ML20215B642

From kanterella
Jump to navigation Jump to search
Forwards Response to Request for Addl Info Re NUREG-0737, Item II.D.1, Performance Testing of Relief & Safety Valves
ML20215B642
Person / Time
Site: Arkansas Nuclear Entergy icon.png
Issue date: 06/05/1987
From: Enos J
ARKANSAS POWER & LIGHT CO.
To:
NRC OFFICE OF ADMINISTRATION & RESOURCES MANAGEMENT (ARM)
Shared Package
ML20215B645 List:
References
RTR-NUREG-0737, RTR-NUREG-737, TASK-2.D.1, TASK-TM 2CAN068702, 2CAN68702, NUDOCS 8706170391
Download: ML20215B642 (15)


Text

{{#Wiki_filter:I ] 2 h i ARKANSAS POWER & LIGHT COMPANY POST OFFICE BOX 551 LITTLE ROCK. ARKANSAS 72203 (501) 371-4000 Jurie 5,1987 2CAN068702 U. S. Nuclear Regulatory Commission j Document Control Desk Washington, D.C. 2055b

SUBJECT:

hrkansas Nuclear One - Unit 2 Docket No. 50-368 License No. NPF-6 NUREG-0737, Item II.D.1, Performance Testing of Relief and Safety Valves Request for Additional Information i a Gentlemen: Your request, dated February 2, 1987 (2CNA028701), for additional i, formation concerning NUREG-0737, Item II.D.1, Performance Testing of Relief and Safety Valves, is responded to in the attachment to this letter. _ Very truly yours, ffw 1 / J.Tedfhos, Manager d Nuclear Engineering and Licensing I JTE:1w Attachment Enclosures j cc: Mr. Robert D. Martin Regional Auministrator U.S. Nuclear Regulatory Commission Region IV 611 Ryan Plaza Drive, Suite 1000 Arlington, TX. 76011 Mr. Robert Johnson Reairisnt Inspector l Arkua as Nuclear One Russellville, AR 72801 0 i s\\ B706170391 870605 PDR~~ADOCK 05000360 P PDR l veusen u oote south uriuries sysTeu j

c.- .a ARKANSAS POWER & '.IGHT COMPANY RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION DATED FEBRUARY 2, 1987 (2CNA028701) NUREG-0737, ITEM II.D.1 PERFORMANCE TESTING 0F RELIEF AND SAFETY VALVES FOR ARKANSAS NUCLEAR ONE l '11T 2 J. i l l I q 1 i ATTACHMENT LETTER NUMBER 2CAN068702 JUNE 5, 1987 1 i

y m m /_ RESPONSE TO REQUEST FOR ADDITIONAL INFORMArION QtlESTION 1 The Combustion Engineering (CE) Report, CEN-227, showed no liquid out the SRV and no primary system voiding with 20% blowdown during a Loss-of-Load. The ANO-2 response to the staff request for cdditional information showed the same results for a Feedwater Line Break (FWLB). The FWLB, however, only assumed 12% blowdown. Which is the limiting transient at ANO-2? If the FWLB is limiting, provide figures to support the statements made in the ANO-2 response which indicated the pressurizer level remained below the safety valve inlet anJ the primary remained subcooled. ) RESPONSt The FWLB is the limiting event for pressurizer safety valve (PSV) blowdown considerations because it results in the largest pressurizer insurge of any design basis event. Although both the loss-of-load (LOL) and FWLB result in i a decrease of primary heat removal and subsequent pressurizer insurge, the FWLB is more severe. The break fluid is conservatively assumed to be saturated liquid until the affected generator is nearly dry. As a result, at the time of reactor trip, for the FWLB there is considerably less steam generator liquid inventory than for the LOL. Figure 1-1 provides plots of the predickd pressurizer level response for the limiting FWLB transient. It shows '.he single phase level response predicted by the system thermal-hydraulic computer code, CESEC, and a calculated level response that bounds the maximum two phase level swell. Figure 1-1 shows that the pressurizer two phase level remains below the bottom of the PSVs. The analysis contained many conservatisms to maximize the two phase level, including the following: a. The initial pressurizer water volume was assumed to be 910 cubic feet, the Limiting Condition for Operation contained in the Technical Specification. This is 200 cubic feet above the level of normal operations. b. The break size, 0.2 square feet, was selected to maximize the insurge. c. Any bubbles that form in the pressurizer l'y id when the pressure drops below saturation were assumed to remain in the liquid. A less conservative analysis would have reduced the calculated two phase level to account for the bubbles that would reach the surface and escape. d. The insurge from the hot leg was assumed to not mix with the hotter liquid initially present in the pressurizer. Because the analysis included conservatisms, the expected level response would be considerably less than the two phase level response shown in Figure 1-1. 2 i

n y To minimize the subcooling, the analysis of the limiting FWLB transient assumed the maximum primary coolant temperature allowed by the ANO-2 ) Technical Specifications plus uncertainties. Figure 1-2 provides a plot of. hot leg subcooling during the FWLB. This figure shows that the primary remains at least 34 degrees Fahrenheit subcooled during the transient. QUESTION 2 The load combinations used to qualify the safety valve discharge piping and supports did not consider earthquake loads. Justify not using seismic loads for the safety valve, piping and supports classified ASME Class 1 or reanalyze the piping and supports including this type of load. Also, the load combinations used did not consider the effects of a main stea.n line break. Provide your reasoning for not including this accident in the load combinations considered.

RESPONSE

The discharge piping is ASME Class 3, Seismic Category II. The discharge lines are seismically qualified only for the purpose of protecting valve integrity and function. The intention of the pressurizer safety relief i i valve discharge piping analysis was to ensure the integrity and function of the valves. The valves are seismically qualified to maintain integrity during a seismic event. Concurrent seismic and valve actuation loads are not postulated. Loading combinations used are per the FSAR requirements. The piping analysis was performed using an assumed feedwater line break. This condition represents the highest calculated pressurizer pressure and pressure ramping rate among the design basis transient events listed in the FSAR and reload license amendments. For this reason, the main steam line break accident was not considered in the analysis. QUESTION 3 Provide results of RELAP5-FORCE verification calcul ions for EPRI/CE tests for our review now and the complete verification document, discussed in your response to our request for information, when finished by UCCEL.

RESPONSE

The recently released RELAPS-FORCE verification report prepared by Gilbert Associates, Inc. for UCCEL is being provided as an enclosure, i 3

c QUES TR4_ Insuffwient detail was received on the key parameters used in the RELAPS-FORCE thermal-hydraulic analysis. Provide information on the node size, time step size, valve opening time, and choked flow location used in the RELAPS-FORCE enalysis.

RESPONSE

Average node sizes are as follows: Pipe Size Average Node Size 3" Sch. 40 0.8251' 6" Sch. 40 1.39' 10" Sch. 20 1.9316' The time step was 0.0002 seconds. l The valve opening time was 0.010 seconds for the PSV's. Choked flow was assumed to occur in the PSV's. It is standard procedure with a program such as RELAP5 to perform a nodalization study to determine the number of control volumes required to obtain an accurate solution. This study usually takes the form of rerunning the model with more and more control volumes until the j answers no longer change significantly. This type of analysis was ~ performed by EPRI and the conclusion was that a minimum of five (5) control volumes per straight segment of pipe were required to obtain proper force resolution. Using the EPRI criteria, the number of control volumes required to model the ANO-Unit 2 SRV discharge piping system would greatly exceed the capacity of the available RELAPS program. To ensure accurate results could be obtained from the RELAP5 program, a nodalization study to develop force intensification factors was conducted to account for the coarse nodalization. These force intensification factors were applied on those pipe segments with less than five (5) control volumes. The intensification factors were applied as multipliers to the tabulated force time history when these force time histories were input to the structural program. QUESTION 5 The information supplied by AP&L in response to our request for additional information indicated programs from Teledyne, McAUTO, and CDC were used to analyze the piping and supports. Provide information on the verification of TRMSAP (sic), STRUDL, BASEPLATE II, and STARDYNE and comparisons of calculated results to EPRI/CE data. 4

1 r

RESPONSE

j This response addresses computer programs used for the structural analysis of AN0-2 piping and pipe supports. To simplify review, portions of our 1 May 7, 1985 report (0CAN058505) are repeated here. The ANO-2 Pressurizer Safety Valve discharge piping was analyzed for the j loads resulting from actuation of the Safety Valves using the TMRSAP computer program. TMRSAP is a proprietary piping analysis computer program owned and maintained by Teledyne Engineering Services, Inc. (TES). TMRSAP performs the analysis and evaluation of ASME Section III and ANSI B31.1 piping systems for static and dynamic loads. The analytical solvers used in TMRSAP are based on the well known public domain program SAPIV, developed by the University of California at Berkeley. TMRSAP activities were performed in accordance with the TES Quality Assurance program which meets the requirements of 10CFR50, Appendix B, and ANSI N45.2.11 as interpreted by Regulatory Guide 1.64, Revision 2. TMRSAP was verified by comparing the important portions of the TMHSAP solution for a series of benchmark problems to that obtained from manual calculations or from other computer programs such as STARDYNE, EPIPE, ANSYS, and ADLPIPE. Results of these comparisons showed good agreement between TMRSAP and the manual calculatior.. and other computer programs. The available excerpt from I the Teledyne Engineering Services verification manual is enclosed. The analysis of the piping for the safety valve discharge loads was performed using the direct integration time-history solution technique. The solution technique is commonly used in determining responses of structural systems to impulsive type loads such as safety valve discharge loads. The 3 validity of using this technique for this application has been previously l demonstrated by comparison to actual test results. The solution technique in TMRSAP was verified as described above. The piping supports were analyzed for the support reactions obtained from the piping analysis. The supports were analyzed statically using manual techniques and using computer programs. The computer programs used in i performing the analysis of the supports are used extensively in the nuclear ] industry by a variety of utilities, A/E's and consultants for safety-and j non-safety related applications. These computer programs are described ] below: 1 1) STRUDL Computer Program -- STRUDL performs the static and dynamic analysis of elastic structures. This computer program was used in the structural analysis for the EPRI/CE test program. The program is available through the McDonnell Douglas Automation Company (McAUT0) and is on McAUT0's nuclear safety-related list of computer programs. This computer program is also available through Control Data Corporation i (CDC) and has been verified in accordance with NUTECH's Quality j Assurance Program. The NUTECH verification documents are enclosed. l 2) BASEPLATE II and STARDYNE Computer Programs -- BASEPLATE II is a preprocessor to the STARDYNE Computer Program and is used to generate the required input data for the STARDYNE subprograms STAR and SPRINGS. This combination of programs performs the non-linear flexible analysis i )

( 1 of baseplates. BASEPLATE II and STARDYNE are available through CDC and are on the CDC nuclear safety-related list of computer programs which are subject to COMSOURCE/CYBERNET Quality Assurance Policies. This list is attached, and provides documentation of verification of these codes. The question being addressed by this response also requests comparison of calculated results of these structural analysis computer programs to EPRI/CE data. We believe this question arises from a stated secondary objective to the EPRI/CE program, which was to "obtain sufficient piping thermal hydraulic load data to permit confirmation of models which may be utilized 1 in plant unique analysis of safety and relief valve discharge piping systems." It was the intent of the EPRI/CE program that utilities be able to use the thermal hydraulic code (RELAP5/M001) confirmed by EPRI on EPRI/CE test data or to be able to verify other thermal hydraulic analysis computer programs with EPRI test data. The EPRI report NP-2479, Final Report, dated December, 1982, provides the EPRI verification of RELAP5/M001. It is entitled " Application of RELAP5/M001 for Calculation of Safety and Relief Valve Discharge Piping for Hydrodynamic Loads." AP&L provided thermal hydraulic transient analysis for ANO-2 using the RELAP5/ MOD 1 computer program as modified by Gilbert Associates, which is called RELAPS-FORCE. Verification of this thermal hydraulic computer program is provided as an enclosure, and includes comparison of the calculated results of the i RELAPS-FORCE code to EPRI/CE test data. We have provided comparison of calculated results of the thermal hydraulic computer program to EPRI/CE data. We do not have plans to perform j qualification tests in order to compare the structural computer programs to EPRI/CE data and cannot determine an appropriate function for any such comparison of structural code results. As described in the EPRI report " Application of RELAPS/ MOD 1 for Calculation of Safety and Relief Valve Discharge Piping for Hydrodynamic Loads" EPRI NP-2479, Final Report, December 1982, the EPRI reports did not intend that utilities carry out plant specific verification of structural analysis codes i against EPRI data. Structural analysis was qualified during the EPRI/CE test program for the limited purpose of supporting verification of the RELAP5/ MOD 1 thermal hydraulic analysis camp.ter code. If the EPRI/CE test facility and its support system could have been infinitely rigid, the measured test duta would have consisted only of the hydrodynamic loadings. If this were the case, the hydrodynamic loads calculated using RELAP5/ MOD 1 anelyses could have been compared directly with the recorded test data. The design approach established for the EPRI/CE test loop piping supports was to provide supports which would facilitate experimental measurement of piping loads. Based on this design goal, extremely rigid dynamic support structures were designed for the test valve discharge piping. The test facility structure was not sufficiently rigid, however, to prevent the structural dynamic response characteristics of the facility to cause the recorded data to deviate somewhat from the hydrodynamic loadings. 6

~ f The RELAP5/ MOD 1 predicted hydraulic loads, in the form of time history forcing functions, were used in the EPRI program as inputs to the structural computer program. The results of the structural analyses were then compared to the test data. Because this comparison was a primary method of evaluation of the RELAP5/ MOD 1 thermal hydraulic ; ode results, the dynamic response characteristics of the test facility had to be shown to have been accurately reproduced analytically. j The method of qualifying the dynamic structural model was to compare the natural frequencies of the test facility with those predicted by the dynamic structural analysis. Two types of test were performed. The first was a snap-back test which consisted of lifting the first discharge elbow with a crane. The second was an actual valve actuation test. Plant specific qualification testing of this nature is not recommended by EPRI. The test facility piping support configuration was no: designed to simulate operating plant structural dynamics, so a comparison to the EPRI/CE test facility has no appropriate function. The reasons for the EPRI/CE program structural qualification to the test facility was limited to validation of the thermal hydraulic code RELAP5/ MOD 1. There is no recommendation for validation of structural codes by EPRI. In fact, the EPRI report states, at page 1-5: There are many dynamic structural analysis computer codes which are available to perform this type of dynamic analysis. The mathematical equations and techniques utilized by these programs are well established. These programs have been verified by comparison with well-documented theoretical and experimental problems. 1 There is, therefore, a high level of conf % ace that the computer codes correctly solve the problams to which they are applied. In light of the recommendations of the EPRI/CE te t reports, the documents provided should fully and satisfactorily resolve WRC concerns with respect to the verification of the structural analysis coaputer codes used for plant-specific analyses of ANO-2. QUESTION 6 The lumped mass spacing used in the structural model was not discussed in the AP&L response to our request for information. Provide this information.

RESPONSE

The lumped mass spacing used in the structural mot el was that required to obtain accurate dynamic responses of the piping system up to the 50 Hz cut-off frequency. To achieve this accuracy, the maximum spacing between lumped masses was conservatively limited to one-talf the length of an equivalent simply-supported pipe whose natural feequency is 50 Hz. 7

QUESTION 7 The letter from ANO-2'on November 30, 1982, stated the structural analysis of the safety valve discharge piping.and supports had been completed. This analysis showed the supports to'be operable but at six points.the piping stresses exceed allowables. The May 7, 1985 submittal, however, stated that analysis showed the piping stresses were less than their allowables but there were several locations where support modifications were needed because stresses in the supports exceeded allowables. For both piping and supports, provide a table comparing the calculated and allowable stress for the most highly loaded locations which are based on. the latest calculations. Resp 0NSE The original analysis revealed that at six points in the piping system there were stresses exceeding the code allowable stress values. Further investigation revealed that a few existing supports had not been included in the original stress analysis. The next piping stress analysis included these supports, which reduced the piping stresses to below allouable stress values. A review of the supports showed that several had stret - which exceeded code allowables as a result of safety valves' actuatim % wever, yield was not exceeded and, therefore, the safety valves' integr 1.3 considered to be maintained. The supports have since been modified to bring the stresses within code allowables. i Tables 1 and 2 provide maximum stress or load vs. allowable stress or load l for both the piping and supports. i 8

f i F 9 ^ M 4-! + b. W -i+*4_-M 6 L;., 4 ,' ' M.,__c .m '- : " v e ' h_ :.-+g..g J' r ,':E;g-d-lTV---: Eart.',d".a. m. _, _r d. W,.. h E +- + a. .A.: 1-; > .,.n.,...._. -r -:.t.; 1, . W Pw-1 w ,m. . d,"H,_. c J, m-. 1 :. , n, r,. -e,s, .?- m ~&,=:- a i M_F_W.mir.-+ef.~:-f&_ .u. n u - M. A. ;

Y,'.

?M a+++ .v$, h. C D 1 Abf '+ ?N h DM%MYMd'I -e+.4 S- . ~. p-*+.+..+ M. : j +=P'* .o.... __v_.. _e 2.-. ---M. -. ...% w,, m.r... _g m,..._ -- 3 p.g -.Wth._w.r_r - _._ _ _. +. . w. _- w._._ . _ n t _ t _-_ ,, f M...t _._)D n.. _.4,_ i __ u .. + s --c -7 , p,w u. .. q. __.v..-._.. -., _+. 5._. _.. + _ .++e~..w }. - - .._4.._.. ~. r__ . y.__. 9._..__r._.. Ch._ _..x _L_._ _P-_

g-~==r __.:=- r_r-r=*=

u _ rtr:= J cy =*m- _- J *-- r j n i r- -., 1 ~.*.;._ . ~t_.. _ _. +. _ _.. .+r_--_. t~_r - i... M-y] _._UE.g. n t _t-q -.n.._. ~.. 1 ^ u h.. .o_. /. +-~_p_.4.___ -;-~c -.

t. _.._ l fe. _i _6,,

+. ^

. -+ -

._._4_ _._t... .. i ._-..w ._e...,_:=t= _ - p--,: ~ ~ _..T_. _.t... n _ a, _I__. ......t__.._....__.4__ _4/ - _ O.__.;. 'L..._4._,_.- a__ m

l. __

_ - _..__g.__. J +. f..y 1:_ .w . _. + _. _ g. qyr ~ e, + -.. e g _,,,,,f_n._.._..,_ ~. _ _. ___. ...._r _ _,....._ r. 7. _..

1. _.

tf_._. _t:. _ f._.4L_.. t. _.._ .._t.___.,. t___- _t _. _... _ _. u ...y _w ... _,.. ~. + _4 ..H_______. _ _ _ _ _ - .__y__ ....e._. 4.._ .... n._.. -].m.:1. .-... _.. + .i._...._.2_.._ _._._s_.._.... _. _._._......_J_..._. _.... _ n._._._. 3, _.; W. _4_. _.i..... .rt=' n F.~

p=.mk_..._ i._._.r-i=: m:p

. _.. 4~ ... _ + _. t!. -._.4__ p.. _n ._ w_ _... + -~.,._ ... w. _.,.. + _. e.._-. +. _ ____f._.._-... _.,...... _. .....Z____.. .4,._ ..,....._ c4.. _... + _. - ~~+_ r ..n.. _,_4.. .._a... n 3,... _.j.f..v w. y.._., _4..._.,. _. _.. _., _. p.__ q._ .. _ _ _...__r..._ s,,,,__ 4. ,p, .. e.,..... _q__.. +4 _. + _. _ _.. _. _..,_. _.t_... 6 .y.___ _ _ _ _..

7.. Rt _ _.

._a,..._,._,_ _....._._4....e._._..__. .,.4. .... L. __... _. _4._ ._._...g._ _.. ~.. _...._. - _ _ _. g _g.___._ r_ __,_._...j. ._....d...y...._. _, _ __.. _ _ _. .4..._...._._L_._. ...A..__... .._.._._.e._._ . _ _....-5.___.__ _. _. -. .m_. _.._._.__.__a_. i_ _ .4 __._w._.___m._..._.., _r_._._._ _.,._4..._._...___ _.... _ _. _ _.. _ _. _ _ _.. _. _,_....4. _. _ ~ ~... 4. .4.. ._..o_.. .4 _..r._ .p,_ .e.__ f ...-.._..4_._...t_...__ _ _. I .__,.._t._._._.!._._e..__.. . a_ ___. ._..r.___$_.,.,... ._.,._,l. i i., .._m_.&--..,. 4._ 1, _.._._. 4 -...... _ _. _.p._....,.e.__. x _.9.___.,.._._ m.._.._ t_.... a, . _ _. -__4._._._,._.____..._.. _. _. _... _ _ __ g _._y_.. i ._._..{. 6. ..g.._ ...r... 4 m_._..._ 3 .. _..._.[..... _.... ._1,_...,._ _..._,_4.... .L..., - _...%.__......m....._ ,g .-,._______s.__,_ Q .-.,.. - 1.. . -p 4.. [ g . 3 g b_. 1. .a 6 i m i

n. e

' kp_ _. -.c. i c s 5 4. 6. .t g. -k. y .../ ^ ~ ~ - - q ju g g.. g. . 1 C *, , M. '. '. '. "..***".*m_*.. ^t-- ^. 6 s ~.*{ e. .... i .._p W ._e._s___, 4_ g . qi e.. .m. _ ..-7._. (.... ......... g-s ~..- t y ,..,. _. _- r._,.. ..p .l.. ... led

  • -g 88m.....

s - r +. +s-a.+ .-_..a.-- 4.. U A,e +. -. 6. *... - ,ka,- .e. 4 ~. q" 6-... w+..+ s-q .L y - _ ~. .. +.. ,e$.. +..6.*... _4,. -.....,... -.... -. ~ _.. t,.. e. 6.. 44...- ...-.+(e.-- .%~. .+- ... ~ _.,.. s. n .. e.. .d 4 . +.. - - ta .6 j -.p + &o..,.. -.. e, I .9.- 4 -e. ... +.., -._ + .4.. 4..-- .4 .q+ ,e. -. - 9.. 4--,._...q -.4' f. g. 3_ .e +.p.4.. I t< m + ... ~. -. .-6 4. e g,4.. .,6.., -. - - -.,.$ 9 .9 g--..,... & e.. .6..- .+. g.--4.--. .,.....e-... .~v .g ( 4 +-4 .. - - 4 g -t.- $ +. b---- .6 .p.. .p. .+e-.p.4.- .6- .. -......--..i .e..+g...- .-.4 .,-v. .m ..s e A -e.-..,.. .-.ea,. e.. .+ 4-e ,.) 4 a. .=. -,. +.. - 4 aw $g .,4...-...=--g. 4.-.e,..p... 4..e.- e.- g. - -. 4.- .-. 6 - -. 5 4 ....e,,. ..m.. -v e. .,-*s......... r..**-a+ ..m.p,-...-,w... . -.. ~. - + =

      • +-+...*.

.9 ...**e.8+=.--

      • '9--

+. -.. "~...--. =.-4e...* - - *. ..4.. -=.-9.*.-

  • =

.+%.--.e....+.M_.... + -,.mr'*~.+ .e.* ) ....--.4.4-*- s6 ..m 9..s......e......-- .=..n*j .. =. -....p-. .-.4 6.-.. p. .a..- . 4 m. -~.....,,.....4.-.-.9-**- . _e -.e.$..-... _ _.. ...=..,.6%.......-.M... +-e. ,i O 2L e,,.... h..... hp ... -..-4, .r 4-.h, _ f. . +w._u w p.+,- .b

s...

+ r .~... . +. .t 4 e-c -4..-

i. - - +.,

...H-... ...a-4+ e .___,.-_,.,.,._......_._......_c.'."'~....-.......- Q i ......_._..._.._..{.._._..~.. . ~,...,.. -, +.. ..w . +,.... 4. e ..I....-+ 6 -6.--. ...6.--4 ..e. 4 g- _.- +.2. u_. v_._ .m__._..._._._._. _._.,._.r.a.._. a -._._.,___...._...u-. . ~...... ..+.....__6. '*'t .++9..... t 4. .-4.. .p-J o 6 p w, _4 + ......[...--v .._....-a.....-......-...t..,,_.-...+.-~.... ..f._,_ .t. + t-, gl H.. .. -i. ... + + ..~5..- g g {... -AL.... -GC 9. g ..e. .+ .,,4 .. +.. _ +..

  • -4-...

A .p. 9 y s... .~ I. _. f/C W H

m (. i 1 -,+ . _.m m.w i 4 7 .m. w..g. m c n-j, k u c - W:sL'9. 4 ~4 ,g -n ..f(.h4q,,a .m...-

  • + - - -.c-,+

l p g g,. r% =n. - n s 3;... O, -

n.

_.FfIN.._.

