ML20215F200

From kanterella
Jump to navigation Jump to search
Vessel Test Instructions,Enrico Fermi Atomic Power Plant Unit 2
ML20215F200
Person / Time
Site: Fermi DTE Energy icon.png
Issue date: 02/16/1973
From:
CBI SERVICES, INC. (FORMERLY CHICAGO BRIDGE & IRON
To:
Shared Package
ML20215E634 List:
References
PROC-730216, NUDOCS 8706220278
Download: ML20215F200 (80)


Text

{{#Wiki_filter:q. 7 ;.,,c :;

t ' '^10 9A 8 - 0:3 5 ' 7:. ',.','W,,gf47&

y.2 a:, 3

n.,

94 w m o + 4 e, oo.. m..,, . m. l -)N A fg o ,..s.s g %..p. a w+@' ' OIjW'",i Memphis Design' %,;,n ~s?: w,e y DOCUMENT CONTRO.L f2'b-d&A-VdbSO&W ]j . :...- px-t FEB 231973p%* bb}T6 Tut '

9. s FERMI 2 00 U

0- EY VESSEL TEST INSTRUCTIONS 'I al 4fSb f D'"h, ff j ih, h ENRICO FERMI ATOMIC POWER PLANT f g. h (. H UNIT NO. 2 Ct. ' sv %M.' G i PREPARED FOR "Y.M +4% ' c.M7 tire:

k.. l.,flN:

THE DETROIT EDISON COMPANY f,

  • gmb

'}&{ PREPARED BY r:{35. $ e CHICAGO BRIDGE & IRON COMPANY a.012 . g.T;;- s}.py. qlpy s 11 ; - NUs ,S, u.U,urc p* m eu na u n ho e u s.d. - t m s, r 5, a .r.-,n - ,. 3...t,

J:
.; Hi
y:

q c,p .t .. :..g'g* - ((-28hkW~.', 8706220278 070615 PDR ADOCK 05000341 p PDR

t'.

CHARGE NO. SUBJECT MADE BY CHKD BY gy R9-5562 VESSEL TEST INSTRUCTIONS CRS u' Chkd '"2' e E DATE DATE 1 2 Date SHT OF

  • *e e.gmeseum

l,. ^ t[ '. l' l' ,.v,. wy. 4 i ' qf. ', ' s. - ~ r. e ^ s + 'fu 7 n y .,4, us 44.a/ 3

  • 's, I,1 "'h m' fd.,

...p' % ' sj . I 0064 REV 8 72

  1. ys 4

Mf." ,.s.4 + 1; +g yr 2' Mi: fg 3 Q Memphis Design ' %glc, %:i a*f Loc. tion ,ebu . ',kyu,

w..

T. }M di. + iv ;f'Ay TABLE OF CONTENTS l ,.,: r.de < N.F v.. .yg x. t. I^h$k] DESCRIPTION IDENTIFICATION VCI 5562.ltWh c ??,'Th4. F VESSEL CONTRACT INSTRUCTION FOR STRENGTH, LEAK, AND LEAKAGE RATE TESTING gg y. VESSEL SOLUTION FILM VST 5562 kk I TEST PROCEDURE ? MINDC j ':47!A 1 ' *t?;[, ch j VESSEL OVERLOAD TEST VOT 5562 PROCEDURE WMj4] 99)pff VESSEL LEAKAGE RATE VLT 5562 TEST PROCEDURE y r s;t m - QiMils LEAKAGE RATE TEST EQUIPMENT EIP 5562 INSTALLATION PROCEDURE $ " ?' " l o iMEd .c -:jM,7 Q..;'; ! , Q1;: a$$,,1 nM ,l .4 4 us.g ) ..is, @ A i v: fy wilp, 1 fy t;l[ y 9 9 ll pXfgf. l id4,}% 1 -i?) fbi '(,k9f Li .fffg e. 96 .c,a o - $ t+rt.l

  • w&l 1

SUBJECT MADE BY CHKD BY gy CHARGE NO. 64-5562 VESSEL TEST INSTRUCTIONS CRS W Chkd DATE DATE 2 2 Date SHT OF i s

((j$l t.0 3l.> e ti. ~ 7 qt g' N R, , F. r. gp. 4

y ~

"2,l,J wQ? 'y Qyd e.iss EEv 4 n

5.*kk

eQ

9. QI' j

p 1/ IDENTIFICATeoN " }[ VCI 5562. 1. M TITLE VESSEL CONTRACT INSTRUCTION FOR STRENGTH, NDh-..5 h LEAK AND LEAKAGE RATE TESTING PAGE NO.1 OF 9 f[g@ l-PRODUCT NUCLEAR CONTAINMENT VESSEL REv.No. 1 .. ""u i 2/16/71'% f' CusToutR THE DETROIT EDISON COMPANY av CRS oATE A CORP REO REG i' o 08 MEM OEN INSP NU CONST MFG SY DATE.

  • 2 g '

ENGR ENOR WELD TEST QA QA QA PRERARE CRS 12/28/72 ( $ 5 GMT RLB CNS RS VMY w CHECKEo WWL 12/28/72 i #,;hph a GM AHB AuTwomizEo WWL 2 /16/.7.B 12/2'8/72 [4f TYPEo FC f ,%7 1.0 SCOPE .,e

Md This vessel contract instruction (VCI) outlines the test sequence
A' and specifies the contract requirements and the instrumentation Mk for field testirg of the containment vessel for this contract, aid ${g It provides the chronological listing of all preparations, exam- $f,g inations, and tests necessary to perform the overload test as f;4 specified by the Code and the leak and/or leakage rate test (s) as specified by the contract specification.

n,,,,d; t;, 2.O REFERENCES l %g g, 2.1 Contract Specifications: 3071-9 o,, ;4y 2.2 ASME Boiler and Pressure Vessel Code, Section III, Subsec-ngg tion B, 1968 Edition, with Summer 1969 Addenda, j 2.3 Applicable CBI testing procedures attached and used to perform the required tests: 2.3.1 Vessel Solution Film Test Procedure VST-69-5562 2.3.2 Vessel Overload Test Procedure VOT-695562 .r. 2.3.3 Vessel Leakage Rate Test Procedure VLT-69-5562 a.;., g; r .g., 14. h g r "s h $w w. j ew h Y 'ik

M " ',l 10;9 4 P 0 3 5 > ', ^ o. y, n+4-z.,. + e '.; y..

i.,

,,..,.n [ Ff.k. 5 co'Iss A cev 44 '.% N 4 {g ' /4 x 7 ' Wy: ? 4DENTINCATION f;,g} VCI 5562 P- .z. TITLE VESSEL CONTRACT INSTRUCTION FO9 STRENGTH myk b '4 [. hh LEAK AND LEAKAGE RATE TESTING PAGE NO. 2 OF e p -[;;;g, Q PRO DUCT NUCLEAR CONTAINMENT VESSEL REV.NO. 1 cusTOuE R THE DETROIT EDISON COMPANY ev CRS oATE 2/16/7:3: .g a aja.Rq y 3.0 PERSONNEL %?r.<;$;:jn p{ . p&,..,6;: 3.1 The Project Foreman, or his delegate shall be responsibl 7 ' for the test (s) performed under this procedure. ,y.7rgs The project welding and quality assurance supervisor, or hisM N ~ 3.2 delegate shall witness, evaluate, and assist in conducting j,g g the tests performed under this procedure.

3bsp4
I,$ 6-h

. igf 4, 4.0 DESIGN AND TEST CONDITIONS WOMj$; 1y c d 4.1 Design Internal Pressure 56 psi QM .s 4.2 Overload Pressure 70 psi ,w;.g ~ 56psiNominal}.;*Wf 4.3 Leakage Rate Test Pressure 4.4 Specified lowest service metal or .,,y.4 $ test temperature 30'F .4{K 4.5 Specified Allowable Leakaae Rate 0.2% per' day " % C r.g ,b 5.O APPARATUS ,'",[ .e 5.1 Vessel Overload Test and Solution Film Test "S' Ufd 5.1.1 Two 6"F dial qaces graduated over a range lw:1 r of about 140 psi. ,3,77 5.1.2 One 12"5 recording cace craduated over a ~ yp~ rance of about 140 psi. g gy ' NOTE: All dial gages shall be calibrated acainst a ' b.,;.g. standard dead-weight tester or a calibrated

  • W master pace in accordance with the Construction

, ;3;. Quality Assurance Program for Nuclear Vessels

1. @

N and parts. w ... w% k 5.1.3 Detector Solution: ' ' 4J ,, [.x.% "'Scamtest Concentrate" as manuf actured by Winton Products Company. N BM, .. nm 4 . n '= n 'f ' y }

~ o7 't0948.039 .c - 4 m,

f

' ' i, ' .1, CO 868 A CEV 4 7f yg p I 3)fj / 2 ;.! h IDENTlFICATION M,j '%y VCI 5562' 'w T'T LE VESSEL CONTRACT INSTPUCTION FOR STRENGTH 17 b LEAK AND LEAKAGE RATE TESTING PAGE NO. 3 OF ' O ls j tp i PRODUCT NUCLEAR CONTAINMENT VESSEL aEv. NO. g -:s a'*]}-f J CR DATE 2/16/73 cusTOuen THE DETROIT EDISON COMPANY av 5.1. '4 Valves, piping, hose in accordance with sketch rk on page 4 of VOT-69-5562. N;41 - g 5.2 Vessel Leakage Pate Test ( oeg 4 I t Te' ' M.: h NOTE: All equipment calibration will be documented. m s. 'g i perature Recorder, Dewpoint Recorder, Associated 1e g [j@p Dewpoint Eculpment, Manometer, Pressure Gaae and Afgf Barometer will be mounted in a single enclosure.

a&&,

5.2.1 Temperature Measuring System g 5.2.1.1 Esterline Angus Model All24F Multipoint s'tEikigMk l Temperature Recorder ggg l a) Dual Range, Automatic Switchina ogg Panoe A: 35-75' Dry Bulb ',1 < Range B: 70-110*F Dry Bulb @@j with 2 non-selective adjustable "?@ - alarms and one right hand event pen. ,; gy b) Dual Panae linear scale , J,gg 35-75 F on top and 70-llo'F on bottom. "N. l c) 200 division linear chart d) Accuracy of recorder is within 0.25% of ' :WJ4 j 'A 40*F span (0.1"F) i Smallest chart division 0.2 P ^k i Readability O.l'F i,y Q - 5.2.1.2 10 Platinum Pesistance Bulbs dW l Burns Engineering Model (Special) 0-l Accuracy of 0.075*F l 5.2.1.3 Extension cable for resistance bulbs

  • :,, ~

Three conductor, 18 ca. copper wire. g g; Complete Temperature Measuring System accuracy is Xs M_ within 0.175'F. ,. L 5.2.2 Dew Point Measuring System 5.2.2.1 Esterline Angus Model fll24F Y. Multi-Point Temperature Recorder a) Range 0-10 DC millivolts linear from Van-Air Dew Point Hygrometer Probes 'E b) Scale 0-100'F Dew Point

v %. r, i

i

w ;r w r w x ; a m._,., vs.s a 10968-040 v.. c e ?? f[iQG b 4 >n- ,g,h Q GO 168 A REV 4 M l L, g5 }pl ...Lf,%&:}Q \\ IDE.NTIFICATION } ) ;.;f { VCI 5562 u, .3 n T' T 'E VESSEL CONTRACT INSTRUCTION FOR STRENGTH 4j 1 4 9 Ih LEAK, AND LEAKAGE RATE TESTING PAGE NO. OF PaooucT NUCLEAR CONTAINMENT VESSEL R E v. No. 1 . ' ' :M M 2/16/71e64 g%' CRS cusTouEn THE DETROIT EDISON COMPANY ev OATc .. T""'~dj l li c h j c) 200 division linear chart $i$f I d) Accuracy of recorder within 0.25% 4 ppg ' of 100*F span (0.25'F) N 4dhc h. i Smallest chart division 0.5'F Readability 0.25 F. MN 5.2.2.2 Vap-Air PN2684 0822 Model 84A Nd;4W .Ehp Moisture Analyst housed in a JIC enclosure l t' *g Range 0-100'F Dew Point, Output of 0-10 DO Millivolts. 'nhIjM ' NI$fi& 5.2.2.3 Vap-Air PN 2694 0896 Automatic Probe +spgp ;l Selector Switch for either manual or .N automatic monitoring. ] 5.2.2.4 6 Vap-Air PN 2683 0791 Dew Point Sensors. W4NMs. WilgQ 5.2.2.5 Extension cable for Dew Point Sensors ,eg" Vap-Air EPN 2692 0897. ,qip Complete Dew Point Measuring System Y,,.. accuracy: If instrument is in +60 to +100'F .y ambient temperature rance accuracy is l'F. If instrument cons down to -20'F or up to +140 ambient temperature accuracy is 2'F. ^$[ 5.2.3 Reference System Equipment p.,9 5.2.3.1 Wallace and Tiernan Model FA-139 Aneroid [ y,G8 Barometer; Range 710 to 785 mm Hg; 0.2 mm ,". 4~ Minimum Graduations; Sensitivity 0.02% of full scale (0.0150 mm Hg). Accuracy 0.3% .~ of full scale (0.225 mm Hg). Readability 0.1 mm Hg. ' 9 Yi iWs*%f a%rgr,,n X 5.2.3.2 Wallace and Tiernan Model 62A-2A-0100 j 8 1/2"5 pressure gauge Range 0-100 psig; ,uco t 0.1 psig Graduations; Reccatability 0.03% of aiJ full scale (0.03 psig) ; Accuracy 0.066% of ,.,e, full scale readability 0.01 psic. Reproducible readability of.02 psig.

s. ;,

"'*"1 T, ( R*21 , } Q' ;,1 O'* # +1

  • l

,d b .f .., ' <r ' h,' , 1 } j s GO 168 A nEV 4 72 jd f l- 'i ? IDENTIFICATION Y i e k. VCI 5562 4 TiTec VESSEL CONTRACT INSTRUCTION FOR STRENGTH A I' 9O LEAK AND LEAKAGE RATE TESTING pAot No. 5 or PacoucT NUCLEAR CONTAINMENT VESSEL a cy, uo. 1 47 $$ cusTOuta THE DETROIT EDISON COMPANY ev CRS oATE 2/16/73 7 . -. M1 wV Manometerwithprecisionboretubingand'fullh Meriam Model 207A10 FF 36" Tube Flush MountY 5.2.3.3 range vernier; scale graduated in inc ~nk@h tenths; Readability 0.01" H20 5.2.3.4 Five Nupro B-6BK-SW 3/8"F brass valves N th a replaceable bellows stem seal and KEL-F' d g seat assembly and socket weld connections.~ O D # u -V.cg: g;f[1 5.2.3.5 2"F manometer reservoir and miscellaneous 3/8"F copper tubing. @LS7kM, k5.4 Three Red Spirit Filled Thermometers with Armored Enclosure' %M Range 4*F to 220'F '+%@$ Smallest Graduation 1*F .f .. n. gde g 5.5 4 fans with 3/4 HP motor capable of running under 60 psic .N (use #12 wire, 3 conductor, min. suggested length 100' each)'.S $ ' QAy 5.6 Valves, piping, hose in accordance with sketch on page 9 of w y' this procedure. f -J:qisg,. 5.7 Brooks Hi-Accuracy Full-view Potameter with calibrated M[1 accuracy of la of reading from 100% to 10% of full scale , Q' - and reproducibility of 1/4% of instantaneous readina. Scale length is 600 mm with maximum flow rate of 3.38 scfm at 14.7 '? psia and 70'F and with special calibration curve for 56 psig. 5.8 Hoke needle valve with micrometer vernier handle. 9p M. 6.0 CLEARANCE RULES AND PRFCAUTIONARY MEASURES FOR SAFETY OF PERSONNEL AND EOUIPMENT y, 6.1 All unauthorized persons and all moveable equipment subject 4g to damage must maintain a minimum clearance in all directions ' f from the drywell of 600 feet while the pressure is being CN l increased above 5 psi and until the overload test has been y;g successfully completed. - cp+* 6.2 Persons authorized in writina by Chicaao Bridae & Iron Company and The Detroit Edison Company may be admitted with-in the area defined in 6.1 above. Authorized employees of i willbepermittedatthelocationsofthecontrollingvalvesK%.{ CBI, Detroit Edison Co. and authorized inspection personnel ~ j [ i

'{, lt, l [ ?k)p e*l ' i,*Q k) ' hh,h 00168 A RFV 4 72 /, \\ jy g. ] ,1 y , 'e$.h f ' Ihlh?}& IDENTIFICATION . ! J *@'

  • s, 1 i

VCI 5562 TITLE VESSEL CONTRACT INSTRUCTION FOR STRENGTH J% b OF '9-44 LEAK AND LEAKAGE PATE TESTING PAGE NO. 1 , g g j. I PRODUCT NUCLEAR CONTAINMENT VESSEL REv.NO. cusTouEn THE DETROIT EDISON COMPANY ev CRS oAve 2/16/73 4:& g h'm .M 4?$l84%; 6.2 (Continued) GQW @ l ~,:, / % l' and gages approximately 300 feet from the outside of the sD 4@;; drywell. feetofthevesselwhile'S} igg 4' 7 h 'NN' ' i 6.3 No one will be permitted within 300 the pressure is being increased above 5 psi for the first M M f,[ tine or while the vessel pressure exceeds the design pressure. M.kss$ l J.Q 6 j 6.4 If there is any urgent need that authorized employees of ggg;g j CBI Company inspect the vessel: .f.. +9ifig$l 6'.4.1 For vessel pressures below 56 psi reduce the pres- +M ' sure 1 psi bafore approaching the vessel. . g,;,, p, 6.4.2 For vessel pressures above 56 psi reduce the ylg~., pressure to 56 psi. %Asi 6.5 Enforcement of the above clearance requirements shall be a , U PM joint responsibility of The Detroit Edison Company and , l"& Chicaao Bridge & Iron Company. m:9h, 6.6 Safety requirements found in Sections 8.7 and 8.9 must be i, observed during the solution film and leakage rate tests. ,y.gf 7.0 TEST AREAS m, m: 7.1 Drywell V2C- ,r 'py 7.1.1 ' Accessible circumferential and longitudinal welds. ~ .g 7,1.2 Welds in penetrations including test covers. ?.~Q 1Q$ 7.3.3 Insert to shell welds. r.v g %ry . r.w 7.1.4 Welde in vent line.

  • d4*M@l

.,W,31R { 7.1.5 Equipment door gaskets. ' ~ 7,gg s 7.1.6 Top flange gaskets. dhx 'n./, [ v 7.1.7 Gaskets on penetration closures having a double gasket detail. Wll$llr j l .o 6 m. ______j

O,f, fyu N. PR,'.,7J., f.,,* L C: C' ' \\~ ,Y

m. : -
,33;ig,y, n,4, 4

9

w..

4 .g d ~ jysyy 11. q

k. [(

,. G!d Jj h GO 16B A REV 442 s. p . ~ \\ '. !?vl . S/T BOENTIFICATION /* , w vonf, VCI-69-5562 ,.;;5z ~ i, Ym.c VESSEL CONTRACT INSTRUCTIONS FOR STRENGTli ' W3 h ~ l LEAK AND LEAKAGE RATE TESTING PAGE NO. 7 OF enoouCT NUCLEAR CONTAINMENT VESSEL n ev. No. 1 y!. ] 2/16/73 e, cusTouca THE DETROIT EDISON COMPANY evCRS DATs 7.1.8 Personnel lock door gaskets (interior & exterior doors)0 p 19 7.1.9 Expansion joints on vent lines. < U}i;j / .. ~ $w.aq j Mk j 7.2 Suppression Chamber All welds on outside of torus, below water level, ;.Qj , 4 . e: besuitablydriedasnecessaryforvisualinspection:,$g tci al NOTE: Q.1 of any water leakage. %De ~

4%$h Accessiblecircumferentialandlongitudinalwelds.w.$pp.'

