ML20150D534

From kanterella
Jump to navigation Jump to search

Responds to 880304 Request for Addl Info Re Proposed Tech Spec Amend Concerning Containment Structural Integrity
ML20150D534
Person / Time
Site: Summer South Carolina Electric & Gas Company icon.png
Issue date: 03/17/1988
From: Nauman D
SOUTH CAROLINA ELECTRIC & GAS CO.
To: Hayes J
NRC OFFICE OF ADMINISTRATION & RESOURCES MANAGEMENT (ARM)
References
TAC-62801, NUDOCS 8803240325
Download: ML20150D534 (34)


Text

. _ _ _

h 10CFR50.36

, South Camilna Electric & Gas Company Dan A. Nauman

. um a 29218 le rations SCE&G

-m March 17, 1988 Document Control Desk U. S. Nuclear Regulatory Commission Washington, DC 20555 ATTN: Mr. John J. Hayes, Jr.

SUBJECT:

Virgil C. Summer Nuclear Station Docket No. 50/395 Operating License No. NPF-12 "Containment Structural Integrity" Surveillance Requirements REF: NRC Letter from J. J. Hayes, Jr. to D. A. Nauman, "Containment Structural Integrity" TAC No. 62801, March 4, 1988

Dear Mr. Hayes:

Enclosed is the additional information requested in the referenced letter in response to the South Carolina Electric & Gas Company proposed Technical Specifications amendment regarding containment structural integrity.

If you should have any additional questions, please advise.

Very truly yours, M4 <W  ;

D. A. Nauman RJB: DAN / led Attachment pc: J. G. Connelly, Jr./0. W. Dixon, Jr./T. C. Nichols, Jr.

E. C. Roberts l W. A. Williams, Jr. J. C. Snelson J. Nelson Grace G. O. Percival General Managers R. L. Prevatte C. A. Price J. B. Knotts, Jr.

R. B. Clary NSRC W. R. Higgins RTS (TSP 860010)

R. M. Campbell, Jr. NPCF K. E. Nodland File (813.20)

I  ;

\

)\ \

l 8803240325 880317 '

PDR ADOCK 05000395 P DCD-

, !i QUESTION 1:

In your calculation of required prestressing forces as given in Filing Code 1.18.2,you  ;

use the values provided in FSAR Section 3.8.1.3.1 as the bases. Indicate how these values were established, specifically all the values given in item 3 on page 3.8-16 and the factors 1.14,1.18 and 1.15, and where these factors are used in the calculation.

Indicate how the force of 10073.8 psf and the factor 1.145 on page 5 of Filing Code 1.18.2 and how the number 11,700 psf and the factor 1.1825 on page 11 were established.

RESPONSE TO QUESTION 1:

FSAR Section 3.8.1.3.1 Item 3 on page 3.8-16 reads as follows:

3. Post Tensioning Forces- F Forces on the reactor building at 40 years, after all post tensioning losses have occurred, are as follows:
a. The 115 vertical tendons produce a vertical stress resultant of 335 kips /f t in the cylindrical wall. I i
b. The 150 boop tendons produce:  !
1) An external pressure of 5768 lb/ft2 corresponding to 375 kip /ft  !

hoop stress resultant in the 10 foot haunch.

2) An external pressure of 11,535 lb/ft2 corresponding to 750 kip /ft hoop stress resultant in the remaining wall height.
c. The 99 dome tendons (33 per layer) produce an external pressure of approximately 13,835 lb/ft2 (varies over the dome). l l

Initial post tensioning forces for the vertical, hoop and dome tendons are 1.14,1.18 and 1.15 times the above values, respectively.

. !9 The following discussion describes how the values and factors listed in the FSAR Section 3.8.1.3.1, Item 3, page 3.8-16 were established as well as where the factors are used in the calculations.

As stated in Section 3.8.1.4.1.2.1 and Table 3.8.1 of the V. C. Summer FSAR, the criteria used to establish the minimum required prestress in the containment is to provide a level of prestress which precludes membrane tensile stresses in the concrete, away from structural discontinuities, for these two loading conditions:

1. D + F + To + P + Ta
2. D + F + To + 1.2 P To satisfy this criteria, the required prestress levels were determined as follows. A structural analysis of the containment was made for each of the above individual loads using the KSHEL1 computer code. The prestress load denoted as "F" was divided into three loads corresponding to the vertical, hoop, and dome tenden systems and denoted as Fv, Fs, and Fo respectively. For loads D, To, P. and Ta actual design values were used. For the prestress loads Fv, HF , and Fo "unit load" values were used with the "unit load" value based on a combination of past experience and preliminary estimates. The unit loads used were:
1. Vertical tendons, Fv: A vertical force of 357 kips /ft.which acts as a ,

downward load at the top surface of the ring girder.

2. Hoop Tendons, FH : An external pressure of 10073.8 psf, applied at the reference surface of the KSHEL1 model for the full wall height except for l the lower 10 ft, where, because the tendon spacing doubles,5768 psf was used. These values were derived from and are equivalent to hoop forces I of 655 kips /ft and 327.5 kips /ft. respectively at the location (radius) of the hoop tendens in the wall.

To convert 655 kips /ft. hoop force to the equivalent at the reference l

surface, the 655 kips /ft hoop force is divided by the radius (65.7708 ft.) to i the centerline of the hoop tendons resulting in a pressure of 9,959 psf at the hoop tendon radius. The 9,959 psf pressure is converted to an

)

equivalent pressure at the reference surface by multiplying with the ratio 1

l l

of the radius to the hoop tendons divided by the radius to the reference surface (65.0208 ft.). The resulting pressure is 10,073.8 psf.

3. Dome Tendons, Fo: These loads are more complex in that ring loads exist along the ring girder at the location of the tendon anchorages. In addition, both external pressures and in-plane tractions (hoop and meridional) act on the dome. Although all four sets of loads are applied in the KSHEL1 model, the ring loads and normal pressures are the most significant. The ' unit load' values used are 363.6 kip /ft. for the ring load l and 11,700 psf for the external pressure. The loads resulted from an l l assumed tendon force of 1,000 kips at the anchorage.  !

1 The concrete stresses obtained from the KSHEL1 analyses for the above unit loads were factored for Fv, FH, and Fo separately and combined with the concrete stresses for the other loads appearing in the two load I I

combinations identified above. This was done in an iterative manner until the stated criteria of no membrane concrete tension stress was satisfied.

The resulting factors were:

l VerticalTendons 0.938 l \

l Hoop Tendons 1.145 l Dome Tendons 1.1825 When these factors are applied to the unit loads, the following final minimum required prestress loads result:

1 l

l Vertical Tendons: 0.938 x 357 kips /ft. = 335 kips /ft.

1 Hoop Tendons: 1.145 x 5036.9 psf = 5768 psf (lower 10 ft.)

i 1.145 x 10073.8 psf = 11,535 psf (upper 140 ft.)

