ML20209B302
| ML20209B302 | |
| Person / Time | |
|---|---|
| Site: | McGuire, Mcguire |
| Issue date: | 03/30/1987 |
| From: | Moorman J, Munro J NRC OFFICE OF INSPECTION & ENFORCEMENT (IE REGION II) |
| To: | |
| Shared Package | |
| ML20209B266 | List: |
| References | |
| 50-369-OL-86-02, 50-369-OL-86-2, NUDOCS 8704280409 | |
| Download: ML20209B302 (175) | |
Text
{{#Wiki_filter:, ,i s ENCLOSURE 1 EXAMINATION REPORT 369/0L-86-02 Facility Licensee: Duke Power Company 422 South Church Street Charlotte, NC 28242 Facility Name: McGuire Nuclear Station Facility Docket Nos.: 50-369 and 50-370 Written, oral, and simulator examinations were iministered at McGuire Nuclear Station near Cornelius, North Carolina. Chief Examiner: w; /d [YlAt%# 3!2.7 07 J s H. Moorman, 111 'Date/ Signed Approved by: 7 Jo 77 John F. Nunro, SecCTbn Chief Vate'51gned Summary: Examinations given the week of December 8, 1986. Written, oral and simulator examinations were administered to 13 candidates; 11 of whom passed. Three candidates were administered simulator re-examinations; all candidates passed. Based on the results described above, nine of ten R0s passed and five of six SR0s passed. 8704280409 870403 PDR ADOCK 05000369 V PDR I
REPORT DETAILS 1. Facility Employees Contacted:
- D. Arnot, Instructor
- K. Carmley, Instructor
- S. Frye, Director, Operator Training
- B.
Griffin, Senior Instructor
- S. Helms, Instructor C. Majure, Lead Instructor
- L. Massey, Assistant Operations Engineer
- R. Newman, Lead Instructor
- J. Painter Instructor
- T. Tessnear, Instructor
- B. Travis, Operations Superintendent
- Attended Exit Meeting 2.
Examiners: C. Casto B. Dean T. Guilfoil, Sonalysts, Inc. I. Kingsley, Sonalysts, Inc.
- J. Moorman
- Chief Examiner 3.
Examination Review Meeting At the conclusion of the written examinations, the examiners provided Chuck Majure with a copy of the written examination and answer key for review. The comments made by the facility reviewers are included as to this report and the NRC Resolutions to these comments are listed below, a. R0 Exam - Analogous SR0 questions in parenthesis (1) Question 1.02a NRC Resolution: Utility comment not accepted. It is agreed that the differential boron worth (DBW) for typical E0L boron concentra-tion is more negative than that for a typical BOL boron concentration. However, should an operator use the E0L curve vice the BOL curve for the same boron concentration to calculate an ECP, then the E0L value is less negative than the 80L value.
2 (2) Question 1.05 (5.15) NRC Resolution: Utility coment accepted. The answer key has been changed to reflect the recommended answer. (3) Question 1.06 NRC Resolution: Utility comment not accepted. The question solicits the effects of various plant evolutions on Shutdown margin (SDM) while operating at power. In accordance with OP/0/A/6100/06, step 4.1.2.5, rod worth is considered when calculating the SDM and therefore rod height will be a factor. (4) Question 1.07 NRC Resolution: Utility comment accepted. Since the question only solicited the first part of the answer given in the answer key, that answer will be accepted for full credit for a point value of (0.50). (5) Question 2.02c NRC Resolution: Utility comment accepted. The answer key has been modified to accept the additional recomended responses. (6) Question 2.03b(6.14b) NRC Resolution: Utility comment partially accepted. Since high head safety injection will inject at the current system pressure, this will be acceptable for full credit. The Cold Leg Accumulators are required to be maintained at pressures between 585 psig and 639 psig by Technical Specifications. The answer key will be changed to reflect this range of pres.iures. (7) Question 2.04c NRC Resolution: Utility comment accepted. The answer key has been changed to reflect the differential pressure driving force for auxiliary spray from the NV system.
o 3 4 (8) Question 2.07 NRC Resolution: 1 Utility comment not accepted. The items in this question are supported by NUREG-1122, Knowledges and Abilities Catalog for j Nuclear Power Plant Operators: Pressurized Water Reactors. (9) Question 2.08b NRC Resolution:
- f Utility coment accepted.
The answer key has been changed to reflect the additional recommended response. (10) Question 2.14 NRC Resolution: Utility comment accepted. The answer key has been changed to allow a variety of answers based on the answer given in part 'a' of the question. j l (11) Question 2.15(6.04b) I NRC Resolution: Utility comment accepted. The answer key has been changed to reflect the additional recommended responses and the requirement j for setpoints has been deleted. l (12) Question 3.01a NRC Resolution: Utility comment accepted. The answer key has been changed to reflect the recommended response. (13) Question 3.03(6.07) NRC Resolution: Utility comment accepted. The answer key has been changed to reflect the recomended response. l
o 4 (14) Question 3.04b NRC Resolution: Utility comment accepted. The intent of the question was to elicit major actions. The answer key will be modified to . require the inclusion of "D/G sequencer starts." (15) Question 3.06(6.15) NRC Resolution: Utility comment accepted. The answer key will be modified to include "CPCS not present" as an acceptable response. (16) Question 3.08a NRC Resolution: Utility comment accepted. The answer key has been changed to reflect the recomended answer. (17) Question 3.08d NRC Resolution: Utility comment not accepted. The reference material provided clearly states that during a rapid power mismatch transient, the temperature error signal will eventually become the main or dominant rod movement signal after power mismatch change has subsided. (18) Question 3.13b NRC Resolution: Utility comment accepted. The answer key has been changed to reflect the recommended answer. (19) Question 3.16(6.06c) NRC Resolution: Utility comment accepted. The answer key has been changed to reflect the recomended answer.
5 (20) Question 3.17 NRC Resolution: Utility comment not accepted. Since there is only one correct value at which NV pump suction will swap, this value (1%) will be the only acceptable answer. The utility should insure that future lesson plans reflect correct setpoints in this area. (21) Question 4.01 NRC Resolution: Utility comment accepted. The answer key has been changed to reflect the correct answer. (22) Question 4.02b NRC Resolution: Utility coment accepted. The question was not specific as to distinguish between the different cases. The answer key has been nodified to reflect the recommended answer. (23) Question 4.03b(7.16b) NRC Resolution: Utility comment not accepted. Although AP/1/A/5500/08 has the actions for Emergency Boration classified as " Subsequent Actions," the knowledge is supported by NUREG-1122. Additionally, Emergency Boration is an action in Emergency Procedures which is to be completed without delay. (24) Question 4.10 NRC Resolution: Utility coment accepted. The additional facility recommended answer will be required to receive full credit for the question. The total value of the question has been raised to (2.00) points to account for the additional answer. The answer key and exam have been modified. (25) Question 4.12.b.2 NRC Resolution: Utility comment accepted. Calculation of extensions 'to administrative dose limits is a Health Physics function. This part of the question has been deleted from the exam.
6 (26) Question 4.15(7.04) NRC Resolution: Utility coment accepted. The facility reconinended answer is equivalent to the answer key and will be accepted for full credit. No modification to the answer key is required, b. SR0 Exam (1) Question 5.03b NRC Resolution: Utility comment accepted. The answer key has been changed to reflect the correct answer. (2) Question 5.04a NRC Resolution: Utility comment accepted. The answer key has been modified to delete the extraneous answer. (3) Question 6.02a NRC Resolution: Utility comment accepted. The answer key has been amended to allow accepting reasonably worded answers. (4) Question 6.02b NRC Resolution: Utility comment accepted. The information solicited by the question cannot be reasonably supported by NUREG-1122 or facility learning objectives. This part of the question has been deleted from the exam and the point value of the question has been adjusted accordingly. (5) Question 6.03a NRC Resolution: Utility comment not accepted. Charging (NV) pump discharge pressure is higher than Reactor Coolant (NC) system pressure at the NC pump #1 seal inlet. Since NV pump pressure and not NC system pressure is higher, NV pump pressure is the only correct answer. No change to the answer key is required.
7 (6) Question 6.05c NRC Resolution: The comment provided by the utility is not applicable to this question on the SR0 exam. This comment is similar to the coment made concerning question 2.08b on the' R0 exam. There is no question on the SR0 exam that is similar to question 2.08b on the R0 exam. (7) Question 6.11 NRC Resolution: i Utility comment partially accepted. The question was not worded 4 to solicit the desired response and has been deleted from the exam. However, memorization of alarm.setpoints in certain i safety systems (i.e., Cold Leg Accumulator) is ' supported by NUREG-1122. The answer key and exam have been modified to i reflect the deletion of the question. l (8) Question 7.02 l NRC Resolution: Utility comment not accepted. It is important for operators to be able to address abnormal situations during'a unit startup without having to read step by step from a procedure. However, the answer key will be modified to reflect the answer that was solicited by the question. (9) Question 7.05a NRC Resolution: Utility coment accepted. The answer key has been modified to reflect the additional condition. This was, verified by referring to EP/1/A/5000/13.1, Response to Loss of Secondary Heat Sink and not to EP/1/A/5000/09 Loss of All AC Power, as provided in the supporting material from the utility. (10) Question 7.06a NRC Resolution: l Utility coment accepted. The answer key has been modified to accept any reasonable assumption for 'the dose rate from an i exposed spent fuel rod. l t I E t s ,e, n. ~e - w e ,e. -, -, - ~, sw*. e> ~~ -, w-
8 (11) Question 7.07a NRC Resolution: Utility coment accepted. Since AP/5500/16 states that all CF valves should be placed in manual, this is the answer that will be accepted. The answer key has been modified to accept this answer. (12) Question 7.15b NRC Resolution: Utility comment accepted. The question was not worded to solf it that part of the response. Part 4 of the response has been deleted from the answer key and the point :/alue of the l question has been modified accordingly. (13) Question 8.05b I NRC Resolution: Utility comment not accepted. The recommended answer provided by the facility is equivalent to the answer key. The recomended answer will be added to the answer key for clarification purposes only. (14) Question 8.10b NRC Resolution: Utility comment accepted. Four hour Tech. Spec. action statements are not required to be memorized since sufficient time exists to look them up. This part of the question has been deleted from the exam and the point value of the question has been adjusted accordingly. (15) Question 8.11d NRC Resolution: Utility comment not accepted. The question was not worded clearly enough to solicit the desired response. This part of the question has been deleted from the exam and the point value of the question has been adjusted accordingly. (16) Question 8.15a NRC Resolution: Utility comment accepted. The answer key has been modified to reflect the recomended answer.
9 1 (17) Question 8.16b NRC Resolution: See NRC Resolution to Question 8.10b (18) Question 8.17 NRC Resolution: Utility comment accepted. We concur that this knowledge.is beyond the scope of an operator's knowledge. The question has 2 been deleted from the exam. (19) Question 8.21 NRC Resolution: .i Utility comment accepted. The answer key has been changed to reflect the correct answer. c. Additional Comments: R0 Exam Question 3.07b NRC Resolution: " Automatically" has been dropped from the answer key since it is implied in the question. Point values for the other two items in the answer have been raised from.25 to.375 points. Question 3.09 NRC Resolution: The answer key has been amended to include "two loop loss of flow" as a required response since this was inadvertently omitted from the original answer key. The total point value of the question has been increased to allow credit for this response. SR0 Exam (1) Question 6.05c NRC Resolution: This question is similar to Question 2.02c and the answer key has been revised similarly.
to (2) Question 6.08 NRC Resolution: This question is similar to Question 3.17 and the answer key has been revised similarly. d. General Comments (1) Although facility learning objectives are reviewed during the preparation of the exam, questions on the exam may not be exclusively tied to facility learning objectives. Other topics germane to the safe operation of a power reactor may be chosen from other sources. These sources include, but are not limited to, NUREG 1122 and licensee event reports. (2) Questions involving Technical Specification action statements which give the operator greater than one hour to respond are inappropriate for memorization. Questions of this nature will not appear on future exams. 4. Exit Meeting At the conclusion of the site visit the examiners met with representatives of the plant staff to discuss the results of the examination. There was one generic weakness noted during the simulator examination. The area of below nonnal performance was use of the OAS computer indication to determine trends instead of using trend recorders. One comment on a written exam question was the result of inadequate reference material provided by the facility. The cooperation given to the examiners and the effort to ensure an atmosphere in the control room conducive to oral examinations was also noted and appreciated. The licensee did not identify as proprietary any of the material provided to or reviewed by the examiners.
G.9 / 8 f ^ Conv U. S. NUCLEAR REGULATORY COMISSION // REACTOR OPERATOR LICENSE EXAMINATION FACILITY: MCGUIRE 1A2 REACTOR TYPE: PWR-WEC4 DATE ADMINISTERED: 86/12/08 EXAMINER: KINGSLEY, I. CANDIDATE: /EfA 6IEk INSTRUCTIONS TO CANDIDATE: Use separate paper for the answers. Write answers on one side only. I Staple qcestion sheet on top of the answer sheets. Points for each question are indicated in parentheses after the question. The passing grade requires at least 70% in each category and a final grade of at least 80%. Examination papers will be picked up six (6) hours after the examination starts. % OF CATEGORY % OF CANDIDATE'S CATEGORY VALUE TOTAL SCORE VALUE CATEGORY 2950 25 '" ^^- 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW 2%3G 28.75 -24131-2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS -30,25-4Gr58 3. INSTRUENTS AND CONTROLS W 29 29.25 e+:94-4. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND RADIOLOGICAL CONTROL ll8 00 -110.2"- Totals Final Grade All work done on this examination is my own. I have neither given nor received aid. 1 Candidate's Signature q}
- 2. 0 Go/2y I
NRC RULES AND GUIDELINES FOR LICENSE EXAMINATIONS During the administration of this examination the following rules apply: 1. Cheating on the examination means an automatic denial of your application and could result in more severe penalties. 2. Restroom trips are to be limited and only one candidate at a time may leave. You must avoid all contacts with anyone outside the examination room to avoid even the appearance or possibility of cheating. 3. Use black ink or dark pencil only to facilitate legible reproductions. 4. Print your name in the blank provided on the cover sheet of the examination. i. Fill in the date on the cover sheet of the examination (if necessary). 5. 6. Use only the paper provided for answers. 7. Print your name in the upper right-hand corner of the first page of each section of the answer sheet. 8. Consecutively number each answer sheet, write "End of Category " as appropriate, start each category on a new page, write only on oiF6 side of the paper, and write "Last Page" on the last answer sneeE 9. Number each answer as to category and number, for example,1.4, 6.3.
- 10. Skip at least three lines between each answer.
- 11. Separate answcr sheets from pad and place finished answer sheets face down on your desk or table.
- 12. Use abbreviations only if they are commonly used in facility literature.
- 13. The point value for each question is indicated in parentheses after the question and can be used as a guide for the depth of answer required.
- 14. Show all calculations, methods, or assumptions used to obtain an answer to mathematical problems whether indicated in the question or not.
- 15. Partial credit may be given. Therefore, ANSWER ALL PARTS OF THE QUESTION AND 00 NOT LEAVE ANY ANSWER BLANK.
- 16. If parts of the examination are not clear as to intent, ask questions of the examiner only.
- 17. You must sign the statement on the cover sheet that indicates that the work is your own and you have not received or been given assistance in completing the examination. This must be done after the examination has been completed.
E I
- 18. When you complete your examination, you shall:
a. Assemble your examination as follows: (1) Exam questions on top. (2) Exam aids - figures, tables, etc. (3) Answer pages including figures which are part of the answer. b. Turn in your copy-of the examination and all pages used to answer-the examination questions. c. Turn in all scrap paper and the balance of the paper that you did not use for answering the questions. d. Leave the examination area, as defined by the examiner..If after leaving, you are found in this area while the examination is still in progress, your license may be denied or revoked. I 1 i 1 sw
b J 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 2 THERMODYNAMICS, HEAT TRANSFER AND FLUID FLUM QUESTION 1.01 (3.00) The plant is operating at 50% power with all systems in automatic. How does a power range instrument failure which causes continuous rod insertion affect the absolute value of the following parameters? Evaluate the transient prior to a reactor trip. Include in your answer INCREASE, DECREASE, or NO CHANGE and a brief EXPLANATION. a. Quadrant Power Tilt Ratio (QPTR) (1.00) b. Delta Flux (Axial Flux Difference) (1.00) ModeratorTemperatureCoefficient( 1.00) c. QUESTION 1.02 (3.00) Compare the CALCULATED Estimated Critical Position (ECP) for a startup to be performed 4 hours after a trip from 100% power, to the ACTUAL critical control rod position if the following events / conditions occurred. Indicate whether the ECP is HIGHER than, LOWER than, or the SAME as the actual critical control rod position AND BRIEFLY EXPLAIN the reason for your answer. Consider each independently. a. E0L differential boron worth was used to calculate the ECP with the plant at BOL. (0.75) b. The startup is delayed until 8 hours after the trip. (0.75) c. The steam dump pressure setpoint is increased to a value just below the Steam Generator PORY setpoint. (0.75) d. All Steam Generator levels are rapidly being raised by 5% just prior to criticality. (0.75) (***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)
b' 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 3 THEMrivuYNAMICS, HEAT TRAN5FtM AND FLUID FLDW QUESTION 1.03 (1.00) During _a reactor startup, the first reactivity addition caused count rate to increase from 20 cps to 40 cps. The second reactivity addition caused count rate to increase from 40 cps to 80 cps. Which of the following statements is CORRECT? a. The first reactivty addition was larger. b. The second reactivity addition was larger. c. The first and second reactivity additions were equal. d. There is not enough data given to determine relationship of reactivity values. QUESTION 1.04 (1.00) TRUE or FALSE? a. As Keff approaches unity, a smaller fractional change in neutron level will result for identical changes in Keff. (0.5) b. With Keff greater than unity,'3 constant positive startup rate with increasing neutron level will occur only if net REACTIVITY is NOT changing. (0.5) QUESTION 1.05 (1.50) a. List the three most significant coefficients that contribute to the total power coefficient at E0L in order of INCREASING magnitude.(1.00) b. How does total power coefficient vary as the core ages? (0.50) 1 l (***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)
1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 4 THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW QUESTION 1.06 (3.00) The plant is operating at 70 percent power with all systems in automatic. EXPLAIN how SHUTDOWN MARGIN is affected by the following conditions or situations. Assume no operator actions (unless stated) and the reactor does NOT trip. Consider each case independently. a. The Reactor Coolant System is borated by 10 ppm. (0.75) b. A control rod in a shutdown bank drops (0.75) c. Power is increased to 90 percent WITHOUT dilution (0.75) d. The plant experiences a 100 MWe load rejection (0.75) OJO} (W ~ Q'JESTION 1.07 Explain how the positive reactivity insertion rate affects the source range count level at which criticality is achieved. ~ QUESTION 1.08 (2.00) a. The plant has been operating at 100% reactor power for several weeks with all systems in automatic. Turbine load is reduced to 50 percent over a 2 hour period. What R0D MOTION will occur to maintain Tave on the program over the next 40 hours (beginning just prior to the power change) assuming no change in boron concentration? Include applicable TIME FRAMES. (1.5) b. The equilibrium (at power) value of samarium reactivity is (DEPENDENT ON or INDEPENDENT OF) power level. (0.5) QUESTION 1.09 (2.00) McGuire Unit I has just restarted fellowing a refueling outage while Unit 2 is near E0L. a. Critical data has just been taken at 10 E-8 amps and the operators add i equal amounts of reactivity. Which unit will have the higher steady l state startup rate and WHY? (1.0) b. While at 50 percent power, a control rod worth -150 pcm drops into the core of both units. Assuming no operator actions and the reactor does l NOT trip, which unit will have the HIGHER steady state Taye and WHY? QG-(MSv'4 <- Cc" M *' A"#3 A^*
- 4) 'W" *)
(1 0) (***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)
f. ~ 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 5 THERMDDYNAMICS, HEAT TRANSFER AND FLUID FLOW QUESTION 1.10 (1.50) A centrifugal charging pump is operating at a low flow condition. The downstream flow control valve begins to open in response to a signal from the pressurizer level controller. How will each of the following parameters be affected? (INCREASE, DECREASE,0R NO CHANGE) Assume VCT level remains constant, a. Pump Discharge Pressure (0.5) b. Available NPSH (0.5) c. Motor Amps (0.5) QUESTION 1.11 (2.50) Primary system flow rate is many times greater than secondary system a. flow rate while the heat transferred by the two. systems is essentially the same. EXPLAIN how this is possible. (1.5) b. Which of the following describes the changes to the steam that occur between the inlet and outlet of the main turbine? (1.0)
- 1. Enthalpy decreases, entropy decreases, quality decreases.
- 2. Enthalpy constant, entropy constant, specific volume increases.
- 3. Enthalpy constant, entropy decreases, quality decreases.
- 4. Enthalpy decreases, entropy increases, specific volume increases.
QUESTION 1.12 (1.50) The reactor is producing 100% rated thermal power at a core delta-T of 60 degrees and a RCS mass flow rate of 100% when a station blackout i occurs. Natural circulation is established and core delta-T goes to 28 F. If decay heat is 2% rated thermal power, what is the core mass flow rate in percent? (***** CATEGORY 01 CONTINUED ON NEXT PAGE *****) )
f. 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 6 THERMODYNAMICS, HEAT TRAN5ttR AND FLUID PLOW QUESTION 1.13 (2.00) Will the Departure from Nucleate Boiling Ratio (DNBR) INCREASE, DECREASE, or REMAIN THE SAME if the following plant parameters DECREASE during power operation? Consider steady state power operation unless stated otherwise. Consider each parameter independently. a. Reactor Coolant System (RCS) Pressure (0.5) b. RCS Temperature (0.5) c. RCS Flow (0.5) d. Reactor Power (0.5) QUESTION 1.14 (1.50) The plant is operating at 100 % power with NCS Tave at 587 F and a steam pressure of 980 psig. What must TAVE be changed to in order to maintain 980 psig steam pressure at 100 % power with 10 % of the tubes in each steam generator plugged? SHOW ALL WORK, including any applicable formulas. Assume NCS flow rate remains constant. QUESTION 1.15 (1.50) The plant is in Hot Standby with pressurizer pressure at 985 psig. A pressurizer PORY begins leaking to the pressurizer relief tank which is at 5 psig. What is the downstream tail pipe temperature? (0.50) a. b. What is the enthalpy of the fluid entering the PRT? (0.50) c. The fluid entering the PRT is a: (SELECT.ONE) (0.50) 1. Superheated vapor 2. Wet vapor 3. Saturated vapor 4. Subcooled liquid (***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)
f. 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 7 THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW QUESTION 1.16 (2.00) One NCP trips at 30% rated thermal power, without a reactor protection system actuation or a change in turbine load. Indicate whether the following parameters will INCREASE, DECREASE, or REMAIN THE SAME. Assume no operator action. a. Flow in the Operating NC loops. b. Reactor vessel Delta-P. (0.50 for each) c. Core Delta-T. d. An operating loop steam generator steam flow. (***** END OF CATEGORY 01 *****)
2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 8 l QUESTION 2.01 (1.00) Each NC pung motor is equipped with an anti-reverse rotation device. List TWO reasons for using this device. QUESTION 2.02 (2.25) a. Describe the NCP #1 seal leakoff flowpath following a Containment Phase A Isolation signal. (0.75) b. Can long term NCP operation continue under these conditions? (0.25) c. What additional actions occur upon a Containment Phase B Isolation signal which adversely affect the NCPs? (1.00) d. Can long term NCP operation continue under these conditions? (0.25) QUESTION 2.03 (3.00) a. Excluding Manual Initiation, list ALL conditions that will generate a Safety Injection signal. Include setpoints and coincidences where applicable. (0.90) b. Indicate the order in.which the ECCS subsystems will inject into the NCS and the pressure at which each will inject during a continued NCS depressurization of 100 psig/ minute caused by a LOCA. (Assume each active component was started by a Safety Injection Signal.) (2.10) QUESTION 2.04 (2.00) a. List TWO reasons for maintaining a minimum pressurizer spray line flow during normal "at power" operations. (1.00) b. !ist TWO annunciators available to alert the operator that minimum spray flow is not being maintained. (0.50) c. List TWO scurces of the driving force for pressurizer spray flow.(0.50) (***** CATEGORY 02 CONTINUED ON NEXT PAGE *****)
r;- 2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 9 QUESTION 2.05 (2.00) State' how the following components respond (FAIL OPEN, FAIL CLOSED, REMAIN FUNCTIONAL, DIVERTS TO.... ETC.) when instrument air pressure is lost with the plant at 100% power. a. Letdown pressure control valve (NV-124) (0.25) b. Cold leg accumulator isolation valve (CLA-76A) (0.25) c. Pressurizer PORV(NC-34A) (0.25) d. MDAFP discharge flow control valve (CA-56A) (0.25) e. TDAFP steam supply valve (SA-48) (0.25) f. Pressurizer spray valve (NC-29) (0.25) g. Boric acid flow control valve (NV-267) (0.25) h. Excess letdown heat exchanger outlet vavle(NV-278) (0.25) QUESTION 2.06 (1.00) Why is air supplied to the upper containment and discharged from the lower containment instead of vice-versa? QUESTION 2.07 (2.00) Match the following symptoms or causes in column "B" to the specific Rod Control System failure or error in column "A". "A" "B" a. Logic Cabinet Urgent Failure
- 1. Caused by simultaneous zero current order to stationary and movable grippers.
b. Regulation failure
- 2. Caused by unselected rod (s) having current flow in movable or lift coils, c.
Phase failure
- 3. Caused by failure of redundant power supply module.
d. Logic error
- 4. Caused by pulser or slave cycler failure.
- 5. Caused by full current being applied for excessive time.
(There is only 1 correct numerical
- 6. Caused by failure of power answer for each lettered error or cabinet thyristor.
failure at 0.5 each) (***** CATEGORY 02 CONTINUED ON NEXT PAGE *****)
2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 10 QUESTION 2.08 (2.00) a. List TWO indications or symptoms which will be observed if a tube leak occurs _ in a NC pump thermal barrier heat exchanger. Assume NO alarm setpoints are reached. (1.0) b. If the tube leak continues to increase in severity, WHAT AUTOMATIC action will occur and WHAT CONDITION will cause this automatic action? (1.0) QUESTION 2.09 (1.75) For each of the following process and/or area radiation monitors, state the automatic actions which will occur when the high level alarm setpoint is reached. If no automatic actions occur, state this in your answer. (0.25 for each) a. 1 EMF-46A, KC system monitor b. IEW-51A, reactor building activity monitor c. 1 EMF-49, waste liquid discharge monitor d. 1EW-50, waste gas discharge monitor e. 1 EMF-24, steam line monitor f. 1 EMF-45B, nuclear service water monitor g. 1 EMF-39(L), containment gas monitor (low range) (***** CATEGORY 02 CONTINUED ON NEXT PAGE *****)
~ 2. PLANT DESIGN INCLUDING SAFETY AND' EMERGENCY SYSTEMS PAGE 11 QUESTION 2.10 (1.50) Select the THREE LOADS from the following list which would be deenergized following the loss of the ITB bus. a. 18 NS pump b. 1B KF pump c. Equipment decontamination pump d. 1B hotwell pump e. B main fire pump f. 1B RC pump QUESTION 2.11 (2.00) In a feedwater heater,.the normal drain control valve will modulate to maintain normal water level. Describe the automatic actions that will occur for each of the following cases. ergency High Level a. Waterlevelincreasesfromnormal oteEp/4A setpoint. ( ax4N d N /* ) (1.50) b. Water level in the C heater drain tank decreases from normal to the low-Low Level setpoint.- (0.50) QUESTION 2.12 (1.00) List ALL the sources of suction water available to the auxiliary feedwater pumps. (***** CATEGORY 02 CONTINUED ON NEXT PAGE *****)
r 2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 12 QUESTION 2.13 (3.50) Refer to FIGURE 2-1 (NI System) to answer the following questions: a. List the TWO interlock conditions which must exist in order to open NI-115. Use valve numbers as applicable. (1.00) b. State whether the follcwing valves are OPEN or SHUT during the Injection Phase following a LOCA. (Place responses on your answer sheet.) (2.50) 1. 178 2. 121 3. 183 4. 136 5. 152 QUESTION 2.14 (1.00) Refer to FIGURE 2-2 (NV System) to answer the following question: Supply the charging and letdown flow rates indicated. The plant is operating at 100% power with steady state conditions. Assume no NCS leakage and one 45 gpm orifice is in service. (Place responses on your answer sheet.)
- a. =
gpm (0.25)
- b. =
gpm (0.25)
- c. =
gpm (0.25)
- d. -
gpm (0.25) QUESTION 2.15 (1.25) The Pressurizer Relief Tank (PRT) collects, condenses and cools the discharge from the PORVs and Safeties. List FIVE (5) other RELIEF VALVES that discharge to the PRT-finc'ude SETPOINTS). (***** CATEGORY 02 CONTINUED ON NEXT PAGE *****)
(f. 2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 13 QUESTION 2.16 (1.50) List SIX (6) components that discharge to the waste gas vent header. (***** END OF CATEGORY 02 *****)
~ 3. INSTRUMENTS AND CONTROLS PAGE 14 QUESTION 3.01 (1.50) The plant is operating at 100% power. The normally selected channel to the pressurizer level control system fails low. a. List ALL the automatic actions that will be initiated by the channel failure. (1.00) b. If no operator action is taken, what will eventually cause a reactor trip? (0.50) QUESTION 3.02 (2.75) a. If both Intermediate Range Detectors are severely overcompensated, EXPLAIN what will happen during a reactor shutdown regarding the source range detectors and the Reactor Protection System? (1.00) b. What device is physically adjusted to match nuclear power indication with secondary power following a calorimetric? (0.50) c. Identify each of the following as related to the SOURCE RANGE, INTERMEDIATE RANGE, or POWER RANGE instrumentation. (1.25) 1. Summing amplifier 2. Pulse height discriminator 3. Compensating voltage 4. Auctioneering circuitry 5. Scaler-timer QUESTION 3.03 (2.00) List ALL separate plant parameters (excluding D/G related) that can be monitored in the Standby Shutdown Facility? (Related parameters count as 1 parameter - e.g., loop A,B,C,AND,D flow equals one parameter.) (***** CATEGORY 03 CONTINUED ON NEXT PAGE *****)
3. INSTRUMENTS AND CONTROLS PAGE 15 QUESTION 3.04 (2.00) The reactor is operating at 40% power steady state with four loops. List ALL the INITIAL AUTOMATIC ACTIONS that are caused directly by the following signals. Consider each separately.(Alarms not required.)
