ML20142A525

From kanterella
Jump to navigation Jump to search
4 to Updated Final Safety Analysis Report, Revision 24, Appendix 5A, Compliance with 10CFR50, Appendix G & Appendix H
ML20142A525
Person / Time
Site: Hope Creek PSEG icon.png
Issue date: 05/21/2020
From:
Public Service Enterprise Group
To:
Office of Nuclear Reactor Regulation
Shared Package
ML20142A521 List:
References
LR-N20-0036
Download: ML20142A525 (50)


Text

APPENDIX SA COMPLIANCE WITH 10CFRSO, APPENDIX G AND APPENDIX H 5A.l REACTOR PRESSURE VESSEL BELTLINE PLATE AND WELD INFORMATION Available dropweight and Charpy V-Notch (CVN) data for the Hope Creek Generating Station (HCGS) beltline plates and welds are presented in Tables SA-l and SA-2. These materials were impact tested in accordance with the ASME .B&PV Code, 1968 Edition through the Winter 1969 Addenda and to the applicable General Electric reactor pressure vessel (RPV) purchase specification requirements.

Estimated values of RTNDT (reference temperature, nil ductility transition) for the unirradiated beltline plates and welds are presented in Table SA-4. These estimates were made using the data in Tables SA-l and SA-2 in accordance with GE procedure Yl006A006, which meets the intent of paragraph N.B2300 of the ASME .B&PV Code. For the three plates that comprise shell course number 3 (heats 5K3025, SK2608, and SK2698), adequate toughness data are not available to determine their inherent RTNDT values. However, in comparing these three heats with the other beltline plate materials (Table SA-3), certain variables that affect toughness properties (i.e. , heat treatment, C content, Mn content, sulfur and phosphorus levels, mechanical strength, and grain size} are essentially the same. In addition, longitudinal +40°F CVN data for shell course number 3 plates are equivalent to longitudinal +40"F data for the other beltline plate materials. Therefore, it appears appropriate and conservative to estimate the initial RTNDT value

(+19"F} for the shell course number 3 plates as the highest RTNDT value determined for the other beltline plate materials.

The applicability of General Electric Procedure Y 1006A006, Revision 1 (submitted under separate cover) to the Hitachi-fabricated HCGS SA-l HCGS-UFSAR Revision 0 April 11, 1988

Unit 1 reactor pressure vessel (RPV) is demonstrated by Tables SA-20 and SA-21. These tables compare the chemistries, heat treatments, and mechanical properties of the materials that form the data base for the application of Yl006A006 with the properties of the HCGS RPV materials. Table SA-20 provides data for plate materials, and Table SA-21 provides data for forgings. The comparisons indicate that for both plates and forgings there are no significant differences in these properties between the Yl006A006 materials and the HCGS materials.

Further evidence of the compatibility of the HCGS RPV material is presented in Tables SA-22 and SA-23, which compare Charpy V-notch test results. As shown in Table SA- 22, the plates fabricated by Japan Steel/Hitachi have toughness properties equivalent to Yl006A006 data-base materials, although they were evaluated at test temperatures l0°F lower. Similarly, as shown in Table SA-23, the Japan Steel/Hitachi forgings demonstrate a -10° F notch toughness comparable to results for the Yl006A006 forgings, which were tested at +50°F.

Evidence of the equivalence of the Y1006A006 and Hitachi weld materials is given in Table SA-24, which compares their respective chemistries, tensile properties, and thermal treatments. Except for the Ni content, these materials are very similar, although the Hitachi weld metals are generally lower in phosphorus and sulfur content.

Table SA-25 compares the Charpy V-notch impact-test results for Yl006A006 and Hitachi weld materials. The Hitachi materials correspond well with the notch toughness values for the Yl006A006 materials and, in fact, are generally superior. The submerged-arc weld materials used for fabrication of the HCGS RPV are not presented because of their toughness properties are suitable to meet the requirements of Appendix G of 10CFRSO for establishing reference temperatures, and it was not necessary to apply procedure Y1006A006.

SA-2 HCGS-UFSAR Revision 5 May 11, 1993

Copper and nickel values, used to estimate the effects of irradiation on toughness, are presented in Table SA-4.

Estimated end of life (EOL) RTNDT values, including the shift for beltline materials, determined for the ( 1/4)T thickness location from the vessel I.D., are also given in Table SA-4 and are in accordance with Regulatory Guide 1. 99, Revision 2.

Transverse CVN upper shelf toughness testing was not required at the time the HCGS vessel was manufactured. Therefore, upper shelf data are not available for some of the beltline plates and welds.

Except for shell course 3 material, the beltline plates were transverse CVN impact tested at several relatively low Charpy test temperatures ranging from -

76° to 104°F. For three of the six plates tested (heats 5K2963, 6C45, 5K2530),

the 75 ft-lb minimum transverse upper shelf requirement was met, although for two of these heats less than three specimens were tested at the temperatures where the 75 ft-lb requirement was met.

To initially demonstrate HCGS beltline plate materials had adequate toughness to meet the 75 ft-lb transverse upper shelf requirement, plots of the fracture appearance versus the corresponding CVN absorbed energy were prepared for each of the six heats tested at the low temperature regime as mentioned above. Least squares linear regressions and the 95 percent confidence limits were obtained.

The data are shown in Figures SA-l through 5A-6.

The value of the lower confidence limit at 100 percent fracture appearance was then used to infer the upper shelf energy. This procedure is validated by Reference 5A-1. In brief, this paper showed, for ferritic steels (all of which were related to light water nuclear reactors), there is a linear relationship between fracture appearance and CVN energy.

Figures 5A-1 through 5A-6 indicate that all six heats have inferred transverse upper-shelf energies in excess of 75 ft-lbs. One of SA-l HCGS-UFSAR Revision 8 September 25, 1996

these heats, No. 5K32J8, is used in the HCGS surveillance program. Hence, extra CVN specimens were available, and supplemental CVN upper shelf tests were run at >190°F. The results, given in Table SA-l, confirm that the upper shelf energy for this heat is in excess of 75 ft-lbs, further substantiating the validity of the least-squares linear regression technique to infer upper-shelf energy.

For the shell course number 3 plates, low temp~rature CVN data are not available to infer the upper shelf energies. However, as outlined in the discussions on determining starting RTNDT values, these plates are considered essentially the same as the shell courses 4 and 5 plates. Therefore, it is consistent to assume that their upper shelf energies are equivalent as well and to predict minimum transverse upper shelf energies in excess of 75 ft-lbs.

Unirradiated and end-of-life RTNDT values are given in Table SA-4 along with values for the shifts in RTNDT calculated by Ref. SA-6. The radiation shift values used for the pressure-temperature vessel discontinuity limit curves presented in Figures 5.3-lA, B, & C are those derived from shifts calculated according to the formula given in Revision 2 of Regulatory Guide 1.99.

Unirradiated and end-of-life upper shelf energies are given in Table SA-19.

Based on the results listed in Table 5A...;19, it is expected that the beltline materials will have upper shelf energy values above 50 ft-lb at 32 EFPY, as required in 10CFRSO, Appendix G. Moreover, Hope Creek. is a participant in a program to perform analyses to demonstrate equivalent margin in cases where the upper shelf energy drops below 50 ft-lb. This analysis shows equivalent margin at upper shelf energy values as low as 35 ft-lb. The calculations in Tables B-1 and B-2 in Appendix B of Ref. SA-4 show that the equivalent margin analysis is applicable.

