2 2 233 346 93005 AFW 1093 1 2 2 234 348 87003 AFW 0187 i 1 1 235 348 89007 AFW 1189 1 1 1 236 361 87031 AFW 1287 1 1 1 237 361 90016 AFW 1290 1 1 1 238 361 92012 AFW 0792 1 1 1 239 362 87011 AFW 0687 1 1 1 240 362 89011 AFW 0189 1 1 1 241 362 89006 AFW 0489 1 1 1 242 .362 90002 AFW 0290 1 1 1 243 362 92004 AFW 0792 1 1 1 244 362 93004 AFW 0793 1 1 1 245 368 87007 AFW 0987 1 1 1 246 368 87008 AFW 1187 1 1 1 247 368 88011 AFW 0888 1 1 1 l 248 368 88020 AFW 1288 2 1 2 249 368 89006 AFW 0489 1 1 1 250 368 89019 AFW 0889 1 1 1
APPENDIX IV TABLE IV (CONTINUED) PWR TDP ASSEMBLIES - AFW SYSTEM DATA SOURCES - ESF DEMANDS ' ITEM DKT LER PLANT EVENT NO. - N O. NO. TDP M M M SYS. DATE ESFs TDPs DEMANDS 251 368 89020 AFW 0989 1 1 1 -252. 368 89024 AFW 1289 1- 1 1 253 368~ 91005 AFW- 0291 1 1 1 254 369 87017 AFW 0887 1 1 1 255 '369 88008 AFW 0588 1' 1 1 256 369 88021 AFW 0888 1 1 1 257 369 89025 AFW 0989 1 1 1 '258 369 91001 AFW 0291 1 1 1 260 369 92009 AFW 0692 1 1 1 261 369 92008 AFW 0792 1 1 1 262 369 93012 AFW 1293 1 1 1 263 369 95005 AFW 0995 1 1 1 264 370 87019 AFW 1187 1 1 1-265 370. 89002 AFW 0389 1 1 1 266 370 92000 AFW 0492 1 1 1 267 370 93008 AFW 1293 1 1 1 268 -382 87008 AFW 0387 1 1 1 269 382 87012 AFW 0487f 1 1 1 270 382 87016 AFW 0587 1 1 1 , 271 382 87020 AFW 0787 1 1 1 272 382 88016 AFW 0688 1 1 1 273 382 88033 AFW 1288 1 1 1 274 382 89013 AFW 0789 1 1 1 275 382 89024 AFW 1289 1 1 1 276 382 90002 AFW 0390 1 1 1 277 382 91019 AFW 0890 1 1 1 278 382 91022 AFW 1190 1 1 1 279 382 93001 AFW 0393 1 1 1 280 389 87001 AFW 0387 1 1 1 281 389 89007 AFW 0989 1 1 1 282 389 90001 AFW- 0190 1 1 1 283 -389 90006 AFW 1290 1 1 1 284 389' 91001 AFW 0391 1 1 1 285- 395 87015 AFW 0687 1 1 1 286 395 87027 AFW 1087 1 1 1 287 395 88002 AFW 0288 1 1 1 288 395' 88006 AFW 0588 1 1 1 290 395 88007 AFW 0688 1 1 1 291 395 88009 AFW 0788 1 1 1 292 395 89020 AFW 1289 1 1 1 293 400 87017 AFW 0387 1 1 1 294- 400 87035 AFW 0687 1 1 1 295 400 87042 AFW 0787 1 1 1 296 400 87062 AFW 1187 1 1 1 297. 400 89001 AFW 0189 1 1 1 298 400 89003 AFW 0289 1 1 1 299 400 89005 AFW 0289 1 1 1 300 400 89019 AFW 1289 1 1 1
f 1 APPENDIX IV TABLE IV (CONTINUED) PWR TDP ASSEMBLIES - AFW SYSTEM DATA SOURCES - ESF DEMANDS ITEM DKT LER PLANT EVENT NO. NO. NO. TDP - l g NO M SYS. DATE ESFs TDPs DEMANDS 301- 400 .89021 AFW 1289 1 1 1 l 302 400 91010 AFW 0691 1 1 1 l 303 400 92009 AFW 0792 1 1 1 304 400 92010 AFW 0792 1 1 1 305 400 93007 AFW 0593 1 1 1 306 400 95007 AFW 0995 1 1 1 307 412 87005 AFW 0787 1 1 1 308 412 87020 AFW 0987 1 1 1 309 412 87023 AFW 0987 1 1 1 310 412 87026 AFW 1087 1 1 1 311 412 87028 AFW 1087 1 1 1 312 412 87032 AFW 1087 1 1 1 313 412 87035 AFW 1187 1 1 1 314 412 89003 AFW 0289 1 1 Y 315 412 89019 AFW 0689 1 1 1 316 412 90008 AFW 0790 ' 1 1 1 317 412 91005 AFW 1191 1 1 1 318 412 93002 AFW 0193 1 1 1 319 412 94006 AFW 0694 1 1 1 320 412 95006 AFW 0895 1 1 1 321 413 87026 AFW 0787 1 1 1 322 413 87027 AFW 0787 1 1 1 323 413 91018 AFW 0991 1 1 1 87002 AFW 0187
]