- a. 2/4 low-low level in 1/4 SG's (0.50)
- b. 2/4 low-low level in 2/4 SG's with blackout signal (0.50)
- c. 2/3 hi-hi level in 1/4 SG's (0.75)
- d. Feed pressure input'to the Main Feed Pump speed control system fails high.
(0.25) QUESTION 3.05 (1.25) Explain the purpose of the steam pressure input used in the development a. of a steam flow signal for the S/G water level control system. (0.75) b. How would INDICATED steam flow compare to ACTUAL steam flow at 20% power if, during a power decrease from 100% to 0% power, the steam pressure signal stuck at its 50% power value. (0.50) QUESTION 3.06 (1.00) The plant is operating at 100 % steady state power with containment pressure channel IV (PB 934A) failed high. A technician troubleshooting the trip bistables inadvertently de-energizes the instrument power for containment pressure channel II. Will a Containment Spray Actuation occur? (0.50) WHY or WHY NOT? (0.50) QUESTION 3.07 (1.75) a. List the FOUR unique signals which will initiate a motor-driven auxiliary feedwater AUTO-START signal. (1.00) b. With an auto start signal initiated, HOW and under WHAT CONDITIONS will the Auxiliary Feed Pump water supply shift from the normal supply to the emergency supply? Include setpoints. (0.75) (***** CATEGORY 03 CONTINUED ON NEXT PAGE *****) 11
3. INSTRUMENTS AND CONTROLS PAGE-16 QUESTION 3.08 (3.00) The plant is operating at 100% power with all control systems in auton.atic. Bank D rods are at 200 steps. Given the following conditions / situations, describe the initial rod motion which occurs. Your answer should contain IN, OUT, or NO MOTION with a brief explanation. Assume no operator action (unless stated) and the reactor does NOT trip. Consider each case separately. a. A PORY on B steam generator fails open. (0.75) b. Loop A narrow-range Thot instrument fails high. (0.75) c. Loop C narrow-range Tcold instrument fails low. (0.75) d. Turbine load is ramped to 50% at 5%/ minute. (0.75) ( 2.o0) QUESTION 3.09 (1.75) The reactor is critical at 5% rated thermal power. List ALL reactor trips which are DISA" LED in this condition. ) QUESTION 3.10 (1.50) a. The reactor is critical at 10E-8 amps during a reactor startup. A malfunctioning steam header pressure controller causes nine condenser steam dump valves to fully open. Assuming the reactor does NOT trip, at what average temperature (Tave) will the Reactor Coolant System stabilize?(0.50) b. Describe the Steam Dung System action which causes Tave to stabilize at this value. (1.00) t i I (***** CATEGORY 03 CONTINUED ON NEXT PAGE *****)
r-
.v- - - -,. - ~, .--m--
r-3. INSTRUMENTS AND CONTROLS PAGE 17 QUESTION 3.11 (2.00) For each of the following conditions, state whether the diesel generator will start or will not start with its control in automatic. (0.50 each) a. 86N lockout present and 2/3 UV on,160 volt bus, b. 86S lockout present and LOCA conditions. c. Lube oil temperature high and a 2/3 UV on 4160 volt bus. d. Lube oil pressure low (IPSA/IPSB) and LOCA conditions. QUESTION 3.12 (2.00) For each of the following conditions, state if the condition WILL or WILL NOT result in a turbine runback. (0.50 each) a. One OP delta T channel within 2% of OP delta T reactor trip setpoint. b. Impulse pressure equals 60% and 1A MFP trips.(Two running initially) c. Stator cooling water pressure at 0 psid for 10 seconds with 8% impulse pressure. d. Impulse pressure equals 65% when a load rejection occurs. QUESTION 3.13 (1.50) a. List the TWO conditions that must be present to be in Low Pressure Protection mode for pressurizer PORVs 32 and 34. (1.00) b. State the lift setpoint for the pressurizer PORVs while in this mode. (0.50) QUESTION 3.14 (2.00) List the signals that will cause a MAIN STEAM ISOLATION to occur. Include any permissives that apply and the setpoints. (***** CATEGORY 03 CONTINUED ON NEXT PAGE *****)
r 3. INSTRUMENTS AND CONTROLS PAGE 18 QUESTION 3.15 (1.50) The reactor-is operating at 100% power when an inadvertent Safety Injection signal is generated. All systems respond as expected except that only the Train B reactor trip breaker opens. Indicate whether the following are TRUE or FALSE. Assume no operator action unless stated. (0.50 each) a. The turbine trips. b. Feedwater isolation will occur before Tave decreases below 564 F. c. Source range instruments will automatically energize at P-10. QUESTION 3.16 (1.25) List FIVE (5) EQUIPMENTS / COMPONENTS RESET by the Rod Position Startup Pushbutton. QUESTION 3.17 (1.50) State the SETP0INTS and AUTOMATIC FUNCTIONS / ALARMS for the VCT Level Control System when VCT level decreases CONTINU0USLY from 45%. Assume no operator action. 1 l l l l l (***** END OF CATEGORY 03 *****) l
4. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 19 RADIOLOGICAL CONTROL QUESTION 4.01 (1.00) Which ONE of the following CSF conditions would be the highest priority in requiring operator response? 1. NCS Inventory - Orange Path 2. Core Heat Sink - Red Path 3. Containment Integrity - Red Path 4. Subcriticality - Orange Path 5. NCS Integrity - Red Path 6. Core. Cooling - Orange Path QUESTION 4.02 (2.50) a. EP/1/A/5000/01, Safety Injection, (Foldout) lists TWO conditions that TOGETHER require the operator to trip all NCPs. What are these TWO conditions? Include setpoints as applicable. (1.00) b. According to AP/1/A/5500/08, Malfunction of NC Pump, a NCP must be tripped if ANY of THREE conditions exist. What are these THREE conditions? Include setpoints as applicable. (1.50) QUESTION 4.03 (2.50) List FOUR situations or conditions (unrelated) which require the a. operator to commence EMERGENCY B0 RATION of the NCS. (1.00) b. In accordance with AP/1/A/5500/38, Emergency Boration, what specific ^ operator actions are required to initiate emergency boration at the MAXIMUM RATE via the " normal" path? (1.50) 4 (***** CATEGORY 04 CONTINUED ON NEXT PAGE *****) e
4. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 20 RADIOLOGICAL CUNIMUL QUESTION 4.04 (2.00) EP/1/A/5000/09, Loss of All AC Power, has the operator cooldown and depressurize the NCS using steam generator PORVs. I a. How would these valves be operated without instrument air? (0.5) b. Specifically, what is the depressurization designed to accomplish?(0,5) c. Why is there a minimum cooldown temperature limit that is based on core age? (0.5) d. Regarding the depressurization, how should the operator respond if pressurizer level is lost or vessel head voiding occurs? (0.5) QUESTION 4.05 (1.00) Select the group of indications which are characteristic of natural circulation in accordance with EP/1/A/5000/1.1, Natural Circulation Cooldown. NCS SG CORE EXIT SUBC00 LING PRESSURES Thot Tcold THERM 0 COUPLES a. 10 F Constant Decreasing Constant Decreasing b. 15 F Decreasing Constant Constant Constant c. 20 F Constant Decreasing Decreasing Decreasing d. 25 F Decreasing Increasing Decreasing Constant e. 30 F Increasing Constant Increasing Decreasing i J (***** CATEGORY 04 CONTINUED ON NEXT PAGE *****)
4. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 21 RADIOLOGICAL CONTROL QUESTION 4.06 (1.50) a. According to EP/1/A/5000/2.4, Transfer to Hot Leg Recirculation, when should ECCS systems be aligned for hot leg recirculation following a LOCA? (0.50) b. Why is Hot Leg Recirculation required following a LOCA? Include in your answer why Cold Leg Recirculation alone may not be sufficient to prevent inadequate core cooling. (1.00) i QUESTION 4.07 (2.00) Classify the following as either IDENTIFIED, UNIDENTIFIED, CONTROLLED, or i PRESSURE BOUNDARY leakage. (0.50 each) a. NCP 1A #1 seal leakoff b. NCP 1A #3 seal leakoff c. Pressurizer safety valve seat leakage d. Steam generator tube leakage QUESTION 4.08 (2.50) Supply the following limits which must be observed during plant operation in accordance with INTEGRATED OPERATING PROCEDURES. (0.50 for each) a. Maximum NCS cooldown rate b. Maximum boron concentration differential between NCS and pressurizer c. Minimum VCT pressure with NCPs running d. Minimum Tave during critical operations e. Minimum power change requiring isotopic analysis for iodine t (***** CATEGORY 04 CONTINUED ON NEXT PAGE *****)
'4. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 22 RADIOLOGICAL CONTROL QUESTION 4.09 (1.00) A reactor startup is in progress. Select the condition below which requires full insertian of the control banks. a. It appears that criticality will be achieved below the rod insertion limit. b. Criticality is achieved below the rod insertion limit. c. Criticality is achieved above the rod insertion limit but below the ECP lower band. d. Criticality is not achieved' prior to exceeding the ECP upper band. (2.co ) QUESTION 4.10 ih50t-In accordance with AP/1/A/5500/01, Reactor Trip, what are all the immediate operator responses ' required if the turbine has not tripped and cannot be penually tripped from the control room? QUESTION 4.11 (1.50) The plant is operating at 100% power when a telephone call is received reporting a bomb in the control room. A quick search reveals a " suspicious" package which prompts the Shif t Supervisor to order evacuation of the control room. What are the responsibilities of the Unit 1 operators (SR0 and 2 R0s) ? (***** CATEGORY 04 CONTINUED ON NEXT PAGE *****)
4. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 23 RADIOLOGICAL CONTROL l 2.00 QUESTION 4.12 -(2.ou) Provide the following exposure limits (non-emergency) (0.25 each). a. 1. Maximum administrative quarterly limit 2. Maximum 10 CFR 20 quarterly limit 3. Maximum administrative yearly limit 4. Maximum 10 CFR 20 yearly limit b. A mechanic has a total exposure of 1500 mrem during the first two quarters of the year. He has been granted an extension of his third quarter administrative exposure limit to 1800 mrem for steam generator maintenance. Upon completion of the task, his actual third quarter exposure is 1300 mrem. 1. What TWO personnel are required to approve the above extension of his third quarter administrative exposure limit? (1.00) t L'het is his new qttarterly edministrative7xposure-limtt northat -ths task is cespici.e? (0.50P QUESTION 4 13 (1.00) 3 a. The shci n in Hot Shutdown at 320 F. During a yalve : lip.mnt ca T.ne NV System, it is disp 9m** that the discnarge valve for 1A NV pump is closed ed qmpt be gd.sd. Is 1A NV pump operable? IOMO) h. An operability Cherb 1E reic-Md su 16 he pump but it fails to start. Does noncompliance witn any technical specification erfct? (0.50) QUESTION 4.14 (2.25) Refer to ispre N "2 t.he following question. buen each of the following indications, determine whether axial flux difference is being maintained within the appro)riate limits and explain briefly why or why not. Assume RA0C. (0.75 eac1) POWER AFD AFD AFD AFD LEVEL CHANNEL 1 CHANNEL 2 CHANNEL 3 CHANNEL 4 1. 70% -25 -27 -26 -33 2. 85% -23 -22 -35 -24 3. 51% +14 +22 +16 +23 (***** CATEGORY 04 CONTINUE 0 ON NEXT PAGE *****)
4. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 24 RADIOLOGICAL CONIROL QUESTION 4.15 (2.50) In accordance with EP/1/A/5000/09, Loss of All AC Power, what are ALL the immediate actions for a loss of all AC power? QUESTION 4.16 (2.00) During a Natural Circulation cooldown using EP/1/A/5000/1.1, cooldown a. rate is limited to 50 F/hr. The reason for this limit is to: (1.00) 1. Prevent hot leg voiding. 2. Prevent voiding in reactor vessel upper head. 3. Prevent unnecessary reactor vessel thermal stresses. 4. Prevent voiding in top of steam generator U-tubes. 5. Prevent exceeding the make-up capacity of the Auxiliary Feedwater System. b. In accordance with EP/1/A/5000/1.1, under what conditions may minimum NC subcooling be reduced from 100 F to 50 F? (1.00) 1 i i (***** END OF CATEGORY 04 *****) ('************ END OF EXAMINATION ***************)
EQUATION SHEET l f = ma v = s/t Cycle efficiency = (.1et work out)/(Energy in) 2 w = mg s = V,t + 1/2 at 2 E = mc 2 ~ KE = 1/2 av a = (Vf - V,)/t A = AN A=Aeg PE = ogn Vf = V, + at w = e/t A = an2/t1/2 = 0.693/t1/2 2 W = v aP. nD 1/2" A= [(t1/2)
- I*bIl 4
aE = 931 m m = V,yAo -h t,te 9 Q = mCpat 6 = UA A T I = I e~"* g Pwe = W ah I=I 10-*/
- f n
TVL = 1.3/u sur(t) P = P 10 HVL = -0.693/u p = p e /T t o SUR = 26.06/T SCR = S/(1 - K,ff) CR = S/(1 - K,ffx) x SUR = 25p/t* + (a - p)T CR (1 - K,ffj) = CR (I - Neff2) j 2 T = ( t*/o ) + [(a - o V Io] M = 1/(1 - K,ff) = CR /G, j T = s/(s - s) M = (1 - K,ffg)/(1 - K,ffj) T = (a - o)/(Io) SOM = ( - K,ff)/K,ff a = (K,ff-1)/K,ff = d,ff/K,ff t* = 10 seconds I = 0.1 seconds-I o = [(L*/(T Keff)] + [s,ff (1 + IT)] / Idjj=Id 2,2 2 P = (I4V)/(3 x 1010) Id gd jj 22 2 I = cN R/hr = (0.5 CE)/d (meters) R/hr = 6 CE/d2 (feet) Water Parameters Miscellaneous Conversions 1 gal. = 8.345 lbm. 1 curie = 3.7 x 1010eps 1 ga]. = 3.78 liters ( kg = 2.21 lbm = 7.48 gal. I hp = 2.54 x 103 Stu/hr 1 ft4 Oensity = 62.4 lbT/f 3 1 mw = 3.41 x 100 Stu/hr Oensity = 1 gm/c..9 lin = 2.54 cm Heat of vaoorization = 370 Stu/lem
- F = 9/5'C + 32 Heat of fusion = 144 Stu/lem
- C = 5/9 (*F-32) 1 Atm = 14.7 psi = 29.9 in. Hg.
1 BTU = 778 ft-lbf I ft. H O = 0.4335 lbf/in. 2
lUtl 1.WM ~y jin u rsii ~ ~,.Ti l y
- gs! +a I y' }wJ uft y
n w. pt;., tv.- !IR; pr yd:E tu 2 3 I T".
- guryjg~r> 9"7e.'
,. 4. r. f.g-mur$. y = r,.c- -. - m {.%-c i jg, h,f,jf. . 4 hm-l E
- r'
! JjhndG$i@W4[s M:ihIII:.S MFDHW" ~ /gMsgn@gg$QMi '"' pi r1JT F Wfs!$$: g!N@n grjp %p g e am:.g.,w. nn a.,rR .t,a: -.. ~ .4 %s g -,, y 1 W 5 , g]s,grd: 553E..== I .. y m,
- r- -h Y~ 4?h...
sd *$ - n hhh @h 'k &p & W-Q4Tr#WY#w?is?(si'$* Q'yTt b")y fym y &.W'W n-s%p. id lt = n .lu/1st: $m r' u.,I': la... =,rra.7/A 7 ; 6, tl 3:/,,3!55$;i 1 .c
- iy: mmyp r:*.x.nn tuu
.tm mn m p. 9 p 1.. ..r tz.g:y. m : t E c,a..t r,;w. 7;.
- 2 g
,,.,5..;., bL'. : c. m
- r. cm yp.tr:x,,, s s..pr.
,...n -:
- a..r.ptt u s, u
r j ,.e' ~ v 4a "W, 4..hrg' "."i 7 J m_y
- j4;. Au Ag'sAfp'k.
.7.1 I'ip.rIk- =.v.,.$:7;=.g;tr,f.,r; alp Tj i.t p
- .j4.tp.i;,:. !p gnli-
.,a,}{-},[ pu<'t 1 ..rgg%y - a.es, -.,.m.tus y, c..ntsm. %-*4 x J c1:n,y,;,j:mk rn a g .= t.. :n7.t:vt i <;v)ynn. i k Ha m n4o C y z.
- e.gA;;.a-;y.49mr.n.
>adk.V1:a9:h.;sn; +u:itrqm,n a.A .tgmn: => g : rt q m a = r 55ig!$LE-iiW 2 -ftyijWIN51NfnA'"pi[IE fi liiEniE$!g 4*4 t A.ur,j #=in en,y.:pavayr= h. aman s d 7.niEUr tddM en w iue WR7w r g i : 4 n.ny g;. 'l 1, j.t n ig 4-h !.k", r 2. tr qf :;tu .i '1, f! ?s'. ". @-jiiS t);;,. ' . ;;3@7.$ c#hdEiEN!! itimdaiT8.t$ 4p ., d gr. r.# b @@8hi$$fNjiilE$I$h...Tjf Eih.maimg;n ge&r.E fMEjN .nir g tra,.c t'.pr:fFM'Ti _' %( f.i w#
- tt mr
,pr wJ er,m.r a trn ~ 5 g F.* -'it/Ni E'QIjnijjdgig'%{ Q.Kf O. HT) 3rp 7gy W )k;' AfE.((I iffg4g!pa f,at, hfliht,.trL l.Mn;w :..p y Jh.'.Kii ." 11grdte a.vp 9:::,..If. }h2 8h[ N,a.gh,,. f k' ( $.k g..... Ysis.tn a .,,xw,ce...,,,...n bu,., n, v,..u..a a.
- v...
a.. g,:. "rus - ,.,s.. v,n.u... ;n. .y 4 ,u i!@:'dr5@m: IR'i~'
- .--
- r/E:
mp li in;u:.6 .x-P.: il"0:ng; p#nunqiy Mhii2!! tnig,9;;p ~ in . ' y_ e nza.,. iTGrpi ijJ7-dyh".w u u W ;u u;~. ,ur ut .:... E. n@~h;n ~ . vq p %q.. g H'U d.., ,.o,t L.
- rring;;.1 rg r; puw Iyy? j n!HR,iM U!.'.
r.. J,yrdl'Or:iii{:.. . a.. +' g, li!!UN....,...,;. " tm ii FiiHfil njS"yg;d:I'n "i!! Ub
- y
-bMEII$p:. H"#
- z
-Wrtni!EHi3.1,,;II .~,_d u -Q.i.n5F{M.gn'is.f.;m.s..n
- s.,iT,jT..rG's## ;
IE ! M u-i ghua. u h p 'm=gw-re t n .n rs.4t=111n-.;;"rkEWrr%s;'*)y$a:r5N'UV* .. m t w- ',m = = = D -3
Table 1. Saturated Steam: Temperature Table Abs Press. Specific Volume Enthalpy Entropy Temp tb per Sat. Sat. Sat. Sat. Sat. Sat. Temp fahr SqIn. Liquid Evap Vapor Liquid Evap Vapor Liquid Evap Vapor Fahr VE hf hg h sg srp s I f g g t p vt Vf8 32.0 0 08859 0.016022 3304.7 3304.7 0.0179 1075.5 1075.5 0 0000 2.1873 2.1873 32.0 34.0 0 09600 0 016021 3061.9 3061.9 1.996 1074.4 1076.4 0 0041 2.1762 2.1802 34 0 36 8 0 10395 0.016020 2839.0 2839 0 4.008 1073.2 1077.2 0 0081 2.1651 2.1732 36 8 38.0 0.11249 0 016019 2634.1 2634.2 6.018 1072.1 1078.1 0.0122 2.1541 2.1663 34.0 40 0 1.12163 0.016019 2445.8 2445.8 8.027 1071.0 1079.0 0 0162 2.1432 2.1594 48 8 42.0 0.13143 0.016019 2272.4 2272.4 10.035 1069 8 1079.9 0 0202 2.1325 2.1527 42.0 44 0 0.14192 0 016019 2112 8 2112.8 12.041 1068 7 1080.7 0 0242 2.1217 2.1459 44 0 46.0 0 15314 0.016020 1965 7 1965.7 14 047 1067.6 1081.6 0 0282 2.1111 2.1393 46 0 41.0 0.16514 0.016021 1830 0 1830.0 16.051 1066.4 1082.5 0.0321 2.100G 2.1327 48.0 50.0 0.17796 0 016023 1704 8 1704.8 18 054 1065.3 1083.4 0.0361 2.0901 2.1262 50.0 52.0 0.19165 0.016024 1589 2 1589.2 20 057 1064.2 1084.2 0 0400 2.0798 2.1197 52 6 54.0 0 20625 0 016026 1482.4 1482.4 22 058 1063.1 1085.1 0.0439 2 0695 2.1134 54 0 56.0 0 22183 0.016028 1383.6 1383.6 24.059 1061.9 1086.0 0 0478 2.0593 2.1070 56 0 58.0 0 23843 0.016031 1292.2 1292.2 26.060 1060.8 1086.9 0.0516 2.0491 2.1008 58.0 60 0 0.25611 0.016033 1207.6 1207.6 28.060 1059.7 1087.7 0.0555 2.0391 2.0946 68.0 62.0 0.27494 0 016036 1129.2 1129.2 30.059 1058.5 1088.6 0.3593 2.0291 2.0685 62.8 64.0 0.29497 0 016039 1056.5 1056.5 32.058 10574 1089.5 0.0632 2.0192 2.0824 34 8 66.0 0.31626 0 016043 989.0 989.1 34.056 1056.3 1090.4 0 0670 2.0094 2.0764 66.0 68.0 0 33839 0.016046 926.5 926.5 36.054 1055.2 1091.2 0.0708. 1.99 % 2 0704 68 8 70 0 0.36292 0.016050 86S3 868.4 38.052 1054.0 1092.1 0 0745 1.9900 2 0645 70 C 72 0 0.38844 0.016054 814.3 814.3 40 049 1052.9 1093.0 0 0783 1.9804 2.0587 12.5 .74.0 0 41550 0 016058 764.1 764.1 42.046 1051.8 1093.8 0 0821 1.9708 2 0529 14 0 76.0 0 44420 0.016063 717.4 717.4 44.043 1050 7 1094.7 0 0858.1.%14 2.0472 16.8 78.0 0.47461 0 016067 673 8 673.9 46.040 1049.5 1095.6 0 0895 1.9520 2.0415 78.0 80.0 0.50683 0 016072 633.3 633.3 48.037 1048.4 1096.4 0.0912 1.9426 2.0359 88 8 82.0 0.54093 .0.016077 595.5 595.5 50 033 1047.3 1097.3 0 0969 1.9334 2.0303 12.0 84.0 0 57702 0 016082 560.3 560.3 52.029 1046.1 1093 2 0.1006 1.9242 2 0248 84.0 86.0 0 61518 0 016087 227.5 527.5 54 026 1045 0 1099 0 0.1043 1.9151 20193 16 0 II O O65551 0 016093 4968 4%.8 56 022 1043.9 1099 9 0 1079 1.9060 2.0139 88.9 90 0 0 69813 0 016099 4681 468.1 58 018 1042 7 1100 8 0.1115 1.8970 2.0086 90 0 92 0 0.74313 0.016105 441.3 441.3 60 014 1041 6 1101 6 0.1152 1.8881 2 0033 92 0 94 0 0 79062 0 016111 416.3 416.3 62 010 1040 5 1102 5 0 1188 I8792 1.9980 94.0 96 0 0 34072 0 016117 392 8 392.9 64.006 1039 3 1103 3 0 1224 1.8704 1.9928 SS 0 98.0 0 89356 0 016123 370 9 370.9 66 003 10382 1104 2 0 1260 18E17 1.9876 SI O u
Abs Press. Specific Volume Enthalpy Entropy Temp Lb per Sat. Sat. Sal. Sat. Sal. Sat. Temp Fahr SqIn. Liquid Evap Vapor Liquid Evap Vapor Liquid Evap Vapor Fahr t p V vfg vg hr h is hg sg sig sg t 130.8 0.94924 0 016130 350.4 350.4 67.999 1037.1 1105.1 0.1295 1.8530 1.9825 les.g 132.8 1.00789 0.016137 331.1 331.1 69.995 1035.9 1105.9 0.1331 1.8444 1.9775 102.0 164.8 1.06 % 5 0.016144 313.1 313.1 71.992 1034.8 1106.8 0.1366 1.8358 1.9725 104.0 106.8 1.1347 0.016151 296.16 296.18 73.99 1033.6 1107.6 0.1402 1.8273 1.9675 les.s 138.0 12030 0.016158 280.28 280.30 75.98 1032.5 1108.5 0.1437 1.8188 1.9626 10s.8 110.0 1.2750 0.016165 265.37 265.39 77.98 1031.4 1109.3 0.1472 1.8105 1.9577 110.3 112.0 1.3505 0.016173 25137 251.38 79.98 1030.2 1110.2 0.1507 1.8021 1.9528 112.0 1148 1.4299 0 016180 23821 238.22 81.97 10291 1111.0 0.1542 1.7938 1.9480 114.0 118.0 1.5133 0.016188 225.84 225 85 83 97 1027.9 1111.9 0.1577 1.7856 1.9433 116.0 118.8 1.6009 0.016196 214.20 214.21 85.97 1026.8 !!!2.7 0.1611 1.7774 !.9386 113.8 120.8 1.6927 0 016204 203.25 203.26 87.97 1025 6 1113.6 0 1646 1.7693 1.9339 120.0 122.0 1.7891 0.016213 192.94 192.95 89 96 1024.5 1114.4 0.1680 1.7613 1.9293 122.8 124.8 1.8901 0 016221 183 23 18324 91 96 1023.3 1115.3 0.1715 1.7533 1.9247 124.0 125.I 1.9959 0.016229 174 08 174.09 93 96 1022.2 1116.1 0.1749 1.7453 1.9202 125.I 128.8 2.1068 0.016238 165.45 165.47 95.% 1021.0 1117.0 0.1783 1.7374 1.9157 128.0 130.0 2.2230 0 016247 157.32 157.33 97 96 1019.8 1117.8 0.1817 11295 1.9112 138.0 132.0 2.3445 0.016256 149.64 149.66 99.95 10183 1118.6 0.1851 13217 1.9068 132.I 134.0 2.4717 0.016265 142.40 142.41 101.95 1017.5 1119.5 0.1884 1.7140 1.9024 134.s 135.0 . 2.6047 0.016274 135.55 135.57 103.95 1016.4 1120.3 0.1918 13063 1.8980 135.0 138.8 2.7438 0 016284 129.09 129.11 105.95 1015.2 1121.1 0.1%1 1.6986 1.8937 133.3 140 0 2.8892 0.016293 122.98 123.00 107.95 1014.0 1122.0 0.1985 1.6910 1.8895 140.0 142.0 3.0411 0.016303 117.21 11722 109.95 1012.9 1122.8 0.2018 1.6534 1.8852 142.8 144.0 3.1997 0.016312 111 74 11136 111.95 1011.7 1123.6 0 2051 1.6759 1.8810 144.0 145.0 3.3653 0.016322 106.58 106.59 113.95 1010.5 1124.5 0.2084 1.6684 1.8769 146.I 148.D 3.5381 0.016332 101.68 101.70 115.95 1009.3 !!25.3 0.2117 1.6610 1.8727 148.0 150.0 33184 0.016343 97.05 97.07 117 95 1008.2 1126.1 0.2150 1.6536 1.8686 150.0 1520 3.9065 0 016353 92.66 92.68 119.95 1007.0 1126.9 0.2183 1.6463 1.8646 152.8 154.0 4.1025 0 016363 88 50 88.52 121.95 1005.8 1127.7 02216 1.6390 1.8606 154.0 155.0 4.3068 .0.016374 84.56 84.57 123.95 1004.6 1128.6 0.2248 1.6318 1.8566 158.0 158.8 4.5197 0 016384 80.82 80.83 125 96 1003.4 1129.4 02281 1.6245 1.8526 158.0 153.g 43414 0 0!6395 77.27 77.29 127.96 1002.2 1130.2 02313 1.6174 1.8487 las e 152.0 49722 0 016406 73 90 7392 129.96 1001.0 1131.0 0 2345 1.6103 1.8448 152.0 164.0 5 2124 0 016417 7030 70 72 131.96 999.8 1131.8 0 2377 1.6032 1.8409 164.8 166.0 54623 0 016428 67.67 67.68 133 97 998 6 1132.6 0 2409 1.5%1 1.8371 185.0 168.0 51223 0 016440 64.78 64.80 135.97 997.4 1133.4 0.2441 1.5892 1.8333 168.0 170.0 5 9926 0 016451 62.04 62.06 137.97 9%.2 !!34.2 0.2473 1.5822 1.8295 170.8 172.0 6 2736 0 016463 59 43 59 45 139.98 995.0 1135 0 0.2505 1.5753 1.8258 172.8 1740 6.5656 0 016474 56.95 56.97 141.98 993.8 1135.8 02537 1.5684 1.8221 174.0 176 0 6 8G90 0 016486 54 59 54 61 143 99 992.6 1136 6 02568 1.5616 1.8184 ITE s '80 1.1840 0 016498 52.35 5236 '4599 991.4 1137.4 0 2500 1.5548 1.8147 Use l