Beltline weld materials were CVN impact tested solely at +l0°F. However, most of these materials exceeded the 75 ft-lb upper shelf requirement at this temperature. Only two heats had test results that were less than the minimum required upper shelf energy. Table SA-2 indicates that material from heat 510-01205 is capable of meeting the 75-ft-lb requirement as evidenced by four out of six test results exceeding this value. One value that did not meet the requirement evidenced 4 8. 1 ft -lbs of absorbed energy. However, the corresponding fracture appearance was only 30 percent ductile whereas the upper-shelf by o~e definition is considered 100 percent ductile fracture. This margin suggests that SA-4 HCGS-UFSAR Revision 14 July 26, 2005

at much higher test temperatures, the material would evidence correspondingly higher impact properties and meet theupper-shelf limits .

This same argument holds for material from heat flux D55733/1B10-02205 where a low value of 64.3 ft-lbs was determined but with a fracture appearance of only 40 percent ductile. Again, considerable margin exists to infer an upper-shelf energy in excess of 75 ft-lbs.

5A.2 REACTOR PRESSURE V~SSEL NONBELTLINE INFORMATION The following initial estimated reference temperatures were derived in accordance with GE procedure Y1006A006, which meets the intent of paragraph NB2300 of the ASME B&PV code.

The top head flange (SASOB Class 2) and the shell flange (SASOS Class 2} both have an initial estimated reference temperature, RTNDT' of 10°F.

Plates connected to vessel flanges (SA533, Gr. B, Class 1) have reference temperatures conservatively assumed to +19°F based on no-break dropweight test results at +10°F and an argument similar to that used in predicting the reference temperature for shell course number 3 belt line material (see Section SA-l). Available data on these plates are presented in Table SA-17.

Available drop-weight and Charpy V-notch test results for the HCGS Unit 1 closure flange region materials are provided in Table SA-26.

The nozzles for the Low Pressure Coolant Injection (LPCI) System have a starting estimated reference temperature of -20°F. Because of the design of the HCGS vessel, these nozzles are predicted to experience an EOL fluence at 17 2 1/4T of the vessel thickness of 3.26 x 10 n/cm . Based on a copper content of 0.14 percent and a nickel content of 0.82 percent, this fluence yields an estimated EOL RTNDT of 28°F (see Table 5A-5}. This estimate is in accordance with NRC Regulatory Guide 1.99, Rev. 2 .

  • HCGS-UFSAR SA-5 Revision 14 July 26 1 2005

The feedwater nozzles (SA508 Class 2) have an estimated reference temperature of

-20°F. Since CVN data are not available for these nozzles, this estimate was derived by assuming the feedwater nozzle materials have toughness properties comparable to the LPCI nozzle materials. One feedwater nozzle was made from material of heat number 19468, which was used to fabricate two of the four LPCI nozzles. Table 5A-6, which compares the chemistry, mechanical properties, grain sizes, and heat treatments of both nozzle materials, supports this assumption and shows that these materials are essentially equivalent.

Moreover, the feedwater nozzles were dropweight tested at -20°F, and no breaks were reported; this suggests that the nil ductility transition temperature (NDTT) is at least -30°F and that the assumed NDTT of -20°F for the LPCI nozzle material is conservative.

Closure studs (SA540 Grade B24 material) met the CVN test requirement of 45 ft-lbs of absorbed energy and 25 mils of lateral expansion at 10°F.

SA.3 FERRITIC PRESSURE BOUNDARY PIPING AND VALVES The HCGS main steam piping is in compliance with 10CFRSO, Appendix G, since the material was toughness tested at +70°F in accordance with the ASME B&PV Code, 1971 Edition with Summer 1972 Addenda.

The HCGS flued head fitting material is in compliance with 10CFRSO, Appendix G, since the material was toughness tested at 0°F in accordance with the ASME B&PV Code, 1971 Edition with Winter 1973 Addenda.

The safety/relief valves (SRVs) are in compliance with 10CFRSO, Appendix G, since they are exempted by the ASME B&PV Code from toughness testing because of their 6-inch size.

5A-6 HCGS-UFSAR Revision 0 April 11, 1988

The HCGS main steam isolation valves (MSIVs) were built to the 1968 ASME B&PV Code, Addenda Draft for Pumps and Val vee, Class 1, and were exempt from toughness testing at time of purchase. These valves are exposed to less than 20 percent of design pressure at temperatures less than +250°F.

The typical available information on the HCGS MSIV body materials is presented in Table 5A-7. The thickness of the MSIV bodies is 1. 925 inches. Toughness data on similar materials for MSIV bodies on other projects, where toughness testing was done, are presented in Tables 5A-8 through SA-13. In most cases, the valve vendor and the material supplier are the same as for the HCGS MSIVs (Atwood and Morrill and Quaker Alloy Casting co., respectively). In all cases, these materials were heat treated generally in the same manner. A typical heat treatment cycle was: Normalize at 1700°F and air cool plus temper at 1350°F and air cool plus postweld heat treatment at 1200°F and/or stress relief at 1100°F and air cool. By inference, the data in Tables SA-8 through SA-13 demonstrate the capability of the HCGS MSIV body materials (Table SA-7) to meet current toughness requirements (i.e., 25 mils of lateral expansion at a temperature lower than or equal to the lowest service temperature).

The HCGS MSIV valve cover, i.e., bonnet materials are SAlOS Grade 2 forgings, normalized at 1650°F and air cooled (Table 5A-14). Some evidence of toughness for SA105 forgings can be found in Reference SA-2, which shows CVN toughness in excess of 25 mils of lateral expansion at +40°F and NDTT values no greater than -

10°F for SA-105 material normalized at 1565°F for four hours and air cooled. The thickness of the MSIV valve covers is 5.095 inches.

Further evidence of toughness for SA105 forging material is presented in Tables SA-15 and SA-16, which show toughness data for River Bend Unit 1 pipe fittings. These materials were normalized at l650°F for four hours and air cooled. The toughness data given are for longitudinally oriented specLmens, whereas the ASME B&PV Code requirements are for transverse specimens. However, prior GE Lmpact 5A-7 HCGS-UFSAR Revision 0 April 11, 1988

test experience with carbon steel material indicates it is appropriate to approximate transverse properties at about 40 percent of the corresponding longitudinal properties. On this basis the data in Tables SA-15 and SA-16 predict that the transverse properties meet the requirements for 25 mils of lateral expansion.

5A.4 REACTOR PRESSURE VESSEL SURVEILLANCE SPECIMENS The HCGS vessel was bu.ilt to the 1968 Edition of Section III of the ASME B~PV Code with Winter 1969 Addenda prior to the promulgation of 10CFRSO Appendix H and ASTM E1B5-73. Therefore, the HCGS surveillance program is designed to conform to the requirements applicable at the time the vessel was fabricated.

Table SA-4 indicates that the HCGS beltline materials are generally resistant to irradiation degradation of impact properties. The highest predicted EOL I reference temperature, RTNDT 1 is 75°F for heat 5K302S~l material.

The surveillance test plate weld materials consist of heat/lot 510-01205 stick electrode and heat/lot D53040/1125-02205 bare. wire and flux via submerged arc welding (SAW) .

