ML20204F756
| ML20204F756 | |
| Person / Time | |
|---|---|
| Site: | Limerick |
| Issue date: | 04/27/1983 |
| From: | Bradley E PECO ENERGY CO., (FORMERLY PHILADELPHIA ELECTRIC |
| To: | Schwencer A Office of Nuclear Reactor Regulation |
| References | |
| NUDOCS 8305020255 | |
| Download: ML20204F756 (15) | |
Text
-
PHILADELPHIA ELECTRIC COMPANY 2301 M ARKET STREET i
j P.O. BOX 8699 PHILADELPHIA. PA.19101 EDW ARD G. B AU ER, JR.
y
,4 wics enssapeser ano esammat couNsub EUGENE J. BR ADLEY assocsats esmanah causesm6 April 27, 1983 DON ALD BLANKEN RUDOLPH A. CHILLEMI l
E. C. KIR K H A LL T. H. M APER CO RN ELL P AU L R U E'4 B AC*4 mesisvawi eenment couwsma Ep h ARD J. C ULLEN. JR.
THOM AS H. MILLER, J R.
j IREN E A. MrEENN A assistant counsak Mr. A. Schwerrer, Chief Licensing Branch No. 2 Division of Licensing U. S. Nuclear Ibgalatory Ccrmission Washington, D.C. 20555
Subject:
Liravick Generating Station, Units 1 and 2 Rege:t for InforIration frcm the Peact;]r Systons Brsach i
File:
GOVT l-1 (NRC g
Dear Mr. Schwencer.
The attached docuaents are draft responses to questions 440.3, 440.4, 440.5 and 440.32. Please note that these question responses also address item 1 of DSER series 440 Reactor Systems Branch: "ODYN Analysis of Pressurization Transients," which was fonnally transmitted to us via your letter of March 11, 1983. In addition, please note that the attached documents also address item 3 of your July 16, 1982 letter entitled " Limerick-Draft SER-Section 4.4 (Thermal-Hydraulics)"; thereby ccxupleting our response to this letter.
The final responses to these questions will be subritted via the FSAR revision scheduled for May, 1983. The required changes to the affected portions of Chapters 4, 5 and 15 will be forrnally incnrporated into the FSAR revision scheduled for June,1983.
Sincerely,
/
8305020255 830427 Eug J.
radl PDR ADOCK 05000352 E
PDR Qj DFC/gra/Z-8 cc: See Attached Service List
I cc: Judge Lawrence Erenner (w/o enclosure)
Judge Richard F. Cole (w/o enclosure)
Judge Peter A. bbrris (w/o enclosure) 1 l
Troy B. Conner, Jr., Esq.
(w/o enclosure)
Ann P. Hodgdon (w/o enclosure)
Mr. Frank R. Rmano (w/o enclosure)
Mr. Robert L. Anthony (w/o enclosure)
Mr. Marvin I. Lewis (w/o enclosure)
Judith A. Dorsey, Esq.
(w/o enclosure)
Charles W. Elliott, Esq.
(w/o enclosure) j Mr. Alan J. Nogee (w/o enclosure)
Thomas Y. Au, Esq.
(w/o enclosure) l Mr. Thmas Gerusky (w/o enclosure)
Director, Pennsylvania Drergercy Management Agency (w/o enclosure)
Mr. Steven P. IIershey (w/o enclosure) 0xres M. Neill, Esq.
(w/o enclosure)
Donald S. Bronstein, Esq.
(w/o enclosure)
Mr. Joseph H. hhite, III (w/o enclosure)
Walter W. Cohen, Esq.
(w/o encles tre)
Robert J. SugarTnan, Esq.
(w/c enclost.re)
Podney D. Johnson (w/o enclosure)
Atccnic Safety and Licensing Appeal Bcard (w/o enclosure)
Atxteic Safety and Licensing Board Panel (w/o enclosure)
Dodet and Service Section (w/o enclosure) i J
1 1
t i
o
-, -, -.,.... - -. - - - - -.. - -. - -,, ~ -.,. -.. -, - -, -. -,, -,
PART A - OVEPPRESSURE ANAINSIS CUESTICN 440.3 (5.2.2)
Provide a plant-specific overpressurization analysis using the General Electric cmpiter code ODYN (see Question 440.5).