5 'J 1 Abs Press.- Specific Volume Enthalpy Entropy - Temp lb per Sat. Sat. Sat. Sat. Sat. Sat. Temp Fahr Sqin. Liquid Evap Vapor Liquid Evap. Vapor liquid ' Evap Vapor fahr t j t p vg vtg vg he h tg h Si sig_SL i-i 133.3 7.5110 - 0.016510 50 21 50.22 148.00 990.2 1138.2 0.2631 1.5480 1.8111 108.8 j 182.0 7.8% 0.016522 48.172 18.189 150 01 989.0 1139.0 02662 1.5413 1.8075 182.8 134.s 8.20J 0.016534 46 237 46.249 152.01 987.8 1139.8 0.2694 - 1.5346 1.8040 184s 105.0 8.568 0.016547 44.383 44.400 154.02 ' 986.5 1140.5 0.2725 - 1.5279 1.8004 ISE e 188.5 8.947 0.016559 42.621 42.638 156.03 985 3 1141.3 02756 1.5213 1.7%9 188 0 130.8 9.340 0.016572 40.941 40.957 158.04 984.1 1142.1 0.2787 1.5148 1.7934. 19e e a 192.0 9.747 0.016585 39.337 39.354 160.05 982.8 1142.9 0.2818 1.5082 1.7900 192.6 194.0 10.!68 0.016598 37.808 37.824 162.05 981.6 1143.7 0.2848 1.5017 1.7865 194.s 196.0 10.605 0.016611 36.348 36.364 '164.06 980.4 1144.4 02879 1.4%2 1.7831 196.3 190.8 11.058 0.016624 34.954 34.970 166.08 979.1 1145.2 0.2910 1.4888~ 1.7798 190.0 i 20s.8 11.526 0.016637 33.622 33.639 168.09 977.9 1146 0 0.2940 1.4824 1.7764 208.8 I 204.0 12.512 ' O.016664 31.135 31,151 172.11 975.4 1147.5 0 3001 1.4697 17698-204.0 20s.s 13.568 0.016691 28.862 28.878 176.14 972.8 1149.0 0 3061 1.4571 13632 200.8 i 212.8 14.696 0.016719 26382 26399 180.17 970.3 1150.5 0.3121 1.4447 13568 212.0 216.0 15.901 0.016747 24.878 24.894 - 184.20 967 8 1152.0 0.3181 1.4323 13505 216.8 i 228.0 17.186 0.016775 23.131 .23.148 188.23 %5.2 1153.4 - 0.3241 1.4201 13442 220.8 224.0 18.556 0.016805 21.529 21.545 192.27 962.6 1154.9 - 0.3300 1.4081 13380 2240 220.0 20.015 - 0.016834 20.056 20.073 196.31 960.0 1156.3 0.3359 1.3 % I 13320 220 e 232.0 21.567 '0.016864 18.701 18.718 200.35 957.4 1157.8 0.3417 1.3842 13260 2320 236.8 23.216, 0.016895 17.454 17.471 .204.40 954.8 1159.2 0.3476 13725 13201 236 I 240.0 24.968 0.016926 16.304 ' 16.321 ~ 208.45 952.1. 1160.6 0.3533 1.3609 17142 240 5 4 244.0 26.826 0.016 % 8 15.243 15.260 212.50 949.5 1162.0 0.3591 1.3494 17085 2448 248.8 28.796 0.016990- 14.264 14.281 216.56 946.8 1163.4 .0.3649 ~1.3379 1.7028 248 0 252.0 30.883 0 017022 13.358 13.375 220 62 944.1 1164.7 03706 1.3266 16972 252.8 255.8 33.091 0.017055 12.520 12.538 224.69 941.4 1166.1 0.3763 1.3154 -16917 256 8 258.8 35.427 0.017089 .11345 11.762 228 76 938.6 - 1167.4 0.3819 1.3043 1.6862 268.8. i 264 0 37.894 0.01/123 11.025 11.042 232.83 935.9 1168.7 0.3876 12933 1.6808 2640 258.0 40.500 - 0.017157 10.358 10.375 236.91 933.1 1170 0 0.3932 1.2823 1.6755 268 e 272.0 43.249 0 017193 9 738 9.755 240.99 930.3 1171.3. 0.3987 12715 16702 272 e f l 275.0 46.147 0.017228 9.162 9.180 24508 927.5 1172.5 0.4043 1.2607.l.6650 276 0 3 I 200.8. 49.200 0 017264 8 627 8.644 249 17 924 6 1173.8 04098 - 12501 1.6599 288 e i 234.g. 52.414 0.01730 8.1280 8.1453 253.3 921.7 1175.0 0 4154 12395 1.6548 284.3 288.8 55.795 0 01734 7 6634 7.6807 257.4 918 8 11176.2 0.4208 1.2290 1.6498 208 8 192.0 59.350 ' 0 01738 72301 7.2475 261.5 915 9 1177.4 04263 12186 16449 292 8 ' 2968 63.084 001741 6 8259 6.8433 265.6 913.0 1178.6 0.4317 12082 16400 296e i i I
Abs Press. Specific Volume Enthalpy Entropy Temp Lb per Sal. Sat. Sal. Sat. Sat. Sat. Temp l'ahr SqIn. Liquid Evap Vapor Liquid Evap Vapor Liquid Evap Vapor Fahr t p vi vtg vg hr hg h Si Sig s I i 8 g 388.8 67.005 0.01745 6.4483 64658 269 7 910.0 1179.7 0.4372 11979 16351 388 0 184.8 71.119 0.01749 6 0955 6.1130 273 8 907.0 1180.9 0.4426 1.1877 16303 384 e 388.8 75.433 0.01753 5.7655 5 7830 278.0 904 0 1182.0 0.4479 1.1776 16256 388.0 312.8 79 953 0 01757 5.4566 5.4742 2821 9010 1183.1 0.4533 1.1676 16709 312.0 318.8 84.688 0.01761 5.1673 5.1849 286.3 897.9 1184.1 0.4586 1.1576 16162 316.0 328.8 89 643 0.01766 48%1 4.9138 290.4 894.8 1185 2 0.4640 1.1477 1.6116 328 0 324.8 94 826 0.01770 4 6418 4 6595 294 6 891.6 1186 2 0.4692 1.1378 16071 3240 328.8 100.245 0.01774 4 4030 4.4208 298 7 888.5 1187.2 0.4745 1.1280 16025 328.0 332.8 105.907 0.01779 4.1788 4.1%6 302.9 885.3 1188.2 0.4798 1.!!83 1.5981 332.8 338.8 111.820 0.01783 3.9681 3.9859 307.1 882.1 1189.1 0.4850 1.1086 1.5936 336.0 348.8 117.992 0.01787 3.7699 3.7878 311.3 878.8 1190.1 04902 1.0990 1.5892 348 0 344.8 124.430 0.01792 3.5834 3.6013 315.5 875.5 1191.0 04954 1.0894 1.5849 3448 348.0 131.142 0.01797 3 4078 3.4258 319 7 872.2 1191.1 0.5006 1.0799 1.5806 348 0 352.8 I38.138 0.01801 3 2423 3 2603 323 9 868.9 1192.7 0.5058 1.0705 1.5763 352.0 358.8 145.424 0.01806 3.0863 3.1044 328.1 865.5 1193.6 0 5110 1.0611 1.5721 356.8 388.8 153.010 0.01811 2.9392 2.9573 332.3 862.1 1194.4 0.5161 1 0517 1.5678 368.C 384.8 160.903 0.01816 2.8002 2 8184 336.5 858.6 1195.2 0 5212 1.0424 15637 3640 388.8 169.113 0.01821 2 6691 2.6873 340 8 855.1 1195.9 0.5263 1.0332 1.5595 368.0 372.8 177.648 0 01826 2.5451 2.5633 345 0 851.6 11 %.7 0 5314 10240 1.5554 3720 378.8 186.517 0.01831 2.4279 2.4462 349 3 848.1 1197.4 0 5365 1.0148 15513 376.0 388.8 195.729 0 01836 2.3170 2.3353 353 6 844.5 1198.0 0.5416 1.0057 1.5473 388 o 384.8 205.294 0.01842 2.2120 2.2304 357 9 840 8 1198.7 0.5466 0.9 % 6 1.5432 384.s 388.8 215.220 0 01847 2.1126 2.1311 362.2 837.2 1199.3 0.5516 0 9876 1.5392 388 g 382.8 225.516 0.01853 2.0184 2.0369 366 5 833.4 1199.9 0 5567 0 9786 1.5352 392.0 398.8 236.193 0.01858 1.9291 1.9477 370 8 829.7 1200.4 0.5617 0 9696 1.5313 396 0 488.8 247.259 001864 1.8444 1.8630 375.1 825.9 1201.0 0.5667 0.9607 1.5274 400 0 444.8 258.725 0.01870 1.7640 1.7827 379.4 822.0 1201.5 0 5717 09518 1.5234 484.0 488.8 270.600 0.01875 1.6877 1.7064 383.8 818.2 1201.9 0.5766 0 9429 1.5195 488.D 412.8 282.894 0.01881 1.6152 1.6340 3881 814.2 1202.4 0.5816 0 9341 1.5157 412.8 416.8 295 617 0 0i887 1.5463 1.5651 392.5 810.2 1202.8 0.5866 0 9253 1.5118 416.0 428.8 308.780 0.01894 1.4808 1.4997 396.9 806 2 1203.1 0.5915 0.9165 1.5080 420 0 424.8 322.391 0 01900 1.4184 1.4374 401 3 802.2 1203.5 0 5964 0.9077 1.5042 4246 428.8 336 463 0 01906 1.3591 1.3782 405 7 798 0 1203.7 0 6014 0.8990 1.5004 428 0 432.8 351.00 0 01913 1.30266 1.32179 4101 793.9 1204 0 0 6063 0 8903 1.4966 432 0 436.8 366 03 001919 1.24887 1.26806 414 6 789 7 1204.2 0.6112 0 8816 1.4928 4360 448 8 381 54 0 01926 119761 1.21687 419 0 785 4 1204 4 0.6161 0 8729 14890 440 0 4A4 8 397.56 001933 1.14874 1.16806 423 5 781.1 1204.6 0 6210 0 8643 14853 4440 1 414 09 0 01940 1.10212 1.12152 10 776 7 12047 06259 0 8557 14815 ""9 .J 431.14 0 01947 105764 10171) 5 772 3 1204 8 06308 0 8471 14778 456 0 448 73 0 01954 101518 103472 o70 7678 1204 8 06356 0 8385 14741
7 Abs Press. Specific Volume Enthalpy Entropy Temp tb per Sat. Sat. Sat. Sat. Sat. Sat. Temp Fahr SqIn. Liquid Evap Vapor Liquid Evap Vapor Liquid Evap Vapor Fahr t p vg v eg vg hg h fg h sg sit S I g t 460.0 466 87 0.01 % I 0.974J3 0 99424 441.5 763.2 1204.8 0.6405 0.8299 1.4704 460.0 464.0 485.56 0.01969 0.93588 0.95557 446.1 758.6 1204.7 0.6454 0.8213 1.4667 464.0 4680 504 83 0.01976 0.89885 0.91862 450.7 754.0 1204.6 0.6502 0.8127 1.4629 468.8 4728 524 67 0.01984 0 86345 0.88329 455.2 749.3 1204.5 0.6551 0.8042 1.4592 472.0 47o 0 545.11 0.01992 0.82958 0.84950 459.9 744.5 1204.3 0.6599 0.7956 1.4555 476.8 480 0 566 15 0.02000 0.79716 0 81717 464.5 739.6 1204.1 0.6648 0.7871 1.4518 40s.0 484.0 587 81 0.02009 0.76613 0 78622 469.1 734.7 1203.8 0.66 % 0.7785 1.4481 484.s 4880 610.10 0.02017 0.73641 0.75658 473.8 729.7 1203.5 0.6745 0.7700 1.4444 448.s 492.0 633.03 0.02026 0.70794 0.72820 478.5 724.6 1203.1 0.6793 0.7614 1.4407 492.0 4960 656.61 0.02034 0.68065 0.70100 483.2 719.5 1202.7 0.6842 0.7528 1.4370 496.8 500.0 680.86 0.02043 0.65448 0.67492 487.9 714.3 1202.2 0.6890 0.7443 1.4333 500.0 504.0 705.78 0.02053 0.62938 0.64991 492.7 709.0 1201.7 0.6939 0.7357 1.42 % 584.8 5080 731.40-0.02062 0.60530 0 62592 497.5 703.7 1201.1 0.6987 0.7271 1.4258 500.I 512.0 757.72 0.02072 0.58218 0.60289 502.3 698.2 1200.5 0.7036 0.7185 1.4221 512.8 516 0 784.76 0 02081 0.55997 0.58079 507.1 692.7 11 % 8 0.7085 0.7099 1.4183 516.8 520 0 812.53 0.02091 0.53864 0.55956 512.0 687.0 1199.0 0.7133 0.7013 1.4146 528.I 5240 841 04 0 02102 0.51814 0.53916 516.9 681.3 1198.2 0.7182 0.6926 1.4108 524.I 528 0 870 31 0.02112 0.49843 0.51955 521.8 675.5 1197.3 0.7231 0.6839 1.4070 528.8 532.0 900.34 0 02123 0.47947 0.50070 526.8 669.6 1196 4 0.7280 0.6752 1.4032 532.0 536 0 931.17 0.02134 0.46123 0 48257 531.7 663.6 1195.4 0.7329 0.6665 1.3993 536.8 5400 962.79 0.02146 0 44367 0 46513 536.8 657.5 1194.3 0 7378 0.6577 1.3954 540.0 544.0 995 22 0 02157 0 42677 0.44834 541.8 651.3 1193.1 0.7427 0.6489 1.3915 544.8 5480 1028 49 0 02169 0.41048 0.43217 546 9 645.0 1191.9 0.7476 0.6400 1.3876 548.8 552.0 1062 59 0.02182 0.39479 0.41660 552 0 638.5 1190.6 0.7525 0.6311 1.3837 552.0 556 0 1097.55 0 02194 0.37966 0.40160 557.2 632.0 1189.2 0.7575 0.6222 1.3797 556.8 560 0 1133 38 0.02207 0.36507 0.38714 562.4 625 3 1187.7 0.7625 0 6132 1.3757 560.8 5640 1170 10 0.02221 0.35099 0.37320 567.6 618.5 1186.1 0.7674 0.6041 1.3716 564.8 5680 1207.72 0 02235 0 33741 0.35975 572 9 611.5 1184.5 0.7725 0.5950 1.3675 564.s 572 0 1246 26 0 02249 0 32429 0.34678 578 3 604.5 1182.7 0.7775 0.5859 1.3634 572.8 576 0 1285 74 0.02264 0.31162 0.33426 583 7 597.2 1180.9 0.7825 0.5766 1.3592 576.8 580.0 1326.17 0 02279 0 29937 0.32216 589.1 589.9 1179 0 0.7876 0.5673 1.3550 588.8 584 0 1367.7 0 02295 0 28753 0.31048 594 6 582.4 1176.9 0.7927 0.5580 1.3507 584.8 588 0 1410 0 0.02311 0 27608 0 29919 6001 574.7 1174.8 0.7978 0.5485-1.3464 588.8 592 0 1453 3 0 02328 0 26499 0 28827 605.7 566.8 1172 6 0.8030 0 5390 1.3420 592.0 596 0 14978 0 02345 0 25425 0 27770 611.4 558 8 1170.2 0 8082 0.5293 1.3375 596.8
Abs Press. Specific Volume Enthalpy Entropy Temp lb per Sat. Sat. Sat. Sat. Sat. Sat Temf Fahr SqIn. Liquid Evap Vapor Liquid Evap Vapor Liquid Evap Vapor Fah t p v, vig vg he hs h sg sig s t i e g 680.0 1543 2 0.02364 0 24384 0.26747 617.1 550.6 1167.7 0.8134 0.5196 1.3330 000.8 684.0 1589 7 0.02382 0.23374 0.25757 622.9 542.2 1165.1 0.8187 0.5097 13284 804.8 884.0 16373 0.02402 0.22394 0347% 628.8 533.6 1162.4 0.8240 0.4997 13238 80s.O $12 O 1686.1 0.02422 0.21442 0.23865 634.8 524.7 1159.5 0.8294 0.4896 1.3190 512.0 615.6 1735 9 0.02444 0.20516 0.22960 640.8 515.6 1156.4 0.8348 0.4794 1.3141 sis.s E28.0 1786.9 0.02466 0.1%I5 0.22081 646.9 5063 1153.2 0.8403 0.4689 1.3092 820.0 524 s 18390 0.02489 0.18737 0.21226 653.1 496.6 1149.8 0.8458 0.4583 1.3041 524.8 E28.0 1892.4 0.02514 0.17880 020394 659.5 486.7 1146.1 0.8514 0.4474 1.2988 528.8 532.0 1947.0 0.02539 0.17044 0.19583 665.9 476.4 1142.2 0.8571 0.4364 1.2034 532.0 636.0 2002.8 0.02566 0.16226 0.18792 672.4 4653 1138.1 0.8628 0.4251 1.2879 636.0 848.0 2059.9 0.02595 0.15427 0.18021 679.1 454.6 1133.7 0.8686 0.4134 1.2821 548.8 644.0 2118.3 0.02625 0.14644 0.17269 685.9 443.1 1129.0 0.8746 0.4015 1.2761 544.0 848.0 2178.1 0.02657 0.13876 0.16534 692.9 431.1 1124.0 0.8806 03893 1.2699 343.s $52.5 2239.2 0.02691 0.13124 0.15816 700 0 4183 1118.7 0.8868 03767 1.2634 552.8 556 0 23013 0.02728 0.12387 0.15115 707.4 4053 1113.1 0.8931 03637 1.2567 554.8 648.0 23653 a02768 0.11663 0.14431 714.9 392.1 1107.0 0.8995 03502 1.2498 868.0 564.0 2431.1 0.02811 0.10947 0.13757 722.9 377.7 1100.6 0.9064 03361 1.2425 564.0 668.0 2498.1 0.02858 0.10229 0.13087 731.5 362.1 1093.5 0.9137 03210 1.2347 sas.s E72.0 2566 6 0.02911 0.09514 0.12424 740 2 3453 1085.9 0.9212 03054 1.2266 872.5 E16.0 26368 0.02970 0.08799 0.11769 749.2 328.5 1077.6 0.9287 02892 1.2179 676.0 Esc.8 27086 0.03037 0.08080 0.11117 758.5 310.1 1068.5 0.9365 0.2720 1.2086 seg.s $84.0 2782.1 0.03114 0.07349 0.10463 7682 290.2 1058.4 0.9447 0.2537 1.1984 884.0 Ess O 2857.4 0.03204 0.06595 0.09799 778.8 268.2 1047.0 0.9535 0.2337 1.1872 ses.s g32.8 2934.5 0.03313 0.05797 0.09110 790.5 243.1 1033.6 0.9634 02110 1.1744 002.8 gas.3 3013.4 0.03455 0.04916 0.08371 804.4 212.8 1017.2 0.9749 0.1841 1.1591 595.8 738.0 3094 3 0.03662 0.03857 0.07519 822.4 172.7 995.2 0.9901 0.1490 1.1390 700.0 782.0 3135.5 0 03824 0 03173 0.06997 835 0 1443 9793 1.0006 0.1246 1.1252 782.8 704.0 3177.2 0.04108 0.02192 0.06300 854.2 102.0 956.2 1.0169 0.0876 1.1046 704.5 785.0 31983 0.04427 0.01304 0.05730 873 0 61.4 934.4 1.0329 0.0527 1.0856 785.8 735.47* 32082 0.05078 0.00000 0.05078 906 0 0.0 906.0 1.0612 0.0000 1.0612 705.41'
,9 v ~ Table 2: Saturated Steam: Pressure Table Specific Volume Enthalpy Entropy Abs Press. Temp Sat. Sat. Sat. Sat. Sat. Sat. Abs Press. Lb/Sq in. Fahr Liquid Evap Vapor Liquid Evap Vapor Liquid Evap Vapor Lb/Sg In. p t V V V hg hgg h s, sig S P f ig g g E gg3865 32.018 0.016022 3302.4 3302.4 0.0003 1075.5 1075.5 0 0000 2.1872 2 1872 303365 g.25 59.323 0.016032 1235.5 1235.5 27.382 1060.1 1087.4 0.0542 2.0425 2.0967 8 25 s.5g 79.586 0.016071 641.5 641.5 47.623 1048 6 10 % 3 0.0925 1.9446 2.0370 e 5e 1.3 101.74 0.016136 333.59 333 60 69 73 10361 1105 8 0.1326 1.8455 1.9781 10 53 16224 0.016407 73.515 73.532 130 20 1000 9 1131.1 0.2349 1.6094 1.8443 50 II.s 193.21 0.016592 38404 38.420 161.26 982.1 1143.3 0.2836 1.5043 1.7879 to 0 14.59E 212.00 0.016719 26.782 26.799 180 17 970.3 1150.5 0.3121 1.4447 1.7568 14 696 15.3 213.03 0 016726 26.274 26290 181.21 969.7 1150.9 0.3137 1.4415 1.7552 15 0 23 s 227.96 0.016834 20 070 20.087 196.27 %01 1156.3 0.3358 1.3%2 1.7320 23 0 33.3 250.34 0.017009 13.7266 13.7436 218.9 945 2 1164.1 0.3682 1.3313 1.6995 3e e ag e 26725 0.017151 10.4794 10.4 % 5 236.1 933.6 1169 8 0.3921 1.2844 1.6765 40 0 53.3 281.02 0.017274 84%7 8.5140 250.2 923.9 1174.1 0.4112 12474 1.6586 5e O 83.s 292.71 0.017383 7.1562 7.1736 262.2 915.4 1177.6 0.4273 1.2167 16440 60 0 73.3 302.93 0.017482 6.1875 6.2050 272.7 907.8 1180.6 0.4411 1.1905 1.6316 16 0 se e 312.04 0.017573 5.4536 5.4711 282.1 900.9 1183.1 0.4534 1.1675 1.6208 to 0 33.3 32028 0.017659 4.8779 4.8953 290.7 894.6 1185.3 0.4643 1.1470 1.6113 90.0 13s.g 327.82 0.017740 4.4133 4.4310 298.5 888 6 1187.2 0.4743 1.1284 1.6027 leg.g 113.3 334.79 0.01782 4.0306 4.0484 305.8 883.1 1188.9 0 4834 1.1115 1.5950 lig 8 123.3 341.27 0 01789 3.7097 3.7275 312.6 877.8 1190.4 0.4919 1.0960 1.5879 12s.O 133.s 347.33 0.017 % 3.4364 3.4544 319.0 872.8 1191.7 0 4998 1.0815 1.5813 13e p 143.s 353.04 001803 32010 3.2190 325 0 868 0 1193.0 0 5071 1.0681 1.5752 143.0 153.s 358 43 0.01809 2.9958 3.0139 330.6 863.4 1194.1 0.5141 1.0554 1.5695 15e0-153.g 363.55 0.01815 2.8155 2.8336 336.1 859.0 11951 0 5206 1.0435 1.5641 Ise 0 173.s 368.42 001821 2.6556 2.6738 341.2 854 8 1196 0 0.5269 1.0322 1.5591 Ils 0 133.3 373 08 0.01827 2.5129 2.5312 3462 850.7 1196.9 0.5328 1.0215 1.5543 Igg e ige.g 377.53 0.01833 2.3847 2.4030 350.9 846.7 1197.6 0 5384 1.0113 15498 193.0 233.s 381.80 0 01839 2.2689 2.2873 355.5 842.8 1198.3 0.5439 1.0016 1.5454 28g 0 21c s 385.91 0 01844 2.16373 2.18217 359.9 8391 1199.0 0 5490 0.9923 1.5413 213 0 223.s 389.88 0.01850 2.06779 2.08629 364 2 835.4 1199.6 0 5540 0.9834 1.5374 22e 0 233.3 393.70 0 01855 197991 1.99846 368 3 831.8 1200.1 0.5588 0 9748 1.5336 233 0 243 g 397.39 001860 1.89909 1.91769 372.3 828 4 1200.6 0 5634 0 9665 1.5299 248 0 25s.0 400.97 0 01865 182452 1.84317 375.1 825 0 1201.1 0 5679 0.9585 15264 25e o 268 g 404.44 0.01870 1.75548 1.77418 379.9 821 6 1201.5 0 5722 0.9508 1.5230 260 0 273.s 407.80 0 01875 169137 1.71013 383 6 818.3 1201.9 0 5764 0.9433 1.5197 273 0 23e 3 411.07 0.01880 163169 1.65049 387.1 815.1 1202.3 0.5805 0.9361 1.5166 238 8 293.g 414.25 001885 157597 1.59482 390 6 812.0 1202.6 0.5844 0 9291 1.5135 29s O 3sg g 417.35 0 01889 I52384 1.54274 394.0 808.9 1202.9 0 5882 0 9223 1.5105 100 0 350 0 431 73 001912 130642 1.32554 409 8 794 2 1204 0 0 6059 0.8909 14968 350 0 400 0 444 60 0 01934 1.14162 1 16095 4242 780 4 1204 6 0 6217 0 8630 1 4847 400 0
e< Specific Volume Enthalpy Entropy Abs Press. Temp Sat. Sat. Sat. Sat. Sat. Sat. Abs Press. Lb/Sq In. Fahr Liquid Evap Vapor Li uid Evap Vapor Liquid Evap Vapor Lb/Sq In. h it 't I 88 g sg s g, s P P t vi v 8 tut 45638 0 01954 1.01224 1.03179 437.3 767.5 1204.8 0.6360 0.8318 1.4738 450 0 See.s 467.01 0.01975 0.90787 0 92762 449.5 755.1 12043 0.6490 0.8148 1.4639 500.9 550.8 476 94 001994 0 82183 0.84177 460.9 743.3 1204.3 0.6611 03936 1.4547 550 0 ges g 486 20 0.02013 0 74962 0 76975 4713 73 2.0 12033 0.6723 03738 I4461 600 0 858.8 494.89 002032 058811 030843 481.9 720.9 1202.8 0.6828 0 7552 14381 650 0 700 s 503 08 0 02050 0.63505 0.65556 491.6 710 2 1201.8 0.6928 03377 1.4304 7eg e 758 8 510.84 0 02069 0.58880 0 60949 500.9 699 8 1200.7 0.7022 03210 1.4232 750 0 ges.3 518.21 0.02087 0 54809 0.568 % 509 8 689.6 1199.4 03111 0 7051 1 4163 800 0 358.8 525.24 0.02105 0.51197 0 53302 518 4 679.5 1198.0 03197 0 6899 1.40 % 150 0 90s.8 531.95 002123 0.47968 0.50091 526 7 669 7 11 % 4 0.7279 0 6753 1.4032 908 0 i 958.8 538.39 0.02141 0.45064 0.47205 5343 660 0 11943 0.7358 0 6612 1.3970 950 0 1800.8 544.58 0.02159 0.42436 0.445 % 542.6 650.4 1192.9 0.7434 0.6476 1.3910 1300 0 1858.8 550.53 0.02177 0.40047 0.42224 550.1 640.9 1191.0 03507 0.6344 1.3851 1050 0 1108.8 556.28 0 02195 0.37863 0.40058 557.5 631.5 1189.1 0 7578 06216 1.3794 Ilse 0 1158.8 561.82 0 02214 0 35859 0.38073 564.8 622.2 1187.0 0 7647 0 6091 1 3738 1150 0 1290.0 567.19 0.02232 0.34013 0.36245 571.9 613 0 1184.8 0.7714 05%9 1.3683 12000 12588 572.38 0 02250 0 32306 0.34556 578.8 603 8 1182.6 01780 0.5850 1.3630 12500 t 130s.s 577.42 0.02269 0.30722 0.32991 585.6 594.6 1180.2 0 7843 0 5733 1.3577 1300 0 135&8 582.32 0 02288 0 29250 0 31537 592.3 585 4 1177.8 0 7906 ' O.5620 1.3525 13580 1400.0 587.07 0.02307 0 27871 0 30178 598 8 576.5 1175.3 03966 0.5507 13474 1408 0 1454.8 591.70 0.02327 0 26584 0.28911 605.3 567.4 1172.8 0.8026 0 5397 1 3423. I450 0 1508 8 596 20 0 02346 0.25372 0 27719 6113 558 4 1170.1 0.8085 0.5288 1.3373 15000 15588 600.59 0 02366 0.24235 0.26601 618 0 549 4 1167.4 0.8142 0.5182 1.3324 15500 1680.0 604.87 0.02387 0.23159 025545 624 2 540.3 1164 5 0 8199 0 5076 1.3274 16000 1558 3 609 05 0.02407 0 22143 0.24551 630 4 531.3 1161.6 0.8254 0.4971 1.3225 16500 1700 8 613.13 0 02428 0 21178 033607 636.5 522.2 1158 6 0 8309 0.4867 1.3176 17es 0 175s.3 617.12 0.02450 0 20263 0.22713 642.5 5131 1155 6 0 8363 0.4765 1.3128 1758 0 1808.8 621.02 0.02472 019390 0 21861 648.5 503 8 1152.3 0.8417 04662 1.3079 1303 8 18513 624 83 0 024 % 0.18558 031052 654.5 494 6 1149.0 0.8470 04561 1.3030 1853 0 Iges.O 628.56 0 02517 0.17761 020278 660 4 485 2 1145 6 0.8522 0 4459 1.2981 1900 0 1950e 632.22 0.02541 0.16999 0.19540 666.3 475 8 1142.0 0 8574 0.4358 1.2931 19500 2000.8 635.80 0 02565 0.16266 0.18831 672.1 466.2 1138.3 0.8625 0 4256 12881 2000 0 2100.0 64236 0.02615 0.14885 0.17501 683.8 4463 1430.5 0.8727 0 4053 1.2780 2108 8 2200.8 649.45 0.02669 0 13603 0.16272 695.5 4263 112?.2 0.8828 0.3848 1.2676 2200.0 2380.8 655.89 0.02727 0.12406 0.15133 707.2 406 0 1113.2 0.8929 0.3640 13569 2300 0 2408.8 662.11 0 02790 0.11287 0.14076 719 0 384.8 11033 0.9031 0.3430 1.2460 2400 0 2580.0 668.11 002859 0 10209 0 13068 731.7 361 6 1093.3 0 9139 0 3206 1.2345 7500 0 2688 8 673 91 0.02938 0 09172 0.12110 744.5 337.6 1082.0 0.9247 0.2977 1.2225 2600 0 2780 8 679.53 0 03029 008165 0.11194 757.3 312 3 1069 7 0 9356 0 2741 1 2097 2180 0 2500 8 684.% 0 03134 0 07171 0 10305 7703 2851 1055.8 0.9468 02491 1.1958 2000 0 2905 8 690 22 0 03262 0 06158 0 09420 785.1 2543 1039 8 0 9588 0 2215 1.1803 2980 0 3000 8 695 33 0 03428 0 05073 0 08500 801.8 218.4 1020 3 0 9728 0 1891 1.1619 3800 0 3100 8 70028 0 03681 0 03771 0 07452 824 0 169 3 993.3 0 9914 0 1460 1.1373 3100 0 3200 8 705 08 0 04472 0 01191 0 05663 875.5 56 1 931.6 1 0351 0 0482 1.0832 3200 0 9 02* 705.47 0 05078 0 00000 0 05078 9781 00 906.0 1 0612 0 0000 1 0612 1200 2-
- Critical pressure
f. g 2 E lE = EEL 8-a n g (!' c-fxgh va di 1 ICN b U. 8 M.--e m =2 +8 ___~
- l 8
~ 2-T ,a 4 = m a s E. ? E g ke ofji E eM l5, e --k ii 2 a >t x . _ f E _q.s d gg i_ _.. EE- !?f l i e s ~l \\ a a ? t x, 1 x i 4 x{- } N-- x s. x i .N. 4 N-2 2 a e &f M$ 'W $ % n-3 >f I I o. . a. o., w.
+ = . "*a r _Tna "v o , c d / /\\
- a 2
2 E RU \\7 G I F FM m S _ " m l s p g 5 4 3' m p g 42 b /\\ -c /x . tena _urs o i . ms 1Iilil\\ll \\t!I ,l'l, l! iI
- lit le 1Illl1
120 110 (-30,1Je) (10.1NI 100 tseACCEM SLE a L .[ t tseACCEMASLE b 90 I t = E can=a i 1 \\ u [ 70 4 \\ 1 i \\ 80 m et j l O so (.38,80) (21.50) i [ 40 -- G a. 3C i 2C - 10 - 0 .go 40 30 -20 -10 0 10 20 30 40 SC Axial Flux Difference (% Delta-1) 1 l FIGURE 4-1 1 i l.
e '1, PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 25 THERMODYNAMICS, HEAT TRANSFLR AND FLUID FLOW ANSWERS -- MCGUIRE 1&2 -86/12/08-KINGSLEY, I. &5 6 /' copy ANSWER 1.01 (3.00) a. NO CHANGE (0.50) Flux is forced toward bottom of core; each quadrant sees same relative flux change. (similar wording acceptable) (0.50) b. INCREASE (0.50) Flux is forced toward bottom of core. (0.50) c. INCREASE,(0.50) MT ecomes more ne iveinardgedcore.(0 0) aber DEC E45 Jman-REFERENCE fn, MCGUIRE, LPRO-RCO.22 TECHNICAL SPECIFICATIONS DEFINITIONS 3.1/000/001/K5.09(K5.06)/3.5(3.8) ANSWER 1.02 (3.00) a. ECP LOWER than ACP [0.25] E0L DBW is less negative than 80L DBW Therefore, rods will have to add more positive reactivity to account for the higher than estimated boron reactivity. [0.50] (0.75) b. ECP LOWi$ than ACP [0.25] Xenon will increase to near peak at 8 hours af ter trip. Rods must be higher to compensate. [0.50] (0.75) c. ECP LOWER than ACP [0.25] The corresponding temperature increase must be compensated for by a higher critical rod position. [0.50](0.75) d. ECP HIGHER than ACP [0.25] The reduction in temperature must be compensated by a lower rod position. [0.50] (0.75) REFERENCE MCGUIRE, LPRO-RB.7-10 3.1/010/001/A2.07/3.6 ANSWER 1.03 (1.00) a REFERENCE MCGUIRE, LPE0-SM.12-16 3.9/000/015/K5.06/3.4 /lcf5fEr V Cofy
n-1 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 26 { THERriuDYNAMICS, HEAT TRAN5PER AND FLUID FLOW j ANSWERS -- MCGUIRE 182 -86/12/08-KINGSLEY, I. ANSWER 1.04 (1.00) a. False (0.5) b. True (0.5) ' REFERENCE MCGUIRE, LPRO-SM.12-16 LPRO-RK.17 3.1(3.9)/000/001(015)/KS.47(K5.06)/2.9(3.4) ANSWER 1.05 (1.50) a. 1. Void coefficient (0.25 each, 0.25 for correct order) J,% Moderator temperature coefficient ,t, % Doppler power (or fuel temperature) coefficient b. Total power coefficient becomes more negative from BOL to E0L. (0.50) REFERENCE MCGUIRE, LPRO-RCO.26-30 3.1/000/001/K5.49/3.4 3 ANSWER 1.06 (3.00) a. INCREASES (0.25) Rods will withdraw to compensate for boration. (0.50) b. NO CHANGE (0.25) Other rods will withdraw or Tave will decrease to compensate. (0.50) c. NO CHANGE (0.25) Increased power defect will be offset by rod withdrawal or Tave decrease. (0.50) d. NO CHANGE (0.25) Decreased power defect will be offset by rod insertion or Tave increase. (0.50) REFERENCE MCGUIRE, LPRO-RB.14 i 3.1010(000)/K5.35(K5.19)/3.3(3.5)
r 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 27 THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW ANSWERS -- MCGUIRE 182 -86/12/08-KINGSLEY, I. ,f k'I) ANSWER 1.07 4;dP The faster the rate, the lower the source range counts at criticality In AL due te the reduced-tf = for : bcritical-multip14 cation: (Ors)- REFERENCE MCGUIRE, LPRO-SM 3.1/000/001/K5.18/4.2 ANSWER 1.08 (2.00) a. Rods insert (0.25) for about 2 hours (PD comp.) (0.25) Rods withdraw (0.25) for the next 5 (4-6) hours (Xe comp.) (0.25) Rods insert (0.25) for rest of time up to 40 hours (Xe comp.) (0.25) b. INDEPENDENT OF (0.50) REFERENCE MCGUIRE, LPRO-RP.23, Figure MC-RT-RP-4 3.1/000(010)/001/K5.13(K5.26)/3.7(3.5) ANSWER 1.09 (2.00) a. Unit 2 (0.50) due to a lower value of Beff.(0.50) b. Unit 2 (0.50) due to a more negative MTC.(0.50) REFERENCE MCGUIRE, EXAM BANK, Q-RT-RK-22 3.1/000/001/KS.47(K5.49)/2.9(3.4)
I E 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 28 THERMODYNAMICS, HEAT TRAN5tEF, AND FLUID FLW ANSWERS -- MCGUIRE 182 -86/12/08-KINGSLEY, I. ANSWER 1.10 (1.50) a. Decrease (0.5) b. Decrease (0.5) c. Increase (0.5) REFERENCE MCGUIRE, LPRO-FF.11,14-16 C0WONENT-VALVE /2.0 ANSWER 1.11 (2.50) a. In the secondary system there is a phase change. (0.5) A phase change requires a large delta h. (0.5) With the larger delta h of the secondary, the same heat can be transferred with a lower flow rate. (0.5) (reasonable wording accepted) b. 4. (1.0) REFERENCE MCGUIRE, LPRO-FLO.30 LPRO-STM.12 LPRO-HT.10 3.2/000/002/K5.01/3.1 COMPONENT-HX and COND/2.0 j
~ 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 29 THERMODYNAMICS, HEAT TRANSFER AND FLUID FLDW ANSWERS -- MCGUIRE 182 -86/12/08-KINGSLEY, I. ANSWER 1.12 (1.50) To determine flow in NC: Q = m cp delta-T => 100 = 100
- cp
- 60 Q1 = $1 cp delta-T =>
2 = ml
- cp
- 28 100 100
- cp
- 60 2
ml
- cp
- 28 (1.00 for proper method) 1 214.3 50
= mi ml 4.29 percent (4.0 - 4.5 acceptable) (0.50) = REFERENCE MCGUIRE, LPRO-HT.10 3.2/020/002/K5.01/3.1 ANSWER 1.13 (2.00) a. DECREASE b. INCREASE c. DECREASE d. INCREASE (0.5 each) REFERENCE MCGUIRE,LPRO-HT.17 3.9/020/015/KS.09/3.5 4
1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 30 THLKnuuYNAMIC5, HEAT IPANSPLM AND FLUID FLQ{ ANSWERS -- MCGUIRE 182 -86/12/08-KINGSLEY, I. 1 ANSWER 1.14 (1.50) S/G heat transfer = Q = UA(Tavg - Tstm) Q, U, and Tstm remain constant; A1(Tav91 - Tstm) = A2(Tavg2 - Tstm) (0.5) Given: A2 = 0.9 x Al From Steam Tables: Tsat for 995 psia = 544 F (0.5) A1(587 - 544) = 0.9A1(Tavg2 - 544) Tavg2 = 591.8 F (591 to 592.5 F acceptable) (0.5) REFERENCE MCGUIRE, LPRO-HT.8,9 STEAM TABLES 3.1/000/001/K5.45/2.4 ANSWER 1.15 (1.50) a. 300 F (290-310 F acceptable) (0.50) b. 1192 BTU /LBM (1190-1195 BTU /LBM acceptable) (0.50) c. 1. (0.50) REFERENCE MCGUIRE, LPRO-FLO.24 STEAM TABLES COMPONENT-VALVE /2.0
r 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 31 THERMODYNAMICS, HEAT TRAN5ttR AND FLUID FLOW ANSWERS -- MCGUIRE 182 -86/12/08-KINGSLEY, I. ANSWER 1.16 (2.00) a. Increase b. Decrease c. Increase d. Increase (0.50 for each correct answer) REFERENCE LPRO-FF.21,22 1 l
p 2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 32 ANSWERS -- MCGUIRE 182 -86/12/08-KINGSLEY, I. ANSWER 2.01 (1.00) 1. Minimizes motor starting current (by holding the motor idle instead of allowing it to rotate in reverse). (0.50) 2. Minimizes the total amount of NC system flow which bypasses the core (via the idle NC pump by preventing reverse rotation). (0.50) REFERENCE MCGUIRE, EXAM BANK,Q-PS-NCP-28 3.4/000/003/K4.03/2.3 ANSWER 2.02 (2.25) a. Seal leakoff cannot exit containment. It exits the system through a relief valve upstream of the isolation valves (0.37) and goes to the PRT (0.38). (0.75) b. Yes (NCP cooling ad seal injection still supplied.) (0.25) c. Cooling water is lost to the following NCP components: Upper motor bearing (oil cooler) - j([ jf'[7y%) Lower motor bearing (oil cooler) A.# Motor cooler M Thermal barrier heat exchanger (0.25 each) (1.00) d. No (motor bearings and/or motor stator windings would overheat) (0.25) REFERENCE MCGUIRE, LPRO-NCP.41 LPRO-KC.25 LPRO-NY.27 LPRO-NR. 3.10/000/008/K3.01/3.4 3.4/000/003/K4.04/2.8 3.4/000/003/A2.02/3.7
f. l 2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 33 ANSWERS -- MCGUIRE 182 -86/12/08-KINGSLEY, I. ANSWER 2.03 (3.00) a. Low pressurizer pressure (0.10) 1845 psig(0.10) 2/4(0.10) High contalment pressure (0.10) 1.00 psig(0.10) 2/3(0.10) Low steamline pressure (0.10) 585 psig(0.10) 2/3(0.10) sl poww) 1845 (5$g(em ps immediate) (0.25) b. High head injection (CCPs) (0.25) Intermediate head injection (NI) (0.25) 1500 + or - 50 psi,g (0.25) Accumulators (CLAs) (0.25) L'O - 00 p. ~ (0.25) v. Low head injection (ND) (0.25) 195 + or - 20 psig (0.25) (0.10 for the correct order) (2.10) 585 4o W n.33 i REFERENCE MCGUIRE, LPRO-CLA.11 LPRO-NI.15 SD-ND.10 3.2/000/006/K4.05/4.3 K6.02/3.4 K6.03/3.6 K6.05/3.0 K5.06/3.5 ANSWER 2.04 (2.00) a.
- 1) To reduce thermal stress (to the spray line and spray nozzle.)(0.50)
- 2) To maintain Pzr. chemistry uniform with the NCS.
(0.50) b.
- 1) Pressurizer Spray Line lo Temperature alarm (0.25)
- 2) Pressurizer Surge Line Lo Temperature alarm (0.25) c.
- 1) Differential pressure across the reactor vessel (will also accept NCP delta-P or delta-P from spray connection to surge connection)
(0.25) -
- 2) Velocity head of the NCS flow via spray scoops.
- (0.25)-
REFERENCE @ d/4r IcdIb d n #V / MCGUIRE, P p 4,. g gg g 3.3/000/010/K4.01/2.7 &>utjtQ,A5 A K1.03/3.6 A2.02/3.9
f~ 2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 34 ANSWERS -- MCGUIRE 132 -86/12/08-KINGSLEY, I. ANSWER 2.05 (2.00) a. Fail open b. Remain functional (electric operator) c. Remain functional (backup N2 supply) d. Fail open e. Fail open f. Fail closed g. Fail open h. Diverts to VCT (0.25 each) REFERENCE MCGUIRE, LPRO-CLA.7 -LPRO-NC.19 SD-NY.35 AP-22, ENCL. 1 3.8/000/078/K3.02/3.4 ANSWER 2.06 (1.00) To minimize the possibility of opening the ice condenser doors. REFERENCE MCGUIRE, EXAM BANK, Q-CNT-VQ-1 3.6/000/025/K1.01/2.7 ANSWER 2.07 (2.00)
- a. 4
- b. 5
- c. 6 (0.5 each)
- d. 1 REFERENCE MCGUIRE, LPRO-IRE.12,19 l
3.1/050/001/A2.01/3.7 \\ 1
2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 35 ANSWERS -- MCGUIRE 182 -86/12/08-KINGSLEY, I. ANSWER-2.08 (2.00) a. 1. Rising KC surge tank level 2. Increasing KC system radioactivity 3. Increasing thermal barrier heat exchanger outlet temperature vt, (any two at 0.5 each) b. The KC outlet valve on the affected thermal barrier heat exchanger will shut (0.5) on high thermal barrier heat exch nger KC outlet flow (0.5). (Q gc &y (45) Cb a d C t I#' h) REFERENCE f MCGUIRE, LPRO-KC.25 3.10/000/008/K1.04/3.3 010/008/K4.02/2.4 ANSWER 2.09 (1.75) a. Shuts surge tank vent isolation valve b. No contro1 functions c. Shuts dischar,ge isolation valve d. Shuts discharge isolation valve (0.2S for each correct answer) e. No control functions f. No control functions g. Actuates CVIS(0.15) and containment evacuation alarm (0.10) REFERENCE MCGUIRE, LPRO-EMF.19-25 3.11/000/029/K1.02/3.4 071/K1.06/3.1 068/K1.10/2.5 3.10/000/008/K1.03/2.8 A2.04/3.1 3.5/000/039/K1.09/2.7 076/K1.17/3.6
2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 36 ANSWERS -- MCGUIRE 182 -86/12/08-KINGSLEY, I. ANSWER 2.10 (1.50) c. d. f. (0.5 each) REFERENCE MCGUIRE, LPRO-EP FIGURE 76238 3.7/000/061/K4.01/3.9 ANSWER 2.11 (2.00) a. The normal drain control valve fully opens.(0.50) The high level dump to the condenser drain control valve fully opens.(0.50) The bleed steam gate and piston operated check valve closes.(0.50) b. The C heater drain tank pump will trip. (0.50) REFERENCE MCGUIRE EXAM BANK,Q-MT-HAW-5 3.5/000/059/K4.04/1.9 020/056/A2.02/1.6 A2.02/2.0 ANSWER 2.12 (1.00) 1. Upper surge tank 2. Auxiliary feedwater condensate storage tank 3. Condenser hotwell 4. Nuclear service water (0.25 each) REFERENCE MCGUIRE, LPRO-CA.8 3.5/000/061/K4.01/3.9
.~ 2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE' 37 ANSWERS -- MCGUIRE 182 -86/12/08-KINGSLEY, I. ANSWER 2.13 (3.50) a. (N0-)58 and (NI-)136 must be closed. (0.50 for each correct valve) f b. 1. OPEN i 2. SHUT 3. SHUT L (f < 4. SHUT i '5. SHUT (0.50 for each correct position) i REFERENCE r MCGUIRE, LPRO-NI.14 FIGURE TP76173 3.2/000/006/K4.09/3.8 030/006/K4.04/3.9 4 ANSWER 2.14 (1.00) bre ed anw e n-for b, c, c},,, depended or the wdM h^v ea JL a. gpm. j ) 'J '" d' E '
- d " " NI'"
l '5
- 4 6'
- b. N gpm i^ ?#
p^d a M yrovid'd-reasonouter>pcau le y C. M gpm i d.57 W gpm (0.25 for each correct answer) REFERENCE l s l MCGUIRE, LPRO-NV FIGURE TP7796 3.1/020/004/A1.08/3.0 A4.02/3.7 4 e i ~( ( g 1 4 -d Y j i I 1 1 i { l 1 } , i i 3 j ), i. ) i r y
2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 38 ~ ANSWERS - MCGUIRE 182 -86/12/08-KINGSLEY, I. ANSWER 2.15 (1.25)
- 1. ND heat exchanger outlet relief Saa pig
- 2. Charging pump suction relief 220 p;i-
- 3. ND suction from loop "C"
^5G Yd9~ S&
- 0. 2.S
- 4. NCP seal relief 7
E 0 p;i-
- 5. Letdown relief (NV) 6GG psig-40.12 n e..m, 0.12" - tpefat'.
Y A/S f t/ REFERENCE 8I J'M / LPR0 IPE pg 23 NP pg 11 Nh,$) N) A6 Y NV pg 26 P&ID NO WC 1553-2.0 ANSWER 2.16 (1.50) a. Reactor Coolant Drain Tank b. Recycle Holdup Tank eductor c. Waste Evaporator vent condenser d. Volume Control Tank (s) e. Boron recycle evaporator vent condenser f. PD pump suction accumulator (0.25 each) REFERENCE LPRO WG DWG MC-SYS-WG-4 )
) 3. INSTRUMENTS AND CONTROLS PAGE 39 ANSWERS -- MCGUIRE 142 -86/12/08-KINGSLEY, I. ANSWER 3.01 (1.50) NV $tM heuti= ::het close5(0.25) ~ a. All NV letdown orifice isolation valves close (0.25) All pressur izer heater groups are turned off (0.25) Increased charging flow (0.25) (1.00) b. Reactor will trip on high pressurizer level (at 92%). (0.50) REFERENCE MCGUIRE, LPRO-ILE.11 3.2/000/011/K4.01/3.3 K4.02/3.3 K4.06/3.3 A1.02/3.3 ANSWER 3.02 (2.75) (0vercompensation results in a lower indicated flux) which could cause a. the source range detectors to be reinstated too early (0.50) thus causing a reactor trip from source range high flux trip (0.50). (1.00) b. Adjust the gain potentiometer.(Also accept gain adjustment on the front of the power range drawer.) (0.50) c. 1. PR 2. SR 3. IR 4. PR 5. SR (0.25 each for total of 1.25) REFERENCE MCGUIRE, LPRO-ENB.14 FIGURE MC-IC-ENB-4,5,6 FIGURE MCCP SD V0L III, pgs. 1.5, 1.10, and 1.11 3.9/000/015/K3.01/3.9 K5.02/2.7 K5.03/2.3 K6.01/2.9
~ 3. INSTRUMENTS AND CONTROLS PAGE 40 ANSWERS -- MCGUIRE 182 -86/12/08-KINGSLEY, I. ANSWER 3.03 (2.00) NC System pressure (WR) PZR level (WR) NC System loop Tcold - (WR) SG levels (WR) 63/ Standby make-up pump flow (DAff each for total of 2.00) Thernecoyple indee/ien REFERENCE MCGUIRE, LPRO-SSF FIGURE MC-SYS-SSF-2 3.9/000/016/K4.01/2.8 ANSWER 3.04 (2.00)
- a. Reactor trip (0.25) and start MD CA pumps (0.25).
(RNN
- b. Reactor trip (
and start all CA pumps (0".25) 8/5
- c. Turbine trip (0.25), CF system isolation (0.25), MFP trip (0.25).
- d. Main Feed Pump slows down (control system sees large increase in delta P and acts to lower it to conform with programmed delta P). (0.25)
REFERENCE MCGUIRE, LPRO-CA FIGURE MC-SYS-CA-4 LPRO-IPE FIGURE MC-IC-IPE-4 LPRO-IFE FIGURE MC-IC-IFE-2 3.2/000/013/K1.01/4.2 3.5/000/059/A2.11/3.0 3.9/000/016/A2.01/3.0
r 1 3. INSTRUENTS AND CONTROLS PAGE 41 ANSWERS -- MCGUIRE 142 -86/12/08-KINGSLEY, I. ANSWER 3.05 (1.25) a. Steam pressure is used to compensate the steam flow signal (0.25) for density variations in the steam (0.25) as steam pressure varies (0.25). b. Indicated steam flow will be lower than actual. (0.50) REFERENCE MCGUIRE, LPRO-IFE.11 3.4/010/035/K4.05/3.1 A2.03/3.4 COMPONENT-SENSORS /DETECRORS/3.0 ANSWER 3.06 (1.00) NO. (0.50) Channel II must energize to actuate (to avoid inadvertent spray actuation in the event of a loss of instru nt power). p (0.50) REFERENCE MCGUIRE, LPRO-ISE.15 3.2/000/013/K1.05/4.1 K4.09/2.7 ANSWER 3.07 (1.75) a. 1. S/G low-low level on 1 steam generator 2. Safety Injection sequencer signal 3. Trip of both Main Feed Pumps 4. Blackout sequencer signal (0.25 each for a total of 1.00) Autemetkelly (0.25) when suction pressure drops below 2 psig w.25)i ft 37T b. for > 3 seconds {0.25)(,31 Q REFERENCE MCGUIRE, LPRO-CA.17,19 3.2/000/013/K4.04/4.3 3.5/000/061/K4.02/4.5 K1.07/3.6
3. INSTRUMENTS AND CONTROLS PAGE 42 ANSWERS -- MCGUIRE 182 -86/12/08-KINGSLEY, I. Y$ Tref.Ali & l~'hO N
- 9
(/T -
- a. M-ft.25) Pcw;r -!s-atch cireui-twenses-nuc4 ear power-increating/ A
-at-a hete tha& turbine-potter. (OdO)- @c3 ym aw4/ u b. IN (0.25) Loop A Tave will become the auctioneered high Tave which is sensed to be higher than Traf. (0.50) c. N0 MOTION (0.25) Loop C Tave will be low and not be passed through the auctioneering circuitry. (0.50) d. IN (0.25) Power mismatch circuit senses turbine power decreasing at a faster rate than nuclear power. (0.50) REFERENCE MCGUIRE, LPRO-IRX 3.2/010/001/K5.07/3.2 3.9/000/016/K4.03/2.8 z.o o ANSWER 3.09 -(1.75) 1. Source range high flux 2. NCP low voltage 3. NCP underfrequency 4. Pressurizer low pressure 5. Pressurizer high level
- 6. iloop low flow 7.
Turbine tri n (j@/b.25 each)
- 8. t t, low.elow REFERENCE MCGUIRE, LPRO-IPE FIGURE MC-IC-IPE-4 3.9/000/012/K6.04/3.3 l
.h
r 3. INSTRUMENTS AND CONTROLS PAGE 43 ANSWERS -- MCGUIRE 182 -86/12/08-KINGSLEY, I. ANSWER 3.10 (1.50) a. 553 F (0.50) b. The increased steam dump will cause Tave to decrease (0.25). At the P-12 setpoint (553 F) positioning air will be vented and all steam dump valves will close (0.25). The nine affected steam dump valves will open when decay heat increases Tave above 553 F (0.25) and reclose at 553 F thus maintaining Tave at approximately 553 F (0.25). REFERENCE MCGUIRE, LPRO-IDE FIGURE MC-STM-IDE-1 3.5/020/041/K4.09/3.0 ANSWER 3.11 (2.00) a. Will not b. Will c. Will d. Will (0.50 each) REFERENCE MCGUIRE, LPRO-DG FIGURE MC-SYS-EQA-1,2 3.7/000/064/K4.05/3.4 K1.05/2.8 ANSWER 3.12 (2.00) a. WILL NOT b. WILL c. WILL NOT d. WILL (0.50 each) REFERENCE MCGUIRE, LPRO-EHC FIGURE MC-IC-DEH-13 3.5/000/045/K4.12/3.3 m
I 3. INSTRUENTS AND CONTROLS PAGE 44 ANSWERS -- MCGUIRE 182 -86/12/08-KINGSLEY, I. ANSWER 3.13 (1.50) <320 F (0.50) and Low Pressure Mode selected (0.50). a.- b. 400 psig (0.50) [J(S 4' 0 0. REFERENCE MCGUIRE, LPRO-IPE.18 3.3/000/010/K4.03/3.8 ANSWER 3.14 (2.00) 1. Manual (0.50) 2. Low steam line pressure (0.17), 585 psig (0.17), > P-11 (0.16) 3. High rate of steam pressure decrease (0.17), 100 psig/sec (0.17), < P-11 (0.16) 4. High-high containment pressure (0.25), 3.0 psig (0.25) REFERENCE MCGUIRE, LPRO-ISE.16 3.2/000/013/K4.03/3.9 ANSWER 3.15 (1.50) a. TRUE b. TRUE c. FALSE (0.50 each) REFERENCE MCGUIRE, LPRO-ENB FIGURE MC-IC-ENB-20 LPRO-IPE FIGURE MC-IC-IPE-4,19 LPRO-ISE.13,14 T.S. TABLE 3.3-3 3.1/000/001/K2.02/3.6 3.9/000/012/K4.04/3.1 K6.10/3.3
~ - 3. INSTRUMENTS AND CONTROLS PAGE 45 ANSWERS -- MCGUIRE 142 -86/12/08-KINGSLEY, I. ANSWER 3.16 (1.25) 1. Demand position counters 2. Master cyclers 3. Slave cyclers 4. Bank overlap unit counter 5. All alarms associated with rod control circuits except Urgent Failure alarms f, /'/A5 (g F g (0.25each) REFERENCE LPR0 IRX pgs 20&23 IRE pgs 7&8 ANSWER 3.17 (1.50) A" 41% + start auto makeup 16% " low level" alarm ,vv y& isolate VCT to NV pumps (0.125) and open FWST supply valves (0.125)
- 1. %
(0.25 each setpoint, 0.25 each functio' / alarm) n REFERENCE LPR0 NV pgs 16,42,43 ) 1
4. PROCEDURES - NORMAL, ABNCRMAL, EMERGENCY AND PAGE 46 RADIULUG1UAL CUNlMUL ANSWERS -- MCGUIRE 142 -86/12/08-KINGSLEY, I. ANSWER 4.01 (1.00) X.S. REFERENCE MCGUIRE, LPRO-SPD.8 PWG/10/4.1 ANSWEk 4.02 (2.50) At least one NV Pump or NI Pump running (0.5), and NCS subcooling less a. than 0 F. (0.5) b. 1. Lower bearing temperature > 225 F 2. Seal temperature > 235 F {q J g 3. Seal delta-P < 200 ps J0.50 W ach) ~ > 3 %er*/J +, 5 v REFERENCE s, $w u
- S" AP/1/A/5500/08 PG 2 6, ff, Q J e g,
, 3 j 7,- "e i EP/1/A/5000/01, FOLDOUT7y 3.4/000/003/A2.02/3.7 >i. i,8 3.3/009/000/EK3.23/4.2 ANSWER 4.03 (2.50) a. 1. Failure of more than one RCCA to fully insert following a reactor trip. 2. CRH below RIL. 3. Unexplained or uncontrolled reactivity increase. 4. SDM less than required. 5. Boron concentration less than required during refueling. 6. ATWT. (any four at 0.25 each) b. 1. Check BAST and normal charging available. 2. Start two boric acid transfer pumps. 3. Open emergency boration control valve (1NV265B). 4. Start two NV pumps. 5. Close NV pump recirc valves. 6. Increase letdown to maximum. (0.25 each) REFERENCE AP/1/A/5500/38, PG 2 and 3 3.1/024/000/EK3.01/4.1 4
~ f 4. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE -47 RADIOLOGIGAL CUNIMUL ANSWERS -- MCGUIRE 182 -86/12/08-KINGSLEY, I. EK3.02/4.2 ANSWER 4.04 (2.00) a. Manually at the PORVs. (0.5) b. To minimize NCS inventory loss (0.25) via the NCP seals. (0.25) c. To prevent the possibility of recriticality. (0.5) d. Continue depressurizing. (0.5) REFERENCE EP/1/A/5000/09 PG 11 and 12 3.7/055/000/EK3.02/4.3 EK2.01/2.0 PWG/7/3.5 ANSWER 4.05 (1.00) a. REFERENCE EP/1/A/5000/1.1 ENCLOSURE 1 3.7/055/000/EK1.02/4.1 ANSWER 4.06 (1.50) a. 15 hours after the LOCA. (0.50) b. (During cold leg recirculation) boron concentration increases in the core (0.25) due to (the concentrating effect of) boiling (0.25). Hot leg recirculation reduces the core boron concentration prior to boron precip(itation (0.25) which could adversely affect core cooling (or core flow) 0.25). REFERENCE EP/1/A/5000/2.4 PG 2 MCGUIRE, LPRO-AM.245 3.3/011/000/EK3.13/3.8 EK3.15/4.3
I 4. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 48 RADIOLOGICAL LUNIMUL ANSWERS -- MCGUIRE 1&2 -86/12/08-KINGSLEY, I. ANSWER 4.07 (2.00) a. Controlled b. Identified c. Pressure boundary d. Identified (0.50 each) REFERENCE MCGUIRE, TECHNICAL SPECIFICATIONS - DEFINITIONS PWG/5/2.9 ANSWER 4.08 (2.50) a. 50 F/hr b. 50 ppm c. 15 psig d. 551 F e. 15% (in one hour) (0.50 for each) REFERENCE OP/1/A/6100/01,02,03 PWG/7/3.5 ANSWER 4.09 (1.00) a REFERENCE OP/1/A/6100/01 PG 15 and 16 PWG/7/3.5 3.1/010/001/A2.07/3.6 (
b 4. PROCEDURES - NORMAL, ABNORMAL,' EMERGENCY AND PAGE 49 RADIOLOGICAL LUNIMUL ANSWERS -- MCGUIRE 1&2 -86/12/08-KINGSLEY, I. 100 ANSWER 4.10 -(1.50) 1. Stop both DEH pumps (0.50). 2. Place turbine in Manual (0.25) and close governor valves in Fast Action (0.25). 3. Direct NE0 to locally trip turbine (0.50). q, If bhme will ret 4eir, nea close att s/4 3nt Iso lJw.i valves. Lo,50) REFERENCE AP/1/A/5500/01 PG 3 PWG/11/4.5 ANSWER 4.11 (1.50) SR0 - Reports to Auxiliary Shutdown Panel and directs R0s to shutdown the plant (IAW AP/1/A/5500/17) (0.50). R0(1) - Reports to CA local control panels and awaits direction from SRO. (0.50) R0(2) - Reports to reactor trip switchgear and awaits direction from SR0. (0.50) REFERENCE AP/1/A/5500/17 PG 2and 3 PWG/11/4.5 i t
[' T 4. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 50 RADIULUGIGAL CUNINUL ANSWERS -- MCGUIRE 1&2 -86/12/08-KINGSLEY, I. (2.00) ANSWER 4.12 ,2.50) a. 1. 2500 mrem 2. 3000 mrem 3. 4500 mrem
- 4. 12000 mrem (0.25 each) b.