The Babcock-Hitachi K.K. weld procedure used to prepare the surveillance test plate is provided as Figure SA-7. Available information concerning the plate weld indicates the root of the weld consists of stick electrode heat/lot 510-012051 whereas the remainder of the weld if essentially heat/lot D53040/1125-02205 SAW filler. Documentation submitted by Babcock-Hitachi K. K. detailing the location and numbering of surveillance specimens SA-8 HCGS-UFSAR Revision 14 July 26, 2005

shows weld metal surveillance specimens to have been fabricated away from the root of the weld. Therefore, it is assumed that weld metal surveillance specimens represent only heat/lot D53040/1125-02205 material.

The number of surveillance specimen capsules and the number of specimens are in compliance with ASTM E185-73. The capsule holders inside the vessel are located at 30, 120, and 300 azimuths. The capsule located at the 30 azimuth was removed during the fifth refueling outage. Capsule contents, including number and orientation of specimens, are given in Table 5A-18.

The withdrawal schedule for the surveillance program capsules as specified in section 5.3.1.6.1 meet the requirements of ASTM Standard E 185-82. The lead factors for the HCGS surveillance capsules are 1.05 at the inside surface of the vessel and 1.52 at one-quarter of the way through the vessel wall measured from the inside surface. These lead factors were calculated assuming that the vessel is symmetrical. This assumption was made because the vessel qualification program did not provide for measurements of vessel radii to identify any angular locations where the inside diameter of the vessel is larger than nominal. Hence, it is possible that a surveillance capsule could be located at an extended radius position. This would provide surveillance sample test results lower than calculated and nonconservative values for the peak fluence when it is estimated from the capsule data using the aforementioned lead factors.

The orientations of the surveillance specimens are acceptable since the data indicate that radiation embrittlement is independent of specimen orientation.

Longitudinally oriented CVN specimens from the heat affected zone (HAZ) simulate the conditions of longitudinal production weld joints.

The End-of-Life (EOL) calculated peak fluence at the inside diameter of the 18 2 vessel is 1.63 x 10 n/cm (E > 1.0 Mev) and at one quarter of the vessel 18 2 thickness is 1.17 x 10 n/cm (E > 1.0 Mev). The 5A-9 HCGS-UFSAR Revision 23 November 12, 2018

withdrawal of the capsules will be according to the criteria found in the BWR Vessel and Internals Project (BWRVIP) Integrated Surveillance Program (ISP),

reference 5.3-12.

The construction tolerances on the reactor vessel required that the minimum (nominal) radius of the vessel be maintained. The applicable version of the ASME B&PV Code did allow for areas of the vessel to have larger radii. The measurement acceptance techniques for the vessel were either the use of a template to test the minimum diameter or a series of measurements to determine the diameter at various points. The measurement techniqu~ did not require the identification of the locations where the vessel diameter is longer than nominal. Hence the lead factors were calculated for the nominal dimension .

HCGS-UFSAR SA-10 Revision 14 July 26, 2005

If an area of increased vessel diameter were to coincide with a location of the surveillance sample specimens, the correct fluence at the samples would be less than that predicted from measurements on the samples. If these data were used to preduct the peak fluences, the values would be less than the calculated peak SA-lOa HCGS-UFSAR Revision 5 May 11, 1992

THIS PAGE INTENTIONALLY BLANK

    • ~

SA-lOb HCGS*UFSAR Revision 5 May 11, 1992

fluences. The calculated peak fluences using nominal dimensions will be conservative .

SA. 5 REFERENCES SA-l Oldfield 1 W., 11 Statistical Relationships between Charpy V-Notch Energy and Fracture Appearance, 11 Res Mechanica Letters 1, (1981) pp 149 - 154.

SA-2 Becker, J.R. and c. Stead, 11 Closed-Die Forgings for Nuclear Applications, Metal Progress, 11 pages 35-39, July 1978.

5A-3 General Electric Company, "RPV Surveillance Materials Testing and Fracture Toughness and Analysis," GE-NE-A164-1294, Rl, DRF 137-0010-7, December 1997.

5A-4 General Electric Company, "10CFRSO Appendix G Equivalent Margin Analysis for Low Upper Shelf Energy in BWR/2 through BWR/6 Vessels, 11 NED0-32205-A, Rev. 1, February 1994 .

SA-5 General Electric Company, "Basis for GE RTNDT Estimation Method, 11 NEDC-32399-P, September 1994.

SA-6 Structural Integrity Associates, Inc., "Revised Pressure-Temperature Curves for Hope Creek," SIR-00-136, Rev. 1, March 231 2004 .

I

  • HCGS-UFSAR SA-11 Revision 14 July 26, 2005

( ( (

TABLE SA-1 BELTLlNE PLATE TOUGHNESS DATA (SA-533, GRADE B, Class 1 Plate)

Char~ V-Notch T~hness NDT Orientation Charpy lateral Shell Course Heat#/

Slab# ~oFl or Transvecse l (Top/Bottom) Longitudinal (l) Test TetJll.

~of! Enersx 'ft-lb)

Expansion

'mills)

Shear, a;!!rcent No. 5 (lower) 51(3230!1 -10 Transverse +10 48.2, 59.5, 39.7 40, 42, 38 25, 30, 25

+40 59.5, 64.6, 68.5 49, 51, 51 30, 35, 40

+68 65.9, 48, - 45, *

  • 22 30.3, 31.5, 24, 22,
  • 10, 10, -
  • 49 21.3, 13.9, 14, 9, - 5, 5, .
  • 76 12.8, 9,
  • 5,-

Longitudinal (top) +40 72, 56, 72 (bot) +40 114, 61, 104 6C35/1 *20 Transverse +10 33.8, 33.8, 32.6 29, 28, 25 25, 20, 15

+40 56.9, 47.3, 58.2 43, 30, 46 35, 25, 30

+68 58.3, 46,

  • 30, -
  • 22 24.7, 28.0, 24, 37,
  • 5, 10, *

-49 18.1, 17.0, 13, 12, . 5, 5, *

  • 76 19.2, 5,
  • 3, -

longitudinal (top> +40 67, 113, 59 (bot) +40 49, 58, 51 No. 5 (lower) 6C45/1 -20 Transverse +10 40.9, 38.5, 45.7 26, 31, 33 20, 20, 20

+40 62, 50.7, 43.3 48, 42, 33 45, 30, 25

+68 62, 48, . 30, -

+104 85.4, 69, . 60, *

-22 40.9, 37.3, 27, 36,

  • 10, 10, -
  • 49 10.8, 7,
  • 3, -
  • 16 9.7, 10, - D,
  • longitudinal (top) +40 72, 68, 54 (bot) +40 58, 78, 76 No. 4 (lower 5KZ963/1 *10 Transverse +10 62.0, 59.7, 60.7 38, 45, 46 35, 30, 30 intern.) +40 80.3, 82.9, 80.3 56, 58, 58 60, 65, 60

+68 88.2, 64, - 65, -

+104 107.1, 711

  • 85, -

-22 44.5, 37.3, 36, 29, - 20, 20, -

-49 32.6, 14, - 10, -

-76 13.9 25, - 5I

  • Longitudinal (top) +40 66, 120, 79 (bot) +40 63, 72, 75 1 of 2 HCGS-UFSAR Revision 8 septeneer 25, 1996

( ( (

TABLE 5A*1 (Cont)

Charpy V*Notch Toyghness NOT Orientation Charpy lateral Heatill (Top/Bottom) longitudinal (l) Test Teq>. Expansion Shear, Shell Course  !!:.1.!2! ,.f~ or Transverse ~T~ ~*F~ Ener~ 'ft*lb~ imills~ Qgrcent No. 4 (lower 5K2530/1 *10 Transverse +10 59.5, 62.0, 56.9 43, 48, 44 30, 40, 30 intern.) +40 37.3, 59.5, 51.9 29, 45, 40 30, 40, 35

+68 123.3, 86.9, 52, 71, - 70, 70, .