7.2.1 oJQpgp 7.2.2 Welds in penetrations including test covers. MjlW$t gid,h$-) 73 5 : 7.2.3 Insert to shell welds. m E 1 7.2.4 Gaskets on penetration closures having a double 4 gasket detail. l4QkQ ?Mh 8.0 TEST SEOUENCE AND REQUIREMENTS 6 @%o 8.1 Install the instrumentation and reference system and conduct the initial testing of the reference system per procedure ' k,' %, O:kf EIP-69-5562.

p

NOTE: The instrumentation is listed in Paragraph 5.0. y; _ - Page 9 of this procedure shows the location of the ,.,_4 reference chambers and instrumentation. g, ', The drywell reference chamber represents 59% and the. w c torus reference chamber 41% of the total air volume C. ' of the containment vessel.

p ya 8.2 Perform the closure gasket interspace test per procedure

+- e.y@'y l, VST-69-5562. Test pressure = 56 ps.t. Test areas: 7.1.5, 7.1.6, 7.1.7, 7.2.4. ,,,P. .,,S; p 8.3 Fill the suppression chamber with water per procedure M en " #.! mv. VOT-69-5562 Paragraphs 2.2 and 2.2.1. 8.4 Connect the air lines, gage lines, dial gages and recording # ^jk "^ gage per procedure VOT-69-5562, Paragraph 2.1 and Paragraphs 2.3 through 2.6 and pressurizs the vessel to 5 psi. ... g..,ga,. j

'% 'f' ll i.,(I l,[:.. h n. r. ,a h, c eto ana rrv4.n n y e d. Jeg!,&y. f , AQ'rM i IDENTWICATION C] [' k: VCI-69-5562

o
s TITLc VESSEL CONTRACT INSTRUCTION FOR STRENGTH wgg TQ f

LEAK AND LEAKAGE RATE TESTING paae so, 8 or, M,Qp { PRODUCT NUCLEAR CONTAINMENT VESSEL m ev. no. 1 7,7 cusvoura THE DETROIT EDISON COMPANY av CRS oATE '2/16/73% Perform the 5 psi solution film test of the containment," Q. ' w; 1 8.5 vessel per procedure VST-69-5562. Vessel pressure = 5 psi.E Test area: 7.1 and 7.2. ,,g I Perform the vessel overload test per procedure VOT-69-5562 4 8.6 Paragraph 2.7 through Paragraph 4.2. l., "P .s ( t - c 8.7 If the maximum temperature during the leakage rate test is Q, }(f).' C expected to increase above the ambient temperature at the' %< W start of the test, reduce the pressure in the vessel to the MQjfjp following calculated gauge pressure (PT) to avoid the possi ;jijg / bility of exceeding the specified leakage rate test pressure.u m,i%M. 4 ._ d$l@ (460 + ambient temp. 'F at. _14,7;,g - "9f start of leakage rate test) 1 PT = 56 + 14.7 (460 + maximum expected temp hhk -,_ F during leakage rate test..ggg """ p# conductasolutionfilmtesthw% w 8.8 With the vessel pressure at PT, 69-5562 Test Area:7.1 & 7.2 of the vessel per procedure VST-rpi 8.9 Disconnect the air and gage lines and blank all valves ,Q adjacent to the vessel. Test these valves for leakage with "v detector solution. .sth 8.10 Perform the vessel leakage rate test per procedure VLT-69 - u p ' 5562.. Leakage, rate test pressure PT in Step 8.8. Lock cg g exterior door is to be open. 8.11 Remove all overload and leakage rate test equipment. DD, y.:syJQ ' w- ..l L\\,,;VG: W O\\,j m.w ..h b h 4yg e

t WlQ[

Wyl,2y J '4A. ' i. .1 ', ,. to. g ' I', h -_-________-__-___-_____-______________-_-____________-_____________-_______a

1 t ggO9k oj' :xa a.a?e.c.5S' 2.g c Eep# 8) .o%5hVf {[h., g a f [, ' j t5 S = c .f e' '" Mf A-m 6fM j s =2 s k .yed t ~ ~ e ksjjp4gHmygmMpggbg . ggge@ l i R <m m" o O 8m9og Hzme @ n d Oz oW g6 oHt I qsD% wQ{g em @ o eMyn>aM N>eM es8HzU j z9 w i e 4 g goF,d zc N># Oze>HzzMz4 Nmst 29 Uy g g *E; H= oM$0 8 nosmOz oOkE< I o] a'l; qb. ( ,E. m r e 3s E,,R l e yc b lt - c r at l n b r e .i e ne s l o unrs,c{ w of tm or s u s Bi o-t I2 no e m e B n onn , 4e+ e ePae'.pggw m / = en df e l e x~ 'D To E ra ee t m e S % c PS 7-a o nY t eM L sR s ag c ndS?.t?mQ s r ai f E u y en n t g a t M '0i ~ B fd N g S Si a n n n _ggW ,w s le ii A 2n b t ii ag Du P i e lu s o b i,5o ia l At c lT .i p u sg2.T~ F T s n a s w T en .ggy.= DG QA S e e me WrL e e Rifwt k C E v T er e R D rg noer " e 4B t Tl te npe en 1n Da 2r a r sf i p p po e g n e A;g4ye id p /u V o v1 hoy pL i 1s

  • 2g teEt
  • F SR TC T B

o - s d c '0 jy-aB C' a 8 er A !I!i' !l' ,il 0 c g; F> P I i D 5 otno8 _gF O 2 LaaL1 {3.T t 4 nr / tu ':C ie 3 3 O od fQaT Pr h A o =F~ ,lu L_ h wc ee r ,T D R pe l _E2 r nS 7 B e' }..o E e r9 p

3. fi T r

o5 o t C 3 _?~ a _t u t cE _ (D - W _ eT tr av ae ue _i' rA rd ql _0O .i R er EE e 8b D po mc 5/u o __. l - .s x \\ A n,m e A ee JN 45T ,{\\ rmE 2'*lTR 4; t' -,j!j l -k.[' oaL 1 Il [/ Q s o f S. 6 . '1 ,\\ f' nit 6 g' / asan v v' v2 n F sli e v' e8 e6 o 8 eP r{% l e3 l3 l a B E l5 E6 edi I e .2 r,g tnD L l P prn-E6 epei ar i B DP %/1 t ub t c A' f 0 OO h \\ -0 o 0 6 2 aSm n-c ai L35 D 8 l L / B onho B 0 5 .LOCP _0Dr 5 ,5 _5Oe X-3 x n 3J pe / bFpb' 4 I / o u V rb i' O i :. sn ,_'l gy d ]r!I

E,p h' V ' ' bj a

5

  • !l

/- {,9' ]- E* F l 5 4 cu{- [gA r 8 B 1J B 7 m l 2 I 6 xo xm 3 l N o Dr el " 4 QO. v a r aNr i te e i0e .i e 0Oe 56 aw i l D-pe D0 pe pe 76 cy E 'pb pb '8 pb 55 or "2ou "' ou 21CT 63CT 0/ou 55CT vv LD ,N ee h l l EE i l l)

,.h ~ ~ I

  • ~ ^

,p. w t s e a n.e? a

s. u 4

Co l68 CEv 442 5 .wQ.f[** I eDENTWICAT60N VST 69-5562 4nyut;r. 3 . N i.:. j $ r TiTt.E VESSEL SOLUTION FILM TEST PROCEDURE wicii ,,f 1 3 ~ &y y A

  • $$pp[,

PAGE NO. OF NUCLEAR CONTAINMENT VESSEL RE v. NO. 0 PRODUCT THE DETROIT EDISON COMPANY ev CRS DATE 12/27/72Q j CUSTOMER h CORP REG REG O 08 MEM GEN iNSP NU CONST MFG Sy gAyg ' '*~,, fnf*Mj, -Q W ENQR ENGR WELD TEST QA QA QA q g ' g! K' fh T W PREPARED CRS 12/27/72 3 GMT RLB CNS RS VMY CHECKEo WL 12/27/72 GM AHB AUTHO R12 EO WL 1/22M3 $Qh, TYPEo FC 12/27/72 }.y : ; j CII ...e:..

.b

.i .c 1.O SCOPE .,g,;.;; 'g ] This procedure applies to solution film testing of vessels and M N*l vessel components. t #! Iib $f, 'Mhkoh k 2.0 TEST PROCEDURE s fN7...e.f 2.1 Remove weld slag, dirt and debris from areas to be leak ) b tested. . d &; < 1 && l 2.2 Pressurize the test areas to the required test pressure. l , ' Ac ffy l 2.2.1 On double gasketed enclosures apply test pressure of E' N l 56 psi between the gaskets. MI!8 j rip \\ 2.2.2 Vessel Pressure = 5 psi for solution film test before si overload test. +Wi' 4;m 2.2.3 Vessel Pressure = P (from VCI Step 8.10) after over- :r.. T load test. ggpl,, 2.3 Apply a solution film in a continuous film free of bubbles ,~1 to all test areas. G?M. . ;;Q;M' \\ 2.4 Evaluation of leaks: Ye the structural' 3'$ l d6 2.4.1 Any leak detected that does not affect 'aflN:h l g f a wg. -l8i. 1.* 4 ' ' ) 'Tjig > j i l Q$ . s.r.

1 n 1 . -.a - - j '?. to 0%u m r

-, wa.gg q

'e , f.. / 3 . ];yly, Q.h / oo is: A ncv 4.n V, lp , 1,.- ( ioeNTwlCATION ~f VST 5562 ] TITLE VESSEL SOLUTION FILM TEST PROCEDURE enoouct NUCLEAR CONTAINMENT VESSEL REV,NO. 0 3'[' f3., V, PAGE NO. 2 op I u custouca THE DETROIT EDISON COMPANY evCRS oAve 12/27/72, ,q integrityofthevesselasagreedbetweenCBIandl.y the customer, but which might prevent a successful.h. 3I Leakage Rate Test shall be temporarily sealed.. An 'M $l example is a leak in a temporary closure. g 3 integrity of the vessel shall be repaired. i ' Jll 2.4.2 Any leak detected that affects the structural gg,jpg ' ' m 4 2.5 To make repairs to the vessel or personnel lock interior *"Y,f bulkhead proceed as follows: nyN Release the pressure to atmosphere by opening the' Y$h v N 2.5.1 the pressure release valve. };)k{gg; 2.5.2 Immediately after the pressure has been released, 4.m*. i open a large enough connection to prevent the 87.:$$ j formation of a vacuum in the vessel. _;pgQ; ] p qqp ' 2.5.3 Before making weld repairs or doina any work that GT "N,) M D@ might cause a spark, check vapor space to make sure that it is free from any explosive fnixtu re. ' N :tflfGR M l 4.g%. J 2.5.4 Weld repairs are to be made and recorded in accor-O dance with the Construction Quality Assurance "d W l Program. W j 2.5.5 Retest repaired areas and previously untested area u:.,y 2.6 To make repairs to the ersonnel lock barrel or exterior ' bulkhead, proceed as fo lows: .:n l 2.6.1 Close the lock inner equalizing valve and open the outer equalizing valve to release the pressure from

;t";;g the lock.

.e 2.6.2 Before making weld repairs or doing any work that

M @

might cause a spark, check vapor space to make ' "y J m.y e.. sure that it is free from any explosive mixture. ,4'- @ %,.,y 2.6.3 Weld repairs are to be made and recorded in accordance with the Construction Quality - pd'(( Assurance Program. 3 ,t. ? v: r 4 l 2.6.4 Retest repaired areas and previously untested areas. .syty W

. r =i7NtgY;d=~ hxwe., s, .~n m., s n:wwug xv ' li,, ,1 4O s y, :,.y ,; g ; p' h e y $, p ... p y *- } t. - r:-r,yd) 3 .n\\. no iss A REV 4 72 C ,. g y p. > =,, y?,:Q ' T l f** .,N,

  • nd, g j

g n 3

.g,.-,.

- t.fteNh4[p.k IDENTIFICATION + y d e,.- ,,3pgpls$ VST 5562 3r l >;bh tH TITLE VESSEL SOLUTION FILM TEST PROCEDURE A SMyMy 3 3 ' N, c y ~D. PAGE NO. oP fQ PAO DUCT NUCLEAR CONTAINMENT VESSEL n Ev. No. 0 12/27/72i d p cusrousa THE DETROIT EDISON COMPANY CRS b? g ey DATE hk$$hffh 3.0 ACCEPTANCE CRITERIA b.t! Ed'IQ'.Y/fjt '.W:fhcc.a& 3.1 No detectable leakage as outlined in Step 2.4. ~ 4.O DOCUMENTATION 4T M?%i:f#n 4.1 The satisfactory completion of this test shall be recorded on the Shop or Field QA Check List in accordance with the

  • M/@

requirements of the applicable revision of the construction h!'3ME 4fih .d MykO or Shop Quality Assurance Program. 'l ~;kyfR n. ,,+ q w. @..

  • d

,y,j[. L[ b'$.

pp W M 6;

' m;' @e v g. > t.1 &. l,9 p.y;. <n. j s

v.,

t Q V.0 pt.y, y Y f;, ? ,s> v,, },'y k' E Gk W "iQif 5ec};;i

1..1 2': i f d',,.
  • ;1 ;.

g 6

' ~ '.W(,'(g g'* l,,Q f f,';i' 'y% J,i f ~

& f-*,;7.' ' * =,l',:"

? ,s... . c.,<. 3.,y,, c. . W;g ,- l 00:48 CEV A.72 " ~. ].g ] 1 q, ' ' ',..y ~l ? '6 .[Y f VOT-69-5% g.j IDENTIFICATION E g{ Jh' [ $. ' % }%.' TITLE VESSEL OVERLOAD TEST PROCEDURE PAGE NO. 1 or PRODUCT NUCLEAR CONTAINMENT VESSEL REV.NO. 0 4 m cusTOME R THE DETROIT EDISON COMPANY eY CRS DATE 12-27-72S y, -- c 7 m; CORP REG REG a O OB MEM GEN INSP Nu CONST MFQ SY DATE M" W l M'l., { W ENOR ENOR WELD TEST QA QA QA f GMT RLB CNS RS VMY PREPAREo CRS 12/27/7.2' w GM AHB CHECKED WWL 12/27/72 ' N;h'f$ /. l CH AuTHO RizEo WWL 1/22/72 TYPED a. ~,i; !h$ 1 >': g.A 1.0 SCOPE "~. A3, p$L .;;uft og# This procedure covers the Hydro-Pneumatic overload test of the' 9 'J9 l drywell and suppression chamber. J$$dJj .N' AMkyiNN 2.O TEST PROCEDURE

  • %. >;u*p/

NOTE: CBI TESTING PERSONNEL SHALL INSTALL TWO TEMPERATURE '7SD l DEVICES TO MEASURE THE SHELL TEMPERATURE. SHOULD THE - (R:,, )

  1. /.Q.

VESSEL TEMPERATURE START TO DROP DURING THE TEST, / o BLOWDOWN SHOULD BE STARTED IN TIME TO REDUCE THE VESSEL i PRESSURE TO 22 1/2 PSI BEFORE THE VESSEL TEMPERATURE hh[, l DROPS BELOW 30* F. '~ ^ t J n.;1&p 2.1 Connect air and gage lines, with dial gages and recording ,q l gage, to the vessel as shown on sheet 5 , #f r". :;r NOTE: THE CONTROLLING VALVES FOR THE AIR SUPPLY AND THE GAGES ON THE GAGE LINE ARE TO BE LOCATED i AT A MINIMUM DISTANCE OF 300 FEET FROM THE OUT-SIDE OF THE DRYWELL (VALVES 2, 3, 4, 5, 6, 7, 8, & 9) ,c - >;. l ' 65 T ) ~%l

r

' U[, I 4 G;3 e ' *t (

  • w m

&.-$I 4 i

..m, ~]gg ,gg m.y,

l ggw Tl

d,h

l oois A nEv 4 n i

2 h VOT-69-5562pg.g iocNTmCATION c. dv q Tir te VESSEL OVERLOAD TEST PROCEDURE ^fMINM i e PAGE NO. 2 or 5 W ' ?f9D l ?MM pnoouct NUCLEAR CONTAINMENT VESSEL ReV,NO. 0 12-27-72 h d ! custouen THE DETROIT EDISON COMPANY sv CRS oAre , :dk , L Ng%* " ! sim. 2.2 Fill the suppression chamber with water to an elevation 3 inches above the c'enterline [approximately 133,360 WN$@. %M cu-ft (997,000 gallons)]. n ', :q" i "y 1 2.2.1 Inspect the exterior of the suppression chamber for any leakage or distortion from water loading...., @jh .,. 1 $..'l{ 2.3 Open shutoff valves 1, lA & 10; isolation valves 2,3 & 4: air supply valve 5, and valve 9 a,,y 2.4 Close blow-off valves 6 & 7; and valve 8

  1. !N Q l

..g4%$"0. { 2.5 Close or blank all other connections in the drywell and

  • f

t Suppression Chamber. -w;;e>;. ; 2.6 Close the inner and outer door and equalizing valves of the, J personnel lock. V W- ) ' T/y l m. { NOTE: IMMEDIATELY AFTER CLOSING THE LAST OPENING IN THE DRYWELL AND SUPPRESSION CHAMBER START PUMPING AIR { "^ TO AVOID THE POSSIBILITY OF A VACUUM OCCURING INSIDE THE VESSEL. o, y Maintain the mandatory CBI safety & clearance rules. "k 2.7 With valve 5 open, pressurize the vessel to 35 psi. Then increase the vessel pressure in 7 psi increments e until the required test pressure of 70 psi has been y; reached. 4 NOTE: AT THE PRESSURE INCREMENTS AND AT HOURLY INTERVALS, THE PRESSURE READINGS OF THE ,y DIAL AND RECORDING GAGES SHALL BE RECORDED l mp,g{ ON THE TEST DATA SHEET. INCREMENT HOLDING Z TIME SHALL BE 10 MINUTES, OBSERVING THE I y;M MC VESSEL PRESSURE. -3 .WW$ 2.8 Close valve 5 and hold the 70 psi test pressure for 20 minutes, adding or releasing air to compensate for temperature variations. Open valve 5 to increase pressure. "${. y j or open valve 7 to decrease pressure. g. , ya er 2.9 Close valve 9 and open valve 8 to interconnect the locks j with the drywell. r., f L'/ i "14t.

m s.e.>.n,.., y m ai, -c. r,.. -~ ~.,c[.,.c_:0{}4[j -{jp ( .-~ '>}1 .n f ug. i., g.),b )y g ~yf GO l68 A REV 4 72 i h; 4 - < Q.[ f' A i 'T VOT.69-55_6 h [ IDENTWCATION J W T TLE VESSEL OVERLOAD TEST PROCEDURE ,e %. + l' 0" nw PAGE NO. 3 or

  • 5L 7.

PRODUCT NUCLEAR CONTAINMENT VESSEL n ev. no. O dd %t 12-27-72] ,( cusTOuen THE DETROIT EDISON COMPANY ev CRS DATs .,a $ i 2.10 Hold the 70 psi test pressure for another 40 minutes, -lthAf s-adding or releasing air to compensate for temperature. ' h " f;gb M3 variations, such that the 70 psi overload pressure is maintained for a total of not more than one hour. fgfgg Open valve 5 to increase pressure or open valve 7 to . $;y..pI ..y decrease pressure. gp 2.11 Open blowoff valve 7 and reduce the pressure in the Jf g vessel and airlock to the design pressure of '.i6 psi and. , y .I,, g hold for sufficient time to permit inspection of the f airlockexteriorbulkheadanddoorforvisiblepermanent"Th& distortion. If any defects are detected, release pressure @ j@) make the necessary corrections, and retest. gg. w'AWW 2.11.1 Weld repairs are to be made and recorded in 'm accordance with the Construction Quality M@ Assurance Program. ' $1@ > \\ dQ. i 2.12 Close valve 8 and open valve 9 or the lock exterior q ag equalizing valve. Reduce the pressure in the lock to ' f 7j atmospheric. Inspect the vessel and airlock interior 'O' bulkhead and door for visible permanent distortion. -pg;;. If any defects are detected, release pressure, make the

  • (; g necessary corrections, and retest.

