ML20214L207
| ML20214L207 | |
| Person / Time | |
|---|---|
| Site: | Fermi |
| Issue date: | 03/17/1986 |
| From: | STS CONSULTANTS, LTD. (FORMERLY SOIL TESTING SERVICES |
| To: | |
| Shared Package | |
| ML20214L165 | List: |
| References | |
| NUDOCS 8705290230 | |
| Download: ML20214L207 (128) | |
Text
[F
(%
I',b
{W L1 STS Consultants Ltd.
Consulting Engineers i
Report 8705290230 870526 ADOCK0500g1 PDR P
4
~,
I i
RESULTS OF SUBSURFACE EXPLORATION AT FERMI 2, NEWPORT, MICHIGAN DETROIT' EDISON COMPANY FERMI 2 6400 NORTH DIXIE HIGHWAY NEWPORT, MI 48166 71460 MARCH 17, 1986
TABLE OF CONTENTS Page No.
PROJECT OVERVIEW l
EXPLORATION PROCEDURES 2
Subsurface Exploration Procedures 2
Decontamination Procedures 3
EXPLORATION RESULTS 4
Soil Conditions 4
Water Table Conditions 4
SUMMARY
5 GENERAL QUALIFICATIONS 6
APPENDIX Soil Boring Logs General Notes Procedures Regarding Field Logs, Laboratory Da ta Sheets and Samples Unified Soil Classification System ASTM D-1586 i
i 1
I Report
- y 9
e 1
I A
e i
Pro'ect Overview e
6 E
?
PROJECT OVERVIEW On November 17, 1985, a rupture of the condensate storage tank at Fermi 2 resulted in a water spill into the diked area surrounding the ta nk.
Although the spilled wa ter contained a low level of radicactivity, it did not pose an immediate health concern. Nevertheless, Cetroit Edison required an evaluation and documentation of the subsurface profiles or contours of radioactivity levels.
The purpose of this report is to outline the,, field procedures utilized and the soil types encountered for the subsurface exploration performed by STS - Consultan ts, Ltd.
i
l Report Jy 4
J-t l
Exploration Procedures I
E.
4
~
_ _ _ _ _ _ _ _ _ _ - _ EXPLORATION PROCEDURES Subsurface Explora tion Procedures A rotary drill rig mounted on an all-terrain vehicle was mobilized at the site on December 17, 1985 to perform the soil borings.
The drilling ope ra tion began on Decembe r 18, 1985.
Soil borings B-1 through B-10 and B-14 and B-15 were completed by December 21, 1985.
On this date an underground electrical wire was encountered in boring B-14.
The drilling progam was put on hold at that time until more de ta iled in forma tion on underground utilities could be obtained.
STS demobilized equipment from the site on December 30, 1985.
On Februa ry 3, 1986, STS remobilized our equipment and crew to the site.
On February 4 and 5, soil borings B-16 through B-19 and B-02-1 and 2 were completed.
Soil borings B-ll, B-12 and B-13 were dele ted from the drilling program.
I Soil boring locations were selected and located in the field by Detroit Edison personnel.
Underground utility clearance was also provided by Detroit Edison.
The ground surface eleva tion at each soil boring loca tion is noted at the top of the enclosed soil boring logs.
These eleva tions were obtained by De t roi t Edison personnel and forwarded to STS.
A total of 18 soil borings, ranging in depth from 6.0 to 11.5 feet, were performed.
The soil borings were advanced utilizing continuous flight, hollow stem augers.
Soil samples were obtained by means of a
modified split-barrel sampling procedure.
For this
- project, the split-barrel sampling 1
procedure consisted of driving a 3-inch ID sampler into the soil 18 inches by means of a 360-pound hammer falling 30 inches.
A clean plastic liner insert was utilized inside the sampler to retain each soil sample.
The large sampler and hammer were utilized due to the coarse texture of the material which was being sampled.
The number of blows corresponding to each 6 inches of penetration was recorded.
The total number of blows required to drive the second and third 6 inches of penetration is noted on the enclosed soil boring logs.
Continuous soil samples were cbtained at each boring location until the water table was encountered.
The borehole was then extended one to three feet below the water table in order to obtain a groundwater sample.
A groundwater sample was obtained at each boring location and placed in containers provided by Detroit Edison.
Each borehole was then backfilled with soil cuttings.
Each soil sample obtained was classified in the field by STS personnel.
This classification noted color and major soil components.
All soils were grouped in accordance with the Unified Soils Classification System.
Estimated group symbols, according to this system of classification, are shown in parenthesis following the descriptions on the soil boring logs.
A brief explanation of the Unified Soils Classification System is enclosed.
Upon completion of the soil classification, the plastic liner containing the soil sample was labeled and sealed.
All soil samples obtained were placed in wood storage containers and submitted to Detroit Edison personnel upon completion of the field work.
Decontamination Procedures To minimize the possibility of cross-contamination between soil samples and boring locations, certain cleaning procedures were utilized.
These procedures consisted of a clean water wash of the split spoon samplers between each sample, and a clean water wash of the hollow stem augers between each boring location.
t
Report 759
.. +.
e f
l 9
l 1
Exploration 7.
8 Results a
a' k
T
- _ _ - _ _ _ _ _ _ _ _ Ey LORATION RESULTS Soil Conditions In general, the soil type encountered was a gray crushed limestone.
The crushed limestone was very dense and contained cobble sized roche at some boring locations.
We understand that the limestone was quarried from another portion of the site and utilized for fill in the plant.
In several of the borings, a brown silty clay was encountered at the end of the boring.
These borings are identified as B-4, B-5, B-6, and B-7.
In B-7, a layer of this brown clay was encountered from a depth of 9.0 to 10.5 feet and was underlain by the gray crushed limestone.
For specific soils information, please refer to the enclosed soil boring logs.
Water Table Conditions During the drilling operation and immediately following the completion of the soil borings, our field personnel measured the depth from the ground surface to the level of the groundwater table encountered.
Based on the elevation da ta supplied by Detroit
- Edison, the groundwater table was encountered in the elevation range of 574.0 to 575.5 feet.
Our groundwater measurements are noted on the lower left hand corner of the enclosed soil boring logs.
Long periods of time may be required for the groundwater level in the boreholes to reach an equilibrium position.
Therefore, long term monitoring may yield different results.
Additionally, seasonal fluctuations in the groundwater level may occur due to variations in precipitation, evaporation, surface water runoff, and the level of Lake Erie.
SUMMARY
STS Consultants, Ltd. has completed the subsurface exploration at the Condensate Storage Tanks at Fermi 2 Power Plant.
The exploration was terminated after encountering the underground electrical cable in boring B-14.
On February 3,
1986, STS remobilized to the site and completed the drilling program.
STS has completed a total of 18 soil borings to depths ranging from 6.0 to 11.5 feet.
We have classified the soil samples
~
obtained in the field and submitted all samples obtained to De t roi t Edison. Typed soil boring logs are enclosed.
A water sample from each boring has also been obtained and submitted to Detroit Edison.
Our field procedures utilized and our e x plo ra tion results have been outlined in earlier sections of this report.
i
~
J i GENER AL QUALIFICATIONS This report has been prepared in order to aid in the evaluation of this property and to assist the owner, architect, engineer and/or contractor in the design and construction of this project. The scope is limited to the specific project and location described herein; the description of the project represents our understanding of the significant aspects relevant to the soil and foundation characteristics. In the event that any changes in the design or location of the proposed structure (s) as outlined in this report are planned, we should be informed so the changes can be reviewed and the conclusions of this report modified or approved in writing by the soil and foundation engineer.
As a check, we recommend that we be authorized to review project plans and specifications to confirm that our report recommendations have been interpreted in accordance with our intent. Without this review, we will not be responsible for misinterpretations of our data, our analysis, and/or our recommendations nor how these are incorporated into the final design.
It is recommended that all construction operations dealing with earthwork and foundations be observed by an experienced soil engineer to assure that the design requirements are fulfilled in the actual construction.
If you wish, we would welcome the opportunity to review the plans and specifications when they have been prepared so that we may have the opportunity of commenting on the cf fect of soil conditions on the design and specifications.
The analyses and recommendations submitted in this report are based upon the data obtained from the soil borings performed at the locations indicated on the location diagram and from any other information discussed in this report. This report does not reflect any variations which may occur between these borings.
In the performance of subsurface investigations, specific information is obtained at specific locations at specific times.
However, it is a well known fact that variations in soil and rock conditions exist on most sites between boring locations and also such situations as groundwater levels vary from time to time. The nature and extent of variations may not become evident until the course of construction.
If variations then appear evident, it will be necessary for a re-evaluation of the recommendations of this report after performing on-site observations during the construction period and noting the characteristics of any variations. This report represents our engineering judgment and no warranty, either expressed or implied, is contained herein.
Because of the possibility of the unanticipated subsurface conditions occurring, we recommend that a " changed condition" clause be provided in the contract both with the general contractor and in contracts with subcontractors involved in the foundation and earthwork construction, it is felt that the inclusion of this clause l
will permit contractors to give lower prices because they will not need to provide as much in contingencies as they normally would if equitable adjustment of changed i
conditions will minimize conflicts and litigation with the attendant delays and costs. Furthermore, by the immediate recognition and adjustment in contract price at the time any changed conditions are encountered, the immense problem of trying to recreate facts when litigation develops later is eliminated.
A mediation / arbitration procedure is recommended in the event that the owner, contractor and professionals do not agree on the changed conditions at the moment they are disclased.
I sTs Consultants. Ltd.
i B
Report gg
.. +
i
.1 N
f 1
.'l e
E.
b
.i 5
k Apaencix i
f
l APPENDIX Soil Boring Logs General Notes Procedures Regarding Field Logs, Laboratory Data Sheets and Samples Unified Soil Classification System ASTM D-1586 4
i d
8 6
i l
N OMErt LOG OF 80 JNJ NUMBER DCTROIT EDISON s.1 g
- C
"*"E AR M6 EU ENGWEER A
SUGSUHFACE EXPLORATIOPI STS consuttAnts Ltd.
AROUN3.COHDCNSATE STORAGE TANP;S SITE LOCATON
/t
' w
- t :. 5 * *
- t %'~. ***
w,,, v o r-N. %+
v FERMI 2 POWER PLANT. NEWPORT. MICHIGAN 1
2 3
$4 5
pt astic na tm
. y,o L V'i %
CCN'f %'
- CWi5 w
y X- - - - - - - - - -6 OEscRmroNoruArE.,AL U
3 I $
2 5
6 gI
~
20
- -O JO to 3-10 Q
o m
^
~
"~ ~
a r >
w w
w w
~$
8' 8 W
d 5
o w
2 2
2 v
is g ' 'av a=o
N
- I^*
3
)
SURFACE ELEV ATiON
_X]
583.0 FT.
'O 20 50 Ao so o
i.
s -
I GS j
I Q
~
N
~
2 SS p g _.
1 uS 3
/
f,g 5
N 4
SS i
CRAY CRUSHED LIMESTONE, (GP) i-
,8
,7g, i ",
7 SS END OF DORING BORING ADVANCED TO 10.0 FT.
USING HOLLOW STEM AUGER.
BOREHOLE BACKFILLED WlTH SO1L CUTT 1NGS.
THE STRA AFkANose Lints Rtent$(NT THE APeaoXlWATE eOUNDARY LINES BETWEEN SOit TYPE 5 IN SaTU, THE TRANSITION MAY St GRADUAL WL g,g py, y3 WS OR WD 80 RING STARTED t2.Ie-85 STS Of FICE LANSING WL SCR ACR BORING COMPLETED 12.IS 85 DRAWNSY SHEET NO.
OF,
CJD WL 8.5 FT.
AB RtG Boln B FOREMAN DC APP'O SY TDG STS JOB NO 71440 et i ses
\\
OWNEM LOG OF 80 RING NU28E4 DETROIT EDISON O.1 PROJECT NAMES U B S U R F AC E EXPLORATIOrlARCHiTECT ENG NEER STS consultants Ltd J6ROUND CONDENSATE STORAGE TANK 0 h
,v'.'Y.M 3
- ts-=ES4ENG'a SITE LOCATON s..,
FERMI 2 POWER PLANT, NEWPORT. MICHIGAN 1
2 3
4 5
g as.st hatte tv io 6.we s con?t%f e
.wt e X- - - - - - #- - - - - t Z
g
-(
ttSCR'PTION OF M ATER*AL 20 30 40 50 3
!O
^
~
9 0
(
2 z
a*
5 ~;
w w
o of
$5 I I
b 33
@ ;Oini's i
.. u s,.
y j
y SLM ACC ELEv ATsON 583 O FT.
iO 20 10 40 50 0
il R. ;,
1 SS
'O
~
y&
2 SS
,$f N
i 3 SS
[$=d I{ GRAY CRUSHED LIMESTONE, (GP) s 4
SS{
.w c..~
SSj S
1...
l
_6_S S.
tn I
END OF GORING BORING ADVANCED TO 10.0 FT.
USING HOLLOW STEM AUGER.
BOREHOLE BACKFILLED WITH SOIL CUTTINGS.
TMt STRA?iFC.ATION LINES mtPetSENT THE APPRom MATE SOUNDARY LINT 3 stTwitM SO4 TYPts IN SITU.THE TRANastiON WAT St GRADUAL WL WSORWD BORING STARTED g2.I8 8S STS OFFICE LANS1NG 8.I FT.
ws DRAWN SYC J D SHEET NO.
OF g
WL SCR ACR BORING COMPLETED 12 I8 8S 9
WL 8.2 FT, A3 RIG DOMa FOREMAN DC AFDSY TDG STS JOS NO.
7I440 et iess
CWAER LOG tF SOxtNG NU26EA
)
g DETROIT EDIQCN a-S PRO;ECT N AP/SiU BSU R F A C E EXPLORATION ARCHITECT ENG:NEER STS Consultants Ltd. AROUND CONDENSATE STORAGE TANK 5
SITE LOCATON V. N.. NrO <. w **r ;- wF UMw '.e FERMI 2 POWE.R PLANT, NEWPORT, MICHIGAN I
2 3
4 5
88t AS'C A att e L %*O t as" g C N*ENT *
,u?s j
X- - - - - - G- - - - - -A g
CESCRlPTON OF %8 ATEReAL m
E M, 3 3-0 20 m
do 50 v
0 I Q 2
e 3
a 2*
y O f w
u
- w t
t r
n W
3 3
3 c
- =.
a y
- 65. s -:
4 w
3
.s.u s
sp.v. <
- e g
St.NACE ELEvarcN 3
y 583.O FT.
to 20 m
3o So a
i i
s T
',e E. oO t
SS 4 _
- [
<O'.
.i 2
SS I
~
.e r
i,j be 3
S S.
GRAY CRUSHED LIMESTONE. (GP)
\\
1l h
i
?
is i
'. g Y
Ij
/
.A
. S S6, -
!i s
- ,t 8.,
u
!j! "
- 5__d id i
i-N
~
5 f.!
I 6.SSi END UF OO R 17. 0 in BodlNG ADVANCED TO g.0 FT.
USING HOLLOW STEM AUGER.
BOREHOLE BACKFILLED WITH SolL CUTT lNGS.
THE STRATiFCATION LINES DEPRESENT THE APPROX: MATE SOUNCARY LINES GETWEEN Soet TYPES IN SaTU THE TRANS Troes MAY BE GRADUAL WL WS OR W 80 RING STARTEC.
g3.gg.gg STS OFFICE 7.s FT.
w3 WL SCR ACR BORING COMPLETED 12 19 85 DRAWN SY CJD SHEET NO.
OF g
WL 7.5 FT.
Ae n:G BOMg FOREMAN DC
- O 8T TDG STS JOB NO.
71480 SL 1est
O A NEr4 LOG OF 80.JN 5 NUMBE,4 BETR3IT EDIGCN 04
{ A SUDSURFACE EXPLORATIOH
- O# * **#
ARCHITECT EMEER STS Consultants Ltd.
AROUND CONDENSATE STORAGE TAN >:S s:TE LOCATON ese...r.*wr%G
. serv..%r a r s.
FERMI 2_ POWER PLANT __ NEWPORT. MICHIGAN t
2 3
4 5
atastic A AYEe t *AC sW%
CO%?f %i A
.M
b y
X- - - - - - - - - %
p g
S g.
10 20 30 40 50 C
5 5
- I
~
^
~~*
~
t :
e m
y 8.,
-1 w g
e e
n nz q
s f.F El SA 4. 6
- a e
A z
SURFACE ELEvaT'ON y
583.O FT.
o 20 30 40 50 0_
'.',N.e
._I_ S S.
b_
j r.
r~
.?
2 3
_2., S S.
_.m q'...
0 e
3 SS
s 9
4 SS m
3
- , GRAY CRUSHED LIMESTONE. (GP) 6 5
SS 9
6 SS g,
i%.
I _. S_ S sn i
BROWN SILTY CLAY TRACE SAND a,pp 8
SS AND GRAVEL.
(CL)
)
i END OF BORING BORING ADVANCED TO 90.0 FT.
USING HOLLOW STEM AUGER.
BOREHOLE BACKFILLED WITH SOIL CUTTINGS.
Twt simAYlFICADON LINES p(PAf $(NT THE APPROX'WAf t SOUNDARY LINES DETWEEN SOIL TYPts IN SITU. TNE TRANSJTION MAY St QRADUAL M
S.O FT.
W5 WS OR WD 80RtNG STARTED 12=18*88 STS OFFICE LANS1NG M
SCR ACR 80 RING COMPLETED 12.I8.gg DMAWN SYCJD SHEET NO.
I OF I
)
WL 8.8 FT.
A3 RIG goug FOREMAN DC AND SY TOG STS JOS NO y14s0 at i ens I
J
]
i OWhE;f Log op GORING KU _SER q
CETCDIT EDIOGN O.5 OsEC t AWE AACMG CT EWEER A
SUBSURFACE EXPLORATIOPI STS consurtants Ltd.
AROUND CONDENSATE STORAGE TANKS SITE LOC ATON A. Ws sro..
v.** u w 5 ret w '-
V ss : * '
FEMI 2 POWER PLANT, NEWPORT. MICHIGAN t
2 3
4 5
pi as rat AA'Em u Oso
. uit g co%+r.st i uvi u
y, X- - - - - - - - - %
DE3CR'PTON OF MATERIAL e
h Y
O 20 30 10 50 h
g g
g 3 [.
~
^
- + - - +
1 w
w w
W f
(
8d s
s i
u
>3 r
2"
@ "* a wo 5
j E
St.,GF ACE ELEv ATON 583.O FT.
2 N"'
" ^ * '
- d M
C 20 30 40 50 o
a Y
.. /
~
y
?L' 2 SS E
.'.e
,.. f 3
SS 7
GRAY CRUSHED LIMESTONE. (GP)
L.
)'
4
\\
_ _ _.S. _S_.
9 5
- ? 3
~
- i LR0WN S 1 L T Y C L A D' Y R AC C ~ - ~~~'
' ~ - ~ ~- ~ ~~~~
' ~ ' ' ~ ~
~ ~ ~ ~
~ ^ ~ ' '
s'5s GRAVEL.
1C,L]
10 END OF DORING BORING ADVANCED TO 9.0 FT.
USING HOLLOW STEM AbGER.
BOREHOLE BACKFILLED WITH SOIL CUTTINGS.
int simarwCAftw UNf s atpagstNt THE Appaonu Att soukoARY UNES GETW((N $QiL TYP(3 IN 3lfy, THg imAhggtgg gay g( gnAgyAL WL y.3 yy, y3 WS OR WD 80 RING STARTED g2 I9.gg STS OFFICE LANS1NG WL SCA ACR 80 RING COMPLETED DRAWN SY CJD SHEET NO.
3 OF i
12 20 85 WL 8.2 FT.
A3 R'O BOMB FOREMAN DC AWD BY TOG STS JOS NO.
y,agg et tens
OWNEM LOG OF 80 RING NUX5LJ N
O Elgo LT_ E D 1 JS ON NECT NAME SU BSURF AC E EXPLORATIO FCHiTECT ENG.NEER 4
LROUND CONDENSATE STORAGE TANK B
STS coasuttants Ltd.
SITE LCCATION Q
..V* N'.v 3 w-m v #E 5 -t w.*
.s FERMI 2 POWER PLANT, NEWPORT, MICHIGAN 1
2 3
4 5
- L a g t C A A't a
. v. 0
, wet g 00%'E%? t
, w3
- g x _ _ _ _ _ _ e_. _ _ _ _ g DESCOsPTON OF VATER *AL
(
y 3-to to 30 do 50 9
g
~
^
~
^
~
b3 d$
w w
a w
- w d
r r o
-s 8d 2
2 3
v 2"
h.',*.*,N7.s 4,u,,
5 5
$UHF ACE Et Ev ATON 583.O FT.
o 20 30 40 so 0
' { '.
@iU I
'.L 5
,c h!!
2 SS a
GRAY CRUSHED LIMESTONE. (GP)
' y 1g l:
I>
I 3
-j l
43 S S.-.i_
l' 1l f
i
-. l$
.L.-.
5 SS l -i B R O tf N SILTY CLAY - TRACE (CL)
Jh GRAVEL.
4 SS END OF BORING en BORING ADVANCED TO 9,0 FT.
USING HOLLOW STEM AUGER.
BOREHOLE BACKFILLED WITH SOIL CUTTINGS.
tut stRAfisicAtioN Lings pasasstNT fHt APPaos:uait souhoAnt uhts eETvrttN SOfL TYPES IN SITU. Tw( TRANSITION uAf of GRADUAL 7.5 FT.
W 5 WS OR WD 80 RING STARTED l2 20 85 Sf 3 OFFICE LANS ING WL BCR ACR 80 RING COMPLETED DRAWN SY CJD
$HEET NO.
3 OF l 2_._2 0 8 5 WL 4.2 FT.
AB RIG aOMs FOREMAN DC APP'O gy TDG STS JOS NO 71460 at. t see
CANErt LOG CF SO,..ING NU4SEM DETROIT EDISON 37 A
PROJECT N AMtS U B S U R F A C E EXPLORATIOI, ARCHITECT ENG:NEER STS Consultants Ltd AROUND CONDCNSATE STORAGE TANN S site LOCATeON Q
Nc.
s %f 3 e r w w.,* s ***.sG '-
.s FERMI 2 POWER PLANT, NEWPORT. MICHIGAN I
2 -- 3_ - n - 5 4
% A%f sC WA'ES
.*L O L wit 4 CONTE %f4 6wa s y
X- - - - - - - - - -6 DESCR.ptiON OF 44 ATERiAL 5
Y s
=
2o
>o ao so C
6 5
$ 2
~
^
^
^ ~
g y r
w w
w y
Co
' W d
d t
8
-m 8 ;;;
3 3
3 y-g e..r.-o 3
j y
storACE ELEVA*CN 583.O FT.
n
,o o
o ao o
t S_ Sy( Q{
7 * *e: '
a ys i
i j
r
,\\
s/
2 SS GRAY CRUSHED LIMESTONE.
(GP]
7>
3 SS
. A.
S /,
n
\\
i 4
SS i
_5. S5.._
JY BROWN GRAVELLY CLAY.
(CL.GC)
T
_6...S S.
TRACE SANE db BROWN SILTY CLAY Tn
[
AND GRAVEL.
lCL]
\\
t
.?
SS L l..
4R GRAY CRUSHED LIMESTONE.
't S
i
-S END OF BORING BORING ADVANCED TO 90.5 FT.
USING HOLLOW STEM AUGER.
]
BOREHOLE BACKFILLED WITH SOIL CUTTINGS.
int sinAtwicArioN uhts atPatstNT fut APPnomuAtt souh0Anv Lints ettwtEN sos Tvrts tw SITU. THE TRANsatiom uAv et om40 vat WL 7.5 FT.
