ML20198B449

From kanterella
Jump to navigation Jump to search
Rev 1 to Calculation 97-SDS-1760-M2, Millstone 2:Pressure/ Temperature Limit Curves for 20 Efpy
ML20198B449
Person / Time
Site: Millstone Dominion icon.png
Issue date: 10/17/1997
From: Azevedo N, Steahr T, Stewart C
NORTHEAST NUCLEAR ENERGY CO.
To:
Shared Package
ML20198B443 List:
References
97-SDS-1760-M2, 97-SDS-1760-M2-R01, 97-SDS-1760-M2-R1, NUDOCS 9801060319
Download: ML20198B449 (37)


Text

- _ _ _

    • , / ,

TotalNumberof Pages: 37 Venfied Revis o Millstone 2: Pressure / Temperature Limit Curves for 20 EFPy 8L d DateJAbi[dh ,

TITLE 97 SDS 1760-M2

  • 01 N/A CALCULATION # REV# Vendor Calc # '

System RCS _

Structure CS Component RXV

[ Executive Summary l This calculation provides composite RCS pressure temperature limits in terms ofindicated pressurizer pressure and indicated cold leg temperature. Rese composite RCS pressure temperature limita are applicable for 20 EFPY and are for use in the Millstone Unit 2 Technical Specifhtions. In addition, the calculation provides unadjusted reactor vessei beltline pressure-temperature limits for use in the low temperature overpressure protection (LTOP) evaluation.

Revision I updates P/T limit curves to reflect new heatup and cooldown rate requirements and to incorporate new pressure

' correction factors.

De analysis assumed specific reactor coolant pump operation to minimize the impact on the operating windows which need to be compared to technical specification and operational requirements For cooldown no reactor coolint pumps (RCP's) will be allowed Gr temperatures below 150*F, two RCP's may be used between (and including) 150*F and 200'F, three ZP's may be used above 200'F and below $00'F, and four RCP's may be used at 500'F and above. For heatup, two RCP'. .nay be used for temperatures below 200'F three RCP's above 200'F but less than 500*F, and four RCP's at 500'F anc' above.

The reactor vessel beltline niaterials satisfy the RTpts requ%ments of 10CFR50.61 up to 32 EFPY.

Does thL calcul6 tion: , j'

l. Support a DCR, MMOD, an independent review metnod for a DCR ,or confirrri test results for Yes QNo @

an instal!ed DCR7 If yes, indicate the DCR, MMOD number an&or Test Procedure number,

2. Support independent analysis? If yes, indicate the procedure, work control or o'her reference it Yes QNo @

supports.

3. Revise, supersede, or void existing calculations? If yes, sidicate the calculation number arid Yes ONo S revisions.
4. Involve QA or QA.related systems, compe: ' nts or structures? Yes @No O
5. Impact the Unit licensing basis, including C hnical specifications, FSAR, procedures or Yes @No O licensing commitments? If yes, identify appropriate change documents.PTSCR 2-17 97
  • is8ce e. 9 'l - Ht?.- \7.*1 Approvals (Print / Signature)

Preparer: Date:

Thomas A. Steahr f/ms () k(~, ~

. /W/ 7/97 Interdiscipline Reviewer: Date:

N/A Discipline:

l Interdiscipline Resiewer: Date:

j N/A Discipline: /

Independent Reviewer: Date:

h/[ff

/

Craig D. Stewart . -.[W Supe visor: .

' Date:

! Nelson F. Azevedo whMk m

icf17/77

~

RECD in m 47 9001060319 971229 DR ADOCK 0500 6 CTP N 9 7 p ff j. DCM FORM 5-l A

_tmRcowwumL_/M L1ok21

,, y c

, l*ft 2.*f.T3 Number of Cale Pages: 26 ~

REC'D 5 9 ,y Number of Anachment Pages: 15 TotalNumber of Pages: 41 CTP 4.)g g CTP QC P@- 97 NRP_ kg. yy Millstone 2: Pressure / Temperature Limit Curves for 20 EFPY )

TITLE 97 SDS-1760 M2 0 CALCULATION # REV# Vendor Calc #

S) stem RCS Structure CS Componeut VES

[ Executive Summary J

~ The results of the Heat up and Cooldown analysis are plotted on pages 24 and 25. These curves are applicable up to 20 EFPY, The reactor vessel beltline materials satisfy the RTpts requirements of 10CFR50.61 up to 32 EFPY.

For cooldown, zero RCS pumps will be allowed for temperatures below 150'F and and four pumps may be used at 150'F and above.

l For heatup, there are no restrictions on the number of RCP's because S .naximum pressure drop for two or four pumps was used in the calculations.

l Does this calcolation:

1. Support, a DCR, MMOD, an independent review method for a DCR ,or confirm test results for Yes ONo 0 an installed DCR? If yes, indicate the DCR, MMOD number an&or Test Procedure number.
2. Suppon independent analysis? If yes, indicate the procedure, work control or other reference it Yes ONo a

! supports.

~

I

3. Revise, supersede, or void existing calculations? If yes, indicate the calculation number and . Yes ONo a revisions.

i 4. Involve OA or QA related systems, components or structures? Yes SNo O

5. Impact the Unit licensing basis, including technical specifications, FSAR, procedures or Yes SNo O licensing commitments? If yes. Identify appropriate change documents.

Approvals (Print / Signature)

Preparer R.J.DeRosa W 4. 7)e A m ,

Date: y/ri/9 7 Independent Reviewer P. C. Godh'a - , /-fo c . C - Date: 4/vy /f7 i Supervisor N. F. Azevedo MAeL Date: 4lw/ty ~  ;

t- =

l L NUC DCM FORM 51 A l Rev.04-

o j a

hty Of

' CTP DATA BASE INPUTS Page: of 3 3 Calculation N' umber: 97 SDS 1760- M2 Date: IQ/ 17 /97 (prefix)- (sequence (suffix) Revision: 0/

number) '

Vendor Calculation Number /Ot' n eti N/A CCN # - .N/A QA g Yes DNo Supersedes -

Cale: N/A Superseded By: N/A Discipline (Up to 10) N,R,L Unit EWR Number ComponentId Computer Code Rev.

  1. / Level

~

M2 N/A H1 ABAQUS8 Ver.

PMMS CODES

  • Structure System Component Reference Calculation Rev #

, CS RCS RXV 95 SDS1008MG 1 M3 LOE-284 EM, 2 PA XX XXX 1003GE . 2 PA XX-XXX 9990E 1 95 SDS1007MG 1 PA XX-XXX 573GE I N PENG-CALC-003 1 96 ENG-1399E2 0 l

'The codes required must be alpha codes designed for structure, system and compon:nt.

Reference Drawing Sheet Rev.#

25203 29139 23 5 s

Comments:

' ABAQUS is not maintained as a Q/A Software program. However, results have been verfied elsewhere s

usingVISA code and usinF ANSYS ver $.2. ANSYS results were within *2'F of ABAQUS results. ,

DCM FORM 5-1B Rev 05

~

7 97 SDS 1760-M2 Rev 01. / -

page 4 of 33 Rev.01

./'- Table of Contegig - -

Eggt Title page 1 1 Previous Title Page (Rev. 0)' ,

2 l

CTP Input Sheet 3  !

, ' Table of Contents 4 1

' Objective 5

. Assun.ptions 5

~

Conclusions -

7 I

Design Inputs 7 Method of Analysis 8 Calculations for Heatup 11 Calculations for Cooldown 14 Calculstions forisothermal Conditions 20 Calculations for Hydrostatic Testing ' 23 Adjustments for Plotting - Normal Heatup 24 Adjustments for Plotting - Normal Cooldown 25 9

Adjustments for Plotting - Hydrotest 27 Minimum Limitations Based on 10CFR50 Appendix G 28 Composite RCS Pressure-Temperature Limit Figures 30 Review of RTpts for 32 EFPY 32 References 32 LAppendix A - Discipline Review Form Al-A2

' Appendix B - ABAQUS Output (3 Fiche) B-1 Appendix C - Resolution of Contingencies in Reference 2 .,

C-1 TOTAL PAGES = 37

- w - ye-

_.__7_._._..

< =

, ; 97 SDS 1740.M2 Rev 014 page 6 of 33

~

1 Objective c ney,03

. - The purpox of this calculation is to develop new RCS pressure-temperature limit curves for :  :

Millstone 2 for 20 effective full power years (EFPY) for use in Technical Specifications. ~ In 1 addition it provides unadjusted reactor vessel beltline pressure-temperature limits for use in the '

LTOP evaluation. .

> Revision 1 updates P/T limit curves to reflect new heatup and cooldown rate requirements and to incorporate new pressure conection factors. Additional documentation has been added to more l' 4

fully describe the methodology, assumptions and design inputs used .

These curves are applicable to normal plant heatup and cooldown, inservice hydrostatic pressae <

- and leak test Core critical limits will also be established. These limits will be developed in accordance with the 1989 ASME B&PV Code,Section XI Appendix G as required by 10CFR50

~ "~P Appendix G. - A supplemental normal cooldown curve will be developed in order to provide a  !

~

preevaluated condition if the normal cooldown rate should be exceeded for unexpected  !

- temperature excursions. Note: The adjusted reference temperatures utilized have been calculated  :

Lin accordance with Regulatory Guide 1.99 Rev 2 and are applicable to 20 EFPY.

De resultant technical specification curves have been adjusted to account for instrumentation uncertainties in the temperature indication (T l l 5, T-125 and T-351Y) loops and pressure 1- indication loops (P-103, P-103-1, P-102A,B,C,D). In addition, the curves have been corrected for thermal hydraulic conditions including dynamic and static effects resulting from elevation .

differences and RCS flow, in addition, this calculation will review the limiting PTpts to ensure compliance with

10CFR50.61 requircments for the beltline materials. ,

! Assumntions - '.

, The radial thermal gradients produce a compressive stress at the 1/4t location during heatup.

