ML20153B149

From kanterella
Jump to navigation Jump to search
Rev 3 to SAR for HN-190-1 Radwaste Shipping Cask
ML20153B149
Person / Time
Site: 07109086
Issue date: 02/29/1988
From:
WESTINGHOUSE HITTMAN NUCLEAR, INC.
To:
Shared Package
ML20153B122 List:
References
STD-R-02-006, STD-R-02-006-R03, STD-R-2-6, STD-R-2-6-R3, NUDOCS 8803210418
Download: ML20153B149 (111)


Text

_ _ _

~.

O SAFETY ANALYSIS REPORT FOR THE l

HN-190-1 RADWASTE SHIPPING CASK STD-R-02-006 Revision 3 f

Referencing 10 CFR 71 Type 'A' Packaging Regulations 4

0 Westinghouse Radiological Services Division 1256 North Church Street

~~

Moorestown, New Jersey 08057 l

l l

8803210418 880307 PDR ADOCK 07109086 C

PDR O

0347A:65-021788 i

Document Numb r:

R:v:

R:v Dete:

WESTINGHOUSE STD-R-02-006 3

2/29/88 HITTMAN NUCLE AR p

INCORPORATED Title! Safety Analysis aport for the HN-190-1 J

Radwaste Shipping Cask j

t Prepared Checked Director Technical Quality Rav.

Rev Date By By Engineering Product A

ra e Specialist Manag r h,b ECN f

t 88-022 3

2/29/88 nyt. 8M b

/

O l

l l

l FORM 01(a) 2 l

p,

,g 110

STD-R-02-006 l

OV NOTICE This Safety Analysis Report and the associated drawings are the property of Westinghouse Radiological Services Division, Moorestown, New Jersey.

This material is being made available for the purpose of obtaining required certifications by the U.S. Regulatory Commission, enabling utilities and other firms producing radioactive waste to be registered users of equipment and services supplied by Westinghouse and enabling equipment to be manufactured on behalf of and under contracts with Westinghouse.

Parties who may come into possession of this material are cautioned that the information is PROPRIETARY to the interests of Westinghouse.

O

.s l

0347A:65-021788 l

l l

ST0 R-02-006 1.0 GENERAL INFORMATION 1.1 Introduction The HN-190-1 radioactive waste shipping casks were constructed during the l

period 1971 to 1974.

The casks have been in continuous service since construction and are used primarily to transport radioactive waste from nuclear power plants to licensed shallow land burial sites. A number of changes have been made in the casks and several supplements and revisions have been made in the original application and Certificate of Compliance. The consolidated application incorporates all of the previous submittals.

1.2 Packaae Descriotion q

1.2.2 Packaaina

'y/

The HN-190-1 Shipping Cask is a top-loading, shielded container designed specifically for the safe transport of Type "A" quantities and greater than Type "A" LSA radioactive waste materials between nuclear facilities and waste disposal sites.

The radioactive materials can be packaged in a variety of different type disposable containers.

The EN-190-1 Shipping Cask is a primary containment vessel for radioactivematerials.

It consists of a cask body, cask lid, and a l

shield plug being basically a top-opening right circular cylinder which is on its vertical axis.

Its principal dimensions are 81.5 inches outside shell diameter by 82.5 inches high with an internal cavity of 75.625 inches inside diameter by 74.5 inches high.

I 0347A:65-021788 3,y f

._____,m,_

STD-R 02-006 1.2.1.1 Cask Body The cask body is a steel-lead-steel annulus in the form of a vertical oriented, right circular cylinder closed on the bottom end.

The cask is a right circular cylinder 82.5 inches high by 81.5 inches in diameter.

The cask cavity is 74.5 inches high by 75.625 inches in diamater. The cask i

side wall consist-s of a 3/8-inch thick inner steel shell, a 1-3/4-inch lead shell, and a 7/8-inch thick outer steel shell.

The base is a 4-inch thick steel plate which is welded to the inner and outer steel shells of the side wall. A steel flange is welded to the inner and outer steel shells of the side wall to the top.

The lid is a 4-inch thick steel plate which is stepped to mate with the steel flange. The cask closure is sealed by a Viton or BUNA-N 0-ring gasket located between the lid and steel flange.

Positive lid closure is accomplished by thirty, 1-inch studs. The lid contains a centrally located 4-inch thick stepped steel shield plug.

The shield plug is sealed

\\

by a Viton or BUNA-N 0 ring gasket, and sixteen,1/2-inch studs are used to provide positive closure. Tie-down is accomplished by four tie-down lugs welded to the cask body.

There are three cask lifting lugs, three primary l

cask lid lugs, and one shield plug lifting lug.

1.2.1.2 Primary Cask Lid The pri: nary cask lid is four inches thick which is stepped

_z l

to mate with the upper flange of the cask body and its l

closure seal.

Three steel lifting lugs are welded to the cask lid for handling. The cask lid also contains a l

stepped opening for a shield plug at its center.

l l

' O owA:ss-enna 1-2

l STD-R 02-006 O

1.2.1.3 Shield Pluo The shield plug is four inches thick fabricated to fit the stepped opening in the primary cask lid.

It has a 0-ring l

gasket seal and uses sixteen hold-down studs to provide positive cask closure.

The shield plug also has a lifting lug located at its center to facilitate handling.

1.2.1.4 Cask Closure The shipping cask has two closure systems:

(1) the primary cask lid is closed with 30, one-inch studs and an 0-ring seal, (2) the shield plug is closed with sixteen, 1/2 inch studs and uses an 0-ring seal system similar to the seal system used for the primary cask lid only smaller.

OV 1.2.1.5 Cask Tiedown System The shipping cask tiedown system consists of two sets of crossed tiedown cables.

Four shear blocks or a shear ring affixed to the vehicle load bed firmly position and safely hold the cask during transport.

1.2.1.6 GjuLk Interna 1r I

The HN-190-1 shipping cask can use a wide variety of I

7 internal containers and configurations.

The containers include; custom fabricated steel containers, steel drums, plastic containers and drums, high integrity containers, sealed containers constructed of other metals and materials and racks to secure irradiated and contaminated components.

The internal configuration may include; one O

0347A:65-021788 l-3

STD R-02-006 O

large disposable container, two large stacked containers, fourteen 55-gallon drums with pallets, eighteen 30-gallon J

drums with pallets.

Shoring will be placed between secondary containers in cases where excessive movement I

could occur during normal conditions of transport.

Shoring is not required for large containers and filled drum l

pallets designed to fit the cavity with minimal clearances, 1.2.2 Ooerational Features The HN-190-1 radioactive waste shipping cask may include a number of required and optional accessories. These include:

cavity drain plug, rain cover tiedowns, signs and mounting brackets, placards and mounting brackets, lid lift lug covers and security wires and security wire brackets.

O 9

O 0347A:65-021788 l-4 i

s

,- - +, -

m,.+

A ST0 R-02-006 J

1 l

1.2.3 Contents of Packaaina 1.2.3.1 Tvoe and Form of Material The materials transported in the HN-190-1 cask will consist l

primarily of process waste and include bead ion exchange resin, powdered ion exchange resins, activated carbon, powdered carbon, diatomaceous earth, granular and fibrous filter media, filter sludge, blasting grit and crud, stabilized incinerator ash, irradiated and contaminated l

materials, filter cartridges and solidified liquids.

The materials ma'y be dewatered, solidified, or solids.

The l

radioactive materials will be primarily by-product materials but may include source and transuranic materials in Type A quantities and greater than Type A quantities as low specific activity materials.

Fissile materials in exempt quantites may be transported.

1.2.3.2 Maximum Quantity of Material Per Packaae The maximum quantity of material that may be transported in the HN-190-1 cask will be:

o Type A quantities in normal or special form.

r o

Greater than Type A quantities of low specific activity radioactive materials, o

Materials and containers with weights not exceeding 14,500 pounds.

4 0347A:65-021788 1-5

---y

,--.-q.y

--,-m

-py-3

,y n.g g.,

_____.,,w,,

,_r---%

r w-y,---,-p..9-y

-w--

y-

ST0-R-02-006 O

o Cask, contents and container with weights not exceeding 50,000 pounds, o

Activity levels not to exceed 200 mR per hour on the surface of the container or 10 mR per hour at two meters from the sides of the trailer.

1.3 APPENDIX The HN-190-1 radioactive waste shipping cask is ccnstructed in accordance with Hittman Nuclear Drawing Numbers:

STD 02-028, Cask Elevation View HN-190-1 STD 02-029, Cask Plan View HN-190-1 STD 02-030, Cask Appurtenances HN-190.-l

-o$

il O

0347A:65-021788 l-6 i


rn--,--,

e.,-,,n,,

w mm--

ev_n-en,~

e,,

,,,,_.-,n..,_,m-.,._.-_gn.,-_.,,,

,.,,ee m.,--.

-n,,,-,,w,,_,-

e-,,,,e,-,.

-e,

--- - - -, -,m---

--ya e--

,~

ST0 R-02-006 OU 2.0 STRuvTURAL EVALUATION 2.1 Structural Desian 2.1.1 Discussion The HN-190-1 cask has a number of structural components which are vital to the safe operation of the package. The design and performance requirements of these components are discussed in the following subsections.

2.1.1.1 Cask Closure The HN-190-1 cask has a four inch thick steel primary cask lid.

The primary cask lid is secured to the cask using 30 q

one inch studs. The studs provide metal to metal contact O

between the cask and the primary cask lid and compress an l

0-ring seal to provide a positive closure. The closure is designed to withstand an internal pressure of 8 psig or a corner impact without elongating the studs an amount that would allow leakage.

The shield plug located in the center of the cover is secured with 16 one-half inch studs. An 0-ring seal is used to provide positive closure.

2.1<.A. 2 Cask Liftina Devices Two types of lift lugs are used on the HN-190-1 casks.

l These are:

O ca m :ss-o m as 2-1

STD-R-02-006 Unreinforced lugs for use with lift. beams.

(Option 1)

Reinforced lugs for use with lift beams or long cable.

(Option 2)

Three Option 1 and 2 lift lugs are used on each cask which are equally spaced on the circumference of the cask.

The lugs are designed to withstand a 3g abrupt lift without yielding the lugs or the welds.

2.1.1.3 Primary Cask lid and Shield Pluo liftino Devices The three equally spaced lift lugs are welded to the primary cask lid. These lugs are designed to withstand a-l 3g abrupt lift using short cable slings (45') without yielding the material.

The. lugs will tear out or the welds will fail should these lugs be used to lift the casks.

The integrity of the package would not be impaired by the failure of the lugs. A single lift lug is welded to the center of the shield plug. This lug is designed to withstand a 3g abrupt lift without failure.

2.1.1.4 Tiedown Devices The tiedowns for the HN-190-1 cask consist of steel plates l

welded to reinforcing plates which are welded to the outer shell of the cask.

Four equally spaced tiedowns are on the periphery of the cask.

The portion of the tiedowns which are structurally part of the cask (i.e., reinforcing plate and attachment to the cask) are designed to withstand, without generating stress in excess of yield strength, a static force applied to the center of gravity

! O e m A:65-C m es 2-2 L

STD-R-02-006

^

of the package having a vertical component two times the weight of the package with its contents, a horizontal component along the direction of travel of ten times the weight of the package with its contents, and a horizontal component in the traverse direction of five times the weight of the package with its contents.

In addition, the tiedown lugs are designed to fail under excessive loads before the outer shell of the cask would be damaged.

2.1.1.5 Free Droo The HN-190-1 cask is designed to withstand a one foot free drop on any surface without loss of content.

The HN-190-1 cask is designed to absorb the energy from free fall by deformation of the steel structure.

In the case of the top corner drop, the cover and the studs which secure the cover p

to the cask must be capable of withstanding the force generated by the contents times deceleration.

For both the top and bottom corner drops, and side drop, the welds and structural members must be capable of withstanding the deceleration forces.

2.1.1.6 Penetration s

The outer shells of the HN-190-1 cask are constructed of l

steel having a minimum thickness of 7/8 inch and the impact from a 13 pound rod falling from 40 inches will have no effect on the package.

O es m :ss-o m es 2-3

STD R-02-006 OG 2.1.1.7 Galvanic. Chemical and Other Reactions The cask is constructed from heavy structural steel plates. All exterior surfaces are primed and painted with high quality epoxy. There will be no galvanic, chemical, or other reaction among the packaging components.

(References 10CFR71, Section 71.43(d)).

l 2.1.2 Desian Criteria The structural analysis is based on tiie following criteria:

2.1.2.1 Stresses in material due to pure tension are compared to '

the minimum yield of that material.

The safety factor is-found by dividing the minimum yield by the calculated stress.

A safety factor gr. eater than 1.0 is required for Q

acceptability.

See Table 2.3.2 for minimum yield and l

ultimate stress values used in the analysis.

2.1.2.2 Stresses in material due to shearing is analyzed using the "Maximum Energy - Distortion Theory" which states the shearing elastic limit is 1//I - 57.7% of the tensile elastic limit.1 As with 2.1.2.1, a factor of safety l

greater than 1.0 is required for acceptability.

2. l b.F Weld filler material rod is E70 Grade. Analysis is based on American Welding Society Structural Code 01.1-79.

For l

lU I Desian and Behavior of Steel Structures, Salmon & Johnson, Page 47.

l o m A:ss-e m as 2-4 l

l

STD R 02-006

/O V

fillet welds, shear stress on effective throat regardless of direction of loading is 30% of specified minimum tensile strength of weld metal.

For complete joint penetration groove welds with tension normal to the effective area the allowable stress is the same as the base metal.

Fillet weld allowable stress - (68,750 psi) (0.3)

= 20,625 psi In order to be more conservative, a weld efficiency of 85%

is also added since not all welds have been nondestructive-l ly examined.

2.2 Weiahts and Centers of Gravity 2.2.1 gross Packaae Weiahts The respective gross weights of the cask components and its designated radwaste loads are as follows:

i Cask Body 29,000 pounds Primary Lid 6,000 pounds I

Shield Plug 500 pounds 7

Total Cask Unioaded 35,500 pounds HN-190-1 Large Container and Waste 14,500 pounds HN-190-1 (14 55-gallon drums of Radwaste) 12,500 pounds HN-190-1 (18 30-gallon drums of Radwaste) 11,500 pounds 50,000 pounds Calculated Total Gross Weight 0347A:65-021788 2-5 i

t

-.,,-...,---n-__,,,

STD-R-02 006 bJ i

2.2.2 Center of Gravity l

it.gm Weiaht Arm Moment Cask 35,500 lbs

. 40.75 in. = 1,446,625 in.-lb.

Container 2,000 lbs

. 39.00 in. =

78,000 in.-lb.

l l

Waste 12.500 lbs

. 38.00 in. -

475.000 in.-lb.

50,000 lbs 1,999,625 in.-lb.

Center of Gravity = 1,999,625/50,000 CG = 40.0 in.

2.3 Mechanical Properties of Materials

)

The HN-190-1 casks were constructed at various times by several fabricatgrs.

The materials used in the construction of the cask bodies, lift lugs and tiedown lugs are provided in the Bill of Materials on the drawings listed in Section 1.3.

Table 2.3.1 lists the minimum yield and ultimate strength of materials based on ASTM Standards.

Table 2.3.2 lists the values for minimum yield and ultimate strength used in analysis of critical components. These values are the minimum certified yield and ultimate strength of the materials

]

used in the fabricating of the critical components of the cask.

For non-critical,Jomponents, the values listed in Table 2.3.1 were used for analysis. The wild filler material used in the casks has a minimum ultimate strength of 68,750 psi.

O l

e3 m :ss-o m as 2-6 l

l

i STD-R 02-006 O

Table 2.3.1 Minimum Yield and Ultimate Strength Based on ASTM Standards MATERIAL YIELD STRENGTH ULTIMATE STRENGTH (psi)

(psi)

A516, Grade 55 30,000 55,000 A203, Grade E 40,000 70,000 A515, Grade 70 38,000 70,000 A516, Grade 70 38,000 70,000 l

Table 2.3.2 Minimum Yield and Ultimate Strength Used in the Analysis of Critical Components Minimum Yield Ultimate Strenoth (psi)

(psi)

Cask Body (outer shell) 42,000 64,800 Tie-Down Lugs 61,100 78,500 l

Lift Lugs 43,900 71,000 2.4 General Standards for All packaoes l

2.4.1 Chem cat and Galvanic Reactions (10CFR71.43(d))

The package contents will consist of process waste materials encap-sulated in disposable drums or containers which are placed within the shipping cask. All disposable containers placed within the shipping j

cask are required to have positive sealing closures. Hence, there are no significant galvanic or chemical reactions between the package lO omA:ss-czus8 2-7 1

STD R 02-006 r

contents and the shipping casks.

Further, the exposed internal surfaces of the shipping cask are protected by a suitable primer and an inert epoxy coating.

2.4.2 Positive Closure (10CFR71.43(b)]

As noted, the primary cask lid is secured by means of thirty (30) one inch studs with nuts.

The shield plug is affixed with sixteen (16) one-half inch studs with nuts.

2.4.3 Liftina Devices 2.4.3.1 Shiooina Cask (10CFR71.45(a))

Two types of lift lugs are used on these casks.

The options are as follows:

Options 1 and 2:

Three equally spaced lugs are welded to the upper steel flange and the outer steel shell of the cask body.