324 414 1 1 1 1 325 414 87003 AFW 0187 1 1 1 ( 326 414 87007 AFW 0287 1 1 1 327 414 87010 AFW 0387 1 1 1 . I 328 414 87018 AFW 0587 1 1 1 l 3?9 414 87019 AFW 0587 1 1 1 l Pa' 414 .87025 AFW 0987 1 1 1 j N. 414 87027 AFW 0987 1 1 1 332 414 87029 AFW 1187 1 1 1 333 414 88012 AFW 0388 1 1 1 334- 414 88019 AFW 0588 1 1 1 335 414 88021 AFW 0688 1 1 1 336 414 88022 AFW 0688 1 1 1 337 414 88023 AFW 0688 1 1 1 338 414 88024 AFW 0688 1 1 1 339 414 88025 AFW 0688 1 1 1 340 .414 88031 AFW 1188 1 1 1 341 414 89001 AFW 0189 1 1 1 342 414 89002 AFW 0189 1 1 1 l 343 414 89003 AFW 0289 1 1 1 1 344 414 90013 AFW 1090 1 1 1 345 414 91008 AFW 0591 1 1 1 ; 346 414 92001 AFW 0192 1 1 1 347 414 92006 AFW 1292 1 1 1 348 414 93003 AFW 0993 1 1 1 349 414 94006 AFW 0994 1 1 1 350 414 94007 AFW 1094 1 1 1 k
APPENDIX IV TABLE IV (CONTINUED) PWRTDP ASSEMBLIES AFW SYSTEM DATA SOURCES ESF DEMANDS ITEM DKT LER PLANT EVENT NO. NO. NO. TDP NO. NO. E 'SYS. DATE ESFs TDPs DEMANDS
- 351 414 95001 AFW 0295 1 1 1 352 414 95004 AFW 0495 1 1 1 353 423 87026 AFW 0587 1 1 1 354 423 87027 AFW 0687 1 1 1 355 423 87031 AFW 0687 1 1 1 356 '423- 90003 AFW- 1290 1 1 1 357 423 93004 AFW 0393 1 1 1-358 423 94011 AFW 0994 1 1 1 359 424 87009 AFW 0387 1 1 1 360 424 87010 AFW 0387 1 1 1 361 424 87011 AFW 0387 1 1 1 362 424 87014 AFW 0487 1 1 1 363 424- 87018 AFW 0487 1 1 1 364 424 87025 AFW 0587 '1 1 1 365 424 87041 AFW 0687 1 1 1 366 424 87050 AFW 0787 1 1 1 367 424 87063 AFW 1187 1 1 1 368- 424 87066 AFW 1187 1 1 1 i 369 424 88001 AFW 0188 1 1 370 424 88006 AFW 0288 1 1 1 371 424 89005 AFW 0289 1 1 1 372 424 90016 AFW 0790 1 1 1 373 424 91002 AFW 0291 1 1 1 374 424 92006 AFW 0692 1 1 1 375 424 92008 AFW 0992 1 1 1 376 424 93009 AFW 0793 1 1 1 377 424 95002 AFW 0795 1 1 1 378 425 89018 AFW 0489 1 1 1 379 425 89020 AFW 0589 1 1 1 380 425 89021 AFW 0589 1 1 1 381 425 89023 AFW 0789 1 1 1 382 425 89024 AFW 0789 1 1 1 383 425 89027 AFW 1089 1 1 1 384 425 90016 AFW 1190 1 1 1 385 425 91005 ' AFW 0291 1 1 1 386 425 92002 AFW 0392 1 1 1 387 425 93006 AFW 0993 1 1 1 388 425 94001 AFW 0194 1 1 1 389 425 94002 AFW 019. i 1 1 390 443 90015 AFW 0690 1 1 1 391 443 90025 AFW 1190 1 1 1 392 443 91001 AFW 0291 1 1 1 393 443 91002 - AFW 0391 1 1 1 394 443 91008 AFW 0691 1 1 1 395 443- 91009 AFW G791 1 1 1 396 443 92017 AFW 0992 1 1 1 397 443 92024 AFW 1192 1 1 1 398 443 92025 AFW 1292 1 1 1 399 443 93003 AFW 0193 1 1 1 400 443 93009 AFW 0593 1 1 1 by
auf APPENDIX IV - TABLE IV (CONTINUED) PWR TDP ASSEMBLIES - AFW SYSTEM DATA SOURCES - ESF DEMANDS ITEM DKT LER PLANT EVENT NO. NO. NO. TDP NO. NO. NO. SYS. DATE ESFs TDPs DEMANDS 401 443 93012 AFW 0793 1 1 1 j 402 443 .93018 AFW 0993 1 1 1 403 445 90013 AFW 0590 1 1 1 404, 445 91005 AFW 0291 1 1 1 I 405 445 92014 AFW 0692 1 1 1 406 445 95003 AFW 0695 1 1 1 407 445 95004 AFW 0695 1 1 1 408 '482 87022 AFW 0587 1 1 1 409 482 87027 AFW 0687 1 1 1 : 410 482 87030 AFW 0787 1 1 1 l -411 482 87037 AFW 0987 1 1 1 412 482 90023 AFW 1090 1 1 1 413- 482 91006 AFW 0591 1 1 1 414 482 92016 AFW 0992 1 1 1 415 482 95006 AFW 1195 1 1 1 416 483 88011 AFW 0988 1 1 1 417 483 89008 AFW 0689 1 1 1 418 483 90015 AFW 1190 1 1 1 419 498 88022 AFW 0288 1 1 1 420 498 89001 AFW 0189 1 1 1 421 498 89015 AFW 0789 1 1 1 422 498 90006 AFW 0690 1 1 1 423 498 