WS WS04WO BORING STARTED STS OFFICE LANSlNG WL SCR ACR 90AING COWPLETED i2 10 05 DMAWN BY CJD SHEETPeO.
8 OP 1
WL e.7 FT, Ae R'O 80 M g FOREWAN DC APPO SY TDG STS JOS NO.
71480 et tces
Ow%ct LOG OF SO..tNG NuaBER CETRDIT EDI2CN 0-8 PROSCT NAMESUBSURFACE EXPLORATIOPlARCHITECT ENGINEER
( A STS Consultants Ltd AROUND CONDENSATE STORAGE TAN >:S Q
.Ni*'%*%*3r.u..ar
-vie vot%6'a SITE LOC ATON
.Ns *
- e FERMI 2 POWER PLANT, NEWPORT. kilCHIGAN 1
2 3
4 5
g astic AafEe sCuo
, u.? s CON'FNT4 su*s y
y -----e-----s
(
DESCR PTON OF MATERIAL 2
W 20 30 AO So 0
(L e
g g
-+-
0 3'
Z b >$
W W
6 y
O 'A 4
f f
f O
U3 8jw 2
3 3
g 2
,, a s..s e;
(
,r
..,s g n 4 4.,,
E SurtFACE ELEb A*CN 583.O FT.
ti i
t4 I
l 1 PA
_a i
f4g
/
2 SS Z
j i
[
4,\\
I 3 SS
/
Y 5
g'h 4
GRAY CRUSHED LIMESTONE. (GP) 4 SS j!
i l
ff s;
L 5
,3,
i.
\\
l
)
L SS.
\\
y_
L lt d ',*.'
ro-i 4
7_5S 11 END OF BORING I
BORING ADVANCED TO 9.0 FT.
USING HOLLOW stent AUGER.
1 BOREHOLE BACKFILLED WITH SOIL CUTTINGS.
fMt STRAflFICAftOM LINES sitPetSthf fMk APPRQ11M Aft DOUNDAmy LINES SETWitN SO4 TYPtS tbitu, TMt TRANSaficas w Av et bmADUAL.
WL WS OR WD SCRING STARTED i2 20 85 STS OFFCE y,g 77, LANSING WL SCR ACM 90AiNG COMPLETED DRAWN SY CJD SHEET NO.
g OF g
I2 20.a5 TDG STS JOS NO. 7l480 WL 3.3 rT. A3 M gOMg FOREMAN DC APFD BY et, e ens I
i
OWNEs4 LOG A F SO,.ING NU_SEJ DETROIT EDICCN O.9
" " " ' CI '
"O* C I ^" SUBSURFACE EXPLORATION A
STS consuftants Ltd AROUND CONDENSATE STORAGE TANKS SATE LOCATON g
<ve *v *.r y *. *t
-.E 2'M NG'M Ms e
FERMI
- 2. POWER PkANT_m HE WP. ORT _ _Ml.CH I G AN_. _
t 2
?
j 5
aaste h a tta t o,.o
. w.t s costt%t s 6 w.T i X- - - - - - & - - - - t 4
CESCRiPTON OF Material r
{
M E
E E
E E
^
30 Ao 50 3-o 2o x 4 w
w w
y c a a w g
g g
-m f"
@ S'.FM?.s 8d s
s s
,..A+.,
3 j
j 2
SURFACE ELEVATION 583.O FT.
n g
,g 3o
,o go o
i gi I
PA L
i
...~.
-/j i
~
/
2 SS
~
r' i
. f Y. )-
{
^
3 SS GRAY CRUSHED LIMESTONE.
(GP) 4,b R
i - b li g
4 _S S -
t Y'!
/
5.QS Z j
,,.s
_6
.,S, _S.
hl S$;.
IT l.._S S d END OF BORING BORING ADVANCED TO 9.0 FT.
USING HOLLOW STEM AUGER.
BOREHOLE BACKFILLED WITH SOIL l
CUTTINGS.
tmt staanticAtiom UNts atPatstNt fMt Aremoamatt souncany unts sifwitM sort tvPts IN situ. tHe inANsitiom wAv et o*ADUAL stS OFFtCE WL g,3 yy, y3 WS OR WD 90mlNG STARTED t1 29 8S LANS1NO WL SCm ACR DomlNG COMPLETED I3 21 4S DRAWNSY CJD SHEET NO.
g Ol' g
WL 4.2 FT.
AB mig O IY STS JOS NO 71440 aOMe FOREMAN DC TDG et t see
OWAE4 LOG OF 80.JN J NULBER O*I' DETHDIT EDIRCN N ECT N AMES U BSU R F AC E EXPLORATIOp, ARCHITECT ENGNEER
, A Sf 5 Consultants Ltd.
AROUND CONDENSATE STORAGF. TANP S
h
.se e.* %r 3 war + ve s at w' 54TE t.OC ATiON N4 ** g 5,
FERMI 2 POWER PLANT, NEWPORT. fII C H I G A..N I.
2 3
4 m u r.c
- arta ewo t u.e g ccyt%, s
$ ur.
X- - - - - - - - - %
DESCR<Pt 0% OF MATER' AL e.
z y
3-o 20 30 Ao y
9 0
- t z
r 2
I >;
Eo d
5' w
w w
f
- - 3 o... ram 18y 2
2 2
0 W..vea..
er * * * -
)
y SLRFACE ELE % ATCN 583.O FT.
n 20 yo Ao so t
I PA 3'j T
2, sS
,, h 3 '.;
r 3
S S t
,, ]
GRAY CRUSHED LIMESTONE. (GP) f s
e
/
4 SS u
/
\\
.t ','
S SS l
4.=,
6_ SS., _ _._
END OF BORING ta BORING ADV Al4C E D TO 5.0 FT.
USING HOLLOW STEM AUGER.
BOREHOLE BACKFILLED WITH SOIL CUTTINGS.
i twt sinAtwication UNts stratst=t int Apenomiuait soumoAmt unts ettwitm soit tvets im sity. int imamsmon war et omaouat wL WS OR WO coming STARTED I2 2I.85 Sf 3 OFFCE 7.5 FT.
WS L A N S I il e WL SCR ACR DORING COMPLETED g2 21 05 DRAWN ST CJO SHEET NO.
I OF I WL 0.2 FT.
A3 R4 50Mg FOREMAN DC APP'O ST TOS Sf3 Joe NO 794eo et iese
.~.
o-
r---
onNEM LOG LF 80,.IN3 NU2 SEM DETROIT EDISON O*I4 PH0 JECT f%AMES U B SU R F A C E EXPLORATI071 ARCHITECT CNGNEER stS consultants Ltd.
AROUND CONDENSATE STORAGE TAND;S site LOCAroN
~ h
- v. m.sto m w.et..v r vatsc'.
.s.
FERMB 2 POWER PLANT, NEWPORT. MICHIGAN 1
2 3
4,
_5,.
gastsC A A ?E #
. 'Ct C imit g CON?t%f n w*t 0
X- - - - - - - - - %
e{
oEscRiptioN CW Ma tERIAL 2
p y
3,e-g 3
6 2
_. _ - o 20 30 40 50 k
.-1 W
w w
j
$5 I I I 8
33
@ %Oi'%s 1
1 SURFACE ELEVAriON
....m.
583.O FT.
o 20 3o 40 50 n
I PA A
.y g
1.._S S
+
I
?Y s
GRAY CRUSHED 1.IMESTONE. (GP)
.L._S s I
l, 21 /,
4 SS g.
,k :
..z 5
?
(
' 23 8
SS END OF BOR1NG na NOTE ENCOUNTERED PVC ENCASED WlRE WHILE ORlLLING.
i l
BORING ADVANCED TO 9.9 FT.
USING HOLLOW STEM AUGER.
BOREHOLE BACKFILLED WITH Solt CUTT lNGS.
tut stnatirication times espatstmt fut Artmoniwatt soumoamt Lints ettwatN sos tvete im situ. twa tmansition WAv et omaouaL 1
i WL WS OR WD BORING STARTED I2 2I e5 STS OFFeCE LANSINO I
WL SCR ACM SORING COMPLETED 12+21 85 DRAWN SY CJD SHEET NO.
W g g
1 WL y,e ry. As mig MOMS FOREMAN DC APFD BY TOG STS Joe NO.
7I4a0 et t see a
CANER LOG OF BO ING tu;DE2 CETRDIT EDICCN O.15 PROACT NAME g
SUBSURFACE EXPLORATIONARCMTECT NAEER StS coneettants Ltd AROUND COI4DENSATE STORAGE TAN >'S SITE LOC ATON Q
.sem...v sef ut ur,, et s st ss%
.s FERMI 2 POWER PLANT. NEWPORT. MICHl_GAN t
2 3
4 5
+
.- w -m M45fC
- * 'f a A C-C cu.f %
CONTE %f 5 Luti g
.X- - - - - - o- - - - - t q
OESCRiPTON OF W ATER'AL 5
r 3
'o ao
>o Ao
>o 3
E 5
E
- U
~
^
~
~
d5 w
w w
y
$ f hh f f
h 8
33 g
as w I
su8E8' ACE ELEv ATON
_-}
580.O FT-to 20 3o 40 50 o
i PA
$ l*
l
,i 2
GS
/
GRAY CRUSHED LIMESTONE. (GP) e I.
I s
1._ SS.
i 8
4_.55___..
END OF BORING in DORING ADVANCED TO 6.0 FT.
USING HOLLOW STEN AUGER.
DOREHOLE BACKFILLED WITH SolL CUTTINGS.
fMe staAfiFCANN uhts miratsamt tHe Apenomiwatt soumoARY Uht$ $(TWEEN 90'k iTett IN 5stu fMe imahearsom uay at onAouaL WL WSOMWO BOAiNo STAmtED I2 30.es
$fs OFFICE 4._ 8 FT.
es LANS1He WL SCA ACM SORING COMPLETED 0 #*N 8Y SHEET NO g
0F g 13 30.e9 CJD WL 4.s Fy, As mio mOMB FORE M A N DC APPOBY TDs Sts aos No 714 6 0 et I see
owup Loo oF SCRING NUC SEA q
DETROIT EDISON 3t8 PRO ECT N AME SUBSURFACE EXPLORATId> hhCHTECT E'.0.NE ER g
STS consuttants Ltd.
AROUND CONDENSATE STORAGE TANUS w YE LOCATON v
a.s v o...w.=t
.4 s
- n s.. '.
FERMI 2 POWER PLANT, NEWPORT. MICHIGAN
- 4**
a I
}
d _ 5 wase c watta t o.o tutt Cr,% ?t % t
- L wY t X- - - - - - - - - -6 4
DESCRtPTION OF MATERIAL 5,
g g
3 ;
it 5
. _... =. _ 2.o
=,_ _ _d o.
'.o-1 w
w a
y Ew t
t t
q
-m 3
dd 3
3 8
8 2"
@ %Oi'I?.s 3
3 3
2 Sv4 FACE ELEvatcN f.n,,
500.O FT.
,o yo e
ao so e
1 PA-n R
2 ss y,
AI.T
- /,
GRAY CRUSHED LIMESTONE. (GP)
/;.
s
-<...i.
ee...
j u
's M*['
4 SS I
27$
s ss 7 m LND OF HORING
^ ta BORING ADVANCED TO 7.5 FT.
USING HOLLOW STEM AUGER.
BOREHOLE BACKFILLED
'J I T H SOIL CUTTINGS.
tut atmAfiticateg unas espasst=f int appmosivatt souweAny Lists ettwtan soet fvPts = sity. int inAmsstow war et annouat.
M WS OR WO DORING STARTED 02*O4.SS STS OFFICE LANS1NS g,,
py, yg M 4.5 P T ACR ACR 90 RING COMPttitD 02*44.ee DMAWN BY CJD SHt ti NO g
OF 3 WL RIO goyg FOR[WAN gg AMD SY tog STS JOS NO 7 f 4 4 0 et tsee
1 i
CANEu LOG OF 80~tNG NULSER C37DIT EDICOM
._.s _. 7 ARCHeiECT EWER A
PeoKCT N AurS U B S U R F AC E EXPLORATIOPl STS consuments Ltd AROUND CONDENSATE STORAGE TANP S h.c.v.. sea.. % = reatse SiTEtoCArcN FERMI 1 POWER PLANT. NEWPORT. M I.C..H.__I _G A N_ _
2 3
4
.._5,,_.
I st a%'<,
A A'f m s%D 6 uit t CON'E %f *
.V'*
y X- - - - - - G- - - - - -6 DESCR Pfl0Pe OF M AfE A AL g
g
- e 2
b::
20 30 40 50 o
~
~
, g y
e w
w
.a b
~~
h f.,'j?'!i -s
.,3...
) )
y SLRraCE ELEvattON S80.O FT.
o 20 to 40
- O o
3Ik
/
t 5S p,e
/
-/
KN
~tY a
g gg d &z
~
GRAY CRUSHED LIMESTONE, (GP) 3 5S, 1
4.sS I
a.
s ::S 7. f-
,1 END OF BORINS
.jp HORING ADVANCED TO 7.5 FT.
USING HOLLOW STEM AUGER.
BOREHOLE BACKFILLED WITH SOIL CUTTINGS.
tut stmatiet.Anose times atpatstNt tnt Apenon Watt soum0ARY UNtt ettwitN SOfL TYPl$ IN Wfy. TMt tRAN$stcm WAT St GaAOUAL WSORWO SORING STARitD e2 08=84 STS OFFeCE WL g,g yy, yg WL 5.FFT ACR ACR BORING COMPttitD DMWN Sf C J D
$H(ET NO.
3 OF I
et.OS.00 WL R10 aOMs FOREMAN OC APPD BY TDs St$ Joe NO yg4gg et. t ese
CANEW LOG OF 80.JNQ NU, 8E J CETCOIT EDISON 3.ga 4
PRO >Ect NAME S U B S U R F A C E EXPLOR AT I OrdecHitEc7 ENG r.EER STS consultanes ttd. AROUND CONDENSATE STORAGE TANKS sif E LOCATION h
.se. s. v..st o e c vi s t a e
- st w w a
. f_E 8H l _,_ t POWER PLANT, NEWPORT 2_M_LCHIGAN
?
S s.agre w a rt a two wr g cea. t%t
- 6wr1 0
X - - - - - - *- - - - - e 6
? e{
2 w
5 m
- *I g:
w w
w y
Tw t
t t
0 gd 3
s s
u n < s-j.
W
.4.,.= s- :
j j
y sueF ACE ELEV AT'ON 580.O FT.
sa-.s e.
A n s '
_'X'l
,o go go ao go v
.Y., ~8 8
SS i
'j
. _.. 1.
t a..
a SS
,[ 27
~
~
GRAY CRUSHED L I M E S TO r4 E. (GP) l
.)
- .' 8 3 SS 2
7
,4 lI f.l.
60 4
55 END OF BOR1NG
~T_ '. V
.97 BORING ADVANCED TO 6.0 FT.
USlHG HOLLOW STEM AUGER.
BOREHOLE BACKFILLED WITH SolL CUTTINGS.
l twt simatiscatcN Lihts atentstNT twa Appmoziwatt soumcamy Lines artwitN soit typts in situ. fMt imAmsation war et onA0uAL.
WL g,g yy, yg WSORWO DORING STARTED 02*05.ee STS OFFICE LANSlMe WL 8.9 F T. SCR ACR 80 ming COMPLETED 02*O5 3g DRAWN gy CJD SHEET 880.
g W
g WL RIG g O N g FOREMAN DC A D SY STS JOS NO.
y 4eo TOS et. t see
cANEH LOG LF 80, th0 NUZBE.J DETROIT EDISON 3 33 i
A PROACT NAME SUBSURF ACE EXPLORATIO PRCHiTECT ENGINEER ST5 consi Itants Ltd AROUND CONDENSATE STORAGE TANK B Sere LOCATION g
..% c ss ss' O,-
va st s e.* v'><.s P
- y.,,
FERMI 2 POWER PLANT, NEWPORT, MICHIGAN t
2 3
4 5
etAsrc A A't a 40 t v.r s ccvrwr s
.w's O
X- - - - - - & - - - - t CESCp.pt:ON OF mater AL k
3 0
2 5
x
~ ~ ~ '
~~
k-2*
% e$1 1
1 5
@ ::a:n; W
W L
~
0 4 y
SURFACE ELEVATION 580.O FT.
.. ~,. '
,o 2o m
4c
- o O
s u, p, 3
5S
/
^
a'
~/
EY/;.
_2.5 2
.Y N GRAY CRUSHED LIMESTONE. (GP) s SS s
t
.O.j 4
SS I
W.$
5 SS
~
7,3 END OF DORING NOTE AT 4.5 FT.
4.5 FT.
THE SHOE OF SPLIT SPOON WAS W
LOST IN THE BOREHOLE.
NEW BORING WAS STARTED 3.5 FT.
NORTH.
RESAMPLED 4.5 S.5 FEET AND COMPLETED BORING.
BORING ADVANCED TO 7.5 FT.
USlHG HOLLOW STEM AUGER.
BOREHOLE BACKFILLED UlTH SOfL f
CUTTINGS.
int sinatiacatom UNts atratstNT fut appaomuAtt souhoam? UNES SETWttN So* TYPts im situ. THE tmAmsitoe war et onA0uAL WL 6.O FT. WS WSORWO DORING ST ARTED 02 05 86 STS OFFICE LANS1NG i
WL SCR ACR BORING COMPLETED 02-05 8g DRAWN SY CJD SHEET NO.
8 OF 3 8.O FT WL RIO goug FOREMAN DC TDS STS JOS NO.
73480
^ 0 OY et. t ens
]
CWNE R LOG LF 80RINO NULBEJ DETROIT EDISON 5021 4
PROJECT N AME S U B S U R F A C E EXPLORATIOlg ARCHITECT ENG*NEER ST5 Consultants Ltd tROUND CONDENSATE STORAGE TANKIB h
- .%n se v v wr s > vt SITE LOCATION
- =v v=
%4 &F* g
_f_ERMI 1
POWER PLANT, N E W P_O R T,_ M I_C H I C A N
_,]
2 3
4
,5 pi ast c n a*t e
, 9,,0 i
t w? %
CCN'E %' s
,wei wy X- - - - - - - - - -6 DESCRapTCN OF UATE9eAL, p
g A
0 I y z
5 a
20 M
40 50 Q
Q
~-
s Oa W
W E $
O wz w a O w 3
3 3
V
}s S avamS h
SURFACE ELCvafCN
^
580.O FT.
10 20 30 40 50 l.
I
'a f I
/
L 1 SS GRAY CRUSHED LIMESTONE. (GP)
~
3 SS b
m
- I
- 3 a
4 SS.'
5 1 Ceo SS
-.~5.
END OF BORING te BORING ADVANCED TO 7.5 FT.
USING HOLLOW STEM AUGER.
BOREHOLE BACKFILLED WITH SOIL CUTTINGS.
TME STRAftFC.Attoes LINES REpe(stat fME APPaostuatt touNDARY LINES SEfWEEN SOtt tvPtS. its Saru, TMg tRANsatiose tsAf Of GRADUAL WL 4.O FT.
WS WSORWD DORING STARTED 01 04 84 STS OFFICE LANSING WL 4.3 FT DCR ACR 80 RING COWFLETED 02 04 88 DRAWN SY CJD SHEET NO.
I OF l WL RIO goug FOREMAN DC APFU IT TOS Sfs JOS NO.
73440 SL 1 ens J
OWNER LOG CF DO IN 3 NUZ8EW DETROIT EDISON B-02-2 PRO;ECT NAME SUBSURFACE EXPLORATIO (CHitECT ENG:NEER A
STS Conswitants Ltd. AROUND CONDENSATE STORAGE TANK B
h,, Net se sro ' vwe % vr i* cts.
SITE toCATON FERMI 2 POWER PLANT, NEWPORT, MICHIGAN
'g y
g m.as,rc
. %,,o a a rt e t v.
s cutst i v.
w W----&----t 5
nesca.pf>ON Or u..Eoi L z
g
$0 E
5 h
I a
e-w w
w w
b8 t
t t
6 a s
- e. *4 s c e SuprACE ELEv4 TON 5s0.O FT.
,o 20 m
40 so g
- .;*7
^
I SS
,/
," O
/
z,s
)
2 SS
- - -- - - GRAY CRUSHED LIMESTONE. (GP)
{v9 1
3 SS I
]
5
.-3
.JL. d 4
5s END OF DORING 777~
. g.,
BORING ADVANCED TO 4.0 FT.
USING HOLLOW STEM AUGER.
BOREHOLE BACKFILLED WITH SOIL CUTTINGS.
fMt simat#mcation unts atentstNT Tut anemoniwart souh0Amv umts etTwtEN soit Tvrts sN situ. twt tpANsafcN Mar et ORADUAL WL 8.O FT. WS WS OR WD 80 ming STARTED 02 OS*84 STS OF FICE LANSINS 8
3 WL 4.O FT SCM ACR 90 RING COMPLETED 0 2
- O 3 3 g ORAWN SY CJD SHEET NO.
OF WL RtG goug FOREMAN DC A#O EY TDg STS JOS NO FI440 et t est
l GENE R Al. NOTES DRIL LING & S AMPLING 5yM80LS-SS : Split Spoon - 13/B" 9.D.,2' O.D untru OS :
Oste <tweg Samoter - 3~ She by TW r
etherwise noted HS :
Hottow Stem Auger ST : Shortry Tube - 2** O.D., wntess otherwise noted WS :
Wash Sample l
PA : Pov.er Auger FT :
Fish Treil i
De : Diamond 8st - NX: 0X: AX RS :
Rock Bit AS : Auger Sample SS :
Bulk Sa nple J5 : Jer Sampfe PM :
Pressuremeter test.in situ VS : Vene Sheer I
St andard N Panatration:
Stows per foot of a 140 pound hammer falling 30 laches on a 2 inch 00 split spoon. e= cept where noted.
WATE R LEVE L ME ASURE ME NT SyV80LS:
Wt. : Water Level WCl: Wet Ceve In DCI : Ory can in I
WS : White Sampieng WD. White Drilling SCR: Before Casing Remo at ACR: Af ter Ces ng Removal AS : Af ter Boring Water levels ind cated on the boring top are the levets eneesu ed in the boring at the times ind.cated. In pervious soils, the e
indicated etewations are considered reliable g'ound nater levets. In empervious soils. the accurate determ. nation of g'ound evetar elewstions is not postbfe in even arveral days otna%ation, and additional evidence of yound water s'evations rnuet be sought.
i GR ADA780N DESCRIPT80N & TE RMINOLOGY:
Coarse Greined or Granufar Scils have more than 50% of their dry weight retained boulders, cobbles, seavet or sand. Fine Greined Soits have less than 50% of their dry weight teta;ned on a are described as:
I 200 s. eve: they are described as ular soils are defined on the basis ofclays or clayry s.Its if they are cohesswe, and salts of they are non<ohesive. in addition gran consistency. and their pfesticity.
their relative instace dens ly ano fene grained soils on the basis of their Strength or I
Major Component Descriptive Term (s) 108 Compoaents Also Percent of Of Samole Site Range Prewnt en Samplet Dry YWe.ght soulders One 8 en. (200mmi Trace I
1-9 Cobbles 8 in. to 3 in.
Little (20C>nm to 75mm) 10 - 19 l
3 m. to #4 sieve Gr av el Some (75mm to 2mm) yo 34 Sand
- 4 to M 200 sieve And 35 - 50 12mm to.074mm)
Seit Pau;ag M200 s' eve 10 074mm to 0 005mm) i i
Clay Smarter than 0 005mm CONStSTENCY OF COHESIVE SO'LS:
REL ATIVE DENSITY OF CR ANtJL AR SOf LS:
Unconfined Comp.