-.,-p --

E. I kI E5' E E +m _~ [ _[3 A L _vm,. --M-L. ,z.- u c 3s f m a*. 1 . i. a .4'..--.-6. ee p en g >i.e e N M=. -.-e. >et @. i 7 4 i. ..n.J.4 .-+4 -.e.+ .p. M "**"*PM- .-wo-.*-i .+i -i- -+ b e- + b-h^' .+ + * * - *- * -. - - --, - ^ .==P.-s=*.*-...r+1.-4-...,-----i*.- - - - - * - * - + -. - ~ -...-. _ - 6.. =.e. s+

  • 4.*s-..=*.-_,eiq-

$M 1 wg -- j pw .,n<&.. 4.,. $= e,w + .e=.e.M 4-w, g e-an ..g..,.. 4% .-.e&.. p. .r.-y-.-,.. 4. ..g. .gi...4.4-9., 44 ..e.+,.,-....6.u.+...,p. 6 ,(o 4 g. ..-4. .d 2- +.+ .y. ..."."t .+

    • ...6

+ .... +. ..e. m.4 .4% ..i 9 - - - -. +.,~ -.p.. __e.+. .. --..s. .k .,.a.e=t-... =. -.,m.e.= -***-.$'.*.+..*.",**.t,=b.~ -...p ..L.. ,-..=as.. . -.9,..... ... - -p. .. _p =4 t-. +**w E.i-.-. -.8-s*>4. >6-- ... 9 .a ....es- .u w sm.. .- f. g s.- _.s, I .,b,-L9.+.-y.N.+e,*.. .__._a*T.*.'__. ...s... M ,I e_m. 9.. ..g.. ..4- . _p-e,f..- + ve.. .-.-.p._.

64. -

M .e _._ Q.ar._.- .q._,-.,... _.P. -. ~. +.,, _ +. +. (T-) {TJ .,.,~.44. q' .,,._,,4 .._...g,.,,....,,.,,,., _,...,..,., _,.. ~., ,p._. ,v.,... ,,,y . _.. _,.,4,,,.,,._ ,,..,..,,,_,_..,,,4,,,..,-,_, ,9, ...4,,,,,, ,,,, p. M ...J u _,..__,__.p,..- [_...p + ....._.a..+ L. .._r. _y_..._........ _. _... _ _. -.___..__.... e ..o .g.. ._.9....._.. j. >.y-e-=m.

    • ++.-t-+.-*-'.**.-**t-.+.-=--.'.r.+.--P='**+.d.-.*t**'*-*--.a mba.

.g.- ....e.. e==+- .%>.he-p-.e4._, . - = -I ) 4--+9=+.ee-*

  • .. =

-_.+-.6.+.-' -.. * + - + - - .-e- -.+.ot.~ -... - - - + ~ + - * ...+ _. -.eara... _,i r, .Pb4=. A.h .-..a-.-$,-- .'-t. -*..b.- 4* 5 A* ~a...-.+k.*+ l--- ..t .O.p*.*~'**.-- ..*.+.#,e..a*-a-***=.=..}--- ...4 4 .6... ^ ~.9... i..- -.m.4. w 4 + M... ..-4 m e-e ...++e.... _.+ .. _..4..., ..4 ..A...-+q. ..._ ) 6e., h .e... _. _ j ,e 4 .t 4w _..p.t,+&. + +9 + - -. L. 3.J..,.++ +. - +...k. .9- .n6.*4.. p 4.p .T M. _ .... - -. -p_ i...,. _, ~.. .w f@ e~~. ,n .. 4 -h e ...,..r......L.... M... a .+%, 4+.,. T.. h .y p. .as.,mg,.,p.e... e.w.. .M.~..- - 6 _ 4.h.s..-N. ...,.g .4... w .a--.,.--&- [ .... i,. .~J..._ i ......1_. ._ _[.~ "1.. .~ _d.... .,_.c. .p l ..r,. ...+ l.. .*'*1.,.. ... + ~.} .s. ... - ~ .4 m.. 4. .._p .,w .,n.--. ..6.- L... ..-L=. 4 .5 ... +. - 6. 4. .+. _ .,.4... g. ..., _.......gw_.-. _. _,.. .s..

s..e._.

,p e. ....e.,... 5._. ... +.,.... .e.,..-a*t. 1 .,6.... S. .p.. ....g..... _ ~..,. _,. .p .+.,.. a ^ 1 9 e.==,. _....4.-.- -. _. -..... ..e...=-.--i .e.. 4.- ..p.. .....4%.... +.. -+- ..p. ..j. -.y ...._4... g... p , +...,.. +.. w ..v. .J,.w.h..w p.m._.. .4. ..,4.~. .e ..._-.g. .... +. _ ~ __ fo_--- . _._.q n 4., _....._,._..J_ .m..... ,,......_.__..,._.L..,.._ h- ....... _. ~ y..+ 5_.. .. _...,6.-...I _.9*'%._..,_-.- _...._...._M...,._.. .._..r_., __-...g._. -

h..

.. _ _.,..=e. . _.........__q........._... i..s. _. 4. ....... +.. ...._.g._., (.,._-.. _.m.._.__ .. 4 a.. .i..._.. ,q_.._ 9._ v,_. _.. _. g.. + W g 7 ..-g=..e.,,.,..,_.. _...m..... ... ~...,, -.i- ..h... .-4e.- ..... +. -. ge-... ( .g e., .. p ...g .t..-- c .... =,..... _ _ .m._.6... I,. -... +.._ .j g, .w_. .. +... l,,_ .,.-.._m.._. ..e.._.... ..r. ...._.,._.p- +....... .I m.., .. Q .. + p.,_ p._. y. .._w.~. ... _.... _. _ l. l ..... _ _._ L- [. _b. ....h. .....4.._._..._y ..,. _..... _...a. . 4 2y ._.. _..m. _. ._.____......m4._.. .p. ]- 6 ~ -.- +.4 1 ,a...--.... 6...... -.,.. -.. - y ... _. } }

4. -

) . ~ - _ _...p...... ~ _., g.- ...+. ..... -.e....-.,- 1. l .j*- 8$ i + I, Q 8' 1 L, _J i i .b .e-..._w.f-r-,. --e ._i e.e e-fde A a t y Vd% Q g 'l g .t p; p ..t.._ .t t. I t t e 6 ~.-4-.. _.9 ,W ~- 4.....=_ee,l_ e. .4 -.- +. p.._ _..g

g

.-6 _....... -.. .6 t 4- .y.- 5 1 .f.. . r.......... p i L .I p l I O ..i 5 ...-6__.._. 1-i y _.+.. .... -.. -,.-r.. 4 .l..,. .. + -g'--_.-- .w.. +. +. 6 t. .. - + - .+.m. ..s ...,. + - - 5_..--..... e .-} .4.--, 4t .4l y , +. - .-h .b m4.e.-- .e .-4.-.eam ..e-.i=a..e..me-$..ce- .[ p,.ew-$-m'e.-.-...-..,.9.,..s-. .p.-... ) .A.- + ..,. g.- m-- .+;+.r.t.. $._,..4..-. ... > + e ap. p. .f 6 m... al .p. u. k .+. i m. o ) + .e i. .p.,...-,...-. p

  • ..e

.. -.y [ l d I +=.wm.$..u.ae-. ..m.p-- sh O s I....... e-.. e+.$.e.iw..--..-..=.---( .-..+,..i.w..eu..i=4..- +.e.- .rg +.,*.... .e pu.e.t...=.s .-.-.-e = -

  • 8

. + +....e. --.e ee u.e ( 4 4.-. noep. .m b.~. d 4 p.-. -s.+..F-..e-- .we.-h w e -..-6.*4*. p w...~._........t...-... 4 g.. 4 4 ..p.,. g .s .-- * *+ ...--. - --...%...r... ..+. - 6 -......... _ + - ~. I . -. - ~. 4 .4 ..-+. 4 .-.e+._......i....._.... '.. p m wt p w 5 ',p-.....,.... e. ...1.- .p ..-e... .,,4-.. .... s++.=.... .e.-..-e..___ g - p 9 .4**-. ,*.e.-m. .v. .,-.... -..a.. 4 -*I-- 4. _.-.e*. -.....es- .5u... j o ... ~. .-...,.. +,--.aw..-e 6 i 6 .--6 ...4 b.,. 4.._$..-+....,,p'..ae.- 6 p .4. 4.. ...p.v. .g .4.- ,p... m p.. ) ..,,.. _.,...9..-. _.. .p.. g ,a .). ,.t....-. .y u 4...- + ....,....p - -........)..... 9-e -= ,. _. ~. ..p. 6. .}1 L .I H .6. -.. +... 6.. e. .w g .-.p.-,- ... g .g......-......-J..-...+- ..o . ~ 4 .w. -....+.. .e .... -............... ~... v.....'}...... _ _. .....n..... 9, _w v_ _..3-_.. ,9._~.~... , -....a ... +.. ....H_...b -.-.4+.. j .._4 .-.S.. _........ .,...l.r ..s. 4. .+ ... g.,._.....4...-.. .,../.....ff 9.... g ..o .-w-.. ... _. ~... 7.-.. .i..-.,.., .a._..m., _-.4.. ._..r__ 6 4 .h .g. .....g..-...... _,.9_.. -e... }..~-..-.,. .. 4 l 6.- .}...+.. e. 9y-t .p. -. o$. e y. 4.+.. 9.+... p .gp... -. 4.. -.t.... .b.. w,-w$ +- w ..g,.. _ j

w...

.. g t .~..--.4..-a... .-p... .,k.,.-. .4... . =

  • i_

6-- -. - -.-g....&.. .4 . a..e+=. .. +........&. t.- 4 ..... 9.e... m M-e ..-.e+.p 6.. ..+ +4 .+. ._ +. .e+ &s 6..... e 6..e. -.---$- ~....^.- + p.,. ..we.3 o- .[

r ,,,o' y TABLE 1 ANO-2 MAXIMUM PIPING STRESS Node Total (1) Allowable No. Stress (PSI) Stress (PSI) 108 16,359 19,762-528 14,960 19,292 448B 14,539 19,152 254 14,516 19,762 104 13,975 19,123-NOTES: (1) Total stress includes pressure, deadweight and safety valve actuation stresses, 1 11

TABLE 2 ANO-2 ] MAXIMUM SUPPORT STRESS RESULTS l Support (1) Location of Maximum Actual Design Allowable ID Maximum Stress Stress / Load Stress / Load 2BCA-14-H2 Tube fteel Frame 18,728 psi 21,600 psi 2FCC-1-H7 Anchor Bolt 100% 100% 2FCC-1-H15 E-3 embed 1,906 lbs. 2,000 lbs. 2FCC-1-H16 I-beam 96% 100% 2FCC-1-H23 Baseplate 7.8,485 psi 27,000 psi 2FCC-2-H3 Baseplate 26,138 psi 27,000 psi j 2FCC-2-H4 Anchor Bolt 78% ]00% NOTES: (1) These are the supports identified in the May 7, 1985, submittal to the NRC as requiring modifications. The modifications were installed in 1985, 12

( L i t-l ) i o l I ENCLOSURE 1 RELAPS-FORCE VERIFICATION REPORT i i i I ./

-) >; 'o e ,g i- [ \\ I fi p Verification of the RELAP5-FORCE [" ~~ Hydraulid Forc'e Calculation Code "' 3 .[ i e t g 1 l [ L UCGf gn. s M v 7 <f , + ~

==. / ( j

,i n, 7, i' o ( 3 l f r veR1,1CA1IcN o,see RELAPS-FORCE HYDRAULIC FCRCE j CALCULATION CODE ? 1 I J. M. CAJIGAS CILBERT ASSOCIATES, INC. i~ READING, PA 19603 e.o. sox iues t b L L i b e eu. 4 anim 3680 \\ u (- -j

1.0 INTRODUCTION

RELAPS-FORCE (1) is a modified version of RELAP5/ MOD 1(2) whiah includes a 3 hydrodynamic forcing function calculation option. This version generates time-dependent force functions for piping segments defined by the user. RELAPS/ MOD 1 has been modified to solve the hydrodynamic force equation for the requested RELAP5 volumes, at each time step, and write the resultant force to the RELAPS output print and plot files. { This report documents and verifles the accuracy and validity of the changes to RELAPS/ MOD 1. The verification process will include:

1) RELAP5/ MOD 1 Changes Verification. This verification will show that the l

RELAPS-FORCE modifications have not adversely altered the precision of L the RELAPS/ MOD 1 calculation. L

2) Hydraulic Force Calculation Verification - EPRI/C-E PWR SRV Tests. This verification will show the adequacy and accuracy of the RELAPS-FORCE force calculation methodology by comparison to test data from the EPRI/C-E PWR SRV Test Program (3).
3) Hydrualic Force Calculation Verification - Edwards' & Hanson's Pipe Experiments. This verification will show the adequacy and accuracy of the RELAPS-FORCE force calculation methodology by comparison to test data i

reported by A. R. Edards(4) adn G. H. Hanson(5). This data is l particularly significant because it allows a better verification of the blowdown force option of RELAPS-FORCE than the one permitted from the EPRI/C-E PWR SRV Test configuration and data, d i -l 3 /

q t ~ 4, 2.0 RELAPS/ MOD 1 CHANCES VERIFICATION I 1 The RELAPS-FORCE code was developed by programming the hydraulic force equation into the RELAPS/ MOD 1 code. This required the addition and 4, i modification of subroutines to the program. To show that these modifications did not alter the basic RELAP5/ MOD 1 }{; t calculations, a sample problem was run for the following two cases, i

1) RELAP5-FORCE USER'S GUIDE (1) sample problem run without the force option cards using RELAPS/ MOD 1, Cycle 14 AW. RELAPS/ MODI, Cycle 14 AW, is the i

base code for RELAPS-FORCE, Version 14. 1 4

2) RELAPS-FORCE USER'S GUIDE sample problem run with the force option cards using RELAPS-FORCE, Version 14.

t Figure 2-1 shows a schematic of the RELAPS-FORCE USER'S GUIDE sample problem. The RELAPS/ MODI, Cycle 14 AW and RELAPS-FORCE, Version 14 input listings are shown in Appendix B. k* For comparison purposes, a portion of the output listing for the period u between 0.04 see and 0.0449 see of each sample run is presented in Figures 2-2 and 2-3. Note that the listed results agree exactly. Therefore, it can be concluded that the RELAPS-FORCE modifications to RELAPS/ MOD 1 have not i altered the internal thermal-hydraulic code calculations. i. I L N

l ._' g. = f 200 400 301 501 N o [/ r k 301 4 501 k 100 P, X, a 302 502 I- ) F, m m S E S 303 P\\PE SOA g 30* 503 505 a I 600 F, l 700 504 + 5 f s_ cn 800 0 8 we ~ 1001 E l_ S F. 1200 / 1003 1004 P, X, 1002 1003 NOTES: 1100

1. The length of pipe component volumes = 1 ft.
2. Tee branch component volume length = 1 ft.
3. P1 = 1000 PSIA: P2 = 14.7 PSIA
5. Steam Quality = X1 = X2 = 1.0
6. All piping 6" nominal

(, NEE 2-l

  • RELA 96-FORc1 St mas puoBLT= A I

l r ~ 0

l i - f f f f ...../...I,... 9... 3. a3&&ot*FeaCE $4We68 P900 8M W/CTie&W d.M.C&d! GAS RSF/ tale 21/e3/44 9 f eet e e o e ese g owJ ese 4 toJ tes t ewJ 13363 seicope acacoee nosecos se10000 6ee9000 7000000 secocos lb0F/latl l697/133p (LSF/jej) tkSF/8N3) l43/35C) (&S/SEC) 448/88C) -e.eesteE*e3 839,94 tie.TT 999.8% 400.00 101.38 195.98 339 T9 I4 e otooevoet 659 33 99e at 99, og ese sa '99 39 469 41 Ste et e,easeou*ea eas.sz 17s.es T73.04 560.33 is7 is ina.91 ago ai 930eeE*e3 434.43 169.84 994.09 800.84 101.9e 153.e9 336 33 e eseeerseg ese it 9eg St 99e se est se is9 et fit to Ste et a.stoeeseea sai.7e ice,as 771.44 55s.J6 365.53 15n 80 339 95 e,000048*e3 831.39 954.50 TT1.40 850.68 158.49 96,t.Se IS StG Si e 090eeteef $38,64 954.21 999 ft $50 93 900 96 99 Stt 99 -r e eseoos*ca aae.47 767.54 71s.72 sna.ei 156.6s 145.73 als ta I 4,40cettee3 835.07 181.88 996.34 843.00 las se 189.09 Ste,es e 90etofeef 836 GS 991 48 991 99 $59 98 tel St 'li SI 994 S4 j s.5509G3 Ga 534.35 754.73 776.51 451.e6 I44 43 143.56 aus.ae 4.990eettet 834.84 168.49 199.le OST.to 184.38 S5t.Se 399.08 4 9100et*e3 GSA e4 900 et 994 to 958 G1 904 19 159 44 Ste et a.isopetosa sae.sa les.ss 17a ei sat.ti Isa.ia tat.as ana.74 e.160000*e3 433.83 998.33 794.e3 856 18 tes.le 951.33 Sts.Se e.teeeeteeg a33 ft 944 99 999 05 gle se its et 159 19 Ste se 4 e.iipoes.e4 saa.si lea.se iva.aa sun.se ist.se 135.at ans.36 j 4.18eesteet 833 41 184.34 993.88 488.38 SSS.48 181.18 314.33 16 4 990000*43 633 ee 963.44 991 Se 484 93 469 98 191 09 SIG #6 e.aoseos.e3 sJt.se 153.52 77a.is a t e. e,i iss.7e its sa all.se 4.stetet*e3 831.99 183,st 191 93 864.30 185.93 958.94 311.se a 190eet*ef $3e 99 982 99 996 35 ett te set to See et St9 et D OoGs'ea sag.J5 753.ea 770,37 EsJ 41 e55 6e 150.55 JII.Ba 4.20eestee,t 9.3.89 tie,se. $30.84 96 T99 Se 883.39 188.3s tee. $st.34 l e eee.*G .3, es 9 90 99 et . s se s. st9 s. j 4.250005*ea eas.i7 Tsi;Ja 7ss.sa eaa.7a 165.33 ise.as ail. te 4.390ee0*e3 Ste.TT 189.34 TSS et 863.49 185.te 168.03 318.98 e 98000f.03 g33 39 900 02 999 e9 SSS et tSS og 69e SS 393 39 e.assees*ca sa7.se ise.an les es esi.7a see.se sme.4e ans.se 4.380000*69 439.86 999.45 968.3% pet.as tee.se tee.e4 3ea se a $ steeg *e t $39 Se 999 32 9s9 es ett et tee at ite St S$t et 4.aanose*63 424.75 755.15 T51.54 650.54 iG4.74 164.J3 354.37 4.3300semet $30.35 944.49 901.98 884.83 964.44 159.38 316 13 4.38e649*e3 330 et 994 se 968 et see 39 tea as <ge go $sg 33 a.aseossaea aan.sa ita.eT Tea 43 ess.es .iaa.:e iso.is ain,as e.380040*e3 836.19 151.TI 188.06 349.54 134.43 160.04 3st.it e 3904ef=et efe 94 999 St 986 se set 18 tes.Se tee et 393 gg e.aesses*e3 saa.a. 733.34 7sg.ae sea.st iss.as ien.se a,n.ea 4.390es0*e3 833.04 985.83 964.08 643 to les.se lat.se 34g,33 4 Ace #0 feet Off 94 998 96 99e SS est 31 tes le tas 34 3pg og e.asecos*ea saa.is 735.43 Tsa.ia ass.es les sa iss.7s a i n. e,n 4.4990efoeg 333.93 938,33 133,3e gag 9e ggg.g4 gag,93 ggg,g e aseeeemet als se 998 99 983 43 e49 39 tes as est as ses 93 4.aaeseg*e3 sal.se 7se se isa en sa7.e7 563.7s top.ao ase.se t 4.480e88*43 839,84 984.44 983.84 448.98 l43,90 143.g3 gle og I e 8 Beset *e1 899 18 994 ee 982 St Get 49 9e3 et 14e et Ste 31 MNJ aze.7s 752.11 155.sJ 444 as IEA.b4 143.aa ala,i. 4.48epesse,t 150.8,5 ..e .et, t. 3,, 4.s e s t, 3 9, ,3 s,s, e,3, 430.34 993.39 848 14 4 ..e00 80 .t. 91 te,, 1 i L F bu C ft:. 2-2 ' E.iAPS-T:CCE 6AMM N.d4 CtxrPwf'; FfRAPfhDP1.,c.yc.LS 14 AW ~ 4 l 4 t n-. j

f.. .j i d g I r j F 1 e i 1 ] 8148587 &$8eCIATES teC. eef, 9843 8 88 <88 I natkastegetti TSR$ ten 64 e 31/Oftes Somebt cess _bges d.m. C&Ji sas ase/ t e t e l Btbae6*eeast-e e e e me6..e mete.s mete-a essee. - esace= l ,,i., is e aset so. .eicese .eeeeee Teessee .mm m m l 4..u neen.sse n o e n.ese n o e n.s ee t usen=3 nenici naisses. noisis . eeacnei esace : - 4 fi 3i 3: e sum ' t um I 668 f6' 189.36 358.18 S t e. 91 ^

  • 3e8.04
  • Ils tel 4.000000*e3 839.T4 999.99 199.48

^ 960 Se 909 tT 199 11 IIe It

  • Ie8
  • II te#

a e90409.e3 399 33 996 49 999 et l 4.ea sses e 3 sas.gz 77s.e4 77s.es see.Ja lai.is isa.ei a30.87 a94 la aan.iez

  • 38.084 e,eSeest*st 838.63 108.04 195.95-480.ee 189.00 943 et 384.33'

' 3e"e. 31 att

  1. 3
  • 19 000 4 estett e et '

038 tt =949 99 998 to 099 et 409 et 959 96 Sfe it a.essees"Da 537.70 155<W3 777.45 555.36 ist.s3 .156.5e 430.05

  • ao7 TF

'al.078 4.840eeS*e3 831.39 908,50 999.e0 000.05 - .les.46 ' 568.44 399.09'

  • Re?.88
  • 38.e89 -

4 996eet*ef GSG to 988 ft 999 ft 084 99 488 to tSt 99 110 99

  • fe9 39
  • SS #43 7

77 iS6.55 la5.7 Jis.4a '3 la

  • J5.eae 4. e.S e.te s
  • e a5 J.h. 41 9.57.56 TT.5,1a 555.4.i iii. 3
  • t.e 7

..e e ee*0 .3 .e1 9.56 34 .e iss.ee ? Sie.a. 0.e3

  • 3s.003
4 4 teeeetect 875.04 959 to 999 98 A59 94 tst St t99 et 190 Se
  • 360 98
  • 54 la9 j

s.iiecesasa sau.an Tsa.7s 773.s7 sz7.se iss sa isi.ee ais Je aasa an ae.sts 1 04.