90014 AFW 0690 1 1 1 424 498 90015 AFW 0790 1 1 1 425 498 90016 AFW 0790 1 1 1 426 498 90020 AFW 0790 1 1 1 427 498 90023 AFW 0990 1 1 1 428 498 90025 AFW 1190 1 1 1 429 498 91012 AFW 0491 1 1 1 430 498 91021 AFW 1091 1- 1 1 431 '498 91022 AFW 1091 1 1 1 432 498 92003 AFW 0392 1 1 1 433 498 94009 AFW '0294 1 1 1 434 498 94015 AFW 0994 1 1' 1 I 435 498 95001 AFW 0195 1 1 1 436 498 95009 AFW 0695 1 1 1 437 498 95013 AFW 1295 1 1 1 438 499 88022 AFW 0288 1 1 1 439 499 89009 AFW 0489 1 1 1 440 499 89011 AFW 0489 1 1 1 441 499 89013' AFW 0489 1 1 1 442 499 89016 AFW 0689 1 1 1 443 499 00002 AFW 0290 1 1 1 444 499 90004 AFW 0390 1 1 1 445 499 90005 AFW 0490 1 1 1 446- 499 90013 AFW 0990 1 1 1 447 499 91001 AFW 0191 1 1 1 448 499 91003 AFW 0391 1 1 1 449 499 91004 AFW 0391 1 1 1 450 499 92001 AFW 0192 1 1 1
l l APPENDIX IV - TABLE IV (CONTINUED) PWR TDP ASSEMBLIES - AFW SYSTEM DATA SOURCES ESF DEMANDS ITEM DKT LER PLANT EVENT NO. NO. NO. TDP NOa NO. NO. SYS. DATE ESFs TDPs DEMANDS 451 499 92003 AFW 0292 1 1 1 452 499 92010 AFW 1292 1 1 1 453 499 93001 AFW 0193 1 1 1 454 499 93004 AFW 0293 1 1 . 455 499 94007 AFW 0694 1 1 1 456 499 95003 AFW 0395 1 1 1 457 499 95008 AFW 1195 1 1 1 459- 529 87010 AFW 0687 1 1 1 460 529 89003 AFW 0289 1 1 1 461 529 93004 AFW 1193 1 1 1 462 529 95005 AFW 0795 1 1 1 463 530 89001 AFW 0389 1 1 1 464 530 93001 AFW 0293 1 1 1 Totals: 521 APPENDIX IV - TABLE IVA FWR TDP ASSEMBLIES - AFW SYSTEM DATA SCURCES ESF DEMANDS (1996-1998) ITEM DKT LER PLANT EVENT NO. NO. NO. TDP R R M SYS, DATE ESFs TDPs DEMANDS 1 244 96002 AFW 0396 1 1 1 2 244 96012 AFW 0896 1 1 1 3 247 96003 AFW 0396 1 1 1 4 247 96012 AFW 0596 1 1 1 5 247 97002 AFW 0197 1 1 1 6 247 97018 AFW 0797 1 1 1 7 250 96002 AFW 0296 1 3 3 8 250 96006 AFW 0396 1 3 3 9 250 97004 AFW 0497 1 3 3 10 250 97006 AFW 0797 1 3 3 11 250 97007 AFW 0797 1 3 3 12 250 98001 AFW 0298 1 3 3 l 13 269 96004 AFW 0296 1 1 1 14 269 97008 AFW 0797 1 1 1 15 270 98007 AFW 1198- 1 1 1 16 275 96012 AFW 0896 1 1 1 17 275 96017 AFW 1196 1 1 1 18 280 97003 AFW 0297 1 1 1 19 280 98002 AFW 0298 1 1 1 20 280 98013 AFW 1198 1 1 1 21 280 98014 AFW 1198 1 1 1 22 281 97001 AFW 0297 1 1 1 23 281 97004 AFW 1297 1 1 1 24 282 96012 AFW 0696 1 1 1 25 282 97008 - AFW 0697 1 1 1 l 26 282 98008 AFW 0698 1 1 1 27 285 96002 AFW 0396 1 1 1 1 I 28 285 97003 AFW 0497 1 1 1 29 286 96015 AFW 1096 1 1 30 286 97001 AFW 0197 1 1 1 ;
e APPENDlX IV TABLE IVA (CONTINUED) PWR TDP ASSEMBLIES - AFW SYSTEM DATA SOURCES - ESF DEMANDS (1996-1998) ITEM DKT LER PLANT EVENT NO. NO. NO. TDP NO. NO. NO. SYS. DATE ESFs TDPs DEMANDS 31 286 97023 AFW 0997 1 1 1 32 286 97025 AFW 0997 1 1 1 33 286 98003 AFW 0598 1 1 1 , 34 286 98006 AFW 0898 1 1 1 35 287 96001 AFW 0396 1 1 1 36 289 97007 AFW 0697 1 1 1 l 37 302 96017 AFW 0596 1 1 1 ! 