Even though this compressive stress would tend to resist crack opening, no credit will be taken for

' this beneficial condition. The stress intensity factor for the radial thermal gradient will, conservatively, be taken as zero. Note that the cladding is modeled in the thermal analysis but no credit is taken for the cladding in the stress analysis. The heat transfer coefficient which was used between the fluid and the cladding was taken as 10,000 Btu /hr-ft2.oF and the OD was
conservatively assumed to be insulated.

The heatup and cooldown rates chosen for evaluation represent rates which will provide operational flexibility without severely impacting the operating window or the LTOP setpoint. The c following tables provide the maximum heatup and cooldown retes as a function of both indicated and actual cold leg temperature. Acceptability of these rates will be slemonstrated by the LTOP evaluation. He transient temperature range was chosen to ensure that sufficient information wou' be available to accommodate an indicated minimum boltup temperature of 70*F and pressure in -

normal operating range. The indicated temperature was established by adding the 10.5'F instrument uncertainty to the actual temperature, o

Heatup Rates for MP2 through 20 EFPY for Normal Operation 5

Heatup Rate ('F/hr) Applicable Temperature Range l: Cold Leg Temperature, T. , 'F Indicated'(Actual) 30 70/(59.5) s T, s 220.0/(209.5) 50 - 220.0/(209.5) < T, s 275/(264.5)

,- 100 275U64.5) < T, s $60.5/(550)

)

- .- - _ , - _ . _._u., _ . . _ _ _ _ _ _ _ _ . . _ _ _ , _

.s -

- l97 8DS 176H42 Rev 01

. e page 6 of13

.2 -- * , .-. . --

. Cooldown Rates for MP2 through 20 EFPY for Normal Operation .,,,, .

Cooldown Rate (*F/hr) Applicable Temperature Range -

Cold les Tempersture, T. ,'F

' Indicated /(Actual) '

80 230.0/(219.5) s T, s $60.5/(550) 30 70/(59.5) s T, < 230.0/(219.5) j

- An additional cooldown scenario was evaluated to provide for unanticipated temperature .

excursions which could result in exceeding the normal operat:on cooldown rates and to provide i operational flexibility during mid loop operation. Use of this curve should be limited to

- mid-loop or vented operation and unanticipated short duration ~ temperature excursions due to

-swapping of heat exchangers, initiation of shutdown cooling, etc. The rates analyzed i9 resent a

. linear cooldown scenario. Again, these rates are not intended for normal operation or anticipated operation but are intended to provide additional flexibility during operation with an -

- established vent path. The applicability of these scenarios to LTOP will be addressed in the

- LTOP evaluation.

Cooldown Rates for MP2 through 20 EFPY for Unanticipated Temperature Excursions and  :

Vented Operation' Cooldown Rate ('F/hr) - . Applicable Temperature Range Cold Les Temperature, T , *F Indicated'(Actual) 80 - 230.0/(219.5) s T, s $60.5/(550) 50 70/(59.5) s 7, < 230.0/(219.5)

Development of the rate restriction for the composite Technical Specifications Limit Figures identified the following:

s 5'F/hr when not vented for indicated cold leg temperature < 100'F' s 50'F/hr when vented for indicated cold leg temperature < 190'F 1These rates will be confirmed for acceptability by the LTOP evaluation.

L_

9 To maximize the RCS operating window ahd minimize the negative potential impac_t on the LTOP setpoint, reactor coolant pump operation was restricted at low RCS temperatures. The

., indicated temperature was established by adding the 10.5'F instrument uncertainty to the actual temperature.

RCP Operation for Cooldown .

No, of RCP's Operating - Cold Leg Temperature dange of Operation, T.,'F, l

- Indicated'(Actual) 0 Tc < 150*F/(139.5'F) 1 2 150/(l39.5) s T,5 200*F/(l89.5) -

'l 3- 200'F/(189.5) < T, s 500'F/(489.5) l T 4* Tc > 500/(489.5)

' *This value is presented for completeness but does not impact this analysis.

t

-+ ~ v -r-w-O w .

~ . _

____._._..,7-a 97 SDS 1760442 Rev 01

  • page 7 of 33 Rev. 01 RCP Operation for Heatup ,

No. of RCP's Operating Cold I eg Ternperature Range of Operation,T,. 'F ,

Indicated'(Aenaal) 2 70/(59.5) s T, s 200/(189.5) -

3 200/t189.5) < T, s 500/(489.5) _

4' Tc > 500/(489.5)

'This value is presented for completeness but does not impact this analysis.

The isothermal curve adequately represents a cooldown rate of s 5'F/hr.

~

Conelusions These curves provide RCS pressure temperature limits consistent with the requirements of the 1989 ASME B&PV Code,Section XI Appendix G as required by 10CFR50 Appendix G, The results of the Heatup and Cooldown analysis are plotted on pages 30 and 31. These curves are applicable up to 20 EFPY and represent indicated cold leg temperature versus indicated pressurizer pressure. These curves are for use it?. the Technical Specifications.

The reactor vessel beltline materials satisfy the RTpts requirements of 10CFR50.61 for 32 EFPY, Desian Innuts Vessel Matenal: SA 533 Gr B, Class I (Reference 1)

Vessel Clad Thickness: 5/16" (Reference 7)

Vessel Clad Material: 304 SS (Reference 10) i=8425 Min. Vessel wall thickness (in) (Reference 7) a . 86.312 Vessel inside Radius: excluding cladding (in) (Reference 7) b :- t b - 94.937 Vessel Outside Radius (in)

ART 25 = 145.0 - Adjusted t/4 RTndt (*F) at the end of 20 EFPY (reference 5, page 18)

ART 75 = 114.5 Adjusted 3t/4 RTndt (*F) at the end of 20 EFPY (reference 5, page 18)

RT ndt = 30 Limiting head flange and vessel flange region RTndt (*F) for -

minimum bolt up requirements (reference 3, page 6, wire heat No.

90099)

Reactor vessel design pressure - 2500 psia (reference 10)

Nominal Opemting Pressure - 2250 psia (reference 10)

- Maximum heatup and cooldown design rates are s 100*F/hr for the reactor vessel (ref 10),

based on structural and fatigue considerations. ,s The pressure-temperature limit curves were developed based on reactor vessel properties and apply to the entire RCS. The heatup and cooldown rates apply to the entire RCS except the pressurizer which has heatup and cooldown rates of 100'F/hr and 200*F/hr, respectively, as specified in Design Specification No.18767-31-4, Figures 3 and 4 (ref 19).

)

  • - 'I 97cSD!$1760-M2 Rev 01 page 8 of 33 Indicated Temocrature Uncertainties Rev.01 .

c Based on a review of references 9 and 11 the bounding temperature ut, tainty for.

temperature loops T 115. T-125, and T-351Y was found to be 10.5'F.

~

T$mperature Uncertainty : 10.5 'F Indicated Pressure Correction Factors (IPCF)(Table 3. Reference 2)

Based on a review of references 12 and 14 the bounding pressure uncertainty for

. pressurizer pressure indicator loops P-103, P-1031 and P-102A,B,C,D was f oun d tobe 57.6 psi. This value was used as input to reference 2 to generate the following Indicated Pressure Correction Factors.

For zero RCP's, IPCFORCP = 86.6 (psi) ,

For two RCP's, IPCF2RCP = 11! ' (psi)

For three RCP's, IPCF3RCP = 127.6 (psi)

Yield Stren The yield stress, a3 ,(ksi) for the beltline matetial temperatures, Ty ,(*F) will be taken from ASME Section 111 (reference 18). Note that this data is for unitradiated material. This is conservative because the yield strength will increase due to irradiation and lower yield strength is more limiting for the calculation of stress intensity due to membrane tension, which is the only place where yield stress is used in this calculation.

  • : 1.A T,s y a,s y ,

W M M M M N W U Material Properties fof ABAOUS Heat Transfer Analysis Material properties of thermal conductivity, Te, and thermal diffusivity, Te, are obtained from reference 22. Material density, d,is obtained from reference 23 for vessel cladding. Material density for vessel wall is given as 490 lb/ft3 (ref. 24). 489 lb/ft3 is used in the analysis. The difference is insignificant. Specific heat is calculated using the following equation (ref. 22):

Specific Heat = Te/(T4 'd)

Method of Analysis The development of composite RCS pressure-temperature limits were comprised of three different steps. The first step was to develop reactor vessel beltline rosure-temperature limits. The beltline pressure-temperature limits represent the comrolling location in the -

reactor vessel as indicated by References 15 and 16. Note, the unadjusted beltline limits

- for use in establishing low temperature overpressure protection requirements are provided as part of this calculation. The second consideration is the additional temperature restrictions required by 10CFR50 Appendix G (ref. 20) and ASME Code Section Ill(ref 22). The limitations generated by tlese steps are subsequently corrected for lustrumentation uncertainties associated with the temperature and pressure indication loops l- Land thermal hydraulic effects which account for flow and elevation differences between the reactor vessel beltline and the pressurizer as appropriate. The las; step is to develop composite RCS pressure-temperature limit figures which utilize the most limiting

!- requirements in the Technical Specifications.

f 0 97 8DS 1760-M2 Rev 01 page 9 of 33 Rev.01

- Reactor Vessel Beltline Prenure Temperature Limits

'In developing the reactor vessel beltline pressure-temperature limits, a transient heat .  ;

transfer analysis was performed using the ABAQUS general purpose finite element l  ;

analysis code. 'A nine element (one dimensional heat transfer elements), ten node model (input deck included in Appendix A) was used to model the thermal behavior of the vessel : J wall. Nodes are located at the following locations: at the ID, at the cladding / base metal - -

interface, at 1/8,1/4,3/8,l/2,5/8,3/4 and 7/8 of the base metal thickness, and the OD.

The ability of the this code to accurately predict the through-wall temperatures as a . .

function of time has been verified using the VISA code as documented in Reference W. i Note that the cladding is modeled in the thermal analysis but no credit is taken for the cladding in the stress analysis. De heat transfer coefficient which was used between the .