4Q 2.12.1 Weld repairs are to be made and recorded in 'N a' ) accordance with the Construction Quality >4h Assurance Program. . 8 k, 'b 3.0 ACCEPTANCE CRITERIA > g egv f 3.1 No visible, permanent distortion of the vessel as judged by the personnel under 4.1. ,M[Y$ 4.0 DOCUMENTATION . T. .jv.@j j e; 4y; 4.1 Mark the following data on the face of the recording chart: 5'*Je!" Ohh Design Pressure 56 psi ~1 Specified Test Pressure 70 psi Contract Number 69-5562 ^, M' ; Test Procedure Number VOT-69-5562 Rev. q).'j[i,7 l Date of Test: l \\ o The CB&I Project Foreman, the CB&I Welding and Quality I Assurance Supervisor, the Authorized Inspector and + Customer's Inspector with their respective signatures.

n. am. .n~_ w w w,. w. ,nm v. ,,,g.c w . u. 9'0'9T8-0.52

    • B%

m ?> ,, '.., uh. k 3 3+ M ,i k[Sheh; ao is: A nev 4.n , b:h;4h?fs j VOT69-5562*32 u* IDENTIFICATION 1 wQ.4%4Q '! yt 'y ) w .i T: Toe VESSEL OVERLOAD TEST PROCEDURE 4th!) g 5 ;gMg' 4 PAGE NO. OF . g.{..} g 0 NUCLEAR CONTAINMENT VESSEL n ev, No, encouct 12/27/724MfM@3 THE DETROIT EDISON COMPANY ev CRS DATE custouta hd%

  • W) j w

'"h w (f. l b?h.' ;.p.:, e s ,s b e jy, . e;s pa w. ;,e en 9/@M, .l "$y... .,J W;f.- -( .c. y[.., - J-

j;n.T'f#

p(~ .; gd0{1;cn -{ t- .+- ,.3 ' rir )L. ti a ?_ - $a -

31. m6 X.. ' ~

_s C ;3ci .E 'e. f4': f y-iT s' i - we .L. , ;g 3d 3f:.$g, "f a ip O

  • > Dm < t..

e p% ]- 4g,m.ywNn y5 cEjn>2g , lL - a4 y <MmmMb o<nMt*o>U eMme mWoo$ $ ,a$, w; t i ,>g g-u oi. u.1$. ew0y4lY, - a . ZcnrM>W ooZs>HZ3tZe N mmM" o n m m<. ! ,8oga e:::M UMewos8 MOHmoZ oOm>Z* nwm a< o, a n54@mn Y g . $h. c [' l e e n d4-l p v v i ?. r p l9 l6 d gi" b. u 1 i u a a r A S V V oc T% eR iT$w t. .r le e n 5 O n " g w 2-2a = 1G o 7 ~ s: s e m P l a e ni p. n r ev r eo' e vl p.. t u aV ais m d V W lsr i e s ree n z e f erb a i i l h b a g o t pm ~ S c a n pa M r el o ze G p euh .4 t h m .i n 8 oCSC F t t u rn e l T

3 u

F m oo n e s a 0 a i hs i v e i 0 n 0 n tr L l v D x 6 U 0 i ue a l 3 M AP y V a "1 u l e V 6 3 ^ 4 p n p 0 .i n4 Y^ t u 1 1L o S i& =r e ee t r v vg a, s ~ r e i l la l3 e y A a aG o, __. t s A V V [ a I2 1 K y,. W T O ? e v ~ f l 0 e a V vo \\ e \\ y \\ / N A \\ s._ '~ N

w

^ k 20 c 2 o l t e r n i e A m .g. n v l~,.w i l ae ts l ns oe l CV 'e. r l l .m t

fi y gip. , 5 ".p t.a ~ ^ ' '+- g,3, di_, gf') 4 '^ a r fg. g C7168 CEV 442 ' ;,. n : M,. ~, - g-i '.%,$$ 4 F i 'k ) t '.. N-4 [ VLT 69-5$62 Q{ IDENTIFICATION 4f;.s lNd' 34 .' y~ ' i$$i i TittE VESSEL LEAKAGE RATE TEST PROCEDURE .* bW f,gh PAGE NO. 1 OF NUCLEAR CONTAINMENT VESSEL n Ev, No. 1 , g4g PAODUCT Cus10 men THE DETROIT EDISON COMPANY Sv CRS oATE 2/16/73.. W O, aff < ' CORP REG REG .p t 44s O 08 MEM QEN iNSP NU CONST MFG SV DATE f.; W ENGR ENGA WELO TEST QA QA QA .Qi..,,y,y ) y GMT RLB CNS RS VMY PREPARED CRS 12/27/72 j'y( 6 [i:hp l w GM AHB CHECKED NWL 12/27/72 ~c CH AursonizEo WWL 2/16/73 TYPED FC 12/27/72, 'q.g,yy 1 1.O SCOPE " *MU I &k Thisproceduredetailstherequirementsoftheleakageratetests,.pN).s noted in VCI-69-5562.

%:A d'ppe; '

2.0 TEST PROCEDURE ' %d;7 NOTE: DURING THE LEAKAGE RATE TEST OF THE VESSEL, ONLY AUTHO-RIZED PERSONNEL SHALL BE ALLOWED ON OR ADJACENT TO THE. .;f[ VESSEL AND INSTRUMENTS. NO WORK SHALL BE PERFORMED WITHIN. 25 FEET OF INSTRUMENTS, VALVES OR THE OUTSIDE OF THE VESSEL.M ; ud CBI TESTING PERSONNEL SHALL INSTALL TWO TEMPERATURE 2 ~l DEVICES TO MEASURE THE SHELL TEMPERATURE.

&g SHOULD THE VESSEL TEMPERATURE START TO DROP DURING THE

'E TEST, BLOWDOWN SHOULD BE STARTED IN TIME TO REDUCE THE y. VESSEL PRESSURE TO 22 1/2 PSIG BEFORE THE VESSEL ' ~' TEMPERATURE DROPS BELOW 30 F. IF THE VESSEL PRESSURE C' EXCEEDS 56 PSIG DURING THE PEAK PRESSURE TEST, THE EXCESS PRESSURE ABOVE 56 PSIG MUST BE BLOWN OFF AND THE LEAKAGE TEST RERUN. 2.1 Open valve B to equalize the pressure in the vessel and reference system. ..,r, s. - l 'yn ,'.p,} $,, ks. - %. l: f.0Q; k - ap /* A 4 ^bw .. 7/.,"3 e 4 ___.__-___...___d,_____

r y ' Q % y " r f,*"..,."<"'"' l ' M

  • 7 T ',}. }[(Q
, 4 f.,

K, G.fi tj gy,u w b, g,. [t*> * (* i. ,s co m A nev 4.n . ~ WM$ j ~ ~. 4;; t,.. .iq .4, O l O< { ..g%,iy,.; iceNTwlCATION VLT 69-5562 kg ..:1[j 'w l 2 VESSEL LEAKAGE RATE TEST PROCEDURE Y I PAGE NO. 2 OF 6*. PRODUCT NUCLEAR CONTAINMENT VESSEL n ev. NO. 1 a s'+ 1 cusvourn THE DETROIT EDISON COMPANY av CRS DATc 2/16/73b Y ,h 2.2 Open fluid reservoir valves D and E in secuence to allow. m~ "6 the fluid to flow into the manometer to approximately mid,J rh:; height. Close valves E and D in that order. t Use Meriam' g Unity oil D-2969 or equal. (Specific Gravity = 1.0). p Releaseairfromthevesselbyopeninoavesselvalveuntil@f$$ 2.3 about 6" differential water pressure is indicated on the g,phQ manometer. Close the valve and leak test it with solution "9QQy,g. s film. Repair if required. g;g M@N N 2.4 Start the fans in the vessel. .gg$$#- 2.5 After vessel conditions have been allowed to stabilize a minimum of 4 hours, record the following data at hourly ,'.4 intervals: Mhl ~a m (A) Instrument enclosure temperature t (Dec F) 4,@ e (B) Barometric Pressure (mm Hg) g" ^.,g (C) Vessel Gage Pressure (psi) , ~ (D) Individual Resistance Bulb Readings, B. (Dec F) bh (E) Individual Dewpoint Sensor Readings, D. (Deg F) ' d - dd (F) Ambient Temperature at Top of Vessel (Deg F) ,p' ay (G) The Pressure Differential Between the Vessel and the g Reference System as indicated by the Panel Manometer, AP (in. H 0*) A[ " 2

  • Readings will be to the nearest hundredth of an inch on both columns of manometer.

~, 2.6 Calculate the following on an hourly basis: %M s " N. (A) Corrected Barometric Pressure (mm Hg) Corrected Barometric Pressure = Barometric Pressure s* Pap $$ ' - (. 0 0 4) (te-75) ^ %.% (B) Vessel Absolute Pressure (psia) ,,.p;97 P= Vessel Gage Pressure + Corrected Barometric ' N ?*I Pressure (.019 33677) NM,. l k(C) Weighted Average Internal Air Temperature (*R) ,4:- 14e, .37 .46 (BA + B5 + D6 + B7 + Df') + T= (B1 + B 2 8-B3) + 3 5 .> i.pf.'

  • 17 (B9 + B10) 2 WF

~ ""'t?]QBV8W 5 7jy W gv"~;A w~

  • J ~';

9, . v,,, 3gy;.,yg,.

.. 4

[,',,' ~y ,,j, sf r' ^, o

m. h, Q

k. 00168 A REV 4 72 " f tka.' L f"* a .#G + 1 w IDENTIF8 CATION VLT 69 5563 1 4 "x a 4: 1 %*NH or 6 ' $. M. -'? T' T 'E VESSEL LEAKAGE RATE TEST PROCEDURE .v P w PAGE NO. 3 n ev, No. 1 f 2$ paoover NUCLEAR CONTAINMENT VESSEL cusTouen THE DETROIT EDISON COMPANY ev CRS oats 2/16/73% M.Fh h:- a h(D) Weighted Average Internal Dewpoint Temperature ('F)[kk ~ ' qhp' // DPT =.37 .63 (D1 + D2) + ( D3 + D4 + D5 + D6)dN l: l 2 4 (E) The partial pressure of water vapor, PV, in psi the bhk average dewpoint temperature, use standard steam tables [d[Mr M/.; to make this conversion. t et$ s/Ndis, (F) The hourly percent leakage rates corrected for the .)A,g': change of containment water vapor pressure. Positive l.jf values indicate containment in leakage, and negative'm E Q$@r values indicate containment out leakage. ..a .Q;&#kRh Percentage AP jT (27.7 100 1 +pyy '!Mkpgj?. Leakage

L

P1 - Py1 Rate /Hr .QQ,ib (27.7 'NN 2 + pv2 T2-

  1. Ng,

N( 4lf,. j P1, Pvi, API, T1: Initial variables (immediately yr preceeding current data) A.ev ; AP2, Pv2, T2 Current variables y 3 (G) The cumulative leakage rate : EL [iYI'. 4,v 2.7 Perform a linear regression analysis and deviation analysis , y ~~ for the least mean square calculation using the point slope equation of a straight line where: ~#' " 4 ' l y = mx + b 15M, " # S S N..,' Where y = EL = Cumulative percentage leakaae rate x = Elapsed time in hours from first test "Wl % measurement after stabilization , g';., e N = Number of data points ~ 1 m = Slope z..gg7'M l 3 Sm = y intercept b= Variance of slope

7. y l

i g

w ~*runqy?hy; am :: -,, v~w;gvml D $ k:8 fQ&ru y, 3:veme :x;;, w, fy?@);a5 ~. "

,,,
,V

^' ve.3.... ). f 'l. F O l 6 8 A T.EV 4 72 + n eI

  1. q

+ VLT 5562l y 1 ENM C ANN T;gz M> 'E VESSEL LEAKAGE RATE TEST PROCEDURE b ' -rddkh' PAGE NO. 4 OF PRO DUCT NUCLEAR CONTAINMENT VESSEL REV.NO. 1 'f,g 2 /16 /73 ' N* fc? h,.e cusTOME a THE DETROIT EDISON COMPANY av CRS DATE mh m:,:$ y m = NExy - ExIy g { I NEx2 - (Ex)2 .gcg b = EyIx2 - ExExy N5Nbf j NEx2 (Ex) 2 , p JdpyQ j 2 ~ ' i.yj[ I S 1 ~ NEy2- (Ey ) - m2

  1. f m=

N-2.NEx2 - (Ex)2 Mg s <- @tg 2.8 After a minimum test period of 24 hours calculate the 24, syj4$ l 4E hour containment vessel leakage rate and submit it to the I' NY l customer representative at the site. The test shall be concluded unless CBI is notified that additional testing

  1. $I@

is required. In the latter case, the additional testing ,1 shall be the subject of mutual agreement between CBI and Mdt the customer representative. h, 2 y sp[p ). Lm = 24 x m t0.95 X Sm

7. m -

L,n : Calculated 24 hour leakage rate v.; 'b m : as in Step 2.7 .'. S Sm : as in Step 2.7 A,. to.95 : 95% confidence factor for N degrees of freedom 2.9 Install a flowmeter into a blowdown line and establich a leakage rate (scfm) equivalent to 75% of the specified allowable leakage rate per 24 hours using a free vessel N.6V L volume of 346000 cu. ft. P .. L;6 M4. .75 L P Tsta 4;,$7 Lo (scfm) = 346000 x x x 24 x 60 Pst.d T Vessel leakage in scfm equivalent to 75% of Lo (scfm) the specified allowable leakaoe rate per .Qfa 24 hours e,: P : Pressure at start of verification test (psi) Temperature at start of verification test ( ' R) T :

y. ~ c- "u "i1 ' * * ' f* ~, , ;'j. Ya ,..,"j y g i I P O 16 8 A :'.EV 4 7 2 F

f

',9 L 'l y' 3 Is [ h h- ? IDENTIFICATf 0N , 4Q<h t " 'E VESSEL LEAKAGE RATE TEST PROCEDURE ' Wid 5 PAGE NO. 5 6"MN, oF PRO DUCT NUCLEAR CONTAINMENT VESSEL n ev. NO. 1 .. f>ghi;M i " ' cusrouca THE DETROIT EDISON C_OMPANY av CRS Dart 2/16/73 f Tstd : Standard temperature (

  • R)

Q;i Pstd : Standard pressyre (

  • R)

M W! L : Specified allowable leakage rate ,,,jg 2.10Continuesteps2.5through2.7andrecordtheflowmeter@ h-reading hourly.

Q%

2.11 After a period of 10 to 12 hours calculate the average 24 M hour leakage rate, Lo through the flowmeter using the WM 5 readings of flowmeter as a function of time. .a r:gg/g u ,.. w,p g 2.12 Calculate the percent error between the calculated and the'y,P.! actual flowrates during the verification test. -Q@# r %f ? % Error = (Lc - Lo) - Lm .h } >w. . d%A$c L

Calculated 24 hour composite leakage rate N@

c w$, I duri~ng verification test L

Percent leakaae rate per 24 hours imposed on pg;'.

o vessel per flowmeter readings yjg'el { Lm : Measured 24 hour leakage rate during vessel test (without variance) from Step 2,8 J.h ] '"*1 " ) 2.13 Open a vessel valve to release pressure from the vessel Y until atmospheric pressure is reached. N4@$ j 'pi 2.14 Open a large enough connection in the vessel to prevent j the formation of a vacuum. w,;w \\ 2.15 Remove all leakage rate test eauipment. 3.0 ACCEPTANCE CRITERIA j y.g 4QW 3.1 The calculated 24 hour leakage rate shall demonstrate a, ,. D., r,. 95% confidence that the calculated leakage is less than' A io,, : r ' 75% on the maximum allowable containment leakage rate. a +, 4U. i 3.2 The calculated 24 hour leakage rates for the vessel test and the supplemental verification test shall demonstrate, an agreement within i 25%. -.;qP7.., qpl t -)

5, b ~ e (, . i r .i+, - J'. y i j,,, c .a . p.I.'.i..f, 9 OO 168 A C EV 4 72 ,.4 g .tr '$h ib P I .65s y

AM 4,

,,,(@7 Q ;.~ fi IDENTIFICATION g E! VLT 5562 TITLE VESSEL LEAKAGE RATE TEST PROCEDURE 5 PAGE NO. 6 OF 6 'd",4$id d4t t 2/16/73"4t?/y; enooucT NUCLEAR CONTAINMENT VESSEL nev. NO, 1 p cusTowEn THE DETROIT EDISON COMPANY av CRS DATE

  • 9,4fTft/4 RhtN,9fAj
  • E' W 4.0 DOCUMENTATION

$$m.ti leakage 3'.,'pg' p 4.1 A Leakage Rate Test Report containing actual data, rate calculations and conclusions will be prepared. . #%,;jk,,h;},y. .a s

p-

.. v hfh I' $(h y m, e._,.o... f.-m a. ,l h, ^Ef.

hily NU$$$$b

...,N p pv,. r::

  • M4 :-

\\ .,,..,.s 4,.,, \\#,8 J0 'hl. , f f,# $ ;l w, tf,.g 4 6 .,Y y l , ~, -' , y:, t

p.,, j

'#.s ,(

c. ' 6 :

3

1 t-j c /b)':%

v.

i.

, h !s 5 ff ip c a,p,,y s,, : 1 ., r. i .s, ..i i ' f,4 E. N [, i

  • D'I/,%,..y'hf*

o th;, f 't musimum

.i
  • 6,

,.f. < e l

  • e 7

"O Co l68 T EV 4 72 s u, \\^. [3 s pam ..h ;_ f* IDENTIFICATION 4 ~ a 4** '.i EIP 5562' % 4. / TITLE LEAKAGE RATE TEST EQUIPMENT INSTALLATION %,d f [j J ,1 PROCEDURE PAGE NO. OF paoouCT NUCLEAR CONTAINMENT VESSEL aEv. No. 1 , C,q gn CUsTouE R THE DETROIT EDISON COMPANY ev CRS DATE 2 /16/73 ~ 5;- g t ^ l ENn w 'to T E s"T ' { EN0n QA QA y GMT RLB CNS RS VMY PREPARED CRS 12/27/72 y'$ g GM AHB CHECKED WWL 12/27/72 A - y CH AUTHORIZED WWL 1/22/73,n 'j 1, TvPED FC 12/27/72' N %, >4. h s 'G lV 1.0 SCOPE .g This procedure applies to the installation of equipment for the performance of the vessel leakage rate test by the reference .:.fjf$ system method. .OrfQg b 2.0 INSTALLATION PROCEDURE " >@??),i! 2.1 Test each reference chamber in the shop prior to shipment. sS Test by pressurizing with an air refrigerant mixture to e ' 4d about 70 psi and sniffer test all joints with a halogen leakq -._ detector or test by evacuating and helium probe all joints with a helium mass spectrometer connected to the system. jy ,,Ag3 2.2 If any leaks are detected, release the pressure, repair, and

,7 retest until no leaks are indicated with the leak detector.

. LP The leak detector shall be capable of detecting leaks in av the reference chambers of 5 x 10-6 std cc/sec or larger. t'- y 2.3 Assemble the reference chamber (s) and connecting tubing at r,,, the construction site. Do not connect tubing to the n!, reference system panel. ,s;; NOTE: THE EXTERIOR INSTRUMENTS FOR THE LEAKAGE RATE TEST SHOULD BE ag LOCATED AS NEAR AS PRACTICABLE TO THE NOZZLES WHERE THE TUBING CONNECTS TO THE VESSEL. EXTERIOR TUBING SHOULD BE. 9jf;g MINIMIZED. BOTH TUBING AND INSTRUMENTS SHOULD BE PROTECTED q'hy. i Q3 , n; jgg a > A$.,Q-. 4' y b ^ th e ) a.-

Y M f i[ V W ( ~. ~ ^ ~ , gy 9 g e +4y ~ W' . -fy}... 4 f ao essa nov 4.n i 'e , !% j,;j q

  • kf j

Y tDENTIF4 CATION emf.~ $, EIP 5562 t Titte LEAKAGE RATE TEST EQUIPMENT INSTALLATION o* 4 'MEd <W PROCEDURE ,,oe no, 2 op paoover NUCLEAR CONTAINMENT VESSEL nev, no. 1 i { cusrouca THE DETROIT EDISON COMPANY sv CRS o^te 2/16/73 N _ y l gj FROM THE WEATHER. INTERIOR TUBING SHOULD BE KEPT AT LEASTjg i 12 INCHES FROM STEEL EXCEPT FOR THE PENETRATIONS. INSTALL'.c d.( ' ?1 TEMPERATURE MEASURING EQUIPMENT FOR TEMPERATURE READINGS

  • M ~

DURING STEPS 2.7 AND 2.8. CONNECTIONS SHOULD BE MADE g THROUGH THE TEMPORARY TEST CAPS OF "NON-SPARE" PENETRATIONS. + x I THE LOCATION OF THE INSTRUMENTATION AND THE PENETRATIONS TO) h l BE USED ARE TO BE DETERMINED BY CBI. APPROVAL OF THE PENE-f q. TRATIONS AND LOCATION OF THE INSTRUMENTATION SHALL BE ,_O h.' 4A&[r' OBTAINED FROM THE ENGINEER. 2 Pressurize the reference chamber system with nitrogen gas @D k .4 to about 70 psi through the valve A-2 at the vessel pene g g g tration. 2.5 Leak test tubing and chamber joint connections with a 'YSM" solution film. Repair and retest and repeat as necessary ygg until no leakage is detectable. Yhijp N 2.6 Vent the reference system. 49e 1 2.7 Connect temperature sensor devices through the vessel wall MR to the temperature measuring instrument, calibrate and gg install in the locations required. , w y. wp l 2.8 Connect dewpoint sensors through the vessel wall to the dew ' M - point measuring instrument, calibrate above an ice bath and ye install in the locations required. , j Mp +Ghy ' ~ 2.9 Install reference system in final position. Connect the reference system at the vessel penetration valve A-2 to a Go vacuum pump and gage. Evacuate the reference system so , s,# that after isolating the vacuum pump and allowing time.for WP{ . 7gg. j pressure equalization, the system pressure will be 200 f microns Hg or less, j WS k 2.10 Conduct an absolute pressure test of the evacuated portion *gt ^ k3t of the reference system for a minimum period of 24 hours, recording data periodically. Plot absolute pressure and-9/ temperature versus time in order to determine for similar temperature periods the rate of pressure rise caused by- =

  • t;Mr@,,

' ~" 'i both out-gassing and in-leakage. A%:/ Temperature of (B1 + B2 + BM =.37 t .4 6 (B5) +.17 (B9) Reference System 3 q.g.gy-- ., yn ~ 'g.(

/ s .% j i]jQ a' '4Q ( i - 'i' // 1}/9 ay. q,

a.,

ymw&wg , ;". QQh ' Y Gol60 A REV 442 ip

Q g l

s ~, IDENTIFICATeoN 'M i *,<6 ' ~ EIP 5562 wd 4 h 4, };;gfjij' p( Ym.z LEAKAGE RATE TEST EQUIPMENT INSTALLATION PROCEDURE PAGE NO. 3 or enoouct NUCLEAR CONTAINMENT VESSEL REV.NO. -l y,g cusrowenTHE DETROIT EDISON COMPANY ev CRS oAva 2/16/73" )2.11Asdeterminedin2.10therateofpressurerisecausedby

  • m both out-gassing and in-leakage only shall not exceed 400 %

microns Hg per 24 hours. If the system exceeds this allow-; 'L 4 h.$ w:" able retest the reference system with a solution film. 2.12 Data from 2.10 and 2.11 and the absolute pr the reference system panel shall be submitted to the ?- M customer for review and approval. If it is mutually agreed 7 f p { by the customer and CBI that leakage indicated is within the. g allowable for the reference system, the absolute pressure 4 f. test of the reference system may be concluded and the system 4 j NN 1 shall be vented to atmospheric pressure with nitrogen. 4pg# 2.13 Connect the tubing from the reference system to the reference system panel as shown on Page 4. Do not admit fluid to the.ddF differential manometer until after the pressure is equalized 3F # d,,. g$ 1 between the reference system and the vessel. (See VLT - 69-5562). gpg 2.14 Open valves "A" and "C" and close valves "B", "D" and "E").inighgb the reference system panel. 3. 95.4;R... ! W/c c$,i j, k 2.15 Pressurize the reference panel and reference system with nitrogen gas to about 70 psi through valve "C". Close valvej y g I 2.16 Leak test the tubing connection to the reference system panel' "C". j s "M" with a solution film. Repair and retest and repeat as necessary until no leakage is detectable in this connection. M

  1. mWp 2.17 Remove the nitrogen supply line.