Dome Tendons
1.1825 x 11,700 psf = 13,835 psf (external pressure) l 1.1825 x 363.6 psf = 430 kip /ft. (ring load at anchorage)  ;

1 j

, 1 1

l l

l 1 i

l

o ..,

The ratios of initial prestress loads to minimum design prestress loads after the 40 year design life are listed in item 3 on page 3.8-16 of the FSAR as:

Vertical tendons: 1.14 Hoop tendons: 1.18 Dome tendons: 1.15 l

The Service Load allowables for concrete compressive stresses are provided in )

Section 3.8.1.5.1.2 of the FSAR. The controlling load combination for checking compressive concrete stresses includes prestress forces corresponding to the initial i prestress condition. To obtain stresses corresponding to the initial prestress

)

condition, stress resultants corresponding to effective prestress at end of 40 year {

design life condition were multiplied by the above factors prior to cornbining stress resultants from the other loads in the Service Load combinations. These factors were derived as follows:

Vertical Tendons:

J i

The average effective initial tendon stress after all vertical tendons were tensioned was assumed to be 0.7 guaranteed ultimate tensile strength (GUTS). j lt was assumed that 112 of the 115 vertical tendons were effective.

1) Initial Prestress Load Factor = Force Resultant at initial Stressing (Fi) +

Force Resultant at End of Plant Life (Fe)

2) Fi = (0.7)(240 ksi)(8.345 sq. in.)(112 tendons) + 410.11 ft, circumference l at tendons = 383 kips / foot I
3) Initial Prestress Load Factor = 383 kips / foot + 335 kips / foot = 1.14 Hoop Tendons:

The average effective initial hoop tendon stress after all hoop tendons were tensioned was calculated to be 154.5 ksi(0.64 GUTS).

1) Fi = (154.5 ksi)(8.345 sq. in)(144 upper tendons) + (1.5 tendons per band)(140 ft.) = 884 kips / foot
2) Initial Prestress Load Factor = 884 kips / foot + 750 kips / foot = 1.18 Dome Tendons:

The calculated effective dome prestress at end of plant life corresponds to a force of 430 kips / foot at the anchorage. There are 33 tendons per band and a 93.5 foot effective band width.

The dome tendons are stressed initially to give an average of 0.7 GUTS or 168 ksi after all dome tendons were stressed.

1) Fi = (0.7)(240 ksi)(8.345 sq. in.)(33 tendons) + 93.5 feet = 494.8 kips / foot
2) Initial Prestress Load Factor = 494.8 kips / foot + 430 kips / foot = 1.15 l

,o 3 4 QUESTION 2: j lt is claimed that the tendon elongation under accident pressure will produce a corresponding increase in tendon force. In staff's opinion such increase should not l be relied on due to the fact that portions of the tendon near the anchorage may be )

in the non-linear or plastic range and any increase in the elongation may not increase the tendon force to any appreciable amount. This is especially true for curved tendons such as.the hoop and dome tendons. Provide justification for your l conclusion that tendon elongation under accident pressure will produce a l corresponding increase in tendon force.

RESPONSE TO QUESTION 2:

l Detailed calculations and supporting data for the proposed reduction in required '

minimum average tendon force at the end of the plant design life have been provided previously inEnclosure 1, responding to Question 1 of the initial NRC Request for Further Information regarding this proposed change. Additional requested information to address the NRC question whether portions of the tendon near the anchorage may be in the non-linear or plastic range is furnished by this submittal. The analytical approach and design criteria used to justify the proposed technical specification change complies with all criteria for the Reactor Building design included in the FSAR.

The minimum specified yield streng th for the tendon wires is 80% times the l minimum specified tensile strength of 240 ksi. Therefore, the minimum specified yield stress is 192 ksi, and the corresponding tendon force for a 170 wire tendon l (Area = 8.345 sq. in.)is 1602 kips.

Maximum tendon stress for an individual tendon immediately after lock off is 180 ksi which corresponds to 75% GUTS or 1502 kips for a 170 wire tendon. This maximum stiess is predicted for some hoop tendons at approximately 45 feet along the tendon from the anchor head at the face of the buttress during initial tendon stressing. A 0.16 friction coefficient is conservatively assumed. Refer to File Code 1:18.2.1 page 10 previously submitted.

Postulating as a worst case a Design Basis Accident occurring within containment at the point in time when the hoop tendons are at maximum stressed level,i.e.

immediately after lockofi, the maximum additional hoop tendon force due to expansion of the containment under the accident pressure is 78 kips. Combining the 78 kip additional force with the maximum possible force at any location along the tendon gives 1580 kips. The tendon force corresponding to minimum specified 1

e t yield is 1602 kips. Therefore, the lowest margin between force in a tendon and minimum specified yield is 22 kips for the point in time immediately following initial tendon stressing. However, the actual margin is greater for two reasons. First, the actual wire in the tendons has yield strength higher than the minimum specified yield of 192 ksi. Secondly, current tendon force levels are lower than at the time of initial stressing. The effect of this is described below.

During the first three tendon surveillances, lift-off measurements were taken for a total of 96 tendons. The maximum lift-off occurred for horizontal tendon 3AC during the first surveillance and was 1333 kips. Considering an effective 0.16 coefficient of friction, the maximum force in the tendon corresponding to the 1333 kip liftoff force is 1428 kips. The additional 78 kips gives a maximum force 1506 kips which is 96 kips less than the minimum yield of 1602 kips. The tendon forces are well below yield and are therefore not approaching the non-linear or plastic range.

The actual yield stress of the wire used in the V. C. Summer Reactor Building based on user tests for each heat of wire is significantly higher than the minimum specified yield Average yield at 1% offset for 30 heats is 227 ksi which is 18%

higher than the minimum specified yield. The minimum tested yield was 217 ksi and the maximum 239 ksi for the 30 heats. For the wire stress to exceed minimum tested yield stress, the tendon force would have to exceed 1811 kips. However, the maximum stress in the tendon for all design load combinations, service or factored, occurs at initial stressing and is appr' "mately 0.8 times the minimum guaranteed tensile strength or 1602 kips. Furt. er, as additionallossesin tendon force take place during the life of the plant, the margin increases against any portion of the tendon experiencing stress levels in the non linear plastic range.

Summarizing, the maximum force along any tendon profile considering the additional tendon force increment resulting from the containment expansion under design accident load combinations is less than minimum specified yield at all locations in the tendon. In addition, based on actual tensile test data on the heats of wire used in the tendon, the average tested yield strength is considerably higher than the maximum possible tendon stress. Since no portion of the tendonsisin the non-linear or plastic range, the tendons will elongate elastically with a corresponding increase in tendon force in response to membrane tensile strains produced under different load conditions.

QUESTION 3:

From the information provided in identifier 1.18.6 on non-interaction method and interaction method as well as in Reference 2 on page 12 of the same identifier, itis understood that the computation of prestress losses and tendon forces is for specific tendon groups. Identify in simple sketches the locations of the tendons shown in Table 1 of the third surveillance -interaction losses (81/2 S. R. curve) and the 39 vertical tendons,50 hoop tendons and 33 dome tendons tabulated on page 3 of identifier 1.18.6.