1. Station h' ealth physicist (or designee) (0.50) Station manager (or designee) (0.50) W 1790 -m (1.00 i '..,m 1200 :;: ;) (0.50) REFERENCE MCGUIRE, HEALTH PHYSICS MANUAL, SECTION 2.1.5 and 2.1.6 PWG/15/3.4 PWG/16/3.4 ANSWER 4.13 (1.00) a. NO (0.50) b. YES (0.50) REFERENCE MCGUIRE, TECHNICAL SPECIFICATION 3.1.2.3 and 3.0.3 STATION DIRECTIVE 3.1.3 PWG/5/2.9 PNG/8/4.5 PRG/23/2.8 l ANSWER 4.14 (2.25) 1. Yes (0.25) Less than two channels exceed limits (0.50) 2. Yes (0.25) 1.ess than two channels exceed limits (0.50) 3. No (0.25) Two channels exceed limits (0.50) REFERENCE MCGUIRE, TECHNICAL SPECIFICATION 3/4.2.1 L
w p 4. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 51 RADIOLOGIGAL GUNIKUL f ANSWERS -- MCGUIRE 182 -86/12/08-KINGSLEY, I. ANSWER 4.15 (2.50)
- 1. Manually exercise Reactor Trip Train 1A (0.25) and 1B switches.(0.25)
- 2. Verify reactor trip.
- 3. Verify turbine / generator trip.
(0.50 each)
- 4. Try to energize 4160V bus with D/G from the Control Room.
- 5. Dispatch operators to initiate NC pump seal injection from SSF.
(2.5) REFERENCE EP/1/A/5000/09, pgs 2 & 3 000 055 EK3.02 4.6 ANSWER 4.16 (2.00) a. 2. (1.00) b. When all CRDM fans are running. (1.00) REFERENCE EP/1/A/5000/1.1 i I L
v r \\ [U. S. NUCLEAR REGULATORY COMMISSION SENIOR REACTOR OPERATOR LICENSE EXAMINATION FACILITY: MCGUIRE 1&2 REACTOR TYPE: PWR-WEC4 DATE ADMINISTERED: 86/12/08 EXAMINER: _GUILEQIL. T-CANDIDATE: INEIBUCTIONS_IO. CANDIDATE 1 Une separate paper for the answers. Write answers on one side only. Staple question sheet on top of the answer theets. Points for each question are indicated in parentheses after the question. The passing grade requires at least 70% in each category and a final grade of at least 80%. Examination papers will be picked up six (6) hours after the examination starts. % OF CATEGORY % OF CANDIDATE'S CATEGORY VALUE TOTAL SCORE VALUE CATEGORY _20 Q0 _25.05 5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND THERMODYNAMICS 30.00 _25.05 6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION _30.00 25.05 7. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND RADIOLOGICAL CONTROL _29.75 24.84 8. ADMINISTRATIVE PROCEDURES, CONDITIONS, AND. LIMITATIONS 119.75 Totals Final Grade All work done on this examination is my own. I have neither given nor received aid. Candidate's Signature L.
m NRC RULES AND GUIDELINES FOR LICENSE EXAMINATIONS During the administration of this examination the following rules apply: t 1. Cheating on the examination means an automatic denial of your application and could result in more severe penalties. 2. Restroom trips are to be limited and only one candidate at a time may 4 leave. You must avoid all contacts with anyone outside the examination room to avoid even the appearance or possibility of cheating. 3. Use black ink or dark pencil onlY to facilitate legible reproductions. 4. Print your name in the blank provided on the cover sheet of the examination. 5. Fill in the date on the cover sheet of the examination (if necessary). 6. Use only the paper provided for answers. 7. Print your name in the upper right-hand corner of the first page of each section of the answer sheet. 8. Consecutively number each answer sheet, write "End of Category __" as appropriate, start each category on a ngE page, write only an ang'aida of the paper, and write "Last Page" on the last answer sheet. 9. Number each answer as to category and number, for example, 1.4, 6.3.
- 10. Skip at least threg lines between each answer.
- 11. Separate answer sheets from pad and place finished answer sheets face down on your desk or table.
- 12. Use abbreviations only if they are commonly used in facility literature.
- 13. The point value for each question is indicated in parentheses after the question and can be used as a guide for the depth of answer required.
- 14. Show all calculations, methods, or assumptions used to obtain an answer to mathematical problems whether indicated in the question or not.
- 15. Partial credit may be given.
Therefore, ANSWER ALL PARTS OF THE QUESTION AND DO NOT LEAVE ANY ANSWER BLANK.
- 16. If parts of the examination are not clear as to intent, ask questions of the examinar only.
- 17. You must sign the statement on the cover sheet that indicates that the work is your own and you have not received or been given assistance in completing the examination.
This must be done after the examination has been completed. L_ a
181 When you complete your examination, you shall: a. Assemble your examination as follows: (1) Exam questions on top. (2) Exam aids - figures, tables, etc. (3) Answer pages including figures which are part of the answer, b. Turn in your copy of the examination and all pages used to answer the examination questions. c. Turn in all scrap paper.and the balance of the paper that you did not use for answering the questions. d. Leave the examination area, as defined by the examiner. If after leaving, you are found in this' area while the examination is still in progress, your license may be denied or revoked. e L
fT I 5. 'rnxORY OF NUCr.rAR POWER PLANT OPRRATION. FLUIDS. AND PAGE 2 . THERMODYNAMICS t 1 QUESTION 5.01 (1.50) How does DNBR change (INCREASE, DECREASE, NO CHANGE) for the following? -Consider each separately. a. Controlling rod bank is inserted 30 steps with reactor power maintained constant at 100%. (0.5) b. Reactor coolant boron concentration is reduced with control rods in manual (no operator action). (0.5) c. Unit 1 is at 60% power and Steam Generator "C" isolation valve, goes shut (control rods are in auto, no operator actions). (0.5) QUESTION 5.02 (2.00) Unit 1 is operating at 75% power at BOL when a steam dump valve OPENS. All controls are in manual and there is no operator action. State'what happens (INCREASES, DECREASES or NO CHANGE) to the following parameters. Consider each separately, a. Power defect (0.5) b. Moderator temperature coefficient (0.5) c. Steam generator level (answer for initial short term effect) (0.5) d. Pressurizer level (0.5) QUESTION 5.03 (1.50) a. How does Axial Flux Difference change (INCREASES, DECREASES, NO CHANGE) for the following conditions? 1. From BOL to EOL (0.5) 2. Down power transient with no rod motion (0.5) b. What happens to Quadrant Power Tilt Ratio-(INCREASES, DECREASES, NO CHANGE) if S/G "B" div# der plate fails? (assume QPTR = 1 initially) i (0.5) (***** CATEGORY 05 CONTINUED ON NEXT PAGE *****)
y f. THEORY OF NUCLEAR POWER PLANT OPERATION. FLUIDS. AHD PAGE 3 , THERMODYNAMICS QUESTION 5.04 (3.00) c. How is critical rod position affected (HIGHER, LOWER, NO EFFECT) by the following? 1. Initial source range level indication (CPS) is higher due to subcritical multiplication (0,5) 2. Rod speed is increased (0.5) 3. Steam generator pressure increased (0.5) 4. Moderator temperature coefficient increased (more negative) (0.5) b. Do you AGREE or DISAGREE with the following statement (0.5)? Explain your answer (0.5) (1.0) " Increasing rod speed will increase the source. range count rate (CPS) at criticality." (1.0) QUESTION 5.05 (1.50) How does moderator temperature coefficient change (MORE NEGATIVE, LESS NEGATIVE, NO CHANGE) for each parameter change listed below? (consider each parameter change separately) a. Reactor coolant boron concentration decreases (0.5) b. Xenon concentration increases (control rods in manual, boron concentration unchanged) (0.5) c. Power increases (0.5) (***** CATEGORY 05 CONTINUED ON NEXT PAGE *****)
T 5. THEORY OF NUCWAR POWER PLANT OPERATION. FLUIDS. AND PAGE 4 T - MODYNAMIES QUESTION 5.06 (1.50) The following statements concern reactor vessel stress. Complete the statements by selecting the correct response from the following possible answers. NOTE: answers may be used more than once. Possible answers 1. tensile 2. compressive 3. heat-up 4. cool-down a. During heatup the INSIDE WALL of the reactor vessel experiences stress due to the temperature gradient across the vessel wall. (0.5) b. The pressure differential between the inside and outside of the reactor vessel causes the vessel OUTSIDE WALL to experience stress. (0.5) c. The OUTSIDE WALL of the reactor vessel experiences maximum stress during (0.5) QUESTION 5.07 (1.00) The plant is operating at 75 percent power with all systems in automatic. -I ndica te-how-SHUTDOWN-MARG I N-i s-a f f ected-{-I NCREASE, DECPIASE, NO CH!SGE) by -the-f ol-lowing-conditions /s it u at i on s - Assume no operator actions (unless stated) and the reactor does not trip. Which one of the situations below will change the Shutdown Margin (0.5) and in which direction (INCREASE or DECREASE) will it change (0.5)? a. The NC system is borated by 10 ppm. b. A control rod in a shutdown bank drops. c. Power is increased to 90 percent WITHOUT dilution. d. Pressurizer level increases by 10 percent. (***** CATEGORY 05 CONTINUED ON NEXT PAGE *****)
5 THEORY OF NUCLRAR POWER-PLANT OPERATION. FLUIDS. MD PAGE 5 . THERMODYNAMICS QUESTION 5.08 (1.00) A centrifugal pump is delivering 10 gpm at a pump head of 25 psig. What is the PUMP HEAD at 8 apm? (show all work) (1.0) nt QUESTION 5.09 (1.150) List three heat adjustments made to the basic secondary heat balance cquation to more accurately reflect the actual Reactor Thermal Power Output. State whether each is added to or subtracted from the heat balance. QUESTION 5.10 (2.00) Preparations for a reactor startup are in progress.with the.following parameters existing: Tavg = 540F-Keff = 0.95 Boron concentration = 600 ppm moderator temperature coefficient = -18.4 pcm/F differential Boron worth = -11.2 pcm/ ppa source range level = 10 cps I Tavg is increased.to 547F and Boron concentration is adjusted to ) 500 ppm. What will the SOURCE RANGE LEVEL indication be following the changes? Show all work. QUESTION 5.11 (1.50) Explain HOW and WHY Differential Boron Worth will change with an increase in moderator temperature. (***** CATEGORY 05 CONTINUED ON NEXT PAGE *****) l \\ l
5. ' THEORY OF NUCMAR POWER PLANT OPEB& TION. FLUIDS. AND PAGE 6 THERMODXHAHigg QUESTION 5.12 (2.00) n. The plant has been operating at 100 % reactor power for several weeks with all systems in automatic. Power is reduced to 50 % over a 2 hour period. What ROD MOTION will occur to maintain Tave on the program over.the next 40 hours-(beginning just prior to the power change) assuming no change in boron concentration? Include applicable TIME FRAMES. (l.5) b. The equilibrium (at power) value of samarium reactivity is (DEPENDENT ON or INDEPENDENT OF} power level. (0.5) QUESTION 5.13 (1.00) Which of the following statement define ENTHALPY RISE HOT CHANNEL FACTOR? a. The ratio of actual maximum power density in the core to measured maximum power density in the core. b. The ratio of maximum linear power density in the core to average integrated power density in the core. The ratio of maximum power density in the core to average rod power. c. d. The ratio of maximum rod power to average rod power. QUESTION 5.14 .(1.50) How do the following steam parameters change (INCREASE, DECREASE, or NO CHANGE) between the inlet and outlet of a real (not ideal) turbine? a. Enthalpy b. Entropy c. Quality QUESTION 5.15 (1.50) I a. List the three most significant coefficients that contribute to the total power coefficient at EOL in order of INCREASING magnitude.(1.00) b. Eow does total power coefficient vary as the core ages? (0.50) (***** CATEGORY 05 CONTINUED ON NEXT PAGE *****)
5. ' THEORY OF NUCLEAR POWER PLANT OPERATION. FLUIDS. AND PAGE 7 THERMODYNAHlCE 4 4 4 QUESTION 5.16 (1.50) Primary system. flow rate is many times greater than secondary system flow rate while the heat transferred by the two systems is essentially the same. EXPLAIN how this is possible. . QUESTION 5.17. (1.50) The reactor is producing 100% rated thermal power at a core delta-T of 60 degrees and a RCS mass flow rate of 100% when a station blackout occurs. Natural circulation is established and core delta-T goes to 28 F. If decay heat is 2% rated thermal power, what is the core mass flow rate in percent? t ] QUESTION 5.18 (1.50) The plant is operating at 100 % power with NCS Tave at 587 F and a steam pressure of 980 psig. What must TAVE be changed to in order to maintain 980 psig steam pressure at 100 % power with 10 % of the tubes in each steam generator plugged? SHOW ALL WORK, including any applicable formulas. Assume NCS flow rate remains constant. I i QUESTION 5.19 (1.50) The plant is in Hot Standby with pressurizer pressure at 985 psig. A pressurizer PORV begins leaking to the pressurizer relief tank which is at 5 psig. What.is the downsEream tail pipe temperature? (0.50) a. b. What is the enthalpy of the fluid entering the PRT? (0.'50) g The fluid entering the PRT is a: (SELECT ONE) (0.50) c. J 1. Superheated vapor j 2. Wet vapor i 3. Saturated vapor 4. Subcooled liquid l 1 1 (***** END OF CATEGORY 05 *****)
6. PLANT SYSTEMS DESIGN. CONTBOL. AND INSTREMENTATION PAGE 8 QUESTION 6.01 (1.00) List all the sources of suction water available to the auxiliary feedwater pumps. /.FC5 QUESTION 6.02 (3:00) a. List three functions of the Reactor Vessel Level Instrumentation System. (1.5) 8am-sc=4'a=4 b. List the NORMAL power supply for the Reactor Vessel Level Instrumentat-3 ion System and provide bus name(s). (0.5)/ t QUESTION 6.03 (1.50) During normal operations, what SYSTEM PRESSURE DIFFERENCES DETERMINE the PRESSURE DROP across Reactor Coolant Pump seals (0.75) and what is the LEAKAGE RATE through the seals (0.75)? QUESTION 6.04 (1.75) What Pressurizer Heater INTERLOCK is actuated by pressurizer level and a. what is the setpoint? (0.5) b. The Pressurizer Relief Tank (PRT) collects, condenses and cools the discharge from the PORVs and Safeties. List FIVE (5) other RELIEF VALVES that discharge to the PRT - ' "- C"T"0Iid6 r. (1.25) QUESTION 6.05 (2.25) a. Describe the NCP #1 seal leakoff flow path following a Containment Phase A Isolation signal. (0.75) b. Can long term NCP operation continue under these conditions? (0.25) c. What additional actions occur upon a Containment Phase B Isolation signal which adversely affect the NCPs? (1.0) d. Can long term NCP operation continue under these conditions? (0.25) (***** CATEGORY 06 CONTINUED ON NEXT PAGE *****)
6. ' PLANT SYSTEMS DESIGN. CONTROL. AND INSTRUMENTATIQM PAGE 9 QUESTION 6.06 (3.00) o. State the PURPOSE of the Tavg Defeat Switch. (0.5) b. List FIVE (5) CONDITIONS that will cause a Rod Control URGENT FAILURE ALARM. (1.25) c. List FIVE (5) equipments / components reset by the Rod Position Startup Pushbutton. (1.25) QUESTION 6.07 (1.50) List FIVE separate plant parameters (excluding D/G related) that can be monitored in the Standby Shutdown Facility? (Related parameters count as one parameter - e.g., loop A,B,C, AND D flow equals one parameter.) QUESTION 6.08 (2.00) State the SETPOINTS and AUTOMATIC FUNCTIONS / ALARMS for the VCT Level Control System. QUESTION 6.09 (1.00) State the four INTERLOCKS that must be satisfied for ND-4B (ND suction from FWST) to open!* .u QUESTION 6.10 (1.00) State the PURPOSE, SETPOINT and COINCIDENCE of the Low Power Rod Stop. 64u es4res d el*445 j ( 1 ^ 07" QUECTIOF S.it xAa: =- & k What ers the alarm setpoints des the cold leg Accumulator pressure 4 instruments (4-6-)? 49:et 4= +ha b::cs for thcsc actpcir.t:(1,0)?= (***** CATEGORY 06 CONTINUED ON NEXT PAGE *****)
6. PLANT SYSTEMS DESIGN. CONTROL._AND INSTRUMENTATIQN PAGE 10 QUESTION 6.12 (1.50) List SIX (6) compo$entu that discharge to the waste gas vent header. QUESTION 6.13 (2.00) h For each of the following conditions, state whether the diesel generator will start or will not start with its control in automatic. (0.5 each) 86N lockout present and 2/3 UV on 4160 volt bus, a. b. 86s lockout present and LOCA conditions. Lube oil temperature high and a 2/3 UV on 4160 volt bus. c. d. Lube oil pressure low (1PSA/1PSB) and LOCA conditions. l QUESTION 6.14 (3.00) THx e*- Excluding manual initiation list fewe-conditions that will generate a a. Safety Injection signal. Include setpoints and coincidences. (0.9) b. Indicate the order in which the ECCS subsystems will inject into the NCS and the pressure at which each will inject during a steady NCS depressurization at 100 psi per minute caused by a LOCA. (Assume each was started by a Safety Injection Signal as applicable.) (2.1) QUESTION 6;15 (1.00) The plant is operating at 100 % steady state power with containment pressure channel IV (PB 934A) failed high. A technician troubleshooting i the trip bistables inadvertently de-energizes the instrument power for containment pressure channel II. Will a Containment Spray Actuation occur? WHY or WHY NOT? QUESTION 6.16 (1.00) Each NC pump motor is equipped with an anti-reverse rotation device. List TWO reasons for using this device. (****h CATEGORY 06 CONTINUED ON NEXT PAGE *****)
6. ' PLANT SYSTEMS DESIGN. COMIROL. AND INSTRUMENIAIlQH PAGE -11 QUESTION 6.17 (1.50) Select the three loads from the following list which would be deenergized following the loss of the ITB bus. c. 1B NS pump b. 1B KF pump c. Equipment decontamination pump d. 1B hotwell pump o. B main fire pump f. 1B RC pump QUESTION 6.18 (2.00) In a feedwater heater, the normal drain control. valve will modulate to maintain normal water level. Describe the automatic actions that occur for each of the following cases. a. Water level increases from normal to the Emergency High Level setpoint. (4nu>ic "## h/h e ) (1.5) be b. Water level in the C heater drain tank kncreases from normal to the Low-Low Level setpoint. (0.5) l I (***** END OF CATEGORY 06 *****)
i 7. PROCEDURES - NORMAL. ABNQRMAL. EMERGENCY AND PAGE 12 d ,B&DIOLOGICAL CQHIBQL s f QUESTION 7.01' (2.00) List four (4) major functions that must be performed by the operator to recover.from a S/G tube rupture event'as required by EP/1/A/5000, Steam Generator Tube Rupture. QUESTION 7.02 (1.00) In accordance with OP/1/A/6100/01, Controlling Procedure for Unit Startup,- What operator actions are required if it appears criticality will be t: cchieved BELOW the Tech Spec rod insertion limits? QUESTION 7.03 (1.50)' Prioritize the below listed Critical Safety Function Status Trees from highest to lowest: 1. Containment - Red 2. Core Cooling - Red 3. Heat Sink - Yellow 4. Integrity - Orange 5. Inventory - Yellow 6. Subcriticality - Orange QUESTION 7.04 (2.50) In accordance with EP/1/A/5000/09, Loss of All AC Power, what are all the-immediate actions for a loss of all AC power? QUESTION 7.05 (1.50) Answer the following in accordance with EP/1/A/5000/13.1 " Response to Losa of Secondary Heat Sink"p ( What two conditions require NC System feed and bleed to be initiated a. immediately? (1.0) b. What action must be' t'aken when the "FWST level lo" alarm acutates? (0.5) J (***** CATEGORY 07 CONTINUED ON NEX'T PAGE *****)- e
.a' 9/0 ALJ C STION An 7,06 swe Lev l r the followi(2.0 ) e Du ing Refu 0 P r AGE ng 13 a. If n ir eling"ep r AP a /1 ap r p oxim telr diated /A/5500 a qu arte ly 100FR2 r y ho fu l /40 "Lo a State e ss all w long w embly ass b. of Refu ling C 0 assu List ha dledRefu ling Cthe thr mptionlimi olud wer e t fo it \\ be befoe to be r s a ad nl whole body d e n a come e Wate e imm diate sho n re all you expo w an l r e by the Re a sd e with o k. o e if r s exc w to fu l oper to e ded e
- air, QUliM;03 a tor Buildi e
a you c the MAXIMUM mov r wer a tio e3 em c ent 0 n ng m in s fo fe t e n pr r What 7 07 a ipulator ogress.a lo away? ss (A of th im lev l 4;i (0.5) an.se )u e fua? lv:e slantm diate (; v0) s e cr m e 1 ul fo ave he t of r r to a 100%.e c in ah e c r e a tio e-S Co of c h r Ra nsiderthe followi owe adv 1.5) ns n S-> ngo aban each sepo e ng rific tio ins a nl r c u tely.tr e ontr ll o A um ns ent are up ing stea per dete t failu re e. quir d r mf?ch As to c s e flCic: r.Jlc tioor fails hi i sume stebaliz a gh a pow e n s er 'I cha 05 nn l e ing a lo (2.0 ) r "C" S fo r to a r depr of /G (1.0) ss 0 fails high of e all Valve,ssu iz AC r s pow e the NC,y er EP/1 (1,0) ow would S stem /A5000 these u ing/0, Lo y s 9 m v lv ut a s the NC s be ste ss e am of t ope gen All System be d tw r ted a a AC epr without er tor Pow Pow o parameter er surizrding the d imit uriz d? e ha co tr l r Ope,r teds the sl ess n a S/G o e e epr r lev l depr air? es is losu is tio e r es su iz tio ? (0.5) a r st n, how a or n v sl sho lud es e uppe the (0.5) r he d oper to a a vi r (0 5) o ding o spo d re (c *** CATE n c ccur? if s GORY (0.5) 07 CONTINU ED ON NEXT PAGE *****)
6 f ) 7. PBOCED RES - NORMAL. ABNORMAL. EMERGENCY AND PAGE 13 .BADIOLOGICAL CONTROL ' QUESTION 7.06 (2.00) Answer the following per AP/1/A/5500/40 " Loss of Refueling Canal Water ' Level During Refueling": a. If an irradiated fuel assembly were to become exposed to air, approximately how long would it be before you exceeded the HAXIMUM quarterly 10CFR20 limit for whole body dose if you were 30 feet away? State all assumptions and show all work. (0.5) b. List the three immediate operator actions for a loss of level in the Refueling Canal with fuel movement in progress.(Assume fuel is being handled by the Reactor Building manipulator crane.) (1.5) QUESTION 7. 0's (2.00) What immediate operator actions and verifications are required to stabalize the plant for each of the following instrument failures. Assume a power level of 100%. Consider each separately. l a. Power Range channel A upper detector fails high (1.0) b. The controlling steam flow indication channel for "C" S/G fails high (1.0) QUESTION 7.08 (2.00) During a loss of all AC power, EP/1/A5000/09, Loss of All AC Power, has the operator depressurize the NC System using steam generator Power Operated Relief Valves. a. How would these valves be operated without control air? (0.5) b. Why must the NC System be depressurized? (0.5) i c. What two parameters limit S/G depressurization? (0.5) d. Regarding the depressurization, how should the operator respond if pressurizer level is lost or vessel upper head voiding occurs? (0.5) l l (***** CATEGORY 07 CONTINUED ON NEXT PAGE *****)
7. ' PROCEDURES - NORMAL. ABNORMAL. EMERGENCY AND PAGE 14 HADIOLOGICAL CONTROL t QUESTION 7.09 (1.00) Solect the group of indications which provide verification of natural circulation. (1.0) NC SYSTEM S/G CORE EXIT SUBCOOLING PRESSURES T-hot T-cold THERMOCOUPLES a. 40 F Constant Decreasing Decreasing Increasing b. 30 F Decreasing Constant Constant Increasing c. 20 F Constant Decreasing donstant Decreasing d. 10 F Decreasing Increasing D'ecreasing Increasing o. OF Constant Constant Constant Decreasing QUESTION 7.10 (1.50) Supply the following limits which must be observed during plant operation in accordance with OP/1/A6100/03, Controlling Procedure for Unit Operation, a. Maximum T-Ave /T-Ref difference with rod control in manual. (0.5) b. Maximum boron concentration differential between NC system and the pressurizer. (0.5) c. S/G inlet check valve by-pass line temperature requiring reverse flow purging. (0.5) 1 l l (***** CATEGORY 07 CONTINUED ON NEXT PAGE *****)
7. ' PROCEDURES - NORMAL. ABNORMAL. EMERGENCY AND PAGE 15 BADlQJ,,0GICAL CONTROL QUESTION 7.11 (1.00) Complete the following statements regarding a reactor startup. a. Do not exceed an IR SUR of (0.25) DPM when pulling rods to attain criticality. b. Heatup rate of the NC system should not exceed (0.25) degrees F/HR c. The NC temperature should not exceed (0.2b) degrees F until at least one NC pump is in service. d. To minimize temperature transients to the PZR, the spray flow should not be initiated if the temperature difference between the PZR and the spray fluid is greater than (0.25) degrees F. QUESTION 7.12 (1.00) Which of the following operator actions is NOT among the immediate actions of EP/1/A/5000/01, Safety Injection? i a. Verify load sequencer actuates. b. Verify 1 ETA and 1ETB energized. c. Verify Turbine / Generator trip. d. Verify CA flow to all intact S/Gs. e. Verify reator trip. QUESTION 7.13 (1.00) EP/1/A/5000/02, High Energy Line Break Inside Containment, lists two conditions that together require the operator to trip all NC pumps. What are these conditions? QUESTION 7.14 (1.50) List the immediate actions as required by AP/1/A/5500/03, Load Rejection, for a large load rejection (50%) on Unit 1. (***** CATEGORY 07 CONTINUED ON NEXT PAGE *****)
7. ' PROCEDURES - FORMAL. ABNORMALI EMERGENCY AND PAGE 16-BADIOLOGICAL CONIBQL_ 9 QUESTION' 7.15 (+:46) a. State-the 10 CFR 20 Quarterly limit and the local ADMINISTRATIVE Quarterly limit for whole body radiation exposure. (1.0) b. State the criteria that must be met in order to increase the 10 CFR 20 limit on thole-body exposure. b5 b QUESTION 7'.16 (2.50) a List FOUR situations or conditionsL(unrelated) which require the operator to commence EMERGENCY BORATION of the NCS. (1.0) b. In accordance with AP/1/A/5500/38, Emergency Boration, what' specific operator _ actions are required to initiate emergency boration at the maximum rate via the " normal" path? (1.5) QUESTION 7.17 (1.50) i d The plant is operating at 100% power when a telephene call is received reporting a bomb in the controlroom. A quick search reveals a " suspicious" package which prompts the Shift Supervisor to order evacuation'of the control room. What are the responsibilities of the Unit 1 operators (SRO and 2 ROs)? QUESTION 7.18 (1.50) Refer to figure 7-1 for the following question. Given the following indications, determine whether axial flux difference is being maintained within appropriate limits. (0.5 each) POWER AFD AFD AFD AFD LEVEL CHANNEL 1 CHANNEL 2 CHANNEL 3 CHANNEL 4 U j i i i 1. 70% -25 -27 -26 -33' l 2. 85% -23 -22 -35 -24 3. 51% +14 +22 +16 +23 l .l (***** END OF CATEGORY 07 *****)
r 8. ADMINISTRATIVE PROCEDURES. CONDITIONS. AHD._ LIMITATIONS PAGE 17 QUESTION 8.01 (1.00) The concentration of the boric acid solution in the Boric Acid Storage System must be verified once per seven days in accordance with Technical Specification 4.1.2.6. The chemist sampled the boron concentration on the following schedule. (All samples taken at 1200 hours). Nov 1 --- Nov 8 --- Nov 16 --- Nov 24 --- Nov 30 Ware Technical Specification surveillance requirements exceeded on any date? If so when and why? QUESTION 8.02 (1.00) After accounting for his personnel during a Site Assembly, the senior person in a section will report to which one of the following? (select one)'
- a. Superintendent of Station Services
- b. Security Shift Lieutenant
- c. Station Manager's Clerk
- d. Shift Supervisor QUESTION 8.03 (1.50)
What is the technical basis for the requirement to reduce Tavg to less than 500 degrees when specific activity limits on the RCS are exceeded?(1.0) Explain the significance of 500 degrees.(0.5) (***** CATEGORY 08 CONTINUED ON NEXT PAGE *****)
8. ADMINISTRATIVE PROCEDURES. CONDITIONS. AND LIMITATIONS PAGE 18 QUESTION 8.04 l1.00) Which phrase below identifies what is defined by the following paragraph? " protects the integrity of the Reactor Cioolant System and prevents the release of radionuclides." e. Limiting Condition for Operation. b. Limiting Safety System Settings. c. Safety Limits. d. Process Control Program (PCP). QUESTION 8.05 (2.00) a. How many members are required on the fire brigade per Technical Specifications, Section 67 (0.5) b. Which personnel assigned to the shift will not be assigned as members of the fire brigade? (1.5) QUESTION 8.06 (1.50) Technical Specification 3.4.4 states "All power-operated relief valves (PORV's) and their associated block valves shall be OPERABLE". For the following situations state what actions are required to be taken within one hour if operation at power is to continue.
- a. One or more POP.V's inoperable because of excessive seat leakage.
(0.75)
- b. One PORV BLOCK VALVE stuck open due to sticking valve stem.