S tr eaeth. Ou. ist Coas;st ency N - Stomitt Meist; e Density
< 0.25 Very Sof t 0-3 very Loose o 25 - 0 49 Soft 4-9 Looes 0.50 - 0.99 Medium IFirm) 10 -29 Medium Denne 1.00 - I 99 Stiff 30 - 49 Dense 200-399 Very Stiff 50 - to very Denne 4.00 - 0 00 Hard toe t a ttemely Denne
> s 00 very Hard i
STS Consultants,1.td.
.. - l
PROCEDURES REGARDING FIELD LOGS, LABORATORY DATA SHEETS AND SAMPLES in the process of obtaining and testing samples and preporing the report, procedures are followed that represent reasonoble and accepted practice in the field of soil and foundation engineering.
Specifically, field logs are prepared during performance of the drilling and sampling operations which are intended to portray essentially field occurrences, sampling locations and other information.
Samples obtained in the field are frequently subjected to additional testing and reclassification in the laboratory by more experienced Soils Engineers, and dif ferences between the field logs and the final logs exist.
The engineer preparing the report reviews the field and laboratory logs, classifications and test dato, and in his judgment in interpreting this dato, may make further changes.
Somptes taken in the field, some of which are later subjected to laboratory tests, are retained in our laboratory for 60 days
,.id are then destroyed unless special disposition is requested by our client. Samples retained over a long period of time, even in sealed jars, are subject to moisture loss which changes the apparent strength of cohesive soil, generally increasing the strength from what was originally encountered in the field. Since they are then no longer representative of the moisture conditions initially encountered, on inspection of these samples should recognize this factor.
It is common practice in the soil and foundation engineering profession that field logs and laboratory test data sheets not be included in engineering reports because they do not represent the engineer's final opinions os to oppropriate descriptions for conditions encountered in the exploration and testing work. On the other hand, we are aware that perhaps certain contractors and subcontractors submitting bids or proposals on work might have on interest in studying these documents before submitting a bid or proposal. For this reason, the field logs will be retained in our office for inspection by all contractors and subcontractors submitting a bid or proposal. We would welcome the opportunity to explain any changes that have and typically are made in the preparation of our final reports to the contractor or subcontractors before the firm submits its bid or proposal, and to describe how the information was obtained to the extent the contractor or subcontractor wishes.
Results of laboratory tests are generally shown on the boring logs or are described in the text of the report, os oppropriate.
l STS CONSULTANTS LTD.
I.
U N IFICIO ODIL CL ASS IFIC ATIO N SYSTEM Me,or d emone Typical names
{
Laborato.y clasific.aeion enteria 2
h,
,N,'
}
{
GW I
C --
p.ater snas 4. C *O ber4een I and 3 e
X o o
s e
, i s
i-T,a 1 [
i a-
?
j Qj gp e
Poorly oraded yrdels, gravel l o,
t Not meeting all gradation requirements for GW
, a und mistures.little or no f nes i i
i 2.
T
! E 5
j
~
s
$h h
Atterberg 6 mitsbe.ow "A" h y
4 9
y5 g
Silty gr avels. gravel undseit I a
E3*
.2 ef GM ma atures
.R
" #. I l line or P.e. less than 4 8
l k
2ge 9
u lM *' '# 'E 4 Above "A" fine with P.I.
(
j3'{
-) 3 _..
between 4 and 7 are bor.
gz
-h ~g#w$
. Clayey yavels, grai,el sand clay i1)
' k *' Anereerg famits above " A".
_3 6 2
26
' #I;## ***** 9 "i"8 '
j GC l
of dual symbols
,3 l mistures 1
line with P.I. Greater than 7
.s 3
5 6
i85 3
S Wellgraded sands. gravelty * ** 8 Ono (030I i-2 j
I, p$,
l) j C * $ eater than 6. C sands. little or no fines between 1 and 3 i
uD C Og XDa s
- 5-
- = l 3.g i 5E c
- "J E
ja[
'5 l
O; g I
Poorfy paded unds. gravelly e i.:
5' i.z
~3, unds. iinie o, no,ines m g ' "$
w i ~ iaa o aeu ~ ar= "em
-'- =
2 i
o o)=.
g o
I q. 2.$ b
- ae-5 E5' E
d E
sI 12 E
e g, g g g c' j Atterberg limits beiow "A" SM 3
g y *g Salty sands, undsett mistures
' line or P 4 tess than 4 L;mits sorting in hatched w
5, s31
,E5g*3.tv1!
- none wein e.i between 4 u
,! 7 ;)
3 iSj and 7 are borcer/ine uses
-3 *ld k2j0
, 2 i *4 l g 4 Attereerg limits soove "A i 2
teowering use of dwat syrw Clay ey unos, sand <tay mi n.
I }g g ooss
- d*
tures w t$ $
line with P.l. greater t%an 7 j
5.
i i
l j inorganic seats and very fine.
l sands toCh flour. salty or Cla, h
ey fine sands or Clavey salts g
- *g j
with slignt plasticity
,- For clasification of finegra ned
- - = -. - -
- i 3,3 Inorgame class of sow to me-f i
dium plasticity. gravelty clavs.
[ soils and fine fraction of coarse __,___1 50 L grained Sosis.
y sandy clays. sitty clays, lea"
{
j.j Atterberg Limits plotting in - ; -
Clays 4y hatched area are borderlice clami --
f --.
j
[fications requiring use of duel i
~
[_' --
6
,so symbols.
g Organic sists and organic setty H Eowation of A line J.,
clavs of low plasticity e
s=
1
.}
Pl =0.73 (LL 20.)..
s p.---
. ~ _..... -
}
- I 33
{
Inorgame s.its macaceous or i
je/-------------
~
+
f MH diatomaceous fine sandy or j
_ l ~ '_ l ' ",'_~1,,,,=
~
og,,, un _
p y
, siity soils erastic sats e.
._..i.
_f g.g i
,g 20
- u. l 3*3
...... - - ~.
inorganic clays of h,gh plas.
. - CL -
_-=
}
{}
CH tecity fat clays 3
- I f--
1.....-- =.Y.6.-Lt ard Bil._.._ -_. _ -
- -/--
3 1
- i......n
!6 E
g OH Orgame clays of mediii,m to 4-------
gl d
0 n,gn,,,,,,,,,,,,,,,,,,,,,,,
0 to 2kl 30 40 50 60 70 80 90 100 I
l Ligw;d Limit l
I g U
{ Peat and otner hig9fy or@aniC PI'8D8'IY
%kj
}
} soils f5 l
I i
L
AMERICAN SOCIETY FOR TESTING AND MATERIALS 1916 Ceca St., Philadelphie, Pa.19103 sep,WeJ fenen cor,,,sbed IW Ik=4 of ASTM sesadseds, ran i t.
Standard Method for PENETRATION TEST AND SPLIT. BARREL SAMPLING OF SOILS' ASTM Designation: D 1586-67 This Standard of the American Society for Testing and Materials isissued under tLe fued designation D 1586; the number immediately fo!!omics the designa.
tion Indicates the year of original adoption or,in the case of revision, the year of last revision. A number to parentheses Indicates the year of last reapproval.
- 1. Scope from the drilling motor to the cutting IcVelin the hole at or above ground water 1.1 This method describes a procedure bit. A stifier drill rod is suggested for level.
f:r using a split. barrel sampler to obtain holes de(per than 50 ft (15 m). The hole representative samples of soil for identifi. shall be limited in diameter to between 3.2 In no case shall a bottom-dis-cetion purposes and other laboratory 2} and 6 in. (57.2 and 152 mm).*
charge bit be permitted. (Side-discharge tests, and to obtain a measure of the 2.2 Sflit. Barrel Sampler-The sam. bits are permissible.) The process of resistance of the soil to penetration of pler shall be constructed with the dimen. jetting through an open tube sampler the sampler.
sions indicated in Fig.1. The drive shoe and then sampling when the desired shall be of hardened steel and shall be depth is reached shall not be permitted.
- 2. Apparatus replaced or repaired when it becomes Whers casing is used, it may not be 2.1 Drilling Equipment-Any drilling dented or distorted. The coupling head driven below sampling elevation. Record equipment shall be acceptable that pro. shall have four 1 in. (12.7.mm) (mini. any loss of circulation or excess pressure vides a reasonably clean hole before mum diameter) vent ports and shall in drilling fluid during advancing of holes.
Insertion of the sampler to ensure that contain a ball check valve. If sizes other 3.3 With the sampler resting on the the penetration test is performed on un.
than the 2 in. (50.8-mm) sampler are bottom of the hole, drive the sampler disturbed soil, and that will permit the permitted, the size shall be conspicuously with blows from the 140 lb (63.5.kg) driving of the sampler to obtain the noted on all penetration records.
hammer falling 30 in. (0.76 m) until sample and penetration record in ac.
2.3 Drite ll'cight Assembly-The as. either 18 in. (0.45 m) have been pene.
cordance with the procedure described in sembly shall consist of a 140 lb (63.5.kg) trated or 100 blows have been applied.
- 3. Procedure. To avoid " whips" under weight, a driving head, and a guide 3.4 Repeat this operation at intervals the blows of the hammer, it is recom-Permitting a free fall of 30 in. (0.76 m). not longer than 5 ft (1.5 m)in homogene.
mended that the drill rod have a stiffness Special precautions shall be taken to ous strata and at every change of strata.
equal to or greater than the A rod. An ensure that the energy of the falling 3.5 Record the number of blows re-
"A" rod is a hollow drill rod or " steel" weight is not reduced by friction be. quired to eficct each 6 in. (0.15 m) of having an outside diameter of 11 in.
tween the drive weight and the guides.
Penetration or fractions thereof. The or 41.2 mm and an inside diameter of 2.4 Aucssory Equipment-Labels, first 6 in. (0.15 m) is considered to be a 11 in. or 28.5 mm, through which the data sheets, sample jars, paraffin, and seating drive. The number of blows re.
rotary mot, ion of drilling is transferred other necessary supplies should accom. quired for the second and third 6 in.
pany the sampling equipment.
(0.15 m) of penetration added is termed Under the standardi stion procedure of the the penetration resistance, N. If the 8
Society, this enethod is under the jurisdiction of
- 3. Procedure sampler is driven less than 18 in. (0.45 3.1 Clear out the hole to sampling m), the penetration resistance is that for th n A is of er be ee n m:v te found in the ASTM kr flook.
elevation using equipment that will en. the last 1 ft (0.30 m) of penetration (if CrhnEyisua19ss.'$[ fee:ItsN.y sure that the material to be sampled is less than 1 ft (0.30 m) is penetrated, the not disturbed by the operation. In sat. logs shall state the number of blows and eIi Ne'/ hc[ k, N M Ip',al urated sands and silts withdraw the drill the fraction of 1 ft (0.30 m) penetrated).
sa t The Engineerins Foundation. 345 East 47th 8t.'
bit slowly to prevent loosem,ng of the 3.6 Brmg the sampler to the surface Nas York. N. Y. t0017.
soil around the hole. Maintain the water and open. Describe carefully typical 1
PENETMTION TEs? AND SAMPLING CF SOILS (D 1586)
..,w.e n-umie no n..e y put u ni,g nar.[
e,,,,e e... :
<1,1 n x
=
x x y so, ri,,,,,, r
. L.
.g.
,r
, ws s s aw aw
_l.
I v/
t
- murrisir, g1
[} /
-.wi-k!!h'.'aa:/.e.*f "!.',1*'n.e'
-ii--
- i. i.i.
4 s cas ss or se re
- e, t.i.i tonni Nors 1-Split barret may be IM la. Inalde diameter provided it conta!ne a liner of 16-saae wall thickness.
Nots 2-Core retalr.ere in the driving shoe to prevent loss of sample are permitted.
Nurs 3-The cornere at A may be elightly rounded.
TABLE OF METRIC EQUIVALENTE in.
==
cm Is.
man am Me (16 sase) 1.8 3
8.08 12.7 3
7.83 19.0 1.90 4
15.34 22.2 2.22 18 48.73 1
34.9 3.49 27 68.88 1
3s.1 a.st Fio.1-standard Split Barrel Samplee Aseerably samples of soils recovered as to compost.
- 4. Report 41.7 TYPE and size of sampler, ti:n, structure, consistency, color, and candition; then put into jars without 4.1 Data obtained in bonngs shall be 4.1.8 Description of soil, ramming. Seal them with wax or her. recorded in the 6cid and shallinclude the 4.1.9 Thickness d hyer, rotto, jog.
4.1.10 Depth to water surface; to loss metically seal to prevent evaporation 4.1.1 ame and location of job, d water; to artesian head; time at which of the soil moisture. AEx labels to the i
far or make notations on the covers (or 4.1.2 Date of boring-start, 6nish, reading was made, t
both) bearing job designation, boring 4.1.3 Boring number and coordinate, 4.1.11 Type and make of machm, e, if available' face elevation if available Kumber, sample number, depth penetra.
4.1.4 Sur h
Pr:;tect samples against extreme tem.
4.1.5 Sample number and depth, 4,'t.13 Number of blows per 6 in.
tion record, and length of recovery.
4.1.6 piethod of advancing sampler, (0.15 m)' Names olcrewmen,and per:ture chgoges, penetration and recovery lengths' 4,g,g4 4.1.15 Weather, remarks.
I I
l 1
1
)
i 1
l I
DCLOSURE 2 1
l 4
1 1
FADIOWGICAL ARNIENI' CST Spills - Noverrber.1965 artl Novenber,1966 An Assessnont of Their Iudiological Environnrntal Inpccts, Prcparcd In Support of Petition for Disposition of Contaminated Soil Prcpared by h1AEtett h M n, WbN Willits V. Lipton, P6.D.
Date Certifir.<1 lbalth Physicist Sr. Ikrhological Engr.
9 Calculations verifiod by w
/
ds [-D8[
Th' mas J. V6nder!!cy
- Date o
Rad 1o109 cal Engineer i
Ipproved by
[*2/- D Palph L. Andersen Date Supervisor Red 10109ical Engineering
Page 1 of 27 RADIOLOGICAL ASSESSMENT CST Spills - November, 1985 and November, 1986 I. Basis Radiological Engineering performed this study to provide a basis for decisions regarding the deposition of soil contaminated by the CST spills of November, 1985 and November, 1986. This study consists of a determination of the pathways through which radiation exposure could result, and an evaluation of each pathway.
The pathways considered are:
(a) groundshine - occupational (b) groundshine - intruder, after decommissioning (c) resuspension - occupational (d) resuspension - intruder, after decommissioning (c) release to Lake Erie - direct exposure fron shoreline sediments (f) release to Lake Erie - drinking water (g) release to Lake Erie - fish consumption.
Our approach has been to use conservative assumptions for each pathway.
Basic assumptions include:
i
Page.2 of 27 v
'l (1) For source terms, the highest concentration of _each radionuclide'in each category of samples is assumed to be 4
respresentative of the concentration of that radionuclide.
F (2) For the groundshine and resuspension pathways, the soil areal concentration for each radionuclide is the higher value of:
(a) the areal concentration calculated by assuming that r
the spill contents are evenly distributed over the -
diked area, (b) the areal concentration calculated from soil samples.
With one exception, the values of (a) were used. The exception is Co-60 for the 1986 spill, where the radionuclide was detected by soil sampling, but was not detected in samples of the tank contents. This was probably due to the greater sensitivity of the soil sampling / counting methodology. For determining groundshine and resuspension dose rates, it is conservatively assumed that all of the radioactive material is retained in the top 2.5 cm of soil, hence providing direct radiation exposure and being available for resuspension, i
i although this is unlikely.
(3) For pathways involving the release of water to Lake Erie, it is assumed that the entire volume of spilled water was pumped 4
directly into Lake Erie, where it was instantaneously i
transported, undiluted, to the appropriate receptors.
i t
o f
~.
I Er' Page 3 of 27 i:
~ In summary, to conservatively account for both the retention and release
- of the spilled material, all of the radioactive material is counted.
twice, in-that, for dose evaluations involving groundshine and 4
}
resuspension, all of the material is assumed to be retained in the top layer of soil, while, for dose evaluations involving the release of material to Lake Erie, all of the material is assumed to be released.
Pathway spepific assumptions are discussed, below.
i Where possible, the models used were those of Regulatory Guide 1.109, with generic values used for model parameters, unless clearly inappropriate.* An exception is the resuspension pathway, which is not covered in Regulatory Guide 1.109 Here, a model is developed on the 4
i basis of Section 5.2.2.6 of NUREG/CR-3332, " Radiological Assessment".
Specific models are discussed in more detail, below.
f l
Dose factors which are listed as "NO DATA" are assumed to have a i-value of 0.
i I
4 I
f r
(.
3 P
l
+
i
_. _ ~. _ _ _..., -,....,.....,.,.. -,, -.. -.. -.., -
i 1.
Page 4 of 27 II. Source Terms s+
I A. 1985 w
The following values (uC1/ml) were used for the radionuclide concentrations in the CST tank for the 1985 spill:
4 9
H-3 1 75 E-5 Cr-51 4.92 E-7 Mn-54 6 31 E-8 Co-58 8.26 E-7 Co-60 1.26 E-7 i~
These values represent the highest concentrations of each radionuclide found in 2 CST water samples taken on November 17, 1985. These samples were analyzed in the Fermi 2 Chemistry Laboratory, and provide conservative estimates of the radionuclide concentrations in the spilled water, since:
(1) the spill occurred from the top of the tank, making it unlikely that any sludge or sediments of greater activity concentration were carried over in the spill water, and (2) a sample of the CST overflow, also analyzed in the Chemistry Laboratory, showed V
lower radioactivity concentrations than those'in the CST samples.
t
Page 5 of 27 The estimated spill volume is 50,000 gallons (1.89 E8 al), and the diked 2
area around the CST and CRT, less the area of the tanks is 1927 m,
Thus, the total activity spilled, T, for each radionuclide is:-
T(uC1) = Ci(uC1/ml) # 1.89 E8 (al) while the ar.eal concentration, CA, is:
2 2
CA(pC1/m ) = CI(uCi/ml)
- 1.89 E8 (al) # 1 E6 (pCi/uC1) / 1927 m Values are listed, below.
2 Radionuclide T(uC1)
CA (pC1/m )
H-3 3 31 E3 1.72 E6 Cr-51 9 30 El 4.83 E4 Mn-54 1.20 E1 6.18 E3 Co-58 1.56 E2 8.10 E4 Col 60 2.40 El 1.24 E4 In December,1985 and February,1986, 7 soil samples were taken inside the CST /CRT diked area at depths between 0 and 1.5 feet, and 9 samples at depths t between 1.5 and 7.5 feet..Teledyne Isotopes analyzed these samples and found j
i<
E t
t Page 6 of 27 that almost all of the radioactive material was in the top 1.5 feet of soil.
The following are the highest concentrations (pC1/kg) of each of the radionuclides found in this analysis:
Co-58 698 Co-60 217 Teledyne Isotopes did not test the samples for the presence of H-3 Thus, there may have been detectable levels of H-3 in the soil.
Using the Regulatory Guide 1.109 value of 40 kg/m2 of surface, which 1
conservatively assumes that the radioactive material is retained in the top 2.5 2
cm of soil, the areal concentrations, CA (pC1/m ), based on the soil samples are:
Co-58 2.79 E 4 Co-60 8.68 E 3 l
The following formula was used to calculated the above values:
l 2
CA (pC1/m ) = soil concentration (pCi/kg)
- 40 kg/m2 i
i i
Page 7 of 27 To ensure a conservative dose evaluation, the higher areal concentrations calculated from the water samples are used.
(Since the areal concentrations calculated from the water samples are higher than those calculated from the soil samples, the fact that H-3 was not tested for in the soil is unlikely to affect the dose evaluation.)
B. 1986 The following values (uCi/ml) were used for the radionuclide concentrations in the CST spill water:
H-3 7.08 E-5 Co-58 1.18 E-8 The Co-58 value, above, was provided by Teledyne Isotopes from a sample of CST spill water.
In a CST spill sample analyzed by the Fermi 2 Chemistry Laboratory, no gamma emitting radionuclides were detected: The minimum detectable activity for Co-58 for the Fermi 2 analysis was 2.4 E-8 uCi/ml, which explains why Co-58 was detected by Teledyne but not by Fermi 2.
The H-3 value, above, obtained from a Fermi 2 Chemistry Laboratory spill sample analysis, was slightly higher than the H-3 value provided by Teledyne.
4
Page 8 of 27 It was conservatively' assumed that the entire. contents of the tank at the latest inventory prior to the line break (366,000 gallons = 1 39 E9 ml) was drained, although water balance considerations indicate that the actual spill volume may be closer to 275,000 gallons.
Using the 1 39 E9 ml'value, the above concentrations, and the formulas discussed for the 1985.results, above, the total activity and areal concentrations based on water samples are as follows:
2 Radionuclide T (uC1)
CA (pC1/m )
H-3 9.84 E4 5.11 E7 Co-58 1.64 E1 8.51 E3
(
Page 9 of 27 i
Following the 1986 spill, Teledyne -Isotopes analyzed 11 -surface soil samples from the CST /CRT diked area. H-3 was found in 9 of these samples, Co-58 in 3 samples, and Co-60 in 3 samples.
(The fact that Co-60 was detected in soil samples but not water samples-is likely due to differences in counting.
sensitivities.) The sample concentrations (pCi/kg) are as follows:
i H-3 4.0 E 3 Co-58 7.8 E 1 Co-60 1.2 E'2 Using the above concentrations and the formula presented above, the areal 2
concentrations (pC1/m ) based on soil samples are as follows:
a H-3 1.6 E 5 l
Co-58 31E3 Co-60 4.8 E 3 l
l e
't
+-,n----~
,--e e
e-
-+-w
-m es.
e n,---
e m--
,.-n,---e
,-v-g-g,
1 Page 10 of 27 To assure a conservative evaluation, the higher areal concentrations for H-3 and Co-58 calculated from the water samples are used in the calculations. Since Co-60 was not detected in the CST spill water, the Co-60 areal concentration,-
2 above, is used.
Thus, the areal concentrations (pCi/m ) used are:
H-3 5 11 E 7 Co-58 8.51 E 3 Co-60 4.80 E 3 e
i 1
9 i
l i
i 1
-e
-gr<-
r,
e
-s
--,,+
r
Page 11 of 27 GROUNDSHINE Occupational'and Intruder I.
Assumptions (1) As discussed, above, the entire. contents of the spill are assumed to be depos.ited in the top 2.5 cm of soil in the diked area. This is a conservative assumption based on Regulatory Guide 1.109 (2) For the 1985 spill, the soil was in place for approximately 1 year, before' removal. Hence, assume that a radiation worker received (1 4
hr/ day)(5 days / week)(50 weeks) = 250 hours0.00289 days <br />0.0694 hours <br />4.133598e-4 weeks <br />9.5125e-5 months <br /> of groundshine exposure.#
(3) For the 1986 spill, assume that the maximum tiue of exposure for a radiation worker is 250 hours0.00289 days <br />0.0694 hours <br />4.133598e-4 weeks <br />9.5125e-5 months <br /> per year.*
(4) For the 1985 spill, there is no intruder pathway, since the soil was removed. Hence, the 1986 source term values provide the basis for intruder exposure.
- This occupancy rate has been assumed to cover the case of a worker visiting the area on a daily basis to take instrument readings. One hour is a conservative estimate of the time required for this activity.
(
,,,,e... -
r
-m - -.