The lugs may be flat plate (Option 1) or reinforced (Option 2).

The cask, with Option 1 lugs,is lifted using a lift beam.

Cask with Option 2 lift lugs, may la lifted with long cables. The lifting lugs are designed to lift three times the weight of the cask with stresses less than yield strength.

_s (See Appendix 2.10.1 for analysis and details).

2.4.3.2 Primary Cask Lid (10CFR71.45(a)]

The lifting device for the primary cask lid consists of three equally spaced clevis pin lifting assemblies which l

c3 m :65-e m sa 2-8

STD R-02 006 w.]

l are welded to the cask lid.

These lifting devices will support three times the weight of the cask lid with no stress in excess of their yield stress.

See Appendix 2.10.1 for analysis and details.

2.4.3.3 Shield Plua (10CFR71.45(a))

The lifting device for the shield plug consists of a single clevis pin assembly attached to a lug which is welded directly to the upper or outside of the steel plate which is the shield plug. This lifting device will support three times the weight of the shield plug with no stresses in excess of its yield stress.

See Appendix 2.10.1 for analysis and details.

2.4.3.4 Non-Liftina Attachments Covered or Locked (10CFR71.45(a)]

O Both the primary cask lid lifting device and the shield l

plug lifting device will be covered to prevent their being used to lift the shipping cask.

I 2.4.3.5 Liftina Device Failura (10CFR71.45(c)(4))

l All lifting devices are designed such that excessive loads will result in failure at the weld joints. These types of T

failures will not impair the shielding or containment properties of the shipping cask.

O o m a:ss ez u ss 29

r STD R-02-006 Ob 2.4.4 liedown Devices [10CFR71.45(b))

2.4.4.1 Tiedown Forces [10CFR71.31(b)(1)]

The tiedown devices consist of four ratchet binder or turn-buckles and cable assemblies attached from the tie-down adapters on the cask to tiedown lugs on the trailer body.

Additionally, shear blocks or a shear ring firmly position and hold the cask on the trailer bed.

The tiedown lugs have been designed to allow the cask to withstand a vertical force of two times the weight of the cask, a transverse force of five times the weight of the cask, and a longitudinal force of ten times the weight of the cask '

with no resulting excessive stresse.:.

See Appendix 2.10.3 for the analysis and details.

2.4.4.2 Non-Tiedown Devices (10CFR71.45(b)(2)]

l The length of the tiedown cables prevents the use of anything but the tiedown lugs for package tiedown. There are therefore no structural parts of the cask which could be employed to tie the package down which do not comply with 10CFR71.45(b)(2).

2.4.J.3 Tiedown Device Failure [10CFR71.45(b)(3)]

T l

The four tiedown adaptors on the cask periphery have been i

designed so that loads transmitted by the tiedown cables under the worst conditions will neither damage the outer steel shell nor cause the tiedown adaptors to fail.

The tiedown system analysis is shown in the Appendix 2.10.2.

l 0347A:65-021788 2-10 1

STD-R-02-006

&J 2.5 Standards for Tvoe B and Larae Ouantity Packaaina Not applicable.

2.6 Normal Conditions of Transcort 2.6.1 liq 1t Since the package is constructed of steel and lead, temperatures of 130*F will have no effect on the package.

2.6.1.1 Summary of Pressures and Temperatures The cask contents are either solid, solidified, or dewatered resin.

The temperatures and pressures to which these wastes are exposed are not sufficient to cause gas formation.

Further, the various individual small containers within the cask are sealed, precluding any interaction between waste types. Hence, gas formation which might reduce cask packaging effectiveness is not predicted.

2.6.2 G21d Th tell materials selected for forgings, plata, and bolting each retain structural integrity at temperatures down to -40*F.

2.6.3 Pressure The cask can withstand an external pressure of half an atmosphere.

A desc:iption of this is contained in Section 4 "Containment,"

specifically 4.2.1.

0 W A:65-02U88 2-11

STD-R-02-006 O

2.6.4 Vibration The cask tiedowns firmly position the package as to minimize any vibrational effects.

In addition, all cask external devices are firmly attached (either by welding or bolting) to the cask.

2.6.5 Water Soray The cask is sealed by an 0-ring gasket seal with suitable holddown bolting to assure it is both water and pressure tight.

In addition, the radwaste is contained within sealed containers constructed of steel, cross-linked polyethylene or other materials in the cask cavity.

~

2.6.6 Free Droo The cask has been analyzed to ensure its structural adequacy to withstand a one-foot drop, striking any cask surface, onto a flat horizontal surface.

The analysis is in Appendix 2.10.3.

2.6.7 Corner Droo i

l The specified condition is not applicable since the package weight is I

greater than 10,000 pounds.

2.6.8 Penetration l

l The impact of a vertical steel 1-1/4 inch diameter,13 pound cylinder l

from a height of four feet will not puncture the cask outer steel shell.

In addition, there is no externally mounted equipment on the cask, the damage of which due to this transport condition, would. limit the cask structural adequacy or hinder its function.

0347A:65-021788 2-12 l

i l

STD R-02-006 O

2.6.9 Comoression This specified condition is not applicable since the package weight is greater than 10,000 pounds.

2.7 Hvoothetical Accident Conditions Not applicable.

2.8 Soecial Form Not applicable.

2.9 Fuel Rods Not applicable.

2.10 Aooendix 2.10.1 Lifting Devices.

2.10.2 Tiedown Analysis.

2.10.3 OnefootFreeDropAnalysis.

2.10.4 Penetration.

O 0347A:65-021788 2-13

STD-R-02-006 O

2.10.1 Liftina Devices 2.10.1.1 Cask Lift Luas The 3 lift lugs are designed to lift 3 times the weight of the cask. Therefore, each lug will see a vertical force of 3(50,000 lb)/3 lugs - 50,000 lb.

The lift lugs are constructed of either ASTM A516, ASTM ASIS or ASTM A203, Grade E material.

For analysis purposes, fy - 43,900 psi and fu - 71,000 psi, based on lowest value for the material listed :bove.

Ootion 1 - Flat Plate Lua 50,000 lb

^

e (Vert. Lift Tearout only) a 2.88 s - 50,000 lb/(2)(1)(2.88-0.94) a

1. 8 '

as - 12,886 psi S.F. - (.577)(43,900)/(12,886) 5' W S. F.,= i d t l

thick Bearina oB - 50,000/(1)(1.875) - 26,666 psi O

0347A:65-021788 2-14

STD-R-02-006 O

S.F. - (43,000)(.9)/26,666 - L.48 4

O Tension T

3/a N oT = (50,000)/(1)(5-1.88) = 16,025 psi 7

S.F. - (43,900)/(16,025) - L))

v Weld

+-5"-

3//

4 ow = 50,000/(7 1/2+5+7 1/2)(.75)(sin 45)(.85) og = 5545 psi S.F. - 20,625/5545 - L22 V}

r l

Option 2 - Flat Plate Lua with Reinforcina Plates (Reinforcing plates made of either A515 or A516 Gr 70, fy - 38,000 psi) (to be used for non-vertical lift) l A

/

N,._

50,000/cosa 50,000 lb

^

[]

8" B

B 50,000/tana

$l f

f Cask Body 3.62 4'

E b

W isi i i

b typ.

Cask

/

Body

/

7h"

/

1" w

+--

$P 0347A:65-021788

/

2-15

/

STD-R-02-006 O

Neutral Axis

_,IA (5)(1)(1/2)+(2)(1/2)(3)(1 1/2 + 3/8) l y

A (5)(1) + (2)(3)(1/2) g..

-H +-

3" Neutral

~

a Axis g,,

j Y,

J' g 1" I i

e n

3/8" 5"

SECTION B-B y - 1.016 Moment of Inertia = l

- y = I(bh /12) - Ad 3

2 y

(5)(1)3 I l=

+ (5)(1.016 - 0.5)

= 1.748 in' 12 2(1/2)(3)

+ 2(3)(1/2)(1 1/2 + 3/8 - 1.016)2 - 4.464 in' I2" 12 IT"I l+I2 = 6.21 in' a due to bending -

50.000/coss 50 W h Mc (50,000 tan a)(3.62)(3.3785-1.016)

I 6.21

,,"; q\\

o - 38,000 - 68,757 tan a so.ooo

, b' tan o - 0.5526 8

)

vup p-i g

a = 28.93*

c347A:65-ci 2-16 l

ST0-R-02 006 O

Minimum sling length 41-3/8" 85.5" - 7.13 ft sin 28.9' The minimum sling length is 7.13 ft.

Weld analysis of lift lua (00 tion 2)

(non-vertical lift)

/

O A

i I

/3 -sides l

[

f V\\

l

~~

Neutral -

V Axis s._.5" y y, 2(7.5)(3-3/4) = 2.8125 in.

2(7.5) + 5 Shear as - (50,000/cos 28.9*)/[7.5 +5+ 7.5][.75][ sin 45'][.85]

= 6,334 psi O

0347A:65-021788 2-17 i

l

STD-R-02-006

()s Moment

[(50,000 tan 28.9')(3.62) + (50,000)(.5)] = 2aN "

[2.8125)2(2)(1/2)(2/3)+(5)(2.8125))(3/4)(.85)(sin 45*)

U - 124,917/17.43 - 7,165 psi m

oT " /O

+O

- 9,563 psi s

m S.F. - 20,625/9,563 = _?Jji 2.10.1.2 Tiedown Luas for Liftina Cask (Inadvertant Use)

If it is assumed the entire load is carried by two tiedown 2

lugs, the Section Module (s). - bh /6 where b-1.5",

thickness of lug; and h-6", the width of the lug.

3 S-9 in.

Material has a minimum yield of 61,100 psi.

Each lug will see (50,000)(3g lift) = 75,000 lb 2 lugs 40" q-R, ',

8

/,

k'

[

Mc M

\\3 7

5 530 6

8 (45,136)(10) - 50,151 psi 9

SF = 61,100/50,151 - 1 2 0347A:65-021788 2-18

STD-R-02-006 O:

Neutral Axis X = 2(10)(5) - 3.84 in 2(10) + 6 h14 a3 - (75,000)/(10+6+10)(1)(sin 45)(.85) - 4,800 psi

/

Moment -

2 z

I

- IA((6 /12) + r )

I

- 2((l)(sin 45*)(10)(100/12)+(1.16)2]} + ((6)(sin 45')(1)(36/12)+(3.84)2)

I

- 212 in'

, Mc (45,136)(17.16)(3.84) - 14,030 psi I

212 ind aT " /US + og - 14,828 psi 2

S.F. - 20,625/14,328 - Id O

0347A:65-021788 2-19

+-w

-ms-wg e--4-ye

-,~.r.ew-,w,,-,,-e--re,ec--

-w...

-,..vv.wwe--..,+--.----....

.--...-,%%-.--w,a--ve,~mm.e--e,

-w--

STD-R-02-006 2.10.1.3 Secondary Shield lift Lua 1/2" Weight of Shield Plug - 500 lb

_ thick lI

/

3g lift for 1 lug = 1,500 lb

,r 1-1/2 Material is 516 Grade 55 m

1"

,94 (Minimum) 1/4"V 3#

fy - 30,00 psi fult - 55,000 psi Tear Out s = 1500/(2)(1/2)(1.5

.94

.22) - 4,411 psi U

S.F. - (.577)(30,000)/(4411) - 3.9 Bearina oB = 1560/(1/2")(1/4" dia pin) - 12,000 psi S.F. - (.9)(30,000)/( ?,000) - Ljl5

^

Tension at - 1500/(1/2)(2.438) = 1,920 psi S.F. - 30,000/1,920 = jl,.!

i 0347A:ss-c217as 2-20 l

STD-R-02-006 O

Mald 1500/(2 + 0.5 + 2 +.5)(.25)(sin 45)(.85) = 1996 psi S.F. - 20,625/1996 = 10.3 2.10.1.4 Primary Lid lift Luas Material is A516 Grade 55 6500 lb n

9192 1,,

f = 30,000 psi thick fu = 55,000 psi f,j76

.875 \\ ^

,c t---3" 2-1/2" Weight of primary lid and shield 1-1/2 plug = 6500 lli.

1/2"V JL 3g lift with 3 lugs = 6500 lb/ lug 45' sling sagle Tear Out a

= 9192/(2)(1)(2.5 - 1.5

.4375) = 8170 psi s

^

S.F. - (30,000)(.577)/8170 - LJ2 Bearina oB

= 9192/(1)(1/2" dia pin) = 18,384 psi S.F. - (.9)(30,000)/18,384 = 1,47 0

0347A:65-021788 2-21

,,,,-.-,.,,,,.,,-,.---,-,,,-.,.,,,,,,,n,,,,-.--,,,,.,..n-

.,,,n-,,..,_,

,.,,-,,,,__,-,,,,,.n.--

-s

STD-R-02-006 O

Tension oT

= 9,192/(1)(.9767) = 9,411 psi S.F. - 30,000/9,411 - M Mftld Shear as - 9,192/(6+1+6+1)(.5)(sin 45')(.85) as = 2,185 psi Moment (6500)(1.5) = 2aN [(2)(3)2(1/2)(2/3) + (1)(3)]

l

(.5)(sin 45)(.85)

~

aM = 1802 psi oT = /as + og = 2832 psi 2

S.F. = 20,625/2832 - M i~

l i

e-l l

l t

O 0347A:65-021788 2-22 l

STD-R-02-006 O

2.10.2 Tiedown Analysis 2.10.2.1 Tiedown loads The cask tiedowns consist of four cable and turnbuckle or ratchet binders assemblies and shear blocks or shear ring at the cask base which firmly position and hold the cask to the truck platform.

The following analysis shows the ability of the cask tiedown lugs to withstand combined loads due to a 109 longitudinal, Sg transverse and 2g vertical loads.

[

}"

a

a m

o

,X

,e h,

V E

e sr

(

\\

%/

'9"

?

4---

4 9" 33" -- 3 3"

?f

^

P Mk db g

59" av.

X % W CG 65" av 40 m

<s

%8 0347A:65-021788 2-23

~

1 STD-R-02-006

..(

2.10.2.2 Cask Center of Gravity Lt.g Weiaht 6.rm

' Moment Cask 35,500 lbs 40.75 in.

1,446,625 in lb.

Container 2,000 lbs 39.00 in.

78,000 in 1b.

=

Waste 12.500 lbs 38.00 in.

475.000 in lb.

50,000 lbs 1,999,625 in lb.

Center of Gravity = 1,999,625/50,000 CG = 40.0 in.

2.10.2.3 Tiedown FQrces Reference frame with respec't to the trailer is shown on the tiedown drawing (Page 2-23) up - down z; front - rear x; side - side y

/

accelerations: X axis - 10 g's Y axis - 5 g's Z axis - 2 g's 2.10'2._4 Tiedown Lenaths Average tiedown lengths =

/(49)2 + (26.75 + 33.75)2 + 592=

/(492 + (60.50)' + 592, O

0347A:65-021788 2-24 4

== +

=t.,y er wn,,y,--.,,-,m.~

t r g - r-w

-m,--

w--------e--me--y-,-.ew-----

..w-,,,re-w,,,,,

e-i,-..pww-m-,,,--,wwyw-.e__

e-.-r---wr,---wwv-e,w~,-w--,,

-w----.-,-=-

STD-R-02-006 O

/2401 + 3660 + 3481 -

/93T2 - 97.68" 2.10.2.5 Tiedown Tensions Tiedown tensions resolved by vector direction 49 Along X axis Tg = 0.502 97.68 60.5 Along Y axis Tg = 0.619 97.68 59 Along Z axis Tg;- 0.604 97.68 2.10.2.6 100 Horizontal lonaitudinal Force Overturning momer,t due to 10g along X axis

= 10 (50,000 lbs) 40 = 20,000,000 in-lbs Each rear tiedown must restrain half of the above moment or:

l.

20,000,000 x 1/2 = 10,000,000 in-lbs Tension in tiedowns l

10,000,000 = (65) x (0.502 x Tp)

+ (40.9 + 33) x (0.064 x Tg)

!lO 0347A:65-021788 2-25

STD-R-02-006 O

10,000,000.- 32.63 Tg + 44.64 Tg_

77.27 Tg - 10,000,000 I = 129.416 lbs t

2.10.2.7 5a Horizontal Transverse Force Overturning moment due to 5g along Y axis

- 5 (50,000 lbs) 40.0 =.10,000,000 in-lbs Each side tiedown unit must restrain half of the moment or:

10,000,000 x 1/2 - 5,000,000 in-lbs Tension in side cables:

i 50,000,000 = (65)(0.619)Tt

+ (40.9 + 26.75)(0.604)Tt 5,012,500 - 40.24 Tt + 40.86 Tt Tt = 5,012,500 + 81.1 I - 61.655 lbs t

O 0347A:65 021788 2-26

STD-R-02-006 O

2.10.2.8 2a Vertical Force Net vertical force = 29 - W = W

= 50,000 lbs Each cable must restrain 1/4 of net vertical force 50,000 + 4 = 12,500 lbs 0.604 T

= 12,500 lbs y

Iv

= 20.695 lba 2.10.2.9 Total Tension T = Tg + Tt+Ty

= 129,416 + 61,655 + 20,695

= 211,766 lbs 59 Fy = 211,766

- 127,896 97.68

/49 + 60.52 Fh = 211,766

= 168,766 lb 97.68 2.10.2.10 Analysis of Tiedown on Cask Shell The tiedown loads are transmitted into the cask shell as external moments.