+104 88.2, 71, . 80, -

-22 24.7, 20.3, 16, 16,

  • 10, 10, *
  • 49 28.0, 20,
  • 5, -

longitudinal (top) +40 120, 97, 111 (bot) +40 138, 117, 103 5K3238/1( 2) 0 Transverse +10 31.5, 30.3, 30.3 20, 22, 22 15, 20, 15

+40 40.9, 48.2, 43.3 36, 33, 33 45, 40, 25

+68 62.0, 46,

  • 40, *

+104 62.0 50, . 50, *

  • 22 20.3, 21.3, 17, 18, - 10, 10, .

-49 20.3, 12, - 10, -

  • 76 (1) 12.8 8,
  • 2, -

!:+195 88.0, 94.5, 91.0 69, 78, 73 99,99,99 Longitudinal (top) +10 58, 58, 62 (bot) +10 35, 37, 43 No. 3 ( lnterm) 5K3025/1 +40 (no break)longftudinal (top) +40 75.8, 87.8, 61.5 52, 66, 48 30, 50, 30 (bot) +40 94.5, 77.1, 69.3 74, 86, 54 50, 40, 30 511:2608/1 +40 (no break)longitudinal (top) +40 71.9, 74.5, 85.1 52, 59, 57 30, 30, 30 (bot) +40 66.1, 51.4, 70.6 47, 37, 48 30, 20, 20 5K2698/1 +40 (no break)Longitudinal (top) +40 98.5, 79.8, 85.1 72, 58, 58 50, 40, 40 (bot) +40 74.5, 91.8, 93.1 51, 69, 62 30, 30, 40 (1) Supplemental test results of surveillance program spares.

(2) Surveillance test plate material.

2 of 2 HCGS*UFSAR Revision 8 September 25, 1996

( ( (

BELTLINE VELD METAL CharevInpactToushness Veld No. & CharPV Lateral Al.inuth Test Absorbed Energy Expansion Shear Weld IdentttyLocation Process Heat No. Flux lot NDT <"f) Temp. ( 0 f) Cft*lb> <mills> oercent Shell course V15-1 SHAW 510-01205 - *40 +10 90.1 73.2 48.1 70, 64, 38 60, 40, 30 No. 5 longt- 18° +10 98.4 87.0 92.2 65, 66, 65 50, 50, 50 tudi na l seams SAW(]) 053040 1125*02205 -30 +10 88.4 67.6 51.5 62, 55, 41 50, 40, 40 (all seams) +10 63.9 51.8 66.6 45, 44, 55 so, 40, 50 V15*2 +10 102.9 69.0 88.7 86, 57, 70 70, 40, 50 138° +10(1) 85.3, 73.2 77.3 58, 51, 57 50, 50, 40

+10(1) 64.6, 77.6 73.7 52, 62, 55 40, 45, 40 V15*3 +40 (2) 113.9, 112.5 96.3 83,79,72 80, 80, 45 258" >+200 133.0 144.5 148.0 90, 87, 85 99,99,99 Girth weld V7 SMAW -----*--*-*****-***-********----*****--***--Same as W15*-------**----*****------**-

between shell & SAW courses 4 and 5 Shell course W14-1 SHAW *********--************************-********Same as W15*****************-******-***

No. 4 90" &SAW longitudinal seams V14-2 (all seams) 210° V14*3 330° Girth weld W6 SHAW 519*01205 - *49 +10 109.8, 109.8, 107.1 87, 78, 70 75, 75, 80 between SMAV 504-01205 - -31 +10 130.1, 120.6, 123.3 89, 84, 92 75, 80, 75 shetl courses SMAW 510*01205 ****-************---same as W15*1-*******************--****

3 and 4 SAW 055733 1810-02205 *40 +10 72.6, 64.3, 66.7, 62, 69, 62 50, 40, 50 SAW 053040 1810-02205 -49 +10 89.6, 88.2, 107.1 82, 71, 89 60, 60, 75 Shell course V13*1 SHAW 510-01205 - --*****---------****Sameas W15*1-*********-*****-*****----

No. 3 35° longitudinal seams W13-2 SAW D53040 1125*02205 ****---********-----Same as W15-1***-----******************

(all seams) 155° W13-3 275" 1 of 2 HCGS-UFSAR Revision 8 September 25, 1996

( ( (

TABLE 5A*2 (Cont)

CherRY hmact Toushpess Weld No. & Charpy Lateral Azh~a.tth Test Absorbed Energy Expansion Shear Weld ldenti tv Location Process Heat No. Flux Lot NOT (°F) Temp. ( 0 f) (ft*lb) (m;tls) percent LPCI nozzle welds W179 45° SMAW SMAW 504*012.05 001*01205

-~

                                      • Same
  • 40 +10 as W6 ----*************************

127.5, 98.0, 102.0 88, 77, 79 80, 60, 60 (4 total)

W179 135° 504*01205 519*01205 .- ****-**************Same

                          • -*****Same as W6*****-**************-***-*****

as W6******************************

W179 001*01205 . --*****************Same as W179*-****--*******--***-**-*-**

225° 519*01205 . **--**-----*-**----sameas W6-*****--*********-*******--***

W179 315° 504*01205 519*01205 .- *******************Same as W6-****-************************

---*--*******------sameas W6**----************************

(1) surveillance Slqlle records.

(2) Supplemental test results of surveillance program spares.

(3) surveillance weld material.

2 of 2 HCGS*UFSAR Revision 8 Septemer 25, 1996

  • HEAT 'rnBA'IMENT TABLE 5A-3 AND CHFMICAL MOCHANICAL PROPERTIES OF BELTI..INE PLATE MATERIAL Japan Steel Heat Treatment ~ 0q Chemistrzz wt. ~rcent Mechanical Pro~rties Plate Hlong-Heat Yield U.T.S. ation, Grain Number Austenitize Temper Postweld _Q_ ~ _P_ _ s_ __§!_ Ni _MQ_ (ksi) (ksi) l~rcent) Size 5K3025 3.6l:IR@(860-890) 3.3HR@(650-670) 42.8HR@(595-605) 0.17 1.46 0.012 0.009 0.30 0.71 0.52 67.0 99.0 28.5 7.5 68.5 87.3 25.5 5K2608 3.3HR@(860-870) 3.5HR@(650-660) 40.0HR@(595-605) 0.19 1.46 0.009 0.014 0.30 0.58 0.52 61.0 85.0 26.9 7.0 60.5 85.5 26.9 5K2698 3.6HR@(860-875) 3.9HR@(650-670) 40.0HR@(595-605) 0.21 1.41 0.010 0.010 0.30 0.58 0.56 68.2 89.4 26.7 7.5 65.1 87.5 27.1 5K3238 3.4HR@(860-890) 3.3HR@(650-670) 40.5HR@(600-610) 0.20 1.45 0.012 0.008 0.31 0.63 0.56 70.2 92.5 26.5 7.5 5K2530 3.3HR@(860-895) 3.3HR@(650-670) 40.5HR(600-610) 0.20 1.43 0.010 0.008 0.30 0.56 0.54 70.8 92.3 25.1 6.5 5K2963 3.5HR@(860-870) 3.3HR@(660-670) 40.5HR(600-610) 0.22 1.43 0.009 o.ooa 0.29 0.58 0.59 70.6 91.7 27.0 8.0 69.3 91.8 25.0 5K3230 3.5HR@(860-880) 3.6HRl!!(650-680} 40.5HR8(600-610) 0.19 1.44 0.010 0.012 0.30 0.56 0.50 62.7 87.5 27.5 6.0 62.1 85.3 26.7 6C35 3.3HRfS(860-890} 3.7HR@(650-680) 40.5HR@(600-610) 0.20 1.46 0.010 0.011 0.27 0.54 0.51 66.2 89.4 24.6 7.5 65.3 87.7 27.5 6C45 3.4HR@(860-880) 3.7HR@(650-680) 40.5HR@(600-610) 0.18. 1.49 0.008 0.010 0.31 0.57 0.50 68.6 90.5 25.6 7.5 73.3 93.8 25.2 1 of 1 HCGS-UFSAR Revision 0 April 11, 1988