  • See.30
  • 34 933 1

9.8.41 ,995.18 S. S T.. t o, 148.,38 t S. t S. e ,399

94. 9 5 4 434.88 l. 13eeetee,3 j

94 .e t.. 9 . t t ,t .t...e.a. e se e.iseess*ca aJ6.5a 7st.55 T74.si B&s.54 155 I5 ist.25 Jie.75

  • act se

.a5.533 4.950600*e3 833.03 908.33 194 03 85s.19 180 le tet,33 198.64 8906 at +34.sp? 4 tecetteet e31.33 95e 99 993 se egg se set et tSt 19 Ste le '995 98

  • Se Sif e.1700etesa saa.56 is6 se TT3.as est.56 ist.se usi.as aus.at ass.se as.aes 4 19eeefset 822.0 981 Se 999 to

. 455.39 185.88 169.16 - 314 Si slet 48

  • 34.143 994.3e TT3.48 4.44000t*e3 433.4,9 444 93 199 98 tSt 99' 196 48

-*148 53

  • Se 998 a.aossesaez eas.se Tsa ma 773.it ase.ai usa.7e isi.ea as7.se

.aen.Je .Ja.7ae j 4.200e48802 835.19 983.18 118.93 484.36 145.82 tee.se -311.86

  • 195.08
  • 34 112 4 110006 apt 53e 90 999 99 999 35 003.90 999 te SSG ff 199 58 efte 95
  • Se Get e.aasses.e3 5Jo.J5 75a.43 779.57 553.57 s55.es ite.se Ji7.33
  • Joe 55

-Ja.5T3 4.940048*e3 439.44 TS3.ST 990.99 853.36 408.34 15e.40 Sti.3a

  • ted.To
  • 38.ste '

4 4 95e#69*et Ste $8 901 90 999 ft $33 e4 405 Se 960 94 999 95

  • 194 S4 834 039 i s.asecesesa sas.17 751.34 iss.sa sua.7a ist.33 toe.as JiT.ie

+ Joe,tJ .aa. san 4.91eeeE*ef 838.99 100.98 109.46-003.49 185.94 150.83 314.96

  • t04.43
  • 34.813 8.fteeef*e9 tSe 39 90s 41 900 09 ett 39 ISS #6 948 58 Ste of
  • Ret SS
  • Se teS I

e.Jseees*ca 337.ss 7s0.35 Tas.sg cas.7s see.sg use se ais es 4e4 33 .as 335 g 4.Secettoet 899.90 150.49 988.33 est.48 ts4.se 130.44 ses le .see 13 - ess let asa ses i e 1900e9*et 039 ts 999.13 969 Se ett el $44 33 tes 33 Ste a4 334 og e.3acess*ea 43s.7s 73a.la 757.35 use.se iB4 74 535.33 all,37 +3ee is

  • 34 see j 4.33e400*e3 838.35 954.46 989 to 888.82 188 $$

180.34 SIS IS

  • 1pe 13
  • 34 See 4.Jsecos*ea sJa.mt 7ss.ci Tus.aa

. gse 39 fee 54 fee ge 393 go See se 3e 339 e 34644 fact ett 96 998 4e 934 et sag as use.se use.te Jin.se aJea.sa =as.asi 4.300#0t*e2 435.18 98T 91 966.04 049.58 164.43 toe.es SIS 95

  • 283 ee

+34.894

..J..eefoof 989..Se t e.s

$ts. 39 4 990 094 94 959 $$ tag 33 3s ste eq .ge3 30 33 ge9 as 3e3 7, .J4..,7 ee..ea

51. 34 Ts..se 1

ae i.... ..s... e 3,33peeg ee g 333,3e 933,g3 .T84,93 044.44 104.14 0348 00 ' 3t8.30 ete3.31 +3e 333 4 Seteefoot $$$ 54 958 36 968 SS Saa 23 164 to le s 's e $10 19 303 se +3e seg 4.sieesseea saa.ie 7st.as Tss.es cas.oi isa og see.Ts Jit.si aca sa .Jo.sua 933.49 364.49 +34.098 4.49etegeog 333,14 133.3,3 Ga1.Te. 9 8 3. e. 4 - 14,8.91 + 3&3. 3.s e 3000e*et oss s. 9ss i 9.s 43 .4, S 93 0 te st. ,3 .,es t +3 e.sessesaca sal.as its se Tsa.es esi.ei isa,75 tes.ae Jis sa aaea la .as.7:a j 4.450088*03 831.94 994.44 943.86 444.98 983.19 943.33 Ste.se

  • ges.te age,933 4 4eeeetest 039 to 958 #8 969 39 443 46 963 33 tag og

$te 36 .get gg +3e ggg 4,siooesesa eas.7e isa.Ti Tst.sa ese,is isa.se iss.ea aie.iT .Jea.ge .a 77s d.Seteeteet 43e.34 983.38 989.06 se6.43 803.40 180.31 Ste S3 +303 et 34.909 J 4.490040*01 899 $4 999.Se 999 99 940 59 943.34 tes 35 393 80

  • 161 86

+34 age 'j ? 4 .w M W \\ ~ e i ? f L A

1 j l T j 3.0 HYDRAULIC FORCE CALCULATION VERIFICATION - EPRI/C-E PWR SRV TESTS l l d i 3.1 The EPRI/C-E PWR SRV Tests: c-c g Under the management of the Electric Power Research Institute (EPRI), j L i a full scale PWR pressurizer safety relief valve test program was carried out at the Combustion Engineering (C-E) test facilities in Windsor, CT(3). The C-E test facility was designed for full-flow l L tests of selected safety valves under a wide range of inlet fluid t conditions and inlet piping configurations. Figure 3-1 shows an i isometric of the test facility piping. Ons of the objectives of this program was to obtain sufficient piping lIl I 1 c load data to permit confirmation of analytical models. Thus, the test I j t facility was equipped with instrumentation to record transient i t parameters such as valve discharge line pressures and fluid induced i loads. The EPRI/C-E PWR SRV Tests chosen for this verification are:

1. Test No. 1411: Steam Discharge

,u

2. Test No. 908:

Cold Water Loop Seal Discharge

3. Test No. 917:

Hot Water Loop Seal Discharge These particular tests were selected because they all used the same valve model (Crosby 6M6) and piping configuration. In addition, good L quality test data for these tests is readily available. The test data i L i 4 l J

i C o is sum:nari::ed in Reference 4, " Measurements of Piping Forces in a h,i Safety Valve Discharge Line' included herein as Appendix A. cp p Il 1

j u4 I

y' a d i El 0' 1 1 E i a b4 Iw

r e f 7 l J i. l f TEST I VALVE f Sch. Ixl N T 8" Sch.160 @if(.,..

  1. $ch.40 VENTUM yh g%

T@ f TANK ~ I 12" Sch. 80 i f L ~ pfgt OtSC- \\ ASSEMBd L N sw-2 g f i' L E lbW CE E ~ l '. E9ET./C-E PWR. ScV TEST F-ActLtTy PtPiA)G ISomEi tic, L .J

l ? ] I e 3.2 RELAP5-FORCE MODEL OF THE EPRI/C-E CROSBY 6M6 TEST FACILITY e i i Appendix A, Figure 3 shows a detailed drawing of the test facility including the location of the process instrumentation. Force 1 measurements were made by summing the output of a pair of load cell n. strain gage transducers per pipe segment (WE 28 through WE 35). l f The RELAPS-FORCE model of the test configuration is shown on Figure 3- [ 2. Note that the nodal points for the pressure transducers used for j the verification have been labeled in addition to the location and direction of the hydrodynamic piping loads calculated. All the Crosby 6M6 tests were performed with a loop seal inlet piping configuration, i The verification approach will be to compare the analytical results with the tests pressure and load measurements. Pressure comparisons ) I L are used to verify the accuracy of the RELAPS/ MOD 1 code and model in reproducing the te.st configuration physical geometry and transient thermal-hydraulic phenomena and thus adds further support to the force calculation validation. a 1 l l a ( L ^ m

I f, m4

==c 1 S 9 3' i s g 8 -9 i 1 2 l ~ a ~ q E_

z..

1 i 1 Ei s w. e...ites. em..e bi alt =s( s.n.. Cow.A e a t' e ..c o., a i = 'A Bl T e S e e 3 g 1 4 A e y ,t .s s s O T I II A 3 w 4 6 I 2 T N q o e e 0 3 l g b 1 3 a = i. o 3 c t '3 A A e a r s' q x ; /* s a w i e w.i I o j g ~; / r5 1, n u (to).a.

n.,,,. n,

.v 6 a 2 a ) M'Ma f.864 6 7 R 3 x N a, e-_- se.u o s 2 a i a e n c-o a t-N s a N d I g' e 6 e s p a c

  • 6 m

i I = o a 3 Q 12 ~ s 6 _a c 4 i 5 1 r>s$?=8 (;oer)Q ~'e~ s Q (.os*)wb*o ~.. oro a Y h

  • f g

6 e T 4 g ! e . _D '4 o = t. n y g =, - - J 4 o t = 9 ~ er a h m sh -u n -u g T m a g-s f k c = 5 %"I = c. a e _i I. g 8. i .x s y ? o ~ a .ece,;-a e r 2 .1%.o a russey 3 T s' t s _ _ _.. = _. .u'6 mi c__. Eswo.y d= A R e.umium k e 4 -4.w i i .m.

j 1 3.3 COMPARISON BETWEEN RELAPS-FORCE CALCULATIONS AND TEST DATA i-1 3.3.1 Test No. 1411, Steam Discharge 1 Tests No. 1411 simulates a continuous steam discharge through a PWR pressurizer safety valve. The valve inlet pressure was regulated by modeling the reservoir pressure to ramp from 24?^ psia to 2540 psia in 0.5 see as indicated by Appendix A, Figure 6. The Crosby 6M6 valve 2 used for these tests had a full-open area of 0.0253 ft. However, an I area of 0.0204 ft2 was used in the RELAP5 model to achieve the test I measured steady-state steam flow rate. As indicated in Reference 4, ] y this valve leaked slightly prior to the test and thus the initial

1 downstrean air was replaced with steam.

Assuming constant enthalpy l throttling, a quality of approximately 0.90 is calculated for the l I. downstream piping steam environment. Therefore, the RELAP5 model downstream conditions for this case correspond to 0.90 quality steam at atmospheric pressure and the pipe wall temperature initialized at t 2120F. The valve opening characteristic model used for this test is depicted against test data on Figure 3-3. The full-opening time used was 15 msec. See Appendix B for a listing of the RELAP5-FORCE input for this transient. Figures 3-4 through 3-6 compare the RELAP5 calculated pressures with test measured data for three discharge piping pressure transducers, PT 9, PT 10, and PT 11 as shown on Figure 3, Appendix A. Considering the possible differences discussed below, the calculated pressure histories are in good agreement with the test data, k

s The hydrodynamic piping forces calculated by RELAPS-FORCE for test No. 1411 are compared with the test data on Figures 3-7 through 3-10. It can be observed that the magnitude and timing of the RELAPS-FORCE calculated forces agree reasonably well with the test data. A notable discrepancy f occurs near the 200 msec point where test data for Forces 3 and 4 indicates force peaks not reproduced by the code. This difference is apparently due to the accumulation of condensate in the lower horizontal discharge piping leg prior to the valve opening. Although, as :. ' nised above, an attempt was made to model the downstream steam environment, information on the accumulation of condensation in the discharge piping was not available to allow reasonable modeling of this condition. During the test, the accumulated condensate was apparently collected into a slug by the steam discharge producing the 0.2 see force peaks in pipe segments 3 and 4 as the slug of water accelerated out of these pipe sections. An important aspect to be considered when the RELAPS-FORCE calculated loads are compared with test data is that the test facility pipe supports stiffness was not high enough at some supports to allow a reasonable one-t on-one comparison. Appendb. A, Figure 5 indicates that measured loads on pipe segments 3 and 4 should be expected to be somewhat below the actual support applied loa 1 due to low supports stiffness. In this regard, it should be indicated that the force comparisons herein are intended to verify the adequacy of RELAPS-FORCE for hydrodynamic force calculations. They are not to be considered as a substitute for the piping structural analysis required to better reproduce test load data for pipe segments with low supports stiffness. 9 k

] 9 i / 5 0 -r s rr 3 8 s 9 m 4 1 0/2 r V 0 s O / N 1 ,v 7 0 t C o e s, n t s s N fN e 4 1 y I pr r 1 a'x 7n u S / w E F T S s A R a I C S r O O 3 i S s I G 0 o S t I O J a ) 0 E r T C E r R S s E H ( D a L J E u N I 1 a G l 1 l s T 1 4 a 2 n i l 0 1 2 l O r f' d w N N NU O T a I R S t S t E p R T r f E J D V s V 0 R a N C E S U C n R w E 0 o ti O C c F l F c t / E l H S R P 3 t O P J E L 3 E t M R m I ( S 1. w ir E 0 x f ii'n I. l l , e t l . i

  • ,,I I'

0 c F n d' nO 2 t OJ eg O ot

I!

3 - I ,s 0tI 5' 3 2 'tek w g$ k33k S". 1 1 f 0 0: 2 iu t f t I .i

1 f. j [ t i \\l 1 .{ i l i i t si M 'I e t s I O v i ~l c: l l 4; i 41 N l C ( ,1 C,.,l l i N l m x i e m. O b d' a ( i dI [ I t z: 4 le S I caj l I u 1 3 I m. I G og tj. l. uj ,N w I i i j 1 ) i - -] g. c '. O i i 1, v

.I s

t I M h. 5l i lm - i: ' { e ~- c 9 i ? c. I I e .gme ,.s. t O-1 e. l i f 1 g u 5i c-E. i J. f', i I - i U R G: _t t n4 ~ ( i 8-= v y e- '{ t i.i 5 _l z }i ( = 5 Ol H i t = Al I

c Mi

,m, I 3:* w el p I l ('

E U'

I i L ( s l 6' tJ: Zi i % i a c) Mi i i Zi U _C, o i O N, i ~ h iy m Ej r-._. s --c c. .s. yl -i-y a-a [. - - < =. _ ~_~~~l_,, -=.. y-

15_,

c:: l i -i - i, m s.,, !S ai i -s 1 I s. = q i ]g i w 4 .a 2 0*0S!

    • 0C?

C*051 0*00T C ' O ~. C 'O l*r (?NI/JE~l) 0000F05 d ie I,s- ':i j l e_ It g ~ ~ * ~ ~ l I

7 1 f f } m ti \\ d \\ n c3 I m e %\\ ~ g i a s .s N ~ 1{ O c 2 s ( D ~ 4 [ O c w 4 R_ b yT 9 T tR L. i kh m ~ A 1 W s 4n %\\ H L m 1 _C C i i i 0 i w m S.' O c i G m C -d' ( 9 C ,4 x G c t U W C r .w s ,4 _J m v 0 UNh I -w y ~ g9 N. . v% ~ ,1 o o ,i' g,t 2 Z o g 's ~., q g g m 4. c:: y y e u 1 .O i i t 1 U x Q m ~~ o (- e e.,.--' v O y 3 i w o 1. -- d S, ~ 4 ( 8 s m , -:.=,=__._...___ __.. C-- e C C 4,. y ~ d c:: y 4 i g o d q i G'001 0'09 9 O*Og C*O g j 9-) 00000$$ d Bump 4 b ....m. W 4

e..

1 I v, a { 9 a L' e**- ~ n t; .f i tot l i c) C' n;' e CO 1 N l mi Y. i c, O N i Z e i ts z-m',

g 4

i 9 o eg t-Z. t t $ o. s. i sh I w w U U h 1 L. I-' i i 'e-C. e t I i i i O G") k1' O g c n c.c .A i O L^ i i C i ~ m l N h U ' ' ' U J C: ( t U r i O s \\

  • l

~, L1' t 5 A e.as ~ e r Y y s ~ ~ h., _~ in w I E ~ ( j C p ""**'"~,es. ~

== g _

C g,

-r=* ", a g! g g,"- _ _,_,,.==_= ig C y h g i.- wI l* ( j) ,o A g ic M ga) p o - ~ j. e y ~~ l = O ( ,S ' C c,_ L _1

~

N i -(. lh, s: Z i c. -J 'M ~~ ~ C y J U _~~~~" h i~ j., &{ 2 1 '1,a e O h A L' f.f ~ ' ~ ~ O' S O 'GC I s e.9 I (EN1/ ET) 0000'v45 a i. O 'S l l-

  • 0

'.E L g I i

== I l

r. -

a ) -, I .s 1 i u., i n;er i l G n e ~! C N l ( N o! i e,z: N i i 4 5 N NI ,= .Yl i I g i 5 .w -t e x i ji i Z 4 4 y' 4 1 +j g i I e% t 1 m M g y iw A t) h s. tn c,. - C. x. s n ei i g mi i v' c' m j i p a 0 = C ,,i c e a C& e-U J my ,~_ -1_ U g a ~~~4_* g J F, =- u* g e - _._ - _._ _l.- - _1-t c.o c t ,j s +!. r .~ = t. s -.I a t z, Z: ol ~~~~ .______y gi ,s g. j m n m, 3 3_ c:: uu. " ' ~ - ~ ~, --._-.,,. _c 1 != y >i ti i ) ~~~ 22 .&= a i iu ui C: ' 1 s i W i is a l ,.------t".-- ls-c:: y w a e-l.= M ;, 3 o, L, N, ,-l - - -' l~ ~.a i l s t.e. mi lg e ,- l c g 4 - - -...] f t Ig M i [h.. - +a g t g e -g- 'e ---~ 4 i g 0*00S! C'0007 0'C051 C'0001 0'005 C*G 0*005- ^ ^ I C ~ aT. _J I O _ M ~ C _4 ,.d m (=> se N f! I j h.B 1 C. U lw e e O

r ) .2 I l ? fi ( i Ml Ci \\! c-) - 1 1 CO l N m Q i a, s z, s ,o m ,e -= 4 T, l t J es v., i i , i, .z_ ii $a k l ? I \\ w id t-nt I w g i l '. .c I l Y 5' C) cm. l p t-*. D' g , =, M. -C_i j m.: = ( -w, " )

    • )
  • O+_m:-
  • f.

i_., c-e l. ~_. G u. . 1 _ e u: c c _]- \\ ~ ~_ _ _ _ _ _ _ _ _ _ _===__...._ - - 7a ~ ~ _z t. .w, ,i i i a 0, l s; _~_=e__=_______.-- _.i z al t .i t- ~~ 4 ~' i .. - - ~ ' ' - I. ' 3 v7 M c::) ,u'> J 3 A U. s e. -., l ti ?> [ / s I s il. a y C:: l 's 5 w s = a ,___s e j C NI i E- ~ ~_. f. - j7 a-]O C q, I { E --- = =. : _ ~.'- _ ~ ~l ~ ~ 7 _ __.,-[~_ - c c_ _ _ ~ ~ _ _ L a u i i ~- k _'i. ___ /____ _ _ _ ~ _ _ _ _ _. =., - 4< ~ U s-u. s l. = ~ 1 r ,3_ .,e i --~ a f O'CbCS O'ObCi 0*CbO2 O*O O'000E- 'C 2030bC.i 20Z M20h!O.:! i 6s-0 P i .g Q d

    • eme am i

j i 1 ]

p. =. Pss. 2 ~ gm w .= a Q ~ R D m 4 w -s k ,= w w h 1 TI l Q' d l ci i I i N: i i N! = = s. l e N; W-m x e h-Ci / l 1 l k ~ k m,_ \\ ~ ~ ~ n,. i .nl 3- -,i c s% c -i -i ,n.. i O m. x,s i i m .w:..- s = e:- I 5 9: g.... - _ _ - T~ i I u ._l- ~- c-n ---- ,w n y 9 .i cq u y t ~~ j 1 r C q l J I-u.g z-3 i E. '- l t- ,,f v H 1 N I_ y - d . ' 'p t: q ') .c i 't ) z Z; t 'a.. s ;I ,,.-_---,,g g col gi si

s.,

\\ O '. Li m \\ s- -. E U: - l l x% >l >i l 6 u e u: 5' l i ts l-a; e

s P:

) ./ s u--- e, L', w r y. = Li n 's 4 ^ Ca,; E s ut, i ___Ag i Q L ~ ~ ~ (~ ~ ~ ~f = X. S i e f A ~ n g O'000? 0 "s 0ObOZ-O'Ob06-c cogg'_ +FG-ED3080J COZ PT20MOJ ~ tn a s i ma e

Y. S 4 6 _I w1 1 v b I f j v1 ? =- s m f. ? I 4 I =,! s N i El C I f. m t hg I-a Ni p C II i e F4: l I .r s) m wt 1 Il 4 NI N. JJ f P 't: M t) N.l j,' t gq tg' I $l ~ e s t

q 9

l e !D. A ._i i y ~j t 'I P I t. ,i '0. 3 a e n s' g ,, 3! .k b f ~\\ e'. l ,i /# .Y! j' L.C g W l 14 l-,. 'f i i l m i jo 2

.3 8 i

g ,f t' h; Of O e,'.' c,. g - - -r 4 i g si c-3 L, g. 4 _-.. - y -_g, m 3j y} f l j


't g=

Q 3! -r 7 I.- .j 2 'd D, =i ([j ; I d' g,, s*p ~ l

  • === d t

e t e y ' = s. _" _ r _. _ _._ I n. e I ~[ g T*

  • = f ~/,
  • !,g.

Q: p, z ,t 2, L.._ m

  • w "."..

o ~ 5 s (f) "O* l m" '. ic o,. *,", N. i i '.,;,,) p E s-p. I s N u >j w~, u i _ - - - - - -M 4, a Li L u y. ' 7.i I N, s (.,,,, l i , %' 1 M 4. yi i, =

j F

0; I o N. <=_-- -. j, 1 d ~ M, ~ m 3 C L' s Q g ' 3l s. g. ., _,---i Qi r b i s 1 5 i Q ~ j u\\ i -l = j O*0002 C*O 0*000E-O'000v-0'0009-C 000E-I o~

n. rit e t 1 L,c.

i y- ; - 7 '.C (y27) W" I i 4 l , i C d .~

1 S 3.3.2 Test No. 908: cold Water Loop seal Discharge I Test ~No. 908 was performed with the loop seal piping filled with cold water. The valve inlet pressure was regulated by modeling the reservoir to de-pressurize from 2690. psia to 2670 psia.in'O.5 see as-indicated by Appendix-A, Figure 16. For,this test, a 0.0834 ft2-orifice installed at the exit of the 12" discharge pipe was modeled as-a RELAP5 abrupt-area-change. Junction of the same area. As in test No. 1411, a 0.0204 ft2 full-open area was used'in the RELAPS model to achieve the test measured steady state steam flow rate. Appendix A, Figure 15 shows the loop seal temperature distribution prior to valve opening. During the initial opening phase, this valve chattered. appreciably for about 0.9 sec. before opening fully In about 15' msec. Therefore, the loop seal water was discharged into the outlet. piping prior to the valve's full opening. For this reason, the RELAPS model includes the loop seal water volume distribution in the outlet pipe and a 15 msee linear valve opening characteristic as shown on Figure 3-11. In accordance with Reference 4, the downstream piping initial conditions were set for 800F air at atmospheric pressure and an ) assumed relative humidity of 90%. See Appendix B for a listing of the RELAPS-FORCE input for this transient. Figures 3-12 through 3-14 compare the RELAPS calculated pressure histories with test data at the location of pressure tranducers PT 9,- PT 10, and PT 11. The calculated pressures edree reasorcbly with the test data with two exceptions. First, the PT 9 pressure' test data ~ exhibits an off scale peak on or about 25 msee believed to be of l m

reasonable since the resulting forcing function is expected when i compared to the calculated and measured loads on the stiffly supported segment 2. It should be noted that the choking model was not applied to the expansion junctions on pipe segment 2 to prevent underestiidating the loads on this segment due to the lower acceleration of the loop seal slug as choking occurs at these junctions. I l s c 1 l tame L I_ 4 W h m Was

~ 7. "I i ^ 5 l U e a g 3 s 8 e _ 9 y 4 i 1 8 a, / 2 V 0 ON / i 7 4 2 C A, x, 4 N s ._p w, 1 I s enu W 1 S s / E ,n, r T S R R I e C ~ S o, O h S O G n_ S f O i I Jh C a, W T C C R 5 s. E ( N D a.. L J E u-P N a, I G I 80 T 2' a. 9 a.r. l 4 f t O a 2 1 O e s N i N si T v n I n S n S E c _ y R T d E o_ e V o _ V s c R s c E S or o C I a R E 0 s f e O u C t F o m / s S ~c a I R u P P H n E L E 3 ta R s n a ,e l l l l l j a I c i 0 f _0 m 7 aO o 2 ?- mg o

  • ,1 e

e o r

I cL
5

$(E7 ef I s h, I m. s i f 2& il F e f6W i I

e f T,o .sP g-j 9 7) = a1 nl 2,s c: ' ;2 cn. . I-ca C j N '(i N = o e s1 Z N 9 ~ u d 41 A; v qw4 I t, I hw tj t ~ m 1 U 4% C E 4 I E C I m i i o ~k c i i c.o i = C h a = s C 'l s 'J hI C u zi

2 s:

s O s1 d s f U c / E-k! c: O e S CD s 1-* R-i 'i N ' i; s I~ v d N \\.) 3 1 d z z w ,s o u 3 s l 5 } D C s h L. 3 4 = u ,s R 4 u m~ ) R I u y [ C = a 'q i e' d 31 U / a 5 u, ..i N W = [ = N j c:: b =:: 7 ~~ ~~ s c / A j 4 U _~

s c::

i l ~~~~~~~--M-i__ } ( O'009 0'009 0 ' 00 ** O'00? 0 *C - }g (ENI/ JET '0000kOS d m a lS

~

.!E J,. c l$

r l <iai c, e> m

i

= x I- \\ m / i-e 11 o e: m-e t,. s m G o U z y s s ~ l NI l t '~ r .Z i f t' l c Si l Ol. 5 h 0 3 7 ,= : i d c i. --a e C a, i u, 5 v1 I s = c '4 E / u M i-l a l J d /, -{J U c,i 1., o eo p i! t,1 i m r ~ d 1 } t ~, z z N o s s p t = m U g 5 i-4 kl ,r-3z {o a i -i u m g' 8 g s Y s V m ~ 1 m c_ 4-h i-9 C _a u 4 t. 8 C'- l- .\\ AE e C ![ o*st ador o' dst o'dtt O'be O'bv 0*d I (ENI/JEl) 0000059'd 5

g

.3 !Et i m I

1 fs j 9= h 1e h L G 0 k 5 C7 e s' c I m >C c ( s Z N "i N ^ ~ e U \\ i 1. 1 e e u% 1 s LJ L N t. &C\\ m 1 ,j e i 1 i

t. 4 8 '9 t

s g t. e m e, ,,b - i. v7 s C b 3 M e!