38 302 98003 AFW 0298- 1 1 1 i 39 302 98009 AFW 0898 1 1 1 40 305 96003 AFW 0496 1 1 1 41 305 98005 AFW 0298 1 1 1 42 306 96001 AFW 0396 1 1 1 43 306 96002 AFW 0496 1 1 1 44 306 97003 AFW 0597 1 1 1 ) 45 306 98005 AFW 1198 1 1 1 46 313 96005 AFW 0596 1 1 1 47 313 96007 AFW 0996 1 1 1 48 313 98005 AFW 1298 1 1 1 49 315 96002 AFW 0396 1 1 1 l 50 315 96004 AFW 0996 1 1 1 51 316 97001 AFW 0397 2 1 2 52 317 97009 AFW 1097 1 1 1 53 318 96001 AFW 0296 1 1 1 54 318 96005 AFW 1196 1 1 1 55 318 98004 AFW 0298 1 '1 1 56 323 97002 AFW 0397 1 1 1 57 323 97003 AFW 0797 1 1 1 58 323 97005 AFW 1097 1 1 1 59 327 96010 AFW 1196 1 1 1 60 327 97012 AFW 0897 1 1 1 61 327 98001 AFW 0598 1 1 1 62 328 96005 AFW 1096 1 1 1 63 328 96006 AFW 1296 1 1 1 64 328 96007 AFW 1296 1 1 1 65 328 98001 AFW 0898 1 1 1 66 328 98002 AFW 1098 1 1 1 67 334 96008 AFW 0596 1 1 1 68 334 97005 AFW 0397 1 1 1 i 69 334 97025 AFW 0897 1 1 1 l 70 338 96005 AFW 0896 1 1 1 71 339 96003 AFW 1196 1 1 1 72 346 97010 AFW 0597 1 2 2 73 346 98006 AFW 0698 1 2 2 74 346 98011 AFW 1098 1 2 2 75 368 98002 ' AFW 0598 1 1 1 76 369 97009 AFW 0997 1 1 1 77 369 98002 AFW 0298 1 1 1 78 370 97001 AFW 0597 1 1 1 79 370 98001 AFW 0298 1 1 1 80 382 96006 AFW 0596 1 1 1 l 81 382 98014 AFW 0798 1 1 1 l 82 389 96001 AFW 0196 1 1 1 L_
APPENDIX IV - TABLE IVA (CONTINUED) PWR TDP ASSEMBLIES - AFW SYSTEM DATA SOURCES ESF DEMANDS (1996-1998) ITEM DKT LER PLANT EVENT NO. NO. NO. TDP NO. NO. NO. SYS. DATE ESFs TDPs DEMANDS 83 389 96002 AFW 0696 1 1 1 84 389 98006 AFW 0998 1 1 1 85 395 97002 AFW 0497 1 1 1 86 400 96008 AFW 0496 1 1 1 87 400 96018 AFW 0996 1 1 1 88 400 97001 AFW 0188 1 1 1-89 400 97019 AFW 0797 1 1 1 90 400 98017 AFW 1098 1 1 1 91 414 96001 AFW 0296 1 1 1 92 414 97005 AFW 0697 1 1 1 93 414 97006 AFW 0798 1 1 1 94 424 96006 AFW 0596 1 1 1 95 424 96012 AFW 1196 1 1 1 96 425 96006 AFW 1096 1 1 1 97 425 96008 AFW 1096 1 1 1 98 425 98003 AFW 0598 1 1 1 99 425 98005 AFW 0698 1 1 1 100 425 98007 AFW 0898 1 1 1 101 425 98008 AFW 0998 1 1 1 102 443 96001 AFW 0196 1 1 1 103 443 98014 AFW 1298 1 1 1 104 445 96002 AFW 0196 1 1 1 105 482 96001 AFW 0196 1 1 1 l 106 482 96006 AFW 0696 1 1 1 1 107 498 97012 AFW 1197 1 1 1 ) 108 499 97004 AFW 0397 1 1 1 l 109 499 97005 AFW 0397 1 1 1 110 499 97006 AFW 0497 1 1 1 111 499 97007 AFW 1197 1 1 1 112 499 98002 AFW 0998 1 1 1 113 528 98002 AFW 0298 1 1 1 114 529 96001 AFW 0196 1 1 1 Totals: 130'
[T L 1 ( I APPENDIX IV - TABLE V L BWR TDP ASSEMBLIES RCIC SYSTEM DATA SOURCES - ESF DEMANDS ITEM DKT LER PLANT EVENT NO. NO. NO.TDP N_02 NO. NO. SYS, DATE . ESFs TDPs DEMANDS 1- 263 87003 RCIC 0487 1 1 1 2 263 91019 RCIC 0891 1 1 1 3 265 87013 RCIC 1087 1 1 1 4 277 89012 RCIC 0589 1 1 1 5 277' 89033 RCIC 1289 1 1 1 6 277 93004 RCIC . 0393 1 1 1 7 278 92008 RCIC 1092 1 1 1 8 293 91024 RCIC 1091 1 1 1 9 293 93004 RCIC 0894 1 1 1 10 293 93022 RCIC 0993 1 1 1 11 298 87003 RCIC 0187- 1 1 1 12 298 , 87009 RCIC 0287 1 1 1 13 298 87011 RCIC 0587 1 1 1 14 298 88021 RCIC 0888 1 1 1 15 298 89026 RCIC 1889 1 1 1
- 16. 298 89033 RCIC 1289 1 1 1 17 298 93038 RCIC 1293 1 1 1 18 298 94004 RCIC 0394 1 1 1 19 321 87011 RCIC 0787 1 1 1 20 321 87013 RCIC 0887 1 1 1 21 321 88013 RCIC 0988 1 1 1 22 321 88018 RCIC - 1288 1 1 1 23 321 90013 RCIC 0690 1 1 1 24 321 91017 RCIC 0991 1 1 1 25 321 92021 RCIC - 0892 1 1 1 J 26 321 92024 RCIC 0992 1 1 1 1 27 321 93013 RCIC 1093 1 1 1 28 321 93016 RCIC 1293 1 1 1 29 324 87001 RCIC 0187 1 1 1 30 324 87004 RCIC 0387 1 1 1 31 324 88018 RCIC 1188 1 1 1 I