RESPONSE TO QUESTION 3:

The locations of the tendons in Table 1 of the third surveillance -interaction losses (81/2 S.R. curve) are shown in attached Figures 1 through 5.

The numbers 39,50 and 33 tabulated on page 3 of identifier 1.18.6 refer to the total number of stressing sequences for a tendon group,i.e. dome, horizontal or vertical symbolized by the letter "N" in the table and not to 39 specific vertical tendons,50 specific hoop tendons, and 33 specific dome tendons. The symbol "N" is defined on page 1 of identifier 1.18.6 calculations included with the previous submittal Enclosure 2.

In lieu of the requested sketches which are not provided for the numbers 39,50, and 33 since those numbers represent sequences rather than individual tendons, the following explanation of tendon stressing sequencesis provided.

To meet the design objective of applying the prestress to the containment in a symmetric manner, thereby minimizing force concentrations, tendons were stressed in sequences. For example, there were 33 dome tendon stressing sequences. Each dome sequence included 3 dome tendons - one from each of the three layers -

selected to apply a symmetrical pattern of prestress to the dome. There were 99 dome tendons total. Similarly, there were 50 hoop tendon stressing sequences with each sequence including 3 tendons for a total of 150 hoop tendons. There were 39 vertical tendon stressing sequences. Eighteen of the vertical sequencesincluded 6 tendons in each sequence, two sequences included 3 tendons each, and the final sequence had 1 tendon for a total of 115 vertical tendons.

4

9 0*

w/

O

'Q?s sf_

\ \

.#' s-E

/ -

m a g.flf ,

l,'* *w y e t *;

r'  : ,l

%l

~

1

' DE 7 re G

$$E 180' VERT l.C.AL .M

_ _ C A T :: C N oLAN

~

'IGURE F 1 9

i

4 0' ,

I i

O

[!' s

^

\

g- f

/ .'

8 a f

h V N 4] $4 180'
J: VE " E 4:)E NS L : C A T :: :. N 3LAN 1g FIGURE 2

< J

a s

  1. e
1. -

g .m a eo e d C IIId A!! O al -

dh, a

8 g .

. . t4

,.a lm

~

I

+

+

l z i

l (/) CJ Z *F-s __. . .<

4 i

L-I

A>

Z l.J L J g i- -

. F _J i

I LJ

+ O-

. m oJ

+

OE J- <

3 s -

4

(\

%.) +

/ . .

, ~

,/ /

'3 5- / <

[7g l

~ /

.,/ I  ;

. 8)- fe i 11

4 3 4 ll ,

MAN p f

i Y

W E

a a

]

G

\ h

+ l z '

l M Z

l i

s! '

A i

(3 -

Z <>

i w t.a

! 5ii '

.. i . , . .

F-g J

  • A + $ 1

+ w J

-d 1

+

I < l s - _

) _

f\

%) + u l

. ,. N' // 1

  • y_ . ,i I Ling g /4 in z u '/1

-- 7/' -#

- d,)/ i- 2 12

4 0 e

r0=AH C

8 h

4 Od

. a o 3 LC d -

I

{Ia

  • g

. i 9,

+ -

Z

+ w O 7 m

.< O H A <

is .

i

_g__

Z >

o L_ ._ _ . .-

H.A

. u "

w LJ R w,w_, -

4 g J W

~j Q t .- a J a <J

+

I x /

3

^

\

A

\ ) + _- u Y

I Lu,lt t

//,

i d

/

,l

. // v l

Y()/ (c. n 1

\

13 A

QUESTION 4:

The information provided on page 2 of Enclosure 3 does not give any insight into the conditions of the tendon forces in the containment because no information on lift-off forces is given. For each tendon the lift-off force or forces at detensioning as well as after retensioning should be given. In accordance with technical specification section 4.6.1.6.1, fifteen tendons should undergo lift-off tests.

However, from the table on page 2, only 10 tendons in Surveillance No.1,5 tendons  !

in Surveillance No. 2 and 3 tendonsin Surveillance No. 3 are listed. Provide the information on lift-off forces of all tendons as required by technical specification. ,

RESPONSE TO QUESTION 4: ,

i The attached 16 sheets of data with accompanying explanatory notes provide the information as requested in Question 4 above on lift-off forces for M tendons that l

had lift off measurements taken during the first three tendon surveillances. The tendons include the 15 tendons selected for each surveillance as well as all adjacent tendons that were tested as required by the Technical Specification 4.6.1.6.1 (b) on page 3/4 6-9.

l l In addition to the measured lift off forces specifically requested in Question 4 above, all data previously requested in Question 3 of the preceding Request for Information is also listed on the attached data sheets.

l The data in respons . to Question 3 is provided for ail tendons included in the first 3 surveillances, not just for tendons that wera i : tensioned and retensioned as specifically requested in Question 3.

l Question 3 from the previous Request for Information is as follows:

QUESTION 3:

For each tendon surveillance, provide more information with respect to its l detensioning and retensioning, specifically the hydraulic jack gauge pressure reading, the jacking force and tendon elongation recorded respectively at lift-off, at 0.8 f's and at 1 kip / wire or at other equivalent conditions together with the nuenber of effective wiresin a tendon and the length of the tendon. The information as presented in special report 85-021 is not sufficiently detailed l

P

. k

. j r

u ,

for the staff to assess the acceptability of the requested technical specification t changes. The information being requested should contain all the pertinent data ranging from the initial tendon installation to the most recent surveillance.  !

i r

i 4 *

, i I

l i

l 1

i 1

i 9

I i

I i

i i

f 1 l

.\'

l l

A 1

u l l I 1_ _ __ _ _.__ __ - _ . ._

l 1

NOTES TO ENCLOSURE DATA SHEETS FOR QUESTION 4:

1.
  • Indicates adjacent tendons thet were tested due to low lift-off forces (below 95% of the BASE force level) for the original scheduled test tendons, j l
2. Overstress corresponds to approximately 0.8 times guaranteed ultimate tensile '

strength (GUTS). For vertical and some shorter dome tendons, overstress corresponds to less than 0.8 GUTS since friction losses are lower for these tendons. l

3. Tendons where no Retensioning Data is tabulated on the data sheets were not detensioned and/or were locked off at essentialy the same force level as recorded for tendon surveillance lift off. l Tendons where only Lock Off data is provided under Retensioning Data were ,

no detensioned butwere stressed and locked off at a higher tendon force than recorded at lift-off. These are tendons where measured lift-off force was below the 95% base acceptan .e limit for the particular tendon.

4. End elongation at Lock-Off is equal to shim thickness minus Ram Extension l prior to stressing. Shim thickness is the clear distance between bearing plate and stressing washer.
5. The number of effective wires shown in parentheses ( )is the effective number i

at completion of the surveillance. The number shown without parentheses is i the number of effective wires prior to the surveillance. ,

6. Tendon end isindicated as 5 for Shop End or F for Field End.

l

7. Certain horizontai and vertical tendons selected for surveillance are deflected l around penetrations. Deflection for these tendons has negligible impact on '

length. For vertical and horizontal tendons the length is taken between faces of bearing plates.