P:gs 12 of 27 (5) For the 1986 spill, assume an intruder exposure of 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> / day,' 365 days / year, af ter 40 years of decay.
II. Model The dose factors of Table E-6, Regulatory Guide 1.109, are applied to the areal concentrations derived above.
Hence, for i
A. occupational exposure:
(1) 1985 -The maximum total dose a worker received, R'ij, is 2
2 R'ij(mrem) = 250 hrs
- CA(pC1/m ), Dij (mres/hr)/(pCi/m )
(2) 1986 - The maximum annual occupational dose, Rij, is 2
2 Rij(arem/yr) : CA(pCi/m ) # Dij (arem/hr)/(pCi/m )
- 250 hrs /yr
(
Page 13 or 27 i
B. intruder exposure:
Annual dose to an intruder, Rij would be 2
2 Rij(arem/yr) = CA(pC1/m ), Dij (arem/hr)/(pCi/m ), 8.76 E 3 hrs /yr
- exp(.693 T/Ti)
Ti = half life, in days T = 1.46 E4 days (40 years)
III.
Input Data (1) areal concentrations derived above
]
(2) Table E-6, Regulatory Guide 1.109 IV. Calculations
]
See attached calculation section 1, pages 1-3 i
e I
1 n,
+.,
.c
Page 14 of 27' J
RESUSPENSION I
occupational and Intruder
.I. Assumptions (1) As abo.ve, assume that the entire contents of the spill are deposited evenly over the diked area.
(2) Assume that the entire contents of the spill are available -for resuspension.
i (3) Assume a resuspension factor of 1 E-4 /m, the most conservative value of those discussed in NUREG/CR-3332.
(4) For the 1985 spill, assume an occupational exposure time of 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> / day, 5 days / week, for 50 weeks, until the soil removal, in October, 1986.*
(5) For the 1986 spill, assume an occupational exposure time of 250 hours0.00289 days <br />0.0694 hours <br />4.133598e-4 weeks <br />9.5125e-5 months <br /> / year.*
- This occupancy rate has been assumed to cover the case of a worker visiting the CST /CRT diked area on a daily basis to take instrument readings. One hour is a i
conservative estimate of the time required for this activity.
i I
l I
,---.--sy----
-.-_,n
-,a
.--y.
k Page 15 of 27 (6) For the 1986 spill, assume continuous intruder exposure, after 40 years of decay.
II. Model Applying equation 5.27 of NUREG/CR-3332:
3 2
X(pCi/m )
g (,-1)
- CA(pCi/m )
- D where X is the airborne concentration K is the resuspension factor = 1 E-4 /m CA is the areal concentration D is the fraction available for resuspension = 1.
To determine the dose from inhalation of the resuspended material, apply equation 13 of Regulatory Guide 1.109
(
. _. ~.
w Page 16 of 27 i
Using the notation of 1.109 as given in Section C:
Raij = Ra # Xi
- Daij 2
Where Xi (pCi/m3) = ig.4 m-1
- CA (pCi/m ), j Then:
i 3
2
~Raij (arem/yr) = Ra(m fyr)
- ig_g m-1
- CA.(pCi/m ), Daij (ares /pCi)
For 1985 occupational exposure, assume 250 hours0.00289 days <br />0.0694 hours <br />4.133598e-4 weeks <br />9.5125e-5 months <br /> (2.85 E-2 years) of exposure 4
time. Then i
R'aij (mrem) = Raij(arem/yr) # 2.85 E-2 yr 1
= 2.85 E-6 # Ra # CA
- Daij r
i For 1986 occupational exposure, assume 250 hours0.00289 days <br />0.0694 hours <br />4.133598e-4 weeks <br />9.5125e-5 months <br /> per year of exposure time. Then i
Raij (mrem /yr) = 2.85 E-6 # Ra # CA # Daij i~
i j
For 1986 intruder exposure, assume continuous exposure, with 40 years (1.46 E 4 i'
days) of decay. Then 4
1 i
Raij (ares /yr) = 1 E-4
- Ra # CA # Daij # exp(.693 T/Ti)
(
4 i
i i
.m,-
m-.,
4
,,.m.
,.,.,.,.,4
_...m
Page 17 of 27 where T : 1.46 E 4 days Ti is the radionuclide half life, in days.
III. Input Data (1) areal concentrations, derived above (2) inhalation rate of Table E-5, Regulatory Guide 1.109 (3) inhalation dose factors of Tables E-7 thru E-10, Regulatory Guide 1.109 (4) radionuclide half lives from Radiological Health Handbook.
IV. Calculations See attached calculation section 2, pages 1-18.
4
Page 18 of 27 SHORELINE DIRECT EXPOSURE I.
Assumptions Assumptions regarding the flow of the effluents in Lake Erie are based on a characterization.of the Great Lakes provided in Regulatory Guide 1.113 This characterization states:
(1) Coastal currents are predominantly parallel to the shore, and usually persist in one direction for several days.
(2) The currents then reverse and persist in the opposite direction for several days.
(3) Each reversal is accompanied by a thorough mixing that effectively removes effluents from the shore zone.
Thus, it is conservative to assume that the shoreline is exposed to the undiluted effluent for the duration of the spill, and that there is no recycling of the effluent.
4 i
I l
L
Pags 19 of 27 II. Model Using equation A-7, of Regulatory Guide 1.109:
Raij = 110,000 # Ua Mp W/F # Qi
- Ti # Daij # exp(.693 tp/Ti) #
[1-exp(.693 tb/T1)]
where tp = 0, exp(.693 tp/ti) = 1 assuming instantaneous transport.
tb = 5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> for 1985, 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> for 1986, based on spill durations.
Qi(C1/yr) = 8.91 ES (Ci al sec)/(uCi ft3 yr)
- Ci(uCi/ml)
- F(ft f3 c) 3 Mp = 1, i.e., no dilution.
W = 0 3, from Table A-2, Regulatory Guide 1.109 Then:
Raij(ares /yr) = 2.94 E10 # Ua(hr/yr)
- Ci(uCi/al) # Ti (days) #
2 Daij(mrem /hr)/(pC1/m ) # [1-exp(.693 tb/T1)]
i u
Page 20 of. 27 III. Input Data Ua from Table E-5, Regulatory Guide 1.109-Ci from the source terms, above Ti from the Radiological Health Handbook 2
Daij.from table E-6, Regulatory Guide 1.109 IV. Calculations s
See attached calculation section 3, pages 1-6.
l t
.c
..----,m-y 2-
.,m-.
.r
Page 21 of 27 DRINKING WATER I.
Assumptions (1) As above, the entire contents of the spill are released to Lake Erie.
(2) An individual draws 1 day's drinking water from the undiluted plume. Since the durations of the spills are estimated to be I
4.2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> and 3 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />, for 1985 and 1986, respectively, the assumption that an individual draws 1 day's drinking water from the plume is conservative.
(3) No credit is taken for decay time. In effect, it is assumed that there is no delay between the spill and ingestion.
II.
Model Applying equation A2, from Regulatory Guide 1.109:
Ralpj = 1100 # (Mp Ua/F) # Qi # Daij # exp(.693 tp/Ti) 4
.Page 22'or 27 tp = 0, therefore'exp(.693 tp/T1) = 1 Assuming no dilution:
Mp = 1
- Now, 3
3 yr)
- Ci(uC1/ml)
- F(ft f3 c)
Qi(C1/y) = 8.91 E5 (ci m1 sec)/(uci ft Then:
Raij(mrem /yr)=9.80 E8
- Ua (1/yr)
- Ci(uC1/ml) # Daij(mrem /pC1)'
For 1 day's water supply for individual:
R'aij (arem) = Raij (mrem /yr)/ 365
= 2.68 E6
- Ua(1/y)
- Ci (uCi/ml)
- Daij(mrem /pC1)
III.
Input Data Ua from Table E-5, Regulatory Guide 1.109 Ci(uC1/ml) from source terms, above.
5 Daij(mrem /pCi) from Tables E-11 thru E-14, Regulatory Guide 1.109
i l
l Page 23 or 27 1
1 l
l IV.
Calculations i
See attached calculation section 4, pages 1-20.
(
Page 24 of 27 FISH I. Assumptions (1) As discussed, above, the spill contents are assumed to be released directly to Lake Erie.
(2) Fish exposed to the plume are immediately saturated with the radionuclides in the plume, according to the bioaccumulation factors of Table A1, Regulatory Guide 1.109 (3) An individual catches or purchases 1 day of fish consumption from fish that have been exposed to the plume. Since the durations of the spills are estimated to be 4.2 and 3 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />, for 1985 and 1986, respectively, the assumption that an individual draws 1 day's supply of fish saturated by the plume is conservative.
(4) No credit is taken for decay time.
4
Page 25 of 27 -
I
.II.- Model Using equation A-3, from Regulatory Guide 1.109 Raij = 1100
- Mp Ua/F # Qi # Bi # Daij # exp(.693 tp/T1)
Assume Mp = 1, i.e. no plume dilution Assume tp = 0, i.e. immediate ingestion:
Therefore, exp(.693 tp/Ti) = 1
- Now, 3
Qi = 8.91 ES (ci al sec)/(uci ft3 yr)
- C1 (uC1/ml)
- F(ft f3ec) where Ci is the radionuclide concentration Then Raij (arem/yr) = 9.80 E8 # Ua (kg/yr)
- Ci(uCi/ml) # Bi(1/kg) # Daij(arem/pC1)
If, as assumed, an individual consumes 1/365 year of contaminated fish, then:
4 R'aij(mrem) = Raij(arem/yr) (1/365)
=2.68 E6
- Ua(kg/yr) # Ci(uC1/ml)
- Bi(1/kg)
- Daij(mrem /pC1)
Page 26 of 27 III. Input Data Ci values;from source term, above Bi values from Table A-1,. Regulatory Guide 1.109 Ua values from. Table E-5, Regulatory Guide 1.109 Daij values from Tables E-11 thru E-14, Regulatory Guide 1.109 IV.
Calculations See attached calculation section 5, pages 1-15
~_
y Page 27 of 27 REFERENCES US NRC Regulatory Guide 1.109, " Calculation of Annual Doses to Man From Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I",
Revision 1, October 1977 US NRC Regulatory Guide 1.113. " Estimating Aquatic Dispersion of Effluents From Accidental and Routine Reactor Releases for the Purpose of Implementing Appendix I",
Revision 1, April 1977 Till, John E., and Meyer, H. Robert, eds., Radiological Assessment, US NRC Technical Report No. NUREG/CR-3332, September, 1983 Bureau of Radiological Health, Radiological Health Handbook, Washington, D.C., U.S. Government Printing Office, 1970.
(
Calculation saction 1, prge 1 of 3 1985 GROUNDSHINE OCCUPATIONAL Total Body lostope CA D1J R'1J (pC1/m2)
(mrom/hr)
(mrom)
/(pC1/m2)
H-3 1.72E+06 0.00E+00 0.00E+00 Cr-51 4.83E+04 2.20E-10 2.66E-03 Mn-54 6.18E+03 5.80E-09 8.96E-03 Cc-58 8.10E+04 7.00E-09 1.42E-01 Co-60 1.24E+04 1.70E-08 5.27E-02 Total 2.06E-01 R'1J = 250
- CA
- D1) 1985 GROUNDSHINE OCCUPATIONAL Skin Icotope CA Dij R'ij (pC1/m2)
(mrem /hr)
(mrom)
/(pC1/m2)
H-3 1.72E+06 0.00E+00 0.00E+00 l
Cr-51 4.83E+04 2.60E-10 3.14E-03 Mn-54 6.18E+03 6.80E-09 1.05E-02 Co-58 8.10E+04 8.20E-09 1.66E-01 Co-60 1.24E+04 2.00E-08 6.20E-02 Total 2.42E-01 R'1) = 250
- CA
- Dij y w e
~.-. - --,-
Cciculation s ction 1, page 2 of 3 1986 GROUNDSHINE OCCUPATIONAL Total Body Icotope CA DiJ RiJ (pC1/m2)
(mrom/hr)
(mrom/yr)
/(pC1/m2)
H-3 5.11E+07 0.00E+00 0.00E+00 Co-58 8.51E+03 7.00E-09 1.49E-02 Co-60 4.80E+03 1.70E-08 2.04E-02 Total 3.53E-02 Rij = 250
- CA
- Dij 1986 GROUNDSHINE OCCUPATIONAL Skin Isotope CA Dij Rij (pci/m2)
(mrom/hr)
(mrom/yr)
/(pC1/m2)
H-3 5.11E+07 0.00E+00 0.00E+00 Co-58 8.51E+03 8.20E-09 1.74E-02 Co-60 4.80E+03 2.00E-08 2.40E-02 Total 4.14E-02 Rij = 250
- CA
- Dij O
e..
1 Calculation ssction 1, pige 3 of 3 1986 GROUNDSHINE INTRUDER
{
Total Body Icotope CA Helf DiJ Rij (pC1/m2)
Life (mrem /hr)
(mrom/yr)
T (days)
/(pC1/m2) j H-3 5.11E+07 4.48E+03 0.00E+00 0.00E+00 Co-58 8.51E+03 7.13E+01 7.00E-09 1.58E-62 Co-60 4.80E+03 1.92E+03 1.70E-08 3.71E-03 Total 3.71E-03 Rij = 8760
- CA
- DiJ
- exp(-0.693
- T / T1) where 8760 hrs /yr = (24 hrs / day) * (365 days /yr)
T = 1.46E4 days (40 years) 4 1986 GROUNDSHINE INTRUDER Skin Icotope CA Half D1J RiJ (pC1/m2)
Life (mrom/hr)
(mrom/yr)
(days)
/(pC1/m2)
H-3 5.11E+07 4.48E+03 0.00E+00 0.00E+00 Co-58 8.51E+03 7.13E+01 8.20E-09 1.85E-62 Co-60 4.80E+03 1.92E+03 2.00E-08 4.37E-03 Total 4.37E-03 Rij = 8760
- CA
- DiJ
- exp(-0.693
- T / T1) where j
8760 hrs /yr = (24 hrs / day) * (365 days /yr)
T = 1.46E4 days (40 years) 1 9
4 l
l
t Calculation saction 2, pign 1 of 18 1985 RESUSPENSION PATHWAY OCCUPATIONAL Adult Bone Isotope Ra(m3/yr)
CA(pC1/m2)
Dai)(mrom/pC1)
R'aij(mrom)
H-3 8.00E+03 1.72E+06 0.00E+00 0.00E+00 Cr-51 8.00E+03 4.83E+04 0.00E+00 0.00E+00 Mn-54 8.00E+03 6.18E+03 0.00E+00 0.00E+00 Co-58 8.00E+03 8.10E+04 0.00E+00 0.00f+00 Co-60 8.00E+03 1.24E+04 0.00E+00 0.00E+00 i
l Total 0.00E+00 R'aiJ = 2.85 E-6
- Ra
- CA
- Da1J 1985 RESUSPENSION PATHWAY OCCUPATIONAL Adult Liver Isotope Ra(m3/yr)
CA(pCi/m2)
Daij(mrom/pC1)
Mai
j(mrom)
H-3 8.00E+03 1.72E+06 1.58E-07 6.20E-03 Cr-51 8.00E+03 4.83E+04 0.00E+00 0.00E+00 Mn-54 8.00E+03 6.18E+03 4.95E-06 6.97E-04 Co-58 8.00E+03 8.10E+04 1.98E-07 3.66E-04 Co-60 8.00E+03 1.24E+04 1.44E-06 4.07E-04 Total 7.67E-03 R'a1J = 2.85 E-6
- Ra
- CA
- Dai) i ~
l 1985 RESUSPENSION PATHWAY OCCUPATIONAL
[
Adult Total Body 200 tope Ra(m3/yr)
CA(pC1/m2)
Da1J(mrom/ PCT)
R'ai
j(mrom)
H-3 8.00E+03 1.72E+06 1.58E-07 6.20E-03 Cc-51 8.00E+03 4.83E+04 1.25E-08 1.38E-05 Mn-54 8.00E+03 6.18E+03 7.87E-07 1.11E-04 i
Co-58 8.00E+03 8.10E+04 2.59E-07 4.78E-04 Co-60 8.00E+03 1.24E+04 1.85E-06 5.23E-04 i
l Total 7.32E-03 R'ai) = 2.85 E-6
- Ra
- CA
- Daij I
Calculation section 2, page 2 of 18 1985 4
l RESUSPENSION PATHWAY OCCUPATIONAL Adult
' Thyroid b
Ioctope Ra(m3/yr)
CA(pC1/m2)
Daij(mrom/pci)
R'aij(mesm)
H-3 0.00E+03 1.72E+06 1.58E 6.20E-03 Cr-51 8.00E+03 4.83E+04 7.44E-09 8.19E-06 Mn-54 8.00E+03 6.18E+03 0.00E+00 0.00E+00 4
Co-58 8.00E+03 8.10E+04 0.00E+00 0.00E+00 Co-60 8.00E+03 1.24E+04 0.00E+00 0.00E+00 Total 6.20E-03 L
R'a1J = 2.85 E-6
- Re
- CA
- dai) e i
N 1985 RESUSPENSION PATHWAY OCCUPATIONAL Adult Kidney it Isotope Ra(m3/yr)
CA(PCT /m2)
Daij(mrom/pC1)
R'ai)(mrom)
H-3 8.00E+03 1.72E+06 1.58E-07 6.20E-03 Cr-51 8.00E+03 4.83E+04 2.85E-09 3.14E-06 Mn-54 8.00E+03 6.18E+03 1.23E-06 1.73E-04 Co-58 8.00E+03 8.10E+04 0.00E+00 0.00E+00 Co-60 8.00E+03 1.24E+04 0.00E+00 0.00E+00 Total 6.37E-03 R'aiJ = 2.85 E-6
- Ra
- CA
- Dai) 1985 RESUSPENSION PATHWAY OCCUPATIONAL T,
- Adult Lung Icotope Ra(m3/yr)
CA(pCi/m2)
Daij(mrom/pci)
R'aij(mrom)
H-3 8.00E+03 1.72E+06 1 58E-07 6.20E-03 Cr-51 8.00E+03 4.83E+04 90E-06 1.98E-03 Mn-54 8.00E+03 6.18E+03 75E-04 2.47E-02 Co-58 8.00E+03 8.10E+04 1.16E-04 2.14E-01 l
Co-60 8.00E+03 1.24E+04 7.46E-04 2.11E-01 To';al 4.58E-01 l
R'ai) = 2.85 E-6
- Ra
- CA
- Daij i
9 Calculation section 2, prge 3 of 18 1985 RESUSPENSION PATHWAY OCCUPATIONAL Adult GI-LLI Icotope Ra(m3/yr)
CA(pC1/m2)
Dai)(mrom/pC1)
R'aij(mrom)
H-3 8.00E+03 1.72E+06 1.58E-07 8.20E-03 Cr-51 8.00E+03 4.83E+04 4.15E-07 4.57E-04 Mn-54 8.00E+03 6.18E+03 9.67E-06 1.36E-03 Cs-58 8.00E+03 8.10E+04 1.33E-05 2.46E-02 Co-60 8.00Ev03 1.24E+04 3.56E-05 1.01E-02 Total 4.26E-02 R'ai) = T.85 E-6
- Ra
- CA
- Dai)
D 6
~.
Calculction saction'2 pIge 4 of 18 1986
.RESUSPENSION PATHWAY OCCUPATIONAL Adult Bone Icotope Ra(m3/yr)
CA(pC1/m2)
Dai)
RaiJ (mrom/pC1)
(mram/yr)
H-3 8.00E+03 5.11E+07 0.00E+00 0.00E+00 CD-58 8.00E+03 8.51E+03 0.00E+00 0.00E+00
]
Co-60 8.00E+03 4.80E+03 0.00E+00 0.00E+00 -
Total 0.00E+00 4
i Rai) = 2.05 E-6
- Ra
- CA
- Dai) i 1986 RESUSPENSION PATHWAY OCCUPATIONAL Adult Liver Icotope Ra(m3/yr)
CA(pC1/m2)
Daij Rai)
(mrom/pC1)
(mrom/yr) s:;
g 53i;35 g Tig;55 T ggi:gi i: gig:Bi
- Co-58 8.00E+03 8.51E+03 1.98E-07 3.84E-05 Co-60 8.00E+03 4.80E+03 1.44E-06
- 1. 5 8 E- 0 4 - - ---
Total 1.84E-01 Rai) = 2.85 E-6
- Ra
- CA
- DaiJ 1986 RESUSPENSION PATHWAY OCCUPATIONAL Adult Total Body Isotope Ra(m3/yr)
CA(pC1/m2)
DaiJ Rai)
(mrem /pC1)
(mrom/yr)
H-3 8.00E+03 5.11E+07 1.58E-07 1.84E-01 Co-58 8.00E+03 8.51E+03 2.59E-07 5.03E-05 Co-60 8.00E+03 4.80E+03 1.85E-06 2.02E-04 Total 1.84E-01 1
Rai) = 2.85 E-6
- Ra
- CA
- Dai) l l
-_,- _~.
i Calculation section 2, pige 5 of 18 1986 RESUSPENSION.*ATHWAY OCCUPATIONAL Adult Thyroid Icotope Ra(m3/yr)
CA(pCi/m2)
DaiJ Rai)
(mrom/pC1)
______________________________________________________(mrom/yr) i
\\
H-3 8.00E+03 5.11E+07 1.58E-07 1.84E-01 I
Co-58 8.00E+03 8.51E+03 0.00E+00 0.00E+00 Co-60 8.00E+03 4.80E+03 0.00E+00 0.00E+00 Total 1.84E-01 Rai) = 2.85 E-6
- Ra
- CA
- DaiJ 1986 RESUSPENSION PATHWAY OCCUPATIONAL Adult Kidney Icotope Ra(m3/yr)
CA(pC1/m2)
DaiJ Rai)
(mrom/pC1)
(mrem /yr)
H-3 8.00E+03 5.11E+07 1.58E-07 1.84E-01 Co-58 8.00E+03 8.51E+03 0.00E+00 0.00E+00 Co-60 8.00E+03 4.80E+03 0.00E+00 0.00E+00 Total 1.84E-01 Rai) = 2.85 E-6
- Ra
- CA
- Dai) 1986 RESUSPENSION PATHWAY OCCUPATIONAL Adult Lung Icotope Ra(m3/yr)
CA(pC1/m2)
Da1J Rai)
(mrom/pC1
_____________________________________________)
(mrom/yr)
H-3 8.00E+03 5.11E+07 1.58E-07 1.84E-01 Co-58 8.00E+03 8.51E+03 1.16E-04 2.25E-02 Co-60 8.00E+03 4.80E+03 7.46E-04 8.16E-02 Total 2.88E-01 Rai) = 2.85 E-6
- Ra
- CA
- Dai)
D
Calculation section 2, page 6 of 18 1986 RESUSPENSION PATHWAY OCCUPATIONAL Adult GI-LLI l
l Isotope Ra(m3/yr)
CA(pC1/m2)
Daij Ra1J (mrom/pC1)
(mrom/yr)
H-3 8.00E+03 5.11E+07 1.58E-07 1.84E-01 Co-58 8.00E+03 8.51E+03 1.33E-05 2.58E-03 1
Co-60 8.00E+03 4.80E+03 3.56E-05 3.90E-03 Total 1.91E-01 Rai) = 2.85 E-6
- Ra
- CA
- Dai)
Oe l
j 1
l O
Calculation section 2, page 7 of 18 1986 RESUSPENSION PATHWAY INTRUDER Adult Bone Iso-Ra(m3/yr)
CA(pC1/m2) Ti Daij RaiJ tope (days)
(mrem /pC1)
(mrom/yr)
H-3 8.00E+03 5.11E+07 4.48E+03 0.00E+00 0.00E+00 Co-58 8.00E+03 8.51E+03 7.13E+01 0.00E+00 0.00E+00 Co-60 8.00E+03 4.80E+03 1.92E+03 0.00E+00 0.00E+00 t
Total 0.00E+00 Rai) = 1 E-4
- Ra
- CA'
- Dai)
- exp(-0.693
- T / T1) where T = 1.46 E 4 days (40 years)
Ti = isotope half life (days) 1986 RESUSpENSION PATHWAY INTRUDER Adult Liver 100-Ra(m3/yr)
CA(pci/m2) Ti DaiJ RaiJ tope (days)
(mrom/pC1
-_________________________________________________)
(mrom/yr)
- H-3 8.00E+03 5.11E+07 4.48E+03 1.58E-07 6.75E-01 Co-58 8.00E+03 0.51E+03 7.13E+01 1.98E-07 3.17E-65 Co-60 8.00E+03 4.80E+03 1.92E+03 1.44E-06 2.85E-05 Total 6.75E-01 Rai) = 1 E-4
- Ra
- CA
- DaiJ
- exp(-0.693
- T / TT) where T= 1.46 E 4 days (40 years)
Ti = isotope half life (days) 1986 RESUSPENSION PATHWAY INTRUDER
~
Adult Total Body I00-Ra(m3/yr)
CA(pC1/m2) T1 DaiJ Raij tcpe (days)
(mrom/pC1
-_________________________________________________)
(mrom/yr)
H-3 8.00E+03 5.11E+07 4.48E+03 1.58E-07 6.75E-01 Co-58 8.00E+03 8.51E+03 7.13E+01 2.59E-07 4.15E-65 Co-60 8.00E+03 4.80E+03 1.92E+03 1.85E-06 3.66E-05 Total 6.75E-01 i
Rai) = 1 E-4
- Ra
- CA
- Dai)
- exp(-0.693
- T / T1) where T=
1.46 E 4 days (40 years)~
T1 = isotope half life (days) l
\\.
--'-------------~~-~~-~~~~~
~'~~~;
Calculation section 2, pigs 8 of 18 1986 RESUSPENSION PATHWAY INTRUDER Adult Thyroid Ico-Ra(m3/yr)
CA(pC1/m2) Ti Daij RaiJ tope (days)
(mrom/pC1)
(mrom/yr)
H-3 8.00E+03 5.11E+07 4.48E+03 1.58E-07 6.'75 E- 01 Co-58 8.00E+03 8.51E+03 7.13E+01 0.00E+00*
0.00E+00-Co-60 8.00E+03 4.80E+03 1.92E+03 0.00E+00 0.00E+00 Total 6.75E-01 Rai) = 1 E-4
- Ra
- CA
- Dai)
- exp(-0.693
- T / T1) where T = 1.46 E 4 days (40 years)
Ti = isotope half life (days) 1986 RESUSPENSION PATHWAY INTRUDER Adult Kidney Ico-Ra(m3/yr)
CA(pC1/m2) TT DaiJ Ra1J
]
tope
, days)
(mrom/pC1)
(mrom/
(
~
___________________________________________________________yr)
H-3 8.00E+03 5.11E+07 4.48E+03 1.58E-07 6.75E-01 Co-58 8.00E+03 8.51E+03 7.13E+01 0.00E+00 0.00E+00 Co-60 8.00E+03 4 80E+03 1.92E+03 0.00E+00 0.00E+00 Total 6.75E-01 Rai) 1 E-4
- Ra
- CA
- Dai)
- exp(-0.693
- T / T1)
=
where T = 1.46 E 4 days (40 years) l Ti = isotope half life (days) 1986 l
RESUSPENSION PATHWAY INTRUDER 3
Adult Lung Ice-Ra(m3/yr)
CA(pC1/m2) Ti Dai)
Raij tepe (days)
(mrom/pC1)
(mrom/yr) i H-3 8.00E+03 5.11E+07 4.48E+03 1.58E-07 6.75E-01 l
Co-58 8.00E+03 8.51E+03 7.13E+01 1.16E-04 1.86E-62 Co-60 8.00E+03 4.80E+03 1.92E+03 7.46E-04 1.47E-02 1.
l Total 6.90E-01 Rai) = 1 E-4
- Ra
- CA
- Dai)
- exp(-0.693
- T / T1) l i
where i
T= 1.46 E 4 days (40 years)
T1 isotope half life (days)
=
i
---e=----.---..,-,.-_-,,-,,-l-.,--__,
n,, _, _ -., _.,. - - -... - - -, - -.. -,,
_,,,.,,,..._,_,,,,.,,,._,.,.,-.,.,wn.,..--.-,n.,,,,..,,.. J
Calculation section 2, page 9 of 18 1986 RESUSPENSION PATHWAY INTRUDER Adult GI-LLI Iso-Ra(m3/yr)
CA(pC1/m2) T1 Dai)
Ra1J tope (days)
(mrom/pC1)
(mrom/yr H-3 8.00E+03 5.11E+07 4.48E+03 1.58E-07 6.75E-01 Co-58 8.00E+03 8.51E+03 7.13E+01 1.33E-05 2.13E-63 Co-60 8.00E+03 4.80E+03 1.92E+03 3.56E-05 7.03E-04 Total 6.76E-01 Rai) = 1 E-4
- Ra
- CA
- Dai)
- exp(-0.693
- T / T1) where T= 1.46 E 4 days (40 years)
Ti = isotope half life (days) e oemme m e e,
5 a
9 t
. -,. -.,. - - ~
Calculation section 2, p:ge 10 of 18 1986 RESUSPENSION PATHWAY INTRUDER Teen Bone Iso-Ra(m3/yr)
CA(pC1/m2) T1 Daij RaiJ tope (days)
_________________________________________(mrom/pC1)
(mrom/yr)
H-3 8.00E+03 5.11E+07 4.48E+03 0.00E+00 0.00E+00 Co-58 8.00E+03 8.51E+03 7.13E+01 0.00E+00 0.00E+00 Co-60 8.00E+03 4.80E+03 1.92E+03 0.00E+00 0.00E+00 Total 0.00E+00 Rai) = 1 E-4
- Ra
- CA
- Daij
- exp(-0.693
- T / Ti) where T = 1.46 E 4 days (40 years)
Ti = isotope half life (days) 2
~
1986 RESUSPENSION PATHWAY INTRUDER Teen Liver Ico-Ra(m3/yr)
CA(pC1/m2) T1 DaiJ RaiJ tepe (days)
(mrem
_____________________________________________/pC1)
(mrom/yr)
H-3 8.00E+03 5.11E+07 4.48E+03 1.59E-07 6.79E-01 Co-58 8.00E+03 8.51E+03 7.13E+01 2.59E-07 4.15E-65 Co-60 8.00E+03 4.80E+03 1.92E+03 1.89E-06 3.73E-05 Total 6.79E-01 Rai) = 1 E-4
- Ra
- CA
- Dai)
- exp(-0.693
- T / TT) where T = 1.46 E 4 days (40 years)
Ti = 1sotope half life (days) i I
I RdSUSPENSION PATHWAY INTRUDER Teen Total Body Ico-Ra(m3/yr)
CA(pC1/m2) T1 Dai)
RaiJ tope (days)
_________________________________________(mrom/pC1)
(mrom/yr)
H-3 8.00E+03 5.11E+07 4.48E+03 1.59E-07 6.79E-01 Co-58 8.00E+03 8.51E+03 7.13E+01 3.47E-07 5.56E-65 Co-60 8.00E+03 4.80E+03 1.92E+03 2.48E-06 4.90E-05 Total 6.79E-01 Rai) = 1 E-4
- Ra
- CA
- Dai)
- exp(-0.693
- T / T1) where T = 1.46 E 4 days (40 years)
T1 = isotope half life (days)
,n
Calculation asetion 2, p:ge iI of 18 1986 RESUSPENSION PATHWAY INTRUDER Teen Thyroid Iso-Ra(m3/yr)
CA(pC1/m2) T1 Daij Ra1J tope (days)
(mrom/pC1)
(mrom/yr),
H-3 8.00E+03 5.11E+07 4.48E+03 1.59E-07 6.79E-01 Co-58 8.00E+03 8.51E+03 7.13E+01 0.00E+00 0.00E+00 Cc-60 8.00E+03 4.80E+03 1.92E+03 0.00E+00
-0. 0 0 E+ 0 0 Total 6.79E-01 Rai) = 1 E-4
- Ra
- CA
- Dai)
- exp(-0.693
- T / T1) where T= 1.46 E 4 days (40 years)
Ti = isotope half life (days) 1986 RESUSPENSION PATHWAY INTRUDER Teen Kidney 10o-Ra(m3/yr)
CA(pC1/m2) T1 Dai)
Raij tope (days)
_________________________________________(mrom/pC1)
(mrom/yr)
H-3 8.00E+03 5.11E+07 4.48E+03 1.59E-07 6.79E-01 Co-58 8.00E+03 8.51E+03 7.13E+01 0.00E+00 0.00E+00 Co-60 8.00E+03 4.80E+03 1.92E+03 0.00E+00 0.00E+00 Total 6.79E-01 Rai) = 1 E-4
- Ra
- CA
- Daij
- exp(-0.693
- T / Ti) where T= 1.46 E 4 days (40 years)
Ti = isotope half life (days) 1986 RESUSPENSION PATHWAY INTRUDER Teen Lung loo-Ra(m3/yr)
CA(pC1/m2) T1 Daij RaiJ tcpe (days)
_________________________________________(mrom/pci)
(mrem /yr)
H-3 8.00E+03 5.11E+07 4.48E+03 1.59E-07 6.79E-01 Co-58 0.00E+03 8.51E+03 7.13E+01 1.68E-04 2.69E-62 Co-60 8.00E+03 4.80E+03 1.92E+03 1.09E-03 2.15E-02 Total 7.01E-01 Rai) = 1 E-4
- Ra
- CA
- Dai)
- exp(-0.693
- T / T1) where T = 1.46 E 4 days (40 years)
Ti = isotope half life (days)
_. _ _. - - - - ' ~ ~ -
- " ' ~ ' ' '
_,..m.
- ' ' ' ' ' ' ' ' ' ~ " ~ ~ '
Calculation section 2, prge 12 of 18 1986 RESUSPENSION PATHWAY INTRUDER t
Teen GI-LLI Iso-Ra(m3/yr)
CA(pC1/m2) T1 Daij Ra1J tope (days)
(mrom/pC1)
(mrom/
___________________________________________________________yr)
H-3 8.00E+03 5.11E+07 4.48E+03 1.59E-07 6.79E-01 Co-58 8.00E+03 8.51E+03 7.13E+01 1.19E-05 1.91E-63 Co-60 8.00E+03 4.00E+03 1.92E+03 3.24E-05 6.40E-04 Total 6.80E-01 Rai) = 1 E-4
- Ra
- CA
- Daij
- exp(-0.693
- T / T1) where T= 1.46 E 4 days (40 years)
Ti = isotope half life (days) 9 i
e o
e
~ ~ ~
'~ - - ~ ~ ~ ~ ' ~ ~ ~
Calculation section 2, pxge 13 of 18 1986 i
RESUSPENSION PATHWAY INTRUDER Child Bone i
Iso-Ra(m3/yr)
CA(pC1/m2) Ti Daij Ra1J tope (days)
(mrom/pC1)
(mrom/yr) i H-3 3.70E+03 5.11E+07 4.48E+03 0.00E+00 0.00E+00 Co-58 3.70E+03 8.51E+03 7.13E+01 0.00E+00 0.00E+00 Cc-60 3.70E+03 4.80E+03 1.92E+03 0.00E+00 0.00E+00 j
Total 0.00E+00 1
{
Rai) = 1 E-4
- Ra
- CA
- Daij
- exp(-0.693
- T / TT) where i
T = 1.46 E 4 days (40 years)
T1 = 1sotope half life (days) 1986 RESUSPENSION PATHWAY INTRUDER Child Liver I
1 Ico-Ra(m3/yr)
CA(pC1/m2) T1 Daij Ra1J tope (days)
(mrom/pC1)
(mrom/yr)
H-3 3.70E+03 5.11E+07 4.48E+03 3.04E-07 6.01E-01 Co-58 3.70E+03 8.51E+03 7.13E+01 4.79E-07 3.55E-65 Co-60 3.70E+03 4.80E+03 1.92E+03 3.55E-06 3.24E-05 Total 6.01E-01 Rai) = 1 E-4
- Ra
- CA
- Dai)
- exp(-0.693
- T / T1) where T= 1.46 E 4 days (40 years)
Ti = isotope half life (days) 1986 RESUSPENSION PATHWAY INTRUDER i
Child Total Body Ico-Ra(m3/yr)
CA(pCi/m2) Ti Daij Raij j
tope (days)
(mrom/pC1)
(mrom/yr)
H-3 3.70E+03 5.11E+07 4.48E+03 3.04E-07 6.01E-01 Co-58 3.70E+03 8.51E+03 7.13E+01 8.55E-07 6.33E-65 i
Co-60 3.70E+03 4.80E+03 1.92E+03 6.12E-06 5.59E-05 I
Total 6.01E-01 Raij = 1 E-4
- Ra
- CA
- Daij
- exp(-0.693
- T / T1) where T= 1.46 E 4 days (40 years)
Ti = isotope half life (days) i
.,----,.-,----r,..--v.,,---,-r--,.m-,~,.,-,v-
,.,,,--c--~-n a--,--
,_,r----,,--~n-,
r-~~--,,,---
Calculation section 2, psge 14 of 18 1986 I
RESUSPENSION PATHWAY INTRUDER
{
Child Thyroid Iso-Ra(m3/yr)
CA(pC1/m2) Ti Da1J Ra1J tope (days)
(mrem /pci)
- (mrom/yr)
H-3 3.70E+03 5.11E+07 4.48E+03 3.04E-07 6.01E-01 Co-58 3.70E+03 8.51E+03 7.13E+01 0.00E+00 0.00E+00 i
Co-60 3.70E+03 4.80E+03 1.92E+03 0.00E+00 0.00E+00 l
Total 6.01E-01 Rai) = 1 E-4
- Ra
- CA
- Daij
- exp(-0.693
- T / T1)
{
where T= 1.46 E 4 days (40 years)
Ti = isotope half life (days) 4 1986 i
RESUSPENSION PATHWAY INTRUDER q
Child Kidney a
Iso-Ra(m3/yr)
CA(pC1/m2) T1 Daij Raij i
tope (days)
(f. rem /pC1)
_ - _ - - - _ - _ - _ - _ _ - _ - _ _ _ _ - _ _ - _ - _ - _ - _ - _ - -- - - _ _ _ _ _ _ _ _ _ _ _ _ _ - _( m r o m / y r )
H-3 3.70E+03 5.11E+07 4.48E+03 3.04E-07 6.01E-01 Co-58 3.70E+03 8.51E+03 7.13E+01 0.00E+00 0.00E+00 Co-60 3.70E+03 4.80E+03 1.92E+03 0.00E+00 0.00E+00 Total 6.01E-01
~
Rai) = 1 E-4
- Ra
- CA
- Dai)
- exp(-0.693
- T / T1) where T = 1.46 E 4 days (40 years)
T1 = isotope half life (days) 1986 RESUSPENSION PATHWAY INTRUDER Child Lung Iso-Ra(m3/yr)
CA(pC1/m2) T1 Da1J Ra1J tope (days)
(mrom/pC1)
--_-----------_--___----__-_-_-_--_------_--(mrom/yr)
H-3 3.70E+03 5.11E+07 4.48E+03 3.04E-07 6.01E-01 Co-58 3.70E+03 8.51E+03 7.13E+01 2.99E-04 2.22E-62 i
Co-60 3.70E+03 4.80E+03 1.92E+03 1.91E-03 1.75E-02 Total 6.18E-01 Rai) = 1 E-4
- Ra
- CA
- Daij
- exp(-0.693
- T / Ti) where T= 1.46 E 4 days (40 years) i T1 = isotope half life (days)
I l
Calculation section 2, page 15 of 18 1986 RESUSPENSION PATHWAY INTRUDER Child GI-LLI Iso-Ra(m3/yr)
CA(pC1/m2) Ti Daij RaiJ O
tope (days)
(mrem /pC1)
(mrom/yr)
H-3 3.70E+03 5.11E+07 4.48E+03 3.04E-07 6.' 01 E-01 Co-58 3.70E+03 8.51E+03 7.13E+01 9.29E-06 6.88E-64 Co-60 3.70E+03 4.80E+03 1.92E+03 2.60E-05 2.38E-04 Total 6.01E-01 Rai) = 1 E-4
- Ra
- CA
- Dai)
- exp(-0.693
- T / T1) where T = 1.46 E 4 days (40 years)
Ti = isotope half life (days)
O e
l e
l l
l
Calculation section 2, page 16 of 18 I
1966 RESUSPENSION PATHWAY INTRUDER Infant Bone 1
i Iso-Ra(m3/yr)
CA(pC1/m2) T1 Dai)
RaTJ tope (days)
(mrom/pC1
__________________________________________________)
(mrom/yr) i i
H-3 1.40E+03 5.11E+07 4.48E+03 0.00E+00 0.00E+00 Co-58 1.40E+03 8.51E+03 7.13E+01 0.00E+00 0.00E+00 Co-60 1.40E+03 4.80E+03 1.92E+03 0.00E+00 0.00E+00 i
4 Total 0.00E+00 Raij = 1 E-4
- Ra
- CA
- Dai)
- exp(-0.693
- T / T1) where T = 1.46 E 4 days (40 years)
T1 = isotope half life (days) l 1986 RESUSPENSION PATHWAY INTRUDER Infant Liver i
j Ico-Ra(m3/yr)
CA(pC1/m2) Ti Da1J Ra1J tope (days)
(mrom/pC1 (mrom/yr)
__________________________________________________)
H-3 1.40E+03 5.11E+07 4.48E+03 4.62E-07 3.45E-01 1
Co-58 1.40E+03 8.51E+03 7.13E+01 8.71E-07 2.44E-E5 Co-60 1.40E+03 4.80E+03 1.92E+03 5.73E-06 1.98E-05 i
l l
Total 3.45E-01 i
l Rai) = 1 E-4
- Ra
- CA
- Dai)
- exp(-0.693
- T / T1) where T
- 1.46 E 4 days (40 years) i Ti = isotope half life (days) 1986 RESUSPENSION PATHWAY INTRUDER Infant Total Body 1
(
100-Ra(m3/yr)
CA(pCi/m2) T1 Da1J Rai) tcpe (days)
(mrom/pC1 j
__________________________________________________)
(mrom/yr)
H-3 1.40E+03 5.11E+07 4.48E+03 4.62E-07 3.45E-01 l
Co-58 1.40E+03 8.51E+03 7.13E+01 1.30E-06 3.64E-65 Co-60 1.40E+03 4.80E+03 1.92E+03 8.41E-06 2.91E-05 i
Total 3.45E-01 Rai) = 1 E-4
- Ra
- CA
- Dai)
- exp(-0.693
- T / T1) where 1
T= 1.46 E 4 days (40 years)
Ti = isotope half life (days)
- ~ ~ " ~ ~ ~ ~ ~ ~ ~ " ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Calculation section 2, page 17 of 18 l
1986 i
RESUSPENSION PATHWAY INTRUDER Infant Thyroid Iso-Ra(m3/yr)
CA(pC1/m2) T1 DaiJ RaiJ tope (days)
(mrom/pC1)
(mrom/yr)
__=________________
H-3 1.40E+03 5.11E+07 4.48E+03 4.62E-07 3.45E-01 Co-58 1.40E+03 8.51E+03 7.13E+01 0.00E+00 0.00E+00 Co-60 1.40E+03 4.80E+03 1.92E+03 0.00E+00 0.00E+00 Total 3.45E-01 Ra1J = 1 E-4
- Ra
- CA
- Dai)
- exp(-D.693
- T / T1) where T = 1.46 E 4 days (4 0 years)
Ti = isotope half life (days) 1986 RESUSPENSION PATHWAY INTRUDER Infant Kidney Iso-Ra(m3/yr)
CA(pCi/m2) Ti Da1J Ra1J tepe (days)
(mrem /pC1)
(mrom/yr)
H-3 1.40E+03 5.11E+07 4.48E+03 4.52E-07 3.45E-01 Co-58 1.40E+03 8.51E+03 7.13E+01
- 0. 00E+00 0.00E+00 Co-60 1.40E+03 4.80E+03 1.92E+03 0.00E+00 0.00E+00 Total 3.45E-01 Rai) = 1 E-4
- Ra
- CA
- Da1J
- exp(-0.693
- T / TT) where T = 1.46 E 4 days (40 years)
T1 = isotope half life (days) t i
l l
1986 RESUSPENSION PATHWAY INTRUDER Infant Lung Ico-Ra(m3/yr)
CA(pC1/m2) Ti Daij Raij tope (days)
(mrom/
_______________________________________________pci)
(mrem /yr)
H-3 1.40E+03 5.11E+07 4.48E+03 4.62E-07 3.45E-01 Co-58 1.40E+03 8.51E+03 7.13E+01 5.55E-04 1.56E-62
]
Co-60 1.40E+03 4.80E+03 1.92E+03 3.22E-03 1.11E-02 Total 3.57E-01 Rai) = 1 E-4
- Ra
- CA
- Dai)
- exp(-0.593
- T / TT) where 1
T = 1.45 E 4 days (40 years) l Ti = isotope half life (days) n,
,-_,---..,,,,------,-~.....,r.-
..,,..w,-r--,,-
-..,-,,,--.y
l Calculation section 2, prge 18 of 18 i
1986 RESUSPENSION PATHWAY INTRUDER Infant GI-LLI Iso-Ra(m3/yr)
CA(pC1/m2) T1 Da1J Rai) '
tope (days)
_______ __ _______(mrem /pC1)
(mrom/yr)
- 1. 4 0 E+ 03 5.11E+07 4.48E+03 4.62E-07 3.45E-01 Co-58 1.40E+03 8.51E+03 7.13Et01 7.95E-06 2.23E-64 Co-60 1.40E+03 4.80E+03 1.92E+03 2.28E-05 7.88E-05 Total 3.46E-01 9ai) = 1 E-4
- Ra
- CA
- Dai)
- exp(-0.693
- T / T1) where T = 1.46 E 4 days (40 years)
Ti = isotope half life (days)
G I
a
Calculction section 3, prg: I of 6 1985 SHORELINE EXPOSURE PATHWAY Adult Total Body Ua Ci Ti Daij tb RaiJ (hr/yr)
(uci/ml)
(days)
(mrom/hr)
(days)
- (mrom/yr)
/(pC1/m2)
H-3 1.20E+01 1.75E-05 4.48E+03 0.00E+00 2.08E-01 0.00E+00 Cr-51 1.20E+01 4.92E-07 2.78E+01 2.20E-10 2.08E-01 5.49E-06 Mn-54 1.20E+01 6.31E-08 3.03E+02 5.00E-09 2.08E-01 1.86E-05 Co-58 1.20E+01 8.26E-07 7.13E+01 7.00E-09 2.08E-01 2.94E-04 Co-60 1.20E+01 1.26E-07 1.92E+03 1.70E-08 2.08E-01 1.09E-04 Total 4.27E-04 Rai) = 2.94E10
- Ua
- C1
- Ti
- Daf) * (1 - exp(-0.693
- tb / T1))
i 1985 SHORELINE EXPOSURE PATHWAY Adult Skin
~
~
Ua C1 T1 Dai) tb Rai) i (hr/yr)
(uC1/ml)
(days)
(mrom/hr)
(days)
(mrom/yr)
/(pC1/m2)
H-3 1.20E+01 1.75E-05 4.48E+03 0.00E+00 2.08E-01 0.00E+00 Cr-51 1.20E+01 4.92E-07 2.78E+01 2.60E-10 2.08E-01 6.49E-06 i-Mn-54 1.20E+01 6.31E-08 3.03E+02 6.80E-09 2.08E-01 2.18E-05
' ~
Co-58 1.20E+01 8.26E-07 7.13E+01 8.20E-09 2.08E-01 3.44E-04 Co-60 1.20E+01 1.26E-07 1.92E+03 2.00E-08 2.08E-01 1.28E-04 Total 5.01E-04 Roij = 2.94E10
- Ua
- C1
- Ti
- Dai) * (1 - exp(-0.693
- tb / T1))
I I
s L.