32' '324 89m9 RCIC 0689 1 1 1 33 324 90009 RCIC 0890 1 1 1 34 324 91001 RCIC 0191 1 1 1 35 324 92001 RCIC 0292 1 1 1 36 325 87019 RCIC 0787 1 1 1
'37 325 91009 RCIC 0391
- 1 1 38 325 91018 RCIC 0791 1 1 1 l
39 325 92003 RCIC 0192 1 1 1 l 40 325 92005 RCIC 0292 1 1 1 41 325 95015 RCIC 0795 1 1 1 42 325 95018 RCIC 0995 1 1 1 ; 43 331 87008 RCIC 0687 1 1 1 44 331 89003 RCIC 0289 1 1 1 45 331 80008 RCIC 0389 1 1 1 46 333 89020 RCIC 1189 1 1 1 47 333 93009 RCIC 0493 1 1 1 48 333 95013 RCIC 0995 1 1 1 49 341 87017 RCIC 0587 1 1 1 50 341 87025 RCIC 0687 1 1 1
m
.J ' APPENDlX IV TABLE V (CONTINUED) - BWR TDP ASSEMBLIES - RCIC SYSTEM DATA SOURCES ESF DEMANDS
_CJM DKT- LER PLANT EVENT NO. NO. NO. TDP NA . NOa HQ SYS. DATE ESFs TDPs DEMANDS 51 341 88004 RCIC - 0188 1 1 1 52 341 92012 - RCIC 1192 1 1 1 53 341 93010 RCIC 0893 1 1 '1 54 341 -95004 RCIC ~ 0495 1 1 1 55 352 87048 RCIC 0987 1 1 1
- 56. 352 91009 RCIC 0491 1 1 1
' 57 --
353 90015 RCIC 0990 1 11 1 58 - 353 ~93001 RCIC 0193 1 1 1 59 -353 94010 RCIC 1094 -1 1 1 60~ .354: '87017 RCIC ' 0287 1 1- 1 61 354 87034- RCIC ' 0787 1 1 1 62 354 87039 RCIC 0887, 1 1 1 63- 354- 88012 RCIC 0488 1 1 1 64 354 88027 RCIC 1088 -1 1 1 65 354~ 88029 RCIC - 1188 1 1 1 66 354 90003 . RCIC 0390 1 1' 1 67 366 87003 RCIC 0187- 1 1 1 68' 366 87006 RCIC 0787' 1 1 1 69 366 87009 RCIC 0887 1 1 1 e i 70 366 88011 RCIC 0488 1 1 1 I 71 .366- '88017 RCIC 0588 .1 1 1 72 366- 88020 - RCIC 0888' 1 1 1' 73 366 89005 RCIC 0989 1- 1 1- -{
~74 366 92009 RCIC 0692 1 1 1 l 75 366 95001 RCIC 0795 1 -- 1 1 l 76 -373 92003 RCIC - 0392 1 1 1 .77 373. 92008 RCIC 0692 1 1 1 78 373 93015 RCIC 0993 1 1 1 79 .374- 92005 RCIC 0392 1 1 1 80 '374- 92012 RCIC 0892 1 1 1 81 374' 92013. RCIC 0992 1 1 1 - 374- 92016 RCIC 1192 1 1 1 83 - 374 94008 RCIC 1094 .1 1. 1 - 84 374 94010 RCIC 1294 1 1 1 1 85 374 - 95001 RCIC 0195 1 1 1 i 86 387- 87013. RCIC 0487 1 1 1 )
87 387 91008 RCIC 0791 1 1 1 88 388 87006 RCIC 0487- 1- 1 1 89- --397 87002 RCIC 0387 1 1 1 90 397 88003 RCIC 0288 1 1 1 91, 397~ 89002 - RCIC - 0189 1 1 1 92 397 91032 RCIC - 11/91 1 1 1 ' 93 397 93027 RCIC 0893 1 1 1 94 397. 95002 RCIC 0295 1 1 1
~59 '410 188001 RCIC 0188 1- 1 1 - 96 410- 88012 - RCIC 0388' 1 1 1 l
97" 410 88014 RCIC 0388 1 1 1
' 98 410 -89014 RCIC 0489 1 1 1 99 410 91023 RCIC 1291 1 1 1 I 100 416 89010 RCIC 0789 1 1 1 I 1
r-i i APPENDIX IV - TABLE V (CONTINUED) BWR TDP ASSEMBLIES RCIC SYSTEM DATA SOURCES - ESF DEMANDS ITEM DKT LER PLANT EVENT NO. NO. NO. TDP NO. NO. NO. SYS. DATE ESFs TDPs DEMANDS 101 416 89016 RCIC 1189 1 1 1 102 416 90028 RCIC 1290 1 1 1 i 103 416 91007 RCIC 0791 1 1 1 ! 104 416 95007 RCIC 0795 1 1 1 l 105 416 95008 RCIC 0795 1 1 1 i 106 440 87064 RCIC 0987 1 1 1 107 440 87072 RCIC 1087 1 1 1 108 440 90001 RCIC 0190 1 1 1 l 109 440 95006 RCIC - 0895 1~ 1 1 110- 440 95006 RCIC 0995 1 1 1 111 440 95008 RCIC 0995 1 1 1 112 458 88018 RCIC 0888 1 1 1 113 458 88021 RCIC 0988 1 1 1 114 458 89004 RCIC 0289 1 1 Y 115 458 89008 RCIC 0289 , 1 1 1 116 461 87001 RCIC 0187 1 1 1 Totals: 116 116 116 1 APPENDIX IV - TABLE VA BWR TDP ASSEMBLIES - RCIC SYSTEM DATA SOURCES - ESF DEMANDS (1996-1998) ITEM DKT LER PLANT EVENT NO. NO. NO. TDP NO. NO. NO. SYS. DATE ESFs TDPs DEMANDS