-4 g 2.18 Install f ans in the vessel, ggI k 3.0 TEMPORARY VACUUM TEST EQUIPMENT gg 3.1 Welch Duo-Seal Mechanical Vacuum Pump. >$i tdh! 3.2 CVC Pirani Vacuum Gage. ghg ' Range: 0-50 microns Hg g.y3pv 0-2000 microns Hg y g., 1.J ', {$@b 4 k 4.0 DOCUMENTATION 4.1 The data recorded during the vacuum testing of the reference, system along with the Pressure and Temperature Plots and 'C W Pressure Rise Calculations will be included in the Leakage Rate Test Report. 7 ,,o.-o

] y o ' ';,'.c %',W (pp ofe po,%. eg gggup.*7pp nose + r.c ee l,,..,.,.. y -w sp..' .vy , 9, +. . <.=*,,. p.py ne. 3 '.: ' ',y /, 3; w,,, ) y 2, -( [. 34 - e 8 4 CO l68 A K y 4 7) .:,9, . r-(- - ~ ..a v .v: r g m s ',..'., s@. g 3 noturwicariou ' y.,,-ff'kcv. h EIP 5562. %' i Oc, Y i T ~A*J T'TLE LEAKAGE RATE TEST EQUIPMENT INSTALLATION PROCEDURE rk if $h " * ' " ' 4 PnODUCT NUCLEAR CONTAINMENT VESSEL 4#$$f[ cusTouca THE DETROIT EDISON COMPANY 8v CRS DATc 2/16/73 Fill Cop _au mis-9 'fi%s aJ ; j.' 1 M .te Reference Clie = MY%\\i$hhhf ' W/$@%,,eN xa

A $..h!$,&,jh

~(-) B .;,,4 e p to Vessel asyefQ'e,? .:j' o i @ f,p @ y _.O. "$f ' ;,sdpd p n;. s ,-" *ja * ,e, f 4& 4 9,'Q. f,bd J' ~ Dial O..@YQ.l E Goog( H ' 0.hf

  • k Ng Diffe.enHal kne neter h of?'d

, w.1.s 6 n,-];c-. ~ '/ 4,%. ;i h'r';, ?L. ' T;$.{$Id'" . j ,f &f;gh ..,.g t ' e i ?e, Cf. N rl;5', b q. WW%.W" 4 'F ' Bt:$1W. mas.:ip ':. %@c 0 n.'.c be 4 gd g g D...n J

{l1i l 1 ~- _3 mI 3w*- ~ n. t" c c O C t x Ms 5 1 3 18 7 5 9 t Y 1 A P M 1 11 RA N m l M AR rO uM s d n r 6 e r o t t i i s M A o D r t n N e a o "f' e e r C 2 s c n e A ~ A n i p r I. f' a g O O O r n / ) o N d l s l E r l b J n o u Q ( o t a J s i t e m A m c F / e I l a l d e ~ a l i e y t r r v l F r v t s f i o 2 D F D o a o o i y Q r s r t o d r l S E p n E e p u o e l X

  • f p

s C n p a j e A I D Y A Q 6 r n e E 5 e ) P i B D - a 5 g 3 N E (n

  • -c n

I S s9 N ~' M Y (# t S d d c e q' R T Z e e t 4 A t g F T /- o j o N d 7 K o N r R C' N: I g s P s T S U 2 'E 9

f. 2 n

A A D D P. 6 i 2 e r o J'C P. N f t e f g,,p j a e K: n / D n ~ i j o o i l g [S I d M t a n d f e /c m[ R a t E e v u v / o E t n t g o b,~b F n o i w y r h. e i m p ^f p j O m t s p t C u a n U A A O. M a c c I C A R o o / r I Q P 8 M E N D L P B T E k ~ GN E W N n O o C IT l A a m RE i N p E A G

L A d I T 2 l Sl

N 6 D

RM 2_ X T I 5 E N 5 i D l N O I I FB SD9 d 1 G R7(o 1 U A C N S T S D D s 8 d n r e r o t ^ 3 t i i s o D r t n 2 N e a o o C e e r C Ns 2 s c n e n 6 A n i p r Z a g O O o Y l s l E r r n s n o u O r l l o N Q a o b ( s ) i P C t a k A m t e c F d e M l a l e a l i e y t r r A v l r r v t s i o O h o a o o i y p 8 D F r t o d r l S r la p s c n p a j e R 0 p n e e p u o e l A I D Y A Q l r n e e 4 h P i R I g 9 g i n V-E /- 9 d t d 2 7 e c e 6 2 O t e t 3 5-5 o j o T N o N 5 I / r N Z U Y 6 g s P s 7 n A A i 6 P. 0 e r o P. R 2 c e t l l / a e w B A n 6 D n i h~ o 4 /c 7 2 l g I n" d i M t a n d R a C B e t t E e E t n / t v n v c o o t F n o i r e i m r a g t's p Q e t s p f g c n a n 'V. C o c O. M a A A I / r = 2 C R o o S M E D L P B T I NE g G s N c N-E 3 F. 4 0 1 O 3 I 9 T A 5 m. 0 R .M E N O E F . G E D Y; 6 'g _O oc" a C [ I

t0948-087 ~ wetw,, Birmingham Design ~ DOCUMENT CONTF%. TN V-kBAoof upper BEAM SEAT ANALYSIS MAY161974 SIM c TABLE OF CONTENTS [M un he bec seg SHEET REVISION DESCRIPTION BM-1 0 Method and Summary BM-2 0 Loading Conditions BM-3 0 Input-Load Condition A-0BEQ BM-4 0 BM-5 0 Output Load Condition A-0BEQ BM-6 0 BM-7 0 j BM-8 0 Input Load Condition B-DBEQ ) BM-9 0 l BM-10 0 Output Load Condition B-DBEQ i BM-11 0 BM-12 0 BM-13 0 Input Load Condition 0-0BEQ J BM-14 0 { BM-15 0 Output Load Condition D-0EEQ BM-16 0 BM-17 0 BM-18 0 Load Condition E & F - Introduction BM-19 0 BM-20 0 BM-21 0 BM-22 0 Load Condition E-DBEQ BM-23 0 BM-24 0 BM-25 0 BM-26 0 BM-27 0 Load Condition F-0BEQ BM-28 0 BM-29 0 BM-30 0 BM-31 0 i~ o TDOA T R 315CERVE

= =

im lA 5542 4 JVL 81974 The Ralph M. Parsons Co. a #,. D-ase SUBJECT MADE BY CHKD BY sy C AR No. Upper Beam Seats LDF g 69 Table of Contents 5 SY'74 M-O, Det. sHT g 00 64 REV 4 73 I ]

l- - -'~ ~ 10448-083 Lambo Birmingham Design UPPER BEAM SEATS The upper beam seats and ring girder are analyzed for the permanent loads and loading combinations per Sargent and Lundy's 1.oading combination on sheet BM-2 of this report. The analysis is performed assuming all beam seats and the ring girder are reduced in section properties per previous analysis performed by CBI and approved per Detroit Edison letter EF2-22,054, dated December 7, 1973. l For the loading condition A & B a live load of 42.5 kip is included. This is applied at the maximum loaded beam seat. This load will occur only during refueling. Loading conditions C thru F include a rupture load. There-fore, the 42.5 kip live load could not occur during these conditions. Loading condition B, with the 42.5 kip live load included, resulted in a worse loading condition than loading con-dition C. Therefore, this condition was not investigated. Loading condition E and F require a rupture force acting upward, the CBI computer program used for the previous analy-sis was not designed to handle an upward force on the beam seat and ring girder. See sheets BM-18 thru BM-31 for these conditions. The analyses were performed with both seismic conditions (OBEQ and DBEQ). The beam seats and ring girder were found to be adequate to ca.rry all loads. Buckling allowables of the shell for DBEQ loading is not de-fined in the code. A factor of safety against buckling = 1.5 is used. CHARoE feo. SUBJECT MAoE BY CHKD BY gy Upper Beam Seats LDF c fl5 g so-sss2 c,,, E-714 [ 0 ~19 BM-l, o.t. swt o_ GO 6 4 REV 4.13

. III Q 3M' h M oei.JU S(IDATE l-34 ~ 55 s ON6 su LIET. LU hip CNCIN3"ERO cggcggp gy V. r-'u S DATE I 7-/ $HEET L OF _1 l 45, dI CALCS.FOR MA H S e A T E* AT DRY W EL.L. ' M .~ ) -.......a.... i ) l

  • e L OA.D IN G - Co M E.I4.AT'l"N 4No A L L o w 6. St e WK.te S.

I-.,..r -. ... I 2 F-o F. 3!r'3 A M f.re AT5-D E 5 t G+4.. ,w g t p .. F. or. RE F. ssE 5 oL DVJG. Ba ~ E' REV. C LoAO& M KIPS ^?, j '.p. S erm loa Dide ceMS-l LOAD. ceMe,- 7 LoAptNG coME-B L o Ae. cc M S - 4 5 T~ $TA T i c + 0 6. s. ST ATt c t D.S. E STA Tl c + b:8.e.+ ttfPI'. R.L - DL z total. UP, ~,,. g is. 4 16 4 ) 4 IB'1 T* i........ 4 4.. fa', 45 15.o S*1,4 (E 4 I7' gl.f.. 10 8..,.. 80 8 .I.5. 0.. P, A s 4. I S1.2 I #~' s I- '26.5 p.G t ,,,Pi ti,-) 52 4 41.4 ,34 \\ P' Se, S E 3.,6

13. (,

181.O 8 s Noy a - t _ A st y tw D Iv i bu AL

  • B5 AM ser AT 6+tosL b BS C44 C:CWAPO

..., Polt. ALL op THg LoAplNG. C o g g i N A T~i o N 5 i L16TE D BIILOW 5 3.. j ,J,,., l,,,, l. o A D I N G. c,,oM S 1 N. A.T I o N = 1 U SE C ODE. ALL.0WASDLIL SynsassS 1, Lo Aoiscr. canisir4 AT: o s -2 i 3

  • ust cons. %sto sra.zasr3

'] l -4 i i W EL N OTP_ '2' R.tN G. G.le. DaE t .5 H o V L.D S E.DW5 tGN Eo F~om TSL. I

p. -

FoLLoWING t o A m e p4 Cr C o c o tT*i O A S I p ~ ~ A) L o Ae 1N G. C.c M B (W ATI.O N - l g),1.-OADING. C.oM $ l N A.Tt O N -2 2 ALLOW. c.) P4 seM LoAct% coNB 5 AND ALL atHee esA4 GsAT Peace- %T12.E che<- i* Pt.oN t oADI y G c.c M3lN ATlON ~2 w.< car. pT % ^80 83 .D) Q FROM LOAD C. OMS-3 AND ALL OTHEC BEAM GE ( FRoM 1oA Dird-c or4t - ! Ex.c.e v q f*p, FstoM LeADitJG. cont &- 4 AN1lrr4Lt..oTWEle BEAM OzAT @ ' 1E F rom t.c+ DING. Cont B -2 6 X C6P1* Ps' F) P p.goM LoAp, c,oMc-4 Ag e Au. eTuca:. seAN e,e A T g [$ PoECES PitOM LOAD. C. OMS-I exec FT Pg ~

e 10948-085 '~ INPUT F f' R UPPFR 9 E A r4 SFAT-ANAtYSIS: L cA o I N 6, C eMO[T teu A

  • E0 *

-] e ELEVATIONS OF i. 1 507.0000 FT. F )U AT OR = TOD OF STEEL (TOP OF GlPDER)= 607.0000 FT. RADIUS Of SPHERE 408.00 IN. SHELL THICKNFSS 0.R750 IN. MODULUS OF FLASTICITY 27400000. PSI FACTOP GF SAFETY (BUCKLINGl ?. 0 ALLOWABLE TENSILE STRESS 17500. PSI VER TIC AL SCISMIC FACTOR .100 AISC BFNDING ALLOWABLE 20280. PSI LOA 05 GIVEN DEAD ANO EARTHQUAKE LOA 05 ON THE BEAMS i NO AZIMUTH LOAD' FO LOAD (DEG.) (LBS) (LBS) 1 172.60 34000. 3400. 2 147.40 31000. 3103. 3 171 00 23000. 2300. 4 189.00 23000. '2300. 5 212 60 27000. 2700. 6 237.40 28000. 2800. A GIVFN LIVE LOAD OF 4(p00. L BS AC T I Nr. AT 122.60 DEGREES i a CHIC AGO BR 10GE AND IP3N CO. BIRMINGHAM ENG UPDER OFAM SFAT$: CrNTRACT 64-55620; OATE 04-09-74; BY t 0F ; SHTSH.3REV o 5 10 W C9 5 m 4 e e

~~ l0948-086 IN9t1T CONT I NIIF O L c AD C ONU IT ON N - OSE $ STRE SSF S DUF TO LOADS AROVE BEAM SEATS (SEE SECT 104 1C) MAX. TENS. CIRCllMF. STRESS RESULTi, 12310. LB/tN j max. COMP. C I R CtlM F. STRESS PESULT. -800. LB/IN MAXIMJM COMPRERRIVF MERIDIONAL STRESS -2450. PSI WinTH [1F GIROEu 12.00 IN BEAM SEAL' DIMENSIONS IN INCHES ~ ~~ l14.0000 81 = 1.0000 D1 = ?~~ H2 = 1.2000 D2 = 6.0000 '~ ~ RING GIROFP OIMFNSIONS IN INCHES ~ 10.0000 DH = 1.0000 TH e BV = 10.0000 1.5000 TV = = CHICAGO BRIOSF AND IDON CO. BIRMINGHAM ENG UPPER BEAM SEAT 5; CONTRACT 69-55e20; DATE 04-09-748 BY LDF; SHT BM-4 RE V O G - O. "l* CM e > QM - e'

~~ f0948-087 ~ OUTPUT FOR UPP ER 3EAM SFAT ANALYSIS LCAO (. O M O \\ T I O N A - O P2 G G ANGLF THFTA = 17.25163 DEG CC'MD ONE NT S OF BEAM L7 ADS ACTING ON SHELL AND RING GIRDER NG 6 Z l Milt H VERT LOAD SHFLL COMP RING COMP (DEG) (L6S) (LBS) (LBS) 1 122.60 37400. 39162. 11614. 2 147.40 34100. 35706. 10589. 3 171.00 25300. 26492. 7857. 4 189.00 25300. 26492. 7857. 5 212.60 29700. 31099. 9223. 6 237.43 30000. 32251. 9565. PRODERTilS OF RING GIRDER 29.5 IN WIDTH OF SHELL ACTING WITH GIRDER = 25.8 IN-2 AREA 0F SHELL ACTING WITH GIRDER = ?5.0 IN-2 AR E A OF THE ATTACHED GIPDER = TOTAL ARFA OF RING GIROFR = 50.79 IN-2 M7MhNT OF INFRTIA ABOUT Y AXIS = 1170.17 IN-4 179.86 IN-3 SECTION MODULUS OF INSIDE = 148.79 IN-3 SECTidN MUUULUS OF QUISIDE = i I I i l CMICAGO GRIDGF AND IR ON CO. BIRMINGHAM ENG UPPER 9FAM SEATS: CONTRACT 69-5562U: D AT E 04-09-74; BY LDF; SHT BM SREV 0 i 5 h J14 CRS

I0948-088 IO B& Q) L o A c t N (> Cow etT IO N A CIRCUMFEAENTIAL SlRESSES OUE TO MAXIMUM POSITIVE MOMENT TYPF LOAD DUE TO AMT LOAD INS STRESS OUTS STRESS (PSI) (PSil MOMENT (DEAD LOAD 648972 IN-LH 3609. -4362. THRUST ON BEAMS) 6541. LBS 129. 129. MOMENT (LIVF LOAO 1102329 IN-LR 6129. -7409. THRUST ON BEAMS) -3443. LRS -68. -68. CIRCUM (OTHER LOA 0 12310. LB/IN 00 7144. ~ STRESS AROVF RFAM) -800. LB/IN -464. TOTAL 16942. PSI -12174. PSI At.LOWABLE STPESS = 20280. PSI l CIRCUMrEDENTIAL StutSSES OUE TO MAXIMUM NEGATIVE MOMENT TYPF LOAD DUF T fl AMT LOAD INS STRESS OUTS STRESS (PSI) (PSI) MOMENT (DEAD LOAD -762622 IN-LB -4240. 5126. 1 THAUST ON BEAMS) -9361. LBS -184. -184. MOMENT (LIVE LOAD -518453 IN-LB -2883. 3485. THRUST ON dFAMS) -4699. LBS -93. -93. CIRCUM (DTHER LOAD 12310. LR/IN OR 7144. STRESS A60VE BEAM) -800. LB/IN -464. TOTAL -7864. PSI 15477. P SI i l ALLOWA6LE STRESS = 20280. PSI GUCKLING STRESS = -184.' +( -93. 1+( -464. )= -741. PSI 3FI 3( 27400000. It 1170.17 ) AL t.0 W A BL F SUCKLING STRFSS= ------= -------------------------- = 5688. PSI 2 2 2R A 2( 408.00 ) ( 50.79 ) CHICAGO BRIDGE ANO IRON CO. BIRMINGHAM ENG UPDER 3EAM SEATS; CONTRACT 69-55620; DATE 04-09-74; BY LDF; SHTSm4 REY 0 C - (? 1 4 CSS

l0948-089 LoAbius cosiotrieu A (oBee) ^ SHELL MERIDIONAL STRESSES e &, MAXIMUM LOAD ON BEAM SEAT = T9900.0 LBS CONSIDER LOAD TO ACT ON A CIRCUMFERENTIAL ARC AT THE BOTTOM OF THE 8EAM SEAT E00At TO 107.58 INCHES. ~ MERIDIONAL STRESS FROM LOADS ABOVE BEAMS = -2450. PSI LOCAL BEAP SEAT MERIDIONAL STRESS -889. PSI = TOTAL. = -3339. PSI ALLOWABLE MERIDIONAL STRESS = SNN + (T) ( 0.8750 ) SNN= 1800000. ---- = 1800000. 3860.3 PST


=

R ( 408.0 ) SCAT BENDING STRESSFS SECT ION MODUL US TOP 45.56 IN-3 = SFCTION MODULUS BOTTOM 12.96 IN-3 = W D'w N T DUE TO GIRDFR = 179775. IN-LBS STRESS AT TOP = 3946. DS! 20280. PSI STRFSS AT BOTTOM = 13875. PSI 20280. PSI WELD LOADS (LOADS FOR WELDS C AND E ARE THOSE ON EA 0F THE 2 WELOS C AND ON EA Of THE 2 WELDS El (UNIT SHEARS ARE GIVEN FOR EA 0F THE 2 FILLETS ASSUMFD AT EA WELO) WELO A: V= 24812. LBS UNIT SHR= V*Q/(2*ll 796. LBS/IN WFLO R: V= 24812. LBS UNIT SHR= V*Q/(2*I)= 955. LBS/IN WELD C: P= 19975. LBS UNIT SHR= P/12*L) 710. LBS/IN = WELD 0: Vs 39950. LBS UNIT SHQ= V*Q/(2*l)= 4158. LBS/IN wtLO r: p= 19979 LRS UNIT SHP= P/(2*L) 3329. LBS/IN = CHICAGO AHidGE AND IRON CO. BIRMINGHAM ENG UPPER n' als 5F A15; C. A1 RAL I o9-5562U; b^TE 04-09-74; BY LDF; SHTBtsq REV O 9 10 7 +. cFS

~ 10968-090 ~ ~ INPUT FCA UPPER REAM SEAT ANALYSIS: LOAO CoraolTIO3 E C. (I-l 6 G ELE VA T IUNS Or ECUATTt 547.0000 FT. = TOP OF < TEEL (TOP OF GIR9FP)= 60 7.0000 F T. R A D IU S r.'f SPHERE 408.00 IN. SHELL THICKNESS 0.8750 IN. MODULilS OF LLASTICITY 27400000. PSI FACTOR OF SAFFTY(BUCKLING)

1. 5

~ ALL OW ABt.E T ENSILE STRESS 33800. PSI VFRTICAL SEISMIC FACTOR .200 { AISC BEN 0!NG ALLOWAPLE 33800. PSI LOADS '31 V F N DEAD AND F4RTHOUAKE LCA05 ON THE BEAMS ND A7.14UTH LOAD EO LnAn (DEG.) (LBS) (L65) 1 122.60

34000, 6800.