CESTICN 440.4 (5.2.2)
?cceptance Criterion II.2.b of SPP 5.2.2 states that, all systs and core parameters are at the values witMn the normal operating range, including uncertainties and technical specification limits, which wculd result in the highest transient pressure. Irsufficient information is presented in the FSAR to determine that this acceptance criterion will be met. The applicant should confirm that the overpressure analysis will be based on an initial operating pressure (up to the Technical Specification limit)
Stich will result in the trost limidng peak pressure. The applicant should also confirm that the overpressure analysis will include the effects of the A%E reactor recirculation purrp trip on high reactor pressare.
PESKNSE ' 0 (WSTIWS 440.3 and 440.i The results cf the vessel overpressure analysis with the ODYN code are shown on Figure 440.3-1 for the MSIV closure transient with a flux scram and the installed relief valve capacity (14 valves). The vessel bcttm pressure for this transient, is shown on Figure 440.3-2 for both ODYN and REDY code analyses. The peak vessel bottm pressure calculated with ODYN reached 1260 psig which is well below the ASME code allowable pressure of 1375 psig. We REDY code calculation resulted in a peak vessel bottm pressure of 1298 psig which provides a margin to ASME Code allowable pressure that is 38 psi smaller than that of the ODYN code calculation.
% us, prior evaluations of peak vessel pressure versus valve capacity made with REDY (see FSAR Figure 5.2-4) may be conservatively applied to denonstrate Iamerick overpressure cmpliance.
W e setpoint values used for the overpressure analysis have been carefully reviewed to_ assure that both instrument uncertainties and drift allowance are included in the transient simulation of the highest attainable transient pressures. W e technical specification values for Reactor Steam D m e Pressure will be established consistent with the initial dme pressure of 1020 psig used for the analysis. The effect of an A%E Recirculation Punp Trip on reactor pressure was simulated using an analytical value of 1123 psig.
This trip occurs 2.6 seconds after the transient is initiated (see Figure 440.3-1).
1
I I NEUTRON FLUX
'IVE9eilP$SRISE(PSil
)
2 PE AK FUEL CENTER TEMP 2 SIM LINE PRES RISE IPSil
.F 3 HVE SUHf fCE HERT FLUX 3 59f *TT VfQfE lf OW fel 150*
4 FEEDWRill TLOH
'F
.e FELIDLVE FLOW (el il S VESSLL SIEAM FLOW j
l S TELIEF VFLVE FLOW IPCTI f
6 TURB STEfM FLOW IPCTI 9
\\
f'##
M.
5 100, IE
\\
~
MM' W
L-N b
c gS0 iOO.
t 5
f O.
L D.
' 13 E -
~1
-0.
1.6 3.2 4.8 6.4
-0.
i.6 3.2 4.8 6.4 TIE ISECl TlHii ISEC)
.s 1 LEVELllNCH-REF-SEP-SK!RT O
1 VOID RER(TIVITT 2 DOPPLER FEACTIVITT 2 W R SENSfD LEVELilNCHESI
/
'\\
3 SCf0M REfCTIVITY 3 N R SENSfD LEVEltlNCK S) g*
/
200*
4 CORE INCE T FLOW IPCil II~ TOTAL REFETIVITY S DRIVE FLCW I (PCTI
/
i:a u a
M
/
m u
o m
300-9
%M
.:a w
0.
O 1.
~
T
=
g a
.i 00.
i-
_2.-
l
+
-0.
1.6 3.2 4.8 6.4
-0.
1.6
- 3. 2 4.8 q.4 l
TIME ISECl TIME ISEC1 l
ml OM06 MF COI 155 DFIF 672C16 MSIV CLOSURE FLUX SCRAM (ODYN) j um o Fig. 440.3-1
l
~
- q...
i.,*
- i 6 6 I 1
i i
eiii I..
ii..
~ ~
-- ~~
, i, t-T'TT
--l -
,I
- [
1
-,e e
i a
i liii
.,!t iil L i
i
,i i jm
. 1
, t i i
e i
iii.
i i i.