(0.75) QUESTION 8.07 (1.00) To go from COLD SHUTDOWN to HOT SHUTDOWN (Operational MODE 5 to MODE 4), what must be the status of Limiting Conditions for Operation? (***** CATEGORY 08 CONTINUED ON NEXT PAGE *****)
8. ADMINISTRATIVE PROCEDURES. CONDITIONS. AND LIM 11AIlQHS PAGE 19 QUESTION 8.08 (1.50) In the event of a plant emergency requiring implementing the Emergency Plan, who, by title: e. Initially assumes the duties of the Emergency Coordinator? (0.5) b. Can relieve the on shift Emergency Coordinator? (0.5) c. Assumes the responsibilities of the Operations Support Center Coordinator? (0.5) QUESTION 8.09 (2.00) While passing into Mode 4 from Mode 5 a control room operator determines the Shutdown Margin (SDM) to be 1.23% delta k/k. a. Explain the problem with this SDM value. (0.5) b. State the action that is required (0.5) c. What is a viable alternative if the operator is prevented from taking the required action due to equipment malfunction? (0.5) d. Would corrective action have been required if the plant had remained in Mode 5? Explain. (0.5) OS* QUESTION 8.10 (.1.d7tI) At 75% reactor power during Relaxed Axial Offset Control (RAOC) operation, it is noted that AFD is outside the allowable band for this power level and power is reduced to 48% immediately, a. What is the TECH SPEC basis for reducing power. (0.5) b. xplai action at i e subseg to Quci( I (***** CATEGORY 08 CONTINUED ON NEXT PAGE *****)
8. ADMINISTRATIVE PROCEDURES. CONDITIONS. AND LIMITATIONS PAGE 20 b (19 QUESTION 8.11 W For each of the following, indicate the type of RCS leakage classification as defined in Technical Specifications. e. Leakage through a valve packing that is routed to a coolant drain tank. b. Steam generator tube leakage. c. Slight seepage through an elbow socket weld on a RTD bypass line. d. RCP seal leakage. QUESTION 8.12 (2.50) Define containment integrity per MCGUIRE Technical Specifications by stating its six requirements in the format provided below. Be brief. Surveillance requirements and numerical values are not required. Containment integrity shall exist when: a. All penetrations required to be closed during accident conditions are either: (1) or (2) b. (3) c. (4) d. (5) e. (6) QUESTION 8.13 (2.25) Answer the following in accordance with MCGUIRE Technical Specifications: a. Define HOT SHUTDOWN. (0.75) b. Which THREE parameters must be maintained within limits in order to verify that Reactor Core Safety Limits are being adhered to? (0.75) c. Provide the following temperature limitation values. 1. Pressuriser heatup rate. 2. Pressuriser cooldown rate. 3. Maximum pressurizer spray water temperature difference. (0.75) 'I 4 (***** CATEGORY 08 CONTINUED ON NEXT PAGE *****)
8. ' ADMINISTRATIVE PROCEDURER. CONDITIONS. AND LIMITATIQHS PAGE 21 f .i 1-QUESTION 8.14 (1.50) -1. Plant staff who perform safety related functions are resdtricted to working no more than the following hours. (Fill.in the blanks.) I
- a. An individual shall not be permitted to work more than hours
~ straight (not including shift turnover time). (0.25)
- b. An individual shall not be permitted to work more than hours
- in any 24-hour period (not including-shift turnover time). (0.25) -c. An individual shall not work more than hours in any 48-hour period (not including shift turnover time). (0.25)
- d. An individual shall not work more than hours in any seven-day period (not including shift turnover time).
(0.25)
- e. A break of at-least hours shall be allowed between work periods.
(0.25)
- 2. Who (title / position) may approve deviations from the station working hour linmitations?
(0.25) 4 f 1 j QUESTION 8.15 (1.00) j What Control Room administrative check lists or log books should an on l coming Shift Supervisor use to determine: a. Equipment which is out of service. (0.25) i b. The length of time the facility has been in any Technical Specification action statements. (0.25) c. Instructions to the shift that are not covered by procedures, Station Directives, OMP's, etc. (0.25) ] d. The names of the licensed operators who are meeting the Technical Specification staffing requirements. (0.25) 1 A i i (***** CATEGORY 08 CONTINUED ON NEXT PAGE *****) 4 -. ~
8. ' ADMINISTRATIVE PRQCEDURES. CONDITIONS. AND LIMITM 1QNJ PAGE 22 /t d QUESTION 8.16 (M) a. List the Technical Specification DNB parameters applicable during Mode 1 operations. (criteria not required) $d;34 b. What ACTIONS are required by Technical Specifications if a DNB parameter is exceeded during Mode 1 operation? (1.0) j L QUE ION 8.17 (1.50) p, For th following events listed in Column I, elect the Column II type of report ( ecified by Technical Specificat s) used for reporting the event to the NRC. (answers may be used more n once.) COLUMN I UMN II (EVENT) (REPORT) a. Changes to the ressur er power operated Annual port relief valves ( V or safety valves. 2. Spec <1 Report b. Operating stati ics nd shutdown experience. 3. artup Report Monthly Reactor c. Inoper le Meteorological Mo tor g Operating Report Inst mentation. QUESTION 8.18 (2.00) Name and describe the classes of emergencies that require implementation of the McGuire Emergency Plan. QUESTION 8.19 (1.00) What person is responsible for insuring that the working copy of a procedure has been compared to the control copy prior to use? i i l (***** CATEGORY 08 CONTINUED ON NEXT PAGE *****)
l 8. ADMINISTRATIVE PROCEDURES. CONDITIONS. AND LIMITATIONS PAGE 23 1 QUESTION 8.20 (1.00) If temporary approval of a procedure change is given, final approval must be obtained within calendar days following the date of temporary cpproval. a. 1 b. 7 c. 10 d. 14 9 QUESTION 8.21 (1.00) Each Station Directive is reviewed and approved by the o. Superintendent responsible for issuing the SD. b. Any superintendent. c. Station Manager. d. Administrative Superintendent. (***** END OF CATEGORY 08 *****) (************* END OF EXAMINATION ***************)
1 120 l 110 (-20,100) (10.1001 7 I ) I maccanAss.: LanacctMAsLE k so f ) \\ a. so / E AccIMAsLE [ 1 6 E To [ ( 1 i \\ .o i ) as f j i C so (-se.co) (21.s01 i c i e E. 40 -- 1 1 m. I ) Sc - 1 l l 10 i 1 0 u o -50 -40 -so -20 -to o to 20 30 4 50 Axial Flux Difference (% Delta-1) ? i l FIGURE 7-1 - - _ ~.--.-_ _ - -.. -.. - -. - - _. _ -.. _ - -. -,. -.. -.
j 120 l tio l (-30,100) (10.1903 i i 100 iseACCEPTABLE f Lea 4CCEPTABLE L 90 ) a. 80 g n i 1 E ACCEPTASLE / ) j j 70- [ \\ l ~ 1 / \\ .0 - l e l 8E f } L O m-- 1 (-38.50) (21.501 C G f 40 G a. 5 3C i' l } 2C - i 10 l ^ 0 t I -50 -40 -30 -20 -10 0 to 20 30 40 50 Axial Flux Difference (% Delta-Il i 4 1 1 1 1 i l 4 FIGURE 7-1 --.. -. - - ~. -. = - - - - - -.. - -. -., -... -. - -.. - _, -
l ~ EQUATION SHEET f = ma v = s/t Cycle efficiency = (Net work out)/(Energy in) 2 w = mg s = V,t + 1/2 at 2 E = mc 2 ~ KE = 1/2 mv a = (Vf - V,)/t A = IN A=Aeg PE = mgn Vf = V, + at w = e/t 1 = an2/t.1/2 = 0.693/t1/2 2 t1/2'"
- U7N Y y. v AP-nD A=
[(t1/2)
- II Il 4
b AE = 931 am
- Y Ao
-n av t,te G = mCpat 6 = UA4 T I = I,e'"* I = I, 10-*/U ' Pwe = W ah f TVL = 1.3/u sur(t) P = P 10 HVL = -0.693/u P = P e /T t o SUR = 26.06/T SCR = S/(1 - K,ff) CR = S/(1 - K,ffx) x SUR = 26s/t* + (s - p)T CR (1 - K,ffj) = CR (I ~ Seff2) j 2 T = ( t*/c ) + [(S - o V Io l M
- I/(I - Keff) "
l o I T = 1/(o - a) M * (I - Keffo)/II-5effl) T = (a - o)/(Io) SDM = ( - K,ff)/Keff a = (Keff-1)/Keff
- oKeff eff
/K D [*0.1 seconds,j A= a = ((i=/(T K,ff)] + (a,ff (1 + IT)] / Idii=Id 2,2 2 P = (I4V)/(3 x 1010) Id gd jj 22 2 I = cN R/hr = (0.5 CE)/d (meters) R/hr = 6 CE/d2 (feet) Water Parameters Miscellaneous Conversions 1 gal. = 8.345 lbm. 1 curie = 3.7 x 1010eps I ga]. = 3.78 liters 1 kg = 2.21 lbm i i ft4 = 7.48 gal. I hp = 2.54 x 103 Stu/nr Oensity = 62.4 lbm/ft3 1 mw = 3.41 x 100 Stu/hr Density = 1 gm/cn.3 lin = 2.54 cm Heat of vaoorization = 170 Stu/lem
- F = 9/5'C + 32 Heat of fusion = iaa 3tu/lem
- C = 5/9 (*F-32) 1 Atm = 14.7 psi = 29.9 in. Hg.
I BTU = 778 ft-lbf I ft. H O = 0.4335 lbf/in. 2
F; % wqmig : ^l 'ti [ j lli ~ 1 -li ' "%ik.'U N utip"17 tr W-.. t d;:-. :I ..L.idW ll t 5 2EM -l Wh. f'(I M Qr,p!;,d.4ma: huit N Y%n 5 f A Ur + t edInh7 Ik. ---(-- )$N D. 3gyd 7i N2jf3,+ HEE 3 N t
- a-m,.
..,,,.,2 d:. w v 1, ggumn.g: -;-~ . m.-,um f k k.., (.r.g ykk fftJ.,wv,4mh I:N a s ? k: tu *. 1g rp ~ n. r, %..: .z
- ===:..:.-
-,t E r.g ,I ... '4 7M;ma:ER ,1 j +'hI yNe ;,, ," ye. -nq@ittp' ig ea pF.hi{a!j[?,u il r -.u i ~ ,7m
- a M,Yl' r vin Y*7" I rN._ G f r r.
2.;t....N_II t Luh Q gij. 'r;5 Qgpl j}7,gt.y;),;f;j%M%; tot: -lG...n.:.. ;. ;n,eq : s...,a t L
- u. - m-' I hp, x
.rn ...y 7 ,,..), t" /, ,,, t . ' />,, "9t,! z. .g r tr F t. d. 7 2.t =y :'.>..u; = 1 ,, f / f ..'J! /. 1 Q," .$i$ yI butruir ", o@t.#a.n,TM g,.g ! ?#F 44 W4tni:i s 11 ~.n..w m,gwt ,-4. %i???Wif47suMtt fi; M9%,nt?k,y.HTrdh-u .. m.g,,,
- .d,jiii']!yW ~ ~ *Fs 4;L.%g${fyQ y tin ? &
- n.,g,1..w.
rg . p., e ,...e. n 7.pg 4,w. 1 in u.u,kq _g,,, i 4 rg, itil IVtfl 4ET'l b ITl 14' rA' t*/c 'tttn V M1i t t t ,,.4/it-i7thW 74 7 .inM*@}#v. 1 JSJig[%r4:.. 3H!w-rdgii k,p:I'q$ < Q,jif, q. p m 1f! x ,U i ..it.p :4 c h. rm.:: ,m nr
- r.~,
.a
- m tN Amru 2 --
v ..... v ys? 4tt $ n$ : T::[t3ni@:r;f.og.,b.q;{p.L,yR):pm,igir tr/ M pn Wg[p:ti.M:hQ,piL- .n 4 2 en x4(j.,q
- uraa.hf" H gy
.r .tt ity .at:np;fr/. q ja t ..L t r
- i a.s n tmutqm
.hb!])h@ijiiD:!M:hhr,$n hik 2NhffdiN I$$ii dipH@f:5 ~. d%hiti$ii ." l,'2!.M;E :Xd .:. t:gp:ger..cu<c r '2:: s,o .:[:.te v:1p.. !!'.p/j:#p'iji'r;i.OmJ JE0i'{!.Ludj p 9.:. ~ d)J. b';} -a$'q;j!/ r 't m'jj 1.' .r.p { jy r g M T,j%j} .W.i hj j;gg- /t.:e .n.,iH..yil.ngyt g ;g g: ;g:. g,n p).4 r ,p"an u
- 1'.!rr
'.up: tr!;:i..*: tr":fy;'Ujri;[ y% u,i
- jIbijT. '
p* r;;tg; 7.} jr.,m;,.. .s t .hlgi.:- i'IE@ MMerWig-
- ni..:.
6 un F;hswr 1,.ji;I;,.f;r.Q:g ';f M nuu y .: ' yh:..n -#ptr: . ;j!, Mu:{" p f, fr u!;.M: ,d...i.'1 i9{p'n[;I@"n;': ;'r! {:#.;[d .1 i.N..in!.IL;;y,M. J,!*t't;i
- it
- ;.
..I. ib. f j . tr 1.!;I fr' i. d!H,.ti!. i . ' _ ~jf.t' g!. :J/.,;'t,f.f. !s, j.{. t; y r t,,,, ,I. /g fits '..'.y W14 a:,.{..w.,.A ip h*td mA,,n g a [ i.;&nid;Iit'.;;;i#I'.:ti';j, ' ' y'r ;3 UI, f* t i
- r
- ':!;:
,j ,.g. ::p:e :p:m:m.;t r:np:,. a; :'i..:: :,a.w.'=
- uf.:c.mq:::en e
- r.;
,,4.mp:,g:.n,g.-~q 2.,r, q.,,.t.ym;r.::w. spn um: D-3
.= l Table 1. Saturated Steam: Temperature Table Abs Press. Specific Volume Enthalpy Entropy Temp Lb per Sat. Sat. Sat. Sat. Sat. Sat. Temp fahr SqIn. Liquid Evap Vapor Liquid Evap Vapor Liquid Evap Vapor Fahr t p vi veg vg he h ft h s, sig S I e R 32.8 0 08859 0 016022 33043 3304.7 0 0179 1075 5 1075.5 0.0000 2.1873 2.1873 32.0 34 8 0 09600 0 016021 3061.9 3061.9 1.996 1074.4 1076 4 C0041 2.1762 2.1802 34 g 36 8 0 10395 0 016020 2839.0 2839 0 4.008 1073 2 1077.2 0 0081 2.1651 2.1732 36 3 38 0 011249 0 016019 2634.1 2634.2 6.018 1072.1 1078.1 0.0122 2.1541 2.1663 38.0 43 O 1.12163 0 016019 2445.8 2445.8 8.027 1071.0 1079 0 0 0162 2.1432 2.1594 40.0 42 8 0.13143 0.016019 2272.4 2272.4 10.035 1069 8 1079.9 0 0202 2.1325 2.1527 42.8 44 0 0 14192 0 016019 2112 8 2112.8 12.041 10681 1080.7 0 0242 2.1217 2.1459 44 I 46 8 0 15314 0.016020 1965 7 1965.7 14 047 1067.6 1081.6 0 0282 2.1111 2.1393 46 O 43 0 0.16514 0 016021 1830 0 1830 0 16 051 1066.4 1082.5 0.0321 2.1006 2 1327 48 o 58 0 0 17796 0.016023 1704 8 1704 8 18 054 1065.3 1083.4 0.0361 2.0901 2.1262 50.8 52.8 0.19165 0 016024 1589.2 1589 2 20 057 1064 2 1084.2 0 0400 2.0798 2.!!97 52.8 54 0 0 20625 0 016026 1482.4 1482.4 22 058 1063.1 10851 0 0439 2.0695 2.1134 54 8 56 8 -0.22183 0 016028 1383 6 1383.6 24 059 1061.9 1086.0 0 0478 2.0593 2.1070 56.0 58 0 0 23843 0.016031 1292.2 1292.2 26 060 1060 8 1086.9 0.0516 2.0491 2.1008 58.0 Es 0 0 25611 0 016033 1207.6 1207.6 28 060 10591 10871 0.0555 2.0391 2.0946 60.0 $2 0 0.27494 0.016036 1129.2 1129.2 30.059 1058.5 1088 6 0.0593 2.0291 2.0885 E2.8 64.0 0 29497 0 016039 1056.5 1056.5 32.058 10574 1089.5 0 0632 2.0192 2.0824 54 I ss.g 0.31626 0 016043 989.0 989.1 34 056 1056.3 1090.4 0 0670 2.0094 2.0764 56.8 Es 8 0.33889 0 016046 926.5 926.5 36.054 10551 1091.2 0.0708 1.99 % 2.0704 68.8 7e 0 0.36292 0 016050 868 3 868.4 38 052 1054.0 1092.1 0 0745 19900 2.0645 is t 72 8 0 38844 0 016054 814 3 814.3 40.049 1052.9 1093.0 0 0783 1.9804 2 0587 72.0 74 8 0 41550 0 016058 7641 764.1 42 046 1051 8 1093.8 0 0821 1.9708 2.0529 74 8 75 8 0 44420 0 016063 717.4 717.4 44 043 10503 10941 0 0858 1.%l4 2.0472 76.0 78 0 0 47461 0 016067 673.8 673.9 46.040 1049.5 1095 6 0.0895 1.9520 2.0415 78 8 88 8 050683 0.016072 633 3 633.3 48 037 1048.4 1096.4 0 0932 1.9426 2.0359 88.8 82 3 0 54093 0.016077 595 5 595.5 50 033 1047.3 1097.3 0 0969 1.9334 2 0303 82.8 64 g 0 57702 0 016082 560 3 560 3 52.029 10461 1098 2 0 1006 1:9242 2.0248 84 8 86 8 0 61518 0 016087 227.5 527.5 54 026 10450 1099 0 0.1043 1.9151 2 0193 Ss e as D 065551 0 016093 496 8 4:)68 56 022 1043 9 1099 9 0.1079 1.9060 2.0139 88.0 90 0 0 69813 0 016099 4681 4681 58 018 1042 7 1100 8 0.1115 1.8970 2 0086 se O 92 0 0 74313 0 016105 441.3 441.3 60 014 1041 6 1101 6 0.1152. 1.8881 2 0033 92.0 34 0 0 79062 0 016111 416 3 416 3 62.010 1040 5 1102 5 0 1188 I8792 1.9980 34.9 96 3 0 84072 0 016117 392 8 392.9 64 006 1039 3 11033 0 1224 1.8704 1.9928 96 8 94 0 0 89356 0 016123 370 9 370 9 66 003 1038 2 1104 2 0 1260 1.8617 1.9876 58 0
~ Abs Press. Speedic Volume Enthalpy Entropy Temp tb per Sat. Sal. Sat. Sat. Sat. Sat. Temp Fahr Sqin. Liquid [vap Yapor Liquid Evap Vapor Liquid Evap Vapor Fahr t p vi vig vg he hg h s, sig S I i e R 1 Igg 8 0.94924 0 016130 350.4 350.4 67.999 1037.1 1105.1 0.1295 1.8530 1.9825 100.3 132.9 100789 0.016137 331.1 331.1 69 995 1035.9 1105.9 0.1331 1.8444 1.9775 182.I 184.8 1 06 % 5 0.016144 313.1 313.1 71.992 1034.8 1106.8 0.1366 1.8358 1.9725 104.0 IIS I 1.1347 0 016151 296.16 296.18 73 99 1033.6 1107.6 0.1402 1.8273 1.% 75 105.3 100.8 1.2030 0 016158 280.28 280.30 75.98 1032.5 1108.5 0.1437 1.8188 1.9626 les.g 113.8 1.2750 0.016165 265 37 265 39 77 98 1031.4 1109.3 0.1472 1.8105 1.9577 11s.s 112.8 1.3505 0.016173 251.37 251.38 79.93 1030.2 1110.2 0.1507 1.8021 1.9528 112.0 s lie s 1.4299 0 016180 238.21 238.22 81.97 1029.1 1111.0 0.1542 1.7938 1.9480 114s 115.8 1.5133 0 016188 225.84 225 85 83 97 1027.9 1111.9 0.1577 1.7856 1.9433 116.g 118.8 1.6009 0.0161 % 214 20 214.21 85.57 1026.8 1112.7 0.1611 13774 1.9386 118.0 128.0 1.6927 0 016204 203.25 203.26 87.97 1025.6 1113.6 0.1646 1.7693 1.9339 120.0 172 9 1 7891 0 016213 192.94 192.95 89.% 1024.5 1114.4 0.1680 13613 1.9293 122.0 124.3 1.8901 0 016221 183.23 183 24 91.% 1023.3 1115.3 0.1715 13533 1.9247 124.0 126.0 1.9959 0 016229 174 08 174.09 93.% 1022.2 1116.1 0.1749 1.7453 1.9202 126.8 123.8 2.1068 0.016238 165.45 165.47 95.% 1021.0 1117.0 0.1783 13374 1.9157 128.0 133.3 2 2230 0 016247 157.32 157.33 97.% 1019.8 1117.8 0.1817 13295 1.9112 138.g 132 3 2.3445 0 016256 149.64 149.66 99 95 10183 1118.6 0.1851 1.7217 1.9068 132I 134.8 2.4717 0.016265 142.40 142.41 101.95 1017.5 1119.5 0.1884 13140 1.9024 134.0 136 I . 2.6047 0.016274 135.55 135.57 103 95 1016.4 1120.3 0.1918 13063 1.8980 136.s 133 8 23438 0 016284 129.09 129.11 105.95 1015.2 !!21.1 0.1%1 1.6986 1.8937 133.s les s 2.8892 0 016293 122.98 123 00 107 95 1014.0 1122.0 0.1985 1.6910 1.8895 140.0 142.5 3 0411 0.016303 117.21 117.22 109.95 1012.9 1122.8 0.2018 1.6534 1.8852 142.8 144.3 3.1997 0 016312 11134 11136 111.95 10113 1123.6 0.2051 1.6759 1.8810 144.s les a 3.3653 0 016322 106.58 106 59 113 95 1010.5 1124.5 0.2084 1.6684 1.8769 146.I 1480 3 5381 0 016332 101.68 10113 115.95 1009.3 1125.3 0.2117 1.6610 1.8727 les s 15e s 33184 0 016343 97.05 97.07 117.95 1008.2 1126.1 0 2150 1.6536 1.8686 158.I 152.0 3.9065 0 016353 32.66 92.68 119.95 1007.0 1126.9 0 2183 1.6463 1.8646 152.0 154.8 4.1025 0.016363 88 50 88 52 121.95 1005.8 11273 0.2216 1.6390 1.8606 154.0 156 8 4.3068 0 016374 84 56 84.57 123.95 1004.6 1128.6 0.2248 1.6318 1.8566 155.0 158 I 4 5197 0 016384 80 82 80.83 125 96 -1303.4 1129.4 0.2281 1.6245 1.8526 158.0 16s p 4 7414 0 0!6395 77.27 77.29 127.96 1002.2 1130.2 0.2313 1.6174 1.8487 100 8 162 8 4 9722 0 016406 73 90 73.92 129.96 1001.0 1131.0 0 2345 1.6103 1.8448 162.8 1648 5 2124 0 016417 7030 7032 131.96 999.8 1131.8 0 2377 1.6032 1.8409 1648 168 8 54623 0 016428 67.67 6768 133 97 998 6 1132.6 0 2409 1.5%1 1.8371 186.8 168 3 5 7223 0.016440 6438 64 80 135.97 997.4 1133.4 0.2441 1.5892 18333 16s.g 178 8 5 9926 0 016451 62.04 62.06 137.97 996 2 1134.2 0.2473 1.5822 1.8295 170.8 172.0 6 2736 0 016463 5943 5945 13998 9950 1135 0 0.2505 1.5753 1.3258 172.8 1740 6.5656 0 016474 56 95 5697 141.98 993.8 1135 8 02537 1.5684 1.8221 lies 17E O 6 8690 0 016486 54 59 54 61 143.99 992.6 1136 6 0.2568 1.5616 1.8184 lis.g 's a 71840 0 016498 52.35 5236 '15.99 991.4 1137.4 0.2600 1.5548 1.8147 178 s
1 Abs Press. Specific Volume Enthalpy Entropy Temp Lb per Sat. Sat. Sat. Sat.. Sat. Sat. Temp - Fahr Sq In. Liquid Evap Vapor Liquid Evap Vag,or Liquid Evap Vapor Fahr t p vi vtg vs .h g h ig h 51 sig_- .L,_ s t a 133.s 7.5110 0.016510 50.21 50.22 148.00 990.2 1138.2 03631 1.5480 1.811I les a 132.3 7.850 0.016522 48.172 18.189 150 01 989.0 1139.0 0.2662 15413 1.8075 102.0 1Es 8.203 0.016534 46 232 46349 152 01 987.8 1139.8 03694 1.5346 I8040 134 0 tug 8.568 0316547 44383 44.400 154.02 986.5 1140.5 0.2725 1.5279 1.8004 135.8 Ing 8.947 - 0.016559 42.621 42.638 156.03 985 3 11413 03756 1.5213 1.7%9 18e e Igg 8 9.340 0.016572 40.941 40.957 158 04 984.1 1142.1 0.2787 1.5148 13934 Its e 132 3 9347 0.016585 39.337 39354 163.05 982.8 1142.9 0 2818 1.5082 13900 192.6 134 e 10.I68 0.016598 37.808 37.824 162.05 981.6 11433 0.2848 1.5017 13865 194 e IEg 10.605 - 0.016611 36 348 36364 164.06 980.4 1144.4 02879 1.4552 13831 1Es 133.0 11.058 0.016624 34.954 34.970 166.08 979.1 1145.2 02910 1.4388 13798 133.s 238.8 11.526 0 016637 33.622 33.639 168.09 977.9 1146 0 0.2940 ~ 1.4824 17764' 280 e 234 2 12.512 0.016664 31.135 31.151 172.11 975 4 1147.5 0 3001 1.4697 ~17698 234 8 230.3 13.568 0.016691 28.862 28.878 176.14 972.8 1149 0 0 3061 1.4571 -11632 230 0 2120 14.696 0.016719 26382 26399 180.17 970 3 1150.5 03121 1.4447 13568 212.0 215.3 15.901 0.016747 24 878 24.894 18420 967 8 1152.0 03181 1.4323 13505 216 3 22e0 17.186 0.016775 23.131 23.148 188.23 965.2 1153.4 03241 1.4201 I1442 220 e 224.0 11555 &016805 21.529 21.545 192.27 962.6 1154.9 03300 1.4081 13380 2243 233 2R015 0.016834 20.056 - 20.073 196 31 960.0 11563 03359 13 % I 13320 220 g 232.0 21.567 0.016864 18301 18318 20035 957.4 1157.8 0.3417 13842 13260 2320' 235.0 23.216 0.016895 17.454 -17.471 204.40 954.8 1159.2 0 3476 13725 13201 236 8 243 8 24.968 0.016926 16304 16321 208.45 952.1 1160 6 0 3533 13609 17142 248 8 244.9 26 826 0 016958 15 243 15.260 212.50 949.5 1162.0 03591 1.3494 17085 2440 - 248 e 28396 8016990 14364 14381 216.56 946 8 1163.4 03649 13379 13028 243 0 l 252.s 30.883 0.017022 13.358 13.375 220 62 944.1 11643 0 3706 13266 1 6972 252.0 255.s 33.091 0.017055 12.520 12.538 224.69 941.4 1166.1 03763 1.3154 16917 25E e agee 35.427 0.017089 .11345 11362 228 76 938 6 1167.4 03819 13043 1.6862 26g 8 Ils p 37.894 0 017123 11.025 11.042 232 83 935 9 11683 0 3876 12933 16808 264 0 20s.g 40.500 0.017157 10 358 10.375 236.91 933.1 1170 0 0 3932 12823 1.6755 260 s 272.3 43.249 0 017193 9138 9.755 240.99 930 3 1171.3 0.3987 12715. 1.6702 272.R 276.3 46.147 0.017228 9.162 9.180 24508 927.5 1172.5 04043 12607 1.6650 275 0 208 8 49.200
- 0 017264
. 8.627 8.644 249.17 924 6 1173 8 0 4098 12501 1.6599 20e e 234.0 52.414 - 0.01730 8.1280 8.1453 253 3 9213 1175.0 0 4154 12395 1.6548 234 e i 2sg e 55395
- 001734 7 6634 7.6807 257.4 918 8 1176.2
- 0 4208 12290 16498 700 0 292 3 59 350 0 01738 72301 7.2475 261.5 915 9 1177.4 0 4263 12186 16449 292.0 29E s 63 084 0 01741 6 8259 6.8433 265.6 913.0 1178.6 04317 12082 1 6400 295 0 'l .~
Abs Press. Specific Volume Enthalpy Entropy Temp Lb per Sal. Sat. Sat. Sat. Sat. Sat. Temp Fahr Sq In. Liquid Evap Vapor Liquid Evap Vapor Liquid Evap Vapor Fahr t p vi vig vg hr h ig h sg sig 5 I g g 30s.3 67.005 0 01745 64483 6.4658 269 7 910 0 1179.7 0.4372 11979 !.6351 3ss 0 304.3 71.119 001749 6 0955 6 !!30 273 8 907.0 1180.9 0.4426 1.1877 16303 384 0 308.8 75 433 0 01753 53655 5 1830 278 0 904 0 1182.0 0 4479 1.1776 16256 las e 312.3 79 953 0 01757 54566 5.4742 2821 9010 1183.1 04533 1.1676 16209 312 0 316.8 84 688 001761 5 1673 51849 286 3 897.9 1184.1 0 4586 1.1576 16162 316.3 329.8 89 643 0.01766 48%I 4.9138 290 4 894.8 1185 2 04640 1.1477 1.6116 328 0 324.8 94 826 0.01770 4 6418 4 6595 294 6 891.6 1186 2 0 4692 1.1378 16071 3240 32s.s 100 245 0.01774 4 4030 4.4208 298 7 888.5 1187.2 0.4745 1.1280 1.6025 328.0 332.8 105.907 0.01779 4.1788 4.1 % 6 302 9 885.3 1188.2 0.4798 1.1183 1.5981 332.0 335 I 111.820 0.01783 3 9681 39859 307.1 882.1 1189.1 0 4850 1.1086 1.5936 336.8 346 8 117 992 0.01787 3 7699 33878 311 3 878 8 1190.1 0 4902 1.0990 1.5892 348 0 344.8 124.430 0.01792 35834 3 6013 315.5 875 5 1191 0 0 4954 1.0894 1.5849 344g 348.8 131.142 0.01797 34078 3 4258 319 7 872.2 1191.1 0 5006 1.0799 15806 34s e 352.3 138 138 001801 3 2423 3 2603 323 9 868.9 1192.7 05058 1.0705 1.5763 352.s 355 e 145 424 001806 3 0863 3 1044 328I 865.5 1193.6 05110 10611 1.5721 356.8 388.8 153 010 0 01811 29392 2 9573 332.3 862.1 1194.4 0.5161 1.0517 1.5678 368 0 344.s 160 903 0 01816 2.8002 2 8184 336 5 858.6 1195 2 0 5212 1.0424 1.5637 3640 3ss.8 169.113 0.01821 2 6691 2 6873 340 8 855.1 1195.9 0.5263 1 0332 15595 368 o 372.3 177 648 001826 2.5451 2.5633 345 0 851 6 1196 7 05314 1.0240 15554 372.0 376.0 186 517 001831 2.4279 2.4462 349 3 848.1 1197.4 0 5365 10148 15513 376 s 338.8 195 729 0 01836 2 3170 2.3353 353 6 844.5 1198.0 0 5416 1.0057 1.5473 3ss.o 384.8 205294 001842 2.2120 2.2304 357 9 840 8 11983 05466 09%6 1.5432 384 B 388.8 215.220 0 01847 2.1126 2 1311 362.2 837.2 1199 3 0 5516 0 9876 1.5392 388 8 392.8 225 516 0.01853 2.0184 2.0369 366 5 333.4 1199.9 0.5567 0 9186 1.5352 392.s 386.8 236 193 001858 1.9291 1.9477 370 8 8293 1200.4 0.5617 0 9496 1.5313 396 0 400.5 247.259 0 01864 1.8444 1.8630 375.1 825.9 1201.0 0.5667 09607 1.5274 4ss 3 404.8 258 725 0.01870 13640 1.7827 379 4 822.0 1201.5 0 5717 0 9518 1.5234 484 e 408.5 270 600 0.01875 1 6877 1.7064 383.8 818.2 1201.9 0 5766 0 9429 1.5195 4ss e 412.s 282.894 0.01881 1.6152 1.6340 3881 814.2 1202.4 0.5816 0 934: 1.5157 412.8 416.8 295 617 0.01887 1.5463 1.5651 392.5 810.2 1202.8 0.5866 0.9253 1 5118 415 3 428 8 308 780 0 01894 1.4808 1.4997 396 9 806.2 1203.1 0 5915 0.9165 1.50EJ 428 0 424.8 322 391 0 01900 1.4184 1.4374 401.3 802.2 1203.5 0 5964 0 9077 15042 4240 428.8 336 463 0 01906 1.3591 13782 405 7 798 0 12033 0 6014 0 8990 1 SOM 4280 432.5 351 00 0 01913 1.30266 1.32179 410 1 793 9 1204 0 0 6063 0 8903 14966 4320 435 8 366 03 0.01919 1.24887 1.26806 414 6 789 7 1204.2 0.6112 0 8816 14928 436 8 448 I 381.54 0 01926 119761 121687 419 0 785 4 1204 4 0 6161 0 8729 I4890 44s e 484.8 397.56 0 01933 1.14874 116806 423 5 781 1 1204 6 0 6210 0 8643 14853 444o 1 414 09 0 01940 1.10212 1.12152 10 716 7 1204 7 0 6259 0 8557 14815