These moments are the product of the O

0347A:65-021788 2-27

STD-R-02-006-O V-tiedown forces and the offset distance between the line of action of the tiedown force and the attachment plate.

V offset distance = 1.75" em Fy=Fz = 127,896 lb Fh"fx = 168,766 lb Mc - Circumferential moment = (168,766) (1.75) = 295,340 in-lb ML = Longitudinal moment = (127,896) (1.75) = 223,818 in-lb Reference for method of calculation: Welding Research Council, Bulletin No.107 (WRC 107), Stress in Cylindrical Pressure Vessels from Structural Attachments.

T=r/t = radius to thickness ratio (pg. 2, WRC 107)=40.3/.875-46.0 C1 = 1/2 the circumferential width of the loaded plate (pg. 2, WRC 107) = 13/2 - 6.5 C2 " 1/2 the longitudinal width of the loaded plate (pg. 2, WRC 107)

= 1372 - 6.5 i - C /r (pg. 2, WRC 107) = 6.5/40.3 = 0.16 B

1 2 = C /r (pg. 2, WRC 107) = 6.5/40.3 - 0.16 8

2 Check that 5 1 T s 100 0

0347A:65-021788 2-28

STD-R-02-006 Nernenclature applicable to Cylindrecal Shells CT 2

T.J B

+

B 2

1 2

-<}

V, concentrated shear load in the cir.

cumferential direction, Ib 0.3 1.2 V

concentrated shear load in the lon-t gitudinal direction, lb AI, external overturning moment in the

=

circemferential direction with re-spect to the shell, in. Ib y,

external overturning moment in the General Nornonciature longitudinal direction with re-normc.) stress in the ith direction on spect to the shell, in. Ib the surface of the shell, pai R.

mean radius of cylindrical shell, in, shear stress on the ith face of thejth I r,,

length of cylindrical shell. in, direction stress intensity - twice maximum halflength of rectangular loading in e,

S

=

circumferential direction, in.

shear stress, psi membrane force per unit length m, half length of rectangular loading in e,

N,

=

longitudinal direction, in.

the ith directior., Ib/in.

T bending moment per unit length in wall thickness of cylindrical shell, M,

jn, the ith direction, in. Ibrin.

coordinate in longitudinal direction x

K.

membrane stress concentration fac-of shell tor (pure tension or compression) coordinate in circumferential direc.

y K.

bending stress concentration factor

=

tion of shell i

denotes direction. In the case of cylindrical coordincte in circum-e spherical shells, this will refer to ferential directior, of shell the tangential and radial direc-I R.,

tions with respect to an axis 3

normal to the shell through the attachment parameter a

{g s,

c, R.

e,,' g, center of the attachment as g,

shown in Fig.1. In the case of R.'T; shelI pnrameter y

cylindrical shells, this will refer C,, C, multiplication factors for N, and to longitudinal and circumferen*

tial directions with respect to the N, for rectangular surfaces given in Tables 7 and 8 axis of the cylinder as shown in K,, K, coedicients given in Tables 7 and S Fig. 2.

y,, y, - bending moments in shell wall in denotes tensile stress (when asso-

+

the circumferential and longi-ciated with ei) denotes compressive stress (when tudinal direction with respect to

=

the shell associated with,,)

N,, N, membrane forces in shell wallin the E

- modulus of elasticity, psi circumferential and longitudinal P

- concentrated radial load or total direction with respect to the shell distributed radial load, Ib normal stress in the circumferential direction with respect to the shell, psi normal strew in the longitudinal di-General Equation e,

rection with respect to the shell, in the analysis of stresses in thin shells, one pro-psi ceeds by considering the relation between internal shear stress on the r face in the e r,,

membrane forces, internal bending moments and direction with respect to the stress concentrations in accordance with the follow-shell, psi ing:

shear stiess on the e face in the 2 r.,

e, - K. N,

  • K* 6 Af, direction with res'pect to the

-T y-shell, psi OG o m a s-e m es 2-29

STD-R-02-006

,.4 t,.

~

r==

ss1--

3 ; -s r_g ME

.=

=

=

r

'-TT it j '! tt trTT" + - 1 7' 1r.iri;;

; c.

(V

..n.~

~

i

. 4 4

--:= :

l

}

}t-.

i

j jjj
j.;

j L.-

l..,

i,;.j 4

i

,it

--44

. t.,

i.

w-.V,q,..-,4.,.

pmf-mAm.

.1

,r

...,.y,.. -

4

, a, e -" E I J J

1 i

a m J.

I

_7'm s

1 I

a q_UD jjii

4-p 1
; r -y i.

g_

5 5_7} Er

" 3'W M*..

  • h 2

.J,

~

j i

s LM5

^ E5IP't-555' -5MS-Ni **.j e[*S a

h=

a9 i h 4'

6
I'

^3'-

7 r

- a n

-m m -

c e

T LF"

.c i

i V J'*;

s 1

~

m ai f

,__ rl'ik'c 3$?y~_L W b? h = +=

s ne"-'

a

=g 4

6 (

t

i%

ziM&-

47-4 i -.-

.r -

L-h@

m.

m-ifNN 5h 5

CM.E2 5

jON ;M :"o <[N 4,...

E ar

-;yJ 4. ;4. ~

15/iVM g'9,_ w i.i

  1. MEE= M = ~f ff0/ C;-jiib_Q-.,. O %q:id-:g-g Fi a l ll l

/

. /- ' ~'.. - ----.-- % =. ~_ a t.c - :

- %w....-

k G

, _f":, ~ - d.a b.;*.d T u -- vQ t-U,f:/

/

=

~+-+----~W-,--..-c.+y.%.--%-.-..%...--

n m m.

1:

s.

ami H!I r

/'

-r'.

% wQ.

.m-I ER: F F 9

_/'

-Q,

% }* **"** %'

~

a-

"= nT I 'r s--.<Jc

%,,,,1,,.-.m.

i

"'*i q%

a em E

' f i

/ -

I n EiE Ej = 9

./

1 i

  • i~

3 b=E ~+~

%~~~~~4~"~~~t" i

0

~"

r

~T'~~~~ Di i

1 s

gh af f l ifjF C_.

j r

- N N %,t""d MEd-. $ -L-p i.=} -4 h_ tr@ ::

M--

j t_

a

F

-' ru

.iu 3-L

.t i1-t i n.

5-i N

w r

w r J:

i i

+

4 11 7

r t-E &

F i il -.5 =

3 1#7

~=~~iUmb -

' '." "-'4 i!I

~

r p '4M ";

l t { ^i - d i '

  • E UY t-E WH 1 E

~i hij5*i -/

' iW#

~

2 s IU M((5f IMk..Oz.- -J,,/O i l ' _

i Q#

ii l~!

q I

e ea -a ;

- 2,7'-

1.g.

g>

~ f

_~_:-

  • ..j HL sf

,r" F, IF. _ -+t.,,r s.y. W

/ ^

)

u y_ y j,

.l.

,. ' ~,,.

' ^ - ' - - - * - '

~ ~ - ~ - ' *

(%\\

W f ^._ l. -4f

.,,,.s.,

m.

~

,, r- -..

4 v/

.u, s

m m

=,r y

i,

i i e

i :

r #

v e

=

. /

f:

1 i

'i i!

1 3 ii.

I

~ * * * *

  • 1,,,

y Dj F

, i

. ~

i

. = = _-

UJ t A A

. # r.g -..e +

4 i

i j

,i ;

i E

E Lfi

= f, i

,J 1'

/--}/

. _K'

- =

L Oh. -

}).

. h i-b I.,,

t } q i,t l.

W

.- 7 M

t i

.; F' t y

..p-.

]i g

9

=J

..L, 4...m 1.1;_2 3

_L a L;4 p 4.,

g.

g m

pf vr.

L

- q. ay

=

3G~

u.

N-sG..;

-l:~

F A-

- --- v

's g

2=

-: -. m.

mm -

T. ~. : : :-' i.. :

pt-ff.1-;/..-..m. nn

-. i..-

i:

m y jl-s " EM A T f i

1 1

a NI J

I i

ii l

i r

[ [

lI i

i I

f

^

i

, ee n t +

=

3 ;

q 2t y s_ FN 's i li=

w f,3 g~ N

=st

.j

=

i-t i

Ms h5Ai

~

-i I

5H

-. -. _.4_

Riii -.

8. T- 'G !!.' - r*-T rrqrm :; y i

_;-m

, _ -- 3

=.

==

. %,ft-M,,

2,. y -,. d,..

]

~

[

il}!;

t_

4 L

.I i

l

,i i 4

l p-+-.-[t g*H-y 11*

P d.~ ~}

M*

-,+

4

~

-.. t +o,

s

. + -.... -. v 4.,

i 4 i

.e,

g 0

0 06 010 O rS 0 20 02S 030 0 35 040 045 050 4-

+

0.16 Fig. 3A-Membenne force N./(%/QA) due to an enternal circumferential moment M, on a circWar cybndet n

40

.v., m

,y.u, //.

1 O W A:65-C W S3 2-30 l

STD-R-02-006 4

- M4 f- -l J.' 3. I II {l8 l!

iIi,j III

! ! ! ! ) - J -i i 3

I

{

M

-/

. -]-

. i t ia

.,. 3

? !!

l e I

r t+!u; M

b e i--f. 4 9 +- i-f

! l i

3 ii i

il !

l

--t---

L v/

7

,' iH4 -

-i

}lt !

j ; ;

L.

.... 4...&.... a.4 44...

.;4

.i;,

gj i

l.1l

-"T.W 1

~

~~..

.'..)..!!.

ll lll!*

.I 6

1

.I.I..l

.'.!.f f f '.! ! I

. i

)li

_4._..

4

+,L 4-4.

4 a

.i 4,

i e-i e

a I-Y

=s

-i

(

OK. L

~

l g __

.. p g__

-1h:.-

I j d, -I. f.

M N.-

lh

=

9 d i

TFie r -1 2. 2 1-1-L-#-b b

-t itii i !i 4

1.

F 3 iJ

_._an:.c.:. x-:.

1... ='
  • ^'M-
a.

.;~~'^---

.; r._.

t-

-.=U~=.

.: 1 : : _ j.:r ; :

1.2.

~

^

J"

--* r:.: ;

n1 r:.r T t r:

.- m i, *: ;- [+;

t'l.

. t;i

.. ~ t 3;

: : l:
: 1.1

+

-.. L. ! :.-

i....

.. L r, -

..+w_+_..

4 p.

. 4 4.e

.,.a 4,

4_+-.-

g.

. t I

4 _

e --

4 6

+

^

j )h.

~~"{

7

~

i s '

'?I I I

I a

'-' =

---:1 EJ~

~

E;--#-AJ R

..~

- -a. 4 L

ll-3 4

-f' e

J

~~

' ]

1

_ -.p._._._-

p l

s e

=-

t-1

, j ww -

j--

]-

M N-jr*

l

...r_.

t-

=

7 7 4

4.

-j.. ;

'i t

+

r j

y y

t.... *]._", _'. l.'.

.}jj-*:*3

..d ci:4._.

..3J.

{.;

l

.I

.1. l _ _+..

..'..'..i l i:

1.

. l.. !.

!lj!.

i

/m i - - -

t

.i.

.. t

\\

9 ;>

l}.

.i

, e 4 I

. i e

i,,

ei,

.. e,,.

. i...

t B--

-. W-EA '. -,

]._

g s

0.082 P. N]ND'q]

i "dIT M L

] 8)B

{

=**

$1'

=

4 i l

]k i'$[] I7)i. M 8

.-gl

- - -d

-(

-T' *! - t

.=ig w - l==.

em e,ese mee em h aj Jo i- =,

3

.= me

& '-..m _-.

5.._, &..~. m} l

_N_- --

m.-.,.

- 2%,, =.. &

m m

5W

-Y p,- 7.-

.{}

' lj j<.

-l lg j

.i j l.8 jl

+

g i'

g-

--1.M.g=.;n

1. ;r

_-l -

..'.' [

T]

4

11 E

l

~1;

  • Q:
  • L, ;.

ll'1

., 1.

. ! l l.;

i N

..'. i I

;l.*

.a 3

v w.,.

.i.

.i-4

,.., 4 l9 3

4 4

8_

w_.

{.

~,

e p

_1 s

=-

g

.c 1 !.
j.,

i_

!i.

.4_ r j

1 e-j l' l. '

i l

ll i.

a l

I g

s-

='

L

.._.d j

i 1.

4 I

i

+. w..

p.

{

J 4
1, J

i i

i i

i i I l

l

!.l.,.'i t-~'

i I

! I

' f j

8-1 t..

i.

l l

3

.l-'

I

+- -t,.

.I 11

I p

. +.

I. e.

l 8.

. 44.

g l

3

,e i

+

_. - a. m e 4.. - 4 w_.#

0'S 0 80 0

0 o rb.16 020 0 25 OM 03S 040 08S O SO O'

Fig. lA-Moment M,/(M,/R.4) due to an enternal cucumferential moment M on a cucwise cyi.nder Q)

?

38

.%t. o w ~ or.\\ l,. ll.

0347A:65 021788

STD-R-02-006

] '.

m r:. _

._ c '

C.

~~

.._... _. 1,2 } ' F i ; -

i-4'~

y l

1,.

2._...

WW : _

1 y, i d ct

. t

  • + - -

g_

_.g..

.-m.,

- f-a t L

1

. % 1.h.

'.. g..i.. i.;

l f ; r e-a

,L.

n

[]

j =

,p

. -M CC.N

[

. _1.Li i.

.2 j

g

..g..

. -i

-~~

...... g..

cr y

r...

r -- - -

[-

' y. ty

- - - - - - - - m-

/ -+- ' 1.

l.N.

N I

r hop ' Nh.s-h::

a e

%,. N.

m

.,../

N" ps ELU

'.. _.g a

D 7

.l~' 1 i.! 1 F 1I

'E...T l '* "

- T11 TL iJi;~

s, 4 %l

, i.

4 ;

3

,4

. i.

ji.

'- r

.-r

-/

1, p(--

E p.'qM; ~N Q.s'!q i++

- -2

=q e-n

?*

3 4. -

s_

__ L_

r f

}

g d. :. 4 :.__.gp_4 _;.!{

lf2{=_:.- r '.'~i!

TII-iT r N' SQ L.C.M.,

u

..',, '~~N &.h.,.b

~'

i a1

=

.P k w

..L.

=

N_

w l

n/&4;f.*

/

-L-. & :3

[ '.3]

'm, :

2

7'? #3=i f. 1;!'i-d 3 u

EL 5).Wi 5

Ei=PN N.

t'-

E

'~~

-t T:

_._ q :

---3 mr r

' ' ^

- W 2 -- -

_ M=r _4_.-._, _,

d ----. ~

m

- -4.:.;;.,-;%s f f i/; /

,;i IIC '-l.13J-P'..RJ

i. i-N T,. (,

7 i

i g. -...

3 1.,

e--+---

MJ.;*e.

.~-,4 i,

s i s & /

e s

1T'

'Hi r-*. ;

-*~tt p EQ

+

u

7..

J as - U t r.J#

~

= me i i i!

ii,

., Q.

. f C

/

/

.# ii.6 i

i i

i a-v =

i 2 5 I-~N5)$ ';)E--$k -$

e

$k

.,W~... _l-4_I.

)!

g

' ip r-

=

ff f i

fpf2_

f

.i_;-4 J

J

',il

. p./m E r Mr g

s s =

.u 5

M t

=!-

j "i f.I i

, i 5 ;E# h7

.i._'._2__.

. i_ j.

j e

-E h "> ; TEE

,r" !.i

'l

. _, :3.

n

3..

1 '

,d..

,_j C

l, N'

...w..

4 ac 4Y:[i{-l

Tr J

3.g... f, ~.g 4_ ;_

~^

'r

. _1_U

.. L..

.,_1.,

W W

yl/

. ap

~~--

e-g-

y 4L I

. _1 %.

. _i_ -

_.1 y

, _ _ =,

1 _f__. __.

l 4 i

..S

.:t r

6. >

f M.:

- r i.

..2 i.

j O

2.,

l'

-J

)

r l ; 77 -71. ;-

1 I

. ;_.. i -.....:....1.

^*..

y.

,,. _.l c_. -_ ;

4jj i

r -- { h ;) :1y jl' ji.. _ _q. _....a 1. a

._2 4.L a --

_1__,_..

_ T i

..1 e-e-

,. u -.

_,. p q.

.Q.... _.

7.,

l

. s 6_ _

++t a

1 ).

__L.,_._

=. -9

)

)?

j__.

. : } 9..

i 2

3 i 8

1 l'.

l

-'.C_', '. ' '

.i j

s-3 4

_.__._..........._4_.4 o

oos oc s

c ac c at o so 0 35 0 40 04s oso

.16 Fig 3B--Membrane force N,/(M /P.'s) owe to an enternallongitweinal moment W on a cirewtar cyl'ecer i

C 4G

.vt,. w a n,.N/., Il.

0347A:65-021788 l

l i

T STD-R-02-006

.====.-

j j i' F j-f +, j H,j j i

--+_l-H. 4]'

'.^ H; i.;

i.

l

-:a rx

.2

' --r+r{.

a

.il.-

) ij

- ;L

==-

+-+- -

-; =

2..:--

. i e_N 1 _

u_

.2.