2 147.40 31000. 6200 3 171.00 23000. 4600. 4 189.00 23000. 4600. j 5 212.60 27000. 5400. 6 237.40 28000. 5600. A GIVFN LIVE LOAD OF 42500. LRS ACTING AT 122.60 DEGREF% l CHIC AGO BR IDGE AND IRON CO. BIRMINGHAM ENG UPPER BEAM SEATS: CONTRACT 69-55620: DATF 04-08-74; PY LnF: SHT Eng rey 5 - 10 ~)t C[L$

10948-091-J INPUT CONTINUED LO AO C CW D IT 4 o N B ' D 6 f. S STRESSES OUE TO LOADS ABOVE BEAM SEATS (SEE SECTION 1C1 9AX. TENS. CIRCUMF. STRESS RESULT. 12510. LB/IN MAX. COMD. CIRCUMF. STRESS RESULT. -1000. LS/IN 4AXIMUM CCMPRESSIVE MFR IGION AL STRESS -2680. P SI 410T H ()F GIRDER 12.00 IN OFAM SEAT 01 '4 E N S I ON S IN INCHES 41 = 14.0000 01 = 1.0000 62 = 1.0000 D2 = 6.0000 RING GIROER DIMENSIONS IN INCHES BH= 10.0000 TH = 1.0000 ~~ 10.0000 By = TV= 1.5000 CHIC AGO RPIOGF 6ND IRON CD. BIRMINGHAM ENG UPPER BFAM SEATS; CONTRACT 69-5562U; D AT E 04-08-74; BY LOF; SHT BM iREV i G.t0-14 CILS

IO948-VS'l 1 d OUTPUT FOR UPP ER HFAM SEAT ANALYSI5 LOAO C, C L) O I T) C M B

Q $$ Q A NGL E T HE T A

17.25163 OEG J l COMPONE NT S OF BFAM LO ADS t.CT ING ON SHELL AND RING GIRDER NO AZIMUTH VERT LOAO SHElt COMP RING COMP ~ "3 (DEG) (LBSI (LBSI (LBS) 1 122.60 40800. 42722. 12670. 2 147.40 37200. 38952. 11552. 3 171.00 27600. 28900. 8571. j 4 189.00 27600. 28900. 8571. i 5 212.60 32400. 33926. 10061. 6 237.40 33600. 35183. 10434. PROPERTIES OF RING GIRDER WIDTH OF SHELL ACTING WITH GIROER = 29.5 IN AREA 0F SHELL ACTING WITH GIRDER = 25.8 IN-2 AREA 0F THE ATTACHED GIROFR = 25.0 IN-2 TOTAL AREA OF RING GIRDER = 50.79 IN-2 MOMENT OF INFRTIA ABOUT Y AXIS = 1170.17 IN-4 i SECTiqN MODULUS OF INSIDE = 179.86 IN-3 ) 148.79 IN-3 SFCT!UN MODULUS OF OUTSIDE = I l J CHIC AGO BRIDGE AND !RON CO. BIRMINGH&M ENG UPPER SEAM SFATS; CONTRACT 69-5562V; D AT E 04-08-74; BY LDF; SH T BM'OREV G to 14 CILS I

g L O A catM A Co y o1Tiou B [O BE C - 4 CIRCUMrE4ENTIAL STP ESSES OUE TO MAXIMUM POSITIVE MOMENT TYPE LOAD DUF TO AMT LOAD INS STRESS OUTS STRESS (PSI) (PSI) MOMENT .(0040 LOAD 707970 IN-LR 3936. -4758. THRUST ON OFAMS) 7136. LBS 140. 140. I MOMENT (LIVE LOAD 1102329 IN-LB 6129. -7409. THRUST ON BFAMS) -3443. LBS -68. -68. ) CIRCUM (OTHER LOAD 12510. LH/IN OR 7260. STRESS A60VF BEAM) -1000. LB/IN -580. TOTAL 17398. PSI -12675. PSI l ALLOWABLE STRESS = 33800. PSI I 'CIRCUMFERENTIAL STRESSES OtlE TO MAXIMUM NEGATIVE MOMENT TYPF LOAD DUE TO AMT LOAD INS STRESS OUTS STRESS (PSI) (PSI) MOMENT (DEA 9 LOAD -8 319 51 !N-LB -4625. 5592. THRUST ON BEAMS) -10212. LMS -201. -201. MOMENT (L IVE LOAD -518453 IN-L6 -2883. 3485. THRUST ON RFAMS) -4699. LBS -93. -93. CIRCUM (DTHER LOAD 12510. LB/IN OR 7260. STRESS ABOVE BEAM) -1000. LB/IN -580. l TOTAL -8382. PSI 16042. PSI ALLOWARLE STRF.SS = 33300. PSI BUCKLING STRESS = -201. +( -93. 1+( -580. l= -874. PSI 3El 3t 27400000. )( 1170.17 l ALLnWABLF RUCKLING STRESS = ------= -------------------------- = 7$84 PSI 2 2 I f,5 R A l.6( 408.00 ) ( 50.79 I l f CHIC Ab0 BR10GF AND IRON CO. SIRMINGHAM ENG UPPER BLAM SE ATS; CONTR ACT 69-5562U; DATE 04-08-74; BY LDF; SHT BM-n REV 6 10-14 CBS

--10948-094 y. L O A b l N 6, C O N D tTI ON b ( D F3(EG) 4% SHELL MERIDIONAL STRESSES ~@O MAXIMUM LOAD ON BEAM SEAT = 83300.0 LBS CONSIDER LUA0 IU ACT ON A CIPCUMFERENTIAL ARC AT THE BOTTOM OF THE BEAM SEAT EQUAL TO 107.58 INCHES. .x MERIDIONAL STRESS FROM LOADS ABOVE REAMS = -2680. PS[ LOCAL BEAM 5 EAT MERIDIONAL STRESS -927. PSI = -3607. PSI TOTAL = ALLOWABLE MER1010NAL STRESS = SNN (T) ( 0.8750 i SNN= 1800000.


= 1800000.

3860.3 PSI


=

R ( 408.0 1 SEAT RENDING STRESSES

e. m SECTION MODULUS TOP 45.56 IN-3

= SECTION MODUL US ROTTOM 12.96 IN-3 = MOMENT DUE TO GIRDER 187425. IN-TBS = 4114. PSI 33800. PSI STRESS AT TOP = STRESS AT BnTTOM = 14465. PSI 33800. PS! WFLD L O ADS (LnA05 rnR WELDS C AND E ARE THOSE ON EA 0F THE 2 WELOS C AND ON EA OF IHE 2 WELOS El (UNIT SHEARS AR E GIVFN FOR EA 0F THE 2 FlLLETS ASSUMED AT EA WELD WELD A: V= 25668. LPS UNIT SHR= V*Q/(2*l)= 830. L95/IN WELD P: V= 25868. LRS UNIT SHR: V*Q/(2*Il= 996. LBS/IN WEL D C: P= 20875. LBS UNIT SHR= D/(2*L) 740. LBS/IN = HELO 0: V= 41650. LBS UNIT SHR= V*Q/(2*ll= 4335. LBS/IN 3471. LBS/IN WELD E P= 20825. LBS UNIT SHR= P/(2*L) = BIRMINGHAM ENG CHICAGU BRIDGE AND ! WON CO. 04-03-74: By LOF; S HT 8442 REV USPER U'" Sr'Tt: C , T 'I t " T 6 9 c,5 5 ? '! : 7ATF 5-to 11 cg5

m 1 Loc o coM o n ref4 0 - o BE dl t s ELEVATIONS OF EQUATOR = 597.0000 FT. __._..IOP OF STEEL (TOP OF GIRDER)= 607.0000 FT. RADIUS OF SPHERE 408.00 IN. SHELL THICKNESS 0.8750 IN. MODULUS OF ELASTICITY 27400000. PSI F AC TOR OF SAFETY (BUCKLING) 2.0 ALLOWA6LE TENSILE STRESS 17500. PSI VERTICAL SEISMIC FACTOR .100 AISC BENDING ALLOWABLE 20280. PSI LOADS GIVEN DEAD AND EARTHQUAKE LOADS ON THE BEAMS NO AZIMUTH LOAD EQ LOAD (DEG.) (LBS) (LBS) J___ _. 12 L. 6 0 34000. 3400. 2 147.40 31000. 3100. 3 _. 1.71.00 23000. 2300. 4 .169.00 23000. 2300. 5 212.60 27000. 2700. I 6 237.40 28000. 2800. { \\ A G I V EIi 'LI~V E'~L O A D O F 43400. LBS ACTING AT 122.60 DEGREES I ~ ~ i CHICAGO BRIDGE AND IRON CO. BIRMINGHAM ENG UPPER BEAM SEATSi CONTR ACT 69-55620; DATE 04-22-74; BY LDF; SHTBM13REV O _5-h.% C (L $ l 8 9 6 O

, INPUT CONTINUED I fr8 - 0 9 6 - c LMD G.> ' ' *D p g g g oyQ STRESSES DUE TO LOADS ABOVb BEAM SEATS ISEE SECTION IC) MAX. TENS. CIRCUMF. STRESS RESULT. 12310. LB/IN MAX. COMP. CIRCUMF. STRESS RESULT. -800. LB/IN MAXIMUM COMPRFSSIVE MERIDIONAL STRESS -2450. PS! WIDTH OF GIRDER 12.00 IN BEAM' SEAT DIMENSIONS IN INCHES B1 = 14.0000 D1 = 1.0000 d2 = 1.0000 D2 = ~ ' ' ~ 6.0000 _..R I NG_G I R DE_R _D I M E NS 10NS IN INCHES _,. BH = 10.0000- -.... BV = 10.0000 TV= 1.5000 CHICAGO BRIDGE AND IRON CO. BIRMINGHAM ENG UPPER BrAM SEATSt CONTRACT 69-5562U; D AT E 04-22-74; BY LOF; SHT BM uL REV 0 5 is -H cAS N. 4u.i. .a. .p. ee p.s ei

OUTPUT FOR UPPER BEAM SEAT ANALYSIS Lb hh [T 1 ct4 O c g Q ANGLE THET A n 17.25163 DEG COMPONENT S OF BEAM LOADS ACTING ON SHELL AND RING GIRDER NO AZIMUTH VERT LOA 0 SHELL COMP RING COMP (DEGI ... ILBS) (L85) (LBS) 1 122.60 37400. 39162. 11614. 2 147.40 34100. 35706. 10589. 3 171.00 4 . 189.00 _, 25300. 26492. 7857. 25300. 26492. 7857. 5 212.60 29700. 31099. 9223. 6 237.40 30800. 32251. 9565. PROP"5R, TIES OF RING GIRDER WIDTH OF SHELL ACTING WITH GIROER 29.5 IN = AREA 0F SHELL ACTING WITH GIRDER 25.8 IN-2 = AREA OF THE ATTACHED GIRDER = 25.0 IN-2 TOTAL AREA 0F RING GIROER = 50.79 IN-2 MOMENT OF INERT!A ABOUT Y AXIS = 1170.17 IN-4 i SECTION MODULUS OF INSIDE 179.86 IN-3 = SECTION MODULUS OF OUTSIDE = 148.79 IN-3 i j I { i _..__._.j l -i CHICAGO BRIDGE AND IR ON CO. BIRMINGHAM ENG UPPER BEAM SEATS; CONTRACT 69-5562U; D AT E 04-22-74; BY LDF; SHTBM-15REV O E-n 1t CILS h-e_._p.._hu .gha.e .M.._.

N'D*mt --- 1 L o A O t k4 G op o lTio bt O (Oge Q) C'fiduP5FER5'NT I AL' STRE55ES DUE TO M AXIMUM POSITIVE MOMENT j . l TYPE LUAD OUE TO AMT LOAD. INS STRESS OUTS STRESS (PSI) (PSI) . MOMENT (DEAD LOAD ' 648972 IN-LB 3608. -4362. THRUST ON BEAMS) 6541. LBS 129. 129. '] MOMENT (LIVE LOAD 1125672 IN-LB 6259. -7566. THRUS1 GN BEAMS) -3515. LBS -69. -69. CIRCUM (OTHER LOAD 12310. LB/IN OR 7144. 5 TRESS ABOVE B,EAM) -800. LB/IN -464. TOTAL 17070. PS! -12332. PSI ALLOWABLE STRESS =,_._20280. PSI o l ~~ "~ -CIRCUMFt:RENTI AL STRESSES DUE TO MAXIMUM NEGATIVE SON $Ni TYPE LOAD DUE TO AMT LOAD INS STRESS OUTS STRESS (PSI) (PSI) 4240.~ 5126. MOMENT (DEAD LOAD -762622 IN-L8 T.H R U1T __._. .ON BEA,MS) __,9,3J.1,._ L B S _ _,.,,, - 1 8 4., . - 18,4. 2944. 3558. - MOMENT (LIVE LOAD -529431 IN-LB i TH4UST ON BEAMS) -4799. Ld5 -94. -94. l CIRCUM ~ (OTHER LOAD 12310. LB/IN OR ~~7144. ~ ~ ~ STRESS ABOVE BEAM) -800. LB/IN -464. 7927.- PSI 15549. PSI TOTAL ALLOWABLE STRESS = 20280. PSI BUCKLING STRESS =~ 184. +( -94. 1+( - 4 R.' ~is -743. PSI ~ i 3EI 3( 27400000. )( 11_7,0.17 I l ALLOWA6LE BUCKLING STRESS = ------= -------------------------- = 5688. PSI i 2 2 2R A 2( 408.00 i ( 50.79 ) HICAGO BRIDGE AND IRON.CO. BikMINGHAM ENG UPPER BE_AM SEA _TSi_ CONTRACT 69-55620i DATE 04-22-74; BY LDF; SHT BM6 REV O 5 -in i t cits De.' p *4P4ep.s e e %,g4 +ee.e. de Tup.e-e

  • OFDW" N

66*

109';B-U33 &l SHELL__MERIDIDN,AL STRESSES __L DA p>lN/, (_0 N D IT t c N Q [6$QG) - l .a MAXIMUM LOAD ON BEAM SEAT = 80800.0 LBS -"i ! CON S,l D E R. LOAD.TO.ACT ON A CIRCUMFERENTIAL ARC AT THE BOTTOM OF THE BEAM -N-SEAT EQUAL TO 10T.58 INCHES. MER IDIONAL STRESS FROM LOADS ABOVE BEAMS = -2450. PSI ___.._.._LQCAL BEAM SEAT MERIDIONAL STRESS 899. PSI = ._. TOTAL. -3349. PSI = ALLOWABLE MERIDIONAL STRESS = SNN (T) ( 0.8750 ) SNN= 1800000. ---- = 1000000. -------- = 3860.3 PSI R ( 408.0 i SEAf BENDING STRESSES SECTION MODULUS TOP 45.56 IN-3 = SEC110N MUDULUS BOTTOM = 12.96 IN-3 MGMENT DUE TO GIROER = 181800. IN-LBS STRESS AT TOP = 3990. PSI 20280. PS! STRESS AT BOTTOM = 14031. PSI 20280. PSI 1 dELO LDADS (LOADS FOR WELDS C AND E ARE THOSE ON EA OF THE 2 WELDS C AND ON .._ _ - _ _ _... _ _.L A. 0 F THE 2 WELDS El (UNIT SHEARS ARE GIVEN FOR EA OF THE 2 FILLETS ASSUMED AT EA WELD) WhLD A: V= 25092. LBS UNIT SHR= V*0/(2*I)= 805. LBS/IN WELp.1: V= 25092. LBS UNIT SHR= V*Q/(2*I)= 966. LBS/IN 718. LBS/IN WELD C: P= 20200. LBS UNIT SHR= P/(2*L) = .._. 4 L D. D.: V =.._.. _ 4 Q_4.0 0. LBS UNIT SHR= V*Q/(2*!)= 4205. LBS/IN 3367. LBS/IN WELU E: P= 20200. LBS UNIT SHR= P/(2*L) = ) EHIC_AG JRIDGE AND 1RON CO. BIRMINGHAM ENG UPPER dEAM SEATS; CONTRACT 69-5562U; DATE 04-22-T4; BY LDF; SHTSMT7REV O E 7 9 C115 _r 9 ._.*N a. p . ee +mNh 4 T M*h** O

    • N m

4 6 m

10948-100 BIRMINGHAM DESIGN ' ~ Locethn LoAo Couerttou E 4 r - RtwG 6 t n es st E F F s c T-3 "I t ~ yd.7 -esd / s, // j e/- ,/ ' e ?; P e, i t, Y E $0 y G P = Given load on beam seat in pounds With the above load P transposed into its components, we can for purposes of analysis, assume the beam seat to be momentless, the tangential loads (P/Cos0) are carried directly by the shell,' and the horizontal loads (P Ten 0) are carried directly by a continuous i ring girder. IF THE 6tvt.8 LoAo P is A C. T tM G U P W AR Q, TH G H C R IT.ON TA L L e A o (, P t A H 9), W t LL B E. A c.T ( M G RAO ALLY CUTW AR.O CM THE R t H C, G t R D C-R. l 4 SUBJE CT MADE BY CHKD BY gy CHARGE NO. 69-5567. U P P E R. f6E AM SEATS Lor CM W Chkd DATE DATL 67*l4 $-l0-It Date SHTb OF Y1 . -. =

10946-101 4/15/68-4 CHICAGO BRIDGE & IRON COMPANY B'H8M. ENGINEERING DEPT. o The girder section properties are computed in the normal manner about the vertical neutral axis, and are calculated by considering the girder as follows:

  • Per Code Case 1290

/, N. p, 'Nss OC 6HELt, k, s' s / // Y <Y f l / ~ 'N \\

  • g The properties found are:

4 I moment of inertia (in ) = 3 Z = section modulus (shell side) (in ) shell 3 section modulus (flange side) (in ) Z = flg 2 area of girder (incl. shell) (in ) A = length of shell acting as girder (1.56Kt) (in) L = After applying the loads, the ring girder's maximum positive and negative moments are found. The method used to analyze the ring is as follows. The horizontal components of the given beam loads act as radial loads on the ring girder using the given azimuths. THE$i LOAO3 ARE IN NT I NT O C. B I PR04AAM 4 0 Ei, TW is Pnt o G. 8 A M AW A LY1ES THE fttt4C, A5 F o L L ew s ', sweact Upper Dean Seats contN'Mk.t. 6 7 ~l4 e LCF snt.fLibe r c~n.o en.cs.o @ 5 o.t.5-9 M n., n o. o.t. m., uo. o.t. __ n., so. o.t.