- a J
43114 001947 105764 101711 5 772 3 1204 8 06308 0 847I I4718 456 0 448 73 0 01954 1 01518 1 03472 o70 767 8 1204 8 0 6356 0 8385 1 4741
3a e Abs Press ' Specific Volume Enthalpy Entropy Temp tb per Sat. Sat. Sat. Sat. Sat. Sat. Temp Fahr SqIn. Liquid Evap Vapor Liquid Evap Vapor Liquid Evap Vapor Fahr t p vt Vl2 Vg he h ft h s, sig s t g e 460 0 466 87 0.01961 0.97463 0 99424 441.5 763.2 1204.8 0.6405 0 8299 1.4704 4se.g 464 0 485.56 0.01 % 9 0 93588 0 95557 4461 758.6 1204.7 0.6454 01213 1.4667 464.0 4688 504 83 0.01976 0.89885 0.91862 450.7 754.0 1204.6 0.6502 0.8127 1.4629 468.8 4720 524.67 0.01984 0 86345 0.88329 455.2 749.3 1204.5 0.6551 0.8042 1.4592 472.8 475.0 545.11 0.01992 0.82958 0.84950 459.9 744.5 1204.3 0.6599 0.7956 1.4555 476.8 480 0 566.15 0 02000 039716 0.81717 464.5 739.6 1204.1 0.6648 0.7871 1.4518 488.e 4840 587 81 0 02:09 036613 038622 469.1 7343 1203 8 0.66 % 03785 1.4481 444 8 4888 610 10 0.02017 0 73641 035658 473 8 7293 1203.5 0.6745 0.7700 1.4444 488.0 492.8 633 03 0 02026 030794 032820 478.5 724.6 1203.1 0.6793 03614 1.4407 492.0 456 8 656.61 0.02034 0.68065 030100 483.2 719.5 12023 0.6842 03528 1.4370 495.6 50s s 680 86 0.02043 0.65448 0.67492 487.9 714.3 1202.2 0.6890 03443 1.4333 500.0 584 e 705 78 0 02053 0.62938 0.64991 4923 709 0 1201.7 0,6939 0.7357 1.42 % 544.0 588 8 731.40 0 02062 0 60530 0.62592 497.5 7033 1201.1 0.6987 03271 1.4258 500.0 512 0 757.72 0 02072 0.58218 0 60289 502.3 698.2 1200.5 0.7036 0.7185 1.4221 512.0 515 0 784.76 0 02081 0.55997 0.58079 507.1 697 7 Il99L8 0.7085 03099 1.4183 515.0 570 o 812 53 0.02091 0 53864 0.55956 512.0 687.0 1199.0 0.7133 0.7013 1.4146 528.8 5240 841.04 0 02102 0.51814 0.53916 516.9 681.3 1198.2 0 7182 0 6926 1.4108 524.0 5288 870 31 0 02112 0 49843 0.51955 521 8 675.5 1197.3 03231 0.6839 1.4070 520 8 5320 900 34 0 02123 0.47947 0.50070 526.8 669 6 11 % 4 03280 0.6752 1.4032 532.0 5360 931.17 0 02134 0.46123 0.48257 5313 663.6 1195.4 0.7329 0.6665 1.3993 536.8 548 0 962.79 0 02146 0 44367 0 46513 536.8 657.5 1194.3 0 7378 0.6577 1.3954 548.8 5440 995 22 0 02157 0 42677 0.44834 541.8 651.3 1193.1 0 7427 0.6489 1.3915 544.0 5480 1028 49 0 02169 0 41048 0 43217 546 9 645.0 1191.9 03476 0.6400 1.3876 548.8 5520 1062 59 0.02182 0.3W 79 041660 552 0 638.5 1190 6 0.7525 0.6311 1.3837 552.9 55E s 1097.55 0 02194 0 37966 0 40160 557.2 632.0 1189.2 0.7575 0.6222 1.3797 556.0 560e 1133 38 0.02207 0.36507 0.38714 562.4 625 3 1187.7 0.7625 0.6132 1.3757 See e 564 a 1170 10 0 02221 0.35099 037320 567.6 618.5 1186.1 0.7674 0.6041 1.3716 564e 568 0 120732 0 02235 0 33741 035975 572 9 611.5 1184.5 0 7725 0 5950 1.3675 568.8 512 8 1246 26 0 02249 0 32429 0 34678 578 3 604 5 1182.7 0.7775 0 5359 1.3634 572.0 576 0 1285 74 0.02264 0 31162 0.33426 583 7 597.2 1180.9 0 7825 0.5766 1.3592 576.8 580.0 1326.17 0C2279 0 29937 0.32216 589.1 589.9 1179 0 03876 0.5673 1.3550 580.0 5840 13673 0 02295 0 28753 0 31048 594 6 582.4 1176.9 07927 0.5580 1.3507 584.8 588 0 1410 0 0.02311 0 27608 0 29919 600 1 5743 1174 8 0.7978 0.5485 1.3464 588.8 592 0 1453 3 0 02328 0 26499 0 28827 605.7 566.8 1172 6 0.8030 0.5390 1.3420 592.8 5968 1497 8 0 02345 0 25425 0 27770 611 4 558 8 1170 2 0.8082 0 5293 1.3375 596.I
9 Abs Press. Specific Volume Enthalpy Entropy Temp Lb per Sal. Sal. Sat. Sal. Sal. Sal' Tem Fahr SqIn. Liquid Evap Vapor Liquid Evap Vapor Liquid Evap Vapor Fah I p v, vrg va hr hs h Sr sig s I i s e ses a 1543 2 0.02364 0.24384 0.26747 617.1 550.6 1167.7 0.8134 0.5196 13330 880.0 584.0 1589 7 0.02382 0 23374 0.25757 622.9 542.2 1165.1 0.8187 0.5097 13284 804.s Ses a 16373 0.02402 0.22394 0.24796 628.8 533.5 1162.4 0.8240 0.4997 13238 Eas.g 812 8 1686.1 0.02422 0.21442 0.23865 634.8 524.7 1159.5 0.8294 0.4896 1.3190 812.0 515.6 1735 9 0.02444 0.20516 0.22960 640.8 515.6 1156.4 0.8348 0.4794 13141 616.0 828 8 1786.9 0 02466 0.1 % 15 0.22081 646.9 5063 1153.2 0.8403 0.4689 13092 820.0 124 8 1839 0 0.02489 0.18737 0.21226 653.1 406.6 1149.8 0.8458 0.4583 1.3041 824.8 E2Id 1892 4 0 02514 0.17880 020394 659.5 486.7 1146.1 0.8514 0.4474 1.2988 828.0 532 3 19470 0.02539 0.17044 0.19583 665.9 476.4 1142.2 0.8571 0.4364 1.2934 $32.0 $36.0 2002 8 0.02566 0.16226 0.18792 672.4 465.7 1138.1 0.8628 0.4251 1.2879 638.8 548.0 2059.9 0 02595 0.15427 0.18021 679.1 454 6 1133.7 0.8686 0.4134 1.2821 548.0 644 8 2118 3 0.02625 0.14644 0.17269 685.9 443.1 1129.0 0.8746 0.4015 1.2761 544.s $48 I 2178,1 0.02657 0.13876 0.16534 692.9 431.1 1124.0 0.8806 03893 1.2699 648 9 352.s 2239.2 0.02691 0.13124 0.15816 700 0 4183 11183 0.8868 03767 1.2634 652.5 555 0 2301.7 0.02728 0.12387 0.15115 707.4 405.7 1113.1 0.8931 03637 1.2567 558.8 544.0 2365 7 0.02768 0.11663 0.14431 714.9 392.1 1107.0 0.8995 03502 1.2498 888.3 564 g 2431.1 0.02811 0.10947 0.13757 722.9 377.7 1100.6 0.9064 03361 1.2425 564.8 $64.3 24981 0 02858 0.10229 0.13087 731.5 362.1 1093.5 0.9137 03210 1.2347 ses.s 572 0 25666 0.02911 0.09514 0.12424 740.2 3453 1085.9 0.9212 03054 1.2266 672.8 $75 8 26368 0.02970 0.08799 0.11769 749 2 328.5 1077.6 0.9287 0.2892 1.2179 876.8 las.8 2708.6 0.03037 0.08080 0.11117 758 5 310.1 1068.5 0.9365 0.2720 1.2006 ses.s $44 s 2782.1 0.03114 0.07349 0.10463 768 2 290.2 1058.4 0.9447 0.2537 1.1984 804.0 Ess s 2857.4 0.03204 0.06595 0.09799 778 8 268.2 1047.0 0.9535 0.2337 1.1872 ses.e Ef2.8 2934.5 0.03313 0.05797 0 09110 790.5 243.1 1033.6 0.9634 02110 1.1744 052.0 896.8 3013.4 0.03455 0.04916 0.08371 804.4 212.8 1017.2 0.9749 0.1841 1.1591 595.8 700 8 3094 3 0.03662 0.03857 0.07519 822.4 1723 995.2 0.9901 0.1490 1.1390 700.8 182 0 3I35 5 0.03824 0.03173 0.06997 835.0 144.7 979 7 1.0006 0.1246 1.1252 732.I 794 0 3177.2 0.04108 0 02192 0.06300 854.2 102.0 956.2 1.0169 0.0876 1.1046 704.8 795 0 31983 0.04427 0.01304 0.05730 873.0 61.4 934.4 1.0329 0.0527 1.0856 705.0 105.41' 32082 0.05078 0.00000 0.05078 906 0 0.0 906.0 1.0612 0.0000 1.0612 705.47*
v Table 2: Saturated Steam: Pressure Table l l Specific Volume Enthalpy Entropy Abs Press. Temp Sat. Sat. Sat. Sat. Sat. Sat. Abs Press. Lb/Sq In. Fahr Liquid Evap Vapor Liquid Evap Vapor Liquid Evap Vapor Lb/Sg in. fg 't hg h h s, s ig 5 P p t vg v is g 2 I88865 32.018 0.016022 3302 4 3302.4 0 0003 1075 5 1075 5 0 0000 2 1872 2 1872 0.08865 l 8 25 59 323 0.016032 1235 5 1235.5 27.382 1060.1 1087.4 0.0542 2.0425 2 0967 0 25 l 8 50 79 586 0 016071 641.5 641.5 47.623 1M86 1096 3 0.0925 1.9446 2.0370 0 50 10 101.74 0 016136 333.59 333.60 69 73 1036 1 1105 8 0.1326 1.8455 1.9781 10 50 162.24 0.016407 73.515 73 532 13020 1000 9 1131.1 0 2349 1.6094 1.8443 50 18 8 193 21 0 016592 38404 38.420 16126 982.1 1143.3 0 283F 1.5043 1.7879 10 0 14.595 212.00 0.016719 26 782 26 799 180 17 970.3 1150.5 0.3121 1.4447 17568 14 696 15 g 213 03 0 016726 26274 26.290 181.21 % 93 1150.9 0.3137 1.4415 1.7552 15 0 23 0 227.96 0016834 20 070 20 087 196.27 9601 1156.3 0 3358 1.3962 1.7320 20 0 38 3 250.34 0.017009 133266 133436 218.9 945.2 1164.1 0.3682 1.3313 1.6995 30 0 43.3 267.25 0.017151 10 4794 10.4965 236.1 933 6 1169 8 0 3921 1.2844 16765 40 0 5s s 281.02 0 017274 8 4967 8.5140 250 2 923.9 1174.1 0.4112 1.2474 1 6586 50 0 l 54 3 29231 0.017383 7.1562 7.1736 2622 915.4 1177.6 0 4273 1.2167 16440 60 0 70 0 302.93 0017482 6 1875 6.2050 272 7 907.8 1180.6 0.4411 1.1905 1.6316 10 0 as 0 312 04 0.017573 5.4536 5.4711 282.1 900.9 11831 0 4534 1.1675 1.6208 80 0 3s 3 320.28 0017659 4.8779 4 8953 290.7 894.6 1185.3 0.4643 1.1470 1.6113 30 0 leis 327.82 0.017740 4.4133 4.4310 298.5 888.6 1187.2 0.4743 1.1284 1.6027 100 0 118.3 334.79 0 01782 4 0306 4.M84 305 8 883.1 1188.9 . 4 4834 1.1115 1.5950 110 0 123 0 341.27 001789 3 7097 33275 312.6 877.8 1190.4-04919 1.0960 15879 120 0 138.8 347.33 0 01796 3.4364 3.4544 319 0 872.8 1191.7 0.4998 1.0815 1.5813 133 0 140.s 353.04 0 01803 3.2010 3.2190 325 0 868 0 1193.0 0 5071 10681 1.5752 140 0 150 g 35843 0.01809 2.9958 3 0139 330 6 863 4 1194.1 0 5141 1 0554 1.5695 1500 1 158.0 363.55 0 01815 2.8155 2.8336 336 1 859 0 1195 1 0 5206 1.0435 1.5641 1600 i 178.0 368.42 001821 2.6556 2 6738 341.2 854 8 11 % 0 0 5269 1.0322 1.5591 170 0 18s.I 373 08 0 01827 2.5129 2.5312 346 2 8503 1196.9 0 5328 1.0215 1 5543 180 0 1M I 377.53 0 01833 2.3847 2.4030 350.9 846.7 1197.6 0 5384 1.0113 1.5498 120 : 290.0 381.80 0 01839 2.2689 2.2873 355.5 842.8 1198.3 0 5438 1.0016 1.5454 2000 21st 385.91 0 01844 2.16373 2.18217 359.9 839.1 1199 0 0 5490 0 9923 1.5413 210 0 22e 3 389 88 0.01850 2 06779 2 08629 364 2 835 4 1199.6 0.5540 0 9834 15374 220 0 2300 393 70 0 01855 197991 1.99846 368 3 831.8 12001 0 5588 0 9748 1.5336 2300 l 240 0 397.39 0 01860 1.89909 1.91769 372 3 828 4 1200 6 0.5634 0 9665 1 5299 2400 1 250 0 400 97 0 01865 I82452 1.84317 3761 825.0 1201.1 0 5679 0.9585 15264 250 0 260 0 404 44 0 01870 1 75548 137418 379 9 821 6 1201.5 0 5722 0.9508 1.5230 260 0 270.0 407.80 0 01875 169137 1.71013 383 6 818.3 1201.9 0 5764 0 9433 1.5197 270 0 280 0 411 07 001880 163169 I65049 387.1 815.1 1202.3 0 5805 0 9361 15166 280 0 290 0 414 25 0 01885 1 57597 1.59482 390 6 812.0 1202.6 0.5844 0 9291 1.5135 290 0 i l 300 0 417.35 0 01889 1 52384 1.54274 394 0 808.9 1202.9 0 5882 0 9223 1.5105 300 0 3500 431 73 001912 130642 1.32554 409 8 794 2 1204 0 0 6059 0 8909 1.4968 350 0 4000 444 30 0 01934 !.14162 116095 424 2 780 4 12046 0 6217 0 8630 14847 4000
Specific Volume Enthalpy Entropy s Abs Press. Temp Sat. Sat. Sat. Sat. Sat. Sat. Abs Press, Lb/Sq In. Fer Liquid Evap Vapor Liquid Evap Vapor Liquid Evap Vapor Lb/Sg in. ig 't hg h h 5 p t vi v S S is s 1 ig g P 450 0 456 28 0.01954 101224 1.03179 437 3 767.5 12CJ 3 0 6360 0.8378 14738 450 0 500 5 467 01 001975 0 90787 0.92762 449.5 755.1 12C47 06490 0 8148 1.4639 500 0 550.8 476 94 0 01994 0 82183 0 84177 460.9 743.3 1204 3 0.6611 03936 1.4547 550 0 600.0 486 20 0 02013 0 74962 0.76975 4713 732.0 1203 7 06723 0 7738 14461 6000 6500 494 89 002032 0 68811 030843 481.9 720 9 1202.8 0 6828 0 7552 1 4381 350 3 700 0 503 08 0 02050 0 63505 0 65556 491.6 710 2 1201.8 06928 03377 1.4304 700 0 750 8 510 84 0 02069 0.58880 0 60949 500.9 699 8 12003 0 7022 0 7210 14232 750 0 800.0 518 21 0 02087 0 54809 0.568 % 509.8 689 6 1199.4 01111 0 7051 14163 300 0 850 0 52524 0 02105 051197 0 53302 518 4 675.5 1198 0 03197 06899 1.4096 850 0 900 0 531.95 0 02123 0.47968 0.50091 526 7 669 7 1196 4 03279 0 6753 1.4032 900 0 358 0 53839 002141 0 45064 0 47205 534 7 660 0 11943 0.7358 06612 1.3970 950 0 1800 0 544.58 0 02159 0 42436 0.44596 542.6 650 4 1192.9 03434 0 6476 13910 1000 0 1058 0 550.53 0 02177 040047 0 42224 550.1 640 9 1191.0 0 7507 06344 1.3851 10500 11800 556.28 0 02195 0 37863 0 40058 557.5 631 5 1189.1 0 7578 06216 1.3794 11000 1158.0 56132 0 02214 0.35859 038073 564 8 622 2 1187.0 0 7647 06091 13738 1150 0 12000 567.19 0.02232 0.34013 0 36245 571.9 613 0 1184 8 03714 0 5969 1.3683 1200 0 1250.0 572.38 0 02250 0 32306 0 34556 5788 603 8 1182.6 03780 0 5850 1.3630 12500 130sO 577.42 0 02269 0 30722 0.32991 585 6 594 6 1180 2 0 7843 0 5733 13577 13000 1358.8 582.32 0 02288 029250 0 31537 592 3 585 4 1177 8 0 7906 0.5620 1.3525 13500 lace s 587.07 0 02307 0 27871 0.30178 598 8 576.5 !!75.3 0.7966 0 5507 1 3474 14000 14500 59130 0 02327 0 26584 0 28911 605.3 567.4 1172.8 0 8026 0 5397 1 3423 1450 0 15000 59620 0 02346 0 25372 0 27719 6113 558 4 1170 1 0.8085 0 5288 1.3373 1500 0 1550a 600 59 0 02366 0 24235 02660i 6180 549 4 1167 4 0.8142 0 5182 1.3324 15500 16008 604 87 0 02387 0 23159 0 25545 624.2 540.3 1164.5 0.8199 0 5076 13274 1600 0 16508 609 05 0 02407 0 22143 0 24551 630.4 531.3 1161 6 0.8254 0 4971 1.3225 1650 0 1700 0 613.13 0.02428 0 21178 0 23607 636 5 522.2 1158 6 0 8309 0.4867 1 3176 1700 0 17588 617.12 0 02450 0 20263 0.22713 642.5 513.1 1155 6 0 8363 04765 1.3128 17500 180s 0 621 02 0 02472 0 19390 0.21861 648 5 503 8 1152.3 0 8417 0 4662 130/9 13080 18580 624 83 0 02495 0 18558 0.21052 654 5 194 6 1149 0 0 8470 04561 1.3030 1:50 0 19000 62856 0 02517 0 17761 0 20278 660 4 485 2 1145 6 0.8522 0 4459 1.2981 19000 1556 8 632.22 0 02541 0.1C999 01640 666.3 475 8 1142.0 0.8574 0 4358 1.2931 1950 0 2000.8 635 80 0 02565 0 16266 0.1sb31 672.1 466.2 1138.3 0 8625 04256 12881 20000 213s.0 64236 0.02615 0.14885 0 17501 683 8 4463 1430.5 0 8727 0 4053 1.2780 21000 22988 649.45 0 02669 0 13603 0.16272 695 5 4263 1122.2 0.8828 0.3848 1 2676 2200.0 2388.8 655 89 0.02727 0.12406 0.15133 707.2 406 0 1113.2 0.8929 0 3640 1.2569 2300.0 240s.0 662.11 002790 0.!!287 0.14076 719 0 3848 1103.7 0.9031 0.3430 1 2460 24000 2500 0 668 11 0 02859 0 10209 0 13068 731 7 361.6 1093 3 0 9139 0 3206 12345 25000 26000 673 91 0 02938 0 09172 0 12110 744 5 3376 1082.0 0 9247 0 2977 12225 26000 27000 679 53 0 03029 0 08165 0.11194 757.3 312.3 1069 7 0 9356 0 2741 12097 27000 23000 684 96 0 03134 0 07171 0 10305 770 7 2851 1055 8 0 9468 0.2491 1 1958 28000 2900 0 690 22 0 03262 0J6158 0 09420 7851 2543 1039 8 0 9588 0 2215 1.1803 29000 3000 8 695 33 0 03428 0 05073 0 08500 801 8 218.4 1020 3 0 9728 0 1891 1.1619 3000 0 3180 0 70028 0 03681 0 03771 0 07452 824 0 169 3 993.3 0 9914 0 1460 !!373 3100 0 32000 70508 0 04472 0 01191 0 05663 875 5 56.1 931.6 1.0351 0 0482 1.0832 3200 0 '3 2* 70547 0 05078 0 00000 0 05078 9F 'I 00 9060 10612 0 0000 10612 1200 2-
- Critical pressure
5,e-THEORY OF NUCLEAR POWER PLANT OPERATION. FLUIDS. AND PAGE 24 ,.y IHEBtiQDIHatilCS ANSWERS - 'MCGUIRE 1&2 -86/12/08-GUILFOIL, T. i ANSWER 5.01 (1.50) a. _decreare: _ feJ o t e tspe@ (0.5) b. decreases (0.5) c. increases (0.5) REFERENCE LPSO HT pg 17 002 020 K5.01 3.6 ANSWER 5.02 (2.00) a. No change (0.5) b. Decreases (less negative) (0.5) c. Increases (0.5) d. Decreases (0.5) REFERENCE LPSO RCO pgs 19-31 LPSO STM pgs 4-14 h my osa_____________________7_____3_,( /< f, a i d e-
{. I 5. THEORY OF NUCLEAR POWER FLANT OPERATION. FLUIDS. AND PAGE 25 '.IHERMODYNAMICS d ANSWERS -- MCGUIRE 1&2 -86/12/08-GUILFOIL, T. ANSWER 5.03 (1.50) 9. 1. Increases (less negative) (0.5) 2. Increases (less negative) (0.5) b. 2cc:ccasw=/) W 9 (0.5) / REFERENCE LPSO RCO pgs 35-43 001 000 K5.06 4.1 ANSWER 5.04 (3.00) a. 1. No effect (0.5) g y.t$ 73c C+4& % */Y M o. L e c _% /Ar entsA
- MIT M
- .;)
% g, ts$ w m am m M M3 ** 3 2. No effect o m mra.rws M MW (0.5) 3 4. Higher (O.5) e s.- 'n - f 5. Higher r (0.5) b. Disagree (0.5) Higher rod speed reduces the time to achieve critical rod position and reduces time for subcritical multiplication to occur. (0.5) REFERENCE LPSO RB pgs 11-13 LPSO SM $ ona ')
k-------------------------------------------------------
r. 5. THEORY OF NUCLEAR POWER PLANT OPEBAIION. FLUIDS. AND PAGE 26 .IHEBHODYHANICS ~ ANSWERS -- MCGUIRE 1&2 -86/12/08-GUILFOIL, T. ANSWER 5.05 (1.50) a. More negative (0.5) b. Less negative (0,5) c. More negative (0.5) REFERENCE LPSO RCO pgs 19-21 M cal dod M Af,tf 3, 7 ANSWER 5.06 (1.50) a.
- 2. or compressive (0.5) b.
- 1. or tensile (0,5) c.
- 3. or heat-up (0.5)
REFERENCE TECH SPEC BASES 3/4.4.9 K&h 00% Oc)co $ i.l 8
- 3. $
q l l 1 ANSWER 5.07 (1.00) --- a ---(0.5) Increases (0.5) (1.0) REFERENCE LPSO RB pg 14 dos olo S.C ete* N K5.35 9-9 % ete-ese-K5.19 3.5 sen. atb-------------------------------------------------------------------- i j
5.. . THEORY OF NUCLEAR POWER ELANT OPERATION. FLUIDS._AND PAGE 27 IHEBtf0DYNAtilGE ANSWERS -- MCGUIRE 1&2 -86/12/08-GUILFOIL, T. ANSWER 5.08 (1.00) H2/H1 = (N2/N1)2 = (V2/V1)2 (0.5) H2 = 25 psig (8 gpm/10 gpm)2 i (0.25) H2 = 16 psig (0.25) REFERENCE j LPSO FF pg 13 7.,g-Component - Pump 2. 1 4 j l ANSWER 5.09 (1.50) Primary system piping losses,added. Secondary system piping losses,added. Blowdown, subtracted. NCP pump heat, subtracted. Lotdown flow heat, added. Charging flow heat, subtracted. (any three at 0.5 each) 1 REFERENCE McGuire Exam Bank Q-THF-CY-03 6IT 006 K Y.0Y 1*I 2 i 4
E. THEORY OF NUCrRAR POWER PLANT OPERATION. FLUIDS. AN] PAGE 28 . THERMODYNAMICS ANSWERS -- MCGUIRE 1&2 -86/12/08-GUILFOIL, T. ANSWER 5.10 (2.00) Tavg reactivity change: 7F X (-18.4 pcm/F) = -128.8 pcm (127-130) (0.5) Boron reactivity change: 100 ppm X (-11.2 pcm/ ppm) = 1120 pcm (1118-1122) (0.5) Total reactivity change = 991.2 pcm (990-993) (0.25) Keff2 = 0.95 + 991.2 pcm = 0.95 + 0.01 = 0.96 (0.25) CR2/CR1 = (1-Keff1)/(1-Keff2) (0.25) i j CR2 = 10 cps X (1 - 0.95)/(1 - 0.96) 10 cps X (0.05/0.04) = =12.5 cps (12 - 13) (0.25) REFERENCE LPSO RK pg 20 1 004 000 K5.20 3.7 ANSWER 5.11 (1.50) Differential boron worth (pcm/ ppm) will decrease (become less negative) at higher Tavg(0.5), less molecules of moderator in the core (0.5) so a 1 ppm change in [B] results in less molecules of boron change in the core (0.5). (1.5) REFERENCE LPSO RCO pg 33 l 004 000 K5.06 3.3
5. THEORY OF NUCLEAR POWER PLANT OPERATION. FLUIDS. 4HQ PAGE 29 . THERMODYNAMICS ANSWERS -- MCGUIRE 1&2 -86/12/08-GUILFOIL, T. ^ ANSWER 5.12 (2.00) a. Rods insert (0.25) for about 2 hours (PD comp.) (0.25) 1 Rods withdraw (0.25) I for the next 5 (4-6) hours (Xe comp.) (0.25) Rods insert (0.25) for the rest of the time up to 40 hours (Xe comp.) (0.25) b. INDEPENDENT OF (0.5) a REFERENCE i LPSO RP pg 23 t oot ooo +. 0 W$0t-K5.13 0 &tt404 K5.26 3r5-Aol otu }. 7 ANSWER 5.13 (1.00) --- d. REFERENCE LPSO CP pg 47 od 1.- <! 7. 0 N-3, ( ANSWER 5.14 (1.50) i a. Decreases b. Increases c. Decreases (0.5 each) l REFERFNCE LPSO HCN pg 13 1 4 4 i ,,,,n,, ....,g .w. m -._ _., -,.,,n.,
5..-THEORY OF NUCLEAE POWER PLANT OPERATION. FLUIDSu AHD PAGE 30 i .THERMODYHAMICS ANSWERS -- MCGUIRE 1&2 -86/12/08-GUILFOIL, T. 9 l ANSWER 5.15 (1.50) a. 1. Void coefficient (0.25 each, 0.25 for correct order) l I 2. Moderator temperature coefficient I t/. Doppler power (or fuel temperature) coefficient b. Total power coefficient becomes more negative from BOL to EOL. (0.50) 4 REFERENCE MCGUIRE, LPSO-RCO.26-30 000 001 K5.49 iht 3,7 'l 1 ANSWER 5.16 (1,50) In the secondary system there is a phase change. (0,5) A phase change requires a large delta h. (0.5) With the larger delta h of the secondary, the same heat can be transferred with a lower flow rate. (0.5) (reasonable wording accepted) 1 REFERENCE I MCGUIRE, LPSO-FLO.30 LPSO-STM.12 LPSO-HT.10 90e 007 KS.01 6-4. 60'l. 00D ~).T J 1 d i i )
1 5,, THEORY OF NUCWAR POWER PLANT OPERATION. FLUIDS. AND PAGE 31 IHERMODYNAMICS ANSWERS -- MCGUIRE 1&2 -86/12/08-GUILFOIL, T. ANSWER 5.17 (1.50) To determine flow in NC: Q = m cp delta-T => 100 = 100
- cp
- 60 Q1 = mi cp delta-T =>
2 = ml
- cp
- 28 100 100
- cp
- 60
= 2 ml
- cp
- 28 (1.00 for proper method) 214.3 50
= mi 4.29 percent (4.0 - 4.5 acceptable) (0.50) ml = REFERENCE MCGUIRE, LPRO-HT.10 920- 002 K5.01 M 3.I doo ANSWER 5.18 (1.50) l S/G heat transfer = Q = UA(Tavg - Tatm) 3 Q, U, and Tatm remain constant; A1(Tavg1 - Tstm) = A2(Tavg2 - Tstm) (0.5) Given: A2 = 0.9 x Al From Steam Tables: Tsat for 995 psia = 544 F (0.5) A1(587 - 544) = 0.9A1(Tavg2 - 544) Tavg2 = 591.8 F (591 to 592.5 F acceptable) (0,5) T REFERENCE MCGUIRE, LPSO-HT.8,9 l STEAM TABLES i Der #b
- b S. el
- 3. f 4
l
5.._. THEORY OF. NUCLEAR. POWER PLANT OPERATION. FLUIDS. AND PAGE 32 THEBHODYHAMICS ANSWERS -- MCGUIRE 1&2 -86/12/08-GUILFOIL, T. ANSWER 5.19 (1.50) a. 300 F (290-310 F acceptable) (0.50) b. 1192 BTU /LBM (1190-1195 BTU /LBM acceptable) (O.50) c. 1. (0.50) REFERENCE MCGUIRE, LPSO-FLO.24 STEAM TABLES COMPONENT-VALVE /2.0 [ l
6. PLANT SYSTEMS DESIGN. CONTROL. AND INSTRUMENTATION PAGE 33 ANSWERS -- HCGUIRE 1&2 -86/12/08-GUILFOIL, T. ANSWER 6.01 (1.00). 1. Upper surge tank 2. Auxiliary feedwater condensate storage tank 3. Condenser hotwell 4. Nuclear service water (0.25 each) REFERENCE MCGUIRE, LPSO-CA.8 e-07000/061/K4. 01/9-') 4,b ( /. 56 ) ANSWER 6.02 EE. 00 b a. 1. Detects the presence of gas bubbles in the vessel head. 2. Assists in detecting approaches to Inadequate Core Cooling. 3. Indicate NC System void formation during forced flow conditions. C A=+ow 44 b s.- be W Al* MdN) I ib. Tr in A .KVA 0.2 ) head Train 1EK (O. 5) J REFERENCE LPSO RVL pgs 6 and 33gy-----y & --------- --------------------------------- - g a --- ANSWER 6.03 (1.50) p y y v 1.