_ fluid and the cladding was taken as 10,000 Btu /hr ft2-F and the OD was conservatively +

assumed to be insulated with a film coefficient of zero. De fluid temperature, Tr, was

- calculated by interpolating between time steps. Interpolated Tg values are essentially

- identical (within 0.2*F) to node I temperatures.

The ABAQUS through wall temperature output (microfiche output included in Appendix B) was used to develop the allowable reference stress intensity factor (ksiVin), g K ig, and the thermal stress intensity factor (ksi Vin), KiT, in accordance with the 1989 ,

ASME B&PV Code,Section XI, Appendix G as required by 10CFR50 Appendix G. '

Paragraph G 2110 of reference 4 provides a relationship for Ki g which is a function of the adjusted reference temperature (ART) at the postulated crack tip locations and the actual crack tip temperature.

K ig = 26.78 + 1.233eomiwr ART +i@ ksiVin In the calculation of K g, i a one-quarter thickness ID and OD flaw was postulated in accordance with paragraph G 2120 of reference 4. The stress intensitv factor due to the radial thermal gradient, K iT , is computed using the temperature difference across the wall (i.e. base material) as provided by paragraph G-2214.3 KIT = M[

  • AT - ksi Vin For normal plant heatup and cooldown the allowable pressure was developed to satisfy paragraph G-2215 of reference 4 and are written to compute the' allowable stress intensity due to membrane stress, Kju.

K iu = (K gi - K )/2 37 ks1 Vin .

For hydrostatic and leak tests the allowable membrane .; tress intensity, Ki u, is computed using K iu = (K gi -K )/1.5.IT As there are no bending stresses on the reactor vessel stress

can be computed using

8 m23" KIM /M in ksi ,

s Knowing the maximum allowable stress the allowable pressure (ksi) based on thick wall vessel theory as provided by reference 21 is computed using the following:

j2 ,2-O m-4 2

Phu " x 1000 psi 62

'7  ;

i

.s For heatup, the 1/4t and the 3/4t flaw will be eva!uated. For cooldown, only the 1/4t flaw  :

needs to be analyzed because the thermal gradients produce tensile stresses at the inside

surface (the thermal stresses at the 3/4t location are compressive) coupled with the higher  ;

embrittlement of the 1/4t with respect to the 3/4t location. These are compared to the isothermal 1/4t pressure to produce a composite beltline curve.

.y 974DS 1700 M2 Rev 01 - page 10 of 33 ~

3-

' '~

Rev.01 Additional Restrictions 4 a.

The following additional restrictions are requirkd by 10CFR50 Appendix G and ASME Code Section III Appendix A,Section XI Appendi). O to be included in the pressure temperature

, ~

limit calculations ~ s l

v Minimum reactor bolt up temperature it based on ASME Section XI Appendix 0 and ,

conservative relative to 10CFR50 Appendix 0 requirements.

20% Preservice Hydrostrtic Test Pressure based on ASME Section III.

Lowest Service Temperature as required by 10CFR50 Appendix G.

- Criticality Limit based on 10CFR50 Appendix 0.

. . . All pressure and temperature restrictions are adjusted for relevant imcertainties for use in the f Jcomposite pressure temperature limit curves.

J Composite RCS oressure-temocrature limit ficures The composite heatup pressure temperature limit (Figure 3.4 2a) is developed considering the limiting requirements from the following components:

,. 1. The adjusted reactor vessel beltline pressure temperature heatup limit from page 24.

2. The adjusted hydrostatic pressure test limit from page 27 and Core Criticality limit from

. page 29.-  :

3 The minimum temperature restriction required by 10CFR50 Appendix G and Code ASME

- Section III and Section XI including minimum reactor bolt up temperature,20% . -i Preservice Hydrostatic Test Pressure, Lowest Service Temperature. j

[

The first two items define distinct lines on the heatup pressure-imp:.ature limit figue. The i third item defines temperature-pressure restrictions which can not be exceeded by the first 1 two items. The data for the first two items are plotted and a smooth curve is drawn to bound the data. The curves are then notched as required to reflect the third item.

The composit'e cooldown pressure-temperature limit (Figure 3.4-2b) is developed

. considering the limiting reouirements from the following components:

1. The adjusted reactor vessel beltline pressure temperature cooldown limits from pages 25 and 26. .
2. Core Criticality limit from page 29.
3. The minimum temperature restriction required by 10CFR50 Appendix G and Code ASME - ,

Section 111 and Section XI including minimum reactor bolt up temperature,20%

Preservice Hydrostatic Test Pressure and Lowest Service Temperature.

l The first item def'mes two distinct lines on the heatup pressure temperature limit figure. The  !

second and third items defines temperature-pressure restrictions which can not be exceeded

by the first item. The data for the first item are plotted and a smooth curve is drawn to bound i

- the data. The curves are then notched as required to reflect the second and third items.

t

~,. s

$ J . 97.SDS-1760-M2 Rev 01 ,

page 11 of 33 Calculations for Heatun at 30'F/br from 59.5'F to 209.5'F. 50*F/hr above 209.5'F to 264.5*F. and 100'F/br above 264.5'F to 550'F (temocratures and pressures are unadiusted)-Rev.01l Outout from ABAOUS code j = 1 ls Iw , *F v *F T T timej = T fluidj = T clad, = T25j = T T o p,=-

73; =

E 79.T 5930' E 5730' 5T55' -

UT TT3- 5933' ET9F 52RT 5I2T UT TT5' EU N 7337 59 W ETK TT '933~ YIT5" ET'IT 7I3T 77 N '

TT TUTJ TMT 97U5" B9'UT' IE W 2T ITT5 TTET' TUIT TUUT Y9 W 2T UT3' T2 M 170T '