TABLE SA-4 RADIATION RTNDT AND EOL RTNDT FOR BELTLINE.MATERIALS Chemistry RTNDT ( F)

Cu (Wt) Ni (Wt) Initial from Reg. Estimated Heat Number/Lot Percent Percent Value Guide 1.99, R2 EOL Vessel Plate Material {SAS33, Gr. B, Cl-1) for Shell Courses 4 and 5 Peak EOL Fluence at 1 I 4T = 7.63 . X 10 17 n/cm 2

SK2963-1-2 0.07 0.58 -10 32 +22 5K2530-1-2 O.OB 0.56 +19 37 +56 5K3238-1-2 (l) 0.09 0.64 +7 42 +49 5K3230-1-2 0.07 0.56 -10 32 +22 6C35-1-2 0.09 0.54 -11 42 +31 6C45-1-2 O.OB 0.57 +1 37 +38 Vessel Plate Material {SA533, Gr. B, Cl-1) for Shell Course 3

( 2) 17 2 Peak EOL Fluence at 1/4T 3.68 X 10 n/cm 5K3025-1 0.15 0.71 +19 56 +75 SK2608-1 0.09 0.58 +19 29 +48 5K2698-1 0.10 0.58 +19 32 +51 Material for Girth and Longitudinal Welds for Shell Courses 4 and 5 17 Peak EOL Fluence at 1/4T = 7.63 x 10 n/cm 2

3 510-01205( ) 0.09 0.54 -40 80 +40 3 5 D53040/1125-02205( ' ) 0.081 0. 611 ( 6 ) -30 78 +48

  • HCGS-UFSAR 1 of 2 Revision 14 July 26, 2005

TABLE SA-4 (Cont)

Chemistry RTNDT ( F)

Cu (Wt) Ni {Wt) Initial from Reg. Estimated Heat Number/Lot Percent Percent Value Guide 1. 99, R2 EOL Girth Weld Material between Shell Courses 3 and 4 (2) 17 2 Peak EOL Fluence (Shell Course 3) at 1/4T .. 3.68 x 10 n/cm 519-01205( 4 ) 0.01 0.53 -49 10 -39 504-01205 (4 )' 0.01 0.51 -31 10 -21 055733/1810-022 0.10 0.68 -40 62 +22 D53040/1810-02205( 6 ) 0.081 0.611 -49 53 +4 LPCI Nozzle Weld Material (Bottom of Nozzles) 2 17 2 Peak EOL Fluence( } at 1/4T- 3.26 x 10 n/cm 001-01205 0.02 0.51 -40 13 -27 (1) Surveillance test plate material.

(2) Axial and radial distributions included.

(3) These materials were also used in the longitudinal seams of shell course 3 and in the girth welds between shell courses 3 and 4.

(4) These materials were also used for the LPCI nozzle welds.

I (5) Surveillance weld material.

(6) Average chemistry of this weld material, surveillance weld material, and mechanical test weld material. From Ref. 5.3-12, Table 3-5 .

2 of 2 HCGS-UFSAR Revision 14 July 26, 2005

TABLE SA-5 RADIATION RTNDT AND EOL RTNDT FOR CORE REGION NOZZLES NDTNDT ( F)

Chemistry Cu (Wt) Ni (Wt) Initial from Reg. Estimated

( 1)

Heat Number Percent Percent Value Guide 1. 99, R2 EOL 19468-1-4,5 0.12 0 ..80 -20 40 +20 10024-1-2,3 0.14 0.82 -20 48 +29

  • {1) LPCI Nozzles (SA508 1 Cl2) 17 2 (2) Peak EOL Fluence at 1/4T of vessel thickness = 3.26 x 10 n/cm
  • HCGS-UFSAR 1 of 1 Revision 14 July 26, 2005

TABLE 5A-6 HEAT TREA'INENT AND CHEMICAL' ~1ECUA."'JICAL PROPERTIES OF NOZZLE ~fATERIAL Nozzle Heat Treatment !OC) Chemistry ~wt * .J2!Ercent) Mechanical Pro~rties Type Elong-Heat Yield, U.T.S. ation, Grain Number __L .l!!L _P_ _s_ Ni _MQ_ (ksi) (ksU (percent) Size 12 in. 690 min.@ 1200 min @ 2400 min @ 0.15 0. 74 0.008 0.011 0.28 0.80 0.62 - 7.5 LPCI 910°C 665°C 625°C 0.35 Heat 19468 12 in. 545 min. @ 1200 min. @ 2400 min. @ 0.15 0.73 0.010 0.009 0.29 0.82 0.64 71.0 88.0 8.5 LPCI 895°C 660°C 620°C 0.40 Heat 10024 12 in. 640 min. @ 1140 min. @ 2400 min. @ 0.16 0.77 0.009 o.oo8 0.30 0.83 0.67 73.0 90.0 8.0 feed- 900°C 670°C 620°C 0.36

'-'ater Heat 19432

"(

12 in. 600 min. @ 1040 min. @ 2400 min. @ (Date provided above for LPCI nozzle material) 8.0 feed- 900°C 665°C 620°C water Heat 19468 12 in. 540 min. @ 1020 min. @ 2400 min. @ 0.16 0.59 0.006 0.007 0.25 0.91 0.65 6ti,O 81.0 8.0 feed- 900°C 678°C 620°C 0.34

ater Heat 193<16 1 of 1 HCGS-UFSAR Revision 0 April 11 , 1988

TABLE SA-7 TYPICAL HCGS MSIV BODY MATERIAL INFORMATION Applicable Code: 1968 ASME B&PV Code, Addenda draft for pumps and valves, Class 1 Vendor: Atwood and Morrill Co.

Material Vendor: Quaker Alloy Casting Co.

Material Specification: ASTM SA 216 WCB Heat Number: R9070

.JL. Mn ~ __...;:,___

Chemical Composition (Wt. percent) : 0.24 0.83 0.49 0.015 0.02 NA(l)

Grain Size (ASTM No.): NA (l)

Heat Treatment: Normalize 1690°F to 1710°F (7 hr, 5 min.)

air cool

+Temper 1380°F (6 hr,. 15 min.) air cool

+ Postweld 1140°F to 1165°F (6 hr, 50 min.)

