ML20206L039

From kanterella
Jump to navigation Jump to search
HLW-SSF-TTR-2013-0021 Rev 2 10-23-2013
ML20206L039
Person / Time
Site: PROJ0734
Issue date: 10/23/2013
From:
Office of Nuclear Material Safety and Safeguards
To:
Desotell L
Shared Package
ML20206K862 List:
References
Download: ML20206L039 (18)


Text

OSR48529 LWFORM Savannah Rev.0 Site River (SRS) 4/25M3 LiQUID WASTE (LW) TECHNICAL TASKREQUEST 1 or18 page Reference E72.02A,LWBaseline Technical Taek Requests FundingSource ModificationTraveler No.Technical Task Request No.Revision SLA-WSTD00028, Lineitem 3 HLWSSFTTR-201300212 Design Engineer Authority Date RichardE.Sheppard F 10/23/2013 PerformingOrganization Authority Design Man (S' n ) Date SRNL TaskandScope Description K H.Rosenberger DueDate 2/28/2014 fe3/W 30MillionGallon SaltstoneDisposalUnit(SDU) PORFLOW Modeling forSDU6Special Analysis (SA)

Revision2updatesselectedinputparameters andincludesadditional sensitivity cases provided inthe attached pages.

Revision1replacesthetechnical detailprovided inRev.0withinformation provided in theattached pages 18and 3through anintermediate includes deliverable toprovide from results apreliminary analysis.

PerformPORFLOW modeling ofthe SDU6design withtheother SDUs as described in the attached pages.

Final results the tosupport issuanceofthe SAinclude thePORFLOW cases described in pages 15and16of18.

Deliverables: import Technical onpage identified 16of18.

Presentation orfinal ofpreliminary results from workperformed via this TTRinpresentations, technical exchanges,DOESR orHQreviews, prior requires etc., notification anddocumented concurrence from SRR. Formal reports arenot tobeissued totheOSTI Bridgeorpublicdomain withoutwritten from release SRR.

FunctionalClassification SafetyClass Production Support Safety @

SignificantGeneral Service FunctionalRequirements anduse Control computersoftware inaccordance withManual 1Q,procedure 201.

Developfinal technical per report(s) Manual E7,procedure3.60 which includes adocumented technical per review Manual E7,procedure2.60.

Quality Requirements

@ All are actnnties tobeperformed anddocumented with Manual E7andManual 1Q.

@Taskspecific QA plantobedeveloped asanoutput ofthisTTR Other Design Managers Authority signature if requiredrequest isnotassociated withanMT.

OSR 46529 0 LWm Savannah River (SRS)

Site LlQUlD WASTE (LW) TECHNICAL TASKREQUEST

  • J.or18 Design andAnalysis /Technical Documents tobeDeveloped Notapplicable tothis request CalculationsTechnical Report Technical andCriteria Requirements Drawings Temp Mod Change Notice SOW Specifications CHA Studies Altemative DSA Quality inspection Plans Other, Specify -

Other Reviews /Reports Required?

No @Yes,Specify DeAne Review Pmcessfor TTROutput Documents Technical Agency Acceptance Technical Agency Name(print)

SRNL D.A.Crowley Acceptance ofTask (Signature ofTechnical Agency Manager) Date CL. /624-z3 Closure Closure/Deliverables Provided Re,3olts provided via 5RNL" STl-A014 "00083 48' )

Design Authority E ineer Date 5.46vsa P. r i r ) 1/F3 /S-Design Authority Manager* Date 27//f Design Authority Manager's signature requiredif isnotassociated request withanMT.

HLWSSF-TTR-2013-0021, Rev. 2 Page 3of18 Provided below isthe data inputbeused to inthe PORFLOW analysis conducted the tosupport Special Analysis (SA) f or t he p erformance of the Saltstone Disposal Facility Saltstone (SDF)

Disposal Units (SDUs) including SDU1, SDU4,the Future Disposal Cells (FDCs),

andthe design ofthe future large scale identified SDUs, asSDU6.

Inventory Inventory istobeprovided by November 15, 2013.

SDU6Basic Data Thebasic data forthe SDU6 designis provided inTable 1,based onproject input.

Additional information regarding someofthe parameters isprovided herein.Thesite layout plan is provided inFigme 1ofSRNL-STI2012-00445.

Table 1 SDU6Basic Data Design with Parameter Des' Ma *n Diameter feet 375 375 Hei t feet 43 43 Fill heit feet 43 43 Roof thickness inches 12 9 Roof andfloor slo % 1.5 1.0 Floor thickness inches 12 9 U rMudMat thickness inches 6 5 Lower MudMat thickness inches 4 3 Wall thickness(inches, tapered from bottom toto 24 10 20 7 Joints inearfeet Roof 1,600 1,600 Roof toWall Interface 1,200 1,200 Wall toFloor Interface 1,200 1,200 Floor 1600 1,600 HDPEthickness (mil 100 60 Elevation offloor feet, atlow int 265 265 a SDUisassumed tobefilled withsaltstone b HDPE (High Density Polyethylene) encases a GeosyntheticClay Liner (GCL) placed ontheroofand between theupper andlower mudmats

HLW-SSF-TTR-20130021, Rev2 Page 4of18 Infiltration Rate andSand Drainage Layer Degradation Table 2 provides theinfiltration rate from the closure captobeused for SA.Table the 2 provides Maximum, Average (nominal), and Minimum tobeused values inthe development of the flow cases tobe run inPORFLOW. These values are obtained from K ofWSRC-Appendix STI-2008-00244.