6 i
i i
si7 i
j
- i i
e, e ei e.
6 i
i 6i 6 Ii t i i,I I
t i i i a
1 i
.,i
. i 1
i 9
i 1
iii
! i.
... i - "
6 6 ie1 I
I iI.
Iit 111
. ii i f i i ii "ii.
i i 4 i i ---
,f, 1,
~~
i
~~'-
i l t
i i
e i ii
.i 1
i ei.
i i is e,
i.
i s T
I ii i
l l
. i..
I e18 i i 1
i e i
e i e i.
i 6 i i s i
i 6 i i i
6 i
i i
- i
. i i,
i i
i i
i.'
i i
E Y
u
'M
=
Ii r
a e
e i
T l 4 6.
I i
e 4 i B
M ap I
t i
8 '
I e i I
t i I Il BA hl Ia E
t
.i
_i i i 6
e Pr s3 y i i
. i e
6 t 1350 t
t t
i t. i i
t i.
I !I t t
i ie i i ' l i e i e ie i
i
- i T
i i
i i
t i
.I 6.
i
_e.
i
., i i i i, 6
- i.
. i i i.
7 i
e i i e
i 6 i i.
i i
s e
. i t i
i
! I t
.i.
6 i e i
i e t.i
~
i, e i
4 i i --
a. 4. "-*'-
. l ti i6 e 4
iWT
.. i
< i.
. 6 i t
6 i i 'T' i i a ii T.l e
e i,
6 ii 2
i 4 ii
.. -;, i i
g i'! i u --
.,.i
. i l
e i i i !$
itl MMkEbb
{!
i I
i
- blUx SCR.ai liHHY 1_.
e i I 6i
( AI e.!
7 6
}
e f '.i g.J,,., '
I i.
)
e iIe i
,t i
i*
t i 1_,
an, - {_ie 6 Ii I i.6 i ti i i e
ii 3i,
..i a.
i. i II
...i
.?
5
..l i ie i
i.i t i i ' I f
! L,.j i. 72 I ?
!t
. I i i '
I \\
i!
I 6 3 e
iI3 t.
ii!.
i w
6
\\'
nyn i
h
l t ' -~ l1 i
~1 g epe
'T-'
e.
. i.
i
, ei!
i.
"+
i i Nil t 6 i,,Ni e 1
. e w-
.. - 'T i
)
6 i.
i i l
"1"i i ie i i1 7
4 ii Yiei i 6 6 i i X
8 8 D
4 l i i
].
. " - i.. "p--1,.
'TN. e
- i i ei
.g i
-b i
V i, ;
i... ' i i
i[ T~TQ.
eti I..A Ti i, s
!X I 4
, c.
,,i
, 4 i t i e i i
' 16
' i.
i eie i.X i
I
- {'. Q:._3,_'.
i
. i i i.
6 i M
i W.
i 1l 4
._1 _9 iiy
'I.
. i 9
i i i I
- D' t i
.,.1 -1 \\ ! t~..
6 A',,,l
.4 i
t
} ~~~ 3 l i:
. i e u 6
S ^ i e 6 i i e
nI 6
i
- T~i 2
j 7f1(}'-
1 i iA u'e v i-.bbe i
. i 9
i I g.
,3 ii -
,, t
-T,
~'
e i.Y TTTTU 'WiC@vu T ma' A *wV
. i d
~h iia
'~) I eI ei I
g y i~ll i i Ni
L ie i 6 66 a e K'
II i
ik i i j iT
- i i
. ii 6
.i 4 i
" - ~
i.*
6i,i TT-T-' 7 3,, T y l i 1 I
t i i
ei i.
i FN i
i 1 e
j,,,,j,"T i e i 4
4.U i
6 6 1
- i.
e i.
. 4.
f
~ %.7
' i i
er
- T 4 i "7.,
e i
..N i
7~l_i_
iiF N FitAM>
=
b Tmniq m t.m 62.
{
_ _f -
, 'T~ M E.
I ii N I
i iF
.1, 1 i
i T
i e i ex st T
i ii i.
., e i, p-1. i
.i i
- g. i.
6 i i.