TITT TTUT

'~7 ~ ~ 2T TIT 5 TET MT T2TJ T227

~~~

TT T3T5 TT2T TNT U3T TT W 3T T575 T3TT IT6T TITT TTIT M T795 175 U" T6 M T31T T!7T IT T9TT 11T0' TIUT 170T T39T IT IUT5 200T TV2T TR2T TITT 57 2T75 2T37 2DTT TUIT INT 5T 2375 273T 223T 2 TUT 209 7 ST 259T 253 7 NTT 22iT 22TT 5T 29T5 NET 23NT N97 N7.7 5T ITTT 32TT IUIT 278 7 27TT Vessel WallTemperature vs Time 300 ,. /

T fluidj ,

T clad- .'/

0

, . . ,'/

T 25j -. . , ,- ' '

l

. 22 -

T 75;

-a'J..;

T 00,  ;* : C .;g * . ,

S' y .

' . . .; - l im ,, ,

0 I 2 3 4 5 6

'inej ,

s Governine Ecuations (trom reference 4)

Delta T AT3 =T ci,4, . T op, i .,

i

m o . I' 97.SDS 1760-M2 Rev 01 page 12 of 33 ,

Rev'01 Stress Intensity Factor Due to Radial Thermal Gradient M 0.344 .K IT75j .* Mt ATj K IT25j

  • O Reference Critical Stress Intensity Factor K IR25 'i 26.78 + 1.233 e j

I *'i' * ) KIR75 j* 26.78 + 1.233 e "J

f Stress Intensity Factor Due to Membrane Tension (conservatively taken as zero for the 1/4t flaw)

IT25j K1R75j - KIT 753 K1R25)- K KIM25j

  • 2 KIM75j
  • 2 Membrane stress K IM25 g k=19 M m25g s 2.77 o m25 k M m25 g K IM25 I = 10.12 Mm25, a 2.79 a m25, '. M m25,

. K IM25, m 13.18 M m25, a 2.86 eo m23,

  • M m25, Kgy73, n 1. 6 m75, a 2.77 o m75,
  • M m75, K1973 P , 7.14 M m75p i 2.79 o m75,
  • M m75 p

K IM75 q = 15 18 M m75, = 2.86 c m75,

  • M m75 -

Allowable Pressure calculated using expression from reference 21:

a = 86.312 b = 94.937 r 75 = 92.781 r25 = 88.468 b

2 ,2 b2 . ,2 N 8 m25j ' ,2 8 m75j ' ,2 P hu25 1000 psi P hu?S 1000 psi i 2 i 2 1bt 25, Ib 2 t r 73

  • t 97oSDS 1760-M2 Rev 01 page 13 of 33 Heatun: Summarv of Results for a 1/4t Flaw (temperatures and oressures are unadiusted) ksiVin ksiYin ksi Vin ksi ksi i psi

'T 'F y* *3 J Tfluids ATj K IT25j K K IM25j 0m25j M m25j j P hu25j 1R25) 59.5 0 0 30.41 15.21 5.489 2.77 W Il 535 7T.T" T4T" U 3tr7T T337 333T I 77 W 0.110 3TI-13T T230 U TT3T' T537 3TW II7 W UTTT 35T -

V5T TU3 U 72 7 TN T7F 777 W ETT7 TW T073 TG U 170T TDI T95T r77 N ETTE 31T TTV3 TN U 3UT TW TTF r/7 N U'T76 30T T3D T73U U 753T TU7 TTTT T17 N 033T IF TU3 TM U 37.70- Tm T7W I77 N D'T75 TW T3T3 TfUU U TVTT T93T TUF 177 N N 6T9'"

T573 TUU U TT3T 70 75 W O- r17 N ETTU 723-1793 TG U TT F 727T 7.73T I7g (TTT -

mi 77r 17T3 133U U 176T 733T T3TT U M UTET TIT 7033 Tm U 3T3r ID9 EUTT ITE N ETTT TW YT93 Ti'UU U 37UT IT37 V77F M N U399 97T 73U 7m U 33 F 32'i7 TTT99 m N EU TT1T 7593 77JU U 779T 3M T7527 N N E25T 1729 79U 7530 U TUUU 3ITU T7357 m N U. TOT T7T3 im U TF4T 7527 73'30T I55i N 0395 753T

[33T3 -

U39T Hestun: Summary of Results for a 3/4t Flaw (temperatures and nressures are unadiusted)

'F *F ksi Vin ksi Vin ksi Vin ksi ksi psi 0 5 75j T fluids K IT75j K KIM75j 0 yj P hu75j ATj IR75) m75) M m75) 59.5 0 0 32A3 16.22 5.854 2.77 50.00 Il 600 7TT 7'ir 735 TTW TN TTW I 77 3N 0.117 TIT IIT T23U T.TT 733T" TT3T T73T 7.77 Tm U309 33T 73T Tm IUT TTIT Tm T7W I77 TD UU ETOT Tir TU73 Tm 33T T53F TN T39T r17 T73T GT T5T TTV3 TIUT TIT 3F9T TI3T 33TT 777 773T UITT 575

TIT 3 T73U TUT TITT- TU7 TTW I77 T73T UTIV 30T TU3 TM ETT 1 TUT TM T2W I77 171T ET25 TTT' T533 TN 3'TT TTW Tm T72T- DV TITT UT37 3W T573 TT3U UT T6TT 2031 72ir r77 TT.T5 UTU 74T 1793 TUU E2T TU"E IDU 775T I77 T73T ET3I TTT TVT3 TUU UU- T320- Im TJW I 77 . TITT ETE7 TOT 2033 IUU 33T TUTT 2737 V7:T TIF T5'2T ETTE 79T IT93 2TDU T.2T E73T 3N TOT 7T I77 Tm E7TT TTUT 2373 Tm TIT 7T4T TG TTU27 236 '432T E23T T237 759 3 7735 V3T VT9T WITT TU99 M Tm E2T6 T376 79U Tm T3JT TT3T5 3M TNI II5 T32T U3TT TTU l 73U TG TN TET47 Trl7 IITTT M TG E797 760i E377

s

.. t 97 SDS 1760-M2 Rev 01 . = page 14 of 33 Calculations for Cooldown at 80'F/hr from 550.0*F to 219.5'F and.30'F/hr below 219.5'E,, Rev.01

. - to 49.5'F (temneratures and nressures are unadiusted)- %

Outout from Abacus code- J .1 17 hr.- 'F 'F 1 .F*

'F >

timej

  • I uided fl cl e T23j = Topj e je 7 ad, IT 294T TUTT 775T II3T Temperature Distribution Thru Wall
. IT 257tr 77TI -

29TJ 3277 4M ,

W 275 7 2397 NIT 27JT j (T 2TTT '

IUT 275T NUT us

& TWT 203T 2Tf7 . 7.fT s 57 '

TT7T T9TJ 757.T ' TT A '33o

).

5T 175T TNT T19T FNL

'. I ET TETT T37T T76T TUT ^ ,3

)s \. I GT TTIT T3TJ TETT T7TT -

ET T79T TUT TITT TU27 8*> - . \!.\ ' %. I 260 TJ T2TT TIIT TW.T TWT 7T TUT TT9T T2TJ T37T Ir~a,

.. .,y,,),

'. \ ., ' ,

225 IT TU3T TU7.T TT3T T2iT T253 ,s ET 7T'IT 95:0 7 TUTT TTIT -" N

'y i.- g 79 y gy g gy g 7g;y Too; - i,o -

' Q,

~

  • 77 57 N 7 TUT 79 E E9'7T s, l ,

UT 5 TIT EDT 77 N iss ,O j 66"99" i

no  ;

l % '.J; '

?

,N '

i 85

.s . -

3 32 4 43 '4 6 7.2  : 94 mj Linear interpolation between the two lowest data points is used to obtain through wall temperatures corresponding to Triuided = 59.$'F Tfluidedg= 59.$0 Tclado= 63.10 T23p 71.06 ' T oo =g 81.30 Governine Eauations (from reference 4. Anoendix G)

Delta T ATg -= lTclad,- T on]

Stress Intensity Factor Due to Radial Thermal Gradient M t= 0.344 Kg1 j = Mt AT)

Reference Critical Stress Intensity Factor -

'K IR

  • 26.78 - 1.233.,"Y25,- ART 3. t

' y

%,/,

l I

-.4" r--

g

" 3 97 SDS 1760-M2 Rev 01 -

- s page 16 of 33

.3- . ,

Stress Intensity Factor Due to Membrane Tension - g,y, ,3 m

KIRj - KIT Kgy . 2 For a 1/41 flaw Membranc stress , ,

K jy, kei Mg 2.87 e g*y F '

K gy,  ;

I26 M = 2.83 ,o m*y -

K gy, m e 7.13 M m, = 2.78 o m,

  • y ,m Kgy, n a 14.17 M m,
  • 2 % 8 m,
  • y m, Allowable Pressure

[

a = 86.312 b = 94.937 r 25 = 88.468 for a 1/4t 11aw b2 ,2 8 m'j ,2 P 1000 psi ed, = - 2 1- 2 r25 6

O 9

s

.s o

T.

.. ~. . , . - , .

p___._ _ . _ _ _ _ . - .._ _ _ _ _ . _ _ _ _ _ _ _

l

^

97 SDS-1760.M2 Rev 01 page 16 of 33 1

Cooldown at 80'F/hr to 219.5'F and 30'F/hr to 59.5'F: Summary of Results for a 1/4t Flaw Rev.01 (temperatures and Dressures are desdiusted) j

'F 'T ksiVin blVin biVin ksi ksi psi T K(Tj KIRj K IMj 8 m j

M m;

Y*J "J P cd, fluided) AT) 294.0 52.00 -

17.89 200.65 91.38 31.840 2.870 N Il 3105 76TU TN TI75 T7 m Tm 70T57 IT3U 3E2T 0.70 7077 73U'5 Tm , TI5T T5'2T Tm TI72T IT3U II2T g , T37I 7 TIT Tm >

Tm T4 W 7m TUTJ7 IT3U IT2T G TU27 T997 TN TOW T3N 7m V27T ITJU EIT G W ETT TIIT 76'TU T9T T5W IT5T T307 II3U G TTO' T757 7TIU Tir TUW 7T47 T7DT M ET5' W 75T TET 75'95 TTV' 75Y 19'69 TOTT I7tU 'N G T9T  ;

TITT TG T78- 1T26- TT7T TJ6T I75U EIT G TitT T79'T TG TNT WIT 'Tm TITT T.7gg ETT U TT 796~

  • ~ ~

177T Tm TTT 3DT TN T73T 77gg ITIT m 757

~ ~ ~

TT57 TG T33- YTT TIOT T4TT ,

N 3 TIT G 77T TU37 Tm T3T 7T9T Tm TTir 7 715 EIT G 5DT F TTT TI37 T3T 7T6T T3T5 T977 I76U N G 4TT 79T Tm T27 ~3T57 TIT 7 T.75T I 755 N G 76T TTT Tm T27 T3tr TT67 T519'  !.76U N G '33T 79:r Tm T2r 77.UT Tr4T TT9T I 765 N G 13T G

I O

  • 9- l 97cSDS 1760-M2 Rev 01 Pope 17 of 33 -

e Calculations for Cooldown at 80'F/br frogi.ff0.0'F to 219.5'F and 50'F/hr below 219.5'FRn.01 .l' Lo 49.5'F (temneratures and nressures are un adjusted)

Outout from Abacus code ^

1. 12 hr 'F 'F 'F . 'F time , T T j fluidedj = T clad, a 23) : T oc) =

II 2III N EI IIII T*.mperature Distribution Thru Wall IT 252T 271T 29TT 12TI 400 >

W 23UT 239T 2b N 290 7 E 205T 2TCT 273 7 259 7 365

- - U TT5T T937 7Tr7 277T s

_._.,._ , ' 57 TE.T 172T TITT 20!T no 5T TIET T37T T577 TT3T 's , s ET 175T T37T TT5T T5TT ' '

295 ET TU5T TT7T T75T 177 7 ET E5 K UI2T TUTT T237 7""#J

  • ' '.\. 's 's'I','\ s 77 55 K 7TT3" E3 57 TD7T T ei,aj .,;' s T, 1 7T 5E K SITT 733T #7.77 .. '.' \s -s j I T 25) 225 sA N

. g  %,

Topj 190 ' - ^-

.)N s s .' t is s'

4 5 6 7 timej Linear interpolation between the two lowest data points is used to obtain through wall temperatures corresponding to T ;uided = 59.5'F T fluidedl2= $9.5 Tclad12= 65.57 T2512= 79.01 T 96.25 09:2 Govemine Eauations (from reference 4. Annendix G)

Delta T AT) = lT clad, - T0D] 3 Stress Intensity Factor Due to Radial Thermal Gradient M i= 0.344 K ir . M Ai T) s

' Reference Critical Stress Intensity Factor K

1R; a 26.78 'l.233 e "iI l

l.

97 8DS 176M42 Rev 01 -

' page 18 of 33...

. 5- .;. -

i ^' -