  • 3 C

s. s -*3 d ab C J e 7 -s 2 $, O I co i C 4 O N d e y e at t, ( .= z} Z C EI l { ~ ( .g O. c' m i s - 'r ~ t-a. 2 0 s 1{i s w i U e 's e t = c N m 1 C a -E y

E C

\\ ~ im L A 1-Os y e s\\ l' ' ), v 3

=

ci 1 3 Ut t, U \\ 5 D i .i S' .k o .2 .w C'Ott 0'002 0'091 0*021 0'00 0*06 0*O E (ENI/J81).COOOkl$ d j c 4. s L i a i.. l2 J

1 a l .,i C f' p'. v . v,s N M to ,.a Cn .i v ~"* CD N d -k a t. E N C e N f. N k U I C h1 'l y z h,. m ~ 4 I .g 4', { g 2 te u") u p i-- l 3, o i t. m O i n 0) c Q t a 6 %) c 9 t c c -1 g y 7: W zi jj g -) a ci I-e hV C.D N O ) H t1 m a m. Qi ' ;1 v s e H f_. .Ri e xi .,, ' ~ ~l 2 E o p ~~~~ $l e rf) T ',,,. 4l ~ is m t1 ij N *-4 ? l ~ ~ ~ _ 0 a 5 I o a t_ g' c .t i u N is i I .f w c:: w Q. s L e 5 c U J

  • - -. ~

t y v3 E_ Q:: E-L ~~ - 4 ~ % 8 l =. 4 .e. c. O*) O'E 0*O 0*E-g ,0 I x W.^.2 IC3080J 10Z M3080J G-n) 8 5 .e s$ W.S

( C i J l m v 4 T' l 1 ~ a M 1 CD Q t v c3 d I-N 1, mc O.

s..

rs. e p-N -1 o {; k-u g2 e e b .c ' i f.n u s .l u '5 g -i L j m i

t.,

b r; 8 U i (.n '8 5 m m \\ c-i t' O 4'. s u d I b C y Q f m i t' c3 's -.2 .u 3 1 CD C Q \\,

  • -' t esc 1

H g j N \\e v s.. Y C d z ,3 1 5 -o e x4 p ,, ) 5 5 4 \\, g 3 d C i rg u 7 o 0 R x a u =c____--_. t m = o c:' y c - ~ 7-- = 0 g y o - t v i p [ c:: R:L 4' L b C u g i s c:: s'. f 1. o. ~ .c. j O't O*O O *)- O'9-O'El-0'91- ,01 x W.~. 203080J E04 M3080J Ge> i E m

t f T c .n h .i l. -p Me - 1:. cn l e N Y N o c az j z 1, s. N I m tl N c e

  • 1 z

~ 3, ' ~ f 4-I 3 m s N m y L CR .c, H e e R, e 3 o m C \\ o n in O g t,. in i e m i-e 0, C s a u 6 e u in r .a l e s 1 d -i s l-Uj e j a_ - j':~~- e O s ; I cn 2 [. z , - AL'3 0 i z 2 y s C I-4; 5 W %~,q m e t \\- I m e , ' " = y O' -. ~ cn a u d l e s e o ~ t u, s, r ,v m 3 E i u l a y l! i e e ~ ci t w t--- I 0'01 o c'o c'6t-c.c;~ s lE 'O f

  • W E030802 COL M30MOJ l2 Gs,)

.g b 4

-3.3.3 Tests No. 917: Hot Water Loop Seal Discharge l .a r Test No. '917 was designed to simulate a hot. water loopLseal discharge. s. i Similar. to test no. 908, this valve chattered for about 0.65 secs before opening at 2650 psia ~1n about' 90 msec., Therefore, the.RELAPS model includes'a.90 msee linear valve opening characteristic,. Figure -l 3-18, and 0.5 see inlet pressure ramp from 2650 psia to 2720 psia -l ~ . corresponding to.the reservoir history shown on Appendix'A, Figure.26. I l .A RELAPS model valve' full-open area of 0.0194 ft2'as required'to' match 1 the steady state steam flow rate measured during.the' test. Per Reference 4, downstream initial conditions were set for 80o F air at f atmospheric pressure and an assumed relative humidity of 90%. See' Appendix B for a listing of the RELAPS-FORCE input for-this transient. Figures 3-19 through 3-21 compare the RELAP5 calculated' pressure histories with test data at the location of pressure transducers PT 9 i and.PT 10. The calculated pressure histories are in reasonable agreement with the test measurements. Although.the peak pressure measured at PT 9 was higher than the RELAP5 peak, this maximum occured at the time the loop scal' slug was passing this point which resulted in oscillatory pressure measurements. However, the average of.the PT I 9 peak pressure oscillations is.in good agreement'with the RELAPS calculations. Agreement between PT 10 test-data and RELAPS is good. except for the period between 0.2'sec and 0.5 see where a supersonic ~ velocity depressurization phenomenon similar to the one discussed in

' action 3.3.2 occurs. Consistent pressure recovery starts'at about-0.35 secs with steady state choked steam flow at' the exit no ::le.

'w Ipasis

f i The RELAPS-FORCE piping force histories for test No. 917 are compared j with test data on Figures 3-22 through 3-25. The magnitude and timing of the calculated loads are in good agreement with the test data with {1 some exceptions. The segment 1 force function behavior indicates an sI oscillatory period in the early part of the transient. These oscillations, also shown in the PT 09 pressure data (Figure 3-21) are the result of the valve chattering observed during this test. This resulted in an oscillatory opening and closing pattern during the valve opening period. These oscillations were not modeled into the RELAPS valve opening model and thus the pressure and force oscillations induced by this condition were not reproduced by the code. Slightly lower segment 3 measured loads are attributed to low supports stiffness (see Section 3.3.1). A wave contribution positive peak at about 0.22 sec was calculated for the segment 4 force history but was not measured by the test instrumentation. A review of the RELAP5 results indicates that this behavior was expected since the wave force peak corresponds to the time of loop seal slug acceleration out of the segment 4 section. The segment 3 force test data indicates that the slug was still intact as it left this segment and thus a segment 4 wave force behavior like the one calculated by RELAPS-FORCE I is expected. E I Im m

..q e e e ..e ) ) . \\ 'I e 4 _d i I I1 -l . l I' M: f j O! C

v. i -

Dl i Ci l ~ .i-a, s gl i o. i N i Cl y( l I

== b za i N 4 N {' i I g e i ur <. [ ei i

  • 54 g.

vi j 8e 5 l Tk " t. 1 -g mi k l kg .$ 1 l-W! t. 'I Br I m l c. c ,,i i I. K C i. m' C' ~ l g l

    • 't g'

C. a b- ~ .k ~ c;' s! ,C E 1i cc u24 O t Ul ci tt -,I d N k, J i C,D i } N s l l

  • J hI

~ I' m = g: I i r t z' z! I s !c o,- p!

=

ml w l5 'cdl W % ;i ' ,s u- , ' ~ t(. >l T MI !u y ;i WI 1

  • M
m 0

I 7.! t e )5k 'u ci U l I C-C v Ni ,i,., -i O s

j E

c; [j ~ ~ tr a; y __L. ) U. s ~ s_ s y u N ,~; c1 ec so 6c e c-co in a p.,., a p o r no s ~ 'A f!'9d !$$d tv54,.;" *]A >9pf d]f!?!W8N !) i "" E f ~ - ~-

~:> e. <w I 6, N, k = I y f i }' n I sc. cc: I = O.,' v w l i ec l gl N l 5 C' C z! I N m i g =. -N J c. i g ss z; l s:. j5 i Y s a2 l s 3 M 5 P mB U i LJ x s .M 1 r i i- . :5 l C p I k e-. I w o l-2 c h2 l I i 7 &, -) <m D> C 6 = ct g ') 9C l O< s u ', - O u l cm

  • r c

v. i J J EO C I N I w .'o O t, u N ( i l T / o + \\ ,l 'N c u lai z ,/ t f, zi a 's ci 0 g !a 5 -I eu 4 e o e-- c-y C-g.4 'e la e E %s ~ _ d y ~ u ~' c l c . 5., L, i G e-s. s% w m' - r u' a c_ C-I c '.'s g) i U Ju s v ' s e: s S ' u. i-s s A o I 0 * ~= ~r O'09C O 'OR 0*09i .C'Co C'O e (ENI/JST 0000EOS ci

i

~ i- \\ lE'c m

i -e (1 ~ - i. g' I, t l c i 'l l J-eg u, 1 l l -.i e, . i i -i ~-, 1 1 f !

  • )

s) 1 c 4 mi N, Ci .) -l 4 si i Zi si mi i 64 i i gg b g: j wa

g. 3 v

i. 4,. t [ s et . ~6 g. t E. L! l $P t-l 6 mi e i %i l l t e ', I m '.

c.,..

I i s m. 'u,.. i g m - j' m' l l i 'g <s c g c; i .F. ' 2 f m. y C, i i I, m : r. L 4 L C: i j c1 J: i; U s I rl 3 S E j, ' %' C.._ 1Ei a n um t, 5 i i-C' 3 s.j ~~~ _ 'I r 6 m O, s L hi El 3 Ul 's \\ o s to 4 U it c:: s a s v .a N 3.s i-le \\ N.

u. !

\\ ** O'dC) 0*dtE 0 'd'rt C'd95 C *b8 C 'C q I. ( E'NI / JE~l)

CCC' 05 e 7

i $lf l I!= l

  • E iM IWW 1

.l t i e-' 1 ' k.,. } 'f* .1 $\\ i M: s 1 COI C j Ci a e ~ C 3 b s. w y N ) { .E l-k \\ \\ 5 O Z! N ) ,d c_ .i m; i a ' ~ C' 1 5 y ? Q< Z: e c i 6 f ~ I.s b C M 3 l c u e i = m-H tn a e .' i e ) I 4 C o s g i N ct 1-e i g c! s =

  • I i

l C - i, \\ l a.i c N ) 0-E H, o \\ u: U g O.? .r i 24 ~ 4-e (' .J v y i ng4 j. O s N g t o I 6 i e N. w. v = J,, > {s. ol g g 1 2 Z1 - = ~ ~. ~%{ [ oI i-i "1 5 \\ >i >l i A. q

u yl v-a,c t

.u

=

w ej g y d bI. !ai o! c l TI u I? Y 'N 1 tnI % li \\ -1 \\ ~ r, c_ \\ 4' j' 5l bl l M t u s a4

E h

y' f iS' = w. a L j':; ~

s 0*C01 0 09 C'09 0 'Ci O'OE C'O i'

(ENI/ JET 0000055 ci t is y ~ 9A t i d.u.D 9 4 .u.

[, 1 q u -1 ". i \\ 1 u. a\\ = u5: tol ,I CO g1 Cnl .4 -l cc tl ~ s i 1) N + i i e C' s, I Zi N: m, w< I i v .l u e c zi v. c1 i -i I 74 y! ~'

  • F t

I m t g k uI 'l-to w t C_l c t l ta-l i i O .i i i i i ,.i..>. i L W o. s C mi n il C1 u, Q ,J c:, <m s) ')l y C e (i J U r q... e u 'i cnj .. i,L, I i. ei ~ s ], i 1 a ,s ~ .I .~ 4 zi -a I _ _J .h ; i ?j-3 i I-i ___.2--- LO s . e" r \\ 8 u -=- - 'C g3 H h I t C-.~ _.. ,r_ c .a i !U y>i ~ ~ -.~..~~l____._ '3 l -~ y a w i l. a a 3 d.: - - - _. _ _ _ _. - - - - i - -

  • c:

y =, s e =. H d,,, I. s r 'I c:: , _L _- w. = cL. -..._~Q~a d= I- .i_ u i S U c:: ( '!* ~~ "" 's- _=,- =_ - _"_~f.~.__...,_,, c.=_ _ e-j i e. 4. a q 0'00Cv O'CbOC C*C O*OCCt-C'0UCi-0' obc 9-C'0CCE-N 9 I ps.:m.C a. 10 M_.y y0.:, .e ve a_ m. 4 (sn) S i ig .e ~.--m-r-.

e a et 1 n. + .s M. 1 I, O. g 1 4 I I r CO i 'E i $ne T N -.* s C 4 \\ 9 8 W OJ 8 i c i 1 zI 3 N, ojI

.a

, a w r. T h C 4 - %g .z. i. Iw n r i i = in. } E a 8 .h Cl N I5 !; L 1 w wi L O

W s

? i W l-f m l b' c i r c I Oi en = j' i mi C' 5' e i n4 l rI C' 4 Cl ..C i \\ L-I U; i / i O C '. r d 7 ? i s v s u C i r g. g N ,i ) i i i i l cn' I 1 i N ~ O' D, I vi f.,. l -i M. 5 i i 1 4 2 A 4! C 5 H g. !c .c. D .l ' 2 y i.:. s. y I h d W l J ~~ ~ ~ { ~ 5 u = N .q c g ~ I i g-l \\ I ko c.::: c' / N-li 1- = O M C ed J k1 y ; 3 5 Ca I k 5. g 4' \\ c L N a ~~ z O *Et O'ki O'S O*C O'9-O'bt-O'9!- 8 .n f x L.00. 7 n 7 m in.; e r,Gv6 .N. *:m r.2 ^ w.dCv owCJ V6 g (yJ 7/ Sa 3 I .c ~ W .m

m . m i-o u 3 8 9 4 1 8 /2 V 0 O / N 1 72 n t R C . E ~ 4 C 1 ~_ 1 I - O A F T n_ l A S 5 D / M C F s T T S S I A E E R R T. I C ,s S O f A t S G S f I n A J \\ l 0 \\ C. T t \\ - C I g l ~ R \\ ~~ E 1g i' H D t l ~ L ~ I J / / E G r 1 l 7 i i ~ ( 1 o. 2 l 9 4 A O \\, n i 'l ~ 1 ~ N ii O t N ~ s T g*I s v i I S l i S f i i R s.. E 8 d T i E i c i V V M \\ ~ E R S g = is C _ \\ i -r. R E =. i h \\ n e O ~ d F C / s S l R i P im P ) i ~ E I L ii 'l 'i R i ~ i. ( i n. i i n 4 o o :,.. s o; ln n.* o na ~O + I NOLO $OL J ,,o'N ~K I.E L c ( OI' t r %4 9% 4 o. <e t i us s n g

j a r I? 11 3-8- 9-4 1_ 8 n / V._ 2 0 O_ / N. 7 8. 1 2 1 C _ n'd 4 .a N r o a, 1 I-r b a_ _ S-1 S- / r ws C F x T. S e T 0. , u_ e R 1-c, C. S ~ O. 1 n O S _. G s S._ t I H. J i 0 'I T C ;, C R E M ( D I L J C ~ I.- g 1 l G a ( 7

  • f

( 1 g 1 i I \\ 'l 9 2 s 4 j-is n_ 2 1_ O N N. n O _. T ,~ n I. S n i S. E ~ r R. T v ic E. V. V -,c R c C. S i C. i R. i E m O __ t F. C/ u c l i S. i. R P

a..

u P. O C r L E. m Rs e e 1 c 1 r ( 1 1 o ni

  • o e.

o f, = o :,, ? e 4n. n i*tM, n io _, nai sOi ~ Om II[O r .O " x ,3 a sU. 4

  • ly

-e r s u. q o s.n s isT I z. ( c

l,.. ~ g I 4.0 HYDRAULIC FORCE CALCULATION VERIFICATION, EDWARDS'AND.HANSONS' PIPE. I ( EXPERIMENTS i 4.1 EDWARDS' PIPE EXPERIMENT f 1 The pipe. blowdown experimental data reported by Edwards (5) in'1970 l provides an excellent experimenta1'dat:. base'to benchmark the blowdown'. force option of: RELAPS-FORCE. A schematic of the experimental. facility is shown on Figure 4-1.. Note the pressure of gauge statibn's (GS1 togs 7)usedto'measurethetransienhpressure', temperature,'and-void fraction in addition to the load'Se'l used to ineasure the. .i hydrodynamic pipe axial load. j j .] ( The experimental tests consisted of pressurizing the pipe with water to the required test pressure and rupturing a glass disc'at the end._of. the pipe with a pellet gun to initiate the blowdown. It as observed' .) i that some of the glass disc was retalber.' around the circumference of. the disc support assembly reducing Lhe discharge: area by as much as f, 15%. The test used for this verit'ication was initiated with water conditions of 1000 psig and 467o F (saturation pressure i 285 psig). j

lo u

4.1.1 RELAPS-FORCE MODEL OF THE EDWARDS' PIPE EXPERIMENT i The RELAP5-FORCE model of the test configuration is shown on Figure c o s 4-2. RELAP5 output. data requests (minor edits)' were selected for~ 'l those volurnes corresonding to the 6auge station locations and for the pipe wave, blowdown, and total force calculated. f i 1 4 'i

.g. ] f* e. c f }h,.[: t; I I

J s

f f i i 1 -( I l Dimens.on . Feet mm A 0 26 ?, g 2 74 g33 pip'.laternald.ameter : j C e 32 $$5 2 88in 93 mm) A { O 8 82 555 Additesnal thermocesples (7 ogg} a 29, ,i i '"***Pd-tom mor enensiwme, 2 74 ! 035 Cenerete te*Perature I*

  • I""

J abutment II": heaung 6 ends C 0 52 ) 15e g3 gg j M ! 0 55 $ 164 / (4096 mm) ' k ' / lC5 4 lC$ 5 lC5 4 1 je melC1 ? Cs s es,les it - f; .;. 7,'I_II I!!IE,i*i_llllI] (J![3l{ j { g[~fl} l'g[g g a p, g gj-g =. =c. j" thsch. rayleek -...ne l Pr. gises dias ..d.., ,,4,, . Thermallnsulaten i, I'" " *8"*P**f 9,,, Aedidonal fattity at C5 I l . Pr"** 88 uch gauge and Hydrop emp and C13 for trins,,n _ staion (C114) tor Fe****g ser frem p,pe j 1 WW fracten measuremenu transieng Pressure and preer to Alling with water temperature measurements. 1, 4 u \\ k I he Abh5 Y* f,* $5 wad.? fif$ SYMgjQ[Q Jgp pg <w l .d l .I

y = 0 0 m Le 4 T 0 N Os y 0 4 s 0 0 EV e 7 NDs u NU .i. O M o 4, 0. =g TN P To 1 EJNG M V = , = ON O p,, X V PS C A M E 0 2 9 R O 1 L A f C e D l E 7 O P M 1 I 6 S P z 1 n n W 5 1 st 3 4 f 1 2 0 +' f 3 0 2 ~' 1

  • 1 i

4 f 2 1 S + o-A T l Eo C I. S. W N M0 0 E = N 1 E 9 f N U O A. f 8 L = H t sg 0 P O O T Te. I 'S 7 0 P I VAG D-O io c M E 6 N + '"> = A N W O 0 R 5 i E Oo-a r> 2AL E C 4 i f C V 3 L= = a 2 2 s -4 1 Ap,TV 1 I s T r u IN MF i I r i

1 I-w f I I m o 1 = m ,I- ~I c ,/ en s at .s s a m 3 ,i z a i sml W i e ci e s-I ,/ c z i q; t. a r t e-l- k m i x g s s 4 i, t! ~ .a i c t_ m I C K 4 si C i. m m i

    • )-

k g i, a c =. w s l { t H 9 j, e c y i u e n_ 4' C' 5 F - l t< 4 1: e.: r g ;' .l s H >; F,il ,/ q e,' v. = t. -1 e i ,i O i,. zi e i r CI L l t 1 ~. n. g L ~l. u m I w. e Fl i t. E al i v. c_ j i = u m' = .= c 1 i, 3: 3. e a s 1 e e ( L. C f 8 L .? t.h 5; m.

=

r._ i u: r 4: t = l J i i s-u .5 e 1 (; 8 4: !d i,,, _ _ _._ _ _ _. _ _L _ i e, . y- .e l1 0'05:1 cdos o das

  • c.for e.g (ENI/JE~l) 000090E e l_

s l5 1 iR i! u '*"'*-d ee<+ Ilup

\\ '4 (A . l.' 1 I i. 1 / -l v. Ml v C / .g en / ,s, - l v D r s / I t c m e / z e m I. ,s, = u l.. e c /

E,.

c, zi e /

c

,i n = l O I I.q 9 E' f.1 / l f.0 e A s 3 c t_ / in 12t. 1 e e' e / I i-e c,l = i i e e' ei e a mt C j ~ i, i c e I- 'r"'* 9 t'a 4 : x c / = - u o 4 e i 1 a C r u $ H { r cl l C f 'N E r tl' 1 3 ( I ~ = = z e' )s .s C C I I e u i s [ j 5 = e' ^ e_ i g-1 c rJ m 3-y C 1 C e a q f LX C e is l s, s i T dl Cl I = vi i 5, : k c; i Jf l 4 ry,. l g el (! i f \\- g 1 'O k = x o*oek o'ozy o*cet c'cct o'cbe c cs: E ( ocn) 000090c %W 3 i A !f e I 1 l

4 g i I f ,a. l \\ Ml I k CC; I O \\ Y \\ C N l C M Z C \\ e 1 e s. l' D; \\ u Cl Ol

?~

4 Z ', .\\ vt T \\ i a. c. c. O I g i H y 6 N \\ D d' C L = r" .e \\ l O CC} I c c \\ M OI l. m O Cl \\ a (m, i s 1 i N -~ c_l -i \\ e i 1 Q' :: ' C u i tJ C g ( C 's ,i _d. E.l 's, [ co! _2 ~ j t.1 r ,l i-~ i c e u, 7-, m 1, v: ); c. ya ~ s

=

c, \\. z e-t e c_1 .r g t e ul ~ i s ?.- c:: c_ p s u. c e i ul e_ u s i '1 i s un al c e x e s j s i> aI L c 3 i 1 21 i i 'n =i u. \\ = c s I n,. l 3 g u

s z.

s i. s s ,e e. i 1 _:._ = g*1 g'O $ *Q y 'O (*0 0*C i 00C09CC S010A e, S

i lE x

.t Blu. e 0 .mp .,,,,,,,,..,,,,,.u,,,

e-e e 5 l i O- \\~. l M CO 09 I - 3 1 l* 4 tr* C N C n -3: Z C t N g W 3 O C 5 < ( l-3 6 - > = .x A. - I y / W-c / ~ M i 3 $ i / Q 4

.a r.a

.}! l-. _N l / l C km l / A I O e I. / 0 -w i w m 9

D D

a s O C l ,/ = k 't -C C_ I y . C a t. 9 I C ./ c'J B ') ~ I O 4i U C / 11 c. a r s / u~ i \\ \\ 1 cy c m <s w i r y e _a = i = n.* -t-C l s i, z c:: i i s C C (; I 5 e-m u -ti-9 e t = u i y c s c I = u e t i R' =. 0 t C e Q w c e I -= R = L.,. C i b 2 / E 1;5 m C s t t. c u C ___i_ y u t =._ : - 3 a x - - ~ ~. = = _ l c _.,,,_ _ a _-_,.=.-.__----~,%--.____-_ e = q n -~ a q g sr sc ic it tc oo

o-WnS 10D101 I0912080.:!

a k _e \\ t L W

a 4.2 HANSON'S PIPE EXPEPIMENT l l { Another excellent source of test data of blowdown fluid thrust forces 5 I is contained in a 1Cis report by Hanson(6) The experimental configuration of this pipe experiment is shown on Figure 4-7. Although experimental pressure measurements were made, PS1 to PS4, this data was not available in Reference 6. i This " pipe break" experiment was initiated by over-pressurizing a rupture disc at the exit a 1.1" ID pipe with a positive displacement pump. Tests were conducted with and without exit orifice plates of 30% and 10% of the exit pipe area. l L. 4.2.1 RELAPS-FORCE MODEL OF THE HANSON's PIPE EXPERIMENT I l The RELAPS-FORCE model of the experimental arrangement is shown on-l 1 Figure 4-8. The initial water temperature was assumed as 800 F vs. the test's 600 F to avoid early abortion of the RELAPS calculation due i 1 to a " water-property-error." This assumption shoulo not alter the J results significantly since both the density and sonic speed for both j i mediums are essentially the same. The reported rupture disc opening time of 0.35 msee was modeled with a linear characteristic opening of a RELAPS " motor valve" (MTRVLV). ) i Similar to the Edward's experiment, the verification approach will l j consist of a comparison between the test data and the RELAPS-FORCE i calculations. However, only loid cell data was available for these i j ) i 5 j

i l' comparisons. Thb RELAPS-FORCE input listing for this problem is included in Appendix B. i 4.2.2 COMPARISON BETWEEN RELAPS-FORCE CALCULATIONS AND TEST DATA, HANSON'S ( PIPE EXPERIMENT ) Figures 4-9 through 4-11 show the RELAPS-FORCE calculated forces and the test measured data for the 3 dirrerent pipe exit area experiments. The agreement between the experimental and calculated transient forces is very good with respect to magnitude with small deviatior.s in timing due to slightly high RELAP5 calculated sonic velocities. LE; I t i a [l p l.. 'i L - 4 k ! t (

q j a i 4 I f ) 4 ' J 3 I 100f X l. Vertical and Loc E Lateral Support Ceil Orffico 1 Plate 1 O l 1 l P4 h m',k ) a ] P3d P. P4. P2 j ~~ G b \\ l - 10 2.323,, ID 1.100 Rupture TW:T Disk TG i 1 x = LENoTH Or SM ALL PsPC, INCHCS WITH NO EXTENSION &llNCHES I_ WsTH EXTENStON A 28-1/ 2 INCHES WlTH EXTENSION 8 Se tNCHCS j Pe PREGSURE TRANSOUCEM j P2 IS l= 3/ 4 INCHES FROM RUPTURE OSSC Pd IS 19-1/ 4 (NCHES FROM ARE A CHANGE a WHEN NO PlPC EXTENSION WAS PRESENT, THERE WAS HC PRC# DURE TRANSD lCER ORIFICE DI AM ETEMS %

  • 39/ 64 ANO 11/32 INCH ARE USED3 AREAS ARE 30 AND !0 7. OF SM ALL plPE, THICMNESS OF ORIFICE PLATE IS 2/16 f MCH.