..---w------------------~~-~-^-~~
~ '
~~ ~
~~~
Calculation asetion 3, pign 2 of 6 1985 SHORELINE EXPOSURE PATHWAY Teen Total Body Ua C1 T1 Daij tb
'Raij 4.-
(hr/yr)
(uC1/ml)
(days)
(mrom/hr)
(days)
(mrom/yr)
/(pC1/m2)
H-3 6.70E+01 1.75E-05 4.48E+03 0.00E+00 2.08E-01 0.00E+00 Cc-51 6.70E+01 4.92E-07 2.78E+01 2.20E-10 2.08E-01 3.07E-05 Mn-54 6.70E+01 6.31E-08 3.03E+02 5.80E-09 2.08E-01 1.04E-04 Cc-58 6.70E+01 8.26E-07 7.13E+01 7.00E-09 2.08E-01 1.64E-03 Co-60 6.70E+01 1.26E-07 1.92E+03 1.70E-08 2.08E-01 6.08E-04 Total 2.38E-03
, Roij = 2.94E10
- Ua
- C1
- Ti
- Dai) * (1 - exp(-0.693
- tb / TT))
1985 SHORELINE EXPOSURE PATHWAY Teen Skin Ua Ci T1 DaiJ tb RaiJ (hr/yr)
(uC1/ml)
(days)
(mrem /hr)
(days)
(mrem /yr)
/(pC1/m2)
H-3 6.70E+01 1.75E-05 A.48E+03
- 0. 00E+ 00 2.08E-01 0.00E+00 Cr-51 6.70E+01 4.92E-07 2.78E+01 2.60E-10 2.08E-01 3.62E-05 Mn-54 6.70E+01 6.31E-08 3.03E+02 6.80E-09 2.08E-01 1.22E-04 Co-58 6.70E+01 8.26E-07 7.13E+01 8.20E-09 2.08E-01 1.92E-03 Cc-60 6.70E+01 1.26E-07 1.92E+03 2.00E-08 2.08E-01 7.15E-04 Total 2.79E-03 i
Rci) = 2.94E10
- Ua
- C1
- Ti
- Dai) * (1 - exp(-0.693
- tb / T1))
I n
r
Calculation section 3, page 3 of 6 1985 SHORELINE EXPOSURE PATHWAY Child Total Body Ua C1 T1 DaiJ tb Ra1J (hr/yr)
(uci/ml)
(days)
(mrom/hr)
(days)
- (mrom/yr)
/(pC1/m2)
H-3 1.40E+01 1.75E-05 4.48E+03 0.00E+00 2.00E-03 0.00E+00 Cr-51 1.40E+01 4.92E-07 2.78E+01 2.20E-10 2.08E-01 6.41E-06 Mn-54 1.40E+01 6.31E-08 3.03E+02 5.80E-09 2.08E-01 2.17E-05 Co-58 1.40E+01 8.26E-07 7.13E+01 7.00E-09 2.08E-01 3.43E-04 Co-60 1.40E+01 1.26E-07 1.92E+03 1.70E-08 2.08E-01 1.27E-04 Total 4.98E-04 4
Roij = 2.94E10
- Ua
- Ci
- Ti
- Dai) * (1 - exp(-0.693
- tb / T1))
1985 SHORELINE EXPOSURE PATHWAY i
Child Skin Ua ci Ti DaiJ tb Rai)
(hr/yr)
(uCi/ml)
(days)
(mrom/hr)
(days)
(mrom/yr)
{
/(pC1/m2)
H-3 1.40E+01 1.75E-05 4.48E+03 0.00E+00 2.00E-01 0.00E+00 Cr-51 1.40E+01 4.92E-07 2.78E+01 2.60E-10 2.00E-01 7.57E-06
~
i Mn-54 1.40E+01 6.31E-08 3.03E+02 6.80E-09 2.08E-01 2.55E-05 Co-58 1.40E+01 8.26E-07 7.13E+01 8.20E-09 2.08E-01 4.01E-04 Cc-60 1.40E+01 1.26E-07 1.92E+03 2.00E-08 2.08E-01 1.50E-04 l
Total 5.84E-04 j
Rai) = 2.94E10
- Ua
- Ci
- Ti
- Dai) * (1 - exp(-0.693
- tb / T1))
i i
l i
l i
Calculction osction 3, paga 4 of 6 1986 SHORELINE EXPOSURE PATHWAY Adult Total Body Ua Ci Ti DaiJ tb Rai)
(hr/yr)
(uC1/ml)
(days)
(mrom/hr)
(days)
(mrom/yr)
/(pC1/m2)
H-3 1.20E+01 7.08E-05 4.48E+03 0.00E+00 1.67E-01 0.00E+00 Cc-58 1.20E+01 1.18E-08 7.13E+01 7.00E-09 1.67E-01 3.37E-06 Total 3.37E-06 R31) = 2.94E10
- Ua
- Ci
- Ti
- Dai) * (1 - exp(-0.693
- tb / T1))
1986 SHORELINE EXPOSURE PATHWAY Adult Skin Ua C1 T1 Daij tb Rai)
(hr/yr)
(uC1/ml)
(days)
(mrom/hr)
(days)
(mrom/yr)
/(pC1/m2)
H-3 1.20E+01 7.08E-05 4.48E+03 0.00E+00 1.67E-01 0.00E+00 Co-58 1.20E+01 1.18E-08 7.13E+01 8.20E-09 1.67E-01 3.95E-06 Total 3.95E-06 Roij = 2.94E10
- Ua
- C1
- T1
- Dai) * (1 - exp(-0.693
- tb / T1))
o
Calculstion section 3, pnge 5 of 6 1986 SHORELINE EXPOSURE PATHWAY Teen Total Body Ua Ci Ti Daij tb
~
a Raij (hr/yr)
(uC1/ml)
(days)
(mrom/hr)
(days) '(mrom/yr)
/(pC1/m2)
H-3 6.70E+01 7.08E-05 4.48E+03 0.00E+00 1.67E-01 D.00E+00 Cc-58 6.70E+01 1.18E-08 7.13E+01 7.00E-09 1.67E-01 1.88E-05 Total 1.88E-05 R31) = 2.94E10
- Ua
- C1
- Ti
- Dai) * (1 - exp(-0.693
- tb / T1))
1986 SHORELINE EXPOSURE PATHWAY Teen Skin a
Ua Ci T1 Da1J tb Ra1J (hr/yr)
(uC1/ml)
(days)
(mrom/hr)
(days)
(mrem /yr)
/(pC1/m2)
H-3 6.70E+01 7.08E-05 4.48E+03 0.00E+00 1.67E-01 0.00E+00 Co-58 6.70E+01 1.18E-08 7.13E+01 8.20E-09 1.67E-01 2.20E-05 Total 2.20E-05 Roij = 2.94E10
- Ua
- C1
- T1
- Dai) * (1 - exp(-0.693
- tb / TT))
9 9
0 44
_. g. -.
- - - - - - ~ ' -
- - - - - ' " - ' " ' - " " ' - ~ - ' - - - ' '" -
" ' ~ ' '
Calculation section 3, pign 6 of 6 1986 SHORELINE EXPOSURE PATHWAY Child Total Body Ua C1 T1 DaiJ tb
.Rai)
(hr/yr)
(uci/ml)
(days)
(mrom/hr)
(days)-
- (mrom/yr)
' ~
/(pC1/m2)
H-3 1.40E+01 T.08E-05 4.48E+03 0.00E+00 1.67E-01 0.00E+00 Co-58 1.40E+01 1.18E-08 7.13E+01 7.00E-09 1.67E-01 3.93E-06 Total 3.93E-06 R31J = 2.94E10
- Ua
- Ci
- T1
- Daij * (1 - exp(-0.693
- tb / T1))
1986 SHORELINE EXPOSURE PATHWAY Child Skin Ua C1 T1 DaiJ tb RaiJ (hr/yr)
(uC1/ml)
(days)
(mrom/hr)
(days)
(mrom/yr)
/(pC1/m2)
H-3 1.40E+01 7.08E-05 4.48E+03 0.00E+00 1.67E-01 0.00E+00 Co-58 1.40E+01 1.18E-08 7.13E+01 8.20E-09 1.67E-01 4.61E-06 Total 4.61E-06 Raij = 2.94E10
- Ua
- Ci
- Ti
- Dai) * (1 - exp(-0.693
- tb / T1))
1 6
e e
r
Calculation section 4, prga 1 of 20 Drinking Water Pathw y 1985 Adult Bone Icotope Ua(1/yr)
C1(uC1/ml)
Daij(mrom/pC1)
R'aij(mrem)
H-3 7.30E+02 1.75E-05 0.00E+00 0.00E+00 Cc-51 7.30E+02 4.92E-07 0.00E+00 0.00E+00 Mn-54 7.30E+02 6.31E-08 0.00E+00 0.00E+00 Co-58 7.30E+02 8.26E-07 0.00E+00 0.00E+00 C3-60 7.30E+02 1.26E-07 0.00E+00 0.00E+00 Total 0.00E+00 R'ai) = 2.68 E6
- Ua
- Ci
- Dai)
Drinking Water Pathway 1985 Adult Liver Icotope Ua(1/yr)
C1(uC1/ml)
Daij(mrom/pci)
R'ai
________________________________________________________j(mrem) 4 H-3 7.30E+02 1.75E-05 1.05E-07 3.59E-03 Cr-51 7.30E+02 4.92E-07 0.00E+00 0.00E+00 Mn-54 7.30E+02 6.31E-08 4.57E-06 5.64E-04 Co-58 7.30E+02 8.26E-07 7.45E-07 1.20E-03 i
Co-60 7.30E+02 1.26E-07 2.14E-06 5.28E-04 Total 5.89E-03 R'ai) = 2.68 E6
- Ua
- C1
- Dai)
Drinking Water Pathway 1985 Adult Total Body Icotope Ua(1/yr)
Ci(uC1/ml)
Dai)(mrom/pC1)
R
______________________________________________________'aij(mrom)
H-3 7.30E+02 1.75E-05 1.05E-07 3.59E-03 Cr-51 7.30E+02 4.92E-07 2.66E-09 2.56E-06 Mn-54 7.30E+02 6.31E-08 8.72E-07 1.08E-04 Co-58 7.30E+02 8.26E-07 1.67E-06 2.70E-03 Co-60 7.30E+02 1.26E-07 4.72E-06 1.16E-03 Total 7.57E-03 R'ai) = 2.68 E6
- Ua
- C1
- Dai)
Calculation section 4, prge 2 of 20 Drinking Watcr Pothway 1985 Adult Thyroid Icotope Ua(1/yr)
C1(uC1/ml)
Daij(mrom/pC1)
R'ai)(mrom)
H-3 7.30E+02 1.75E-05 1.05E-07 3.59E-03 Cr-51 7.30E+02 4.92E-07 1.59E-09 1.53E-06 Mn-54 7.30E+02 6.31E-08 0.00E+00 0.00E+00 Cc-58 7.30E+02 8.26E-07 0.00E+00 0.00E+00 Co-60 7.30E+02 1.26E-07 0.00E+00 0.00E+00 Total 3.60E-03 R'ai) = 2.68 E6
- Ua
- Ci
- Dai)
Drinking Water Pathway 1985 l
Adult Kidney Icotope Ua(1/yr)
C1(uC1/ml)
Dai)(mrem /pC1)
R
______________________________________________________'ai)(mrom)
H-3 7.30E+02 1.75E-05 1.05E-07 3.59E-03 Cr-51 7.30E+02 4.92E-07 5.86E-10 5.64E-07 Mn-54 7.30E+02 6.31E-08 1.36E-06 1.68E-04 CD-58 7.30E+02 8.26E-07 0.00E+00 0.00E+00 i
Co-60 7.30E+02 1.26E-07 0.00E+00 0.00E+00 Total 3.76E-03 R'ai) = 2.68 E6
- Ua
- C1
- Dai)
Drinking Water Pathway 1985 Adult Lung Icotope Ua(1/yr)
Ci(uC1/ml)
Daij(mrom/pC1)
R
______________________________________________________'aij(mrom)
H-3 7.30E+02 1.75E-05 1.05E-07 3.59E-03 Cr-51 7.30E+02 4.92E-07 3.53E-09 3.40E-06 Mn-54 7.30E+02 6.31E-08 0.00E+00 0.00E+00 Co-58 7.30E+02 0.26E-07 0.00E+00 0.00E+00 Co-60 7.30E+02 1.26E-07 0.00E+00 0.00E+00 Total 3.60E-03 R'ai) = 2.68 E6
- Ua
- C1
- Dai) l j
Calculction esction 4 prge 3 of 20 Drinking Water Pathway 1985 Adult GI-LLI Icotope Un(1/yr)
C1(uCi/ml)
Dm1J(mrom/pC1)
R'ai)(mrom)
H-3 7.30E+02 1.75E-05 1.05E-07
- 3. 59 E-0 3 Cc-51 7.30E+02 4.92E-07 6.69E-07 6.44E-04 Mn-54 7.30E+02 6.31E-08 1.40E-05 1.73E-03 Co-58 7.30E+02 8.26E-07 1.51E-05 2.44E-02 Co-60 7.30E+02 1.26E-07 4.02E-05 9.91E-03 Total 4.03E-02 R'ai) = 2.68 E6
- Ua
- Ci
- Dai)
=
e 1
O I
J i
\\
l l
t
[
Csiculation section 4 page 4 of 20 Drinking Water Pothway 1985 Teen Bone 5
Icotope Ua(1/yr)
C1(uC1/ml)
Daij(mrom/pC1)
R'ai)(mrom) i H-3 5.10E+02 1.75E-05 0.00E+00 0.00E+00 Cr-51 5.10E+02 4.92E-07 0.00E+00 0.00E+00 Mn-54 5.10E+02 6.31E-08 0.00E+00 0.00E+00 Co-58 5.10E+02 8.26E-07 0.00E+00 0.00E+00 Co-60 5.10E+02 1.26E-07 0.00E+00 0.00E+00 Total',
0.00E+00 I
R'ai) = 2.68 E6
- Ua
- Ci
- Dai)
Drinking Water Pathway 1985 Teen Liver Icotope Ua(1/yr)
C1(uC1/ml)
Daij(mrom/pC1)
R'aij(mrom H-3 5.10E+02 1.75E-05 1.06E-07 2.54E-03 Cc-51 5.10E+02 4.92E-07 0.00E+00 0.00E+00
)
Mn-54 5.10E+02 6.31E-08 5. 9 0 E'- 0 6 5.09E-04 Co-58 5.10E+02 8.26E-07 9.72E-07 1.10E-03 Cc-60 5.10E+02 1.26E-07 2.81E-06 4.84E-04 Total 4.63E-03 R'ai) = 2.68 E6
- Ua
- C1
- Daij l
I Drinking Water Pathway 1985 Teen Total Body Icotope Va(1/yr)
C1(uC1/ml)
Daij(mrom/pci)
R'aij(mram)
.5.10E+02 1.75E-05 1.06E-07 2.54E-03 Cr-51 5.10E+02 4.92E-07 3.60E-09 2.42E-06 Mn-54 5.10E+02 6.31E-08 1.17E-06 1.01E-04 j
Co-58 5.10E+02 8.26E-07 2.24E-06 2.53E-03 Co-60 5.10E+02 1.26E-07 6.33E-06 1.09E-03 Total 6.26E-03 t
R'ai) = 2.68 E6
- Ua
- C1
- Daij
's 1
1 4
6
-,,, - -, - ~. _ _ _ _, _ - ~
,-.,...,-_..-..,n-
...,,,,..n.,_,-,,,w,,_,,
Calculation saction 4, prgs 5 of 20 Drinking Water Pathway 1985 Teen Thyroid Icotope Ua(1/yr)
Ci(uC1/ml)
Daij(mrom/pci)
R'ai)(mrom)
H-3 5.10E+02 1.75E-05 1.06E-07 2.54E-03 Cr-51 5.10E+02 4.92E-07 2.00E-09 1.34E-06 Mn-54 5.10E+02 6.31E-08 0.00E+00 0.00E+00 Co-58 5.10E+02 8.26E-07 0.00E+00 0.00E+00 Co-60 5.10E+02 1.26E-07 0.00E+00 0.00E+00 Total 2.54E-03 R'a1J = 2.68 E6
- Ua
- Ci
- Dai)
Orinking Water Pathway 1985 Teen Kidney Icotope Ua(1/yr)
C1(uC1/ml)
Daij(mrom/pC1)
R'aij(mrom)
~
H-3 5.10E+02 1.75E-05 1.06E-07 2.54E-03 Cr-51 5.10E+02 4.92E-07 7.89E-10 5.31E-07 Mn-54 5.10E+02 6.31E-08 1.76E-06 1.52E-04 Cc-58 5.10E+02 8.26E-07 0.00E+00 0.00E+00 Co-60 5.10E+02 1.26E-07 0.00E+00 0.00E+00 i
Total 2.69E-03
.....'ai) = 2.68 26
- Ua
- C1
- Dai)
R Drinking Water Pathway 1985 Teen Lung Icotope Ua(1/yr)
C1(uC1/ml)
Daij(mrom/pC1)
,R'aij(mrom)
H-3 5.10E+02 1.75E-05 1.06E-07 2.54E-03 Cr-51 5.10E+02 4.92E-07 5.14E-09 3.46E-06 Mn-54 5.10E+02 6.31E-08 0.00E+00 0.00E+00 Co-58 5.10E+02 8.26E-07 0.00E+00 0.00E+00 Co-60 5.10E+02 1.26E-07 0.00E+00 0.00E+00 i
Total 2.54E-03 R'a1J = 2.68 E6
- Ua
- Ci
- Daij m-
-~,e t..,. -
,,n,_,_-,,.-
,_.,,-.,m.-
Ct.lculaticn'stetien 4, pigs 6 of 20 Drinking Water Pathway 1985 Teen GI-LLI Isotope Un(1/yr)
C1(uC1/ml)
Dai)(mrom/pci)
R'aij(mrom)
H-3 5.10E+02 1.75E-05 1.06E-07 2.54E-03 p
Cr-51 5.10E+02 4.92E-07 6.05E-07 4.07E-04 Mn-54 5.10E+02 6.31E-08 1.21E-05 1.04E-03 Co-58 5.10E+02 8.26E-07 1.34E-05 1.51E-02 Co-60 5.10E+02 1.26E-07 3.66E-05 6.30E-03 x
Total 2.54E-02 R'ai) = 2.68 E6
- Ua
- Ci
- DaiJ t
s g
e I
l s
1 f
Cciculation srction 4, pegs 7 of 20 Drinking W3 tor POthway 1985 Child Bone Isotope Ua(1/yr)
C1(uC1/ml)
Daij(mrom/pci)
R'aij(mrom)
H-3 5.10E+02 1.75E-05 0.00E+00 0.00E+00 Cr-51 5.10E+02 4.92E-07 0.00E+00 0.00E+00 Mn-54 5.10E+02 6.31E-08 0.00E+00 0.00E+00 Co-58 5.10E+02 8.26E-07 0.00E+00 0.00E+00 Co-60 5.10E+02 1.26E-07 0.00E+00 0.00E+00 Total 0.00E+00 R'ai) = 2.68 E6
- Ua
- C1
- Dai)
Drinking Water Pathway 1985 Child Liver Isotope Un(1/yr)
C1(uC1/ml)
Daij(mrom/pci)
R'aij(mrem)
H-3 5.10E+02 1.75E-05 2.03E-07 4.86E-03 Cr-51 5.10E+02 A.$2E-07 0.00E+00 0.00E+00 Mn-54 5.10E+02 5.31E-08 1.07E-05 9.23E-04 Co-58 5.10E+02 6.26E-07 1.80E-06
.03E-03 Co-60 5.10E+02 1.26E-07 5.29E-06 9.11E-04 Total 8.72E-03 LR'ai) = 2.60 E6
- Ua
- Ci
- Da1J
~
Drinking Water Pathway 1985 Child Total Body Isotope Ua(1/yr)
Ci(uC1/ml)
Daij(mrom/pC1)
R'aij(mrom)
H-3 5.'10E+02 1.75E-05 2.03E-07 4.86E-03 Cr-51 5.10E+02 4.92E-07 8.90E-09 5.98E-06 Mn-54 5.10E+02 6.31E-08 2.85E-06 2.46E-04 Co-58 5.10E+02 8.26E-07 5.51E-06 6.22E-03 Co-60 5.10E+02 1.26E-07 1.56E-05 2.69E-03 9
Total 1.40E-02 R'ai) = 2.68 E6
- Ua
- Ci
- Da1J i
T I
a
Calculation section 4, page 8 of 20 Drinking Wator Pathway 1905 Child Th>roid Isotope Ua(1/yr)
Ci(uC1/ml)
Daij(mrem /pci
)
R'ai)(mrem)
- - - - - - - -....? - - -
H-3 5.10E+02 1.75E-05 2.03E-07 4.86E-03 Cr-51 5.10E+02 4.92E-07 4.94E-09 3.322-06 Mn-54 5.10E+02 S.31E-08 0.00E+00 0.00E+00 Co-58 5.10E+02 8.26E-07 0.00E+00 0.00E+00 Co-60 5.10E+02 1.26E-07 0.00E+00 0.00E+00 Total 4.86E-03 R'ai) = 2.68 E6
- Ua
- C1
- Dai)
Drinking Water Pathway 1985 Child Kidney Isotope Ua(1/yr)
Ci(uC1/ml)
Daij(mrem /
pC1)
R'ai)(mrom)
H-3 5.10E+02 1.75E-05 2.03E-07 4.86E-03 Cc-51 5.10E+02 4.92E-07 1.35E-09 9.08E-07 Mn-54 5.10E+02 6.31E-08 3.00E-06 2.59E-04 Co-58 5.10E+02 8.26E-07 0.00E+00 0.00E+00 Co-60 5.10E+02 1.26E-07 0.00E+00 0.00E+00 Total 5.12E-03 R'a1J = 2.68 E6
- Ua
- Ci
- Dai)
Drinking Water Pathway 1985 Child Lung Isotope Ua(1/yr)
Ci(uC1/ml)
Daij(mrom/pci)
R'aij(mrem)
H-3 5.10E+02 1.75E-05 2.03E-07 4.86E-03 Cr-51 5.10E+02 4.92E-07 9.02E-09 6.07E-06 Mn-54 5.10E+02 6.31E-08 0.00E+00 0.00E+00 Co-58 5.10E+02 8.26E-07 0.00E+00 0.00E+00 Co-60 5.10E+02 1.26E-07 0.00E+00 0.00E+00 Total 4.86E-03 R'ai) = 2.68 E6
- Ua
- C1
- Dai) e
Calculation section 4, prge 9 of 20 Drinking Water Pathway 1985 Child GI-LLI Isotope Um(1/yr)
Ci(uC1/ml)
Dai)(mre'm/pC1
-________________________________________________)
R'aij(mrom)
H-3 5.10E+02 1.75E-05 2.03E-07 4.86E-03 Cr-51 5.10E+02 4.92E-07 4.72E-07 3.17E-04 Mn-54 5.10E+02 6.31E-08 8.98E-06 7.74E-04 Co-58 5.10E+02 8.26E-07 1.05E-05 1.19E-02 Co-60 5.10E+02 1.26E-07 2.93E-05 5.05E-03 Total 2.28E-02 R'a1J = 2.68 E6
- Ua
- Ci
- DaiJ 6
9 e
O O
Calculation section 4, prge 10 of 20 Drinking Water Pathway 1985 Infant Bone Isotope Ua(1/yr)
C1(uC1/ml)
Dai)(mrom/pC1)
R'aiJ(mrem)
H-3 3.30E+02 1.75E-05 0.00E+00 0.00E+00 Cr-51 3.30E+02 4.92E-07 0.00E+00 0.00E+00 Mn-54 3.30E+02 6.31E-08 0.00E+00 0.00E+00 Co-58 3.30E+02 8.26E-07 0.00E+00 0.00E+00 Co-60 3.30E+02 1.26E-07 0.00E+00 0.00E+00 Total 0.00E+00 R'aiJ = 2.68 E6
- Ua
- C1
- Dai)
Drinking Water Pathway 1985 Infant Liver Ipotope Ua(1/yr)
C1(uCi/ml)
Daij(mrem / PCT)
R'aij(mrom)
H-3 3.30E+02 1.75E-05 3.08E-07 4.77E-03 Cr-51 3.30E+02 4.92E-07 0.00E+00 0.00E+00 Mn-54 3.30E+02 6.31E-08 1.99E-05 1.11E-03 Co-58 3.30E+02 8.26E-07 3.60E-06 2.63E-03
~ Co-60 3.30E+02 1.26E-07 1,08E-05 1.20E-03 Total 9.71E-03 R'ai) = 2.68 E6
- Ua
- Ci
- Daij
~
Drinking Water Pathway 1985 Infant Total Body Icotope Ua(1/yr)
Ci(uCi/ml)
Daij(mrom/pC1)
R'aij(mrom H-3 3.SOE+02 1.75E-05 3.08E-07 4.77E-03 Cr-51 3.30E+02 4.92E-07 1.41E-08 6.14E-06 Mn-54 3.30E+02 6.31E-08 4.51E-06 2.52E-04 Co-58 3.30E+02 8.26E-07 8.98E-06 6.56E-03 Co-60 3.30E+02 1.26E-07 2.55E-05 2.84E-03 Total 1.44E-02 R'aiJ = 2.68 E6
- Ua
- C1
- Dai)
I e
b g
Calculation section 4, page 11 of 20 DrinkinD Wator Pathway 1985 Infant Thyroid f
Isotope Ua(1/yr)
Ci(uC1/ml)
Daij(mram/pC1)
R'aij(mrom)
H-3 3.30E+02 1.75E-05 3.08E-07 4.77E-03 Cr-51 3.30E+02 4.92E-07 9.20E-09 4.00E-06, Mn-54 3.30E+02 6.31E-08 0.00E+00
.0.00E+00 Co-58 3.30E+02 8.26E-07 0.00E+00 0.00E+00 Co-60 3.30E+02 1.26E-07 0.00E+00 0.00E+00 Total 4.77E-03 R'aiJ = 2.68 E6
- Ua
- Ci
- Da1J Orinking Water Pathway 1985 Infant Kidney Isotope Ua(1/yr)
Ci(uC1/ml)
Daij(mram/pC1)
R'aij(mrom)
H-3 3.30E+02 1.75E-05 3.08E-07 4.77E-03 Cr-51 3.30E+02 4.92E-07 2.01E-09 8.75E-07 Mn-54 3.30E+02 6.31E-08 4.41E-06 2.46E-04 Co-58 3.30E+02 8.26E-07 0.00E+00 0.00E+00 Co-60 3.30E+02 1.26E-07 0.00E+00 0.00E+00..