. . Rev.01 Stress Intensity Factor Due to Membrane Tension K IR-K 3 IT' For a 1/4t flaw K gyj . 3 t

Membrane stress Kgg ki1 Mg 2.88. e e y l t

K gy, I 2. 9 M q ,2.83 e o q=y Kgy,

, m =10.12 Mg e 2.78 o g=y s

Allowable Pressure a = 86.312 b = 94.937 r 25 = 88.468 for a 1/41 flaw b2 , ,2 8

m[ ,2 ,

Pcd2j

  • 2

'IM Psf I+b 2 f25 i-4 O

d

97 SDS 1760 M2 Rev 01 page 19 of 33 Cooldown at 80 'F/hr to 219.5'F and 50'F/hr to 59.5'F: Summary of Results for a 1/4t FlawRn. 01 (temperatures and pressures are unadiusted)

'T 'F ksi Vin ksi Vin ksiVin bl bl - psi fl I uided; 3 K ITj K IRj K IMj #mj M, m y*j "j Pcd2j 294.0 52.00 17.89 200.65 91.38 31.729 2.880 N Il , 3095 7EU 3TIU TG T3TN 3G 7(TIT 7 Ii3U N 0.70 7637 73U'U TTUU T737 7327 liR 1772T TIE .N M T33T 7U57 TW TM N 7m T99T ITJU N G T75' T8U 793U T337 39.VT 727T TUtr II3U ITIT G '7E5' TET 3M T73 '302T TM T7TT IT3U ITT5' m 555-175T 3M TTM TTOT Tm T75T 7.13g 3TTT G T67 N

T7D 72 TU TTN 77TF TT27 TU4T Ii3U G 197 TET TUU Tm TDT TI75 T3DF 7.13g -

4TTT m Tjy T5T TOW TG 73TT TTIT TI7T I75U W G '3DT TD'  !OM Tm TEOT TU3 THET I75U W M TIT TUT 70R TU35 TW Tm T7ET 775U W M '3PT g

.,,_ g 07+SDS 1760 M2 Rev 01 .

page 20 of 33 Calculations for Isothermal Conditions (temperature rate s 5'F/hr) Rev. 01

j = 14.42 T-Tfluid0j * ,

33TJ Where: - -

II2I T25j ' 7 fluid 0j 1575 2WT 230F T op) : T fluid0j ygy 2TTT -.

~

205T

. 2DTE TWT TVTT TI7T TIET 177T T757 T37T T55T TITT TT5T 15TT TIET TT3T T37T T3TT T77T T76T TTVT TTIT TUT 5 TU5T TUTT in U '

W B5 N N

79 R yy y .

57 N 65 %

59 N

(

's

+

.g

..m.

oc A 97c.SDS 1760-M2 Rev 01

  • page 21 of 33 Rev.01 fagverninn Ecuations for a 1/41 Flaw (from reference 4. Anoendix G)

' Delta T- - AT) : o Bress Intensity Factor Due to Radial Thermal Gradient ' -

M i= 0.344 K gij= M g ATj Reference Critical Stress Intensity Factor

+

K IR25

  • 26.78,1.233 e' Y*#i '

j Stress Intensity Factor Due to Membrane Tension K1R25 j - KIT)

K IM25j

  • 2 Membrane stress K g:3)

J = 2 10 m, a 2.0 o m25j

  • y ,J k =11 21 K IM25 g M m = 2.80 o m25 g
  • g Mg K IM25, I a 22 33 M q = 2.78 o m25,* g K

m = 34. 42 lM25" M = 2.77 oq=

i y,3 K7M25 g Mm g= 2.93 o m25 g

  • M m_g_

Allowable Pressure a = 36.312 b = 94.937 r 23 = 88.468

  • s 2 2

- b-a a

m25j ,2 j = 1 42 P -

2 1000 psi CDO) "

" :' Ib 2 r25 t _ _ . .

w ___ _ _ _ __ _ _ ._ . _ _ . _ _ _ . _ . , . _ . _ ._ . . _ - . _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ . _ . ,

.m-.

q

- .., - . .-  ! 97.SDS 179H42 Rev 01 - page 22 of 33 '  ;

man (temmerature rate s: 5'F/hrh Sum =m of Results for a 1/4t Flaw -- Rw,01: J (temperatures and nressures are unadjusted) ,

l This table'provides anadjusted beltline pressure temperature limits for use in the LTOP -

j

' evaluation.J y Ly _ : kii 6' . kii 4 - kna AD kai ~ . kai l psi ' -

K gy K K "?j ' " J -- ,PCD0 Tfluid0j 1 '

arj . IR25p - 8'm25[ Mmf 7 IM25f 3H.S I o 222.601 ii1.300 37.986 E9'I E F'J Tioi m

. - 1983 U U 13o.uv os.zio TT552 (535' O.854 73U2  :  ;!

m 7ss'U U U TH3N e7.sie 77355 N U322 7239 i RIU U U vs.rzo 47.oio T5373 II9 N UTT9 T507 7593 -

U U W75T eo.392 T5152 II9 N U354 T555  ;

2393 U U 7ET3r 3s.ose TT173 ryg IT35' 035y TN5

' - . 7303 U 5 ov.sia 34.voo 17tI73 ryg 3535' N TT75 1 N

~ '

__ _. ' 7T93 U

U e3.735 31.so7 TIU77 759 0357 TU75 YTT3 U U 1733tr 712F TU3TT ITU N U343 TUU5 '

255'T U U E2Ur 2s.oos T19T 7 39 E53T U32I '95T R33 U U TirUIT zu.oez TUTTI ITU IT7T ETT9 17T T993 U U W30T 27.svo T7TT TEU ITTT E27T '987 TTT'5 U U -

TT30T 2s.702 T17F IIU 3III' D'205 "I9T T373 U U W987 24.vvi T92T ITU ITIT ETV5 '17tr TET - U U 'T934F 24.773 "ITil" IIU 'N ETIV WT 1797 U U 1747T 23.73o T17T IIU F*T FTIT -

"I7T 175N U U "E27T ca.i3s T25T ITU IT*T ETIU '505"

7573 5 5 RTET 22.os3 715T IIU -

ITT5' 0775 ygr  ;

4 T557 U U "43377 zi.voy TV2T IIU N UT57 75T TET* U -

U eITET 21.ss2 T70T ITU ITTT U TEE 75T 1753 U U 1T39tT 20.ovs T.39T IIU ITT5' UT57 TJr TTTJ U U 3074T 20.273 T29T I7I N 0 137 7TT T45T U U '39'52T 'TV.75t' TTUF I7g ITTT U Tyy ggt 1133 U U 77U57 iv.s2s TUTT 17g ITT5' UT5T '3IT T3F4 U U W31T iv.i7e TIVT I7T 3 TIT ET39 17T T3T3 5 U '3709tr is.34s T577 I7T IIIT ET33 "55T T273 U U  % 50T i s.2so T35T I 73 ITTT U T17 '53tr T253 U U '35'3TT is.ioo T337' I 75 3 TIT ET39 137 TT93 U U 3T43F 17.724 T375' I7g IITT ET39 "522" T15'.T U -

U 7433T 17.474 T2TT I 75 N D33T TTT TU73 U U 7TU5T 17.u32 TT2T I 75 N U'T37 . '593' TET U U '333fT 1o.939 TTUU' I7g IITT ET35 19T TUT'4 U U 76W io.s22 TU3T I 73 ITTT gT29 - 3gg-75T U

~

U TI9UT 1o.430 T937 I 77 N UTN T1F N

'9fT U U 7235T 1o.273 TI7T I 77 ETTP TIT N

"IET . U U 32.iis 10.039 T797 777 -

UTIT TET TJ"5 U U '3T32T is.voz T757 I 77 N ET1T TET WT U U '3T52F is. sis T70F I 77 N ETTI 357

"7FI U U '3T1UT is.ssi TETT 1 77 N ETTT T3r

- T7.T -

U U '3575T 13.427 T35T I77 N UTT7 T4T

'55T U U '3577T is.3s7 T35T I 77 N U'TTT '3TT *

'59T U U -

"3FTTI is.20e TWIF I 77 N ETTT 73T ETTU 1

I

~

- .m--+" wr.- m 4,. e w,**w.-w"

" '. 97 SDS 1760-M2 Rev 01 . page 23 of 33 Rev. 01 Calculations for Hydrostatic Testine (temoetstures and nressures are unadiusted)

Jil.4-Governinn Ecuations for a 1/41 Flaw

.T 'F Delta T ATj =0 TfMdhydroj = T Stress Intensity Factor Due to Radial Thermal Gradient 25; .

(Reference 3)

W M M N M = 0.344 M M g g b,ITj =M tATj Reference Critical Stress Intensity Factor J' "

K -

IR25) = 15.78 1.233 e Stress Intensity Factor Due to Membrane Tension K IR25j a lM25j

  • 3,3 Membrane stress K IM25j ,-

M = 2.86 o m25j

  • y Allowable Pressure a = 66.312 b = 94.937 r 25 = 88.468 b2 . ,2 0 m25j ' 2 3

P 1000 psi hydro,a 1g r25 llidr.Qttst: Summary of Results for a 1/4t Flaw (temperatures and nressures are unadiusted)

  • F 'F ksi Vin ksi Vin ksi Vin ksi ksi psi T K C Y= mSj fluidhydro; K ITj K IR25j m25)

J p hydro, AT) IM25) 250 0 0 84.290 56.193 19.618 N Il 1916 75U U U 97.75T ETT76 7T.74U N 0.434 717U 770 U U TUT 577 37097 7U3T ' N UT8U 77T6 7N U U TT5 67U 77037 2MI N U337 7579 g

    • 97.SDS 1760 M2 Rev 01

~

page 24 of 33

- Normal Hestun : Adigted W.lm for Plotting j = 1 20 Pna is taken as tac lesser value of pressure from the 1/41,3/o(30'F/hr to 220*F,50'F/hr to ""

275'F and 100*F/hr to 550'F), and isothermal calculations.. This table prevides unadjusted

'I P518 beltline pressure temperature limits for use in the Tu' h j Pu'h j LTOP evaluation.

39T 7TT E

T4r -

17T T39~

Tyr TTO- Values of temperature will be adjusted by 10.5' F to account for TU7T TIT instrument uncertainty.

TT9T 3 75".

TITT ~607 T hu j= T uh +j 10.5

  • Calculated values of pressure will be adjusted for indicated
  • # precsure correction factors (IPCF) and corrected by 14.7 psi

, g to absolute pressure. For temperatures of 200'F and below T79T W IPCWICP is applied. For temperatures above 200'F and TI9I W ,

below 500*F IPCF3RCP is applied.

TN97 127 .

k i I 12 1 = 13. 20 2DTI TIU" 2T9T 7/2- Puh g = Phug- 1IS 5

  • 14.7 P hu, = P hu, - 127.6 + 14.7 239T TT!r 259T TI27
  • To obtain a uncorrected pressure data point corTesponding 29TT T737 to the pump transitic,n temperature (189.5'F actual) linear 37TT 256T interpolation between the 179.5'F and 191.5'F data points will be used. This pressure will have the two and three pump corrections applied.

Tirans 189.5 T e Ptrans 822 psi Thus. for h,atun at 30'F/hr to 220'F. 50'F/hr to 275*F and 100'F/hr to 550'F: (temocratures and nressures are adiusted for use in the Technical Specification ficure development)

  • F psia Tu h j Phuj Draft Curve: See pg 30 for Final

- 2500 ,

70 '434 17 W 2400 2300 l l lf l , ,  ;  ; ;j g g 2200 , ,  ; , ,  ; gf TU6 W 2 III IIT 39), f I I m w i .=  ; ,

/ l 1700 T47 TUT ~ i j i i TIT TF l* -

i / .

i T66 TW [on i . I /I '

P ' ' '

T7i 32p

!/ ['/

huj 1300 195 373- '~~ 1200 , i l {

7UU 72T- ilm i -

, i i i l0U 709~ l i i , f6 I i I IU; Tpr

  • I i i 6 / i i i i m ,07 ,,,

vi i , , i i m

m T39-Tm W

>= l m,

l f[! .

i ,

l i

l l  !

l 77U TN 1 i . i . N i ' i i i '  ! ' ' i ' ' ' '

IUT T63U m ' ' '

3TI 7T52 100 [ , f 50 75 100 125 150 175 200 225 250 275 300 325 350 375 T