- 1. 260 97001 RCIC 0497 1 1 1 ,
2 271 98016 RCIC 0698 1 1 1 3 296 96002 RCIC 0496 1 1 1 4 296 96003 RCIC 0596 1 1 1 5 333. 96003 RCIC 0296- 1 1 1 . 6 333 99010 RCIC 0996 1 1 1 l 7 333 98004 RCIC 0598 1 1 1 8 333 98008 RCIC 0898 1 1 1 9 366 97007 RCIC 0497 1 1 1 10 366 97010 RCIC 1197 1 1 1 ; 11 388 96004 RCIC 0796 1 1 1 12 ~397 98002 RCIC 0398 1 1 1 13 397 98003 RCIC 0398 1 1 1 : 14 416 98001 RCIC 0198 1 3 3 15 440 97001 RCIC 0197 1 1 1 16 440 98002 RCIC 0798 1 1 1 Totals: 16 16 16 l
7-l I l APPENDIX IV TABLE VI BWR TDP ASSEMBLIES - HPCI SYSTEM DATA SOURCES ESF DEMANDS ITEM DKT LER PLANT EVENT NO. NO. NO. TDP NO. NO. NO. SYS, DATE ESFs TDPs DEMANDS 1 220 87014 . HPCI 1087 1 1 1 2 220 87015 HPCI 1087 1 1 1 3- 220 87016 HPCI 1087 1 1 1 4 220 87024 HPCI 1287 .1 1 1 5 220 87028 HPCI 1287 1 1 1 6 220 90015 HPCI 0790- 1 1 1 7 220 90017 HPCI 0890 1 1 1 8 220 90020 HPCI 0890 1 1 1 9 220 90026 HPCI '1190 1 1 1 10 220 91002 HPCI 0291 1 1 1 11 .220 91012 HPCI 0991 1 1 1 12 220 91014 HPCI 1291 1 1 1 13 220 92003 HPCI 0592 1 1 1 14 220 92004 HPCI 0292 1 1 1 15 220 92008 HPCI 0492 1 1 1 16 220 92009 HPCI 0892 1 1 1 17 220 93002 HPCI 0193 1 1 1 18 220 94002 HPCI 0494 1 1 1 4 19 220 94005 HPCI 0794 1 1 1 20 220 94007 HPCI 1194 1 1 1 21 220 95002 HPCI 0495 1 1 1 22 237 90002 HPCI 0190 1 1 1 . 23 249 89001 HPCI 0389 1 1 1 24 260 90005 HPCI 0590 1 1 1 25 260 94004 HPCI 0494 1 1 1 26 263 87009 HPCI 0487 1 1 1 27 263 91009 HPCI 0491 1 1 1 28 265 87013 HPCI 1087 1 1 1 29 265 87017 HPCI 1187 1 1 1 30 265 88027 HPCI 1188 1 1 1 31 271 95009 HPCI 0495 1 1 1 32 277 89012 HPCI 0589 1 1 1 33 277 89033 HPCI 1289 1 1 1 34 .277 93004 HPCI 0393 1 1 1 35 278 90008 HPCI 0790 1 1 1 36 278 92008 HPCI 1092 1 1 1 37 293 90013 HPCI 0990 1 1 1 38 293 91024 HPCI 1291 1 1 1 39 293 930N HPCI 0894 1 1 1 40 -293 93022 HPCI 0993 1 1 1 41 298 87003 HPCI 0187 1- 1 1 ) 42 298 87009 HPCI 0287 1 1 1 1 43 298 88021 HPCI 0888 1 1 1 44 298 89026 HPCI 1189 1 1 1 45 298 90011 HPCI 1090 1 1 1 46 298 93038 HPCI 1293 1 1 1 47 298 94004 HPCI 0394 1 1 1 48 321 87011 HPCI 0787 1 1 1 49 321 87013 HPCI 0887 1 1 1 50 321 88018 HPCI 1288 1 1 1
rs i APPENDIX IV - TABLE VI BWR TDP ASSEMBLIES - HPCI SYSTEM DATA SOURCES - ESF DEMANDS ITEM DKT LER PLANT EVENT NO. NO. NO. TDP NO. NO. M SYS. DATE ESFs TDPs DEMANDS 51 321- 89013 HPCI 0988 1 1 1
'52 321 90013 HPCI 0690 1 1 1 53' 321 91001 HPCI 0191 1 1 1 54 321 91007 HPCI' 0291 1 1 1 55 321 91017 HPCI 0991 1 1 1 56 321 92021 HPCI 0892 1 1 1 57- 321 92024 HPCI 0992 1 1 1 58 321 93013 HPCI- 1093 1 1 1 59 321 93016 HPCI 1293 '1 1 1 60 324 87001 HPCI 0187 1 1 1 61 324 87004 HPCI 0387 1 1 1 62 324 88018 HPCI 1188 1 1 1 63 324 89001 HPCI 0289 1 1 1 64 324 89009 HPCI 0689 1 1 1 65 324 90009 HPCI 0890 1 1 1 66 324 90015 HPCI 0990 1 1 1 67 324 90016 HPCI 1090 1 1 1 68 324 91017 HPCI 0991 1 1 1 69 324 91021 HPCI 1291 1 1 1 70 324 92001 HPCI 0292 1 1 1 71 325 87017 HPCI 0687 1 1 1 72 325 87019 HPCI 0787 1 1 1 73 325 91009 HPCI 0391 1 1 1 74 325 91018 HPCI 0791 1 1 1 75 325 92003 HPCI 0192 1 1 1 76 325 