4 i i
- xW/0 BPMMm xpefRGL ijgg
. i N
i y i i
i.
i :
N e
I
_3
- y. i.
l e i..
t i ei J.,,
a I
f e.
1 !
.Ie
..I 6.
l.
j
.l i
i *
, + 6
.w 5
W 6
! iii i
- u m
. i i,
^j i.
. e, i e i i J
,,_, ]
3 8
w
, i j l
[. 9 i i
{ j, i ii t 1i I.
e i.
i J,.i.
M 6
i e
i l
4 e, i
[ i.
i 3
,e
.ii e
i i
. - i i
c e t.
. i 6 t lia !
i
!i 3 6 1 6 e 1 l l I
l l i
- i l 1. ]
1ei t
i i
i t
i ig
. t i i..
.l
.l I
e i
i i I
J i 4 i i i
-/
i j i.
i t i i
f 1
AAUU.
-J I
8.
.i yiji i
i.
.t 1
l l
I I 6e I
t f.
i g
g i
6 i i
. i..
I e,
i 1
6 i t i i i i
1 i i i
i i
I i
iy, i i i
I e i I.
e i e i i.
ifi f
i 6
i '
t i
' iii
~. fi
~ I In l l
Ii i t i t e
6 i i I.I i t 6.
il e.
I i
i i
il li
-f ~l i
i i i e
i I.
l
,l 6
i i i l
i i j
i t
i e i
e Av.J u A
I R.
Q
.I.(
L M.
i
)
I
.'4 7
i e T I I i9
_ _.it
' I i, ;
i i i l
i,
i i i i i
.i..
i.
a i *M
.i i e 1
, i i i ii a i
!ii i i '
I i,,
i I 4 ie i
i i, I i
i i
i i
,i e i
i.
. !.gmtu.num )
t i.
i t
i
. t,
i 3 i i
i t i i i e i e i
., i i
,1 i e i
i i
i
.. II i
I i'
! _1 L.
i
. i. J..
s r
i, l
i t
l l !6 6 16 i
i i ii1 ib 2
Figure 440.3-2 TM PCbMNSNMm smWTTn mmme i ll.
i..
-H 2-t+- "t+ y1 nTe l
i _L
-- _h k,!
M i-
-L M.1 h I
-LJg.--
'E Jy- --- -, ' v7-,;!
.;.j _l a _p-4 2
g...
i-i
_._'p_L. L.. L, -
. ~ -
- g-q -p + 7 --4 -'
'b ~ -~F-~~~-'~L
~ -
-'-~~
~
'I'"-~~~I
~~~
- -~~~'-.,
r
- * - ~ ~
~ ' ' '
'-"*-'i~~~~~~
i
.i J
~4 7 r-
.._L :. 1. r - f ' - *- * *~
l
PART B - MAJOR PRESSURIZATION TRANSIENTS QUESTION 440.5 (15.0)
GE calculations performed for rapid pressurization and for decrease in core coolant temperature (Feedwater Controller Failure, Maximum Demand) events using the ODYN model have shown that in some cases a more severe CPR is predicted than that by the REDY model (NE00-10802).
Show that the loss of feedwater heating event would still remain the most limiting by assuming the following transient events to be analyzed with the ODYN model:
(1) generator load rejection without bypass; (2) turbine trip without bypass; and (3) feedwater controller failure, maximum demand.
RESPONSE TO QUESTION 440.5 Results of the reanalysis of the three requested transients are shown in Table 440.5-1 and Figures 440.5-1, 2 and 3.
The required operating limit CPR values are summarized in Table 440.5-2 for these three pressurization transients and for two non pressurization events:
The loss of Feedwater Heater and the Rod Withdrawal Error Transients.