8. Previous indicates at the time of initial installation or a previous surveillance.

Original indicates at the time of starting the current surveillance.

]

l I

i l

l l

a

9. At PRIOR TO STRESSING, an initial force of approximately 424 kips is applied to. .;

.s the tendon to remove slack. Tendon elongation is measured from this starting  ;

point.

I

{

t l

l 1

s \

I I

l l

r

. - - . . . . . ,_ ,~_..._,._....,7.. ..i,.,,.. , _ . . , _ . . . _ . , . , , - , , _ _ , , . , , _ . . . , . . , , , _ . . , . . , _ - _ . . _ , _ , , , , , , , _ , _ , - _ , . , . . . _ . . . . , , , ,

a. -

h h e

i l

i l

4 g*EJ - g 8 $ $

h n

3kI!

a

$ k$ b k E k k $ b Sk $ @

a e a

ijie -

s

~ a *C R w = <

& R s q t

x e

e C

e e e a

4 e e w S 9 l

8 s_

E M N N U M $ DI Dk R@ QQ %Q &s 4D $%

Shh!

e-5

=.

  • * * *  % 8 a .e 44 44 4s 4s 4~ 4~ 4s 1 e

8 b OO ER O U. I O Qg lr@-

E O

e I

s :

O

k. $" ' a s& &t {o S

s m at al la a& j

!!! 5

@ l % $ 4 @ @ $$ $E !$ $@ !@ @! !$EE  !

1

  • s 3 k k 4 k k
  • k k $ k k I s, ag!ll  :

~

< w < a s! w i 4 4 4 4 w M M sa l 9 a se 8 O k N 4 N  % DQ kk Mk %D k8 Dk &S UN ge g e,- .- < - S g m m s~ ~~ s~ ss ss ss u u W5 1

$ 4  % 0 k %$ 4R hh 4R 24 42 %2 &&

g g

  • =!j=

s~

t  ! &

e 4

t 4 x 4 T- t ow ev ex tt tt n Pg N P% P%

x =

t n~ ua a ng

~ - ~~

,w aa ~3

~n g

=m=-

- a s = = = a g as , 4~=e~a a-

!g :l1==

e e w

e a

+

b u

O a aa a v ,a w r~ 4 o

m

&c v4 ag e ae aa na

w. e w4 44 o

~ ~L E o k k ~kk e

r- ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ks ~ ~

=-- , y + 4 + 4 4 ++ 3 sWw +, sw ++ +, w l8 w w 4 w w w w ww ,s ws ww ww ws ,w ww t, y 6 t~ s -

4 5 . -

S .e , S gg .9 > 3 3 .9 3 .9 3 3- .9  ? e is

~9

~

e

~

e s 4.. 4

- s - a s =a o cst ~

t

~ 's s a s, 'a ~9~;e 9  %

O A 4 j N  % N g g 4 g 9 I E R s e e t u M s E + M M $ M h- s. .s s s. s. ~ s s s. s.

g.gg s ~

s. .s.

s.

1 ,a u - _ . . 4 L-- a-2 .. - a - - - +

B 9 . e 1

l

~

a -

k k n a

ijl

~=

e s- 9 m M $ ~$ t n 4 8 2 M

R t

4

=

4 ti 0

m vR e

n

  • n 8 s E 8 k 3 D D OS 4k SD ID ID IkkI NR %k 35 wIw ve DS ls R, uw 49 4s 4x sw 44 44 *4 *4 ws as sg

- lIEr- {! e4 4

83 6,$ 3, 8$ $2 44 l$ R3 33 t* *W 4 44 44 %$2! =4u4 $$, a& 8 ES, $3 4 n a,8 8-4 44 M 40 0g 4R "U

= t5 5w ww =g$s=cy 'tg ige a eh e-= -

3$ tu w=

=s s s tw ?i=4E= =I=m =R =4

! 48E h!!=g a

~ 4 a a 4 e t b t 4 2 r. R & S"

  • a x x 4 x e w v
  • x. * * * ~

L au be

  • a s*

g 5 8 k O kh kS $$ DE IS Ik k kw %k k% kk kk kk g"

?

3.

g_ ss s s es s- s. s~ r s~ ~s ss *e *-s< - -%

= 3 %E kQ Ek D$ 4 kM "S %M *S Sk So %Q u kk de vu xe xw e e% vt h tw$$ e~ e%} s xw wu ac s "Il- 44 i

- W lr s a

h:@$

%$ k' g kg s %h

~ =~ m~ s~ %x)w ns hgEM e~ 2x EM R& %k

x un us S8 ns un 8l k8 xa a~ g ~ ~ ~ 3s  % ~g ww i

!-S E

$$ ka $gw $k $k ~~$ @ ~4k~l$ k$ $~35S k$ EM EE E~ ~E

!g di e-e ke 8t he %2 a e 4R uw us uu qsww 44 a t ,t y te wo mv ~ ww wa sw ss m<

w4 t ae c4 wN

-t s<

, ~~ ~ s ~~~ . ~ ~~ ~ ~ ~~ ~a ~~

4 88 lli 5 45 13 5E 35 15 65 1355 55 55 E4 05 48 53 53

!8 ws ws ww su ww ,u ww ww ww ws ,w mw ww ww ww

- = , , . . . . , , . , .

%  % N g

e a a a e a e e a m 2 4 ~

gg x x x x x x x

--  ; a x  ; , c  ;

~ ~ a a a a 2 2 2 R E m e t m

!! k k N k k  ! ! ! $ $ $ k k $ k hg ~

~ s s s s

s s s s

s s s s

s

, i l

l l

~

3 i g _ q b ls56, $ R R R R$ R R "g, g ~ ~ s - ~

su a g

!ji,-  ! M 4 y 4 2

e w 2

w M

v 8 Ec_

E sjgI. $ *ES DD

~ ** M*I 4Q D% NE 4 ,_ w m ,.; sm ~~

g gn=5 q=.$ 2 aa ga ea e  !

v st: 33 44 23 3$ I lgs a 1~'4tw 3% %0 %% R4 R%

e= -

e= == == == 1 J

z

!s. 09li s L ,-

s e

- e < <

a e e

- ~

OE 9 c s" a;

~B h si!i e m- <-n e+ ++ .a a- m -

s a

.t r

w# a a a a igi e D; ga aa ee sa n3 s4 4s 9 s~ s4 44

g m-Ile e

!! !! i! !! !i ll

!!! e u se ss si s? ss

!g si:s m e wa an we aa ng ta wN es qq qm s~ ws G

~~ ~~ ~~ ~~ !!

e e at sa at ti gg l g Ile 2

lE6 --

5 %,t, t =' %,R, R, %,%,%

, , ,a ,R is m . . . . ,u a e e o o N

.sw

% .?

g5$ N

=

N 4

'd N a hs ys e

!! i 38 i B B hg ~

~ s s s s l

l . .