/

i ii.!.

.i.

l f.:.

i,

(.j

" [

I ji

'. 3l., :

l t.

..l.1,

..l:

1 lll J.I 1

1

-.r_

_4i11I.

1.. f l.

-,.,. 4.

3._

4_ _

n..

3 i.

,l_

l i.,,.

~4-

.-l.~:

..i 1

l l t

r_'-

4 _s_

4

^_ ?

w~; A_

y

,L

..__4

_..i. 4 -_

4+_

H- =

w

~

i m=

. r

- S e i m n

32

n+=m

==my:

1 y

1

! s E

i

_.M 2

T f-f-H

-+-

-- F 4

. + -H -

~ U E

I=

( $ ii i i1

+1

.i 4 4+

t-

__E Z1 saLM 49:L:

. =

Tm l

d H+i 2 g! -

ii O

~

=. M.b : z.

- :=5_a2E d=2=3aggJr E5E13 yn n::: -i~

i-f i -

.:Ei

-i.

  • fi 2 f5 F ~:-i fi-E

~~

m _.

.;. : L
:_: ::L.; ;L:
_:.. :r y.:1. 3.. L_ '.

_l'. j _.; J...l.;

  • - + - - - * -- --

..l. '!

9_ _.. l. _.w_.l.'.

(

.. g..

T 4-T i t g'_

l t _,.

.a. -. 1.;,.

4,4 g

3e.

6.

.6 I

. l._.

=_

1 L___

. T <l i _

a e _ -;

I i

=

3y7 3

=-

==

I I

l I

3.

lh i

3 f 8

I w

YMM:h% M_9di-%Hd F

-+-H' 3.1

- N Ekh kw kh hb 4.b.,r.-h ~~ 1NTN r,, r. 9.- -

\\

q g, 5

, ~ -

%..- H,1. m.

e.

mi,

~

i m

s i -

ii.. i-

<h

y' i. j-l -

=

3

. i l l 4. % 5 g-2 1 %.

M

, t j g.

s. y!. S-1 ji T_T

~

~

~

\\ Q' 7,20- - -;!:

.i i

.;, i i i j

'*5y*ts.

t i!

==___

s N

-b i -N t s

_.h. t\\.,.k. W

v... t.! ; s. i m':

'. w

g...

N

.t k. N. %

sg:. $ 'b f :-.y:..

1 l--

N c

'~h P.;:i ;T. N 1yq ' j i w.

i-N1.

1.+-+.S. L N_.

%..Q

'~I q>a q ;.

s.

s- < f s

.y.

f( ],y

._+w-+-

ymg

.y 7

' s, s

j~ gp

[

1

._{.4

. f.f.(

C' up.q p

I T

T"%

~

'~~

IU3 N

i? %

i E

u m m s c w'

N N

' v si 1 Mg F

i a

- a -e m

4=

m

=

- sh=.

'_ N P./,.

.!.g 4_%y..

Ii N

k, 31

=

g~_,

3

./._

%. % h<.g

? styv m-Y 4;

7 U

~.

i d

sP P..

, 4 4

%.?L T

N-JE M

.n=2 n- =

=-

i s,.

w= =

=

=. 2 g_

-

- =+

= =. f Mi d M i b a4-

- MM - } W'I % N(o F i-ii 1i'

- I d -h i; LUD

%L Tf=~* E H

~i- #$1df it! #

L..; WN..1

0.w
_:. :u

.. :. ;u

. L: -- -

+

m

11.: :-'- ^ Q : %:i 5 q::;Ty*-

m-: :

r

i. ;. ;'

.4

4. v: L.. I :

7 7., ;. "l.

.4. +

3.._.w.. :-*! !

1. -

-~

%. g.

,.s.%

4

-+ ; ;-

- 3o

.l.1..,.i

.4 4..

, 1 4 _.

.l}

} ^ Q*.i] ~

l i

l

}

d.

T :-

.T

--+.

H t

.i i

l i

2 f

p

.=-

i

) 3 {

s_

-_ ; -p c

a2

- u

_ {'

.,i_.,.

=

4

.__L

_ -.44__._.

7

=

i 1.

,ll -

. =_

t q.

..+

l a_ _

_._4_

.1 4

i l'

i i

,"; g g -p-

=

1 a;

t

=

=

=

+ a

7=

3 4

L';'

j II.

iii.l 4

4.

2 i

lll_

.w

.i

_ li.. 3 m n (

.7i tf -

.:ilol w ::..t: ::l

.nd.l. ;l tt 1*t

{: :

y -*f-[ g jj-*1 l]

11i i

i
::j;
.1 a.

l

. + - ~ T' t.4!. :l

!.1 :-1_4 l '!.

; ; I.
;.1.,1

.i

.. 1..
1. l..

4 1 i.,.

L w.....,_

I

. e..l l4 i :_.

4 -

  1. -- 44 t.

1,..

......J 4

,v.

i 4 +..

i o to ois oro o rs o so o ss oso 045 o so

--4 0

0 00 0.16 l

Fig.1B Moment M./(M /R.J) due to an enternallongitudicial moment Mt on a circular cylinder i$ trest on the longttwdmat t

pl a t'.* 3 Symmetry)

[

U Sir este s los. Min lls l

l 0347A:65-02178s 2-33 l

l l

l l

ST0-R-02-006 lN{ !5ddi Y:'.'_'..'

~

l F?b NM

- l-* - d-I

.i m

m i

.iNE4 = e- =-I F-tir# =f=4WM-4 2:4 ~J i !J

/s3 fj;-M ;--- = ~ :s =no e

.3 p

g i +

J i

q-(/

/

.=.=..:-..u w

=

=

..../,

,;- q qj-

.p pi-1 N.

hj!}.

.- n:/. : u,p. - P200

-q A;

i

,j (x

. ; = = - ~. --.--

F. ---M y

gm.g -.- p. m..

L_;FF l-fil } EDNMTei!I

' l Il I

-+-

-%, -t-fY l1MLW ii,-

3 IM J 14-41pwy;DT ei,

.as..

,_s f.

e.

ii

- m 1r

+- Fi/ :-"/ 4-r=i/~ _ ~34t%-r-.a

.h i 4,

~ ~ -

i

= t-Tf m EW mm tEs ?-+ m'.

e =

4, 1

o.r

_er c:#

m

-%-bM..

?.

+ m

+ t=

m it n

m

=

x i

m #

um.

1 m s c

4 2

3. 3, __

- : UM Ah 1E n h

- O 4h i-t =

W

^

~r

T =r m tr
a

-r. -

.,r-M -t = =

=

=r

=

=

  1. -4.M_f=-.W.

fie f..-2+7. _ _ _7y ss::_. 2===_..3;;.. w M.

r_3.= x -- s i====:

wE:ME w%._.#mLE : ts!='-

H m

==-

+=,

=ww

_._s=m.h

--=...

s r

=

__e:E za-- r

+ + 7 -*

,I

-. g-y t" C

. =: ;= ; -

-: := :.

_.__x :

n.::= =

j

.===.

= - -- - :- -

. r: :- ~-.=

=

71ll_

,f

. -pC T% -.-

u..

~

l;ll-l

-l-f-

_ ?

w

-n--.

' I If ~1/

P-

/ll

l n,,Ji

,'4 M,i l

x! ! !J pT - H-t-- $----

- --F u..

>i

= -.;

s

. '.II11,-1 -i-f : +

/

i. L i ;

Lf' l n

? W=W _-h_Ma=wA=

+ - ' -- 4tP"'.i==id=i:AW 9 11.=n=b

-=.

f' f I '7 3

/*

t i>'

_ sF :

.-I-m X_

( I1

_J l~

1-I ys-T a

J -I I. 'I3 J.s/

IsF

. d d 'lW"I J"I

-i i

t

==J'# "2

.t s

s r f-1 /

'/i

. e r7

a 4.i 7, ;_1_

4 i

f / f-

. f

-/

y--

f4 i i I !

+ / /_ /-.. ;/-

,/

/.-

.: /C
2a

.t!

i-iw

.. t.,

- =

m

=

II Myci:;r

/

%4 9

+m

=

W 1

lj i.,M /. /.-i.

=

... i l~/z o,

- f,J-., f.,f...

. -.. ~

s.

a g.

y.

s' '

fJIi f

/Li

'E...

g,_.,i [ ~

-)

I 4-4

/' _

?

7 i i i

I I !

Y

  • i 4

1 1 '

I 6

t i

t i

p,,.

1 J'

-1 v

4

+.

ff./

/../.

i

!i i

(

y' M/l

/^

W-a__E I 'I I I

/

?~

s I,

I I I I

/

i r

V'

~4

{J f /

/

r-I T-i j i s.

( 11/ ^

/

5 r

L=

a

- ) l -J..,(

=H-i 4,

.. -4 ? - n....h, 3-b

[_ -[

[

~.~rdN. E 1* ED 52 3.s!-ib i f. IS' r_:

lhh }- /

- -~

7-.-

l[-l..

~Qfh.

.~C, g

IIT-g I i i

.,3 i

! ' 1 I I 3

II I -

N

'I

,iI i

.] :f I-E i i e

i I -er Q

]f4-

j

2 s.

a lI

~~

,_ l 4.

s I

I 4-p

- "^_ - -

. M J.J. s..

.6 4 l

l l

0 0 05 0 50 Og,}g 020 02S 0 30 0 35 C4C 045 0 50 Fig. 4A-Membrane force N./(M./R.id) due to en enternal circumferential moment M, on a circular cy!'nder i

\\-)

Socsses nn shctle 11 0347A:65-021788 2-34 l

l l

STD.R-02-006 E"-

l

! l j t a,i _.

,7 j

.j.i

- - 4 y

e-1, it

..+w e #

)

p.

1..

i

.y

).,,.,

. e --

.- 4

.,.n

.a.,.a, g,

_.,. 7...y

=

7

. a.

L _

t

.1+...

t

-- a +.

-+.-.,, n g_ ir l

- + +

e i.

a s t !

a :

Md'-f EIM--@ T :.4 dik i

~

i 1 3 t

g_

r

{

r

.]

p..j 1 l

.j_.q4.j..

lm z.

e,.-

in i-e.

i m

s-. - - -=

.r=-=

a-.

3-4 9 q r, iimwe= a :--tc -m -3 u

i

r i

((~))EM:::,= tu r

=~-

r'....

. : :.1 s

.: ; :==: = - -

= =. = = = :::..

- =:.

. =-

== =

==: - :.:

-:==

~:u I --

g

~*

m s

J

'~"'

~

s =

g _.

7 4 t

i a (J.

n__

-?- - HH 3r

  • 3P i4 1

1.

-A

' b-T U

a

'-a e !

E, 1 1

! I 1 1 I

' I i f ii I ' '

i

! ! l 8 i 8

3 i i i i

a

{

'-~~~ -

-- A I

3 7 k

-(

- - - -- - - - ', N E -.-

mu.

._ _..--..e 8-

  • -~

--.,- i !.

L 4.._

_. 4

.;I, 1'T."I*. J. : 1..jOJ

-.. ~. -. -.

.s..

.f

(

.g t-x /

a '" w 1

i ! t I I I 'i 6a 1

1 I I i i I

I. !

I ! ! !

'I I i

  • g_

t l l 3 I!

8 l

8 1 1 i ' il !

I

=

g l

i i

4 1

i i

s-

_m y

r _- - -

_2 g.

y t-555-hb g

v D*

  • ~ ~

0.041,

-VM#

NMQM71T1TCF y,

^.,w;S t wi=h8r m -

1,,, svN n.'.,i s

.'s.., D.CQ-J\\%N~

3__+

7

=

m m.30

.=.;.. h=1m 4'~

ZS.~Y. ~ by N T

[ D. EY O

- Q m -.'.;.". N._ Y ~'.' Y

"'"I

,==== =u.:

.e

~ - ~ ~

,..,, u

__t - - -

JC

O T.'

.=

f g.

..'*.,.- y

-k

_ y W D L._ h290

=

' n_g;_

, ~.

4 E

~.., Q:.

s 1

e.W 1r. 3 u 3

I.

1

-f

.hbym 6-

~

~

t *f

. ~,:

4 0

u..._.-,

5

-.-7__

.g. 7, m,.. q, -

m -,.

7

.m...

m..

..H s--

....,,l I!!.

~..- -

-t j. i

'. I! ' I i I n_---

h5~*

  • I. i ;

A

._. }.

l

~....

(

l-e.

, _.__i O

0 0$

00 0

0 20 02S 030 0 35 040 04%

0 50 I

.16 Fig. 2A-Moment M./(M./R s)'due to an enternal circumf erential moment M, on a circular cylinder 1

,m.e 1

\\

.Nto rm s t n.\\lo rl{s w

3'I l

o m o ss.o m aa 2-35 1

STD-R-02-006

r

. a:.

s

, ; il

. 4 s

_4

/

i l;,'

H.;. y_

w t,

. _L14J~

. ~.. _

';-l i

jl'!j i

i v

8

,. ---.r.-

}

i,j

  • l1
j l

...l

.,.. '.4. l,f 809 ;

1I 1;

,'}l!'*

q.

?

j I.

Y'U

}!

'l,

l1*

N N-C.

t.!II.}l,l lll l lilll lll

{ (, ) ~

\\} l l' '

l.l

^

s

  • _.9

_t,, t.

>i

.1 1',

ej;i

-m s.

4p:. y _. _,

o..

s.

/, _ -/

i N'

4r fy,/.. gb e

ii i

e

im - -

i is

v,,o:m+-w e+

w",* + ++

r

- P fr.

.7

-~

4 4,_N__ N-

+

,s 33 ff t-f -i --- To71' N

  • - N.

+

r 4 ? 1.i i -4 r

u

-f-/E.jf.' :.K

=.

N

%%1:N, i.:

i 5 M. N [ [-i!

.b 50

DN l.9, h l__$ l NW y

.... %~^;__

r-Q u;.

._. ; a-a r-r

- _._~.

b,. r,1,m N.

bl#}

jf.-

lf 3

T W

[

f.

x s_

i l-l u f iV

'I. -

<jf2/ / -W:

I1 g"g 4i.

i

-i b

!!T

- 4:

~

4-e_

r-J1 n 1

I-

./.-

t i 12_. 4 J_4_t.L

i i

n i I ff Jt

  • a

,4

,V.

! t

I: i. r != /

/

A

.,., j. ; _,;,j ii i/

1 /)

/

r

h 7

.-g- /

p g

r h.

-l--/_ __~: 3 d ;. _.

3-: -

1,1.

_,r.

u s --

/.

I!i..

,os

. Yi[! [i ;/

...,..... ~

/.s.

i 4

>U)

....j Iea

(

{.__

I 1 11; A-e y_.1 q.... t.. J _J { j._

ti i.

s _.

/. /

_1,_. __9...,.. g..-., {

j. g -4j

{p

-ttj-

_.[

....l l

.t P'I '--

j-

< j-.g-t __._

/ j/q

.,.4

}

q

-l I

- -l t'

.L J _; ;

' q' '

j

)i c.-.

3

.p...._

,..h ht-t-H ' l g, % -F i ; J -4 3-

,- 3 --

4 y [ j/

p

.L.

_. w._

.,4 91-4 t... j. 4. g_

l l /:

/

0 19-i

-g.

- I J f :.,

=A 1:=.L _ --

~. -

,f--f:

g

_, -~.p

_p..

. ~ __ l s__

s i i

.,m e _i.4. 4.} y. 14.t.L,._

,1,I

! ! _4 4.. JI iI.

s_-

,7 g _

{.

.o,.

., g s__ _f_ ___z 3_

__,. 7

] I ) q, 4 -

g l'

q.4 s

I

_ ;. _L..a 4 i I'.',

.i!

l s

=.

.. =.

l

(_..-

4 6

, =. _ _.

o 0o5 o so od o ro ots 0 30 0 35 04o 045 0 50 Fig. 48--Memt> rant force k.16 0

/(M /R.'s) due to an enternallongitudinal moment Mt on a cirewtar cylinder t

,0) i

.<tue m s out.% Ik C

(

0347A:ES 021788 206 1

i

STD-R-02-006 n__

==

--=

s m w

+

m n

4 15 =.

=

=- ik. -_

a - ;

a k

=

.-i =+-

, L3 - j i

}

j, : c; f

1-E+

I'E=E-i_

i:_

I n __

1" I.

h.

gs/

g -l*..

l.,.

[I

. 4. v: -~.

l

. _,w w.

+ - +.

... ~..

i..

4.,..

.p..

e#

hj.

~

g g_

r

r

. e L

j'

+=+ - m. !% + w*ml o

r un

'-Y I' 1d i

-I -

E$$

55555 5N9N

5'I i '~

=

2 2

a I

i A

l l

! !-4 f I-h M I

l---

h i

i 1

i-s 3 I

't i

j t

i i

_ g }j p p i-

H I'9m ?--t%

c-( ;pa

.~.t-

=.

i-4 L,J-i i 55II5b@555 5 5M_59':i2 N$Nbr: 95-iNI.2.' "iD._' ? i

~

~JJ

~~

3 -3 i *.

w

_.=.._

',*i*.,',

g

-*-?._._.

..M-'_: --' ;

  • L i

_ :== :

-....; ~:*. ; - ^ -~

EE b

f i

3 5

5 k 5 [k L'

%d

.w.