The required operating limit CPR is determined by both these non pressurization events, and is the same for both Option A and Option B ODYN adjustment factors, regardless of the frequency category of the turbine bypass failure transients.
w
= < - -
TABLE 440.5-1
SUMMARY
OF ODYN EVLNT RESULTS(2)
Maximum Core Average Maximum Surface No. of Maximum Maximum Maximum Steam Heat Valves Neutron Dome Vessel Line Flux 1st Flux Pressure Pressure Pressure
% of Frequency Blow-Description
%NBR PSIG PSIG PSIG Initial ACPR(1)
Category
- down Feedwater Cntl Failure, 156.3 1168 1194 1165 105.0 0.06 a
14 Max. demand, 127% Flow Generator Load Rejection, 222.5 1200 1225 1196 106.2 0.08 b
14 Bypass-Off, RPT-On Turbine Trip, Bypass-Off 198.4 1198 1223 1195 104.5 0.06 b
14 RPT-On
~
a = incidents of moderate frequency; b = incidents of infrequent frequency n
(1)ACPRbasedonaninitialCPRwhichyieldsaMCPRof1.06;ODYNresultswithoutadjustmentfactors (2) ODYN results based on E0C1 nuclear characteristics m
--I
~
TABLE 440.5-2 REQUIRED OPERATING LIMIT CPR VALUES (1)
Pressurization Events:
CPR (Option A)*
CPR (Option B)*
Load Rejection Without Bypass 1.19 1.11 Turbine Trip Without Bypass 1.17 1.1C Feedwater Controller Failure, 1.17 1.14 127% Flow Non-Pressurization Events:
CPR Rod Withdrawal Error (2) 1.21**
Loss of Feedwater Heater 1.21**
Includes adjustment factors as specified in the NRC safety evaluation report on ODYN, NE00-24154 and NEDE-24154-P.
- Required OLCPR using either Option A or Option B adjustment factor regardless of frequency category of the turbine generator trip events with bypass failure.
(1) For minimum CPR of 1.06 (2) OLCPR value is obtained for the 107% Rod Block setpoint, Control Cell Core analysis.
a f
l
3 1 VESSEL Pf1' ISE IPSil f
1 NilJilk)N 6 lux 2 SIM LINE 1
SE IPSil 2 Pf 6tn f ull LLNifR TEMI' 3 luttolNf f (P$ll 3 liVI
- A 8 5' ' til_itlir FLUX 12r,'
in C0fif" lNIl
/LUI
~
150.
4 I L t DW661 t'i! I t. 0W 5 fVLIEF v1
- E PCTI g
5 Vt wlL S lfftFLOW 0
u idRErST10 1 FLOW TI 1
u u
es i
i it t
,,s
_ _L; - '
75*
5 100.
y I
E b
j/w
?
! t &,,
a u
2s. -
e 50.
172-y m
- m e D'r b
-25*
0.
7.
14.
21.
26.
0.
7.
14.
21.
28.
D.
TIME ISEC1 TIME ISEC3 I VOID RERCT I'#ITT I LEVELilNdM-REF-SEP-SMIRT 2 DOPPLER FERCTIVITT I
2 W R SENSIO LEVEL (INCHES) 3 SCRAM REICT VITY 3 N ft $t NSI O LEVElllNCIESI y*
4 TOTTIL7U VITY 150*
tl'C0fiETNu I' TECH 7 PCT 1 5 DHIVE FLCr4 1 (PCTI I"
~ Ul' k
0.
us us ur, 100.
8 E
[
I4 N
E -
N 50'
~-
~
ep s
W
=
2.
8-O.
I-O.
7.
14.
21.
28.
O.
7.
14.
21.
28.
TIME ISEC1 IlME (SECl HH1 OMOG FA C01 153 ORF G72ClG FHCF.HAX DEMR W/ HHL TAIPS w//gp j
g, g
Figure 440.5-1 amo n..
I X VESSEL PFES RISE IPSIl i NEUIRON FLUX 2 SIM 11NE PIES RISE IPSIl j
2 PE64K FUEL CENTER TEMP 3 Sriti;ti vi tvr rt0w f.I 3 nvr ststre cr eitni Flux 30 0
- 47tLLi[F VI LVE7 t0H tel 150.
4 I t t DWillti FLOW 5 lif tfiS5 VI LVE FLOW t.)
5 VESLEL SIEAM FLOW G TURB Sill H FLOW IPCil 1
/%
A 200.
c2 100.
y i
Nu 5 1,5 100.
50.
\\
b5 M
I e
(
~
/ 3
~
~
\\
3 I
E 35 8 35 8
38 I /' -
4
- 0. * "-
I O.