huj l

,, . ., 974SDS.1760-M2 Rev 01 page 25 of 33 Normal Cooldown : Adiusted Values for Plotti.in J = 1. 21 Pcdi s taken as the lesser value of pressure for the 1/41(80 'F/hr to 219.5'F and 30'F/hr to 59.5'F) Rev.01 and isothermal calculations. This table provides unadjusted beltline pressure temperature

'F psis limits for use in the LTOP evaluation.

T cd, e P cdj

  • T- 2970' 27T9' Values of temperature will be adjusted by 10.5* F to account for r 7570' T60T instrument uncertainty, y 270T TT7E' .

7 g g T cd, ' I cd j+ 10.5 T N # Calculated values of pressure will be corrected for the indicated pressure g correction factors (87.0 psi for zero pump operation below 150*F,115.5 psi

[

r T57T w for two pump operation for 150*Fs Tc 5200'F,127.6 psi for three pump r T75T 75r operation above 200'F), and 14.7 psi to correct to absolute pressure.

TU N W l. 6 m = 7 12 k = 13. 21 TT T5TT W l ,

Ty .

T79T W . Pcd, a P cd, - 127.6 + 14.7 P cd, = P cd, - 115.5 + 14.7 P cd, e P cd, - 86.6 + 14.7 Ty T79T W ,

T4 N W

  • To obtain uncorrected pressure data points corresponding to the pump TI transition temperatures (139.5*F and 189.5 actual) linear interpolation will H 75 g. g TUIT F be used. These transition pressures will have each have their relevant Tg UT tr W Pump corrections applied.

TV Ttrans2 = 139.5 'F Pirans2 = $96 psi 7T N W Tirans3 189.5 'F Pirans3 = 826 psi Thus. for cooldown at 80 'F/hr to 230*F and 30'F/hr to 70 F (temperatures and oressures are adiusted

'F psia for use in the Technical Specification ticure dtyelopmentt T cdj P cd, 305 2176 777 TI9T Draft Curve: See pg 31 for Final M TUgy 22 , , t , , , , ,  !

777 Igy 2a , , , , , , , ,

ITU 7UU 78 7 7I3" 2too i

I 1

I I i

' l I

i

'I 700 7 23" 2000  !

' ' ' 4 I /

T7K 709' im i i i /

M W * , I i - i -

/  !

T67 3 79- i i  ! fi i T5U m w 473- " *d;

. i i

i i

i

!  !/ i x

i 4

i

' 3 ' ' ' / '

T55 37T i200 M LIT 'l#

l j '

l l  ! [ [i M W 3"O

  • I i e i/ ! i i M U9' i i ,

/ i i m w ,,,

, , , i v: , , ,

w w , . i i  ! g$  ; e i "7f ~37r 500

' I l'f ' ' ' '

7tr 75r 400 2 ,

~

60 so tw i2o 140 160 iso 200 22o Eo 260 2so 300 32o Ted;

  • , _97.SDS 1760-M2 Rev 01 page 26 of 33 Cooldown : Adiusted Values for Plottine Rev.ol .

Pc4i s taken as the lesser value of pressure for the 1/41 (80 'F/hr to 219.5'F and 50'F/hr to 59.5'F) and isothermal calculations. The unadjusted data presented here will be used to satisfy LTOP for vented operation- J=1 16-Calculated values of temperature will be adjusted by 10.5* F to account for -

  • r ps4 instrument uncertainty.

j i J T cd2j i T cd2 4 10.5 y N h- TT75 Calculated values of pressure will be corrected using the indicated pressure correction factors (87.0 psi for zero pump operation below 150'F,115.5 psi for two pump operation for 150'F s Te s 200*F,127.6 psi for three pump 7m w3-operation above 200'F), and 14.7 psi to correct to absolute pressure.

r TI9T TTY .

T

  • IeI5 k 6.10 p i11 16 T M TIT' W

Y TKT r TET 75T -

P cd2, = P cd2 i - 127.6,14.7 P cd2 g P cd2g - 115.5 + 14.7 P cd2P: P cd2 P- 86.6 + 14.7 TU TK5- 73r .

TT T39T T3r .

n M T9Y U N #

  • To obtain uncorrected pressure data points corresponding to the pump ,

g transition temperatures (139.5'F and 189.5 actual))mear mterpolation will 7

y g ,ygr be used. The:e transition pressures will each have their relevant pump corrections applied.

Ttrans2 = 139.5 'F Ptrans2 = 538 psi Ttrans3 189.5 'F Ptrans3 816 psi Thus. for cooldown at 80 'F/hr to 230*F and 50'F/hr to 70'F (temperatures and oressures are adiusted for use in the Technical Specification ficure develonment).

'F psia Draft Curve: See pg 31 for Final I ' . t i  ! I f 3 i Ted2 P ed2 2m  ;  ; ,  ; , , , , ,

J J 2300 I ' ' ' ' ' I 2200  !

304.5 2176 # I ' I l/

3 .

g 21M f , , ,I l , , j MO -

E TU67 , ,  ; , , , f; 7IoT 7UO'U T37 W

0 00 I '

1 I  !

i

!/ e

!/

' i I / '

M I I  !

70EU 1600 W .l I

T9G P ed2j l500 , ,

f l p

T7G ~5F 38 #

j ,  ;. 3

, i f i ,

N W I i

j i 6 i i fi i i N W ' f i  ! If I  !  !

- M ,0.  ! i  ! i i - i  ! ,

TJG W m '  ! '  !  ! ' '/ ' '

TT53 W soo I ' I A  !

W W

  • i l l l if l  ;

w W- 6*

l 7UT W i i

,p 6

i , , ,

?

60 80 100 120 140 160 180 2N 220 240 260 280 300 320 T

cd2j

. . . .. 97.SDS t76042 Rev 01 page 27 of 33 Hydrotest Adluated Values for Plottina (temneratures and nressurep are unadjusted) Rev.cl T ' psig jeI. -

T P i

fluidhydro, hydro, IId 1916 m M M M . .

M M

~

The instrument uncertainty for temperature is

  • 10.5 'F, for conservatism the largest IPCF is app!!ed (IPCF3RCP a 127.6).14.7 psl is added to correct to absolute pressure. This curve is for use in the Technical Specification figure development.

T hydro

  • I uldhydro j fl j* 10.5 Phydro;
  • Ihydro j* 127.6 + 14.7 Y r4ta Draft Curve: See pg 30 for Final T hydroj P hydroj 220 I6'I 180) m y 2$00 m

m rm ms 2**

/

no .

/,

P

/n

. hydrej

- n. ,

i 2im j 2000 i

/1 260 265 270 273 200 285 290 295 T

hydro) sg

i

      • ** 97.SDS 1760 M2 Rev 01 . page 28 of 33

""*0' blinimum Reactor VenelI!olt Un Temperature s

Paragraph G 2222(c) from reference 4 state s "... when the flange and adjacent shell region are  ;

utressed by the full intended bolt preload and by pressure not exceeding 20% of the l preoperational system hydrostatic test pressure, minimum metal temperature in the stressed l region should be at least the initial RTndt te mperature for the material in the stressed regions plus any effects ofirradiation at the stressed regions." From reference 3 it can be seen that '

the limiting material is the closure head flanite to torus girth seam with an RTndt of 30'F.

Addition of the 10.5'F uncertainty in measuring temperature yields a minimum bolt up temperature of 40.5'F.10CFR50 Appendix 0 (Table 1, item la) requires that the reactor l vessel flange be at least the highest reference temperature of the material in the closure flange  ;

region that is highly stress by the bolt prel'aad for hydrostatic pressure and leak tests. This condition is satisfied by compliance with the a%ve Cation XI, Appendix G requirement.

m Administratively, a minimum bolt up temperat2re of 70*F will be specified.

20% Preservice livdrostatic Prenyn Pressure is required to be less than or equal to 20% of preservice system }{ydrottatic test pressure. Preservice Hydrostatic test pressure is equal to 1.25 times design pressure.

C.2 x 1.25 x 2500 psia = 625 psia Accounting for instrument uncertainty for use in the Technical Specification Figures, a pressure correction applicable to two pump operation below 200'F to bour.d her.Np and cooldown condition was utilized. The indicated pres sure representing 20% preservice liydrostatic testing is:

625 psia 115.5 psia = 509.5 psia sow est Sen ice Temperature The lowest service temperature is defined as the minimum temperature required to exceed 20% of the preservice hydrostatic test pressure.10CFR50 Appendix G has requireme.'its for hydrostatic pressure and leak testing (Table 1, item 1.b), and normal op: ration (Table 1, Jtem 2.bj. The minimum temperature for inservice hyc'rostatic pressure end leak testing is required to be at least the highest refeience temperature of the r,aterials in the closure flange region plus 90'F. For normal operadon, the requirement is to be at least the highest reference temperature of the materiats in the closure flange region plus 120'F. Accounting for temperature instrument uncertainty of 10.5'F yields the following values:

Rindt = 30M T RTndt ,120 10.5 = 161 For normal operation ('F)(includes 10.5'F uncertainty)

)

RT n$t - 90 10.5 = 131 For Hydrostatic :nd Leak Tests ('F) (includes 10.5'F uncertainty)

- - - - . - - . . -._. _ -. _.__.-- --.- ..-..~..-.-.

k

. e ec * . 97 SOS 170HR2 ILw 01 , ,. pope 29of33