  • "m._ l h Ih Lb eus m

I

'N,*'

L N.

I A

h.

'tu. m i

  • Y g

d'_-

.N

0. 0lo

-,k m -

,e i o m' s

" * = -.

'N 1

i

- u

- '[m

'*.'m R_'

i 1. %.

iI '

= = =.

a i

t.r 6

C J

~

E ? M [(

e lh

. k d43di' M ]ag f an,

_ - ' T 1 l i i UT lc-M DMd 51 J -i N s

~

. _f=

4

- 2'.l ( i T,%.

i N

~-

- Ed&@a=

%.1 '. Q-s

' \\m '

'N.,

sf g.

e_ %-=3.\\1 4

9 n

Y

,y-G3 x

s

.N

=h

's y :h s :-

v. s: _:_s

_: N w.

.=-.2 1 I

'.e.

.. '. _.A

. p

. ~. -.. -

io.-

- Q..

m o

=q

. e.a g eg.

p,

+ %.e_*

e5-

.g, kj a"

-3

~l h

i h 4-

"C i I l

.N.

  • 1 i

t

(

f { -

em.

1 6

j l,

.'L

. f,,

g.

'L*

d- : : 's N'

t_ i ;

E Fh i

- i-i T

5

~. b

? 9 ^-1T T =i\\ ~=,5N NE Md4

' NN2--i

~

E'~

U9 d

' } '. -N '

g h 31 E l

3 N

=

7

_ 7.

IN i

' ! I 1

.[e p*. _,

7 i

} ; i 59 M O[ Eld 1 N.* I I i ON,

i.O d

!3

.J

! '-'$55555 ;;

i g"""

-*i_

, i 4

=-

r

. r-1.

i m

i g,

I 14 g p

MJ 3 p

i, = =,_,.

i*

-M 4M&M J -H 'A r i '

'i% 'h'

-3sm.=

3

. -li T 3 f

_:+

=

A

[ ~*k '

A N:i5 l':

'-M bh i'. N

's i --l' E %-

5 549-

'. bN1-1 3_

- - + '

. i-p_ g_ j g

, (.-, g 7-- gp g g_i---

gg,,

" '. fg

.c-

...a

_. - - " - -s.

..u

-u g

_.--..:".-'.a[_.-'

s-

-1.

-~ - 1 '"-. :. ~7 Nd

~" ~

=-

-'L""~.~.-

I.

'..- N~

l

. : w

.s w

- ~;

. p

.c

_a

. %. g.

g Q

5 3

i

T' r

n 9

'~l I'f' 1

'Lt 1

'I.

}

l 5 d-

' n g

2

.- d $ h.

iEh L.

3 j i,

t 2 g

g_

', y -2 d__r

.l-p f'

-j. '. i- -

' a g.

=. i-L-

...-i..-== c '

ME

)

g_ 5,5555i i %5 54,

~

! I I

pf

--jjf. i-.5 '. -drii-2M' k1 l

,b.. ' - '-.'.1. E ? _L'-4 3 m

I

't 2

_ _ _4 s

'3 7i' I'

5':

,-..H - -.: '.. s 8

d.T.:= E I'

l 9

j 1

020 02S 030 C 3S 040 C 45 0 50 O

00S 080 0dS 16 on a circular cyhnder (Stress on longiteal Fig. 28. Moment M,/(M /R.J) cue to an enternallongitu$nal moment M i

i plane of symmetry) q h

I i

W 44

.Mir a nas a in.Nho lla 03 m :ss-o m es 2-37

Tel.44 5-Co.nputt6en Sheet f;r Local Stresses la Cylladrk:1 Shells p

STD-R-02-006

  • /Y" *'

.v o

i. 4,.i.. u. 4.-

3.

c..........

L/ M,M*

4/4 T_

(q p = k/M. is.

n.4.. w..

l 8%U

,,_._v T- -

c 2

. i..

-6 c.........

.2 v

t...........

.t -tT_Jm... ii.

. 4/_g

_mouNo v.........-..

8 Au

,, e, Ls atricnucut

., /AilB.~ i.

v.

i s,

n. t....

v6 /1ZLA..

s\\ee 7.r

~,

36 t...

i..... c.......... g..

q T

L e,}eL Q

ig

.i.-.....i......

2.s-,

A v a f/.G..

H bad as ad. a A,n v....i. i,.......

g

..o t e a...n

..... i.....

4.. w.

4......,

.~

. v... a

4....
n.. ec A...

cvuNoniCat sHEu.

r n........

c..,.. i.. s.....

i,.nin-ai.................................~..

n.

i.,

..............i..

u

.c c.

cu

> c t'

.l;:.

.. ( m A ) 6, =

i

( ~;-).

se.i

-.o t e.,

+

p.

a

+

+

..%.., f =;f

"(.. '.7,n )..E, *.

N E 36 6E W

,Vg' t2#g +1gg

.".u.5,,

"(...:.1)/?J,.=

RB2 R$$ $$1RBid m3 en men -as l

."f...ao

"(.m.:.y)..;, =

-w2 -wu +wn 4e, R$ig Riilt 3$$)X(

a l

.C.,J,,

" (. ".; )..'"',. =

w w we -se R$8 R$$%% )Ri 1

    • ..~...n

/J$54 3Sie /3354 3Sto 3/1 01 u tt.s 3tfo/ 2516.r

[

9;'

,,";. =

.. (5. ). +, -

l iP!, F a (?) 5 =

+

.s.

+

+

=

.."l... o 3'., "(. 2.n). 0, -

Bj!$$ $igl 'ill!E $$$! -et6 -+'m #2n +/2 st a

q

. 7..g,, "(. a )

..'L.

J]llll DjQl l!l$ $j@@ -wret +/w evra wn u

. ";..e i.,

" (..~..,,)..%, -

-nx -n x.ygro m7, >)$k@t %"% R$%

l l

i li.?..,gt a L.1).'"/,. -

-rzzw +/rw d,v, mg, R$$ $$$ $$in 3$si l

4....n,..-

a......<.<-

/W/// /037o k///t t037o stoot /p/Jo ffcoz to4]o i.....

.. r

,o. s T.o. T.zT

+

+-

t t.

+.

r t-

+-

l q c' g-

+141 +7$b -761 -799h&

hh

"".' l."?

ro v T,s.

$6]2 Ef22 f612 (422

'""""*.*.*.*.,.-.;~

A.+

" = -~. n T =

7Y/f 7Y/f 7$// 79llf ffTl f1,22 Ff22 ($22 CCtiBINED STPISS INTENSITY - SM y. %

6. 3 ' 'i. T 43

.I MC 7.0 10.0 (On3s iwkSf) bsolute eacnitude of eicher a.N 2i. Ns.i au is.i Wo 21.7 We le

1) When T / 0, S = larcest a

2} #

2 S={2[c+U

/IU ~UCI

  • 4I (U ~ 04)

+ 4T

),

X x

x_w r

2) When T = 0, S = largest absolute magnitude of either S=c,C$

r (o

-0) x x

4 l

l N,/(M /R.'s) so determined by (C ) from Table 4.s c.kuimen et sinises t

t 8 (see para. 4.3).

4.3.1 STRESSES RESULTING FROM RADI AL LOAD.

fg 4.2.2.5.2:

When considering bending moment P.

(% ) ( M,): 0 - KsfiT where Ks in given in Table 4.3.1.1 Circumferential Stresses (e,):

8 9 n:ss-02 nes 2-38 St*P 1.

Using the applicable values of d and 3 5

l l

l 10 Stresses srs Skils 1

1

. ~..-.

STD-R-02-006 0

2.10 2.11 Summary The maximum stress developed in the outer shell at the tie down lug backing plates is 34,000 psi.

Based on the actual minimum yield for the material 42,000 psi, the safety factor is 42,000/34,000 - 1.23.

2.10.2.12 Analysis of Cask Tiedown luos The HN-190-1 cask tiedown lugs are analyzed for a 109, 59, and 29 combined loading condition.

Mounting Plate 11 Adaptor Lug (Ref.)

+

\\ 1.00 n

3.12 dia.

O.

M

/

/

,s 2

e pin dia. - 2.75" b= 9. 4

.75 P P

"a" (Ref.)

t Y

6

.44 min.

i.7s" h

V From Table 2.3.2, the tiedown lugs on the HN-190-1 casks have a minimum yield of 61,100 psi and an ultimate strength of 78,500 psi. The loading on the lugs will be 211,766 psi.

0347A:65-021788 2-39

{

STD-R-02-006 O

2.10.2.12.1 Bearina Stress in Pin Hole The allowable stress'in bearing based on projected area of pin in reamed, drilled or bored holes is:

Fbp = 0.90 Fy

= 0.90 x 61,100

= 54,990 psi l

For the tiedown lug the bearing stress is:

I' fb = 2.75 x 1.44 = 53,476 psi Safety Factor (yield) = 54,990, 1,03 53,476 2.10.2.12.2 Tensile Stress (in Plane M-M) i 211,766

= 52,149 psi F

=

(5.94 - 3.12)(1.44)

Safety Factor (yield) = 61,100. 1.17 52,149

~~

i

~

a.

1 O

0347A:65-021788 2-40 i

e ewer s. v.. ee e e r se==ew.,*mm.-w=,,w-m,w.

w_,

. w,wer cy,. w

,*e-. m.

e= r

--e m m e=--w

STD R-02-006 2.10.2.12.3 Tear Out Due to Shear Allowable Shear Stress = 0.577 x 61,100 - 35,255 psi i f" y1

= /1.563 - 1.3752 - 0.74

\\\\

1.56 - 0.74 = 0.82 in.

I k h y2

[

[

Y2

\\

0.82 + (3.75 - 1.56) = 3.01 v

t i

211,766

- 24,428 psi f

=

s 2 x 3.01 x 1.44 mi.375 Safety Factor (Yield) = 35,255, 1,44 r

24,428

?

2.10.2.12.4 Weld Strenath Analysis Stress in the weld attaching the tie down lug to the reinforcing plate is a combination of shear stress plus

[

bending stress.

Direct Sheer Stress 66 fs "

- 13,645 psi 1 x 0.707 x 24,82 x.85 Bending Moment M-1.44 x 1/2 x 211,766 - 152,472 in lbs O

0347A:65-021788 2-41

W l'*

d I

l STD-R-02-006 5.94

' 3.826 l M eutral Axis' I

I ar M - Compressive Moment + Tension Moment

- 2 (Tension Moment)

- 2fb ((5.94)(3.826)+(3.826)2(2)(1/2)(2/3)) (1)(sin 45)(.85) f"

- 3,904 psi b

3 Combined Stress f - /f ' + f s

b f - /(13,645)2 + (3,904)2-14,192 psi Allowable Shear Stress - 0.3 x 68,750

- 20,625 psi l

Safety Factor - 20,625, 1,45 14,192 2.10.2.13 (Deleted)

O 0347A:65-021788 2-42

STD-R-02-006 2.10.2.14 Failure Under Excessive Load The tiedown lugs are designed to fail first under excessive load and preclude damage to the package.

Based on the ultimate strength of the shell material, the force required to cause extentive deformation of the shell would be:

64,800 F = 211,766 x

- 403,600 lbs.

34,000 The lugs.would fail due to combination of bearing and tensile stresses. Based on the ultimate strength of the 4

lug, failure would occur with force if:

Bearing O

78,500 x 2.75 x 1.44 - 310,860 lbs Tensile 78,500 x (3.75-1.56) x 1,44 - 247,558 lbs Accordingly, a tensile failure of the lug will occur before the cask shell is damaged.

O 0347A:65-021788 2-43

. ~.

STD-R-02-006 O

2.10.2.15 Tiedown Reinforcino Plate Weld 13" 4

11.75" CG

/

^

,,//// // // /// / /

//// ////////

st 4"

!/

6.

's N N

S. 6"\\

/

CG <

/

/

/

/

13"

/

l

.65" l

/

/

/

5/8" v

211,766 lb Neutral Axis S.bjE.E 3 = 211,766 lb/(4)(13)(0.75)(0.85)(sin 45')

0 a3 - 9034 psi O

0347A:65-021788 2-44

STD-R-02-006 rh)

Bendina (211,766 lb) (1.75) - 370,590 in/lb.

Moment 370,590 = 2 oB [(11.75)(6.1)(1/2)+(14.53)(5.6)(1/2)-

(1.53)(.625)(1/2)+(1.25)(.65)(1/2)] (0.75)(0.85)

(sin 45*)

08 = 5376 psi oT " /8B +US = 10,512 psi Safety Factor = 10512. 2.0 5376 f x.,

)

2.10.3 Free Droo Since the package weighs in excess of 30,000 lbs., it must be able to withstand a one foot drop on any surface, without loss of contents.

2.10.3.1 One Foot Drop on Bottom Corner Energy to be absorbed = 50,000 lb x 12 in.

5 Maximum energy - 6 x 10 in-lb

'^

Energy will be absorbed by crushing of corner.

/

Bottom Steel 4" Thick Plate c34n:ss-cznes 2-45 2"

STD-R-02-006 O

The volume of the crushed ungula, assuming the worst case of a 45' impact angle is calculated by the following equation:

3 V3-R (Sin p SIU 4 - (Cosp)

J R

0

\\

O

~'s r+-+

2c The volume of steel that must be crushed to absorb the energy from a one foot drop is calculated using the minimum yield' strength of A516, Grade 55 steel (30,000 psi). This

~

results in the maximum deformation of the steel.

V3 - 600,000 + 30,000 = 20 cubic inches The angle p of the crushed angle is calculated using the equation oit the previous page:

For p - 17' O

0347A:65-021788 2-46 i

STD-R-02-006 C'\\

G v3 - 40.73 (0.29237 - 0.00833 - 0.28374) 3 V3 - 67,419 x 0.0002996 = 20.2 in Therefore total energy absorbed for 17' is 606,000 in-lb (101% of the required energy to be absorbcd)

The maximum crush distance is calculated:

b = R (1-Cosp) b = 40.7 (1-0.95656) b = 1.78 in.

'O The vertical crush distance will be:

O l

l 1.77 + fl = 1.25" i

As shown on the figure below, the crushed volume will

[

extend into the weld a very short distance on the impacted l

corner.

Bottom Steel 4" l

Thick Plate l

I

^^

I l

I l

l

\\

a

/

1. w.

l t

l 1.78" 1 a l

0347A:65-021788 2-47

l r

~STD-R-02-006 B

O I

The deceleration force exerted on the cask is calculated as the product of the maximum contact surface area and the yield strength of the steel (30,000 psi). The area is calculated:

xab - (xy + ab sin'! * )

AU=

2 a

where for a 45' angle = 0 R = 40.7 in.

a - R/cos 45' = 40.7 + 0.7071 = 57.56 1

b = R = 40.7 in.

0 l

h = 1.78 in.

C = R-h = 40.7 - 1.78 - 38.92 y-/R2 -C2= 11.9 l

l x = C/cos 45' = 55.04 Sin-1 0.95645 - 73' = 1.274 radians

--+

l x (57.56)(40.7) - [(55.04)(11.9)+(57.56)(40.7) sin-t 55.0j AU=

2 57.56 l

' O o m A:ss-0217ss 2-48

STD-R 02-006 bv AU = 3679.9 - [655 + 2984.6]

s t

AU = 40.3 in Deceleration Force - 40.3 x 30,000 - 1,209,000 lb Deceleration = 1,209,000 + 50,000 - 24.2 g's The maximum deceleration force will occur with steel ha ir.g l

v the highest yield strength. The A516, Grade 55 steel used 1

in the HN-190-1 cask may have yield strength as higa es

)

50,000 psi. The deceleration forces based or this value are as follows:

V3 - 600,000 in lbs + 50,000 psi = 12 in' du - 15' 20' b = 1.45 inches t

AU = 29.87 in Deceleration Force = 29.87 int x 50,000 psi =

1,493,823 lbs

)

?

Deceleration = 1,493,823 lbs + 50,000 lbs = 29.87g j

l A value of 30 g's is used in the analysis of the effects on the balance of the cask.

2.10.3.2 Effects of Bottom Corner Droo on Balance of Cask The 30 g deceleration will be transmitted to the outer l

j o m A:ss-c2 n sa 2-49 l

l

STD-R-02-0V (3

A_/

portions of the cask. This force will be composed of two components, one force will act laterally with respect to the bottom plate. The other component will act axially with respect to the plate.

Summary of cask component weights as used in the following drop analyses Primary Lid 6,000 lb Shield Plug 500 lb Outer Body Shell 6,065 lb Inner Booy Shell 2,010 lb Bottom Plate 5,900 lb Lead Shield 13,900 lb Waste Contents (including container) 14,500 lb This includes the weight of tiedown lugs, backing plates, etc.

The following design criteria and assumptions are the basis for the bottom corner drop analysis. The following load distributions are considered:

c 1-Load from pr'. mary lid and shield plug will be distributad to the inner and outer shells in accordance with the shell cross sectional areas.

O V

0347A:61-021'st 2-50

~

- ~ ~ -

l STD-R-02-006 2-The inner shell will receive loadings at its connection to the upper bottom plate consisting of:

Load from self weight of inner shell Lodd from waste considered to act on one-half of the shell perimeter nearest corner of impact Load from one-half lead shield considered to act on the half of inner shell perimeter not receiving waste loading.

All other loads on the inner shell will be considered to act uniformly around shell perimeter.