Total 5.01E-03 R'ai) = 2.68 E6
- Ua
- Ci
- Dai)
Drinking Water Pathway 1985 Infant Lung Isotope Ua(1/yr)
C1(uci/ml)
Daij(mrom/pCi)
R'aij(mrem)
.3.30E+02 1.75E-05 3.08E-07 4.77E-03 Cr-51 3.30E+02 4.92E-07 1.79E-08 7.79E-06 Mn-54 3.30E+02 6.31E-08 0.00E+00 0.00E+00 Co-58 3.30E+02 8.26E-07 0.00E+00 0.00E+00 Co-60 3.30E+02 1.26E-07 0.00E+00 0.00E+00 Total 4.77E-03 R'ai) = 2.68 E6
- Ua
- C1
- Dai)
\\
Calculation section 4, p;ge 12 of 20 i
t Drinking Water Pathway 1985 Infant GI-LLI Isotope Ua(1/yr) bi(uC1/ml)
Dai
__ _________j(mrom/pci)
R'aij(mrem)
H-3 3.30E+02 1.75E-05 3.08E-07 4.77E-03 Cr-51 3.30E+02 4.92E-07 4.11E-07 1.79E-04 Mn-54 3.30E+02 6.31E-08 7.31E-06 4.08E-04 Co-58 3.30E+02 8.26E-07 8.97E-06 6.55E-03 Co-60 3.30E+02 1.26E-07 2.57E-05 2.86E-03 Total 1.48E-02 R'ai) = 2.68 E6
- Ua
- C1
- DaiJ e
o e
I I
Calculation section 4, pege 13 of 20 Drinking W tor Pothway 1986 i
Adult Bone Icotope Ua(1/yr)
Ci(uC1/ml)
Daij(mrom/pci)
R'aij(mrom)
H-3 7.30E+02 7.08E-05 0.00E+00 0.00E+00 Co-58 7.30E+02 1.18E-08 0.00E+00 0.00E+00 Total 0.00E+00 R'ai) = 2.68 E6
- Ua
- Ci
- Dai)
Drinking Water Pathway 1986 Adult Liver Icotope Ua(1/yr)
Ci(uC1/ml)
Daij(mrom/pC1)
R'aij(mrom)
~ N-3 7.30E+02 7.08E-05 1.05E-07 1.45E-02 Co-58 7.30E+02 1.18E-08 7.45E-07 1.72E-05 Total 1.46E-02 R'ai) = 2.68 E6
- Ua
- Ci
- Dai)
Drinking Water Pathway 1986 Adult Total Body Icotope Um(1/yr)
Ci(uC1/ml)
Daij(mrom/pC1)
R'aij(mrom)
H-3 7.30E+02 7.08E-05 1.05E-07 1.45E-02 Co-58 7.30E+02 1.18E-08 1.67E-06 3.86E-05 Total 1.46E-02 R'ai) = 2.68 E6
- Ua
- Ci
- Dai) 4 l
i i
a
_-.__-.,_-,__-,4 y
_---,-y
i l
Calculation section 4, prge 14 of 20 i
Drinking Watcr Pathway 1986 Adult Thyroid Isot6pe Ua(1/yr)
Ci(uC1/ml)
Daij
________________________________________(mrom/pci)
R'aij(mrem)
H-3 7.30E+02 7.08E-05 1.05E-07 1.45E-02 Co-58 7.30E+02 1.18E-08 0.00E+00 0.00E+00 Total 1.45E-02 R'ai) = 2.68 E6
- Ua
- Ci
- Daij Drinking Water Pathway 1986 Adult Kidney Isotope Ua(1/yr)
C1(uC1/ml)
Dai
______________________________________j(mrom/pC1)
R'aij(mrem)
H-3 7.30E+02 7.08E-05 1.05E-07 1.45E-02 Co-58 7.30E+02 1.18E-08 0.00E+00 0.00E+00 Total 1.45E-02 R'ai) = 2.68 E6
- Ua
- Ci
- Dai)
Drinking Water Pathway 1986 Adult Lung IDotope Ua(1/yr)
C1(uC1/ml)
Da1
______________________________________J(mrom/pC1)
R'ai)(mrom)
H-3 7.30E+02 7.08E-05 1.05E-07 1.45E-02 Co-58 7.30E+02 1.18E-08 0.00E+00 0.00E+00 Total 1.45E-02 R'ai) = 2.68 E6
- Ua
- Ci
- Dai)
Drinking Water Pathway 1986 Adult GI-LLI lootope Ua(1/yr)
C1(uC1/ml)
Dai)(mrem R
_____________________________________________/pC1)_________'aij(mrem)
H-3 7.30E+02 7.08E-05 1.05E-07 1.45E-02 Co-58 7.30E+02 1.18E-08 1.51E-05 3.49E-04 Total 1.49E-02 R'ai) = 2.68 E6
- Ua
- C1
- Daij
Calculation section 4, pxge 15 of 20 Drinking Water Pathway 1986
, Teen Bone Isotope Ua(1/yr)
C1(uC1/ml)
Daij(arem/pC1)
R'aij(mrom)
H-3 5.10E+02 7.08E 0.00E+00 0.00E+00 Co-58 5.10E+02 1.18E-08 0.00E+00 0.00E+00 Total 0.,00E+00 R'ai) = 2.68 E6
- Ua
- Ci
- Dai)
Drinking Water Pathway 1986 Teen Liver Icotope Da(1/yr)
Ci(uC1/ml)
Dai)(mrem /pC1)
R'aij(mrom)
H-3 5.10E+02 7.08E-05 1.06E-07 1.03E-02 Co-58 5.10E+02 1.18E-08 9.72E-07 1.57E-05 Total 1.03E-02 R'ai) = 2.68 E6
- Ua
- Ci
- DaiJ Drinking Water Pathway 1985 Teen Total Body Iectope Ua(1/yr)
C1(uC1/ml)
Daij(mrem /pC1)
R'aij(mrom)
~
H-3 5.10E+02 7.08E-05 1.06E-07 1.03E-02 Co-58 5.10E+02 1.18E-08 2.24E-06 3.61E-05 Total 1.03E-02 R'ai) = 2.68 E6
- Ua
- C1
- Da1J Drinking Water Pathway 1986 Teen Thyroid Icotope Ua(1/yr)
C1(uCi/ml)
Daij(mram/pCi)
R'aij(mrem)
H-3 5.10E+02 7.08E-05 1.06E-07 1.03E-02 Co-58 5.10E+02 1.18E-08 0.00E+00 0.00E+00 Total 1.03E-02 R'ai) = 2.68 E6
- Ua
- Ci
- Dai)
~
- ~,
..n
Calculation section 4, prge 16 of 20 Drinking Water Pathway 1986
, Teen Kidney Isotope Us(1/yr)
Ci(uC1/ml)
Dai)(mram/pC1)
R'aij(mrem)
H-3 5.10E+02 7.08E-05 1.06E-07 1.03E-02 Co-58 5.10E+02 1.18E-08 0.00E+00 0.00E+00 Total 1.03E-02 R'aiJ = 2.68 E6
- Ua
- C1
- Daij Drinking Water Pathway 1986 Teen Lung Icotope Ua(1/yr)
Ci(uC1/ml)
Daij(mrom/pC1)
R'aij(mrem)
H-3 5.10E+02 7.08E-05 1.06E-07 1.03E-02 Co-58 5.10E+02 1.18E-08 0.00E+00 0.00E+00 Total 1.03E-02 R'ai) = 2.68 E6
- Ua
- Ci
- Dai)
Drinking Water Pathway 1985 Teen GI-LLI Isotope Ua(1/yr)
Ci(uC1/ml)
Daij(mrem /pC1)
R'aij(mram)
H-3 5.10E+02 7.08E-05 1.06E-07 1.03E-02 Co-58 5.10E+02 1.18E-08 1.34E-05 2.16E-04 Total 1.05E-02 R'ai) = 2.68 E6
- Ua
- C1
- Dai) e e
e
Calculatica cection 4, page 17 of 20 Drinking Water Pathway 1986 Child Bone Icotope Ua(1/yr)
Ci(uC1/ml)
Daij(mrom/pC1)
R'ai
_________________._______________________________________j(mrom)
H-3 5.10E+02 7.08E-05 0.00E+00 0.00E+00 Co-58 5.10E+02 1.18E-08 0.00E+00 0.00E+00 Total 0.00E+00 R'ai) = 2.68 E6
- Ua
- Ci
- Daij Drinking Water Pathway 1986 Child Liver Isotope Ua(1/yr)
Ci(uC1/ml)
Daij(mrom/pC1)
R
______________________________________________________'aij(mrom)
- H-3 5.10E+02 7.08E-05 2.03E-07 1.56E-02 Co-58 5.10E+02 1.18E-08 1.80E-06 2.90E-05 Total 1.97E-02 R'ai) = 2.68 E6
- Ua
- Ci *.DaiJ Orinking Water Pathway 1986 Child Total Body Isotope Un(1/yr)
C1(uCi/ml)
Daij(mrem /pC1)
R'ai
________________________________________________________j(mrem)
H-3 5.10E+02 7.08E-05 2.03E-07 1.96E-02 Co-58 5.10E+02 1.18E-08 5.51E-06 8.89E-0$
Total 1.97E-02 R'ai) = 2.68 E6
- Ua
- C1
- DaiJ Drinking Water Pathway 1986 Child Thyroid Ioctope Un(1/yr)
Ci(uC1/ml)
Daij(mrom/pC1)
R'ai
________________________________________________________j(mrem)
H-3 5.10E+02 7.08E-05 2.03E-07 1.96E-02 Co-58 5.10E+02 1.18E-08 0.00E+00 0.00E+00 i
Total 1.96E-02 R'aij = 2.68 E6
- Ua
- C1
- Daij
Calculation section 4, p2ge 18 of 20 Drinking Water Pathway 1986 Child Kidney
{
i Icotope Ua(1/yr)
Ci(uci/ml)
Daij(mrom/pC1)
R'aij(mrom)
H-3 5.10E+02 7.08E-05 2.03E-07 1.96E-02 Co-58 5.10E+02 1.18E-08 0.00E+00 0.00E+00 l
Total
'1.96E-02 R'a1J = 2.68 E6
- Ua
- Ci
- Dai)
Drinking Water Pathway 1986 Child Lung Icotope Ua(1/yr)
C1(uC1/ml)
Daij(mrom/pC1)
R'aij(mrom H-3 5.10E+02 7.08E-05 2.03E-07 1.96E-02 Co-58 5.10E+02 1.18E-08 0.00E+00 0.00E+00 Total 1.96E-02 R'ai) = 2.68 E6
- Ua
- Ci
- Dai)
Drinking Water Pathway 1986 Child GI-LLI Icotope Ua(1/yr)
Ci(uCi/ml)
Daij(mrem /pC1)
R
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _' a i j ( m r o m )
[
H-3 5.10E+02 7.08E-05 2.03E-07 1.96E-02 Co-58 5.10E+02 1.18E-08 1.05E-05 1.69E-04 Total 1.98E-02 R'ai) = 2.68 E6
- Ua
- Ci
- Dai) 9 l
Calculation cection 4, prga 19 of 20 Drinking Water Pathwsy 1986 Infant Bone Isotope Ua(1/yr)
Ci(uci/ml)
Dai)(mrom/pC1)
R
--_____-_-____._-__________-______ --________---_-____'aij(mrom)
H-3 3.30E+02 7.08E-05 0.00E+00 0.00E+00 Co-58 3.30E+02 1.18E-08 0.00E+00 0.00E+00 Total 0.00E+00 R'ai) = 2.68 E6
- Ua
- C1
- Da1J Drinking Water Pathway 1986 Infant Liver Icotope Ua(1/yr)
C1(uC1/ml)
Daij(mrom/pC1)
R'aij(mrem)
H-3 3.30E+02 7.08E-05 3.08E-07 1.93E-02 Co-58 3.30E+02 1.18E-08 3.60E-06 3.76E-05 Total 1.93E-02 R'aiJ = 2.68 E6
- Ua
- Ci
- Dai)
Drinking Water Pathway 1986 Infant Total Body Isotope Ua(1/yr)
C1(uC1/ml)
Daij(mrem /pC1)
R'ai
__________-__-______-_-______-_-_-______-_-_______- --__j(mrem)
H-3 3.30E+02 7.08E-05 3.08E-07 1.93E-02 Co-58 3.30E+02 1.18E-08 R 98E-06 9.37E-05 Total 1.94E-02 R'ai) = 2.68 E6
- Ua
- Ci
- DaiJ Drinking Water Pathway 1986 Infant Thyroid Icotope Ua(1/yr)
Ci(uC1/ml)
Daij(mrom/pC1)
R'ai)
-__---_-__-_-___-___---_______(mrem)
H-3 3.30E+02 7.08E-05 3.08E-07 1.93E-02 Co-58 3.30E+02 1.18E-08 0.00E+00 0.00E+00 l
Total 1.93E-02 R'ai) = 2.68 E6
- Ua
- Ci
- Daij
Calculation section 4, paga 20 of 20 Drinking Water Pathway 1986 Infant Kidney Isotope Un(1/yr)
Ci(uC1/ml)
Dai
______________________________________j(mrom/pC1)
R'aij(mrom)
H-3' 3.30E+02 7.08E-05 3.08E-07 1.93E-02 Co-58 3.30E+02 1.18E-08 0.00E+00 0.00E+00 Total 1.93E-02 R'aTJ = 2.68 E6
- Ua
- C1
- DaiJ Drinking Water Pathway 1986 Infant Lung Isotope Ua(1/yr)
C1(uC1/ml)
Dai
______________________________________j(mrem /pC1)
R'aij(mrom)
H-3 3.30E+02 7.08E-05 3.08E-07 1.93E-02 Co-58 3.30E+02 1.18E-08 0.00E+00
'O.00E+00 Total 1.93E-02 R'ai) = 2.68 E6
- Ua
- Ci
- Dai)
Drinking Water Pathway 1986 Infant GI-LLI lootope Ua(1/yr)
C1(uCi/ml)
Dai R
______________________________________j(mrem /pC1)________________'aij(mrem)
H-3 3.30E+02 7.08E-05 3.08E-07 1.93E-02 Co-58 3.30E+02 1.18E-08 8.97E-06 9.36E-05 Total 1.94E-02 R'aiJ = 2.68 E6
- Ua
- C1
- Daij
1 Calculation section 5, prge 1 of 15 I
FISH PATHWAY - 1985 Adult Bone l
Isotope U(kg/yr)
Ci(uC1/ml
--_-___--____-___-__--____-_____)
B1(1/kg)
Daij(mrom/pC1) R'aij
-____________---____---_--_______(mrem H-3 2.10E+01 1.75E-05 9.00E-01 0.00E+00 0.00E+00 Cr-51 2.10E+01 4.92E-07 2.00E+02 0.00E+00 0.00E+00 Mn-54 2.10E+01 6.31E-08 4.00E+02 0.00E+00 ' O.00E+00 Co-58 2.10E+01 8.26E-07 5.00E+01 0.00E+00 0.00E+00 Co-60 2.10E+01 1.26E-07 5.00E+01 0.00E+00 0.00E+00 Total 0.00E+00 R'ai) = (2.68 E 6)
- Ua
- Ci
- Bi
- Dai)
FISH PATHWAY - 1985 Adult Liver Isotope U(kg/yr)
C1(uC1/ml
__-_----___ -__-__ ------_______)B1(1/kg)
Daij(mrom/pC1) R'ai
__--__--_-_____________________j(mrom)
H-3 2.10E+01 1.75E-05 9.00E-01 1.05E-07 9.31E-05 Cr-51 2.10E+01 4.92E-07 2.00E+02 0.00E+00 0.00E+00 Mn-54 2.10E+01 6.31E-08 4.00E+02 4.57E-06 6.49E-03 Co-58 2.10E+01 8.26E-07 5.00E+01 7.45E-07 1.73E-03 Co-60 2.10E+01 1.26E-07 5.00E+01 2.14E-06 7.59E-04 Total 9.08E-03 R'ai) = (2.68 E 6)
- Ua
- Ci
- Bi
- Dai)
FISH PATHWAY - 1985 Adult - Total Body Isotope U(kg/yr)
Ci(uC1/ml Bi
_ _ _ _ _ _ ---- _ _ _ - _ -- _ _ _ -- _ _ _) __ _ _( _1 / k g ) Daij(mrom/pC1) R'aij(mrem
-_--____-__--__-_____)
H-3 2.10E+01 1.75E-05 9.00E-01 1.05E-07 9.31E-05 Cr-51 2.10E+01 4.92E-07 2.00E+02 2.66E-09 1.47E-05 Mn-54 2.10E+01 6.31E-08 4.00E+02 8.72E-07 1.24E-03 Co-58 2,.10E+01 8.26E-07 5.00E+01 1.67E-06 3.88E-03 Co-60 2.10E+01 1.26E-07 5.00E+01 4.72E-06 1.67E-03 Total 6.90E-03 R'ai) = (2.68 E 6)
- Ua
- C1
- B1
- Da1J
Calculation section 5, page 2 of 15 FISH PATHWAY - 1985 Adult Thyroid i
Isotope U(kg/yr)
Ci(uC1/ml) Bi
____________________________________(1/kg)
Daij(mrom/pC1) R
_________________________'aij(mrom)
H-3 2.10E+01 1.75E-05 9.00E-01 1.05E-07 9.31E-05 Cr-51 2.10E+01 4.92E-07 2.00E+02 1.59E-09 0.81E-06 i
Mn-84 2.10E+01 6.31E-08 4.00E+02 0.00E+00 0.00E+00 Co-58 2.10E+01 8.26E-07 5.00E+01 0.00E+00 0.00E+00 Co-60 2.10E+01 1.26E-07 5.00E+01 0.00E+00 0.00E+00 Total 1.02E-04 R'ai) = (2.68 E 6)
- Ua
- Ci
- Bi
- Dai)
FISH PATHWAY - 1985 l
Adult Kidney Isotope U(kg/yr)
Ci(uCi/ml) Bi(1/k
________________________________________g) Da1J(mrom/pC1) R
_____________________'aij(mrem)
H-3 2.10E+01 1.75E-05 9.00E-01 1.05E-07 9.31E-05 Cr-51 2.10E+01 4.92E-07 2.00E+02 5.86E-10 3.25E-06 Mn-54 2.10E+01 6.31E-08 4.00E+02 1.36E-06 1.93E-03 Co-58 2.10E+01 8.26E-07 5.00E+01 0.00E+00 0.00E+00 i
Co-60 2.10E+01 1.26E-07 5.00E+01 0.00E+00 0.00E+00 Total 2.03E-03 R'ai) = (2.68 E 6)
- Ua
- Ci
- B1
- Daij FISH PATHWAY - 1585 Adult Lung l
Isotope U(kg/yr)
Ci(uCi/ml) Bi(1/k Daij(mrom/pci) R'ai)(mrom)
________________________________________g) 4 H-3 2.10E+01 1.75E-05 9.00E-01 1.05E-07 9.31E-05 Cr-51 2.10E+01 4.92E-07 2.00E+02 3.53E-09 1.95E-05 Mn-54 2.10E+01 6.31E-08 4.00E+02 0.00E+00 0.00E+00 Co-58 2.10E+01 8.26E-07 5.00E+01 0.00E+00 0.00E+00 Co-60 2*.10 E+ 01 1.26E-07 5.00E+01 0.00E+00 0.00E+00 Total 1.13E-04 R'ai) = (2.68 E 6)
- Ua
- Ci
- Bi
- DaiJ
Calculation section 5, page 3 of 15 FISH PATHWAY - 1985 i
Adult-DI/LLI Isotope U(kg/yr)
Ci(uC1/ml) 81(1/kg)
Dai
j(mrom/pC1) R'aij(mrom)
H-3 2.10E+01 1.75E-05 9.00E-01 1.05E-07 9.31E-05 Cr-51 2.10E+01 4.92E-07 2.00E+02 6.69E-07 3.70E-03 Mn-54 2.10E+01 6.31E-08 4.00E+02 1.40E'05 1.99E-02 Co-58 2.10E+01 8.26E-07 5.00E+01 1.51E-05
'3.51E-02 Co-60 2.10E+01 1.26E-07 5.00E+01 4.62E-05 1.43E-02 Total 7.30E-02 R'ai) = (2.68 E 6)
- Ua
- BT
- Daf) e e
m e 4
e 0
e a
Calculation sectio *n 5, page 4 of 15 FISH PATHWAY - 1985 Teen Bone Isotope U(kg/yr)
C1(uC1/ml) BT(1/kg)
-Dai
_______________________________________________j(mrom/pC1) R'aij(mrem)
H-3 1.60E+01 1.75E-05 9.00E-01 0.00E+00 0.00E+00 Cr-51 1.60E+01 4.92E-07 2.00E+02 0.00E+00 0.00E+00 Mn-54 1.60E+01 6.31E-08 4.00E+02 0.00E+00 0.00E+00 Co-58 1.60E+01 8.26E-07 5.00E+01 0.00E+00 0.00E+00 Co-60 1.60E+01 1.26E-07 5.00E+01 0.'00E+00 0.00E+00 Total 0.00E+00 R'ai) = (2.68 E 6)
- Ua
- C1
- Bi