  • air cool Charpy V-Notch Impact Toughness:

Test Temperature: NA Energy, ft-lb: NA Lateral Expansion, mils: NA Shear, percent: NA

  • (1) NA - Not Available.

1 of 1 HCGS-UFSAR Revision 0

TABLE 5A-8 GRAND GULF MSIV BODY MATERIAL INFORMATION Applicable Code: ASME B&PV Code,Section III, 1974 Valve Vendor: Atwood and Morrill, Co.

Material Vendor: Quaker Alloy Casting Co.

Material Specification: ASME SA216 Grade WCB Heat Number: F6406 Chemical Composition .JL _MIL _ll_ p s _AL (lrlt. percent): 0.23 0.89 0.53 0.019 0.012 NA(l)

Grain Size (ASTM No.): NA (l)

Heat Treatment: Normalize 1680/1710°F (5 hr, 30 min) air cool

+ Temper 1350°F (5 hr, 30 min) air cool

+ Postweld 1200°F (6 hr) air cool Charpy V-Notch Impact Toughness:

Test Temperature: +60°F Energy, ft-lb: 32, 31, 34 Lateral Expansion, mils: 33, 32, 31 Shear, percent: 40, 40, 40 (1) NA - Not Available .

  • 1 of 1 HCGS-UFSAR Revision 0 Anri 1 11 1 QRR

TABLE SA-9 TVA X20 MSIV BODY MATERIAL INFORMATION Applicable Code: ASME B&PV Code,Section III, 1975 with Summer 1975 Addenda Valve Vendor: Atwood & Morrill Co.

Material Vendor: Quaker Alloy Casting Co.

Material Specification: ASME SA216 Grade WCB Heat Number: F3547 Chemical Composition _Q_ .J1n._ ....§.L p s Al NA (l)

{'W't. percent): 0.23 0.88 0.38 0.016 0.015 Grain Size (ASTM No.): NA Heat Treatment: Normalize 1700°/l725°F (6 hr, 20 min) air cool

+Temper 1345°F (6 hr, 45 min) air cool

+ Postweld 1200°/l225°F (6 hr, 30 min) air cool Charpy V-Notch Impact Toughness Test Temperature: +60°F Energy, ft .. lb: 66, 56, 54 Lateral Expansion, mils: 53, 50, 53 Shear, percent: 40, 40, 40 (1) NA - Not Available .

  • HCGS-UFSAR 1 of 1 Revision 0 April 11, 1988

TABLE SA-10 CLINTON 1 MSIV BODY MATERIAL INFORMATION Applicable Code: ASME B&PV Code,Section III, 1974 Valve Vendor: Atwood and Morrill Co.

Material Vendor: Quaker Alloy Casting Co.

Material Specification: ASME SA216 Grade WCB Heat Number: F7516 Chemical Composition _JL Mn -.SL p s ....AL_

(Wt. percent): 0.25 0.78 0.53 0.018 0.013 NA (l)

Grain Size (ASTM No.): NA(l)

Heat Treatment: Normalize 1690/1710°F (6 hr 5 min) air cool

+ Temper 1350/1360°F (6 hr) air cool

+ Postweld 1200°F (6 hr, 5 min)air cool Charpy V-Notch Impact Toughness Test Temperature: +60°F Energy, ft-lb: 30, 24, 34 Lateral Expansion, mils: 37, 27, 33 Shear, percent: 40, 40, 40 (1) NA- Not Available .

  • HCGS-UFSAR 1 of 1 Revision 0 April 11, 1988

TABLE SA-11

~ CNV MSIV BODY MATERIAL INFORMATION Applicable Code: ASME B&PV Code,Section III, 1971 with S73 Addenda Valve Vendor: Rockwell International Material Vendor: Rockwell International Material Specification: SA216 Grade WCC Heat Number: 3760171 Chemical Composition _c_ .1m_ __n__ p s ...AL (Wt. percent): 0.17 1.09 0.50 0.008 0.011 0.060 Grain Size (ASTM No.): NA(l)

Heat Treatment: Normalize 1700°F (8 hr) air cool Temper 1275°F (8 hr) air cool Postweld 1100°F (6 hr) air cool Charpy V-Notch Impact Toughness Test Temperature: +40°F Energy, ft-lb: 35.0, 38.0, 29.0 Lateral Expansion, mils: 32.0, 36.0, 29.0 Shear, percent: 20, 20, 20 (1) NA - Not Available .

1 of 1 HCGS-UFSAR Revision 0 April 11, 1988

TABLE 5A~l2 LAGUNA VERDE 1 MSIV-BODY MATERIAL INFORMATION Applicable Code: ASME B&PV Code,Section III, 1971 with Summer 1973 Addenda Valve Vendor: Rockwell International Material Vendor: NA(l)

Material Specification: SA216 Grade WCC Heat Number: 1750262 Chemical Composition _c_ Mn _§.L Al (Wt. percent): 0.21 1.19 0.43 0.011 0.009 0.043 Grain Size (ASTM No.): NA(l)

Heat Treatment: Normalize 1700°F (10 hr) air cool

+Temper 1225°F (7.5 hr) air cool

+ Postweld 1100°F {6 hr) air cool Charpy V*Notch Impact Toughness Test Temperature: +40°F Energy, ft-lb: 29.0, 33.0, 35.0 Lateral Expansion, mils: 25.0, 26.0, 30.0 Shear, percent: 15, 15, 15 (1) NA - Not Available .

1 of 1 HCGS-UFSAR Revision 0 April 11, 1988

TABLE 5A-13 RIVER BEND 1 MSIV BODY MATERIAL INFORMATION Applicable Code: ASME B&PV Code,Section III, 1974 Valve Vendor: Atwood & Morrill Co.

Material Vendor: Atwood & Morrill, Ltd.

Material Specification: SA216 Grade WCB Heat Number: 35 Chemical Composition _c_ _Mn_ ...s.L p s Al (Wt. percent): 0.24 0.82 0.46 0.022 0.013 NA (l)

Grain Size (ASTM No.): NA(l)

Heat Treatment: Normalize 1650°F - 1800°F (8 hr) air cool to 400°F

+Temper 1150°/l250°F (8 hr) air cool

+ Postweld 1095°/ll95°F (18 hr) furnace cool to 800°F (100°F/hr) air cool Charpy V-Notch Impact Toughness Test Temperature: +60°F Energy, ft-lb: 31.5, 37.5, 39.5 Lateral Expansion, mils: 33, 41, 40 Shear, percent: 10, 10, 10 (1) NA - Not Available .

1 of 1 HCGS-UFSAR Revision 0 April 11, 1988

  • HCGS MSIV COVER MATERIAL INFORMATION Applicable Code: 1968 ASME B&PV Code, Addenda Draft for Pumps (Valves, Cl.l)

Valve Vendor: Atwood & Morrill Co.

Material Vendor: Cann & Saul Steel Co.

Material Specification: ASTM AlOS Grade 2 Heat Number: 229076 Chemical Composition .JL Mn _§,!_ p s Al (Wt. percent): 0.35 0.76 0.20 0.010 0.017 NA (l)

Grain Size (ASTM No.): NA(l)

Heat Treatment: 1650°F (12 hr) cool in still air Charpy V-Notch Impact Toughness Test Temperature: NA Energy, ft-lb: NA Lateral Expansion, mils: NA Shear, percent: NA

_(1) NA - Not Available .