)Ub1b~IUL 1 r 4/15/68-5 CHICAGO BRIDGE & IRON COMPANY B ' HAM. ENGINEERING DEPT. y The analysis of the. ring assumes a constant moment of inertia and P' modulus of' elasticity. The mathematics are based upon the I Hardy-Cross column analogy for rings as referenced in Theory of Modern Steel Structures, Vol. 2 by Grinter, page 259. This analysis gives the bending moments and the thrust in the ring due to the radial loads. The stresses in the ring are the summation of the following stresses: o,= M/Z where o = stresses due to moments (PSI) m M = moment (in-lbs) 3 Z = section modulus - shell or flg (in ) ot = N /A where ot= stress from circumferential thrust in 0 ring due to radial loads (PSI) N0= circumferential thrust in ring due to radial loads (lbs.) 2 A = area of ring girder (in ) Uo=NO x L where 0 = stress in ring girder due to stress in 0 A shell from all loads above work point (psi) Ng = circumferential stress in shell from all loads above work point ( lbs/in) L = length of shell acting with ring (in) A = area of ring girder (in2) j In addition to the bending analysis of the girder, the girder is checked for buckling. This condition would occur as the loads approach an infinite number, i.e., the ring would be in com-q pression across the full cross section. 6) sudact Upper Beam Seats cent oate F~M 4 ey_LCF snt BW'LO e q asv i 4 e eneckoo O 5 6"M oate Rev No. Date Rev No. Date Rev No. Deto

m __3 4/15/68-6 CHICAGO BRIDGE & IRON COMPANY B ' HAM ENGINEERING DEPT. The loads considered are the thrust stresses (at) Plus the W circumferential stresses due to all other loads (oo). The thrust loads are the maximum negative and the maximum stresses due to other loads are generally the refueling stresses. The allowable buckling stress can be found by considering the critical load to bes 1 = 3EI From Roark " Formulas for Stress and p Strain" 4th ed, case 12 pg.342 3 r p1 = critical radial load (lbs/in) E = modulus of elasticity (psi) 4 I = moment of inertia (in ) r = radius of ring (in) j The circumferential stress for a ring with a uniform radial load can be shown to be o = P_r, where o = stress (psi) r A P = radial load (lbs/in) r = radius of ring (in) 2 A = area of ring (in ) The allowable buckling stress can be found by substituting the critical for the radial load and using a factor of safety of 2. I pot OBE Q l o = 3 EI 2 2rA l 3 ET_ poA D BE Q ( F A cTM S A F O 5( : le h j c5 ,y-2 I,5 r A Upper Beam Seats cont %M.t. E'7-74 er LOF sntEM l i.e o swe).ci CPS o t.5-h % R.v No. Date R.v No. Det. R.v No. Det. m.v i.o en.ca.o I

ius4u-iun , BIRMINGHAM DESIGN pro 4R AM 4 05 .-W 4.-562 U NER BEAM SEAT-DBEO-LOAD Cor4DITIUN E LDF 5-6-74 d(R) N(f) d(M) DATA SHEET NU. PLOT CODE 6 0 0 1 0 H AI)I US MUD-ELAS i40M-I NER AREA C(l) C(2) 389.72 27400000.0" 1I70.I7 50.79 6.50 7,87 EQUILIHRIUM LdADS FV FH M/R IWPUT -30785.00 16448.00 0.0 COMPUTED -38786.34 16447.64 0.0 INPUT LOADS AND THEIR LOCATIONS RADIAL LUADS AND ANOLES LUADS 12670.00 11552.00 8571.00 8571.00 10061.00 ANGLES 122.60 147.40 171.00 189. 00 212.60 LOADS -5900.00 A140LES 237.40 da TAdGE JFI A LDADS NO MJtEN1/R LJADS UNIT STRESS VALUES FOR CIRCULAa RINOS PRIdIJUT AT EQUAL AWOLE INCREMEWTS X V/A T/A !a ( FORCE-LO ) 0.0 -b.941HE+0i 1.4232E+02 8.2086E+0S

6. 00 - 7. 3359E+0 i 1.2325E+02 6.84J2E+0S.

I2.00 -8.SO96E+01 I.0029E+02 5.2137E+05

18. 00 -V. 4 /4 3E+01 7.3872E+0i J.3694E+05 2 4. rK) - 1. 0046E+02 4.4459E+0i 1.3669E+05 I

3 0. 09 - 1. 034 7E+0? I.2bd/E+01 -7.30/3E+04 4 2. 0 ') -9.H993E+01 -S.6170h+0i -4.9336E+05 ~ 36.')0 -1.030JE+02 -2.1i63E+0i -2.8550E+05 4 8. 01 -0. I 24 8 E+01 -0. I 7H4 E+01 -6.8914E+05 S 4. 00 - 7. 97 /2 E+0 i -1.2734E+02 -B.6520E+0S 6 J..n -6. 460bE+0 i -1.6214E+02 -1.0139h+06

60. h) -4.5H63E+0i -1.V552E+02 -I.1278E+06

/d.JO -2. J /28E+0i -2.2682E+0? -1.1998h+06 7H.0J

1. 5461 E+00 -2. SS37E+02 - I. 22 30E+06 1

d4.01 2.9640E+0! -2.HO58h+12 -1.1915E+06 90.0)

6. 01 /4 E+0 i -3. OlH7E+02 - 1. 0998E+06 96.00 V.2709E+01 -3.1873E+02 -9.4324E+0S I C?. T)
1. 26 /6 E+ 02 -3. 3069E+ 02 -7. l H 33E+05 10 >1. 4.)
1. 61/dE+02 -3. 3 737E+02 -4. 2248E+05 114. 01 i. 9 / 22 E+02 -J. JH46E+02 -5. 424 3E+04 120.00
2. 3d4 /E+02 -3. 3373E+02 3.8660E+05 126.0-)

).7889E+0i -J.3783E+02 6.OV2JE+0b l.$ d. )J 5.3M00E+UI -3.470/E+02 6.d260E+05 l 36. 00

9. 0354E+01

-3. 4 989E+')2 d.3042E+0S SUBJECT MADE BY CHKO BY B" CHA O 69,5 7_ U PPE R B tE A M SEAT 5

t. o r-c 12 5 DATE DATE f-> % 50 H-Dete SHT_M OF CO dd fttv 4 73

1 U 3 tB F UM BIRMINGHAM DESIGN tocation x V/A TA M (re e m ) 144.00 1.2686E+02 -3.4614E+02 1.0533E+06 15 0. 00 -6. 4394E+01 -3. 4 609E+02 1.148JE+06 1 S6. O') -2. 793 /E+01 -3.528dE+02 l. 05 3JE+06 162.00 9.07/2E+00 -3.5292E+02 1.0339E+06 160.00

4. 5 741 E+0i -3.4620E+02 1.090JE+06 I/4.00 -H.716dE+01 -3.4169E+02
1. 04 79 E+06 1 H 0. O'.) -S.I44bE+01 -J.3950E+02 9.0576E+05 iH6.On -1.6286E+01 -J.3094E+02 8.J644E+05 192.00 -1.5087E+02 -3.2504E+02 6.6SI2E+05 19 8. 'M - 1.1694 E+02 -J. 2206 E+ 0?

3.9047E+05 204.00 -d.3620E+0i -3.1336 ti+ nd 1.8490E+05 210. 00 -b. I 4 98E+01 -2.9926E+02 4.6552E+04 ~ 216.00 -2.1686E+02 -2.91RHE+02 -2.5768E+05 222. 00 - 1. HH4 2E+02 -7. HH81 E+02 -6. 75 40E+05 228.00 -I.oH53E+02 -2.8134E+02 -I.03!IE+06 234. 00 -I. 296JE+02 -2. 6986E+02 -I. J265E+0o 240.00 I. 39 I I E+01 -2. 4 950E+02 - 1. 4608E+06 246.00 3.H474E+0! -2.1916E+02 -1.4065E+06 752.00 5.9725E+0i -1.8637E+02 -1.3052E+06 2b H. 00

7. /44 JE+01 -l.5178E+02 -1.1639E+06 264.03 9.14 /6E+01 - 1.1609E+02 -9. 8997E+05 270.'O l. 0174 E+02 - 7. 9964 E+n t - 7. 91 13E+ 0$

2 / 6. 'O 1.0H232+02 -4.409JE+01 -0.7510E+05 282.00

1. I i 01 E+02 -9.1389 E+ 00 -3. 4 959E+05 2H6.00 1.1020E+02 2.4258E+01 -l.220HE+05 294.01 1.0600E+02 Q.5495E+01 1.0025E+05 300.0J 9.8673E+0!

8.4010E+0i 3.10/IE+05 306.03 n.8b21E+0i 1.0930E+02 5.03lHE+0S J12.00 /.5910E+01

1. 3 091 E+02 6.7223E+05 J18.00 6.124DE+0!

1.4847E+02 8.1324E+05 324.00 4.4V6/E+01 1.ol67F+02 9.2242E+05 330. 00 2.754DE+01 1.7029E+02 9.9695E+05 336.00 9.4677E+00

1. 74 I /E+02 I.0350E+06 J4 2. 00 -n. 704oE+no I.7325E+02 1.0357E+06 346.00 -?.6650E+01 1.6755E+0?

9.9026E+05 Jb4.00 -4.369JE+01 i.57iHE+02 9.2692b+05 36 0. i r) -5.9414E+01 1.423JE+02 8.20H9E+05 36 0. 00 -S. V4 i HE+01 I.4232E+02 8.2nH6E+05 l 1 l l CHARGE NO. SUBJECT MADE BY CHKD BY gy 69-556'2-UPPER BEAM SEATS

t. 0F cfRS DATE DATE S F14 5 to ~l+

Dei. sHTB W or CO 64 REV 4 73

1 10968-106 d BIRMINGHAM DESIGN t.ocetion

LW eul 4 f )UT AT LJA0 AllD/OR mud,E 4T Pal;4TS S

V/A T/A M(roAce-Li> I22.60 -I.V287E+00 -3.2983E+02 6.0000E+05 122.59 2.4747E+02 -3.2985E+02 5.9915E+05 14 7. 4 0 -8. 01 ddE+0 i -3. 4108E+02 I.2127E+06 14 /.37 1.4720E+02 -3.4109E+02 I.2122E+06 v71.00 -1.0503E+02 -3.4035E+02 I.I465E+06 170.99 6.3667E+0i -3.4037E+02 i.I463E+06 1 H9. 00 -I. 6 /d 7E+02 -3. 24 33E+02 8'.2857E+05 IHH.90 8.2260E-01 -3.2435E+02 6.2857E+05 212.61 -2.3617E+02 -2.9156E+92 6.7444E+03 212.59 -3.8135E+01 -2.9159E+02 6.8769E+03 23/.40

2. 314 2 E+ 00 -2. 6172 E+ 02 - 1. 4 6HO E+06 237.39 -I.1390E+02 -2.6174E+02 -1.4677E+06 i>R 114 fUuT UF ;4 A X1,..dia AllD l4 iHl 40'4 V ALUES OF SHE AR. TilRUST, A11D MOMENf

/AL'JE3 TAKEW FRO 4 9UTH OF THE fADLES ABUVE 4AXl.4JM V/A= 2.4 /47E+02 AT I22.59 UdGREES '41 N I.4dM V/ A= -2.3617E+02 AT 212.60 DEGREES

  1. 4 A X 1:4JM T/A=

1.1417E+02 AI 336.00 DEGHEES '41 N I.40l!. T/ A = -3.5292E+02 AT 162.00 DEGREES .4 A X I..id.4 M( FORCE-LO )= 1.dl27E+06 Al 147.40 DEGREES-M l W 1.40il, 44 ( FURC E-LG ) = -1.4680E+06 AT 237.40 DEGREES-l i l j BUBJECT MADE BY CHKD BY gy CHARGE N OPPER % AM SEATS LoF C IM. g M4h c,,, E OATE DATE 0g.g C l0.*4 Dete SHT

7. /.7 4 OF f

03 6 4 REv 4 73

10948-10/ Location Loao c.o s o trie n E C DB E (i) - R tt4 6 GtROER C IR.C. v M F E ( c.H T t A L 57RE SSE $ DVG To MvsMUM PotlitvE MOMENT, j l TYPE LeAo ouE To A MT. l.o A D INS. STRESS ouTL STRESS j (PSI) (P5f) M okERT (D E A D Lo^ D 1217 ~10 0 lN.lb 6 "I 3 (s -S66' TMv57 Lwt loa o) - 17 3 to i 4 -Mi 34/ c#Rc, (oT H eit t.c4 0

12. 5to Ib/m e, 72.60 STAe55 ASovE B6AM)

-10 00.16,u 580 / T6TAL I"5 65 5 ps - 90 ~7 7 psi { ALL o we s et 518 E 55 = 33800F5' ( ( t&c u M t:E RE wr t A L ST RE sses ove To Max tMvm NE(i nTivG N o M6 HT, T NPC 'Lomo on T o A MT, Lo A D ins,srRtss ouT5,57A,e55 (P58) (, P 5 t) M0 MEN 1 (ogno to Ao - 146 V o co tw.lb - 9 l 54 erg 7 3 16L 2_ G 't. ^ vsav$r Liv e t orso ) - l !2.9 3 \\b 7 60 cigc. (oTHER toAo n.5s0 '6/<a 7 oo $r8Ess A Gove SEAM) - t oav 'b FBo TO TA L - 9 99ff5/ 1697/rst A L L ow6 9Lc 57Res5 2 33 g oO rf / SUL k L\\M6 STRESS = - 34 I + (- 59& = ~ 9 2 0 a u.ow.sucruwa svness = 75s4 est (sescBM9) gy CHARGE ND. CH K D<Y SUBJECT MADE BY i CR 6 9-566 E UPPiw REAM SEATS LCF DATE DATE [- 7 ~47- $

  • l C -li Date SHT OF f20 6 4 REV 4 7 3

1 10948-108 BIRMINGHAM DESIGN !M t - (DBE G) O

t. o ri o co n o rrenu E

' ~ C H td.t. ME nto lo N AL. STRE ss G S '4. FF oM L o Ao co noirsoN 8 THE STRE S S WA% F ouluo TO B6 - 3 6 0"/ p s f. 'f H E' M AX t MUM LoAo CN AH INOlVf D VAL S L /\\ M S E AT U N D E R,, LoAO Collo tTj o N E 15 La w Tiw4 TH6'f CF LoAC C oN O IT i c H B, T H E RtF M C, T H G S H E L.t. /*1 G M O lo N A L S TP4 05 15 LESS THAN LoAo CcHDirloN B. G ifto cra s tr A T'S ...........g THE CM R.O E R SEATS W E RE. F out/P To BE A o E Qu f%T F, U N D G ft., _.....; - L o A o c.oN o t Ti o N B FoK A MMIMun GWAM 5 e t;T Lo Ao. ...L. j ......... O F. 8 3 3 c o 4 5. Ac. RING Qo w H.. fHE d lR D e F. SEAT AT 5 W 4L.t-BE AN ALYZEO AS T ~ ~ " ~" A SI M P Ly S u p po RT E D BEAM W (T H T'H E RuPTvRE loa.O..L. A C.T l N 6i. UPWARD. IT 15 A 5.s ta two B o LT 5 A RE....... __ _,. . J.... _. A D E Q U A T E. To TR A N S F E R TH t! TOTA L ' V P LoAO, T,0,..'._ t,. I . "T" H E C.elR D E R SEAT. F o A Thi s ( *N o iTs o N TH s. TOT A L. ' _i U P. Lo A o ON THE G I & D 6 R. 5E4 T./5 A P I' L L E O A T. .._ _ _ _...'.. l..J..... _.T H E. PJ o.LT.5......__..... t t i ._.m . P =...l 9.m.o.. ..u* R...c. 9 7 %_.._%., ' _ ..,...R...... t y r g,,.,. +s._. 4 _ -_ 44 P. ..... F R O M..? Mt" C UT. F # R. L o A o.: _..._ ....p ~~h f' C6N O IT 4 o N A i......__..... _.......... ...__i_ a , m. s. cy m T e i, = 4f,F6twS l b c o rt *. d rf (.lH.............'.'.. 3 s ' l M,= f 4,2 5 $ 1,,,1ft.v (.4 ti)

  • 4 0 3 ti. iv.4...

4"e, cror,y -.b *- 4 0 37[. =""4 98pr 4 '43 $*e'pu $rer Hn h(e*n.) N.'. , _.t.. :..._. 1.... '. Ss n,. $* M *Sl Y 6'$.~b1E'**.911 ...i '. _ _.'..... l..... - = 12..,7. 6.____..'._ _,__. ' l._ i .T ...g, ...____..__i_.. _. l i i i l l i ' l ( 8 i ! ! l 8

]

i I I U F PEtt, BEAM, SEATS LOF CtL S 6 #/- 5 f(,2. k. * * ". " SUBJECT MADE SY CHKD BY gy CHARGE NO. W Chkd E ,'),.DATE\\\\ 'i $'Date SHTY'U F .I... DATE $~.3i 4 D e 1 CoseREv4.n s.

Iogs8

ag

} BIRMINGHAM DESIGN m Prof R AM 405 69-$u')2 JPPER DEA 4 SEA 1-UHEO-LOAD CJf401110t4 F LDF S-6-74 a(d) id ( T ) 14 ( M ) DAfA SHEFT t4U. PLOT CJUE 6 0 0 i O W A'110S M Ju-liL AS ta4-I rlER AREA C(I) C(2) J iS. 74 2/4 00000.0 Ii10.I7 bO.79 6.50 '7.87 .d EUUlLIPRluti LUADS FV FH M/R INPUf -JS2bv.00 154dv.00

0. 0 CJ!.lPU TED -35289. 71 15490.68 0.0 IWPu r LUADS A:40 THEL y LOCA flJi1S (Al)lA LJADS Ail D A l4 G L E S LUAOS 11614.00 10589.00 78b/.00 7db7.00 9223.00 ANULES 122.60 147.40 171.00 189.00 212.60 LOAOS

-5900.00 AWOLES 23/.40 du fAWGEi411AL. LOAOS itu d'l tE W1 / d L M D S Ui41T ST RESS VALul 9 FUR CidCULAR RINGS ~ PRiclfauT AT EQUAL ANGLE INCREMEr4TS X V/ A T/A M(FURCE-LG) 0.0 -b.594bH+01 1.3052E+02 7.55M9E+05

6. 00 -6. H708E+01 1.1262E+02 6.2771E+05
12. 00 - /. V409E+01 9.I186E+0i 4.7S39E+05 I d. 00 -e. 7c96E+0!

6.6607E+01 3.0354E+05 1 24.00 -V.326<4E+0i 3.VJ23E+0! l.1743E+0S 3 0. 00 -V. 5 W 5E+01

9. 83 00E+ 00 - 7. 70948+04 2

36.00 -9.5265E+01 -2.1336E+0i -2.7369E+05 42.0) -V.1348E+01 -5.3603E+01 -4.ob69E+05 441.03 -8.4021E+01 -8.6370E+0i -6.4617E+05 S4.93 -7.326JE+01 -!.I902E+02 -H.0809E+05 60.00 -S.9IlVE+0i -1.5093E+02 -9.44e1SE+05 60.OJ -4.1009E+01 -1.HI4RE+02 -1.0444E+06

72. 00 -2. I I /9E+0! -2.1005 E+02 - 1. I I 34 E+06

/ H. UJ

2. 2035E+00 -2.3006E+02 - 1.1334E+06 84.00 2.aiSIE+01 -2.9894 E+02 -l.1026E+06 Y O. 00 5.6309E+0i

-2. /819E+02 - 1. 0163E+06 96.07

8. 62 /1 E+01 -2.9332E+72 -8.7035E+0S 102.00 I.I75SE+02 -3.0394E+02 -o.6143E+05 f

100.01

1. 4 9 /6E+02 - 3. 096 7 E+ 12 -3. H731 E+ 05 114.00 I.H226E+02 -J.1026E+02 -4.6747E+04 I20.01 2.I455E+02 -3.0549E+02 3.6037E+05

{ l26.09

1. 77M E+01 -J.n881E+12 5.6738E+05 132.00 5.059/E+0! -3.1683E+02 6.3738E+05 138.99 9.3VJVC+01

.4. l H9 / s +12

7. /5 74 r+nS q

SUBJECT MADE BY CHKD BY ey CHARGE ND, U PPE R BE Ars SE AT S Lor CM 69-5562. W Chkd f E DATE DATE 5 M-ZI

f. 7.g 5 % 4 +-

D... ssT DF co n av 4.p

10948-110 l g mBIRMINGHAM DESIGN l X V/A T/A m(rau.p)_ 144.0:) I.I719E+02 -3.1511E+02 9.8173E+05 150.00 -d. d547E+01 -3.146/E+02 1.0704E+06 156.00 -2.5235E+0i -3.2051E+02 9.8440E+05 i 162.00

8. 3661 E+00 -3.202 t E+02 9.67tlE+05 168.00 4.1614E+01 -3.1376E+02 1.0185E+06

{ l /4. 00 -8.0615E+01 -3.0938E+02 9.7859E+05 I 16 0. 00 -4. 6280E+01 -3. 0719E+02 8.4642E+05 186. 00 - 1. 64 79E+01 -2. 99 22 E+ 02 7.8013E+05 192.00 -1.4029E+02 -2.9376E+02 6.1946E+05 198. 00 - 1. 0963E+02 -2. 9104 E+02 63.6315E+05 204.00 -7.9517E+01 -2.8315E+02 1.6928E+05 210. 00 -9. 04 94 E+0i -2. 7038E+02

3. 614 5 E+ 04 216.40 -2.0432E+02 -2,6385E+02 -2.4991E+05 2 22. 00 - 1. /678E+02 -2. 6134 E+02 -6. 4078E+05 1

228.03 -I.4972E+02 -2.5487E+02 -9.7558E+05 234. 00 -l. 2353E+02 -2. 44 79E+02 - 1. 2557E+06 240.00

1. 74 77 E +01 -? 2619E+02 -1.3801E+06 246. O')

J.V705E401 -I.9793E+02 -i. 320VE+06 z'2 2. 0') 5.8854E+0i -1.074dE+02 -1.219JE+0c 258.00 /.4 72dE+0i -l. 354 7E+02 -1. 081/E+06 264.0') H. 7 I 94 E+0i -1.025IE+02 -9.I499E+05 270.00 9.6186E+01 -6.9224E+0i -7.262VE+05 276.00 1.0170E+0? -3.6246E+01 -5.2z72E+05 2H2.30

1. 0381 E+02 -4. l e l l E+ 00 -J. I l 34E+05 2-8. 00 1.026 3E+ 02 2,6387E+31 -9.9032E+04 JV4.0)

Y.6354E+0i 5.490dE+01 1.0764E+0b J S ). 00 V.I220E+0i

8. 087 I E+ ')1 3.0256h+05

.$ t # D. 03 d.lb22G+01 1.0JH2E+02 4.801/E+05 31 '>. 00 6.9596h+0i

1. 2 334 E+')?