Onir:CE PLATE IS REMOVLD FOR STUOlES WITH FULL =OPEN B R E AM.

  1. / 4.uM 4-7.'

Ideo Nuclear Cor; oration jupe experiment. 4 6 ad 6 6 Ret

I a 4 f \\ a t k k). .j~ 0 < 4> -.t - ,1 e N ) l 4 s 0. 4f 9:3 ', A = 0 OL*/4 2. ff*,' G -C* N K x 1

  • W DNOU b

/ 2. 3 4 i (* ~1 6 9 to to IL 15 14, S* /b '7 18 19. 10 I-. l P/FE & dP l I x 1 i-I r i _.rssr u. 29 (wop,):,9 - a t 69. 7 psA ; Tj = SO'f d l._ & - 141 As,A ; Ts vo'r(s eaitp) ) .a s s.oouo er-i i I I. _. j h D at elee6* in eee e.m g j [ rssr rio. 2e(s' ops) 8-22e4.7 niA; T=so*? A o.00203 fr' J 2cra raaea, sLas As rss? Wo. n- { 'f L '7~56f'd!O.30f/Ofc A/&~4. 7 /St4 ; [ = So*,: [.; ,4 - o.oooH6 cr' 2 c,.e ~,a, u u ! :a.,s e rtze an. =<i 6 f/4U26 4-6

d4A/Sd46 P/fl EWfp4547' LLLAi f N0WA

1l1 f1 1 l .l1 jl1lli!j a, ,u e w f 11 l i 6 w e n t, 3 o i 89 y 4 1 r 0 a / 2 a V 0 i, O / N 7 i 2 u C r 1 4 N t. a I I. a 1 e S t r 1 c / a-C ,s F n T S n 0 R s 1 w- ~ C S s O e n, G r S G S I H e J T n N I C C r R C 7., S C 0 i O I i s 1 L J C I 1 G l C u. i P T 00 \\ i r,c 4 s 1 2 1 s s n N a O \\ P it i I I g I g X / I m E S R s C i E l ~ e V P c t. I e C P 2 o C S R i m, O N F O .r t S i i S f N i P i 0 e v H l L i E i i. w R i m l I. a l f 988 985 o-e 9e 9R9 .n s i 4 i m~ONjIOi~Ol 1.oM i a - - ~ t 1i u u i i i.v io n i .i f i

I 7 4, u_ m 1 n w. 0 0 0 eur 3 0 m 9 1 4 q 0 s / o V 2 msu_ O 0 0 N / 0 i-m 7 0 u 2 e 6 w C c 4 N 4 xA s e_ I 1 f D Mr a_ s S es S 1 e_ s E / a Jr e m r m T F L 1 s s m A S R I s m C s O S ~ 6 e m s S A 00 w_ S G 0 a D I J ) r T R C a s R C E w E ,s S w D M ( a_ L I ,e J e E c. g I G g i '. 1 c. l C s I e< P T 1 0 0 r. 4 3 , 0 s l 2 0 n_ 1 3 a t N P n f / t O X V E t I f S r_ l i I i i o __ i 'f R C I E P i t t t g t, g I l s o__ U V a_ r C P U E e,

s.

U C S s' 2 f 0 R r t O N -i'l 0 o, _ 'ss t e 0 4 3 F O v _ f S ~ H l S N e._ B P 0 ~~ I O l ,, f lI J r__ [ I L I s I. E r. 4 3 9 R e_ F 1 w. 0 D 00 n. L 2 'I n, - t' 7 O t 98M 9g?. o' gam g. 9o87 o E t

)
  • ON]_ tog-

~ oO I ,tomOtu 3 %uy l 3 e 2 s 3 6 l o J 3' f 0 1 f l i l

i 2 4 . i. l =. w w, I = A,t I-st S i n c3 - 1, ca 4 vo 1 s .n i m e = V at c w d z; s a7 ./ll N e I m %,a .. s - w a u .o .Z. ' e a w k. l 1 E. m u.! N O! yi i L., c = s C; m cc / }; -i Cl I e" cl w ' i ml C m t. c.D ,-s 1. a 9 l C l eM e e. a L. r. ui ~~ D... c = =i J u $\\ ~~ o 7 ~ c.DI g. 4 I C ei c w 5 o / t;) v: -i i = N --l l } r* = .i 1 e.l Ci k- ,s i 4 = s c. xl i p, = = -r ui h 1 [- .l =

  • i

+ mi ., ~ ~ \\ 1 q UI r.i \\ 5! ei t yj N / I Ci W: 1 cc -l e 1 L 's .C : z. i s O., :- i ( l i L,. z! = .s - a r,. c' "i { C. C '. + ~ e - I d' ( \\ Uj S -g s t i-S. L: C'0009 v us04 0'0002 0*O C"CCCI-c~.. { 0./.1.!.C i. I C.G .T...l..T '0.a c. Ih (*Si)

s't I

a ."g .M

  • 4 e

.= IN Ib,,46

I. i

5.0 CONCLUSION

The comparisons beween RELAPS-FORCE calculated loads and test data discussed in Sections 3 and 4 indicate that RELAPS-FORCE can provide good engineering estimates of hydrodynamic piping forces produced by fluid transients. It should be indicated that RELAPS-FORCE simply ) L performs the required computations to calculate the hydrodynamic force histories from RELAPS output parameters and thus the accuracy of the resulting forcing functions is greatly dependent on the RELAPS modeling experience of the analyst. I L L 5 = h

e \\ i

6.0 REFERENCES

1. RELAP-FORCE User's Guide, November 1983, University Computing Co.

j ul l

2. Ransom, V. H. et. a?, RELAPS/ MOD 1 Code Manual, Vols. 1 and 2, EG&G Idaho, NUREG/CR-1826, March 1981.
3. EPRI/C-E PWR Safety and Relief Valve Test Program, Summary Program I

Description, EPRI, 1980. l!

4. A. J. Wheeler and E. A. Siegel, " Measurements of Piping Forces in a Safety Valve Discharge Line", ASME Paper No. 82-WA/NE-8.
5. A. R. Edwards and T.

P'. O'Brien, "Scudies of Phenomena Connected with the Depressurization of Water Reactors," Journal of the British ] 4 Energy Society, April 1970, Vol. 9, pp.125-135.

6. G. H. Hanson, "Subcooled-Blowdown Forces on Reactor-System Components: Calculational Method and Experimental Confirmation,"

hL IN-1354, June 1970. -r b i o ' le L

[ ,j S ', g I 1 i { l - t ..g. I s. i l 1 f ~ f I b i. 0* MEAsuuustes'op p,Fl4G Fo cce e -A SAfi_v IN VDE-itso%cce ~ 1. i q q - - .l N _.~ L L o .L 'm f ] . j q I 4

l ,r j i THE AMERICAN SOCIETY OF MECHANICAL EN!!NEERS 82-WA/NE-8 j g 345 E.47 $L, New York. N.Y.10017 N socmy e,wn not tw e consaw sor emiernems or comme so ne.o en smoore e, en I owouwon e meetmos of uw socmy or of no oi.w.ons or s csons, or annise an as N-put*catena. Discussen.s pnmoo oney it tre paow w ouchoneo m an ASME Jaumat n o ior e,n . econcaten u.on -en. run emon enowo e. o, a e Aswg. itw Teenmcai om..on..no irm avuwna eso.<3 are emo emen Asus ser an= inanow 4ttef tne awetmo. l Pnne.omusA.. f MEA.u'REMENTS OF PIP!NG FORCES IN A SAFETY VALVE D!$ CHARGE LINE A.J. Wheeler Project Manager Electric Power Research Institute Palo Alto, California i E.A. Siegel Principal Nuclear Engineer ~ Combustion Engineering, Inc. 1 Windsor, Connecticut i i t ABSTRACT 1 nected to the pressurizer such that the

  • inlet to the Measurements were made of support reactions to valve is exposed only to steam. In another conson i

trensient hydrodynamic forces on the discharge line of design, the portion of the pipe imediately upstream i L a nuclear reactor safety valve test facility.. Data of the valve contains licuid water. This design, I is presented for three different test conditions - commonly called a loop seal design (Figure 2). is used two with upstream loop seals and one with only steam. to minimise leakage through the valve seat. When the i Sufficient information is provided to permit verifi. valve on a loop seal design t pens, the water is pro- { cation / development of hydrodynamic force predictive pelled down the discharge line ahead of the steam. L models. Due to its high density, the water produces signifi Cantly higher loads than steam alone. The EPRI pro-INTRODUCTION gram obtained piping load data from configurations both with and without loop seals. This paper presents For workee safety and operational reasons, the data for three tests - an all steam test and two loop 4" seal tests. steam discharge of nuclear reactor safety or relief valves is normally routed througe pipes to a tank of water which quenches the steam. When the valves open, Q m. the acceleration of the fluid in the discharge pipe ,m causes substantial transient loadings which must be restrained with suitable piping supports. Estima tes of the transient loadings are reautred in order to [g design these supports, i me Although analytical me'thods to predict these loads have been available for some time, the data E base to benchmark the methods has not been extensive. and significant uncertainty has existed in predicted loads. As part of a recent safety and relief valve j test program for pressurited water reactors (PWR's) N managed by the Electric Power Research Institute (EPRI) and spcasored by the utility owners of pres. I surized water reactors, an experimental discharge k i* line was instrumented with load cells at the supports to extend the data base. This paper documents key punenn tests performed with the Crosby 6M6 safety valve, the most common valve used on PWR's. FIGURE 1 - SKETCH OF PWR L In the pressurited water reactors design, the PRES $URIZER AND SAFETY VALVE reactor safety and relief valves are connected to the pressurt2er, a pressure vessel containing both water and steam which is 'used to control system pressure (Figure 1). In certain transients, steam is released through the safety or relief valves to limit the sys-tem pressures. In some designs, the valves are con.

s 1 four segments is supported at one'end of that segment ' in the axial direction. A design goal for the test facility was to minimize or eliminate load path re-dundancy for all digw ge piping loads. This goal a i has been attained by p:w iding axial pipe supports which are very stiff compared to alternate load paths. L otstuast The elimination of load path redundundancy has been su g confirmed by dynamic analyses as part of the overall a design effort. []V Each segment of the pipe was supported with two - load cells, arranged in parallel. The net axial load 5 on each segment is the sum of two load cell measure-l ments. Data was recorded with a digital data acquisi-f tion system which sampled the load cells at a rate of Z 1000 samples /second to allow resolution of vp to 200 g4 HZ. The measurements are accurate to 12200 N.- 3 Static pressures were measured at several down. stream locations three of which are presented here -. PT09, pTIO and pTll. These instruments were also FIGURE 2 - PWR LOOP SEAL DESIGN sampled at 1000 samples /second to allow resolution of frecuencies up to 200 HZ. The accuracy of these mea-The primary objective of this paper is to make surements is + 28 kPa t however, the sensing times. which are about one meter long and filled with cold - data available to individuals developing or. verify.- water, might tend to f educe the accuracy at high fre-ing models to predict piping loads. Quencies. TEST FACILITY Three other important measurements-are valve flow. The test facility (Figure 3) consists of a four , rate. valve stem position and upstream reservoir tank segment discharge line attached to a spring-loaded pressure. The valve flowrate was measured with a safety valve. In all cases presented here, the venturi which is only accurate under steady or close 1 piping upstream of the valve was a loop-seal design; to steady conditions. In the test facility these con. however, the loop seal water was drained for the all-ditions occur 4 few seconds after the valve has open-ed. This measurement is accurate to about + 67. of steam tests. reading. The valve stem position was measured direct. ly with a finear velocity and displacement transducer. 'm newn This instrument. accurate to + 0.13 mm, was also samp1-l "' "e ed at 1000 samples /second. tee upstream vessel pres-8 'sure presented here is pT52, an instrument sampled at lJ h u, N [ no, I 100 samoles/second to allow resolution of frequencies [ p ia. up to 20 HZ with an accuracy of 169 kPa. nmei -g' For loco-seal tests. the temperature of the 1000 k.j ' 8' 8n eal water is significant. ' If the loop-seal tempera-Li ? I ture is high enough, the water will flash as it pas-L ses through the valve. reducing the measured down-l n stream loads appreciably. Two thermocouples were i "7" utilized to measure loop-seal fluid temperature direct-i ly. In addition. several thermocouples were attach-~ ' j 'P**"" ene ed outside'the pipe to measure wall temperature. It I is expected that these measurements can be used to de-i w a s p % "M",,M, duce the fluid temperature axial distribution. ,I b d84F STRUCTURAL EFFECTS IN THE MEASURED LOADS [ **um.mu. w o / When any structure is subjected to dynamic loads. \\w "$n,b,, it will rescond in a manner that may either amplify I g \\ omina or diminish the applied dynamic loading. This aspect IK as.r l of dynamic response characteristics of a structural y% y i support system is referred to as transmissibility, i %eQ8' Transmissib111ty is defined as the ratio of the sup. ( i n,.. port load to the applied load. The magnitude of this o l "' 85 ratio is dependent on the relationship of the cyclic - N frecuency of the applied load and the natural frecuency of the structure. For an infinitely rigid structure. { this ratio is unity. For structures with finite stiff h.j FIGURE 3 - TEST FACILITY (1 ft.=0.3048m) nesses. however, this ratio can be significantly above Jj The hydraulic loads act in the axial direction in l each of the four disenarge pipe segments. Each of the 2 (. t !u l

,n. i ~l i Verification or evaluation of a fluid model for g, predicting hydrodynamic loads uses a process wnich is 4 similar to the application of the same code for power g, plant design. First, the fluid code is used to predict s is n the hydrodynamic loading on the inside of the pipe. m ,, N Next, the hydrodynamic loadifigs are used as forcing. n function inputs to a transient structural model of -g i tre piping support system. In the case of plant _L e I design, the resulting support loads are used to design i the supports (probably with structural reanalysis). (g,,, p ' sa l J, In a verification effort, the support loads are com-pared to the test data to evaluate model adequacy. g The load cell instruments do not measure the 4' E /"*'""" fluid loads directly but rather the response of the -/ piping-support system structure. Every attempt was 7, j l made to construct the facility so that the supports ] l were very stiff so that the load cell measurements I were as close as practical to the fluid forces. I'. Nevertheless it is necessary to include a mJdel of i a the structure to fully validate fluid loading computer E, I codes. In order to design the test facility, a detailed .i' structural model of the wnole facility was developed. m ' f ~* 5 i l Based upon test data which gave information about the ? natural frequency characteristics of the facility. 3 i the structural model was adjusted to represent the at 6 ais as-built facility. However, not only is that model much more elaborate than is required to evaluate um-ij disenarge piping loads, but a detailed description L of the model is beyond the scope of the present paper. 6 n.n sw i As a result, a simplified structural model based on the more complex model has been developed. This FIGURE 4 - PRESSURE VESSEL. SUPPORT SKIRT jl ) model consists of the reservoir pressure vessel, the AND VALVE INLET P! PING f 1, valve the discharge piping and the piping supports. (DIMENSIONS IN INCHES, [ The reovired dimensions for the tank and valve is (1 INCHa25.4 an) g; shown in Figure 4 Eact. of the piping supports is we eru tones I represented by a spring or springs as shown in Figure an an. nex no. l 5. The second, third and fourth seriient supports a es i )k { attach directly to the concrete basemat. The first ry g segment supports are attached to a beam structure n i mm,m,, wer% which in turn is attached to the reservoir pressure j'i .? vessel. For structural model purposes, the beam u n d o w ie stinuss no tum s Si jgj structure mass is approximately 9070.0 kg and located 3 4' at the top of the pressure vessel. The flexibility r jgj 8 i s.ru d i,Ml4,,y,, of the beam structure is incorporated in the stiff-i eae ness of springs 1 to 2 and 3 to 4 in Figure 5. The 'a o.es tresrc=i vessel in turn is cantilevered from the basemat. It )

  • is%i5g*

4 is considered necessary to model the pressure vessel 3 to.o eman M" ssion Mim and skirt stiffness and mass in order to provide a il ta s m o e minimum system model. gsn - aspuum 18 u saouno e 3 g;, TEST RESULTS The results of three representative tests are re-70 .ts / la q ported here. These tests are distinguished primarily I by the inlet condition to the valve. The tests pre-9 11 f sented are: ( xswu xwww w s 3 Steam only - Test 1411 FIGURE $ - STIFFNESS OF PIPING SUPPORTS I Steam with a cold loop seal - Test 908 (1 lbf/in=0.175 N/mm) Steam with a hot loop seal - Test 917 % I f, ' All of these tests were performed with a valve i i manufactured by Crosby Valve and Gage Company, model [f-HB.BP.86. It has six inen (152 mm) inlet and disenerge flan 9es The valve has a nonle area of 2.35 x 10*3 m4 ano a.n ASME rated flow of 191,615 kg/hr with 17750 kPa saturated steam. 3 ~~

'1 n t I4 Test 1411 Figures 8 through 11 present the measured forces This test was performed with the loop.ssal por-on each of the four pipe segments. The peak forces tion of the inlet piping drained of all 11ould so the observed on segments 1 through 4 are 11565 N, 28912 N, valve was exposed to a steam only inlet condition. 53.376 N and 66.720 N respectively. The peak forces Prior to the test. the valve was leaking slightly, on segments 3 and 4 are somewhat delayed. These Thig appeared to heat the downstream pipe walls to peaks are thought to be caused by condensate (result. ing from pre test steam leakage) striking the elbow 100 C and replace the air with steam. The quality just upstream of the pipe discharge to atmosphere, of the downstream steam is unknown. The pressure history upstream of the safety valve is shown in Figure 6. The safety valve popped open g$.!l.ll,. ..~l. s-when the tank pressure reached 2410 psia. The valve '~ j, i stem position history is shown in Figure 7 After the y i. l ini.tial transient had subsided, the Quasi. steady flow i a through the valve was 213.145 kg/hr wnen the tank [ ~ i j I,, I i preg 3ure was 18234 kPa. gg g1) ( g N y f a.g. ..h.... j_ - { l 1r g y _ __...a. = b 3,i,1 E p.\\. g. { g I I l i e -' 't j j i e g l j gf l [ .y. . _K i j g g N 23.2s 23.44 23.26 23.92 E N 3 l stCoNE l 2 .} ' ~ '. '.,7"T . 7.'.' .. FIGURE 8. TEST 1411 SEGMENT 1 FORCE HISTORY ~- f = 3 (1 lbf=4.448 N) E E I ,,,_f.. a. _ ~ 2o.o 2s.o 3a.o '4.0 srcomm i FIGURE 6 - UPSMAM RESERV0IR PRESSURE HISTORY (1 psia =G.894 kPa) ) e g =J.~r:j,...::t:.7_l,f 2. s 1--. _,. 3 (, O f-tl._.5 _.. f~ qlt::: ...I i i j j i l re i-._ i$ [. U [ y'. [ y. 1-E g " " '~. l. Z,... s i- ~*~ ~* ~j"~'!. ~. !I 'i i i.- g y'* j,, -~ "- ;~;-* ~." ..* *O. J.:J* t:;-~. I.. )' i, i = i ;.r.1 .f. I i 4* h --- 1 ;; : l.:.. . : :. ). .j E' ~ h ' f 'N -s _.L........._., { d 23.2a 23.44 23.76 23.92 L 23.24 23.32 . 23.40 23.4a stconos stCcNc5 FIGURE 7 TEST 1411 VALVE STEM POSITION. ZE36 FIGURE 9 - TEST 1411 SEGMENT 2 FORCE HISTORY (1 inch =25.4 mm) (1 lbf=4.448 N) Ii (.-' 4 \\ V' -4

n I i 1 .= l 14 g .. i. + .j. . g. is -l ~ e .j i ~. - ga _L m .t .. {_. E 3.. I 2 l i ..%.4-.. ()<1 --- n ,c.., t E: l l, g j '~ l w. -- E ~ ~J1.'-~ '1 ~ s \\ i = v v 1 a 1 g i ~ 5 \\ l 'e i e' 23.2s 23.44 23.6o 23.76 d l 'g . src>cs I.j '23.2: 23.44 23.so 23.75 pygJ9E 12 - TEST 1411 STATIC PRESSURE' TAP stcmos PTC9 RESPONSE FIGURE 10 - TEST 1811 SEGMENT 3 FORCE HISTORY (1 lbf=4.448 N) R i 3 j I 3 8 e! f. E b'!!N 1 g b. = I r i ..)..g! - e-g i .a 4_.. r.. } 3_ l. J r j; g= y 7

  • c-l j g; p

p._ _., p __. i j --.~4_ }. -g j i E 4.-. ; _.._(. E i g, t i T_- gi i_.... _ _._;7 - q... _. 5.. _,p. -. y stconos. g i .-_. %9a ;-.m,. FIGURE 13 - TEST 1411 STATIC PRESSURE TAP PT10 RESPONSE = k 23.28 23.44 23.60 23.78 (1 psia =6.894 kPa)- ] stconos 2 FIGURE 11 - TEST 1411 SEGMENT 4 FORCE HISTORY I I I 'b 17" (1 lbf=4,448 N) r Although not a measure of force, static pressure 4 f' data is also useful to validate analytical models of j, 2 picing hydrodynamics. Preature data taken at taps g l l 1 l l, PT09. PT10 and PT11 are presented in Figures 12 g i througn 14 Ten seconds after the valve popped open a i and the flow was quasi-steady, the tank pretsure was ll: j i 16994 kPa and these three pressure taps ave read. I L - i g ings of 1551, 738 and 738 kPa respective 1 (not shown [I j ij ( on the Figures). i, ? E ).- '~'--- i, ! Inis test was performed wi6h the loop seal pip-E Test 908 3 ing filled to the

  • top with cold water. The tempera-
  • =

8 ture measurements are presented in Figure 15. For 23.2a 23.44 23.50 2m l this test (but not for 917 or 1411) a H.3 mm diameter 33C"U8 I orifice was installed in the 12* pipe,just upstream of the discharge to atmosphere. The downstream pip-ing was at 15 38*C prior to the test. FIGURE 14 - TEST 1411 STATIC PRESSURE TAP Pill RESPONSE (1 psia =6.894 kPa) S

a e a v e e a i d I =

ei

. - - = " ' - d 2.i'~." 4_ ]~ ! i.

  1. ---Q;

_n_

  • =

e

g*

. )l e u' 9 m o

r. -

.n E. y ; ii, J ~

p

_4. s. .l us. us.n 1 E l* w. m.n E ,_t,__ ~ (g t i t w. m.r, i ,.~. ! ) uns m6 u"'. m".'n" E s y / ( p nn ^ ""-.h m'n' *', in. O i x,, .q s, m. -;; a -y4 + .- l =

~1.~1 C FI FIGURE 15 - TEST 908 TEMPERATURE PROFILE E

C ' ' ~ ~ ~ ' ~ ~ ~ IN LOOP SEAL ~~~ i ~ t.'.'"~ L )} ~~ ed;g; i {~ '.]_ (tc (tf.32/1.8) Ej d a The tank pressure history is presented in ~ 32.00 32.so Figure 16. The valve. stem position data (Figure 17) n.so u,4o indicates that the valve did not simply pop open as in saues test 1411 but instead oscillated for about 0.6 seconds, FIGURE 17 - TEST 908 YALVE STEM POSITION ZE17 remained partially open for about 0.3 seconds and then (1 inch =25.4 mm) popped fully open. This type of behavior was observed on most of the spring loaded safety valve loop seal tests run during the EPRI program. The flowrate was observed to be 210.900 kg/hr when the tank pressure %'t was 18545 kPa psia. In this and test 917, the flow. k / l l I 1 rate is the steam flow in the aussi'. steady condition W.;- ' ts i p after the loop seal had cleared the valve. ga y_, j { j v' gi, y ..s !. .i k i )- f 2 i g f

  • ~

.I N. gg y y ~ g --,l. l g v. ] .I ) s' a l j g g j g r- \\ 84 g[I ].- w.15 x.23 x. 31 x.as j A

  • ~,"~~~

stCONDs El i FIGURE 18. TEST 908 SEGMLNT 1 FORCE HISTORY x 1 (1 lbf=4.448 N) j ~ l so.o sa.o es.o 64.o 4 - -- r. (i stcoNm ~ - J ~. ~7 t.".~ ,l '. ~ -~ r " ~ ~ ~ q~ FIGURE 16. TEST 908 UPSTREAf4 RESERVOIR .f. At O i. --A-9 * ~ 4 '%' PRESSURE ptSTORY H ( (1 psia =u.894 kPa) {q l ( _,. / The observed forces on each segment are shown g ..L -L.._... 1, v i l 'i

  • in Fi'gures 18
21. The observed peak forces on seg.