(

3-The outer shell will receive loadings at its connection to the bottom plate consisting of:

Load from lid and shield plug Load from self weight of outer shell Load from one-half of the lead shield considered to act on that half of the shell perimeter nearest the corner of impact 4-The bottom plate will receive loadings consisting of:

Loads transferred through the inner shell weld Load from self weight of the bottom plate omA:ss-ozuss 2-51 l

.-.. - ~

STD-R-02-006 Ov Cask Cover I

Inner Container Deceleration Forces Contents Y

e */

o q

Inner Shell Lead Shield Bottom m

Plate V

Outer Shell Co rne r Imoset

\\\\\\\\M\\\\\\\\\\ \\

Reaction Fo rce 4

Bottom Corner Drop O

0347A:65-021788 2-52

ST0-R-02-006 b)

%J Cask Analysis 1.

Load from Primary lid and Shield Plua

\\

(

I ss,l#

d

{

4 s/

/

f l C

//'.

I f

f l

(

j Y M[

  1. y-Compressive Stress

\\

t

e in Outer and Inner Shells 6 N s\\

o gv j

+

j+

k I

S s

u j

je 4

q, e

l O

o m A:ss-cz nes 2-53

STD R-02-006 O

Loading - (6,000 + 500) 30 - 195,000 lb Lateral force - 195,000 (sin 45') - 137,885 lb Axial force = 195,000 (cos 45') = 137,885 lb 2

2 Inner shell area = x/4(76.25 - 75.5 )

2

= 89,338 in Outer shell area = r/4(81.52 - 79.75 )

2

- 221.629 in2 z

Total Area = 311,017 in Inner area - 89,388/311,017 - 29%

Outer area - 221,629/311,017 = 71%

Force on inner shell - (137,885)(0.29) - 39,986 lb lateral and axial Force on outer shell - (137,885)(0.71) - 97,898 lb lateral and axial 2.

Stresses Develooed in Inner Shell and Attachment Welds j

\\

l '\\

_45

'l Iy 1

/

//

d ll

/ //

3/8"

[/

7/8"

?

UPPER LOVER 7 / 8,,

ATIAGMENT ATTAGMENT A

C 450 034?A:65-021788 2-54

STD-R-02-006 0

Stress in weld around perimeter of inner shell at cask lid 39,986 lb/x(75.5)(3/8)(0.85) - 528 psi Total Stress = /2 (.528) 748 psi Safety Factor - 20,625/748 - 2L1 Stress in weld connecting inner shell to bottom plate Total force = 1/2 self weight of inner shell

+ 1/2 lid and shield plug (1/2 of weight acting on 1/2 of shell)

+ waste Total force - (2,010/2)(30)(sin 45*)+(39,986/2)

+(14,500)(30)(sin 45')

- 348,903 lbs Lateral Weld Stress - 348,903/x(75.5/2)(2)(3/8)(0.85)

= 4,614 psi (lateral)

Axial weld stress is caused only by lid load and shell self weight 39,986 + 42,638 - 82,624 Axial weld stress = 82,264 lb/x(75.5)(3/8)(0.85)

- 1,093 psi O

0347A:65-021788 2-55

STD-R-02-006 7

n b

Total Stress = /4614 + 10932 = 4,741 psi 2

Axial shell stress = 82,624/(76.252 - 75.5 )

2 s/4) - 924 psi which is less than weld stress.

Shear shell stress - lateral force / area

[(2,010)(30)(sin 45') + (39,986) + (14,500) (30) (sin 45')] = 8,730 psi (76.25 - 75.S')(x/4)(1/2) 2 Safety Factor - (.577)(42,000)/8,730 = 2.,]7 3.

Stresses Develooed in Outer Shell and Attachment Welds i O Stress in weld around perimeter of outer shell at cask lid t

97,898 lb/x(79.75)(.875)(0.85) - 525 psi both axial and lateral Total stress = /f (525) = 743 psi Safety Factor - 20,625/743 - 21 11 Stress in weld connecting outer shell to bottom plate Lateral force = 1/2 load of outer shell

+ 1/2 lead shield

+ 1/2 lid and shield plug (the 1/2 supported by i

1/2 outer shell) l omA:ss-ozuss 2-56 l

1 I

.____.._._-.._.,,,___.___,.,_,....__..m,,,,,_,,,___,

_.,...-_,____-__,......,_..__,,..m.

STD-R-02-906

/l

~

k)

= (6065/2)(30)(sin 45*)+(97,898/2)+(13,900/2)(30)

(sin 45')

l

= 260,710 lbs.

Lateral stress = 260,710/x(79.75/2)(0.875)(0.85) =

2,800 psi Axial Load - (6065)(30)(sin 45') + 97,898 = 226,556 lb Axial Stress = 226,556/a(79.75)(0.875)(0.85)= 1,215 psi Total Stress in Weld = /(2,800)2 + (1215)2

= 3,052 psi

(

Safety Factor = 20,625/3,052 - 5 2 ]i i

Axial stress in outer shell - 226,556/(81.52-2 79.75 )(x/4) =

1,022 psi < 42,000 psi yield lateral shear stress in outer shell 2

= 260,710/(81.52 - 79.75 )(374)

= 1,176 psi < 24,248 psi yield (shear) l 2.10.3.3 Cask Lid loadina-Too Corner Droo The deceleration forces that will be generated during a top l

corner drop will be the same as those generated in a bottom corner drop. Since the weight and drop distance are the 0347A:65-021788 2-57 l

STD-R-02-006 same, any difference will be due to the yield strength of the steel.

Using minimum strength steel (30,000 psi) the 1.78 inch deformation from a corner drop will damage one or two studs at the point of impact but will not affect the integrity of the package. With high strength steel (50,000 psi) to 30g deceleration force will exert relatively high I

loads on the closure bolts.

Impact at the upper corner of the cask will result in the cask contents pushing against the cask lid.

The contents of the cask, it should be noted are positioned to limit actual movement to one (1) inch cr less.

The loading on the cask lid is realized in the studs.

The studs stress is therefore equivalent to the inertia O

load of the contents and the inertia force of the lid itself.

The following maximum weights of these constituents have been conservatively estimated.

The maximum load will occur with materials having the highest yield strength. A deceleration force of 30g's has been l

used in this analysis.

O 0347A:65-021788 2-58 t

STD-R 02-006 Content wt. - 14,500 lbs.

Cask lid wt. - 6,500 lbs.

F-15 Total wt. w = 21,000 lbs.

15 P

0 6

L-15 l

Impact loading on cask lid closure studs.

The maximum loaded stud is that one furthest from the point of impact.

The force acting on this stud is designated at:

l l

FIS - Max. stud force

-6 Taking the summation of moments about point "0".

=

Sum of stud load - G (Weight Lid + Contents) Cos 4 x R The maximum stud load, P15, occurs in the single stud located at LIS. The load in the other studs (based on deflection with a rigid lid) will be:

O C347A:65-021788 2-59 l

STD-R-02-0'06 i

O li l

xP i"TE 15 P

The moment exerted by the studs can be expressed as:

L L2 M3=Lg 15 " 2R 15 x

xP P

The sum of the stud moments will be:

L #+ L 2+L 2,t 2,L g 2R)#

15 + (2R t

2 3

4 td 2[

yp P

15 2R r

P 15

= [ L '+ L,2+ L 2 + L,' +... + L,#+ 2R']

3 3

3

- (20.37 R + 2R'] P 2

15 R

i l

= 22.37 R P15

[

~

(22.37 x 40.7) P15 = 910 P15

=

j l

t,.

  • 4O E

P

?

I r

O 0347A:65 021788 2-60 l

l

/

_ _..,, _ -, _.. - _,. -. -. _ ~ _

STD-R-02-006 O

Where:

1 L ; = R (1-sin 78') = 0.0218 R L 1 = 0.00047 R2 L 2 = R (1-sin 66') = 0.0865 R L 2 = 0.0075 R2 L 3 = R (1 sin 54') = 0.1910 R L 3 = 0.0365 R2 r = 0.1095 R L 4 - R (1-sin 42') = 0.3309 R L 4 2 = 0.2500 R2 L 5 - R'(1-sin 30') = 0.5000 R L 5 8 - 0.4770 R2 L 6 - R (1-sin 18') = 0.6910 R L 6 2 - 0.8020 R2 L 7 = R (1-sin 6*) = 0.8960 R L 7 L g = R (1+ sin 6') = 1.1050 R L 8 = 1.0920 Rr 2

L g R (1+ sin 18') - 1.3090 R L 9 = 1.7130 Rr 2

l L10 - R (1+ sin 30') = 1.5000 R r

2 L o = 2.2500 R i

i 2 = 2.7860 Rr

(

Lil = R (1+ sin 42') = 1.6690 R Lii 1

f L12.; R (1+ sin 54') = 1.8090 R L12 = 3.2720 R 2

r = 3.6610 R2 L

L13 - R (1+ sin 66') = 1.9140 R Li3 l

Li4 - R (1+ sin 78') = 1.9780 R Li42 = 3.9130 R2 t

l 1

O o m A:55-02 U88 2-61 e

,,--.e-er~.e--,-,,-

-,.,y~w-,v-,~~,-em--,-,--w n.,--,,-,w--,gm.,,,w.m,,,.

,---ven,

-w-,--

me,

_ma,

, rr-e r-->,m-w-r,,---,.-----

STD-R 02-006 fmN 2

L15 - R (1+ sin 90') = 2.0000 R L15 = 4.0000 R 15 I Lj2 = 20.37R2 tal Equating the stud moments to the moment exerted by the contents and cover:

910 P15 = (30)(21,000)(0.707)(40.7)

P15 = 19,921 lbs The head studs are one inch in diameter and are fabricated from ASTM A320 Grade L7. The studs have a root diameter of 0.8466 inches and an area of t

0.563 in. The stress in the outer stud will be:

f = 19.921 + 0.563 - 35,389 psi The yield strength of A320 steel is 105,000 psi and the ultimate strength is 125,000 psi.

The minimum safety factor for the studs is:

105,000 S.F. (yield) =

= 2.97

^

~

35,389 The maximum elongation will occur at the stud located in l

the L g position. The maximum elongation will be:

i eU=

19,921 x !

At 0.563 x 29 x 105 O

1 c3 m :ss-c20ss 2-62 l

c

- _ -.. _ _. _ __.- _.,_ _._______,,_ _ _ _,,~. _.. _ _ _

r STD-R-02-006 O

e = 0.00122f f

f = 81.5 - 79.75 - 1.75 in e - (0.00122)(1.75) - 0.002 inches The elongation is a small fraction of the compression of the 0-ring seal.

2.10.3.4 Stud Soacino i

The center-to-center stud spacing is:

S D x x, 80.25 x x - 8.4 inches N

30

O The minimum stud spacing suggested by the cask designers guide is:

6t j

S

+ 2a min M + 0.5 6 x 1.75

~~

+ 2 x 1 - 7 + 2 - 9 inch 1.0 + 0.5 l

1 l

The spacing of the studs corresponds closely to suggested l

minimum spacing.

t 1

i O

0347A:65-021788 2-63 l

l l

t

(.. - -. - -.. _, _. _ _.. - - - -. _ -,. - ~. -,...