1 i

\

"b g e o N 4 l

Y E  : 4 4 *

  • < m E-E _

d mg e a == =Ae = mm

~ , s i

g lg_-E 4 4A I 4,m ~ 4~e r- E

+

4 ow R m% m l

kh I OU ,{ Ik IN e = =u nu ,,

A 6 C 4 4

.i i=

e - - e e vN )

g d

d m a,

^

~

m 8 E E m Q so n eg= a e $e^

4 i N

g r ,

5 E~

35:6 E N $ I4 l s s t

  • 44 l 5 M a 5 E j f m k SM m -

? m na N

3 l gE a

=

4 Q w 3. *#

v 1

i G 8 E 35l 5 M P R%

8 I s-

  • s uv 5

e o

W g g=E =~

a 2 k o

8 1 s

s ~ ,

E a m V vs QE I

  • ~

$ I$

E $

g!1 a e w 3B e 4 A* .* wd@$ e n dw@

= =w ee w= n e= s e* ,6

e e = = = = w

, g == '= 1 i -

ga_

m e9 c g 4 @ W W m 4 $422 4 c& ,@ w tW e@

5 @!: - N T M 4 % N 4 01 4Q 4 44 't Om 0R 4R

!$ 4 h

=.

lL-T 1 e

=

e a i t w

R a

e u

E a

8 w

I w

S

D

=

Wk a-- e n n u n u u =n unN n, uu um eu nt ~n

? $

, , , , ,w ,s ,. ,. ,-.

18 , , , s, m

= w y g g % *

  • gl" u

m t ( g x

s e a c% 2 , s = R M M O

a p

a N

s s s s. .s s s s s s Ig]= s. s s. s. s

, s s . - ~

4._e - w

-%2- .m a - ,-. a 2 --_s-. s. mas ...w,a .._mr. -_ u- , -

a + 4 e

l$ lil 5 I D. ,D e e ~  %~ ~ $

Na ic _ 1 I

$h ne s q $k $' $ Q we 44  %

Y OM A& hthf ww +w ow w w ww ,

l 5! $

$ k k kI I 5 gis= a~ an=- ~a wa

> =s ea e= = =a= u, ,e se p

w es

~

/- -

@ m a - =

e 'El! e E

t t 4 2 A a

5 gE l

~

a s s Il:k $ %R sg a ss ss YN 4k d4 ebt l e- mm 5

5 W -

a 1 5 g k  : N $N N4 N

< s w

n g

]sk -

es e= 44 <w ** -

m r. ., + ,,

l D D a , l

& 381 5 hh 4M :n G2 l a i n

s- wsww twt << um 5 N

! kh a kk 1

- \

IRE e-- s ,Ot, 'Wott . ** ,4 s4 *R y,

l

=

!51 i!-

a en :e@olEd@@

e - = ,w ee *== * = *

5$ ** g=

==

E d=L

=

~

$35 $E d$ n#

, wm me sw 5 [I: $

4G  % z. = St Ot 44 4t ~4 M W. 44 4s q

w%

4 v ww K N g ww wu gN~s $ a @ O M

  • k $ P. 4 9 k I Q

- 5 -

tt  !! 4  % 4 4 k R N  !! 4 4 4 @ @'*

e it ta at tR 44 4 ca gES en ew =w st ee ll 3~5~ 3~tw sa =w 4=3~ w= =w ee 34 sw =w g~a w

3 h II k -  %

is em ,m u ss ,x ,u sw em ,m ,w ,m - .

Il 1 # !! $ H R R R #  !! a l a I s a ~

~ ~ ~ ~ ~ ~ s ~ ~ ~ s 1vg ~

~ ~

. . . s s , , . -

- m + va-- - - - - --

, r.w-,. -r .w------y w-++-w- -,m- g--c,e - - + - -**


~ a - - ' --

, e N

"b wi- e s i

h*d d

Ej! -

v%

52 d

  • e e

! 3 ww 4 9 s ww

i. ge_ e s,a m

h 44 H e, si 4

lh -

5 e(e te == ee

- a e 5h:

0 C.

e d h

9 5 sE

~

3 8 $ $ 8, 8 dN e 5 e:-

a

,, s6 E g M '

s 5 ! 35I 5 hR U@

44 g g 5: k' i

m s

Ielr- .

as nu e-ad v - ~~ ~

ca 5

_, Et_

s s @

G s E 38! 5 k% %2 a a m- ss 68 5 $

E a E!E t-E

%n 8l y N E

Igs a ,, aa E: -

yq **

3 h h fh WANEfN

!= El-k -

ww ew 44 44 LL %M g.

kW #3 CY ww ww $t $ $$

~EE C @@

a gg: -

44 44 ww ww lg!E A h $ N @ S

~ 4 s e a s

~

s = )

fE6 S eE CD NS p ne en ,2 s u%D u nu  :

1lE E BE !E EE HE @s I5 l ls ,w -w ms ,w ,* ew l

- e e a n is I 8 n o 8 8  % 8 l Nl 1g s.

~

s. s.

s s 1

a . .

e#

" h e a

!l6 s- a 3 h a o R h M 4 i R 3s g ,: gw x 6 " m e % t t e 4 :i e B s-

'E C 41  %% $k %.* 44 %9 %% ED M E M $ " 44 %Q

3"l!l. -

Q w w e su sq qs wa s* sa ,s e* sR 4w

$ [EB @

$ 3 ,3 El l!

@344 Al 3$ $$ $@ 3S 8Q hd %4-w4 w4 44 44 44 44 44 44 r- -

4 4 a

m - m g s ws sm %g g* ga um eg 5

~l

@ E$ ,tk $$ $w t% tt %M Ik t4 h!S $ $ $ $ t

! 8E i s a 3 a e, h 2 x% x 4 h w a 4 w%w

% 4 L

==

$n!!=

a < - e - - e w w w w w go - a

~h $ g i 5 R 3, @ Q eg gR $4 g4 R4 %3 44 34 m R, ~~ ss ss e gs ~~ ss sw a n gg le u

g t

g- - - e sa ss 5 $ gfj 2  %  %  %  % % % && S% D& g4 9% h% 4' g g o.

x e 4 x x tgs uu ?e ve = we g%% s a e% e ttR eB h 5 E $ $ i I  !$ $$ $$ l3 Il !! s@ !! $! $$

n v owwrag a,5 n ==

gp

_=

a

=

~

a e= 3s = ~

= ~3~ pta va v= s ev en g3s

!g 3l1 m:

e e 4

a q

o q  %

k R4 84 *2 aa ee aa v ss sv vs vw a4 ww ww Sv s~ wu n eR ae a4 k te c

Ens e n n

$ 3 n n

+

n x w 4+ V4

.~ e vv

~

+4 +u + x n

+ n+*n s 44 n

4s zn v+

$8 w w w w w ws ws wk ww wu ws ws ws %w ww. l

, , , , , , , , , , , , i D N k + en k MY eh I

- G 9  ?. R 3 .? R R S R .% R R R g^5 8 i i i l h 5 i i l i B i 3 5 li G B E e E M $ $5 i i i 8  ! E af gI N N N N N N N N N N N N N N

N

. r..