6.3553d+0:2 318.00 S.5820d+01 1.3 Vile +02 7.6446b+05 .524. 00 4.0602h+01

1. BOB 4E+02 H.6357h+05 uu.J) 2.43I66+0!

l.5H34E+02 9.3036E+05 3J6.ud /. 5926 E+ 00 1.6147E+02 9.6321E+05 392.00 -V.2880E+00 1.6019E+02 9.6145E+05 .34h. N -2.5804E+01 I.5452E+02 9.2535E+05 154.03 -<e.IDO2h+01 1.445HE+0? d.b6iJu+05 J6(,.30 -;.5941E+01 1.J053E+02

7. %V 3E+05 J60.0.3

.a.59c h+0i 1.J052E+02 /.5bH9h+0S 69 HARGE ND.5f 42. C SUBJECT MADE BY CHKD BY gy UP9eR SUM SEAT 5 L OT" CILS DATE DATE F 7 ~14 5 - t 9 -% Dm sHTMDF KO 64 REV 4 73 J

__ q 10948-111 ~ ~ g u. BIRMINGHAM DESIGN u %l .r. PRlafJUT AT LOA 0 A!4D/UU MDi4EWT PUINTS X. v/A T/A M(FoA C E 'l 6) 122.60 -3.3342E-01 -3.0173E+02 5.5/27E+05 122.59 2.202dE+02 -3.0175E+02 b.S649E+05 14 7. 40 - /. 2 727E+01 -3.1024 E+02 1.1288E+06 141.39 I. 3570E+02 -3.1025E+02 I.1283E+06 171. 00 -9. 6788E+01 -3.0826E+02 1.0696E+06 170.09 5.7854E+0i -3.082aE+02 1.0694E+06 189. 00 - l. 5566 E+02 -2.9 312E+02 7.712iE+05 ~~ 188.99 -1.013*E+00 -2.9314E+02

7. 7122E+0S 212.60 -2.1997E+02 -2. 6342E+02 -J. 3482E+03 212.59 -3.842iE+0i

-2. 634 S E+02 -J. 214 7E+0J 237.40

6. 9564 E+00 -2. 3 /60E+02 - 1. JV 10E+06 2J. /. 30 - 1. 0925 E+02 -2. 3 762 E+02 - l. 3906E+06__

i>RIN fJUT OF MAXI...UM AND I41dl:4UM VALUES LF SHEAR. THRUST. AND muMENT ~ VALUES TAKEN FRUM BOTti UF THE TABLES AisuvE MAXIi40,i V/ A= 2.2d24E+02 AT 122.ov JEGREES MIN 1mVM V/ A= -2. I OV /E+0? AT 212.60 UEGREES .4A X 1 AUM T/ A=

1. 614 lb+02 AT 336.00 l)E3REES Mii41:4dM T/ A=

-3.20SIE+02 AT 156.00 DEGREES r4A XI.4UM *i( FURCE-LG )= 1.128BE+06 AT 147.40 DEGREES 4IWIMUM a(FORCE-LG)= -1.391OE+06 AT 237.40 I)EGREES 4 6 C HARGE NO.5567. C ~ SUBJECT MADE BY CHKD BY By UPPER BE AM S EA TS Lor CR5 1 W Chkd 5 INg ? C.Y.$4 o.i. sstBkdor to s nv a.n

10948-1l'l BIRMINGHAM DESIGN i h t*w LoAo (.o Fto ri t o,w F (CBE.Gd ~. RjN 6 Gt RO ER C tv.uMFG REM Ti AL STRE5SE$ DuE TO MXIMuM P o $ 1TIV E ' f40k E t4T 4 T N Pt. (cAC DOE To " A(91, Le A O 195, STRE 55 e uts. S TRE 55. (P S Q (P 11) f4c M E.NT D E A0 t,o A o i l 2.$ Soo in4 G 7.7 0 ~ 7 f C/ /, THRUST LwIt e Ao) ~31 0 3Io l5 745 lb C tR(. (OT HER LcAo ll'lto M w ~/l 4 4 si As.55 ABove BEAM) "- freo % -- + 6 + TOTAL. I'5 to4g sf - 15 3 6 5p f f ALLewAeLE STne 55 : t ottro es t u. ctRcv M FtAE.MTi m. STRESM.S CVE To MytMvM 146 4 ATIVE M c Mg s7*, TYPE LoAQ ou E To A M T.L e A 0 \\MS, STRESS 00T5 57RE55 (PSI) (P S )) M e, Mt.M T locao i.oAo -l S cf I o oo m a 1734 9349 it ett 16 -23V - 23 E j rHau sr twit $o) cin c, (oraar i.eAC 113 t o k- "l [ 44 sr ec.ss Aeova etw) - goo '% -+4+ TOTAL - 94 3 6 e s t 16 EF5 rst ALL ow ABLG STRESS = to2 So rs t f \\ s u c. s t i g t, st RE ss = -? 10 + (- 46 4) : ~17 4 / 5/ A L L ow. B u c k Litm 57 9.E 5 5 : 66 99 F5I [5EE SH T Y'b') CHARGE NO. SUBJECT MADE BY CHKD BY B" 69 6662. UPPE R T3 tE A M SE.AT5 Lop cM DATE DATE N0 l h*7*'l& 5 'O-% Dete SHT 0F 2064 REV 4 73

F. 10948-113 m" BIRMINGHAM DESIGN to.tw (O BG fR) LoAo cos oivion F C N t. L t. MERto lo N At STRE ss E 5 FP os LoAo conoirsoN D THE STRESS WA% Fou tuo T o f5 tf. ~ 3,3 4 / p s I. THE A1 A X i M U M LoAo c4 Al bf JNOWl DUAL B E A M, S ti. AT

UNDER, LoAO Cc Wo irt o N F 15 Le ss THan TH/g7 OF LOAD C o N O IT io N D,

T H EftE F o R E, T H G SHELL M G R \\ C lo ta A L S TRE SS 15 LE55 Tit A t4 LOAD COH O )TloN A. N 4 C tBoc R SEAT 5 THE (n t R D E R SGATS W E RE F o vf/ P To SE A D E Qu hT @, U NOG fA L t0 A D C.oN O t Ti o N O F O R. A MwlMuM GeAM seat LeAo j CF TOToo l b 5. A c.Tl N G Oo w H, f THE GiR O e tt SEAT' AT W i t L. SE AM A LYZEO, A5 A SI M ply S u p po p.T E o BEAM W LT H THE RUPTURE LoAo A< TIN A UPWARD. IT 15 A 53 9 m e ca BOLTS ARE A D E Q u A T E. To TRA N S FER THE TOTA L VP LOAO T~ o THE 6, t R o g g

seat, FOA This Get40tTsoN THs. TOTAL U P Lo A o ON THE glr DE R SEAT 15 A rf klE O AT THE SoLTS,

{ 1 P = l9 0D o 16 ; R 9s o o II, - \\ a a 4 v. e.g.u a f ~ I i' if rnos tu rour. pas to%e '~ co s o iT t o N A ,. c;, n, S,.,, = 45, s s su. s s corr : 17 <7s iN 3 14 " M : f,. h,2 5) ' y t.p (4 LS): 40 315 w.tk m, u -fe croi9 = ~[~ ' A0375[ = 8 98fso 4 2 02 M gnu g $. .01- : y*37E : 311(p,4.2.a290hs ) -l 4, (e,rt.) =Sa ",11,74 s m I CHARGE NO, SUBJECT MADE BY CHKD BY gy 6 fr-ff/,2. k U F PdF BEAM SEATS LDF c t2.5 5:.3.74 0 ATE DATE 8

  • or

- i..w o.t. swT h 60 6 4 REV 4 7%

= _5-3 m# c 4 4 .i 2 5 s t3~ 3Q-4 s i5'v ~ ~ x .s 4 X t s d n r 8 e r o t t i i s 8 o D r t n 2 N e a o e e r C Z-s c n e N ~ /. A n i p r a g O O r n Y n 0 / l su E r / o 5 l 8 o b ,. l X 6 s t a i f t e '( A m c F C l a l d e er r f a l l e y t i o v l E r v t s $ 8s D F o a o o i y r r t o d r l S. 9@ p s C n p a j e p n E e p u b o e l A I D V A Q r n e P i R z O m-g W (! n E (o t 1 7-de c u-Z e t 7 t o j o T / N o N e m d C 7 g s P s IN 7 r l@ U ]/ n a A e i P. e r Z, b o t e P N a e '( A v K-n D n M / i o I i l g d[ d M t a n d b e R a t E e w E t n t v r d o M o F n o i r /, r e i m p 2I. r g O m t s gY p 4f u a n O. E a A A C c c C U I / r E E R o o I I Q D L P B T N E la ]}fMx86], l 81, c bA. m + g E m[ Bas i t

GN l

E o r 4 N t I N n K t

n. @amgt i00Q 7_

o S 0 C A 11 H l e ,1 A u gh j R -v T n

i E i N

t8 N p J A EG llll(l\\fl'! I u

l0948-065 CHICAGO BRIDGE' & IROM COMPANY ' + Location - 67t((///8 $_ TI.'/'I_AlF2S_,&l4 PbuGGED D!.lo!7/!>MS DOCUMENT C0HIROL I T2sc2-D-9D 'JULS11973 .~ qinq k ( ~ T ~ f oeus ym2 f' 'N kdlsEPe.6- / / / / l w Lucc Eccettrue ) ~ l \\

5. --- J~~~ c yztuogxAL b

STE'Alh/EP. 14/g"f) GA. PEU02ATED S. s i / HCLES / b 40X RCtt AecA ,yQ (t3s tic.u:/sq ia) N s s.. SuAtuse O:lFIGueA TIOU iii0llieA 10!! Osi.Y oMf SEP 4 8 L i g( RQ$ N. N W I 9A A D L UT C ** K Ce D1 CF4AHCL I* W a

  • * * " " - -~ }l, >p r.Qy, vv.. ( pf);.:.Y:]l

/. tAlf //Cl jfi GG / ?- n 1, o,. n c [;gy.y '/./ " 7-E 73 j-e,.,,. _-_-_____m.

....., y '. .10948-066 qe x oo n,u.va.n 75;;

)

(W )

49;
~

g.e u>e.u, ///lMPli/S ,,o TCCI/S .%>C 7'/OA/ S7,.'"/l / /, /E.?S, STEA/NE/?.S MU' S7 fMSC THE SPE C/P/Eb FLOW W/77/ ' m.. A nfAtHAUM HCAO Locs csc~ /. o Fi~ Ac20sS 'I)/C S7X'A/UEC, A/0T /A/ Club /NG EN724/./CE l.oSS. - p .2 f.OSSES THCot)6H THE STP A/UCHS CAA) 25 SEPE2dTCO. /A/TO TWO PA27~S : .m .L. /.iOSSES DtJE 70 FLOW THedV6H EncM /HD/t//Cu/lL, Ci?T7CE HOLE;

2. lOssC.5 DUE 7'O D///C/37~//,1G DIE l'* LOW DTEEAM

/NYO Y7/C lb'f[*

  • +0;/

N!6 SCC ON!.? !.c'sC fdC7tw //A.'; 26Lu ACCat)A/TED FOL' As A P/PE EN77&1.UCE .loCS / 4 7 7/C fuST @tu2s A AlAL }fSIS A/JD IV/l L Nu 7' &E Ct'DS/DCtED //Ef'36. Catc.c /u.c That>tici/.51 cit //ctc Ac7rus As Ai/ octf/ce 2 s rf=,C438c/o C}/lg SEF: C2ANE 75GIM/ CAL. O PApre Alo. 4to 2 E%Artou 3-2/ CC /)g : fo//. oDS dlC PAGE 3-5 Ck.60 Foe Ec >.2 0 [DEUMEtfLCD.O..... A ) g, goix 7,,gg,g 7ce (,y) o ELOW EU "#l' I OE') JUL31'thl3 f! 1 \\ rm.n'.... STGG , s py,,9 3 g 3...t..h _yw \\.Tr. No.. I!O. V !b ' G l'* G. i eo...... Y ,Q \\ = 2,un6'giy D ~ Al SEP 41973 1 ~ i C m m m u. m an u. pf-288 MADE BY CljKD BY cy CH ARGE NO. sunircT ... 7% 'v!- Sw:UrC bECIc>l 4 ("P hC/ t 6 ' 5b"G : n oATE DA1E / '2 [_ 7;/]. 73 7,M, 7.3 _ Date SHT OF

    • e, 6

CHICAGO BRIDGE & IRON COMPANY I e ME/IO///b Location i. l S w n. m /s Ihn.it.Aritu Dum. tzakui C'.w Aluw.:ca. d L A.c a do C (in) (in) A. (tr.) o,n l 2H2 26 36 Sil70.izc .so l CSS 22 2(o 21 % .izc .so [ \\ 'FM T1:T CD:, TROL I WJLC1573 fj"'2 siAtvs Liv. n....___ l 1 I ITCW lb, < f Acy un. Atis' tit;ilc~ \\ PwSGG (GPM) llaleG h lItA o lIct,I.> Al=33yA -ff%cc Loss ios: i x % Pl.o'.d_. hL 1 Q l B,!>~0 0 IILI,510 2.&2 y 10'I,4' /, O ' /2///2 ... 9.,.... f. O 50 fo 000 G7,256 3,68x.In'.t... i O &> 3ro Ii- --,175 f.'17xin'I ,23' I. 0 ' 7I' Css '~~ ~ ~7- .To pro.ulsacj3.bM .92 /. 0, 3M)M)(T/>M" SEP 41973 L.) < C Tile RALPli M. PARS 0lls CO. BZ-28$ $ LA is J L 41 '*4 A O E DY L Pi A O Li Y C P1 & H C E F4 O. Tc: :n Yr' Apit.n DE9/ft) /A P lic/ ( d :; 9 6, 2 en,- u.,e t e,m o ?.*A% '" 2.* ' - _7-267.5 o' O e,,,

\\ a

e" c*

t 3 A 0 D 7 E p X O ($ Q ED T N A $ R I D % M / S I $ 0 R [p A 7: (r f d n r C s e r o t T g M t i i s D D o D r t n N e a o [2-'6 e e r C s c n e A n i p r a g O O r n 8 l s I E d u n o r i ( o N o b d ) s t a i t e A m l( c F l a l d e k er r a l i e y t v l F r v t s g i o [g D F o a o o i y r r t o d r l p p s C n p a j e p n E e p u j o e l A I D V A Q r n e 2 D'P g 4 i R n 5 E 3 5-7 t d d c e Z 7 e 7-t e t T / o j o N o N 6 IN 6 r U 8 f P s g s n A A P. O i .o c 2 e r P. N 7 J a t ee Z h K: n C D n 3 / i o / d /c j/, I i l g M t a n d a e H a t E e v t. t n t v d, o o r c n o i t r 4 a(h. p e i m p 1 O m t s p 2 O. M a A A V 'J _d u a n 3cgh C c c e M E = M. I C / r R o o D L P B T I N E oO* f' E i -t E F *l h 1 I

GN l

E o t IN r N n K o S O C A IT H la A v R o T. r E p p 1 N A E G

1 i0048-069 J. < e t- ~ ..W~A e J- , '. j. z . 3 u w n ~. y j CHICAGO BRIDGE & IRON COIN'ANY ~ DS.V: .s Oak Brook Eng. 3 Location DOCUMENT CONTROL T2.5- 04.x-2J1-BA M~0M-2204Ag STRESSES IN TORUS CYLINDER DUE TO LOADINGS FROM j,, 24" DIA. HPCJ PIPE AND 12" DIA. RCIC PIPE SEP181973 FERMI 2 STATUS F CO MI LTR. NO DMEDEC-M6 The torus cylinder is analytod for the thrust due to J l blowdown of'the HPCI and RCIC discharge lines. d .1 The loads for the BPCI pipe system is,a thrust of'941 kips -T ac' ting perpendicular to the exit plane of the 45' elbow, 1[ while for the RCIC pipe the thrust is 2.2 kips perpendicular 7 to th'e exit plane. (Refer <to DECO letter EF2-18523, dated 7-12-73). 9g M. Stress intensities are determined based on a circular insert 4'-9" dia by 2" thick of HPCI pipe and 6'-2" dia. q, by 2" thick for the RCIC pipe. C \\

*f The stresses in the shell due to the penetration loadings

)k L .f have been calculated by CBI Computer Program 1027," Stress Intensities at Loaded Attachments in Cyl'nders and Epheres." i This program uses th.e methods and nomenclature of Welding .,7 Research Council Bullet,in #107. See' Sheet 40ACofstress e Repert for program write-up. 4 .N The program p51ntout includes a tabulation of the stresses ~f caused by the penetration loads excluding any initial stresses c'{ present in the shell and also a tabulation of the combined effect of the penetration loads and the functional 11oads (initial stresses). g 5 0 M I 2! DR.Y 9@'# I Yi I OCT l'7197 l m 3 g g n M. ntSH3 E ? gz-288 sh ~o e.... is m R GW "J /A-%M ..,,n l> emno i ~ .m pass eye- .m swr l or g SO 7sf .c p gfyfg ,,g,,

I~ l0948-070 3:: ..{ f CHICAGO BRIDGE & IftON COMPANY oak Brook ang. AIJXMULBLE STRESSES The total stress intensities at a point have been compated to the following allowable stress intensities from Table I N-413 and Figure N-414 of Section III of the ASME Code: (RefertoTableonpageh). At attachment-to-shell junction Membrane - PL 1 1.5 Sm = 26250 psi .t Surface Q 1 3 Sm = 52500 psi i At.5 dt from attachment-to-shell junction Membrane - Pm < l.1 Sm = 19250 psi Surface Q 1 3 Sm = 52500 psi l At edge' of reinforcement Membrane - Dm i 1.1 Sm = 19250 psi b Surface Q < 3 Sm = 52500 psi i l -l i TOTAL STRESS IN SUPPRESSION CHAMBER 4 The total stresses in the suppression chamber shell due to the combination of the functional loads and the specified pene-tration loadings have been determined for the accident condition. ~ l i l rv. m, c-o..

b......,, O.