  • HCGS-UFSAR 1 of 1 Revision 0 April 11, 1988

TABLE SA-15 RIVERBEND 1 PIPE FITTING MATERIAL INFORMATION (HEAT NUMBER 631218)

Applicable Code: ASME B&PV Code,Section III, 1974 Edition S74 Addendum Vendor: Bonney Forge Division, Gulf & Western Manufacturing Material Vendor: Sharon Steel Material Specification: SAlOSN Heat Number: 631218 (Sharon Steel)

Chemical Composition _c_ Mn ~ p S Al (Wt. percent): 0.28 0.87 0.22 0.014 0.015 NA(l)

Grain Size (ASTM No.): NA(l)

Heat Treatment: Normalize 1650°F (4 hr) air cool Charpy V*Notch Impact Toughness (Longitudinal):

Test Temperature:

Energy, ft-lb: 68.2, 83.5, 76.0 Lateral Expansion, mils: 64, 71, 69 Shear, percent: 80, 80, 80 (1) NA - Not Available .

1 of 1 HCGS-UFSAR Revision 0 April 11, 1988

TABLE 5A-16 RIVER BEND 1 PIPE FITTINGS MATERIAL INFORMATION (HEAT NUMBER 630614)

Applicable Code: ASME B&PV Code,Section III, 1974 Edition S74 Addendum Vendor: Bonney Forge Division, Gulf & Western Manufacturing Material Vendor: Sharon Steel Material Specification: SA105N Heat Number: 630614 (Sharon Steel)

Chemical Composition ~ ..1m_ _M_ p s Al (Wt. percent): 0.26 0.86 0.16 0.022 0.017 NA(l)

Grain Size (ASTM No.): NA(l)

Heat Treatment: Normalize 1650°F (4 hr) air cool Charpy V-Notch Impact Toughness (Longitudinal):

Test Temperature: +70°F Energy, ft-lb: 76.6, 74.9, 62.0 107.7, 108.5, 109.3 Lateral Expansion, mils: 68, 69, 63 75, 84, 85 Shear, percent: 80, 90, 80 100, 100, 100 (1) NA - Not Available .

1 of 1 HCGS-UFSAR Revision 0 April 11, 1988

TABLE 5A-17 HEAT TREATMENT AND CHEMICAL MECHANICAL PROPERTIES OF PLATES OJNNECTING TO CLOSURE FLANGES Japan Steel Heat Treatment (°Cl Chemistr~ ~wt. ~rcent} Mechanical Pro~rties Plate Elong-Heat Yieldt U.T.S. ation, Grain Nt..m~ber Austenitize Temper Postweld _Q_ _tl!L.. _P_ _s_ _§.!__ Ni _MQ_ (ksil (ksi)'~

(SHELL COURSE NUMBER 1 PLATES) 51{3015 3.7HH@(860-890) 3.4HH@(650-670) 40.0HR(595-605) 0.20 1.41 0.009 0.010 0.26 0.58 0.53 68.0 92.0 26.0 7.5 5K3101 3.5HH@(860-880) 3.3HR@(660-680} 40.5HR@(595-605) 0.19 1.47 0.012 0.010 0.29 0.57 0.55 72.0 95.0 25.3 7.5 5K3150 3.4HR(B60-890) 3.6HR(650-675) 40.0HR(595-605) 0.19 1.47 0.010 0.007 0.29 0.57 0.54 68.0 90.0 28.3 7.5 (TOP HEAD PETAL PlATE MATERIAL) 6C35 2.31m@(860-890) 2.4HR(650-670) 20.7HR@(595-620) 0.19 1.44 0.011 0.010 0.28 0.55 0.52 72.0 95.0 24.8 6.5 2.8HR(860-890} 2.3HR(650-695) 20.0HR@(600-630) 0.19 1.44 0.011 0.010 0.28 0.55 0.52 68.0 90.0 25.8 7.0 6C102 2.3HR@(860-890) 2.3HR(650-675) 20.0HR@(600-630) 0.19 1.44 0.012 0.011 0.29 0.57 0.52 69.0 90.0 24.6 7.5 2.3HR@(860-890) 2.2HR@(650-670) 20.3HR@(595-610) 0.19 1.44 0.012 0.011 0.29 0.57 0.52 73.0 91.0 26.8 7.0 1 of 1 HCGS-UFSAR Revision 0 April 11, 1988

TABLE SA-18 RPV SURVEILLANCE SPECIMEN INFORMATION Capsule Holder No. Charpy V-Notch Tensile 1 12 Long. Base 2 Long. Base 12 Long. HAZ 2 Long. HAZ 12 Weld Material 2 Weld Material 2 12 Trans. Base 2 Long. Base 12 Trans. HAZ 2 Long. HAZ 12 Weld Material 2 Weld Material 3 12 Long. Base 2 Long. Base 12 Long. HAZ 2 Long. HAZ 12 Weld Material 2 Weld Material

  • HCGS-UFSAR 1 of 1 Revision 0

TABLE SA-19 UPPER SHELF ENERGY ANALYSIS FOR HOPE CREEK 1 BELTLINE MATERIAL INITIAL. ( 1 ) 32 EFPY TRANS. %DECR. ( 2 ) TRANS.

LOCATION HEAT USE %Cu USE USE PLATES:

Lower 5K3230/1 121 0.07 8.5 111 6C35/l 107 0.09 10 96 6C45/1 97 0.08 9.5 88 Low-Int. 5K2963/1 102 0.07 8.5 93 5K2530/1 86 0.08 9.5 78 5K3238/1 76 0.09 10 68 3

Unirradiated( ) 5K3238/1 91 0.09 10 82 Surveillance Int. 5K3025/1 75 0.15 11.5 66 5K2608/1 75 0.09 8.5 69 5K2698/1 75 0.10 9 68 LPCI Nozzle 19468/1 >79 0.12 10 71 10024/1 >70 0.14 10.5 63 WELD:

Vertical 510-01205 >92.5 0.09 13 80 053040 135 0.081 12.5 118 3

Unirradiated( ) 053040 164 0.08 12.5 144 Surveillance LPCI Nozzle 001-01205 >109 0.02 6.5 102 Girth 519-01205 >109 0.01 5.5 103 I

504-01205 >125 0.01 5.5 118 053040 >95 0.081 12.5 83 055733 >68 0.10 11.5 60 (1)

Transverse plate values are conservatively estimated as described in the UFSAR; test temperatures for plate materials were not available. Weld values are conservatively based on data taken at 10°F.

(2)

Values obtained from Figure 2 of R. G. 1. 99 Rev. 2 for 32 EFPY 1/4 T 17 2 fluences equal to 7.63 x 10 n/cm 1 for Low. and Low-Int. shells; 3.68 x 17 2 17 2 10 n/cm , for Int. shell; and 3.26 x 10 n/cm , for LPCI Nozzle. A 17 2 fluence of 7.63 x 10 n/cm was used for the welds identified as vertical 17 2 and 3.68 x 10 n/cm for the welds identified as girth.

(3)

Initial USE data taken from Table 5-4 and chemistry data from Table 3-5 of Ref. 5.3-12.