' t ) )9 y 8 v >

EF

!S5 TE CaE 3

U 0 #

y N o6 7C ID,,f R0 U

So El FeO F

T N

(

4 I

l I

l

' , ' 1 # N 1 7 O E LE CG N NA !O)

  • EP L I N S O $ E 3 A

A C r S g ' 9

)

T OC N T NI O(

e s

I I M g, 0' 0 S

S # W 6 S R ' I T

U -

C Im) 43 7 Sg ,

I O

T eAEC N t

s S 0 so 9 s 8 77 CB 8 o) 031 6 73. p 43 07 t 0 T

DGTN NOt OMt RI e

t 74 67 (,. 6 s. M4 g1 SC l 8Z 33 3 33 Ft F

0 K 3 0 b 0 o 00 o o 0 0 So 05 0 0 00 000 0o 0o 0o C

EMI G

U 0 0 5 0s 05 87 0o 5 9 j 0 ,p M f.4 4 44 4 a

O A 9 7 8 9 78 t 7 8 78 87 L M s 44 4 4 44 44 46 4g 4g -

CN of o1 Z /p p, t

/ 7o 0

9. 9 o9

% 5/

4o/44 4/

s 9 /f 4 4 44

&44 44 H4 s

M s 4Z / /%

W 44 44 0NI E

T E

I E

44 I 1 M1 1 / I 1 / /1 44 11 1 I 1 7 4 1 4, N N O Se0 g WuD1 S # O I

P s Y g S # K -

" W T D I K PL t A

L LA IOE DM I I$ FR S*

' ' g, 0* I l- 8 & -

AT TA SD ) N3 3

N S I G T IOt l S S oo N U mG To3 A Cm cu s

83 0 o0 0o 0S 00 rS 05 oS S. m_ tg i

NI C S. 9 2. o. 67 o. 4 3347 e0 77 4. B.

t OS t ENUgO 77 77 4441 l4 4q q, 4, DS NE 0 8

rug O 4 4 ER ~

C TT (

S S L m 50 50 A

S E

M6CN 1)

)

4 4 z S0 S D0 oD D D /300 SoS 5n 0p I

T I

R T

S R

A0N R t !

xt E

6 4

Bz 1 944 1 1 z.

4 1 1 4 4S

3. 3 cS 26 87 44 CL AM 0g 74_

0

7. zg N E I V E o ,,

on o O I 0 0 oo Ss oo 00 o0 o0 OD 06 EUI oo Z 2 o0 CSI US5 s 5 5 t 9 5C 05 o0 SS 55 z AEP t 5 5 S9 7 7 32 7 7 7 7 z2 /Z7 77 /1 Zg 7 ,,

SR(

P 7 7 7 7 7 7 7 7y N

0CP Es o t  % rtoc tt o o E2 44 7 7 4$

z z /SSA /S l Z ,y 7, 7

27 s J3 t

eNI c0 2? Sl DOE TF(

t A4/ 6a 1 /s I S5 /1 5S 1 /

Sc i1 // /1 S,/g 51 9, N

G 0 N

MSO 1t t 5 005 S0 S o 0S 00 Sr 0 o0 50 9 90o I

S S

E A

R N

EM Tt If 3

(

4.

7 5 27 S S.L4 44 2 /. Z2 1 z 7 t 22 z p. /5./,S S 7 24 z 27,y 3 23 -

R E T

S Et3 M n o0 0o 0 0 00 00 o0 o0 0o oo 0g O G$I r 0o 00 0 0 00 o0 0c 0o T

R USS AEP CRI P

e o 0 o0 z2 0c 2z 00 22 00 22 00 22 w00 z2 o0 z2 0o 2r wpp 0o Zy 7g O

I R NEI P 0CP enI s

e 44 ZZ t4 z2 44 Z:

03 22 44 27 44 z2

//

22 3

2Z3 z7 44 42 4, doe T FE t

4/ 44 4 4 44 44 44 44 44 44 44 m

e SS Sf Sf Sf $5 Sf ff ff Sg Sg D

T

,. n n a

YO Y4 O

a g2 p

A V8 o

8 'Yq W+

I I , O 0 0 m

E I

Y*

8 g N f

2 C

S

  1. ,g l 6

/ /

l l 4

/ S

/

m R g b 9 8 O m

E 8

7 2

o I

O

/

N O

/

z D

2 N

L L R

! E E

V 8

N 2 5 g S 2 A E 2 2 W t p

9 1 S f 1 f

,,s-4 s. - a .,wa ,A - - .a a- --, , , . , - - - - .

xs-.a - _ _

e %. e f

b

$k 5  %

su d a. _

.-

  • w h k k y = ,- -

t um Qu ee eu l

. l ige 4

k m s% 3,$ k3 4% EN au Ig5 "

XR St4 E 2 0 b e-- -

t u t% *3%

>_ o a

.i :9 5 R 9 e - -

x g 9

5 g*

a Bj!I E

- R g a eg- e $s*

~

g  ! >

g  ; '

e wa 44 g

m l s!=s -

M 4

W ggs . * . r s e- -

= w4 5 g  %%

a ,n 3ll -

4 -e I

f l 5

E g l1e r- e e R

at ts 1

e 5 5 ,a

,5 , .

a a e8 88 44 Ra 4* ba tk as ea Rd

" e

!51 a e a I l E!- -

Y Y e w e 54 %w wk et et sy vy ws tw G ti

!"I

~

.w #S de

  • w e= *a n -w e
  • ew ee w ee a ri: .

=t t 4 w = ew e 4= *4w s ta *T a ex au i 1lE5 5 4 u

m e

Q w

0 e

R t

R

=

w ) $

s F< sF g hx e a

=

3

  • A lE5 9 4  %

4 R RO IR a= qe =W gg w xsa 'Q=C y~g~g~b= l4 84

=w e= =%g~

t u @ w I!! 5

$ @ $  ! $ $$ $$ $$ $$ $$ $@ $$ $$ 3$ $$

m , , ,m ,w ,w ,w ,m ,m ss , ~

18 , , ,,

!! E d E 8 6 $ k k k k k  ! $ k k a

k N N N N N N N N N N N N N N N l

}

_ _ _ . , , _ _ _ ->#-. a m - - - - - - - - , . - --- -

i 1

[

8 l l hO 5 5 'a

$g! -

M  %

N w

E

$$,h I R? RN Ak +%$ $%

! <e +

we 44 ~~

l Il!  ! !$ $! $5 $5 18 1

l-l6 I kN $8 D4 "4 I uw  %

w e@ =w Et G 'u

- 5

.g :i e 4 g  % 4 1 e - - .