STD-R 02-006 2.10.3.5 Side Droo h

81.5 -

l

,c 81.5 Q

n w

~~~~

~ 8/ 5 /7/ E//

/[

' deformation (Assumes side drop on entire side, not including flange, to determine maximum deceleration) l Energy (50,000 lb)(12) 600,000 in-lb I

r

= +j a

ra 40.7 C

ua y

\\_i

/q/

5 O

c34n:ss-ozues 2-64

STD-R-02-006 3

Volume - (600,000 in-lb)/42,000 psi = 14.28 in 3

z Area of segment - 14.28 in /81.5 in =.1753 in Area = 1/2 (rS - c(r-h)]

Assume & = 0.109 rad - 6.25' 3

V - Area (81.5) - 14.5 in Therefore total energy absorbed for 6.25' is 611,555 in-lb or 102% of the energy required.

h - r(1 - cos 1/2 A) - 40.7 (1 cos (6.25/2)] = 0.060 in 0.060 in < 0.375 inch outer plate

!O Surface area ->

C-2/h(d-h)-2/(0.060)(81.5-0.060)=4.43in z

area - (81.5)(4.43) - 361.6 in F = (361.6)(42,000) - 15,187,269 lb 15,187,?.69/50,000 - 303 g's

/

'A

\\ N\\ % /

A-r

/

/

3 A

x I

{

,b.

, a ff ppO8" i

i i

i i n

r-

_ussy

>--s" % NN // /,

_/

lO 1=

esoA:ss-crues 2-65 l

STD-R-02 006

-m '

The lid will contact at surface "A" before any major shear force is applied to the closure studs.

The lid will take the deceleration forces along the surface at "A" as bearing, and as shear along the plane where the gasket corner intersects the lid.

The bearing force on the surface at "A".

(6500 lb)(303)/(81.5)(4-1.75) -10,740 psi S.F. - (.9)(42,000)/10,740 - M Shear 2

Shear area - (77.5)2(x/4) - 4,717 in s - (6,500)(303)/4,717 - 417.5 psi a

S.F. - (.577)(42,000)/417.5 - 5.SJ Shear of cask bcdy at surface'"A".

(Assume only 1/2 of cask body) l o - (6,500)(303)/(1/2)(x/4)(82.752-2 77.75) a - 6,250 psi S.F. - (.577)(42,000)/6,250 - L.B.S O

0347A:65-021788 2-66

,m,-+r,

-,y w.

-t--,,

-,w--,

,-,-->,,,,-,-y,-*--,,-,w.,,.m,w.wn,wy-,~me,.-,,--,-,_,wm-,--_.-,m,y.,,,,-~,+-.-em,---------w-e

.. _. - -. _. ~ _ _ _. _ _ _ _ _. _ _. _ _

STD-R-02-006 O

2.10.4 Penetration The minimum outer shell thickness is 7/8 inch and the impact from a 13 pound rod will have no effect on the cask.

2.10.5 Comoression This requirement is not applicable since the package exceeds 10,000 l

pounds.

l' i

r

+

I i

O 0347A:65 021188 2-67


a-

STD-R-02-006 i

3.0 THERMAL EVALUATION 3.1 Discussion The HN-190-1 cask will be used to transport waste primarily from nuclear l

electric generating plants. The principal radionuclides to be transported will be Cobalt-60 and Cesium-137.

The shielding on the cask will limit the amount of these materials that can be transported as follows:

Gamma Specific (1)

Total (2)

IsotoDe Enerav Activity Activity mev pC1/ml Ci Cobalt-60 1.33 5.0 23.2

(

Cesium-137 0.66 0.66 650 (1)

Based on cement solidified waste at 10 mR at six feet from cask.

(2)

Based on 164 cubic feet of solidified material.

3.2 Summary of Thermal Procerties of Materials f

With the maximum"amount of these materials that can be transported in the HN-190-1 cask, the heat generated by the waste will be as follows:

l t

l O

0347A:65-021788 3-1 1'

i

- _ -. = -..

STD-R 02-006 Heat Total Generation Activity Total Heat (watts / curie)

(curies)-

(Watts)

(BTU /hr)

Cobalt 0.0154 23.2 0.35 1.19 Cesium 0.0048 650 3.12 10.7 The weight of waste per shipment will be about 13,000 pounds.

Based on a specific heat for concrete of 0.156 BTV per 1b degree F., 2028 BTU's would be required to heat the waste one degree Fahrenheit. This equates to 7.9 days of

. heat generation from an all-Cesium waste form. Accordingly, the amount of heat generated by the waste is insignificant.

O 0

0347A:65-021788 3-2

STD-R-02-006 l3 V

4.0 CONTAINNENT 4.1 Containment Boundary The HN-190-1 shipping cask is a vessel which encapsulates the radioactive material and provides primary containment and isolation of the radioactive material from the atmosphere while being transported.

4.1.1 Containment Vessel The cask is an upright circular cylinder composed of two layers of structural steel with lead for radiation shielding between the steel sheets. The lamina are of 3/8 inch inner shell,13/4 inch of lead shield and a 7/8 inch outer steel shell.

The heavy steel flange p

connecting the annular steel shells at the top provides a seat for a Viton or Buna-N 0-ring gasket seal used to provide a positive atmospheric isolation when the lid is bolted down by thirty (30) equally spaced 1 inch studs. The shield plug is located in the center of the primary cask lid, has a Viton or Buna-N 0-ring gasket seal, and is bolted to the outer portion of the lid with sixteen (16) equally spaced 1/2 inch studs.

4.1.2 Containment Penetrations The HN-[90-1 has a drain with plug assembly, the latter consisting of l

a lead filled 1-1/2 inch steel pipe and pipe plug.

The drain port is located at the perimeter in the cask wall just above the l

i O

l 0347A:65-021788 4-1

=.

STD-R-02-006 (v~)

cask's bottom plate.

The penetration hole is angled laterally at 45' to prevent shine, should the plug be removed while waste is in the cask.

4.1.3 Seals and Welds Both the primary lid and shield plug are sealed by means of a Viton or Buna-N 0-ring gasket seal.

4.1.4 Closure The following procedures for the primary lid require each stud _to be I

tightened to 190 ft-lb to 210 ft-lb.

The equivalent tension (F) in each stud is F = T/Kd Where T is the torque d is the stud diameter, and K is the torque coefficient (= 0.15)

=

Therefore, F = (210 ft-lb)(12 in/ft)/(0.15)(1 in)

F - 16,800 lb/ stud.

O 0347A:65-021788 4-2

STD R-02-006 The weight of the lid and shield plug is 6,500 lb.

Total force exerted on the gasket ring is:

(30)(16,800) + 6500 - 510,500 lb z

Area of "0" Ring - (78 in) (x)(9/16 in) = 137.8 in Total pressure on gasket material 510,500/137.8 inz - 3705 psi The torquing procedure values ensure that there is sufficient pressure on the gasket to seal the cask.

I Similarly, the shield plug torquing requirement is 35 to 40 ft-lb.

j F - (40 ft-lb)(12 in/ft)/(0.15)(0.5 in) l F = 6400 lb/ stud.

Weight of the shield plug is 500 lb.. Total force on shield plug gasket is (6400 lb)(16 studs) + 500 - 102,900 lb.

z Area of gasket - (18.125)(x)(.4375) - 24.918 in

=

Pressure on gasket - 102,900/24.91

- 4130 psi This is sufficient to maintain the gasket seal, j

l O

0347A:65-021788 4-3

~.

STD-R-02-006 The previous analysis assumes the lids are properly centered and there is equal pressure over the circumference of the gasket.

The minimum affect of the lid which would cause uniform seating on the gasket would be the lesser of either the tolerance between stud and stud hole in lid or the 0.D. of the lid and I.D. of the cask.

The maximum l

opening on the primary lid is the difference in 0.0. of the lid and I

I.D. of cask body, as shown below:

g 0.06"

//

r u

77.87-77.54 = 0.33 inche s r

y 0.37"

!0.02 r

r/ 8

.O x

x r/ E V

x 0.37" O.02 0.33" 7.09" <

I.02 77.56 0.02 6

77.85 0.02

/

Using. geometry, calculate the minimum value r can be and still have contact *on the three surfaces.

r + r//2 = 0.33 + 0.11 + x r + r//T = 0.06 + 0.39 - x 2r + 24//2 = 0.89 r = 0.260 in 0

0347A:65-021788 4-4

STD-R-02-006

-gs diameter - 0.521 in Using a 9/16 inch diameter gasket, the minimum percent compression l

will be:

0.5625 - 0.521 - 0.073 - 7.3%

0.5625 Similarly, maximum compression on the "tight" side occurs when there is metal to metal contact between the I.D. of the cask and 0.D. of the lid.

r + fr = 0.07 + x r + /F - 0.04 + 0.37 - x s,

0.04

[ "T 2r + 2/F - 0.46

(

\\

r a

n r

i 0.37" r/

r = 0.1347 inches 0.02 diameter - 0.2695 inches

.-- 0.37 %

to.02 4

1 0.09!0.02 ll

=

l l

l Again doing a 9/16 inch diameter gasket, the maximum percent l

compressio. will be:

l.

, 0.5625 - 0.2695 - 52%

0.5625 lO 0347A:65-021788 4-5

.STD-R-02-006

,xU.

Secondary Lid Similarly, for the secondary lid for the maximum opening, stud to hole tolerance is 0.208 < 0.225 v

0.04 s y t

0.344 T

~

45 r/,

~+0.024 X

, 0.344 j

' +0.02' 0.23" "

0. 06" + 0. 01 17.87 +0.0 18.092 - 17.84 - 0.252

[

18.062+0.7 0.03

.;52/2) + (0.208/2) = 0.23 Using geometry -

r + r/M = 0.07 + 0.23 + x r + r/M = 0.04 + 0.364 - x 2r+2r//2-0.704 r = 0.206 inches

_~

d = 0.412 inches Using a 7/16 inch diameter 0-ring, the minimum percent compression is:

0.4375 - 0.412 = 6%

0.4375 0

0347A:65-021788 4-6

STD-R-02-006 OV On the tight side, stud-to-hole clearance - 0.208 > 0.192, therefore, there will be metal to metal contact -

j 0.02 r

4 t

0.344 r/,7 18.062 - 17.87 - 0.192 20.02 yg t'th spo6=oot 0.00" 4

9

.00 17.87+0.03

['

18.062

-0.00 Using geometry, J

r + r//2 - 0.05 + x r + r//2 = 0.02 + 0.324 - x 2r + 2r//f = 0.394 r = 0.1154 inches d - 0.2308 inches Using a 7/16 inch diameter 0-ring, the minimum percent

~^

compression is:

l

, 0.4375 - 0.2308 - 47%

l 0.4375 4.2 Reauirements for Normal Conditions of Transoo, t 4.2.1 Release of Radioactive Material An internal pressure of 7.5 psig is the normal condition that may cause a release of radioactive material.

omA:ss-ozusa 4-7

STD-R-02-006 O

The force exerted on the primary lid from a 1/2 atmosphere dif-ferential pressure is:

2 (7.5 lb/in ) (75.5 in)2(x/4) - 33,577 lb on a per stud basis, 33,577 lb/30 studs = 1120 lb/ stud Add this force to the pre-load, 1120 + 16,800 = 17,920 lb.

6 PL, (17,920 lb)(2.25 in) = 0.0025 in AE

(.844)2 (3/4)(29 x 10 6)

This is very small and not enough to break the gasket seal and significantly reduce the package effectiveness.

Similarly, the shield plug experiences a force of (7.5 lb/in )(16.5 in)2(x/4) - 1605 lb 2

On a per stud basis, 1605 lb/16 studs - 100.3 lb/ bolt i

Added to the pre-load tension l

100.3 + 6400 = 6500 lb/ stud o

0347A:65-021788 4-8

t

$10-R-02-006 N

/

6 - PL/AE - (6500)(1.25)/(.4041)2(x/4)(29x10 )

8

=.0022 in This distance 15, too small to break the seal and significantly reduce the package effectiveness.

4.2.2 Pressurization of Containment Vessel Due to the nature of the waste contents, no significant generation of vapors or gases can be predicted to pressurize the vessel such that the package effectiveness would be reduced.

4.2.3 Coolant Contamination The vessel contains no primary coolant, therefore this section is not applicable.

i 4.2.4 Coolant loss The vessel contains no primary coolant, therefore this section does not apply.

l 4.2.5 Repair of Primary Lid and Shield Pluo Hold-downs The possible repair procedures listed on the referenced drawing provide 3 methods of repairing or replacing a stud by modifying the tapped hole.

In all cases, the modification provides an as-strong or l

stronger assembly than the original design.

t O

0347A:65-021788 4-9

- ~

STD R-02-006 "A.

Heli-coil Insert" -

The Heli-coile insert consists of a-helical wound wire (diamond shaped cross-section) which reduces the threads of a slightly oversized tapped hole. As shown below, the Heli-coilo assembly has a higher yield load point than the stud.

Primary Lid - According to the manufacturer of Heli-coils *, a 1 inch diameter Heli-coile inserted 1-1/2 inches has a tensile load capacity of 108,000 lbs The 1 inch A193 or A320 Gr. 7 stud has a tensile load capacity of 76,000 lb.

Secondary Lid - Similarly, a 1/2" diameter Heli-coil 8 inserted 1 inch has a tensile load capacity of 37,500 lb., the 1/2" A193 or A320 Gr. 7 stua has a tensile capacity of 18,000 lb.

V "F.

Incnase deoth of tan drill and retao aoorooriate lenath" -

l This method of repair includes using the same diameter stud, however ir. creasing its length. The question to be addressed is to determine the increased elongation from torquing and internal pressure (4.2.1 of SAR).

The primary lid stud tension from initial torquing and an internal pressure of 7.5 psig is 17,920 lb./ stud.

If the length of the stud is increasid from 2.25 in, to 3.25 in., a difference of an inch, the elongation will be:

g, PL, (17,920 lb)(3.25 in.) - 0.0036 in.

l AE

(.844)2 (x/4)(29x105) f

'% d O W A:65-02U88 4-10 i

STD-R-02-006 O

Similarly, the shield plug stud tension (total) is 6500 lb/ stud.

If the length of the stud is increased from 1.25 in. to 2.25 in.,

g. PL,

(6500)(2.25)

, o,004 in AE

(.4041)2 (x/4)(29x106)

Both elongations calculated are very small and not enough to break the gasket seal and significantly reduce the package effectiveness.

"C.

Drill and Tao (1/8" laraer diam.) NC - Rebore hole in lid for l

clearance." -

Replacing the present stud with a larger diameter improves the strength of the lid hold downs.

4.3 Containment Requirements for the Hypothetical l

Accidentlgnditions l

This section does not apply since the vessel is not a type B package.

i

^

1 i

O 0347A:65-021788 4-1I l

l

STD-R-02-006 g

b 5.0 SHIELDING EVALUATION 5.1 Discussion and Results The analysis was performed using the SPAN 4 computer code. This code, developed by the U.S. Atomic Energy Commission, is under limited distribution regulations, detailed descriptions of the code calculations are prohibited by the government.

5.2 Source Soecification The primary analytical parameter during the analysis was the Department of Transportation shipping limit of 10 MR/hr at a distance of two meters from the m

cask surface.

Packaging conditions of both solidified waste and dewatered resin were considered.

The allowable contents are shown both in terms of the specific activity of the waste form, and the surface radiation levels (for the large containers).

5.3 Model Soecification SPAN 4 calculates gamma-ray flux in rectangular, cylindrical and spherical geometries by integrating appropriate exponential kernals over a source distribution.

Tiie shield configuration is flexible -- a first-level shield mesh using any one of the three geometries is specified.

Regions of this same geometry or of other geometries having their own (finer) meshes, may then be embedded between the first-level mesh lines defining second-level shield meshes. This process is telescopic -- third-level shield meshes may be O

0347A:65-021788 5-1

ST0-R-02-006 O

v embedded between second-level meshlines in turn.

All meshes may have variable spacing.

Sources may be located arbitrarily with respect to any shield mesh.

All kernals used assume exponential attenuation.

By ray training, the straight-line distances between points in the source and close points are found to be used in calculating the attenuation.

Integrals are evaluated by Gouss-Lengendre or Lobatto quadrature. Accuracy is depcsdent on the accuracy of the library data and on the orders of quadrature used.

5.4 Shieldina Evaluation

~

The graphs presented in Appendix 5.5 document the shielding capabilities of the HN-190 casks as analyzed by the SPAN 4 computer code.

The specific activity is given in pCi/ml; for ease of use the usable waste volume of the container is given below.

(q

./

Maximum Dewatered Resin Container Usable Volume (cf)

Prior to Solidification (cf1 HN-190-1 136 (125.4)*

103 Drum 7.3

  • Volume in parenthesis represents a maximum solidified waste volume that is less than usable volume due to weight limitations.

AU l

0347A:65-021788 5-2 l

i

STD-R-02-006 O

5.5 Anoendix Shielding Capabilities 1

5.5.1 Cask Specific Activity as a Function of Gamma Decay Energy for Hittman Nuclear Radwaste Shipping Cask, Design HN-190-1 and -2.

l 5.5.2 Dose Rate at Side of Bare Liner as a Function of Gamma Energy for Hittman Nuclear Radwaste Shipping Liner, Design HN-190.

l 5.5.3 Cask Specific Activity as a Function of Gamma Decay Energy for Hittman Nuclear Radwaste Shipping Cask, Design HN-190- 1 and -2 (Drums).

O i

t

=

I O

l 0347A:ss-et17ss 5-3 l

.. 10" e.

4 4 i

l 3,i ld--

[

t -l ; 4 ' _.: :.

i i i STD-R-02-006 CASK SPECIFTC ACTTVTTY AS A W

e-....

Ii i

i!

i

I.. y FUNCTION OF GAMMA DECAY ENERGY T

s...

_m{,1

..).

-+-((I.

p A

k. >>.. 0

-1t++ H+

-! i roR

' >r-s___...

'__M.?

l j.l._ Jl llITTMAN NUCLEAR RADWASTE SHIPPING CASK

_1_

DESIGN HN-190-1 & -2 (LINER) i.

, f I-f

=

i i.

i,.

l j.

t.ili.

t..:

a,

- o -. _..,

l I

.i i..i i

i 10 1

. _ __3. -

7_..- - -

,i

_i.

i e__...

s s

\\'.

~~1.. -.

1 r___

E p..

a t-c, )

{4 i a s.... 6 i' I i I, i 11 I i ~ g---- i m m i ,ii H --t-~ 4.___ m r m

m

<m: 11 41 i L 2 : k,I" i' l' 4+ W ~ L I - 1

i.,

s.__.. I i \\M, : litt I!il i t. 'i i Wh i-Ml'd '! \\,$! il!! l!i ~ I l. J .. _.. l 3 i i, _9..d. blr - m,, :, ; ..\\ t.

t. !. !. i.

r r i !l.'lI, !.l. l 2 l l: l i i I 4. , \\ i.i.

i i-10 i

ii 4 i 9.. - ii

s.

a e t-i i N s.___ i 7,,, i t i T4 % 1 \\- ! y\\. 6 i i ii ix m i' 5 . L-b . -7 ! -N\\ \\; 8 i g_ j l 4 \\i+; q+i Ni! i io i i i. t 4,__ t ll Q ia*g : QH i + H-l o.... = ._i.... i tV i i i 1ii! \\ .\\ q. 1 7 .i 3,;*, s T \\. - i-i i. v, 2'_ 9,---

..,$r H, +

n,, l i !... v:.: i T..%. I ...l.- i l .iq , +t_4 i l, l, I jij v 101 -+ - +-m- .'l I

i. -

\\- ...o H-.. _ - *~-d ; " i g 5 D ',,, ..l l \\~NN ' ~ ( x' sd1 4 4 -i 1 )

  • '\\

_A x. wI g3

  • h <U.[

u! . ' IN _ _ l l 1~ i 'i i IiiI ii\\ ' i '\\ V i .._O_ L; i iD TTfi -I ' ! t L1' ~ 1 1i I

5..

' 3..g,. ]>(. Z UUmR/ b r. r u.p% r.._. -.., _j._ M. i.>'i a h!o 4,, 12:a t-. r-I A ! u j gi ' L. v a b is C M. .w U T= i.. 6-line./ concrete gu . 1_ - _q _~,..=-u 4._. .j \\ j g g [, = i

.g a ;,.

_.{;* * - - -N 5 --5 r s q. l _....._2 N i III 1I l y !i8 lt t cJ t 8o e4

w..

- o a. W-.. +. L ^ i 1 g m t... am. 11 s m 2 h... N>. liner /tendn z -==h TFH 'i!: . '.N 10m. R h.r a. t.. N: fi, t tli -} l l .. liner /conhretc.

t :

I. + $ t' J. j .u;..; . i j 9 J O_e u i i .. m e. --Do--lin'er/ress - 4 l llll }' l ' 1..,ll.! . 1 i l - j -.4}' {_ 4 i. i - a j l ii i i i i,i S. f l l l d. -j 4 j -. e .. i 4 t..j a t+ L-- >. 4 + .). !. }l.. !_j.1 } j { j !. i i I ? 1 _,i 3. s 4 i; j i i. iti. I ps A j-l t!I1 !} '3 i i -z1 d_ . I.t..

t..!. j,.

I t, )' ,' _.d-4 4,4 i = ~ ~m ' = ' ' ' .-..b___. -.__. i.. ......j '~ V