[ - - * - i - - i-l y - !.. 1 ments 1 through 4 are 97,856 N,800,640 N. 266,880 N y .-...L. l l and 88.960 N. The large 800,640 N load appears to be s - i - ~ h i i ~ ll 4 caused Dy a relatively intact water slug striking the E --4---!-* t - ' g ig second elbow. No such large load is observed at the E .g third elbow - the slug may have partially dispersed i i i .[. by the time it reaches that point. On the other hand, 5 I a larDe load at elbow three may be masked by a combi. E --. i - i i L I 2 nation of the structural softness of the segment 3 4 supports and the discharge orifice and short length

  • i l

of segment 4 M.15 N.t3 N. 31 p. 39 sfCONE FIGURE 19. TEST 908 SEGMENT 2 FORCE HISTORY (1 lbf =4.440 N) 6 \\ I m

[. ~ . J,. 1 ~ '(. 11 c'. -J

_.+ _4.__ _t l

a: . _.. _ c-N v- - > --l.."d.'* ' [' M ) E

  • ~.T. *~

E I i t'- fI1. I a i g r v, [ l J' l t: l* g k : ;. h -l . S' 4..' 3. z., _ - __ _v...,. _,. 4. 4 s i 4.1 s 34.23

34. 31 M. 39 l

g } s:co m j { M.15 M.23 34.31 M.38 FIGURE 22 - TEST 908 PRESSURE TAP PT09 RESPONSE steps (1 psia =6.894 kPa) i j FIGURE 20 - TEST 908 SEGMENT 3 FORCE HISTORY (1 lbf=4.448 N)

  • g lj.j!

! -- t.- 3 g t '"""* k "* **** f h- = ....l h M, ~-[....l d "g -- - 4 d' E_ .i_. ..._I,. e-g !.i..-[. g 3._r.

.. _ p _

i y y .. j.. j 4_ ..j . ; A.. -.. QJ. 4. .p t .L. - t );. g o. ...i... m 3 J A-A_--i i. .-t l --i Q* i y.$ "~ E M 15 j M.23

34. 31 M.39

..l. .r -- T,.~ .~ as ,3 g ....,.m l E y }I - _4 -- p (1 psia =6.894 kPa) t-FIGURE 23 - TEST 908 PRESSURE TAP PT10 RESPONSE t- -+-- t gg h. 2-9 ' f.... y \\. .7..-,... M.23 M. 31 M.39 E M.15 (j stCWS .g 3 } 5 FIGURE 21 - TEST 908 SEGMENT 4 FORCE HISTORY 3 . 'I i (1 lbf=4.448 N) g The static p' essure measurements for PT09. PT10 h8 I l and PT11 are shori in Figures 22 - 24 Not shown on the figures, whe:. the system had been flowing for E about 10 se:onds and the pressures are cuasi-steady. E i _wf g l.l these pressures rr. ached valu25 of 4481., 4481. and j l* g 4550. kPa when the tant pressure was 16,959 kPa. 3o 34.1 5 M.23 M.31 34.39 i. Test 917 3gggg Inis test was similar to test 908 except that the loep seal volume was filled with fairly hot (1770C) water prior to the test. It was expected that this FIGURE 24 - TEST 908 PRESSURE TAP PT11 RESPONSE would reduce discharge piping loads since flashing of (1 psta=6.89 kPa) I the licuid would disperse the downstream water slug. The temperature measurements on this slug are shown in Figure 25. The discharge ciping was at amotent Figure 26 shows the tank pressure history. temperature (10 380C) prior to this test. The valve Figure 27. showing the stem position, indicates that i flowrate was observed to be 204,075 kg/hr when the the valve oscillated much the same as in test 908. tank pressure was 18,821 kPa. s 4 4

j 2 e. }) ~ 4. The segment leads for this test are presented 'in ] Figures 28 - 31., The observed peak loads are 31,136 N, ,i 66,720 N, 77.840 and 65.386 N on segments I through l1 [ '",$,

4. respectively. These represent significant'reauc.

d.1 tions in loading relative to test 908, particularly j m S m 9 m ua. m.r on segment 2. m n re ,o,l I, m us. nre g'Q fj us. m.re us e W. m.r' w Ij W.MLW w. Mr.r' g. { w / ( = eI w '- g g M, s 'm. wr' 2g . 1 J tus. ner h J lj f6h.- l -J i e FIGURE 25 - TEST 917 LOOP SEAL TEMPERATURE PROFILE g gj M"}l 'l (t = (t.32)/1.8) i g f s f I l ,I l i e i 3.

b s.

l l l l, l !, E ~ ts.io is.20 1s.so 1s.40 2 l stTo'Nos ~ lt g - f; A g 'l' {'j FIGURE 28 - TEST 917 SEGMENT 1 LOAD HISTORY )' (1 1 bf=4.448 N) .j l i i .p J< 3 s ... c. _A[. .....i.. i . -. p., _.i.. 4j g t 1 s-j _.. y + ...... ;... i. ll ) I g

E g ]..y
.T 7: Tr

{fl1)c g/V., --. II*'+h-~-'!~~~ ( gl s. 12.0 22.0 32.0 42.o V. o e.1 " 4' stconos E i . q.._.. ( -. p j 'l FIGURE 26 - TEST 917 UPSTREAM EISERYOIR 3 4 _..q _, f: ' Ap ' l PRESSURE HISTORY E l-i (1 psia =6.894 kPa) i i llV ._ _i._. "j ..i..p.,... 4,.. '. . c. ij. gg .. p.. I 9- = .__4~ 4.__ _. j .s... ....m._. g 'F-*~' t ),:_- 18.10 18.20 14.30 1s.40 g 7[ stconos ia j".

  • f 2,,

j.. FIGURE 29 - TEST 917 SEGMENT 2 LOAD HISTORY e: * {.. .(1 lbf=4.448 N) g -I r The pressures at PT09 and PTIO are shown in l[

  • t:

s Figures 32 and 33. Ten seconds after the start of E the transient, these pressures had values of.1585 i . " I *, and 745 kPa when the tank pressure was 17,510 kPa. E~g F ] These Quasi-steady pressure measurements are not shown U

===i "-~+'-- g on the figures. it )' b hg, 16.80 17.60 18.40 a 1 s!CONDs (,, FIGURE 27 - TEST 917 VALVE STEM POSITION HISTORY (1 in=25.4 mm) 8 \\ I 4 u>

') %g R g ~ I '-l-l w. -j; l (" g .g. f / I_ u u e 7F am + t

l-i.kV l

/ i. l !-. c -j ~.. h* L i y .j i J l $2 II i i i E I E j i 5 I i i 18.10 14.20 Is.30 1s.40 stconos is.1o 1s.2o ts.so 1s.40 FIGURE 30 - TEST 917 SEGMENT 3 FORCE HISTORY stcone (1 lbf=4.448 N) l FIGURE 33 TEST 917 STATIC PRESSURE TAP g PT10 RESPONSE 1 (1 psia =6.894 kPa) lii j* I.. - W AAk-CONCLUSIONS The following conclusions were reached in this effort: )2 -. F 1. These test results provide a data base which 5. +--~t-can be used to benchmark fluid codes to I* predict piping hydraulic loads. k b 2. Cold loop seal designs can have substantially j; higher loads than steam only designs. ~; 9 ao ~- t'*- 9 ( is.lo '-"'. 30 -t-

  • -t' 3.

Heating

  • loop. seal liquid into the range 300 350 F can substantially reduce peak 18.20 18 1s.4o piping loads.

stem C FIGURE 31. TEST 917 SEGMENT 4 FORCE HISTORY 4 Accumulated condensate (from leaking valves) Ll (1 lbf=4.448 N) in inadequately downward sloping discharge lines may produce higher loads than would be expected from a steam only discharge a nalysis. al ACKNOWLEDGEMENTS y s E* t The authors would like to thank the staff of J

){

Combustion Engineering, Windsor, Connecticut, who i l M ll ~ designed and operated the test facility. Special thanks go to Mr. S. Austin for his efforts to modify i' E l the system structural model. u "' 2 F The authors also thank members of the EPRI staff .l. who participated in the preparation of this paper. y

i. Di' l-
  • ' e i

18.10 1s.20 1 8.30 18.4o sEcoMos FIGURE 32 - TEST 917 STATIC PRESSURE TAP i' PT09 RESPONSE (1 psia =6.894 kPa) 4 s 6

1 ) J g I l i 4 e lI l I b APFE.@ t y, 3 dae:r-Rect mvT ct6 ri46s 1-l L w w + i l 's I

, s. t 4 I r I l 1 l P ee64*sim9sitets asactea toss e, soo6aar amas, sis asessam ease i kl$fles Se im*UT Data est Cast I 6 Out$ Art.rcuGE 34pa65 PaggiEm h/gfisam a m.E441sA5 R4F/I. le 2 9etelee NEW TRAaSuf 1 0000000 eue a 9000197 BIIIIBM BRAT 4&M 1 8 900039) et i e*T ?.eoe i 1 SGS See 0 00043et e telesee l' 7 0 0 0 0 3.F3 p 30490eg I 0003 3,. e.ee { e

  1. 40e304 e teletee

.i s .oses3Ts-e 6 e.m a,s.e s o.s e e i u 6c t .#.30. , 4.ee 00 tt 940930, M*L9.J 00000 la cooolei TIME e EE 4966 e e. a l e. 9410000 fama e4amCM ) t .et##et e i,a l selesoi e la s.o se.ss e, 30. ae e. e. 90 I eenete, 3va.teee 1 t. is e.2000 nvo a seatsva l is ocaciee oeistosos 003000000. Joes e e. e19e Se oesores e e. e. stee.e. l si eesteet stee n een..i. 33 tesetel.3040 e l to oese3et t e I an osa6Toi o..i .es..a F S e6344e1 1 See S. 4 I t,S eeseeel e is 9 is,9 e.e s 24 993590i se 4 10 eesttet 9000 3 39 eeiltet 1 teee e 9 e 4 4 JE OGJIJon e e g a 33 Deseeee TAhE?Det skstage 35 0040109 eeteleece #4000060e 9004 e e 6904 Je 9940301 0 9 0 eeseeee ei9. 1 l Si es ei e i se ee.6049 i l J7 90BCIG4 .3905 & 3a esseses i. s 39 ettetet e.

  • ete 5 ete

.S se essesel 1.5+4 e. E et e940001 9.10.0.14,9 S.,0. 3 0.013,0.993.3 c..e,e 49 esteees ce t 4J 9051,91 lese f ee.e 44 e96ttet 3 .e 6. e

e. 4 et cettSet e e e 4

et se80000 P&YETEE 426hJb4 et 9000996 003e10000 Seteeee## e. e 4. Glee de ettetet e e e 9 45 OG100Ge P5 TUTEE 5NEkeWa Se ettetel eeS99909e e000ee000 S. 8. 4. flee j St cesetet ee e e b 43 005 000 TEETGPE EBEhdW2 53 0044500 essete### 96eeeeeee G. 9. S. flee te eeeetet eo e 6 55 000 000 Tag 34456p $6 Se00441 e o I w .e 6. .i..s vei. .. eve. 6ees se ca 6.., .G.6, sis e...... Of seestet. sees 1. e. 4. see. al. l.See e se la estette 9 1000 e

  • E5 0100000 FIPRE FIPE Se eleceet 4 Of eteetet feet a 52 010G2OI 1. 4 53 ettetet e9e. 3 e..e 44 09000e9 t Sed e a I

sa S. i e..T.o i osoo .s.,e. 1 e.14e,0.140,3 e.,0..a f t e., t.9999 9000 .eisi,.i ett.ise 2 ..... i.. e. 4 t. De.,e...e 3.. e. e.e.e e.iir..... c. e si.. ,u, 31.. e. e s. t.o e4 .. e 9115304 ,l.e 60s.. 8i30004 90.,.6 .t 000* e. e e et .,,.n 2 ,n. 09:03.e.1 t. ..., i. 1 6 1 L Eld,UQ. $* l MAM40E SAMPLE PCOTLIM 39uT *) RELA /6/4DP1 CYCLL A Av/ i L L

s O is I e attaes.eemcs esessou is. 3 Locat assestates set, mov, isas ease t I$ I 61 sties se ineve esta een case i .*7 saEbersara gamebg rapp6gs s.m ;a 1563 utr/s is seee..e ee.u;g9maesst s ._ s eees.ei eve j e espoiez paiTgym pp3rian a seesses.es i.e.1 9 e*e 1 i see see e e eteetet e eetooee T 0 0D O 3 F 3940eOe e seesses e seseeee seee s 4,eo.~.e.o... l e oevoet ..so .1 r e i. ti eeeese,s metows soeeese 19 eteese esetowJ Seeee## to este30s eestew 933 la coopact rcusse 7ei

  • e seessie eestew 9es is e9003:1 russse 754 tt seeests esacas see is neeesis essert see 1

is sooossi Tims e ss ev66 s e. 6 to eenseee taea saaecu j to oeteees e as oesoisi s.7s e.e so.ss o. se. i.e e. o. se 33 essesse t inee. t. Se esteoee waneessa sea 6 sun as ocasioi seieisooo e375T5 Tee.aeos o. e sies to oesases ee s.e t* oesocoe etees etee 35 De3De9i e se essenes. sees a __ s e oese9et

  • a ai eTR15'i e..i se...

.i t eeneset i.e.e e. a 33 esseees e to.o to e e.e.3 as emaines es a s e. oes t.e n t,s ee.e s s essi.. .ee e. e e. ai poziaci s. e. s. a sa esseeee taestsee sastsva se so***es esseteoee eeseeeees toes e e esee l[ 80 094G391 8 G. 9. 9 si sesocoe. elette #1ee J aes ae s. s f as sa eeneioT*.;oes e s as seseses e, a.ee en eesosee o e .9 .e6.s en menosoi i.a s o. a at esseses e.te,s.es 1 e..e.,2 e.et2,s.ets.3 e.,e ,e se esesees se e ...ii., ,i..e se essizei tooe.e t.

e. e, e e

ae eesesee o e e a na coscoes paierss ans6swa sa oeseies esseteese esseeeeee 6

e. e. flee

_sa sea s s e.O e oe o e 55 e870e FuTUTBE Bu66.us te setetet eeteteese seeeeeeee e, e. e. stee l <4 etta#6*esagt stAslee to s3LSSA? AsseClatts 188. est. 1e83 Ogsg a 3 et es te ss.i e,,e,,. e. e. se e eee. eee vest.,vs t se e etsi cesesseee siescooco c. e, e. ines i Se 4,de999 9 e. e. e. se eeeeeee Teg enatta j" sa eIITeoi o es seteten 3ese 1. e. e. te at t.5.e e. ** 4e estetse 1 seee e o El piOO9e9 FIF5 e.is.et. e..F I F E E I. : se e, e.. e. sees. e..... e: se eteeses ese.,3 e.,a 9e eteeeet i s.e e a 71 OI.T5si s.,0.,i 0 140.e.849.a 9..e,.a 93 esotest es a 93 eiesSee seee s le Glei3pi, 19e9.e i 9 e 4 9s seeiset e. e, e 3 . 90 etteees seteatmet 96Lvt Tu mission oiosicose esaooesos e e e esee to eteeses e o e. e. 9e ettesee toest v SG c150395 48: 4I esteete atues vueeggk ts estoies to e to e o e o e o e es 5a 91J92OO 3 tt 1a 9 t. pp se e,e.e s e t. 1..e e t,. es eee tes i.e..ete r.,. es rr.e.. a.i..... ,no,.. 3. t ne ) e e. a e .an.o.r.s r. n c e.,e, e oe,. eseems.. q' s e, e ,eise e..rr.r ete e ee c e,so.n.s. j e ...s. . e e. >, *. u.. 1 ... e m......ee. n.....e.. 6 .i. ee so.eees.. 1 e. e. ., e.. e ee #

u. m.a.

o. .i. .e ee,e. o,. esesee ee ee.e case o ! e, ...e,...e ete,,,em 4-. 1 . i,> e......... e.. >...... s e s,i e., o e. s -. e,,........... e e ,1, cae. e. e i i.34

  • 560wDUom vuu63 Empus 603 Desseece e steDeseo coe d

q 007 se340see * $900e00e 904 7"d ( j f:tGuCE B -2 : E E L.A95 - FO CI SAM?LE. WCEG M !@m~ } P.O api-FOC't ft.L*.N Frm

,,A 8 a e f I' 4 6 Q J l e ettgelet nts v3R8100 14

  • SILete? 4A5023Afts tet. Def. 6843 blSTtut et leegt este ##8 $4SE 1

east t j! s stenaisu zur Tsar ne sesi w.m.sasssas nerfi se 1., e fee new taaeser 3 tot sue .e ,l e 3 55 4.5TIEM ees. .e SRII&E.h 3.e l , 9.4 0 049 to 940s tee. 9 . et i asi reasse vea 6 303 eesttw 143 i e See esserw 90s le Joe ree6Es see 11 348 #eetst est

  1. 1 109 e seteeee

!l- .es.4004 ia aos a Joiseee i. se

  1. 33 t.

29 e .e is Jin a Desecco 6 i IT St3 # GB60000 og 393 9 494eese la JI4 TEMP 101000e Se StS T3Me 3P10000 ft ses teus 3f90000 23 al YEMs 5 G 3 e 63' 33 39.i 954 a 3e,..c i. 39 e.e, 000004 e. ) 2, ano F e.. .0008e. att 96fA85A e l __ 2 9 set 9fut e St SULL eee L \\ as te3 TIMs e Es sW66 e .e h le i Gottete fASE,,?Mett.e6 __ 3 0 estetet,e ...e ee. e ..e e t, ese.'........ 3 Ji scieJoe 3 33 eetetet e.,94te.,l.e 8.8.3094..t.0 ___ 3 3 0990ees terfestet settJue an eezesei i esseceees.se3eeeees.o.e.e.sa.i.e oese 34 Sefetes 1.0. 4,.e. - Se esteeee efeffe efet 47 SeIcool JJ 38 0830109 9.2831.9% 0 151. 19 0.1398,39 e.83848,32 Se ette$st e 3918 tt e Sees te e 4449,to e attie tg e of80 39 3 4999 S1 """'a e seJeees *es.se le +59.8.d4

  • ss,e,J3 et eeSeset 9.Sae.e.e,38 ST eoleeos e e.e e<tf G 194.0 116,45 e e.

14 e 198.4.936.28 4 0.0.e.36 43 eeJteel ee 43 e Desitet ,,,,,,e_.e tot,te 1996 10 s e..ee.' e,,e 1940,3% 40stvet .e 9.ss es e5JiJee ,a 4T te31391 0.9.9.6,0.6,39 44 4e40e00 ff?'L' vetof j"' 4 e seesses sp a c i oec e, e e s e ecoce, e. e a ss e. e, s. o. e. e i os e te 404e309 f.e.e.e.e.e.S St eteesee wfe9L9 53 0e493e ses.5ea ss.sg7,e.e.ase 33 6956040 ele 84WT eleE ._ e s setecet 99 ss essesei s.aeos,te e.zise,si s.as74,is e.s35s.zo e.Tess,sa e 3ssa,3s

  1. 4 0080301 e.?ftet 4.84ee,T e,Titt.te e.6,ti 4.644,13 0.3ege,3e e.3tse,33 W=

l \\ \\ s I n.- w 4 q fiwes s-3 ; w6-We.zuNr at EM3/et su rztr no gu 1

a s-g, 4 itkee5*etect Tfelles to

  • SILetet as98C84988 let. est. 9943 past 4

193 602895e1 Steeeet 1000e t I e.9500 14 19e te39tset speesee teeee t t t sees to 175 BOIEElel E75eoes 19 49 6 e i. tees a 998 1e858909 88te90s 99690 9 9 t,033, to 999 toesteet teseeee seeee t e 1 3930 3 ITs 69 556e5 554e0.e e a i

e. sele i 199 telG40st 68Setee e t 1 0.8430 t tee teetteet 9e66000 e atos t e 9910 9 9etetoe e stee e e gese 9 iti 19e510e3 75390e0 e 41 0 i 9.7313 le 683 60053084 90teete e 490s t e.Seee t 133
  • eestes, 9eteese e stee e e ease t 15e seII4503 7 e 19ece e e198 I e.3939 3 tas tesesset toteees e stee i e.3tse te fet 99990004 telecto e este t e Stee to 551 3e255501 1910000 e else i. 7500 is tot 99354001 90fe000 e else e tieece le 549 teasleet 9eteses e 4900 9 1 toes e 7 M TTTies Teseee. e 4 ee i s.s3ai ie tot tesessel vetecee e stee t i.33se 3 109 teesseet 99teces e 4000 t e to9e e Isa isilessi Teiesco e ease i e.5eae i
  1. 94 19951701 e e4e e e e.e le tot 16059994 ee eeeee e iea 195T,iei o e o e e e.,

i 199 1845e901 e e.e 4.0 e.e 3 te0 900659e9 eeeeeee 96 15s 3e155191 e e.e 0.9 c.O Jo see te889191 e 0.9 e e e.e le Tot 1e299999 eee eeee to Jed 1945579B e e.e 5.0 e.e 5 903 19880906 e e.9 S9 0.e to see teste9et e eoe eee f Je5 leelsToi e o.e 9.o e.e i tes gottetet e e,e e.e e.e t

  1. 9 toeseset eeoe o e 99ie 9 e e e e e e 4See 9 eeeeee 9999 ee
oa iso e

Se.e i e t.t a.a.e, e.e e.e e. i e. e.e.e 500.s ,t t e 0.8 e. it s.e. .et e ee se,. att icelleet e e.e e e 9.340s 55 Sts tetstset e e.e 8.0 e seee to g 109 tettleet ee eee9 9 tee to als le25BSei e e.s e e 5.0000 le 395 08458801 e e.9 G.e t.Se## 6 fee tegegget eo eee t 9249 to alt se555 Sol e e.e e.e i 2359 J Sta tee 86891 O e.e e.e e.Sete 9 160 tottetet ee e e e e 5330 e 33E 1ee5iBei 9 7,553e e.O e.77Ie i e e 5B3e e.e e 45ee 1 e 9.553e e.e 9.TII3 35 ,3,1 t ee.t t e e t 3 e e.eest e.e S. Set.e t t.o 3,et ee ,0 ee e.. e 9 azJ ies5sson e u.s33a c.o e.4930 a 334 feettlet e t.este e.e e.3604 13 ffe 90199006 e e este e e e seee to aas ne255ses e i,esas e e e.75eu se 231 18398041 e I.e890 e.e 9.0000 le Sto teetteet # 4 OSTS ee t 6000 5 aJa ne555ses e s.es35 e.e i.sasi se 330 teesseet e t 0038 e.e 4.3399 3 I l I A 4 ettee8*petES etsslem to

  • Sikatet asegClatta leg. see, 9643 east 4

331 teeSotet 9 1,e834 e.e e.Sete 9 1 933 tettstet e e esta e oe tese t 3J4 J91 010. Teb/ NET 8 i 2 3. e. e. s a.I 334 Setestet 3 ses.e,s.pa.3 ses.e,3,st.3 sts,e,s.33 3 tas.e,g,33 3 I- _ 120 Teteetet tett e.4 19 1 335 asiosits 55,93 ) 331 3e990e00 ett.tgma 154 Totteeet 9e e a '9.e 90e 4.4 99 4 3 6T es g 32s ,.a.oe,3.3.e.e o e..sm.an.a. 33..to .....e.e. t..,0.. l e 1 eeele t,.t __..t e atee eto Isa Jo30elee rouGEm Tel 343 36300904 poetow 101 _.tes 193043e6 feettw 969 Jan J 305400 reRTEe les ses seSeeseo peacss see I 149 tegocese esefft eet zee 3930 eves a 3,e s ses. e o,e,i s,t e e.s.e l .e ,e, tete # es .e 303.e ee e.e 35i 1000 r Bezesee 3es sesettee e seeeees _ tes tesettee e seeeeee as. aeisi3ee - sweeees ses ,3 eses.see tems toteeee eset ee,eme siveeet ~15 a 3 e 3 e i a $37DF*TTITi$e 4 see teSottee teme seseees _ ste sesessee metowa se9eeee 35. zeJersee arte.s seeeees b set sesseeee metows seeeeee tot sesettee etenses e "TI 3 see7eise i.e,'Toisese 5eisese 3 see9e:Ge.t.o.seseees.seteeee l* Ses -ses s e e 9 e.s ee* e sseeeee seee oo .eeve ee.. e.5 iecesrtteeos 55 > s.t a e. e, s ee.ee.es. e..ee. se3assee s. e.seele. .t e ee. e. d n, 6 t f/6udl 8-3,CO^/7,' Ru.Ah~~ bl4L, 1N/uT" l'c A. 151-/CE W# O' AU L k. 4 L

e e-28 bee 8*seAC8 eftllet la

  • SlL8829 &$3stleTES.let. 409. 1843 ee88 I

99 6460303 4.60.06 4,99.06 f.4 T$ 1.5,44 1.0341.se 4.389,03 4.969.0e e.953.98 se eetetet e e.9 ese e is e e se *ed e es 4 as ossosos n.a 4.e.a.es i se a egeuCBS E sations Comate89 at JueCfite e0.1s se esteset ee eeee to e to 9 e e o e 19 e se e se to e e e e le j a3 estese3 o 16.e.na.sh e e.e.e.e3

e. ion.e.ies.s3 o.s.a.e.se S3 o.Steet 06.96 to eosteet teet 91 tief 99 feet 98 El 9051395 3.64.1.9.59.9 9,9 9.56 BB.

Gett300 t 89 totitet eeeee 9 98 GG50e#9 &l4En 54E6swa j s eels.tesee.e.efecette.e.o.s.o.e e.elee 89 648880 9 e .e.. e eeeevei j T1 9070999 AThG& TMDFVGb r es t,e le t 1.e*4.t.e*4.0.0.0.e.e.e.e.e.e.e.e 4.11 I j 19 93 es ess is eG7ezei o.e.ie 7,se.e.e.s74 TS feeltete le te 3 I e.3921 98 09061000 t to 9 e o 3963 77 iO953000 i 19 3 i s.3335 98 feelsees 1 te I t e.4084 9 te.....e 1 te, t e. e 59 sei36GOG 3E 10 3 1 9.4745 Si lettlete le to 9 1 e,ates i 89 19355000 to te 1 9 e 4989 43 30455000 5 IO 3 i G else telltete to 19 3 4 6.414e et 4e499000 $ to t i e stee et 19055009 1 10 3 i O 43 5 49 testette i to 2 1 e.4319 49 Seelttee e t et n99b3109 9 i 9e l6943 tee e 1 99 testalee e 9 s3 19955500 G I 03 lettelee e t 94 tettstes e 9 B5 1e35E10e e B 05 1945410e e t 99 tettstee e t De 19555100 9 I 90 tees 0 tee e 1 tee getsstee e t IDi 4905:301 5 9.3789 i

103,
e. e $.32,6

) feestfel te teet,tet ion isosetoi e e.esei i' let teetStel 9 e 83f3 3 400 lettstet 9 e $391 le7 lealties s e.3313 tes lessetes f 0.6393 See toastlet e o 0383 iis 6esslici e o.33:3 til teesstel o e 8313 j 911 toetstet t e 4399 iis asiassen s o na63 tea tetettet t 9 _m I" A84aelectatt'vge$les to * $16 ass? AB3eClefts 188. 007 te83' P&42 3 til 96963899 t 8 ste teet3tet t e .s i 7 t ee.s a 3 e i ies i a l 906.. Set ,0 1 t te .,49 9 90 13e ne3tE3pl e s til 19309399 9 9 st? toesttet t 3 633 inntE3ci i s 90 1 0 l 19e 50.884301 40149

  • 9 996 9,,a t e.s 5 4 3 e i sa as i s

( eiset e. e 9. 9499 set e e 135 teo53305 6. 13e tee 843et e. e t$t toetsset e e i33 spill 3OL 9. 5 133 80388309 4. 034 8e355300 e t i35 ioast206 e. a 936 tellSSSI e. 0 939 foettsee e e 13e 49055301 9. a 139 19058301 9. 9 940 teetteet e i4L 199E34G4 0 683 leet 3ete G m. 845 teeteses e lee iDe55400 9 186 tel65400 4 4 946 lettlete e le7 3G3554 0 9 144 14456400 o let te1994ee e ie ioTanese o ist teeseseo e 957 98956844 e ""T1. 3 8 esiasi Jia. is l I.ee t s. e. e3,,3 is i t t. 90. ils nestases 313 se 4 "" 157 1698S446 fit le 19e lettleet fit te - B58 iGII54Gl ai3 i9 les 1935840% 263. te tot toetsees tot to 153 105T5401 313. ie 143 set to I t es t s e. e t Sept. .t st to ist leissee4 3h3 is ISS teetteel letteet e t i c.911 % teletee 90 00 t I e 86De 9 509 teettlet seeeete 66600 e e e 9411 te ~ 154 60953585 - il M O O E I 9 BDG 1 IGS teel 3 Set G186066 e i I e.444 5 19e testel6e Steesee teeee e t # 3ete 1 I., 17i 19055595 53lTI96 19000 i L 0 313e it ttt losessel asseeee teses e t e sees se EMaub = hm v )

s 1 ts as W : f [ f etteOS*Pte48 90488ee to

  • Sibetet esSOClett$ let, e87 1983 eeSt I

g af8?fe8 Se fePWT eete Pee Cett 9 i surusiss au TssI se. ses e.m.6awssaa aarii is 3 tee etw teesset 3 tot eve e sea eRETf3M 555T535 5 Set e,0 9.es? 1,e*4 Seest le tese teet e Set eestfw ist 7 Jea roussa 103 0 393 Postte 103 9 See seeCf 8 9ee le acB FoEEse Bee I,l se,798C59 364 set 9 e setetoe la aos F asleces to seg a 33tecee 99 Ste e Seteees i 35 JII a seseece I tv s ts e es,eeee. to ets , 4000s is als Tump eenesee 30 319 time 3tteeee to see teme siteeee aa a47 T5mr Beaweee 13 318 NeLeWJ 3eTeese to 199 M*LeWJ 5eeeeee as age ur t ees seceese 34 339 VLTeete e 19 tot 7the e se eult eee L 35 sea Tint e 65 hwbb e 1.0 h 30 esteese fece ?Meevet Se estetet to 39,e e,tes.e.e et e 49 set.t tee,e ce Ji selease a 33 este30t e. 3ste,tse e.6.381e.t.e 33 etteece festeatet tattJUe as eeaones seiseeeee,peapeeece,s.e,s.ee,t.e.seee 36 estetet t.e.,e.,0. Se estetes ofette stet 37 esaseen aa 38 0434009 8.3833.99 e,9999.90 0.9304,39 e.e3446.38 Se eesetet e 3990 16 e tese.to e Sete te e 43330.99 4 8080.$t t 6?t9.39 es esaessi

  • se.0,is
  • se.e 35 *es.a.Ja 49 6939449 9.See,s.6,33 49 esseget eeee 99 e.3te.e 196,98 e e e 0,16 e tft,e 190 f6 e.e,e 4.34 ea osanos es.aa de Gestfel tece,14 1990.98 9600,39 as eesttit 3,30se e,e e,e e,e e,33 s.

emaisao i 69 9431395 e.e.e.e.e.e.30 de esseeee 9899%e eekof es poseien eezeicoce.ooneesees,s.casse,s.a.e.e.elee I Se teettel 1.9.e.e.0,0.e et eesetee MTette la essezei ses. tea.as.ssi,s.e 03 eesseee eleteuf Piet la eeteset 99 se esseios e.aees.is e.37es.17 e.asie.is

e. Base,as e.Yena s3 e.ssga,en SS 9966000 e.6,83 0.0038,04 6

} I B t 6 I

8 4 j. 0083

  • 3 3L600*09858 vtas19e to
  • 8thetR9 astett&Tgs Int, Gov, 1943 89 006e3 1 0,991.1 0,849e,9 o,9tt3.se e.3,19 e.sas.te e.3430,3e e 3980,34 i

i 18 soleses e to SS e 96 at i e 99 9 6 ee t 9189 to 9 190 GS e 909.94 0 643.96 35 estocon e e,I se,e,nt o.e,se ese e,cn Se ettetet l 044,0.e,05 99

  • 80cvtfa a eat 9 eel temetate of Just' tee se le 53 GG5050i G.9.9.0,G G

L4,G ie.T 9.6,9 G,i7 c.44.G e4,36 0 0,& 9,44 43 0850003 e,16,e 18,65 e...e e,83 e l94.0.104.43 e.e,# e,e4 to 0469008 et St et 90EliOI 1940,53 11o0,53 9i99,54 98 448130t 3.94 9.313.e.e.e o.e.l 3,94 9,130..e.e.e e,e 3,es.9,see e,e.e.e,0,s 89 eesttet a to 9,se e 998 ee et to IIst20e n Se eeliset e e.e.e.e.e.04 94 9996000 etSCW te8LJUG Ti e96FTer oonosoeso.oovoooove,e o,e.e.o.s. vies 93 Sete$et 1,0.0.9 e,0.0 93 ee90ees otmes tweevet 74 saisies i.oes s,pos,o,e,s.o.e.e.e.s,9 s,s.o.ii 1 98 0090300 e 90 909e109 e 0,te 94 Se 9.0 994 j 690 it iO 3 9.2537 54.5IOoo 7T 53 06 9 le I t 9,3943 94 9e iees30ee e to 1 9 e 3336 as 1c044o00 3 le 3 6 e eggs 45 te868006 18 se 3 1 0.494e et tettlete to to 3 e e 4946 SJ 34356000 19 to 3 i e e74e 44 19306000 te le 3 I e 4989 a at teatteee e le 3 e e 49ee as islasooo no is 3 i o.eise 89 tetssees 3 to 3 1 9.4940 es testepee e te g i e ette se Leittees t 50 a p 9.9313 e Se teettlee e 9 et teettles e 9 33 19053300 e i 03 tee 64 tee e I G4 teelttoo e e et seistico e i 98 84284600 e t 99 403854ee e t 54 60455309 e i e8 1985810e e t I see teststeo e e ici ieettico e i tea tettstee e 4 tes toesttet G e 990s ice iso 43iGi 5 9.3331 100 lee 83tel e e.3503 tee teetatet t e est9 e 9.5313 157 19955tel 5 .5313 108 1995ttel 4et tettleet e e tits its 193551e4 3 e.tJi2 199 904856e9 9 e,8313 999

  • ettttet 4 9 9303 t i.a n e.s t a. t.c t.e B a. l.

il a e ta

t..

1... R$t&#0*F0889 ftes19. to

  • EIL8tA9 ASSOCleftS l#C, 00s. 1983 e&St 3

519 1stletet 9 4,83t3 tit toesttet e e is7 iest33ei i e 116 19993360 t e Ste toetstet t e iae isestasi i e 0585309 t 0 1' 93,1 tv cettessi 4 e 3 [ i3a ne3333ei i a 134 teenstet t e q' ess testes i o e l e.5 5 5 J O I I I las 09 48361 8 0 lt? ets Settetet t e 533 6005:301 c. 13e toestsat eG est teet23es e 9 19.a4ast iso o. s naa 8530t e, 9 133 ese 1999530t e S 1 ian is3asao6 e, s j 138 193883et 9 O g 439 toestset e e ias istinaos e, a 130 148693e3 e. e tee 10 00369 e e 14i 1986430i o. e 449 teelteet 4 963 teettese e 544 19053400 9 tal 19654404 e toe teettees e le7 19:35499 9

== 148 19386600 e fee te1Elsee e iBO ie455400 e I is, iesiss.ee e ses letti e4 e llJ iDel4400 9 18e tetBSeet e

  1. 99 900614e9 Se e te 146 lee 534DI 89.0 se 189 teeG340s de e to ett tettseet 4e e to 19 50,o i9

- 15.B 1.015405 18 99940t Se e le set tetteset te e to is3 is3FTsoi ao o is its toetseet se,e to see tetsteet se e to lit 69Bileol 4G.6 10 ISS 90e68408 80.4 10 549 settseet to e to 'I use soouTrei saioooo e i i e iii. sozoese icooo i i e seeo, see seesiset sospece tesee i i e.9913 is 99. teetteet e69etee e 4 e e see t 1 9.9 0 5 J.5 9,.E l s F31..e ,i,i i, 1 e e ses 171 e.e 900 190 0 e.Sete 193 f/SUC,t. 8-4, CONT l 22un-l0fts Mur fat' 2PC1/CL. Gu rC~ N0* 908 ) ~ i

a 8 I I" a# 1 1

  • tbAetsP9tCR VtaSt$e to * $ltetAT 8580t14183 [ht. Wef. te43 past s

193 feettlet 5fteeee 10000 l I e $tte il '94 19999606 S$$6000 t0000 e 9 0 8000 Se 175 19355501 55Tlete 10000 I b e.7I'I M e ese seastset asseeet seeee e i s.eees to t99 teettset 995ece4 toeee e t t 3000 t ITs i s s 5 I'Ie seletoe neceo n i 1.s387 to sie lessesel seteeos teseo e t t. See 3 See testetet Steette G $ 6 e Sete

  • IeI ieI&EI D ITIle e i a e.p4Je 1 143 9999esel 19t9000 e ette t 0,1999 0 99l tees e ette e e.Sete 9 tes footteet *eteeep e sees e e itv3 og i

t.4 1.453505 i 14 19 7eleece e else i

e. Bees i t..

to. 3 e ,et.ee. 49 9 .e...,..,i i t . et 909e.00. .t 0 t So e is7 seestasi 1eiesee .e, J.i s e Tel e dice i it inn ieseitet ees e stee t .. ee 30 j 989 19945549 90000e0 e steo e e 9900 to "" Tie selsnesi Toiseee e aise i i.eeee is i j 10% leelleet 9e66000 e 4900 t 1.tece t _t 9 9 409660,00 9eteceo e stee 1 e e389 te 153 194566 3 T e l ee r' eles i n.335e J 994 19 80.et Telee' else 1 e,9090 6 lett.8e1 _tes 3 90i4 5e0 9 e less t e-e i. i i 1,. t.c.eo.e,.e.e...oe. e.e q seeis,.t

  1. . I tee

. eeee t j I55 nee 647en e e.e e.e e.0 3 , fee e.&. e,t9 ) fees $9e1 G e.9 4.0 j 9 9995 9.,9 e e sea 5>e e e.e e.o e.e is j 3e3 Sea te3ss9et e e.e e.e e.o to 4 __ 104 1ee96905 e eoe # # # $ ^ Jet le5541ei e o e e.e e.e le ~ See te8589et e e.e e.e e.G 3 tot toets9et eeoeeo e 4 3e3 aol45Tel e e.e G.o e.o i See 90901496 e e.e e e e.919e 1 e e.e e e e.sese 1 e e e e.e e 9913 18 Sto 90091409 e# # eee teet t i Jiu nossases e e.e e.s e.444e i 313 teeneses e e.e e.e e.3ese 3 993 90066000 eee eee Stet SS ass teillenb a e.e e.e e nees Je 194 19355890 e e.i 6.9 0.9See to 300 testseet e ei ee S eees to Jul lettleen O O.e 0 e i.leee B Ste le4Altet e G.e e.e 1.0381 te Ste 9600600' e oeo e t 1396 3 330 icelT N e e.e e.seio i 33t toiseses e o.e e.e e.ssse I fft secletet e e 9599 e e e 9990 e ee Sgte e # # Sete 9 e o 5596 e e6 9993 ts ""'773 i e53sei e e.sena e e e.neee i 334 teel 3eet e e.1 ell G.e 0.4446 e 116 testafet e e 9336 e e e Sete 3 335 19555594 e 3.e435 9.5 0.3150 it 237 tettstet e I.este e.e

9. sees to 130 teftleet e t este e e e 9600 te 33s 183555e1 e I.c435 0.8 I. sees is 336 feesteel e toeste e.e 1.6000 9 L

et&&oS*FOSCs ftA$ lee te

  • SILede? AStetlAfta let. set. 1983 oggg g

336 telltset e t.0034 e.e 1.03s1 to 153 tettleet e i este ee t $tte 3 7 7 % Tessi e i.e43s e.o e.se7o I i

*. s leisseen a 1.esta e.e e.es3e t
39 9eteette 954#pt's t
  • 235 Jeleoneb J3.G.6.84*J 3 5 3. e. 4. 5 4 3 353.e.4.57*3 BT3.o.5.J5=3 753.e,3.4Je3 39T 34teetet 1993.0,0.31=3

_tSe toteetet 99 et 33s Joaisese aTs Tsur 340 30290946 10.e.4 19 *e Tee e,4.tT*4 149 t e Seet t e s e t ' t S tB tieElete 34J 303eeles FUEGE*'To 343 SeSe93ee eteCRW Te3 fee teleasee oestre 9e3 7 M 786400 renG5e Tea See Se3eelee esatte see ._. 9 4 9 te3eeses eestt' est 348 3034010e r 5030000 Set 3030es0s e Seitete 14e 19304404 # 3310000 I=. 351 303elece F B0390e9 399 felettee e 904eeee __993 telettee # 5800000 576T30s 334 3eJe1Jee r 3 e. s. , o s e t e. s.e.T. i. me p se. se 3 3,t ee.e. I es.t .e <g ""I W - 3e3#I509 TEse J35060s ~ $08 .**ettee ?fme seteeee 999 9990e.*e WeteWJ 1890000 7 Ie 30303500 h.end deseece 3et sesessee metes. 6. a / ft1 3e9e3999 OLeasta e j 343 Bcolelse I e,50ioece,lelPece See 90090300 1.0,534900e.3696.e0 988 tee 90104 =$ e 194644e 990000e 3ss eTTTTTie.i.e.5sioeoo.sssnee. 307 Sosseees et e,seeeees,ees 90s 0 18e000 e 9.totetes 904 y ""ITI' I 't I I Iw hhof,l& &, (.Q & To NYk" $5AD"D Y $ Y$Y he Oh l I b.

3 s N .,.T* b ' O I d i 1 1 { i f 48L&Pe*ftett WieSlee to * $8bStet 48SeClatg8 leg. est. 1983 'Pa4E 9 1 ' b88?let 38 SNeUT Gata Pee test t i I t

  1. NPR3/E3 55y TE3T ag, 5I7 d.m.5643GA5 5 5 F/ I
  • le let how TAA.SNT 1

te' eum 4 3ea esITI5M nei e s e.e alTIB.au e e4 etees se note i ee I .e i e sei essee 7 JeJ FGRE[e Tg3 e SeS Pestee tes e sea restew too j is aos raAsse see tt ses seatst set tg ge9 e ess ae,eeeg oesk sa aee 7 is se St.e e astseee et e te990ee Ia aII F DG4eeII 19 s t a.e ss e,eeeee se ce 'j is ses e IB Jie Ta telegee l 30 308 ftme 3336e06 ft Sie teme Steceee aa all TER M s3000e s3

  • sie metows 3evoeee to Sie M8tewJ etteeet a5 aae MFheWJ 6000000 98 334 eteassa e 29 Set timt e te MOLL eeet ao Bea TI e 65 tums e io s teiece.mL 39 TAh5 TMcPVeh Se Geestet to 19,e e tot 0 9.00. 99 884 9 Sae.e ce ai Geicaos a 33 estesee e.3tas..l ete 5.3980..t.00e 33 eeseese testeetet AhtLJUh as seaolei esseeeeos,ee3003 Tee,e,e,e.ee,i.e.000e 38 0898301 8

..e ,e _. 30 4030000 e l e f f es *tet al e aSeel 2. l 3e essetos e Bl33.it e 1994.94 e 8384.3 se e esee t.9 e. elt ee. 33 ' 9e esteses e 399ee.i.s e e sees e ag210.tt e sees 3 4 e913.33 ee ea s e.s.e.s esas ese

  • es e.as see o.aa

{" es e e e.e e.3: i.e.a. __ e e cesse e .e+ e ese e tes. e e e e e.t. e ess.e ses si e e.0 e.ri da 04J400L ee.aa de Geattet teet.ie flet,le lee..St aS teS9909 1.9850. 4.I a.e .e e,14 4 esaiaea 3.ain e...... O..aa et 04313e4 3.286. So.eBS e.e G.G.e.34 es eeSites 3 Sete T9 SSe e ee o e il

9. 8 eeat ees,a.s73. 3. 5 5 0. c,a, s.e.e.o. s. o. e. e. e. e.. e. 3.,.

a.3 s.as 43.4 .....s.... 4 s. 2. .e.e n i,. 2. a rr.e..e3i.,3 0e .e.. ee e ra >2 ee es. .i s sit. es s e. i.i,3. ..e.e.e 4 3e 4 .4 ,e si .e.a i nr. r. ri e.. e.. a i s e e...e.e aa e3 30 i 6 i 1 f14uBG &- C: R 5 L4 M ~ 7 0 M M dLL l. C= EPCZ/CL EzW 1r*f A/C. 917 ? i L J l =

a ' ) l I f 4 j j y etkapteesagt vta330s 18 $ILSEAf &$50CI&fts set, 999. 1943 SaSt 3 6, 4 0 3. e e..te.....e, ;.. ise j l ee es9ess .soe e s ee e,. Jo.i s ees, e s s ee scos,6 q sa .s e s o i s i ee osses,e,s,e e,sies se e.e eSet t .e e,e.e 9 esso s3 eosezes noi.ie3,si 5 11,s.e e3 eeseees #198001 elet I _..e. eesseet et en einsies e.3ees,1s e.37as,i1 v.3s74, la e.5356,3e e.7P*s,s3 e ans3.es 1 j $8 soteset 6,911.9 e. Gate.T 4.1993,98 e.l.19 e 448,98 e.Sete,39 S.3160.38 dl 99 est e S.e t ..e.e.et e to 60 e 98 t e 96 9 9 ee i eset.te I ffe 03 e 909.94 e let 99 1 ee o gi ..e.i O.e..e .se.o.a. $9 9486400 1.S*4,0.9.S$ 9e e neovere e esevees cemetese av sv.eceeen se to it ri constei e 9 .e,. e.ie,e i. 1 e p. .e.i1 e....e e.. e.g.e.e... 99 0899003 e.st,.S.60.Sl e.e,s.9,69 0.194.0 994,83 e.e.e 6.03 e.t.9 9,93 9s ses ees e e. e.es 7e eentoes es,sm il 98 ee50199 tese,94 96 eettlet 4,94 9.00 e,b 494,e 6,09 77 es A ill ) I Se A t 3 s" t 18 9.4.0,s.S.e.94 9e eenemos siste getsdue 06 4 5f ths e s eeee, s e 7 e cesee, e e, e. e, e, e, e s ee es el eetelet f.e ese 0.9.4 '3 Bf Ge95#e ATutt theseet 53 0010sei 8.ees.t.e*4.e.e.e.e.e,o,e 9,e.e.e.e.lb i to 0090360 4 GS 99999s*9 ee to 9.4e e e 195 at leelicos la le 3 I e 3337 g st teesseee i to s e e 3ess e teettete 9 to 9 9 e 7334 es 49054099 3 le 3 I e.4 ens i .D e lee.B.S pee te,3 et 3 0,4199 l i tet ie3 ..e se s. 1.9 } le t e .9 e3 eee io se 3 i 9 q 03 settlete to to 3 9 e.8749 se teetlese 4 to 9 6 e 494e WE Ic55ssee is le 3 i e,474e 94 tesettee 3 10 m I S 4940 __#9 99966000 t te f f e ette 55 le155eee 1 is 3 i s.43is og teeltsee 6 6 _ tee 90ette.e e e ie ises3:no e i let teeselee e i les teeselee e t les upsstles e 6 teS 94388994 e 9 tot 999954## # # 1e7 leettles e i tea sesselee e e tee teetStes e 9 lie sectslee e i 199 tettelee O 8 115 teettlet. 9 990s _,. n13 seenzies e e.3331 194 99943t00 0 e.3883 i eSLAOSeteett 903680s to e S$438At A33etjaT33 leg. See, les3 0463 3 998 leetetet S e.e489 890 teesseet, e esst li7 ID15550) B o.43 3 918 99998141 9 e,9398 tie tetgeest, e ests 139 19465108 5 e 5313 199 10'885109 e 0.53t3 its toegstes e e eget i 133 1995s19 5 0.5313 ] ISS '9988601 0 e.9303 196 teetstet 9 e 534 lee 533el I E i 137 feel 3309 9 9 _.918 49064100 t e las 198553ei i s 130 SWIS$399 e9 est tefattet t 9 e ' 13J le35U j s33 t e.e s.s,s e ti e .{ e,. to. et t e i 9 0.6 5 6 J e t i lat le i e 13e 00361 0 e ett letsaget e e las uset:3ei e, s 930 toe 8330t 8. 8 _. toe 9ee59391 4 9 m isi sessa3ei e, e let 99089301 9. 3 141 teteeset e e see 19355396 p. s tat teststel 9. 9 tee coastsee e e is7 l e B IU s i s. I tea teessset e. e tee 900903e5 e 0 Its 1915 0 s: e. O not teosteet e get toestsee e I sua s e c T7a es e tea toesaseo e 'It 8e#84400 e iss isistee-e SST 19905406 e ets 903 64e4 e 155 s e4 Ts a ee "s-' Ice 1 t.8585640.0 9.t i.3 s p e rme e g 683 fosssees a 168 66esteet se e te ist is9935el 50.0 is 100 seessael So.e to a 969 toetsaat se e to usa i s eUTe i se e se see tetssees se e to b, '9e letteeet e e se i'i ie3 Us i se e se t?S tesessel so.e to s.w . am - us - m 1-