94015 HPCI 1294 1 1 1 77 325 95015 HPCI 0795 1 1 1 78 325 95018 HPCI 0995 1 1 1 79 331 89003 HPCI 0289 1 1 1 80 331 89011 HPCI 0889 1 1 1 81 333 90009 HPCI 0390 1 1 1 82 333 93009 HPCI 0493 1 1 1 83 333 95013 HPCI 0995 1 1 1 84 341 88004 HPCI 0188 1 1 1 85 341 92012 HPCI 1192 1 1 1 86 341 93010 HPCI 0893 1 1 1 87 341 95004 HPCI 0495 1 1 1 88 352 87042 HPCI 0687 1 1 1 89 352 87048 HPCI 0987 1 1 1 90 352 91018 HPCI 0791 1 1 1 91 353 89013 HPCI 1189 1 1 1 92 353 90006 HPCI 0390 1 1 1 93 353 93005 HPCI 0393 1 1 1 94 353 94010 HPCI 1094 1 1 1 95 353 95006 HPCI 0395 1 1 1 96 354 87017 HPCI 0287 1 1 1 97 354 87030 HPCI 0787 1 1 1 98 354 87034 HPCI 0787 1 1 1 99 354 87037 HPCI 0887 1 1 1 100 354 87039 HPCI 0887 1 1 1 l
APPENDIX IV - TABLE VI (CONTINUED) BWR TDP ASSEMBLIES - HPCI SYSTEM DATA SOURCES - ESF DEMANDS ITEM DKT LER PLANT EVENT NO. NO. NO. TDP NO. N O. - NO. SYS. DATE ESFs TDPs DEMANDS 101 354 88012 HPCI 0488 1 1 1 102 354 88022 HPCI 0888 1 1 1 103 -354 88027 HPCI 1088 1 1 1 104 354 88029 HPCI 1188 1 1 1 105 354 90003 HPCI 0390 1 1 1 106 354 90029 HPCI 1190 1 1 1 107 354 91008 HPCI 0591 1 1 1 108 354 91017 HPCI 0891 1. 1 1 109 366 87003 HPCI 0187 1 1 1 110 366 87006 HPCI 0787 1 1 1 111 366 87008 HPCI 0487 1 1 1 112 366 87009 HPCI 0887 1 1 1 113 366 88011 HPCI 0488 1 1 1 114 366 88017 HPCI 0588 1 1 1 115 366 88020 HPCI 0888 1 1 1 116 366 89005 HPCI 0989 1 1 1 117 366 90001 HPCI 0190 1 1 1 118 366 92009 HPCI 0692 1 1 1 119 366 94007 HPCI 0894 1 1 1 1 120 366 95001 HPCI 0795 1 1 1 121 387 91008 HPCl 0791 1 1 1 i 122 388 87006 HPCI 0487 1 1 1 Totals: 122 122 122 APPENDIX IV - TABLE VIA BWR TDP ASSEMBLIES HPCI SYSTEM DATA SOURCES - ESF DEMANDS (1996-1998) ITEM DKT LER PLANT EVENT NO. NO. NO.TDP NO. NO. NO. SYS. DATE ESFs TDPs DEMANDS l 1 220 96004 HPCI 0596 1 1 1 1 2 220 96011 HPCI 1196 1 1 1 I 3 249 96004 HPCI 0596 1 1 1 4 260 97001 HPCI 0497 1 1 1 ; 5 265 97001 HPCI 0297 1 1 1 1 6 293 96005 HPCI 0496 1 1 1 7 296- 96002 HPCI 0496 1 1 1 8 296 96003 HPCI 0596 1 1 1 9 333 96003 HPCI 0296 1 1 1 10 333 96010 HPCI 0996 1 1 1 l 11 333 98004 HPCI 0598 1 1 1 12 333 98008 HPCI 0898 1 1 1 13 352 98001 HPCI 0198 1 1 1 14 366 97007 HPCI 0497 1 3 3 15 366 97010 HPCI 1197 1 1 1 16 388 96004 RCIC 0796 1 1 1 Totals: 16 16 16 L
(- f APPENDIX IV - TABLE Vil PWR TDP ASSEMBLY - AFW SYSTEM DATA SOURCE INPUTS - ESTIMATED SURVEILLANCE TEST DEMANDS ITEM PLANT PLANT NO. SURV TST DEMANDS NO. YRS / SYS TOTAL M ID NO. SYSTEM TDPS FREQ/YR PER YR PERIOD TDP-DEM 1 1 AFW 1 12 12 9 108
.2 2 AFVV 2 4 '8 9 72 3- 6 AFW 1 12 12 9 108 4 8 AFW. 1 4 4 9 36 5 10 AFW 3 12 36 9 324 6 13 AFW 1 12 12 9 108 7 16 AFW 1 12 12 i 9 108 8 19 AFW 1 12 12 9 108 9 20 AFW 1 12 12 . 9 108 10 21 AFW 1 12 12 9 108 11 23 AFW 1 4 4 9 36 12 24 AFW 1 12 12 9 108 13 27 AFW 1 12 12 9 108 14 28 AFW 1 12 12 9 108 15 29 AFW 1 12 12 9 108 16 30 AFW 1 4 4 9 36 17 31 AFW 1 12 12 9 108 18 32 AFW 1 12 12 9 108 19 33 AFW 1 12 12 9 108 20 35 AFW 1 12 12 9 108 21 38 AFW 1 12 12 9 108 22 39 AFW 1 12 12 9 108 23 40 AFW 1 12 12 9 108 24 41 AFW 1 12 12 9 108 25 42 AFW 1 12 12 9 108 26 43 AFVV 1 4 4 9 36 27 44 AFW 1 12 12 9 108 28 45 APW 1 4 4 9 36 29 46 AFW 1 12 . 12 9 108 30 47 AFW 1 12 12 9 108 31 48 AFW 2 11 24 9 216 32 49 'AFW 2 12 24 9 216 33 51 AFW 1 12 12 9 108 34 54 AFW 1 4 4 9 36 35 55 AFW 1 4 4 9 36 36 58 AFW 1 12 12 9 108 37 59 AFW 1 12 12 9 108 38 60 AFW 1 4 4 9 36 39 61 AFW 1 12 12 9 108 40 62 AFW -1 12 12 9 108 41 64 AFW 2 12 24 9 216 42 65 AFW 2 4 8 9 72 43 36 AFW 1 12 12 9 108 44 70 AFW 1 12 12 9 108 45 71 AFW 1 4 4 9 36 46 72 AFW 1 12 12 9 108 47 74 AFW 1 12 12 9 108 48 75 AFW 1 12 12 9 108 49 76 AFW 1 12 12 9 108 50 79 AFVV 1 12 12 9 108
I l l APPENDIX IV - TABLE Vil (CONTINUED) PWR TDP ASSEMBLY AFW SYSTEM DATA SOURCE INPUTS - ESTIMATED SURVEILLANCE TEST DEMANDS ITEM PLANT PLANT NO. SURV TST DEMANDS NO. YRS / SYS TOTAL M ID NO. SYSTEM TDPS FREQ/YR PER YR PERIOD TDP-DEM 51 82 AFW 1 12 12 9 108 52 83 AFW 1 4 4 9 36 53 85 AFW 1 4 4 8.7 - 35 54 87 AFW 1 12 12 8.1 97
. 55 88 AFW 1 12 12 9 108 56 89 AFW 1 12 12 9 108 57 91 AFW 1 12 12 9 108 58 92 AFW 4 4 8.6 ]
1 34 59 93 AFW 1 4 4 6.6 26 . 60 95 AFW 1 4 4 5.3 21 61 96 AFW 1 4 4 5.3 21 62 103 AFW 1 4 4 9 36 1 63 104 AFW 1 12 12 9 108 64 105 AFW 1 4 4 6.5 26 65 106 AFW 1 4 4 7.7 31 66 107 AFW 1 4 4 9 36 67 108 AFW 1 4 4 9 36 68 109 AFW 1 4 4 8 32 I Totals: 75 6227 l l l
APPENDlX IV - TABLE Vill BWR TDP ASSEMBLY - RCIC SYSTEM DATA SOURCE INPUTS ESTIMATED SURVEILLANCE TEST DEMANDS ITEM PLANT PLANT NO. SURV TST DEMANDS NO. YRS / SYS TOTAL NO. ID NO, SYSTEM TDPS FREQ/YR PER YR PERIOD TDP-DEM
- 1. 12 RCIC 1 4 4 9 36 2 14 RCIC 1 12 12 9 108 3 15 RCIC 1 4 4 9 36 4 17 RCIC 1 4 4 9 36 5 18 RCIC 1 4 4 9 36 6 22' RCIC 1 4 4 9 36 7 25 RCIC 1 12 12 9 108 8 26 RCIC 1 12 12 9 108 0 34 RCIC 1 12 12 9 108 i 10 36 RClO 1 4 4 9 36
'11 37 RCIC 1 12 12 9 108 12 50 'RCIC 1 12 12 9 108 13 52 - RCIC 1 12 12 9 108 l 14 53- RCIC 1 12 12 9 108 ]
15 56 . RCIC 1 4 4 9 36 l 16 57 RCIC 12 12 9 108 1 17 63 RCIC 1 4 4 7 28 18 67 RCIC 1 4 4 9 36 19 68 RCIC 1 4 4 5.9 24 20 69 RCIC 1 4 4 9 36 21 73 RCIC 1 12 - 12 9 108 I 22 77 RCIC 1 4 4 9 36 l 23 78 RCIC 1 4 4 9 36 l 24 80 RCIC 1 4 4 9 36 25 81' RCIC 1 4 4 9 36 l 26 84 RCIC 1 4 4 9 36 l 27 86 RCIC 1 4 4 7.7 31 28 90 RCIC 1 4 4 9 36 29 94 - RCIC 1 4 4 8.1 32 30 101 RCIC 1 4 4 9 36 31: 102 RCIC 1 4 4 8.1 32 ! Totals: 31 1803 i 9
I 1 APPENDIX IV TABLE IX l BWR TDP ASSEMBLY - HPCI SYSTEM DATA SOURCE INPUTS ESTIMATED SURVEILLANCE TEST DEMANDS l ITEM PLANT PLANT NO, SURV TST DEMANDS NO. YRS / SYS TOTAL M ID NO. SYSTEM .TDPS FREQ/YR PER YR PERIOD TDP-DEM 1- 3 HPCI 1 12 12 9 108 l 2 4 HPCI 1 4 4 9 36 3 5 HPCI 1 12 12 9 108 4 7 HPCI 1 4 4 9 36 5 9 HPCI 1 -12 12 9 108 6 12. HPCI 1 4 4 9 36 7 14 HPCI 1 12 12 9 108 8 15 HPCI 1 4 4 9 36 9 17 HPCI 1 12 12 9 108 10 18 HPCI 1 4 4 9 36 J 11 22 HPCI - 1 4 4 9 36 i 12 25 HPCI 1 12 12 9 108 i 13 -26 HPCI i 12 12 9 108
'14 34 HPCI 1 12 12 9 108 15 36 HPCI 1 12 12 9 108 16 37 HPCI 1 12 12 9 108 l 17 50 HPCI 1 12 12 9 108 l 18 52 HPCI 1 12 12 9 108 ,
19 53 HPCI 1 12 12 9 108 20 56 HPCI 1 12 12 9 108 21 57 HPCI 1 12 12 9 108 ; 22 63 HPCI 1 4 4 7 28 { 23 67 HPCI 1 4 4 9 36-24 68 HPCI 1 4 4 5.9 24 25 '69 HPCI 1 4 4 9 36 26 73 HPCI 1 4 4 9 36 27 80 HPCI 1 4 4 9 36 28 81 HPCI 1 4 4 9 36 Totals: 28 2068 4 l t}}