. =
.e_.. ;_;..i.

I - + - - f' 4 !! J1.T ' '1I. 1 ~ ^ " ' ' ' ' 10,"l U 0.5 1.0 1.5 2' 0 2.5 ~ Gesuas Energy (Mev) 5-4

STD-R-02-006 {'N ~7 ~T l ~~l f ~l l l I l l j s DOSE ItATE AT SIDE OF BARE LINER AS A ItI't FUNCTIO!! 0F GAMMA ENERGY i lli !!l! FOR i i.I llITTMAN NilC12 Alt RA1)WASTM Si!IPPING iINi'.lt i i 10' j DESIGN HN-190

;i 1

il '3 i e ,a j t e !I ,l' 3 i i Based on 10 mR per hour at two !j i,I: meters from side of cask. i i 10' li I e 0 i, o i O i - .c w i e ,1 i a i i g 10' l v j l I (/ -t l' ~ 8 if

j i

2 s lo ,_} g e li

.l',

3 ..y ij, a i I; l E l! ; .r.. g

i!

10 2 I ink e .i

s e

g ,1 = ii i , i li, i' i i

ji.

J '.IJ t resin l!!!!, jilI concrete I I il 10' ,!',i I l l* I; illi ti l tO Y! ill l l V l l lII' 2 10 0 0.5 1.0 1.5 2.0 2.5 0347 1 Gamma Energy (HeV) l S:5 1 t

J_ 10" _ ,__...,.,.,.y,.. r. }, 8 7__.. . ijil l i i e ii i i i!~ ' -j: STD-R-02-006 T J' CASK SPECIFIC ACTIVITY AS A 4. __ 4_ i i i i i ,ii

!.]

FUNCTION OF GAMMA DECAY ENERGY T i , i, m / ) jM5 l} j;ll FOR ,s___.- 8 II I 1i ' i' 2 !$ l!: 4, HITTMAN NUCLEAR RATMASTE SHIPPING CASK .i.. 5 M I1 l DESIGN HN-190-1 & -2 (DRUMS) I l;j l I i 5 J T~- 1 o,, l .I. l ,,,,1,0,3 -.T-I ..i (. i i > + i ,,,,,,.. = ia i. e,,,, i i 1 i ~ y,,,, u-i! I i 4.__.. W Di 4I i I*

N.
.}t i !

4 - m a 2 e 4,,,,,

3. :._g.

. i. t- - n = . L+ 't r ,s 3_. 5 1

  • ~' W

-'lIC i I iI ="' -011 t. .jj j j; i 5 .[1 71

3. g,

_ r t :- .t. - ifl;. if i 2.__..

  • t: i j., f..L. l El ! *,}j j ij, I

.2.. a.. L.J ;_J. i I i,,l.,..:,:. _u. E .+. d _.,.a . rl1 i i j I \\. -+t-+-- 3,,10,2 l

  • l tiit

--..il 4.i a. a -4.- t-+ -. i,* 1

9...

I I i i !t i1 ~. I i 'l 1 \\ i. s... !at; g g i f j y,,, i i i , i i ,, _y- -e _:-a \\ i\\

\\ i \\

i i it M"-il' Y Y:i \\ r i x ! 1 i = ' V

  • ~ '

4_ S~hY SV$f ' ^ *

  • t' 1l

~ 3 l ' '~ ~ J'"~' ~~ ' ~^ i i N ; i i 1 i i r a it ' . q c A i ' l _l h - 2.} h k. ,', h, i 2 ,l.. _.,. I .h v 8 ' .N. 1 -e +e - --H-! t i - -+s >, 3 10 r i ,ia i. O n 4s _,.,. _.s 9 ,j. a t -. ... j i .i, t i and y,,, EM"; }~ ' -i. ! 4_. -d-f-E i1- ,\\c I 8 t 8 8 A

\\r yii i w

g,.- t ai - 4: i i i i a i [ 14- .i 4 1 \\ii\\i5 ~ N i + q ! p-.-t.4-

.r".w ;,

i4.L4 A.. u 4 ;- --! ' i' i d rim /r:.ancre,t 4. i . _ _ _ - '2 u D .y b y. ] j j' .i__ 1 n _s __. 200 mR/hr O i i : i i A i i ~ ~ ' - ~ ~ to A. w_

d. ___.'}i i

contedt c. i j g

e -

t.i s .4

..s..

I ,,3 1

e. drum resin n=.. !
.1; I :j,.;.,

j : *, -* ~ --* i -~ ~~ '- x.

a._.

i i .i. t 4 4 i l 0o >i.- drum / concrete + .10mR. /.h'r i ._...y. s. = I ___at-2a_ w i !!l,' l i ~ e. ..i,

h.. _;; -d.. rum'/r e s in l

l s. 'l ' I II E ~ il 4.

g.,._- %.4 44..

4.4 F .-_4._ . u 3. i i ! !;i L i !ii i i. ~ l l ,r _.-. t ,I i O

q. -.. _1_1 i..

.J.!

l1 ll !

i , C -WQ:in-ib i=:i 2 _3

=

1 i., i i 10 3 4. .l. . i i e 0 0.5 1.0 1.5 2.0 2.5 Camma Energy (HeV) 5-6 i

STD-R-02-006 O

6.0 CRITICALITY EVALUATION

Not applicable. l 1 l l l O 0347A:65-021788 6-I

STD-R-02-006 C 7.0 OPERATING PROCEDURES This section describes the procedures to be followed in using a HN-190-1 cask. Any maintenance activity, such as inspections, lubrication, gasket replacement / repair, etc. described in this section is described in more detail in Section 8.2, General Maintenance Program. 7.1 Liftina 7.1.1 The cask shall always be lifted using the three (3) provided lifting lugs only. The lifting lugs are the vertically oriented lugs on the sides of the cask spaced at 120' around the cask circumference. 7.1.2 The primary cask lid lifting lugs shall only be used to lift the cask lid (primary cask lid with shield plug installed) or the primary cask ) lid alone. The shield plug lifting lug shall only be used to lift the shield plug. 7.2 Removal / Installation of Cask Lids 7.2.1 Removal of the Primary Cask Lid

7. 2. L 1 Remove the primary cask lid hold-down stud nuts.

7.2.1.2 Remove the three (3) primary cask lid lifting lug covers. O 0347A:65-021788 7-1

STD-R-02-006 O %/ 7.2.1.3 Using the three (3) primary cask lid lifting lugs, suitable rigging and exercising caution in the handling of the primary cask lid due to possible contamination of the underside of the lid, remove the primary cask lid. 7.2.2 Removal of Shield Plua 7.2.2.1 Remove the shield plug hold-down stud nuts. 7.2.2.2 Remove the shield plug lifting lug cover. 7.2.2.3 Exercising caution due to the possible contamination of the underside of the shield plug, remove the shield plug. 7.2.3 Installation of Primary Cask Lid 7.2.3.1 Prior to installation, inspect gasket for the following: a. Gasket fully secured to the cask. b. Gasket not cut, ripped or gouged. c. Gasket is resilient. d. Gasket is free of debris, dirt and/or grease. = 7.2.3.2 Prior to installation, verify that the date of gasket change reflects compliance with the annual change requirements for the cask. 1 !O 0347A:65-021788 7-2 i i

STD-R-02-006 l J 7.2.3.3 Using the three (3)-lifting lugs on the primary cask lid and suitable rigging, lift and place lid on cask using alignment guides to ensure proper positioning. Take care not to damage gasket. 7.2.3.4 Install the primary cask lid stud nuts and torque from 190 ft-lbs to 200 ft-lbs. 7.2.3.5 Install the three (3) primary cask lid lifting covers. 7.2.4 Installation of Shield Pluo 7.2.4.1 Prior to installation, inspect gasket for the following: a. Gasket fully secured to the primary lid. b. Gasket not cut, ripped or gouged. c. Gasket is resilient. d. Gasket if free of debris, dirt and/or grease. 7.2.4.2 Prior to installation, verify that the date of gasket change reflects compliance with the annual change requirements. 7.2.4.3 Using the one (1) lifting lug on the shield plug and suitable rigging, lift and place lid into the opening on the primary lid. Use alignment pins to ensure proper positioning. Take care not to damage gasket. 7.2.4.4 Install the shield plug stud nuts and torque from 35 ft-lbs to 40 ft-lbs. 0347A:65-021788 7-3

STD-R-02-006 7.2.4.5 Install the shield plug lifting lug cover. 7.3 Cask loadino 7.3.1 Survey empty cask and the vehicle carrying it to determine the loose and fixed contamination levels. Limitations pertaining to contamination levels shall be defined by regulations imposed on the user by the applicable governing bodies. 7.3.2 Inspect primary cask lid and shield plug fasteners to ensure that all are present and undamaged. 7.3.3 Check to ensure that primary cask lid (and shield plug) lifting lug covers are with the cask. 7.3.4 Remove primary cask lid in accordance with Section 7.2.1. 7.3.5 Remove shield plug in accordance with Section 7.2.2, if required. 7.3.6 Inspect. interior of cask for standing water. l NOTE: Water must be removed prior to shipment 7.3.7 Inspact interior of cask for obstructions to loading. l 7.3.8 Inspect interior of cask for defects which might affect the intc9rity of shielding afforded by the cask. O 0347A:65-021788 7-4 l 1

STD-R-02 006 O 7.3.9-If loading drums on drum pallets, proceed as follows: a. Load drums on each pallet. b. For maximum shielding, position higher dose rate drums in the center of the pallet and toward the front and rear of the trailer. c. Place slings around or along side drums to prevent pinching or damage to the slings by the lidt or top pallet in the

cask, d.

Place the loaded pallets in the cask. e. For the cask lids removed for the loading process, inspect cask lid gaskets, install lids and secure as described in f respective sections. 7.3.10 If loading preloaded containers, proceed as follows: a. Ensure all lids, plugs, caps, etc. are installed on container.. b. Place container into the cask. c. Install shims / shoring between container and cask as = necessary to secure the container in position. d. For the cask lids removed for the loading process, inspect cask lid gaskets, install lids and secure as described in respective sections. O 0347A:65-021788 7-5

STD-R-02-006 O 7.3.11 !F loading into container inside Cask, proceed as folloWs a. Place empty container in the cask. b. Install shims / shoring between container and cask as necessary to secure the container in position. c. Inspect primary cask lid gasket, install and secure primary lid as described in respective section, d. Load the waste into the container through the shield plug opening. e. Install the liner lid, plugs, caps, etc. onto the container. f. Inspect shield plug gasket, install and secure shield plug as described in respective section. 7.3.12 Install tamper-proof seals on the cask lids. 7.4 Removal / Installation of Oask from Trailer 7.4.1 Cask Removal Trailer 7.4.1.1 Loosen ratchet binders / turnbuckles as necessary to remove pins from shackles at the cask end of tiedown system. 7.4.1.2 Remove pins from shackles. O c m A:ss-az uss 7-6

STD-R-02-006

f3 O

7.4.1.3 Using three (3) cask lifting lugs and suitable rigging, lift cask off trailer. EQ_TE: Do not use cask lid lifting lugs to lift the cask. T 7.4.2 Cask Installation on Trailer 7.4.2.1 Using three (3) cask lifting lugs and suitable rigging, lift cask and place cask in proper position within the shear ring or blocks. EQIE: Do not use cask lid lifting lugs to lift the cask. 7.1.2.2 Inspect tiedowns and shackles-on the cask and trailer for cracks and wear which would affect their strength, k 7.4.2.3 Inspect tiedown cables to ensure they are not damaged (crimped, frayed,etc.) 7.4.2.4 Inspect tiedown ratchets / turnbuckles to ensure they are in proper working condition. 7.4.2.5 Install a shackle through the cask end of each tiedown cable and attach the shackle to the cask tiedown lug. 7.4.2.6= Tighten tiedown ratchets / turnbuckles as necessary to secure cask on trailer. 7.5 Containment Penetration Seals If the tamper-proof seal on the cask cavity drain port plug has been removed, OV 0347A:65-021788 7-7

ST0-R-02-006 a the plug must be removed and properly reinstalled. Installation of the plug used to seal the cavity drain port shall be done using a pipe joint sealing compound. The plug shall be torqued to 25 ( 2) ft-lbs. Immediately after installation of the plug a new tamper-proof seal shall be installed. 7.6 Preoaration for Shiomeqt 7.6.1 Perform radiation surveys of cask and vehicle, including a determination of surface contamination, to ensure compliance with ICCFR71.47 and 10CFR71.87 and complete the necessary shipping papers, certifications, and checklists. 7.6.2 Placard vehicle and label cask as necessary. 7.7 Receivina a loaded Cask The receiver, carrier and shipper are to follow the instructions of 10CFR20.205 when a package is delivered. These instructions include surveying the external surface of the cask for radioactive contamination. c _p l ( O 0347A:ss-en788 7-8

I STD-R-02-006 AU 8.0 ACCEPTANCE TESTS AND MAINTENANCE PROGRAM l 8.1 Acceptance Tests Fabrication of the HN-190-1 cask meets the requirements of Subpart D of 10CFR71. Fabrication is implemented and documented under a Quality Assurance program in accordance with the applicable requirements of 10CFR71, Subpart H. 8.1.1 Visual Insoection The packaging shall be inspected visually for any adverse condition in materials or fabrication using applicable coces, standards, and drawings. Materials are specified under the ASTM and ASME codes. Weld procedure and welder qualifications are in accordance with ASME Section IX or AWS Codes. Prior to painting, non-destructive testing of welds is accomplished as described in the cask drawings. O 8.1.2 Structural and Pressure Tests After fabrication is complete, the cask assembly is subjected to a pneumatic pressure test of 8 psig (-0 psig, + 1.0 psig). The cask is visually inspected after the pressure test. The acceptance criterion is no change has occurred to the cask as a result of the test. 8.1.3 Leak Tests A leak test of a sensitivity of at least 10'3 STD cc/sec shal' be performed using a test fixture (with calibrated pressure gauge and pre-set relief valve) mounted into the cask drain port, i I 0347A:65 021788 8-1 l

STD-R-02-036 O Air is introduced at a maximum rate of 0.5 psig/ min until the test pressure of 8 psig (-0 psig, + 1.0 psig) is reached. All joints on the test fixture, primary lid and shield pleo qaskets are bubble tested. The pressure in the isolated cask is also monitored for at least 30 minutes. The acceptance criteria are: No leaks evidenced by the bubble solution. No pressure loss over a 30 minute time frame. The system will be depressurized at a rate not exceeding approximately 2 psig/ min, the test fixture removed and the drain port plug reinstalled. The installation of the plug is to be done in accordance with Section 7.0. 8.1.4 Comoonent Tests /~h \\d 8.1.4.1 Gaskets Prior to painting, seating surfaces are to have a 125 RMS minimum finish. Leak testing (see Section 8.1.3) of the cask will be final acceptance for gasket design. 8.1.5 Testina for Shieldina Intearity Upon. completion of the lead shielding pour, a gamma scan is done of the casi wall to verify lead thickness and the lack of any voids or impurities in the poured lead. The gamma scan procedure contains acceptance criteria for verification that the nominal lead thickness is 1-3/4 inches. 8.1.6 Thermal Acceotance Tests No thermal acceptance testing will be performed on the HN-190-1 cask. ./ 0347A:65-0217ea .8-2

STD-R-02-006 D'v 8.2 General Maintenance Proaram 8.2.1 General Maintenance and repair of the HN-190-1 cask is controlled by the Westinghouse Radiological Services Division Quality Assurance program. The casks and trailers annually undergo three (3) roatine technical inspections. These inspections are proceduralized in cask maintenance and repair procedures. 8.2.2 Gaskets 8.2.2.1 Gaskets shall be inspected for resiliency and complete adhesion to the appropriate surface during each use of the respective lids. 8.2.2.2 Gaskets in good condition but not adhered to the appropriate surface shall be reattached as follows: a. Gently pull gasket away from its normally secured location until it cannot be removed further without damaging the gasket. b. Remove residual adhesive from the appropriate surface. Clean with solvents which are recommended by the adhesive manufacturer's = instructions, c. Reapply gasket adhesive to the gasket and appropriate surface and reattach in accordance with the adhesive manufacturer's instructions. 0347A:65-021788 8-3

STD-R-02-006 i O 8.2.2.3 Gaskets which cannot be sealed or are obviously damaged must be replaced in their entirety. Damage may include cuts, nicks, chips, indentations, or any other defect apparent to the naked eye which would affect sealing i integrity. -Removal of the gasket, preparation of the lid surfaces, adhesive use and gasket installation shall be performed per Section 8.2.2.2. 8.2.2.4 All gaskets shall be replaced after 12 months of installation on the cask regardless of apparent condition or cask usage. 8.2.2.5 A leak test, according to Section 8.1.3, shall be performed at least once within the twelve (12) months prior to any use. OQ 8.2.2.6 Any painted surface in contact with the gasket shall be maintained in good condition. Any loose, chipped, or scratched painted surface which would affect seal integrity i shall be repaired prior to further cask use. 8.2.3 Welds I l 8.2.3.1 All welds have been completely checked in accordance with l ASME Code requirements using visual, magnetic particle and ^ radiographic methods during fabrication. The cask drawing = delineates these inspections. In-use inspections should not be required unless the cask has been involved in an accident or has been lifted improperly or in an overloaded condition. In those cases, inspection shall include the following: O 0347A:65-021788 8-4

STD-R-02-006 b,n a. Drop or accident: All accessible cask body and lug welds welds shall be magnetic particle inspected in accordance with ASME Code Section III, Division I, Subsection NB, Article NS-5000 and Section V, Article 7. These inspections may be performed with the painted finish in place. b. Improper or overload lift: All welds on the cask primary or shield plug which were in use at the time of the improper or overload lift shall be magnetic particle inspected per the requirements delineated above. 8.2.3.2 Whenever welding to the cask is required it shall be performed utilizing weld procedures and welders qualified in accordance with ASME Code Section IX requirement. 8.2.4 Studs and Nuts-8.2.4.1 All studs and nuts shall be inspected during each removal of the primary cask lid and shield plug and superficially with each cask use. Replacement shall be made if the following conditions are present: a. Deformed or stripped threads. b. Cracked or deformed hexs on nuts. Elongated or scored grip length area on studs. c. d. Sever rusting or corrosion pitting. O 0347A:65-021188 8-5 -~

I STD-R-02-006 O 8.2.4.2 In general, all studs and nuts shall be inspected for damage at least once a year under normal usage conditions and replaced when the conditions delineated in Step 8.2.4.1 are present. 8.2.5 Painted Surfaces 8.2.5.1 Painted surfaces shall be cleaned using standard commercial equipment, chemical solutions, and procedures. 8.2.5.2 Chipped or scratched surfaces which could affect seal integrity shall be repainted prior to further cask use. Other chipped or scratched surfaces shall be repainted at the time of the next routine technical inspection referenced in Section 8.2.1. f 8.2.5.3 Guide stripes and cask identification markings shall be l repainted when they are chipped, peeled off, faded or illegible. l l ~ l = lO 0347A:65-021788 8-6 l l

OVERSIZE DOCUMENT PAGE PULLED i I SEE APERTURE CARDS NUMBER OF OVERSIZE PAGES FILMED ON APERTURE CARDS l APERTURE CARD /HARD COPY AVAILABLE FROM RECORD SERVICES BRANCH,TIDC FTS 492-8989 l l l l - - -.}}