ML20210A496
ML20210A496 | |
Person / Time | |
---|---|
Site: | Brunswick |
Issue date: | 04/29/1987 |
From: | Lawyer L, Munro J NRC OFFICE OF INSPECTION & ENFORCEMENT (IE REGION II) |
To: | |
Shared Package | |
ML20210A435 | List: |
References | |
50-325-OL-87-01, 50-325-OL-87-1, NUDOCS 8705050102 | |
Download: ML20210A496 (254) | |
Text
{{#Wiki_filter:.. ENCLOSURE 1 EXAMINATION REPORT 325/0L-87-01 Facility Licensee: Carolina Power and Light Company P. 0. Box 1551 Raleigh, NC 27602 Facility Name: Brunswick Steam Electric Plant Facility Docket No.: 50-325 and 50-324 Written and oral examinations were administered at Brunswick Steam Electric Plant near Southport, North Carolina. Chief Examiner:
~"
me s[u d I- M!#9!I7 Date Signed L. L. Law O Approved by: / /# John F.-Munro, Section Chiet S11h/ Uate Signed Sumary: Examinations on January 12, 1987. Oral and simulator examinations were administered to ten new R0 candidates; nine of whom passed. Oral and simulator examinations were administered to six SR0 candidates; all of whom passed. Written examinations were administered to ten new R0 candidates; eight of whom passed. Written examinations were administered to six new SR0 candidates, all of whom passed. Oral and/or simulator reexaminations were administered to one R0 and two SRO candidates; all of whom passed. Based on the results described above, nine of 11 R0's passed and eight of eight SR0's passed. 8705050102 DR 87043o ADOCK 05000324 PDR
i r REPORT DETAILS
- 1. Facility Employees Contacted:
J. Moyer, BSEP, Manager Training S. Morgan, BSEP, Senior Specialist - Operator Training A. C. Tollison, CPL, Manager - Nuclear Training G. P. Barnes, BSEP, Project Specialist - License Training N. V. Stewart, BSEP, Senior Spec. - Operator Training
- 2. Examiners:
K. Brockman, NRC, Examiner
*L. Lawyer, NRC, Examiner J. Munro, NRC, Section Chief, Operating Licensing J. McGhee, EG8G, Examiner J. Sherman, EG&G, Examiner M. Daniels, Sonalyst, Examiner
- Chief Examiner
- 3. Examination Review Meeting At the conclusion of the written examinations, the examiners provided George Barnes with a copy of the written examination and answer key for review. The NRC resolutions to coments made by the facility reviewers are listed below. In general, the commentt could be improved through attention to the following:
- 1) lesson plans are generic (e.g. 6.01 and 5.13a)
- 2) many comments were not accompanied by copies of supporting material (e.g. 5.08, 5.10, 6.12a, etc.)
- 3) many comments did not include a recommendation (e.g. 5.10, 5.13a, 6.02,6.08d,etc.)
- a. SR0 Exam (1) Question 5.03 Agreed. The question was deleted.
(2) Question 5.08 Agreed. The answer key was modified accordingly.
( . Enclosure 1 2 (3) Question 5.10 Agreed. 1* = 10E-5 second is of the order of magnitude allowed by the specified tolerance in the answer key and is therefore an acceptable answer. Modification of the answer key was not required. (4) Question 5.12c Agreed. The answer key was modified accordingly. (5) Question 5.13a Agreed. The answer key was modified accordingly. (6) Question 5.13g Agreed in part. The answer key was modified to indicate that a Group I isolation is an acceptable answer as long as the candidate is consistent in explaining the entire transient as a result of this group isolatio', i.e. , water level is restored by HPCI/RCIC in Part c. However, the feed flow decrease is due to reactor vessel level increase. The question asks the reason for the decrease in feed flow beginning at point 6. The reactor water level control circuit is level dominant. Although steam flow and feed flow are mismatched, with a failure of bypass valves to open, steam flow is nearly zero throughout the transient. As seen by the transient graphs (fig. 1), as reactor water level decreases after the turbine / reactor trip, feed flow is increasing to try to raise water level. As level reaches the lowest point, feed flow is maximum, and as level begins rising, fecd flow decreases as the level error in the level control circuit decreases. No change to the answer key was necessary. The y axis time frame will be indicated on figure 1 prior to future use. (7) Question 6.01 Agreed. The answer key was modified accordingly. Note that the referenced training material is not plant specific, e.g., at page 5 it states... "af ter the black / white pattern has been achieved (generally in group 4)..." This may be generally true at BWRs but it is not true at BSEP under GP 10. This discrep-ancy needs to be resolved. (8) Question 6.02 Agreed. The answer key was modified to indicate that 50 psig ; reactor pressure assumes the suppression pool is at 0 psig. ! Note that this answer was taken directly from the student
f Enclosure 1 3 handout for ADS (H0-14-2/3-F, page 20). This handout should be revised to clarify this concept prior to future use. In addition, the answer key was clarified by adding " Reactor pressure 50 psig - suppression pool" as a non-required part of answer 1. (9) Question 6.08d Disagreed. The questions stem states that all parameters are within their respective normal range when the initiation signal was received. No change required. (10) Question 6.12a Disagreed. The facility's connent is accurate, but is only a different way of stating the answer given in the answer key. No change required. (11) Question 6.12b Agreed. The facility training material needs to be revised to reflect this plant modification prior to future use. The answer key was modified accordingly. (12) Question 6.13c ) Agreed. The answer key was modified accordingly. H0-17-E l should be provided to the examiners for preparation of future j , exams. I 1 (13) Question 6.15 i Disagreed. No change required. However, answer key was changed to { correct an inadvertent omission of the tolerance required for the setpoints, j (14) Question 7.16 ! Agreed. The answer key was modified to accept the facility's i reconnendation as an additional correct answer.
- (15) Question 8.06 I Disagreed. The question asks for the three specific personnel (by
) plant title) per 01-1 that are responsibTe for shutting down the j reactor. No change required. 1 l (16) Question 8.10d ! Agreed. While memorization of RCIO6.5 is not required here Senior j Reactor Operators should recognize /know actions that must be taken j within one hour. i l
Enclosure 1 4-However, it is recognized that the wording of the question did not solicit the answer given in the answer key. The answer key was modified accordingly. , (17) Question 8.14a Agreed. The 31 day RCIC/LC0 with the 48 hour limitation is - correct. The answer key was modified accordingly. l (18) Question 8.14b Agreed. TS 3.5.1.b is an alternate reason. _The answer key was l modified accordingly. . b. R0 Exam ! (1)-Question 1.04 ; Same as 5.03. , l (2) Question 1.05 l t No facility comment. On review it was found that the answer key l word definition was in error and was corrected. t (3) Question 1.13d , Agreed. The answer key "or" was changed to "and." , (4) Question 1.17c Same as 5.12c. (5) Question 1.18 i Same as 5.13 (6) Question 2.03 l Disagreed. The question is very specific on " negating the starting sequence." Permissives are not used to negate the starting sequence. No change required. (7) Question 2.07d Agreed. The answer key was changed to 140 degrees F. I (8) Question 2.09 Agreed. The answer key was changed accurdingly.
i Enclosure 1 5 (9) Question 3.03 Agreed. The answer key was changed accordingly. The plant training material should be corrected to reflect the modifi-cation prior to future use. (10) Question 3.06a5 Agreed. The answer key was changed accordingly.
- 4. Exit Meeting At the conclusion of the site visit the examiners met with representatives of the plant staff to discuss the examination.
There were no generic weaknesses noted during the operating examination. The areas of below normal performance were: Candidate Weaknesses
- 1. Candidate had difficulty securing HPCI -on inadvertent initiation.
The plant has no specific guidance on how to do this. Two candidates thought they could close F001 and trip the turbine with an inadver-tent initiation signal in. One candidate closed F001, F006, then manually isolated and locked out the auxiliary oil pump with 2000 rpm on the HPCI turbine.
- 2. Candidates appear to have been trained to zero in on and use essentially only one indication of pressure. This is the makeup nitrogen pressure controller, CAC-PIC-2685 for FCV-CAC-V57. The candidates have essentially ignored the containment wide range (0-75psig) same panel Pn1 (gage whichAnother xu-5). reads inindication incrementsis of 1 psig which a recorder is on the on Panel xu-3 which was seldom used.
Simulator Modeling Weaknesses
- 1. 20% severity LOCA - water level took much too long to come back to normal after ADS blowdown with all low pressure ECCS running.
]
- 2. Little or no decay heat.
- 3. Loss of feedwater heating was unrealistic (too small of a power increase), i
- 4. On condenser vac leak - simulator fell apart.
- 5. With HPCI running and SRV's relieving there was no increase in torus temperature.
- c_
- , --- n---- --,--,----- ---
(. . Enclosure 1 6 s s Simulator Systems and Simulater Facility Weaknesses
- 1. Standby Gas Treatment Systems - do not actuate on auto initiation.
- 2. Rod block monitor - fails downscale-(recorder) or won't set up.
- 3. Turbine vibration recorder - inaccurate, unrealistic.
t
- 4. Process computer " locks up" frequently.
- 5. Mimicking is especially needed for RHR controls.
- 6. Lighting and noise in simulator are not conducive to good training nor representative of the control room.
.The cooperation given to the examiners and the effort to ensure an atmosphere in the control room conducive to oral examinations was noted and appreciated.
The licensee did not identify as proprietary any of the material provided to or reviewed by the examiners. i i n
'\
J
*t o U. U tIUCLEAR REGULATORY COMMISSION REACTOR OPERATOR LICENSE EXAMINATION FACILITY: _ Dijg N S W I_ C L', 1 ?.,2._
REACTOR TYPE: _RIFtGE4 ______________ _ DATE ADMINISTERED: ._@Zl01/1;_______ ._ ___ _ EVAMINER: __ D G N I E L G, _ f1. _ _ __ _ __ ,_ _ _ _ _ _ _ CANDIDATE: .h. _P)S TER bW _. __.MTE AS _ _ _ . . . _ _ _ ING169QIlONS_IO_[GNDIDGIE:. Use separate paper for the answers. Wri te answer s e ide on1y. Staple qun'. tion sheet on top of the answer sheets. Points for each question ar re indicated in parentheses after the question. The pasning grade requires at l eani: 70% in each category and a final grade of at least 80%. Lxamination papers will~be picked up six (6) hours after the examination starts.
% OF CAlLGORY 7. O C AND IIn . l fi ' G CATEOORY ,_yGLUE. _ W N., ,_ .,j GE][ _ .. ., _ MG(yE ,,_ _ _ ___ ____ _ ._ _ ,, _.. C G l E G Q G y ,_ _ _ _ _ _ _ _ ,_ _.
l x1.W 2'l
- 1. l'RINCIPLES OF NUCLr. AR Powr:se PLAN T OI ERATION, THERMUDYNAMICS, HEAT TRANSFER AND FLUID FLOW 2Z tE9 . ?h 'i.2 _ . _ _ _ _ _ _ _ . _ _ _...____.__2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY GYSTEMS M9z 25 . _Eh':2 _ . . _ - . _ _ . . _ _ _. _..__.
- 3. INSTRUMENTS AND CONTROLS
.22s.2U__ _E M M _ _ . _ _ _ . . _ _ . . . _ ________.___4. PROCEDURES - NORMAL, ABNORMAL, EMEROENCY AND RADIOLOGICAL CONTROL // c .M, i.i id__ _ _ _ _ _ _ . . _ . . . . Tota 1u Final G r .a d e All wori- done on thit, e, amination is my own. I have neither giuen nor roceived aid.
Candidate's Signature
._. )
4
't^ a i
NRC RULEG AND GUIDELINES FOR LICENSE EXAMINATIONS , During the administrati on of this examination the following rules apply: L. Cheating on the enamination means an automatic denial of your application-and could result in more severe penalties.
- 2. Restroom trips are to be limited and only one candidate at a time may leave. You must avoid all contacts with anyone outside the examination room to avoid even tho appearance or possibility of cheating.
'. Use-blwk ink or darit pencil only to f acilitate legible reproductions.
j 4. Print your name in the bl ank provided on the cover sheet of the
- examination.
i S. Fill in the date on the cover sheet of the examination (if necessary). 1l 1 . 6. Uso<only the paper provided f or answer u.
- 7. Print your name in the upper right-hand corner of the first page of each section of the answer sheet.
4
- 0. Consecutively number each answer sheet, write "End of Category __" as i appropriate, start nach category on a new page, write only gn gng sido of the paper, and urite "Last Page" on the last answer sheet.
- 9. Number each answer em to category and number, for example, 1.4, 6.3.
; 10. Skip at luast tl3 reg lines between each answer.
I II. Separ at e -snswer sheta s from pad and place finished answer sheets face j down on y.or dest- or table, f 12. Use abbr e v i a ti ons < >n l y if they are commonly used in f acili ty literJtursj. , 15. ihe point value for each question is indicated in parentheses after the I question md can be used as a guide for the dept h of answer rettuired.
- 14. Show all calculations, methods, or assumptions used to obtain an answer i to mathematical problems whether indicated in the question or not, j
- 15. Partial credit may be given. Therefore, ANSWER ALL PARTS OF THE
< OUESTION AND DO NOT LEAVE ANY ANSWER BLANK. i l 16. If parts cf the enamination are not clear as to intent, ask questions of a the examiner only, a j 17. You must ign the statement on the cover sheet that indicates that the i work is your own and you have not received or been given assistance in completing the exami nation. This must be done after the examination has 1 been completed. I i i-k
's ,
- 10. When yoi t rcmplete your ex ami n a t. i on , you shal1:
- a. Assemble your examination as follows:
(1) E;:am questions on top. (2) Exam aids figures, tables, etc. ( .T. ) Answer pageu including figures which are part of the answer.
- b. Turn in your copy of the e::Ominati on and all pages used to answer the e>:aminati on questions.
- c. Turn in all scrap paper and the balance of the paper that you did n ot: une for answering the questiens.
- d. Leave the examination area, as defined by the examiner. If after leav.ng,i you are found in this area while the examination is still in progress, your license may be denied or revoked.
i .
- 1. PRINCIPLES OF NUCLLAR POWER PLANT OPERATION 1 PAGE 2 IHEBdgDyUGd1GS2_UE81_IB8NSFCG_8NQ_ELU1g_ELgW QUESTION 1.01 (1.00)
List two qialities of water, OTHER THAN l ow absor ption cross section, i that mal:o it a good moderator. QUESTION 1.02 (1.00) Answer the following question TRUE or FALSE. EXPLAIN your choice. One of the factors for determining control rod worth is tho thermal diffusion length (L) of the neutrons. QUESTION t.U3 it 50) Neutron abt-opti on by tho Doron in a control rod creates two gases, Lithium and Helium. Does the cr eation 04 lithium and Helium effect the end of control rod life? EXPLAIN your answer.
*CRJL'.O I A Ul4 i . V 't .r ypp)7d/// A'o 4%4/SW NSWV Consider the reactor oper ating at power at 547 F. Which the following is a correct statement cor$cerning the Doppler coef ficie 2
- a. The Doppler coefficiant becomes MORE NEGAT with an INCREASE in fuel temperature, and an INCREASE in voids.
- b. The Doppler coefficient becomes _d5 NEGATIVE with a DECREASE i=i fuel te.rperature, anni a DECR3 oE in voids.
- c. The Dopr.ler coe H i c i e becomes MORE NEGATIVE with an INCREASE in fuel l temperature and LITS NEGATIVE with an INCREASE in voids. l
- d. The Doppler ._oe f fi ci ent becomes LESS NEGATIVE With an INCREASE in fuel tee trature, and an INCREASE in voids. !
l l l (w**** CATEOORY 01 CONTINUED ON NEXT P AGE ** * * * )
~1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION 1 PAGE 3-IMEBdQDyNed1CS3 _UE8I._IB8NSEGB_8ND_ELUID_ELQW 4
QUESTION 1.05 (1.50) Concerning heat trancier in a boiling water reactor;
- a. Define departure from nucleate boil.ing (DND).
- b. Define critical heat flux (CHF).
- c. Def ine criti cal heat flux ratio (CHFR).
1 QUESTION 1.06 (1.00) i WHY is nucl eate boiling a better. heat transfer mechanism than subcooled (10 to 15 degr$es subcooled) heat transfer?'(2 reasons required). DUESTION 1.07 '. 2. 00 ) Match each of the four (4) lettered items with one of the numbered items. A letter-namber sequence is sufficient.
- 1. MAPRAT 5. PCIOMR
- 2. APLHGR 6. CHF
- 3. CPR 7 TO T AL PF 4 FLPD 8. LHGR
- l i a. Parameter by which plastic strain and deformation are limited:to less than 1%.
- b. Ratio of bundle power required to produce onset of transition boiline) somewhere in the bundle, to actual bundle power.
- c. parameter by which peak clad temperature-is maintained less
- than 2200 degrees F during postulated design basis accident,
- d. Containt- guidelince- restricting power ramp rates above the threshold power.
1 t
)
i l l l 1 l i (***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)
t a
- 1. PRINCIPLES OF NUCLEAG_PgWEB_ELANT_QEEBOTigN2 PAGE .4
~ IS E 6 M Q DINO MIC S, _ U[01_lB BNSE Eg_ e N D_ EL QID _ELQW OUESTION 1.08 (1,50) Consider a BWR reactor which has been operating at 100% power for several days at begining of core life (< 5000 MWD / TON) I a. The reactor is shutdown f or 36 hours f rom the 100% power level . What intrinsic neutron source is the MAJOR contributor to the background neutron population?
- b. If the reactor remains shutdown for ten (10) days, what intrinsic neutron source becomes the MAJOR contributor?
- c. If the reactor fuel had a burnup of >20,000 MWD / TON (EGL) and was shutdown from extended high power operation for ten (10) days, what would then be the MAJOR source neutron contributor?
1 CUESTIGN 1.09 (t.00) i In a subtr i tical reactor , Keff is increased.from .880 to .965. 4 Which of the following is the amount of reactivity that was added to the i core 7
- a. . 00'i del t a k/k
- b. .100 delta L/K
- c. .125 delta k/l:
- d. .136 delta k/k QUESTION 1.10 (1.50)
STATE the predomi nats- rn<,de of heat transfer (conduction, convection, or radiation) for the following; (Normal operation unless otherwise stated)
- a. Center of the fuel pellet out to the outer edge l I
- b. Clad surface to the center of the coolant channel
- c. Clad surface to coolant under the film boiling conditions QUESTION 1.11 (2.00)
A signi ficant amount of excess reactivity must be loaded into the core at i BOL so that 100% power can be attained at the end of a fuel cycle. LIST the negative reacti vity inputs, (other than fuel burnout)during power operation,.which must be overcome by the excess reactivity loaded. I
'(***** CATEGORY 01 CONTINUED ON NEXT PAGE *****) _)
s
.i ,
- 1. - PRINCIPLES OF NUL'_ EAR POWER PLANT OPERATION 2 PAGE- 5
- THEBMODYNOMICS 3 _UEGI_IB6NSEriB_BND_ELUID_ELgW QUESTION 1/12 (1.50)
STATE whether the f of lout ng thermodynamic properties INCREASE,
- DECREASE, or REMAIN IHE SAME as they apply to the steam between the inlet and the outlet of a REAL HIGH PRESSURE TURBINE.
1 t I
- a. Enthalpy i
b ' Entropy ,
- c. Quality OUESTION 1.13 (2.50)
When will the following Reactor Protection System scram signals be bypassed?
- a. MSJV closure
- b. TS'/ cl osure i
- c. Mrnte switch to SHUlDOWN
- d. SDV high level ;
OllEST I ON 1.14 (1.50) i i Complete the following; (Blanks may require more than one word) { Xenon 135 has two (2) methods of production. About 95% of_the Xenon is produced by ___(a) ___ and the remaining 5% is produced by___(b) ___. i Xenon also has two (2) removal methods, ___ (c) ___ and ___ (d ) ___. , Samarium 149 is produced only by ___ (e) ___ and is removed only by (f) . QUESTION J 15 (1.00)
- How much (by what factor) would power increase in one second in a just prompt critical reactor at EOL7 (STATE ASSUMPTIONS AND SHOW ALL WORK.)
] .. (***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)
- 1. PRINCIPLES OF NUCLheR_PQWER_PL@NT_OPERATIQN 2 PAGE 6 IHEBdQD','N8DICS3_UEOl_IB8NSEEB_8ND_E6UID_E6QW DUESTION 1.16 (1.00)
Using the steam tabic +, calculate a reactor cooldown rate (F/hr) for a reactor pressure decrease from 1000 psig to 250 psig in one hour and forty five minutes (105 minutes total) Show all work for full credit. QUESTION 1.17 (2.00) Consider a turbine trip, on unit #1 from approximately 25% power. Briefly explain what would be expected to occur to the following plant parameters or components during the next 15 minutes with no operator action. PROVIDE REAUDNS for all the changes.
- a. Pypass valves
- b. Feedwater temperature
- c. Reactor power
- d. Rm ctor pres ar 9 OUESTION 1.18 (1.75)
For a turbine trip fiom 100% power without bypass valve opening, EXPLAIN the t aces on the recorderr, on the attached Figure #1.
- a. Core fiow h om point one (1) to point two (2).
- b. Dccrease in r e a c i.o r vousel level at point three (3).
- c. I r.c r ease in reactor vensel level to point four (4).
- d. Variations in invel at point four (4). I
- e. Docrease in i . +d flow from point five (5) tn point seven (7).
- f. Increase in foed flow from point seven (7) to point six (6).
l
- g. Dec.r ea se in feel flow begining at point six (6).
(***** CATEGORY 01 CONTINUED ON NEXT PAGE * * ** *) i 1
L.__EBINCIE6Eg_gE_NUC6E@B_EggEB_E(@NI_gEEB@IlgN 2 PAGE 7 ISE8dQDYN@d1C@2_bE@I_IE@N@EEB_@ND_ELUlQ_E6gd QUESTION 1.19 (2.00) Consider the diagrams in figures 8-15 and 8-16:
- a. EXPLAIN the offect on control rod worth for the CENTER control rod if the other four rods are completly withdrawn from the core. (1.00)
- 6. EXPLAIN why the control rod pattern in figure 8-16 (SHOULD/SHOULD NOT) be used during power operg n. (1.00)
FUEL 99 y BUNDLE CONTROL ROD BLADE OO Figure 8-15 Figure 8-16 I (***** END OF CATEGORY 01 *****) l
. - -. = . -.
2.___PLON1,DE#1GN_INCLUD{UQ_SOEEly_OND_EMEbGENCy_gySIEMS PAGE 8 1 I QUESTION /. 01 (2.50) LIST five (5) fundtione (purposes) of the Main Steam Li ne Flow Restrictors. (Do not consider minimizing pressure drop as a function)- 1
- QUESTION 2.02 (1.50) i LIST THREE-(3) methods or aids, for confirming fuel orientation when fuel is being positioned in the core during the final stage of I refueling, s
QUESTION 2.03 (2.00) l 1 1 LIST TWO (2) protective functions that will negate the starting 4 sequence on a Reactor Recirculation Pump. (INCLUDE INITIAT.ING SIGNALS, SET POINTS AND COMPONENTS AS APPLICABLE) 4 UUEST[ON 2.04 ( l' . 50 ) l l The Control Rod Drive Hydralic System interfaces with (i nteracts w'i th) several in plant systems. EXPLAIN the interaction for - each of the f ollowi ng systems, a
- a. Reactor Building Drain Tank i
- b. Reactor Building Component Cooling Water
- c. Recirculation Pumps
- d. Reactor Protection System
- e. Reactor Manual Control System M
)
) )
I 5 (***** CATEGORY 02 CONTINUED ON NEXT PAGE **** *) I
- _ _ , . - - _ _ _ _ _ . . __ -~ __. ., .
n 2__hLONI_Qg@lgN_1NCLUp1Ng_g8FEIy_8Np_EdEBgENgy_pfSIEdg t PAGE 9 l
~ QUESTION 2.05 (2.00) [
r
' EXPLAIN HOW and WHY, a complete loss of the Noninteruptable Instrumont Air System would effect the following systems. '
Assume t he r eactor is at 100% power and no-operator action.
- a. MSIV's
- b. SRV*n
- c. Control rod position
- d. Reactor Building Component Cooling Water-Temperature Control i
OUESTION 2.06 (3.00) i f The Reactor Water Cleanup System isolates on at least SIX 6 SEPARATE . signals. LIST FOUR (4), of the SIX (6), trip signals that will isolate the cleanup system. Include in your answer SETPOINTS, CONTROL DEVICE CONFIGURATION, and WHAr PROTECTION is. afforded by the-isolation. I OUESTION 2. O'7 ('J.00) Regarding the Standtiv Gas Treatment System (SGTS); STATE FOUR (4) conditions which will automatically initiate the SGTS trains. Include SETPOINTS. QUESTION 2.00 (?.50) Brunswick IJnits I and il are protected by the Anticipated Transient Without Reactor Scram Recirc Pump Trip (ATWS-RPT). I j- a. L10T the TWO (24 signals used to initiate ATWS-RPT include - SETPOINTS in your answer. - (1.00)
- Hb . ATNS-RPT provides an alternate means of reducing reactor power in the event that the ___1___ fail to ___2___ following a scram. (1.00)
( e . f)
- c. TRUE FALSE C;.63)
The ATWS-RPT trips the M-G set generator output breakeru, thus , rapidly reducing recirc flow. ) (***** CATEGORY 02 CONTINUED ON NEXT PAGE ***w*) __ . _ _ _ - - , _ , - . .- . . . ~ _ __ _ . _ _ .
'e .
- 2. -PLANT DESIGN INCLUDING SAFETY AND EMERGENCY' SYSTEMS PAGE 10 t
QUESTION ?. 09 (2 00) Concerning the ADS systemt 5 LIDT FOUR (4) conditions which will-close the ADS valves once they have opened by ADS actuation.- i 1 QUESTION 2.10 (1.50) 4 LIST THREE (3) of the FOUR design bases for the'HPCI system. J QUESTION 2,11 (1.00) During single element level control of the feedwater system, the startup level control valve being open allows condensate /feedwater to bypass which of the f oll owing? 4 1 a. FWH's 4A and 4D 1 j b. FWH's 3A and 3B 1 c. RFP's 2A and 213
- d. RFP 2A only
- e. RFP 28 only i
QUESTION -2.12 (1.00) J LIST the 4160V emergency bus power supplies to each of the four Core + Spray Pumps (Both Unita 1 and 2) f 1 t +
-(***** CATEGORY 02 CONTINUED ON NEXT-PAGE'****-*)'
- 2. 'PL ANT DEGIGN INCLI:D I N '2 SAFETY AND EMEF<GENCY SYSTEMS PAGE 11 QUESTION 2.13 (3.nO)
- a. I ht: reactor ic at 400 psig. Describe how the Core Spray Isolation Valve:5 (FOO4A/B and FOO5A/B) must be operated to have them both open at the same time. (0.50)
- b. The reactor t s at '500 psi g. Can the Core Spray Isolation Valves (FOO4A/D and FOO5A/B) be open at the same time? If so, describe how they must be opened. If not, can EITHER of the two valves bo opened with no injection signal present?
EXPLAIN. (1.00)
- c. If an automatir open signal is present for FOO4A/B and FOO5A/B EXPLAIN what the effect, on the valves, would be if the valve control switchrm were placed in the closed position. (1.50)
(Consider each set of valves separately) QUESTION 2.14 (1.00) The main s+. nam isolatio val ven (MSIV's) are requited to close in not more than fIVE (5) St i:F40E and not less than THREE (3) SECONDS. What is the BAGIG for the t'lection of these times? (***** END OF CATEGORY O2 *****)
- 3. INSTRUMENTS AND CONTROLS PAGE 12 OUESTION ',M' f 1. 'iO)
The a imposes coidral over control rod selection between 100% rod density and 50% rad density. After 50% rad density is acheived, the __ b_ _ divides the remainintj conttnl rods in the sequence into new rod groups. QUESTION 3.02 (1.90) Concerning the RPS system;
- a. If the scram pi 1 at solinoids fai1 to deenergize on an RPS ful1 uctam signal, NiiAT ALTERNATIVE ACTION or CONTROL DEVICE will rause ful] insertion of the control rods?
- b. It this ALTERNAiIVE ACTION takes place, WliAT EFFECT wi11 it have on the control rod insertion time? EXPLAIN your answer.
QUESTION . 0:: ( 1. '50 ) LIST t h e: A!rl UMAT IC s1 <jnal s whi ch wi 11. cl one al 1 the Reactor Bui l d) ng HVAC Damiors. I N Cl. U D E THE SET POINTS wich will ini ti ate closure. QUESTION _. 04 ( 2. f 10 ) L I S f t h r+ c:ondi tions wh) :h have to be met to achieve AUTO DEPRESSURI7ATION SYSTEM actuation. Include set points i f and where applicable. QUESTION . . 0 5 (2.50)
- a. State ONE (1) of thn TWO (2) purposes served by the Augmented Off-Gas (AGG) system GUARD DED.
- b. State the SETPOINT for the AOG system ISOLATION on HIGH HYDROGEN and state the LOGIC required to INITIATE this isolation. (one of l
two taken once, two of two taken once etc) i
- c. State FOUR (4) of the FIVE (5) TRIP SIGNALS which will cause the AOG DYPASS valve (HCV-102) to open. (SETPOINTS NOT REQUIRED) i
(***** CATEGORY 03 CONTINUED ON NEXT PAGE *****)
.- - - . _~ -_ - . - - . .. -.
3_ 2 INSTRUMENTS AND_ CON fij0L.S PAGE 13 4 OUESTION ' 06
. (2.00) i The diesel generator s are provided with ' ENGINE trips to protect the diesel.
i
- a. LIRT THE SIX (6) trips which are functional-while the diese) i ,.
operating in thn NORMAL MODE. Include SETPOINTS if applicable.
- b. WHICH of the trips in '!a" above are bypassed in the EMERGENCY MODE'?
A l QUESTION 3.07 (1.00) , i Which ONE of the following statements is CORRECT concerning the Standby Liquid Control System? (CHOOSE ONE)
- a. In the event a temote (outside the control room). reactor.
shutdown is required, SBLC injection can be' actuated by the LOCAL pump start switch. 't ] b. The pumps can be operated simultaneously if necessary to
- shutdown the reactor in an ATWG.
i
- c. When the control roocn hand switch is placed to " PUMP A RUN",
the "A" pump starts and all the " squib" valves fire.
- d. N1trogen charged accumulators assure adaquate suction pressure for the pumps.
1 QUESTlON 3.08 7. 00) LIST S1x (6) signals, including the SETPOINT, whi ch will cause an-automatic isolation of the MAIN STEAM ISOLATION VALVES (MS1V's) I l l L 1 l' I (****u CATEGORY 03 CONTINUED ON NEXT'PAGE um***)
= . L INGTRUHLNTS AND CON rf ?OLS PAGE 14 OUCSTIUN 09 ( . ' . ' /O For each of the followtoq conditions, STATE whether a GCRAM, HALF SCRAM, RUD BLOCK, or NO ACTION is generated.
- a. Loss of one (1) RPS MG set
- b. Turbine trip at 20% power
- c. Main Steam Lines "B" and "D" isolate with the modo switch in
> un
- d. APRM "D" failn downscalte with mode switch in RUN e, Scram discharge volume is at 40 gallons with mode switch in STARTUP OUESTION J. 10 (2.50)
- a. LIST THREE (3) ways the Rod Black Monitor (RBM) may be bypassed.
- b. How does the RDM utili:_e the input from an LPRM detector that is failed HIG!I, or failed LOW 7 Diccuss both cases, but limit the di scussi on to how the LPDM input is considered in the AVFRAGING/COI.!NTING circuits. 1ssume the LPRM has just failed emd has not been bypassed witF. its individual bypaus switch.
QUESTION .It (' .25)
-or ear:h on the HPCI Oligh Pressure Coolant Injection) system component iailures listed below, STATE if HPCI WILL or WILL NOT INJECT into the reactor vessel. If it WILL NOT INJECT, STATE WHY, and if it WILL INJECT, proade ONE POTENTIAL ADVERSE EFFECT OR CONSEOUENCE of system r.peration with the failed component.
- a. The HPCI Aux Lube Oil Pump fails to operate.
- b. Mio Mi ni mum t~ l ow Valve fails to auto open (utays shut) when
.*. tem conditions require it to be open.
- c. The llPC I dim harge flow element output sci qnal to the HPCI fails to i ts mim i mum output.
DUESTION 3,12 C.00) LIST the scrams generated by the INTERMEDIATE RANGE MONITORING SYSTEM (IRM's). Include the SETPOINTS and WHEN THE SCRAM IS DYPASSED. (***** CATEGORY 03 CONTINUED ON NEXT PAGE *u***)
- 3. INS TRUMF.N iS AND CON THOL.S PAGE 15 UUEGIION I~ (l.t')
Which of the following statements MOST ACCURATELY DESCRIBES the NEUTRON DETECTOR used in the SOURCE RANGE MONITORS (SRM's)?
- a. The detector is a fission chamber, operating in the ioriization voltage region, and pressurized to *220 psig with Argon gas.
- b. The detector is a fission chamber, operating in the pr oportional voltage region, and pressurized to
- 18 psia with Nitrogen gas,
- c. The detector is a fission chamber, operating in the ionization voltage region, and pressurized to
- 18 psia with Argon gas.
- d. 1he detector is a fission chamber, operating in the proportional voltage region, and pressurized to *220 psia with Argon gas.
QUESTION 3.14 ( 1. *io ) Concernirna the 4160 vol t e l e c t r i r. 11 w .,t ert. ;
- a. LISr the NURMAL power supplin - to common bussos "A" and "D".
- b. In the event that power is lost (supply breal:er opens) to common bus "A", how is the bus supplied with power?
- c. What MECHANI'M tINTERLOCK) could prevent automati call y suppl ying conwon bus "A" on a power loss to the bus" OUESTION ".10 (1.20)
Consider the Resi dual Heat Removal System (RHR) operating in the CI ) ACCIDENT MIIDE; I 1 l As the reactor presave decreases to 410 psig, the LPCI injection ' valves, a. (OPEN, CLOSE) and are interlocked in this position for b minutes. The neat exchenger b vp ass val ve ___-#_A (OPENS , CLOGES) anti remains i nter l oc L:ed in th<s position for _ _ _d __,,, m i n u t e s . (***** END OF CATEGORY 03 *m***)
_ = . - - .. .. . _ -. .. b 1 -l
- 4. PROCEDURES - NORMAL 2_ABNQRMA6.s_EMERQENCY_AND PAGE 16 609196991C86_CQNIBQ6 f
OUESTION 4.01 (1.00) J STATE the ()BJECTIVE(S) for each of the following cautions in the Emergency operating procedures: ) a. Whenever RHR is in the LPCI mode, INJECT through the heat exchangers as soon as possible. (0.50) t
- b. DO NOT initiate Drywell - Sprays unless the Suppression Pool Water Level is below -1 inch. (0.50) i i
i QUESTION- 4.02 (1.50) 1 The Administrative Procedure which governs Conduct of Operations, States "Each recorder chart shall be checked and initialed once per shift". When the chart has been initialed by the operator, LIST three (3) items that the initial indicates have been checked. 1 OUESTION 4.03 (2.50) Answer the following concerning the CAUTIONS in the Emergency ' j Operating Procedures:
- a. CAUTION number 10 of the EOP's states that an ECCS or RCIC is not
, to be secured or placed into MANUAL MODE unless TWO (2) conditions-are met. 1 1. STATE these TWO(2) conditions. (1.00)
- 2. STATE the NUMDER and the TYPE of indications'used to confirm the above conditions. (0.50)
- 6. FILL IN THE BLANKS i
CAUTION number 14 of the EOP's states, "do NOT'depressurize the'RPV j below-120 psig ( ____ (1) ____ low pressure isolation setpoint, unless (____(2) ____ driven pumps sufficient to maintain RPV water level are( ____ (3) ____ and _ ( 4) ____ for injection" ( 1. 00 ) -
)
- (***** CATEGORY 04 CONTINUED ON NEXT PAGE *****)-
i.
6
- 4. PROCEDURES - NORMAL...,@BNQRMAL 3_ EMERGENCY _ANg PAGE 17 B8DIOLggIC86_CgNISQL i
} i QUESTION 4.04 (1.50) 1 In order to return equapment (that is important to safety) to service, an INDEPENDENT VERIFICATION of system allignment must'be performed by a second qualified person. LIST THREE (3) methods which can be used by the second party to perform this verification.
- QUESTION 4.05 (1.50) 1 1'
In accordance with the Radiation Control and Protection Procedure, 3 DEFINE the following; i ] a. Radi ation arc-a ]. b. High radiation area t I c. Contamination area OUESTION 4.06 (2.00) Exposure of personnel to external radiation is n:inimized at Brunswick l by adherence to Administrative Procedures.- (Assume a valid form 4 is i on file)
- a. LIST the OUAR TERLY and ANNUAL exposure limits for the WHOLE BUDY, SKIN OF THE WHOLE BODY and EXTREMITIES. (1.50) l b. The dose l imi t , for the whole body, may be extended to ___t___
i REM / quarter, by the authorization of ___2___ (Title of the individual) (0.50) i i
! OUESTION 4.07 (1.00) i , LIST the Brunswick EMERGENCY CLASSIFICATIONS in order of INCREASING SEVERITY.
j l i (***** CATEGORY 04 CONTINUED ON NEXT PAGE *****) ;
4 1__PBOCMOUBES_ _NgBdO(1_80NOBd@L1_EDESGENCy_8NQ PAGE 18 68DI9 LOGIC 8L_CONIBOL QUESTION 4.08 (1.50) For the f ol lowing tags, used at Brunswick, STATE the COLOR of the tag and WHEN (under what conditiens) it wi11 be used.
- a. Paper Caution Tag
- b. Plastic Caution Tag
- c. Caution Label GUESTION 4.09 (1.50)
Designated Jumpers are controlled and issued by ___a___, (title of individual) approved for issue by ___b___, (Title of individual) and authorized by ___c___. (title of individual) OUESTION 4.10 (1.50) In accordance with GP-01, LIST the conditi ons which must be met for a system to be considered to be in operation for startup. QUESTION 4.11 (?.00) In accordance with At!P 32.0, Plant Shutdown From Outside the Control Room, LIST ElGHT (8) of the TEN (10) operator actions which SHOULD he carried out prior to evacuation of the Control Room. OUESTION 4.12 (1.00) LIST TWO (2)) of the THREE (3) operator actions for an SRV that is stuck in the CPEN position. QUESTION 4.13 (1.00) Cive TWO (2) definitions of IDENTIFIED LEAKAGE as listed in the Technical Specification for Brunswick. (=**** CATEGORY 04 CONTINUED ON NEXT PAGE *****)
L4. PROCEDHRES NORMAL.z_ADNgRMAL2 _EMERWENgY_ANp PAGE 19 B0019L991C06_GQNIBQL 1 4 QUESTION 4.14 (2.50) STATE,the MODE SWITCH POSITION and the REACTOR AVERAGE COOLANT TEMPERATURE LIMITATIONS for the following oporational conditions:
- a. Power Operation
.b. Startup E c. Hot Shutdown j d. Cold Shutdown
- e. Refueling i-QUESTION 4.15 (1.50)
The Technical Speci fi ca ti ons for Brunswick Unit 2 state a specific trip setpoi nt f or the APRM's with the Mode Switch not in RUN.
- a. List the setpoint -(0.50) i b. For LOW PRESSURE and LOW FLOW operation during startup, this-
' APRM setting provides an adaquate____(1) ____ between the _ _ _ (2) ____ and the safety limits. (1.00) 4 QUESTION 4.16 (1.00) j- OP-- 17 "RHR System", catitions the operator NOT to start an RHR pump for-
- SHUTDOWN COOLING until after the Recirculation pump f or- tho associated I loop in shittdown. STATE the basis for this caution.
4 f i OUESTION 4.17 (2.75) i
=
LIST the immediate operator actions to be taken on a reactor scram. ; i 2 1 l 1 l (***** END OF CATEGORY 04 *****) ~ fvvv5 wwrv**wv* FNn nr UYAMTNATinM h4 v v w- w =
- m v v + w w m )
,.m., , ~ , _ _ _ _ . , _ _, ,_ _ _ - , - - -. . _ _ . . ~ . - . _ . _ - . . - - - - - --- - , - - -
- a D g g
00P3 ANSWER KEY l l l l l l l l l
- 1. PRINCIPLES _gE_NgCLEGB_POWEB_ELANI_gPEBGIlgN 2 PAGE 20 IUEBd9DXN8dlCQ2_HEGI_IB8NSFGB_6NQ_E(glD_E6gW ANSWERS -- DRUNSWICK ( M' -07/01/12-DANIELS, M.
k = , Yd CI* i ANSWER 1.01 (1.00)
- a. Water has a high scattering cross section.
- c. Water causes a large neutron energy loss per collision.
(2 at 0.50) REFERENCE Drunswick Student Study Material HD-02-2/3-A pp 94 ANSWER 1.02 (1.00) TRUE (0.5) The farther a neutron trave)s during its lifetime the better its chances are of intoracting with a control rod, and hence the stronger the rod will be. (0.5) REFERENCE Brunswick 9tudent St'edy Material HO-02-2/3-A pp 175 ANSWER 1.03 (1.50) Yes. (0.5) Production of Lithium and Helium in the control rod generates high pressures in the control rod which could place the mechanical integrity at the control rod in jeopardy. Thus the end of control rod life must be determined to occur prior to reaching internal pressures which would threaten the mechanical integrity of the rod. (1.00) REFERENCE Drunswick Student Study Material HO-02-2/3-A pp 181
# E'EP '1 :1. ; $v//pd/Y M8M d.
REFERENCE 1 Brunswick Utudent Study Material HO-02-2/3-A Figure 55 f
- 1. hRINCIrl ES OF NULLt:nl< POWER PLANT OPEFiATION 2 PAGE 21 ILIE600Dvu80KL_UE01 TBON$FEB_QND,,ELUJ.D_[ LOW ANSWERS -- BRUNSWICK 102 -87/01/12-DANIELS, M.
ANSWER 1.Ob (1.50)
- a. The heat flux at which the c:hange of heat ti ar.sf er coefficient / delta T deviaten from a straight line function.
-OR -
The heat flux at which a transition from nucleate boiling to film boiling occurs. (0.50)
- b. The heat fJux at which DND occurs. (or that heat flux at which the hoat transfer coefficient is drastically reduced for any fur +her increase in delta T)
- c. The ratic of factual heat flu:t to,Ocritical heat flux \ .
CRITICAL HEAT FLUX ACTUAL HEAT FLUX (0.50) REFERCNCE Drunswici. student Study Material Subject 04-A pp 36-38 ANSWER 1.06 (i.00) A large wmnunt of heat io removed in changing the water to steam (heat of vap or i r.a t i . >n ) CO.50]. Tne production of bubbles breaks up the laminar layer, creating agitation, which providos better mixing. [0.503 REFERENCE GE Ther modunami c s , I! cat Transfer, and Fluid Flow pp 9 -8 ANSWER 1.07 (2.00)
- a. 8
- b. 3
- c. 2
- d. 5 (0.5) ea)
REFERENCE GE Thermodynamics, Heat Transfer, and Fluid Flow, Chapter 9
f E Iz__f)RINCIFl_ES OF NUCl.E9B_EOWEB_ELONT_g[gG@TIgb PAGE 22 IUEBMODYNOMICg2_UgGI_IGONgECB_OND_ELVID_E69W ANSWERS -- BRlJNSWICK 1&2 -07/01/12-DANIELS, M. O ANSWER 1.08 (1.50) gh9
- a. Deutor.ium-gamma n rraaction (photo neutron)
- b. Curium ?42
- c. Curium 744 (0.50 ea)
REFERENCE Brunswi ci: Utudent Study Materials HO-02-2/3-A pp 59, 60 4 AN9WER !.09 (1.00)
- b. (1.00)
REFERENCE i Brunswick Student Study Material 02-OG-A, pp 22-24
) ANSWER l.10 (t.50)
I a. Conduction (0. 5 )
- b. Convection (.;onduction also accepted if both are given) (0,5)
- c. Raeli at i on (0.5)
HEFERENCE i Brunswick, Thermodynamics Heat Transfer and Fluid Flow, Chapter O ANSWER t.11 (2.00)
- a. Moderator temperature increase -(0,5)
- b. Void fraction increase (0,5)
- c. Samarium buildup (0.5) i e, fogl. ft/44'/fhltoff WY yk
- d. Xenon buildu (0.5)
REFERENCli Drunswick Ctudent Study Materials,HO-02-2/3-A 'p122, p 123 4 4 I
- 1. PR i dgletzg_gE_ NUCL EOtl,[QWEB_LL9N1_QEE BOIIQN 2 PAGE 23 IU EGd Q 9y u S MIC S 2_ tKOI_IG 8[49 E'!O__8 N D _[L UI D _[LO W ANSWERS - BRUNSWICK t ?,2 f37/01/12-DANIELS, M.
ANSWER 1.12 i 1. ' 0)
- a. liet rease (0.5)
- b. In.': r ease (0.5)
- c. Derreasse (0.5)
REFERENCE Second L.cw of Ther mcad yoami c s Drunswick Thermodynarricn, Chapter 2 ANSWER 1.13 (2.50)
- a. Mude Switch in other than RUN (0.5)
- b. Pouer ( 30% (0.5) c !> ,t conris . I i 4 -r Mode Switch is plated in SHUTDOWN (0.5)
/ WI
- d. By the bypass suitch, ( 0. 5 ) /y the mode switch in UliUIDOWN, or IE.UUEL (0.5)
REFERENCE Drunswick Student St ttdy Mater i al RPS system HO-28-2/3-A, pp 16,17 ANSWER !.I4 ( 1. '50 )
- a. Decay of I ocii n e (0.25)
- b. Directly from fisnian (0.25)
- c. Neutron absorption,(or burnout) (0.25)
- d. Radi cactive decay (0.25)
- e. Decay of Finnion products (Nd or Pm) (0.25)
- f. Neutron absorption, f or burno it ) (0.25)
'It__EBINCIELEQ_QE_NyQLCGB_EQWEB_ELONI_QEEB6IlgN 2 PAGE 24:
IHEBd99YNed1GSi_UE8I_IB8NSEEB_8ND_ELUID_EL9W ANSWERS ---BRUNSWICK 18 2 -87/01/12-DANIELS, M. REFERENCE Brunswicte Student Stud y Ma+eri al s flO-02-2/3- A pp'188,189,194,190 ANSWER J.15 (1.00) T=1 star /p + (B-p)/tp (0.10) So.for prompt critical, neglect the delayed term and T=1 star /p (0.10) 1 star = 10EE -4 seconds (accept 50 to 150 microseconds) -(0.10) p* .005 (0.10) T'.10EE -4/.005=0.02 seconds (0.25)- P/Po=e?? time /T (0.10) P/Po = eEEtime/T (0.10) P/Po= eEE50 = 5.18 X 10EE21 (0.15) (Numerical values do not have to be imact for full credit. Reasonable assumptiom?. accepted) REFERENCE Dr un swi t- k f3tudent St_uoy Material 110 2 / 3- A pp 136,149,150 ANSWER 1.16 (1.00) Obtain corresponding tonperatures f rom t he steam tables by i n terpol ati on . 1000 psig = 546.3 deg F (0.25) 250 psig = 406.0 deg F (0.25) Determine t he temperature change: 546.3 - 406.0 =140.3 deg F (0.25) Determine the rato of cooldown: 140.3/1.75 n 00.2 deg F/hr -(0.25) REFERENCE l Steam Tables l l l
i i Lt...._EBING1ELES_QE_NyGLh6FLEgyEB_t(BN1_QEE861109 3. PAGE 25 IUEbtfu9YN8t!1GS2_bE9LIBGNQEEB_6dD_ELylp ELOW ANSWERS -- DRUNSWICK 1.% 2 -07/01/12-DANIELS, ANGWER I.17 '. 2 . < i o ) l.&
- a. lyi,ans valvoc oren to pw s t hea steam previctmly going to the turbine. (0.5)
- b. Feedwater temper ature will decrease due to the loss of extraction steam, p (0.5)
- c. Reactor power will increase due to the i-- m zur in feedwater temperture. (0.5)
- d. Dypass valves will maintain pressure ~ constant. (Reactor pressure will try to increase due to the increase in reactor power) (0.5)
REFERENCE Br unswi ci: Student Study Haterial l lO- 2 / 3- A pp 20,21 ANSWER 1.t8 (1.75)
- a. Recirc pump t r i p, 7 t > "- b i - tr:p. y [ (0.25) b, Decrease due to void collapse caused by pressure increase and scram. (0.25)
- c. Increase due to feedflow increase on low reactor water (jp 6Ao#' t y/Ctf/// /M./W'1rg, p Rcgr iverfjaic, ,$agyay j,,ygg)f,l 6,2gy egl .
- d. I .ev el e,welln iluo to MSRV's lifting. (0.25)
- e. Feed f1ow decrcases to fal1ow steam f1ow. (O.25)
- f. Feed flow increases due to reactor level decrease. (0.25)
- g. Feed flow decre:.ses due to reactor vessel l evel increase.(0.25) 449o d'Ceyff *(Abf] /S64/7/4'\f DN JoW kelGe4- J24/4 4 - Mc'O REFERENCE Drunswick Student Stude Materials HO 05-2/3-A i
- 1. ..EGItJC.f[lfS OE_NUp.EAB.10 WEB _EL@NI.. OEE60IlON g PAGE 26 THEfiMUD'<NOt1ICS , .110 A l IRANSP 13. AND FLilID.. f LOW ANSWERS DirUNSWICI l '< 2 8 7 /01/12- D AN I ELt3, M.
ANSWER 1.19 *:' . <>0 )
- a. Wit!, drawing the nurrouniting control rods removec the " shadowing effec 6" ,n the crini i; rod and the center rod is now controlling n eu t r rs n. I n app r r.:.,: i .a t f.1 y 16 fuel 1> un d l t:L. (O.00) lhe contr01 rud worth of the center rod has increased signi ficantl y. (0.50)
- b. This control rod pat t er n SHOULD NOT be used during reactor power operation (0.50), :.ince withdrawing this high worth rod could lead to a positive reacti vity insertion of such a large magni tude that the requ.Iting power m:cursi on could damage the fuel. (0.50)
REFERENCE GE BWR ACADEMIC SERIE'3
\
1 2 __EL@NI_Dij@lGN_lNCLUDING_@@ Eely _@ND_EMEBGENCY_@y@ led 5 PAGE 27
' At4SWERS -- DRUNSWICK 1&2 -87/01/12-DANIELS, M.
ANSWER 2.01 (2.50)
- a. Limits stean.'1)ne flow to 200% of rated (0.25) to prevent damage to the vessel internals from unrestricted flow. (0.25)
- b. Limits the insr. of coolant on a steam line break,
- c. Limits the r*J ease of radioactive materials from within the vessel on a steam line break.
- d. Provides steum flow signal to the feedwater control system.
- e. Provides steam flow signal for MSIV closure,
- f. Provides steam line flow indication.
- p. /Adut#ff 97/dM /W S//Nnc 70M wr# WW/L&f. wd (any 5 at 0.50 ea)
REFERENCE Brunswick Student Study Material s, Main Steam, HO-17-2/3-A pp 2, 5 ANSWER 2.02 (1.50)
- a. Th rs channel fastener, including the spring and guard used to maintain clearance between channels, are located at one corner of each bundle, adjacent to the center of the control rod, l
- b. The identification boss, of the fuel bundle bail, points toward the ad.iacent control rod. (All bosses point to the center of the fuel cell)
- c. The channel spacing buttons, are adjacent to the control rod blades.
- d. There is cell to cell symmetry, except at the core periphery.
(any 3 at'O.50 ea) REFERENCE Brunswick Fuel Handling Procedure FH-11 pp 4 t w
2s__EL9NI_DE@lgN_ INCLUDING _g@EEIy_8ND_EMEBGENCy_SyGIEMS PAGE 28 ANSWERS --' BRUNSWICK lt<2 -87/01/12-DANIELS, M. l i' ANSWER 2.03 (2.00)
- a. If the pump f ailn to start, the generator stalled rotor relays (0.25) and/or the loss of excitation relay, (0.25) will trip the M-G set motor and generator field breaker, negating the starting sequence. (0.50)
- b. As a backup, the incomplete sequence rel ay, - (0.25) trips the i M-G set motor and field breaker, (0.25) if the programmed sequence is not completed in 15 seconds. (0.50) l REFERENCE j Brunswick Student Study Material, Rocirculation Flow Control, i HO-10-2/3-A pp 29 i
4 i j' ANSWER 2.04 (2.50) J a. The scram di n<:harge vol ume draint, to the Reactor Building Dr ain Tank.
- b. The CRD pumps are cooled by the Reactor Building Component Cooling water system.
- c. The CRD hydralit system supplies recirculating pump seal purge water.
1
- d. The RPS provides signals to energize or deenergize scram pilot
' and scram valves and backup scram valves to insert rods on a scram.
- e. The Reactor Manual Control System provides signals'to the hydralic control unit, to position directional control valves to control rod motion.
(Five at 0.50 ea) REFERENCE Drunswick Gtudent Study Materials, Cc otrol Rod Drive Hydralic-System,
- HO-9-2/3-D pp 26
~ . _ . . _ _ , , _ _. . . - - _ - - - - _ _ - . _ _ _ _ _. - -
31__kbOdl_EEEl@$_ldg6Uglyg_@@Egly_999_EdgB@gggy_gygIEMS PAGE 29 ANSWERS -- DRUNSWICK 1&2 -87/01/12-DANIELS, M. ANSWER 2.00 (2.00)
- a. lhe outboard MSIV's would drift closed, (0.25) due to the a wn. (0.25)
- b. The SRV's could not be operated manually, (0.25) due to loss of air to the remote air operator. (0.25) (Accept no effect if only automatic operation is considered)
- c. The control rods would begin to drift in, (0.25) due to loss of the scram air header. (0.25)
- d. RBCCW temperature would decrease, (0.25) due to bypass valve TCV 606 drifting closed. (0.25)
REFERENCE Brunswick Student Study Materia.ls, Compressed Ai r , HO--21-2/3- A Tabl e I ANSWER ? 06 (5.00)
- a. Low Reactor Water Level (0.25) LL#2 (112") (0.25) protects the core in case of a possible break in the Reactor Water Cleanup System piping or equipment. (0.25)
- b. Standby Liquid Control Injection, (0.25) control switch in pump A or B (0.25) prevents removal of Baron by the Reactor Water Cleanup lon exchangers. (0.25)
- c. Reactor Water Cleanup system high differential flow (0.25) 53 gpm (0.251 Detects leak in RWCU system (0.25)
- d. Reactor Water Cleanup System area high t emperature (0.25) 150 F (0.25) Detects leak in RWCU system. (0.25)
- e. Reactor Water Cleanup System area ventilation high temperature (0.25) 50 F delta T (0.25) detects leak in RWCU system (0.25)
I
- f. Reactor Water Cleanup System non-regenerative heat exchanger ;
outlet high temperature (0.25) 140 F (0.25) protects resins l from damage due to high temperature. (0.25) (any 4 at 0.75 ea) REFERENCE Brunswick Student Study Materials Reactor Water Cleanup System HO-11-2/3-A pp 14 1 l l l
2 t__ELANLDESl@N_INCLUDINQ_@@EEIY_8ND_EdER@ENCY_@y@IEd@ PAGE 30 ANSWERS -- BRUNSWICK 1&2 -07/01/12-DANIELS, M. 1 ANSWER 2.07 (2.00) 4
- a. Reitetor BuiIding Venti 1ation E::haust High Radiation (O.25) 11 mr/hr (0.25)
- b. Drywell High Pressure (0.25) 2 psig (0.25)
- c. Reactor Vesuel Low Water Level (j.25) .LL#2 112" (0.25)-
/40 W d..High Temperature (0.25) &F (0.25)
REFERENCE Brunswick Student Study Materials, Standby Gas Treatment System, HO-15-2/3-F pp 13 ANSWER 2.08 (2.50) a.1 Iow Reactor Vessel Water Level (0,25) LL#2 or 112" (O.25)
- 2. High Reactor vessel l'ressure (0.25) 1120 psig (0.25) b.1. Control Rods (0.50)
- 2. Insert into the core (0.50)
- c. FALSE (0.50)
REFERENCE Brunswick Student Study Materials HO-10-2/3-A pp 34 ANSWER 2.09 (2.00)
- a. The actuating air supply is depleted
- b. The ADS legte i e, manually reset by the Control Room Oper A/MMCr/7 Avf /ffloct 9MN#sMMperseer MAS'#fffwiren w&ator t c. All indication of low pressure RHR and Core Spray pump 1
operation is lont (No dischargo pressure) i i d. System pressure drops to 50 psig i ( 4 required at 0.50 ea) l
l
'2 1__P(GN1_pggigN_INCLUp1Ng_g@EEIy_9Np_gdEBgENCY_gygIED@ PAGE 31L ANSWERS -- BRUNSWICK 1&2 -87/01/12-DANIELS,.M.
REFERENCE Drunswick Student Study Materials, ADS, HO-14-2/3-F pp 20 ANSWER 2.10 (1.50)
- a. Assurance that adaquate core cooling takes place to prevent overheating of reactor fuel (max 2200 F) in the event of a small break I.OCA.
- b. Support a plant shutdown by maintaining suf ficient reactor water inventory until the reactor is depressurized to a pressure where the LPCI system or Core Spray system can be placed in operation.
- c. Provide the Capability of fulfilling the objectives of the RCIC system, in the event that the RCIC system is inoperable.
- d. Provide automatic operation and capability of startup operation independant of AC power, service air, or external cooling water systems.
(any 3 at 1.00 ea) REFERENCE Brunswick Student Study Material HO-34-2-B pp 2 ANSWER 2.11 (1.00)
- a. (1.00)
REFERENCE Brunswick Student Study Materialu HO-27-2-B Figure 1-ANSWER 2.12 (1.00) 1A=El 1B=E2 2A=E3 2B=E4 (4 at 0.25 ea)
2 1__ELONI_ DESIGN _INCLUQING_SSEEly_8N9_EMgBGENCy_gygIEM@ PAGE 32 ANSWERS -- BRUNSWICK 1&2 -87/01/12-DANIELS, M. REFERENCE Brunswick Student Study Materials HO-14-2-E pp 10 ANSWER 2.13 (3.00)
- a. F004A/B must be opened first (0.50)
- b. No (0.25) cannot be opened at the same time. Yes (0.25) either of the two valves can be opened but both cannot be opened at the same time. (0.50)
- c. F005A/B would go to the closed position. (0.25) the manual closed signal overrides the auto open signal (0.50) a white light illuminates, indicating that auto opening is disabled.
(0.25) F004A/B will not close (0.25) the valve is interlocked to stay open with an,p auto open signal. (0.25) REFERENCE Drunswick Student Study Materials HO-14-2/3-E pp 12 ANSWER 2.14 ( 1. 00 )
- a. The maximum five (5) second time is to limit the loss of coolant inventory and reduce the amount of radioactivity released to the environment. (0.50)
- b. The minimum three (3) second time is to limit the uressure/ flow transient on the reactor.
l REFERENCE Brunswick Utudent Study Materials, Main Steam, HO-14-2/3-F pp 22 and table 2
- h. _"lN@ldy[!$Nig_GND_[ONIBOLE PAGE 33 ANSWERS -- BRUNSWICK 1.%2 -87/01/12-DANIELS, M.
ANSWER 3.01 (1 00)
- a. Rod Sequence Conttol System (0.5)
- b. Group Notch Control I.ogic, Notch Restraint, or Group Notch (0.5)
REFERENCE Brunswick Student Study Material Rod Sequence Contiol HO-27-2/3-c pp 6 ANSWER 3.02 (1.50) > a. T h t-- Backup Scram Valve solinoid valves energize and position the Backup & ram Valves to block the air supply to the scram ai r header , and vent the header to atmosphere, causing the rods to be inserted. (0.5)
- b. The rod innertion time will be slower (0.5) (*15 seconds verses 5 secondu) due to having to vent the entire air header instead of individual scram valves. (0.5)
REFERENCE , Brunswick Studt-nt Gtudy Materials RPS HO-28-2/3-A pp 13, 14 ANSWER 3.03 (1.50)
- a. Hi gh radi ati.on in the Reactor Buildin0 HVAC Exhaust (0.25) 10 mr/hr (O.25) dui //"////I 7/d# MC WAT/#
i b. High pressure in the Drywell (0.25) 1.8 psig (0.25) j-642.d f H y }lptw p c. w xed M
- c. Low reactor water level (0.25) 32" (0.25)
M t/2 " nilY REFERENCE Brunswick Student Study Materials Reactor Building HVAC HO-36-2/3-A pp 31 and Table 2 d, H/64 ,rfM/&/7,hi6 / ff/tJwf fu/W/ 6 Mo V ()J W ,$ #/P W M r M jap /kur//drM/K) pt (b v y > s r. 1 ee ) W
,. - _ - ,- - . . , e-- - - . , . , -- w ..
4
' 1. didS16LJL1EUlE_AND_CONIGOLS PAGE 34 i
ANSWERS --- BRUNSWICK 1?C -87/01/12-DANIEL 9, M. i i ANSWER ". 04 (7.00)
/
- a. Reactor low' water level #/. .25) 162.5" (0.25)
- b. Reactor low water level # (0.25) 45"'(0.25) yd" 76Cf yY Wg l c. Operation of DOTH pumps in a LPCI _ loop OR .one Cor e Spr ay l pump (0.25) greater than 100 psig discharge (0.25)
- d. Time delay timer timed out (0.25) 105 Seconds (0.25)
REFERENCE i Brunswick Student Sttidy Materials ADS HO14-2/3-F pp 22 and Table 2 ANSWER 3.05 (2.50) i j a. 1. Serves ac, a trap for moisture, preventing wetting of the charcoal adsorber trains. .k
- 2. Serves to filter a large percentage of long-lived particulates from the Off-Gas stream.
j (0.50, only one required) ! b. Setpoint: 2% Logics One of two taken once (0.50 ,m i ! c. 1. liigh condensate drain level i 2. High rnoisture downstream of guard bed
- _ 3. Grosa Glycol leaV, M Joul JJfeeA 7 YAM JJtd4- M'A i 4. Hiqh-high flow j 5. High Hydrogen
!- (4 required at .25 ea) , REFERENCE j BSEP HO 2C (AOG GYSTEM) pp 10, 14 i 4 i j l 1
~ , , , . , - .,,-e.=. ,,..--n.-- . - ~ . _ , . - , , . v-,---~n- -- .--n.n., .,,,. , . , ,--n,--. .,.-,--,v.-,.n-., n.
3 t__IN@lEUMENI@_AND_CgNIRQL@ PAGE 35 ANSWERS -- BRUNSWICK 1&2 -87/01/12-DANIELS, M. ANSWER '3.06 (2.80) a.1. Low Lube Oil Pressure (0.2) 27 psig (0.2)
- 2. Engine overspeed (0.2) 590 rpm (0.2)
- 3. Loss of diesel generator control power (0.2)
- 4. High Lube Oil Temperature (0.2) ,190 F.(0.2)
. 5. High Jacket Water Temperature (0.2) b9e F .2)
- 6. Jacket Water Low Pressure (0.20) 12 [ffg 0.20) b.1. High Lube Oil Temperaturo (0.20)
- 2. High Jacket Water Temperature (0.20)
- 3. .facket Water Low Pressure (0.20)
- REFERENCE i
Brunswick Student Study Materials HO-20-2/3-D pp 34,35 ANSWER 3.07 (1.00) 'l
- c. (1.00) 1 REFERENCE Brunswick 9tudent Study Materials SLC HO-14-2/3-H pp 12 I'
ANSWER 3.08 (3.00)
; a. Re-ctor Vessel L.ow Level (0.25) 112" (0.25)
J
- b. Main Steam Line High Radiation (0.25) 3x normal (0.25) l c. Main Steam 1.ine High Flow (0.25) 140% (0.25) 1
- d. Main Steam Line Tunnel High Temperature (0.25) 200 F (0.25) j o. Turbine Building Main Steam Line Area High Temperature (0.25) 200 F (0.25)
- f. Low main Steam Line Pressure (0.25) 825 psig (0.25)
- g. High Steam Lino Flow (unit two only) (0.25) 40% in
, operational condition 2 and 3. j h. Condenser Vacuum Low (0.25) 7" Hg (0.25) (Six out of eight required at 0.50 ea)
- REFERENCE l Brunswick Gtudent Study Materials Main Steam HO-17-2/3-A Table 2 l
1 I I
o
. . e }z__ INSTRUMENTS AND CONTROLS PAGE 36 ANSWERS -- BRUNSWICK f1&2- -87/01/12-DANIELS, M. . O ANSWER 3.09 (2.50)
J
- a. Half scram (0.50)
- b. No action (0.50) c4 Half scra'm (0.50)
- d. Rod block (0.50)
- e. No action (0.50)
REFERENCE Drunswick Student Study Materials RPS HO-28-2/3-A PP 16, 17 i ANSWER 3.10 (2.50) 1 j a.1. Manual operation of the RBM DYPASS switch (0.50) j 2. Refernce APRM input level <30% (0.50)
- 3. Edge rod celected (0.50) 1 1 b.1. Failed tow: Removes the LPRM input from both the averaging 4
and counting circuits (0.50)
- 2. Failed high: The higher input is averaged with the other I
inputs and processed as though it were a valid input. (0.50) REFERENCE , Drunswick Student Study Material RBM HO-25-2/3-E pp 17 and Figure 2 i ANSWER 3.11 (2.25)
- a. WILL NOT INJEiCT (0.25). The turbine stop valve and control valva (E41-VO and E41-V9) will not open. (0.50) b.WILL INJECT (0.25). Pump overheating and seal damage may result i during low or no flow conditions. (0.50) An answer of no effect is correct if the assumption is made that full flow is reached in
- 25 seconds. :
4 1
- c. WILL NOT INJECT (0.25). Maximum signal from the flow element
- will cause the turbine speed to remain at minimum (0.50).
i s 4
3s.__IN@I69MENIS_6MD_gGUIBOLS PAGE 37 ANSWERS -- BRUNSWICK it<2 -87/01/12-DANIELS, M. 1 REFERENCE Brunswick Student Study Materials HPCI HO-14-2/3-D pp 14, 15, 29 and Figure 3 ANSWER 3.12 (2.00) SCRAM' SETPOINT BYPASSED t j High Flux (0.25) 120/125- In the RUN MODE of scale (0.25) with the companion APRM on scale (.25) i INOP (0.25) High voltage In the RUN MODE
- l ow (0.25) with the companion l APRM on scale (0.25) 1 Modulo unplugged (0.25)
Fu,ction Switch , not in operate (0.25) t REFERENCE Drunswick Student Study Materials IRM HO-25-2/3-B pp 18 ANSWER 3.13 (1.00)
- d. (1.00)
REFERENCE General Electric DWR Academic Serien Instrumentation and Control ! Chapter 3 pp 17 i t i
- . . - .. . . - . = -. --. . . = . .- -_- -. .
3___lNSIBUMEUIS_6NQ_gGN1BOL@ 2 PAGE. 38 I' . ANSWERS -- BRUNSWICK 1&2 -87/01/12-DANIELS, M. ANSWER -3.14 (1.50)
- a. Common bus "A" supplied by. UNIT I SAT (0.25)
Common bus "D" supplied by UNIT II SAT (0.25)
- b. The cross tie breaker between common busses "A" and "B" closes
. automatically on loss of power to the bus and common bus"A" is supplied by Common bus "B". (0.50)
- c. If the AUTO / MANUAL control for the tie breaker is in the MANUAL position. (The breakar still can be closed manually by the operator.) (0.50) i 1
ANSWER 3.15 (1.20)
- a. OPEN (0.30)
- b. FIVE '(0.30)
- t. OPEN (0.30)
- d. THREE (0.30)
REkERENCE Brunswick Student Study Materials RHR HO-14-2/3-D pp~40 4 1 i t I l i T 4 I
)
J 4 I h _ _ - , , , , , . - , , , . _m.. _..__,.-___.__~__.__,,,_,,r_._., __,...._-,y, . _ _ _ . . _ . _ _ , . _ . - . -. . ,._ _ . , . . . ,
- 4. PROCEDURES - NORMAL 3_ABNgRMAL _3 EMERGENCY _AND PAGE 39 BApJgtggICAL_CgNI6gL ANSWERS -- BRUNSWICK 1&2 -87/01/12-DANIELS, M.
ANSWER 4.01 (1.00)
- a. To provide early decay heat removal, minimizing the ultimate heatup of the primary containment. (0.50)
'b. To prevent causing a negative drywell_ pressure in excess of the design limit. (0.50)
REFERENCE , BSEP EOP-1-UG i ANSWER 4.02 (1.50)
- a. The chart has the correct chart paper
- b. The chart is inking properly
- c. The chart is timing correctly j d. The monitored parameter is in the normal range of the
, spocified conditions and trends
- n. The recorder liOhts are working, if the recorder is so equipped
{ (three required at 0.50 ca) REFERENCE Brunswick Administrative Procedure Volume I Section 4 pp4-5 I ANSWER 4.03 (2.50) i
- a. 1. a. Misoperation in the automatic mode confirmed. (0.50)
- b. Adaquate corn cooling is assured. (0.50) f 2. At least two (0.25) independent indications.(0.25)
- b. 1. HPCI
- 2. motor
- 3. running
- 4. available (0.25 ea, (c) and (d) may be interchanged)
REFERENCE 1 BSEP EOP UG pp 40, 42
- 4. PROCEDURES - NORMnL2_ADNQBMA61_EMEEGENQY_ANQ~ PAGE 40 BSD196901G86_GQNIBQL
, . ANSWERS -- DRUNSWICK 1&2 -87/01/12-DANIELS, M. ANSWER 4.04 (1.50)
- a. Physical verification by hands on (and confirming movement to the OPEN, THROTTLED, or CLOSED position.)
- b. Performing a FUNCTIONAL TEST (of the integrated system or
;- component as appropriate.)
- c. VISUAL VERIFICATION (of the components position) by DIRECT OBSERVANCE or REMOTE INDICATION.
- d. VIfiUAL VERIFICATION (of the components position) by SYSTEM
- PROCESS PARAMETER CHANGES or REMOTE INDICATION or ANNUNCIATION.
(any three at 0.50 ea) REFERENCE Drunswick Administrative Procedure Volume I Section 11 pp11-3 l l RNSWER 4.05 (1.50)
- a. An area, accessibic to personnel, in which there exists radiation at such levels that a major portion of the body could receive a dose in excess of 5 mrem in any one hour, or j 100 mram in any five (5) consecutive days. (0.50)
- b. Any area, accessible to personnel, in which there exists radiation at such levelu that a major portion'of the body 1
could receive a done in excess of 100 mrem in any one hour. (0.50)
, c. Any area, accessible to personnel, where surface contamination 4 exists in excean of 1000 dpm/100 square em beta gamma or 20 , dpm/100 square cm alpha smearable. (0.50)
, REFERENCE ! Drunswick Administrative Procedure Volume VIII Section 3 pp 10 i i i i t
- 4. PROCEDtJRES - NORMAL3 _ABNgRMAL2 _EMERgENgY_ANg PAGE' 41 899106991996_G9NIBgl ANSWERS -- BRUNSWICK 1&2 -87/01/12-DANIELS, M.
ANSWER 4.06 (2.00) REM / quarter REM / year
- a. Whole. body 1.25 (0.25) 5.0 (0.25)
Gkin 7.5 (0.25) 30.0 (0.25) Extremities 18.75 (0.25) 75.0 (0.25) b.1. Three (3) (0.25)
- 2. The General Manager (0.25)
REFERENCE Drunswick Administrative Procedure Volume I'sec 4 pp 14 ANSWER 4',07 (1.00)
- a. IJnusual Event (0.25)
- b. Alert (0.25)
- c. Site Area Emergency (0.25)
- d. General Emergency (0.25)
REFERENCE Brunswick I'lant Emergency Procedure PEP-02.1 pp 6 l l
4
- 4. PROCEDURES - NORMAL2 _8QNgRMOL2 _E!jGBgENCY_ANg PAGE 42 1
899196ggIC66_CggIBQL ,
. ANSWERS -- BRUNSWICK 1&2 -87/01/12-DANIELS, M.
ANSWER 4.08 (1.50)
- a. ORANGE (0.25) Used when deemed necessary for conditions of a temporary nature. (0.25)
- b. ORANGE (.25) Used when deemed necessary for conditions of a permanent nature. (0.25)
! c. YELLOW (0.25) Used when deemed necessry for conditions of a permament nature. ( 0 . 214) (Control boards and panels) REFERENCE i Drunswick Administrative Instruction AI-58, Equipment Clearance j- Procedure Section 4 pp 11 ANSWER 4.09 (1.50) s 4
- a. The on shift Operations Techn=cian OR Operations Technician (0.50)
- b. The Shift Foreman (0.50) i
- c. The Shift Operating Supervisor (0.50)
- REFERENCE Brunswick Administrative Instruction AI-59, Jumpering, Wire Removal and Designated Jumper. pp 5 l 1
- ANSWER 4.10 (1.50)
I
- a. The valve anti Electrical lineup is complete and the action
! items in the appropriate operating procedure to place the j system in operation are complete. (0.50) 1
- b. The system is performing it's intended function in the
- required manner. (0.50) 1 l
- c. All system opurability periodic tests are current. (0.50) l i.
+ t.r-, y e- + st - ?mr- M 7r ==re-- m- se v - - - - iwe m-re w- -#----- .ey, ,,-s ,.r-, y.-e-9 yey--9--- v.+---4m---us -+ .t -av -tw> ri-
.4 PROCEDUREG - NORMAL 1_ADNQRijAL1 _EljESQENgY_AND PAGE 43 68DIQLQ@lC8L_CQNIEQL L
ANSWERS -- BRUNSWICK 1&2 -87/01/12-DANIELS, M. REFERENCE Brunswick GP-01, Stachip Check List pp 6 ANSWER 4,11 (2.00)
.a. Obtain the keys to the Remote Shutdown Panel from the SOS key locker.
- b. Mariually Scram the reactor
- c. Trip the Main Turbine
- d. Verify, or manually transfer auxiliary power to the SAT
- e. Place the Mode Switch to SHUTDOWN after steam flow decreases I to < 3x10EE6 lbs/hr I
i f. Trip both Racirc Pumps i g. Use Bypass Opening Jack to reduce reactor pressure to ~700 j psi 9 1
- h. When the Reactor Pressure is '700 psig, place all MSIV switches in the closed position.
l
- 1. Place the AUTO / MAN control switches for all Condensate Booster Pumps to MANUAL
- j. Enter EOP-01 and execute as many Of the actions as possible j
(Eight required at 0.25 ea) ] i i REFERENCE Brunswick AOP 32.0, Pl ant Shutdown From Outside the Control Room ]
- i d
i s
- 4. PROCEDURES - NORMAL,_ABNgRMAL1 _EMERGEt.igLAND PAGE 44 89DIOLOGIC8L_ CONI 6pL ANSWERS - DRUNSWICV IL2 -87/01/12-DANIELS, M.
ANSWER 4.12 (1.00)
- a. Cycle the effected SRV control switch first to OPEN, then to CLOSE or AUTO, several times. (0.25) Leave switches in the CLOSE or AUTO postion (0.25)
- b. Au soon as it is recognized that the SRV will not close, or Suppresion Pool temperature reaches 110 F, (0.25) manually scram the reactor (0.25)
- c. Monitor Primary Containment parameters, refer to AOP-14.0 (0.50)
(2 required at 0.50 ea) REFERENCE Drunswick ACP 30.0 Safety /Releif Valve Failures pp 3, 4 ANSWER 4.t3 (l.00)
- a. Leakage (into collection systems, such an pump seal or valve packing leaks) that is captured and conducted to a sump or collecting tank (0.50)
- b. t.nakage into the containment atmosphere from sources that are DOTH speci fically located, AND known not to interfere with the operation of the leak detection system (0.25) OR not be a pressure boundary leakage (0.25)
REFERENCE Brunswick Unit 2 Technical Specifications Ammendments Section 1.0 pp 1-4
'4. PROCEDURES " NORMAL _ABNQRMOL.t_EMERGENQY_GND t
PAGE 45 88DIQ6091GGL_QQNIBQ( ANSWERS -- BRUNSWICK 1&2 -07/01/12-DANIELS, M. ANSWER 4.14 (2.50) MODE SWITCH POSITION REACTOR COOLANT TEMPERATURE
- a. RUN (0.25 Any temperature (0.25)
- b. STARTUP/ HOT STANDBY (0.25) Any temperature (0.25)
- c. SHUTDOWN (0.25) > 212 F (0.25)
- d. SHUTDOWN (0.25) < 212 F (0.25)
- e. SHUTDOWN or REFUEL (0.25) < 212 F (0.25)
~
REFERENCE Drunswick Unit 2 Technical Specifications Table 1.2 ANSWER 4.15 (1.50)
- a. 15% of rated thermal power (0.50)
- b. 1. thermal margin (0.50)
- 2. set point (0.50)
REFERENCE Brunswick Unit 2 Technical Specifications ANSWER 4.16 (1.00) To prevent excessive jet vibration (1.00) .
);9e siefff7'o 70/Mfp/NrJNArEpum7b /y/AdWe Ac49# dMAdW'A>4 AfcofafOM/ 10 REFERENCE Drunswick OP-17, RHR System Section 5.4 pp 28
- 4. PROCEDURES - NORMAL 3_ABNg6MA62_EMERgEL4QY_ANQ PAGE 46 6091960gIC06_CgNIP9L ANSWERS -- BRUNSWICK 16.2 -87/01/12-DANIELS, M.
ANSWER 4.17 (2.75)
- a. When the nteam flow is 1ess than 3x10EE6 1b/hr (O.25) p1 ace the Mode Switch in GHUTDOWN. (0.50)
- b. When the reactor power is below the APRM downscale sotpoint,(0.25) trip the Main Turbine. (0.50)
- c. Place the Feedwater Level Controller setpoint to 170".
(0.50)
- d. When the reartnr level is above 170", AND increasing,(0.25) if two Reactor Feed Pumps are running, trip one Reactor Feed Pump.
(0.50) REFERENCC Drunswick EOP-01 Section 5 pp 22
6 I I g
.g ATTACmENTS MASTER COPY 9
9
avaNT TUR8tNE TRIP WITHOUT BPV's Powan 100% ( ' g k '
%g % % %g 4 9* * % g d % %
k s
\ % \ ' 2 s s / '
j
\ s
[*hmm \
/
j
/ 0% , N 2 *
{ % <
/ / \ %
Ng
- l
' &R l
4
. / / i / # .g s' / /
i - - g-- ,, l 3 0 0 CORE FLOW 4 REACTOR VESSEL LEVEL 3 4 I $ l, i i, ,i s k
"hn--
p
. - p $... *C ,,
7 ..--- i 3' 0 FIGURE 1 TOTAL FW FLOW
EQUATION SHEET f = ma v = s/t Cycle efficiency = (Net work out)/(Energy in) w = mg s = Va t + 1/2 at2 Z E=E - *
.KE = 1/2 av ,
a = (Vf - V,)/t A = AN A i A,e" PE = agn V7 = V, + at u = e/t x = an2/t1/2 = 0.693/t1/2 y,y 3p, A= nD 2 1/2*" " U" W M - 4 [(t1/2)
- IIb))
aE = 931 an E=VavAo I=Ieg
-r.x Q = mCpat 6=UAai~ I=I *
- Pwr = Wfah I= ,
6 L s'l
~ ~
P=Pl0 sur(t) yt , ,, a P = Po e*/I SUR = 26.06/T SCR = S/(1 - K,ff) CR x = S/(1 - K,ffx) SUR = 26a/t* + (s - o)T CR;(1 - K,ffj) = CR2 (1 - keff2) ! l l T = ( t*/c ) + [(8 - o V Io ] M = 1/(1 - K,ff) = CR;/CR , T = 1/(o' - s) M = (1 - K ,ffa)/(1 - K,ffj) , T = (s - o)/(Io) SOM = ( -K,ff)/K,ff o = (Keff-1)/K,ff = AKeff/K,ff t= = 10 seconds I = 0.1 seconds *I o = ((t*/(T K,ff)] + (a,ff /(1 + IT)] I;d j=Id 2 ,2 gd 2 P = (t4V)/(3 x 1010) Id j 22 t = eN 2 R/hr = (0.5 CE)/d (meters) R/hr = 6 CE/d2 (f,,g) . l Water Parameters Miscellaneous Conversions i 1 gal. = 8.345 lem. 1' curie i 3.7 x 1010 dps 1 gal. = 3.78 liters ' kg = 2.21 lbm l l 1 ft* = 7.48 gal. I np = 2.54 x 103 8tu/hr Oensity = 62.4 lbs/ft3 1 mw = 3.41 x 106 8tu/hr Oensity = 1 gm/c..rJ - ' lin = 2.54 cm Heat of vacortration = 970 Stu/lem *F = 9/5'C + 32 Hest of fusion = 144 8tu/lem 'C = 5/9 ( *F-32) 1 Atm = 14.7 osi = 29.9 in. Hg. 1 BTU = 778 ft-lbf I ft. H O2 = 0.4335 lbf/in.
is se
', Brsterf t. to to ~
9 s s e@.,$.;o$.a,m,
- ..t. +n ,na mg,. >.n.. :
=
9 Mf
~
3:wd.
;: qmWeWyMME g =
u;r5EW Wk
.#- y dyN,W 4,s ~ .ewwens:
q +.wo k ut u, :w
~ -mm xwu d,.wm
- .ag gag .
;1-tr y /.idp%yngNy.yty;52:. fy w37 y: -r ph ,Ji 'Wpfa E nh v k n .. ;. msg if T y m fw". ;
tb =
# w 4 m -gj ' s ..: , {H g,,..h QT 'N..t-i:. ~ ;= =1= to? I'* ? ?bb)>T;l "UP'c ..: ,:3 W jykl [';
5i $ $.ln$& G "Ell rt A
/ l "
q : I
,,, /g . '
p';f , j
.h. 'I . ,;7k.{;f;j,!'
fl '
..9
- r w['
wr {' x w w -
~ =, ? : - ,m EJ r,Jih 'l (' l Ii, di dit41 c.wW +
7 {pg}(A
-a;w. . -
- f p M_iffAUTA - macy Ik,c- .. iM Mi@9M$3 un }.Uf J 51 o
%u. m < .e .9kE jbM .tn 1f[fi$
v
.7) r.w~~ n% ,.
_y 1. w-e : g y . e. .sn t J C id ) 2 rp7 f a: r, .u ift mmy f r:pw + J6 %gdif P L 4, - c ' $EiMiN2p
- .yAs :
- iG~~#WLN;th .AW SLWW6QME T14tPp ~F e "i .
$FC % Sa m .in FrwF 1 rRHt1 Al" pfflif 4f
- ! : MJB c tA&W4%;nn Yr%iffffd s.Q '
Ji f tah.$ :,p,h,,.q!!7iksi'#WJd{d@, d njjii,han- Mi~4.$TI!pc d,. . p,,c m
~b y.p.
me - . e .
. . . h.
oj ,jp. g,.- {_1,t r- g . .-,. .l. up , p:*.r:y . .B".,g ,U , n._7 cry, r
,;g.-
1
" L,r.'EdH\Y 1 {0 W a1 h,li,r d M1% fT%,,i%i 15-M' f/iWj di$ N!!hdiGM!I!ff!" $I$aijid!.T d!G $$0NN$'diNBdb d3M" y.!Gr.$1ssini!n wg '
w.; u $.ir
- 4.!pr$kg24.S. .pd -Q'rff- :@N%dLpu;,
7
;.,% - t:
hrthl[ . . .
. - " ^*
D -3 .
Table 1. Saturated Steam: Temperature Table Abs Press. Specific Volume Enthalpy Entropy Sat. Sat. Sat. Sat. Sat. Sat. Temp Temp tb per Liquid Vapor Liquid Evap Vapor Liquid Evap Vapor Fahr Fahr Sqin. Evap vg hl h fg he s, sig sg t t p vi vtg 0 08859 0 016022 33041 33043 0 0179 1075.5 1075.5 0.0000 2.1873 2.1873 32.8 32 8 34 8 0 09600 0 016021 3061.9 3061.9 1.996 1074.4 1076.4 0 0041 2.1762 2.1802 34.8 0 016020 2839 0 2839 0 4.008 1073.2 1077.2 0 0081 2.1651 2.1732 36.0 36 8 010395 0.016019 2634.1 2634.2 6.018 1072.1 1078.1 0.0122 2.1541 2.1663 38.0 38 8 0.11249 48 I 1.12163 0 016019 2445.8 2445.8 8.027 1071.0 10790 C.0162 2.1432 2.1594 40.8 42 8 0.13143 0 016019 2272.4 2272.4 10 035 1069 8 1079.9 0 0202 2.1325 2.1527 42.0 0 14192 0 016019 2112 8 2112.8 12.041 10683 10801 0.0247 2.1217 2.1459 * .5 44 8 t 46 8 0.15314 0.016020 1965.7 1965.7 14.047 1067.6 1081.6 0 0282 2.1111 2.1393 46.0 48 8 0.16514 0 016021 1830.0 1830.0 16.051 1066.4 1082.5 0 0321 2.1006 2.1327 40.0 1704 8 1704.8 18.054 10653 1083.4 0.0361 2.0901 2.1262 50.0 5e B 0.177 % 0 016023 52.8 0.19165 0.016024 1589.2 1589 2 20 057 1064.2 10842 0.0400 2.0798 2.1197 52.0 0 20625 0 016026 1482.4 1482.4 22.058 1063.1 1085.1 0 0439 2.0695 2.1134 54.8 54 8 56 8 0 22183 0 016028 1333.6 1383.6 24.059 1061.9 1086 0 0 0478 2.0593 2.1070 56.8 58.8 O.23843 0.016031 1292.2 1292.2 26.060 1060.8 1086.9 0 0516 2.0491 2.1008 58.0 ' " 0.25611 0.016033 1207.6 1207.6 28.060 10593 10873 0.0555 2.0391 ^ 2.0946 68.0 E8.8 0.016036 1129.2 1129.2 30 059 1058.5 1088 6 0.0593 2.0291 2.0885 62.0 ' 62.8 037494 64.8 029497 0 016039 1056.5 1056.5 32.058 1057.4 1089.5 0.0632 2.0192 2.0824 64.0 l 66 8 031626 0 016043 989.0 989.1 34.056 10563 1090.4 0.0670 2.0094 2.0764 EE.I 68 B ., 0 33889 0 016046 926.5 926.5 36.054 1055.2 1091.2 0.0708 1.99 % 2.0704 68.8 73.8 036292 0 016050 8683 868.4 38.052 1054.0 1092.1 0.0745 1.9900 2.0645 70.8 72 0 0 38844 0 016054 8143 814 3 40 049 1052.9 1093.0 0.0783 1.9804 2.0587 72.8 74.8 0 41550 0 016058 764.1 764.1 42.046 1051.8 1093.8 0 0821 1.9708 2.0529 14.8 76 8 0.44420 0 016063 717.4 717.4 44.043 10503 10943 0.0858 1.%I4 2.0472 76.8 18 8 0.47461 0 016067 6 73.8 673.9 46.040 1049.5 1095.6 0.0895 1.9520 2.0415 78.8 050683 0.016072 6333 6333 48.037 1048.4 1096.4 0.0932 1.9426 2.0359 St.I 33.3 82.3 0.54093 0.016077 595.5 595.5 50 033 .10473 10973 0 0969 1.9334 2.0303 82.0 84.3 0.57732 0 016082 560 3 560.3 52.029 1046.1 10982 0.1006 1:9242 2.0248 H.S 0 61518 0 016087 227.5 527.5 54.026 1045 0 1099 0 0.1043 1.9151 2.0193 86.8 86.3 38 3 0.65551 0.016093 4%8 496 8 56.022 1043.9 10999 0.1079 1.9060 2.0139 80.0 33.3 0 69813 0 016099 468.1 468.1 58 018 10423 1100.8 0.1115 1.8970 2.0086 90.3 034313 0.016105 4413 4413 60 014 1041.6 1101 6 0.1152 1.8881 2.0033 92.I l 92 3 34 g 079062- 0 016111 4163 4163 62.010 1040.5 1102 5 01188 1.8792 1.9980 34.8 36 3 0 34072 0 016117 392.8 392.9 64.006 1039 3 1103 3 0.1224 1.8704 1.9928 SEI 98.3 089356 0 016123 370.9 370.9 66 003 10382 1104 2 0 1260 1.8617 1.9876 58.0
I I . Enthafpy Entropy Abs Press Specific Volume Temp Sat. Sat. Sat. Sat. Temp tb per Sat. Sat. liquid Evap Vapor Liquid Evap Vapor Fahr SqIn. Liquid Evap Vapor Fahr hg h ig hg Si Sfg S g i i p vi vig vg 50 21 50 22 14800 990.2 1138.2 0 2631 1.5480 1.8111 180.8 lle.B 7.5110 0 016510 0 2662 1.5413 1.8075 182.I 0 016522 48.172 18.189 150 01 989 0 1139 C 182 8 7.850 0.2694 1.5346 1.8040 184 8 0 016534 46 232 46.249 152.01 987.8 1139 8 184.3 8 203 02725 1.5279 1.8004 186 8 0 016547 44 383 44 400 154 02 986.5 1140.5 1860 8 558 0 2756 1.5213 1.7969 188.5 0 016559 42 621 42.638 156 03 985.3 1141.3 188.8 8 947 40.941 40.957 158 04 984 1 1142.1 02787 1.5148 1.7934 198.5 1968 9.340 0 016572 1.5082 1.7900 192.6 39.337 39.354 160.05 982.8 1142.9 0 2818 1928 9.747 0 016585 1.5017 1.7865 1948 37 808 37.824 162.05 981.6 1143.7 0 2848 194I 10.168 0 016598 1.7831 196.8 36.364 164 06 980.4 1144.4 0.2879 1.4952 196I 10 605 0 016611 36.348 34.970 166 08 979.1 1145.2 0.2910 1.4888 13798 198.8 198.3 11.058 0 016624 34.954 0 016637 33.622 33.639 168.09 977.9 1146 0 02940 1.4824 13764 200.1 200 8 11.526 03001 1.4697 1.7698 204.0 0 016664 31.135 31.151 172.11 975 4 11475 284 8 12.512 0.3061 1.4571 13632 200.0 l 0 016691 28.862 28878 176.14 972.8 1149 0 208 0 13.568 0.3121 1.4447 13568 2128 0 016719 26382 26199 180.17 970.3 1150.5
> 212.8 14 696 15.901 0.016747 24.878 24.894 184.20 967.8 1152.0 0.3181 1.4323 13505 216.8 a 216 8 0.3241 1.4201 1.7442 228.0 l
0.016775 23.131 23.148 18823 965.2 1153.4 220.8 17.186 0 3300 1.4081 1.7380 224.0 0.016805 21.529 21.545 192.27 962.6 1154.9 2248 18.556 0.3359 1.3%I 13320 228.8 l 0 016834 20.056 20 073 196.31 960 0 1156.3 228 8 20.015 0.3417 1.3842 1.7260 232.0 0 016864 18.701 18318 200.35 957.4 1157.8 232.0 21.567 0.3476 1.3725 13201 236.8 23.216 0.016895 17.454 17.471 % U3 954 8 1159.2 236 0 l 16.304 16.321 208.45 952.1 1160 6 0.3533 1.3609 1.7142 248.0 248 8 24.968 0.016926 0 016958 15 243 15.260 212.50 949.5 1162.0 0.3591 1.3494 1.7085 244.0 1 244.0 26 826 0.3649 1.3379 1.7028 240 0 0 016990 14264 14.281 216.56 946.8 1163.4 2488 28.796 0.3706 1.3266 I6972 252.0 30.883 0.017022 13.358 13.375 220 62 944.1 11643 252.0 941.4 1166.1 0.3763 1.3154 1.6917 256.8 33.091 0.017055 12.520 12.538 224.69 256.8 0.017089 11.745 11.762 22836 938.6 1167.4 0.3819 1.3043 1.6862 260.0 268.8 35.427 03876 1.2933 16808 264.0 0 017123 11.025 11.042 232.83 935.9 1168.7 264 8 37.894 1.2823 1 6755 268.8 0.017157 10.358 10.375 236.91 933.1 1170 0 0.3932 268.8 40 500 12715 1.6702 272.0 i 0 017193 9 738 9.755 240.99 930.3 1171.3 0.3987 i 272.8 43.249 0.4043 1.2607 1.6650 276.0 0.017228 9.162 9.180 245.08 927.5 1172.5 276.8 46.147 0 017264 8.627 8.644 249.17 924.6 1173.8 0.4098 1.2501 1.6599 288.8 288 8 49.200 0 4154 12395 1.6548 284.0 0.01730 8.1280 8.1453 253.3 921.7 1175 0 284 8 52.414 1.2290 1.6498 288.8 0 01734 7.6634 7.6807 257.4 918.8 11762 0 4208 288 8 55 795 0 4263 12186 1.6449 292.8 0.01738 7.2301 7.2475 261.5 915 9 1177.4 292.8 59.350 1.2082 1.6400 296.8 0.01741 6.8259 6.8433 265.6 913.0 1178.6 0.4317 296I 63.084
Table 2: Saturated Steam: Pressure Table Specific Volume Enthalpy Entropy Sat. Sat. Sat. - Sat. Sat. Sat. Abs Press. Abs Press. Temp Liquid Vapor Liquid Evap Vapor Liquid Evap Vapor Lb/Sq In. Ib!Sq In. Fahr Evap hg h ig hg sg s ig 3 P p 't vg vfg 't - 2 3302.4 0 0003 1075.5 1075.5 0.0000 2.1872 21872 8 08865 s88865 32 018 0 016022 3302.4 1235 5 27382 1060.1 1087.4 0.0542 2.0425 2 0967 I 25 8 25 59 323 0 016032 1235 5
- 641 5 0.0925 1.9446 2.0370 I 50 810 79 % 0 016071 641.5 47.623 1048 6 10 % 3 1.0 13 101.74 3016136 333.59 333 60 69.73 1036.1 -1105 3 0.1326 1.8455 1.9781 58 16224 73515 73.532 130.20 1000.9 - !!31.1 0 2349 1.6094 1.8443 58 0.016407 38404 38.420 161.26 982.1 1143 3 0.2836 1.5043 1.7879 18 9 1G 8 193 21 0 016592 212.00 0 016719 26.782 26.799 18017 970 3 1150.5 0 3121 1.4447 1.7568 14596 14 E95 15 s 213.03 0 016726 2 & 274 26.290 181.21 %9.7 !!50.9 03137 1.4415 1.7552 15 0 23 g 227.96 0.016834 20.070 20 087 196.27 %01 1156.3 03358 13962 1.7320 28 I 30 3 250 34 0 017009 13.7266 13 7436 218 9 945.2 1164.1 0 3682 13313 1.6995 38 8 4s 3 267.25 0.017151 10.4794 10.4965 236.1 933 6 1169 8 0.3921 1.2844 1.6765 48 I 58 0 281.02 0.017274 8.4967 8.5140 250.2 923.9 1174.1 G.4112 1.2474 1.6586 58 0 EG I 292.71 0.017383 7.1562 7.1736 262.2 915.4 1177.6 0.4273 1.2167 1.6440 60 9 70.3 302.93 0.017482 6.1875 6.2050 272.7 907.8 1183 6 0.4411 1.1905 1.6316 78 8 > 30 g 312.04 0.017573 5.4536 5.4711 ~ 282.1 .9 1183.1 0.4534 1.1675 1.6208 se e a 33.0 320.28 0 017659 4.8779 4.8953 290.7 ., .6 11853 0.4643 1.1470 1.6113 Se e Ice 3 118.3 327.82 334.79 0.017740 0 01782 4.4133 4.0306 4.4310 4.0484 e'as6 30&$ .1 ii87.2 IlF8.9 0 4743 0.4834 i.i284 1.1115 i.6027 1.5950 isie 110 0 120 s 341.27 0.01789 3.7097 3.7275 (WL( .8 ' O.4919 1.0960 1.5879 120.0 138.8 ~
34733 0.017 % 3.4364 3.4544 ,313,5 r.o.8G.8 '1140.4 1131.7 9.4998 1.0815 1.5813 130 0 - 14e g 353.04 0.01803 3.2010 3.2190 325.9 853.0 1193.0 0.5071 1.0681 1.5752 140 0 158.8 358.43 a01809 2.9958 3.0139 D30S p ' 860.4 1194.1 0.5141 1.0554 1.5695 158 0 168 g 36335 0.01815 2.8155 2.8336 336.1 A .0 1195.1 0 5206 1.0435 1.5641 16e D 170.3 368.42 0 01821 2.6556 2.6738 341.2 4.8 1196.0 05269 1.0322 1.5591 170 0 180 g 373 08 001827 2.5129 2.5312 346.2 850.7 1196.9 0 5328 1.0215 1.5543 180 0 13g.3 377.53 0 01833 23847 2.4030 350.9 846.7 1197.6 0.5384 1.0113 1.5498 ISO 8 20s.g 381.80 0 01839 2.2689 2.2873 355.5 842.8 1198.3 03438 1.0016 1.5454 200.0 210.0 385.91 0 01844 2.16373 2.18217 359.9 839.1 1199 0 0.5490 0.9923 1.5413 210 0 223 g 389.88 001850 2.06779 2.08629 364.2 835.4 1199.6 0.5540 0.9834 1.5374 220 0 393.70 0.01855 1.97991 1.99846 368.3 831.8 1200.1 0.5588 0 9748 1.5336 238 8 233.s 240 g 39739 0 01860 1.89909 1.91769 3723 828.4 I?00.6 0.5634 0.9665 1.5299 2400 1.84317 376.1 825.0 1201.1 0.5679 0.9585 1.5264 250.g 25g o 400.97 0.01865 1.82452 2sg a 404.44 0.01870 1.75548 1.77418 379.9 821.6 1201.5 0.5722 0.9508 1.5230. 260 0 2780 407.80 0 01875 1.69137 1.71013 383.6 8183 1201.9 0.5764 0.9433 1.5197 210 0 280.0 411.07 001880 1.63169 l65049 387.1 815.1 12023 0 5805 0.9361 1.5166 280 0 290.0 414.25 0 01885 1.57597 1.59482 390.6 812.0 1202.6 0.5844 0.9291 1.5135 290 0 300 s 41735 0 01889 1.52384 134274 394.0 808.9 1202.9 0.5882 0.9223 1.5105 308 0 431.73 0 01912 130642 132554 409 8 794.2 1204.0 0 6059 0.8909 1.4968 3500 350 0 ann a 444 60 0 01914 1.14162 116095 424 2 780 4 1204.6 0 6217 0 8630 1.4847 -4000
, . t 4
) Abs Press. Specific Volume Enthalpy Entropy Temp lb per Sat. Sat. Sat. Sat. Sat. Sat. Temp Fahr SqIn. Liquid Evap Vapor Liquid Evap Vapor Liquid Evap vapor Fahr hg t t p vt vig vs h ig h r 5 Sig sg 460.0 466.87 0.01 % I 0.97463 0 99424 441.5 763.2 1204.8 0.6405 0 8299 1.4704 458.0 464.0 485.56 0.01969 0.93588 0.95557 446.1 758.6 1204.7 0.6454 0 8213 1.4667 464.0 460.0 504.83 0.01976 0 89885 0.91862 4503 754.0 1204.6 0.6502 0 8127 1.4629 460 0 472.0 524.67 0.01984 0 86345 0 88329 455.2 7493 1204.5 0.6551 08042 1.4592 472.0 476.0 545.11 0.01992 0.82958 0.84950 4593 744.5 12043 0.6599 03956 1.4555 476.0 400 0 5 6.15 0.02000 0.79716 0.81717 464.5 739.6 1204.1 0.6648 03871 1.4518 4KB 1- 404.0 587.81 0.02009 036613 038622 469.1 734.7- 1203.8 0.6696 03785 1.4481 404.0
- 400.0 610.10 0 02017 033641 035658 4733 7293 1203.5 0.6745 03700 1.4444 400.0 '
492.0 633.03 0.02026 010794 012820 478.5 724.6 1203.1 0.6793 01614 1.4407 492.0 ,' 496 0 656.61 0.02034 0 68065 010100 483 ! 719.5 1202.7 0.6842 01528 1.4370 496.0 500.0 680 86 0.02043 0.65448 067492 4873 7143 1202.2 0.6890 03443 1.4333 500.0 504.0 705.78 0.02053 0.62938 064991 4923 709 0 - 1201.7 0.6939 0 7357 1.4296 504.0 500.0 731.40 0 02062 0.60530 0.62592 4973 703.7 1201.1 0.6987 0.7271 1.4258 500.0 y 512.0 75732 0.02072 0.58218 0 60289 5023 698.2 1200.5 0 7036 03185 1.4221 512.0 s 516 0 784.76 0.02081 0.55997 0.58079 507.1 692.7 1199L8 03085 01099 1.4183 516.0 ' 520.0 812.53 0.02091 0.53864 0.55956 512.0 687.0 1199.0 0.7133 01013 1.4146 520.0 524.0 841.04 '0.02102 0.51814 .0.53916 516.9 6813 1198.2 03182 0.6926 1.4108' 524.0 520.0 87031 0.02112 0 49843 0 51955 521.3 675.5 1197.3 03231 0.6839 1.4070 520.0 532.0 . '900 34 0.02123 . 0.47947 0.50070 5263 669.6 !!96.4 03200 0.6752 1.4032 532.0-1 536.0 931.17 0.02134 - 0.46123 0.48257 5313 663.6 1195.4 03329 0.6665 13993 536.0 540.0 962.79 0.02146 0.44367 0.46513 536.8 657.5 11943 03378 0.6577 1.3954 540.0 544.0 995.22 0.02157 0.42677 0.44834 - 541.8 6513 1193.1 03427 0.6489 13915 544.0 540.0 1028.49 0 02169 0.41048 0.43217 546.9 645.0 1191.9 0.7476 0 6400 13876 540.0 552.0 1062.59 0 02182 039470 0.41660 552.0 638.5 !!90.6 0.7525 0.6311 13837 552.0 556.0 1097.55 0.02194 03 7966 UA3160 5572- 632.0 1189.2 - 0.7575 0.6222 . 1.3797 556.0 560.0 '1133.38 0.02207_ 036507 038714 562.4 6253 1187.7 0.7625 0.6132 1.3757 500.0 554.0 1170.10 0.02221 035099 037320 567.6 618 5 1186.1 0.7674 0.6041 13716 554 0 560.0 1207.72 ' - 0 02235 0 33741 035975 572.9 P l.5 1184.5 03725 0.5950 13675 550 0 572.0 1246.26 0.02249 032429 034678 5783- 04.5 11823 0.7775 0.5859 13634 572.0-1 576.0 1285.74 0.02264 0.31162 033426 583.7 597.2 1180.9 03825 0.5766 1.3592 576.0 500.0 1326.17 0.02279 0.29937- 032216 589.1 589.9 '1179.0 0 7876 0.5673 13550 500 0 } 504.0 13673 0 02295 0 28753 031048 - 594.6 582.4 1176.9 03927 0 5580 13507- 504.0
! 500.0 1410.0 0.02311 0 27608 0 29919 600.1 574.7 1174.8 0.7978 0.5485 13464 500 0 592.0 14533 0.02328 0.26499 .0.28827 605.7 566.8 1172.6 0.8030 0.5390 1.3420 502.0 '
596.0 1497.8 0.02345 0.25425 0.27770 611.4 558.8 1170.2 0.8082 0.5293 13375 596.0
o e e Table 3. Supe 7 heated Steam Ae5 Press tb7$a in Sat Sal. hm0er$we-Dettees tantenheit (54t. leen0) Water Steam 290 250 300 350 400 450 500 let 200 000 lie 1800 lite 1280 g $n $8 26 los26 190 26 tot 26 298 26 34026 390 M 899 26 590 M 690 26 798 M 898 M 990 M 1098 76 3101 748 e 0 01684 333 6 3W S 4224 4S23 442 i Sal 9 Sei 7 $115 631 1 690 7 750 3 set 8 869 4 979 e 948 6 h 69 73 1105 8 1150 2 1172 9 IntS 7 1218 7 1241 8 126% i 1784 6 13M i 1384 S 8433 7 1843 8 1534 9 1506 8 16J9 7 s 8 026 1 9788 2 0$09 2 8048 t ilS2 28445 2 1722 # 1905 2 2237 22700 2.3144 2 3551 IM34 2 4296 2 atae 2 4969 in 37 76 8) 76 137 M 18776 237 76 28776 337 76 43776 537 M 63776 737 76 13776 98 M 1037 76 I e 0 01641 23 53 78 14 84 28 90 24 M 25 102 24 108 73 114 71 IM IS 338 0s 150 01 163 94 37386 18578 197 F0 1162M h 130 20 till i 1148 6 IlFI 7 IIM 8 1218 0 1241 3 1264 7 1288 2 1315 9 13s4 3 1433 6 18437 IS34 7 1506 7 1639 6 s 0 2349 1 8443 1 8716 8 90be 1 9369 Ithe 1 9943 2 0208 2 0460 2 0932 21%9 2 8776 221H I 2528 22646 2 3194 1, Sh 6 79 $6 79 106 79 l % 79 206 79 2 % 79 306 79 406 79 Sol 79 004 79 706 79 804 79 906 79 1006 79 (193 213
, 0014H 3842 38 04 alH 44 M 402 Sl o) $4 04 5704 6303 6m 74 90 00 M M98 W s7 M aa h 16126 8143 3 1146 6 5170 2 11937 12671 1240 6 1264 1 12878 8335 5 1384 0 14334 1883 5 1534 6 IS866 1639 %
s 0 28 % 11479 1 7928 8 4273 1 8593 1 8892 1 9173 1 9439 1 9692 2 0166 2 0603 21081 2 1394 21FS7 21804 2 24J0 Sb 38 Os se 90 1M 00 les so 238 80 2s8 OS 308 OO 4es og Set 00 68s to 188 00 agIto 900 00 I4 698 e Otl# 26 799 le 67 M 72 38 77 47 86 46 93 SI 90 SS 06 59 13 63 19 67 PS 28 47 30 W 32 68 Gl2 m h 180 17 4158 S Il6a 3 1197 6 1214 5 1779 9 IM)6 3787 4 1335 7 8333 3 14 17 1843 a 1534 S ISa6 S 1619 8 9 3128 87%8 I 7833 181$8 8 84S9 4 8743 1 9019 89MS I 9739 2 8177 29$85 2 0969 2 1332 2 1676 2 200%
'8 $h M97 34 97 IM97 19697 2M 97 23697 306 97 48497 $84 97 68697 79697 SM 97 96697 , 0 01673 26 290 27 s37 29399 31 939 33963 33977 37 985 419M 45 973 a9 564 SH46 57926 61 *05 65 882 013 031 g 1g3 21 8150 9 1997 8192 $ 4216 2 1239 9 32636 1287 3 1335 2 H83 8 14H 2 1483 4 1534 5 ISa6 S 16M 4 s 0 3132 1 1 S52 1 009 1 3834 l eaH 1 8720 1 8988 I H42 1 9747 2 015S 20%3 2 0946 2 1309 2 1653 21982 pg Sh 22 04 72 04 122 04 172 04 272 08 277 04 372 04 47204 577 04 672 04 77204 872 04 972 04 , 0 01683 20 087 20 7R8 22 b6 2n00 M 47s 26946 28a57 314fi6 34 46 S 37458 40447 43435 46 470 a9 405 G27 % b 196 27 31 % 3 11471 8191 4 12154 12M 2 IM10 1286 9 1H49 1383 5 . 8432 9 1483 2 1534 3 1546 3 16M 3 5 0.HS8 5 7320 3 787) 1 730) i stll 18M7 18H6 1 8978 I H97 194M 2 0244 20628 2 0991 213J6 2 1665 $h 9 93 gg gy pgg gy ggg gy 79993 M9 93 3M 93 4M 93 $$9 93 GH 93 FM 93 SM 93 9M 93 21
- 0 01591 16 101 16 558 17 R79 9 076 to in7 ?! %77 22 740 251%3 27 % 7 29 " 4 37 148 34 740 37 Ito M sie G40 04 h 204 67 1160 6 714 % 1714% 17f.7 5 17tr 4 litet I)R 19 6417 7 1441 4 4%%47 l' int. 7 lus 7 llH6 llam 7
- t 0 3S35 I 7141 1 7212 1 7s47 i 74 % i sles I ogis I a67; I 9149 8 9'dia a 9W 2 6141 7 ei44 2 leurr 7 1434 WW 38 e 9 01701 13 744 If8fc I# 89 9 9 e 9 29 44 8 9 9 h 218 93 l164 8 1889 0 1213 6 1237 8 Mit 1246 0 1314 2 13830 14H S 1487 8 1534 0 IS861 16M O s 0 3682 16MS 1 7334 1 7647 4 7937 4210 1 8467 1 8946 19M6 1 9795 2 0179 2 0$83 2 0088 2 8217 39 Sh 40 71 to 71 140 FI 19071 240 71 340 FI 440 71 S40 71 640 71 740 71 840 71 940 71 gSg 2gl e 0 01708 11 896 12 654 13 % 2 14853 IS 234 14 207 17939 19662 21 379 23 092 24 803 M SI2 20220 h 228 03 1867 I lig7 8 1212 7 1237 8 1261 3 litt S 3333 9 1382 8 1832 3 1882 7 1533 9 Ise60 16389 s 0 3809 1 6872 4 7152 1 7468 I H61 1 8035 1 8294 Igno 1 9214 1 9624 2 0009 2 0372 2 0787 21046 sh 32 75 82 75 112 75 I82 75 232 75 332 PS a32 F5 S32 FS 632 FS 732 75 832 FS 912 75 06 M8 e 001FIS 10a97 Il0M 138): 12 674 13 398 14 865 IS 685 17195 18699 20 199 21 691 23 194 24 689 h 2M le l169 8 lig6 6 1211 7 12M 4 1260 8 1785 0 13H 6 1382 S BenI 1482 S 1533 7 IS85 8 1638 8 s 0 3921 Ilist i 6992 8 1312 1 MOS I 1883 I s143 4 8624 I 906S I to76 I 9060 2 0224 2out 20a99 el Sh 25 % FS % 125 % in S6 225 % 325 % 425 % S25 S4 625 % FM % 821 % 9M %
G74 44'
- 4 0172t 9 399 9 M7 10 497 112nl ll 892 12 577 13 932 IS 274 16 614 17 950 19 282 to 613 Il1:3
- AC 49 1872 I IIIS 4 1210 4 1235 7 1260 2 1284 6 1333 3 1382 3 1838 9 1882 3 1533 6 158) 7 1638 7 s 0 4023 3 6671 1 6849 1.7373 1 7478 I He3 8 8080 I 8492 4 8934 5 9345 I 9730 2 0093 2 0439 20768 88 0 91 023 34 18 98 68 96 !!898 168 98 218 99 318 98 41998 118 99 618 98 718 99 818 98 91898 v 9 01727 8 514 3 769 9 474 10 062 19 688 11 306 12 % 9 13741 18 947 16 150 87 350 Is Set 19 746 h 250 21 1174 1 3134 3 1209 9 1234 9 IM96 1284 8 IU29 1382 0 1833 F 1482 2 ISD 4 8585 4 1630 6 s 0 4112 8 6586 46720 1 7048 3 7349 1 7628 4 7890 18J74 1 8816 1 9227 1 9613 1 9977 2 0322 2 06S2 1
SS Sh 12 93 62 93 112 93 162 93 212 93 312 93 412 93 512 93 612 93 712 93 812 93 912 93 0670M e 8 01733 7 945 8 546 9 130 9 702 le 267 il 3el 12 esS 13 583 le 677 Il 769 16 459 17 948 I h 2M s1 1882 9 1708 9 1234 2 1759 8 1283 6 13H 6 1381 8 1831 S 1882 0 ISH 3 5585 5 1638 5 s 0 4196 1 6608 160H IFH) 1 Mit i H81 8 8266 8 8710 1 9128 8 9507 8 907 2 022 2 OSS , to 54 7 29 $729 10729 Inf 29 20729 30729 40F 29 SOF 29 40729 707 29 007 29 907 29 1 Q12 Fil 0 01738 7 174 7257 7815 8 354 8 881 9400 10 425 II 438 12 446 13 450 le 452 15 452 16 450 l t 262 !! 1877 6 IISI 6 1208 0 12H S 1258 S 1783 2 1332 3 8381 S 1831 3 1481 8 15332 1585 3 1638 4 l t 6 4273 1 6440 1 6492 1 6829 1 7834 1 7417 1 7641 1 8168 1 8612 1 9024 1 9410 19H4 20 20 2 0450 l Sh 2 02 $2 02 102 02 IS7 02 202 02 302 02 402 02 $0202 602 02 702 02 80202 90202 e 9 01743 6 ES) 6 67S 7195 7 647 8106 e 667 9 AIS to $52 Il 464 12 ail, 33 H7 la MI 15183 1 1217 988 h 267 63 1179 1 1100 3 IM70 8232 7 IM79 1282 7 IHit 1341 3 18313 8481 6 ISH O 1585 2 1638 3 ) s e 4344 8 6375 86MO I 6738 I 7040 iFue 17H0 8 80H I 8522 8 8935 l9HI I % 85 2 0031 2OMI Sh 4707 1707 14707 39707 29707 39707 49707 59707 697 07 79707 89707 M e 0 01748 6 205 s tr4 7 133 7590 8 039 8 922 9 793 10659 il $22 H 382 13740 le 0*7 5302 933 h 2H 74 11:0 6 1206 0 1732 0 IMP 3 1782 2 IH16 1381 0 1830 9 1481 5 1532 9 IStil 1638 2 l s 0 4488 1 6316 l uso I 6953 1 7237 I M04 1 7993 184J1 1 8452 I H38 1 9603 1 9949 2 0279 yg th 4239 92 39 542 39 192 M 292 39 M2 39 492 M 592 39 692 39 79239 SH 19
, 0 01753 5 114 6 204 6 645 7074 7 494 8 320 9 135 9 945 10 FSO 31 H3 12 MS 13 ISS IMJ 683 n 2n % 3181 9 1205 9 1231 2 1256 7 1281 7 1331 3 1390 7 1430 F 1481 3 1537 7 1545 0 1638 I e 0 4474 1 6260 1 6554 1 6064 t il% I M24 1 7915 IBMI 18He 1 9148 8 9526 l 9872 2 0202 $h = Superhe81. F h = erithalpy. Stu per Ib V = SptCiflC V0fumt. Cu !! per Ib $ = entf0py, Blu ptf R per ab .
l a. B -3 .
e e p 9 Table 3. Superhealed Steam-Continued Aas hess uus0 ln Set 548 ISD"4in - De8'm f ahchel ($4t tem 05 Walev $leem 400 450 500 550 500 200 008 000 1000 1100 1298 1380 lett 1500 34 14 09 64 09 114 09 164 09 214 09 31409 484 09 514 09 414 09 714 09 814 09 914 09 1014 09 1814 09 21 0 v 0 01844 2 1822 22M4 2 4181 25800 2 7504 2 9078 37137 3 5128 3 8000 4 1007 4 3985 4 6818 4 96 % 57571 5 5840 4385 til h 359 tl 1899 0 I208 02 1239 2 1768 0 1295 3 1321 9 1373 7 1425 l 1474 7 1528 8 1581 6 1635 2 1689 6 8744 8 1800 8 s 0 5490 1 5413 15522 1 5472 1 6180 1 6454 1 6715 1 7182 I M07 1 8001 1 8378 18728 1 9054 1 9372 1 % 77 1 9970 Sh 10 12 60 12 11012 16012 21012 31012 41012 51012 41012 710 82 810 12 91012 1010 12 1110 12 229 e 0 01850 20ss3 2 1240 2 2999 24638 2 6199 2 7710 3 0642 3 3504 36327 3 9125 41905 4 4678 4 F426 5 0173 5 2913 4389 881 h M417 1899 6 1206 3 1237 8 12H 9 1794 5 13282 1373 2 1424 7 1476 3 4528 5 1581 4 1635 0 1689 4 1744 7 19006 s 03540 I 5374 1.5453 3 5808 1 6120 1 6400 1 6654 4 1828 8 1553 I F948 I 8318 8 8668 I 9002 1 9320 1 9625 I 9919 Sh 4 30 5430 106 30 3 % 30 206 30 306 30 406 30 506 30 606 30 706 30 806 30 906 30 1006 30 1106 30 230 v 0 018 % 1 9985 2 0212 2 1989 2 3503 2 5008 2 6461 29276 3 2020 34726 3 7406 4 0116 4 4 2717 4 53 % 4 7984 5 0606 1393 701 h 368 25 1200 1 12044 1236 3 IMS7 1293 6 1320 4 1372 7 1474 2 1476 0 1528 2 1581 1 1634 8 1609 3 1744 5 1800 5
.s 0 5584 1 5336 4 5345 3 5147 1 6062 8 6344 1 6604 13075 1 7502 17897 I 8264 I MIB I 0952 1 9270 8 9576 I 9869 $h 2 61 52 61 102 61 152 61 202 68 30261 402 61 50261 602 61 702 61 002 63 902 61 3002 61 1102 61 240 v 9 01860 1 9877 19268 2 0978 2 2462 2 3915 2 5316 2 80?4 3 0661 33259 35831 3 83P5 4 0976 434% 4 5477 4 8492 4397391 h 37727 1200 6 1207 4 12349 1264 6 1797 7 1319 7 8377 8 1423 8 14 FS 6 1527 9 1580 9 1634 6 1649 8 1744 3 Isaa e s O M34 1 5299 I 5320 1 % 87 I 6006 I 629L I6%2 1 7025 l 1452 1 1848 I 8219 I 8570 18904 I 9223 19528 I 9422 Sh -
4903 9903 14903 199 03 299 03 39903 499 03 599 03 69903 799 03 899 03 999 03 1099 03 258 v 0 01865 1 8432 2 0016 2 1504 2 2909 24M2 2 6872 2 9410 3 3909 34382 3 683 F 3 9778 4 1709 4 4131 4 6546 44009D h 376 14 1201 1 1213 4 1263 5 1298 8 1319 0 13F16 1423 4 14M 3 1527 6 1580 6 1634 4 1648 9 1744 2 19002 s O M79 ISM 4 5 % 29 I 5951 1 6239 I 6502 1 6976 8 7405 1 7808 I 8873 1 8524 I 8858 1 9177 8 9442 1.9776 Sh 45 56 95 54 145 % 195 54 295 % 395 % 495 % 595 % 695 % 79556 89556 995 56 1095 % 2:0 v 9 01870 1 7742 19tn 20619 2 1988 2 3?st 2 5808 287% 3 0663 3 3044 3 5404 3Fnt 4 0097 4 7427 4 4F50 H04 441 h 379 90 1708 5 1231 9 1262 4 1290 9 1318 2 1371 I 1423 0 1474 9 1527 3 1580 4 1634 2 1680 7 1744 0 1000 I s 0 5722 15230 l 5573 1 5899 Ilitt i 6453 1 6930 1 7359 Iin6 8 8124 8 4480 3 8414 1 9133 8 9439 I 9732 Sh 4720 92 20 142 20 192 20 292 20 392 20 49220 592 20 692 20 792 20 892 20 992 20 1097 20 270 e 0018n 17101 1 8398 19799 2 1:28 2 738s 24874 2 7186 2 9509 31806 340s4 36349 38413 4 0849 4 30:1 4c07 801 h 383 % IMI9 1230 4 1241 2 1290 0 1317 5 4370 5 1422 6 14 F4 6 1527 I 8580 1 16340 1688 5 17439 1800 0 s 0 5164 13197 I nlO 1 5848 16140 1 6406 1 6485 1 7315 1 7713 1 8085 1 8437 1 8771 1 9090 1 9396 1 9690 4 Sh 38 93 3893 13893 188 93 20493 348 93 488 93 588 93 680 93 76493 488 93 94893 los4 93
- 288 e 9 01880 1 6505 1 7645 1 9037 2 0322 28HI 2 3909 2 6194 2 8437 3 06 % 32s% 3 5042 3 F217 3 93e4 4 1543 Hit CD h 387 12 8202 3 1728 I 1260 0 1289 L 1316 8 1370 0 1422 I le74 2 ISM 8 1579 9 1633 8 1688 4 IF43 7 17998 e 1 5805 1 5164 1 5464 1 5798 3.6093 1 6368 1 6841 1 7273 1 7671 1 8043 1 839% 1 8730 1 9050 1 93 % 1.9649 sh 35 n 85 n : 35 n 185 n 2ss n 385 n de$ n 585 n 685 n 285 75 8s5 75 9:5n los5 n 298 e 8 01885 15945 1 6988 1 8327 ' 9578 20712 2 3058 25M9 2 7440 2 9585 33711 33824 3 59M 3 8019 4 0106 H14 253 6 39060 1702 6 1227 3 1258 9 2ss t 1316 0 1369 5 1421 7 14739 I5M S 1579 6 M33 5 1648 2 17436 1799 7 s 0 5844 1 5135 I 5412 15750 .6048 8 6317 I 6199 1 2232 1 7630 1 8003 8 83 % 1 8690 1 9010 1 9316 3 % 10 Sh 3265 8265 132 65 18245 282 65 38265 48265 582 65 68265 78265 88265 982 65 1082 65 See 0 01889 1 5427 I 6354 1 7665 18e83 2 00s4 22M3 2 4407 2 6509 2 8585 3 0643 3 2648 34721 3 6746 3 8764 641F J5) h 39399 1202 9 1225 7 1257 7 1287 2 1315 2 IM89 1421 3 1473 6 15M 2 15794 1633 3 1688 0 1743 4 17996 s 15882 1 5105 3 535) 1 5703 1 6003 1 6274 5 6758 11192 I 7591 1 7964 88317 I 8652 8 8972 1 9278 1 9572 $h 29 64 79 64 129 64 179 64 279 64 379 64 479 54 579 64 679 64 779 64 479 64 979 64 1079 64 lit v 8 01894 18939 15763 1 7044 1 8233 1 9363 2 1520 2 3600 2 5634 2 7650 2 9644 3 1425 3 3594 3 55 % 3 M09 .4420 361 h 39730 1203 2 1224 8 12 % 5 1286 3 1314 5 1368 4 1870 9 14732 1525 9 15F12 1633 3 1687 8 1743 3 17994 s 65920 1 5076 1 5311 15657 1 5960 1 6233 1 6789 1 7153 I n53 17t27 1 8200 1 8615 1 8935 1 9248 1 9536 Sh M 69 76 69 M 69 17669 276 69 37649 476 69 576 69 676 69 776 69 87469 976 69 3074 69 179 e 0 01899 1 44s0 1 5707 1 6462 7673 18725 2 0873 22943 24828 2 6774 2 870s 3 0628 3 753s 34434 3 6332 H2331) h 40053 1203 4 1222 5 12 % 2 285 3 1313 7 13478 1420 5 1472 9 1525 4 1578 9 1632 9 168F 6 17413 1799 3 s 0 5956 1 504: 1 5241 8 %I2 i S91s 1 6192 1 6680 1 7116 I nl6 lle90 1 8243 1 8579 18999 1 9206 5 9500 th 23 32 73 32 123 32 ,73 82 27332 373 82 473 82 57392 67332 773 82 871 82 973If 3073 82 330 v 0 01903 1 404s 8 4644 1 5915 1 7050 ;8175 2 0168 2 2132 2 4054 2 5950 2 7828 2 9692 33545 33389 3 5227 H26181 h 40310 1203 6 1220 9 1254 0 1294 4 l313 0 8%73 1470 0 le72 5 1525 3 1578 7 1632 7 16875 1742 9 iF99 2 s 05998 1 5021 1 5213 15%8 1 5876 l8153 I H43 1 7079 1 7480 118% 1 8206 1 8544 8 8864 1 9171 1 9466 Sh 21 01 71 01 121 01 171 01 til 01 371 01 471 el 57: 01 673 01 271 01 871On 97101 197101 340 e 0 01908 13640 14191 lint 1 6511 17%I 19H2 21463 2 3333 2 5175 2 7000 2 8818 3 06ll 32402 3 4186 4428 991 h 406 00 1203 8 1211 2 1752 8 1783 4 1312 2 1364 7 1419 6 1472 2 1525 0 1575 4 1632 5 4687 3 1742 8 1791 0 s 9 6026 l ett4 1 5165 4 5525 1 5836 1 6114 1 6606 13044 17445 11820 1 8174 44510 1 8838 1 9134 1 9432 Sh 18 27 68 77 1827 ' 68 27 M877 M8 27 464 27 54427 66827 768 27 86427 968 27 1068 27 358 e 0 01912 1 32 % 13725 14913 6002 17078 18970 2 0:32 2 7652 2 4445 2 6719 2 79a0 2 9730 3 1478 3 37til H3173) h 40913 1204 0 8217 5 1251 5 782 4 311 4 IH62 1419 2 14718 1524 7 1570 2 1632 3 1687 8 1742 6 1798 9 s 0 6059 14%8 13119 1 5483 ll?97 16077 1 6578 13909 17418 13787 1 8143 13472 18798 1 9105 1 9400 84 1559 6559 115 59 65 59 M5 59 365 59 445 59 % 5 59 64559 MS 59 86559 965 59 1045 59 368 e 0 07917 1 2891 1 3735 l asse 1 H23 .6525 1 842l 2 0237 2 2009 2 37% 2 5482 2 71 % 2 0098 3 0592 3 2779 N34 413 h 412 81 12041 1215 g 1250 3 1781 5 310 6 1365 6 1414 7 14 FI 5 1524 4 1577 9 1632 1 1686 9 1747 5 lite 8 s 0 6092 3 4943 1 5073 1 5441 1Sna 6040 8 6536 1 6976 8 7379 IJn4 I 8109 I 8445 I 87H I 9073 1 9364 Sh 1039 40 39 10 39 160 39 260 39 360 39 46019 ,_%0 M 660 M 760 39 360 39 %0 39 1060 M 388 e 0 01975 1 2218 2472 1 3606 .4635 1 559s 1 7410 191H 2 0s25 2 24s4 2 412e 25M0 2 73u 2 8973 3 0572 (439 613 b 41859 1704 4 212 4 1247 7 279 5 1309 0 13645 1417 9 1470 8 1521 8 1577 4 1631 6 1686 5 1747 2 17945 s 0 61 % 1 4894 14982 1 5360 l % 83 4 5969 1 6470 1 6911 I 7315 1 7692 1 8047 I 8384 8 8705 I 9012 4 9307 $h = Superhest, F h = erithalpy. Blu per Ib v = 5pecific volume, cu ft per Ib. s = entropy. Btu per R per Ib B -5
. e. e Table 3. Superheated Steam-Continued Aes Press Lbl5e in Set Sal I4*Dt' ave - De8'eelIaNenheil (541 lef"Di Walet Steam 554 let $54 100 158 let 850 900 1000 1100 1200 1388 1400 1500 Sh 11 El 61 68 til 61 16161 211 61 261 61 311 61 MI 61 461 41 %) 61 661 El '761 61 NI 61 961 61 958 e 0 07141 04771 04083 0 5485 0 5993 0 6449 0 6871 07U2 0 76 % 0 0030 0 8F53 0 94 % 1 0142 1 0817 l 1484 1 2143 6 38 398 h $34 74 1894 7 1207 6 17 % i 129s 4 1329 3 1368 5 1392 0 1471 S 8450 3 1507 0 8%32 16:9 $ 1676 2 1733 3 1791 0 s 0 7358 1 3170 3 4098 Ie%7 14923 1 $228 I $500 I $748 I 5977 I 6193 16595 4 4967 I 7317 I7M9 IJMS I 8267 Sh $ 42 5542 10547 1 % 47 20S 42 7 % 47 30547 3M 42 455 47 $$$ 47 65S 42 7M a2 85542 955 42 1900 e 0 02159 0 4460 0 4S35 OllH OMM 0 6080 0 6489 0 6875 0 7245 0 1603 0 8295 0 8966 0 % 22 1 0766 1 0901 1 1529 6 44 587 h 542 $5 Ill? 9 1199 3 1249 3 1290 8 1325 9 1358 7 1389 6 la19 4 1448 5 1505 4 1%I9 1618 4 167)3 1732 5 17903 s e7434 13910 13973 I 4457 I 4833 i Slot i 5426 I M77 1 $908 8 6126 1 6530 I 4905 1 72 % I 7509 8 790$ 1 8207 $h 4947 9947 14947 19947 24947 7994F 34947 44987 54947 64947 74947 84947 949 47 1950 e 0 02177 04??? 0 4828 0 S 31 2 0 5745 0 6147 06 SIS 0 6872 0 7216 0 7841 0 8524 0 9151 09767 1 0373 1 0973 6 50 131 h M0 iS 3191 0 1783 4 1285 7 1322 4 83 % 8 1387 2 1417 3 1446 6 1503 9 1540 F 1617 4 1614 4 1731 4 1789 6 s 07507 lJ8SI IeM8 l 4748 1 $072 I $354 I % 08 ISul I 6062 1 6469 I 6846 1 7197 IJS31 11M8 8 8154 Sh 43?? 93 72 14372 193 77 24'3 ?2 M3 72 34372 443 72 $43 77 64372 74372 88372 943 7?
Itse e 0 02195 0 8006 04533 0 5017 0 5440 05826 0 6188 04533 0 6865 O MOS 0 8123 0 8723 0 9313 0 9094 1 0468 65628) h %7 SS list i 12373 1281 2 1318 0 in29 1384 7 1415 7 1444 7 1607 4 4%94 1616 3 1673 $ 1738 0 1789 0 s 0 7578 1 3794 14759 I4%4 84996 i S284 i 5542 i $179 I 6000 I 6410 86787 I 7141 174FS I 7793 1 8097 Sh 39 I8 8918 13918 18918 23918 28918 339 il 43918 SM 18 43918 73918 SM 18 13918 itle e 0 02214 03407 08763 04146 0 5162 0 % 38 0 6889 0 6723 0 6S44 0 7161 0 7754 0 8332 0 8899 0 94 % 1 0007 6618?) h % 4 78 4187 0 1230 9 1276 6 1315 2 1349 9 1387 2 1813 0 1442 8 1500 9 1555 1 1616 7 1672 6 1730 2 1788 3 s 07647 13734 14160 44507 I4923 i S216 8 5478 3 5717 8 5941 1 63S3 I 6732 87087 1 7472 1 7743 8 8045 Sh 32 81 82 81 13283 187 81 232 81 782 81 332 81 43281 S32 81 632 81 732 81 832 81 932 81 1298 e 0 0??32 O M74 0 8016 0 4497 D a90$ 0 5773 0 5615 0 5939 0 6250 0 684S 0 7418 0 7974 0 8519 0 9055 0 95M 667 898 h $18 85 !!84 8 1724 2 1271 8 1311 5 1346 9 1379 7 1410 8 1440 9 1499 4 1349 1614 2 1671 6 1729 4 17176 s 0 7744 13643 1 4061 1 4501 1485) I SISO 3 S415 1 %S4 15es3 1 6798 l e69 1 7035 1 7378 1 7698 1 7996 Sh 2750 72 S8 177 54 17258 27758 277 58 372 S4 47254 $22 58 62758 122S8 82258 9?? SS 13e8 e 0 02769 0 3299 OslS70 0 4057 O sasi 0 4s04 0 5129 054M O S779 0 6287 0 6822 0 7341 0FM7 08345 0 88M 6 77 421 k S85$8 1180 2 5709 9 1261 9 1303 9 1340 8 1374 6 1406 4 143) I 1896 3 8%83 1617 0 But8 8727 9 1786 I l 0 7843 13577 13E0 14340 14714 3 50?? I S?96 i S$44 5 $173 8 6194 5 6574 6 6937 6 7275 l 7596 8 7902 Sh 1293 6293 112 93 M793 717 93 76793 31291 al293 11793 617 93 71793 PIP 93 917 93 949g e 0 07107 O inie g u r6 01557 Come C asco 0471; C wee C S?82 059J9 0 6318 0 6793 07??2 0 1737 0 8!95 647 073 h $98 83 IlFS 3 1194 1 1751 4 12 % i 1334 S IM93 14020 1433 7 14932 1%I8 1609 9 1668 0 1726 3 8785 0 s 0 79H 13474 IJ652 I 4181 1 4S15 44900 1 5182 I S4M 1 % 70 1 6096 1 6484 1 6846 11485 13508 1 7835 Sh 3 80 53 80 103 80 15380 70380 753 80 30100 40380 503 40' 603 00 70300 803 80 ' 90340 1580 e 0 02346 07772 0 2870 03328 0 3717 C ana9 O a350 0 4679 04894 0 5194 0 5869 0 6377 0 6773 0 1710 0 7639 6 96 205 h 611 68 1870 1 1176 3 1240 2 1287 9 1320 0 BM40 iM74 1829 ? 1890 1 15492 1607 7 16M 7 1174 I I783 7 s 0 8005 1 3373 1 3431f l 4022 44443 14782 3 5073 15333 8 % 72 4 6004 1 6395 1 6759 11101 1 7425 1 7734 s Sh all3 9513 14S13 19513 74583 295 13 39511 a9513 59513 69S13 79513 899 13 1000 e 8 02387 OMH 0 3076 0 3415 0 3781 08032 04301 045% 0 5031 05482 0 5911 0 6336 0 6748 07 53 1604 871 h 62420 lite S 8274 3 1779 a 1321 4 1358 S 1392 8 1a75 7 lien 9 1546 6 1605 6 16643 1723 2 17823 s 0 Sitt i 3214 3 3861 l 4312 34WF I 4964 i S235 i S478 1 5916 I 6312 I 6678 1 7072 8 73a7 1 1657 D - M87 M 87 iM87 134 87 2M 87 M6 87 38487 48647 58687 684 87 M687 84687 1798 e 00?a78 0 7161 07754 0 3187 0 3448 0 3751 0 a011 0 87%$ 0 4711 0 6140 0 5%52 05951 0 6341 0 6774 513131 h 6M 45 1158 6 1715 3 8770 $ 1314 S 8%79 1348 1 1871 7 lan) 8 1544 0 1603 4 1%7$ 1721 7 8781 0 8 0 8309 1 3176 1 3697 I 8183 44%$ I 4867 l $140 i S388 I $533 1 6232 i hcl I6947 I 7274 1 7585 54 7s 98 78 90 128 90 17a ts ;78 9g 278 98 3Fs 98 47898 $1898 678 98 7F9 98 878 98 less e 0 07477 0 7196 0 750% 0 7'I06 0 1773 0 3%00 0 3757 0 3988 0 4476 04816 05??9 0 5609 0 %e0 0 6343 1621 02) h 6a8 al l157 3 1201 7 125t l 1307 4 83472 !)SJ 3 1417 8 1480 6 1541 a 1601 7 1660 7 8770 1 1779 7 6 0 Self I 3019 I 1526 I 4054 14446 14768 I 5049 1 S307 l $753 1 6154 1 6528 4 6416 1 7204 I FSil Sh 21 44 71 44 12144 17144 771 44 271 44 371 44 471 de $7144 671 44 771 44 871 44 19ee e 0 07$17 8 70?8 0 7?14 076AF 0 3004 0 37FS O n?1 03749 04671 0 4565 C a940 0 5103 0 56 % 0 6007 1628 all h MG 36 lies 6 1885 7 125l 3 8300 ? 13454 1378 4 1413 9 14774 1%R8 1599 8 1658 8 1718 6 1778 4 5 0 8522 1 2981 1 3346 i M75 I 4338 I 4677 I 4960 1 5219 I % 77 1 6044 1 6458 I 6408 1 7138 I 7459 Sh Ie 70 64 70 1Ia 20 164 70 71a 20 264 20 M4 70 444 70 %4 20 M4 20 764 20 86a 20 2eee e 0 0?S65 01883 0 70 % 0 7488 07A05 0 3077 0 3317 0 3534 O na; 04170 0 4680 0 $027 OSMS 0 5495 1635 806 h 617 18 11311 3 1168 3 1740 9 1797 6 1335 4 1373 5 1404 7 18 Fa t ISM 7 15 % 9 16570 1717 0 1771 1 s 0 8625 12881 1 3154 13794 3 4731 14578 34874 1 5438 1 $603 8 6014 56MI I 6743 1 7075 1 7389 Sh 7 74 5774 10774 19774 20774 2%774 3%774 457 7a M7 24 6%724 75724 8%F 7e ties e 0 n7615 0 1750 01447 0 7304 07804 0 7 slat 03173 O ilt9 0 1714 0 4099 0 4a45 04778 0 5108 0 5418 1642 763 h 64379 11715 1844 5 17M 3 1744 9 13M 3 IM8a 1404 4 14709 1531 6 1%47 16 % 7 81]S 4 3775 7 s 0 8777 1 7780 1 2942 IJul I al25 1 4486 14790 1 5060 1 5532 8 $944 34327 I M81 1 Fole 1 7330 54 . M S0 % IT M 150 % 200 % 7%A % 350 % 4%0 % SM SS 6% % 754 % 890 % 770s e 0 07669 01477 0144 0 7:34 07a%8 0 7770 0 7*50 01IAI 0 3%45 0 1897 C a731 04%1 Ca%7 0 51 %
#649 456 h 69% 86 it?2 7 1173 9 171a 0 1774 8 13231 1343 3 1890 0 1847 6 ISM 9 IS*' S 1653 3 1783 9 177a 4 s 0 8828 82676 i M91 13$23 54070 14MS I e708 1 4984 I 5443 I $883 162H I 6622 1 69 % t 7273 Sh 4411 ta 11~ 18l18 les Il 7ea 11 144 Il 444 11 544 Il 644 Il 74411 844 Il tiet e 0 07777 01%t 3 0197$ 07tnS 07%se 07793 0 7999 0 3372 0 1784 Sean 04us O ass) 0 4en (6 % 8 91 h 70718 4111 ? 17ng 1 174s 4 nig F list i 119% 7 1464 2 4574 1 1%41 16%l S IFl? 3 17718 5 0 8929 82589 1 3381 I lol4 i 4 10% i 4478 I a910 1SM7 5 5821 14707 16%S I 6901 1 7749 sh - Svoerheal. I h = enthalpy. Blu per Ib v = 5pecific %!ume, cu it per Ib s = entropy. Stu per R per Ib B -7
ao. 4 Table 3. Superheated Steam-Continuect Abs Press Lbl$0 ln $at Sat imoerature-Detree5 Faheen%t (54t lemol wate, 5 team 158 880 858 let 958 1000 1958 litt 1150 1200 1250 1388 1400 1500 Sh 4808 e 0 0?so 0 0751 0 1005 01186 Ol3M 01465 01582 01691 0 1792 e l889 0 1982 0 2078 O M42 0 2404 h 883 8 1100 0 12073 17772 1332 6 13805 14237 1463 9 1501 9 1538 4 1573 0 16c85 1676 3 8742 7 s I 0331 1 2084 4 2922 1344 1 3847 34181 1 4472 34734 1 4974 ,1 5197 3 5407 1 % 01 I 5982 3 6330 Sh sees e 0 03 % 0 0665 O M27 0 1109 OlM7 0 1385 0 1500 0 1606 0 1706 0 1800 0 1890 01977 0 2142 0 27e9 h M69 10712 1190 7 12652 13238 1372 6 1817 0 1458 0 14 % 7 4533 8 15697 1604 7 1673 8 17400 s iOtto I1835 1 2768 8 3327 1 3745 I 4090 1 4390 1 4657 I 4901 3 5128 1 5341 1 % 43 4 5921 1 6272 Sh 5000 e 0 0338 0 0591 0 08 % 0 1038 0 1115 0 1312 0 1425 0 1529 0 1626 0 1718 0 1806 0 1890 0 7050 0M03 h 854 9 10479 1173 6 1252 9 I?t35 1368 6 1410 2 1452 8 1491 5 15291 1%55 16009 1670 0 17374 s 1 0010 1 1593 1 2612 1 3207 1.3645 I 4001 I 4309 3 4582 3 4431 1 5061 3 5217 I $481 1 5463 1 6216
. sh .
5288 e 0 03M 0 0531 0 0789 0 0973 0 1119 0 1744 0 1356 0 1458 0t%) 0 1642 0 1728 0 1810 O l*66 0 2114 h 4458 1016 9 11 % 0 1240 4 1303 7 13 % 6 14034 84462 1886 3 35245 1%I3 15972 1666 8 17347 s 0 9985 1 1370 1 24 % 4 3084 1 3545 8 3914 14NS I 4509 8 4762 3 4995 3 5214 1 5420 1 5806 1 6163 Sh 5488 e 0 0317 0 0483 0 0778 0 0912 0 1058 0 1182 0 1297 0 8192 0 1485 0 1572 0 1654 0 1736 O I A86 0 2031
. h 838 5 994 3 1838 I INFF 12937 1348 4 1396 5 8440 3 last i 1519 8 IHFi 15934 1663 7 1732 I s 0 9945 l 1175 1 22 % i2%9 8 3446 8 38M i 4151 1 4437 I 4694 3 4931 1 5853 I 1362 3 5750 1 6109 Sh Sect e 0 0309 0 0447 0 0672 0 08 % 0 1001 0 1124 0 1737 0 1331 0 14?? 0 1508 0 1589 01687 0 1815 O i954 h 432 4 975 0 1889 9 12:48 1283 7 13402 13896 1434 3 14;5 9 1515 2 IM29 15896 IMOS 1729 5 s 0 S8H B.8000 12137 11850 3.3348 1 3742 3 4075 1 4366 8 4628 84M9 3 5093 4 5304 i % 97 I 6058 54 .
Sett . 0 0303 0 0419 0 06?? 0 0805 00e49 0 1070 01177 0 1774 0 1343 0 1447 0197 0 1603 01747 01:A1 h 8773 954 8 1103 8 1701 8 57736 1317 0 83474 147R 3 1470 4 1516 % 1544 7 1545 8 16s74 177#. a s 0 9003 1 0867 8 1981 3 2732 l 3250 1 3658 8 3999 3 4217 34%4 8 4408 I 50J5 8 5248 l M44 160GA Sh 1800 e 0 0798 00M7 0 0579 007u 0 0900 0 1070 O llM 0 1771 0 1309 OInt 0 1469 O nde 0 1684 0 1817 h 822 9 945 1 1084 6 11888 12634 1323 6 1375 7 14223 1465 4 1505 9 1544 6 1582 0 1654 2 1724 2 s 0 9758 1 0746 8 1833 1 2615 1.3854 1 3574 1 3925 1 4229 8 4500 1.4748 I 4978 3 5194 1 5593 1.5960 2 . 8508 e 0 0787 0 0358 0 0495 0 06 % 0 0793 0 0909 0 1012 0 1104 0 1188 0 12 % 0 1340 0 1811 0 1544 0 1669 h 813 9 919 5 1046 7 15 % 3 12378 8302 7 IH81 14073 1452 7 1494 2 1534 1 1572 5 1644 4 17176 s 0 9664 105t5 1 1506 12328 1 2917 3 3370 1 3743 1 4064 I 4347 1 4604 1 4841 l 5062 15411 1 5844 56 7800 e 00n1 0 0334 0 0438 0 0571 0 0704 0 0816 0 0915 0 1004 0 1085 0 1160 01231 O tte8 0 8474 0 1542 h 906 9 901 8 1016 5 1824 9 1212 6 1781 7 1340 5 13922 1439 1 1482 6 15237 15631 1638 4 till i s 0 9582 1 0350 1 1243 120 % I 2689 4 3171 13%7 1.3904 1.4200 1 eau I 4710 1 4938 I 53 % 1 5735
. Sh 7908 e 0 0272 0 0318 0 0399 0 05t2 0 0631 0 0737 0 0833 0 0918 0 0996 0 1068 0 1136 0 1700 0 8321 0 1433 h 301 3 889 0 992 9 10977 1188 3 1261 0 1322 9 1377 2 1426 0 4471 0 1513 3 1553 7 1630 8 1704 6 s 0 9514 1 0224 1 1033 1 1818 I 2473 1.2980 1 3397 1 3754 1 4059 I 4335 8 4586 I 4819 4 5245 1 M32 Sh 8800 e 0 0767 0 0306 00HI 0 0465 0 0571 0 0678 0 0762 0 0845 0 0920 0 0989 0 1054 0 1115 0 1230 0 1338 h 796 6 879 1 974 4 1974 3 11654 1241 0 13055 1367 2 1413 0 1459 6 15031 1544 5 16231 1698 1 s 0 94 % 1 0122 1 0864 8.1613 1 2278 82794 I 3233 8 3603 1.3924 1 4208 8 4467 I 4705 1 5140 i M33 Sh 8500 e 0 0762 0 0796 0 0350 0 0429 0 05M 0 0615 0 0701 0 0780 0 0853 0 0919 0 0982 0 1041 0 1151 0 1754 h 792 7 871 2 959 0 1054 5 3844 0 12219 1280 5 13475 1400 2 18482 1892 9 ISM ) 16154 1698 7 5 0 9402 1 0037 1 0727 11431 1 2084 I 2627 1 3076 3 3460 8 3793 1 4087 I 4352 34HJ ! 5040 1 5439 Sh gene = 0 0758 0 0288 0 0335 0 0402 0 0483 0 0560 00F49 0 0724 0 0794 0 0058 0 0918 0 0975 0 1081 0 1179 h 789 3 864 7 148 0 80376 1125 4 12045 1272 1 1333 0 13875 14371 1487 9 1526 3 16c7 9 1685 3 s 0 9354 0 9964 IO683 1 1285 1 8918 12468 1 2926 1.3323 IJ667 IJ970 14243 14432 1 4944 1 5349 Sh 9500 e 0 0754 0 0782 0 0172 0 0340 0 0448 0 0578 0 0603 0 0675 0 0742 00A04 00a67 0 0917 0 8019 0 1113 h 7864 859 2 938 3 10734 3104 9 18877 1256 6 1318 9 1375 1 1476 1 1473 8 45171 isein e 1679 0 s 0 9310 0 9900 1 0516 1 1153 1 8771 1 2320 1 2785 13194 13546 1 3458 14337 1 4392 1 4854 5 526J .sh itsee v 0 0ni 0 0776 cent 0 0362 0 0475 0 0495 00%5 006n 00697 0 0757 0 0812 0 0e65 00963 0 1054 h 7838 854 5 930 2 1018 1 30942 4172 6 1242 0 1305 3 83629 1815 3 18534 1508 6 15933 1677 8 s 0 9270 0 9842 8 0432 1 8039 8 1638 1 2185 1 2652 1 3065 1 3429 1 3749 140J5 1 4295 1 4763 1 5100 sh 18H8 e 0 0?48 0 0271 0 0303 0 0347 0 0404 0 0467 0 0532 0 04 % 0 06 % 0 0714 0 0768 0 05t8 0 0913 0 1001 h Fill 8 05 923 4 1001 0 10813 ' IM8 9 L228 4 4292 4 .3351 1 1404 7 1451 9 1500 0 1585 8 IM47 5 0 $232 0 9790 1Ene I 0939 8 1519 1 2060 1 2521 1 2946 3 3311 1 3644 3 3937 I 4202 3 4677 85:00 Sh = Superheat. I h = enthalpy. Stu per Ib v = Specific volume, cu ft per Ib 5 = entropy, Stu per F per Ib B -9
e C ',% . :" J fy p,l NJ 3 i 51 U. S. NUCLEAR REGULATORY COMISSION &7-
% !f,((VM' SENIOR REACTOR OPERATOR LICENSE EXAMINATION g'd j FACILITY: BRUNSWICK 1A2 i
REACTOR TYPE: BWR-GE4 _ DATE ADMINISTERED: 87/01/12 EXAMINER: MILLER, R. CANDIDATE: #1asrsR Fite INSTRUCTIONS TO CANDIDATE:
~
Use separate paper for the answers. Write answers on one side only. Staple question sheet on top of the answer sheets. Points for each question are indicated in parentheses after the question. The passing grade requires at least 70% in each category and a final grade of at least 80%. Examination papers will be picked up six (6) hours after the examination starts.
% OF CATEGORY % OF CANDIDATE'S CATEGORY VALUE TOTAL SCORE VALUE CATEGORY 26 2f Z3 99 ff-e9 it:56- 5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND THERMODYNAMICS 25.70 15-8t- 6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION 2447 27.00 24.54 7. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND RADIOLOGICAL CONTROL 2 5 5 6' 28.00 25.24 8. ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS 110.^5 Totals Final Grade All work done on this examination is my own. I have neither given nor received aid.
Candidate's Signature l METER re ces t u .-)
$ ), NRC RULES AND GUIDELINES FOR LICENSE EXAMINATIONS During the administration of this examination the following rules apply:
- 1. Cheating on the examination means an automatic dental of your application and could result in more severe penalties.
- 2. Restroom trips are to be limited and only one candidate at a time may leave. You must avoid all contacts with anyone outside the examination room to avoid even the appearance or possibility of cheating.
- 3. Use black ink or dark pencil only to facilitate icgible reproductions.
- 4. Print your name in the blank provided on the cove: sheet of the examination.
- 5. Fill in the date on the cover sheet of the examination (if necessary).
- 6. Use only the paper provided for answers.
- 7. Print your name in the upper right-hand corner of the first page of each section of the answer sheet.
- 8. Consecutively nunber each answer sheet, write "End of Category _" as appropriate, start each category on a new page, write only on one side of the paper, and write "Last Page" on the last answer sheet.
- 9. Number each answer as to category and number, for example,1.4, 6.3.
- 10. Skip at least three lines between each answer.
- 11. Separate answer sheets from pad and place finished answer sheets face down on your desk or table.
- 12. Use abbreviations only if they are commonly used in facility literature.
- 13. The point value for each question is indicated in parentheses after the question and can be used as a guide for the depth of answer required.
- 14. Show all calculations, methods, or assumptions used to obtain an answer to mathematical problems whether indicated in the question or not.
- 15. Partial credit may be given. Therefore, ANSWER ALL PARTS OF THE QUESTION AND 00 NOT LEAVE ANY ANSWER BLANK.
- 16. If parts of the examination are not clear as to intent, ask questions of the examiner only.
- 17. You must sign the statement on the cover sheet that indicates that the work is your own and you have not received or been given assistance in completing the examination. This must be done after the examination has been completed.
a
5
,18. When you complete your examination, you shall:
- a. Assemble your examination as follows:
(1) Exam questions on top. (2) Exam aids - figures, tables, etc. (3) Answer pages including figures which are part of the answer.
- b. Turn in your copy of the examination and all pages used to answer the examination questions.
- c. Turn in all scrap paper and the balance of the paper that you did not use for answering the questions.
- d. Leave the examination area, as defined by the examiner. If af ter leaving, you are found in this area while the examination is still in progress, your license may be denied or revoked.
i
- 5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE 2
, _ THERMODYNAMICS QUESTION 5.01 (1.00)
Answer the following question TRUE or FALSE. EXPLAIN your choice. One of the factors for determining control rod worth is the thermal diffusion length (L) of the neutrons. QUESTION 5.02 (1.50) Neutron absoption by the Boron in a control rod creates two gases, Lithium and Helium. Does the creation of Lithium and Helium effect the end of control rod life? EXPLAIN your answer. STION 5.03 (1.00) Conside e reactor operating at power at 547 F. Which of the following is a correct st nt concerning the Doppler coefficient?
- a. The Doppler coeffic . t becomes MORE NEGATIVE with an INCREASE in fuel temperature, and an INC E in voids.
6 c4 b. The Doppler coefficient becomes L MEGATIVE with an DECREASE in fuel temperature and a DECREASE in vo
- c. The Doppler coefficient becomes MORE NEGATIVE w1 an INCREASE in fuel temperature and LESS NEGATIVE with an INCREASE in voi
- d. The Doppler coefficient becomes LESS NEGATIVE with an INCREASE '
fuel temperature and an INCREASE in voids. g/e/e) . QUESTION 5.04 (1.50) Concerning heat transfer in a boiling water reactor;
- a. Define departure from nucleate boiling (DNB).
- b. Define critical heat flux (CHF).
- c. Define critical heat flux ratio (CHFR).
(***** CATEGORY 05 CONTINUED ON NEXT PAGE *****) a
- 5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE 3 THERMODYNAMICS QUESTION 5.05 (1.00)
In a Boiling Water Reactor operating at rated thermal power, consider the heat transfer from the fuel clad to the coolant. State TWO (2) reasons WHY nucleate boiling is a better heat transfer mechanism than subcooled heat transfer? (ASSUME A 10 DEGREE SUBC00 LED CONDITION) QUESTION 5.06 (1.00) In a subcritical reactor, Keff is increased from .880 to .965. Which of the following is the amount of reactivity that was added to tne core? a 100 delta k/k
- b. 085 delta k/k
- c. 125 delta k/k
- d. 136 delta k/k QUESTION 5.07 (1.50)
STATE the predominate mode of heat transfer (conduction, convection, or radiation) for the following; ( ASSUME NORMAL OPERATION UNLESS OTHERWISE STATED)
- a. Center of the fuel pellet out to the outer edge
- b. Clad surface to the center of the coolant channel
- c. Clad surface to coolant under the film boiling conditions i
l l QUESTION 5.08 (2.00) i A significant amount of excess reactivity must be loaded into the core at BOL so that 100% power can be attained at the end of a fuel cycle. LIST FOUR (4) negative reactivity inputs (OTHER THAN FUEL BURNOUT), during power operation, which must be overcome by the excess reactivity loaded. l l l (***** CATEGORY 05 CONTINUED ON NEXT PAGE *****) i
- 5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE 4 THERMODYNAMICS QUESTION 5.09 (1.50)
Complete the following; (Blanks may require more than one word) Xenon 135 has two (2) methods of production. About 95% of the Xenon is produced by (a) and the remaining 5% is produced by (b) . Xenon also has twol) removal methods, (c) and tdt . Samarium 149 is produced only by (e) and is removed onTy by (f) . QUESTION 5.10 (1.00) How much (by what factor) would power increase in one second in a just prompt critical reactor at EOL? (STATE ASSUMPTIONS AND SHOW ALL WORK) QUESTION 5.11 (1.00) Using the steam tables, calculate a reactor cooldown rate (F/hr) for a reactor pressure decrease from 1000 psig to 250 psig in one hour and forty five minutes (105 minutes total). SHOW ALL WORK for full credit. QUESTION 5.12 (2.00) Consider a turbine trip for UNIT ONE from approximately 25% power. EXPLAIN what would be expected to occur to the following plant parameters or components during the next 15 minutes with no operator action. Provide REASONS for ALL the changes.
- a. Bypass valves
- b. Feedwater temperature
- c. Reactor power
- d. Reactor pressure
(***** CATEGORY 05 CONTINUED ON NEXT PAGE *****)
- 5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE 5
, THERMODYNAMICS QUESTION 5.13 (1.75) For a turbine trip from power without bypass valves opening, EXPl.AIN the recorder traces on the attached Figure #1. ASSUME: N0 operator actions taken All equipment other than bypass valves function properly Reactor was initially at 100% power
- a. Core flow from point ONE (1) to point TWO (2).
- b. Decrease in reactor vessel level at point THREE (3).
- c. Increase in reactor vessel level to point FOUR (4).
- d. Variations in level at point FOUR (4).
- e. Decrease in feed flow from point five (5) to point seven (7).
- f. Increase in feed flow from point seven (7) to point six (6).
- g. Decrease in feed flow beginning at point six (6).
QUESTION 5.14 (3.00)
- a. List THREE (3) parameters which contribute to AVALILABLE NPSH (Net Positive Suction Head) for a recirculation pump. Limit your answer to those parameters which are DIRECTLY indicated in the CONTROL ROOM. (1.50) )
- b. Consider TWO Reactor Plant conditions: l Low Power and Low Flow (<10%) i OR High Power and High Flow (>85%).
- 1. During which condition is the REQUIRED NPSH for a recirculation pump greater? (0.50)
- 2. During which condition is AVAILABLE NPSH for a recirculation pump greater and WHY is it greater? (1.00) 1
(***** CATEGORY 05 CONTINUED ON NEXT PAGE *****)
l
- 5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE 6 I THERMDDYNAMICS QUESTION 5.15 (2.00)
Consider the diagrams in Figures 8-15 and 8-16:
- a. EXPLAIN the effect on control rod worth for the CENTER control rod if the other four control rods are completely withdrawn from the core. (1.00)
- b. EXPLAIN why the control rod pattern in Figure 8-16 (SHOULD/SHOULD NOT) be used during reactor power operation.
(1.00) QUESTION 5.16 (3.00) Fuel failure is prevented / minimized by establishing thermal limits for the core. Refer to FIGURE # 1.4 (In Attachments) and PROVIDE the INFORMATION required to complete the block diagram for blocks "a" through "f". QUESTION 5.17 (1.50) For a DUAL RECIRCULATION PUPP TRIP transient from power, EXPLAIN the recorder traces on Attached Figures # 2A and 28.
- a. Why does core flow DECREASE from point ONE (1) and then stabilize at approximately 30%? (0.25)
- b. Why does total steam flow decrease and then stabilize between point TWO (2) and point THREE (3)? (0.50)
- c. Why does total Feedwater Flow decrease at point FOUR (4)?
[TWO (2) REASONS REQUIRED] (0.50)
- d. Why does reactor power DECREASE from point FIVE (5) to point SIX (6)? (0.25) l
(***** END OF CATEGORY 05 *****) J
l
- 6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE 7 j e ',
QUESTION 6.01 (1.00) ihe reactor is being started up. Assume the following: o Reactor Power is below the LPSP o Rod Withdrawal Sequence B is in effect o No RWM errors or blocks exist o The RWM Normal-Bypass Switch was positioned to Bypass following complete withdrawal of all RWM Group 6 rods to Position 36 The operator incorrectly attempts to continue withdraw'ing Group 6 rods to position 48. Which one of the following correctly details the outcome of this operator error? NOTE: FIGURES # 467 A - D ARE PROVIDED FOR REFERENCE
- a. Rod withdrawal will occur with NO Rod Position Restrictions.
- b. Rod withdrawal will occur, provided all Group 6 rods are maintained within 1 notch of each other.
- c. Rod withdrawal will NOT occur beyond the RWM Withdrawal Limit for Group 6.
- d. Rod withdrawal will NOT occur beyond Position 36, due to T.SCS immediately imposing a Rod Block.
QUESTION 6.02 (1.50) Assuming valid initiation signals exist, State THREE (3) conditions which will CLOSE the ADS valves once blowdown has commenced? ; l QUESTION 6.03 (2.50) !
\
- a. State the normal operating value or range of values for each of l the parameters below. (1.50)
- 1. Control Rod Drive system flow.
- 2. Drive water differential pressure.
- 3. Cooling water differential pressure. (STATE THE RANGE)
- b. Explain how the on-line flow control valve responds during a reactor scram and why. (1.00) l
(***** CATEGORY 06 CONTINUED ON NEXT PAGE *****)
- 6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE 8
~
3 QUESTION 6.04 (2.00) Explain HOW (INCREASE, DECREASE) and WHY each of the following would affect INDICATED reactor water level. (Assume in all cases a change occurs.)
- a. Equalizing valve on the level transmitter leaks through.
- b. Drywell temperature INCREASES over an extended period of time.
QUESTION 6.05 (2.00)
- a. The reactor is at 385 psig. Describe how the Core Spray outboard and inboard injection valves (F004A and F005A) must be operated to have them both open at the same time. (0.50)
- b. The reactor is at 500 psig. Can the Core spray outboard and inboard injection valves (F004A and F005A) both be opened at the same time? If so, describe how they must be opened. If not, can EITHER of the two valves be opened with no injection signal present? EXPLAIN YOUR ANSWER. (1.00)
- c. What is the meaning of the white light above the F005A control switch, when it is on? (0.50)
QUESTION 6.06 (1.00) Unit 2 is in the process of a plant startup with reactor power at 3% Rated Thermal Power. STATE whether each of the following would result in a Group I Isolation. (YES or N0 answer)
- a. Reactor water level DECREASES to +140 inches.
- b. MSL tunnel temperature INCREASES to 210 deg F.
- c. Reactor pressure DECREASES to 800 psig.
- d. Drywell pressure INCREASES to 2.10 psig.
- e. Main steam line flow increases to 50% of rated.
t (***** CATEGORY 06 CONTINUED ON NEXT PAGE *****)
, , - - - - , - n - , . - , _ - - - - - - - ,,,,-r------.. ---,..--r... - - - - - - - - , - - - , . . - - . , .r--* - w
- 6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUENTATION PAGE 9 QUESTION 6.07 (1.25)
What are FIVE (5) of the EIGHT (8) permissives' that must be met in order for the emergency diesel generator breaker to close and re-energize its associated bus? (1.25) QUESTION 6.08 (2.00) The HPCI system was in a normal standby lineup when an initiation signal was received. For each of the following situations, STATE whether it is indicative of a MALFUNCTION or NOT, and EXPLAIN your choice. ALL parameters were within their respective normal ranges when the initiation signal was received.
- a. During pump startup, discharge pressure is 200 psig, flow is 600 gpm and the MINIMUM flow valve is OPEN. (0.50)
- b. The GLAND EXHAUSTER BAR0 METRIC CONDENSER CONDENSATE PUMP indicates NOT running. (0.50)
- c. The GLAND EXHAUSTER BAR0 METRIC CONDENSER VACUUM PUMP indicates NOT running. (0.50)
- d. The HPCI pump TORUS SUCTION valve strokes open. (0.50)
QUESTION 6.09 (1.00)
- a. LPRM accuracy may be affected significantly by depletion of the fission chamber. How does this depletion affect the LPRM readings (higher or lower than actual power)? (0.50)
- b. A Core Thermal Power and APRM Calibration program (0D-3) is performed and shows APRM A with a Gain Adjustment Factor of 1.03. What does this tell the operator about the relationship between actual and indicated power on APRM channel A? (0.50)
(***** CATEGORY 06 CONTINUED ON NEXT PAGE *****)
- 6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE 10
'a '.
QUESTION 6.10 (2.00) With regard to the Unit 2 RCIC System: b
- a. Which ONE (1) of the following is the only normally CLOSED valve in the RCIC steam supply flow path in the STAND-BY lineup? (1.00)
(1) Steam Supply Valve (F045) (2) Outboard Steam Isolation Yalve (F008) (3) Trip Throttle Valve (4) Governor Valve
- b. For each of the situations listed below, STATE whether final RCIC injection into the reactor would CONTINUE AUTOMATICALLY, REINITI ATE AUTOMATICALLY, require CONTROL ROOM Operator Action, or require LOCAL Operator action. \ssume that RCIC had auto initiated prior to any of the following situations.
(1) The RCIC Gland Exhauster VACUUM PUMP FAILS (0.25) (2) A 125% Overspeed Trip is received due to low control oil pressure. Control oil pressure is then returned to normal. (0.25) (3) After decreasing to 50 psig, RCIC Steam Line Pressure increases to 150 psig. (0.25) (4) After increasing to +208 inches, Reactor Yessel Water Level decreases to +112 inches. (0.25) 4 QUESTION 6.11 ( .50) Reactor pressure is 900 psig and RHR-System I is running in response to a valid LPCI initiation signal. STATE the approximate expected FLOW INDICATION on the RHR System Flow Recorder (System I), on Control Room Panel. (***** CATEGORY 06 CONTINUED ON NEXT PAGE *****)
- 6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUENTATION PAGE 11 0 ,
QUESTION 6.12 (2.75)
- a. STATE the PURPOSES and INITI ATING SIGNALS (INCLUDING ALL SETPOINTS) for the 28% and the 45% speed limiters for the Reactor Recirculation Flow Control system. (1.75) tr. I"1 in the following blanks:
The REACIOR Kr.CiEC "/A transfer station has a deviation meter, which measures the difference beaveen t h ----f1)---- controller output and the ----(2)---- controller output. 'nynL gggJgj
- c. TRUE OR FALSE The operator can INCREASE the speed of a Reactor Rcirculation pump to 100% rated speed by using the INDIVIDUAL MANUAL CONTROLLER for that pump. (0.50)
QUESTION 6.13 (2.00)
- a. The MSIY's isolate on MAIN STEAM LINE HIGH RADIATION. What is the SETPOINT and BASIS for this isolation? (1.00)
- b. Is this MAIN STEAM LINE HIGH RADIATION isolation ever bypassed? If so, state how. (0.50)
- c. What other systems / components ISOLATE on Main Steam Line High Radiation?
(0.50) QUESTION 6.14 (1.00) Describe FOUR (4) rod blocks associated with refueling equipment. QUESTION 6.15 (2.00)
- a. Totai decirculation flow is 75%. What are the power levels for the THREE (3) Rod Block Monitor rod blocks for Unit 2? (1.50)
- b. TRUE OR FALSE The LPRM white bypassed light on Control Room Panel 603 will be on when its associated LPRM is DOWNSCALE. (0.50)
(***** CATEGORY 06 CONTINUED ON NEXT PAGE *****)
!. 6:4.EL 6 NI_@ Y@lE dg _ D ES1!iU2_ ggNI6062_8U D_ J U SIB Ud EUISIlO N PAGE 12 QUESTION 6.16 (2.50)
- a. State ONE (1) of the two PURPOSES served by the Augmented Off-Gas (AOG) system GUARD BED. (0.50)
- b. State the SETPOINT for the AOG system ISOLATION on HIGH HYDROGEN and state the LOGIC required to INITIATE this isolation (one of two taken once, two of two taken once, etc.) (1.00)
- c. State FOUR (4) of the five TRIP SIGNALS which will cause the AOG BYPASS Valve (HCV-102) to OPEN. (SETPOINTS NOT REQUIRED)
(1.00) b QUESTION 6.17 (1.70)
- a. Complete the following Table indicating the STATUS (ON or OFF) of the THREE indicating lights for a SRV on the Fluid Flow Detector (FFD) Cabinet for the given situations. (1.20)
CONDITION / SITUATION
- GREEN AMDER RED
**************u**>>x*****r*+************w*****+n**********w>*=****
- 1. SRV OPEN *
+
- 2. SRV CLOSED, after opening due to
- high vessel pressure
- How many SRV's on BSEP Unit ONE are provided with accumulators?
b. (0.25) l
- c. What is the purpose of these accumulators? (0.25) i
? (***** END OF CATEGORY 06 *****)
- 7. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 13
, RADIOLOGICAL CONTROL QUESTION 7.01 (2.50)
Answer the following with regard to tne primary containment:
- a. During a reactor plant startup, when must the Oxygen concentration be less than 4% ? (1.00)
- b. Upon increasing temperature of the Suppression Pool, State the temperature at which a Technical Specification Limiting Condition for Operation is FIRST entered. (0.50)
- c. The reactor shall be scrammed if suppression pool temperature reaches . (0.50)
- d. During reactor isolation conditions, the reactor pressure vessel shall be depressurized to less than 200 psig at normal cooldown rates if the Suppression Pool temperature reaches . (0.50)
QUESTION 7.02 (1.50) According to Fuel Handling Procedure FH-11: State THREE (3) of the Four VISUAL INDICATIONS that may be used to verify correct orientation of a fuel assembly after the assembly has been lowered into a cell? (1.50) QUESTION 7.03 (2.50)
- a. STATE the exposure rate limits (for a major portion of the body) which characterize the following: (1.50)
- 1. Radiation Area
- 2. High Radiation Area
- 3. Locked High Radiation Area
- b. State the definition of EXTREMITIES as it pertains to radiatinn exposure of personnel. (1.00)
(***** CATEGORY 07 CONTINUED ON NEXT PAGE *****)
- 7. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 14
. RADIOLOGICAL CONTROL QUESTION 7.04 (1.00)
According to Operating Procedure No. 30, Condenser Air Removal and Off-Gas Recombiner System:
- a. What is the maximum reactor power level at which mechanical vacuum pump operation is allowed? (0.50)
- b. State the REASON for limiting mechanical vacuum pump operation to the above power level. -
(0.50) QUESTION 7.05 (2.50) When starting an IDLE Reactor Recirculation Pump at power (the other pump operating) in accordance with OP-02, Start-Up of a Recirculation Pump;
- a. State the TWO (2) DIFFERENTIAL Temperature Limits (Location and Value) which must be met PRIOR to starting the IDLE recirculation pump and EXPLAIN the BASIS for each limit. (BE SPECIFIC AS TO ANY COMPONENTS INVOLVED.) (2.00)
- b. The two actual differential temperatures shall be recorded and determined to be within the limits above within minutes prior to startup of an idle recirculation loop.
(0.50) QUESTION 7.06 (1.00) STATE the OBJECTIVE (S) for each of the following Cautions in the Emergency Operating Procedures:
- a. Whenever RHR is in the LPCI mode, INJECT through the heat exchangers as soon as possible. (0.50)
- b. Do NOT initiate Drywell Sprays unless the Suppression Pool Water Level is below -1 inch. (0.50) l
(***** CATEGORY 07 CONTINUED ON NEXT PAGE *****) l
' PAGE 15
- 7. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND
.'. ;, RADIOLOGICAL CONTROL QUESTION 7.07 ( .75)
Concerning the Control Rod Drive (CRD) system, answer the following:
- a. OP-8, CRD Hydraulic System Operating Procedure,. cautions the operator that CRDHS FLOW RATE should be maintained greater than or equal to gpm to ensure proper flushing of the CRD seals.
4 (0.25)
- b. Why does OP-2, Reactor Recirculation System Operating Procedure, CAUTION the operator to SHUTDOWN the Seal Injection Flow before isolating the recirculation pump. (0.50)
QUESTION 7.08 (2.50) LIST the FIVE (5) entry conditions (INCLUDING SETPOINTS) requiring entry into the CONTAINMENT CONTROL portion of the Emergency Operation Procedures. QUESTION 7.09 (3.25)
- a. List the FOUR (4) Control Operator IMMEDIATE ACTIONS which should be performed following a reactor scram. (2.75)
- b. TRUE OR FALSE The above Control Operator Immediate actions MUST be carried out PRIOR to entry into an E0P flow chart. (0.50)
QUESTION 7.10 ( .50) During a main turbine startup per OP-26, Turbine System Operating Procedure System, WHY is the operator cautioned NOT to operate the turbine for prolonged times between 800 and 1400 rpm? I (***** CATEGORY 07 CONTINUED ON NEXT PAGE *****)
- 7. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 16
- l. ., RADIOLOGICAL CONTROL QUESTION 7.11 (1.00)
During accident conditions, ALL Reactor Vessel Level indication is lost on Unit 2 and E0P-01-FP, Flooding Procedure, has been entered. The reactor has been Shutdown for ONE hour, Instrument and Control Technicians have filled the level instrument Reference Legs, and the Shift Foreman has determined that the vessel is flooded, per E0P-01. Answer the following questions: (SEE ATTACHED FIG)
- a. How long can injection to the vessel be TERMINATED for determining if vessel level indication is operable? (0.50)
- b. How does the Shift Foreman determine if water level indication has been RESTORED? (0.50)
QUESTION 7.12 (2.50) Answer the following concerning the CAUTIONS in the Emergency Operating Procedures:
- a. CAUTION number 10 of the E0P's states that an ECCS or RCIC is not to be secured or placed into MANUAL MODE unless TWO (2) conditions are met.
- 1. STATE these TWO (2) conditions. (1.00)
- 2. STATE the NUMBER and the TYPE of indications used to confirm the above conditions. (0.50)
- b. FILL IN THE BLANK CAUTION number 14 of the E0P's states, "Do NOT depressurize the RPV below 120 psig ( (1) low pressure isolation setpoint) unless (2) driven pumps sufficient to maintain RPV water level are T31- and (4) for injection. (1.00)
QUESTION 7.13 (2.00) In accordance with Abnormal Operating Procedure 32.0, Plant Shutdown from Outside the Control Room, STATE EIGHT (8) of the TEN (10) Operatorjk C. Actions that should be carried out PRIOR to the evacuation of the Control Room. (***** CATEGORY 07 CONTINUED ON NEXT PAGE *****)
a f DURES - NORMAL, ABNORMAL, EERGENCY AND PAGE 18 PAGE 17
'LOGTCAL CONTROL 7.14 (1.00)
Ick (2) of the THREE (3) operator actions for a SRV that is stuck PEN p;sition. Its 7.15 (1.50)
- Jance with GP-01, LIST the conditions which must be met for a a be censidered to be in operation for STARTUP.
.50) 7.16 (1.00) ilR Systtm procedure, cautions the operator NOT to start an RHR SHUTDOWN COOLING until after the Recirculation pump for
- iat:d loop is shutdown. STATE the basis for this caution. *75)
.50) i
( ) (***** END OF CATEGORY 07 *****)
-r - , r -- -- e . - . - - , -.e ,-- n. - , - - ,-n- - - - - - -
- 8. ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS PAGE 19 l
QUESTION 8.04 (1.00) Which of the following correctly describes- the Technical Specification definition of an " Instrument Functional Test."
- a. The adjustmer.t of an instrument signal ouput so that it corresponds, within acceptable range and accuracy, to a known value of the parameter which the instrument monitors.
- b. The injection of a simulated signal into the instrument's primary sensor to verify the proper instrument channel response, alarm, and/or initiating action,
- c. The qualitative determination of acceptable ' operability by j observation of instrument behavior during operation, including, where possible, comparison of the instrument with l other independent instruments measuring the same variable.
- d. A test of all relays and contacts of a logic circuit to insure all components and inkruments are operable per the
^
design intent. QUESTION 8.05 (2.00) Answer the following concerning the Unit 2 SAFETY LIMITS:
- a. FILL IN THE BLANKS (1.50)
J THERMAL POWER shall not exceed (1) of RAIED THERMAL POWER with the reactor steam dome pressure less than (2) or core flow less than (3) of rated flow. The MINIMUM CRITICAL POWER RATIO (MCPR) shall not be less l than (4) with the reactor steam dome pressure greater ; ! than (2) and core flow greater than (3) of rated I flow. I The reactor coolant system pressure, as measured in the ; reactor vessel steam dome, shall not exceed (5) . i The reactor vessel water level shall be above (6) .
- b. IS the Reactor Vessel Water Level Safety Limit APPLICABLE in Condition 17 (0.50)
(***** CATEGORY 08 CONTINUED ON NEXT PAGE *****) _ _ _ . . . ~ __
i
- 8. ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS PAGE 20 QUESTION 8.06 (1.50)
In accordance with 01-01, Operating Principles and Philosophies, STATE the THREE (3) personnel (TITLE of position) who have the responsibility for SHUTTING DOWN the Reactor if he determines the reactor is in jeopardy or has exceeded a scram setpoint without an automatic shutdown. QUESTION 8.07 (1.50)
- a. Complete the following table for the MINIMUM SHIFT MANNING required per Technical Specifications and 01-01, Operating Principles and Philosophy. (1.25)
- Unit ONE in Condition 1
- Unit ONE is DE-FUELED POSTION
- AND
- AND
- Unit TWO in Condition 2
- Unit TWO in Condition 4 SOS
- 1
* (c)
SR0 1 (d) R0 (a) 2 A0 (b) 3 STA 1 (e)
- b. When is a Licensed Senior Reactor Operator required to be in the Control Room? (0.25)
QUESTION 8.08 (1.50) In accordance with RCI 06.5, NRC Reporting Requirements, those events which are readily acknowledged as requiring IMMEDIATE notification shall be reported using the Red Phone AFTER notifying THREE (3) Site personnel. STATE these THREE persons (title of position) that should be notified. j QUESTION 8.09 (1.00) Answer the following in accordance with AI-59, Jumpering, Wire Removal, and Designated Jumper Instruction. What is the meaning of a yellow dot placed on an annunciator window. EXPLAIN the response of this annunciator window for ALARM conditions IN DETAIL? (***** CATEGORY 08 CONTINUED ON NEXT PAGE *****)
l
- 8. ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS PAGE 21 QUESTION 8.10 (1.00)
In accordance with RCI 06.5, NRC Reporting Requirements, STATE (YES or N0) whether each or the following situations would require a ONE HOUR report to be made to the NRC?
- a. A bomb threat is received over the telephone by the Shift Foreman from an anonymous caller.
- b. A RWCU suction isolation occurs.
- c. The scram discharge volume vent or drain valves inoperable or closed for more than one hour in any 24 hour period,
- d. HPCI inadvertently initiates and injects into the Reactor Vessel. (HPCI is secured and Reactor operation continues at the previous power level.)
QUESTION 8.11 (1.50) In order to return equipment (that is important to safety), to service, an INDEPENDENT VERIFICATION of system alignment must be performed by a second qualified person. LIST THREE (3) of the foJr METHODS, per Brunswick Administrative procedures, which can be u;ed by the second party to perform this verification. i i l l 1 i***** CATEGORY 08 CONTINUED ON NEXT PAGE *****)
- 8. ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS PAGE 22 QUESTION 8.12 ,
(4.00) Answer the following questions concerning AI-58, Equipment Clearance procedure,
- a. There are three major groups of clearances -- station, radwaste, and local. WHO may AUTHORIZE the cancellation of each clearance group. (1.50)
- b. State the COLOR and under what conditions (WHEN) the following tags will be used. (1.50)
- 1. Paper Caution Tag Plastic Caution Tag 2.
- 3. Caution Label
- c. What does a RED clearance' plastic CAP placed on the following control switches on the RTGB (reactor Turbine Generator Board) mean. (1.00)
- 1. Valve Control Switch
- 2. Breaker Control Switch QUESTION 8.13 (3.00)
Answer the following questions c5ncerning AI-40, High Radiation Area Key Control.
- d. What is the DEFINITION of a SPECIAL HAZARD Radiation Control Area?
- b. What TWO (2) plant personnel (title of position) riaintain locked control of Special Hazard Radiation Control Area KEYS.
(1.00)
- c. State the TWO (2) places where the location of Special Hazard Radiation Control Areas are POSTED. (0.50)
- d. WHO NORMALLY approves a request for entry into a Special !
Hazard Radiation Control Area. (0.50) 1 l l (***** CATEGORY 08 CONTINUED ON NEXT PAGE *****) l l
- 8. ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS PAGE 23 QUESTION 8.14 (2.00)
A Unit 2 REACTOR STARTUP is in progess per GP-02, Approach to Criticality and Pressurization of the Reactor. The following conditions exist:
- Reactor pressure is 150 psig - RCIC is IN0P due to failing PT-10.1.3 (RCIC System Operability Test - Flow Rates at 150 psig) - PT-09.3 (HPCI System Operability Test - Flow Rates at 165 psig) is not current and must be performed upon reaching 165 psig
- a. State the Technical Specification LCO (Limiting Condition for Operation) ACTION which APPLIES.
(USE ATTACHED TECHNICAL SPECIFICATIONS) (1.00)
- b. The Manager of Operations desires to Continue with the Reactor Startup, raise reactor pressure to 165 psig, and perform the HPCI Operability Flow test. Is this course of action permissible?
EXPLAIN WHY OR WHY NOT. (USE ATTACHED TECHNICAL SPECIFICATIONS) (1.00) QUESTION 8.15 (1.25)
- a. Indicate (BY YES or NO) whether each of the following is considered a CORE ALTERATION per BUNSWICK Unit 2 Technical Specifications. (0.75)
- 1. Withdrawal and insertion of an SRM detector to check the drive motor.
- 2. Removal of an uncoupled contrcl rod for replacement.
- 3. An inspection of the core top guide using a camera attached to the Refueling grapple is in progress.
- b. While withdrawing a control rod to test a position indicator l probe, it becomes necessary to suspend core alterations due to '
containment problems. Should the rod be reinserted or must it i remain mid-positioned until conditions are such that core alterations are allowable? EXPLAIN. (0.50) (***** CATEGORY 08 CONTINUED ON'NEXT PAGE *****) l
- 8. ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS PAGE 24
.'s .,
QUESTION 8.16 ( .50) In accordance with the PEP's (Plant Emergency Plans), STATE the ONE (1) RESPONSIBILITY that the Site Emergency Coordinator shall NOT delegate until the position of Emergency Response Manager (or E0F) is activated. QUESTION 8.17 (1.00) Give TWO (2) definitions of IDENTIFIED LEAKAGE as listed in the Brunswick Unit 2 Technical Specifications. i (***** END OF CATEGORY 08 *****) f************* END OF EXAMINATION ***************)
I \ l I l 1 MASTER i CDPJ 1 ANSWER KEY d e I l l MASTER COPY
- 5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE 25 1 . THERMODYNAMICS ANSWERS -- BRUNSWICK 182 -87/01/12-MILLER, R.
CDP _Y ANSWER 5.01 (1.00) TRUE (0.50) The farther a neutron travels during its lifetime the better its chances are of interacting with a control rod, and hence the stronger the rod will be. (0.50) REFERENCE BSEP H0-02-2/3-A pp 175 ANSWER 5.02 (1.50) Yes. (0.50) Production of Lithium and Helium in the control rod generates high pressures in the control rod which could place the mechanical integrity of the control rod in jeopardy. Thus the end of control rod life must be determined to occur prior to reaching internal pressures which would threaten the mechanical integrity of the rod. (1.00) REFERENCE BSEP H0-02-2/3-A PG 181. AIf 5.03 (1.00) d (1.00) 1, REFERENCE BSEP H0-02-2/3-A FIG l
- f, W. T h J .Y l
- 5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE 26 i '
, THERMODYNAMICS ANSWERS -- BRUNSWICK 182 -87/01/12-MILLER, R.
l i ANSWER 5.04 (1.50)
- a. The heat flux at which the change of heat transfer coefficient / delta T deviates from a straight line function.
-0R-The heat flux at which a transition from nucleate b' oiling to film boiling occurs. (0.50)
- b. The heat flux at which DNB occurs (or that heat flux at which the heat transfer coefficient is drastically reduced for any further increase in the delta T) (0.50)
- c. The ratio of actual heat flux to critical heat flux.
CRITICAL HEAT FLUX ACTUAL HEAT FLUX (0.50) REFERENCE BSEP 04-A pp 36-38. ANSWER 5.05 (1.00) A large amount of heat is removed in changing the water to steam (heat of vaporization)-[0.50]. The production of bubbles breaks up the laminar layer, creating agitation, which provides better mixing. [0.50] REFERENCE GE BWR ACADEMIC SERIES ON HEAT TRANSFER AND FLUID FLOW PG 9-8. ANSWER 5.06 (1.00) a (1.00) REFERENCE BSEP H0 02-0G-A, pp 22-24.
- 5. THE0RY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE 27
. THERMODYNAMICS ANSWERS -- BRUNSWICK 182 -87/01/12-MILLER, R.
ANSWER 5.07 (1.50)
- a. Conduction
- b. Convection (conduction also accepted if both are given)
- c. Radiation (0.50 ea)
REFERENCE BSEP Thermodynamics Heat Transfer and Fluid Flow, Chapter 8 ANSWER 5.08 (2.00)
- a. Moderator temperature increase (0.50)
- b. Void fraction increase (0.50)
- c. Samarium buildup (0.50)
- d. Xenon buildup , (0.50)
- e. Fuel +emperdure mccease go,yo)
REFERENCE (anyf)> i BSEP H0-02-2/3-A pp 122, 123 ANSWER 5.09 (1.50)
- a. Decay of Iodine
- b. Directly from fission
- c. Neutron absorption,(or burnout)
- d. Radioactive decay
- e. Decay of fission products (Nd or Pm)
- f. Neutron absorption, (or burnout)
(0.25 ea) REFERENCE BSEP H0-02-2/3-A pp 188, 189, 194, 195. i
- 5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE 28
. THERMODYNAMICS ANSWERS -- BRUNSWICK 182 -87/01/12-MILLER, R.
ANSWER 5.10 (1.00) T=1 star /p + (B-p)/tp (0.10) So for prompt critical, neglect the delayed term and T=1 star /p (0.10) 1 star = 10EE -4 seconds (accept to 150 microseconds) (0.10) p * .005 - (0.10) T= 10EE -4/.005=0.02 seconds (0.25) P/Po=eEE time /T (0.10) P/Po = eEE time /T (0.25) P/Po= eEE50 = 5.18 X 10EE21 (Numerical values do not have to be exact for full credit. Reasonable assumptions accepted) REFERENCE BSEP H0-02-2/3-A pp 136, 149, 150. ANSWER 5.11 (1.00) Obtain corresponding temperatures from the steam tables by interpolation. 1000 psig = 546.3 deg F (0.25) 250 psig = 406.0 deg F (0.25) Determine the temperature change: 546.3 - 406.0 =140.3 deg F (0.25) Determine the rate of cooldown: 140.3/1.75 = 80.2 deg F/hr (0.25) REFERENCE Steam Tables I i ANSWER 5.12 (2.00)
- a. Bypass valves open to pass the steam previously going to the turbine.
- b. Feedwater temperature will decrease due to the loss of extraction steam.
- c. Reactor power will increase due to the Mcrease
& in feedwater temperature.
- d. Bypass valves will maintain pressure " constant. (Reactor pressure will try to increase due to the increase in i l
reactor power.) (0.50 ea) i
- 5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE 29 THERMODYNAMICS l'
ANSWERS -- BRUNSWICK 1&2 -87/01/12-MILLER, R. REFERENCE l BSEP H0-05-2/3-A pp 20, 21. l ANSWER 5.13 (1.75)
- a. Recirc pump trip,en tudin trip.
- b. Decrease due to void collapse caused by pressure increase and scram.
- c. Increase due to fgedfloy increase on low reactor water level.
( tS Grou p \ spec s fled in fas-+ G , %es Rfo/2C4. recs Je s- \eJelN)
- d. Level swells due to MSRV's lifting.
- e. Feed flow decreases to follow steam flow.
- f. Feed flow increases due to reactor level decrease.
- g. Feed flow decreases due to reactcr vessel level increase.
(also accepf 6reup ) se le im on low vecel } eve)) L (0.25 ea) REFERENCE BSEP H0-05-2/3-A ANSWER 5.14 (3.00)
- a. Feedwater temperature Feedwater flow RPV pressure RPV water level (0.50 ea., any 3)
- b. High flow, High power (0.50)
- c. High flow, High power (0.50), due to the increased inlet subcooling from the increased feedwater flow. (0.50)
REFERENCE GE BWR ACADEMIC SERIES ON HEAT TRANSFER AND FLUID FLOW BSEP H0-10-2A (RECIRC FLOW CONTROL) PG 42.
- 5. THEORY OF fiUCt. EAR POWER PLANT OPERATION, FLUIDS, AND PAGE 30 THERMODYNAMICS ANSWERS -- BRUNSWICK 182 -87/01/12-MILLER, R.
ANSWER 5.15 (2.00)
- a. Withdrawing the surrounding control rods removes the " Shadowing Effect" on the center rod and the center rod is now controlling neutrons in approximately 16 fuel bundles (0.50). The control rod worth of the center rod has increased significantly. (0.50)
- b. This control rod pattern SHOULD NOT be used during reactor power operation (0.50), since withdrawing this high worth rod could lead to a positive reactivity insertion of such a large magnitude that the resulting power excursion could damage the fuel. (0.50) 4 REFERENCE GE BWR ACADEMIC SERIES BSEP H0-2-2/3-A (REACTOR THE0RY) pp 173-177.
ANSWER 5.16 (3.00)
- a. Fuel cladding cracking due to high stress
- b. 1% plastic strain on the cladding
- c. Decay heat and stored heat following a LOCA
- d. Fuel cladding temperature of 2200 degrees F
- e. Fuel cladding cracking due to a lack of cooling
- f. Boiling transition occurs (0.50 ea)
REFERENCE GE BWR ACADEMIC SERIES HEAT TRANSFER AND FLUID FLOW BSEP H0-6-2-A SEC 3 ANSWER 5.17 (1.50)
- a. Core flow decreases to natural circulation (0.25) ,
- b. EHC closes the turbine control valves to control pressure causing a decrease in total steam flow (0.25). Steam flow then stabilizes at a value equivalent to the steam generation rate of reactor power for natural circulation (0.25) l
- c. 1. Level swells in the downcomer due to increase in two-phase flow resistance (caused by increased voiding) (0.25)
- 2. Reactor power decrease causes a reduced steam generation rate (0.25) ,
- d. Increased voiding in the core adds negative reactivity (0.25) l
- -. . .= _- __ ,_ .- _. -_ . _.
, 5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE 31 ;
THERMODYNAMICS 1 ANSWERS -- BRUNSWICK 182 - 87/01/12-MILLER,~R. REFERENCE BSEP H0-05-2/3-A 4 4 't 3 9 4 s 4 l y - __ _- , _ _ _ ,__ _ _.w._ 99. 9 _, . , _ m__._. .-,,_,% ,,.,,_ ., , .,,m. _ -. , ,_.,,9., y _..,._ ,,,. . . , , p., _,,.,., , , . , . y + 9,.,_ wm .
., ., 6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE 32 ANSWERS -- BRUNSWICK 182 -87/01/12-MILLER, R.
ANSWER 6.01 (1.00) b (1.00) PL 4 REFERENCE BSEP H0-27-2C (RSCS) AND H0-27-28 (RWM) ANSWEP. 6.02 (1.50) ,
- 1. Reactor pressure < 50 psig. ( Rebt pressud 6Dfs 4 8"ggressL Pm, t 2. ADS logic is manually reset by the operator.
- 3. Shutdown of the RHR or CS pumps.
- 4. Actuating air is depleted.
S~ flace b s h,h lock LNS S kNbY l REFERENCE BSEP H0-14-2-F FIG 5 and pg 20. ANSWER 6.03 (2.50)
- a. 1. 60 gpm (+ or - 5 gpm)
- 2. 260 psid (+ or - 20 psid)
- 3. 14 to 20 psid (accept 10 to 30 psid)
! (0.50 ea)
- b. As accumulator pressure decreases, charging flow increases. Flow is sensed upstream of charging tap so high flow is sensed sending a minimum position signal to the FCV.
(Sensed flow change concept 0.50, FCV change 0.50) REFERENCE BSEP H0-098 PG 9 FIG 1. ANSWER 6.04 (2.00)
- a. Indicated level would INCREASE. Reference leg - variable leg dp would go to zero.
- b. Indicated level would INCREASE. Reference leg density would decrease due to temperature increase so reference leg pressure would decrease so reference leg - variable leg dp would decrease.
(1.0 ea. ens.; level direction 0.5, dp direction / explanation 0.5)
- 6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE 33 ANSWERS -- BRUNSWICK 1&2 -87/01/12-MILLER, R.
REFERENCE BSEP E0P-01-UG PG 48. ANSWER 6.05 (2.00)
- a. F004A must be opened first (0.50)
- b. No (0.25), Yes (0.25), either of the two valves can be opened, but both cannot be open at the same time (0.50).
- c. The white light means that only manual operation of the valve is allowed (0.50) . Also accept that the valve is shut and an initiation signal is present.
REFERENCE BSEP H0-14-E (CORE SPRAY) PG 12. ANSWER 6.06 (1.00)
- a. no
- b. yes
- c. no
- d. no
- e. yes (0.20 ea)
REFERENCE l BSEP H0-17A (MAIN STEAM) PG 10, 11. ! ANSWER 6.07 (1.25)
- 1. Diesel generator at rated speed (frequency)
- 2. Diesel generator at rated voltage
- 3. No sequential loading logic circuit TEST signal applied
- 4. Key-locked RTGB isolation switch in the NORMAL position
- 5. Undervoltage on the associated emergency bus l
- 6. All feeder, tie, and load breakers except the 480 volt emergency l substation load, open. l
- 7. No diesel generator breaker overcurrent lockout
- 8. No diesel generator breaker differential lockout (0.25 ea., any 5)
REFERENCE BSEP H0-200 (D/G's) PG 46.
l
- 6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE 34 ;
ANSWERS -- BRUNSWICK 182 -87/01/12-MILLER, R. ANSWER 6.08 (2.00)
- a. This is not indicative of a problem. The minimum flow valve closes when flow is greater than 800 gpm.
- b. This is not indicative of a problem. The condensate pump cycles on level in the hotwell and is independent of the HPCI initiation signal.
- c. Malfunction. The vacuum pump should start on the initiation signal and run continuously.
- d. Malfunction. The torus suction valve should not receive an open signal due to the HPCI initiation.
(0.25 for identification of malfunction or not and 0.25 for explanation) REFERENCE BSEP H0-148 (HPCI) PG 14, 17. ANSWER 6.09 (1.00)
- a. (Readings will decrease as the detector ages) Lower than actual power (0.50).
- b. The APRM reading is lower than actual power (0.50),
i REFERENCE BSEP H0-25C (LPRM's) PG 3 AND BSEP H0-25D (APRM's) PG 22. ANSWER 6.10 (2.00)
- a. (1) (1.00)
- b. (1) CONTINUE AUTOMATICALLY (2) LOCAL Operator Action (3) CONTROL ROOM Operator Action (4) REINITIATE AUTOMATICALLY (0.25 each)
REFERENCE BSEP OP-16 PG 17 AND H0-14-2C (RCIC) PG 31, 35.
- . .,, 6. PLANT SYSTEMS DESIGN, CGNTROL, AND INSTRUENTATION PAGE 35 ANSWERS -- BRUNSWICK 182 -87/01/12-MILLER, R.
ANSWER 6.11 ( .50) zero gpm (0.50) REFERENCE BSEP: H0 14-2D (RHR)
- 2. zS~
ANSWER 6.12 '^ 70)
- a. The 28% limiter is in the circuit when total feed flow is less than 20%
(0.25) or when the recirc pump discharge valve is less than 90% open. (0.25) This limiter prevents overheating the recirc pump (0.25) and ensures NPSH at low feedwater flow rates (0.25). , The 45% limiter is in the circuit when reactor is less than 182 inches and one or more RFP'S are at less than 20% rated flow (0.50). This limiter allows the feedwater system to recover reactor water level on a trip of a RFP (0.25) WWar Controller
- 2) M/A Contr'o'TTeF (0.25 ea. , anr,wers may be reTei xd) - (l4 }
- c. False. (0.50)
REFERENCE BSEP H0 10-2A (RECIRC FLOW CONTROL) PG 26. ANSWER 6.13 (2.00)
- a. Hi radiation in Main Steam line setpoint is (3*NFPB) (0.50)
Basis: To limit the release of fission products. (0.50)
- b. No (0.50)
- c. MSL drain valves (0.25) #toaco# !** et,u u /, b M M Reactor water sample valves (0.25) '"[
9, /nVfSucltou V4lve REFERENCE g gf g/0, f()(7-V7 BSEP A0P 5.3 AND H0-2A (RPS) PG 29, 30 AND H0-17-2A (MAIN STEAM) PG 8.
- . '.. 6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE 36 ANSWERS -- BRUNSWICK 182 -87/01/12-MILLER, R.
ANSWER 6.14 (1.00)
- 1. Service platform hoist loaded
- 2. Refueling platform over core
- 3. Refueling platform over core with any of its hoists loaded
- 4. Refueling platform over core with fuel grapple not fully up
- 5. One rod out (0.25 ea, any 4)
REFERENCE BSEP TECH SPEC 3.9.1 ANSWER 6.15 (2.001
- a. Low .66(75)+25= 75% power (0.50)
Intermediate .66(75)+33 = 83% power (0.50) High .66(75)+38 = 88% power (0.50) (accept
- b. True (0.50)
REFERENCE BSEP H0-25-2E (RBM) PG 7, 10. ANSWER 6.16 (2.50)
- a. 1. Serves as a trap for moisture preventing wetting of the charcoal adsorber trains.
- 2. Serves to filter a large percentage of long-lived particulates from the Off-Gas stream.
(0.50, only one required)
- b. Setpoint: 2%
Logic: one of two taken once (0.50 ea)
- c. 1. High conden/te drain level
- 2. High moisture downstream of guard bed
- 3. Gross glycol leak
- 4. High-High flow
- 5. High hydrogen (0.25 ea. , only 4 required)
REFERENCE BSEP H0-16-2C (A0G SYSTEM) PG 10, 14.
- 6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE 37 ANSWERS -- BRUNSWICK 182 -87/01/12-MILLER, R.
ANSWER 6.17 (1.70)
- a. GREEN AMBER RED
- 1. Off On On
- 2. On On Off (0.20 ea)
- b. 11 (0.25)
- c. Provide the ability to cycle the SRV 5 times and hold the SRY open on a j loss of noninterruptible air to the SRV's (0.25)
REFERENCE i BSEP H0-14-2F (ADS) PG 10,15. 1 I i l i d
'.. 7. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 38
- RADIOLOGICAL CONTROL
< ANSWERS -- BRUNSWICK 182 -87/01/12-MILLER, R. l' ANSWER 7.01 (2.50) i
- a. Within 24 hours (0.50) after exceeding 15% thermal power (0.50)
- b. 95 deg F (0.50)
- c.- 110 deg F (0.50) i d. 120 deg F (0.50)
REFERENCE l BSEP GP-03, TECH SPEC 3.6.6.3, AND TECH SPEC 3.6.2.1.
- ANSWER 7.02 (1.50) 4
- 1. The channel fastener is located at one corner of each bundle
! adjacent to the center of the control rod.
- 2. Channel spacing buttons are adjacent to the control rod blades.
- 3. The identification boss on the side of the lifting bail points
- toward the center of the cell
- 4. Cell to cell symmetry except on the core periphery.
(0.50 ea., any 3) REFERENCE BSEP V0L IX/FH-11 PG 4. l ANSWER 7.03 (2.50) ! a. 1. > 5.0 mrem in any one hour or 100 mrem in 5 consecutive days j 2. > 100 mrem in any one hour ! 3. > 1000 mrem / hour
, (3 0 0.50 ea.)
- b. Hands and forearms, including the elbows; feet, ankles, and lower
- legs, including the knees (equivalent answer accepted) (1.00) i REFERENCE BSEP V0L VIII (RADIATION CONT 0L AND PROTECTION) PG 8, 10, 36.
I
; ANSWER 7.04 (1.00) 4
- a. 5%
- b. Minimize possibility of a hydrogen explosion
{ (0.50 ea) l
. .,, 7. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 39 RADIOLOGICAL CONTROL ANSWERS -- BRUNSWICK 182 -87/01/12-MILLER, R. REFERENCE BSEP OP-30 PG 7. ANSWER 7.05 (2.50)
- a. The temperature differential between the Reactor Coolant within the dome and the bottom head drain is less than or' equal to 145 deg F. (0.50) to prevent undue stress on the vessel (0.50).
The temperature differential between idle and operating loop coolant is less than or equal to 50 deg F. (0.50) to prevent undue stess on the vessel nozzles and the bottom head region (0.50)
- b. 30 (0.50)
REFERENCE BSEP OP-02 PG 19, 20. AND TECH SPECS 3.4.1.3. ANSWER 7.06 (1.00)
- a. To provide early decay heat removal, minimizing the ultimate heatup of the primary containment. (0.50)
- b. To prevent causing a negative drywell pressure in excess of the design limit. (0.50)
REFERENCE BSEP E0P-1-UG. ANSWER 7.07 ( .75)
- a. 30 (+ 10 - 0 gpm) (0.25)
- b. To prevent overpressurizing the pump casing. (0.50)
REFERENCE BSEP OP-08 PG 7 AND OP-02 PG 7.
I
- 7. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 40 RADIOLOGICAL CONTROL l
ANSWERS -- BRUNSWICK 182 -87/01/12-MILLER, R. ANSWER 7.08 (2.50)
- 1. Suppression pool temperature above 95 deg F.
- 2. Drywell temperature above 135 deg F.
- 3. Drywell pressure above 2.0 psig
- 4. Suppression pool water level above -27 inches
- 5. Suppression pool water level below -31 inches (0.25 per condition, 0.25 per setpoint)
REFERENCE BSEP E0P-01-UG PG 34, 35. ANSWER 7.09 (3.25)
- a. 1. When steam flow is less than 3 x 10 E06 lb/hr (0.25), place the mode switch to shutdown (0.50).
- 2. When reactor power is below the APRM downscale setpoint (0.25), trip the main turbine (0.50).
- 3. Place the feed water / level controller setpoint to +170 inches.
(0.50)
- 4. When reactor vessel level is above +170 inches and increasing, (0.25) if 2 RFP's are running, trip one (0.50).
- b. False (0.50)
REFERENCE BSEP E0P-01-UG PG 22. ANSWER 7.10 ( .50) This is the critical speed range of the turbine and the generator which will cause excessive vibration (damaging the turbine). REFERENCE BSEP OP-26 PG 31.
i l
. - 7. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 41 RADIOLOGICAL CONTROL ANSWERS -- BRUNSWICK 182 -87/01/12-MILLER, R.
ANSWER 7.11 (1.00)
- a. 9.5 minutes (+ or - 1/2 minute)
- b. By observing water level indication returning on scale (with a downward trend.)
(0.50 ea) REFERENCE BSEP E0P-01-UG PG 89, 90 AND E0P-01-FP PG 8, 9. ANSWER 7.12 (2.50)
- a. 1. (1) Misoperation in automatic mode confirmed (0.50)
(2) Adequate core cooling is assured (0.50)
- 2. At least two (0.25) indepedent (0.25) indications
- b. 1. HPCI
- 2. motor
- 3. running
- 4. available (0.25 ea, (c) and (d) may be interchanged)
REFERENCE BSEP E0P-01-UG PG 40, 42. 'l ANSWER 7.13 (2.00)
- 1. Obtain keys to Remote Shutdown Panel
- 2. Manually scram the reactor
- 3. Trip the main turbine
- 4. Verify or manually transfer auxiliary power to the SAT
- 5. When steam flow is less than 3 x 10 E06 lb/hr, place the mode switch to Shutdown
- 6. Trip both recirc pumps
- 7. Use bypass opening jack to reduce reactor pressure to "700 psig
- 8. When the reactor pressure is "700 psig, place all MSIV switches in the closed position.
- 9. Place the AUT0/ MAN control switches for all condensate booster pumps to MANUAL.
- 10. Enter E0P-01 and execute as many of the actions as possible.
(0.25 ea, any 8)
- -- - ,w-e - , , - ,+ c-,
l l
~
I* *
- 7. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 42 RADIOLOGICAL CGNTROL ANSWERS -- BRUNSWICK 182 -87/01/12-MILLER, R.
REFERENCE BSEP A0P 32.0 ANSWER 7.14 (1.00)
- 1. Cycle the affected SRV control switch first to OPEN, then to CLOSE 0- AUT0, several times. (0.25) Leave switches in the CLOSE or AUTO position (0.25)
- 2. As soon as it is recognized that the SRV will not close, or Suppression Pool temperature reaches 110 F (0.25), manually scram the reactor (0.25).
- 3. Monitor primary containment parameters per A0P-14 (Abnormal Primary Containment Conditions) (0.50).
(any 2 of the above) REFERENCE BSEP A0P-30 PG 3, 4. ANSWER 7.15 (1.50)
- 1. The valve and Electrical lineup is complete and the action items in the appropriate operating procedure to place the system in operation are complete.
- 2. The system is performing it's intended function in the required manner.
- 3. All system operability periodic tests are current.
(0.50 ea) REFERENCE BSEP GP-01 PG 6. ANSWER 7.16 (1.00) To preven ump vibration f2 0 fr##d' dd M
- fo Ac Vedx essive jet [eaeei$reacdor rashthc of n[AI5o accefgu f> )
reevealahm REFERENCE BSEP OP-17 PG 28, 65EP oP-or. P4 4
,. 8. ADMINISTRATIVE PROCEDURES, CONDIT2ONS, AND LIMITATIONS PAGE 43
. ANSWERS -- BRUNSWICK 182 -87/01/12-MILLER, R. 1 ANSWER 8.01 (2.00) REM /qtr REM /yr
- a. Whole body 1.25 5.0 Skin 7.5 30.0 Extremities 18.75 75.0 (0.25 per limit)
- b. 1. 3.0 i 2. General Manager [Anl/a<- EdRC MAna$er)
(0.25 ea) REFERENCE V'll!
- l. BSEPADMINPROCEDUREVOL/SEC4PG14 i
ANSWER 8.02 (1.25)
- a. In an emergency (0.25) when action is innediately needed to protect the public health and safety (0.25) and no action
- consistent with licensed conditions or Tech Specs that provide adequate or equivalent protection is immediately apparent (0.25).
! (or equivalent answer) { b. A Licensed Senior Operator (0.50) REFERENCE 10-CFR-50.54X ANSWER 8.03 (2.00)
- 1. All automatic reactor building ventilation system automatic isolation dampers are operable or secured in the isolated condition l
- 2. SGTS is operable
- 3. At least one door in each access to the reactor building is j closed.
- 4. The sealing mechanism associated with each penetration is operable (0.50 ea)
REFERENCE BSEP U2 TECH SPEL DEFINITION i l l i l
I' .- 8. ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS PAGE 44 ANSWERS -- BRUNSWICK 182 -87/01/12-MILLER, R. ANSWER 8.04 (1.00) b (1.00) REFERENCE BSEP U2 TECH SPEC DEFINITIONS ANSWER 8.05 (2.00) ,
- a. 1. 25%
- 2. 800 psia (785 psig)
- 3. 10%
- 4. 1.07
- 5. 1325 psig (1340 psia)
- 6. top of active fuel c (0.25 ea) . - . .
- b. No (0.50)
REFERENCE l BSEP U2 TECH SPEC 1 ANSWER 8.06 (1.50)
- 1. Licensed Control Operator i
- 2. Senior licensed Shif t Foreman l 3. Shift Operating Supervisor (0.50 ea)
REFERENCE BSEP 01-01 PG 6. 1 ANSWER 8.07 (1.50)
- a. (a) 3 (b) 3 (c) 1 (d) 1 (e) none (0.25 ea)
J
- b. At all times (0.25)
I' '
,' 8. ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS PAGE 45 ANSWERS -- BRUNSWICK 182 -87/01/12-MILLER, R.
REFERENCE BSEP 01-01 AND TECH SPECS. ANSWER 8.08 (1.50)
- 1. Shift Operating Supervisor
- 2. Operations Superintendent (or Manager of Operations /On-call Manager)
- 3. NRC Resident Inspector (0.50 ea)
REFERENCE BSEP RCI 06.5 PG 5. ANSWER 8.09 (1.00) (The annunciator card has been replaced with a modified card.) When an alarm condition initiates the annunciator will give an audible alarm signal with a slow window flash until acknowledged (0.33). If the alarm signal clears and comes in again, the window wili flash rapidly then slowly without an audible alarm (0.33). Subsequent audible alarms occur only if the annunciator is reset (0.34). REFERENCE BSEP AI-59 AND 01-05 PG 4, 5. ANSWER 8.10 (1.00)
- a. yes
- b. no
- c. no
- d. ye, ru) !
i (0.25 ea) REFERENCE BSEP RCI 06.5 PG 7, 16.
- . . 8. ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS PAGE 46 ANSWERS -- BRUNSWICK 182 -87/01/12-MILLER, R.
i ANSWER 8.11 (1.50) j
- 1. Physical verification by hands on and confirming movement to the l open, throttled, or closed position.
- 2. Performing a functional test of the integrated system or component as appropriate.
- 3. Visual verification of the components position by direct observance or remote indication i
- 4. Visual verification of the cogknents position by system process i
parameter changes or remote indication or annunciation.
# REFERENCE (dwY 3, 0 56 m- ) ~
j BSEP ADMIN PROCEDURE VOL I SEC 11 PG 11-3. ANSWER 8.12 (4.00)
- a. Station: SRO or Duty CO (0.25 ea)
Local: SRO or Duty C0 (0.25 ea)
, Radwaste: Rakaste C0 or Rakaste Shift Foreman (0.25 ea) 1 4 b. 1. Orange. Used when deemed necessary for conditions of a temporary nature.
- 2. Orange. Used when deemed necessary for conditions of a permanent nature.
J -
- 3. Yellow. Used when deemed necessary for conditions of a permanent nature. (on control boards and panels)
! (0.25 ea color, 0.25 ea condition) , J
- c. 1. The valve is cleared in the ooen position i
- 2. The breaker is cleared in the closed position .'
(0.50 ea)
- REFERENCE j BSEP AI-58 PG 8, 9, 10, 11 AND FIGURES.
1 i ANSWER 8.13 (3.00)
- a. Areas that have the potential for rapidly changing dose rates which are NOT reactor power dependent (or equivalent answer) i (1.00)
! b. 1. RC Supervisor
- 2. Shif t Operating Supervisor (0.50 ea) '
- c. 1. Main Control Room
- 2. Radiation Control Office (0.25 ea) j d. RC, Supervisor (0.50)
REFERENCE I DSEP AI-40 PG 1, 3, 4. i
, , _ _ _ _ _ _ _ , . , _ _ _ . . , , . _ _ _ . _ . . _ _ _ . _ . _ . , . . _ , . . . , _ _ , _ _ _ _ . , _ _ , . _ . - , .,_,_..m,___,...,-.___.-...___m _ ~ - - _ _ , _ . _ _ _ . . , - . . . . , , .
,- 8. ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS PAGE 47 ANSWERS -- BRUNSWICK 182 -87/01/12-MILLER, R.
f s hr lre ln /M Sh a, hWes/cre AC/6 lc s/'drdhW wifi
%e n e x+ I? k r and 4 //.5psig in Co //ows 3//dy& Z4 hi-) (0S6)
A r k e m I N 'C / A 7' wi/An* hadoc slen pressure .)ff Ar (e.gf/er-s) n*4cAilu- y adep44/c ANSWER 8.14 (2.00) [ a. A f r. ::et Sh th witMn-the-nent-12-heers=end-reduce-rees4er
+re::ere te h:: th= Or :;:S t: 113 p;itsithf 7 the f;11rin; 24 .he 3. (HPOI-is-INOP because-survetMance-is not cu,,er,t)-(1.00)-
- b. Yes (0.50). Raising pressure to 165 psig to perform the HPCI test is permissible since this action does not change the operational condition (as required by Tech Spec 3.0.4) (0.50) ( alfo a cc egf-T*Se 3*5.l.b asq cc6So &
REFERENCE BSEP U2 TECH SPECS 3.5.1 AND 3.7.4 AND 3.0.4 AND GP-02. ANSWER 8.15 (1.25)
- a. 1. yes
- 2. yes
- 3. no (0.25 ea)
- b. Suspension of core alterations shall not preclude completion of the movement of a component to a safe conservative position.
(0.50) REFERENCE BSEP U2 TECH SPEC DEFINITION ANSWER 8.16 ( .50) The responsibility of recomending off-site protective actions. REFERENCE BSEP PEP 2.3, 2.4, 2.5 SEC 2.0 ANSWER 8.17 (1.00)
- a. Leakage (into collection systems, such as pump seal or valve packing leaks) that is captured and conducted to a sump or collecting tank (0.50)
- b. Leakage into the containment atmosphere from sources that are BOTH specifically located, AND known not to interfere with the operation of the leak detection system (0.25) OR not be a pressure boundary leakage (0.25)
i
- 8. ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS PAGE 48 ANSWERS -- BRUNSWICK 182 -87/01/12-MILLER, R.
1, I l REFERENCE BSEP U-2 TECH SPECS AP9fENDMENTS SECTION 1.0 PG 1-4. 4 N 1 l 4 l 1 I i t t 4
; 1 I
1
~
KISTER h CDPJ
'ATTACINENTS l
l I l f l
, 1 \
,1, .
EQUATION SHEET f = ma v = s/t Cycle efficiency = (Net work out)/(Energy in) 2 w = mg s = V,t + 1/2 at z E . me . . KE = 1/2 av a = (Vf - V,)/t A = AN A
- A,e" PE = men Vf = V, + at w = e/t i = an2/t-1/2 = 0.693/t1/2
~
2 1/2" W = v aP-A= nD, ((t1/2)
- I*b)3 aE = 931 am -
m = V,yAo ,
-Ex Q = mCpat.
6 = UAa T' I = I,e~# Pwr = Wfah I = I,10-*/
- TVt. = 1.3/u .
P = P,10 sur(t) HVI. = -0.693/u . p = p et /T o SUR = 26.06/T SCR = S/(1 - K,ff) CR x
- S/(I ~ Xeffx)
SUR = 26s/t* + (a - o)T CR j (1 - K,ffj) = CR2 (I ~ "eff2) T = (1*/s) + ((s - o VIo] M = 1/(1 - K,ff) = CR j/CR, , T = 1/(p - s) M = (1 - K ,ff,)/(1 - K,ffj) l T = (a - o)/(Is) SDM = ( -K,ff)/K,ff a = (K,ff-1)/K ,ff = AKef/K,,ff t' = 10 seconds I = 0.1 seconds-I , o = ((t*/(T K,ff)] + (T,ff /(1 + IT)] t jdj = I d Id 2 ,2 gd2 P = (t4V)/(3 x 1010) jj 22 2 I = oN R/hr = (0.5 CE)/d (meters) R/hr = 6 CE/d2 (feet) . Water Parameters Miscellaneous Conversions I gal. = 8.345 lbm. 1 curie = 3.7 x 1010dps I ga]. = 3.78 liters i kg = 2.21 lbm 1 ft3 = 7.48 gal. I np = 2.54 x 10 3 Stu/hr Oensity = 62.4 1 /ft3 1 mw = 3.41 x 106 5tu/hr Oensity = 1 gm/c.. lin = 2.54 cm Heat of vaporization = 970 Stu/lom *F = 9/5'C + 32 Heat of fusion = I44 Stu/lbm 'C = 5/9 ( *F-32) 1 Atm = 14.7 psi = 29.9 in. Hg. 1 BTU = 778 ft-lbf 1 ft. H 2O = 0.4335 lbf/in.
I e EVENT TURBINE TRIP WITHOUT BPV's powan 100% 4 g [h s N N ,
~~ --
s s, ,, s
' - a- ( ~~ _
5 - s , f \ \ N \ 2 j s s s
/ , / / \ %a , / '** mm. N / % /p, E s N / * \ s% ' / % / % ~ / % ~* s m m, ,/ /
_ 4
/
p ' t' ,
, p ,..a* #
y/,__ 1
- ~
gr _ --- - 3 0 0 CORE FLOW REACTOR VESSEL LEVEL W o
/
s N
% 6 mmm._
p
,_ o 4%%
7 , 6 0 gy TOTAL FW FLOW
A - .a e.
~
PURPO$t RADICACTIVE RELEASE FROM TNE PLANT WITHIN LIMITS FAILURE GROSS CLADDING G a FAILURE DUE TO MECHANi$M , LACK OF COOLING I CAUSE OF FUEL PELLET LOS$ OF NUCLEATE FAILURE EXPANSION 30lLING AROUND C CLA00 LNG I LIMITING g CONDITION d f o Y,AL FUEL AVERAGE FUEL BTEM
,JPMR PIN POWR TOTAE FUEL MEASURED IN N00E IN N00E BUNDLE POWER I
p g LMGR APLHCR CPR FIGURE 1.4 BtR THERMAL LIMITS l
l ( l I
.. . ,, 4A
- . l I
avaNT DUAL RECIRCULATION PUMP TRIP 1 powen 100% l
=
i I 1 i l j , . d ,, i
- mi I
r i , , i
; ( 3 i - ! h N
h%
! ( '* ==__ f ,n l -
- O1 i
) 0 20 40 SO 80 100' 120 0 4 4 12 - 16 CORE FLOW TOTAL STEAM FLOW la 10*lbe/ht) ;
(a 1988bs/ht) 4 1 1 i t
~ . I i
i i ; I i J j .
? }
l l i-l
; i i i
d ,
/ . ""====.,,,
f 950 970 990 1010 1030 1os0 I o 4 e 12 18-REACTOR PRESSURE
- fpSIGI TURBINE STEAM FLOW (a 10e ite/ht) 1 Cl A. 9A *
.. _. . .__, . _ _ _ - - , . _ , _ _ _ . _ _ . . , _ . - .,,___.._m__.__,_ . , _ . _ , _ . . . . _ . _ _ , _ _ , . . , _ _ , . . _ . _ , _ _ . _ _ , , _ , . . . . _ . _ _ , , . . , , , _..,,,,m_,,.,,,, _
4B
., sVENT DUAL RECTRCUL ATISN PUMP TRIP powan J 00%
I i i l i t f 8
\ /
I N(
, e' y,=,=, . d" 3 ~' ~,,,,,,,,,
0 300 600 .. 900 1200 1500 0 10 20 30 40 50 40 REACTOR PRESSURE REACTOR VESSEL LEVEL (PSig) (INCHES) f - j i i 1 /
/ % =,,, - -"'~- ,
6 _ - (' ~- 5 - -"
"~~,,. /m> , 0 25 50 75 100 125 0 4 8 12 16 ,,
APRM TOTAL FW FLOW (% POWER) ' (a 10e Ibe/M) 1 i FlG 2B
1 s NOLE OO OO OO ( * "' " ' " ^ ' OO 00000 0 000000 000000 000 000 O'O OO 00 00 Figure 8-15 Figure 8-16 [ t l I 1 l l l
9-g . s rX X X, 47 r X X X X , 4s - X X X X X so r X X X X X X, . as X X. X X X X X si X X X X X X 27 X X X X X X X 2a X X X X X X is X X. X X X. X X is ' X X X X ~X X J 11 - - X X X X. X 7 ' X X X X J s i FX X Xi l 2 6 10 14 18 22 26 30 34 38 42 46 50 A2 51 r X - X , 47 r X X X X X, 43 - X X X X X X as r X X X - X X , = ss X X - X X X X si X X X X X. X X 27 X X X X X X 2a X X X. X X X X is X X X X X. X is ' X X X X X J 11 - - X X X X X X 7 HX X X X XJ 3 i F X X il 2 6 10 14 18 22 26 30 34 38 42 46 50 SEQUENCE ROD . FIGURE $'I A
-- - ~
i
- e. .,
SEQUENCE LOGIC BOARD SEOUENCE SELECTOR NOT IN NORMAL $ , 912FULLIN 7 es4 FUtt tN 7 SELECT ,3,3,L,c7 A12 Futt-iN/Futt cut , LOGIC pgnu,333vg - GROOF SELECT A34 7
>22% OR 812,834 FULL OUT & SELECTOR SWITCHES IN NORMAL SECUFNCE SELECTO R NOT IN NORMAL $
812 FULL-IN 7 e34 Futt '"
= SELECT A12 SELECT m A34 Futt is/Futt OuT -
LOGIC PERMISSIVE GROUP SELECT A17 y (' 322% CR 812.834 FULL QUT & SELECTOR SWITCHES IN NORMAL SEOUENCE SELECTOR NOT IN NORMAL $ A12 FULL IN A34 FULL IN r SELECT ,- s12 SELECT _ 834 FULL IN/Ft'LL OUT -- LOGIC PE RMISSIVE G ROUP SELECT 812 7 222% OR A12. A34 FULL OUT & SELECTOR SWITCHES IN NORMAL SEOUEPeCE SELECTOR . NOT IN NORMAL p A12 FULL IN 7 A34 FU:.L-IN 7 SELECT e34 SELEc7 s12 FUu.-INirVLL QUT r = LOGIC PERMISSIVE g G ROUP SELECT R34 7
>22% CR A12. A34 FULL OLIT & SELECTOR SWITCr4ES IN NORMAL FIGURE 461 B O
..=
I ROO POSITIONS 1r FoiLsNicuT - RSCS mLL'COMs ANo MPOS ' 4 ROD DISPLAVS 16 di g Jl Jb
$ N N @g O SEL ECTED ROO Q SE LECTED ROD @
Q INOP SELECT INHISIT E o gE a Roo ORivE f, g g E 4 4 o I_o o 2 r -- - - 7 . r-----7 l~~~~~~J ROD MOTION .l l g lOKIMt!!$14 COMMANDS 'j N8 RWM SELECT INHistT l t._ _ _ _ _ _i h L_____J g hg i d r o (( OTHER s ROOWITHORAWAL SLOCKS 2 .e SEf_ECTEO ROO - SYSTEMS ' g $ a ,8 5 0t ONC O e D RE ACTOR MANUAL CONTROL SY, STEM BLOCK DIAGRAM h a FIGURE Wo7 C h
. PATTERN FOR GRANTING PERMISSION FOR ROD WITIIDRAWAL B B AN "A" ROD 2 _
3,4 , NOTE: All rods in group move in same direction ANY ROD
=
A l,2 A A OD
- 1.2 m -
NOTE: All rods in group move in'same direction 100 ' 50 30 jc ROD DENSITY % % l C POWER % M FIGURE M/o 7 D I'
! 10000 9 a
. 7 6
s 4 3 2 r-U) 1,000 w
& 9 3 a 7
Z
- s 1 5 1 4 Z
3 3 o o
& 2 a
I, u 100 E e O a 7 O 6
< 5 4
x x W H 2 u. w 2_ 10, . Y a 7 6 5 4 3 2 1 0 10 20 30 40 50 MAXIMUM CORE UNCOVERY TIME-MINUTES
- MAXIMUM CORE UNCOVERY TIME . . . . .
FIGURE 21 Rev. 3 b BSEP/Vol. VI/EOP-01-UG , Page 90 of 94 ,
*. A u, ~ ,.:. .i . .. , , /: :,-/* ,' * '
f,;;.:d'.$P'. *k - 's.O'" ',i, . f *.
- b i ' . *:I .A '. .
. ' < .. ::~. , .y . < . . 44;. .. >;+.. ,4 . .. .V. 'r..??, -m '*:>.-..~ . .<.-4..s'. . .r.. ' .>:. ..?;' .. c. :(,:. . 1;;) 6
s . . (* I
=
s, .. ,
; SECTIONS 3.0 AND 4.0 l'
LIMITING CONDITI5NS FOR OPERATION 4 AND . j SURVEILLANCE REQUIREMENTS 4 . 8 .r ,. . . i 4 . . i 1 . 4 f .
= ! \ .
l
~
RETYPED TECH. SPECS. Updated Thru. Ameni$. 78 I 9
. 3/4 LIMITING CONDITIONS FOR OPERATION AND SURVEILLANCE REOUIREMENTS ~ ~
1/4.0 APPLICABILITY LIMITING CONDITION FOR OPERATION ' _
*1.0.1 Limiting Conditions for Operation and ACTION requirements shall he -applicable during.the OPERATIONAL CONDITIONS or other states specified for each specification. _.
3.0 2 Adherence 'to he rAqdre~ments of the Limiting Condition for Operation
.and associated ACTION. wi. thin the specified time interval shall constitute compliance with the specification. In the event the Limiting Condition for .
operation is restoreEd' prior to ^ expiration of the specified time interval, completion of the ACTION statement is not required. 1.0' 3 In the event a Limiting Condition for Operation and/or associated ACTION requirements cannot be satisfied because of circumstances in excess of those addressed in the specification, the unit shall be placed in at least NOT 4 SHUTDOWN within 6 hours and in COLD -SHUTDOWN within the following 30 hours unless corrective measures are completed that permit operation under the permissible ACTION statements for the specified time interval as measured from initial discovery or until the reactor is placed in an OPERATIONAL CONDITION in which the specification is not applicable. , Exceptions to thes'e requirements shall he stated in the individual specifications. 3.0.4 Entry into an OPERATIONAL CONDITION or other specified applicability i state shall not be made unless the conditions of the Limiting Condition for Operation are met without reliance on provisions contained in the ACTION statements unless otherwise excepted. This provision shall not prevent passage through OPERATIONAL CONDITIONS required to comply with ACTION requirements.
~
3'.0.5 When a system, subsystem, train, component, or device is determined to be inoperable solely because its emergency power source is inoperable, or solely because its normal pmr source is inoperable, it ma'y be considered OPERABLE for the purpose of Ttisfying the requirements of its applicable , 4 Limiting Condition for Oper. on, provided: (1) its corresponding normal or ' emergency power hource is OPERABLE; and (2) all of its redundant system (s), subsystems (s), train (s), component (s), and device (s) are OPERABLE, or likewise satisfy the requirements of this specification. Unless both conditions (1) and (2) are satisfied, the unit shall be placed in at least HOT SHUTDOWN , within 6 hours, and in at least COLD SHUTDOWN within the following 30 hours. This specification is not applicable in Conditions 4 or 5. t r 1
- c -
3/4 0-1 BRUNSWICK - UNIT 2 RETYPED TECH. SPECS. Updated Thru. Amend. 7
. l APPLICABILITY ' . ' ' o.
l SURVEILLANCE REOUIREMENTS 4.0.1 Surveillance Requirements shall be applicable during the OPERATIONAL ; CONDITIONS or other states specified for individual Limiting Conditions for i Operation unless otherwise stated in an individual Surveillance Requirement. 4.0.2 Rach Surveillanca Requirement shall be performed within the specified
- time interval with: ,, ,
- a. A maximum allowable extension not to exceed 25% of the surveillance interval. ,
l
. b. A total maximum combined interval time for any 3 consecutive !
surveillance intervals not ~ to . exceed 3.25 times the specified j surveillance interval. j l 4.03. Performance of a Surveillance Requirement within the specified time l interval shall constitute compliance with OPERABILITY requirements for a - Limiting Condition for Operation and associa,ted ACTION statements unless otherwise required by the specification.. Surveillance requirements do not , l have to be performed on inoperable equipment. 4.04 Entry into an OPERATIONAL CONDITION or other specified applicable state shall not be made unless the Surveillance Req'uirement(s) associated with the ( Limiting Condition for Operation have been performed within the applicable surveillance interval or as otherwise specified. I i 4.05 Surveillance Requirements for inservice inspection and testing of ASME Code Class 1, 2, and 3 components shall be applicable as follows:
- a. During the time period: -
- 1. From issuance of the Facility. Operating License. to the start of facility commercial operation, inservice testing of ASME Code Class 1, 2, and 3 pumps and valves shall be performed in ,
accordance with Section XI of the ASME Boiler and Pressure vessel Code, 1974 Edition, and Addenda through Winter 1975 except where specific written relief has been granted by the commission.
- 2. Following start of facility commercial operation, inservice
! inspection of ASME Code Class 1,. 2, and 3 components and inservice tasting of ASME Code Class 1, 2, and 3 pumps and i valves shall be performed in accordance with Section XI of the'- ) ASME Boiler and Pressure . Vessel Code and applicable Addenda as required by 10 CFR 50, Section 50 55a(g), except where specific l written relief has been granted by the Commission pursuant to 10 CFR 50, Section 50 55a(g) (6) (1). BRUNSWICK - UNIT 2 3/4 0-2 RETYPED TECH. SPECS. Updated Thru. Amend. *
~
3/4.0 APPLICABILITY -
~
l SURVEILLANCE REQUIREMENTS (Continued) l ( b. Surveillance intervals specified in Section II of the ASME Boiler and Pressure Vessel Code and applicable Addenda for the inservice inspection and testing activities required by the ASME Boiler and Pressure Vessel Code and applicable Addenda shall be applicable as follows_.in ,these Techai,c,al Specifications: ASME Boiler and Pressure Vessel ~ Required frequencies Code and applica51e' Addenda for performing inservice - terminology for inservice inspection and testing inspection and testing activities activities Weekly At least once per 7 days Monthly , At least once per 31 days Quarterly or every 3 months - At lesst.once per 92 days Semiannually or every 6 months At least once per 184 days
, Tearly or annually At least once per 366 days
- c. The provisions of Specification 4.0.2 are applicable to the above required frequencies for performing inse_rvice inspection and testing activities.
l d. Performance of the above inservice inspection and testing activities - shall be in addition to other specified Surveillance-Requirements.
, e. Nothing in the ASME Boiler and Pressure Vessel Code shall be , construed to supersede the requirements of any Technical * -- Specification.
! 4.0.6 All ASME Code Class 1 and 2 coolant pressure boundary lines shall conform to the gui.leliaes for materials or augmented in-service inspection of NUREG-0313, Revision 1, " Technical Report on Material - Selection and Processing Guidelines for BWR Coolant Pressure Boundary Pipins," July 1980.
- i )k BRUNSWICK - UNIT 2 3/4 0-3 Amendment No. 93
I
- \
- j 1/4.5 EMERGENCY CORE COOLING SYSTEMS .
I 1/4.5.1 HICH PRESSURE COOI. ANT INJECTION SYSTEM _ - LIMITINC CONDITION FOR OPERATION , 1.5 1 1he High Pressure Coolant Injection (MPCI) system shall be OPERARLE with:
- . ~ . . . . . . . .
- a. One OPERABLE high pressure coolant injection pump, and -
- b. An OPERABLE flow path capable of taking suction from the suppression .
pool and trads' ferring the water to the pressure, vessel. _ APPLICARILITY: CONDITION,5 1,- 2, and 3 with reactor vessel steam done pressure
> 113 psig. ..
ACTION: ~
- a. With the RPCI system inoperable, POWER OPERATION any continue provided the ADS, CSS, and LPCI systems are OPERABLE; restore the inoperable HPCI system to OPERABLE status within 14 days or he in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24* hdurs. .
's With the surveillance requirements of Specification 4.51 not
- 5. -
performed at the required frequencies due to low reactor steam pressure, the provisions of Specification 4.,0.4 are not applicable provided the appropriate surveillance is performed within 48 hours af ter reactor steam pressure is adequate to
. ( .".N.
J perform the tests. . SURVEILLANCE REOUIREMENTS 4.5.1 The 9PCI shall be demonstrated OPERABLE: , .
- 4. At least once' per 11 days by: * .
- 1. Verifying that the system piping from the pump discharge valve ' F.
to the system isolation valve is filled with water. 4.C. . i
. ,,'. y!. . , . .qq. n ~
- l) h T: .
* ,$flj
(
-2:. . ; i W .
BRUNSWICK - UNIT 2 3/4 5-1
% TC U-0] ;
RETYPED TECH. SPECS. Updated Thru. Amend.' 8 l
./ ,
. _ _ _ ~ _ _ _ _ _ _ _ _ _ _ _ _ _ _. _. _ _ _ _ _ _ _
s 5., EMERCENCY CORE COOLING SYSTEMS SURVEILLANCE REOUIREMENTS (Conti ued)
- 2. Verifying that each valve (manual, power-operated, or automdLic) in the flow path that is not locked, sealed, or otherwise secured in position, is in its correct position. l l
- h. At least-.once _per 9.2 4ays., by ' verifying that the system develops .i flow of at least 4250 gym for a system head corresponding to a reactor. pressure 11000 psig when steem is being supplied to the turbine at 1000, +20, -18, peig. ,,
- s. .
l
- c. At least once per 18 months by:
I
- 1. Performing a system functional test which includes sistulated autoestic actuation of the system throughout its emergency operating sequence and verifying that each satoestic Actual valve in the flow path actuates tc> its correct position. I injection of coolant into the reactor vessel is excluded from this test.
- 2. Verifying that the system develops a flow of at least 4250 gym l
for a system head corresponding to a reactor pressure of > 165 psig when steam is Mng supplied to the turbine at 165, [ 15, .. psig. .
- 3. Verifying that the suction for the. HPCI, system is automatically transf erred frors the condensate storage tank to , the suppression
(
- I "'-)' -
pool on a c.ondensate storage tank low water level signal or suppression pool high water level signal. I
.. \ . . l l . 4.h .. ,. .- ,h,I,.h, .. ..qq'~.y g; - m. . ~. ' : . . ..h n. ?E s
l
' a \
G[.1,:
? , ,
2,v- .
.h . ' h 3/4 F2 :
RRUNSWICX - UNIT 2 "At. TM 44 6 0 7 j RETTPED TECH. SPECS. j ., u, dated thr . mod. n
). .
EMERGENCY CORE COOLING SYSTEMS _
+ . 'l ' ' *: 3/4.5.2 AUTOMATIC DEPRESSURIZATION SYSTEM ,
LIMITING CONDITION POR OPERATION 3.5 2 The Automatic Depressurization System (ADS) shall be OPERABLE with at ~ least seven OPERABLE ADS valves. APPLICABILITY: CONDITIONS 1, 2, and 3 with reactor vessel steam.done pressure
> 113 peig. - . - . .
1 ACTION: -- .
- a. With one AD!! valve fnoperable, POWER OPERATION may continue provided the HPCI, CSS, and LPCI systems are OPERABLE; restore the inoperable 1
j - ADS valve to OPERABLE status within 14 days or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the . following 24 hours.
~
- b. With two or more ADS valves inoperable, be in at least HOT SHUTDOWN within 12 hours and in COLD SHUTDOWN within the dext 24 hours.
j c. With the Surveillance Requirement of Specification 4.5 2.b.not
~
performed at the required interval due. to low reactor steam pressure, the provisions of Specification 4.0.4 are not applicable provided the appropriate surveillance is performed within 12 hours af ter reactor
- vessel steam pressure is adequate to perform the tests.
SURVEILLANCE REQUIREMENTS ( ^J 4.5.2 The ADS shall be demonstrated OPERABLE at least once per 18 months by:
- a. Performing a system functional test which includes simulated automatic actuation of the system throughout its emergency operating -
sequence, but excluding actual ~ valve actuation.
' - b. Manually opening each ADS valve when the reactor steam done pressure is 1100 psig and observing that either;
- 1. The control valve or bypass valve position responds accotii.; gly.
or There is a corresponding change in the measured steam flow. 1 2. m i l l 1 l BRUNSWICK - UNIT 2 3/4 5-3 , RETYPED TECH. SPECS. Updated Thru. Amend. 78 l I i :
! I
l . ! ENERCENCY CORE COOLING SYSTEMS 3/4.5.3 LOW PRESSURE COOLING SYSTEMS
~
CORE SPRAY SYSTEM LIMITING CONDITION FOR OPERATION 3.5.3.1 Two independent Core Spray System (CSS) subsystems shall be OPERABLE with each subsystem comprised. oft .
- a. One pump, and '
- b. An OPERABLE flow path' capable of taking suction from at least one of the following OPERABLE sources and transferring the water through the spray sparger to the reactor vessel:
~
- 1. In OPERATIONAL CONDITION 1, 2, or 3, from the suppression pool.
- 2. In OPERATIONAL CONDITION 4 or 5*: .l
{ i a) From the suppression pool, or - l b) When the suppression pool is inoperable, from the i condensate storage tank containing at least 150,000 gallons ] of water. .
]
J APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, 3, 4, and 5*. j ACTION:
- a. In OPERATIONAL CONDITI.ON 1, 2, or 3:
- 1. With one CSS subsystem inoperable, POWER OPERATION may continue provided both LPCI subsystems are OPERABLE; restore the inoperable CSS subsystem to OPERABLE status within 7 days or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- 2. With both CSS subsystems inoperable, be in at least HOT SHUTDOWN
- within 12 hours and in COLD SHUTDOWN within the next 24 hours.
I The core spray system is not required to be OPERABLE provided that the reactor vessel head is removed and the cavity is flooded, the spent fuel pool gates are removed, and the water level is maintained within the limits of Specifications 3.9.8 and 3.9.9. 1 BRUNSWICK - UNIT 2 3/4 5-4 Amendment No. 127 l
. 1 . a . , i ee = * *l l EME2CENCY CORE COOLING SYSTEMS.
j LIMITING CONDITION FOR OPERATION (Continued) ACTION (Continued)
- 3. In the event the CSS is actuated and injects water into the reactor.c.colan,t system, a Special Report shall be prepared and submitted to the Commission pursuant to Specification 6.9.2 within 90 days.d.escribing the circumstances of the actuation and the total accumulated actuation cycles to date.
- b. In OPERATIONAL CONDITION 4 or 5*:
- 1. With one CSS subsystem inoperable, operation may continue provided that at least one LPCI subsystem is OPERABLE within 4 hours; otherwise, suspend all. operations that have a potential for draining the reactor' vessel.
- 2. With both CSS subsystems inoperable, operation may continue provided that at least one LPCI subsystem is OPERABLE and both '
LPCI subsystems are OPERABLE within 4 hours. Otherwise, suspend all operations that have a potential for draining the reactor
, vessel and verify that at least one LPCI subsystem is OPERABLE ,
within 4 hours. ' s
- 3. The provisions of Specification 3. 3 ar's not applicable. _
( %) - SURVEILLANCE REQUIREMENTS 4.5.3.1 Each CSS subsystem shall be demonstrated OPERABLE:
- a. At least once per 12 hours by verifying the condensate storage tank -
minimum required volume when the condensate storage tank is required to be OPERABLE.
- b. At least once per 31 days by: !
l
- 1. Verifying that the system piping from the pump discharge valve i to the system isolation valve is filled with water. . l
- The core spray system is not required to be OPERABLE provided that the reactor vessel head is remove'd and the cavity is flooded, the spent fuel pool gates are removed, and the water level is maintained within the limits of Specifications 3.9.8 and 3.9.9.
BRUNSWICK - UNIT 2 3/4 5-5 Amendment No. 127 I l
i EMERGENCY CORE COOLING SYSTEMS . . SURVEILLANCE REQUIREMENTS (Continued)
- 2. Verifying that each valve (zanual, power-operated, or automatic) in the flow path that is not locked, sealed, or otherwise secured in position, is in its correct position.
At least 'oned ke~r 92 dsyi* by: c.
- 1. Verifying thd~c~each CSS pump can be started from the concrit .
room and develops-a flow of at least 4625 spa on recirculati:n i flow against a sy. stem head corresponding to a reactor vessel pressure of 2; L13 psig.
- 2. Performing a CHANNEL CALIBRATION of the core spray header /J instrumentation (E21-dPIS-N00,4A,B) and verifying the setpoir.c to be 5, +L.5, psid greater than the normal indicated AP.
- d. At least once.per 18 months by performing a system functional test which includes simulated automatic actuation of the system thr:ughout its emergency operating sequence and verifying that each automatic valve in the flow path actuates to its correct position. Actual injection of coolant into the reactor vessel is excluded from this cett.
C.. .. t
\ N. . .
s., s
! -> r.
- The surveillance test required by this license in Appendix A, paragraph 4.5.3.1.C.1, regarding the flow test of the core spray system say be ~
postponed during -he. current refueling outage (Reload 5) until within 48 hours af ter restoration of the sup'pression chamber to operable status but in any case no later than Nove.mber 15, 1984 . . 1 BRUNSWICK - UNIT 2 3/4 5-6 Amendment No. 96 , h
~
l EMERGENCY CORE COOLING SYSTEMS , .
- ~ .. ~
t ' ~ LOW PRESSURE COOLANT INJECTION SYSTEM , LIMIT [NG CONDITION POR OPERATION 3.5.3.2 wo independent Iow Pressure Coolant Injection (LPCI) subsystems of the residual heat removal system shall be OPERABLE with each subsystem comprised of: -- - -- -
- a. Two pumps, -- -
- b. An OPERABLE' flow path capable of taking suction from the suppression pool and transferring the water to the reactor pressure vessel.
APPLICABILITY: CONDITIONS 1, 2, 3, 4*, and 5*. ; ACTION: ,
- a. In CONDITION 1, 2, or 3:
- 1. With one LPCI subsystem or one LPCI pump inoperable, POWER OPERATION may continue provided, both CSS subsystems are OPERABLE; restore the inoperable LPCI subsystem or pump to OPERABLE status within 7 days or be in at least NOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the .
~N following 24 hours.
( '
~
- 2. With both LPCI subsystems inoperable, be in at least 50T SHUTDOWN within 12 hours and in COLD SHUTDOWN within the following 24 hours.
- 3. .With the LPCI system cross-tie valve open or power not removed from the valve operator, be in at least Hot SHUTDOWN within 12 hours and in COLD SHUTDOWN within the foIlowing 24 hours. ,
- 4. In the event the ECCS is actuated and injects water into the Reactor Coolant System, a Special Report shall be prepared and ,
- submittad to the Commission pursuant to Specification 6.9.2 within 90 days describing the circumstances of the actuation and , ~ , . .
the total accumulated actuation cycles to date. j
- 5. In CONDITION 4* or 5* with one or more LPCI subsystems inoperable, take the ACTION required by Specification 3~.5 3.1. The provisions of Specification 3.0.3 are not applicable.
l -
\.. *Not applicable when ,two CSS subsyst' ems are OPERABLE per Specification ,
3.5.1.1. BRUNSWICK - UNIT 2 3/4 5-7 RETYPED TECH. SPECS.
- Updated Thru. Asend. 78
~
EMERCPNCY CORE COOLING SYSTEMS y ., SURVEILLANCE REOUIREMENTS 4.5.3.2 Each LPCI subsystem shall be demonstrated OPERABLE:
- a. At least once per 31 days by:
- 1. Verifying that~ the system piping from the pump discharge valve
't'o the~ syst'ma 1'sdlation valve is filled with water,
- 2. ' verifying t'hai: each valve (manual, power-operated, or automatie)-
in thes flow path -that is not locked, seaJed, or otherwise secured in position, is in its correct oosition, and
- 3. Verifying that the subsystem cross-tie valve is closed with power removed from the valve operator.
- b. At least once per 92 days by veiifying each pair of LPCI pumps discharging to a common header can be started from the control room and develops a total flow of at least 17,000 gpra against a system head corresponding to a reactor vessel pressure of 120 psig.
- c. At least once per 18 months by perf6rding a system functional test which includes simulated automatic actuation of the system throughout its emergency operating sequence and verifyin? nat each automatic e valve in the flow path actuates to itmerrect position. Actual s injection of coolant into the reactor vessel is neluded from r.M 9 cest.
- (
~
l
. i l
i
.~,'
- e
\. . 'a I~ RRUNSWICK - UNIT 2 3/4 5-8
- j%
- RETYPED TECE. SPECS.'
. Updated Thru. Amend. 78 - - , ,_, , - - - - - _ _ . - . - - , . - - - . , - - - - - . . .,.,w , , , ,
l . PLANT SYSTEMS 3/4.7.4 REACTOR CORE ISOLATION COOLING SYSTEM LIMITING CONDITION FOR OPERATION 3.7.4 The reactor core isolation cooling (RCIC) system shall be OPERABLE with . an OPERABLE flow path, capable of automatically taking suction from the suppression pool and transferring the water to the reactor pressure vessel. ~ APPLICABILITY: OPERATIONAL CONDITI6NS 1, 2, and 3 with reacsor steam done pressure greater than 113 psig. ACTION: With the RCIC system inoperable, operation may. continue and the provisions of Specifications 3.0.4 are not applicable pr5vided the HPCI system is OPERAB.LZ; restore the RCIC. system to OPERABLE status within 31 days or be in at least
- BOT SHUTDOWN within the next 12 hours and reduce reactor steam dome pressure ta less than or equal to 113 psig within the following 24 hours.
SURVEmlNCE REOUIRIMENT5
~4.7.4 The RCIC syt. tem shall be demonstrated OPERA 3LE:
- a. At least once per 31 days by:
- 1. Verifying by venting at the highpoint vents that the system piping from the pump discharge valve to the system isolation valm te filled with water.
- 2. Verifying that each valve, manual, power operated or automatic '
in the flow path that is not locked, sealed or otherwise secured in position, is in its correct position.
- b. At least once per 92 days by verifying that the RCIC pump develops a flow of greater than or equal to 400 gym in the test flow path with a 1 system head corresponding to reactor vessel operating pressure when l steam is being' supplied to the turbine at 1000 + 20, - 80 peig.* i l
I
- Ihe provisions of Specification 4.0.4 are not applicable provided the surveillance is performed within 24 hours after reactor steam pressure is .
. . % . to perform the test.
4 3/4 7-7 Amendment No. 94 BRUNSWICK - UNIT 2
. 1
~ ' j
( PI. ANT SYSTDiS - l SURVEILI.ANCE REOUIRDENTS (Continued)
- c. At least once per 18 months by:
I
- 1. Performing a system functional gest which includes simulated -
automatic-actuation and restart and verifying that each automatic valve in the flow path actuates to its correct position, but any exclude actual injection of coolant into the reactor. vessel. ,
- 2. Verifying that the system will develop a flow of greater than or equal to 400 gym in the test flow path when steam is supplied to the turbine at a pressure of 150 + 15 psig.* ,
- 3. Verifying that the suction for the RCIC system is automatically
~
transf erred from the condensate storage tank to the suppression pool on a condensate storage tank water level-low signal.
- Ihe provisions of Specifications 4.0.4 are not applicable provided the surveillance is performed within 24 hours af ter reactor steam pressure is .
adequate to perform the tests. Automatic restart on a low water level signal which is subsequent to a C - + hi Jh water level trip. l L BRUNSWICK - UNIT 2 3/47-8 Amendment No. 94
\
i Table 1. Saturated Steam: Temperature Table Abs Press. Specific Volume Enthalpy Entropy Temp Lb per Sat. Sat. Sat. Sat. Sat. Sat. Temp Fahr SqIn. Liquid Evap Vapor Liquid Evap Vapor Liquid Evap Vapor Fahr t p vg V8 hf h fg hg sg sig sg t Vfe i 32 0 0 08859 0.016022 3304.7 3304.7 0.0179 1075.5 1075.5 0.0000 2.1873 2.1873 32.0 34.0 0 09600 0 016021 3061.9 3061.9 1.996 1074.4 1076.4 0.0041 2.1762 2.1802 34.0
- 36 0 0 10395 0.016020 2839.0 2839.0 4.008 1073.2 1077.2 0.0081 2.1651 2.1732 36.8 38.I 0.11249 0.016019 2634.1 2634.2 6.018 1072.1 1078.1 0.0122 2.1541 2.1663 38.8
! 48 I 1.12163 0.016019 2445.8 2445.8 8.027 1071.0 1079.0 0.0162 2.1432 2.1594 40.0 42.0 0.13143 0 016019 2272.4 2272.4 10 035 1069 8 1079.9 0.0202 2.1325 2.1527 42.0 44 9 0.14192 0.016019 2112.8 2112.8 12.041 1068.7 1080.7 - 0.0242 2.1217. 2.1459 44.0 46.8 0.15314 0.016020 1965.7 1965.7 14.047 1067.6 1081.6 0 0282 2.1111 2.1393 46.8 48.5 0.16514 0.016021 1830.0 1830.0 16.051 1066.4. 1082.5 0.0321 2.1006 2.1327 40.0 , 0.17796 0.016023 1704.8 1704.8 18.054 10653 1083.4 0.0361 ' 2.0901 2.1262 50.0 50.0 52.I 0.19165 0.016024 1589.2 1589.2 20.057 1064.2 1084.2 0.0400 - 2.0798 2.1197 52.0 54.0 0.20625 0.016026 1482.4 1482.4 22.058 1063.1 1085.1 0.0439 2.0695 2.1134 54.8
! 56.8 0 22183 0.016028 1333.6 1383.6 24.059 1061.9 1086.0 0.0478 2.0593 2.1070 56.5 58.0 0.23843 0.016031 1292.2 1292.2 26.060 1060.8 1086.9 0.0516 2.0491 2.1008 58.0 $0.0 0.25611 0.016033 1207.6 1207.6 28.060 1059.7 1087.7 0.0555 2.0391 ' 2.0946 - 68.8 62.0 0.27494 0.016036 1129.2 1129.2 30.059 1058.5 1088.6 0.0593 2.0291 2.0885 62.0 64.0 0.29497 0.016039 1056.5 1056.5 32.058 1057.4 1089.5 0.0632 2.0192 2.0824 64.0 66.0 0 31626 0 016043 989.0 989.1 34.056 10563 1090.4 0.0670 2.0094 2.0764 66.8 4 la 8 033889 0 016046 926.5 926.5 36.054 1055.2 1091.2 0.0708 1.9996 2.0704 . 68.0 l 'T 70.0 0.36292 ' O.016050 868.3 868.4 38.052 1054.0 1092.1 0.0745 1.9900 2.0645 78.5 72 0 038844 0.016054 814.3 8143 40.049 1052.9 1093.0 0.0783 1.9804 2.0587 12.0 -74.8 0.41550 0 016058 764.1 764.1 42.046 1051.8 - 1093.8 0.0821 1.9708 2.0529 74.0 16.8 0.44420 0.016063 717.4 717.4 44.043- 1050.7 1094.7 0.0858 1.%I4 2.0472 78.8 78.I 0.47461 0.016067 673.8 - 673.9 46.040 1049.5 1095.6 0.0895 1.9520 2.0415 78.0 i 80.0 0.50683
- 0.016072 633.3 633 3 48.037 1048.4 1096.4 0.0932 1.9426 2.0959 30.0 82.9 0.54093 0 016077 595.5 595.5 50.033 10473 109/3 0.0969 1.9334 2.0303 82.0 84.8 0577Pt 0 016082 560.3 560 3 52.029 1046.1 1098.2 0.1006 1:9242 2.0248 84.0 86.3 0.615y 0.016087 227.5 527.5 54.026 1045.0 1099 0 0.1043 1.9151 2.0193 86.8 I 88 8 0.655 % 0.016093 496 8 496.8 56.022 1043.9 1099.9 0.1079 1.9060 2.0139 88.I
. 90.0 '0.69813 0.016099 468.1 468.1 58.018 1042.7 1100.8 0.1115 1.8970 2.0086 90.0 37 0 0.74313 0.016105 4413 4413 60 014 1041.6 1101.6 0.1152 1.8881 2.0033 92.0 ;- 34.8 0 79062 0 016111 4163 4163 62.010 1040.5 1102.5 0.1188 1.8792 1.9980 ' M.I i 96.I O84072 0.016117 392.8 392.9 64.006 1039 3 1103 3 0.1224 1.8704 1.9928 96.0 j, 38.8 0 89356 0.016123 370.9 370.9 '66 003 1038 2 1104 2 0 1260 1.8617 1.9876 98.8
1 } . j ' Specific Volume Enthalpy Entropy
! Abs Press.. Sat. Temp Sat. . Sat. Sat. Sat. Sat.
Temp Lb per Liquid Evap Vapor Fahr Liquid Evap Vapor Liquid Evap Vapor
- Fahr SqIn. i V veg vg h h is he St Sig Sg t p 0 016510 50 21 50.22 14800 990.2 1138.2 0.2631 1.5480 1.8111 180.8 180.8 7.5110 0.2662 1.5413 1.8075 182.0 7.850 0 016522 48.172 18.189 150 01 989.0 1139.0 182.8 987.8 0.2694 1.5346 1.8040 184.0 0 016534 46.232 46.249 152.01 1139.8 184.s 8.203 02725 1.5279 1.8004 186.0 0 016547 44.383 44.400 154.02 986.5 1140.5 186.8 8.568 0.2756 1.5213 1.7%9 188.0 8.947 0.016559 42.621 42.638 156.03 985.3 - 1141.3
, 188.I 0.016572 40.941 40.957 158.04 984.1 1142.1 0.2787 1.5148 1.7934 190.0 190.0 9340 0 2818 1.5082 1.7900 192.6 0.016585 39337 39354 160.05 982.8 1142.9 192.0 9.74 7 10.I68 0.016598 37.808 37.824 162.05 981.6 1143.7 0.2848 1.5017 1.7865 194.0 194 I . 980.4 1144.4 0.2879 1.4952 1.7831 1968 10.605 0 016611 36.348 36364 164.06 196 I 979.1 1145.2 0.2910 1.4888 1.7798 198.8 11.058 0 016624 34.954 34.970 166.08 198.8 , 0.016637 33.622 33.639 168.09 977.9 11460 0.2940 1.4824 1.7764 200.8 200.I 11.526 12.512 0 016664 31.135 31.151 172.11 975.4 1147.5 0 3001 1.4697 1.7698 284.0 204 8 03061 1.4571 1.7632 208.0 13.568 0.016691 28.862 28878 176.14 972.8 1149 0 198.I . 0 3121 1.4447 1.7568 212.0 0.016719 26.782 26.799 180.17 970 3 1150.5
> 212.8 14 696 15.901 0.016747 24.878 24.894 18420 967.8 1152.0 0 3181 1.4323 1.7505 216.0 & 216.I 23.131 23.148 188.23 965.2 1153.4 03241 1.4201 1.7442 228.0 '
228.0 17.186 0.016775 192.27 962.6 1154.9 0 3300 1.4081 1.7380 224.0 224.8 18.556 0.016805 21.529 21.545 20.015 0016834 20.056 20.073 ,19631 960.0- 1156.3 0 3359 13 %I 1.7320 2288 2288 03417 13842 1.7260 232.0 0.016864 18.701 18.718 20035 957.4 1157.8 232.8 21.567 0.016895 17.454 17.471 M.;0 954.8 1159.2 03476 13725 1.7201 236 0 ; 236 0 23.216 24.968 0.016926 16304 16321 208.45 952.1 1160.6 0.3533 13609 1.7142 240.8
- 240.0 03591 13494 1.7085 244.0 26.826 0.016958 15.243 15.260- 212.50 949.5 1162.0 1 244.8 03649 13379 1.7028 248.8 28 796 0.016990 14.264 .14.281 216.56 946.8 1163.4 248.8 03706 13266 1.6972 252.8 30.883 0.017022 13358 13375 220.62 944.1 1164.7 252.s 03763 1.3154 1.6917 256.0 33.091 0.017055 12.520 12.538 224.69 941.4 1166.1 l 256.8
' 0.017089 11.745 11.762 228.76 938.6 1167.4 03819 13043 1.6862 268.I , 260.0 35.427 0.017123 11.025 11.042 232.83 935.9 - 1168.7 0 3876 1.2933 1.6808 264.I 254.8 37.894 -
- 40.500 0.017157 10358 10.375 236.91 933.1 1170 0 0 3932 1.2823 1.6755 268.8-268.8 0.3987 1.2715 1.6702 2 72.0 43.249 0 017193 9 738 9.755 240.99 930 3 11713 272.8 0.4043 1.2607 1.6650 216.0 46.147 0.017228 9.162 9.180 245.08 927.5 1172.5 216.0 t
8.627 8.644 249.17 924.6 11718 0.4098 1.2501 1.6599 280.0
;- 280.8 49.200 0.017264 0.01730 8.1280 8.1453 253 3 921.7 1175.0 0.4154 1.2395 1.6548 284.8 52.414 2M.s 0.4208 1.2290 1.6498 288 I 55 795 0.01734 7.6634 7.6807 257.4 918.8 117E.2 288 I 0.4263 1.2186 1.6449 292.I 59350 0.01738 7.2301 7.2475 261.5 915.9 1177.4 1 292.8 1.6400 296.8 6- 296.0 63.084 0.01741 6.8259 6.8433 -
265.6 913.0 1178.6 0.4317 1.2082
.-. . - - - - . .. - - . _ . _ . - - - - . ..- . . . - - - . _ _ = -. - _ _ - _-
l Abs Press. Specific Volume Enthalpy Entropy . , Ternp Lb per Sat. Sat. Sat. Sat. Sat. Sat. Temp 4 Fahr SqIn. Liquid Evap Vapor Liquid Evap Vapor Liquid Evap Vapor fahr i vig vg hg hg sig S t p vi h is si e 468.8 466 87 0.01961 0.97463 0.99424 441.5 763.2 1204.8 0.6405 0 8299 1.4704 468.8 485.56 , 0 01969 0 93588 0.95557 446.1 758.6 1204.7 0.6454 0.8213 1.4667 464.8 464.0 , 504.83. 0.01976 0.89885 0.91862 450.7 754.0 1204.6 0.650Z ' 0.8127 1.4629 468.8 468.8 472.0 524 67 0.01984 0 86345 0.88329 455.2 7493 1204.5 0.6551 0 8042 1.4592 472.8 476.8 545.11 0.01992 0 82958 0.84950 459.9 744.5 12043 - -0.6599 0.7956 1.4555 476.0 ; 488.0 566.15 0.02000 0.79716 0.81717 464.5 739.6 1204.1 0.6648 0.7871 1.4518 488.8 484.8 587.81 0.02009 0.76613 0.78622 469.1 734.7 1203.8 0.66 % 0.7785 1.4481 4M.I 488.8 610.10 0.02017 0.73641 0.75658 473.8 729.7 1203.5 0.6745 0.7700 1.4444 488.0 492.0 633.03 O.02026 0.70794 0.72820 478.5 724.6 ' . 1203.1 0.6793 0.7614 - 1.4407 492.0 496.8 656.61 0.02034 0.68065 0.70100 483.2 719.5 1202.7 0.6842 0.7528 1.4370 496.8 s , 50s.s 680.86 0.02043 0.65448 0 67492 487.9 7143 - 1202.2 - 0.6890 0.7443 1.4333 500.5 - 504.0 705.78 0.02053 0.62938 0.64991 492.7 709.0 1201.7 0.6939 0.7357 1.42 % 504.8% 588.9 731.40 0.02062 0 60530 0.62592 497.5 703.7 - 1201.1 0.6987 0.7271 - 1.4258 508.8 757.72 0.02072 0.58218 0.60289 502.3 698.2 1200.5 0.7036 0.7185 1.4221 512.0 y, 512.8 692.7 1199.8 0.7085 0.7099 1.4183 e 516.0 '784.76
~
0.02081 0.55997 0 58079 507.1 516.I ' u I 520.0 812.53 0.02091 0.53864 0.55956 512.0 687.0 1199.0 0.7133 0.7013 1.4146 520.0 . 'L , 524.8 841.04 0 02102 0.51814 0.53916 516.9 6813 1198.2 0.7182 0.6926 1.4108 524.0 528 8 87031 0.02112 0 49843 0.51955 521.8 675.5 11973 0.7231 0.6839 1.4070 - 528.0 532.0 900.34 0 02123 0.47947 0.50070 526.8 669.6 1196 4 0.7280 1 0.6752 1.4032 532.0 536.I 931.17 0.02134 0.46123 0.48257 531.7 663.6 1195.4 0.7329 0.6665 1.3993 536.8 - i 549.0 962.79' O.02146 0.44367 0.46513 536.8 657.5 11943 0.7378 0.6577 13954 540.8 . H 544.0 ' 995.22 0.02157 0.42677 0.44834 541.8 6513 1193.1 0.7427 0.6489 13915 544.0. 548.0 M 1028.49 0 02169 0.41048 0.43217 546.9 645.0 1191.9 'O.7476 0.6400 13876 548.8
- 552.0 1062.59 0 02182 0 39479 0.41660 552.0 638.5 1190.6 0.7525 0.6311 1.3837 552.0 556.0- 1097.55 0.02194 0 37966 0.40160 557.2 632.0 1189.2 0.7575 0.6222 1.3797 556.0 ~
568.8 113338 0.02207 0.36507 0.38714 562.4 6253 1187.7 0.7625 0.6132- 13757 ~ 566 8 5640 1170.10 0.02221 0 35099 037320 567.6 618.5 1186.1- 0.7674- 0.6041 13716 ~5648 - 568.8 1207.72 - 0.02235 0.33741 035975 ' 572.9 611.5 1184.5 . 0.7725- 0.5950 1.3675 56s.g 572.0 0.02249 0 32429 0.34678 5783 604.5 1182.7 0.7775 0.5859 13634 . 572.0 576.8 1246.261 1285.74 M- 0.02264 10 31162 033426 583.7 597.2 1180.9 0.7825 0.5766 1.3592 578.8 500.8 1326.17 0.02279 0.29937 0.32216 589.1 589.9 . '1179.0 0.7876 0.5673 13550 580.8 x-F 584.B 1367.7 0 02295 0.28753 031048 594.6 582.4 1176.9 0.7927 0 5580 1.3507 584.0 -~ 588.0 1410.0 0.02311 0 27608 0.29919 N 600.1 574.7 1174.8 ~ 0.7978 0.5485 1.3464 588.8 592.0 1453.3 0.02328 0.26499 ' O.28827 605.7' 566.8 1172.6 . 0.8030 0.5390 .13420 592.8 596.8 1497.8 0.02345 0.25425 0.27770 611.4 558.8 1170.2- 0.8082 0.5293 1.3375 596.0 r _
. 1 %- .E-'_-__-.-_--.._..___- ; ~ _
1 1 Table 2: Saturated StMmf Pressure Table - Specific Volume Enthalpy Entropy Sat. Sat. Sat. Sat. Sat. Abs Press. Abs Press. Temp Sat. LblSq In. Lb/Sgin. Fahr Liquid Evap Vapor Liquid Evap Vapor liquid Evap Vapor ; V hg h h sg . s fg sg P p 't vg vfg s is e , i ' 1075.5 0.0000 2.1872 2.1872 888865 I.00865 32.018 0.016022 3302.4 3302.4 0.0003 1075.5 1087.4 0 0542 2.0425 2.0967 8.25
- I 25 59 323 0.016032 1235.5 1235.5 27.382 1060.1 47.623 1048.6 10 %.3 0.0925 1.9446 2.0370 8.50 I.50 79.586 0 016071 641.5 641.5 1036.1 1105 8 0.1326 1.8455 1.9781 1.8 l 1.8 101.74 0 016136 333.59 333.60 69.73 '
130.20 1000.9 1131.1 0.2349 1.6094 1.8443 50 5.0 162.24 0.016407 73.515 73.532 161.26 982.1 1143.3 0.2836 1.5043 1.7879 10.0 10 I 193.21 0.016592 38.404 38.420
- 26.799 180.17 970.3 1150.5 0.3121 1.4447 1.7568 14.696 14 896- 212.00 0 016719 26.782 26.274 26.290 181.21 %9.7 1150.9 0.3137 1.4415 1.7552 15.8 15.0 213.03 - 0 016726 20.070 20.087 196.27 %0.1 1156.3 0.3358 1.3%2 1.7320 28.8 20.0 227.96 0.016834 250.34 0.017009 13.7266 13.7436 218.9 9A5 2 1164.1 0.3682 1.3313 1.6995 3I5 30.3 1.6765 ogI 267.25 0.017151 10.4794 10.4965 235.1 933 6 1169 8 0.3921 1.2844 40.3 281 02 0 017274 8 4967 8.5140 250.2 923.9 1174.1 0.4112 1.2474 1.6586 50.8 58 3 292.71 0.017383 7.1562 7.1736 262.2 915.4 1177.6 0.4273 1.2167 1.6440 60 0 E0 g 6.1875 6.2050 272.7 907.8 1180.6 0 4411 1.1905 1.6316 70 I 70 g -
302.93 0.017482
> 312.04 0.017573 5.4536 5.4711 282.1 900.9 1183.1 0.4534 1.1675 11208 Is t 80 8 0.4643 1.1470 1.6113 90 0 a 90.0 320.28 0 017659 4.8779 4.8953 290.7 894.6 1185.3 ,
4.4133 4.4310 298.5 888.6 1187.2 0.4743 1.1284 1.6027 100.0 l 100.0 327.82 0.017740 334.79 001782 4.0306 4.0484 305.8 883.1 1188.9 0.4834 1.1115 1.5950 110 8 11s.3 120 I 341.27 0.01789 3.7097 3.7275 312.6 877.8 1190.4 0.4919 1.0960 1.5879 128 8 347.33 0.017 % 3.4364 3.4544 319.0 872.8 1191.7 0.4998 1.0815 1.5813 138 8 130.0 353.04 0.01803 3.2010 3.2190 325.0 868.0 1193.0 0.5071 1.0681 1.5752 148.I . 140.0 358.43 0.01809 2.9958 3.0139 330.6 863.4 1194.1 0.5141 1.0554 15695 150 0 158.8 363.55 0.01815 2.8155 2.8336 336.1 859.0 .1195.1 0 5206 1.0435 1.5641 16e I . 168 I 178 0 368.42 0 01821 2.6556 2.6738 341.2 854.8 1196.0 0.5269 1.0322 1.5591 170.0 373.08 0.01827 2.5129 2.5312 346.2 850.7. 1196.9 0.5328 1.0215 1.5543 18e e 1800 377.53 0.01833 2.3847 2.4030 350.9 846.7 1197.6 0 5384 1.0113 1.5498- ItsI , i 130.0 381.80 0.01839 2.2689 2.2873 355.5 842.8 1198.3 0.5438 1.0016 .1.5454 200.I 233.3 210 I 385.91 0.01844 2.16373 2.18217 359.9 839.1 1199.0 0.5490 0.9923 1.5413 . 210.0 0.01850 2.06779 2.08629 364.2 835.4 1199.6 0.5540 0.9834 1.5374 220 0 228.8 389.88 393.70 0.01855 1.97991 1.99846 368.3 831.8 1200.1 0.5588 0 9748 1.5336 230.0 233.0 240 I 397.39 0.01860 1.89909' .I91769 372.3 828.4 1200.6 0.5634 0.9665 1.5299-2400 0.9585 1.5264 250.I 400.97 0.01865 1.82452 1.84317 376.1 825.0 1201.1 0.5679 258.8 0.9508 260 e
- 2sg g 404.44 0 01870 1.75548 1.77418 379.9 821.6 1201.5 0.5722 1.5230.
1.69137 1.71013 383.6 818.3 1201.9 0.5764 0.9433 1.5197 270 0 i .-- 270 0 407.80 0 01875 j 411.07 . 0 01880 1.63169 1.65049 387.1 815.1 1202.3 0.5805 0.9361 1.5166- 280 0 280.0 1.5135 298 I 414.25 0 01885 1.57597 1.59482 390.6 812.0 1202.6 0.5844 . 0.9291 290.0 1.52384 1.54274 394.0 808.9 1202.9 0.5882 0.9223 1.5105 30s.e . o- 300.0 417.35 0 01889 358 I 1.30642 1.32554 . 409 8 794.2 1204.0 0 6059 0.8909 1.4968 350 8 431.73 0 01912 400 I 424 2 780.4 1204 6 0 6217 0 8630 1.4847 ann n A44 60 00104 1.14167 1.16095
Table 3. Supe 7 heated Steam Abs Press Ltl750 in $4t. $4t. hmpmture-Detrees Fahrenheit ($4t. Iemol water $1 sam 2H 250 300 350 4H 850 5H 000 700 000 900 1000 1100 1200 g Sh 98 26 14026 198 26 248 26 298 M 348 26 390 M 498 M $98 M 498 26 79e 26 898 26 998 M 1998 26
, 0 01684 333 6 3M S 422 4 452 3 4878 Salt S43 7 511 5 638 8 690 7 750 3 809 8 869 4 979 9 988 6 1108 74) h 69 73 110S 8 IIS02 !!?2 9 1195 7 1218 7 12418 126S I 1288 6 13M I 1384 5 1433 7 1843 8 Isis t 1586 4 16M 7 s 1 8326 19781 2 0$09 20 set 2 1152 21445 2 1722 2 1985 2 2237 22708 2.3144 2 Mit 2 M34 2 4296 2 4640 2 4969 Sh 37 M OF M 137 76 18776 23776 28776 337 M 43776 537 M 637 74 737 76 83776 937 M 1037 76 8 0 01641 7353 78 14 84 21 90 24 96 25 102 24 108 23 114 21 12615 138 08 15001 161 94 171 86 185 78 19770 e
1162 241 h 130 20 l1311 1144 6 1871 7 1194 8 1218 0 8241 3 1264 7 1288 2 13M 9 1384 3 1433 6 14837 1534 7 1506 7 1639 6 s 0 2349 1 8443 1 8716 1 9054 1 9369 19H4 1 9943 2 0208 2 0440 2 0932 2 1369 2 8776 211H 22HI 2Je46 2 3194 g, Sh 6 79 56 79 106 79 8 % 19 206 79 2S6 79 306 79 406 79 506 79 006 79 706 79 806 79 10679 100679 8193 211 e 0016H 3442 34 84 4593 ea u 4802 51 03 S4 04 $7 04 6303 69 00 74 98 00 94 86 91 97 87 98 84 h 161 26 5143 3 1146 6 1170 2 1193 7 12178 1240 6 1264 l 12878 13M S ' 1344 0 14334 18835 1534 6 1586 6 16J9 5 s 02836 43479 IJW8 1 8273 18M3 1 8892 1 9173 8.9439 I M12 2 8166 2 0603 2 10!! 2 1394 2 1757 2J101 2 2430 38 08 gg pg 130 00 1II00 238 00 208 08 308 80 488 00 588 00 600 80 788 00 808 88 908 00 84 698 Sh, og87 26 799 28 47 30 S2 32 60 34 67 36 72 30 77 4286 4693 51 00 M 06 $913 63 19 67 75 GI2 001 h 180 17 alle S 8164 4 1i97 6 1216 3 1739 9 IM36 12s7 4 133% 7 1383 8 la H 7 1443 4 1534 S 1586 5 1839 4 s Jill 17%8 1 7333 1 8158 1 84S9 1 8143 1 9018 IlMS 197M 2 8877 2 8 SIS 2 8969 ! !332 2 1676 " 2 200% 83 Sh 3697 8697 13617 18697 236 97 28697 386 97 48697 S36 97 68497 7e6 97 88697 98697 e 0 01673 26 290 27 4j7 29 899 35939 33963 35 977 37 985 419M 4$ 978 49 *64 53946 57926 61 905 65 882 0 13 031 h Isl 21 1350 9 1864 7 1892 S 8216 2 1239 9 8263 6 1281 3 13M 2 1343 8 143)2 1483 4 1534 5 1506 $ 1639 4 s 0 3132 17%2 1 7309 1 8434 1 843; 1 8720 1 8984 1 9242 1 9757 20ln 20%3 2 0946 2 1309 fin) 21982 N Sh 22 04 72 04 t22 04 177 04 222 04 27204 37204 472 04 577 04 672 04 772 08 812 04 972 04 G2FM v 0 01683 20087 20 788 223% 23900 25 478 26446 28 457 31 au 34 465 37 AS8 40447 43 en 46 470 49 405 h 196 27 ll% 3 18675 4191 4 1215 4 4239 2 12610 8206 9 1334 9 8383 5 . 1432 9 3443 2 1534 3 1506 3 1639 3 s 0 3358 1 7320 1 7475 3 7805 1 9111 18M7 I g6H 1 8921 19M7 1 9836 2 0244 2 0628 2 0991 21336 PlHS 25 3 9 93 $993 '0993 15993 209 93 M993 3S9 93 4M 93 $5993 6M 93 M993 85993 95993 v 0 01693 16 101 16 % s lia79 9 n16 70 in7 is %77 22 740 M is) 27%%7 29 ts4 17 ut 34 740 p li0 39 514 0400il b 70R 57 1860 6 lifA 6 llW P .714 5 1714 % I?f.7 5 I?4f e 1154 6 31411 1417 7 1441 0 BM47 1%2F. 7 18M 7 i , s 0 3S35 4 7144 4 22g2 1 7547 i 73 % i al45 I h415 I e677 l 9149 lW4 1 9997 7 0141 7 0/44 7apr 7 14!4 38 Sh 49 66 99 % 149 66 99 66 249 u 349 u 449 E S49 % 64 9 % 789 H 049 M 949 % e 0 01701 13 744 14 810 158 % 16 892 7 914 18 929 20445 22 951 24 9%2 M eat 28 943 30 *M 32 9?7 OSO 341 h 258 93 1164 I L189 0 1213 4 1737 8 261 9 1246 0 1314 2 13830 1432 5 1482 8 1534 0 1586 5 1639 0 s 0 3642 1 6995 1 7334 I M47 1 7937 i3280 1 8467 1 8946 .1 9306 1 9795 2 0179 2 0543 20M8 2 1217 3, Sh 40 78 to 71 leo 71 190 78 240 71 340 FI 440 FI $40 71 640 71 740 71 See 71 940 fl
, 0 01708 11 896 12 6S4 13S62 14 453 15 334 56207 17939 19 662 21 379 23 092 24 8c3 M 512 28 220 GH 291 h 228 03 1167 8 1887 8 1212 7 1237 1 1261 3 128S S 1333 9 1342 8 1432 3 8482 7 1533 9 1506 0 1638 9 s 0 3809 1 6472 4 7152 1 7444 1 7761 1 8035 1 8294 1 8774 1 9284 I M24 2 0009 2 0372 2 0737 21046 48 Sh 32 75 42 M I32 M i32 M 232 75 337 75 432 75 $32 75 632 75 73275 832 75 932FS 067 Mi e 0 01735 10 497 l1036 18838 12 624 13398 14 865 15 68S 17895 18 699 20 199 24 697 23194 24 689 n 236 14 1169 8 IIM6 Illi 7 1236 4 1260 8 1285 0 13336 1382 S 1432 l 1882 5 IS33 7 IS8S 8 1638 8 s 0 3921 16165 169W 4 7312 1 7600 1 7843 1 8143 I M24 19065 1 9476 1 9060 2 0224 28%9 2 0099 45 Sh 25 $6 75 % 125 % IM $6 22S S4 3M % 425 % S2S % 62S % 725 % 82S % 925 %
G74 445
- 0 01721 9 199 9 777 10497 il 2nl il SW 32 57* 13 932 IS 276 16 614 17 950 !? 282 20 613 21 9:3 h 283 49 1872 8 lits 4 1210 4 1735 7 IMO2 828! 6 1333 3 IN3 lall 9 1882 3 8533 6 158% 7 1630 7 s 0 4021 1 Ell 8 6449 lll?3 I 7473 1 7748 8 8380 8 6492 1 8934 I 9345 I 9730 2 0093 2 0439 2 0768 88 G8102)
Sh 18 98 68 90 118 98 168 90 218 90 318 98 41898 514 98 618 95 714 98 81898 91898 v C ol?ti 8 514 4 769 9 424 10 062 10 684 18 306 32M9 13 741 14 947 16 150 17350 18 549 19 746 h 2$0 21 1874 8 11848 1209 9 1234 9 1259 6 1284 6 1332 9 1382 0 1431 7 1482 2 15334 1585 6 1638 6 6 0 4112 1 6586 16720 1 7048 5 7349 13628 11890 1 8374 1 8414 1 9227 I Ml3 1 9977 2 0322 2 06S2 55 Sh 17 93 62 93 18293 162 93 212 93 312 93 412 93 $12 93 612 93 782 93 812 93 91293 087 071 e 0 01733 7 94$ 8 S46 9 130 9 702 19 M7 ll 381 12 44S 13 S83 14 677 15 769 16 858 li 948 h 2w 43 1182 9 12c8 9 1234 2 12S9 8 1283 4 1332 6 13I1 8 8415 1442 0 1533 3 ISSS S 1634 5 s 0 4196 l uol 1 6933 1 7237 I MI8 1 7781 182M 8 4710 1 9128 1 9507 1 987 2 022 2 0$$ 08 Sa 729 57 29 10729 15729 20729 307 29 40729 50729 60729 707 29 00729 90729 G12 71) e 0 01734 7 574 7257 7 815 8 M4 8 081 9 400 104M 14438 12444 13450 le 452 IS 457 16 450 h 262 Il 1177 6 1181 6 1208 0 I233 5 154S 1783 2 1332 3 1381 5 1431 3 leal 8 1533 2 1585 3 1638 4 s 0 4273 I 6440 8 6492 8 6429 8 7134 1 7417 81681 8 8168 8 8612 4 9024 4 9410 I 9774 2 0120 2000 gg Sh 2 02 S2 02 10702 157 02 20702 302 02 40202 $02 02 802 02 702 02 80202 90202 097981 e 0 01743 6653 4 67S F itS 7647 4186 tul 9 465 10 H2 18444 12 412 33 3r 14 768 IS ta3 a 26763 11798 l180 3 1707 0 1232 7 IM79 1282 7 13359 1346 3 Bell i 1448 6' IS339 1585 2 16M 3 s 0 4344 16375 1 6390 1 6738 1 7040 1 7324 1 7590 1 8077 1 8522 1 9935 49321 1968$ 2 0031 2 0363 Sh 4707 9707 14707 19707 29707 39707 49707 59707 69707 79707 89707 79 e 0 01748 6 205 6 664 7133 7 590 4 039 8 972 9 793 196$9 18 522 17382 13740 84 047 0 02 937 6 272 74 1183 6 1206 0 IM20 12573 1282 2 13314 1381 0 14309 1441 5 1532 9 IS8S I 1638 2 8 0 44Il I 6316 i M40 1 6951 8 7237 1 7504 3 1993 1 8439 100$2 I W34 I 9603 8 9949 2 0279 pg Sh 4239 g} 39 I4} 39 Ig2 39 292 39 392 39 492 39 $92 39 $92 39 792 39 09239 e 00lM3 S tie 6 M4 6 645 7 074 7 494 8 320 9tM 9 945 IO FSO 11 %) 12 3 % 131H 0 07 611 n 27754 1181 9 120% 0 1231 2 12 % 7 12sl 7 1331 3 1390 7 1430 7 8441 3 1532 7 IS450 1634 1 s 0 4474 1 6260 16%4 I6M8 I 71 % 1 7424 4 7915 4 BJ68 8 8774 8 till I9W6 3 9877 2 0202 1
$h
- Selethest. I h = enthalpy, Stu Def Ib f V = Specif tC v01Ume. Cu 11 per Ib 5 = entropy. Blu per R pe7 tb i
)
i l l B -3 % '
)
Table 3. Superheated Steam-Continued Abs Press 5 I'*D"etwe - Decces tehreabeit dat temW we er Ste m 400 458 508 158 500 200 800 908 1808 1188 1200 1300 1800 1500 Sh 14 09 64 09 114 09 164 09 214 09 314 09 414 09 514 09 614 09 714 09 814 09 914 09 1014 09 It14 09 21 8 v 0 01844 21822 ? ?)64 2 4181 2 5880 2 7504 2 9078 32137 3 5128 3 8080 4 1007 4 3915 4 6811 4 % 95 52571 5 5440 (385 911 h 359 91 1199 0 1708 02 1239 2 1268 0 1295 3 1321 9 1373 7 1425 1 1476 7 1528 8 1581 6 16M 2 1689 6 1744 8 1800 8 s 0 5490 1.5413 1 5522 15872 1 6180 1 6458 1 6715 1 7182 1 7607 1 8001 1 8371 1 8771 1 9054 1 9372 1 9677 1 9970 D 1012 6012 11012 160 12 21012 31012 41012 51012 41012 71012 410 12 91012 1010 12 1110 12 779 (389 887 v 0 01850 20863 2 1240 2 2999 2 4638 2 6199 27710 3 0642 . 3 3504 36327 3 9125 4 1905 4 4671 4 7426 5 0173 5 2913 h 364 17 1199 6 1206 3 1237 8 1766 9 1294 5 1321 2 1373 2 1424 7 1476 3 1528 5 15814 16M 0 1689 4 1744 7 1800 6 s 05540 1.5374 1.5453 1 5808 8 6120 1 6400 1 6658 1 1828 I 7553 1 7948 8 8318 8 8668 8 9002 3 9320 1 9625 4 9919 Sh 6 30 56 30 106 30 I % 30 206 30 306 30 406 30 506 30 606 30 706 30 806 30 90630 100630 1I06 30 238 e 0 018 % 1 9985 2 0212 23119 2 3503 2 5008 2 6461 29276 32020 34726 3 7406 4 0068 42717 453% 4 7984 5 0606 h (393 701 368 28 1200 3 12044 ID63 3265 7 1793 6 1320 4 13727 1424 2 1476 0 1528 2 1581 1 1634 8 Inti 3 1744 5 1800 5 s 0 5558 1 5336 I 5345 15747 1 6062 1 6344 8 6604 1 7075 I 1502 1 7897 I 8268 8 8618 l 8952 1 1270 1 9576 8 9869 9 26t 52 61 10261 152 61 20261 30261 40261 50261 60261 70261 80261 90261 1002 61 1102 61 248 (397 395 he 0 0!860 1 9177 1 9268 2 0928 2 2862 2 3915 2534 2 8024 3 0661 33259 3 5838 3 83F5 4 0926 4 34 % 45977 4 8492 s 372 ? ? 1200 6 1202 4 1234 9 1764 6 1292 7 1189 7 1377 1 14238 1415 6 1%27 9 1580 9 1634 6 1689 8 1744 3 1800 4 0.5634 3 5299 I 5320 I $687 1 6006 1 6291 1 6552 1 7025 1 1452 I 7848 I 8219 I 8570 1 8904 I 9223 I 9528 1 9822 D 49 03 9903 14903 199 03 29903 399 03 49903 599 03 699 03 791 03 89903 999 03 1099 03 258 e 0 01865 1 8432 (400 97) h 37634 1201 1 2 0016 2 1504 2 2909 2 4262 2 6872 2 9410 3 1909 34382 36837 39??8 4 1709 4 4131 4 6546 s 0 5679 I $264 1233 4 1263 5 1291 8 1319 0 1371 6 14234 1475 3 1527 6 !$80 6 1634 4 1688 9 1744 2 18002 I % 29 15MI I 6239 1 6502 L 6976 I7405 1 7801 1 8173 1 4524 3 8858 1 9177 8 9442 l.9776 Sh fit = 0 01870 1 7742 4556 9556 14556 195 % 295 % 395 % 495 % 595 % 6 % 56 H5 % 8% % 995 56 1095 56 (404 443 h 379 90 1201 5 1 9173 20619 2 1981 2 3789 2 5808 2 8256 3 0663 33044 354c8 3 7758 = 0097 42427 4 4750 s 0 5722 1.5230 1231 9 1262 4 1290 9 1318 2 1371 1 1423 0 1414 9 1527 3 1580 4 1634 2 1688 7 1744 0 1800 I 15573 1 5899 I 6189 1 4453 1 6930 1 7359 1 77 % 1 8128 8 8480 8 8814 I 9133 1 9439 I 9732 Sh 278 e 0 01875 1 7101 42 20 92 20 14220 192 20 29220 392 20 49220 592 20 692 20 792 20 892 20 997 20 1097 20 (407 801 h 383 56 1201 9 1 8391 19799 2 1171 22388 24874 2 7186 2 9509 31806 34084 35349 3 8n03 40s49 9 3087 s 0 5764 15197 1230 4 1261 2 1290 0 1317 5 1370 5 len 6 1414 6 1527 1 1580 1 1634 0 16R8 5 47419 1800 0 3 % 18 1 5848 1 6140 1 6406 1 6845 1 7315 1 7713 1 8085 1 8437 8 8771 1 9090 19J96 1 9690
, $h 288 e 0 01880 1 6505 38 93 8893 138 93 188 93 288 93 388 93 48893 588 93 68893 78893 88893 98893 1088 93 (431 071 h 38712 1202 3 1 7665 1 9037 2 0322 2 1551 2 3909 2 6194 28437 3 0655 32855 3 5442 3 7217 3 9384 4 1543 s 0 5805 1 5166 1228 8 1260 0 1289 6 1316 8 1370 0 1422 1 1474 2 1526 8 1579 9 1633 8 1684 4 1743 7 1799 8 1 5464 1 5798 14093 1 6361 16841 1 7213 1.7671 1 8043 IJ39% 18730 1 9050 193 % 1.9649 Sh 298 v 0 01885 15948 35 75 85 75 135 75 185 75 285 75 385 75 485 75 585 75 685 75 785 75 88575 985 75 1085 75 I414 258 h 390 60 1202 6 1 6988 18327 19578 2 0772 2 3058 2 5269 2 7440 29585 31711 3 3824 3 5926 38019 4 0106 s 0 5844 1 5135 1227 3 1258 9 1288 1 1316 0 1369 5 1421 7 14739 1526 5 1579 6 1633 5 1688 2 1743 6 1799 7 3 5412 1 5750 1 6048 1 6317 16799 1 7232 1 7630 18303 1 83 % I 8690 1 9010 I 9386 3 9610 $h 388 e 0 01889 15427 3265 8265 132 65 18265 28265 382 65 48265 58265 682 65 782 65 48265 98265 1082 65 141735) 4 393 99 1202 9 1 63 % 17%5 l E813 2 0044 2 2263 2 4407 2 6509 28585 30643 32688 3 4721 36746 3 8764 s 0 5882 15 05 1725 7 1257 7 1287 2 1315 2 1368 9 1421 3 1473 6 1524 2 1579 4 1633 3 1688 0 ?743 4 1799 6 h 1 5351 1 5703 1 6003 1 6214 16758 1 7192 8 7591 1 7964 18317 1 8652 1 8972 1 9278 1 9572 318 e 0 01894 1 4939 h
29 64 19 64 129 64 171 64 27964 37964 47964 579 64 679 64 779 64 879 64 979 64 1079 64 I420 361 M130 1203 2 35763 1 7044 1 8233 19363 21520 23600 2 % 38 2 7650 7 9644 3 1625 3 3594 3 55 % 3 7509 s 0 5920 1 5076 1224 8 in65 1286 3 13:45 1%84 1420 9 1473 2 1525 9 1579 2 1633 1 16878 1743 3 17994 1 5318 i % 57 8 5960 1 6233 16Fil B 7153 1 7553 1 1927 8 8280 1 8615 1 8935 I 924I I 9536 378 h, h 0 01899 1 4480 2669 7669 126 69 17669 27669 37469 47469 5?6 69 676 69 776 69 47669 97669 1076 69 1423 311 400 53 1203 4 15707 1 6462 1 7673 1 8725 20823 22843 24821 2 6774 28'o8 3 0628 3 2538 3 4438 3 6332 s 059% 1.5048 1222 5 12 % 2 1285 3 1313 7 l%78 1420 5 1472 9 15M 6 1578 9 1632 9 1687 6 17431 1799 3 Sh 1 5261 l %I2 1 5918 1 6192 1 6680 1 7116 1 7516 4.7890 1 8243 1 8579 18899 1 9206 1 9500 338 e 0 01903 1 4048 (42618) 4 403 70 1203 6 23 82 7382 123 82 173 82 27382 37382 47382 57382 673 82 773 82 87382 97382 1073 82 s 0 5991 1 5021 1 4684 1 5915 1 7050 1 8125 2 0168 22132 24054 2 5950 2 7828 2 9692 3154) 13389 3 5227 1220 9 n254 0 1264 4 1313 0 1%73 1420 0 1472 5 1525 3 1578 7 1632 7 16875 1742 9 1 Sh 1 5213 ISMS 1 5876 5 6153 1 6643 8.7079 1 7480 1 7855 1 8208 18544 1 8864 1 9171 1 348 e 0 019c8 1 3640 21 01 71 01 121 01 17101 ??l01 371 01 471 01 571 01 671 01 771 01 87101 17101 1071 142199) h 406 80 1203 8 s 0 6026 18994 14191 1219 18'5399 1 6516 17%1 1 9552 21463 23333 2 5175 2 7000 2 8811 3 0611 12402 2 1252 1783 4 13I2 2 83 % 7 1419 6 1472 2 1525 0 1578 4 1632 5 16873 1742 8 17990 Sh 15165 1.5525 1 5826 1 6114 luo6 1 7044 1 7445 17820 1 8174 1 8510 1 8831 1 913 3H v 9 01912 1 32 % I431 735 h 409 83 1204 0 1827 6877 11877 16817 26827 368 27 462 27 54827 66817 764 27 . 86827 968 27 106 s 0 6059 1 4368 13725 1 4913 1 6002 1 7078 1 8970 2 0832 2 2652 2 4445 2 6219 2 Ma0 2 9730 3 12t 7 5 Inn s 1282 4 1311 4 1%62 1419 2 1471 8 1524 7 1578 2 16323 16871 1742 Sh 1 5119 1 5483 1 5797 I MJF 1 6578 l.7009 1 7413 l.7747 18:41 1 8417 18798 1 91 368 e 0 01917 1 2891 I434 4H h 412 81 12041 11559 328, 16559 4454 111559 5521 I 16559 2652 59 H25 1 8428 023736559 2 200144559 2 3755 H5 59 271% 2 5482 64559 ?H 59 2 8896 86559 3 0592 32H19% $9 1 s 0 6092 14343 1215 8 1250 3 1281 5 1310 6 13H 6 1418 7 14715 1524 4 1577 9 1632 1 1686 9 1 Sh 1 5073 15441 85758 1 6040 1 6536 1 6976 1 7379 l '754 1 8109 1 8445 187H 1 388 e 0 01925 1 2218 1039 60 M 11039 160 39 260 39 360 39 460 39 560 39 Gsc19 750 39 860 39 Me 39 1431 61) h 418 59 1204 4 n 0 61 % 18D4 1 7472 1212 4 1747I J506 146M 7 1279 5 130911598 0 l%45 1 7410 1417 1 9139 9 1470 8 15M28 0825 1577 4 22484 2 4124 1611 6 1624 5 17472 51 % 2 73 % 2 2 IM8g 14M2 15%4 1 %83 55969 1 6470 16911 1 7315 1 7692 18047 18384 18705 19012 1 Sh = Sucetht41,I h = enfhaf0y. Stil cef Ib V = SptCatlC volumt, CU !! 0t7 lb 1 = entt00y, Blu Ctf R ptf ID B -5 " t
Table 3. Superheated Steam-Continued bl$ in $41 $41 I'*9%'atu'e-Det'ees f ahrenheit , ($4t. Tem 01 Watet $leem 558 688 658 200 250 888 850 tot 1000 lies itst 1390 1848 1500 Sh 11 61 Gill 111 61 161 61 21161 MI 61 311 61 361 61 461 61 561 81 661 61 761 61 461 61 961 61 958 e 8 02141 04721 08883 9 5485 0 5993 064a9 9 6871 0 7272 0 76 % 0 8030 0 8753 094% 1 0142 10817 11484 1 2143 6 38 391 6 534 74 119e 7 8207 6 12 % i 129s 4 1329 3 1%I5 1392 0 tell 5 1450 3 1507 0 I%32 1619 5 1676 2 1733 3 1791 0 s 01358 1 3970 1 4098 18557 I 4921 15228 1 5500 1 5744 15977 1 6193 1 6595 1 6967 I J317 176e9 81965 1 8267 5h 5 42 5542 10542 15542 20542 25542 30542 35542 455 42 55542 65542 75542 85542 955 42 1900 v 0 02159 0 a460 04535 05137 0 5636 0 6000 0 M89 0 6415 0 1745 0 7603 0 8295 0 8966 0 9672 1 0266 1 0901 1 1529 1544 581 h Sa2 55 1192 9 1199 3 1249 3 1290 1 1325 9 1354 7 1389 6 la tt e 1444 5 3505 4 1561 9 1618 8 1675 3 17H 5 1790 3 s 01434 13910 IJS73 14457 I 8833 I 5149 I 5426 I % 77 1 5904 5 6126 8 6530 I 6905 11256 82549 I 1905 I 8207 Sh 4987 9947 14947 19947 24947 29947 34947 44987 54947 64947 74947 64947 949 47 1850 e 0 02177 0 4722 04828 0 5312 0 57a5 0 6142 0 6515 0 6472 0 7216 0 7841 0 8524 0 9151 0 9767 1 0373 1 0973 6 50 531 h 55015 1191 0 1243 4 1285 7 1322 4 1355 8 13872 1417 3 1446 6 1503 9 1%07 1617 4 1674 4 1731 8 17896 s 07507 13853 I 4354 8 4748 1 5072 15354 I H04 15842 I 6062 16469 1 6845 17197 1 7538 11844 1 8155 Sh 43 72 93 72 143 7 193 72 24372 29372 34172 443 72 543 F2 64372 74372 8a3 72 943 72 lite = 0 0?t95 0 8006 G a533 05017 0 54.2 0 0 5826 0 6188 0 6533 0 6865 0 7505 0 8123 0 4723 0 9313 0 9894 l os68 6 56 281 h %755 1889 1 1237 3 1241 2 1318 8 IM29 1384 7 1415 2 1444 7 1502 4 1559 4 1616 3 1673 5 1731 0 1789 0 s 0 7578 1 3794 1 4259 14%4 18996 e 5284 1 5542 1 5779 1 6000 1 6410 16787 1 7144 1 7475 1 7793 1 8097 Sh, 0 07234 0 3807 39 18 8918 13918 18918 ??918 2119 1 8 139 10 43918 53918 63918 73918 83918 93918 8158 04763 O s 746 0 5162 05538 05809 0 6223 0 65a4 0 1161 0 7754 08332 0 8899 0 98 % 1 0007 6 61 821 h 564 7s 1187 0 1230 9 IF66 1315 2 1349 9 - 1382 2 1413 0 1442 8 1500 9 1%81 1615 2 1672 6 1730 2 17s8 3 s 07647 13738 1 4160 1 s542 14923 1 5216 8 5478 1 5717 1 5941 1 6353 1 6732 1 7087 1 7422 11741 1 8045 Sh 32 81 82 81 132 81 187 81 232 81 28281 33281 432 81 5H 81 632 81 732 81 832 81 932 81 1200 v 9 02232 0 362a 0 a016 08497 08905 0 5273 0 %I5 0 %39 0 6250 06M5 0 7418 0 7914 0 8519 0 90 % 0 95M 667 191 h 57l85 1184 8 1224 2 1771 8 1311 5 1346 9 1379 7 1410 4 1440 9 14994 1554 9 1614 2 1671 4 1729 4 17876 s 0 7734 IJ683 I 4068 14501 14851 15t50 1 5415 I % 58 1 5883 1 6298 1 6479 1 7035 1 7371 1 7698 1 7996 Sh ?? 58 72 58 12258 17250 22258 27258 322 54 422 54 52258 622 58 72258 87258 92258 t3se v 0 02269 0 3299 DJ570 0 4052 08a51 04804 0 5129 0 54 % 0 57?9 0 6?ti 0 6472 0 7348 07M7 0 8345 0 8836 6 77 421 h 585 58 il83 2 1209 9 1761 9 1303 9 1340 8 1374 6 1406 4 1437 I 14 % 3 1%s3 1612 0 1669 e 1727 9 1784 3 s 0 7643 1 3577 IJ860 14340 14718 1 5072 1 5296 1 %s4 45773 1 6194 1 6578 1 6937 i nJ5 1 7596 1 7902 Sh 1293 $293 112 93 16293 21793 26293 3]?93 41293 512 93 617 93 71793 S!293 $!? 93 lage v 0 02307 03018 0 3176 0 3667 O s059 0 8800 04712 0 500s 0 5282 0 5809 0 6311 06798 0 7212 07737 0 8195 687 071 h 59083 1975 3 1194 5 1251 4 1796 1 1334 5 1%93 1802 0 1433 2 1493 2 ISSI 8 1609 9 1664 0 1726 3 17150 s 0 7966 1J474 1 3652 1 4181 14575 14900 I.5182 1 54 % 1 % 70 1 6096 1 6444 168a5 13185 1 7508 1 7815 Sh 3M 5380 103 80 15330 20380 253 80 30380 403 80 503 So' 603 to 70) 80 803 80 90300 1500 e 0 02346 02??2 028?d 0 3378 0 3117 Osont 04350 04629 O ss94 0 5394 0 5869 0 6327 06773 0 7210 0 7639 6 96 201 h 61168 IIF01 1176 3 1240 2 12879 1328 0 1364 0 1397 4 1429 2 1890 1 1549 2 1607 7 16M 2 172a 8 17837 s 0 8085 1 3373 13431 8 4022 14443 1 4782 15073 1 5333 1 5572 1 6004 1 6395 16759 13101 8 7425 11734 Sh 4513 9513 14513 19513 2e513 29513 39511 495 13 59513 EM I) 79513 89%13 1608 e 0 02387 0 25 % 0 3026 0 3415 0 3741 0 4032 0 4301 0 45 % 0 5038 0 5482 0 5915 0 5336 0 67a8 07153 604 8h h 624 20 1164 5 1228 3 1279 4 1321 4 1358 5 1392 8 14M 2 Iass 9 1546 4 1605 6 1664 3 1723 2 1782 3 s 08199 1 3274 1 3861 14312 14%7 Is%8 1 5235 1 5478 1 5916 1 6312 1 6678 1 70?? 1 7347 3 7657 sh . 3687 84 87 IM87 186 47 2N 87 7M 87 386 4F 48687 586 8 F 64687 Ft6 8F $26 87 1780 v 0 0?s28 07%l 0 7754 03187 0 3448 0 3751 Oaoll 087%S 0 4711 0 5140 0 5%52 0 5951 06341 0 6724 1613 131 h 636 45 1854 6 1715 3 1770 5 1314 5 139 9 6388 I Ia217 1443 8 154a 0 1603 4 1667 5 1721 7 1781 0 s 0 8309 1 3176 13697 l a183 14555 14867 1 5140 1 5388 15833 162H I 6601 16947 1 7214 1 7585 Sh 7494 78 98 172 90 17A 98 228 98 27898 37R98 478 98 57898 67898 7F9 98 878 48 1000 e 0 0?472 0 7186 0 2%05 07%6 0 1773 0 3%00 03752 O MA8 0 a426 04036 05??9 0 5609 0 5980 ' ' . . 52102) h 648 at 1152 3 1701 2 1256 1 1307 4 1347 2 1383 3 14171 1483 6 1541 4 1601 2 1660 7 1770 1 IH97 s 0 8417 I 3079 I 3526 I aO54 I a446 54768 i Sost 15302 3 5753 1 61 % 16M8 8 6876 I 7204 1 7516 Sh 2144 71 de 121 44 17144 221 44 27144 371 de 471 de 571 44 671 44 771 44 871 44 1980 v 0 07517 0 7078 0 7?14 O MAP 0 3r104 0 3275 0 3571 0 3749 0 4171 0 8565 C ana0 0 5103 0 5656 0 6002 t%28 54J h 660 36 1145 6 8185 7 1883 1300 2 1341 8 1378 4 1412 9 1477 4 151s t 1599 1 1658 8 1718 6 17784 s 0 8522 1 2141 l 1344 1 3975 14338 84672 34960 1 5219 l % 77 I 6064 1 6458 1 6408 I 7138 I 7453 sh 14 70 64 70 114 20 164 20 2.4 20 264 20 364 20 444 20 544 70 664 20 764 20 84a 20
!ses e 0 02565 0 1243 0 70 % 0 7488 07 A05 0 3072 0 3312 0 3534 03942 043?0 D a680 0 5027 05365 0 5695 535 801 h 672 18 1832 3 1164 T 12a0 9 1297 6 1335 e 1373 5 1404 7 leid t 1536 2 45 % 9 1657 0 1711 0 17711 s 0 8625 1 2841 1 3854 1 3794 14731 l a578 1 4874 15138 1 % 03 1 6014 1 6391 16743 1 7075 1 7389 Sh 774 5774 107 ?4 M724 20724 2%724 M7 74 45724 M724 6%7 24 75724 8%7 24 21st e 0 07615 0 1750 O l A47 07304 07U8 0;nal 0 3173 00 t$ 0 1734 c avet Casas 04778 0 5101 0 5s18 642761 h 68379 l13n 5 II A( g lp*q g gy44 $ g)7q ) lK34 ja04 4 l4 70 ) l5]I 4 l%sF lg% ) gfggg gygg s 0 8727 32780 l!sti I3HI I4125 1 4486 14790 8 5060 155M i 5988 86327 1 6481 1 7014 1 7330 54 . M 50 % 10n % 150 % 200 % Mali Mo % a%0 % 5% % 6%0 % F50 % g%0 %
22es e 0 07669 01577 0 16's 0213J 0 ? dst 0 7770 0 ?*50 0 1161 O M45 0 1897 0 8731 04%I cout 0516 54945s n 69546 II?? ? 11?) 9 1214 0 1274 8 13231 IM33 1:10 0 1467 6 15M 9 158' S 1653 3 17 39 Inas s 0 8828 17616 1 7691 1 3223 14070 l a395 l a708 14984 1 5463 8 5483 8 6264 1 6622 169 % L F273 Sh 44ll 941 t ' 14511 19a ll 24411 4 44 63 444 11 Saa ll 64 81 744 11 844 18 23e8 v 0 07727 01%I3 01975 07n5 07%4 0 7793 0 ?999 0 3372 0 1714 040n 04 tad 04ss) 04tn SM B9p h 70718 til12 17 % 3 lMn4 1314 7 IMal 119% 7 1a44 2 1989 lii41 Mil 5 1712 3 17713 s 0 8929 12M9 1 3381 1 1934 14105 I M78 14910 15M1 85821 16707 16%5 1 6901 I nit Sh - Superheat. F h - enth8foy. Blu per ib v = specific volume, cu ft per Ib s = entropy. Blu per R per Ib . B -7 A
Table 3. Superheated Steam-Continued -
$5['5,5 , 5 41 54t I'*0"8"-C'8*'5I3h"**'
(54t. Tern 01 water Steam 254 800 858 968 950 1000 1850 1180 1158 1200 1258 1308 1800 1500 l e 48e8 , h 0 0380 0OMI O 1005 011e6 0IMS 0 1465 0 1582 0 1691 0 1792 0 1889 0 1982 0 2011 0 2742 0 2404 s 4834 4100 0 12073 12772 1332 6 1380 5 1423 7 1463 9 1501 9 4534 4 1513 8 16c85 1676 3 1742 7 1 0331 1 2044 1 2922 1 3446 1.384/ I 4181 14472 1 4134 I 4974 8 5197 1 5407 1 % 07 I 5982 4 6330 4808 e h 0 0355 0 0665 0 0927 O l109 0 1257 0 1385 0 1500 0 1606 0 1706 0 1800 0 1890 01977 0 7142 0 22*9 s 866 9 1071 2 1190 7 12652 1323 1 1372 6 14370 1458 0 ' 1496 7 15338 1%97 1604 7 16731 1740 0 1 0100 l 1835 1 2768 1 3327 1 3745 1 4090 14MO I 4657 3 4901 1 5128 1.5341 8 5543 1 5921 1 6272 lose Sh, h 0 0338 0 0591 0 0855 0 1038 0 1185 0 1312 0 1425 0 1529 0 1476 0 1718 0 1806 0 1990 0 7050 0 2203 s 854 9 1042 9 1873 6 1252 9 l'13 5 1364 6 4410 2 1452 1 14915 1529 1 1565 5 1600 9 1670 0 13374 1 0020 1.1593 1 2612 1 3207 I 3645 1 4001 1 4309 4 4542 1 4431 1 5061 4.5217 8 5481 1 5863 1 6216 Sh 520e e h 0 0326 0 0531 0 0789 0 0973 0 1119 0 1744 0 8356 0 1458 0 1553 0 1642 0 t728 0 1810 0 1966 0 2114 s 8458 1016 9 1156 0 12404 1303 7 13% $ 1403 4 1446 2 1486 3 3524 5 l%l3 1%72 1%68 1734 7 0 9985 8 1370 1 2455 1 3088 1 3545 4 3914 1 4229 I 4509 3 4762 3 4995 5 5214 I 5420 l 5806 8 6161 Sh 3480 , h 0 0317 0 0483 0 0778 0 0912 0 1058 0 1182 0 1292 0 1392 0 1485 01572 0 1454 0 1736 0 1888 0 2n31 s 838 5 994 3 1138 8 12277 42937 43434 1396 5 1440 3 14811 1519 8 15571 15934 IH37 17321 0 9915 11875 1 2296 3 2969 I 3446 1 3827 1 4151 1 4437 1 4694 84931 1 5153 1 5342 1 5750 1 6109 b l 5400 v l i h 0 0309 0 0c47 0 0672 0 0:56 0 1001 0 1124 O l?32 0 1331 0 1422 01508 01589 0 1667 01t15 0 1954 s 132 4 975 0 1119 9 12na l 1283 7 lH02 13894 1434 3 1415 9 3515 2 1552 9 15496 1660 5 1729 5 0 3855 1.1004 11137 11450 1.3348 8 3742 1 4015 143M i 4628 84869 3 5093 8 5304 1 % 97 1 6058
!tt
- 5880
- a 08773 8303954 0 0419 8 lici OM72
$ 17o1 08 0805 17736033170 0049 013476 10701472 01177 01774 3 1470 0 1363 6 1516 0 1447 5 1544 0 1577 7 nag t 16st0e1603 in6a 0 l74 7 O IRA 3 s
0 9003
- 1 0847 1 1981 1.2732 1 3250 t 3654 33999 I 4297 14We I 4408 I 5035 4 5248 1 % 44 8 6004 ;
Sh 6800 s l h 0 0298 0 0317 00579 0 0757 0 0900 0 1020 0 1126 0 3221 0 1309 0 1398 0 1469 0 1544 0 1684 0 1817 l s 822 9 945 1 1084 6 1188 8 12434 1323 6 1375 7 1822 3 14654 15059 1544 6 15820 1654 2 17242 ' h 0 9758 1 0746 1 1833 1 2615 13154 1 3574 1.3925 1 4229 4 4500 1 4748 14978 3 5194 8 5593 1 5 8580 * . h 0 0287 0 0358 0 04 % 0 0655 0 0793 0 0909 0 1012 0 1104 0 1188 0 1266 0 1340 0 1411 0 1544 01669 s $139 ligg 1046 7 11 % 3 1237 8 1302 7 3358 1 18073 14522 1494 2 1534 I 1572 5 1646 4 IH76 1 09H1 1 0515 1 1506 1 2328 1 2917 1 3370 1 3743 1 4064 1 4347 3 4604 1 4841 1 % 62 1 5411 1 5844 ' itse Sh, h 0 0779 0 0334 0 0418 0 0573 0 0704 0 0816 0 0915 0 1004 0 1085 01160 0 1231 0 12'8 0 1474 0 1542
- 806 9 901 8 1016 5 ll34 9 1212 6 1281 7 IMOS 13922 1439 1 1482 6 1523 7 85631 1638 6 17ti l 0 9582 l 0350 l 1243 1 2055 1 2649 1 3171 1J%7 1 3904 8 4200 144H Iella 14938 I 53 % 1 5135 Sh 75e8 e h 0 0272 0 0318 0 0399 0 0512 0 0531 0 0737 0 0833 O MI8 0 0996 0 1068 0 1136 0 1200 0 1321 0 1433 s 801 3 489 0 992 9 19977 1188 3 1261 0 13229 13772 14260 1471 0 ' 15l33 IM37 1630 8 1704 6 Sh 0 9514 1 0224 8 1033 8.1818 12413 11980 1 3397 1 3751 1 4059 I 4335 1 4586 1 4819 I 5245 1 % 32 8808 e h 0196 0767 6 8710 10306 0 0371 O ra65 0 0%71 0 0678 0 0762 0 0845 0 0920 0 0989 0 1054 0 1115 0 1230 0 133 s 174 4 1074 3 1145 4 1241 0 1305 5 13672 14130 1459 6 15031 1544 5 18731 1698 1 Sh 0 9455 1 0122 1 0864 1 1613 82271 1 2798 8 3233 1 3603 1.3924 8 4200 1 4467 1 4105 1 5140 1 55 8580 v i
h 0 9762 SW% 00MO 0 0429 0 0522 0 0615 0 0708 0 0780 0 0853 0 0919 0 0982 0 1641 0 1151 0 12 j s 792 7 071 2 959 8 1054 5 1144 0 12:1 9 1238 5 13475 1400 2 1848 2 1497 9 15M 3 1615 4 1691 7 l Sh 0 9402 1 0037 I 0727 1.1437 1 2084 1 2627 I J076 1.3460 3 3793 14087 4 4352 3 4597 I 5040 1 i l 9ee8 o l h Cons 902st SOU5 0 0402 0 0483 0 0568 0 0649 0 0724 0 0794 0 0858 0 0918 0 0975 0 10 s 709 3 e64 7 948 0 10376 1125 4 1204 l 1272 8 1333 0 13875 14371 18829 1526 3 1607 9 Sh 0 9354 0 9964 10613.. I1285 l1918 12468 82126 l 3323 UMP I 3970 44243 14492 3 4944 9588 = h 0 0754 0 0787 0 0172 0030 0 04%I 0 0574 0 0603 0 0675 0 0742 00n04 00a67 0 0917 0 s 746 4 $M 2 911 3 none 1104 9 11897 12 % 6 1318 9 1375 l 1476 1 14711 +15171 16n Sh 0 93l0 0 9900 1 0516 1 8853 L8778 82320 12785 1 3191 13546 1 3854 14137 14M2 1 48 lesse 6 s 9 0251 00??6 0 0312 0 0362 0045 0 0495 00%5 0 06H 0 0697 0 0757 0 0812 0 0865 0 09 783 8 354 5 930 2 10113 10942 18726 1242 0 1305 ) IM29 1415 3 14534 1503 6 1591 Sh 0 9270 0 9842 1 0432 8 1939 8 1638 1 2185 1 2652 8 306V I 3429 8 3749 I 4035 1429 teles
- b s 0 0240 0 0271 0 0303 0 0347 0 04o4 0 0467 0 0532 0 0995 0 0656 0 0714 0 0768 0 011 781 5 850 5 923 4 10010 1088 1 llu t 1228 4 1292 4 13511 1804 7 18539 15C0 0 1545 4 0 9232 0 9790 1 0358 1 0939 1 1589 1 2060 1 2529 1 2946 1 3373 I M44 1 3937 1 41 Sh = superbe81. F v = specific volume,cu ft per Ib h = enthalpy. Blu per Ib
- . enticpy. Stu per F per Ib B -9 '-
L ]
~
lit I L lil!MP ,3%WsWii "ht
=
mfe. .f i Effhr 0 y; 4-Ag.m. dME ~'
= - h.>h> . w.e h'ik'N;}7/ .
s If ET IY MYw$j f ~? I,4 *_ .. . ,en TAA .u.
. - m.
I .......i t ihi F g 4#cty:-% 5:JWMsEm. _.. . [N;Q@t2$$sP..>$,;.,.$_.mg._.....h M $ s h " R j .' 5 M -f .. M7' '
~ pNJytt yi Mt;;tw :
N@ " +4 W e Wl&gT[(diW[#iW $t : i
- .4 :=
3iEE.=.rd!!#3.h@.~..3.=3W g;- . r w JyAfgAaa, n%,-
- 1. . . . .~
n,n 4 x y,y
,- 3,y EEE ^
I
- s[h aw h M3 hmm:
.Jyfyy; r#.4Immuq. MMm2,.-
m % u,t n m.i u ,t a t jp 7y-. a mfta ?Mh,t}"- w "-
,,".gg@,r.iG1h @ :~ j kg ff 1HL ;,.c n; kir: 9 8 - 4 #
egiaiug-l
' 5 W ' .4 . .; .3,9 -d j I -jri -::g 4 ,4 p .g u ,a. ./p i 3.
c "t.i. , wd4 s1& n
.1 1 .&e x =
ps;,y;3
," % haq'G:c W.,cDr sy T pl r 'ay o ",l p- r u'g J' Ic l ' ;c. 4r W.,y-* th.d' y ,r !
p.n mm.Q.;j.t )nL Md;m g}L
., L hx --
- g[;Q,:d#.az.J.,.'.
J m:x 'k Edh Q k?7Ni nkig4.. M .w- .I'."djNf (dNNNNaNW:: a.-a
-M b "A kND2-u ,p4 472 .
7$pmg
%ge: w-I.,$/hN55 an54% [trMIfi 'I r ' ,L M!$MU -) i!!".1,0d . .a ..
au -r %-% ,. .. .1,g+tt
,,,-eg-r,n.:73+%@
jk}y*.}f.~' m 9te.
.y .f. 2}W.QG,.g ,y"n:::m:gt.m.*./g.
e., f. rw-e. . u -a :rgnit
. RfQ{ y- .,
p ,,
? -{ ~~ - t,g.k+,10:,a?
w~ .
;4.:ztu.s,m..n :nm-pr;A:ye n= .
w; v . . . ., v n .. L s" unnw.ytr- ~
~
v .. :. z ., . . .y . ., - - g 7; y
~
pr.2;.;r y .;,a. 1 3.g>5, p;.;tg,i,2 - 9.M n IN'..,_,2.d.H,u
;.u.f.r z
jh.p c:t ..;7.L,: pu. na} 1m ,. - . 4.rm;p wJ Lq. eh 2wj g:m x- c
.y. .T r ,, gt 1
- 3. h tt 12 ;ugmprg..,f,: :f.;r::x r r t* .
< a: r;S at ix :.- + :t. "h.-
g'x stim}Tli! ."9:r,g?;";'M1EEi1E HE&yk~rui2:. fiiW 5:: r .:: : r ! {;.nj.an ;g::nn~r_;m f' gem -
- ~
1; .b.g.u;l0j:r: pra;rnt r; m &;,,(r.m,t; w g-
~
I u-asuhk!.N. Nhs [N
.k:u rFF.13Ht34 hlI!u,th,kN, ...!,h.s!.i,h,jn!.N.N,dFFJfs..I .n .- ,2 i!!d2= Ah "
nieI; ; muci!:;j. "II:::;rrNyp;rup. ::- !
- 'a- e$ifF mi:p G L !Kii?Hi t men y-
- 9 1.a.i gyrn, .H i -mM :n.g m gl % r;z;g:o ~ E"*rcerv 1
rw- - B.T orf D -3 w .. I
.?
ENCLOSURE 3 NRC REACTOR OPERATOR EXAM COMMENTS 1.13d Answer is ' BYPASSED when keylock is in bypass and mode switch is i Shutdown or Refuel.' t REF: 28 2/3A, page 16/17, see attached page 2.03 This question tends to direct the examinee towards the recirc pump start permissives, instead of the MG set incomplete start sequence function. Book 7 Either the answer in the key or the answer for recirc pump start permissives should be accepted. REF: 10 2/3A, page 27-28 [ List any 2]
- a. 125 VDC AVAIL
- b. MG set drive fan running
- c. MG set drive motor bkr fully inserted (not racked out)
- d. MG set generator field bkr open
- e. MG set generator lockout reset
- f. Recirc pump discharge valve fully shut
- g. Recirc pump suction valve fully open
- h. Recirc pump disch byp valve fully open
- 1. MG set lube oil press ok
- j. Seal Staging v1v in manual open
- k. No auto trips present 2.07d Setpoint is 140*F, answer has 150*.
REF: 15-F, figure 3-attached 2.09 The answer listed is right, however, other possible responses may include:
- 1. ADS keylock switch or
- 2. ADS keylock inhibit switch All three answers mean the same thing.
REF: 14 2/3F, page 20, figure 5, see attached page SIM NRC-REVIEW - J
3.03 Answers given may be based on Tech Specs numbers High Rad Rx Bldg $ 11 mr/hr High DW Press 5 2 psig Low water level > 112" *see attached and
- Hi Temperature in Rx Bldg. 140* -
- recent plant modification not in handout.
REF: 36 2/3A, page 31 and Table 2 and Calibration information from I&C concerning B21-LS NO24/2 3.06a5 High Jacket water temp 200* answer has 180* REF: OP 50.1, page 11 (attached) SIM NRC-REVIEW u - - 0
t t HO-28-2/3-A
, , ) (j Page No. 16 l '
Rev. No./Date: L/11-6-84 5, e 2.3 System Design Parameters The following lists the RPS scram parameters, scram setpoints, applicable alarms and bypass conditions. More specific descriptions of each scram parameter-are found in Section 3.0. 2.3.1 Reactor Scrams Scram Alarm . Scram Setpt. Bypass
- 1. Manual --- --- ---
- 2. Shutdown Mode --- --- ---
5
- 3. SRM Hi Hi 1 x.10$ eps 5x 10 eps Shorting links k 4. IRM Inop ,-- --- In Run' Mode
- 5. IRM Hi Hi 105/125 , 120/125 In Run Mode
- 6. IRM Hi Hi or Inpop 108/125(IRM) IRM L20/125 In modes other
& Companion APRM and APRM 3% chan run downscale
- 7. APRM Hi 12% 15% In Run Mode
- 8. APRM Upscale (.66W + 42%)- (.66W + 54%) Not in Run (flow biased) x 2.60 x 2.60 TPF TPF (Fixed 120% of rated thermal)
- 9. APRM Inop APRM mode --- Not in Run Mode switch not in
" operable" or <1l LPRM inputs, )/
or APRM channel module unplugged
- 10. Scram discharge 38 gals. 109 gals. In shutdown or vol. high level refuel with keylock sw.
byp^assed 30-28-2/3-A IMP 108/pwj l
~ l .
~
Subject No.: HO-10-2/3-A Pcga No.: 27 Rev. No./Date: 2/05-30-86 Signal Failure Detector l The detector monitors the output signal of the speed controller. 1 The normal minimum signal from the speed controller for minimum
- speed demand is approximately 10 mA.
l . If the speed controller output signal decreases to less than 1.mA, indicating malfunction of the speed control' network, the signal failure circuit applies a scoop tube brake to maintain the scoop tube in its present position, and annunciates a signal failure alarm in the Control Room. 3.2.2 Recirculation Pump OperaElonal' Control . ( < ', As described in the preceding section, the recirculation pump
- s.
speed is regulated by the Recircu'lation Flow Control System. The startup, shutdown, and control is accomplished through the M-G Set Control System. ) 1 l The startup of the Recirculation System is executed manually. The permissives for startup are the following: (QuesY1oM 20 A. 125 VDC auxiliary power supply available. B. M-G set exhaust fan running. C. M-G set drive motor breaker in full insert position. D. Generator field breaker open. HO-10-2/3-A IMP 108 J
' Subjsct No. HO-10-2/3-A Paga No.: _28 p,C) ]$ Rev. No./Date: 2/05-30-86
(( , E. Generator lockout relays reset. ~ F. Pump discharge valve fully closed. G. Pump suction valve fully open. H. Pump discharge bypass valve fully open. I. L'ube oil pressure above a prescribed value. - J. Seal water staging valve in the manual open position. , l K. No auto trips present. With the above conditions fully satisfied, manual actuation of the M-G set control switch (three position--stop-normal-start--spring I return to normal from start) to start closes the M-G set drive motor breaker and starts the drive moEor. $he start command also ini-
) tiates the automatic starting sequence for the recirculation pumps.
Minimum speed torque in the pump motor is not sufficient to allow the pump to get started initially. A startup signal of 45% to 55% j of synchronous speed is applied to the fluid drive until the field breaker closes. The position of the scoop tube corresponding to the above startup speed is derived from the signal provided by the signal generator. Initially, an external source of excitation is supplied to the generator field. HO-10-2/3-A IMP 102
3 e. . - 4 ~ s ~ n i n --
- 1. : ,
- lI n , i s .
s .
. n o . , s o
N A j
- S i
m,'"'F 3 2 8 e M M t OM 8 f t M
= '""
eE MET C UO9 C R0 rR iU WS IR mF1 F
- 1 OY ES C T0 A t A L S HE CU N Nc .
- L PV F
E 'l l s OT SL IGN PM e N E**s O A OI O F L I A
' l7T EC PM m E V MV LS R i
H .8T T E F T T G* A N O VR E _ S OAT E WIE E ' D. E S L* NV TCH F E T A a.T EE T e GM OR O a' 7 _7 (. IT R 8NE I ME I PA I T L 8IA G TI U RN AO R P EflEH NUT OC tI R8 h3o , O HF .. R CA T OT S C L i D O 0 . } C T *0 S - ER sE1 e I I4 W1 S LI TOST C& S P DULO ON uNC TON 3 {'
-~
e ,' .S US ACC E PN T O a c o ME s E P 51 2*. N ' V / TO g e e r
\ &e o
e _ 9 Nt Nor OA Oe A tS i s8 eS 2s 24 2 ct
, es 2R E tO L
E LO N 2R L LP.
-N E L P. E T*
LW N . T O Lw. ED N ND E M Pe , Pe Ot . 9 Oe 8 A f
; 8 A S a ,
e EAT e SE p _ (E o -
'f -
A __ 3 E , A R
- U
" G - g I 8
A F
, S U
B M
- e 5 - 4 +
w . l \ l l(l jt t
a e et V _ .' h.
+
ADS LOGIC CHANNEL "A" .
@ZM ~
CLOSES WHEN RHR PUMPS *B* and "D* DISCHARGE PRESS 100 psig
/
CLOSES ON REACTOR l' LOW WATER LEVEL 3 CS '8" CLOSES DISCHARGE # PRESS 100 psig j
/
1 I ,i ; c- -L-- / 8 1 [",NO318 ~[NO31D _ _ _ _ I. _ _ _ _ _ _ d
/
CLOSES ON
- ~ ~ ~
l ~~K23B ~~K268 W TDC # I SEAN 7- t- -
----- - --- "--8 f
- g,6,^t, ~~N0428
~~K28A - --- - J-- , .-
- r-~~K1018 l
-~K1028[ \ ~~_j 86A ----j
- L_'_____ _____ [86A g 7/ +
i25vDC cuS B s s P' - - - - - - - -
~ - - 4 KEvLOCK) 82A ( )82A . (WITCHj-1 PUSHBUTTON K10A f'
- H 6 SWITCH ,
- TDC
- K9A I i 7 K6A K9A K10A K26A K27A K4A K6A ( SA K7A K8A FIGURE 5
TABLE 2 , REACTOR BUILDING llVAC SYSTEM INSTRUMENT AND CONTROL SETPOINTS (Sheet 7 of 8) 3. C3 INSINUNINT INDICATOR / I NSl HilHt N I IIll P l tlNCI ION DESIGNAllpN RfCONDtR 1 RIP SETPOINI AND FD80Cil0N VA-IS-8 96A N/A 65'T t 2*f -Starts Circulating supply Ai r lempur.ature 1 increasing Pump 8 VA- I S-8s96u N/A 70*F 1 2*f -Starts Circulating increasing P, ump A C7 t ( ( 71 )- PS-80002 N/A 1.8 psig 1 0.8 -Trips Supply Air Drywell Psessure
- psig fans A and S or increaalag -1 rips Exhaust Air C71((12)-PS-le002 r. Fans C and D *
-Closes Dampers A- - SFIV-RS, 8-8Fif-RS, C-8FIV-H8, D-8fIV-R8 ,
82 8 -LS-N028s N/A -32 inches -Trips Supply Air Huactor vossal Estar tuvul A and 8 16 inches fans or Decreasing -Irlps Exhaust Air 821-LS-N025 A aful 8 gg gggg . Ians
-Closes Deepers A-Sriv-RB, 8-Brlf-bArA Aub Wetl5 S foe /efemced -tv -rte; iso"i.svei - 7;,$8ggv-R8, ReWee - z S o - g 2 = ggg " T /s l. k &- M k h M 2 "
Exhaust Air Had2ation Ul2-RM-Nolo N/A 10 Mit/hr -Trips Supply Air levos A and il 10.5 Mit/hr fans increasing -Trips Exhaust Alr j fans
-Closes Deepers A- ' BfIV-RB, 8-8FIF-R8, C-8FIV-RS, D-8FIV-R8
~ 'su-us OWYS /
gf/df ,Y ( > a
\v ws-]s,s,z t) -d e25f6 ~
W cWSSf - yny - ce 4-~/ ney a/ i
-se 3 ,p )3 . ? -se i
l
9
~
k 01 4.0 GENERAL PRECAUTIONS AND LIMITATIONS B. 4. Reverse power 25% of phase.
- 5. Loss of field 25% restraint.
- 6. Generator phase overcurrent.
- 7. Barring gear engaged.
- 8. Manual.
C. The following actions will trip the diesel generator when operating in the manual mode:
- 1. High lube oil temperature , 190.*F
- 2. High jacket water temperature ( 200*F.
- 3. Low lube oil pressure D7psig!
- 4. Overspeed 590 rpm.
- 5. Low jackat water pressure 12 psig.
.- s 6. Loss of diesel generator V.7 control power.
- 7. Differential overcurrent 0.2 amps difference between phases.
- 8. Reverse power 25% out of phase.
- 9. Loss of field 25% restraint.
- 10. Generator phase overcurrent.
- 11. Barring gear engaged.
- 12. Manual. l D. The following technical specification requirements must be observed l for the Diesel Generator Emergency Power System:
- 1. Section 3/4.8.1.1 A.C. Sources Operation of One or Both Units Limiting Condition for Operation.
0 OP-50.1 Rev. 22 Page 11 of 197
i SR0 EXAM REVIEW 5.03 No correct answer. Ref: H0 2-A fig 55 5.08 Fuel temperature increase is also a correct response. 5.10 1* also may be given as 10-5 sec 5.12c Answer key is wrong. Reactor power will increase due to the decrease in Feedwater temperature. > 5.13a BSEP does not have an operable RPT. 5.13g We believe answer key is wrong. Feed flow decreases due to the large Steam Flow / Feed Flow mismatch. Look at level, level is low at this time. The stem of question should have had more information. i.e., 30 sec y axes between divisions x axis is normal control room parameter. Some students may have interpreted "0" on x axis as 0 inches on Rx vessel level graph. If that's true - Feed flow goes to zero due to Group 1 isolation (MSIV shutting) 6.01 A or 8 is correct Without telling the students if S0% rod density is reached prior to RWM Group 6, A or B would be correct. If you reference GP-10 you will find RWM 6 is >50% rod density therefore A is correct - RSCS is only looking at full in or full out. REF: GP-10 SIM SRO-REVIEW
6.02 <50 psid vise 50 psig : Your answer is incomplete 2- ADS logic is manually used by the operator assuming you mean timer reset we also have in " ADS inhibit" switch located on. RTGB. See Figure 5 of H0 14-F 6.08d May get a different response. The torus suction valves may open if CST low level or torus hi level exist. This does not indicate a malfunction of HPCI 6.12a "This will reduce power consistence with one feed pump operation", should also be added 6.12b Should be deleted - neither unit has a master controller or deviation meters. REF: PM 86-012 6.13c There are other responses
- 1. Trips mechanical vacuum pumps
- 2. Shuts suction valve to pump
- 3. Shuts ARV9 & 10 REF: H0 17-E, table 1, page 35 6.15 Editorial - your only bad question.
Memorization of setpoints should not be worth 1.5 points 7.16 Tacorrect answer. I could not find your answer in reference given. Correct answer - To prevent damage to Hydrostatic Bearing of the reactor recirc pump. REF: OP-2, page 9 8.06 You may get SR0 as a response. Not all senior licenses are SF. 8.10d Incorrect answer - Answer should be N0, also why the need I to memorize RCI 6.5 REF: RC 1 6.5, page 8.9,10 SIM SRO-REVIEW
8.14a Incorrect answer Correct answer - Active LC0 or RCIC - 31 days or be in Hot S/D in next 12 hours and less than 113 psig = next 24 hours. 3.0.4 not applicable. Tracking LC0 on HPCI - you have 48 hours after reactor steam pressure is adequate to perform test. 8.14b Yes, per TS 3.5.1, action b. REF: T/S 3.4.1 and 3.7.4 SIM SRO-REVIEW
UNIT 2 OP 02 4.0 PRECAUTIONS AND LIMITATIONS A. Reactor Recirculation Pumps (Continued)
- 14. :PsiorEco; injecting;RHR~ shutdown:coolingDinto?.aJreiirculation -
' loop,dherecirculation{pumfinithacEloop.'shouldibe3 t hut:down; ato avoid ~damageltoithelhydrostatic bearings.
- 15. When both recirculation pumps are in operation, maximum differential speeds during normal operations are 5% with core flow less than 75%, and 10% with core flow equal to or greater than 75% core flow.
B. R actor Recirculation Pump Motors
- 1. Motor winding temperatures'should not exceed 240*F.
- 2. Motor bearing temperatures should not exceed 203*F.
- 3. Cooling water (RBCCW) inlet temperature should not exceed 105'F.
- 4. Motor amperage should not exceed 717 amps.
C. Reactor Recirculation Pump M-G Set
- 1. The M-G set drive motor and generator winding temperatures should not exceed 176*F when measured by RTDs.
- 2. The M-G set drive motor and generator bearing temperatures should not exceed 190*F.
- 3. The M-G set fluid drive oil leak-off temperature should not exceed 190*F.
- 4. Generator power should not exceed 5230 KW,
- 5. .The M-G set should not be started if fluid drive oil temperature is less than 90*F.
D. Reactor Vessel and Internals
- 1. An idle recirculation pump shall not be started unless:
- a. The temperature differential between the reactor coolant within the dome and the bottom head drain is less than or equal to 145'F, AND
- b. The temperature differential between the reactor coolant within the idle loop that is to be placed in operation and the coolant in the reactor pressure vessel is less than or equal to 50*F when both loops have been idle, OR 2 OP-02 Rev. 52 Page 9 of 117
. - N O
S E B S A 2 8 O 4 2 D d CW0N L K ng ' - K ais
- p ,c hoc B L
- 0 a vW S 0 P
1 ss eW MS W US PE RR /
/ 8 6KS J HP #
f 2 - RE / 0 NG , 7 1 - J_ -- ER / HA d __K - WHC f _- A SSI E 8 J- _- 0 S D 5 I - _- 1 O 2 - K
" L _ K - - _- -
A C ~ E _~ " G _ _ - _- R B _-
" A ._
Hg _ - 1 Cs i _ 0
- 1 _-
L Sp I D0 _ _ - _K _- E S 01 E i jI rl _ - N SS OS _B_
- i - A N LE
_ 32 _ r- 9 CR - K
- P _ K - -
A B S
~
5 H C l L 4 N O A E R C - T T UH 8 K U G I F
- BC -
HT C I D 1 N. UA p'A SI UW PS A G R3 3 . A 7 3O E , 2 OL S . , S 9 K T E O
- ~
CV A E - N._ ~ 7
- b T -
L E - - L RR NE ,1 T. B 1 ~
~
A
- A OA T
3
~
6 .- S K S O 2 ,- SW _ K E N. ~ 0 -
~
T D SW OO LL (8 ,
~
A A ( A C S 2 A CA, t, S S 0' 1 CA D5 K' D5 TK TK
- 7 A 6
K A 4 K C A _ 7 oB 2 vS K - _ 5u 2B 3 _
! l ; i
l l l 1
-0.4 . 88'F 0% VoicS b -0.s -
x g 547'F 0% VOICS 2. x
~
5478F 38% VOIDS s
$ .1.0 - 5470F 76% VolDS i
E c - y .t.2 . e - W I g -i.4 - U 5a
-1.8 -
0 500 1C00 1500 2000 2500 3000 3500 4C00 4500 AVERAGE FUEL TEMPERATURE top) i FIGURE 55 VARIATION OF DOPPLER COEFFICIE :T 'JITH FUEL TDiPERATURE FOR VARIOUS CO::DITIO!!S OF MODERATOR TE!TERATUPI A'ID PERCE :T VOIDS
"o g a technical specifications (
NOTE: Other notifications required by the plant he or corporate emergency plans shall be made in accordance withbet notification procedures in those requirements (i.e., an event may a " red phone" and still require a report under one of the other reporting types such as a 30-day LER) . In addition to the initial red 2.1.4 Follow-Up Notification: follow-up reports shall be made as follows: phone report, 2.1.4.1 Immediately report any further degradation in the level of safety of the plant or other worsening plant conditions, including those that require the declaration of any of the emergency classes, if such a declaration has not been previously made, or any change from one emergency class to another, or a termination of the emergency class. 2.1.4.2 Immediately report the results of ensuing evaluations or assessments of plant conditions, the effectiveness of response or protective measures taken, and information related to plant behavior that is not understood. One-Hour Reports: Significant events requiring immediate 2.l.5 notification to the NRC'are as follows: 2.1.5.1 The initiation of any nuclear plant shutdown required by the plant's Technical Specifi-cation (50.72(b)(1)(1)(A)]. 2.1.5.2 Any deviation from the plant's technical specifications authorized pursuant to Section 50.54(x) of this part ( 50. 72 (b) (1) (1) (B)) . 2.1.5.3 Aay event or condition during operation that results in the condition of the nuclear power plant, including its principal safety barriers, being seriously degraded; or results in the nuclear power plant being (50.72(b)(1)(ii)]: In an unanalyzed condition that 2.1.5.3.1 significantly compromises plant saf ety (50.72(b)(1)(ii)(A)]; 2.1.5.3.2 In a condition that is outside the design basis of the plant (50.72(b) (1)(ii) (B)] ; , 2.1.5.3.3 In a condition not covered by the plant's operating and emergency procedures (50.72(b)(1)(ii)(C)] .
- - _ - - _ - - _ _ _ _ _ _ . A
2.1.5.4 Any natural phenomenon or other external condition that poses an actual threat to the safety of the nuclear power plant or significantly hampers site personnel in the performance of duties necessary for the safe operation of the plant ( 50. 72 (b) (1) (iii) ] . 2.1.5.5 Any event that results or should have reenited in Emergency Core Cooling System (ECCS) discharge into the reactor coolant system as t
#g nresult of ~a valid signal (50;72(b)(1)(iv)].. . -
2.1.5.6 Any event that results in a major loss of emergency assessment capability, off-site response capability, or communications capability (e.g., significant portion of-Control Room indication, Emergency Notification System, or Off-Site Notification System) (50.72 (b) (1) (v) ] . 2.1.5.7 Any event that poses an actual threat to th'e safety of the nuclear power plant or significantly hampers site personnel in the performance of duties necessary for the safe oparation of the nuclear power plant including fires, toxic gas releases, or radioactive releases (50.72(b)(1)(vi)] . 2.1.5.8 Any loss or theft of licensed material in such quantities, and under such circumstances that it appears that a substantial safety hazard may result to persons.in unrestricted areas (20.402(a) (1) ] . 2.1.5.9 Any event involving by-product, source, or s special nuclear material possessed by the licensee that may have caused or threatens to cause (20.403(a)]: 2.1.5.9.1 Exposure of the whole body of any individual to 25 rems or more of radiation; exposure of the skin of the whole body of any individual of 150 rems or more of radiation; or exposure of the feet, ankles, hands, or forearms of any individual to 375 rems or 1 more of radiation (20.403(a)(1)]; 0-RCI-06.5 Rev. 4 Page 8 of 26 l l i
f . - 2.1.5.9.2 The release of radioactive-material in concentrations which, if averaged over a period of 24 hours, would exceed 5,000 times the limits specified for such materials in Appendix B, Table II of 10CFR20 [20.403(a)(2)]; 2.1.5.9.3 A loss of one working week or more of the operation of any facilities affected (20.403(a)(3)]; 2.1.5.9.4 Damage to property in access of
$200,000 (20.403(a)(4)].
2.1.5.10 Any violation of a safety limit as specified in Section 2.0 of Technical Specifications (6.7.1.b]. 2.1.5.11 Failure (s) of a safety / relief valve to close (Reference 1.3.9). 2.1.6 IFour-Bour5 Reports: Y Significant events requiring immediate notification, but not greater than four hours, to the NRC are as follows: 2.1.6.1 Any event found while the reactor is shutdown, that, had it been found while the reactor was in operation, would have resulted in the nuclear power plant, including its principal safety barriers, being seriously degraded or-being in an unanalyzed condition that significantly compromises plant safety [50.72(b)(2)(1)]. 2.1.6.2 Any; ev, eat]orfconditical that;; reisit'Alin } =mana l'lo r ; . > e 7sutomaticiactuationiof anftagineered?$afetyr-
~
hFeature;(ESF),; including lche.RW#etor~Frotection System (RPS). However, act6acI5n"of"an ESF, including the RPS, that results from and is part of the preplanned sequer.ce during testing or reactor operation neen not be reported (50.72(b) (2) (ii)] . See Attachment 4 for guidance. These systems are: 2.1.6.2.1 Main Steam Isolation 2.1.6.2.2 Main Steam Drain Line Isolation 2.1.6.2.3 HPCI Steam Line Isolation 2.1.6.2.4 RCIC Steam Line Isolation 0-RCI-06.5 Rev. 4 Page 9 of 26 l-
2.1.6.2.5 RWCU Suction Isolation
,m m,,.em...
w, .2. T.612.6_-. .r:=y WIMPC{fActuationl y 3 _a - . , ~ - - - 2.1.6.2.7 LPCI Actuation 2.1.6.2.8 CS Actuation 2.1.6.2.9 ADS Actuation 2.1.6.2.10 Primary Containment Isolation 2 1.6.2.11 SecondaryC'ontainment Isolation 2.1.6.2.12 RHR Suppression Pool Cooling (Manual only) 2.1.6.2.13 SGTS Actuation 2.1.6.2.14 Control Room Emergency Ventilation System Actuation 2.1.6.2.15 Drywell Spray System Actuation (Manual Only) 2.1.6.2.16 SLCS Actuation (Manual Only) 2.1.6.2.17 Reactor Protection System " Scram" 2.1.6.3 Any event or condition that alone could have prevented the fulfillment of the safety function of structures or systems that are needed to [50. 72(b) (2) (iii) ] : 2.1.6.3.1 Shut down the reactor and maintain it in a safe shutdown condition (50.72(b) (2)(iii) (A) ] ; ( 2.1.6.3.2 Remove residual heat (50. 72(b) (2)(iii) (B)] ; 2.1.6.3.3 Control the release of radioactive material (50. 72(b) (2) (111) (c) ] ; 2.1.6.3.4 Mitigate the consequences of an accident (50. 72 (b) (2) (iii) (D) ] . 0-RCI-06.5 Rev. 4 Page 10 of 26 l o
5 8
- 3 - - : -
sg h - n r n n s'. 7 s A s so r) s so s e e - 2 si s U s s O1 s s s h A' v el i e e e 0 e e e c l c c l cn c "i s0 c n c "r s c n es a :1 2 oD rA3 oDn RAP on rA oH r-sM o e-n r A oe rp s e o n r A m p^ m v' E-
/
1 PR- PR P Pi c2 P Po c P ou o~ '
" A " n " n " H o1 " rn " n or " rn tp t 3 eU en o eo re rmeo rp 3 rD i3 / :
r pA r rd- P( rm r- Pm l m' l 2 e Noil ol o" oeA onA au a toiT"d oi" O-i) 0tPn tPn tI tRU sr twU st1 tTd nu - t gc u nI9I 75 a 1a Tit P a o it aI3I a ee e e3 ao e 0 a e3 gV V V ._ 13D is1 tm l st - iD1 ts0 ist - i a- i - - n e"l icDA cn can Gcnn ai caaA c n aaM ceaA sv. sGRR- / N nen U uVA uVl i nAU uR nGP u-iT t nCiU ut nMP uR iC-t2 nGiU ut pl S y O A A- - gv e. F n n - n nrn is nril n n ir1 ) n0n ngl n0n 1 nrn ns nrnn nGn nr0 nrnn nri1 l rcn ed l r Kae I PR DA0o ADf i A0P AOA IO AOIP AOA iO( AOiP iia T N - - - - - - - - - - - A T 9 9 N c c 1 1 l e e 0 0 0 sg sg 2 2 g d rd g r/n si
/n si C C - rn eenn i hi twui Ets gca ts ca R
a R /s aoos
& Ra R pr a
_ e e E E me ge t0r 0r r xlkr i0c 0c e e c n0n i3I 0n 6i s e S e 0. e 8.uan l cc 4d 2 fbi A8 00 1 3
/ 00 0 0 R 66 6 6 OsRR R R Tt- - - -
ApMM M M C pR R R R I o- - - DC22 2 2 Nt1I 1 1 D IsDD D r.
- D
'P
- M O
C 1 E I B A T 8 n K 4 a A n0 T 3 To0 0 0 Nl6 6 6AaCD Elk k k Ma- - llll UgM H RCM R Meeee I1- - Rnnnn Ss2 2 nnnn Nt1 l 2aaaa I pD O 1hhhh DCCCC N n 0 o 1 n i T t c o a nt .) i i u r nxo t d eet a a VMa i R P (r d I s a e Bane R n I_C ia os e i L Ifte n Nfal i m IOie L a M dr e usa s t BsRl a SABCO le a C Eceu - neeee Hopn r * : innnn Jrin r aliII P P a 3 1 i - i' ' ; 4 ! i .! , l' ii .l;i$J ,
l c PLANT MODFICATION TRAVELER l as"NIa: r2 -gg7w,__,spnrg2_ PAGE NUMBER Al 2 TITLEmwY aceove eroec ev-Ac s< rs A e uvro ownam. <es 3 DESCRIPTION A'emove Msw a+irama neea wmao awria ewce on- 4 SYSTEM FILE DESIGNATION ECR rin uruxo n snro cearaaaa xs emcc +t4s rnasrc s srwricas wir> ma
- r cic rac, e m rnsra u mun me, w sm waree da i guaosex 5 RLE NO. Low
_ E 6 RESPONSIBLE ENGINEERING ORGANIZA. TION 7 INSTALL ATION RESPONSIBILITY E CPtL-BSEP O BESU 5 BSEP - 1(C O BSEP- MECH. MANT. O CP6 L - TAR NO. < O NELD O BCU C BSEP- TECH.SUR c. m O CONTRACTOR .L O' O OTHER
$ /M N/M ~-
8 RESPONSIBLE ENGINEER M, $ 2/~ MP dM 9 TECHNICAL REVIEWER UED AAt/RJ02D OYES ENO l3 FSAR DESCRIPTION EYES ONO jQ 0-L!ST SYSTEM OR AFFECTS O-LISTg,p CHANGE g A FRE PROTECTION 0-LIST l OYES ENO l4 A SIGNIFICANT ENVIRON. IMPACT OYES ENO
. l[ B. RADWASTE O -LIST d g 0YES g B. MAJOR RADWASTE MOD CYES ENO z C. MODIFIES TECH SPEC EQUIP 3-a ,O' C - ,S, C PNSC CONCURRANCE REQUESTED OYES ENO h OYES ENO w l2 A.UNREVIEWED SAFETY OUEST.-
- OYES ENO 15BYENGINEEg b B TECH SPEC. CHANGE
^-fg- g gJPTE NE 16A [ Q DM gg $RE g jEp Rfg] gA4Eefgc lg {9{EM n pe g 9#,2 i DATE SAFETY REVIEWS .
l69 EQ REVIEW REQUIRED? ENOO ES BY 7- OYES NO 19 EMERGENCY MODIFICAT 27 REQUIRg. 17 g jCgt g o g g 9TF, Q BLO {.18. A. PROJECT ENGINEE 20 Review sy - d. +e DATE 3-ti-8G ROUTE FOR ISI REVIEW UF REOUlRED) ISI REVEW REQUIRE 3? DATE . ROUTE FOR FIRE 2!5 NO.O YES.BY N /A PROTECTION REVEW "R Ogpn,/gg E 22$$Ew bEC ==, JqA { Rtew
^
ALARA r DaTE ROUTE FOR E/RC 23 REvEw sr ' l e a -/s- >N- REVEW GF REQUIRED) r E/RC REVEW REQUIRED? DaTE IF ITEM 10 OR ll YES ROUTE TO OA. 24 5 NO. OYES BY IF BOTH NO ROUTE TO ENGR SUPV. k g REVIEWED 25 8Y OA a4 OA ENGINEER p4 DATE ROUTE TO ENGR.EERING SUPERVISOR iED " '"
$ 26lE8G sU'VR / T -
W[ b NE
! 27$5?EN S
ER [dI
- f. # /f/8[s PEWS ,
y 28 fS$*SUSVF / Nb NG NE NG S RVISOR b REVIEWED BY PL ANT DATE IF ITEM 12 YES. ROUTE TO RESP ENGR. 5 29 SYSTEM ENGINEER ' ' FOR CNS. NRC 4 PNSC REVIEW. (7
// y/p,3/'g G IF ITEM 14 YES. ROUTE TO PNSC.
v / < IF BOTH NO, ROUTE TO GEN'L MGR
- CNS < NRC REVIEW D COMPLETE F DOCUMENTATION 00 RESP ENGR ATTACHED ROUTE TO PNSC DaTE O SUBMITTED 4 HOLD POINT ESTABL'D l PNSC 3! CHAIRMAN DATE ROUTE TO PLANT GENERAL MANAGER 'l APPRO/ED BY ROUTE TO DOC. CONTROL 32 GENERAL MANAGER da DdATz 3/N FOR DISTRIBUTION ' - ALL INSTALLATION AND ACCEDTANCE TESTS COMPLET'E AND RESP / DaTE y 03 FINAL OPERAB'L TY DECLARED ENGR Q g ANDMOD CLOSED. NO FURTHER WORK ALLOWED (ALL EXCEPTIONS RESP CATE g FOLLOWUP MOD WCRK COMPLETE) ENGR g TOTAL NUMBER OF TOTAL NUMBER OF RESP DATE w 35 FIELD REVIS[ONS _ TURNOVER PACKAGES ENGR 36 FINAL REMEUENED eDC APH x8 1956 .
8 __ BSEP/ VOL XX /ENP-03 g5EP FORMI REV 29
f 4
! PM 86-o'3- !
REV d - 1 PAGF A9 R. funic-Tsc^/A t. 5 u HH Al Y u
'rrft.s M C D/ f/CA T/ D A.I W/L t PEdFDAM THC s CC LLCkl/ AfG W/ TM/Al THf Ad'A CTDA seCCtste ML A 7~/e+) PLtt.1so/M G $CTE <C+J1 Act l \ .S YSTCH .*
l d RemoVC3 TriE M A STC R c c NT~AD t L.EA. (2.- S 3 3 ~ %1 AMO SPEED DEMAND 4 / M I TE A. 2-032-WG/T)
- 2) R.Ent o ve 5 Tt+ E CR.Ron Llw s T~sNc. Nerwoal.ac 5 (2-532- KG20A 4 2 - 6 3 1 - K t.2 c t A *J D S PE ED C OM TR.CL LCit s A-023-Ac.21A +
2 - 33 2 - At. 2.2 D)
- 3) RCPLAccs Tr4 6 M/A TLA rt s VSot. STATeoM s Vl t Ti4 M A Nu A t-ccMTAct STATS 0*J 3 [2-23 2 - R 61/ A + 2- 832 - R. ( 1/S.) -
A) Replaces Tr4c PEED wA Tcl zN TE a.t.oc.x YoMca5 [2 - 83 2 - K2 3 A + 2-5 3 2- M17 8)
% 5) 24 STALLS A M A M uA L Rc5GT P'o 2 SPECD t.tM47CR 14c. I QYPA$s 2 CLA Y 2- 8 72 - K2 A 4 2- 022 -X 2 8 ed M A g Cs LutetrJ 6 c.cneccTica s 1+1 2-832 ~Poo3 A Aa0 2 ~ 6 3 2 - Pa c 5 G (g)~A CTD A R EC Mtt. M d. 5 c: 7 CLAQ t CLd3 '7) Costdec7.5 D/2AL.J/* Jim Glotels CW 2.- se / - SS ~7,;t .TM. 3 TM/s p oD/f/CA ~riest /s A A?f3t 4L7 Of" EcM B4 -/4 7,
PM sc.- o im. REV o PAfsEMT des /C, Al PAGE Aio (}, i imRe sar noo x-ac.r.a a-e,a e Pu ~-i(~, a -ra na ~< r .#,
;%~ sap *s" . 7xe secco or esca Arecae saw is Dema-l DENT Ca VMf PDcdEA SuffufD G Y /73* /Z fa~ffC r/4/G M& SCr c.eacero< . rxe c.ewcasrox is a consrsNr veLr.t /ae<r a siunac. rse aevenrea sseao i.r c ~raoa<o wn me ' SPEED CONT /2CL S YZYCM 4</H / C H Pos/7/ods YM G NG 167 .scacP Tu8E. 1PCEO CmHYaeL of 8 CYH M Gr S t'75 CAH Q6 CONTA?.ot-L[b YMAGuCsH R deHM od UNTAC LLCR
[MnsTEK CcN7/EoLLEL) DR Z~ND fPEAD CHTL Y Y M /2 6 U G H A courantex ,co x esCa s c. s er-(m/A TRANSe~CK STAR /ed5 . i
/.O/TM/N Yd[ JPEE"D CONTAe L C 'I'.S TCP-4 7We46 AA6 TNAtT C u e A-CM Y Loc #s, E~A c M /C- 50 sets. . TH E Y Ad 6 L' rse Deu wa, sece.O Coarizeeeex , eno seccasex iooo.s.
ND/CH A L QPvtkr/0H M DEM&NO SPEED LC DP .2*A/ C L u CC.1 '7"h'E HAZ TEW. CON 72cLLet ,.s~f W D D6M4Hb Csu o 7tM , M/A *TRAd4 A;* CAL 5 YA Y10 N , SPCED L/usTca A/D . /, M-rJD TN G EAAC4 Ls M /7/4 G Nf 7c.J og g . '7"N'E MA STEOC. C C M YA G L L E W- AAC
.s*PCED D eM A a.b C/p / rgAt s94 G c.ceuca 'rQ 2erH N& se7s' c.o a T/zaL. 3 y.s76M $ . 7N 6 CDM7M-e L s~Ys'7E M c'kN Oc 2se n /H A u rc8 Ar/c mod E .s~ca c k 7NAY A Tu RB /~ & LOAD C A A-C AC S/ QN 4 <- D /CrA TCJ DEMAND SP CEP Loop c u n de~N T L E s/ t~t. , C ed A L DAD .
l OfMAd5 Q A X/ S . f0K '/I'ff$ A Ls70 Of 6AA*T/6N 7?/5
PM s' -o i 2. REV o PAGE A il
/
N. C a te g E+.f r 3/GHAL /s suppt/CO yo GaTH HG SET 5 V/A TM M AS TCit. codT2cLLc4 ArJD J P E c;p DcHedb d /M77c4 . YMC MA 5rcA CONrAcLLc4 AA/D eA C// M/A TRANffert srArica see .ser sa aure Mose . rxe mA.crex ccarascLea CAsl BE SET /d MAMA l 70 codY/2a L Be'rH M(7 CTS facx a eouuoa couraoteex . rae n/s rasassex. srsrioar isoaeo xeunia /N nure s e cou iac.. rxe uArrex. con - 7/2.0L LEK 70 ce N 7'AD L 7-H 6 .DEMAHQ sooEEi> &cGP Ct.u'4 E H r nar cuascar fs2cu 'rne HAsrEx. &c u YL ocLEx. /.s f./he / TED 4 'r THE SPECD DOMAND UHtVEX TD s+ M/N/M M M of 4 l '/a pap Hkx/u u ~ of .8 9 b .
, enea m/s raAussex mrna c .,a ae ser - ~ nun. % MaDG ro nLLcc ) ZNDFAE~N.DEMr CedVA.DL Of" EACM MG $c'r.
THE M fA TRANs FCA' SrM77Cd PcTEA/770nfrEats ccarlet DE-mao speen ioop cux<orn ia ence as .ser e w sec. 3 Y.5TE*M AND 7//E HAJ7EX cnM7/2ccLC/. LueteMY /s JMetNreT cs/rH/N CACH M/A T/24 ^I4 fC# M77e *J . ree vennNo . speed toes ca seccar, sn rxe-MA 5 Tcl e carga Lcar ese m/s -r2Ansree .crwriba, ci7, arc.e ny-PAfsEs SPcc.D unirst No. / og PAJJes rdnouGH 7dC L/M/TC< ,
/N RoL. ATE 7D TMG EAADd. L/H/7/AlG t\/4~7MK , .2A" J ~7?fG 87PAJ.$
C C AI D/Tso^) TtVE K2 A(6) RELA */' CCHrACT /3 diesED (R CL&p' eN ElGl'& C /AJ THE C udst EA) Y C/ACU f Y /t LL Cwin)c, C ustn'O.fi~ a rn., z or ra u~ rc>e . csm., o us, r7aa d'C U D / r/c + J /.5 C/2. E A / c D 77f C K2.A& /ecl.4 y
/J D E C H f A Ce / 2 6 O QPCAI/ AJG- '7H6 (co.r7A<.T AAsD
1 PM 86-ciz REV o f
~ PAGE A/
\ fO' gg /2 G, C uMA CW FLoca.) THRCUGH THC 4 /M / 7th? e THE tiairrse ca/Lc Actet > A p A >um u n of 28% racEO DCMAMO CudddMY Flew 70 CDHriN U C /d TN E 400f 7b THE EA/2ef.' L /A 4 / Tin./6r N 674) et < , TA 6 / k2A(d) j AELA Y LJtL L D E EAfft G /2 6 d ) MEA / &~/ 7"HEK. T/f 6
/2 f C / L c D/ SCHAn &G VALt/E /$ A/er FULLY DPfAJ og . /TEDWA TETW FL OG /.3 f.'.CS .C THAN 2D yd , .Zf' YZ/G s /HiridL, coaci r/cu /s cA u.seO cr fecas.>Arsx rzog 7 N' 6 ficc > /susY 86 4651 7WAH 201A FCK /5' S6LCHD3 l /36foxc r,./E k.2A(4) sGELA Y 4 3/e L OfEM6M G/2C, dew 4/de.SCL Y rye faown rct fcou au.cr exceco zo*4 for /s secoxos Be~ fox 6 2 esc ~r Of K2 A(d) C4H CccuA'r 7k' 6 /$ StT.CA/O YDDO
- YDPu add /s P2ou/PCD BY 7N'S fdEDca.ed729t . TNT 4xLe</c T/Mex X2 3 A (8). DMcG THC L/Mt T/Ncr c enDir/es/ MAS CLeddtv,,
K2A fd] /2e7.AY ENCst &/E CT A LL o ca.>s d*G NostM AL. Dec'l ATMAI AHD curaewr n.sw ro ac>u u s. ,we 6 ascie Lipiriac, uarc.so<x usdS THE des <n u D s ec2 0 &cCP cux.dc% Y 70 GdHEd.A TC A Ve L Ts4 G C St G N A L. TD TN6 SSft~o 4 CdYd.9LLCL e 1
'7'H6 C P Cc~i) C.DAJT72. C L L CM $ c <f/ Li d5 d U M AE'~N T" TD TN 6 SAEdb l'DNT~LeLLid f bC10 /95 A A?.d'5 U.L Y 6f YME 6A /20st StC,MA1 VD L.?n G G~o '7NC Sfc6C cou 7,co L.L c~d C.CN TA raf1 A 2A 7"C LiH s 7 /d6 NEroDCk-I fkhY/h$ k b$if&Uk% jN Ut& $ $ /& & UTh4A?
C uit /2 c'Al Y sa)st1C M ~7"HC S K. 4 o t' s/G NA L. t/DLTACr6 /.5 N/GH.
P;v1 B&-o/2 Rt'N o r PAGF Aa ( l
\ -fME SPEEb Co^)reCLLee tooP JNCL uDES THG SPfEb COJ-rgetLE,e, SPEED t/Hi rcx No. 2, S/GNA L f 4/L U / 6 A C/ f M ,
M/A ~7~fANsf*E/ srAr/ed f5" PEED DEMAMb MfTEA , AHb
.Sc.eoP 'Td8C ACTUAYDA. T//E Cud 26WY /N 2 Cur 6" 70 *rF/E .sceoP ~72/06 ACTUA ro< E/7HCZ dYPASSf5 SPEEPL/H/ W 40.2 OR PASSES Y M 2 0 a ct & THE 4/M/TER, DEPCND/NG OM 3Ms7CM CoAJOt ricNS. .ZAf THf BYPASS Cedb/Y/os/, 77/E K2fA& sefLAY CDNr4Cr /s closed [AEcA y' ENER&/EfD) Alic4J/dGu TNG Cat.
LEDr TD DYPASS THC L/M r TE4 JA///EAJ A 4/Mt 77^f6 CDdb/ 7/0d
/S CAEntfb 7"M6 K.2/A f8) R6*lA Y /$ DECNGRG /2 6D, DPfddo.
rse courAc.r sas ,coeciac, eacaear scoco rxecuc,x
'THC L/ M / T 2 A. '7N E 4/ M t'rvie ld/L L AcLM A MAk/ hum 4s"/*o c.ugtcar ft.cuJ fgpps.ek. 29& ra cDN7/ gad /d rifG LCDP 7D THE SccDoD TUBE A c r u A TD A . T N f.s 4/N i7sMGr ccMb / r/o *J la:L aas
- aHEN AN 2ND/u/D u4- L fffb PuMi# fax.J
/S LE55 TNAN 20Y Of AA7ED fld(d Adb 254Craf_ a)s+7i!E~st 4EUCL /s AEclk. J 7NC 4 4%J
- LE6/6*L A CA#A./ fo/AJ7 AsC'*rE~st T//G' L/M/7~/N Ca CDdD/ 7/od CLE42.7 YHG" K2 / A& ret.AT' U/c c No r*
Afsf7 HNT/L 7/ff AuNo4CM RESET pu.tMg et prod /.s DEinegssgn, A frEA K2/Ddo) /K FNEACr/ BED, TNG ar/' Ass cess VAc.r~ disse ~s s9LLDU /NG NCEMAL 0/6'2Ar?cd ~7D 2 Cr u A46 , THE S/GN4L /~A/L U/26 ALALM UNs r skfod trat g e don;Ur f" Low /H T//G SPfi!D CDd7/toLLei/ l. cop . GJHfd YAG Cugde>Jr L EVEl. /~ ALLS DE L OL.) A PAGJC7 L CVC C. 7MS A gA AH udi r LeUTACTS OPd"& C Au 3/MG A cruA r10+J Cf 7 H' 6 S co o P
~Tuo f* G 4 4 A:6 AMD D F~ /?HHUNlC / A r/cN s~ / G M4 <
PM ec-ca i l REV c PAGE A /4
,s l k.
FA / LugG . CACC 'rME ccHTAOL .5/G MA L /s 2 EESTA B e /S //'fb 7Hf CYC7fsV/ CAN DE AEser fod HD2Nkt CAcAAT/ed .
'7HE scocP T ctD F sq crus +TOK Le^fr20L5 CR fos /Y/CAS 1
THE Jwop ru oe /^I D/Eccr p20po277ea Tb 7-MF C ut?AEN T 5 LA PPL/ ED V/ A 7MG SsPEEP cooJTAC Le CK LOOP, TMG266Y Cc H Toto &Lt& & C,- CNetA 7ex- SPEED . l 7Ha fec>aAcx Loop 2Ne cuoc.c ra c M v /r l TRAdfM/7rcA , s44 fA Y 2 4 4.T f ist CM7~1D4 f6r GAJC"4*170A. l s eeco merex) sao caso,e uusriac, wenouc. rxe N L/ TONS $ / Wdd$ $U//L/Q ( CA,A d d A T S oC W/N l e LOCA /N D/ At CT
~
PsBCPod7"/ed 73 &EN6tArDst .5"Pe*Ed. i l
% TM6 ERR &2 L /M ir/46 NETM/cstK CcMPAAd"3 THd ffEDOACK CusCLfd 7 TD '/MG 5PffD D6 MAN Loof coatfNT 1 1
ANb M D.)WW YH6 EMC2 VDLT M 6 4cLesCD/A/G LY , aseen rue seeep oeman C.uneur eeusu we f*fCO D A C K. C u tefd 7~ /^ / THE C2fCst L/M /7/sfG NGisaJolk, A ~2 crc GsCecAt VCLTACv6 DuTPuT CA c.asE's 7NG ffEED ca*JYaoL LER To M Ata Txia trs cassecyr carpur A-r A Coas7A H T f G s/ et*L , YM/s McLO.s 7 d t!? .s* Leap TuSe:
/N 7HE De s/ACD Pos/7/osJ NA tH7Asa/H6- C o ^J 5 rA d r Cet*N 6 ass rc d s7 ffD . If" 5PCEO OeMAND E,<c cros /~ccPDAC r A4 E2264 VDLTAGti /5 G EHctA7ED c A st4 /MG
1 i PM d'-ce2
. REV o q PAGE Ali x
tnt ~ 6ftEO t'.WM C Af- 7D .Z N C R Cst $ 6 C LAdd &M f* CLLTAUT o THE ZMC A&rJ C /A) c.u dddAIT sfM2. 70 ~rH C SCCM 7~ue C s9C TU4 72VC sa.4L L CAU3C s4 426/Cs t T/ o of//Y 4 0f TMC $COC#0 W86 70 o4 M sd s4AI .ZAICASA S CO l drt~A/6Msf7DA SP CE D . ca HcM FEEOfACK 2h/Df CA TES M DE s'/d db $ #d~ds) //s4 s BeeW 12CA ektso , .Z< c fraDOAcx EQ Lan c .s D6MAMP, 77/C 644bt VDL7?t CnC O)s L s. /2 C TtAd d 70 A 2 e:O s.crcL. c.s u s ist c, 7 Her SonedD caHro c Led 4 1 l l & h f G t f I 1 1 l l l l
t 8 y PM sc- o /2. '
, ~ ,_ ,STARTLs P REV- o s.- Q Pc2A TION --
OLA AlNDIL L PAGE A/C ~
.5 TAAYLJP TNfA5 s42 &~ TNQ L L/fg&~A r YME DrsstANO ANb f. CCP5, $Pcca Ce&YALC L LER' 7"Hd~ L C CP3 ,
CNA AfG G /N C usCA CNT* f *L e e<J 460P3 ds// T M / d TM d" BKruJrcM .:57A2Tuse Adb HostMA L OP CMAr/ed cearnot. Lip dY /2 THE A'/Alo) AMD 7HCZ6 /2(LA >'s x 4 7Afd) AtcLA?' CourAC3 A 24~ Cr edCAATCt
/~tcLO Baa'Axa~d As!K/Lre gler.
THE SPct? LecP cod.ft t'7C Of* s9ND YMs 5~/GNAL Ge-HftA TOK ~ ER204 4 /'%4 / Y/dGr N67*ts)DR.K . TN d" $/GN A L. SLAPPLIES CvCN&stATT4 THG' C aseneNT s9ND
/s P/? C.67~
SPEE*Q .5/CrMA L . A3 /N f*e t A 1sk N C A M A-1 d*22c4 t /Mir/MC, Q"82n Vied, THE
% Nf7dCRK uses 7Mtf cuA*R&gr 70 GCMELAr& Ar./ d'Agod' VoLTAcrE TO TN[ .5" pct"D CCW7~2DLLft .
\
'7~H E 5PE6D i
ccNT2oLLcA c s,s 7 p L,a, y THa e u 6.H c,u sax.g M7" THE /~4oC !2
.s / 6 NA L F A ia. u se e
\ ,~.- AL A,es.x , M /A
, , . ~
a~~ A~. t - ~ , - ~ , \ - ,, - ou a,a a , _ .. s rura,o we
- excese u m,ren u.se.r rsas c .,--~r ,, r- d . ,o n - .
\ a, .~ ~ . 4-a r .- s-aco i c .~ r- L L u e c.evr o rce a- ~r E ,u ,L, rac - ,e. ~ - cuaacar 6 peep pemNo eaaoa voa.ra,e cuaaeur.) rue i ocea esses re \ TM d 3P ft*P ac- elve< cA us, ~ <, LcHYa.c L L.C A To CLA TP Lt 7", HM/4 YA/N o4 CCHJYAN T \
PM e< - m REV o
. . PAGE A '7 $h $UY$bkY k{ h $f$" /h &&Th $$(
y/A 7M cmcWaratstrex s/tYD , t."/ 7Wta TNE M & l
$eT c.cHV404. $ t's 1~ C A.A /* Z> e'"!/ACO C/Efb /r S Er. T/f6 DE.T/Ac'D S/ Cat"O /S c D e / A & CID ~/D l ~Th C A- crm S/ ehCD staO A N'y D/ F fed eM L6's ! ]
8 C" We% f/ W[ *f*La.) O $/CEOf A ft?" d'.S A A[CN$ W l l 8Y 7WE C D M A.44. $YZ & o l l l J*T Q e t I f .g
. PM A - a =- ~
REV o PAGE A 18 Me O //~~/ C A 7'/CN CHA AlcaC 5 N TH/3 H OD//**/ CA T"/CN Cs)tL L .5/A'PL/f"Y [AC/tf A t~C/A C'.'LA Y' S s oupp/MG scr~ ceartoL .sYsreM dy E sTAgurg/ska o/c cudacNr coos soa couraoe o r c,a u ct A r n e seceO. TH/$ 4)/LL. 86 ACLo+< Push 60 SY 2CM CL/tNLa 7t/G sL9A37Ed CDA /7/2CLLf4 , .ffd'Ep DgA,,n AND L/M ITtfd , 4*tdCK U N ITsaldr NerzJatses , s9db speso coursoL LCM S,
.5"PdED C D A/ Y e.e L of~ 6ACH & 6MCAA 7DM-. La.Jt L L 66 JMA/A/T"A /NCO dY / T3 s&G3fCCr/ Lik'* M et W U A L. Chem!TWCL l .5 7A T*/Q 4 , '7"M6 CcA t t CA/7~ 4Dc/ La) / L L .ZNCLUDC 77/C MANUAL. CmMTLDL STAT *t oM , $ P f6D L tMi rait ND, /, SPL'~6D l./M / W K AlO n 2. p 5/CNAL 5"A/ LUMA *s4LAAM UN#~, s9 & O ,.- SL.c o P " TUG C A cro A Tot . 7'N C e* udd.CMT 54LPPL/ CD d >'
TN6 M s/sb" TAAA/SM/ TrEW. t Vt.t f* SED 7?ft!" 6 ENOtA 7CA l 0 S/6db sL4 kWK e T/sf C Ms9NUAL CDNTd eL $7A TIDM.C 4;dti L. B6 Mo oif/ CD Ge*M A L CO -02 ct a r a b u aid S AND *>llL 06" .TH 5 TA L LCO LA.)H C L C ~rMt$~ MlA TMA+/3ftk. STs1 rt*WZ AAA' C oxx esi rl. y tecATro, THC c.,cAAAc s11-02 cessTra L Lce s AdC 3 Las* P L t d O t.s> / 7sf C ~ 7UMA/ CDAJrMBL s007E AJTtCh A CTE A3 e 7"Nf 56 L.J /t L BC /24~/ LALf b L.,J / YM /Q ~ TUAAI $0TC+/7"/e = sMtrfts 7D PlacutOC /~rN d M. g*.D H T M.D L , TNG At*/LALS ~ l M 4*NT* C/* T H &~ #0b 7tl*AJ 7t C hac TE"X & /J Af d~ CA' 5 3 A K Y DU4~ 70 fL /M/N Arteh) Ce** ALA rc Lt +4 ysyg,, 4)/7MsN y-H L* 40010, NO C HA Nin C Wo L L CCC UM 1At 7ttC /~sn Asc 7t os) C/* TMC 6/GNAL /~ AIL UMC UN e T* , $ P c'd D L tk / TE.*W. No, /, Cst (w S P e' C O Lt +4 s 7tk. NO , o'2 e
i PM s'-oer REV o
, , PAGE A n s
\s
. .ZN THE STAstruf M ODE 7WC St GHAL- G 6udd^7DC CJilC su,*pc r cuxxcur 70 YNE tecto Ar TH6 *f s */ terce. .