2.
4.
6.
8.
O.
2.
4.
6.
8.
0.
TIME ISEC1 TIME ISEcl 3>
I VOID REAC TIVITT 1LEVEllINdH-REF-SEP-SKIRT 2 DOPPLER FEACilvlTT 2 W R SEN5q0 LEVELilNCtf 51 3 SCRAM REfCTIVITY __
vw 3 N H $ENSI O L EVELIINCHESI I*
4 15TICECTIVIa 200-rtonE INECTTL5FTPCTI 5 DRIVE FLL'W l (PCil 7
\\
E 123 1
o-
~
goo-3 T
7 D.
g
.l.
.r.
y M
-100.
1
-e 2.
O.
2.
4.
6.
8.
O.
1.
2.
3.
4.
TIME ISEC1 TIME (SECl HH1 OH06 LR COI 151 DRF 672C16 GENERATOR LOAD REJECTION. WITHOUT BYPRSS cm out Figure 440.5-2
= "'*-
DRAFT
~
~
=
[S;T;;
re e
-wc g=a.BB-edda
- -Et::
=
= c Ja.m2
!C$$$$r
- MEE
.=
tJssss e
M-tb aE krG M5"F d't'iy$I3
}
ctfd 2g 58 5
$$$;mee j
-~m.
g_
g
-~m c
e wc y
(
~y w
P-
?
f
~
/
N N,
(
/-)//
(
m
~
W R
.o.
8
~
.o o
o 8
8 8
9 e
n
~
g is 11 TAI 13e3a E
E nrn ts 5YE; 3
LEMM-I e
W)"
e 8
l M3tg M
bg d iWWE a.
x 5,g E
Ett'D" r
],
3"LY s a
foc c
d
$5553
/
E?SM 8-si Wsrw
/
E Es d" WeeMS I) e i
W r 5y.*,
M22p.5 g;
.m
-~m
/
- g g
~~m e
c
=S a
W G
W
=
^
gy w
e y
5
- a w h
=
n 55
,)
$E 9
=
c
~
-L[
_g r-N g
e m
S
.d
.d 8
8 o
8 8
o 8
~
1C1109 @ IN3N3d1 g
Bi
?
R'
PARE C - IDAD PEJECTICN hTIE FAIIURES OF (l') DIRECT SCR41, (2) EOC-RPT AND (3) 'IURBINE BYPASS g 44e.'
DRAFT In the analyses for the generator load rejection and turbine trip transients, credit is taken for innediate reactor scram and recirculation pump trip obtained frm a valve closure signal (turbine control valve for load rejection and turbine stop valve for turbine trip). Analyze these transients without taking credit for innediate reactor scram and recirculation pump trip. Take credit only for safety-grade, seismic Category I equignent.
Identify the worst single failure and determine the consequences assuming this single failure.
Present curves similar to those of Figure 15.2-2 and 15.2-4 and give values of maximuni vessel pressure and mininum CPR with the time at which these values occur.
Since the reclassification of the generator and turbine trip without bypass transients has not been accepted by the staff and is still under generic review, the analysis of the above events should determine the operating limit MCPR in which the results would not violate the safety limit MCPR of 1.06.
Also, it is our position that the limiting transient be reanalyzed with the ODYN code.
RESPCNSE 'IO QUESTICN 440.32 Credit is justified for innediate reactor scram and recirculation pump trip (RPT) obtained frm a valve closure signal (turbine control valve for load rejection and turbine stop valve for turbine trip) for the following reasons:
1.
Inmediate Reactor Scram frm Turbine Valves As described in Section 7.2, each of the four stop valves is provided with redundant position switches which initiate reactor scram and RPT on valve closure greater than 10%. As also described in Section 7.2, each of the four control valves is provided with one safety-grade pressure switch which initiates reactor scram and RPT on loss of EHC oil pressure, which in turn, initiates control valve closure.
As described in Section 7.2, the design of the safety-grade Reactor Protection Syst m logic provides adequate redundancy to assure the proper initiation of a reactor scram signal frm either Turbine Stop Valve Closure or Turbine Control Valve Fast Closure in all transient conditions.