- 1 seal - Charging pump discharge pressure to Vg pressure (0.25). Leak 4
rate is 3gpm(0.25) 2.
- 2 seal -
VCT pressure to pressure in the water column (0.25). Leak rate is 3gph(0.25) 3. 93 seal - Water column pressure to atmospheric (2-3 psig)(0.25), Leak rate is 100cc/hr(0.25)
6. PLANT SYSTEMS DESIGN.. COHIBQLJHILINSIBUtEHIATION PAGE 34 l ANSWERS -- MCGUIRE 1&2 -86/12/08-GUILFOIL, T. REFERENCE LPSO NCP pgs 12,13,22 _g_____________________________________________ ANSWER 6.04 (1.75) a. Block heater operation (0.25) when pressuriser level reaches low-low level of 17%(0.25) (0.5) b.
- 1. ND heat exchanger outlet relief C. # # WW I
S00 psig - 7 MI.[M/ Fd@M M* A
- 2. Charging pump suction relief 220 F=ig
- g. AJ f tLm. u &
3. s t from loop "C" Ayg a
- 4. NCP scal relief
/O,j)S h # 4W-pel-e- [M f sF7' 4 M
- 5. Letdown rolief(NV) 600 FE C (0.2 name, 0.05 setpoint)
REFERENCE LPSO IPE pg 23 NP pg 11 NV pg 26 P&ID NO WC 1553-2.0 i
6.. PldNT SYSIEMS_ DESIGN. CONTROL. AND INSTRUMENTATION PAGE 35 ANSWERS -- MCGUIRE 1&2 -86/12/08-GUILFOIL, T. ANSWER 6.05 (2.25) n. Seal leakoff cannot exit containment. It exits the system through a relief valve upstream of the isolation valves (0.37) and goes to the PRT (0.38). (0.75) b. Yes (NCP cooling and seal injection still supplied.) (0.25) Cooling water is lost to the following NCP components-c. Q pa K C p;3-Upper motor bearing (oil cooler) (0.25)Jgpp ,tcylq ;C uC Lower motor bearing (oil cooler) (0.25) (0. 25 )fT # #g,46f U Motor cooler Thermal barrier heat exchanger (0.25) 6 9't #'* (1.0) d. No (motor bearings and/or motor stator windings would overheat) i (0.25) REFERENCE MCGUIRE, LPSO-NCP.41 LPSO-KC.25 LPSO-NV.27 LPSO-NR. 3.10/000/008/K3.01/3.4 3.4/000/003/K4.04/2.8 3.4/000/003/A2.02/3.7
6. PLANT SYSTEMS _ DESIGN. CONTROL. AND INSTRUMENTATION PAGE 36 l ANSWERS -- MCGUIRE 1&2 -86/12/08-GUILFOIL, T. l ANSWER 6.06 (3.00) i o. To cutout the Tavg signal from a sulected loop (0.25) from being used in the Tava auctioneered circuit. (0.25) b. 1. Failed pulser in the Logic Cabinet j 2. Regulator Failure 3. Phase Failure ] 4. Logic Failure in Power Cabinet 5. Multiplexing error 6. Logic Cabinet oscillator failure 7. Removal of printed circuit card (any 5, 0.25 each) l c. 1. Resets demand position counters l 2. Haster cyclers 1 3. Slave cycles 1 4. Bank overlap unit counter 5. All alarms associated with rod control circuits except Urgent Fa}f c =a8 0 % (AAJr f F o. LE M/ (0.25 each) lure alarms 3 I 8// g. REFERENCE LPSO IRX pgs 20&23 l IRE pga 7&8 i l I l ANSWER 6.07 (1.50) i NC System pressure PZR level NC System loop T-cold Yg 4 l SG 1evels Standby make-up pumt flow (0 each for a total of 1.5) l rp m h et oO ft.e. /M% c ci~)W l l I i I I
6.. PLANT SYSTEMS __ DESIGN. CONTROL. AND... INSTRUMENTATION PAGE 37 ANSWERS -- MCGUIRE 1&2 -86/12/08-GUILFOIL, T. i REFERENCE LPSO SSF, Figure MC-SYS-SSF-2 j 00 016 K4.01 3.0 ANSWER 6.08 (2.00) l 98.5% "hi level" alarm, and full open divert 66% start divert a 54% otop auto makeup j 41% start auto makeup l i j 16% " low level" alarm i */o I - 1. 0% - isolate VCT to NV pumps and open FWST supply valves ) (0.1 each setpoint, 0.2 each function / alarm) REFERENCE LPS0 NV pgs16,42,43 i j ANSWER 6.09 (1.00) I j 1. ND puap suction from Containment Sump (NI-104B) closed (0.25) l 2. ND pump discharge to containment spray (NS-38B) closed (0.25) 3. ND pump discharge to NI pump suction (NI-136B) closed (0.25) 4. NS pump suction valve (NS-1B) closed (0.25) 4 REFERENCE LPSO ND pg19 i l 1 ANSWER 6.10 (1.00) Prevents rod withdrawal in auto and manual to provent reactor scram. (0,5) Sotpoint 1/2 intermediate channels (0.25) > amps = 20% Pwr(0.25) (0.5) i 1
f.. PLANT SYSIEMS DESIGN. CONIBOL. AND INSTRUMENTATION PAGE 38 1NSWERS -- MCGUIRE 1&2 -86/12/08-GUILFOIL, T. 1 REFERENCE LPSO ENB pg 14 and DWG MC-IC-ENB-5 }) ele Ed -- ANC'4"E c.11- -( 1. 00 )- high 33 psig (0.2. w 5 sig (0.25) The limits on the accumulator pressure ensure that the assumptions used for accumulator injection in the safety analysip are met.(1.0) cA 74 /4. Jet?
- c.= =A*w o.
7=.s.+f, 5/*ec. Lcd (-(48D REFERENCE LPSO CLA pg 11 Technical Specification Bases 3/4.5.1 ANSWER 6.12 (1.50) a. Reactor Coolant Drain Tank b. Recycle Holdup Tank eductor c. Waste Evaporator vent condenser d. Volume Control Tanks c. Doron recycle evaporator vont condenser f. PD pump suction accumulator (0.25each) REFERENCE LPS0 WG DWG MC-SYB-WG-4
6. PLANT SYSTEMS DE MGN. CONTROL. AHD_IH UBDMENTATION PAGE 39
- ANSWERS -- MCGUIRE 1&2
-86/12/08-GUILFOIL, T. ANSWER 6.13 (2.00) c. Will not b. Will c. Will d. Will (0.5 each) i REFERENCE LPSO DG Figure MC-SYS-EQA-1,2 ANSWER 6.14 (3.00) a. Low pressurizer pressure (0.1) 1845 psig(0.1) 2/4(0.1) High contaiment pressure (0.1) 1.00 psig(0,1) 2/3(0.1) Low steamline pressure (0.1) 585 psig(0.1) 2/3(0.1) gy M% ({} b. High head injection (CCPs) (0.25) f'St5 p,,ig(immediate) (0.25) w'- -.3, Intermediate head injection (NI) (0.25) 1500 + or - 50 psig (0.25) Accumulators (CLAs) (0.25)'~ ~ 50 p:!g (0.25) Low h3ad injection (ND) (0.25) 195 + or - 20 psig (0.25) (0.1 for the correct order) C1 1.. (1.,1) 585 4eGISMIS REFERENCE { MCGUIRE, LPSO-CLA.11 LPSO-NI.15 SD-ND.10 000 006 K4.05 4.3 K6.02 3.4 K6.03 3.6 K6.05 3.0 K5.06 3.5 A2.02 2.0 ANSWER 6.15 (1.00) [ NO. (0.5) Channel II must energize to actuate (to avoid inadvertent spray act.uation in the event of loss of instrument power). (0,5) Asfa #ce.=/T Al s c/CJ MM I I
6... PLANT SYEIEMS DESIGN. CONIBOL,.AND INSTRUMENTATION PAGE 40 ' ANSWERS -- HCGUIRE 1&2 -86/12/08-GUILFOIL, T. REFERENCE LP30 ISE pg 15 ANSWER 6.16 (1.00) 1. Minimize motor starting current (by holding the motor idle instead of allowing it to rotate in raverse). (0.5) 2. Minimizes the total amoun' of NC system flow which bypasses the core (via the idle NC pump by preventing reverso rotation). (0.S) REFERENCE McGuiro Exam Bank, Q-PS-NCP-28 000 003 K4.03 2.8 ANSWER 6.17 (1.50) C. d. f. (0.5 each) REFERENCE McGuiro LPSO-EP, fig 76238 000 001 K4.01 3.0 ANSWER 6.18 (2.00) a. The normal drain control valvo fully opens (0.5). The high level dump to the condensor drain control valvo fully opens (0.5). The blood ntonm gato and piston operated check valvo closen(0.5). b. The C hentor drain tank pump will trip (0,5). I REFERENCE McGuire Exam Dank, Q-HT-ilAW-5 4 i i
7c. PROCEDUBES - NORMAL. ABNORMAL,.. EMERGENCY AND PAGE 41 BAD 10 LOGICAL _CONIBOL ANSWERS -- MCGUIRE 1&2 -86/12/08-GUILFOIL, T. I t t AhSWER 7.01 (2.00) l 1. Diagnoce and identify ruptured S/G. 3 2. Isolate affected S/G. 3. Cooldown NC system. i 4. Depressurize NC system. (0.5 each) (2.0) 1 REFERENCE j EP/1/A/5000/04 000 038 EK3.06 4.5 j i i i ANSWER 7.02 (1.00) i 4 a I 1. Insert all control banks. 0,5# 40, 2 E) 2. Rocheck the ECP calculations. o.50 (&re&t ? If ;
- th t+1c=1 is dinum.c;;d, reian^'*ut-r ~!
dthd:.:: 1. ae-^ 5 -. o..c s, in 4. Is U.c ECP.-4-a-coer*ow, entset--the-Reactor C-roup-Perscanci a r.d ehack Chntdsn ",erein-bo-ensure-inadvertent crit 4oalit, wili uut l es-ee l REFERENCE l EP/1/A/5000/10 l 001 010 A2.07 4.2 l 1 1 i 1 1 J 1 ANSWER 7.03 (1.50) 2. Core Cooling - Rod (0.25 each, propor sequence required) I 1. Containment - Rod i 6. Guberiticality - Orango 4. Integrity Orange 3. liont Sink - Yellow I 5. Inventory - Yollow 1 l REFERENCE EP/t/A/5000/10 i 00 074 C010 4.7 4 i i I
7. EBO.CEDUBES - E0BMALuABUQBMALJMEBRENGLAND PAGE 42 BAD 19 LOGICAL _00HIBOL r ANSWERS -_ MCGUIRE 1&2 -86/12/08-GUILFOIL, T. ANSWER 7.04 (2.50)
- 1. Manually exercise Reactor Trip Train 1A(0.25) m..J I B( G. 2 ^, r switches.
- 2. Verify reactor trip.
(0.5 each) 3. Verify turbino/ generator trip.
- 4. Try to onorgico 4160V bus with D/G from the Control Room.
- 5. Dispatch operators to initiate NC pump seal injection from SSF.
(2.5) REFERENCE EP/1/A/5000/09, pga 2 & 3 000 055 EK3.02 4.6 ANSWER 7.05 (1.50) a.
- 1. NC Syntom subcooling loss than 0 degroon F.
)
- 2. Any 3 S/G wide rango levels loss than 3% and core oxit T/Cn increasing.
W ( -51 b. Shift to cold log recirculation modo. (0.5) / 00/13.1 3' /0 "N b" > M' N /pidy THev,e c.MeJ '4 c.,re ggg884 "i 82 i'! - "h As> dae + _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _z_ _,_p_ g _g y yp _ _y_~q3 - _y ~;> z 3 W h i s h A U w Ada r ". fN Y ~2 $ W CeV M ) 1 l
7' fBQCEDUBES - HQBMALdBHQBMALmEMEBGEHCLAHQ PAGE 43 BADIQLQG196L_.QQHIBQL i ANSWERS -- MCGUIRE 1&2 -86/12/08-GUILF01L, T. i ANSWER 7.06 (2.00) a. Assume the fuel assembly is a point soyrce of 3,000 R/hr l (, hM MMu
- WFM The MAXIMUM quarterly 10CFR20 limit in 3 Rem.
0.25) i 3 R X 1/3,000 R/hr = .001 hr .001 hr X 60 min /hr X 60 sec/ min = 3.6 sec (0.25) b. (1) Lower any fuel assembly in the reactor building manipulator crane t to fully down in the core or in the deep end of the canal. (0,5) (2) Move fuel transfer cart to the spent fuel (pit) side (0.50) and i close 1KF-122(Fuel Transfer Tube Block Viv) (0.50). (1.5) I i REFERENCE AP/1/A5500/40 pg 2 000 036 EK1.01 4.1 000 036 GG11 4.3 l ANGWER 7.07 (2.00) 1 a. Check " Overpower Rod Gtop" alarm LIT and switch rods to manual to i restore T-Ave. (0,5) Piner "/ "* " GF-Cont,rol Valves-in manua1-and-maint,ain-rogramed-levels A d ftA. CP @vne,w v.#" q pA),*v (0.5) i b. Transfer to alternate control channel (0,5) Place "C" 8/0 CF Control Valve in manual and maintain programed level. 4 2 (0,5) I 1 REFERENCE l AP/1/A/5500/10, pg 2 ) OP/1/A/0100/10E I 015 000 K3.02 3.5 010 000 K3.12 3.0 I 1 l i I i t
--.- - - - = -._ I. EBQCIDunen - NORMAL. ABNORMAL. EMEBGEHQY AND PAGE 44 BAD 1QLQQICAL_CONIBQL 1 { ANSWERS -- MCGUIRE 1&2 -86/12/08-GUILFOIL, T. i 1 I i ANSWER 7.08 (2.00) a. Operate manually. (0.5) i b. To minimize NC System inventory loss (0.25) through NC pump seals (0.25). (0,5) i t c. S/G SM pressure (0.25) and NC cold leg temperature (0.'5) (0,5) 2 l d. Continue depressurizing. (0,5) i t ) i l REFERENCE i EP/1/A/5500/09 i i j 000 055 EK2.00 4.0 l J l 1 l .i 5 ANSWER 7.09 (1.00) ~ 1 --- c --- (1.0) REFERENCE i EP/A/5000/1.1 Encionure 1 l 000 011 EA2.00 4.3 ) .l J r ANSWER 7.10 (1.50) i j a. + or - 2 degreen F i b. 50 ppm c. < 250 donreen F. (0.5 each) (1.5) 1 I REFERENCE l OP/1/A/0100/03 j 002 020 0007 4.3 { i '5 5 .f
7. PRQQEQUBES - HQBMAL. ABNQBdMu_EtiEBQENGLAND PAGE 45 86DlDLQGIGAL_GQHIBQL ANSWERS -- MCGUIRE 1&2 -86/12/08-GU]LFOIL, T. ANSWER 7.11 (1.00) n. 0.5 b. 50 c. 160 d. 320 (0.2f. each) (1.0) REFERENCE OP/1/A/6100/01 001 050 SG07 4.1 ANSWER 7.12 (1.00) --- d --- (1.0) REFERENCE EP/1/A/5000/01 006 050 SG11 4.6 ANSWER '.13 (1.00) Flow verified from NV or NI pump (0.6) and NC syntom nubcooling losn than 0 degrcon F.(0.5) (1.0) REFERENCE EP/1/A/5000/02 003 000 S007 3.0 W-
i 7, PROCEDUREn - NORMAL. ABNQBtfAL. EMERGENCY _ AND PAGE 46 BADlQLQQICAL__GQNIBQL 3 i ANSWERS -- HCGUIRE 1&2 -86/12/08-GUILFOIL, T. f i J f i l ANSWER 7.14 (1.50) l l 1 j 1. Check control rods. l 3
- a. CRD selector in AUTO.
(0.25) j 1-
- b. Control rods moving IN.
(0.25) 2. Verify proper response from turbine generator. j
- a. Governor valves modulating closed.
(0.25) l
- b. Generator output decreasing.
(0.25) i 3. Verify proper CM System operation. I n. Standby Hotwell and CM Booster pumps running. (0.25) b. 1CM-420 (load rojection bypass valve) open. (0.25) l REFERENCE AP/1/A/5500/03 i j l 1.N ANSWER 7.15 (3.00) i i i n. 10 CFR 20 limit 1.25 REM (0.5) i 1 Administrativo limit 1.00 REM (0,5) i i b. 1. not to exceed 3 Rem por calendar quarter (0,5) i 1 2. not to exceed 5(N-10) Rem total accumulated dose (0.5) a nccumulateddoderecordedonFormNRC-4orequivalent (0.5) I 3. 4 t i I j a u r i +; + m n p rm t. 4_ n n emo tu.A ra r' l 1 i REFERENCE 1el i McGuire lloalth Physics Manual, Boctior. )(, Page 4 and Exhibits 2.1-1 and 2.1-2 j 8 1 { I f ] i 4 I I I
7... PBQQEDMBES - NOBMALuABHQBMAL u EMEBGENCY AHQ PAGE 47 86010LQGlG6L_QQUIBQL l ANSWERS -- MCGUIRE 1&2 -86/12/08-CUILFOIL, T. l ANSWER 7.16 (2.50) l l a.
- 1. Failure of more than one RCCA to fully insert following a reactor i
trip.
- 2. CRH below RIL.
3. Unexplained or uncontrolled reactivity increase.
- 4. SDM less than required.
- 5. Boron concentration less than required during refueling.
- 6. ATWT.
(any four at 0.P.5 each) b.
- 1. Chocle BAST and normal charging available.
- 2. Start two boric acid transfer pumps.
- 3. Open emergency boration control valve (1NV265B).
- 4. Start two NV pumps.
- 5. Close NV pump recirc valves.
- 6. Increase letdown to maximum.
6.W$m ueMialw usb. (0. 25 each) 4 4turV) REFERENCE AP/1/A/5500/38, pgs 2 and 3 024 000 EK3.01 4.1 EK3.02 4.2 ANSWER 7.17 (1.50) SRO - Reports to Auxiliary Shutdown P.nel and directs R0s to shutdown the plant (IAW AP/1/A/5500/17), (0.5) R0(1) - Reports to CA local control panels and awaits direction from the SRO. (0.5) R0(2) - Reports to reactor trip switchgear and awatta direction from the GRO. (0,5) REFERENCE AP/1/A/5500/17, pan 2 and 3 PWO/11/4.5
l 7.<.PROCEDU m - NORMAL. ABNORMALt_ EMERGENCY.AND PAGE 48 I l B&DIQLQGIGAL coHIBQL i ANSWERS -- MCGUIRE 1&2 -86/12/08-GUILFOIL, T. i 1 4 i; ANSWER 7.18 (1.50) i 1. Yes t 2. Yes i I 3. No (0.5 each) 4 i i liEFERENCE j] Technical Specification 3/4.2.1 3 1 i PNG/28/2.9 PWG/8 /3.5 I 1 l l i i i t 1 J ) 1 i i ) } -1 i 1 I \\ l b
.8... ARdlHISIBAIIVE PBOCEDURES. CONDlIlQNS._AND_LidlIAllQEH PAGE 49 ANSWERS -- MCGUIRE 1&2 -86/12/08-GUILFOIL, T. ANSWER 8.01 (1.00) Interval requirement exceeded on 24 Nov (0.5). The last 3 consecutive intervals exceed 3.25 times the specified surveillance interval (0.5) (1.0) i REFERENCE TS Section 4.0.2 f 3.1 004/020 SWG 5 4.1 ANSWER 8.02 (1.00) -- b -- (1.00) i i REFERENCE McGuire Exam Bank, Q-ADM-GD-58 4 2-2 PWG 23 3.5 i ANSWER 8.03 (1.50) Prevents a release of activity in event of a SGTR (1.0). The saturation pressure for 500 degrees is less than atmospheric steam relief valve setpoint (0.5). (1.5) i REFERENCE l TG B 3/4 4-7 3.11 000 076 EA2.02 3.4 n 1
r T J.s ADMINISTRATIYE_.EBOCEDURES. CONDITIONS. AND LIMITATIONJ PAGE 50 l-ANSWERS -- MCGUIRE 1&2 -86/12/08-GUILFOIL, T. l ANSWER 8.04 (1.00) --- c --- (1.0) REFERENCE l 10CFR50.36 McGuire TS 2-2 SWG 5 3.9 ANSWER 8.05 (2.00) a. 5 (0.5) b. The Shift Supervisor (0.5), a designated NEO ffor each unito.5), and the persons who are " operator at the controls"(0.5). (1.5) GA we.MA= 4A4eeve. p M <d c % 7asa, he.s M - - -f r; ofe T h e *Avett M 9 4'ft* cA. Al&JW rn 94t%-
- M*l'AM
- N** M REFERENCF M r' M M i E ir ^ " '*' A* W 6% * % = Ap e TG Section _. v h. T' M Sj F C C-/[
- %e.ww.5 4mde- + Mw C :'
"^ $pm __-y, 2-2 PWG 23 3.5 ANSWER 8.06 (1.50)
- n. Either restore the PORV(s) to operable status (0.25) l or close the associated block valve (s) (0.25) and remove power from the block valve. (0.25)
(0.75)
- b. Either restore the valves to operable status (0.25) or close the PORY (0.25) AND remove power from it's associated solenoid valve (0.25)
(0.75) REFERENCE TS 3.4.4 3.3 010 000 SG 8 4.3 4 l l
,8... ADMINISTRATIVE PROCEDURES. CONDITIONS. AND_LIMIIAIIQBS PAGE 51 ANSWERS -- MCGUIRE 1&2 -86/12/08-GUILFOIL, T. ANShER 8.07 (1.00) Entry into an operational mode shall not be made unless the conditions for the Limiting Conditions for Operation are met without reliance on provisions contained in the action requirements.(reasonable wording will be accepted) REFERENCE TS B 3/4 0.1 and TS B3/4 0-1 t 3.1 001 050 SG 8 4.5 ANSWER 8.08 (1.50) a. The Shift Supervisor (0.5) b. The Station Manager (or his designated representative). (0.5) The Operating Engineer (or the Assistant Operating Engineer). (0.5) c. REFERENCE Sta. Dir. 3.8.2 2-2 PWG 23 3.5 ANSWER 8.09 (2.00) a. SDM requirement for Mode 4 is 1.3% (0.5) b. Emergency borate. (0.5) c. The operator should immediately stop any heatup and cool the plant down below 200 deg's so that the requirement reverts to 1%, OR incrense SDM using any boration method possible. (0.5) d. No. SDM requirement for Mode 5 is 1.0%. (0,5) l j l REFERENCE TS 3/4.1.1.1 3/4.1.1.2 i 3.1 001 050 SG 8 4.5
8,,-ADMINISTRATIVE PROCEDUBES. CONDITIONS. AND LIMIIATIONS PAGE 52 ,0 ANSWERS -- MCGUIRE 1&2 -86/12/00-GUILFOIL, T. l 4 ANSWER 8.10 (1.00) a. The limits on AFD assure that the Heat Flux Hot Channel Factor is not exceeded. (0.5) b. Reduce er Range N ux Hi set Lo 2es3 than or e to 55% n the nex ur hours. g@ (0.5) REFERENCE TS 3/4.2.1 & TS B 3/4.2.1 3.1 001 000 A3.03 3.8 ."I f ANSWER 8.11 41.20)- a. Identified b. Identified c. Pressure boundary g CuuLiol. tea (eN*.0) (O. 25 each) REFERENCE TS 3.4.6.2 and Section 1. 3.2 002 020 4.01 3.8 i [ f
8, ADMINISTRATIVFJ BQCEDURES. CONDITIONS. AND LIMITAIl0FE PAGE 53 t ANSWERS -- MCGUIRE 1&2 -86/12/08-GUILFOIL, T. ANSWER 8.12 (2.50) a. All penetrations' required to be closed during accident conditions are either: (1) Capable of being closed by an operable containment automatic isolation valve system, or (0.5) (2) Closed by manual valves, blind flanges, or deactivated automatic valves secured in their closed position. (0.5) b. (3) All equipment hatches are closed and sealed. (0.5) c. (4) Each air lock is in compliance with Spec 3.6.1.3. (0.5) d. (5) The containment leaqkage rates are within the limit of Spec 3.6.1.2. (0.5) e. (6) The scaling mechanism associated with each penetration is operable (0.5) REFERENCE TS Section 1.10, pg. 1-2 3.6 103 000 K1.02 4.1 ANSWER 8.13 (2.25) a. Keff < 0.99 (0.25), % rated thermal power = 0 (0.25) and 200 F < Tavg <= 350 F (0.25) (0.75) b. Thermal power. (0.25) Pressurizer pressure. (0.25) Tavg. (0.25) (0.75)- c. 1. 100 F/Hr (0.25) 2. 200 F/Hr (0.25) 3. 320 F (0.25) (0.75) REFERENCE Technical Specifications, pgs 1-9, 2.1 & 3/4 4-36 3.2 002 000 5.18 3.6 002 020 SG S 4.1 s a
a .,,8 . ADMINISTRATIVE PROCEDURES. CONDITIONS. AND LIMITATIQHS PAGE 54 ' ANSWEh5 -- MCGUIRE 1&2 -86/12/08-GUILFOIL, T. ANSWER 8.14 (1.50) 1. a. 16 b. 16 c. 28
- d. 72 e.
8 2. Station Manager (0.25 each) (1.5) REFERENCE TS Section 6.0, pg. 6.2 2-2 PWG 23 3.5 ANSWER 8.15 (1.00) a. S r 1 Y b : U r turnover sheet (0.25 each) f4 b. Technical Specification Action Item Logbook or turnover sheet c. Special Orders Log d. Shift Supervisor Turnover Checklist REFERENCE McGuire OMP 2-1 2-2 PWG 26 3.6 /, C d ANSWER 8.16 (t-te ) o,N a. Reactor coolant system Tavg (-0. 2 5 ) a>% Pressurizer pressure t& 25) b. Rest e the parameter ithin its 1 it (0.25) thin 2 rs (O. 5) or r uce therma ower to less an 5% of rate hermal power (0.25 within t next 4 hour q) q p (0.25) = t REFERENCE Technical Specifications 3.2.5
) ,, B -ADMINISTRATIVE PROCED.UBEL CONDITIONS. A@_Lili1TATIQM PAGE 55 ANSWERS -- MCGUIRE 1&2 -86/12/08-GUILFOIL, T. ANS 8.17 .50) a. 1 b, 4 c. 2 (0.5 each) RE RENCE Technical Specif a on 6.9 ANSWER 8.18 (2.00) a. Notification of Unusual Event (0.2) Unusual events are in progress or have occurred which indicate a potential degradation of the level of safety of the plant. (0.3) b. Alert (0.2) Events are in progress or have occurred which involve an actual or potential substantial degradation of the level of safety of the plant. (0.3) c. Site Area Emergency (0.2) Events are in process or have occurred which involve actual or likely i major failures of plant functions needed for protection of the public. (0.3) d. General Emergency (0.2) Events are in process or have occurred which involve actual or imminent core degradation or melting with potential for loss of containment integrity. (0.3) REFERENCE McGuire Emergency Plan Implementing Procedures RP/0/A/01,02,03,and 04 ANSWER 8.19 (1.00) The individual using the procedure. (1.0)
r.. '13/ ' ADMINISTRATIVE PROCEDURES. CONDIllQNS. AND LIMITATIQtgi-PAGE 56 4 . e ' ANSWERS -- MCGUIRE 1&2 -86/12/08-GUILFOIL, T. REFERENCE McGuire Exam Bank Q-ADM-SD-5 ANSWER 8.20 (1.00)
b ---
(1.0) 4 REFERENCE McGuire Station Directive 4.2.1 ANSWER 8.21 (1.00) ____ y ____ (1,0) c l REFERENCE McGuire Exam Bank Q-ADM-SD-22 i I i t 1 I -1 4 l 4 I i 4 i}}