1 e' 6, h 4 8864*S*eetti tRSSlee se a 88b0809 48598341ts leg. est. 154) EASE O Its tesessel se.e to 1 _.t9e seesteet se e te 17a see566el de e to 19e telesset se e to 999 toetste seteeos *

  • *
  • 999 9 screase teece 1 9 e sese 9 175 10041503 5es0000 lesse 6 i e TI Ia It ste lesstaat astoese e t i e.see t

._ i t s seessset steeeee e t + e ses

  • 15i ice 64EeI*1'IfF000 boose n i O.aeae a 183 1999s649 s20eces teeet I t e.3tte 18 tot settsset essese, seeee e e e sees to 14e lealthei 554 sepee i 3 e.7500 le e48,9804 186 tettstet 000 feeee 1 I t.eees to tee toestset ??seeet 9090e t t i seee 8 167 1055564b Eglease 69080 1 4 4.sas7 le tea teselset 5996040 18006 1 % t.3300 2 too toesssee 9e40000 e t i e vo9e 9 15e 1915s5e6 Estsees e i

I e.64ao i let teettset teteeet e Stee I e.ttle t testees e 4060 t e.449e T tai teosteet 9090000 e 4100 t e 9412 le 154 sectases 1980000 e 4 ten n # 5ees i 19e 100:3896 teleseo e eles I e 4480 t les tee 54461 9096004 e sees e e Sete 2 1* 194 seelltei 7 40000 e alee i s.alte in 199 18159605 9000e00 e esee I e.nece to tee tettleet 9490000 e a500 t e 9900 80 iss s e aTTie i 7eiseee e aise i 6.sese se too teesseet toteeee e stee I t.seee s tel tettstet 9eteeee e asee 9 4 fts9 le asa 504556e5 TOIIIce e else i 6.335e J 303 tessetet Teleoes e stee i e.sete t 194 90194409 9e90000 e stee t e sete t zea 19051791 e e.D O.e e.e it $46 19453900 e e.e e.4 e.4 I __3e9 teett9es eoeeee e e zoa 19e54 70 s o e.e e.e e e 3 tef tettstel e e.4 e.e e.G ts 11e 904:4909 e eeeee e to all 19a557e: e e.9 e.e e.e le sit lessstes e e.e e.e e.e to Sf3 teate9et e eeeoee 5 als lesssios e e.e e,s 9.e se fig teesstes e e e e.e e.e 3 Sto 90060909 e eeeeee e alt lel547el e 9.0 0.e e o I Sto teettsel e e.e e.e e 1990 % e e e e.e e.sete 9 e e e e.e e 1sta 14 I, 9009100* e e4 eee stee t aae leota400 e e.e 6.0 0.644e t {, tss tessases e o e e.e e.sese 3 3rt teetteet e ee e o e 9 tee it ""7 '$ lel5 Feel e e e e.e a.5ece ae ar lesssses e e.e e.e e tsee to l' sta totesset eoee e e soee to aas i sTTill i e o e e.o i.5eee e 1 231 eessesel e e.e e.e t.esst te I tre teesseet eeeee e stee 1 aas seesssei e e.e o.e e se7e a 33e totsseet e e.e e,e e.sase e 1 l ettaesseette vee 88ee le = $$te8st AssettavEs leg. set. 1843 east 5 SSI feesteel e e.sste e.e e.ttte e e e.ssse e.e 4.sses ? e e.sste e,e e,9tts to i i __329 teettoes e e teet eee sees

  • l 333 scolagen e e.7i53 e.e 9.444e i 33a teesseet e e.s934 e.e e sete :

__sts teesseet e e os e Stee se i.e.ts e e i, aan iniilsei e a e. e 300 ae 4.este e.4 e. tee 0 39 tetsteel e le 'l' sto setsseet e e este o e I esee to aan le4TIpsi e 1 0525 e.s 1.5000 t toe totestet e 6 0835 e.e t.0389 le I tot teesseet e i este e e

  • 1990 t asa necessen e i.esre e.o e 307e i 343 19980909 e t ette 0.0 e.4839 9 see toteesee 98L#ette e i aan asieeiei aa,e,s.se.a ata.e,s.ca.a ama,e,e.s7 3,;a e,

.ag.a 7ma.e,s.aa a See telecte3 ttt3.e.e.itea __189 teleetst se et 24e acancese MTbaTEMP 340 20 l 061 Te.e.4 tved 9ee.6,4 Sted Ise 1e200004 esGTtse gfutsste a34 asasales FGREEe 7et 3s3 feSottee eesttw tes e its totecteo esettw 962 l 254 292o0400 FeTTTm Tee ses tosseseo estres see ,_.tse 9924040s **ettf set as7 30200709 y losseee $s4 983e0440 e 3e16000 __tet 90140000 e 1999069 age acaelece P 60a000 seseee0 1 3si teno.isee e I { 19 393 1904 e siteeee aya asasias. F"Tiesceo sen setetese teme Seteese tes 1stettee etme 1990000 a. 7 M TTel5ee TEme 2a5000 s e t,e oe.0

  • Set te3enoe teme 348 Se te t tee wa t eca 2 9e0e0 as3 acaeIOOO mFLewJ 40DT309 sie assetece matema steeese 199 setoftee stesete 6

(_ ,2,72 .e 00 7 e.: 0 0se,e ee 1.e.se.spees.5.sTeese i e.no 1 eeto.. sesse 19e 9999etoe

  • 4 e steeece steeees 39.5 37 5907e400

=I e.6150900.5estees 4 .se3.e..e.. ee oo. 3 0 0 9 0. e. e... t _ 1,9 et.et.. I e 9 ATE h r [/h/M. [ee h 4 a e

1 e A e n* e i I e e AfbetteFeAtt etBStee is a $16 SERT ABSSCleft$ tat. AGT. 1943 D&68 1 LiSitet eF le95f.ATA Pee C&80 t i vin..... ,e. en... .w..e. ,t,. meen e e esemang a egrs russ6am id em 6 as s r.aa scris is 3 e e e secogen eest settrettatten i e a eteelee een faseset e e l is a WuITE 4E6sETigm ii et eteetet eatifte est9tta l 1.1 a m4Aga gg1T stewg3T sang 3 to

  • 8031 evmesa, sett fastsett, venums/dvettlentfects somete to set e

Seteese is JG3 r Josecoe it 303 p Steeees 4 to se. e siseece is aen y Jipoese 39 348 F Stoosee e St 169 femeP Seseese da Jos velDE Josecos 33 see reacaw tes to Sie egetse ete as att reafsi see se e ' ~ 1 l ft e 'fme site toevoet tsaet as a uma.

mia, mas, sit
minum, mason, assTauT 2e e

Timg gf Sf gett gggt se e ai sooeien e.noe, i.e.e, i.e.s, i,

see, seee, ie pe 33 33 e come se tome same.

teme eget l Ja a 36 S.30e06 Spwase's eles 34 ai s mWusgu er vshwata j SS i se esseeet te se el e

  1. Lew ease IPtt), evene t t er tenumes at e

7 sea iei e casu as 44 a se e est vme s e se,. s ec t. esmose se vetumes = 4 \\ 41 9930300 0.013 Se as e j j e tsaviss6 esgast.6eEE.a mWassa er vghumus .e.s i e .t ee>4eet . e ,e e. sevenssas arts, peo staarti. Sunese er vetwass i s3 s o.e .s e s e. o. 6 1 b l I 4 I [eQ Q&fp** hYL h i I i I m. k. L 'l - 1

O -Q+ 4e.' e f e f e e 14,.....G.tt .t., ....$,.,5. ..t. ..e. ,0.. 81 W06 Phett, FRitT!sa 99mtepl6, eUMBtt GF 996WMES Se e 55 es35 eel oe, Je le e et e Jun egsgg, toest euesta 79 faae, somete se Jumette#5 sa e 63 0e31999

6000, il 64 e

43 e piFE INIT Ge#5, GPT FRI55LF51Al.TEMFIFJe 3540, 45AS, 5664 48 ' 003t304 9 Sete 9 609 0 ee e e to e 09 ES e 89 e JUm Bulf test, TEkstFf/St.vl6ftPT/St.Isas, due me 9e e in oeaiaei e.e, p.e, e e, se 13 e 91 a Gutttt meestee et 4 Sfm8LE sustfles le a 99 e 88me 50, teme samt, tome 79et - 95 s Ti coeceos eWTeET-saskswa is e 9e e svettles teenvetten teose=Intet es evitt', 1 ee a Face To assairTal nF, aa Engag smouTo av Yase SI e et eeeeeet Sete4ee seteeee e 43449 eo ee too "" sa a ed e Just?,84 !#11 $0et. 997, VfLFIFT/8),vib41FT/$l, Stee at e - as esseaes e, e.r e e, e.e of e Se e eWeseemsteBS we84Lf0 to a ffwf ofesmetet vegvat as e 60 e teme as, tgue Gaut, 80m8 ??pt et a sa senseee sisMY asav Tuorres $3 e se e aeta. Lees 9m vetvat weef. vest. sEst, seven nye esas se e irT3] FT4 LFT33 EEs El6 LFI4 frT) irT3 65 e et cele 6et e e4614 le etee 4 ee e ee ee ee ee se se e se e Tint StefmDief 74tumt temelftSus Geflee too e ion eenezes a let e les a plug. esf53veflestal eustite ice a let Ge99341 ee le ? 9.4 see a leT e FOREE E 44 5 3 4 ME T H I E T9k51 104 Seeience 4 $34*e 3616440 3360000 lee teSteSee 4 9$6+e 4944940 eee lie geJ5ebee a 334ee oceeese lei 11e e ete? CASOS

  • tt teSesote cetTt9m nTaf0800 ERJ 3eJegnee a Jeteses lio 10300369 e 3480000 s

e etkeet*Festi 9tellen is e eggaget assetlefst tut, app. 3se3 ,ggg lit 20304300 * $100600 694 1050040e e 1956400 I17 3e30elos F 2190000 9%$ 3e3eetse p $$00660 Ste fe36490e ffmee 30804e6 esats,Jelleet I3e 3e3e0400 UGIDE its 3esessee von 919 19105000 eedtGB 604 j 133 Jo3ellee FDIEET deb an. l - O tee s 1

v-ey -.m - v7 '/ l l l .rk....... ....l.. 9. .fb...?... 48.f.. t... ..T.,0..S .gg......... v...t.. 9. .84...f.....g.r.. (... .9 l. 3 I ,,,,,.,................ - t -]L ,,,,,........,........... 9 .au.................... ,3 c....e. ra......

v....,...

t. ...f t.. a t .. e. .U ...TE.m f.9 3, a .s.s.r a..f w 9.. 0,.*. ....l 1. l to. .e 0 9. . s.T.6 a m ..tw 4T. 9 9 31 1..A I..*..9 9. 9 .e .a 65.,..s .i 9 .s. :...c .t ..a ...r. 6.e... et a:...., .t 4., .,rk.s 9

1.,lm.........

S,t 9 ... 64.... % a. 3...... s ..t .L.LL tim... .U . t. L tt ..t 3m . 44.... b i 4.. eg ..g f .wt 9.. L t 9... ..i...tm..,,... 5..L II l n Ja ..t. 1 3. i. e. o.t e..t....t. .......f. 9. l...t 1 9. .e.t.e 9,1, 1,. . s.u.i s i .... 11 ,....J. 1 n.........f. t.. s. .i........ii . 9.. 9 9.. 2 9 e f. ..t. .t .t .. 3. 9 .1 .9 9... .i3... e ..e Jg e.te.t t.t S.t.f,........l. 3 g .e,t. t... .si..i ...J. L ,t o ,.21.... it I . 099 9 .l..,.,0.3.... f t 9, ' s.. l. g go .et .9 .n,.. .0...... I. ,33 .e s.t.a 1.............l. g[ i .t .fS.*..f. ..L9 33 993 9 ............t. 1 '~,.J .a.s 9. .....f9

  • ..f.

...l.,................ .a 3.. 4. .s .i.s..... 3;;;-.......I......a........ ...........t 9............ e 3 .a....:3. .a.,m.......r.i..... ) ..FM....k ,a ...J 4 3 .....s T....... l 4..99 9.. 9

3. -

. 2.A.. *.f.M...fM..8....& ,3. .1 v.e .t3.. ............... 8... , ___,3,8 39 ...s..,,,..... s,.... 33 3 3 e....s..,,,........ 2 1ii...... 1.. 3 v..........,.... ....i. [ .9 ...ser..,s ..t.. ,,r........,=.=.=.... 3,,. IL 9 9.. t 9..

9...........,...

1 9 .t .. 9 89 t. .9 1 5, Mle f2/ 7" Mu 30); .2%i7' M E.4 4 1[

9.........................

t... -- v7.....,.....,... t.. ..t ...ri.. 3. .i...... 1 ..t 9. f.. s i e... s.. .t 9 ..,. vi......... e.t .. 6..... 9 .......ss.c.. 9 i ..t 3. 9. .... 9......

9.....

9,. ..t . 9 t. .t ..t t......... __ i ...t..,..... ..t..t....,........t. .... 9 t.. i-9.. 9............. ..s.. ......f.................................... .... 9 s .s.. E, 9.re........................... 99 I 99 ......e.......,,,....... 3 2. i- ,s. ........s. ...s..s 9,.. ...s.... 3.. t.. i............ t h 9 I me 'of. Exi i' AA'sA 4u45 S-7.* Nuf5-);D&&,sx/ter ?!< ).w).s W S M t*. Gr M o **fsI7-G s-(

l I i ENCLOSURE 2 STRUDL VERIFICATION REPORT I .~

", En%BM2P.ssuo D3[O/2 l RECElVED ~~ J.UN 181987 p CONTROL DATA. CORPOP6 TION W.E. BOOTH e 1 June 17, 1982 - c. Mr. Wayne Booth Corporate QA Manager Nutech, Inc. 6836 Via Del Oro-l San Jose, CA 95119

Dear'Mr. Booth:

It is the policy of COMSOURCE/CYBERNET to maintain a list of ) CYBERNET applications which are determined to be safety-related. The list of safety-related applications will be used in con-junction with the policies and procedures documented in the COMSOURCE/CYBERNET Quality Assurance Policies & Procedures Revision E dated April 1, 1982. The list of safety-related applications which are currently subject to Revision E of the COMSOURCE/CYBERNET Quality i Assurance Policies and Procedures (specifically, Policy QA 02.05.00) are: Name g.g Revision level as of 6/16/82 C8,02d ADLPIPE DJobuYd sef <OuftdR) 1D J3 0/7 ANSYS REV3 67L1 and REV4 40C dd.// 3 BASEPLATE II 1.O CASMO 1.00 DIS 1.D M.&# EASE (aka EASE 2, EASEII) 13.3 FLUSH (aka CDC-FLUSH) 2.4 GTSTRUDL 81.05 03.019 MARC (aka MARC /CDC) J.2 08,/3p NASTRAN (aka MSC/NASTRAN, CDC/NASTRAN) on NOS 61B on SCOPE 61 NUPIPE (aka NUPIPE II, NUPIPE II SYSTEM) 1.5.1

l- ,Page tho ' June:17, 1982 ee 4-Revision level:as.of<6/16/82-W{. Name' ~ g. PDQ7. 4 r PDQ8 1.02 PIPERUP V.1.3 $,0% PIPESD (AA>/ w/ 4 Nur(c#) 6.' 1 A . PLOT 3.3 RELO2 RELAP4 MOD 4 - 1.0 '08.@9RELAP5' MOD 1 - 2.11 REPIPE 1.3 080/4 STARDYNE APR0282 'SUPERNODE B=1.0 P=1.0 UNIPLOT '3.1R04 .UNISTRUC 14APR82 Except for the revision level, all of the above 'information is contained in COMSOURCE/CYBERNET Quality Assurance Policies and Procedures. Revision E dated April 1, 1982. Sincerely, CONTROL DATA CORPORATION G. Olson, Manager COMSOURCE Quality Assurance C: S. L. Westin SVED50 ~ /kc

nute .--y 145 MARTINVALE LANE o SAN JOSE.DALIFORNIA 95119

  • PHONE (408) 629-9800
  • TELEX 352062

~ 5 June 17,1985 j RHS-85-077 ^ 4 Mr. Blaine H. Patrick, Maneger CYBERNET Quality Assurance 8100 34th Avenue South l P. O. Box 0 ^j Minneapolis, MN 55440 4 Subjec t: Quality Assurance Audit Report

Dear Mr. Patrick:

l 0 A quality assurance audit of Control Data Corporation (CDC) was conducted on June 13 1985. The scope of the audit was to verify implementation of your QA program to j support the supply of safety-related computer software services to NUTECH for j 10CFR50, Appendix B, applications. The results of that audit are described in the - 4 attached audit report. There were no findings noted and the subject audit is censidered 1 closed. No additional response from CDC is required. I Please accept my thanks for the cooperation extended to Mr. Booth during the audit. If you have any questions or comments concerning this audit report, feel free to contact me at (408) 281-6119. Sincerely, R. H. Smith Quality Assurance Administrator RHS/sjm Enclosures cc: S. Westin, CDC bec: QASJO.030S.CDC8506 W. E. Booth a

2 5 AUDIT REPORT. i y AUDIT TYPE: Supplier AUDIT REPORT No: CDC-85-06 -4 AUDIT DATE(s): June 13,1985 FILE No: QASJO.0305.CDC AUDIT SCOPE: The purpose of the audit was to verify, by examination of objective evidetice, implementation of the policies and procedures defined by Control Data Corporation's "CYBERNET Application Quality Assurance Policy and. Procedure" manual The scope of the audit included Organization; Design Control; Procurement Document Control; Instructions, Procedures, and Drawings; Document Control; Control of Purchased Services; Corrective Action; Quality Assurance Records; and Audits. AUDIT

SUMMARY

The computer program REPIPE was selected as a sample to verify imple-mentation of the quality assurance program. All attributes examined during the audit were found to be in compliance with the applicable procedure (s). I Files and reccrds appeared to be well organized and complete. It was noted that CDC has made significant progress in both definition and implement-ation of their quality assurance program since the last NUTECH audit in 1982. As a result of this audit and because of a history of satisfactory performance, Control Data Corporation will continue to remain on NUTECH's Approved Suppliers List for providing safety-related computer software services. This audit is considered closed. AUDIT CONTACTS AND ATTENDANCE: Blaine H. Patrick, Manager, CYBERNET Quality Assurance Mary J. Stevens Professional Services Division Scott Harris Mechanical Engineer AUDIT REPORT CLOSE-OUT: No close-out actions required. [ [ Y?/TT G.I7 8$, W. E. Booth Date R. H.' Smith Date Audit Team Leader Quality Assurace Administrator ~ .W

\\ I 1 i j i 1 ENCLOSURE 3 BASEPLATE II VERIFICATION REPORT 1 s

F. 222fnDEP.m W6 f O/2. RECEIVED i ~ ~~" JUN 181982 CONTROL DATA coPfoR6 TION W.E. BOOTH June 17, 1982 i. Mr.. Wayne Booth Corporate QA Manager Nutech, Inc. 6836'Via Del.oro San Jose, CA 95119

Dear Mr. Booth:

It is the policy of COMSOURCE/CYBERNET to maintain a list of ~ CYBERNET applications which are determined to be safety-related. The list of safety-related applications will be used-in con - -J junction with the policies and procedures documented in the COMSOURCE/CYBERNET Quality Assurance Policies & Procedures Revision E dated April 1. 1982. The Itst of safety-related applications which are currently subject to Revision E of the COMSOURCE/CYBERNET Quality Assurance Policies and Procedures (specifically, Policy QA 02.05.00) are: Name g.g Revision level as of 6/16/82 CJ ld ADLPLPE DJobuyd d1)Mgf.k) 1D 05 0/7 ANSYS REV3 67L1 and REV4 40C 03.// 3 BASEPLATE II 1.0 CASMO 1.00 DIS 1.D C3.CW EASE (aka EASE 2, EASEII) 13.3 FLUSH (aka CDC-FLUSH) 2.4 GTSTRUDL 81.05 C3.Olg MARC (aka MARC /CDC) J.2 08,/3p NASTRAN (aka MSC/NASTRAN, CDC/NASTRAN) on NOS 61B on SCOPE 61 NUPIPE (aka NUPIPE II, NUPIPE II SYSTEM) 1.5.1 t

Page
tko June'17, 1982-

' "I 'Name Revision level as of 6/16/82

4 4

PDQ7 o; PDQ8 1.02 PIPERUP V.1.3 $,0% PIPESD DUol upd $1NufECb 6.1A ,4 PLOT-10 3.3 RELO2 .j..- RELAP4 MOD 6 - 1.0 ,'d8.l'49RELAPS MOD 1 = 2.11 REPIPE 1.3 0F,0/2. STARDYNE APR0282 SUPERNODE B=1.0 P=1.0 UNIPLOT 3.1R04-UNISTRUC 14APR82 1 Except for the revision level, all of the above information is contained in COMSOURCE/CYBERNET Quality Assurance Policies and Procedures Revision E dated April 1,-1982. Sincerely, CONTROL DATA CORPORATION G. y> Olson, Manager =- n. COMSOURCE Quality Assurance C: S. L. Westin SVEDS0 /kc

j b 4 a nute 1 j .7 14$ MARTINVALE LANE

  • SAN Jose, CALIFORNIA 95t19.* PHONE (408)129-9800
  • TELEX 352062 June 17,1985 l

RHS-85-077 o l Mr. Blaine H. Patrick, Manager CYBERNET Quality Assi tance 8100 34th Avenue South P. O. Box 0 ,l Minneapolis, MN 55440

Subject:

Quality Assurance Audit Report

Dear Mr. Patrick:

A quality assurance audit of Control Data Corporation (CDC) was conducted on June 13, 1985. The scope of the audit was to verify implementation of your QA program to support the supply of safety-related computer software services to NUTECH for 10CFR50, Appendix B, applications. The results of that audit are described in the attached audit report. There were no findings noted and the subject audit is considered closed. No additional response from CDC is required. Please accept my thanks for the cooperation extended to Mr. Booth during the audit. If you have any questions or comments concerning this audit report, feel free to contact me at (408) 281-6119. Sincerely, R. H. Smith Quality Assurance Administrator RHS/sjm Enclosures cc: S. Westin, CDC bec: QASJO.0305.CDC8506 W. E. Booth

s e. 4 AUDIT REPORT AUDIT TYPE: Supplier AUDIT REPORT No: CD C-85-06 AUDIT DATE(s): June 13,1985 FILE No: QASJO.0305.CDC AUDIT SCOPE: The purpose of the audit was to verify, by examination of objective evidence, implementation of the policies and procedures defined by Control -l Data Corporation's "CYBERNET Application Quality Assurance Policy and Procedure" manual The scope of the audit included Orge.nization; Design Control; Procurement Document Control; Instructions, Procedures, and Drawings; Document Control; Control of Purchased Services; Corrective Action; Quality Assurance Records; and Audits. AUDIT

SUMMARY

The computer program REPIPE was selected as a sample to verify imple-mentation of the quality assurance program. All attributes examined during the audit were found to be in compliance with the applicable procedure (s). Files and recocds appeared to be well organized and complete. It was noted that CDC has made significant progress in both definition and implement-ation of their quality assursace program since the last NUTECH audit in 1982. As a result of this audit and because of a history of satisfactory performance, Control Data Corporation will continue to remain on NUTECH's Approved Suppliers List for providing safety-related computer software services. This audit is considered closed. AUDIT CONTACTS AND ATTENDANCE: Blaine H. Patrick, Manager CYBERNET Quality Assurance Mary J. Stevens Professional Services Division Scott Harris Mechanical Engineer AUDIT REPORT CLOSE-OUT: No close-out actions required. [ Y?/ST Co.17 8S, W. E. Booth Dan R. H.' Smith Date Audit Team Leader Quality Assurace Administrator

1 i l l l. ENCLOSURE 4' STARDYNE VERIFICATION REPORT l 4}}