As discussed in Sections 7.2 and 10.2.3.6, each stop and control valve is exercised and each instrument scram signal is tested on a routine basis to assure the proper function of these reactor protection syst s inputs.
Recirculation Pump Trip (RPT)
The RPT system is a Seismic Category 1, Class lE syst s.
The systs will provide a safety function to mitigate the consequences of the turbine trip or generator load rejection initiated events.
l Hence, any event which would postulate the failure of either the innediate reactor scram signal or the recirculation pump trip system nust be classified as an accident, not a transient.
Curves similar to those of Figure 15.2-2 and 15.2-4 are provided as part of the response to question 440.5, and are denoted as Figure 440.5-2 and 440.5-3 respectively. All of the events analyzed in the response to question 440.5 were analyzed as transients with credit taken for both immdiate reactor scram ard RPT.
Neither the generator load rejection without bypass transient nor the turbine trip without bypass transient result in the most limiting
(
MCPR. As presented in the response to question 440.5, the Rod
[
Withdrawal Error and/or the loss of Feedwater Heater events are the limiting transients used in the determination of the operating limit CPR.
As stated in the response to question 440.5, the above pressurization transients were reanalyzed with the GE code ODYN.
'Ihe reanalysis of the events requested which take no credit for immediate reactor scram or RPT, are considered accidents. The generator load rejection accident (GLR) bounds the turbine trip accident. The bounding GLR accident was analyzed with ODYN frcrn the initial CPR of 1.21 established in the response to question 440.5. Table 440.32-1 presents a sunmary of the initial conditions and significant results of this accident, while Figure 440.32-1 shows its time history.
Since these accidents are of brief duration, an additional active ccrnponent failure would not be expected to significantly increase their severity.
1
TABLE 440.32-1 Significant Initial Conditions and Results For the Bounding GLR Accident Initial Cbnditions Initial CPR:
1.21 Initiating Event:
Generator Ioad Rejection Failed Systens Intnediate Reactor Scram (1),
Recirculation Pump Trip (1),
Turbine Bypass Valves First Functioning Scram Signal High Flux (APRI)
Results Maximum Vessel Pressure (psig) :
1250 Time of Maximum Pressure (seconds) 2.4 Minimum Critical Power Ratio (FCPR) 0.94 Time of MCPR (seconds) 0.90 Rods in Boiling Transition (%)
2.2 Peak Cladding Temperature (OF) 1045 Note (1) Initiated by Turbine Control Valve Fast Closure.
~
l e
I l vfSM1. MES RIE IPSil t
i NEUTRON FLUX 2 Sise L181E PfE5 RISE IP5I) l 2 PE AK FUfl CENTER TEMP 3 SAFEIT WLVE FLOW fel 3 Rv L SUHFi[E HE h uX 4 KLIEF WLVE FL13 74el 15,*
~
4 FT((Oilff EON 5 8 IPR 65 WLVE FLl34 Ie1 5 VESSLL S1EAPI FLind 6 TUNB STEfM FL N IPCil At 1
,co-a i..
m
~
e 1
p%
gO a
i
$ so.
k
\\1 10o.
3 y
5 n.
s ss a s n a
as I
O.
o.
2.
o.
2.
O.
TifE ISEC)
TIPE 15ECl 1
O I VOID MfETIFITT 1 LEVELilNCat-REF-5EP-Sr.lRT
/
2 00PPLER fERCTIVITT 2 W R SENSE 0 LEVELIINCE S)
/
3 SCARpt AUCTIVITT TTEDWkf lNCKS)
D LEVf I'
s vana, riuETIVIIT 3 N R SENSt 200*
4 COORU il 5 drive FLCW l IPCil 2
O R
^
100
\\
w.
Ac=====
k
{
.l.
E
\\
O.
y lt' 2.
i-300.
.i.
0.
2.
v.
6.
8.
D.
1.
2 3.
4.
1981 (Dt06 LR Col 168 Off 672C16 GEEMTOR LORD REJECTION. WITHOUT BTPRSS, Diac cv Jcamm, on sto c-atv Fin Adn ~47_1 7
.