Theinfiltration rate affects the degradation ofthe Sand Drainage Layer (SDL) located above each ofthe SDUs. Thedegradation rateofthe SDLfor theinfiltration ratesprovided inTable 2

isbased onthe analysis presented in WSRCSTI-200800244. Therate indicated ofdegradation, bythe change inhydraulic properties, is provided in Table 3.

Table 2 Estimated InfiltrationRates thro the Closure Ca Time after Infiltration Rate Closure ears Maximum Avera e Minimum 0 0.00269 0.00042 0.00007 100 0.0277 0.00333 0.0003 180 0.367 0.0452 0.00376 220 0.459 0.0568 0.0047 300 0.677 0.171 0.0414 380 1.652 0.472 0.117 460 2.207 0.723 0.187 560 2.759 1.021 0.276 1,000 4.647 2.264 0.679 1,800 8.280 4.340 1.465 3200 10.629 6.795 2.998 5,412 12.450 10.606 5.303 5,600 12.450 10.605 5.302 10,000 12.450 10.576 5.410

HLW-SSF-TTR2013-0021, Rev. 2 Page 5 of18 Table 3 D ofSand dation DraineLa er Maximum Ave Minimum Saturated Saturated Satumted Hydraulic Hydraulic Hydraulic Year Conductivi PorosiConductivi Porosi Conductivi Porosi 0 5.00E-02 4.17E41 5.00E02 4.17E-015.00E02 4.17&01 100 5.00&02 4.17&01 5.00&02 4.17E01 5.00E02 4.17E01 180 5.00&02 4.17&01 5.00E024.17E01 5.00E02 4.17E01 220 5.00E-02 4.17E-01 5.00E-024.17E01 5.00&02 4.17E01 300 5.00E02 4.17E-01 5.00E02 4.17E01 5.00E02 4.17E-01 380 5.00E-024.17E-01 5.00E-02 4.17E01 5.00E02 4.17E-01 460 4.99E-024.17E01 5.00E02 4.17E01 5.00E-024.17E-01 560 4.98E02 4.17E-01 5.00E-02 4.17E01 5.00E-024.17E01 1,000 4.94E-024.16E-01 4.97E02 4.17E-014.99E-024.17E-01 1,800 4.79E-024.14E-014.90E-02 4.16E01 4.97E-024.17E01 3200 4.41E02 4.09E01 4.68&02 4.13E-01 4.88E-024.15E01 5412 3.68E-023.99E01 4.13E02 4.05&01 4.62E02 4.12E-01 5600 3.61&02 3.98E01 4.07E-02 4.05E-01 4.59E02 4.11E-01 10000 2.05E-023.77E01 2.73E02 3.87E01 3.91E-02 4.02&01 10319 1.93E-023.76E01 2.64E023.85E-01 3.86E-02 4.02E-01 11000 1.69E-023.73E01 2.43E023.83E-01 3.76E02 4.00E01 12000 1.34E-023.68E01 2.13E02 3.78E-01 3.60E02 3.98E01 13459 8.17E03 3.61&01 1.69E023.73E01 3.38&02 3.95E01 15000 2.68E-033.54E01 1.22E-02 3.66E01 3.14&02 3.92E-01 16500 4.10E-053.50E01 7.64E-033.60E01 2.9l &02 3.89E01 17077 4.10E05 3.50E01 5.89E-03 3.58E-01 2.82E-02 3.88&01 18,800 4.10E-053.50E-016.6lE-043.51E-012.55E-02 3.84E01 18,900 4.10E-053.50E-013.58E04 3.50E-012.54E02 3.84&01 19013 4.10E-053.50E01 4.10E05 3.50E01 2.52E-02 3.84&01 19500 4.10E-053.50E01 4.10E-053.50E01 2.44&02 3.83E-01 19700 4.10E-053.50E01 4.10&05 3.50E01 2.41E02 3.82E-01 20000 4.10E05 3.50E01 4.10E053.50E01 2.37&02 3.82E-01 20695 4.10E05 3.50E01 4.10E05 3.50E01 2.26&02 3.80E-01 24313 4.10E05 3.50E01 4.10E-053.50E01 1.70E02 3.73E-01 50000 4.10E-053.50&01 4.10E05 3.50E01 4.10E05 3.50E-01 100,000 4.10E05 3.50E01 4.10E-053.50&01 4.10E-053.50E-01 Reduction Capacity andTransition Pore Volumes Forthis SA,the mostrecent recommended values for the capacity reduction inthecementitious materialswillbeused whichare documented inSRNL-STI-2012-00596. Table 4 summarizes theparameters and the ofestunated results pore volumes chemical toinitiate transitions provided intheRAIresponse to SP-8(SRR-CWDA-2011-00044), and forthis SA. Thetransition volumes recalculated inRAISP-8 areusedfor this SAexcept forthepore volumes for required transition from Reduced, Region2toOxidized, Region2because ofthe change inthe reduction capacity provided inSRNL-STI-2012-00596. Thepore volume for transitionfrom Reduced,

HLW-SSF-TTR-2013-0021, Rev. 2 Page 6of18 Region 2 toOxidized, Region 2 is consideredtobeproportional tothe reduction capacity when allother parameters are the same. Thus,thepore volume for transition fromReduced,Region 2 toOxidized, Region 2wasreduced toreflect thelower value forthe reduction capacity.

Table 4 Pore Volumes R uhed forChemical Transitions Parameter RAlSP-8 This SA For saltstone and clean ca Bulk Densit cc 1.01 1.01 Porosi , unitless 0.58 0.58 Reduction aci m e-/

, 0.822 0.607 Pore Volumes, unitless Reduced Re 'on 2toOxidized Re 'on 2 1,653 1,220 Oxidized Reion 2toOxidized Re 'on 3 11,213 11,213 ForSDUconcrete see Note 1 Bulk Densi cc 2.21 2.21 Porosi unitless 0.12 0.12 Reduction ci m e-/

, 0.240 0.178 Pore Volumes, unitiess Reduced Re ion 2toOxidized Re'on 2 4 953 3673 Oxidized 'on2toOxidized Re 'on 3 6,446 6,446 Note 1: SDUconcrete containingslag:

SDU1and SDU4walls and floor, FDCroof, floor, wall, and upper mudmat(UMM)

SDU6roof, wall,andfloor Radionuclide Release andTransport Radionuclide release from saltstone and through transport the cementitious and into the materials soil is controlled via d istributioncoefficients (K, values)which aredependent onthechemical conditions ofthe cementitious materialandthe soil. Table theK,values 5 presents forthe elements ofconcem insoils. Thedistribution coefficientsinclayeyandsandy soilsare also presented inTable 5 for cementitious leachateimpacted soils. ofthe Because volume large of saltstone within the SDUs, saltstone doesnottransitiontooxidized 3,indicative Region oflower pHvalues, the leachate impacted clayey andsandy soilK,values areutilized inthevadose zone the area above the aquifer. Table 6 presentsthe distribution coefficients for cementitious materials under Reduced Region 2,OxidizedRegion 2,andOxidized Region 3conditions.

SRNLrecommends that thetreatment oftheKatransition inthe SDUcementitious material zones berevised to reflect thepore waterchemistry offlow from that saltstoneentersthefloor of theSDUsandthe UMMandLMM ofthe FDCandSDU6.Thejustification ofthis revised treatment ofthe K,transition inthe SDUfloor and upper andlower mudmatsistobeincluded inthe technical report.

HLW-SSF-TTR-20130021, Rev. 2 Page 7of18 Therelease oftechnetium, specifically Tc-99, fromthesaltstonegroutandtransportthroughthe SDUconcrete ismodeled asa shrmking coredeveloped tosupport theissuanceofthe SDFPA.

Unlike theSDF PAmodel;however, the ofTc-99 release inareducing environment is controlled bysolubilityrather thanbyK, value. Once thecementitiousmaterial transitionstooxidizing conditions the transport iscontrolled bythe K,value. Thesolubilityvaluefor technetium has been estunated to be 1.0E-08 moles/L f ors altstone, clean cap andfor S DUconcrete containing slag basedonSRNL-STI2012-00769.

A revised methodology isto be implemented toreducethe magnitudeoftheTc99 spikes release shown inthe FY2013 SA(SRRCWDA2013-00062) results.

Table5 Distribution CoefAcients Valuesfor ElementsinSoils Clae Soilackfill mL/ SandSoiladosemL/

Without Leachate Ref. Without Leachate Ref.

Element Leachate ReE Im acted Leachate Rei In acted Ac 8,500 a 12,750 a 1,100 a 1650 a A 30 b 96 10 b 32 Al 1,300 a 1,950 a 1,300 a 1,950 a Am 8,500 a 12,750 a 1,100 a 1,650 a As 200 a 280 a 100 a 140 a At 0.9 a 0.1 a 0.3 a 0 a Ba 101 c 303 15 c 45 Bk 8,500 a 12,750 a 1100 a 1,650 a C 400 a 2000 a 10 a 50 a Cd 30 a 90 a 15 a 45 a Ce 8,500 a 12,750 a 1,100 a 1,650 a Cf 8,500 a 12,750 a 1,100 a 1,650 a Cl 8 b 0.8 1 b 0.1 Cm 8,500 a 12,750 a 1,100 a 1,650 a Co 100 a 320 a 40 a 128 a Cr 400 b 560 1,000 b 1,400 Cs 50 a 50 a 10 a 10 a Cu 70 a 224 a 50 a 160 a Eu 8,500 a 12,750 a 1,100 a 1,650 a Fe 400 a 600 a 200 a 300 a Fr 50 a 50 a 10 a 10 a Gd 8,500 a 12,750 a 1,100 a 1,650 a H 0 a 0 a 0 a 0 a H 1,000 a 3 00 a 800 a 2,560 a I 3 h 0.3 1 h 0.1 K 25 a 25 a 5 a 5 a Mn 200 a 280 a 15 a 21 a N 0 a 0 a 0 a 0 a Na 25 a 25 a 5 a 5 a

HLW-SSFTTR-2013-0021, Rev.

2 Page 8of18 Cla Soilackfill mL/ San SoiladosemL/

Without Leachate Ref.Without LeachateRef.

Element Leachate Ref. Im acted LeachateRef. In acted Nb 900 e 1260 160 e 224 Ni 30 a 96 a 7 a 22 a N 9 a 180 c 3 a 60 c Pa 9 a 180 c 3 a 60 c Pb 5,000 a 16000 a 2,000 a 6,400 a Pd 30 a  % a 7 a 22 a Pm 0 f 0 f 0 f 0 f Po 5,000 a 10,000 a 2,000 a 4,000 a Pr 0 f 0 f 0 f 0 f Pt 30 a 96 a 7 a 22 a Pu 5,950 a 11900 a 650 d 1,300 Ra 185 c 555 c 25 c 75 c Rb 50 a 50 a 10 a 10 a Re 1.8 a 0.2 a 0.6 a 0.1 a Rh 0 f 0 f 0 f 0 f Rn 0 a 0 a 0 a 0 a Ru 0 f 0 f 0 f 0 f Sb 2,500 a 3,500 a 2,500 a 3 500 a Se 1000 a 1,400 a 1,000 a 1,400 a Sm 8,500 a 12,750 a 1,100 a 1,650 a Sn 5,000 a 15,000 a 2,000 a 6,000 a Sr 17 c 51 c 5 c 15 c Tc 1.8 a 0.2 a 0.6 a 0.1 a Te 1,000 a 1,400 a 1,000 a 1,400 a Th 2,000 a 4,000 a 900 a 1,800 a U 400 b 1200 a 300 b 900 b V 0 f 0 f 0 f 0 f Y 8,500 a 12,750 a 1,100 a 1,650 a 2n 30 a 90 a 15 a 45 a 2r 2000 a 4000 a 900 a 1,800 a a.SRNL-STI-2009-00473 b.SRNL-STI-2010-00493 c.SRNL-STI-2011-00011 d.SRNLSTI-2011-00672 e.ML073510127 f.Assigned avalue ofzero g.Multipliedthe "cement impact leachate from factor" SRNL-STI-200900473 tothe "without leachate" value h.SRNLSTI-2012-00518

HLW-SSF-TTR-20130021, Rev. 2 Page 9of18 Table 6 Distribution Coefficients Valuesfor inCementitious Elements Material Reduced Oxidized Oxidized Region 2 Region 2 Region3 Element mL/ Ref. mU Ref. mL/ Ret Ac 7,000 a 6,000 a 600 a A 5000 a 4000 a 400 a Al 7,000 a 6,000 a 600 a Am 7,000 a 6000 a 600 a As 200 b 320 b 100 a At 9 a 15 a 4 a Ba 100 b 100 b 70 a Bk 7,000 a 6,000 a 600 a C 3,000 a 3,000 a 300 a Cd 5,000 a 4,000 a 400 a Ce 7,000 a 6,000 a 600 a Cf 7,000 a 6,000 a 600 a Cl 10 a 10 a 1 a Cm 7,000 a 6000 a 600 a Co 5,000 a 4,000 a 400 a Cr 1,000 a 10 a 1 a Cs 20 a 20 a 10 a Cu 5,000 a 4,000 a 400 a Eu 7,000 a 6,000 a 600 a F 10 a 10 a 1 a Fe 7,000 a 6000 a 600 a Fr 20 a 20 a 10 a Gd 7,000 a 6,000 a 600 a H 0 a 0 a 0 a H 5000 a 300 a 100 a I 9 a 15 a 4 a K 20 a 20 a 10 a Mn 100 a 100 a 10 a N 10 a 10 a 1 a Na 1 a 1 a 0.5 a Nb 1,000 a 1000 a 500 a Ni 4,000 a 4,000 a 400 a N 10,000 a 10,000 a 5000 a Pa 10,000 a 10,000 a 5,000 a Pb 5,000 a 300 a 100 a Pd 5,000 a 4,000 a 400 a Pm 0 d 0 d 0 d Po 5,000 a 300 a 100 a h 0 d 0 d 0 d

HLW-SSF-TTR-2013-0021, Rev.2 Page 10of18 Reduced Oxidized Oxidized Region 2 Region 2 Region 3 Element mL/ Ref. mL/ Ref. mL/ Ref.