Nh8s bMI Q-h CMKO e,-i,Eo, ghAhE3 ., t.,12. 6AT g i B2-282

i 10948-071 l o 4 ) CHICAGO BRIDGE & IRON COMPANY Oak Brook Eng. Location l STRESSES DUE TO FUNCTIONAL LOADS ) l i It is assumed that a membrane condition exists at the edge f of the insert and that the surface stress due to the i functional loads equals the membrane stress at that point. Stresses are taken as Sm in the circumferential direction and Sm/2 in the meridional direction. The initial. membrane stresses are also used at.5 E whenever. 5 M falls within the edge of reinforcing. i At the attachment-to-shell junction, the stresses due to the j functional loads may be assumed to equal'Sm (17500) psi) per Par. N-451(a) of pection III of the ASME Code. Surface { stresses at.this location are conservatively taken as 150% of the membrane stresses. These initial surface stresses are also used at.5 M whenever.5 M falls within the edge of reinforcing. l t I i ' f2-z 88 i M4d G M T'

k...d.. -od i

y CHED DAfg' A E , y ecg.7g, g[y/yr b or (E 5 gn9 .wr

4 10948-072 / i, t CHICAGO BRIDGE OIRON CotrANY Location a-Tsa es 24" exA tipcT_. Io"osA. RCIC ' A t% Ag(G RiuT STEess 7 LPG MPE D I..{bf y WevEn w e b \\=5 Vsi 'l' lo2 4 75i l 5b' =26150~ 1 ~A t 1 w e n c.e b5n% 29164 Tst 5sq=.stsoc g a f l NN bEANG kb bD k I'{ b :::,\\9bN g i 1 s e, r w.s 5 1 0 4 6 K 2~;W b 5%e52500 i kr 4" * * " V """

M c

smace Mwest bul M e=m q .) y-84 1 - Mc7.7_LG WIALL. t / V \\ f;i Lsuq f d' %eu. = n / ~ Y k ~ .C { i n 5VRt j nk hI 4. 7D. I x a e

F i

U y Q 9 ' g" y-f gfQr N or m -@mGs # f. 4-fe. i _ 5_ ; _g. g

l 0 9 4 8-0 T3 . $f./ ' ocu cuse Location C'i _6 Ng l /9'

  • h 7

\\\\} W. ~ I e k l J i l i v h q,, T = G 45 w f ~ i \\ k/AS V = b d-Dtif s. c j 9 l. bec. NoWEuy 3=b4 fl f 6vf o1 + l 2.S+ b.91$3tb l ESx~oltb t l ( t u G =. 2.O'D16 k.T.95-FT. ~ hh2.bA b T_ocn-LES.

== I i SUBJECT MADE BY CHKD BY By CHARGE NO M ET. Toesoc_. Esa Ansv.

ting, x/4

_a+56>t /,, pAis OF. f g $2hf E oAn Guc rd Amt X~ ffo '%I l 4 thy o.t. sst t i

10948 .074 f .n. _s. L 'P'RO'G 1D272 REV 4/73.__.__ EXCEPT'AS NOTED ON INPUT DATA SHT, NOTATION AGREES WITH THAT IN WRC INPUT ...L ' 'u KN KB RM T LOC q ?' 1.00 1.00 183.294 0.587 0.5000 ,th ~~ +R O TI TP h 3; i 12.000 2<000 0.0

16. 5 0 0._._.

y P VL VC MC ML . __..J. -6430. O. 6430. -342300. O.

  • Ic INITI AL STRESSES NEXT TO ATTCHMNT f

SX(AU) SO(AU) SX(CU) SO(CU) SX(AM) 50(AM) .S X ( C*. ) 50(f4 .___2_6250._ 2_6250._._ 262_50._. 26.250._ __17500.._17500.. __17500.. _ 11).$ INITIAL STRESSES AT LOC *SCR1(R*T) SX(AU) SO(AU) SX(CU) SO(CU) SX(AM) SO(AM) SX(CM) 50(Ch . _... _ _ 2 6 2 5_0. 6,2_50.___26_25,0f 26250. 8750. 17500. 8750. 175W) 1 k' INITIAL STRESSES AT EDGE OF REINF SX(AU) SO(AU) SX(CU) 50(CU) SX(AM) SO(AMi SX(CM) 50K[ 8750. __17500. 8750. 17500. 8750. 17500.. 8750. 1754W )}. 4t j s ' {' j OpTPUT 6IJL AARD COEFICIENT S f. NEXT TO ATTCHMNT AT LOC *SQRT(R*T) AT E DQE O F RE l_NF m_t NX/P 48.065 37.908 31 992 g MX/P 0.104 0.056 0 015 Y NX/MC 20.168 27.415 27.235 f., MX/MC' O.057 0.044 0.021 NX/ML 11.355 12.302 9.546 i MX/FL 0.080 0.047 0.015 A l N0/P 35.971 20.008 13.17T M0/P 0.145 0.090 0.037 ._a N0/MC 12.306 13.438 11.513 M0/MC 0.097 0.084 0.052 i. N0/PL 35.770 28.573 22.186 { M0/ML 0.050 0.C33 0.010 . __. 4 I f-; .. 7 I-l , ENRICO FERM1 ATOMIC P0 DER PLAhT UNIT 82 ~ CBI CONTRACT f69-5562, R OUND ATTCHMT HPCI TURBINE EXHAUST ON AJ YLINORICAL VESSEL 6 Y 'l y

...._.__._1 0.9 4.8 : 0 7.5..._.. _... ...,. ) .JUTPUT EXCLUDING INI TI AL STRESSES __N E X T.. T O A_T TC H M NT (U= CUTS; L= INS; M= CTRL); R0= 12.000; I (AU) (AL) -( BU) (BL) (CU) (CL) (DU) (OL). SX -2050. -363 2050. -363. 7172. -1899. -3073. 1172. 50 2309. -1048. 2309. -1048.. 9075. -56_24. -4456. 3529. TAU 85. 85. -85. -85. O. O. O. O. __.. S I_. 2335._'_1058. 2335. 1058. 90.75. 5624.. 4456. 3529. (AM) (BM) (Cw) (OM) SX 843. 843. 2637. -950. SO 631. 631. 1725. -463. 3 TAU 85. -85. O. O. t SI 873. 873. 2637. 950. AT LOCVSQRT(R*T) (U= OUTS; L= INS; M= CTRL); R0= 21.573; (BL) (CU) (CL) (OU) (OL) i (AU) (AL) (BU) SX 1307. ._._2_2 _ _. 1 3 0 7. _ _ 2 2.. _64._ -1492. 109. '50 1392.._ -690. 1392. -690.. 4106.. -2764. + 4796. . -2011. 1383. TAU 47. 47. -47. -47. O. O. O. O. SI 1414. 719. 1414. 719. 4796. 2764. ~2011. 1383. J (AM) (BM) (CW) (OM) SX' 665. 665. 2021. -691. 50 351. 351. 1016. -314. TAU 47. -47. O. O. $1 672. 672. 2021. 691. i AT EDGE OF REINF (U=0UTS; L= INS; M= CTRL); { RO= 28.500; j (AU) (AL) (BU) (BL) (CU) (CL) ~ ~(DU) (OL) SX 3565. 259. 3565 7 ~~~2T9 ~ ' ~i2166. -1393. "-5Ufi. ~1913. ~~ ~' j ~ SO 4880. -3305. 4880. -3305. 18854 -14341. -9094. 7732. -- - 749-722!~~ ~f2k. If22. -122. ~ 0." 0. 6. ~ 0. SI 4891. 3572. 4891. 3572. 18854. 14341. 9094. 7732. (AM) (CM) (CN) (04) SX 1912. ' ~ ' Til~2~ ~ ~ ~ ~ ~ -~63 8 6. -1563. j SO 787. 787. TAU 122. %T2~2.~~ 2256. . -681. j 0. O. I St . 1925. 1925. 5386. 1563. ~~ , ' $~NTIT,C FIRW1 ~4 TM I C POWEA'PLAhI~ UNIT #2 ~ ~~ CBI CUNTRACT #69-5S62, RCUND ATTCHMT HPCI TURBINE EXHAU5T ON A CYETN D PTCAl-~~YE STEF ~~ ~ J ~~ M 0.HT~ 07 1. \\ gy.gg((&. g

10.S18.Al6 __.-.-.____.2 7 c i k O_UTP_UT INCt UD ING' INI TI AL. STRESSE_S ~ . N E XT'.TO.. AT T CHHb T (U=0VTS., Ly I N S ;__M= C T R L) ;. ..J b R0= 12 000; jf (A'U) (AL) (BU) (BL) . CU) (CL) (DU) (DL)' % ( ~ ~ ~ ' ~ T SX 28300. 8387.- 28300. 8387. 33422. 6851. 23177. 9922. -.., _ _ _ _ _SO 28559. 7702. 28559. 7702._ 3 5 3 2_5,. ____31_2_6_. _2_1794. - 123 79_s TAU 85. 85. -85. -85 O. O... O. O. 'g SI 28585. 8397. 28585... .8397, 3532b 6.851,. 23177_n_._1,2219 ) (AM) (BM) (CM) (DM) ^ ~'"~ SX 18343. 18343. 20137. 16550.^il 50-18131. 18131. 19225.' 17037.t il TAU 85. -85. 'O. O. - SI 18373. 18373. 20137. ___ 17037_,. d AT LOC *SQRT(R *TI (U=0UTS; L= INS: 'M= CTRL); N ~~ R0= 21.573;~~ M ~~ (AU)' ( A1.) (80) (BL) (CU) (CL) (DU) >(OL). f l! SX 27557. -8728. 27557. -8728. 30356. -8814. 24758'. -8641 '~~ SO 27642. 8060. 27642. 8060. 31046. 5986. 24239. 10133.- TAU 4.7. 47. -47. -47. O. _0. O. 'O. / ~ ~ ~ ~ ~ Si 27664. 16787. 27664. 16787. 31046'. 14800. 24758. IJ774..fs (AM) (BMI (CM) (DM) / .SX 9415. 9415. 10771. 8059. 'h I ~ iS O 17851. 17851. 18516. 17186.' ( TAU 47. -47. O. __0.. 4 SI 17851. 17851. 18516. 17186. P L AT EDGE OF RE INF (U=0UTS; L= INS; M= CTRL); -~ R0= 28.500; ~ ~~ S'X 12315.

9009, 12315.

_ 9009'.._ (CU) (CL) (OU) ( DL ) : M CAU) (AL) (BU) (BL) ^ 20916. 7357. 3715. 10660. V SO 22380. 14195. 22380. 14195. 36354. 3159. 8406. 25232. M ~~ TAU 122. 122. -122. -122. O. O. O. O. SI 22381. 14198. 22381. 14198. 36354. 7357. 8406 2523f. - (AM) (BN) (CM) ~ (DW) - - ~ ~ ~ ~ ~ ' ~ ~ ~ ~ ~ '~~ 10662. ~ 10662. 14136.' ~'fi8i. SX SO 18287. 18287. 19756. 15819.]? TAU 122. -122. O. 0. SI 18289. 18289. 19756. 16819.Q l . _ _.. CE:E ~ b6AL _.. b 6 IhE. AME__N 5 IMO.. csWT . c E. M k > _.. _ % ! M {. . _...... A \\Aeu., n ~ ENRICO FERM1 ATOMIC POWER P ANT UNIT 82 g 4 Q. CBI CONTRACT #69-5562, d ROUND ATTNiMT HPCI TURBINE EXHAUST ON A CYLINOPICAL ~ VESSEL' ~ %us '.. % tr t- % _. geu + gzey e% GMT 8l5}1b ~ ~ >d

10948-077 l Location J % "_ l'-b\\". k ,s , g) 'wmyl i W g si N 3 i 1 r 4 L~ .,_ l l 'l~ nl kT I J LJ I \\ ) ~ ~ + Di/ K $lN P= l 55 4+p 4 Vc = /* 55 ' k =.1 55 (.52Wba 62.t + 5.(d> + 1. t5 _. gx.52s t.gsI q.4t ~ i i b'D4D KT.P5 - F], :. o.14 % lo lycy _ LE. ~ C. = q ~ SUBJECT MADE BY CHKD BY gy CH 4 ARG,' 4. L 1 Rolt Ttwgiuc. E.s,'e,_Vs; a@ e r a 6y ;q,?j z

w _._ .__.j.. g.g_0 79.. t} .. ___._.. 4 o cou ... _.. 00T_PUT EX_CLUD.ING INITIAL STRESSES . NEXT.TO ATTCHWNT 1U=0075; L=1NS; v= CTRL); R0= 5.375; (AU) (AL) (BU) (BL) (CU) (CL) (OUI (DL) SX 498. -35d. 498. -352. 1868. -1660. -891. 95e. _.. c S.O.... _60.5. -440. 605... -440. 2914. -2677. -1703. 1790. j TAU 46. 46. -40 -46. O. O. O. O. _ _.. S.I.._ _6 2 2... _ 460. 622. 460. 29.14 2677. 17.03. 1796. (AM) (BM) (CM) (38) SX -73. 73. 114. 32. SO 82. 82. 118. 46. TAU 46. -46. O. C. i S 1 _. _.124. 124. 118. 46. j AT LOC *SQRT(R*T) (U= OUTS; L= INS; M= CTRL); RO= 14.948; (AU) (AL) (BU) (BL) (CU) (CL) (DU) (9L) SX 262. -132. 262. -132. 750. -496. -226. 232. SO 344. .-226. 344. -226. 1137. -935. -449. 483. _ TAU 17. 17. -17. -17. O. O. O. O. S1 347. 229. 347. 229. 1137. 935. 449. 483. 1 (AM) (BM) (CM) (DF) Sx SO 65. 65. 127. 3. j 59. 59. 101. 17. TAU 17. -17. O. O. SI 79. 79. 127. 17. ~ _. - l AT EDGE OF REINF (U=0UTS; L= INS; M= CTRL,); R0= 37.000; (AU) (AL) (BU) (BL) (CU) (CL) (OU) (OL) SX 622. 126. 622. 126. 1814 -23. -571. 274. -50 800. -567. 800. -567. 2721. -2153. -1122. 1919. T M ~~' h ~~'~~ ~23.~ ~ -23. -23. O. u. O. O. SI 803. 694. 803. 694. 2721. 2153. 1122. 1019 (AM) SX 374. ~~ ~ (8M) (CM) (DM) 574. 895. 148. SO 116. 116. 284 -52. TAU 23. -23. O. O. 51 376. 376. 895. 148. ~~ ~ ENRICO FERM1 ATC"lC ~ i E P WER PLAhT UNIT #2 CBI CONTRACT #69-5562, ROUND ATTCHMT RCIC TURBINE EXHAUST ON A CYLINDRICAL.. VESSEL .. ~ _..... .e- .p e e s -+e. .e. e.* n2d X '. - \\ r r

~ 10948-080 ..e c k '5 ..-._-_L.__ . s ,7

. A '

OUTPUT I N C L U.D I NG INITIAL STRESSES 4 _NEXT TQ ATTC._HMNT ( U = O U T S_1.. ).

  • Ill S M= CTRL); _.

_.,. 4 R0= 5.375; ~4 (AU) (at) (BU) (8L) (CU) (CL) (DU) (OL) J SX 26748. 8398.. 26748. 8398. 28138. 70906 25359. 9706. ' SO 26855. 8310. 26855. 8310. 29164 6073.___24547. 105.4.6.' TAU 46. 46. -46. -46. O. O. O. O. ..S3 _.2687.2. 8418. 26872. 8418. 29164. 7C90. '25359,..._1_0544. _ ' g (AM) (8M) FCN1 (OM) i? SX 17573. 4 7573. 17614. 17532. Y SO 17582. 17582. 17618. 17546. # TAU 46. -46. O. Ce ' l S1 1 7 p 2 4._. _17.62_4. 17618...._____ _ 17546. y AT LOC *SQRT(R*T) (U=0UTS L= INS; M= CTRL); ~ '~~ R0= 14.948; j (AU) (AL) (BU) (BL) (CU) (CL) (DU) (DL) --8_518. g SX 26512. - 8 8 82. 26512. -8882. 27000. -9246. 26024. 50 26594. 8524. 26594. 8524. 27387. 7815. 25801. 9233. 1 TAU 17. 17. -17. -17. O. O. O. O. = SI 26597. 17406. 26597. 17406. 27387.' 17C61. 26024. 17750. eg-(AM) (BM) (CM) (OM) SX 8815. 8815.. 8877. 8753. 1 50 17559. 11559. 17601. 17517. pg TAU 17. -17. O. 06 4 SI 17559. ~~17559. 17601. 17517. g .L_.e AT EDGE OF REINF (U=0UTS; L= INS M= CTRL); R0= 37.000; Y) (AU) (AL) (BU) (BL) (CU) (CL) (DU) (DL) s SX 9372. 8876. 9372. 8876; 10564. 8727. 8179. 9024. 50 18300. 16933. 18300. 16933. 20221. 15347. 16378. 18519. dhe TAU 23. 23. -23. -23. O. O. O. O. i SI 18300. 16933. 18300. 16933. 20221. 15347. 16378. 18519. 3 .j (AM) (BN) (CM) (OW) SX 9124. 9124. 9645. 6602. _50 _ _ _. _ 1.^7616. 17616. 17784. 17446. 23. ~ ;23.- ~ ~ -" - ~~~. ~ ~ - ' O. 0 SI 17616. 17616. 17784. 17448. 1 i ~~ ENR I CO F ERW1 TT'OM IC POJPW PL AN7 UNI T 12~ ~ ~~ ~~~ ~~~ ~] ~ CBI CONTRACT #69-5562, ~ ~. ROUND AT TCH*iT RCIC TURBINE EXMAU5T ON A CYLINORICAL VESSEL p h h_ 2 . + - g.a ( x,.,

EL EY G 77'c r e..,. \\/ ag = ~ ~ wwru n.wse e se f/ ELD PA/NTED ON xxs sirwree mr 9 ? l v r V l. t ' 3 ? ~ l EXTERIOR l 0 llNTERICAl s o a o tw .2 5 [ l eni. '~, k ~ U 'fKAN<ttf b Br flCLD / MINTED Q Ab PAINr QA/ 33 bellows ELEMENT 3 k byZWS{0VT3 j f tTN1 oe Qur) - CAetso Em Il QAl ALL N AfrER PMrHT eg orW22 80RMCES, o q M T R 6 D 1 i i l I SHOP NOTE: l Atr 7Jo h Y-l p of CAeso Zac 11 f Q{ M ' y OV.DowED ~ WO3 t, JWrett A .u. t;$' y j - d.* - SQ f. y' CARBO EINC II (ITERIOR)~ 'a..4 > (YlELD PAINT) EL S47 Dg z "s m oc are: No mwr oN 1 -. 5' "N arttows TY ,.e k l EL $72 !') Y" pq :(.~.v:. ;.':g . CONCRETE.. i n ~ f s a [L, Sf2 tt j se g I. s ;- y aA + ur L J b arrA d a. N ELEV. 559'=l Q

== h CAMBO 2/NC // f/NTER/oR) Q o 1 >(suoP PAIMT) \\ s

  • h El.E VA TED PR0FIL E g

yo p,myy og sig, ~ /NTEBloft SURFACES $~ALL Oc ot/RY ASSY D Bf MMifD Wim l y g a:: A g f 8 NTRolf GBWWITE SO/. s. e4 g e N -{It. k' g g t w l N 1 s ME-

  • i"- %

Norf* I \\ DO NO T PAINT a OMDERSIDE of \\,", THESE SURFACES l e v SECTION THRU TORUS 's 'N N ..s " x !l i I 'N u __ m .sn.a.. i.i.i.-. ,i.,r. s. .W-9p

-A 7,k (/NS.) >(suop PA ou r) ceaoo sac // p(3 wop po ur) sa'spairr / . r No PAINT INSIOE '**'T 50/ l ~ l 0 l % CARBO 2/NC // l l m e xtr rmen oaram neueraar,ox maar nh rreica ranas e,ser. > TshuDoua veur une oncenr + s sr>

  • SHOP AND FIEL O NOTE:

8 b No CARBO ZINC PhlwT Allok/ED ON STAINLE S S S TE EL. ) O tgR 22197I 2 g g?N li$. f .a .c f: O GENERAL NO TES, ) >/. SHOP PAINT ALL SURFACES Of PE R SONNEL LOCK AND EQt//PMENT MATCH W/TN CARBO 2 /NC //.

2. Sir,A/NT Bitt surris PI runu P4.

l I( DOCUMENT CONTR01. no.T4.3..aa.o:.cooDh9.97 FEB 1 1971 ~ FERMt.2 STATUS _ g _gg /-2 7-7/ j l RELIASED FOR USE l ) -% %1% sw~ Ysh-edgN, \\0sd OIQ'N -,,ne_1_ao TI m s APERTURE gni,e aram j = CARD s eWiW Wa i mf"WW$ 5 0 9 4 4 4 f& i' PMNT DETML V, 4: E n, Also Available On i5 w#! c,, M o e Aperture Card P y 6 y$ 4 m,,o /c - 70010 - N a w.. s ?E ,') w-,httLuns 27 70 gy.55G2 1; w o.a.o sa.un-. un . [: ; Inc 456suUdntos n z n n .lg oilgltilps =.~=/.:=..=,. :.=. =..t ;.=.. :.we_.: : 1 8 7 D (.o 9 R D a 7 8 0-!

OVERSIZE DOCUMENT L PAGE PULLED SEE APERTURE CARDS NUMBER OF OVERSIZE PAGES FILMED ON APERTURE CARDS APERTURE CARD /HARD COPY AVAILABLE FROM RECORD SERVICES BRANCH,TIDC 1 FTS 492-8989 ---}}