TNG s rad rus* c undEA/Y Loo # tutLL 2Mce.voi 7W E s t G N A-L CrCNCRATDL, So06ED D es4A+JO L/M c TEM. NO. 2 y
$/ G HA L FA/4UdC ALAMA4 LW / 7, .5"A d GO DEA.4 AMD MAC, paa scocoa rw3G" A crusive , /9frex. THC ficta 02cAx Gef dies ts c u sts c M r ocHrret Ot L L. /2c V sX T~
70 THC H n Wud L. courd c L. Srn rr od , i l I i 1 1 1 1
j iv se.-ci2 i REV o PAGE A2e
,7 t
THf M A.i oserry' of serc/Ac puu,* nu esne )A >>s nao ecNseparar
.5 CRAM 3 NAuf OdeH A 77Mit,3 u YE*O *re FA/g ud6Z oJ frM /N YNC 6AAM L/H/ 7/Hfa Nd*TLa)OMKJ AAJO .$ Aft *D CCAM"/2&LL64Z e rMf' Sof/M A d >'
Pt./st/bJ d" Of rH eif f CCMt*daCMTC 15 Yo ALlos.J M f 4 A*T/06/
/N TNG A t4 TDMA rtG HO O 6 [Los+D /~e tte W in/cr b , A T d 3 6 t* rd/2 moor i.s no r uriti e ev. cssi rn ,2cu o a t.
or reeze <m - PeacNr3 /~s?CM T+G LBMT/2n L t. DOPE , C /.e C u / r ecAD SDK 7pf
/ W A 6 *T~E A. LONTDO LL W d C"X C t"C"D 43' O /V5 b CK /CeN L/H/ r, max ta ce tr .7a cr~fecru A L. , C CN 3 e~Q 4 4L N Y L 7"'
YHr 3eccD DcuAnD u u o re se c )As so L a As C, st Nd*C O 6"D . T M G" flCMDVAL Of *rH C 5 c'* CC/Vf /*a Ale *A)T $ G.I/ L L $ / M fe.,/ #~1' C., C AJ 7"A.c L. B 'r' d, Z VA GL t SH / Nde-q
.2NDc W*>DfMT MANUAL C ea reo c. cf e. A. c H M G. s c7~,
TN/3 M o D / /*/ c A 7/ o ^J u )/ L l. /2 e u.s/ a-d ~rH E A C. ALA >< / L / A d 'r' C /12 C u r r TC /24~Q LA i s2 6 s9 A 4 ANu A l.
/2cx Cr f"D d s/CCD upi rt. tc. x D. t BYFAs.c ,de*T.A Y baAe6). A ODr r/04 of ~,ft C" is tA ss ug L ,24 1 g ~7'~
M/ e. t Of A ccon GL /.rMcD cA.cist c, A .rs*A44 coarncr DH Th*C K u H /3 A C k seet6'r .5 s J /TC.// . TM/5* c cal 7ALY
/H Ad A A L Le*~l. LJ/ rH A NotMMLtY C#CN foHTALr Of THC W2A(8 2 GLA Y a)/ t. L s4*cutpe~ s4 5 c'*A L = / N /4 N O A!d* 3 CT fod TH e' o<2 A (4) /2cLA y ,
AY oae-L es s r s e.a w ga,, acea nr.eieurcD re \ 7~Hi A U TD /26SC7~ CF" r?ff st'. 2 AfD s2 6LA y', 7"H E M ANU AL AC 3 C*T 4.s)/ L L P2c u/D e* ccHi*Lc7C C V E A*A rese.'
i 6 ' PM u-c/2 I I REV o PAGE A2I
'~
CONraoL . PL /04 70 A t TC V, MANUA t- LoNYACL DElocs) TMf 28 f / fs/CL, J4//L L NAt/G 7D Bf f374 CL/1 oYe'D D"i TD fuMid4 rio M CV" s2A TE 4/M ! 77WCs is)/YA/N 77/6 C M A&L , LDos" . 1 i
*/"$/.$ JtDD/f/c4 L Y/AN la.)/ C c std"/LACC Y/rAll' M bA M .ZN VfA t Dr M T/MEJ2 s<.2SA (3 'i~/Mr Df~lA Y P/CK Cn/ A+4) rme pecar aw oca) canw n~ e .peur am ou.r 1
7/His .s. 7 Me" 7/ME b i f.A Y' s 0CKuPts)A3
/ yrde~f34st Y yo PAEVENT 7*H E M2 Ado) P2c^ < Ara'CLY Mrsd777'/G "s*<N fctbt)47tx fLc w CA C6ED ED 3 e */. H'Didav6K., tJtrM Z437 ALLS 7?cM Df 7WG ,su Adt r4 t ate 5eY FoA K2Afg)
THE 7/M K DflA Y Ptex up /~e.sHcT/ e d W 7ML ~r/+<iXf l
/.5 No 4odGdA NdTbiD.
td///Af6 EAtds/s /N 2 - 0 2.2 -si b o1A s9A/D .2 -8 3 .2 -*** b 3 & I 1 Dircouexev palias see.scnxcx i.aict oc e.oacepta PEx YH/.f HD/f/ e4 7te d . D/24< 3/a s E/Maxt es./ 2 - f'P - AS ~?2. .5M . 3 tJ/tL 8E c.cA/.e't rs*O Pcx rNrs Hop /CfCAr/od, NC f~ug c r/c a (,.//4 4 G e f ts)/t t. CCCud
/0J sA tZ6 S t. ALT C f' t.J/d/dG- #A/D .pAAts)/AIG C4 W A RY7lb'dS. .ZMPL EMFDTA Y/e N C/* TN/.5 sMcD/ftcA r/04 CJ/ L t PsQ o al/ 0 G 2 CL/ A G tG PUAtod,ht C,, fg7"* CDHrde t,,, ,
V ' CAROLINA POWER & LIGHT COMPANY BRUNSWICK STEAM ELECTRIC PLANT UNIT 0 1 i PROCEDURE TYPE: ~ CENERAL PLANT' OPERATING PROCEDUREf(GP)- NUM3ER: '10' PROCEDURE TITLE: ROD SEQUENCEJ:llECKOFF $!!EETS . J REVISION 5 I APPROVED BY: 4. .- f. (A) O ll !{[/ Dates , General M.aqager/ Manager-Operations} / 0 GP-10 Rev. 5 Page I of 128
9 i B l I < - LIST OF EFFECTIVE PAGES } CP-10 l l Page(s) Revision
- l. 1-4 5 l
! 5-44 4 45-46 $ l 47-60 4 i
i 61-62 5 63-66 4 i 67-128 5 I i f 1
.I I I e
1 1 . t k
- s I
f I
! l 1 l 1
h l 1 i i I i e
]
I i-0 CP-10 Rev. 5 Page 2 of 128 l s 4
,r.----r--.. --nn~_,. . , - - , , - , , . . - - - - - - - , , -
TABLE OF CONTENTS Section M 1.0 PURPOSE 4
2.0 REFERENCES
4 3.0 GENERAL PRECAUTIONS AND LIMITATIONS 4 4.0 INITIAL CONDITIONS 4 5.0 PROCEDURAL STEPS 4 i Appendicee 1-A2 Unit 1 Rod Sequence A2 Checkoff Sheet for Fuel Cycle 5 5 1-A2X Unit 1 Rod Sequence A2X Checkoff Sheet for Fuel Cycle 5 20 (Expanded Group 2) 1-82 Unit 1 Rod Sequence B2 Checkoff Sheet for Fuel Cycle 5 37 1-82X Unit 1 Rod Sequence B2X Ch ekoff Sheet for Fuel 51 Cycle 5 (Expanded Group 2) 2-A2 Unit 2 Rod Sequence A2 Checkoff Sheet for Fuel Cycle 7 67 > 2-82 Unit 2 Rod Sequence B2 Checkoff Sheet for Fuel Cycle 7 82 l 2-A2X Unit 2 Rod Sequence A2X Checkoff Sheet for Fuel 96 Cycle 7 (Expanded Group 2) l 2-82X Unit 2 Rod Sequence 82X Checkoff Sheet for Fuel 113 ' Cycle 7 (Expanded Group 2) l l h 0 GP-10 Rev. 5 Page 3 of 128
O Q 1.0 PURPOSE This procedure provides pull sequences for the current unit fuel cycles. The procedure also verifies control rod coupling integrity, verifies that the reed switch position indicator corresponds to the control rod position indicated by the full-out reed switches, and verifies the position and bypassing of control rods with inoperable " full-in" or
" full-out" reed switch position indication in conformance with the requirements of Technical Specifications 4.1.3.6.b. 4.1.3.7.1.c and 4.1.3.7.2 respectively.
2.0 REFERENCES
2.1 Technical Specifications 2.2 Reduced Notch Worth Procedures GE Service Information Letter. SIL 316, November 1979 3.0 GENERAL PRECAUTIONS AND LIMITATIONS None applicable 4.0 INITIAL CONDITIONS 4.1 GP-01, Startup Checklist. da complete, or 4.2 A power reduction is in progress per GP-05. [ 5.0 PROCEDURE STEPS NOTE: . If resolved necessary by the Nuclear Engineer or required by RSCS, group notch restraint will supersede the individual rod pulls as described in the pull sheets.
$.! Complete the appropriate sequence sheet as specified by the Nuclear Engineer and directed by GP-02, GP-03, GP-04, or GP-05. Sequence sheets may be filled out in pencil te aid in naintaining a legible record of rod position.
5 . 2, At the end of each pull sheet, each person who initialed the pull sheet should print their name and initial beside it, so the initials in the pull sheet may be identified. O GP-10 Rev. 5 Page 4 of 128
O APPENDIX 2-A2 UNIT 2 ROD SEQUENCE CHECK 0FF SHEET SEQUENCE A2 FOR FUEL CYCLE 7 l e . l 0 C.P-10 Rev. 5 Page 67 of 128
~
f . l s ( ) ROD SEQUENCE CHECK 0FF SHEET l
\~ / UNIT 2 SEQUENCE A2 i CYCLE 7 {
1 NOTES:
- 1. The recording of the actual rod position is not required when reactor I power is greater than the RWM and RSCS low power setpoints.
l 2. When a control rod is fully withdrawn, verify and document that the rod does not go to the overtravel position and that the red " full-out" light l illuminates. 1
- 3. Verify that the rod position indications for those positions covered by that step of the pull sheet are operable.
- 4. Initials (second licensed operator or other qualified member of the technical staf f) are required in this column its
- a. RWM is inoperable and startup continues per Technical Specification 3.1.4.1.
or u '
- b. RSCS is required to be operable and the control rod is bypassed due r)
.t ' 1-to the inoperability of the " full-in" or " full-out" reed switch position indication for that control rod (see Technical g Specification 4.1.3.7.2).
- 5. Perform RSCS operability verification (for further power reduction) as per CP-05. :
l O-s- 0 CP-10 Rev. 5 Page 68 of 128 l t
~ \ .
R:D sEGOuCE OfCECFF s4ET t.SsiT 2 SEQLEME A2 N7 I o o noc1Les Enr.sarEm c4TEnsw - h se:FT scaenus cart /I:E F
< (vi ) (z-3) (n-il (n-3)
N- Act. (m-23 Red ( m-. ) Pos. Act. (N-2) Rod (N-.) l w 5tep Ems Fram/Te Pos. Init. ..f. P.I. fait. Step Ros From/Te Pos. Init. o.T. P.I. Init.
! CIO P i fEsCs A 29 2, 22-03 o- 8 i ho-cil o-u l ! 22 i -n o-o 2 Lil .-u l l n ot-i, o-o -
i 6-u ! .-u I 2. 6-is e-o l . L il u I 2s li.-u l + =
- s 6. .-u I u ho-o I o-u i
. 6s u. I i n b.-is o4.
- 1 6 ,1 s. I i i n L-ni o-o l s b tiI o- s l ! 2, lis-isAo-.a l i wn l o-u
, bul n. 1 I w l l .. ii.-ii m, i u n-i, o l u 6-nle-o . l u 4.-n ' o-u 1 l l 12 i.-ish o-.s ! l il b2-1s 0-.4 i 1,3 6i o-. , I I i I 3. ho-nl . I
- i. 6s o-u I i '
c=P i Rscs nu is lu-n o-o I is ' 2-n x ! l is im-i, ' o-u I 3. lio-o o-. a in-ul o-u I I n L2-u CBSP 2 (ttsC5 AI21 14 23 o-. c> is in-si! x . I I I I n 6-is o-. is L -ul 0-u i l o h.-or o-. E ., Lil o-o I i u In-or 1
N
.N SEGLOICE O 4F SafET l IAslI 2 SEOLOICE A2 (Cont'd)
Cyn.E 7 - l l
~
in-u - in-u in-u l Pas- As- (m-2) as in-. ) Pos. Act. (m-2) tu-n. me (m-. ) gep Bas Fr W Ye Pos. _ init. O.T. P.I. Init. Step mod From/Te Pos. talt. O.F. P.I. talt. ! O .2 iO-isI .-. ! l l 6. . 26-u ' .-. 1 .1 10-3,l 0-. I Caokr s (RsCs AM) o w u 1.-M .-. .9 .2-23 .-i2 3 .s b.-.1I I I m li.-u .-u
.4 -39 O-. 7. .2-.7 .-i2 u L2-ni.-. i u iso-n .-u
- 4. b.-23 0-. 73 .2-is .-i2
.9 .-is 0-. l 7. w-07 .-i2
- s. h..n l i I l 1s li.-o,I .-u
- s. 6 u! ! l i a li-is .- u cm, . e ss ** > u isoen .-u s2 6 -n i ... I I I l = li.-n .-u si li u l . I n lu-.i .-u
- s. k2-ui .-. l l .o In-n e-u ss '#ni.-.
- l .i lu-u . .- u
- s. L1-isi ... I I .2 Iw-n .- u sr Iw.I ... I i n lu-is .-u
- s. 6 I .-. l l i .-n ' .- u se h isl ... l .s Ju-u .-u i m h.-u ... I i i r _
~ -
si L.-n , ... I I I .2-n l u .. i I u lu-ul... I I l .7 i .-u u-.. g u 6-n!... I I l l uo n-.. g i l I ., > s.-n n-..
;u-ul . . .s .--m ... i i ,. .2.is ,2.
l i -- cs 'n-is I ... I ! si no u4. E o in-n: .. I i _' 32 . . . u- l l s
) -
R00 SEQUENCE OL .EF SIEET (M8 T 2 5EQUENCE A2 (Cont'd) CYCLE 7 l . a g(N-Il IN-3) (N-1) ! (N-3) lPos. ; Act. (N-2) Rad (N-4 ) Pos. Act. (N-2) Rod (N-4) tep Rat e f rom /im I Pos. Init. 0.T. P.l. tait. Step Rod From/To Pos. Init. O.T. P.I. Init. O o 93 10-15 l 12-48 119 26-23 0-4 1 94 13-31 12-48 CR0tP 8 (RSCS A34) o , y 95 18-39l 12-48 l 120bO-31 4-8
. % b6-47! 12-48 121 42-07 4-8 97 34-39l 12-49 122 10-07 4-8 98 %2-31 12-48 123 2-31 4-8 99 54-23 12-49 124 10-39 4-8 100 !?6-15 12-48 ll 125 18-47 4-8 101 18-23 12-48 126 34-47 4-8 102 26-u 12-48 127 42-19 4-8 CactP 7 (RSC5 A341 128 42-23 4-8 103 f50-31! 0-4 l 129 34-15 4-8 ix !u-Orl a i l l no 26-Of 4-8 .05 liO-071 m i I in 28-i5 4-8 106 02-31 0-4 132 10-23 4-8 107 l10- n l O-4 l In 18-u 4-8 l
t i0.li8-ol0-4 , 134 26-39 4-8 I 109 34-47 0-4 135 34-31 l 4-8 I no 42-n! 0-4 136 26-n l 4-8 til 2-23 0-4 CROUP 9 (RSCS A34) 112 lu-15 0-4 I 137 b-31 8-12 113 26-07 0-4 138 42-07 8-12 114 18-15 0-4 139 10-07 8-12
~
n5 liO-n 0-4 no 02-u 8-12 o 116 18-31 0-4 141 10-39 8-12 m
- 117 26-39 0-4 142 18-47 8-12 $ 119 ,l34-31 0-4 143 '34-47 8-12 i
\ h L Q.
R00 SEQUDACE C}L, .JFF 5HEET G-LFili 2 SEQUENCE A2 (Cont'd) GaE 7 l . (N-1) (N-3) (N-1) (N-3) Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4) Lteo Rod from/to Pos. fait. O.T. P.t. Init. Step Rod From/To Pos. Init. O.T. P.I. Init. o o 144 s2-3 8-12 l 170 26-23 12-48 i 1 145 42-23l 8-12 , l CRote 11 (RSCS 13) (M-5) o yo 146 34-15 : 8-12 171 30-07 0-4 e I 147 26-07 8-12 172 22-07 0-4
" 0 173 46-23 145 18-15 8-12 0-4 149 10-23 6-12 174 06-23 0-4 150 18-31 8-12 175 06-31 0-4 151 26-39 8-12 176 46-31 0-4 152 34-31 6-12 '77 22-47 O-4 153 26-23 8-12 178 30-47 0-4 (ROUP 10 (RSC5 A34) CR0tP 12*(RSCS 14) 154 50-31 12-48 179 38-15 0-4 !
I f 155 ;42-07 12-48 180 14-15 0-4 156 10-07 12-48 181 14-39 0-4 157 2-31 12-48 182 38-39 0-4 158 10-39 12-48 CROUP 13 (RSCS 16) 159 18-47 12-48 183 '30-23 0-4 l 160 34-47 12-48 184 22-23 0-4 161 42-39 12-48 185 30-31 0-4 162 42-23 12-48 186 22-31 : 0-4 163 34-15 12-48 CROUP 14 (RSCS 15) 164 26-07 12-48 187 30-15 0-4
$a 165 !!8-15 12-48 188 22-15 0-4 y 166 110-23 12-48 189 38-23 0-4 w j l o 167 .18-31 12-48 190 14-23 0-4 m g
( 168 26-39 12-48 191 38-31 G-4 1 n l 169 '34-31 12-48 192 14-31 0-4 i
. . _ _ _ _ . _ ,.. ~... _. -- _ .. ._ - - . _ . _ _ _ . _ .
ROD SEQUENCE CHtJF SHEET
)=
IJNIT 2 SEQUENCE A2 (Cont'd) # CYCLE 7 l -. (N-1) (N-31 (N-1) In-3) t Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4) Step Rod From/To Pos. Init. 0.T. P.I. Init. Step stod From/To Pos. Init. O.T. P.I. Init. t O o 193 30-39 0-4 216 14-31 4-6 Y 194 22-39 0-4 217 30-39 4-6 t O w CR0tP 15 (RSCS 13) 218 22-39 4-6 a l - 195 30-07 4-6 Cll0UP 19 (RSCS 13) . 30-07 6-8
~
1% 22-07 4-6 219 I i 197 46-23 4-6 220 22-07 6-8 198 06-23 4-6 221 46-23 6-8 , i 199 06-31 4-6 222 06-23 6-8 200 46-31 4-6 223 06-31 6-8 201 22-47 4-6 224 46-31 6-8 202 30-47 4-6 225 22-47 6-8 l CRote 16 (RSCS 14) 226 30-47 6-8 l
- r. .
203 38-15 4-6 CRotr 20 (RSCS 14) 204 14-15 4-6 227 38-15 6-8 1 205 14-39 4-6 228 14-15' 6-8 206 38-39 4-6 229 14-39 '6-8 ; CRotP 17 (RSCS 16) 230 38-39 6-8 ! 1 207 30-23 4-6 CAOLP 21 (RSCS 16) 208 22-23 4-6 231 30-23 6-8 209 30-31 4-6 232 22-23 6-8 210 22-31 4-6 233 30-31 6-8 , 1 Caote 18 (RSC5 15) 234 22-31 6-8 >
?
as 211 30-15 4-6 GROUP 22 (RSCS 15) , e u 212 22-15 4-6 235 30-15 6-8 . w 1 o 213 38-23 4-6 236 22-15 6-8 m 214 14-23 4-6 237 38-23 6-8 i
'$ 215 38-31 4-6 238 14-23 6-8 1
_ __ __ _ _ _ _ _ _ _ _ _ _ _ _ . _- . _ - - =- e c,
p\ p /8 t l i Q -N.! ' ROD SEQUENCE CHL...J F 5HEET t#4IT 2 SEQUENCE A2 (Cont'd) CYCLE 7 . l (N-1) (N-3) (N-1) (N-3) Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4) o step Rod From/To Pos. Init. 0.T. P.I. Init. Step Rod From/To Pos. Init. 0.T. P.I. Init. 239 38-31 6-8 262 02-19 0-12 5 240 14-31 6-8 263 50-35 0-12
$' 241 30-39 6-8 264 02-35 0-12 242 22-39 6-8 265 34-51 0-12 v.
CR0tP 23 (RSCS 13) 266 18-51 0-12 243 30-07 8-12 CROUP 27 (RSCS 5) 244 22-07 8-12 267 34-01 12-48 245 46-23 8-12 268 18-03 12-48 246 06-23 8-12 269 50-19 12-48 247 06-31 8-12 270 02-19 12-48 248 46-31 8-12 271 50I35 12-48 249 22-47 8-12 272 02-35 12-48 r 250 30-47 8-12 273 34-51 12-48 CROUP 24 (RSCS 14) 274 18-51 12-48 251 38-15 8-12 CROUP 28 (R5CS 6) 252 14-15 8-12 275 26-03 '0-12 253 14-39 8-12 276 50-27 0-12 254 38-39 8-12 277 02-27 0-12 CROUP 25 (RSCS 16) - 278 26-51 0-12 255 30-23 8-12 CROLP 29 (RSCS 12) 256 22-23 8-12 279 38-07 0-12 m 257 30-31 8-12 280 14-07 0-12 m
$ 258 22-31 8-12 l 281 46-15 0-12 7 CROUP 26 (RSCS 5) 282 06-15 0-12 $ 259 34-03 0-12 283 46-39 0-12 g 260 18-03 0-12 284 06-39 0-12 m i 261 50-19 0-12 3 285 38-47 0-12 1
A
~ y) v- )
R0D SEQUENCE CHECEwi SHEET LNIT 2 SEQUENCE A2 (Cont'd) CYCLE 7 l (N-1) (N-3) (N-1) (N-3)
- Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4)
O Step Rod From/To Pos. init. 0.T. P.I. Init. Step Rod From/fo Pos. Init. O.T. P.I. Init. o 7 286 14-47 0-12 309 46-23 24-36 b CR0tP 30 (RSCS 6) 310 06-23 24-36
- o 287 26-03 12-48 311 06-31 24-36 g 288 50-27 12-48 312 46-31 24-36 289 02-27 12-48 313 22-47 24-36 290 26-51 12-48 314 30-47 24-36 CR0lP 31 (RSCS 12) CROUP 34 (RSCS 14) ,
291 38-07 12-48 315 38-15 12-18 292 14-07 12-48 316 14-15 12-18 293 46-15 12-48 317 14-39 12-18 294 36-15 12-48 318 38-39 12-18 295 46-39 12-48 CROUP 35 (RS(S 13) 296 06-39 12-48 319 30-07 36-48 297 18-47 12-48 320 22-07 36-48 298 14-47 12-48 321 46-23 36-48
, CRotr 32 (RSCS 13) 322 06-t3 36-48 299 30-07 12-24 323 06-31 36-48 300 22-07 12-24 324 46-31 36-48 301 46-23 12-24 325 22-47 36-48 I 326 30-47 36-48 302 06-23 12-24 303 06-31 12-24 CR0tP 36 (RSCS 14) 2 oo 304 46-31 12-24 327 38-15 18-24
- 305 22-47 12-24 328 14-15 18-24 306 30-47 12-24 329 14-39 18-24 O
- 330 38-39 18-24 CROUP 33 (RSCS 13) h 307 30-07 24-36 CR0tP 37 (RSCS 15) 308 22-07 24-36 331 30-15 8-12 s
f h t \
\j \ ) -
ROD SEQUENCE CHL' .J F SifEET UNIT 2 SEQUENCE A2 (Cont'd) CYCLE 7 l . (N-1) (N-3) (N-1) (N-3) Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4 ) Step Rod From/To Pos. Init. 0.T. P.I. Init. Step Rod From/To Pos. Init. 0.T. P.I. Init. , c) 332 22-15 8-12 355 38-31 12-18
*ts 2- 333 38-23 8-12 356 14-31 12-18 o
go 334 14-23 8-12 357 30-39 12-18
. 335 38-31 8-12 358 22-39 12-18 336 14-31 8-12 CROUP 42 (RSCS 16) 337 30-39 8 12 359 30-23 18-24 338 22-39 8-12 360 22-23 18-24 CROUP 38 (RSCS 16) 361 30-31 18-24 339 30-23 12-18 362 22-31 18-24 34 0 22-23 12-18 CROUP 43 (RSCS 7) 341 30-31 12-18 363 42'11 6-12 342 22-31 12-18 364 10-11 6-12 c
CROUP 39 (RSCS 7) 365 42-43/ 6-12 343 42-11 0-6 366 10-43 6-12 344 10-11 0-6 CROUP 44 (RSCS 14) i 345 42-43 0-6 367 38-15 36-48 346 10-43 0-6 368 14-15 36-48 CROUP 40 (RSCS 14) 369 14-39 36-48 347 38-15 24-36 370 38-39 36-48 348 14-15 24-36 CROUP 45 (RSCS 15) 349 14-39 24-36 371 30-15 18-24 350 38-39 24-36 372 22-15 18-24 CROUP 41 (RSCS 15) 373 38-23 18-24
;J 351 30-15 12-18 374 14-23 18-24 o 352 22-15 12-18 375 38-31 18-24 n
353 38-23 12-18 376 14-31 18-24 02 354 14-23 12-18 377 30-39 18-24
ROD SEQUEteCE Citi.* JFF MFET , UNIT 2 SEQUENCE A2 (Cont'd) CYCLE 7 l . (N-l) (N-3) (N-1) (N-3) Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4) Step Rod from/To Pos. Init. 0.T. P.I. Init. Step Rod From/To Pos. Init. O.T. P.I. Init. 378 22-39 18-24 400 30-23 36-48 Q CROUP 46 (RSCS 16) 401 22-23 36-48 g 379 30-23 24-36 402 30-31 36-48 380 22-23 24-36 403 22-31 36-48 381 30-31 24-36 CRotP 51 (RSCS 7) 382 22-31 24-36 404 42-11 18-24
- CR0tP 47 (RSCS 7) 405 10-11 18-24 383 42-11 12-18 406 42-43 18-24 384 10-11 12-18 407 10-43 18-24 385 42-43 12-18 CROUP 52 (RSCS 10) 386 10-43 12-18 408 26-27 6-12 CR0iP 48 (RSCS 10) 409 34-19 6-12 f.
387 26-27 0-6 410 18-19 6-12 3 388 34-19 0-6 411 34-35 6-12 389 18-19 0-6 412 18 6-12 390 34-35 0-6 CRotP 53 (RSCS 15) 391 18-35 0-6 413 30-15 36-48 CROUP 49 (RSCS 15) 414 22-15 36-48 392 30-15 24-36 l 415 38-23 36-48 I 393 22-15 24-36 416 14-23 36-48 394 38-23 24-36 417 38-31 36-48 395 14-23 24-36 418 14-31+ 36-48 396 38-31 24-36 419 30-39 36-48 y 397 14-31 24-36 420 22-39 36-48 o 398 30-39 24-36 CROUP 54 (RSCS 7) l #
- 399 22-39 24-36 ; , 421 42-11 24-30 om CROUP 50 (RSCS 16) 422 10-11 24-30 1
-- \
- ROO SEQUENCE CHEL J F SHEET
! UNIT 2 SEQUENCE A2 (Cont'd)
CYCLE 7 l (N-1) (N-3) (N-1) ( M-3 ) Pos. Act. (N-2) Rod [N-4) Pos. Act. (N-2) Rod (N-4) , Step Rod From/To Pos. Init. O.T. P.I. Init. Step Rod From/To Pos. init. 0.T. P.I. Init. O c1 473 42-43 24-30 445 34-35 18-24
-- 424 10-43 24-30 446 18-35 18-24 o
y CR0tP 55 (RSCS 9) CR0lP 60 (RSCS 7)
? 425 26-11 0-4 447 42-11 36-42 426 42-27 0-4 448 10-11 36-42 1
427 10-27 0-4 449 42-43 36-42 4 428 26-43 0-4 450 10-43 36-42 , CRotP 56 (RSCS 10) CROUP 61 (RSCS 9) 429 26-27 12-18 451 26-11 8-12 430 34-19 12-18 452 42-27 8-12 431 18-19 12-18 453 10-27 8-12 432 34-35 12-18 454 26-43 8-12 433 18-35 12-18 CROUP 62 (RSCS 10) CROUP 57 (RSCS 7) 455 26-27 24-26 434 42-11 30-36 456 34-19 ' 24-26 435 10-11 30-36 457 18-19 24-26 436 42-43 30-36 458 34-35 24-26 437 10-43 30-36 459 18-35 24-26 CRote 58 (RSCS 9) CROLP 63 (RSCS 7) 438 26-11 4-8 460 42-11 42-48 , 439 42-27 4-8 461 10-11 42-48 440 10-27 4-8 462 42-43 42-48 E so 441 26-43 4-8 463 10-43 42-48 to u CROLP 59 (RSCS 10) CRote 64 (RSCS 8) om o 442 26-27 18-24 4 64 34-11 0-4 m
-- 443 34-19 18-24 465 18-11 0-4 $ 444 18-19 18-24 466 42-19 0-4 I
R0D SEQUENCE Cifs . ;FF SHEET UNIT 2 SEQUENCE A2 (Cont'd) CYCLE 7 l . (N-1) (M-3) (N-1) (N-3) Pos. Act. (N-2) Rod (N-4 ) Pos. Act. (N-2) Rod (N-4) Step Rod From/To Pos. Init. 0.T. P.I. Init. Step Rod From/To Pos. Init. 0.T. P.I. Init. o c) 467 10-19 0-4 490 42-27 16-20
'o 1 468 42-35 0-4 491 10-27 16-20 O
pa 469 10-35 0-4 e 492 26-43 16-20 . k
. 470 34-43 0-4 CROUP 69 (RSCS 10) " 26-27 28-30 471 18-43 0-4 493 CR0tP 65 (RSCS 9) 494 34-19 28-30 472 26-11 12-16 495 18-19 28-30 473 42-27 12-16 496 34-35 28-30 474 10-27 12-16 497 18-35 28-30 475 26-43 12-16 CR0tP 70 (RSCS 8)
CR0tP 66 (RSCS 10) 498 34-11 8-12 476 26-27 T6-28 499 18-11 8-12 1. 477 34-19 26-28 500 42-19 8-12 478 18-19 26-28 501 10-19 8-12 479 34-35 26-28 502 42-35 8-12 480 18-35 26-28 503 10-35 '8-12 CROUP 67 (RSCS 8) 504 34-43 8-12 481 34-11 4-8 505 18-43 8-12 l 482 18-11 4-8 CROUP 71 (RSCS 9) 483 42-19 4-8 506 26-11 20-24 1 484 10-19 4-8 507 42-27 20-24 485 42-35 4-8 508 10-27 20-24
$ 486 10-35 4-8 509 26-43 20-24 487 34-43 4-8 CRdte 72 (RSCS 10) e o 488 18-43 4-8 510 26-27 30-32 m ._ CROUP 68 (RSCS 9) 511 34-19 30-32 u
489 26-11 16-20 512 18-19 30-32 9 l
(*~ \ ). ( )'- ROD SEQUENCE Cill.0FF SHEET LNIT 2 SEQUENCE A2 (Cont'd) CYCLE 7 l . (N-1) [N-3) (N-1) (N-3) Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4 ) Step Rod F roin/To Pos. Init. 0.T. P.I. Init. Step Rod From/To Pos. Init. 0.T. P.I. Init. c) 513 34-35 30-32 535 10-19 16-20 1 7
-- 514 18-35 30-32 536 42-35 16-20 o
y CROUP 73 (RSCS 8) 537 10-35 16-20 515 34-11 12-16 538 34-43 16-20 516 18-11 12-16 539 18-43 16-20 517 42-19 12-16 518 10-19 12-16 519 42-35 12-16 520 10-35 12-16 521 34-43 12-16 522 18-43 12-16 CR0tP 74 (RSCS 9) O 523 26-11 24-28 524 42-27 24-28 525 10-27 24-28 526 26-43 24-28 CROUP 75 (RSCS 10) 527 26-27 32-36 528 34-19 32-36 529 18-19 32-36 530 34-35 32-36 531 18-35 32-36 o g CR0lP 76 (RSCS 8) 00 532 34-11 16-20 O o 533 18-11 16-20 m
- 534 a t-19 16-20 N
03 l
l ROD SEQUENCE CHECK 0FF SHEET UNIT 2 SEQUENCE A2 (Cont'd) ' CYCLE 7 l INITIALS PRINT NAME t .I I l 1
.c .
i - l f - i i I i i
- e l
, 6: , 4 . . O CP-10 Rev. 5 Page 81 of 128 l i
-.
- w. - -w-, e--_w- -weru--wm--- w.e---.-- w-- -- w ---ew-w-wwm-- - - m-,- ' + r. - - - - - ----,-mm-, wy----- --- w--,ry--+---r-->wwrw y----Ng7 ur- -N-- - = -w-W
t
. . i 1
1 APPENDIX 2-B2 UNIT 2 i ROD SEQUENCE CHECK 0FF SHEET l SEQUENCE B2 FOR i i FUEL CYCLE 7 l I l c - ) . 1
)
l l l l 1 i j 1 l l l ! i
.i' 0 GP-10 Rev. 5 Page 82 of 128 l 1
i i . _ , _ . .. _ . . . l L . _ . . . _ . ._ _ _ _ _ _ . . . _ _ _ _ _ . . _ , . . _ _ . _ _ _ _ . . . . _ . _ _ _ _ _ _ . _ . . _ _ _ _ _ . . . . _ . . ___..________..________,1
( ROD SEQUENCE CHECK 0FF SHEET UNIT 2 SEQUENCE B2 CYCLE 7 l l t NOTES:
- 1. The recording of the actual rod position is not required when reactor power is greater than the RWM and RSCS low power setpoints.
- 2. When a control rod is fully withdrawn, verify and document that the rod does not go to the overtravel position and that the red " full-out" light illuminates.
- 3. Verify that the rod position indications for those positions covered by that step of the pull sheet are operable.
- 4. Initials (second licensed operator or other qualified member of the technical staff) are required in this column if:
- a. RWM is inoperable and startup continues per Technical Specification 3.1.4.1.
or c -
- b. RSCS is required to be operable and the control rod is bypassed due i ' to the inoperability of the " full-in" or " full-out" reed switch position indication for that control rod (see Technical Specification 4.1.3.7.2).
- 5. Perform RSCS operability verification (for further power reduction) as
- per GP-05, i
i J 0 GP-10 Rev. $ Page 83 of 128 1 m
- . - - - - - - , - - - . - - - - .-.w. m q . +m
*(x p
(- , 'wY ~
. o R00 SEQUENCE CifECKOFF SHEET UNIT 2 SEQUENCE B2 CYCLE 7 l O
NUCLEAR ENGINEER DA1E/TlHE Q 1 SillFT FOREMAN DATE/TlHE o 38 (N-1) (N-3) (N-1) (M-3)
@ Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4 )
l
- Step Rod From/To Pos. Init. O.T. P.I. Init. Step Rod From/To Pos. Init. 0.T. P.I. Init.
CR0tP 1 (RSCS 812) CROUP 2 (RSCS B12) l 1 18-51 0-48 22 26-51 0-48 2 34-51 0-48 23 34-43 0-48 e 3 42-43 0-48 24 42-35 0-48 4 50-35 0-48 25 50-27 0-48 5 50-19 0-48 26 42-19 O-48 6 42-11 0-48 27 34-11 0-48 7 14-03 0-48 28 26-03 0-48 f t 8 18-03 0-48 29 18-11 0-48 I 9 10-11 0-48 30 10-19 0-48 10 02-19 0-48 31 02 0-48 11 02-35 0-48 32 10-35 0-48
; 12 10-43 0-48 33 18-43 0-48 !
13 6-43 0-48 34 26-35 0-48 14 4-35 0-48 35 34-27 0-48 15 2-27 0-48 36 26-19 0-48 16 h4-19 0-48 37 18-27 0-48 17 b6-11 0-48 CROUP 3A (RSCS B34)
$* 18 18-19 0-48 38 06-39 0-2 1
g 19 10-27 0-48 39 14-47 0-2 o 20 18-35 0-48 40 30-47 0-2 ! \
~ . -- 21 26-27 0-48 41 38-39 0-2 ;
1
( \ to
) .
ROD SEQUENCE CifECKOFF SilEET - tNIT 2 SEQUENCE B2 (Cont'd) CYCLE 7 l O (N-1) IN-3) (N-1) (N-3) O Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4) 7 Step Rod From/To Pos. Init. O.T. P.I. Init. Step Rod From/To Pos. Init. 0.T. P.I. Init. 42 46-31 0-2 68 30-15 2-4
- o 43 46-15 0-2 69 22-23 2-4 m 44 38-07 0-2 CROUP 4 (R5CS B34) 45 22-07 0-2 70 06-39 4-6 46 14-15 0-2 71 14-47 4-6
, 47 06-23 0-2 72 30-47 4-6 48 14-31 0-2 73 38-39 4-6 49 22-39 0-2 74 46-31 4-6 50 30-31 0-2 75 46-15 4-6 51 38-23 0-2 76 38-07 4-6 52 30-15 0-2 77 22-07 ,.4-6 53 22-23 0-2 78 14-15 4-6 CR0tP 38 (RSCS 834) 79 06-23 4-6 f 54 06-39 2-4 80 14-31 '4-6 1
( SS 14-47 2-4 81 22-39 4-6 56 30-47 2-4 82 30-31 4-6 57 38-39 2-4 83 38-23 4-6 58 46-31 2-4 R4 30-15 4-6 59 46-15 2-4 85 22-23 4-6 60 38-07 2-4 CROUP 5 (RSCS R34) 2 61 22-07 2-4 86 06-39 6-8
- 62 14-15 2-4 87 14-47 6-8 o.
63 06-23 2-4 88 30-47 6-8 0 64 14-31 2-4 89 38-39 6-8 U 90 6-8 co 65 22-39 2-4 46-31 66 30-31 2-4 91 46-15 6-8 67 38-23 2-4 92 38-07 6-8 l
,w.. , . . .
O O x. O-R00 SEQUENCE CHECKOFF SHEET C# tlNIT 2 SEQI1ENCE B2 (Cont'd) CYCLE 7 l c
' (N-1) (M-3)
(N-1) (N-3) C) Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4) step Rod From/To Pos. Init. 0.T. P.I. Inft. Step Rod From/To Pos. Init. 0.T. P.I. Init.
- o 93 22-07 6-8 CROUP 7 (RSCS B34) on 94 14-15 6-8 118 06-39 12-16 95 06-23 6-8 119 14-47 12-16 96 14-31 6-8 120 30-47 12-16 t 97 22-39 6-8 121 38-39 12-16 ,
98 30-31 6-8 122 46-31 12-16 99 38-23 6-8 123 46-15 12-16 100 30-15 6-8 124 38-07 12-16 101 22-23 6-8 125 22-07 12-16 CROUP 6 (RSCS H34) 126 14-15 r12-16 102 06-39 8-12 127 06-23 12-16 1 103 14-47 8-12 128 14-31 12-16 104 10-47 8-12 129 22-39 12-16
~ ~
105 38-39 8-12 130 30-31 12-16 106 46-31 8-12 131 39-23 12-16 107 46-15 8-12 132 30-15 12-16 1 1 08 38-07 8-12 133 22-23 12-16 109 22-07 8-12 CROUP 8 (RSCS H34) 110 14-15 8-12 134 06-39 16-48 n! 111 06-23 8-12 135 14-47 16-48 112 14-31 8-12 136 30-47 16-48 R 113 22-39 8-12 137 38-39 16-48 o 114 30-31 8-12 138 46-31 16-48 C 46-15 16-48 on 115 38-23 8-12 139 116 30-15 8-12 140 38-07 16-48 117 22-23 8-12 141 22-07 16-48 l[
s*' F
\ h ]
v %J. '%.)b.
~ ~- '
l l ROD SEQUDiCE CHECK 0FF SPEET LNIT 2 SF00ENCE B2 (Cont'd) l O CYCLE 7 l l O l *O ( N-1 ) (N-3) (N-1) (N-3) I 1 Pos. Act. (N-2) Rod (N-4) Step Pos. Act. (N-2) Rod (N-4) O Step Rod from/To Pos. Init. 0.T. P.I. Init. Rod From/To Pos. Init. O.T. P.I. Init. l P3 142 14-15 16-48 166 38-47 4-8 143 06-23 16-48 167 46-39 4-8 vi 144 14-31 16-48 168 46-23 4-8
~
145 22-39 16-48 169 38-15 4-8 146 30-31 16-48 170 30-07 4-8 , 147 38-23 16-48 171 14-07 4-8 148 30-15 16-48 172 06-15 4-8 149 22-23 16-48 173 06-31 4-8 CROIP 9 (RSCS f134) 174 14-39 4-8 l 150 38-%7 0-4 175 22-47 ,.4-8 151 46-39 0-4 176 30-39 4-8 152 46-23 0-4 177 38-31 4-8 153 38-15 0-4 178 10 i23 '4-8 154 30-07 0-4 179 22-15 4-8 l 155 14-07 0-4 180 14-23 4-8 156 06-15 0-4 181 22-31 4-8 l 157 n6-31 0-4 CR0tP 11 (RSCS 1134) 158 14-39 0-4 182 38-47 8-12 i 159 22-47 6-4 183 46-39 8-12 y 160 30-39 0-4 184 46-23 8-12 oo
- 161 18-31 0-4 185 38-15 8-12 m
'd 162 30-23 0-4 186 30-07 8-12 o "* 163 22-15 0-4 187 14-07 8-12 m 164 14-23 0-4 188 06-15 8-12 165 22-31 0-4 189 06-31 8-12 CROUP 10 (RSCS B34) 190 14-39 8-12 '
i
_ _ . - _ .. - . - - . _._ _. .- _ __ .- . . . - - . - -_ .. . _ _ _ . _ _ _ . . = . .._ o O. q ,1 =
- ROD SE0001CE CHECKOFF SHEET tillT 2 SEOUENCE B2 (Cont'd)
CYCLE 7 l c) (N-1) (N-3) (N-1) (N-3) o Pos. Act. (H-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4) y Step Rod From/To Pos. Init. O.T. P.I. Init. Step Rod From/To Pos. Init. 0.T. P.l. Init. o 191 22-47 8-12 216 42-31 0-4 E 192 30-39 8-12 217 10-31 0-4
?
193 38-31 8-12 218 26-07 0-4 vi 194 30-23 8-12 219 26-47 0-4 195 22-15 8-12 CR0lP 14 (RSCS 17) 1% I4-23 8-12 220 34-15 0-4 197 22-31 8-12 221 18-15 0-4 CR0tP 12 (RSrS B34) 222 34-39 0-4 198 38-47 12-48 223 18-39 0-4 199 46-39 12-48 224 26-23 0-4 1 200 46-23 12-48 225 26-31 ,.0-4 l 201 38-15 12-48 CR0tP 15 (RFCS 14) 202 30-07 12-48 226 34-07 0-4 203 14-07 12-48 227 18-07 '0-4 204 06-15 12-48 228 34-47 0-4 205 06-31 12-48 229 18-47 0-4 206 14-19 12-48 CROUP 16 (RSCS 15) 207 22-47 12-48 230 42-15 0-4 208 30-39 12-48 231 10-15 0-4 l 209 38-31 12-48 232 42-39 0-4 l 210 30-23 12-48 233 10-39 0-4 l @ 1 i
- 211 22-15 12-48 CR0tP 17 (RSCS 18)
! on 00 212 14-23 12-48 234 34-23 0-4 o 213 22-31 12-48 235 18-23 0-4 g Ca0 e i3 (RSCS 16) (N-5) 236 34-it 0-4 214 42-23 0-4 237 18-31 0-4 215 10-23 0-4 238 26-15 0-4 l l _ .
m f3
, ) (v) L,-
ROD SEQUENCE CIECKOFF SHEET UNIT 2 SEQUENCE 82 (Cont'd) CYCLE 7 l o C) (N-1) (N-3) {N-1) (N-3) y Pos. Act. (N-2) Rod (N-4 ) Pos. Act. [N-2) Rod (N-4) Step Rod From/To Pos. Init. O.T. P.I. Init. Step Rod From/To Pos. Init. 0.T. P.O. Init, o-- so 239 26-39 0-4 260 34-23 4-6 k 261 18-23 4-6 - CR0tiP 18 (RSCS 16) _240 42-23 4-6 262 34-31 4-6 241 10-23 4-6 263 18-31 4-6 - 242 42-31 4-6 264 26-15 4-6 243 10-31 4-6 265 26-39 4-6 244 26-07 4-6 CROUP 23 (RSCS 16) 245 26-47 4-6 266 42-23 6-8 CROUP 19 (RSCS 17) 267 10-I3 6-8 1 246 34-15 4-6 268 42-31 6-8 247 18-15 4-6 269 ' 10-31 6-8 248 34-39 4-6 270 26-07 6-8 249 18-39 4-6 271 26 6-8 250 26-23 4-6 CROUP 24 (RSCS 17) 251 26-31 4-6 l 272 34-15 6-8 CROUP 20 (RSCS 14) 273 18-15 6-8 252 34-07 4-6 274 34-39 6-8 253 18-07 4-6 275 18-39 6-8 254 34-47 4-6 276 26-23 6-8 255 18-47 4-6 277 26-31 6-8 oo U:00P 21 (RSCS 15) CRO P 25 (RSCS 14) e on 256 42-15 4-6 278 34-07 6-8 e o 257 10-15 4-6 279 18-07 6-8 m
-- 258 42-39 4-6 280 34-47 6-8 u
259 10-39 4-6 281 18-47 6-8 rJNMP 22 (RSCS 18) CROUP 26 (RSCS 15) , I
{ h
~
- J
) .
4t i Nn (I
) .
3dI.
- o MRP
( l l ! l
) .
2- T. N0 ( gi t i n
. I ~ . ) . .
1 ts
- co MAP
( o T 8 8 8 8 8 8 8 8 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 ) 2 2 2 2 ) 2 2 2
./ m 1 1 1 ) 1 1 1 1 ) - - - - ) - - - - 2 1 1 1 1 3 1 1 1 so - - - 7 - - - - 5 2 2 2 2 7 2 2 2 2 1 - - - - 1 - - - T) or 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 Ed PF S S S S S C C C C C E
H 't S S S $ S ~ Sn o d 3 0 1 5 1 5 R ( 1 1 1 1 3 4 3 4 R ( 3 0 3 0 1 5 1 5 R ( 1 1 1 1 3 4 3 4 R ( 3 2 3 2 1 3 1 3 R ( 7 0 7 0 7 4 FC o - - - - - - - - - - - - - - - - - - 5 0 2 F( R 2 0 2 1 6 6 6 6 2 0 2 0 2 3 6 6 6 6 4 0 2 0 2 2
- O 2 3 2 3 4 0 4 0 3 3 2 3 2 3 4 0 4 0 3 5 0 5 0 3 4 1 4 K2 CH7 P P P P P E p 5 6 7 U 8 9 0 1 U 2 3 4 5 L 6 7 8 9 U 0 1 2 3 t 4 5 6 l
iEE e 0 0 0 O 0 0 1 1 O 1 1 1 1 O 1 1 1 1 O 2 2 2 2 0 2 2 2
-- .~
CCL EEY NC S t 3 3 3 R C 3 3 3 3 R C 3 3 3 3 R C 3 3 3 3 R C 3 3 3 3 R C 3 3 3 CUC NO EE US . Q )t E2 4i S n T NI 0I ( 0N RU ) l 3- do I. MRP (
- l ) .
2- T. NO ( l
- t i
- n I
~ l ) . . ~ 1 ts - co NAP
( ~ l o ) ) ) T - 8 6 2 2 2 2 2 2 7 2 2 2 2 2 2 ) 2
./ m 8 8 8 8 1 8 8 8 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1 so - - - - - - - - - - - - - - - - - - - - - - -
or 6 6 6 6 S 6 6 6 6 6 6 S 8 8 8 8 8 8 S 8 8 8 8 8 8 S 0 PF C C C C S $ S S , R R R R 5 5 9 9 ( 1 3 1 1 5 9 ( 3 3 1 1 7 7 ( 5 5 9 9 3 1 ( 3 d 1 1 3 3 2 2 3 3 1 3 2 2 3 3 0 4 1 1 3 3 2 3 0
- R o
2 0 2 0
- 7 2 4 8
4 8 6 6
- 8 2 2 0
2 0 6 6
- 9 2 4 8
8 6 6
- 0 3 0 4 1 4 1 3 1 3 1 2 2 4 1 4 1 2 2 3 1 % 1 2 2 3 et e
t PI e l p 2 3 4 5 o 6 7 8 9 0 1 o 2 3 5 6 7 O 8 9 0 1 2 3 o 4 e 8 8 8 8 R 8 8 8 8 9 9 R 9 9 % 9 9 9 R 9 9 0 0 0 0 R C 0 t 2 2 2 2 C 2 2 2 2 2 2 C 2 2 2 2 2 2 C 2 2 3 3 3 3 3 S J O O7 O o: c 2 o* o eO o*
"x, ,r's Nj - ~
ROD SEQUENCE CHECK 0FF SHEET UNIT 2 SEQUENCE B2 (Cont'd) CYCLE 7 o (N-1) (N-3) (N-1) (M-3) o Pos. Act. (N-2) Rod (N-4) Pos. Act. [N-2) Rod (N-4) y Step Rod From/To Pos. Init. 0.7. P.I. Init. Step Rod from/To Pos. Init. 0.T. P.I. Init. O 327 10-47 0-12 348 26-15 8-12
- n
- CR0tP 36 (RSCS 12) 349 26-39 8-12 328 50-23 12-48 CR0lP 41 (RSCS 6) 329 0?-23 12-48 350 46-19 0-4 330 50-31 12-48 351 06-19 0-4 331 02-31 12-48 352 46-35 0-4 .
CR0tP 37 (RSCS 13) 353 06-35 0-4 332 42-07 12-48 CROUP 42 (RSCS 8) 333 10-07 12-48 354 38-11 0-4 334 42-47 12-48 355 14-11 0-4 335 10-47 12-48 356 38-43v' 0-4 CROUP 38 (RSCS 14) 357 14-43 0-4 336 34-07 8-12 ' CROUP 43 (RSCS 16) 337 18-07 8-12 358 42-23 12-18 l l 338 14-4 7 8-12 359 10-23 12-18 339 18-47 8-12 360 42-31 12-18 CROUP 39 (RSCS 15) 361 10-31 12-18 340 42-15 8-12 362 26-07 12-18 341 10-15 8-12 363 26-47 12-18 342 42-39 8-12 CROUP 44 (RSCS 6) g 343 10-39 8-12 364 46-19 4-6 f oo l
- CRotP 40 (RSCS 18) 365 06-19 4-6 t e
344 34-23 8-12 366 46-35 4-6 o
- 345 18-23 8-12 367 06-35 4-6 h 346 34-31 8-12 CROLP 45 (RSCS 8) 347 18-31 8-12 368 38-11l 4-6 l l l l l
h
. J -
ROD SEQUENCE OlECKOFF SHEET . tmli 2 SEQUENCE 82 (Cont'd) CYCLE 7 l O (N-1) (N-3) (N-1 ) (N-3) O Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4) y Step Rod from/To Pos. Init. O.T. P.I. Init. Step Rod From/To Pos. Init. 0.T. P.I. Init. b 369 14-11 4-6 CROEP 50 (RSCS 9)
- n 370 18-43 4-6 392 30-11 0-4 l , 371 14-43 4-6 393 22-11 0-4 CROLP 46 (RSCS 16) 394 30-43 0-4 372 42-23 18-24 395 22-43 0-4 373 10-23 18-24 396 46-27 0-4 l
374 42-31 18-24 397 06-27 0-4 375 10-31 18-24 CROLP 51 (RSCS 10) 376 26-07 18-24 398 30-27 0-4 377 26-47 18-24 399 22-27 0-4 CR0tP 47 (RSCS 17) 400 38-19 0-4 378 34-15 12-18 401 14-19 0-4 379 18-15 12-18 402 38-35 0-4 380 34-39 12-18 403 14-35 0-4 381 18-39 12-18 CR0tP 52 (RSCS 16) 382 26-23 12-18 404 42-23 24-36 383 26-31 12-18 405 10-23 24-36 CkOUP 48 (RSCS 6) 406 42-31 24-36 384 46-19 6-8 407 10-31 24-36 385 06-19 6-8 408 26-07 24-36 2 oo 386 46-15 6-8 409 26-47 24-36
- 06-35 387 6-8 CROLP 53 (RSCS 17) o
" 410 34-15 18-24 CROUP 49 (RSCS 8) o
- 38-11 411 18-15 18-24 388 6-8 389 14-11 6-8 412 34-39 18-24 390 38-43 6-8 413 18-39 18-24 391 14-43 6-8 414 2E-23 18-24 l
. . _ _ _ . . _ _ _ _ __ = . _ _ . . . _ . . _ _ . . _ . . _ _ _ _ __ . _ _ _ _ . _ _ . __ _ _ _ . __ _ _ _ _ _ _ m - ; . _ _ - . s -.- .
.- ,,) .
ROD SE0004CE CHECKOFF SHEET LMli 2 SEQUENCE B2 (Cont'd) CYCLE 7 l C) (N-1) (M-3) (N-1 ) (N-3) c3 Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4) Step Rod From/To Pos. Init. O.T. P.I. Init. Step Rod from/To Pos. Init. O.T. P.I. Init.
}s 25 4is 26-3 18-24 437 i4-3s 4-6 a0 CROUP 54 (RSCS 18) 438 38-19 4-6 416 34-23 12-18 439 14-19 4-6 un 417 18-23 12-18 440 22-27 4-6 ~
418 34-31 12-18 441 30-27 4-6 ! 419 18-31 12-18 CRCUP 59 (RSCS 14) - 420 26-15 12-18 442 34-07 12-18 421 26-39 12-18 443 18-07 12-18 CROUP 55 (RSCS 6) 444 14-47 12-18 422 46-19 8-12 445 18-47 12-18 423 06-19 8-12 CROUP 60 (RSG$ 15) 424 46-35 8-12 446 42-15 12-18 425 06-35 8-12 447 10-15 12-18 CROUP 56 (RSC5 8) 448 42-39 '12-18 426 38-11 8-12 449 10-39 12-18 427 14-11 8-12 CROUP 61 (RSCS 16) 428 38-43 8-12 450 26-07 36-48 429 14-43 8-12 451 26-47 36-48 I 452 42-23 36-48 CROUP 57 (RSCS 9) 430 30-11 4-6 453 10-23 36-48 454 1 0-31 36-48 lf 431 22-11 4-6 Se 432 30-43 4-6 455 42-31 36-48 La 433 22-43 4-6 CROUP 62 (RSCS 17) o
** 434 66-27 4-6 456 34-15 24-36 ff 435 36-27 4-6 457 18-15 24-36 CROUP 58 (RSCS 10) 458 18-39 24-36 436 38-35 4-6 459 34-39 24-36 j
\ ./ wY N_, -
RDO SEQUENCE CHECF0FF SHFET - (NIT 2 SEQUENCE B2 (Cont'd) CYCLE 7 l C) (N-1) (N-3) (N-1) (N-J) c) Pos. Act. (N-2) Rod (N-4) Pos . Act. (N-2) Rod (N-4) Step Rod from/To Pos. Init. O.T. P.I. Init. Step Rod From/To Pos. Init. 0.T. P.I. Init. l
]8 23 460 26-23 24-36 CROUP 67 (RSCS 10)
- ss 461 26-31 24-36 '
482 38-35 6-8 Q
- i ,, CROUP 63 (RSCS 18) 483 14-35 6-8 l 462 34-23 18-24 484 38-19 6-8 463 18-23 18-24 485 14-19 6-8 464 18-31 18-24 486 22-27 6-8 465 34-31 18-24 487 30-27 6-8 466 26-15 18-24 CROUP 68 (RSCS 11) 467 26-39 18-24 488 22-35 0-4 CROUP 64 (RSCS 6) 489 10-35 0-4 4 68 46-19 12-18 490 14-27 , 0-4 469 06-19 12-18 491 38-27 0-4 470 46-15 12-18 492 22-19 0-4 471 06-35 12-18 493 30-19 0-4 CR0lP 65 (RSCS 8) CROUP 69 (RSCS 14) 472 38-11 12-18 494 34-07 18-24 473 14-11 12-18 495 18-07 18-24 474 38-43 12-18 496 34-47 18-24 475 14-43 12-18 497 18-47 18-24 CRotP 66 (RSCS 9) CROUP 70 (RSCS 15) lf on 476 30-11 6-8 498 42-15 18-24
- 477 22-11 6-8 499 10-15 18-24 e
478 30-43 6-8 500 42-39 18-24 o
** 18-24 479 22-43 6-8 501 10-39 480 46-27 6-8 CROUP 71 (RSCS 17) 481 06-27 6-8 502 34-15 36-48 i
~.. # N
[N J 'w) I
- ROD SEQUENCE CHECK 0FF SHEET l UNIT 2 SEQUENCE B2 (Cont'd) l CY aE 7 l I O c) 1 (N-1) (N-J) (N-1) (N-3)
'o Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4 )
1 O Step Rod From/To Pos. Init. 0.T. P.t. Init. Step Rod From/To Pos. Init. 0.7. P.I. Init. I x 503 18-15 36-48 513 26-39 24-36 l l 504 18-39 36-48 CROLP 73 (RSCS 6)
- 505 34-39 36-48 514 46-19 18-24 506 26-23 36-48 515 06-19 18-24 507 '26-31 36-48 516 46-35 18-24 CROUP 72 (RSCS 18) 517 06-35 18-24 i
508 34-23 24-16 11 CROUP 74 (RSC5 8) 509 18-23 24-36 518 38-11 18-24 510 18-31 24-36 519 %-11 18-24 511 34-31 24-36 520 38-43 18-24 1 512 26-15 24-36 521 14-43 18-24 INITIALS PRINT 84AME M O m ao I
r .- l I
. i
{ APPENDIX 2-A2X ! UNIT 2 i ! ROD SEQUENCE CHECK 0FF SHEET L j SEQUENCE A2X ( I r ! FOR 1 FUEL CYCLE 7 l I ie i (EXPANDED GROUP 2 PULL SHEET) l f f
- a -
1 j - !
.s l
l i O GP-10 Rev. 5 Page 96 of 128
l i l A l ROD SEQUENCE CHECK 0FF SHEET I ') UNIT 2 SEQUENCE A2X CYCLE 7 l l NOTES:
- 1. The recording of the actual rod position is not required when reactor power is greater than the RWM and RSCS low power setpoints.
l 2. When a control rod is fully withdrawn, verify and document that the rod l does not go to the overtravel position and that the red " full-out" light illuminates.