s s '

E 8

5 3 )

~

G k 5 MI I S- 4D g 5 o

8lg-a ss o  %

$ 1 W -

a 5 350 I k  %% k%

-c g

m

$g 5=

e vu ~(

m U

r- ~~ -- ~

)

C 5 E 35$ 5 $Q kt Rh a  !

n 5- ~s <4 <x B W

$ E lEB E RR R$ RR a r- == s s et E

g

!"I a

u un t ue ae ta e= ee uw su u ss n u aa ae ea 4u p- l

= _

a i!: -

w N  %

me e= wo ~% ow s* w o h

T I N D $ D D $

N S S

=

-f~b = w w = = $ q w a u 1

5 E56 9 4R 94 ke =QkRR RT ayym RC 44 l

== 4% wu = == == $'*@ t4 44

! E h w w h 18

-m ,s . ,w -u ,x sw ,s . ,w I N D 4 Q a

gIl N N

N N N N N N N s ,

e O, e 2 w- 2 2

~6 5 R ks ks sR$ sh R ?s R  ? R R ff A & 3 '

gm hsEhN

,a s s s s s s s s i

WW s

sjl e o e C -

s a M q e R a 01 4 m g ,

= -

O s x

  • 4 <4 q  % e e m e w e B s-M E R k $ 4 '.a  % 4 S k $D Rg k% Dw UM
8lf_$
  • x
  • v <  % e 44 n% 4s Q 44 ws 4s f 8 $ 0 0 0 $ k S 8 be kh k8 E kO k 04 u- 44 50 n :h, Q

- I:5 r

=

= 1 s 4 0 ; a  ;

gp= .

as ss it a - e

=a=epi o ww x= n eta ag a es ts, e_

w w 5 w s s .

~$ 5 R 4 D R  %

< 4  % @ M k A D 0 $

L o!!= - a < x ~ ~ * < t x w$ w w w no

'E.

.- o a s5

-g_ w g

$ a w w

  • x w 4 su k n~ h k kh

$e g g eg-x a S ~s se sy ss ,

d% 1 5 $ = s 4  %  % A @ Q 3 % %R RM h2 NQ R4 00 g g o=

=fi -

x e e R

w e w x x x xw ww e= *x ee st  !

5! I k k k k k k k k k k h kk kk kh k i gp=

- ,s e a as

~ ww

w w. wa we wa s3 =24aw evev aw n=

am n  :

g == v s v w w w v w w ~~ uw 4y s~ %v ww N N N 18 w w , w w w w w w ww su s ww ww ww

% s  %

e. e o s, e , ~ ~ ~ x ~

a 4 s, 4, a M E a ~4 M s M a a R 4

~ o o y u g 6 g"

m k k s

2 e

D 4

% M k M i

m , , m m m , m m , , , , , ,

lE] s . . .

. ~ . .

l .

bNf b $ hk A

~ R  ?  ? R R  ? h~ h hk  ?  ?

s f "g5 o ai s s s s s s s s s s s Wh=i

=,

s 3  %

e 4

e 4

x e D I= R e

4 e

R e =G =

U. Q

=

3 4

~

a

~

g e B a E 8 $ 5

-  %% 0% ME DR SY D .% DS D0 %D NE RO

,4 4~ 44 ~~ s4 4s w~ 44- ,4 44 4v us DD RM $D-3 ,__

8 88 $*$, 0S k,$ 03 k, kM 00 30 0k, k,k,a*k,k$, % h,ID S h-E:ld =

= :s e 3: sa st e w  : am a k,

!!! 5 Es ll @s s@ ll il li l# E$ EE5@ sE %S ss l0

! 9 881 3  : x a a x x

.: e a w e e a 4 xa a e 3, ell = e w w w = w w w w =.

ga _ m

~h b 34 D% %% k% &$ h% eR AR a% I% ms 44

~~ s4 4s $R 34 %A

~s RM 8 5 ge g lg$- ~~ sm s- s~ ~s 4 AR.~~ ~~ #s WE 1 5  ! ':

s- 24 D4 $6 en de

%@ %S 4D 80 48 R@ %e 4R h% 4R &% RR tt et es 44 4W ee em4t ew d4 44 ~4 g

~

g =!l te ils e li  !! !! l!

ss Al @! RR !@ ll @@ li li ll  !!

ig xe == == =~ =~ = ~

=u - ~ an ve == = 4a =a o3s ==== = =

a -

= ~4 4=4 ==w 3 . w= Gs =e9 sw

!g s!i ==

e 4a ea eq ha ab aa ^2 ka ta Re aa 44 sv 44 44 9S us .4 ~~ vw ww w~

te ca 4s u ee at ss w~

% N 18 ww ww sw .a sw sw ww ww ww ww sw ww us ww ww h, III g ~ x t s't x

it bx t i x x t i t t i k w x x x 4 2

D E 4 4 ~ R 8 a R R 4  % a 4 11 2 i i R E i a a a B 8 x 3 8 e a- m m 9 gI) m m

m M

~

M

~

M 7

, s 9

m M

9 9

l l 1 ll 11lll a 4 E ) )s

'l V IS5 7

> y O )e ,

yog(, 0s 3

EF TE CnE O 0s 0 7, R0 L3 S

Ei FWN T

7 0

(

j l

l ' 7 1( l9 7(

1 O3 E (

LE CG LIW N)

NA '

EP s 8 # # S 5 A

T' 3

C r E

7 3 '

)

S T

OG E T8fll I

i t 6 6

3 I ' W 3 3 7 Z U

C Im) 4n a f; C5 Zl S sZ S os 8s eAECu T

Z u fo Sn 3 O

DGTu f. 9, f. 7 $s 3s Z.

/

Z i. 3. s.

6 3 R4 i N s

~

Ocg 3

( L Et eg Z3 f3 F

F O E 0 g, 0f 0 0 o 00 o0 o 050 0 K

C mD 45 o n

s 0 57f 70 90 50 o0 o 7 19 O 79 L M5 5P E

R(

P a 6y 6 g 66 66 44 s9 64 m6 64 MEi o 1 /f  %! Z1 z

/, 0/

0 eIII DOE TT(

Cr s t

f ,y %7

/ ,4 $4 4

1 J 1 o

f%

i1 14 44 11 f%

i/

  1. 4Z 444 7 t 1 1 I N eGN O

FWDI O

I T

A L

A D

L s

E 6 ' 4 ' ,

L O d 0 *

  1. #' , M LA AT TWEI T FLE TA SD ) u3 3

N; S lou, I T NI M U G

Di O g EaCg Du3g G -

T e

og c

o0 f0 0o 7oD Z1 7 o O.

7t o03 OS DS Z 0

o6g Ltg ELO 44, 4 4, 4 fo. 1 3 t.