. . l ASME Code Section 111 Appendix 0 Article 0 3000 provides additional requirements for i piping ynps and valves. His article acknowledges that the tests and acceptance standards - l of Sect on 111, Division I are adequate. Review of Section !!!, Division 1, NB 2332(b) - t (Reference 18) requires that for p ping peps at Al valves, (excluding bolting) with nominal wall thickness greater than 2.5 inches, the lowest service temperature shall not be lower

. l' than RTwor + 100'F. Based upon the FSAR (Reference 6, page 4.5 4), the remainder of the reactor coolant pressure boundary was established as 50*F and the assumption that there is piping with a thickness of 2.5 inches a conservative value can be established. Including i the instrument uncertainty of 10.5'F proviks the following for piping, pumps and valves:

50*F + 100*F + 10.5'F = 16l'F l ASME Code Section XI, Article IWB.5000 (reference 4) provides minimum temperature j

~" '

requirements for performing k: k and hydrostatic tests. Taple IWB 5222 1 provides test j pressures assuming a test pressure of 1.1 x normal operation pressure of 22M psia 4 (reference 10), the minimum temperature for establishing the test pressure (2475psla) would be established using the Hydrostatic curves for the beltline as it is the limiting location in 3 the RCS. Linear interpolation from the Tech Spec adjusted Hydrostatic curve on page 27  ;

i provides a minimum temperature of 289.5 which includes instrument uncertainty. ,

Criticality Limit Based on 10CFR50 Annendir O 10CFR50 Appendix 0 Table 1 defines the criticality limit as the larger of: "the minimum i permissible temperature for inservice hydrostatic pressure test" or "the highest reference temperature of the material in the closure flange region that is highly stressed by the bolt .

preload" + 160*F when pressures are greater than 20% cf preservice Hydrr"atic test pressure and bounds item 2c.' De highest reference temperature for the c 9 flange region material is 30'F (reference 13). The minimum indic'ated temperature for. . ...a hydrostatic pressure test was previously es'.ablished above as 131'F. ne addit ional margin of 160'F provides a minimum indicated value of(131'F + 160'F) 291'F. However, the requirements also state that core critical limits are based in the Appendix 0 limits + 40'F. Review of the Technical Specification figures show a maximum temperature to pressurire to 2500 psia of j approximately 350'F based on the heatup curve. Adding 40'F to this value provides 390'F. i This conservatively bounds the Appendix 0 limits by 40*F. However, the criticality limit for Unit 2 Based on Technical Specification section 5.1.1.5 (ref 17) is $15'F and will be ued for  ;

this calculation.

e

+

f f

[

i m

__ .. - . - , . .~,. _, , , , _ . . - - .--.n_,-;__,_ ,_.a__L-., ,..c._,.. _.~

50.5 '*760 Ma Rev OI %e90*133

. . .. 4.7 .

, ' 2500 I-  !

' ' r

.....,i.... . . . . .i. ......i....... i i i

....,..... .....,.. ......i... . . . . . . . .. .,....3 i  : . . . . . I. . . . .

...4.....

- ...3..... i l  !  !  : i-i l  : 1  ;

i i

~""

liydrostatic and ["q""i"" ""

  • j' " '""I' '" ' j "" "" j" ' ' " " " "

' j"""'

i i i i  !

N""j"w " <!

-""t I

Leak Test. Limit r"~

"" j" - *

" " 1" *

""t""  !

'j'" *

.....o...

:  :  : i  :

. i. . . . .

.....g.....

.  :  : i. .

{ i .  : i* '

3 2000 j i

. I i

l {. j l  : .

, .....q... . . . . , . . . . .. .... ... .... ....q..... .....q.... .....g..... .. .t......

I
~

.....g.....

l l  ! I i.  !  : C 2

.....<... . . 4. . . . .... 4..... . . . ..... .... ..... ...4..... .... . .i . . . . .

. Unacceptable  !  ! l i  ;; j

...3..... ...4..... ....4.... 4....

. . 4. . . . .

x O I>eration  !  !

)  !. l *

.n.

g ..

& ]DQU Ii..... . . . . .!. . . . . . . . . .. <! . . .. .. <j i l l l b i j N

i

........... . ..... ... .. o. . . .....<....

....3.... .... .e .,.....:

n l

.i i i

l .-

E  :

i i

! 1

.....+.. ... .. . . . . . . . . . . . . . .

. . . 4. . . . . . . j. . . . .. . . ...

....4.... ...4....

. . . . . j. . . . . . . a .......i 2

i . .  :

M x  !

a. .

....4....

i

....y....

l 3

. . . . . . ..I.. .. .. i....

3

. . . 4. . . . .. . . ...... . .! . . . . . .!. . . ,. .

l "y  :.

g

. .U- .

g . ... j . ... IIcatup Limit g .....).... ,

. . . j. . . . . . . j. . ..~j..... . . . . . . j. . . . .j..

. j. . . . . .

i '  !

i  ! '

i_

1000 fi f

!i  !  !

i i .

i  !  ! i  :  !  !  : i

.....<.... ....o. i. 4. . . ....<.... ....<.. ..A.<..... ...<.... . . . . <..... en..<..... ..n,.. .. .. .(......i

. . . g: . . . .

!  :  :  :  : i 6.....

l i

. . . . ):. . . .

..g.....

. . . . . . . . ....y....

I

.g......

I I

..o.7... ..7... .... , .. .. . . . . . . . . . . . . . . . . . .. .. . . . . . . . . , . .......... .. . 4. . . . . . l l

!  :  ; i.  :

. i. .

....g

.  : .I

.o..

....+a... ....g..... . o .g....

....5...... .t..

I  ! ,  : Indicated Maximum i 500 Cold Leg No. of RCP's

[ i l { .

Temperature operatmg

!  : i  : i

....<..... ... 4. . . . ....<.... ....<..... .g.....

. . ...4...... . . . . .

!  :  !  !  ! 17 099 r 4 i ,

:  :  :  : i

. . . . . ~.. .. .... , , .......... . . .g..

. . . .i i Min. Bolt.up 200'F < T s 500'F 3 l

. . . . . . . . . . . . . . . ......... . . . ..l i  !  !

Temp = 70'.F 70'F s T s 200'F- ,

. . . . . .! . ..:i . .

....3....

i O I i i  !' i i i I O SO 100 150 200 250 300 350 400 450 500 550 Indicated ueg Temperature ( F)

Millstone Ur.it 2 Reactor Coolant System Heatup Limitations for up to 20 EFPY Figure 3.4-2a

. . T.7 .5D.5 176o m.2 An el .

P2e3fcf U 2500 - .

j i

i 1

i

! H u..i. j i

..... . ...4..... ... .... t. . . . .

....4..... ...4.... . . . . ..... . . . . . . . . .... ...4.... ..)....

. ..s.....

l i

....4....

..4u. ...4..... .o..... ..... .... ..4.... ... ... ...4...... ....l.... ...4.....

I. i  :  :

I  !  !  !

.....i.  :

.....t..... . . . . . . ..... .... . . . . .i. . . . . .. .... . . . . . . . . ..... ..... .....i..... .. ........

80 F/hr '.....N .. . .....

l

j. ..... . . . . l I i . s

- '  ! '!; l 2000

! I

.....i..... . . . ...... . . . . .. . . . . ........ ..... .... . . . 1. . ..... .... ..... . . . ..... ..... ...... . . . . .....

i .

e -

"i - "

Unacceptable """""-

h i-

""*1""

...4..... .. . .... .. ne, . ....

- j Operation i i n

.5 1500

' 60 t

1  ! i 1 5 .

.... .....!.... .. . . . . ...!..... ..... ..... .....!..... ..... .... ... .....i E j i j j i .e

.. . .. ... . . . . .; . . . . ..... .... . . . + . . . .....

.s . . .

A

....3...... ....I.... r

...7....

.....i...... ....I.... . . . ..... . .i . 1. . . . .

3. . . . . .

3 .....

=

7 ..... ....

i

.....>.... ...... . . . .....i.... .....i.... . .... .....

....3.....

0 .,.....

8 l l

....i...

' i F t 1 1000 i 1

.  : i i .

d -

-- i  :  :  : i

..... ..... .....>.. . . . . . . ..4.... .... ..... ....t..... .... .... ...t.... . 4.....

E.... 30 F/hr- j .

i  ! I

.....i... ......... . .

....+.... .:... ...i.... ..... . . . .

i  :  :  !  :  :  :  ;

i j i ....j . . . . .

  • t

.....p..... ....7.... .....

....9... Indicated Mutmum

-"" ""  %.! .... .... Cold Les Temperature No. of RCP's operating

.. ,....l 500 50 F/hr \"' -

I T > 500'F

/ 4

.......,I i

....4.....

...y ..... .....>.... . . . . ...

200'F < T s 500'F

, , j 3 l i

+.- .....!.... . . . . .p . . . . . . . . . .... .

.j . . . .

! 150'F s T s 200'F 2 i

. . . a. . . . ..

7.... u m.. noit.up . -- 4.-.

I i Temp = 70'F T < 150'F -

p.... ... .. . . . ... .. o . . . . . . . .

l  :  :  :

' -  :- I  :-  :

- t 0[ ' -  ?, l l l. ' l ' '

O 50 100 150 200 250 300 350 400 450 500 550 Indicated Cold Leg Temperature ( F)

Millstone Unit 2 Reactor Coolant System Cooldown Limitations for up to' 20 EFPY Figure 3.4-2b

~ .

..,,-.,- 97 sos.17eo4aa mov c1 pope sa etas Reglew of RTpts for 32 EFPY (per 10CFR50.61) Rw. ol

. ne'most limiting value of RTpts for weld material 9 203 is 159.6 'F. TW is below the screening criteria cf 270 'F for weld metal (reference 13, page 8). .

De most limiting value of RTpts for plate material C-5061 is 177.0 'F. This is below the screening eriteria o.t 270 'F for plate metal (reference 13, page 8). t