- DaiJ FISH PATHWAY - 1985 Teen Liver Isotope U(kg/yr)
C1(uC1/ml) 81(1/k
_-__-__________________________________g)
Da1J(mrom/pC1) R'aij(mrem)
H-3 1.60E+01 1.75E-05 9.00E-01 1.06E-07 7.16E-05 Cr-51 1.60E+01 4.92E-07 2.00E+02 0.00E+00 0.00E+00 Mn-54 1.60E+01 6.31E-08 4.00E+02 5.90E-06 6.39E-03 Co-58 1.60E+01 8.26E-07 5.00E+01 9.72E-07 1.72E-03 Co-60 1.60E+01 1.26E-07 5.00E+01 2.81E-06 7.59E-04 Total 8.94E-03 R'ai) = (2.68 E 6)
- Ua
- C1
- Bi
- DaiJ FISH PATHWAY - 1985 Teen Total Body Isotope U(kg/yr)
Ci(uC1/ml) Bi(1/k
_______________________________________g)
Daij(mrom/pC1) R
______________________'aij(mrom)
H-3 1.60E+01 1.75E-05 9.00E-01 1.06E-07 7.16E-05 Cr-51 1.60E+01 4.92E-07 2.00E+02 3.60E-09 1.52E-05 Mn-54 1.60E+01 6.31E-08 4.00E+02 1.17E-06 1.27E-03 Co-58 1.60E+01 8.26E-07 5.00E+01 2.24E-06 3.97E-03 Co-60
- 1. 60E+01 1.26E-07
$.00E+01 6.33E-06 1.71E-03 Total 7.03E-03 R'ai) = (2.68 E 6)
- Ua
- Ci
- B1
- Dai) f O
i
Calculation asetien 5, prge 5 of 15 FISH PATHWAY - 1985
{
Tecn Thyroid Isotope U(kg/yr)
C1(uC1/ml) 81(1/kg)
Daij(mrem /pC1) R'ai)(mrem l
H-3 1.60E+01 1.75E-05 9.00E-01 1.06E-07 7.16E-05 Cc-51 1.60E+01 4.92E-07 2.00E+02 2.00E-09 8.44E-06 Mn-54 1.60E+01 6.31E-08 4.00E+02 0.00E+00 0.00E+00 Co-58 1.60E+01 8.26E-07 5.00E+01 0.00E+00 0.00E+00 Co-60 1.60E+01 1.26E-07 5.00E+01 0.00E+00 0.00E+00 Total 8.00E-05 R'ai) = (2.68 E 6)
- Ua
- C1
- B1
- Dai)
FISH PATHWAY - 1985 Teen Kidney Isotope U(kg/yr)
C1(uC1/ml) B1(1/kg)
Daij(mrom/pci) R'aij(mrem)
H-3 1.60E+01 1.75E-05 9.00E-01 1.06E-07 7.16E-05 Cr-51 1.60E+01 4.92E-07 2.00E+02 7.89E-10 3.33E-06 Mn-54 1.60E+01 6.31E-08 4.00E+02 1.76E-06 1.90E-03 Co-58 1.60E+01 8.26E-07 5.00E+01 0.00E+00 0.00E+00 Co-60 1.60E+01 1.26E-07 5.00E+01 0.00E+00 0.00E+00 Total 1.tBE-03 R'ai) = (2.68 E 6)
- Ua
- Ci
- Bi
- DaiJ FISH PATHWAY - 1985 Teen Lung Isotope U(kg/yr)
Ci(uC1/ml) B1(1/kg)
Daij(mrom/pC1) R'ai H-3 1.60E+01 1.75E-05 9.00E-01 1.06E-07 7.16E-05 Cr-51 1.60E+01 4.92E-07 2.00E+02 5.14E-09 2.17E-05 Mn-5A 1.60E+01 6.31E-08 4.00E+02 0.00E+00 0.00E+00 Co-58 1.60E+01 8.26E-07 5.00E+01 0.00E+00 0.00E+00 Co-60 1'. 6 0 E+ 01 1.26E-07 5.00E+01 0.00E+00 0.00E+00 Total 9.33E-05 R'ai) = (2.68 E 6)
- Ua
- Ci
- Bi
- DaiJ
Csiculation saction 5, prge 6 of 15 FISH PATHWAY - 1985 Tocn QI-LLI Isotope U(kg/yr)
C1(uC1/ml) 81(1/k
_______________________________________g)
Daij(mrom/pC1) R
______________________'ai)(mrem)
H-3 1.60E+01 1.75E-05 9.00E-01 1.06E-07 7.16E-05 Cr-51 1.60E+01 4.92E-07 2.00E+02 6.05E-07 2.55E-03 Mn-54 1.60E+01 6.31E-08 4.00E+02 1.21E-05 1.31E-02 Co-58 1.60E+01 8.26E-07 5.00E+01 1.34E-05 2.37E-02 Co-60 1.60E+01 1.26E-07 5.00E+01 3.66E-05 9.89E-03 Total 4.93E-02 R'ai) = (2.68 E 6)
- Ua
- Ci
- B1
- Dai)
O 1
l
Calculation asetio,n 5 prge 7 of 15 FISH PATHWAY - 1985 Child Bone Isotope U(kg/yr)
Ci(uCi/ml) 81(1/kg)
Daij(mrom/pC1) R'ai H-3 6.90E+00 1.75E-05 9.00E-01 0.00E+00 0.00E+00 Cr-51 6.90E+00 4.92E-07 2.00E+02 0.00E+00 0.00E+00 Mn-54 6.90E+00 6.31E-08 4.00E+02 0.00E.+00 0.00E+00
'Co-58 6.90E+00 8.26E-07 5.00E+01 0.00E+00 0.00E+00 Co-60 6.90E+00 1.26E-07 5.00E+01 0.00E+00 0.00E+00 Total 0.00E+00 R'ai) = (2.68 E 6)
- Ua
- Ci
- Bi
- DaiJ 1
FISH PATHWAY - 1985 Child Liver i
Isotope U(kg/yr)
Ci(uC1/ml) Bi(1/kg)
Daij(mrom/pC1) R'aij(mrem)
H-3 6.90E+00 1.75E-05 9.00E-01 2.03E-07 5.91E-05 Cr-51 6.90E+00 4.92E-07 2.00E+02 0.00E+00 0.00E+00 Mn-54 6.90E+00 6.31E-08 4.00E+02 1.07E-05 4.99E-03 Co-58 6.90E+00 8.26E-07 5.00E+01 1.80E-06 1.37E-03 Co-60 6.90E+00 1.26E-07 5.00E+01 5.29E-06 6.16E-04 Total 7.04E-03 R'ai) = (2.68 E 6)
- Ua
- Ci
- Bi
- DaiJ i
FISH PATHWAY - 1985 Child Total Body Isotope U(kg/yr)
Ci(uC1/ml) B1(1/kg)
Da4
_______________________________________________J(mrom/pC1)
R'aij(mrem)
H-3 6.90E+00 1.75E-05 9.00E-01 2.03E-07 5.91E-05 Cr-51 6.90E+00 4.92E-07 2.00E+02 8.90E-09 1.62E-05 Mn-54 6.90E+00 6.31E-08 4.00E+02 2.85E-06 1.33E-03 Co-58 6.90E+00 8.26E-07 5.00E+01 5.51E-06 4.21E-03 Co-60 6.90E+00 1.26E-07 5.00E+01 1.56E-05 1.82E-03 Total 7.43E-03 i
R'ai) = (2.68 E 6)
- Ua
- Ci
- 81
- Dai)
.,, _., _ ~
Calculation sectio'n 5 p:
FISH PATHWAY ge 8 of 15 1985 Child Thyroid Isotope U(kg/yr)
C1(uC1/ml) B1(1/kg)
Daij(mrom/pC1) R'ai
)(mrem)
H-3 6.90E+00 1.75E-05 9.00E-01 2.03E-07 5.91E-05 Cc-51 6.90E+00 4.92E-07 2.00E+02 4.94E-09 8.99E-06 Mn-54 6.90E+00 6.31E-08 4.00E+02 0.00E+00 0.00E+00 l
Co-58 6.90E+00 8.26E-07 5.00E+01 0.00E+00 0.00E+00 Co-60
-6. 9 0 E+ 0 0 1.26E-07 5.00E+01 0.00E+00 0.00E+00 Total 6.81E-05 R'aTJ = (2.68 E 6)
- Ua
- C1
- B1
- Dai) l FISH PATHWAY - 1985 Child Kidney Isotope U(kg/yr)
Ci(uC1/ml) Bi(1/kg)
Daij
(mrom/pC1)
R'aij(mrom)
H-3 6.90E+00 1.75E-05 9.00E-01 2.03E-07 5.91E-05 Cr-51 6.90E+00 4.92E-07 2.00E+02 1.35E-09 2.46E-06 Mn-54 6.90E+00 6.31E-08 4.00E+02 3.00E-06 1.40E-03 Co-58 6.90E+00 8.26E-07 5.00E+01 0.00E+00 0.00E+00 Co-60 6.90E+00 1.26E-07 5.00E+01 0.00E+00 0.00E+00
_ Total 1.,4 6 E-0 3 R'ai) = (2.68 E 6)
- Ua
- Ci
- Bi
- DaiJ FISH PATHWAY - 1985 Child Lung
~~
Icotope U(kg/yr)
C1(uC1/ml) Bi(1/kg)
Dai
_----_----------_-- j(mrom/pC1) R'aij(meem)
H-3 6.90E+00 1.75E-05 9.00E-01 2.03E-07 5.91E-05 Cc-51 6.90E+00 4.92E-07 2.00E+02 9.02E-09 1.64E-05 Mn-54 6.90E+00 6.31E-08 4.00E+02 0.00E+00 0.00E+00 Co-58 6,.90E+00 8.26E-07 5.00E+01 0.00E+00 0.00E+00 Co-60 6.90E+00 1.26E-07 5.00E+01 0.00E+00 0.00E+00 Total 7.55E-05 R'ai) = (2.68 E 6)
- Ua
- Bi
- Dai)
Calculation section 5, prge 9 of 15 FISH PATHWAY - 1985 Child GI-LLI Isotope U(kg/yr)
C1(uC1/ml B
_____________ ___ _________ ___.).___i(1/kg)
Dai)(mrom/pC1) R'aij(mrem
________________)
H-3 6.90E+00 1.75E-05 9.00E-01 2.03E-07 5.91E-05 Cr-51 6.90E+00 4.92E-07~
2.00E+02 4.72E-07 8.59E-04 Mn-54 6.90E+00 6.31E-08 4.00E+02 8.98E-06 4.19E-03 Co-58 6.90E+00 8.26E-07 5.00E+01 1.05E-05 0.02E-03 Co-60 6.90E+00 1.26E-07 5.00E+01 2.93E-05 3.41E-03 Total 1.65E-02 R'm1J = (2.68 E 6)
- Ua
- C1
- B1
- Dai) 4 4
e 9
e f
1 I
1 i
j A
S
C,1culation cection 5, prge 10 of 15 FISH PATHWAY -
1986 Adult Bone Isotope Ua(kg/yr)
C1(uC1/ml) Bi(1/k
__---------------_-___-----_--__--_g)
Daij(mram/pci) R'aij(mrom)
H-3 2.10E+01 7.08E-05 9.00E-01 0.00E+00 0.00E+00 Co-58 2.10E+01 1.18E-08 5.00E+01 0.Q0E+00 0.00E+00 Total 0.00E+00 R'ai) = (2.68 E 6)
- Ua
- Ci
- Bi
- DaiJ FISH PATHWAY -
1986 Adult Liver Isotope Un(kg/yr)
C1(uC1/ml) 81(1/k
____-------------_--_---------__ --g)
Daij(mram/pC1) R'aij(mrem)
H-3 2.10E+01 7.08E-05 9.00E-01 1.05E 07 3.77E-04 Co-58 2.10E+01 1.18E-08 5.00E+01 7.45E-07 2.47E-05 Total 4.01E-04 R'ai) = (2.68 E 6)
- Ua
- Ci
- Bi
- DaiJ FISH PATHWAY -
1986 Adult Total Body Isotope Ua(kg/yr)
Ci(uCi/ml) 81(1/k
_-----__-_-------_g)
Daij(mram/pci) R'aij(mrem)
H-3 2.10E+01 7.08E-05 9.00E-01 1.05E-07 3.77E-04 Co-58 2.10E+01 1.18E-08 5.00E+01 1.67E-06 5.55E-05 Total 4.32E-04 R'a'ij = (2.68 E 6)
- Ua
- Ci
- Bi
- Dai)
FISH PATHWAY -
1986 Adult Thyroid Isotope Ua(kg/yr)
C1(uC1/ml) 81(1/kg)
Dai
__-------____-_-----__--------------__-)(mram/pC1) R'ai)(mrem)
H-3 2.10E+01 7.08E-05 9.00E-01 1.05E-07 3.77E-04 Co-58 2.10E+01 1.18E-08 5.00E+01 0.00E+00 0.00E+00 Total 3.77E-0A R'ai) = (2.68 E 6)
- Ua
- Ci
- B1
- Dai) e
Cciculation section 5, prge 11 of 15 FISH PATHWAY -
1986 Isotope Ua(kg/yr)
C1(uci/ml) Bi(1/kg)
Dai)(mrem /pci) R'ai)(mrom)
H-3 2.10E+01 7.08E-05 9.00E-01 1.05E-07 3.77E-04 Co-58 2.10E+01 1.18E-08 5.00E+01 0.00E+00 0.00E+00 Total
' 3.77E-04 R'ai) = (2.68 E 6)
- Ua
- Ci
- Bi
- Daij FISH PATHWAY -
1986 Adult Lung
~
Isotope Ua(kg/yr)
C1(uC1/ml) Bi(1/kg)
Daij(mrom/pci) R'aij(mram)
H-3 2.10E+01 7.08E-05 9.00E-01 1.05E-07 3.77E-04 Co-58 2.10E+01 1.18E-08 5.00E+01 0.00E+00 0.00E+00 Total 3.77E-04 R'ai) = (2.68 E 6)
- Ua
- Ci
- Bi
- Dai)
FISH PATHWAY -
1986 Isotope Ua(kg/yr)
C1(uC1/ml) Bi(1/kg)
Daij(mrem /pC1) R'aij(mrem)
H-3 2.10E+01 7.08E-05 9.00E-01 1.05E-07 3.77E-04 Co-58 2.10E+01 1.18E-08 5.00E+01 1.51E-05 5.01E-04 Total 8.78E-04 R'a'ij = (2.68 E 6)
- Ua
- Ci
- Bi
- Daij
Calculation section 5, pigs 12 of 15 FISH PATHWAY -
1986 Teen Bone Isotope Un(kg/yr)
C1(uC1/ml) Bi(1/kg)
Daij(mrom/pC1) R'ai)(mrom)
H-3 1.60E+01 7.08E-05 9.00E-01 0.00E+00 0.00E+00 Co-58 1.60E+01 1.18E-08 5.00E+01 0.00E+00 0.00E+00 Total 0.00E+00 R'ai) = (2.68 E 6)
- Ua
- Ci
- B1
- Da1J
~
e FISH PATHWAY -
1986 Teen Liver Isotope Un(kg/yr)
Ci(uCi/ml) Bi(1/kg)
Dai)(mram/pci) R'aij(mrom)
H-3 1.60E+01 7.08E-05 9.00E-01 1.06E-07 2.90E-04 Co-58 1.60E+01 1.18E-08 5.00E+01
%.72E-07 2.46E-05 Total 3.14E-04 R'aiJ = (2.68 E 6)
- Ua
- Ci
- BT
- Dai)
~
~
FIS'M PATHWAY -
1986 I sotop's Ua(kg/yr)
Ci(uC1/ml
) Bi(1/kg)
Dai)(mram/pC1) R'aij(mram
)
I[
H-3 1.60E+01 7.08E-05 9.00E-01 1.06E-07 2.90E-04 Co-58 1.60E+01 1.18E-08 5.00E+01 2.24E-06 5.67E-05 Total 3.46E-04 R'a'ij = (2.68 E 6)
- Ua
- Ci
- Bi
- Dai)
FISH PATHWAY -
1986 Icotope Ua(kg/yr)
Ci(uCT/ml) Bi
(1/kg)
Daij(mrem /pci) R'aij(mrom)
H-3 1.60E+01 7.08E-05 9.00E-01 1.06E-07 2.90E-04 l
Co-58 1.60E+01 1.18E-08 5.00E+01 D.00E+00 0.00E+00 Total 2.90E-04 R'a1J = (2.68 E 6)
- Ua
- Ci
- Bi
- Dai) t
Calculation section 5, pzg2 13 of 15 FISH PATHWAY -
1986 Teen Kidney Isotope Ua(kg/yr)
C1(uCi/ml) Bi(1/k
________________________________________g)
Dai)(mrom/pC1) R'aij(mrom)
H-3 1.60E+01 7.08E-05 9.00E-01 1.06E-07 2.90E-04 Co-58 1.60E+01 1.18E-08 5.00E+01 0.00E+00.
0.00E+00 Total 2.90E-04 R'aiJ = (2.68 E 6)
- Ua
- Ci
- 81
- Daij FISH PATHWAY -
1986 Teen Lung Isotope Ua(kg/yr)
C1(uC1/ml) Bi(1/kg)
Daij(mrom/pci) R'aij(mrom)
H-3 1.60E+01 7.08E-05 9.00E-01 1.06E-07 2.90E-04 Co-58 1.60E+01 1.18E-08 5.00E+01 0.00E+00 0.00E+00 Total 2.90E-04 R'ai) = (2.68 E 6)
- Ua
- Ci
- Bi
- DaiJ FISH PATHWAY -
1986 Teen GI-LLI Isotope Us(kg/yr)
Ci(uC1/ml) Bi
____________________________________(1/kg)
Dai)(mrom/pC1) R
_________________________'aij(mrem)
H-3 1.60E+01 7.08E-05 9.00E-01 1.06E-07 2.90E-04 Co-58 1.60E+01 1.18E-08 5.00E+01 1.34E-05 3.39E-04 Total 6.29E-04 R'a3J = (2.68 E 6)
- Ua
- Ci
- 81
- Daij i
I e
rn
-~_
Calculction section 5, page 14 of 15 FISH PATHWAY -
Child Bone 1986 Isotope Un(kg/yr)
C1(uC1/ml) 81
____________________________________(1/kg)
Daij(mrom/pC1) R
_________________________'ai)(mrom)
H-3 6.90E+00 7.08E-05 9.00E-01 0.00E+00 0.00E+00 Co-58 6.90E+00 1.18E-08 5.00E+01 0.00E+00 0.00E+00 Total 0.00E+00 R'aij = (2.68 E 6)
- Ua
- Ci
- Bi
- Dai)
FISH PATHWAY -
1986 Child Liver Isotope Ua(kg/yr)
C1(uC1/ml
________________________________)
Bi(1/kg)
Daij(mrom/pC1) R'ai)(mrem H-3 6.90E+00 7.08E-05 9.00E-01 2.03E-07 2.39E-04 Co-58 6.90E+00 1.18E-08 5.00E+01 1.80E-06
- 1. 9 6 E- 0,5 Total 2.59E-04 R'ai) = (2.68 E 6)
- Ua
- Ci
- Bi
- DaiJ FISH PATHWAY -
1986 Child Total Body Isotope Ua(kg/yr)
C1(uC1/ml
________________________________)
81(1/kg)
Dai)(mrom/pci) R'ai
_______________________________)(mre H-3 6.90E+00 7.08E-05 9.00E-01 2.03E-07 2.39E-04, Co-58 6.90E+00 1.18E-08 5.00E+01 5.51E-06 6.01E-05 Total
-2.99E-04 R'a'ij = (2.68 E 6)
- Ua
- Ci
- Bi
- Daij FISH PATHWAY -
1986 Child Thyroid Isotope Ua(kg/yr)
Ci(uC1/ml
________________________________)
Bi(1/kg)
Daij(mrom/pci) R'ai
_______________________________)(mrem H-3 6.90E+00 7.08E-05 9.00E-01 2.03E-07 2.39E-04 Co-58 6.90E+00 1.18E-08 5.00E+01 0.00E+00 0.00E+00 Total 2.39E-04 R'ai) = (2.68 E 6)
- Ua
- C1
- Bi
- Dai)
U.
}-
Celculction saction 5, prge 15 of 15 FISH PATHWAY -
1986 Child Kidney i
Isotope Ua(ki/yr) -Ci(uC1/ml) Bi(1/k i
i
____________________________-___________g)
Dai)(mrom/pC1) R
_____________________'aij(mrem)
H-3 6.90E+00 7.08E-05 9.00E-01 2.03E-07 2.39E-04 1
Co-54 6.90E+00 1.18E-08 5.00E+01 0.00E+00 0.00E+00 Total 2.39E_04 R'ai) = (2.68 E 6)
- Ua
- C1
- B1
- Dai)
FISH PATHWAY -
1986 Child Lung Isotope Ua(k /yr)
Ci(uC1/ml) 81 9
- _ _ _ _ _ _ _ _ _ -__ _ _ _ _ _ _ -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _( 1 / k g )
Dai)(mrom/pC1) R'aij(mrom H-3 6.90E+00 7.08E-05 9.00E_01 2.03E_07 2.39E-04 Co-58 6.90E+00 1.18E-08 5.00E+01 0.00E+00 0.00E+00 t
Total 2.39E-04 R'ai) = (2.58 E 6)
- Ua
- Ci
- Bi
- Dai)
FISH PATHWAY -
1986 Child GI-LLI Isotope Ua(kg/yr)
C1(uCi/ml 4,
__-___-___----__--______---__-__)
Bi(1/kg)
Daij(mrom/pC1) R
_ _ __-_--_ ____ _----_ _ _ _ _ _ _ _ _ _ _' a i j ( m r a m )
H-3 6.90E+00 7.08E-05 9.00E_01 2.03E-07 2.39E-04 I
Co-58 6.90E+00 1.18E_08 5.00E+01 1.05E_05 1.15E-04 Total 3.54E-04 R'a'i) = (2.S8 E 6)
- Ua
- C1
- Bi
- Dai)
/i
- e.f t
l
\\
i
- -, -, -.