44 4. 4Z. 14 4Z. 4 NE 8 ER ~

C TT (

S S W L

A S

E s S a E0 I0 ) 0,, y$ 0 50 oo i3 o0 o oo I R IA D [H s 8 66 o s. S. n 76

f. 3, T I T

I S R

IT D(

4y 4 C5 Z 4 S7 6s 27 N E I V E O

E'.l 9

  • O n 00oS co ob 0o SS ss 32 o0 oo S5 0o 5S G5l  :

s U5$

AEP Clf(

t /g S

, 3 Z 3 Z 3n 7 77 t 1 77 /

7 7 t

P 7 , 77 7 7 N

OE) 4g zZ 1 7 6 s. ?s 37 ss CnI doe TFt CP n i

s

/,

Sg I ,

3) gS i J Z 2 3 S5

/1 6s 1 i s5 i i t i ss ii na it N

G O N u5N I) eC 3 og 5o o0 0O o o so o o0 SI aDH R

3 4 dg 7 Z. 6 7 s gt t. 53 Z f. 9 e Z.

Tl S

E Of Z. y, I. / a1 z. z 11 -

R T E S

O Ef tll G5l r i 0g o0 00 o0 00 0o 0o 0w 0 ooo oooo _

U5$ 0 n 0a o o o rZ T

AEP CII t

0o o0 o0 0o 2Z oo -

R O

P( 2g Z 2 22 2Z zZ -

I R 1EI 3 P 0CP 0RI l

2 ,3 44 44 f4 9 1 Z4 lZ 44 44 0OE i

ZZ Z2 %Z f4 ZZ 7 F(

t 44 44 f4 44 44 44 -

n ee 0

DD T

$y $S ff Sf gf ST cf f

/

8 N

S s 4' 3 9,

SI mM O 4 eC I

'7 / i s t -

DD  % 7 7 T L 5 'Z Y' s 6 g 5 1 l i / , '

/s

' S R

E 6

/

9 0 O 2

Z o

ti 7

G 3 / I i 3 T I E R

D D O D D g D t

L t

3 3 b 3 3 3 b m / j , y r i

-. . -. ~ . - . - . . . . - - _. - - . - . . -- . ._ -

gb vs , g

$Y E~ ~

4 m dW d' e  %

E D N \ k k 4

! =.-

= y x w M M Q ?x en ex tw we xt i , w ~ u = u e % a- a- l

%%n30 43 CI se E En=

jE : $ 3  % $ 4  % p% 4 ww I l

kh E S T N Q 4 $ $$ kh M e e e e= s@ we et =G ==

a e e s .

m W m o  % 4 l e ' Ell e

e

' w W -

g s 8

5 3 a C 4%

4 o Bj-.g$ -

5 a ~< l V

W -

a

!s !i 355 s-5 0 4

$O

~~ ~ k i 5 u l i 5

m ID 5 2 li M C E E LEI E S ~w ts a  ! s- 4 *s 54 5 E 8 " j E

lIE r- 5

~g~ @@

~a I

E 8

kh $h l N

h a w

  • e 4 4 % 4 * %s 4 V MX 44 kQ

% kk k( 4dS4 mA l E!- -

5 4 c' 4 4 1 $ Wa te GS

en 2s s. . . . .e s- .. o a i!-

a e t e . e.

s R eX Vw N .. ~e ~t u tt b I !5 5 4 0, t

e u

S %. A D

=

D

=

= S, ,E A

, 4, k~

s = = = =

fE5 9 4 0 t D A %  % S h XC h* 48 (( E$

= = = = w w w e w = a"=t et =e s

? ss

~ m o e u -w os

~ s s s e ga Eg-i5 3 6 6 d 3 $ h $ & $ $h 3E d% h$ k 40 18 w w w w 3 % w w w ws ww ww ,w ss ,w m s a m

  • w ~ s u 9 g *
  • g"I k T 2 E B k t 2 6 E 3 s @ E M lgl m  % m , , ,

m m

m m m  % m m m

- - - . - _, .__ , _ _ . . . . . . , . _ _ - _ - . _ - . . - , - - . ~ .

4 , , _ . 4_.,...._,ha _u- m 4 ^*

e wb ,8-lo sj! -

E en 5m .

$ s 4S 40 %k 4R mm *4 Rh

! =WE,g= _ ;e ee m% ee h~ ec e, ee ** ee 44 aa 44

%R

- ~

a g lg_E_E =E o o

%w nm s4

~e ~~ ,,

ns N4 e

. 4 4 ,4 R u , 4, u ,R ,8 48 e~M R ~,

4 C, ,0 ,a ,o S D IS 4 DN Qk D4 lE=

  • ae =a mMa : = == %% == =k= D Ek f

S = =~ $=d=

=

- E e .$-:$ 6 E

w -

k_

s a

n 8[@l=  !

a g .a:-

W g E 5 g pll_ -

5 e 5

  • e EfE !

h  !!! f E A

= llEI :_

8 1 a

5-Y

> g -

e E

8 g!5l a %9 %A 9$ aR RR 44 82 R4 %% k% D9 %k RR tw I. !_

e= ee =w ee we es =44 e xx xu ee *x ee sw 4u mu O

- gg: - eMs Ns= ce et == == ee gs= == =e s e s s ww 4w sw

$ l !E a R h 4 *

  • A I I U k yM Q B D N

-L: -

w = = 4 4  % u = u u a = = =

=w .s n a ma t= == =u == e 4

s N

~~ o == == ~

E!E 5 0$ $$ $$ $$ $3 k$ $$ $h $$ $E $$ 5$ $$ $$ $$

18 ,w ms ,x ,m sm ,w ,x sx -- ,m sm ,- -- % ,u hk k k k k k h $ N k k k 4 b k 1gg

..,9 , , e

- ' ,O l* 2 B 8-

=

o 3

4 st-  !  : o n

j d_o d l 5e -

th g g.

qq N N wu Qh s4 w%y$ hQss a a e~ ea a g gg 8 Is=gs =

al ce b a l ,* -

[gG .

s au en te et o r h4 e= =G ut  :

- E 1 i

d -

5h

. (g : 6 k I tas 2 )

d a e

Eg a MM 8li:S $

= 5 e:-8 vs  !

E g N -

E i 5

g

! 250 a:

E

%R

%n I

2 d 5

r- ! @l E

m lIr5 - -

1 o

e e-: m U 5  !

iE 35$ 5 WM a  ! 5- **

5 E

I si!

w

] =e

=

- e9 go '

H g -

pN E

lgE a-

v wg e= I I $[

gi.

a

- tt %% R4 44 v4 %v vw 44 *4 44 4s 4R t4 AA ,

i k

a

!$l gg:

c gg we ww

,$t w #g

+

St $ @S*

wo 49

@W 9 @44m 1

5 g*W~E E a R R & 2 3 2 sa -

= d = = t = = 1 a

3: -

tS == = 9% = ee u&= =4 s @u -

g .w y wa nn  % c om ps

$y5 3 3k th k3 EE Eh kd Rd

!8 ms ,w ws ww su su ww

~ o 8 a

$ a w w 4

-  % o$ o~ D 4 0 m

Q gl en m m m m m m

, s , - - -