~ ' '

References
1. Combustion Engineering, Inc., Report No. CENC 1177, " Analytical Report for Northeast Utilities Service Company Millstone Point Station Unit No. 2 Reactor Vessel", dated 2/72.
2. ABB calculation N PENO-CALC 003, rev 1JPressure Correction Factors for Millstone Unit
2 P T Limits",9/30/97. ,

' 3. ABB letter N PENO 97-002, rev 0, " Millstone Unit 2 RP[ Sad initial RTndt", dated 1/27/97. l t

4. ASME B&PV Code,Section XI Appendix 0,1989 edition.
5. Calculation No. 95 SDS 1008MO rev 1. " Calculation of ARTndt for CY., MPI, MP2 and MP3  !

reactor vessels". dated M/97.  :

6. Millstene Unit 2 Nuclear Power Station. Final Safety Analysis Report, Section 4.5.1.3 pg.  ;

4.5 4, current to change no. 47.  !

7. NUSCO DWO 25203 29139 sheet 23, rev 5.  !
8. NUSCO calculation M3 LOE-284 EM rev 2," Millstone 3: Pressure / Temperature Limits for ,

10 EFPY", dated 8/15/97.  ;

9. Calculation No. PA XX XXX 1003GE rev 2, " Wide range cold leg temperature loop accuracy T 115 & T-125", dated 9/13/95.

l

10. Specification No.~18767 31 1 rev 8, " Engineering Specification for a Reactor Vessel  :

Assembly for Northeast Utilities Service Company Millstone Point Station, Unit No. 2, dated '

3/27/92.-

11, NU Calculation No. 96 ENO 1399E2, " Millstone Unit 2 Shutdown Cooling Temperature l Loop Uncertainty T 351X & T 351Y", rev 0, dated 6/12/96.

. 12. Calculation No. PA XX XXX 9990E rev 1 " Low range pressurizer pressure - lo'op accuracy P 103 & P 103-1", dated 9/7/95. >

13. Calculation No. 95 SDS 1007MO rev 1
  • Calculation ofInitial Properties for CY and  !

Millstone reactor vessels", dated 8/1/97.

14.- Calculation No. PA XX XXX-573GE rev 1, " Pressurizer pressure loop accuracy l P 102A,B,C,D", dated 9/2/95. , ,

15. B&W Report No. BAW 2142, " Analysis of Capsule W-104, Northeast Nuclear Energy -

Company Millstone Nuclear Power Station, Unit No. 2", dated November 1991. >

16. NRC Standard Review Plan 5.3.2, Rev 1. " Pressure Temperature Limits", dated July,- 1981.

_____ ~ -

      • *, 97.SDS 1760-M2 Rev 01 pope 33 of 33
17. Millstone Unit 2 Technical Specification through Change #219, Amendment #216 dated 6/9/97""
18. ASME BAPV Code, Section 111, '968 edition, Summer 1969 Addenda.
19. Specification No.18767 31-4 rev 6,"Enginrering Specification for a Pressurizer Assembly for Nonheast Utilhics Service Company Millstone Point Station, Unit No. 2.", dated 2n/72.
20. Code of Federal Regulations, Energy 10, Appendix 0, Fracture houghness Requirements, -

[60 FR 65474 Dec.19,1995).

21. Mr.rks, Lionel, S. " Standard Handbook for Mechanical Engineers", Seventh Edition,1967, pg.

5 66.

22. ASME B&PV Code, Section Ill, Divisiori 1, Subsection NB & Appendix 1,1989 edition.
23. Structural Alloys Handbook, Volume 2,1986 edition.
24. Combustion Engineering Report Number CENC 1177. " Analytical Report for Nonheast Utilities Senice Co Reactor Vessel",1972.

e 1

1 .

I!

Calculation Review Comment and Resolution Form  ?

v.

(Sheet 1 of2) a:

~

Calculabon Number- 97-SDS-1760-M2 Revision: 1 Calculation Tiitle: MiRstone 2- Pressure / Temperature Lirtuts for 20 EFPY (l

, i Calc. Originator. Thomas Steahr _

Reviewer- Craig Stewart $!

This form is intended to document significant comments and their resolutions. Ty -:- 42:M errors and oeser editorial  ;!

recommendations may be marked up in the calculation text and presented to the originator 3 Review Type ar D C . "' J V ' : @edependent -l Reviewer L ' f) h Date: /.47A;r (signature s;yr.;'2 all comments have been resolved to your ==n=fartari) leem Pagediection Comments Response 1 General Editorial comments prowded in marypa of M --,--_^_j ,

draft calculation to identify incorrect spelling, etc.

2 srassump. identify heat transfer coevacient used. incorporated i s s'assump. Identify heatup and cooksown rates as incorperseed

, assumptions. Clarify which rates are for .

use in LTOP evaluation and which are for j unanticipated temperature excursions.

! 4 6 Identity all design inuts used in the M-- h _d evaluation including thoes used in the heat transfer analysis. Alec,need to include design and normal operating pressure. Identify 10 CFR SO as a design 7

. =

r W _.....a. . .

D 1

DCM FORM 5-IC -b Rev.05 N

PageIord

___ _ _. - _ _ _ , - - - _ . - - _ _ _ _ _ _ _ _ _ _ _ . ~ ~ _ _ . _ - _ _ - _ _ _ . _ _ . . _ _ _ _ _ _ _ -

e, v '

,aq-

~

4 Calculation Review Comment and Resolution Form (continued) e v

c' Sheet .2 of 2 Nurnber: 97-SDS-1760-M2 Revision: 1 .

C s

i e

Item PagetSection Comments "';:. :- :

Q-1

!' 5 6 Cladding is equivalent to SA 210 Type 304. E -:-: r,, ^_ f i u;

i Refwence design speciW for use of type j 304 meterial properties. a

9 s 7 Expand Method of Analysis section to provide incorporated -

3 l i additiones overview into what was done. .:

Address beltline P-T Ilmits, additional restrictions,and '..e::i: 2..;of technical

, specifcation figures as 3 k-f:;:.- f:.." sections t

, to describe whatwas done.

, 7 9 Provide basistroference for calculation of E -- r ,, ^ 1 .

allowabie pressure J i

l 8 21,22,20,24 Bdentify which tables are uncorrected and for Incorporatsd ure in LTOP and which apply to Tech. Spec.

figures. .

1 S 25 Address all the 10 CFR 50 minimum temperature M-:sr,,1^ d requirements and ASME Code lowest service -

l "....,, e _-e requirements ( ,

l 10 general Identify whether the temperature are indicated or h=sr,__f ^

actualin the calculation body.

11 5 Clarify whd doesn't apply to the ,,.-::__'e -

. E-:- --: _^_ d l These are RCS P-TIlmits.

l -

4

?

4

( .

x

v DCM X)IG4 5-IC 3

~

Rev.05 4 Page3 cf 4 N I

--._.7-..-_-...--.-._.--.-.--.-__--.-

s

. + c. r o. 87 80s moesa Rw 01 .- pose C. ef Cl 1 . . , j

. r Appendix C l Resolution of Contingemeles la Reference 2.

r condamency #1 The results of this analysis renain valid as long as the fbel pressure  ;

loss ratio rammina within the range of 0.978 to 1.011.

l ,

Ranolution ERC No. 25203 ER 97-097,6om Michael P. Hills to Mike Marino (i.e. l Design input discussed in reference 7.2) provides the loss coefficients through the end  :

, of cycle 15. Since the results of this calculation were based on these inputs, the results '

rammin valid through the and of cycle 15 or until the fbel design is changed. This design

. input will be d6cumented in sections 3.2.3 and 4.5.3.2 of the FSAR as documented in

. FSAP OR No.97-MP2127 to ensure that the affected calculations remain valid or are - +

modified as required beyond cycle 15. j Contingency # 3 - QA status of the pressure and temperature uncertainties provided in  !'

reference 7.9 is uncertain.

Resolution The revision verified version of NU calculation Nos PA XX XXX 10030E, Revision 2 Dated 9/13/95 and PA XX-XXX 9990E, Revision 1 -

dated 9/7/95 were obtained 60m Nuclear Plant Records and were verified by both the  :'

preparer and the reviewer of this calculation as the most recent calculation of record.

.s .;

i same -- *

?

4

b. o , . . . . e7 cos 1764M2 Rev 01 8/ cf Bi Appendix B - Microfiche of ABAQUS Output: Run ID:

.' licatup at 30'F/hr from 59.5'F to 209.5'F, BE07EBlill l 50'F/hr above 209.5'F to 264.5'F, and i 100'F/hr above 264.5'F to 550'F.  !

Cooldown at 80*F/hr from 550.0*F to 219.5'F BE07EDIIM and 30'F/hr below 219.5'F to 49.5'F -

Cooldown at 80'F/hr from 550.0'F to 219.5'F BE07EBIIL and 50'F/hr below 219.5'F to 49.5'F G86

, ,.,4 p , e- 4 6 SE**

'\

O

\

s A

5 t

i l

i 4-i .

i

'y

- - . - - - - - ~ , , . ~ . .

. . - - . ' f ( . - , a.

' .~, ^

.erE+d .nJua a - ,.- - -.

. s~.. u1 * .'

i er tilg':,7{ ^ * * :j U11>0sut!

Pmu#vii. - o  ::

.0 0 - :-

l' y ,  ;

,m, . , .,uL._.

i c a. tim 41 o .

-e, 6

~{e ,

.i >

. ,1 i  !

1 3,

Northeast '

Utilities System  ;

4 d

NUCLEAR LICENSING j MILLSTONE NUCLEAR POWER STATION ,

f i PO BOX 128 WATERFORD CT 06385-0128 ' <

i

(

~

~ " ~ ~ ' ~ ' ~ "

n - -nn- r -enm~es " """*'* ' '"" "* ~ ~

8 t

6 J

4

+

.. e 1:

.: