ML20206L039

From kanterella
Jump to navigation Jump to search
HLW-SSF-TTR-2013-0021 Rev 2 10-23-2013
ML20206L039
Person / Time
Site: PROJ0734
Issue date: 10/23/2013
From:
Office of Nuclear Material Safety and Safeguards
To:
Desotell L
Shared Package
ML20206K862 List: ... further results
References
Download: ML20206L039 (18)


Text

OSR48529 LWFORM Savannah Rev.0 River Site (SRS) 4/25M3 LiQUID WASTE(LW)

TECHNICAL TASKREQUEST page1 or18 ReferenceE72.02A, LWBaseline Technical TaekRequests Funding Source Modification Traveler No.Technical TaskRequest No.Revision SLA-WSTD00028, Line item 3 HLWSSFTTR-201300212 Design Authority Engineer Date Richard E.Sheppard F

10/23/2013 Performing Organization Design Authority Man (S'

n

)

Date SRNL K H.Rosenberger fe3/W TaskandScopeDescription DueDate 2/28/2014 30Million Gallon Saltstone Disposal Unit(SDU)

PORFLOW Modeling forSDU6Special Analysis (SA)

Revision 2updates selected input parameters andincludesadditional sensitivity cases provided intheattached pages.

Revision 1replaces thetechnical detail provided inRev.0with information provided intheattached pages 3through 18and includes anintermediate deliverable toprovide results fromapreliminary analysis.

Perform PORFLOW modeling oftheSDU6design with theother SDUsas described intheattached pages.

Final results tosupport theissuance oftheSAinclude thePORFLOW cases described inpages 15and16of18.

Deliverables:

Technical import identified onpage16of18.

Presentation ofpreliminary orfinal results fromworkperformed viathis TTRinpresentations, technical exchanges,DOESR orHQreviews, etc.,

requires prior notification anddocumented concurrence fromSRR.

Formal reports arenottobeissued totheOSTIBridge orpublic domain without written release fromSRR.

Functional Classification Safety Class Production Support Safety Significant

@General Service Functional Requirements Control andusecomputer software inaccordance with Manual 1Q,procedure 201.

Develop final technical report(s) perManual E7,procedure 3.60which includes adocumented technical review perManual E7,procedure 2.60.

Quality Requirements

@Allactnnties aretobeperformed anddocumented with Manual E7andManual 1Q.

@Taskspecific QAplantobedeveloped asanoutput ofthis TTR Other

  • Design Authority Managers signature required ifrequest isnotassociated with anMT.

OSR46529 Savannah LWm 0

River Site (SRS)

LlQUlD WASTE(LW)

TECHNICAL TASKREQUEST

  • J.or18 Design andAnalysis /Technical DocumentstobeDeveloped Notapplicable tothis request Calculations@ Technical Report Technical Requirements andCriteria Drawings Temp Mod Change Notice SOW Specifications CHA Altemative Studies DSA Quality inspection Plans
Other, Specify Other Reviews

/Reports Required?

No @Yes,Specify DeAneReview PmcessforTTROutput Documents Technical Agency Acceptance Technical Agency Name(print)

SRNL D.A.Crowley Acceptance ofTask(Signature ofTechnical Agency Manager)

Date CL.

/624-z3 Closure Closure

/Deliverables Provided Re,3olts provided via5RNL"STl-A014 "0008348')

Design Authority E ineer Date 5.46vsa P.

r i

r

)1/F3

/S-Design Authority Manager*

Date 27//f

  • Design Authority Manager's signature required ifrequest isnotassociated withanMT.

HLWSSF-TTR-2013-0021, Rev.2 Page 3of18 Provided below isthedata input tobeusedinthePORFLOW analysis conducted tosupport the Special Analysis (SA)fortheperformance oftheSaltstone Disposal Facility (SDF)

Saltstone Disposal Units (SDUs) includingSDU1,SDU4,theFuture Disposal Cells (FDCs),

andthe design ofthe future large scale SDUs,identified asSDU6.

Inventory Inventory istobeprovided by November 15,2013.

SDU6Basic Data Thebasic data fortheSDU6designis provided inTable 1,based onproject input.

Additional information regarding someofthe parameters isprovidedherein.

Thesite planlayout is provided inFigme1ofSRNL-STI2012-00445.

Table 1 SDU6Basic Data Design with Parameter Des' Ma *n Diameter feet 375 375 Hei t feet 43 43 Fill heit feet 43 43 Roof thickness inches 12 9

Roofandfloor slo %

1.5 1.0 Floor thickness inches 12 9

U rMudMat thickness inches6 5

LowerMudMat thickness inches 4 3

Wallthickness (inches, tapered from bottom toto 24

- 10 20

- 7 Joints inear feet Roof 1,600 1,600 Roof toWallInterface 1,200 1,200 Wall toFloor Interface 1,200 1,200 Floor 1600 1,600 HDPEthickness (mil 100 60 Elevation offloor

feet, atlow int 265 265 a

SDUisassumed tobefilled with saltstone b

HDPE (HighDensity Polyethylene) encases a

Geosynthetic Clay Liner (GCL) placed ontheroof and between theupper andlower mudmats

HLW-SSF-TTR-20130021, Rev2 Page 4of18 Infiltration Rate andSandDrainage Layer Degradation Table 2 provides theinfiltration ratefromtheclosure captobeusedfortheSA.Table 2

provides

Maximum, Average (nominal),andMinimum values tobeused inthedevelopment of theflowcases tobe run inPORFLOW.

These values areobtained fromAppendix KofWSRC-STI-2008-00244.

Theinfiltration rate affects the degradation oftheSandDrainage Layer(SDL) located above each oftheSDUs.Thedegradation rateoftheSDLfor theinfiltration rates provided inTable 2

isbased ontheanalysis presented in WSRCSTI-200800244.

Therate ofdegradation, indicated bythechange inhydraulic properties, is provided inTable 3.

Table 2 Estimated InfiltrationRates thro theClosure Ca Timeafter Infiltration Rate Closure ears Maximum Avera e

Minimum 0

0.00269 0.00042 0.00007 100 0.0277 0.00333 0.0003 180 0.367 0.0452 0.00376 220 0.459 0.0568 0.0047 300 0.677 0.171 0.0414 380 1.652 0.472 0.117 460 2.207 0.723 0.187 560 2.759 1.021 0.276 1,000 4.647 2.264 0.679 1,800 8.280 4.340 1.465 3200 10.629 6.795 2.998 5,412 12.450 10.606 5.303 5,600 12.450 10.605 5.302 10,000 12.450 10.576 5.410

HLW-SSF-TTR2013-0021, Rev.2 Page 5of18 Table 3

D dation ofSandDraineLaer Maximum Ave Minimum Saturated Saturated Satumted Hydraulic Hydraulic Hydraulic Year Conductivi PorosiConductivi PorosiConductiviPorosi 0

5.00E-02 4.17E41 5.00E024.17E-015.00E02 4.17&01 100 5.00&02 4.17&01 5.00&024.17E01 5.00E02 4.17E01 180 5.00&02 4.17&01 5.00E024.17E01 5.00E02 4.17E01 220 5.00E-02 4.17E-01 5.00E-024.17E01 5.00&02 4.17E01 300 5.00E02 4.17E-01 5.00E02 4.17E01 5.00E02 4.17E-01 380 5.00E-024.17E-01 5.00E-02 4.17E01 5.00E02 4.17E-01 460 4.99E-024.17E01 5.00E02 4.17E01 5.00E-024.17E-01 560 4.98E02 4.17E-01 5.00E-02 4.17E01 5.00E-024.17E01 1,000 4.94E-024.16E-01 4.97E02 4.17E-014.99E-024.17E-01 1,800 4.79E-024.14E-014.90E-02 4.16E01 4.97E-024.17E01 3200 4.41E02 4.09E01 4.68&02 4.13E-01 4.88E-024.15E01 5412 3.68E-023.99E014.13E02 4.05&01 4.62E02 4.12E-01 5600 3.61&02 3.98E01 4.07E-02 4.05E-01 4.59E02 4.11E-01 10000 2.05E-023.77E012.73E023.87E01 3.91E-024.02&01 10319 1.93E-023.76E01 2.64E023.85E-01 3.86E-02 4.02E-01 11000 1.69E-023.73E012.43E023.83E-01 3.76E02 4.00E01 12000 1.34E-023.68E012.13E023.78E-01 3.60E02 3.98E01 13459 8.17E03 3.61&01 1.69E023.73E01 3.38&02 3.95E01 15000 2.68E-033.54E01 1.22E-023.66E01 3.14&02 3.92E-01 16500 4.10E-053.50E01 7.64E-033.60E01 2.9l &02 3.89E01 17077 4.10E05 3.50E01 5.89E-033.58E-01 2.82E-02 3.88&01 18,800 4.10E-053.50E-016.6lE-043.51E-012.55E-02 3.84E01 18,900 4.10E-053.50E-013.58E04 3.50E-012.54E02 3.84&01 19013 4.10E-053.50E01 4.10E053.50E012.52E-02 3.84&01 19500 4.10E-053.50E01 4.10E-053.50E012.44&02 3.83E-01 19700 4.10E-053.50E01 4.10&05 3.50E01 2.41E02 3.82E-01 20000 4.10E05 3.50E01 4.10E053.50E01 2.37&02 3.82E-01 20695 4.10E05 3.50E01 4.10E05 3.50E01 2.26&02 3.80E-01 24313 4.10E05 3.50E01 4.10E-053.50E01 1.70E02 3.73E-01 50000 4.10E-053.50&01 4.10E05 3.50E01 4.10E05 3.50E-01 100,000 4.10E05 3.50E01 4.10E-053.50&01 4.10E-053.50E-01 Reduction Capacity andTransition PoreVolumes Forthis SA,themostrecent recommended values forthereduction capacity inthecementitious materials will beusedwhich aredocumented inSRNL-STI-2012-00596.

Table 4summarizes theparameters andtheresults ofestunated porevolumes toinitiate chemical transitions provided intheRAIresponse toSP-8(SRR-CWDA-2011-00044),

andforthis SA.Thetransition volumes recalculated inRAISP-8areused forthis SAexcept fortheporevolumes required for transition fromReduced, Region 2toOxidized, Region 2because ofthechange inthereduction capacity provided inSRNL-STI-2012-00596.

Theporevolume fortransition fromReduced,

HLW-SSF-TTR-2013-0021, Rev.2 Page 6of18 Region 2toOxidized, Region 2isconsidered tobeproportional tothereduction capacity when all other parameters arethesame.

Thus, theporevolume fortransition from
Reduced, Region 2

toOxidized, Region 2wasreduced toreflect thelower value forthereduction capacity.

Table 4

Pore Volumes R uhedforChemical Transitions Parameter RAlSP-8 ThisSA For saltstone and clean ca Bulk Densit cc 1.01 1.01 Porosi

, unitless 0.58 0.58 Reduction aci, m e-/

0.822 0.607 Pore

Volumes, unitless Reduced Re'on 2toOxidized Re'on 2

1,653 1,220 Oxidized Reion2toOxidized Re 'on 3

11,213 11,213 ForSDUconcrete seeNote1 BulkDensi cc 2.21 2.21 Porosiunitless 0.12 0.12 Reductionci, m e-/

0.240 0.178 PoreVolumes, unitiess Reduced Reion2toOxidized Re'on 2

4 953 3673 Oxidized'on 2toOxidized Re'on 3

6,446 6,446 Note1: SDUconcrete containing slag:

SDU1andSDU4walls

andfloor, FDCroof,
wall, floor, andupper mudmat(UMM)
SDU6roof, wall, andfloor Radionuclide Release andTransport Radionuclide release fromsaltstone andtransport through thecementitious materials and into the soil iscontrolled viadistribution coefficients (K,values) which aredependent onthe chemical conditions ofthecementitious material andthesoil.

Table 5presents theK,values forthe elements ofconcem insoils.

Thedistribution coefficients inclayey andsandy soils arealso presented inTable 5forcementitious leachate impacted soils.

Because ofthelarge volume of saltstone within theSDUs,saltstone does nottransition tooxidized Region 3,indicative oflower

pHvalues, theleachate impacted clayey andsandy soil K,values areutilized inthevadose zone

- theareaabove theaquifer.

Table 6presents thedistribution coefficients forcementitious materials under Reduced Region 2,Oxidized Region 2,andOxidized Region 3conditions.

SRNLrecommends that thetreatment oftheKatransition intheSDUcementitious material zones berevised toreflect theporewaterchemistry offlowfromsaltstone that enters thefloor of theSDUsandtheUMMandLMMoftheFDCandSDU6.Thejustification ofthis revised treatment oftheK,transition intheSDUfloor andupper andlower mudmatsistobeincluded inthetechnical report.

HLW-SSF-TTR-20130021, Rev.

2 Page 7of18 Therelease oftechnetium, specifically Tc-99, fromthesaltstone groutandtransport through the SDUconcrete ismodeled asashrmking coredeveloped tosupport theissuance oftheSDFPA.

Unlike theSDF PAmodel;however, therelease ofTc-99 inareducing environment iscontrolled bysolubilityrather thanbyK,value.

Oncethecementitious material transitions tooxidizing conditions the transport iscontrolledbytheK,value.

Thesolubility value fortechnetium has beenestunated tobe 1.0E-08 moles/Lforsaltstone, clean capandforSDUconcrete containing slag based onSRNL-STI2012-00769.

Arevised methodology isto be implemented toreduce themagnitude oftheTc99release spikes shown intheFY2013 SA(SRRCWDA2013-00062) results.

Table5 Distribution CoefAcients ValuesforElements inSoils Clae Soilackfill mL/

SandSoiladosemL/

Without Leachate Ref.

Without LeachateRef.

ElementLeachateReE Im acted Leachate Rei In acted Ac 8,500 a

12,750 a 1,100 a

1650 a

A 30 b

96 10 b

32 Al 1,300 a

1,950 a

1,300 a

1,950 a

Am 8,500 a

12,750 a 1,100 a

1,650 a

As 200 a

280 a

100 a

140 a

At 0.9 a

0.1 a

0.3 a

0 a

Ba 101 c

303 15 c

45 Bk 8,500 a

12,750 a 1100 a

1,650 a

C 400 a

2000 a

10 a

50 a

Cd 30 a

90 a

15 a

45 a

Ce 8,500 a

12,750 a

1,100 a

1,650 a

Cf 8,500 a

12,750 a 1,100 a

1,650 a

Cl 8

b 0.8 1

b 0.1 Cm 8,500 a

12,750 a 1,100 a

1,650 a

Co 100 a

320 a

40 a

128 a

Cr 400 b

560 1,000 b

1,400 Cs 50 a

50 a

10 a

10 a

Cu 70 a

224 a

50 a

160 a

Eu 8,500 a

12,750 a 1,100 a

1,650 a

Fe 400 a

600 a

200 a

300 a

Fr 50 a

50 a

10 a

10 a

Gd 8,500 a

12,750 a 1,100 a

1,650 a

H 0

a 0

a 0

a 0

a H

1,000 a

3 00 a

800 a

2,560 a

I 3

h 0.3 1

h 0.1 K

25 a

25 a

5 a

5 a

Mn 200 a

280 a

15 a

21 a

N 0

a 0

a 0

a 0

a Na 25 a

25 a

5 a

5 a

HLW-SSFTTR-2013-0021, Rev.

2 Page 8of18 Cla Soilackfill mL/

San SoiladosemL/

Without LeachateRef.Without LeachateRef.

Element Leachate Ref.Im acted LeachateRef.In acted Nb 900 e

1260 160 e

224 Ni 30 a

96 a

7 a

22 a

N 9

a 180 c

3 a

60 c

Pa 9

a 180 c

3 a

60 c

Pb 5,000 a

16000 a

2,000 a

6,400 a

Pd 30 a

a 7

a 22 a

Pm 0

f 0

f 0

f 0

f Po 5,000 a

10,000 a

2,000 a

4,000 a

Pr 0

f 0

f 0

f 0

f Pt 30 a

96 a

7 a

22 a

Pu 5,950 a

11900 a

650 d

1,300 Ra 185 c

555 c

25 c

75 c

Rb 50 a

50 a

10 a

10 a

Re 1.8 a

0.2 a

0.6 a

0.1 a

Rh 0

f 0

f 0

f 0

f Rn 0

a 0

a 0

a 0

a Ru 0

f 0

f 0

f 0

f Sb 2,500 a

3,500 a

2,500 a

3500 a

Se 1000 a

1,400 a

1,000 a

1,400 a

Sm 8,500 a

12,750 a 1,100 a

1,650 a

Sn 5,000 a

15,000 a 2,000 a

6,000 a

Sr 17 c

51 c

5 c

15 c

Tc 1.8 a

0.2 a

0.6 a

0.1 a

Te 1,000 a

1,400 a

1,000 a

1,400 a

Th 2,000 a

4,000 a

900 a

1,800 a

U 400 b

1200 a

300 b

900 b

V 0

f 0

f 0

f 0

f Y

8,500 a

12,750 a

1,100 a

1,650 a

2n 30 a

90 a

15 a

45 a

2r 2000 a

4000 a

900 a

1,800 a

a.SRNL-STI-2009-00473 b.SRNL-STI-2010-00493 c.SRNL-STI-2011-00011 d.SRNLSTI-2011-00672 e.ML073510127 f.Assigned avalue ofzero g.Multiplied the"cement leachate impact factor" from SRNL-STI-200900473 tothe"without leachate" value h.SRNLSTI-2012-00518

HLW-SSF-TTR-20130021, Rev.2 Page 9of18 Table 6

Distribution Coefficients Values forElements inCementitious Material Reduced Oxidized Oxidized Region 2 Region 2

Region 3

Element mL/

Ref.

mU Ref.

mL/

Ret Ac 7,000 a

6,000 a

600 a

A 5000 a

4000 a

400 a

Al 7,000 a

6,000 a

600 a

Am 7,000 a

6000 a

600 a

As 200 b

320 b

100 a

At 9

a 15 a

4 a

Ba 100 b

100 b

70 a

Bk 7,000 a

6,000 a

600 a

C 3,000 a

3,000 a

300 a

Cd 5,000 a

4,000 a

400 a

Ce 7,000 a

6,000 a

600 a

Cf 7,000 a

6,000 a

600 a

Cl 10 a

10 a

1 a

Cm 7,000 a

6000 a

600 a

Co 5,000 a

4,000 a

400 a

Cr 1,000 a

10 a

1 a

Cs 20 a

20 a

10 a

Cu 5,000 a

4,000 a

400 a

Eu 7,000 a

6,000 a

600 a

F 10 a

10 a

1 a

Fe 7,000 a

6000 a

600 a

Fr 20 a

20 a

10 a

Gd 7,000 a

6,000 a

600 a

H 0

a 0

a 0

a H

5000 a

300 a

100 a

I 9

a 15 a

4 a

K 20 a

20 a

10 a

Mn 100 a

100 a

10 a

N 10 a

10 a

1 a

Na 1

a 1

a 0.5 a

Nb 1,000 a

1000 a

500 a

Ni 4,000 a

4,000 a

400 a

N 10,000 a

10,000 a

5000 a

Pa 10,000 a

10,000 a

5,000 a

Pb 5,000 a

300 a

100 a

Pd 5,000 a

4,000 a

400 a

Pm 0

d 0

d 0

d Po 5,000 a

300 a

100 a

h 0

d 0

d 0

d

HLW-SSF-TTR-2013-0021, Rev.2 Page 10of18 Reduced Oxidized Oxidized Region 2

Region 2

Region 3

Element mL/

Ref.

mL/

Ref.

mL/

Ref.

Pt 5000 a

4000 a

400 a

Pu 10000 a

10,000 a

2,000 a

Ra 100 a

100 a

70 a

Rb 20 a

20 a

10 a

Re 5,000 a

0.8 a

0.5 a

Rh 0

d 0

d 0

d Rn 0

a 0

a 0

a Ru 0

d 0

d 0

d Sb 1,000 a

1,000 a

100 a

Se 300 a

300 a

150 a

Sm 7000 a

6,000 a

600 a

Sn 5000 a

4 000 a

2000 a

Sr 15 a

15 a

5 a

Tc Note1 0.8 a

0.5 a

Te 300 a

300 a

150 a

Th 5,000 a

10000 a

2,000 a

U 2,500 a

1,000 c

100 c

V 0

d 0

d 0

d Y

7,000 a

6,000 a

600 a

2n 5000 a

4,000 a

400 a

zr 5,000 a

10,000 a

2,000 a

Note1:Inreducing cementitious materials technetium releaseis via solubility controls andforthis SAtheKavalue of0.5isusedinall oxidized regions a.

SRNL-STI-2009-00473 b.

SRNLSTI-201000667 c.

SRNLSTI-2010-00493 d.

Assigned avalue ofzero Hydraulic Properties ofCementitious Materials Theinitial (undegraded) hydraulic properties ofcementitious materials remain unchanged as presented intheSDFPATable 4.2-16, except forthehydraulic conductivity anddiffusion coefficient ofsaltstone andtheclean cap.Forsaltstone andtheclean

cap, recent studies have indicated that thehydraulic conductivity andthediffusion coefficient should berevised.

Theaverage saturated hydraulic conductivity fromthemostrecent

study, SRNL-STI-2012-
00558, which considered various watertopremix ratios with twodifferent curing temperature
profiles, will beusedforthehydraulic conductivity ofintact saltstone andclean cap,bounded by theoperating bandsupported fromcurrent facility data.

Based onanalysis ofcurrent production

runs, XCLC-2-00050, theoperating bandforthewatertopremix ratio would bebounded bya lowvalue of0.59 andahighvalue of0.64.

Forthewatertoprennx ratio bounded by0.59 and 0.64themeasured values forthesaturated hydraulic conductivity isprovided inTable 7,

obtained from SRNL-STI-2012-00558, forsaturated conditions andahigh humidity exposure for

HLW-SSF-TTR-2013-0021, Rev.

2 Page 11of18 twodifferent curingtemperature profiles.

Theaverage value forthese runsis6.4E09 cm/sec andthis value isconsidered thenominal value forthesaturated hydraulic conductivity ofintact saltstone and clean capintheSDUs,Additional flow cases will consider twoother values for the saturated hydraulic conductivity ofsaltstone andtheclean cap.Atthehigher endofthe

spectrum, the conservative estimate value isbased on10times themaximum reported value (4.5E-08 cm/sec)in Table 7,or4.5E-07 cm/sec.

Atthelower endofthespectrum, thebest estimate value istaken to bethe minimumvalue reported inTable 7,3.9E-10 cm/sec.

Table 7

Measured H draulie Conductivi from SRNLSTI-201209558 H draulicConductiv*em/s Cell K Temperature Cell FTemperature ag,f, Profile Profile a

Saturated Exposed 3,,,,,,,,

Exposed Surface Surface 0.59 1.7E-09 4.5E-09 1.4E-09 4.3E09 0.59 1.9E-09 3.9E-10 3.6E-09 1.6E-09 0.6 1.7E-09 1.7E-09 4.lE-09 2.lE09 0.6 2.1E09 2.2E09 3.7E-09 1.3E-09 0.64 3.2E-08 4.5E-08 7.0E-09 1.3E-09 0.64 9.6E-09 1.3E-08 5.0E09 3.lE-09 Maximum3.2E08 4.5E-08 7.0E09 4.3E-09 Ave e 8.2E-09 1.1E08 4.1E-09 2.3E-09 Maximum 4.5E-08 7.0E-09 Ave e 9.6E-09 3.2E-09 Maximum 4.5E-08 Avere 6.4E09 Latest testing onsimulated saltstone conducted bySIMCOTechnologies, Inc.,

documented in SRNLSTI-2010-00515, indicates thattheintrinsic diffusion coefficient (analogous to the effective diffusion coefficient usedinPORFLOW) isless than1.0E-08 cm2/sec.

This value of 1.0E-08 em2/sec will beusedastheeffective diffusion coefficient forintact saltstone andthe clean cap.

Forsaltstone andtheclean cap,themoisture characteristic curve(MCC) data presented in SRNL-STI-2011-00661, Table B.2Recommended Characteristic Curves forRoomTemperature Cure(20 0C)ARP/MCU Saltstone, istobeused.

Additional SDUDesign Features Included inthis SAareadditional design features that havethepotential toprovide additional pathways orfast flowzones forrelease.

Construction joints with waterstops maydegrade andprovide afast flow path outoftheSDU.

Table 8provides thelinear feet ofjoints tobeusedforeach typeofSDU,except forSDU-6

HLW-SSF-TTR-20130021, Rev.2 Page 12of18 which is provided inTable 1.Themodeling ofthese joints should beconsistent with themodel used inSRNL-STI-2012-00445.

Asinthemodeling performed inSRNL-STI201200445, the material medium withinthejoint isassumed tohave themoisture retention properties ofgravel.

Table 8

Joint Le hforModelin SDU Le h Location SDU1 5,012 feet Floor andWall toFloor Interface SDU4 8 818 feet Floor andWall toFloor Interface FDC 471 feet Wall toFloor Interface Columns areused tosupport the roof in Cells Bthrough LofSDU4andineach oftheFDCs.

ForSDU4there arenine columns arranged ina3by3array ineachcell.

These columns are madeof10inch diameter steel

pipe, filled with lean concrete.Foreach FDCthere areforty-eight columns comprised ofTypeV concrete and reinforcing barwith anoutside diameter of14 inches.

Foreach SDU6there are208columns arranged in23foot centers with thediameter of eachcolumn being 25inches toaccommodate construction tolerances. Allcolumns aretobe degraded intwofoot segments along their length starting from the topandthebottom; with each successive segmentdegrading oncethecolumn above (orbelow) hasdegraded.

Toavoid unintended flow impact within thesaltstone monolith when the columns degrade, thematerial in these columns isassumed tobesaltstone material.

Cementitious Material Degradation Cementitious material willbedegraded based onthelatest Cementitious Barrier Partnership (CBP) toolbox andother analytical methods,Three mechanisms should be considered; Sulfate

attack, Decalcification, andCarbonation.

Three cases should beconsidered for each mechanism:

aBestEstimate (BE)

value, a Nommal(N)value, anda Conservative Estimate (CE) value.

Cementitious material degradation causes anincrease inthehydraulic conductivityand diffusion coefficient asthematerial degrades tothesurrounding soil conditions.

This rateofdegradation istobelinear intime.

Further information regarding cementitious material degradation of the SDUsisprovided inSRNL-STI-2013-00118.

Notethat fortheFDCsandtheSDU6design, saltstone isassumed tofill theentire volume ofthedisposal units;

thus, there isnoclean capin these SDUs.

Nointerior coating isapplied tothewalls intheSDU-6design; thus initial wall degradation developed inSRNL-STI-2012-00445 shall beassumed inaddition tothedegradation analysis described above.

ForSDU6,a100millayer ofHDPEencases aGCLthat covers theroof andseparates theUMM andLMM.Thedegradation ofthis barrier occurs prior tothediffusion ofcarbon (in theair) for degradation bycarbonation; orcalcium (in thegroundwater) fordegradation bydecalcification; ofcementitious material.

Thedegradation ofthis barrier isevaluated inSRNL-STI2009-00115 anddata extracted fromAppendix E ofSRNLSTI2009-00115 isprovided inTable 9forthe 100milHDPE-GCL.Toconservatively assess theperformance oftheHDPEGGL,the initiation ofthedegradation oftheSDU6 roofisassumed tooccurafter 1,400 years

HLW-SSF-TTR-2013-0021, Rev.2 Page 13of18 (corresponding tothetimethat theeffectiveness ofthebarrier isreduced bya factor of approximately 100).Because theLMMandUMMareinitially assumed tohave soil properties, thedegradation ofthefloor starts at1,400

years, following degradation oftheHDPE-GGL separating the UMM andtheLMM.

Table 9

D dation of100milHDPE-GCL HDPEGCLHydraulic Vertical Conductivi TimePeriod Value Ratio to ears em/sec Initial Value 0- 50 2.19E-11 I

900

- 1000 1.50E-09 68.5 1,400

- 1,600 2.31E-09 105 9,500

- 10000 1.09E-08 498 The"design with margin" parameter assumes thatthe HDPE hasathickness

of60mil, asshown inTable 1.Theuseofthethinner HDPE-GCL will require modifyingthemodelandthe cementitious material degradation analysis developed forthe "design" case.

FlowCases Eighteen flow cases aretobeanalyzed asdefined inTable 10.The numbering ofthese flow cases isconsistent with theflow cases analyzed tosupport the issuance oftheFY13SAwhich areshown inTable 4-1ofSRNL-STI-2013-00280.

Radionuclide Transport List Tominimize computational

time, preliminary PORFLOW runsshall beconducted only using the following radionuclides intheSDFmodel:

Cs-135, I-129, andTc-99.

(Note:

preliminary runs arecompleted.)

Fortheevaluation

case, thefull suite ofradionuclides shall beused toobtain the 20,000 yearaquifer concentrations; forthe100,000 yearaquifer concentrations andforthe 20,000 year seepline concentrations theradionuclides identified inTable 11shall beused.

The radionuclide list inTable 11shall also beused forthefinal "design with margin" sensitivity case.

HLW-SSF-TTR-2013-002),

Rev.

2 Page 14of18 Table 10 SummaofEi teenFlowCases Initial Saltstone Saturated Infiltration CementitiousHydraulic Conductivity Case Rate radation Rate cm/sec F-1 Avera e Nominal 6.4E-09 F2 Avera e

Nominal 4.5E-07 F-3 Aver e

Nominal 3.9E-10 F4 Avera BE 6.4E09 F-5 Avera BE 4.5E07 F6 Aver BE 3.9E-10 F13 Maximum Nominal 6.4E09 F14 Maximum Nominal 4.5E07 F15 Maximum Nominal 3.9E-10 F-16 Maximum BE 6.4E-09 F17 Maximum BE 4.5E07 F-18 Maximum BE 3.9E10 F25 Minimum Nominal 6.4E-09 F26 Minimum Nominal 4.5E-07 F27 Minimum Nominal 3.9E-10 F28 Minimum BE 6.4E09 F29 Minimum BE 4.5E-07 F-30 Minimum BE 3.9E-10 Table 11 Abbreviated SetofRadionuclides for20,000 Year SeepLineand100000Year100MTransortAnalysis Cm-242 Pb-210 Th-229 Cm-243 Pu-238 Th-230 Cs-135 Pu-239 U-233 I-129 Ra-226 U-234 Pa-231 Tc99 U235 Moisture Characteristic Curves(MCCs)

Table 12provides asummaryofthematerial tobeused fortheMCCswithin themodel.

For cementitious material (concrete andsaltstone),

blended MCCswill beused tosimulate the moisture retention capability ofthematerial asitdegrades tosoil properties.

Forconcrete the initial MCCisassumed tobehigh quality concrete toconservatively assess its moisture retention capability.

HLW-SSF-TTR2013-0021, Rev.

2 Page 15of18 Table 12 Material MCCforEones intheModel SDU Feature PORFLOWMaterial SDU 1 and 4Roof Concrete SDU1and 4Wall Backfill SDU1and 4 Floor

~

Concrete SDU4Column Saltstone FDCHDPE,Floor HDPEGCL Backfill FDCRoof HDPE-GCL Backfill thenSand FDCRoofWall Floor UMM Concrete FDCLMM Lower Vadose FDCColumn Saltstone SDU6RoofWall, Floor Concrete SDU6UMMLMM LowerVadose SDU6RoofHDPEGCL Backfill thenSand SDU6Floor HDPEGCL Lower Vadose SDU6Column Saltstone De adedSDURoof, WallColumnsBackfill De adedSDUFloor andUMM Lower Vadose Preferential flowths'oints Gravel Saltstone andclean ca Saltstone 1 WSRC-TR-2006-00198, Highquality concrete.

2 SRNLSTI-201 1-00661, Table B.2Recommended Characteristic Curves forRoomTemperature Cure(20

  • C)ARP/MCU Saltstone.

3 RoofHDPEGCLinitially hasMCCofbackfill until atcomplete degradation ithasMCCofsand, tobethesameasthesand drainage layer above theHDPEGCL.

SummaryofPORFLOWCases:

Allcases requiring aquifer transport results include thetransport results fromallother SDUs developed forFY2013 SA,butmodified toreflect therevised inventory forthis TTRandthe revised treatment oftheK,transition inthefloor oftheSDUsandtheUMMandLMMofthe FDCandSDU6.Aquifer transport results include theconcentrations bysector (maximum ofthe three aquifers bysector) andtheconcentrations bysector andbyaquifer.

Welllocations forthe Inadvertent HumanIntruder (IHI) arethesameasdeveloped forSRNLSTI-201300280.

Preliminary Results (work completed):

(1)

FlowCaseF1with"Design withMargin" parameters

- 20,000 yearaquifer transport forTc-99,I129,andCs-135.

(2)

Evaluation Case(Flow CaseF1with"as Design" parameters)

- 20,000 yearaquifer transport for Tc99,I-129 andCs-135.

Final Results:

HLW-SSF-TTR-2013-0021, Rev.2 Page 16of18 (1) Evaluation Case(Flow CaseF1with"as Design" parameters)

- 20,000 yearaquifer transport (100M, IM,andIH1welllocations) using full radionuclide suite.

(2)

Evaluation Case-20,000 yearaquifer transport totheseepline (concentrations bysector for Upper Three Runs

- Upper, UpperThree Runs

- Lower, andGordon) using Table 11 radionuclides.

(3)Evaluation Case 100,000 yearaquifer transport (100M andIHIwelllocations) using Table 11radionuclides (4)FlowCaseF1with"Design withMargin" parameters

- 20,000 yearaquifer transport (100M andIHIwell locations)usingTable 11radionuclides.

(5)Flowsensitivity cases

- 18flow cases. (Mayinclude all SDUsdepending ontheresults of theupdated cementitious material degradation analysis.)

(6)Flowsensitivity cases

- 2flow

cases, defined bySRR,for20,000 year aquifer transport (100M) using Table 11radionuclides.

(7)Tc-99 sensitivity cases

- 3evaluation cases (nominal, 10times

nominal, and1/10 times nominal solubility value) for20,000 year aquifer transport (100M) forTc-99 only andwith concrete initially oxidized.

(8)Tc-99 sensitivity cases

- 3evaluation cases withnominal solubility value butwith oxygen sources comprising 5%,10%,and20%ofsaltstonevolume for20,000 yearTc99aquifer transport andwith concrete initially oxidized.

(9)Tc-99 sensitivity cases

- 4flow

cases, defined bySRR,each with thenominal solubility value for 20,000 year Tc-99 aquifer transport andwith concreteinitially oxidized.

(10)

Twoflow onlysensitivity cases using theSDU6evaluation case parameters butwith aroof slope of2%and1%.

Deliverable:

Technical Report including thedegradation analysis oftheSDUdesign

features, the development ofthemethodology toreduce themagnitude oftheTc-99 release spikes from the SDUs,andjustification ofthetreatment oftheKatransitions intheSDUfloor andthe Upper and Lower MudMatsintheFDCandSDU6based onpore fluid from saltstone.

HLWSSF-TTR-2013-0021, Rev.2 Page 17of18

References:

ML073510127, Recommended Site-Specific Sorption Coefficients for Reviewing Non-High-Level Waste Determinations attheSavannahRiver Site andMahoNational Laboratory, U.S.

Nuclear Regulatory Commission, Washington DC,October 2007.

SRNL-STI-2009-00115,

Flach, G.P.,etal.,

Numerical FlowandTransport Simulations Supporting theSaltstone Disposal FacilityPerformance Assessment, Savannah River

Site, Aiken, SC,Rev.1,June172009.

SRNL-STI2009-00473, Kaplan, D. L,Geochemical DataPackage for Performance Assessment Calculations Related tothe Savannah River Site, Savannah River

Site, Aiken, SC,Rev.

0,March 15,2010.

SRNL-STI-201000493,

Seaman, J.C.and Kaplan, D.I.,
Chloride, Chromate,
Silver, Thallium, andUranium Sorption toSRSSoils, Sediments, andCementitious Materials, Savannah River
Site, Aiken, SC,Rev.

0,September 29,2010.

SRNL-STI201000515,

Langton, C.A.,Saltstone Characterization andParameters for Performance Assessment
Modeling, Savannah RiverSite, Aiken, SC,Rev.

0,August 27,2010.

SRNL-STI-2010-00667, Almond,P.M.,andKaplan, D.

I.,Distribution Coefficients (Kd)

Generated from aCoreSample Collected from the Saltstone Disposal

Facility, Savannah River
Site, Aiken, SC,Rev.0,April 29,2011.

SRNL-STI-2011-00011,

Kaplan, D.I.,Estimated Neptunium Sediment Sorption Values asa Function of pHandMeasured Barium andRadium
KaValues, Savannah River Site,
Aiken, SC, Rev.0,January 23,201l SRNL-STI-2011-00661,
Dixon, K.D.,Moisture Retention Properties of High Temperature Cure ARP/MCU Saltstone
Grout, Savannah River
Site, Aiken, SC,Rev.

0,January20, 2012.

SRNLSTI2011-00672,

Almond, P.M.,etal.,Variability ofKaValuesin Cementitious Materials andSediments, Savannah River
Site, Aiken, SC,Rev.0,February 2012.

SRNL-STI-2012-00445, PORFLOW Modeling for aPreliminary Assessment ofthe Performance ofNewSaltstone Disposal UnitDesigns, Savannah River National Laboratory, Savannah River

Site, Aiken, SC,Rev.

0,August 6,2012.

SRNLST-2012-00518, Radioiodine Geochemistry intheSRSSubsurface Environment, Savannah River National Laboratory, Savannah River

Site, Aiken, SC,Rev.

0,May2013.

SRNL-STI-2012-00558,

Reigel, M.,etal.,

Process Formulations andCuring Conditions that Affect Saltstone Properties, Savannah River

Site, Aiken, SC,Rev.

0,September 30,2012.

SRNL-STI-2012-00596,

Kaplan, D.L,etal.,

Technetium Sorption byCementitious Materials Under Reducing Conditions, Savannah River

Site, Aiken, SC,Rev.0,September 30,2012 SRNLSTI-2012-00769,
Kaplan, D.I.andDien, L.,Solubility ofTechnetium Dioxides (TcO2-c, TcO2L6H2OandTcO22H2O) in Reducing Cementitious Material Leachates:

A Thermodynamic Calculation, Savannah River

Site, Aiken, SC,Rev.

0,December 19,2012.

SRNLSTI-2013001 18,Degradation ofCementitious Materials Associated withSaltstone Disposal

Units, Savannah River National Laboratory, Savannah River
Site, Aiken, SC,Rev.

0,

March, 2013.

HLWSSFTTR-20130021, Rev.2 Page 18of18 SRNL-STI-2013-00280,

Jordan, J.M.,
andFlach, G.P.,

PORFLOW Modeling Supporting the FYI3 Saltstone SpecialAnalysis, Savannah River

Site, Aiken, SC,May,2013.

SRR-CWDA-2009-00017, Performance Assessment for theSaltstone Disposal Facility atthe Savannah River

Site, Savannah River
Site, Aiken, SC,Rev.

0,October, 2009.

SRRCWDA-201100044, Comment Response Matrix for Nuclear Regulatory Commission RAI-2009-02 Second Request forAdditional Information (RAl) ontheSaltstone Disposal Facility Performance Assessment (SRR-CWDA-2009-00017, Revision 0,datedOctober 29,2009),

Savannah River

Site, Aiken, SC, Rev.1,August 25,2011.

SRR-CWDA-2013-00062, FY2013 Special Analysis for theSaltstone Disposal Facility atthe Savannah River

Site, SavannahRiver Site,Aiken, SC,Rev.1,June2013 SRR-LWP-2009-00001, Chew,D.P. and B.A.Hamm,Liquid Waste System Plan,Savannah River
Site, Aiken, SC,Rev.17,
February, 2012.

WSRC-STI-2006-00198, Hydraulic Property Data Packagefor theE-Area andz-Area

Soils, Cementitious Materials, andWaste zones,Savannah River
Site, Aiken, SC,Rev.0,September, 2006.

WSRC-STI-2008-00244, Jones,W.E.,andPhifer, M. A.,Saltstone Disposal Facility Closure CapConcept andInfltration Estimates, Savannah River Site, Aiken,SC,May2008.

X-CLCz-00050,

Dixon, K.D.,Analysis ofSaltstone Waterto-Premix Ratio During Pre-ELAWDOperation, Savannah River
Site, Aiken, SC,Rev.

2, October 10,2012.