- 3. Verify hat the rod position indications for those positions covered by that step of the pull sheet are operable.
- 4. Initials (second licensed operator or other qualified member of the technical staff) are required in this column if:
- a. RWM is inoperable and startup continues per Technical Specification 3.1.4.1.
or a ~
- b. RSCS is required to be operable and the control rod is bypassed due
/h' to the inoperability of the " full-in" or " full-out" reed switch ' (s_sl.. ' position indication for that control rod (see Technical
,, Specification 4.1.3.7.2).
- 5. Perform RSCS operability verification (for further power reduction) as per GP-05.
l l l l l l l l l l (#
'-- 0 GP-10 Rev. 5 Page 97 of 128 l l
f f'y
% / e ROD SEQUU4CE CilECKOFF SHEET tNIT 2 SEQUENCE A2X CYCtf 7 l NUCLEAR ENGINEER DATE/ TIME SillFT 10REMA!J DATE/IlHE Po (N-1) (N-3) (N-1) (N-3)
$ Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4)
- Step Rod From/To Pos. Init. 0.T. P.I. Init. Step Rod From/To Pos. Init. O.T. P.I. Init.
CROUP 1 (RSCS A12) 22A 14-11 0-4 1 10-03 0-48 23A 06-19 0-4 f 2 06-11 0-48 24A 06-35 0-4 l 3 06-43 0-48 25A 14-43 0-4 4 30-51 0-48 26A 30-43 0-4 5 38-43 0-48 27A 38-35 0-4 6 46-35 0-48 28A 46-27 0-4 7 46-19 0-48 29A 38-19 0-4 8 38-11 0-48 30A 30-11 0-4 9 22-11 0-48 31A 22-19 0-4 10 14-19 0-48 32A 14 0-4 11 06-27 0-48 33A 22-35 0-4 12 14-35 0-48 34A 30-27 0-4 13 22-43 0-48 CROUP 2B (RSCS A12) 14 30-35 0-48 188 22-51 4-8 15 38-27 0-48 198 46-43 4-8 16 30-19 0-48 208 46-11 4-8 y 17 22-27 0-48 218 22-03 4-8 cm y CROUP 2A (RSCS A12) 228 14-11 4-8 g 18A 22-51 0-4 238 06-19 4-8 0 19A 46-43 0-4 240 06-35 4-8 20A 46-11 0-4 258 14-43 4-8 cn 21A 22-03 0-4 268 30-43 4-8 i
7
's t
N-
) ._ ,7 ) -
4 ROD SEQUENCE CitECKOFF 5HEET . tRJIT 2 SEQUENCE A2X (Cont'd) CYCLE 7 l C3 (N-1) (N-3) (M -1 ) (M-3) c) Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4) Step Rod From/To Pos. Init. 0.T. P.I. Init. Step Rod From/To Pos. Init. D.T. P.I. Init.
]2 C5 278 38-35 4-8 CROUP 2D (RSCS A12) 288 46-27 4-8 18D 22-51 12-24 f
290 18-19 4-8 190 46-43 12-24 308 30-11 4-8 200 46-11 12-24 31B 22-19 4-8 21D 22-03 12-24 32B 14-27 4-8 22D 14-11 12-24 , t 338 22-35 4-8 23D 06-19 12-24 348 30-27 4-8 24D 06-35 12-24 CR0tiP 2C (RSC5 A12) 25D 14-43 12-24 18C 22-51 8-12 26D 30-43 12-24 19C 46-43 8-12 27D 38-35 .12-24 20C 46-11 8-12 28D 46-27 12-24 21C 22-03 8-12 290 38-19 12-24 22C 14-11 8-12 300 30-11 '12-24 23C 06-19 8-12 31D 22-19 12-24 24C 06-35 8-12 32D 14-27 12-24 25C 14-43 8-12 33D 22-35 12-24 26C 30-43 8-12 34D 30-27 12-24 27C 38-35 8-12 CROUP 2E (RSCS A12) 2BC 46-27 8-12 18E 22-51 24-48 lf oo 29C 38-19 8-12 19E 46-43 24-48
- 30C 30-11 8-12 20E 46-11 24-48 o
43 8-12 22-03 24-48 31C 22-19 21E o
"" 32C 14-27 8-12 22E 14-11 24-48 h 33C 22-35 8-12 23E 06-19 24-48 34C 30-27 8-12 24E 06-35 24-48 I
f q o. R00 SE00ENCE CHECK 0FF SHEET , IMIT 2 SEQUENCE A2X (Cont'd) CYCLE 7 l O (H-1) (N-3) (N-1) (M-3) o Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4) y Step Rod Frcun/To Pos. Init. O.T. P.I. Init. Step Rod from/To Pos. Init. O.T. P.I. Init. b 25E 14-43 24-48 51 26-31 0-4
- o 26E 30-43 24-48 CROUP 4 (RSCS A34)
, 27E 18-35 24-48 52 02-23 4-8 28E 46-27 24-48 53 10-47 4-8 29E 38-19 24-48 54 42-47 4-8 30E 30-11 24-48 55 50-23 4-8
- 31E 22-19 24-48 56 42-15 4-8 32E 14-27 24-48 57 34-07 4-8 i
33E 22-35 24-48 58 18-07 4-8 34E 30-27 24-48 59 10-15 4-8 CROUP 3 (RSCS A34) 60 10-31 .4-8 35 02-23 0-4 61 18-39 4-8 36 10-47 0-4 62 26-47 4-8 37 42-47 0-4 63 34-39 '4-8 38 50-23 0-4 64 42-31 4-8 39 42-15 0-4 65 34-23 4-8 40 34-07 0-4 66 26-15 4-8 41 18-07 O-4 67 18-23 4-8 42 10-15 0-4 68 26-31 4-8 43 10-31 0-4 CROUP 5 (RSCS A34) 2 oo 44 18-39 O-4 69 02-23 8-12
- 45 26-47 0-4 70 10-47 8-12 46 34-39 0-4 71 42-47 8-12
$ 47 42-31 0-4 72 50-23 8-12 G 48 34-23 0-4 73 42-15 8-12 =
49 26-15 0-4 74 34-07 8-12 50 18-23 0-4 75 18-07 8-12 ll
'A -
g I
/ -
ROD SEQUENCE CHECK 0FF SHEET . LAllT 2 SE0tlENCE A2X (Cont'd) CYCLE 7 l CD (N-1) (N-3) (N-1) (N-3) c) Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4) Step Rod from/To Pos. Init. O.T. P.I. Init. Step Rod From/To Pos. Init. 0.T. P.I. Init.
*f E5 76 10-15 8-12 101A 18-23 12-24
- o 77 10-31 8-12 102A 26-31 12-24
, 78 18-39 8-12 CROUP 68 (RSCS A34) 79 76-47 8-12 868 02-23 24-48 , 80 14-39 8-12 87B 10-47 24-48 81 42-31 8-12 888 42-47 24-48 82 34-23 8-12 898 50-23 24-48 83 26-15 8-12 900 42-15 24-48 84 18-23 8-12 918 34-07 24-48 85 76-31 8-12 928 18-07 24-48 CR0llP 6A (RSCS A34) 938 10-15 .24-48 86A 32-23 12-24 948 10-31 24-48 87A 10-47 12-24 958 18-39 24-48 88A 42-47 12-24 968 26-47 '24-48 89A 50-23 12-24 978 34-39 24-48 90A 42-15 12-24 988 42-31 24-48 91A 34-07 12-24 998 34-23 24-48 92A 18-07 12-24 1008 26-15 24-48 , 93A 10-15 12-24 1018 18-23 24-48 94A 10-31 12-24 1028 26-31 24-48 lf oo 95A 18-39 12-24 CROUP 7A (RSCS A34)
- 96A 26-47 12-24 103A 50-31 0-2
$3, 97A 34-39 12-24 104A 42-07 0-2 fg 98A b2-31 12-24 105A 10-07 0-2
[] ca 99A 34-23 12-24 106A 02-31 0-2 100A 26-15 12-24 107A 10-39 0-2 1 w_-_________________-______ _ _ _ _ - s
_ - . _ _ _ _ . _ _ , . - _ . . . _ . , . _ s - _- ._ .__ id a .
)
t 3
, R00 SEQUENCE CHECKOFF SHEET .
! UNIT 2 SEQUENCE A2X (Cont'd) , CYCLE 7 l. r C) (M-1) In-3) (N-1) (M-5) eg Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4) Step Rod From/To Pos. Init. O.T. P.I. Init. Step Rod From/To Pos, init. 0.T. P.I. Init.
]o j C3 108A 18-47 0-2 1168 18-31 2-4 po a 109A 34-47 0-2 117H 26-39 2-4 4
j , 110A 42-39 0-2 118B 34-31 2-4 ,
' 2-4 111A 42-73 0-2 1198 26-23 i 112A 34-15 0-2 CROUP 8 (RSCS A34) 0-2 50-31 j 113A 26-07 120 4-8 ,
114A 18-15 0-2 121 42-07 4-8
! 115A 10-23 0-2 122 10 07 4-8 l 116A 18-31 0-2 123 02-31 4-8 1 ,
117A 26-39 0-2 124 10-39 4-8 a 118A 14-31 0-2 125 18-47 . 4-8 1 119A 26-23 0-2 126 34-47 4-8 i CROHP 78 (RSCS A34) 127 42-39 4-8 1038 50-31 2-4 128 42-23 '4-8 .i 4 . 1048 42-07 2-4 129 34-15 4-8
]
1058 10-07 2-4 130 26-07 4-8 1068 02-31 2-4 131 18-15 4-8 l i 1078 10-39 2-4 132 10-23 4-8 !
- t i i 108B 18-47 2-4 133 18-31 4-8 1098 34-47 2 134 26-39 4-8 l8 1108 42-39 2-4 135 34-31 4 1116 42-23 2-4 136 26-23 4-8 C} 1128 34-15 2-4 CROUP 9 (RSCS A34)-
I Sk 1138 26-07 '2-4 137 50-31 8-12 , "; 1148 18-15 2-4 138 42-07 8-12
- OD 1158 10-23 2-4 139 10-07 8-12
\
i l !" D. rx l , (, I R0D SEQUEN.CE CHECK 0FF SHEET - IrllT 2 SEQUENCE A2X (Cont'd) CYCLE 7 l O ( f t-1 ) (N-3) (N-1) (N-3) o Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4) y Step Rod From/Ts Pos. Init. 0.T. P.I. Init. Step Rod From/To Pos. Init. 0.T. P.f. Init. O 140 02-31 8-12 166 10-23 12-48
- n m 141 10-39 8-12 167 18-31 12-48 142 18-47 8-12 168 26-39 12-48 143 34-47 8-12 169 34-31 12-48
, 144 42-39 8-12 170 26-23 12-48 145 42-23 8-12 CROUP 11 (RSCS 13) (N-5) 146 14-15 8-12 171 30-07 0-4 147 26-07 8-12 172 22-07 0-4 148 18-15 8-12 173 46-23 0-4 149 10-23 8-12 174 06-23 0-4 150 18-31 8-12 175 06-31 ,. 0-4 151 '6-39 8-12 176 46-31 0-4 152 14-31 8-12 177 22-47 0-4 153 26-23 8-12 178 30-47 ' 0-4 CROUP 10 (RSCS A34) CROUP 12 (RSCS 14) 154 50-31 12-48 179 38-15 0-4 ~
155 42-07 12-48 - 180 14-15 0-4 156 10-07 12-48 '_ 181 14-39 '0-4 + 157 02-31 12-48 182 38-39 0-4 158 10-39 12-48 CROUP 13 (RSCS 16) 7 oo 159 18-47 12-48 183 30-23 0-4
- 160 34-47 12-48 184 22-23 0-4 :
h 161 42-39 72-48 185 30-31 0-4 l _ Q 162 .42-23 12-48 186 22-31 0-4 l G 163 %-15 12-48 CROUP 14 (RSCS 15) cn 1 64 26-07 12-48 187 30-15 0-4 165 18-15 12-48 188 22-15 0-4 h
~~ -
t ROD SEQUENCE CHECK 0FF SilFET . It1IT 2 SEQUENCE A2X (Cont'd) CYCLE 7 l C3 (N-1) [N-3) (N-1) (N-J) o Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4) Step Rod From/To Pos. Init. 0.T. P.I. Init. Step Rod From/To Pos. Init. 0.T. P.I. Init.
"f C5 189 38-23 0-4 211 30-15 4-6
- n
- 190 14-23 0-4 212 22-15 4-6 t,
191 38-31 0-4 213 38-23 4-6 192 14-31 0-4 214 14-23 4-6 193 30-39 0-4 215 38-31 4-6 I 194 22-39 0-4 216 14-31 4-6 GROUP 15 (RSCS 13) 217 30-39 4-6 195 30-07 4-6 218 22-39 4-6 196 22-07 4-6 CROUP 19 (RSCS 13) . 197 46-23 4-6 21 9 30-07 6-8 198 06-23 4-6 220 22-07 ,6-8 199 06-31 4-6 221 46-23 6-8 200 46-31 4-6 222 06-23 6-8 201 22-47 4-6 223 06-31 '6-8 202 30-47 4-6 224 46-31 6-8 CROUP 16 (RSCS 14) 225 22-47 6-8 203 38-15 4-6 226 30-47 6-8 204 14-15 , 4-6 CROUP 20 (RSCS 14) 205 14-39 4-6 227 38-15 6-8 206 38-39 4-6 228 14 .15 6-8 lf CROUP 17 (RSCS 16) 229 14-39 6-8 m ,
- 207 30-23 4-6 230 38-39 6-8 l hk 208 22-23 4-6 CROUP 21 (RSCS 16)
- f. 209 30-31 4-6 231 30-23 6-8
[- 210 22-31 4-6 232 22-23 6-8 oo CROUP 18 (RSCS 15) 233 30-31 6-8
=. - - . . . - -
p r f*\
~
ROD SEQUENCE CHECK 0FF SHEET . UNIT 2 SEQUENCE A2X (Cont'd) CYCLE 7 l . C3 (N-1) ,N-3) (N-1) (N-3) c3 Pos. Act. (N-2) Rod (N-4) Pos. Act. (H-2) Rod (N-4) Step Rod from/To Pos. Init. O.T. P.I. Init. Step Rod From/To Pos. Init. 0.T. P.I. Init.
]2 C5 234 22-31 6-8 256 22-23 8-12 50 CROUP 22 (RSC5 15) 257 30-31 8-12 ?
235 30-15 6-8 258 22-31 8-12 , 236 22-15 6-8 CROUP 26 (RSCS 5) i 237 18-23 6-8 259 34-03 0-12 238 14-23 6-8 260 18-03 0-12 239 18-31 6-8 261 50-19 0-12 240 14-31 6-8 26 02,19 0-12 241 30-39 6-8 263 50-35 0-12 242 22-39 6-8 264 02-35 0-12 CROUP 23 (RSCS 13) 265 34-51 _. 0-12 ,
- i. ,
243 30-07 R-12 266 18-51 0-12 244 22-07 8-12 CR0(f> 27-(RSCS 5) 245 46-23 8-12 267 34-03 '12-48 246 06-23 8-12
- 268 18-03 12-48 247 06-31 8-12 269 50-19 12-48 248 46-31 8-12 270 02-19 12-48 249 22-47 8-12 271 50-35 12-48 250 30-47 8-12 272 02-35 12-48 CROUP 24 (RSCS 14) 273 34-51 12-48
;f 251 38-15 8-12 274 18-51 12-48 , =
- 252 14-15 8-12 CROUP 28 (RSCS 6)
[j 253 14-39 8-12 275 26-03 0-12 C( 254 38-39 8-12 276 50-27 0-12 CR0tlP 25 (RSCS 16) 277 02-27 0-12 co 255 30-23 8-12 278 26-51 0-12 l
f f- [ J { s / (/ \m/ ' w.,/ ROD SEQUENCE CilECkOFF SHEET - Utili 2 SEQUENCE A2X (Cont'd) CYCLE 7 l C3 (N-1) (N-3) (N-1) (N-3) c) Pos. Act. (N-2) Rod (N-4) Pos. Act.' lN-2) Rod (H-4) Step Rod from/To Pos. Init. 0.T. P.I. Init. Step Rod From/To Pos. Init. O.T. P.I. Init. ]3 C5 croup 29 (RSCS 12) 301 46-23 12-24 W
- 279 38-07 0-12 302 06-23 12-24
, 280 14-07 0-12 303 06-31 12-24 281 46-15 0-12 304 46-31 12-24 282 06-15 0-12 305 22-47 12-24 283 46-39 0-12 306 30-47 12-24 284 06-39 0-12 CROUP 33 (RfCS 13) 285 38-47 0-12 307 10-07 24-36 286 14-47 0-12 308 22-07 24-36 CROUP 30 (RSCS 6) 309 46-23 24-36 287 26-03 12-48 310 06-23 , 24-36 288 50-27 12-48 311 06-31 24-36 289 02-27 12-48 312 46-31 24-36 290 26-51 12-48 313 22-47 ' 24-36 IR00P 31 (RSCS 12) 314 30-47 24-36 291 38-07 12-48 CROUP 34 (RSCS 14) 292 14-07 12-48 315 38-15 12-18 293 46-15 12-48 316 14-15 12-18 294 06-15 12-48 317 14-39 12-18 295 46-39 12-48 318 38-39 12-18 lf m
296 06-39 12-48 CROUP 35 (RSCS 13)
- 297 38-47 12-48 319 30-07 36-48 298 14-47 12-48 320 22-07 36-48 f, CkOUP 32 (RSCS 13) 321 46-23 36-48
~3 299 30-07 12-24 322 06-23 36-48 m 300 22-07 12-24 323 06-31 36-48 l
( D G - ROD SE0tlENCE CHECK 0FF SHEET - tillT 2 SEQUENCE A2X (Cont'd) CYCLE 7 l O (N-1) (N-3) (N-1 ) (N-3) o Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4) Step From/To Pos. 0.T. Step Rod From/To Pos. 0.T. l 7 Rod Init. P.I. Init. Init. P.I. Init. 8 324 46-31 36-48 CR0tP 40 (RSCS 14)
- n 325 22-47 36-48 347 38-15 24-36 Q
326 30-47 36-48 348 14-15 24-36 CR0lP 36 (RSCS 14) 349 14-39 24-36 327 18-15 18-24 350 18-39 24-36 328 14-15 18-24 CR0tP 41 (RSCS 15) , 329 14-19 18-24 351 30-15 12-18 330 38-39 18-24 352 22-15 12-18 CROUP 37 !RSCS 15) 353 38-23 12-18 331 30-15 8-12 354 14-23 12-18 I 332 22-15 8-12 355 38-31 12-18 333 38-23 8-12 356 14-31 12-18 334 14-23 8-12 357 30-39 12-18 335 38-31 8-12 358 22-39 ' 12-18 336 14-31 8-12 CROUP 42 (RSCS 16) 337 30-39 8-12 359 30-23 18-24 338 22-39 8-12 360 22-23 18-24 CR0tP 38 (RSCS 16) 361 10-31 18-24 339 30-23 12-18 362 22-31 18-24 340 22-23 12-18 CR0tP 43 (RSCS 7) 2 oo 341 30-31 12-18 363 42-11 6-12
- 342 22-31 12-18 364 10-11 6-12 h CR0tP 39 (RSCS 7) 365 42-43 6-12 k 343 '42-11 0-6 366 10-43 6-12 G 344 10-11 0-6 CRolF 44 (RSCS 14) oo 345 42-43 0-6 367 38-15 36-48 346 10-43 0-6 368 14-15 36-48 h
-g O ,. .
t
\s) -
R00 SE0t1ENCE CHECK 0FF SHEET UNIT 2 SEQUENCE A2X (Cont'd) CYCLE 7 c) (N-1) [N-3) ( M-1 ) (N-3) o Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4) y Step Rod From/To Pos. Init. O.T. P.I. Init. Step Rod From/To Pos. Init. O.T. P.I. Init.
~
o 369 14-39 36-48 391 18-35 0-6 370 38-39 36-48 CROUP 49 (RSCS 15) CRote 45 (RSCS 15) 392 30-15 24-36 371 30-15 18-24 393 22-15 24-36 372 22-15 18-24 394 38-23 24-36 373 38-23 18-24 395 14-23 24-36 , 374 14-23 18-24 396 18-31 24-36 375 38-31 18-24 397 14-31 24-36 376 14-31 18-24 398 30-39 24-36 377 30-39 18-24 399 22-39 24-36 378 22-39 18-24 CRotP 50 (R!fS 16) CRotP 46 (RSCS 16) 400 30-23 36-48 379 30-23 24-36 401 22-23 36-48
~
380 22-23 24-36 402 30-31 36-48 381 30-31 24-36 463 22-31 36-48 382 22-31 24-36 CRote 51 (RSCS 7) CR0tP 47 (RSCS 7) 404 42-11 18-24 383 42-11 12-18 405 10-11 18-24 384 10-11 12-18 406 42-43 18-24 385 42-43 12-18 407 10-43 18-24 7 oo 386 10-43 12-18 CROIP 52 (RSCS 10)
* (Jtot.P 48 (RSCS 10) 408 26-27 6-12
- h 387 26-27 0-6 409 34-19 6-12 I
Q 388 34-19 0-6 410 18-19 6-12 g 389 18-19 0-6 411 34-35 6-12 cn 390 34-35 0-6 412 18-35 6-12 l
- - - - _ _ - - - . ~ . - - -- - - - . - - -. . _ - . - . - .-- -- ~ _ . _ - - . . - . . . , .- .-
l f%
=
R00 SEQUENCE OtECKOFF SitEET . 1811T 2 SEQUENCE A2X (Cont'd) CYCLE 7 l C) (n-1) (N-3) (M-1) (M-3) o Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4) y Step Rod from/To Pos. Init. 0.T. P.I. Init. Step Rod from/To Pos. Init. 0.T. P.I. Init. 8 CR0tP 53 (RSCS 15) 435 10-11 30-36 413 30-15 36-48 436 42-43 30-36 414 22-15 36-48 437 10-43 30-36 415 18-23 36-48 CROUP 58 (RSCS 9) 416 14-23 36-48 438 26-11 4-8 417 38-31 36-48 439 42-27 4-8 , 418 14-31 36-48 440 10-27 4-8 419 30-39 36-48 441 26-43 4-8 420 22-39 36-48 CROUP 59 (RSCS 10) CRotP 54 (RSCS 7) 442 26-27 18-24 421 42-11 24-30 443 34-19 18-24 422 10-11 24-30 444 18-19 18-24 423 42-43 24-30 445 34-35 18-24 424 10-43 24-30 446 18-35
- 18-24 CR0tP 55 (RSCS 9) CR0lP 60 (RSCS 7) 425 26-11 0-4 447 42-11 36-42 l 426 42-27 0-4 448 10-11 36-42 l
i 427 10-27 0-4 449 42-43 36-42 428 26-43 0-4 450 10-43 36-42 CRotP 56 (RSCS 10) CROUP 61 (RSCS 9) g 429 26-27 12-18 451 26-11 8-12 oo
- 430 34-19 12-18 452 42-27 8-12 h 431 18-19 12-18 453 10-27 8-12 Q 432 34-35 12-18 454 26-43 8-12 g 433 18-35 12-18 CR0tP 62 (R$CS 10) on CRotP 57 (RSCS 7) 455 2G-27 24-26 434 42-11 30-36 456 34-19 24-26 l
,.m , - . , ,e \
( g kv) - ROD SEQUENCE CHECKOFF SHEET trilT 2 SFOUENCE A2X (Cont'd) CYCLE 7 l ( N-1 ) (N-3) (N-1) (N-3) O Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4) 7 Step Rod From/To Pos. Init. 0.T. P.I. Init. Step Rod From/To Pos. init. 0.T. P.I. Init. O 457 18-19 24-26 475 26-28 34_- 35.. 458 34-35 24-26 480 18-35 26-28 w 459 18-35 24-26 CR0t.P 67 (RSCS 8) CROtP 63 (R$CS 71 481 34-11 4-8 460 42-11 42-48 482 18-11 4-8 461 10-11 42-48 483 42-19 4-8 , 462 42-43 42-48 484 10-19 4-8 463 10-43 42-48 485 42-35 4-8 CRote 64 (RSCS 8) 486 10-35 4-8 464 34-11 0-4 487 34-43 4-8 465 18-11 0-4 488 18-43 r4-8 466 42-19 0-4 CROUP 68 (R$CS 9) 467 10-19 0-4 489 26-11 16-20 468 42-35 0-4 490 42-27 '16-20 469 10-35 0-4 491 10-27 16-20 470 34-43 0-4 492 26-43 16-20 471 18-43 G-4 CR0lP 69 (RSCS 10)
- 0. Rote 65 (RSCS 9) 493 26-27 28-30 472 26-11 12-16 4 94 34-19 28-30 473 42-27 12-16 495 18-19 28-30 474 10-27 12-16 496 34-35 28-30
.E 475 26-43 12-16 497 18-35 28-30 o ChotP 66 (RSCS 10) CROUP 70 (RSCS 8) m 476 26-27 26-28 498 34-11 8-12 C 477 34-19 26-28 499 18-11 8-12 cn 478 19-19 26-28 500 42-19 8-12 I
. . . . . _ . . _ . _ _ - , _ _ _ _ . _ _ . _ _ . . - . _ . _ . . . _ _ _ _ . _ . - . _ _ _ _ _ _ _ _ _ _ _ _ . _ -_ __ .. - . ~ . _ . . . _ _ - - _ _ . . _ . _ .
s
\. -
w - ROD SE000:CE CHECKOFF SHEET telli 2 SEQUENCE A2X (Cont'd) CYCLE 7 I o I C) (N-1) (M-3) (N-1) (N-JJ ' N Pos. Act. (N-2) Rod (N-4) Pos. Act. [N-2) Rod (N-4 )
- Step Rod From/To Pos. Init. O.T. P.I. Init. Step Rod from/To Pos. Init. O.T. P.I. Init.
O i w 501 10-19 8-12 521 M-43 12-16 1 .
. 502 42-35 8-12 522 18-43 12-16 l 503 10-35 8-12 CRotP 74 (RSCS 9)
- y 504 M-43 8-12 523 26-11 24-28 .
505 18-43 8-12 524 42-27 24-28 , croup 71 (RSCS 9) 525 10-27 24-28 506 26-11 20-24 526 26-43 24-28 I 507 42-27 20-24 CROLP 75 (RSCS 10) I 500 10-27 20-24 527 26 '27 32-36 509 26-43 20-24 528 34-19 32-36 1 - i _CR0tP 72 (RSCS 10) 529 18-19 32-36 510 26-27 30-32 530 34-35 32-36 511 34-19 30-32 531 18 32-36 512 18-19 30-32 CR0lF 76 (RSC5 8) 513 14-35 30-32 532 34-11 16-20 514 18-35 30-32 533 18-11 16-20 , CROUP 73 (RSCS 8) 534 42-19 16-70 515 34-11 12-16 535 10-19 16-20 516 18-11 12-16 536 42 '5 16-20 517 42-19 12-16 537 10-35 16-20 m 518 10-19 12-16 538 34-43 16-20
- 519 42-35 12-16 539 18-43 16-20 ~
520 10-35 12-16 o m , o* 8 1
4 E l 4 1 { ROD SEQUENCE CHECK 0FF SHEET 4 UNIT 2 SEQUENCE A2X (Cont'd)
- CYCLE 7 l i
l INITIALS PRINT NAME I 1 i 4 l ~ i i l l l s i I J t t ] c -
. 1 i
n
/ #
4 I 1 i t I 4 i i 1 1 l i i 1 i l O GP-10 Rev. 5 Page 112 of 128 l I I l
- - . - - . _ _ - -. .-...-_.._-.,_._,.-..<,-..,..-..-m.__. . . . . . . . . _ _ _ . . . . _ _ , - . - . . . . - , - - - . . _ . , _- .,~.1
.. . __. . ~ . . - -- .. .- --. - . - - - - - - . _ _ . - l 1
l i 9 i i i
! APPENDIX 2-B2X UNIT 2 ,
R0D SEQUENCE CHECKOFF SHEET i e , l i SEQUENCE B2X i 1 i FOR I ' J FUEL CYCLE 7 l l f (EXPANDED GROUP 2 PULL SHEET) i
- a .
j . ,' i, i. I I. . I s J 1 1 1 i, l 4 i i i i 1 i Page 113 of 128 4 0 CP-10 Rev. 5 1 I 1
)
1
rm () ROD SEQUENCE CHECKOFF SHEET UNIT 2 SEQUENCE B2X CYCLE 7 l NOTES:
- 1. The recording of the actual rod position is not required when reactor power is greater than the RWM and RSCS low power setpoints.
- 2. When a control rod is fully withdrawn, verify and document that the rod does not go to the overtravel position and that the red " full-out" light illuminates.
- 3. Verify that the rod position indications for those positions covered by that step of the pull sheet are operable.
- 4. Initials (second licensed operator or other qualified member of the technical staff) are required in this column if:
- a. RWM is inoperable and startup continues per Technical Specification 3.1.4.1.
or
~
- b. RSCS is required to be operable and the control rod is bypassed due
(} ' to the inoperability of the " full-in" or " full-out" reed switch (,,J . - position indication for that control rod (see Technical Specification 4.1.3.7.2).
- 5. Perform RSCS operability verification (for further power reduction) as per GP-05. ,
l t G I ) N/ 0 CP-10 Rev. 5 Page 114 of 128
o c o-ROD SE0llENCE CHFCKOFF SHEET tali 2 SEQUENCE B2X CYCLE 7 l O NUCLEAR EW.INEER DAIE/ TINE 1 o SillFT FORENAN DATE/11NE 28 (h-1) (N-3) (R-I I (4-3)
$ Pos. Act. (N-2) Rod (N-4 ) Pos. Act. [N-2) Rod (N-4) - Step Rod From/la Pos. Init. 0.T. P.1. Init. Step Rod from/To Pos. Init. O.T. P.I. Init.
rROLP 1 (kSCS B12) CROUP 2A (RSCS 812) 1 18-51 0-48 22A 26-51 0-4 2 14-51 0-48 23A 34-43 0-4 3 42-43 0-48 24A 42-35 0-4 4 50-35 0-48 25A 50-27 0-4 5 50-19 0-48 26A 42-19 0-4 6 42-11 0-48 27A 34-11 0-4 7 34-03 0-48 284 26-03 0-4 I i . l 8 18-03 0-48 29A 18-11 0-4 9 10-11 0-48 30A 10-19 0-4 10 02-19 0-48 31A 02 0-4 11 02-35 0-48 32A ' 10-35 0-4 12 10-43 0-48 33A 18-43 0-4 13 26-43 0-48 34A 26-35 0-4 14 34-35 0-48 35A 34-27 0-4 15 42-27 0-48 36A 26-19 0-4 16 34-19 O-48 37A 18-27 6-4 17 26-11 0-48 CRolf 2B (RSCS B12) g 18 18-19 0-48 22B 26-51 4-6
- 19 10-27 0-48 238 34-43 4-6 G
20 18-15 0-48 248 42-35 4-6 o 21 26-27 0-48 258 50-27 4-6 C
= , _ _ . . - . - _ ,__m,-
_ _ _ - . _ _ _ ~ _ _ _ . . __._____.__...__.______..___.____,_._m ._ _ .. _ ..._. _____ __- - _ - . . . _ _ ._ . . . D N - ROD SEQUENCE CHECKOFF SHEET LNii 2 SEQUENCE B2X (Cont'd) ' o UCLE 7 l o (M-1) (N-31 o (M-11 (n-3) 1 Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4) o Step Rod From/To Pos. Init. 0.T. P.I. Init. Step Rod from/To Pos. Init. 0.T. P.I. Init. E 260 42-19 4-6 35C 34-27 6-8 l 278 34-11 4-6 36C 26-19 6-8 u 28n 26-03 4-6 37C 18-27 6-8 , r 298 18-11 4-6 CROUP 2D (RSCS 812) 308 10-19 4-6 22D 26-51 8-10 118 02-27 4-6 230 34-43 8-10 . 328 10-35 4-6 24D 42-35 8-10 333 18-43 4-6 250 50-27 8-10 , 148 26-35 4-6 26D 42-19 8-10 35H 34-27 4-6 27D 34-11 8-10 368 26-19 4-6 200 26-03 8-10 378 18 4-6 290 18-11 8-10 CR0tP 2C (RSCS B12) 30D 10-19 8-10 22C 76-51 6-8 31D 02-27 8-10 23C 34-43 6-8 32D 10-35 8-10 I 24C- 42-35 6-8 33D 18-43 8-10 i 25C 50-27 6-8 340 26-35 8-10 26C 42-19 6-8 350 34-27 8-10 27C 34-11 6-8 36D 26-19 8-10 y 28C 26-03 6-8 370 18-27 8-10 l 0o m 29C 18-11 6-8 CROIP 2E (RSCS 812) , 30C 10-19 6-8 22E 26-51 10-12 0 31C 32-27 6-8 23E 34-43 10-12 , m g 32C 10-35 6-8 24E 42-35 10-12 m 33C 18-43 6-8 25E 50-27 10-12 34C 26-35 6-R 26E 42-19 10-12 g
k (f~%) v - I l l ROD SEQUENCE CHECK 0FF 5HEET IJNIT 2 SEQUENCE B2K (Cont'd) o UCLE 7 l O (H-1) (N-3) (N-1) (N-3) e Pos. Act. (N-2) RM (N-4) Pos. Act. (N-2) Rod (N-4) o Step Rod From/To Pos. Init. 0.T. P.I. Init. Step Rod From/To Pos. init. 0.T. P.I. Init. E 27E 14-11 10-12 36F 26-19 12-16 28E 26-03 10-12 37F 18-27 12-16 w 29E 18-11 10-12 CRotP 2C (RSCS B17)
~
30E 10-19 10-12 22C 26-51 16-48 31E 02-27 10-12 23C. 34-43 16-48 , 32E 10-35 10-12 24C 42-35 16-48 33E 18-43 10-12 25C 50-27 16-48 34E 26-35 10-12 26C 42-19 16-48 35F 34-27 80-12 27C 34-11 16-48 36E 26-19 10-12 28C 26-03 ,16-48 37E 18-27 10-12 29C 18-11 16-48 CROUP 2F (RSCS 812) 30C 10-19 16-48 22F 26-51 12-16 31C 02-27 '16-48 23F 34-43 12-16 32C 10-35 16-48 24F 42-35 12-16 33C 18-43 16-48 25F 50-27 12-16 34C 26-35 16-48 26F 42-19 12-16 35C 34-27 16-48 77F 34-11 12-16 36C 26-19 16-48 . 28F 26-03 12-16 37C 18-27 16-48 y 29F 18-11 12-16 CRolP 3A (RSCS 834)
$ 30F 10-19 12-16 38 06-39 0-2 31F 02-27 12-16 39 14-47 0-2 0 32F 10-35 12-16 40 30-47 0-2 m
33F 18-43 12-16 41 38-39 0-2 cm 34F 26-35 12-16 42 46-31 0-2 35F 14-27 12-16 43 46-15 0-2 l
6+ g p-G \N (v ) . ROD SEQUENCE CHECKOFF SHEET trili 2 5E0tJENCE B2X (Cont'd) o C CLE 7 l O (n-1) (N-3) (N-1) (75-3 ) 1 Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4) o Step Rod From/To Pos. Init. O.T. P.I. Init. Step Rod From/To Pos. Init. 0.T. P.I. Init. m 44 38-07 0-2 69 22-23 2-4 45 22-07 0-2 CR0tP 4 (RSCS 834) u. 46 14-15 0-2 70 06-39 4-6 47 06-23 0-2 71 14-47 4-6 48 14-31 0-2 72 30-47 4-6 49 22-39 0-2 73 38-39 4-6 50 10-31 0-2 74 46-31 4-6 51 39-23 0-2 75 46-15 4-6 52 30-15 0-2 76 38-07 4-6 53 22-23 0-2 77 22-07 ,.4-6 (SOtP 38 (RSCS 834) 78 14-15 4-6 54 06-39 2-4 79 06-23 4-6 55 14-47 2-4 80 14-31 '4-6 56 10-47 2-4 81 22-39 4-6 57 38-39 2-4 82 30-31 4-6 l 58 46-31 2-4 83 38-23 4-6 1 59 46-15 2-4 84 ' 15 4-6 60 38-07 2-4 85 22-23 4-6 61 22-07 2-4 CRotr 5 (RSC5 834) y 62 14-15 2-4 86 06-39 6-8 on m 63 06-23 2-4 87 14-47 6-8 2-4 88 30-47 6-8 l h 64 14-31 0 65 22-39 2-4 89 18-39 6-8 g (6 M-31 2-4 90 46-31 6-8 m 67 38-23 2-4 91 46-15 6-8 I i 68 10-15 2-4 92 18-07 6-8 g
I l 1 ( l -
% G/ ~
ROD SE0trulCE CHECKOFF SHEET UNIT 2 SEQUENCE B2X (Cont'd) C3 CYCLE 7 l kh (N-1) (N-3) (N-1) (N-3) 1 Pos. Act. (H-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4) c) Step Rod From/To Pos. Init. 0.T. P.1. Init. Step Rod From/To Pos. Init. 0.T. P.I. Init.
!f 93 22-07 6-8 CROUP 7 (RSCS B34) 94 14-15 6-8 118 06-19 12-16 v.
95 06-23 6-8 119 14-47 12-16 96 14-31 6-8 120 30-47 12-16 97 22-39 6-8 121 38-39 12-16 , 98 30-31 6-8 122 46-31 12-16 99 38-23 6-8 123 46-15 12-16 l 100 10-1 5 6-8 124 38-07 12-16 101 22-23 6-8 125 22-07 12-16 GROUP 6 (RSCS 834) 126 14-15 . 12-16 102 06-39 8-12 127 06-23 12-16 , 103 14-47 8-12 128 14-31 12-16 l . 104 50-47 8-12 129 22-39 12-16 105 38-39 8-12 130 30-31 12-16 i l 106 46-31 8-12 131 38-23 12-16 l 107 46-15 8-12 132 30-15 12-16 I 108 $8-07 8-12 133 22-23 12-16 109 22-07 8-12 CROUP 8 (RSCS B34) 110 14-15 8-12 134 06-39 16-48 l til 06-23 A-12 135 14-47 16-48 {0 oo
- 112 14-31 8-12 136 30-47 16-48 113 22-39 8-12 137 38-39 16-48 ff 0 114 10-31 8-12 138 46-31 16-48 m
;- 115 38-23 8-12 139 46-15 16-48 cn 116 30-15 8-12 140 38-07 16-48 117 22-23 8-12 141 22-07 16-48 l L
l
.~ ,
h' ROD SEQUENCE CHECK 0FF SHEET UNIT 2 SEQUENCE B2X (Cont'd) o CYCLE 7 l O (N-1) (M-3) (R-1) (W-3) e Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4) o Step Rod From/To Pos. Init. 0.T. P.I. Init. Step Rod Frewn/To Pos. Init. 0.T. P.I. Init. E 142 14-15 16-48 166 38-47 4-8 143 06-23 16-48 167 46-39 4-8 vi 144 14-31 16-48 168 46-23 4-8 145 22-39 16-48 169 38-15 4-8 146 30-31 16-48 170 30-07 4-8 l 147 38-23 16-48 171 14-07 4-8 148 30-15 16-48 172 06-15 4-8 ! 149 22-23 16-48 173 06-31 4-8 IR0tr 9 (RSCS 834) 174 14-39 4-8 150 38-47 0-4 175 22-47 4-8 ! T-l 151 46-39 0-4 176 30-39 4-8 152 46-23 0-4 177 38-31 4-8 153 38-15 0-4 178 30-23 *4-8 154 30-07 0-4 179 22-15 4-8 155 14-07 0-4 180 14-23 4-8 156 06-15 0-4 181 22-31 4-8 157 D6-31 0-4 CRotP 11 (RSCS 834) 158 14-39 O-4 182 38-47 8-12 l 159 22-47 0-4 183 46-39 8-12 l g 100 30-39 0-4 184 46-23 8-12
$ 161 38-31 0-4 185 38-15 8-12 U 162 30-23 0-4 186 30-07 8-12 o
o 163 22-15 0-4 187 14-07 8-12 m
- 104 14-23 0-4 188 06-15 8-12 $ 0-4 189 06-31 8-12 l 165 22-31 190 14-39 8-12 rxm e 10 (R5CS B34) i
I 1 g - l
'd ( U-l ROD SEQUEraCE CHECKOFF SHEET traf f 2 SEQUENCE B2X (Cont'd)
O UCLE 7 l n 1 y (N-1) (N-3) Pos. (N-1) (N-2) (N-3) Rod (N-4 ) l _ Pos. Act. (N-2) Rod (N-4) Act. o Step Rod from/To Pos. Init. 0.T. P.I. Init. Step Rod From/To Pos. Init. 0.2. P.l. Init.
- xt 191 22-47 8-12 215 10-23 0-4
, 192 30-39 8-12 216 42-31 0-4 193 38-31 8-12 217 10-31 0-4 194 10-23 8-12 218 26-07 0-4 195 22-15 8-12 219 26-47 0-4 1% 14-23 8-12 CR0tP 14 (RSCS 17) 197 22-31 8-12 220 34-15 0-4 rJNXP 12 (RSCS B34) 221 18-15 0-4 198 38-47 12-48 222 34-39 0-4 199 46-39 12-48 223 18-39 0-4 200 46-23 12-48 224 26-23 0-4 201 18 -1 5 12-48 225 26-31 0-4 202 30-07 12-48 CROLP 15 (RSCs 14) 20s 14-07 12-48 226 34-07 0-4 204 06-15 12-48 227 18-07 0-4 l 205 06-31 12-48 228 34-47 0-4 l
l 206 14-39 12-48 229 18-47 0-4 I l 207 72-47 12-48 CROLP 16 (RSCS 15) l 208 b'-39 12-48 230 42-15 0-4
~
2 209 '18-31 12-48 231 10-15 0-4
- 210 10-23 12-48 232 42-39 0-4
" 211 22-15 12-48 233 10-39 0-4 & 212 14-23 12-48 CROUP 17 (RSCS 18) 213 22-31 12-48 234 34-23 0-4 co CR0tP 13 (RSCS 16) (N-5) 235 18-23 0-4 214 P.2-23 0-4 236 34-31 0-4 l
l l ) )
- \ Q 'N ,/ -
l l I ROD SE00ENCE OiECK0ff SHEET . l tritT 2 SEQUENCE B2X (Cont'd) l OCLE 7 l l C3 (N-1) (N-3) ( N-1 ) (N-J) o Pos. Act. (N-2) Rod (N-4) Pos. Act. [N-2) Rod (N-4) y Step Rod From/To Pos. Init. O.T. P.I. Init. Step Rod From/To Pos. Init. O.T. P.I. Init, i b 237 18-31 0-4 CRotP 22 (RSCS 18) l N 238 26-15 0-4 260 34-23 4-6
, 239 26-39 0-4 261 18-23 4-6 GOle 18 (RSCS 16) 262 34-31 4-6 240 42-23 4-6 263 18-31 4-6 241 10-23 4-6 2 264 26-15 4-6 242 42-31 4-6 265 26-39 4-6 243 10-31 4-6 CROLP 23 (RSCS 16) 244 26-07 4-6 266 42-23 6-8 245 26-47 4-6 267 10-23 6-8 GtXP 19 (RSCS 17) 268 42-31 6-8 246 34-15 4-6 269 10-31 6-8 247 18-15 4-6 270 26-07 6-8 248 14-39 4-6 271 26-47 ~6-8 249 18-39 4-6 CRotP 24 (RSCS 17) 250 26-23 4-6 272 34-15 6-8 251 26-31 4 -6 273 18-15 6-8 CROUP 20 (RSCS 14) 274 34-39 6-8 252 14-07 4-6 275 18-39 6-8 253 18-07 4-6 276 26-23 6-8 2
oo 254 34-47 4-6 277 26-31 6-8 255 18-47 4-6 CROP 25 (RSCS 14) l G0te 21 (RSCS 15) 278 34-07 6-8 k 256 42-15 4-6 279 18-07 6-8 C 257 10 4-6 280 34-47 6-8 co 258 42-19 4-6 281 18-47 6-8 259 10-39 4-6 CR0tP 26 (RSCS 15) g L_
~ . 3.
R00 SEQUENCE C M CEOFF 5HEET UNIT 2 SEQUENCE B21 (Cont'd) CYCLE 7 O l {N-1) (N-3) (N-1 ) (W-3) o Pos. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4 ) y Step Rod from/To Pos. Init. O.T. P.1. Init. Step Rod From/To Pos. Init. 0.T. P.I. Init. O 232 42-15 6-8 305 22-03 0-12 283 10-15 6-8 306 30-51 0-12 284 42-39 6-8 307 22-51 0-12 285 10-39 6-8 CROUP 31 (RSCS 7) (J20tP 27 (RSCS 18) 308 46-11 0-12 286 14-23 6-8 309 06-11 0-12 , 287 18-23 6-8 310 46-43 0-12 288 M-31 6-8 311 06-43 0-12 28's 18-31 6-8 CR0tP 32 (RSCS 5) 290 26-15 6-8 312 30-03 12-48 291 26-39 6-8 333 22-03 .12-48 UtotP 28 (F50s 16) 314 30-51 12-48 292 42-23 8-12 315 22-51 12-48 ___ 293 10-23 8-12 CRote33(RSC57) - 294 42-31 8-12 316 46-11 12-48 295 10-31 8-12 317 06-11 12-48 , i 2% 26-07 8-12 318 4-43 12-48 297 26-47 8-12 319 06-43 12-48 CR0tP 29 (RSCS 17) CRotP 34 (RSCS 12) 298 h-15 8-12 320 50-23 0-12 2 299 18-15 8-12 321 02-23 0-12 l
- 300 34-39 8 322 50-31 0-12 h 301 18-39 8-12 323 02-31 0-12 Q 302 26-23 8-12 CRotr 35 (RSCS 13)
G 303 26-31 8-12 324 42-07 0-12 on CROEP 30 (RSCS 5) 325 10-07 0-12 326 42-47 0-12 j' 304 30-03 0-12 ,
' e- r .-
3 g
/
x, *
~ / m ! 1 . 1 ) .
4t i Nn (I
) .
J- do I. RRP (
) .
2- T. N0 ( t i n I
) . .
1ts
- co NAP
( o 8 8 8 8 8 8 T 2 ) 1 1 1 1 1 1
./ m 1 ) 4 4 4 4 1 4 4 4 4 6 - - - - - - ) 6 6 6 6 ) 6 6 6 so - 6 - - - - 8 - - - - 1 2 2 2 2 2 2 6 - - - - 8 - - -
T) or 8 0 0 0 0 0 0 0 0 1 1 1 1 1 1 4 4 4 4 4 4 4 Ed PF S S S
- S S C C C C C E
H 't S n 9 S R 9 9 5 5 S R 1 1 3 3 S R 3 3 1 1 7 7 S R 9 9 5 5 S R 1 1 3
/ o d 3 ( 1 1 3 3 ( 3 1 4 4 ( 2 2 3 3 0 4 ( 1 1 3 3 ( 1 1 4 FC o - - - - - - - - - - - - - - - - - - - - - -
5 8 v.
. F( R 6 1 6 6 6 6 2 8 4 8 4 3 2 0 2 0 6 6 4 6 6 6 6 8 4 O 2 4 4 0 4 0 4 3 1 3 1 4 4 1 4 1 2 2 4 4 0 4 0 4 3 1 3 ., KX C27 P P P P P 0 EB p 9 U 0 1 2 3 t 4 5 6 7 U 8 9 0 1 2 3 U 4 5 6 7 U 8 9 . H E e 4 O 5 5 5 5 0 5 5 5 5 O 5 5 6 6 6 6 O 6 6 6 6 O 6 6 7 CEL t 3 R 3 3 3 3 R 3 3 3 3 R 3 3 3 3 3 3 R 3 3 3 3 R 3 3 3 CC S C C C C C ENY CEC HU EQ 0E .
0S )t E 4i S2 n NI 0T ( 0I RN U ) . j- do I. NRP (
) .
2- T. N0 ( t i n I
) . .
1 t s
- co NAP
( o ) ) T ) 8 8 8 8 ) 8 8 8 8 ) 2 2 2 4 4 4 4 3 4 4 4 4 4 2 2 2 2 5 2 2 2 2 8 2 2 2 2
./m 1 1 - - - - 1 - - - - 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 so - 2 2 2 2 2 2 2 2 - - - - S or 0 S C 1 1 1 1 5 C 1 1 1 1 S C 8 8 8 8 S C 8 8 8 8 C 8 8 8 8 8 PF S S S S S k R R R R 7 ( 3 3 1 1 ( 7 7 7 7 ( 7 7 7 7 ( 5 5 9 9 ( 3 3 1 1 5 d 4 2 2 3 3 0 0 4 4 0 0- 4 4 1 1 3 3 2 2 3 3 1 o - 6 - - - - 7 - - - + 8 - - - 9 - - - - 0 - - - - - R 0 3 0 2 0 2 3 2 0 2 0 3 4 8 4 8 3 2 0 2 0 4 4 8 4 8 6 1 5 0 5 0 4 1 4 16 3 1 3 1 4 1 4 1 3 1 3 1 2 P U P P e P p 7 O 8 9 0 t 0 2 3 4 5 X 6 7 8 9 m 0 1 2 3 l 0 4 5 6 7 8 e 2 R 2 2 3 1 3 R 3 3 3 3 M 3 3 3 3 R 4 4 4 4 R 4 4 4 4 4 3 O, C 3 C 3 3 t 3 C 3 3 3 3 C 3 3 3 3 f 3 3 3 3 3 3 3 3 3 1 S
)
C c} 5C f 3s 8 lo* o k h f, gm-
, l
) ' .7 l ) .
4t i Nn (I
) .
3 d
- o I.
MRP (
) .
27 N0 ( t i I n
) . .
1 t s
- co NAP
( o 6 6 6 6 6 6 4 4 4 4 4 4 T 2 1
) ) 3 3 3 3 3 3 ) 2 2 2 2 2 ./m 4 4 4 4 4 0 4 4 4 4 4 4 6 - - - - - - 7 - - - - - - 8 so - - - - - 1 - - - - - - 1 4 4 4 4 4 4 1 8 8 8 8 8 8 1 T) or 0 0 0 0 0 0 O 0 0 0 0 ~2 2 2 2 2 2 1 1 1 1 1 1 S
Ed Pf S S S C C C C E 't I I Sn 1 3 3 7 7 S R 7 7 9 9 5 5 S R 3 3 1 1 7 7 S R 5 5 9 9 3 1 S R 3 3 2 3 ( o d ( 3 3 ( 2 2 3 3 0 4 ( 1 1
) FC F(
O R o 1 2 2 4 0 3 4 2 2 2 6 4 2 6 0 1 5 2 0 3 2 2 2 1 8 1 1 4 1 8 3 4 1 2 5 2 4 0 1 2 4 0 1 6 2 6 2 3 5 4 3 8 1 4 3 8 1 6 2 6 2 4 5 KX C27 P P P 5 P E8 p 3 4 5 6 7 U 8 9 0 1 2 3 U 4 5 6 7 8 9 U 0 1 2 3 4 t H E e 9 9 9 9 9 O 9 9 0 0 0 0 O 0 0 0 0 0 0 O 1 1 1 1 1 1 o CEL t 3 3 3 3 3 R 3 3 4 4 4 4 R 4 4 4 4 4 4 R 4 4 4 4 4 4 R CC S C C C C ENY CEC eU DQ UE . QS )t E 4i S2 n NI DT ( OI RN( ) . 3 d
- o I.
NRP I
) .
27 N0 [ t i I n 3 . . 1 ts
- co HAP
[ o T ) 4 4 4 4 4 4 1 8 8 8 8 8 8 ) 6 2 2 2 2 2 2 7 1 1 1 1 1 1 ) 1
./m 6 1 - - - - - - 1 - - - - - - 6 8 8 8 8 8 8 8 8
8 9 4 so or 4 S 8 1 8 1 8 1 8 1 8 1 1 8 S 2 1 2 1 2 1 2 1 2 1 2 1 S 6 6 6 6 S 6 6 6 6 S 0 Pf C C C C C S S S S S R R R R R 3 ( 3 3 1 1 7 7 ( 5 5 9 9 3 1 ( 9 9 5 5 ( 1 1 3 3 ( 1 3 2 3 3 3 1 1 4 4 1 d 4 2 2 3 3 0 4 1 1 3 1 1
- - - 0 -
o - 6 - - - - - - 7 - - - - - - 3 - - - - 9 - R 0 0 6 6' 4 4 8 4 8 6 6 4 6 4 6 4 8 4 3 4 5 0$ 4 1 4 2 4 1 2 4 1 ? 3 1 3 1 ' 2 4 ( 4 % 1 1 1 1 P P e t rt P t t t p 1 0 2 3 4 5 6 7 o 8 9 0 1 2 3 o 4 5 6 7 0 8 9 0 1 0 R 2 9 e 7 R 7 7 7 7 7 7 R 7 7 P, 8 8 8 R 8 8 3 8 R 8 8 9 9
~~ t 3 C 3 3 3 3 3 3 C 3 3 3 3 1 3 C 3 3 3 3 C 3 3 3 3 C 3 _
( S . m
) $<* yoa h om o C not 8 w a _
1 i a .
) ' ,I l ) .
4t i Nn (I
) .
J d
- o I.
RRP (
) .
2- T. (NO t i I n
) . .
1 ts
- co NAP
( o 6 6 6 T 8 8 8 8 8 8 8 8 8 8 8 8 8 8 6 6 6
) 1 1 1 1 ) 1 1 1 1 ) 4 4 4 4 4 4 ) 1 3 3 3 3 3 ./ m 6 6 6 4 - - - - 5 - - - - 6 - - - - - - 7 - - - - - -
so or
- - - 1 2 2 2 2 1 2 2 2 2 1 6 3
6 3 6 3 6 3 6 3 6 3 1 4 2 4 2 4 2 4 2 4 2 4 2 T) 4 4 4 1 1 1 1 1 1 1 1 Ed PF S S S S E C C C C H 't Sn 9 7 7 S R 7 7 7 7 S R 5 5 9 9 S R 7 7 3 3 1 1 S R 5 5 9 9 3 1
)/ o d 1 2 2 ( 0 0 4 4 ( 1 1 3 3 ( 0- 4 2 2 3 3 ( 1 1 3 3 2
3 FC o - - - - - - - - - - - - - - - - - - 6 6 R 4 2 0 9 4 8 4 8 0 2 0 2 0 6 6 2 0 0 2 2 4 8 8 4 m,[L f( 0 KX 1 2 3 5 3 1 3 1 6 4 1 4 1 1 6 2 2 4 1 1 4 6 3 1 1 3 2 2 C27 p P P P P 8 9 0 EB 9 0 1 U 2 3 4 5 U 6 7 8 9 t 0 1 2 3 4 5 t 6 7 1 H E e 3 4 4 O 4 4 4 4 O 4 4 4 4 0 5 5 5 5 5 5 0 5 5 5 5 6 6 CEL t 4 4 4 R 4 4 4 4 R 4 4 4 4 R 4 4 4 4 4 4 R 4 4 4 4 4 4 CC S C C C C ENY CEC NU EQ l t E 0S )t. E 4i S2 - n NI DT ( OI RN t ) . 3- do I. NRP ( '
~ ) .
2- T. NO ( t i n I l
) . .
1 ts
- co NAP
( o ) T 8 8 8 8 8 8 1 1 1 1 1 1 ) 2 2 2 2 ) 2 2 2 2 ) 0
./m - - - - - - 6 1 1 1 1 8 1 1 1 1 9 6 6 6 6 6 6 1 6 6 6 so 2 2 2 2 2 2 - - - - - - - - - - - - - - - - -
or 1 1 1 1 1 1 S 8 8 8 8 S 8 8 8 8 S 4 4 4 4 4 4 S C 4 4 4 PF C C C S S S S R R R R 3 3 1 1 5 9 ( 9 9 5 5 ( 1 1 3 3 ( 1 1 3 3 7 7 ( 5 5 9 d 2 2 3 3 1 3 1 1 3 3 1 1 4 4 1 1 4 4 2 2 3 3 1 o - - - - - - 5 - - - - 6 - - - - 7 - - - - - - 8 - - - R 4 8 4 8 6 6 5 6 6 6 6 5 8 4 8 4 5 0 2 0 2 6 6 5 8 4 8 1 1 3 1 2 2 4 0 4 0 3 1 3 1 1 2 1 2 4 0 3 1 3 P P P e p 6 7 8 9 0 1 I O 2 3 4 5 R f 6 7 8 9 f R 0 1 2 3 4 5 t o 6 7 8 e 1 1 1 1 2 2 R 2 2 2 2 R 2 2 2 2 R 3 3 3 3 3 3 R 3 3 3 t 4 4 4 4 4 4 C 4 4 4 4 C 4 4 4 4 C 4 4 4 4 4 4 C 4 4 4
',(% S OO7 o Em k Gco m
.- T C) /^ Q } Q ROO SEQUENCE CifECKOFF SIEET s tritT 2 SECUENCE B2x (Cont'd)
ORE 7 l [N-1) (N-3) (N-1) (M-3) Q: l'os. Act. (N-2) Rod (N-4) Pos. Act. (N-2) Rod (N-4) 5tep Rod From/To Pos. init. O.T. P.I. Init. Step Rod From/To Pos. Init. 0.T. P.I. Init. o 484 38-19 CRotr 61 (RSCS 18) 6-8 E L I 462 's4-23 18-24 1 485 14-19 6-8 on 463 18-23 18-24 486 22-27 6-8 464 18-31 18-24 487 30-27 6-8 465 34-31 18-24 CRotP 68 (RSCS 11) 4 F.6 26-15 18-24 488 22-35 0-4 i 467 06-39 18-24 489 30-35 0-4 r.RotP 64 (RSCS 6) 490 14-27 0-4 468 46-19 12-1R 491 38-27 0-4 469 n6-19 12-18 492 22-19 O-4 470 6-35 12-18 493 30-19 0-4 l 471 -35 12-18 CROUP 69 (RSCS 14) rRotP 65 (RSC5 8) 494 34-07 18-24 h 472 b8-11 12-18 495 18-07 ~18-24 473 14-11 12-18 4% 34-47 18-24 474 38-43 32-18 497 18-47 18-24 475 14-43 12-18 CR0tP 70 (RSCS 15) CRatP 66 (RSC5 9) 498 42-15 18-24 476 30-11 6-8 499 10-15 18-24 477 22-11 6-8 500 42-39 18-26 478 0-43 6-8 501 '10-39 18-24 479 2-43 6-8 CROUP 71 (RSCS 17) U ! l 1 i N 480 h6-27 6-8 . 502 i34-15 36-48 I O l m 483 o6-27 6-n l l 503 l18-15 36-48 g CRa e 67 iRSCS in) So4 li8-39 36-48 482 38-35 6-8 505 34-39 36-48 483 14-35 6-8 l s0s I 26 -23 36-48 l l u
l g 4 o
)/
- s. *
,\ l x l ) .
4t i Nn (I
) .
3 d
- o I.
NRP (
) .
2- T. NO [ t i n i
) . .
1 t s
- co NAP
( o T
./m so T) or Ed PF .
E 't H f 5n
- o d FC o
\/g .
F( 0 Kx R
, s, C27 'k p EB H E e CEL t
. CC S ENY CEC NU EQ UE . QS )t E 4i S2 - n NI Dl ( Oi RN U ) . 3- do S. NRP E [ M A
) .
N I 2- T. N NO I ( R P t i I n
) . .
1 ts
- co NAP
( o f 8 ) 6 6 6 6 6 6 4 4 4 4 4 4 4 4 4 8 3 3 3 3 3 3 ) 2 2 2 2 ) 2 2 2 2
./m - 1 - - - - - - 6 - - - - 8 - - - -
so or 6 4 4 4 4 4 4 8 8 8 8 8 8 8 8 3 S 2 2 2 2 2 2 S 1 1 1 1 5 1 1 1 1 PF C C C S S S 5 R R R l 1 ( 1 3 1 1 5 9 ( 9 9 5 5 ( 1 1 3 3 A d 3 2 2 3 3 1 3 1 1 3 3 1 1 4 4 I o - 2 - - - - - - 3 - - - - 4 - - - - T R 6 7 4 8 8 4 6 6 7 6 6 6 6 7 8 4 8 4 I 2 1 1 1 3 2 2 4 0 4 0 3 1 3 1 N P t P t et I p e 7 0 0 8 0 9 0 0 1 1 1 2 1 3 1 0 R 4 1 5 1 6 7 1 e R 8 1 9 1 0 2 1 2 0
\ 1 x/ S t 5 5 5 5 5 5 5 C 5 5 5 5 C 5 5 5 5 ,l\
o O7 g y< u ?=it bm Oes = a, t}}