Pt 5000 a 4 000 a 400 a Pu 10000 a 10,000 a 2,000 a Ra 100 a 100 a 70 a Rb 20 a 20 a 10 a Re 5,000 a 0.8 a 0.5 a Rh 0 d 0 d 0 d Rn 0 a 0 a 0 a Ru 0 d 0 d 0 d Sb 1,000 a 1,000 a 100 a Se 300 a 300 a 150 a Sm 7000 a 6,000 a 600 a Sn 5000 a 4 000 a 2000 a Sr 15 a 15 a 5 a Tc Note 1 -

0.8 a 0.5 a Te 300 a 300 a 150 a Th 5,000 a 10000 a 2,000 a U 2,500 a 1,000 c 100 c V 0 d 0 d 0 d Y 7,000 a 6,000 a 600 a 2n 5000 a 4,000 a 400 a zr 5,000 a 10,000 a 2,000 a Note1:Inreducing cementitious materials technetiumreleaseis via solubility controls and for SAthe this Ka value of0.5i s u inall sed oxidized regions

a. SRNL-STI-2009-00473
b. SRNLSTI-201000667
c. SRNLSTI-2010-00493
d. Assigned avalue ofzero Hydraulic Properties ofCementitious Materials Theinitial(undegraded) hydraulicproperties ofcementitious materials remain unchanged as presentedinthe SDFPA Table 4.2-16, except forthehydraulicconductivity anddiffusion coefficient ofsaltstone and the clean cap.Forsaltstone andthe clean cap, recent studieshave indicated that the h ydraulic conductivityandthe diffusioncoefficient should be revised.

Theaverage saturated hydraulic conductivity from themostrecent study, SRNL-STI-2012-00558,which considered variouswater topremix with ratios twodifferent curing temperature

profiles, will beused for the hydraulic conductivity saltstone ofintact andclean cap, bounded by theoperatingband s upported from c facility urrent Based data. onanalysis of current production runs,XCLC-2-00050, the operating bandforthe watertopremix ratio would bebounded bya lowvalue of0.59 anda high of0.64.

value Forthe watertoprennx ratio bounded by0.59 and 0.64 themeasured values forthesaturated hydraulic conductivity isprovided inTable 7, obtainedfrom SRNL-STI-2012-00558, forsaturated conditions andahigh humidity exposurefor

HLW-SSF-TTR-2013-0021, Rev. 2 Page 11of18 twodifferent curing temperature profiles. Theaverage value for these runs is6.4E09 cm/sec and this value is considered the nominal value for thesaturated hydraulic conductivity ofintact saltstone in and clean cap the SDUs, Additional flow cases will consider twoother valuesfor the saturated hydraulic conductivity ofsaltstone andthe clean cap.Atthehigher endofthe the spectrum,conservative estimate value isbased on10times the maximum reported value (4.5E-08 cm/sec)in Table 7,or 4.5E-07 cm/sec. Atthe lower endofthe spectrum, the best estimate value istaken to bethe minimum value reported inTable 7,3.9E-10 cm/sec.

Table 7 Measured H draulie Conductivi fromSRNLSTI-201209558 H draulicConductiv*em/s ag,f, Cell K Temperature Cell F Temperature a Profile Profile Saturated Exposed 3,,,,,,,, Exposed Surface Surface 0.59 1.7E-09 4.5E-09 1.4E-09 4.3E09 0.59 1.9E-09 3.9E-10 3.6E-09 1.6E-09 0.6 1.7E-09 1.7E-09 4.lE-09 2.lE09 0.6 2.1E09 2.2E09 3.7E-09 1.3E-09 0.64 3.2E-08 4.5E-08 7.0E-09 1.3E-09 0.64 9.6E-09 1.3E-08 5.0E09 3.lE-09 Maximum3.2E08 4.5E-08 7.0E09 4.3E-09 Ave e 8.2E-09 1.1E08 4.1E-09 2.3E-09 Maximum 4.5E-08 7.0E-09 Ave e 9.6E-09 3.2E-09 Maximum 4.5E-08 Avere 6.4E09 Latest testing onsimulated saltstone conducted bySIMCO Technologies, Inc.,documented in SRNLSTI-2010-00515, indicates that theintrinsicdiffusion coefficient (analogous to the effective diffusion coefficient used inPORFLOW) isless than 1.0E-08 cm2/sec. Thisvalue of 1.0E-08 em2/sec will beused asthe effective coefficient diffusion forintact saltstoneandthe clean cap.

Forsaltstone andtheclean cap, themoisture characteristiccurve (MCC) datapresented in SRNL-STI-2011-00661, Table B.2Recommended CharacteristicCurves for RoomTemperature Cure (20 0 C)ARP/MCU Saltstone, istobeused.

Additional SDUDesign Features Included inthis SA areadditional design featuresthathave the potential toprovide additional pathways orfast flow zones for release.

Construction joints with water stopsmaydegrade andprovide a fast flow path outofthe SDU.

Table 8 provides the linearfeet ofjoints tobeused for each typeof SDU, except for SDU-6

HLW-SSF-TTR-20130021, Rev. 2 Page 12of18 which is provided in Table 1.Themodeling ofthese joints should beconsistent with the model used in SRNL-STI-2012-00445. As in the m odeling performed in SRNL-STI201200445, the material medium within the joint isassumed tohave the moisture retention properties ofgravel.

Table 8 Joint Le hfor Modelin SDU Le h Location SDU1 5,012 feet Floor and Wall toFloor Interface SDU4 8 818 feet Floor andWall toFloor Interface FDC 471 feet Wall toFloor Interface Columns are used tosupport the roof in Cells B through LofSDU4 and ineach ofthe FDCs.

ForSDU4 there arenine columns arranged in a 3 by3array ineach cell. These columns are madeof10inch diameter steel pipe, filled with lean concrete.For each FDCthere areforty-eightcolumns comprised ofType V concrete and reinforcing bar with anoutside diameter of14 inches. Foreach SDU6there are208 columns arranged in 23foot centers with the diameter of each column being 25inches toaccommodate construction tolerances. All columns are tobe degraded intwofoot segments along their lengthstarting from the topand the bottom; witheach successive segment degrading once thecolumn above (or below) has degraded. Toavoid unintended flow impact within the saltstone monolith when the columns degrade, the material in thesecolumns isassumed tobesaltstone material.

Cementitious Material Degradation Cementitious material willbedegraded based onthe latestCementitious Barrier Partnership (CBP) toolbox andother analytical Three methods, mechanisms should be considered; Sulfate Decalcification, attack, andCarbonation. Threecases should beconsidered for each mechanism:

a Best Estimate (BE) value, a Nommal (N) value, anda Conservative Estimate (CE) value.

Cementitious material degradation causes anincrease inthe hydraulic conductivityand diffusion coefficientasthe material degrades tothe surrounding soilconditions. This rate ofdegradation istobelinear intime. Further information regarding cementitious material degradation of the SDUsisprovided inSRNL-STI-2013-00118. Note that for the FDCsandthe SDU6design, saltstoneisassumed the tofill entire volume ofthe disposal units;thus, there isnoclean capin theseSDUs.

No interior coating isapplied tothe walls intheSDU-6 design; thus initial wall degradation developed inSRNL-STI-2012-00445 shall beassumed inaddition tothe degradation analysis described above.

ForSDU6,a 100 mil ofHDPEencases layer aGCLthat covers the roof andseparates theUMM andLMM. Thedegradation ofthis barrier occurs prior tothe diffusion ofcarbon (in theair)for degradation bycarbonation; orcalcium (inthe groundwater) for degradation bydecalcification; ofcementitious material. Thedegradation ofthisbarrier isevaluated inSRNL-STI2009-00115 anddata extracted from Appendix E ofSRNLSTI2009-00115 isprovided inTable 9 forthe 100milHDPE-GCL. To conservatively assess theperformance oftheHDPEGGL,the initiationofthedegradation oftheSDU 6 roof isassumed to occur after 1,400 years

HLW-SSF-TTR-2013-0021, Rev. 2 Page 13of18 (corresponding to thetime that theeffectiveness ofthebarrier isreduced bya factor of approximately 100). Because LMMandUMMare the initiallyassumed tohave soil properties, the degradation ofthe floor at1,400 starts years, following degradation ofthe HDPE-GGL separating the UMM andthe LMM.

Table 9 D dationof100mil HDPE-GCL HDPEGCL Hydraulic Vertical Conductivi TimePeriod Value Ratio to ears em/sec Initial Value 0 50-2.19E-11 I 900 1000 1.50E-09 68.5 1,4001,600 2.31E-09 105 9,50010000 1.09E-08 498 The"design with margin" parameter assumes thatthe HDPE has athicknessof60mil, asshown inTable 1.Theuseofthe thinner HDPE-GCL will require modifyingthe model andthe cementitious materialdegradation analysis developed for the "design" case.

Flow Cases Eighteen flow casesaretobeanalyzed asdefined inTable 10.The numbering ofthese flow cases isconsistent with theflow casesanalyzed tosupport the FY13SAwhich issuance of the are shown inTable 4-1 ofSRNL-STI-2013-00280.

Radionuclide TransportList Tominimize computationaltime, preliminaryPORFLOW runs shall beconducted only using the following radionuclides intheSDFmodel: Cs-135, I-129, andTc-99. (Note: runs preliminary are completed.) Forthe evaluation case,thefull suite ofradionuclides shallbeused toobtain the 20,000 year a quiferconcentrations; for t he 100,000 year a quifer concentrationsandforthe 20,000 year seep lineconcentrations theradionuclides identified inTable 11shall beused. The radionuclide listinTable 11shall alsobeused forthe final "design withmargin"sensitivitycase.

HLW-SSF-TTR-2013-002), Rev. 2 Page 14of18 Table 10 Summa ofEi teen FlowCases Saltstone Initial Saturated Infiltration CementitiousHydraulic Conductivity Case Rate radation Rate cm/sec F-1 Avera e Nominal 6.4E-09 F2 Avera e Nominal 4.5E-07 F-3 Aver e Nominal 3.9E-10 F4 Avera BE 6.4E09 F-5 Avera BE 4.5E07 F6 Aver BE 3.9E-10 F13 Maximum Nominal 6.4E09 F14 Maximum Nominal 4.5E07 F15 Maximum Nominal 3.9E-10 F-16 Maximum BE 6.4E-09 F17 Maximum BE 4.5E07 F-18 Maximum BE 3.9E10 F25 Minimum Nominal 6.4E-09 F26 Minimum Nominal 4.5E-07 F27 Minimum Nominal 3.9E-10 F28 Minimum BE 6.4E09 F29 Minimum BE 4.5E-07 F-30 Minimum BE 3.9E-10 Table 11 Abbreviated Set ofRadionuclidesfor Year 20,000 Seep Line and100000Year 100MTransort Analysis Cm-242 Pb-210 Th-229 Cm-243 Pu-238 Th-230 Cs-135 Pu-239 U-233 I-129 Ra-226 U-234 Pa-231 Tc99 U235 Moisture Characteristic Curves (MCCs)

Table12provides a summary ofthe tobeused material fortheMCCs within themodel.

For cementitious(concrete blended material andsaltstone), MCCs willbe used tosimulate the moistureretention capability ofthe material asit degrades tosoil properties. the Forconcrete MCCisassumed initial tobehigh quality concrete toconservatively assess its retention moisture capability.

HLW-SSF-TTR2013-0021, Rev. 2 Page 15of18 Table 12 Material MCCfor Eones inthe Model SDU Feature PORFLOW Material SDU 1 and 4 Roof Concrete SDU1and 4 Wall Backfill SDU1and 4 Floor

~

Concrete SDU4Column Saltstone FDCHDPE,Floor HDPEGCL Backfill FDCRoof HDPE-GCL Backfill thenSand FDCRoofWall Floor UMM Concrete FDCLMM Lower Vadose FDCColumn Saltstone SDU6Roof Wall, Floor Concrete SDU6UMM LMM LowerVadose SDU6Roof HDPEGCL Backfill then Sand SDU6Floor HDPEGCL Lower Vadose SDU6Column Saltstone De aded SDURoof, WallColumnsBackfill De aded SDUFloor and UMM Lower Vadose Preferential flowths'oints Gravel Saltstone andclean ca Saltstone 1 WSRC-TR-2006-00198, High qualityconcrete.

2 SRNLSTI-201 1-00661, Table B.2Recommended Characteristic Curves for RoomTemperature Cure (20C) ARP/MCU Saltstone.

3 Roof HDPEGCLinitially has MCCofbackfill untilatcomplete degradation it has MCCofsand, tobethe same asthesand drainage layer above the HDPEGCL.

Summary ofPORFLOW Cases:

Allcases requiring aquifer transportresults includethe transportresults from all other SDUs developed forFY2013 SA,but modified toreflect the revised inventory for this TTRandthe revisedtreatment ofthe K,transitioninthe floor ofthe SDUsandthe UMMandLMMofthe FDCand SDU6.Aquifer transportresults include theconcentrations bysector (maximum ofthe threeaquifersbysector) andthe concentrationsbysector and byaquifer. Well locations forthe InadvertentHuman Intruder (IHI) t are he s ame a developed s forSRNLSTI-201300280.

PreliminaryResults (work completed):

(1)Flow C aseF 1with "Design withMargin" parameters -

20,000yearaquifer for transport Tc-99,I129, andCs-135.

(2)Evaluation Case (Flow Case F1with "asDesign" parameters) -

20,000 year aquifer transport forTc99, I-129 andCs-135.

FinalResults:

HLW-SSF-TTR-2013-0021, Rev. 2 Page 16of18 (1) Evaluation Case (Flow Case F1with "as Design" parameters) -

20,000 year aquifer transport (100M, IM, and IH1 well locations) using full radionuclide suite.

(2) Evaluation Case -

20,000 year aquifer transport tothe seepline(concentrations bysector for Upper Three Runs Upper, -

Upper Three Runs -

Lower, andGordon) using Table 11 radionuclides.

(3)Evaluation Case - 100,000 year aquifer transport (100M andIHIwell locations) using Table 11radionuclides (4) Flow Case F1with"Design with Margin" parameters -

20,000 year aquifer transport (100M and IHI well locations) using Table 11radionuclides.

(5)Flow sensitivity cases18flow cases. (May include all SDUsdepending onthe resultsof the updated cementitious material degradation analysis.)

(6)Flowsensitivity cases -

2 flow cases, defined bySRR, for 20,000 yearaquifer transport (100M) using Table 11radionuclides.

(7) Tc-99 sensitivity cases -

3 evaluation cases (nominal, 10times nominal, and1/10 times nominal solubility value) for20,000 year aquifer transport (100M) for Tc-99 only and with concrete initiallyoxidized.

(8) Tc-99 sensitivity cases3evaluation cases with nominal solubility value but with oxygen sources comprising 5%,10%, and20%ofsaltstonevolume for 20,000 year Tc99aquifer transport and with concrete initiallyoxidized.

(9) Tc-99 sensitivity cases -

4 flow cases, defined bySRR,each with the nominal solubility value for 20,000 year Tc-99 aquifer transport and with concreteinitially oxidized.

(10) Twoflow only sensitivity cases using theSDU6evaluation caseparameters but with aroof slope of2%and1%.

Deliverable:

Technical Report including thedegradation analysis oftheSDU design features, the development ofthe methodology toreduce the magnitude ofthe Tc-99 release spikes from the SDUs, and justification ofthe treatment ofthe Katransitions inthe SDUfloor and the Upper and Lower MudMats inthe FDCand SDU6based onpore fluid from saltstone.

HLWSSF-TTR-2013-0021, Rev. 2 Page 17of18

References:

ML073510127, Recommended Site-Specific Sorption Coefficients for Reviewing Non-High-Level Waste Determinations atthe Savannah River Site andMahoNational Laboratory, U.S. Nuclear Regulatory Commission, Washington DC,October 2007.

SRNL-STI-2009-00115, Flach, G. et Numerical P., al., FlowandTransport Simulations Supporting theSaltstone Disposal Facility Performance Assessment, Savannah River Site, Aiken, SC,Rev. 1,June 172009.

SRNL-STI2009-00473, Kaplan, D. L,Geochemical Data Package for Performance Assessment Calculations Related tothe Savannah River Site, Savannah River Site,Aiken, SC,Rev. 0,March 15, 2010.

SRNL-STI-201000493, Seaman, J.C.and Kaplan, D.I., Chloride, Chromate, Silver,Thallium, andUranium Sorption toSRSSoils, Sediments, andCementitious Materials, Savannah River Site,Aiken, SC,Rev. 0,September 29,2010.

SRNL-STI201000515, Langton, C. A.,Saltstone Characterization andParameters for Performance Assessment Modeling, Savannah River Site, Aiken, SC,Rev.August 0, 27, 2010.

SRNL-STI-2010-00667, Almond, P.M., andKaplan, D. I.,Distribution Coefficients (Kd)

Generated from a Core Sample Collectedfrom theSaltstone Disposal Facility, Savannah River Site,Aiken, SC,Rev. 0,April 29, 2011.

SRNL-STI-2011-00011, Kaplan, D.I.,Estimated Neptunium Sediment Sorption Values asa Function ofp H and Measured Barium and Radium Ka Values, Savannah River Site,Aiken, SC, Rev. 0,January 23, 201l SRNL-STI-2011-00661, Dixon, K.D., Moisture Retention Properties of High Temperature Cure ARP/MCU Saltstone Grout, Savannah River Site, Aiken, SC,Rev. 0,January20, 2012.

SRNLSTI2011-00672, Almond, P.M.,etal., Variability ofKaValuesin Cementitious Materials and Sediments, Savannah River Site, Aiken, SC,Rev. 0,February 2012.

SRNL-STI-2012-00445, PORFLOW Modeling for a Preliminary Assessment ofthePerformance ofN ew Saltstone Disposal Unit Designs, Savannah River National Laboratory, Savannah River Site,Aiken, SC,Rev. 0,August 6,2012.

SRNLST-2012-00518, Radioiodine Geochemistry intheSRSSubsurface Environment, Savannah River National Laboratory, Savannah River Site, Aiken, SC,Rev. 0,May2013.

SRNL-STI-2012-00558, Reigel, al.,

M.,et Process Formulations andCuring Conditions that AffectSaltstone Properties, Savannah River Site, Aiken, SC,Rev. 0,September 30,2012.

SRNL-STI-2012-00596, Kaplan, D.L,etal., Technetium Sorption byCementitious Materials Under Reducing Conditions, Savannah River Site, Aiken, SC,Rev. 0,September 30,2012 SRNLSTI-2012-00769, Kaplan, D.I.andDien, L.,Solubility ofTechnetium Dioxides (TcO2-c, TcO2L6H2OandTcO22H2O) in Reducing Cementitious Material Leachates: A Thermodynamic Calculation, Savannah River Site,Aiken, SC,Rev. 0,December 19,2012.

SRNLSTI-2013001 18,Degradation ofCementitious Materials Associated with Saltstone Disposal Units, Savannah River National Laboratory, Savannah River Site,Aiken, SC,Rev. 0, March, 2013.

HLWSSFTTR-20130021, Rev.2 Page 18of18 SRNL-STI-2013-00280, Jordan,J.M., andFlach, G.P., PORFLOW Modeling the Supporting FYI3 Saltstone Special Analysis, Savannah River Site,Aiken, SC,May, 2013.

SRR-CWDA-2009-00017, Performance Assessment for the Saltstone Facility Disposal atthe Savannah River Site, Savannah River Site,Aiken, SC,Rev. 0,October, 2009.

SRRCWDA-201100044, Comment Response Matrix for Nuclear Regulatory RAI-Commission 2009-02 Second Request for Additional Information (RAl) onthe Disposal Saltstone Facility Performance Assessment (SRR-CWDA-2009-00017, Revision 0,dated October29,2009),

Savannah River Site, Aiken, SC, Rev. 1,August 25, 2011.

SRR-CWDA-2013-00062, FY2013 Special Analysis for the Saltstone Facility Disposal atthe Savannah River Site, SavannahRiver Site,Aiken, SC,Rev. 1, June 2013 SRR-LWP-2009-00001, Chew, D.P. and B.A.Hamm,Liquid Waste SystemPlan,Savannah River Site, Aiken, SC,Rev. 17,February, 2012.

WSRC-STI-2006-00198, Hydraulic Property Data Package for the E-Areaandz-Area Soils, Cementitious Materials, andWaste zones, Savannah River Site,Aiken, SC,Rev.0,September, 2006.

WSRC-STI-2008-00244, Jones,W.E.,andPhifer, M. A.,Saltstone Disposal Facility Closure CapConcept and Infltration Estimates, Savannah River Site, Aiken, SC,May2008.

X-CLCz-00050, Dixon, K.D.,Analysis ofSaltstone Waterto-Premix Ratio During Pre-ELAWD Operation, Savannah River Site,Aiken, SC,Rev. 2, October 10,2012.