1 of 1 HCGS:-UFSAR Revision 17 June 23, 2009

TABLE SA-20 COMPARISON OF SA 533 PLATE MATERIAL USED AS THE DATA BASE FOR GE PROCEDURE Yl006A006 VERSUS SA533 MATERIAL MANUFACTURED BY JAPAN STEEL WORKS FOR HOPE CREEK UNIT 1 REACTOR PRESSURE VESSEL Ultimate Yield Tensile Percent Thickness Average Com2osition of Materials ~Wt 1.~ Strength Strength Elongation Grade (in.) Source No.~ll c Hn p s Si Ni Cr Mo Heat Treatment Orient. ~Ksil {Ksil ~%l A533 6-6.5 GE 5 0.21 1.32 0.009 0.014 0.18 0.51 0.48 1625F-6Hr.-Agitated Long. 69.2 90.4 27.9 Brine-Q+1200F-6Hr.- Tran. 66.0 88.4 26.6 Brine -Q+1125F-30Hr.-

FC to 600F A533 7-7.5 Comb. 6 0.22 1.36 0.011 0.014 0.19 0.53 0.49 l675F-4Hr.-AC+1600F-4Hr.-Agitated WQ+

1225F-4Hr.-FC+1150F-40Hr.-FC A533 8-8.5 GE 4 0.22 1.39 0.011 0.018 0.20 0.54 0.11 0.49 1775F-8.5Hr.-Agitated Brine-Q+l200F-BHr.-

Brine-Q+1125F-30Hr.-FC AS33 8.5-9 Comb. 1 0.22 1. 38 0.011 0.013 0.21 0.44 0.49 1675F-4Hr.-AC+l600F-4Hr. Tran 68.3 88.6 25.4 Agitated WQ+l225F-4Hr.

FC-1150F-40Hr.-FC A533 9.5-10 West. 6 0.21 1. 31 0.011 0.017 0.22 0.57 0.14 0.47 1600F-4Hr.-Agitated Tran. 66.4 86.3 24.3 WQ-1225F-4Hr.-AC+ Long. 66.2 87.4 26.0 1150F-40Hr.-FC A533 11.5-12 Comb. 3 0.23 1.31 0.010 0.015 0.19 0.55 0.58 1675F-4Hr.-AC+1600F- Tran. 64.4 86.7 26.5 4Hr.Agitated WQ+

1225F-4Hr.-FC+1150F-J*OHr. -FC A533 11.5-12 West. 4 0.21 1.35 0.013 0.022 0.24 0.51 0.48 1600F-4Hr.-Agitated Long. 66.7 87.3 26.2 WQ+l22SF-4Hr.-AC+ Tran. 67.8 86.9 26.0 1150F-27Hr. -FC A533( 2 ) 6-6.5 Japan Steel 0.20 1.45 0.012 0.008 0.31 0.63 0.56 (1580F-1634F)-3.4Hr.- 70.2 92.5 26.5 Q+(1202F-1238F)-3.3Hr.

(1112F-1130F)-40.5Hr.

A533 6-6.5 Japan Steel 0.20 1.43 0.010 0.008 0.30 0.56 0.54 u 70.8 92.3 25.1 A533 6-6.5 Japan Steel 0.22 1.43 0.009 0.008 0.29 0.58 0.59 II 69.3 91.8 25.0 A533 6-6.5 Japan Steel 0.19 1.44 0.010 0.012 0.30 0.56 0.50 II 62.7 87.5 27.5 A533 6-6.5 Japan Steel 0.20 1.46 0.010 0.011 0.27 0.54 0.51 II 66.2 89.4 24.6 A533 6-6.5 Japan Steel 0.18 1.49 0.008 0.010 0.31 0.57 0.50 11 68.6 90.5 25.6 (l)No. = Number of plates tested.

(2) ~ SA533, Gr. B. C1.1 1 of 1 HCGS-IIFSAR Revision 0 April 11. 1984

Tabh SA-21 Comptrtson of SA 508 Forging Hatar1t1 U&ad as the Data Base for GE Procedure YI006A006 Ver&us SASOB Material Manufactured by Japan Stael Works for Hope Creek Untt 1 Reactor Pressure Vassal Ultimat*

Yield Tensile Reduction Thickness _______ Average Composition of Materials (Wt %} Strerogth Strength of Area (in.) Source Ho.(ll C Mn P S St Ht Cr Mo v Orient. (t::st) (Ksi) (%)

0.19 0.65 0.010 0.007 0.23 0.69 0.33 0.60 0.02 1550F-9Hr.-WQ+l210F- Tang. 72.1 91.3 69.1 12Hr.-AC+1125F-11Hr.-FC ASOB Cl.Z 9-9.5 Wa~t. 0.22 0.63 0.009 0.011 0.24 0.68 0.34 0.59 0.02 ll8SF-11Hr.-Doub1e Tang. 58.9 82.1 ?0.8 WQ-1220F-22Hr .*

AC+ lllOF -6Hr.

+50°/Hr. t.o 600F A508 C1.2 15-20 GE 0.21 0.60 0.010 0.007 0.24 0.67 0.33 0.58 0.04 1615F-9Hr.Agita~ad 60.0 82.1 73.5 WQ+1230F-20Hr.-

WQ+ 1125F -30Hr.

  • 100°/Hr. to 600F-AC ASOB C1.2 20-25 Ladish 4 0.23 0.63 0.009 0.010 0.26 0. 78 0.35 0.63 0.045 1650F-8Hr.-AC*1650F- Tang. 62.5 8?.0 66.9 8Hr.-WQ+l275f-24Hr.-

WQ+ll501'*30Hr.-FC to 600F-AC ASOS C 1 . 2 6. 7 0.16 0.72 0.010 0.009 0.32 0.84 0.39 0.62 ( 1634F *164JF) 71.0 88.4 70.0 Au$tanittze-9.lHr.

+(1211F-1220F)lemper-16Hr.+l144F-PWH1-40Hr.

ASOB C 1 . 2 6. 7 Japan Steel 0.15 0.70 0.011 0.011 0.32 0.81 0.38 0.63 Tr. (1652-1670F) 65.1 82.5 (1220-123QF)-Temp*r*

16.5Hr.+ll56f-PWHT-40Hr.

(l)

No.

  • Numbar of forgings tasted I of 1 HCGS*IJFSAR Revhcion 5 May ll. 1993

TABLE SA-22 COMPARISON OF NOTCH TOUGHNESS INFORMATION FOR JAPAN STEEL AND Yl006A006 PLATE MATERIAL 1/4T Charpy V-Notch Test Results Test Average Average Thickness Temperature Absorbed Energy Lateral Expansion (in.) Orientation No. (l) (°F) (ft-lb) (mils)

A533 6-6.5 GE Transverse 5 +50 60 44 A533 7-7.5 Comb. Transverse 6 +50 56 45 A533 8-8.5 GE Transverse 4 +50 60 40 A533 8.5-9 Comb. Transverse 1 +50 53 40 A533 11.5-12 Comb. Transverse 3 +50 47 36 A533 11.5-12 West. Transverse 4 +50 44 40 SA533, Gr.B, Cl.l 6.2-6.8 Japan Steel Transverse See below( 2 ) +40 44 34 SA533, Gr.B, Cl.l 6.2-6.8 Japan Steel Transverse +40 so 38 SA533, Gr.B, Cl.l 6.2-6.8 Japan Steel Transverse +40 81 57 SA533, Gr.B, Cl.l 6.2-6.8 Japan Steel Transverse +40 64 50 SA533, Gr.B, Cl.l 6.2-6.8 Japan Steel Transverse +40 54 40 SA533, Gr.B, Cl.l 6.2-6.8 Japan Steel Transverse +40 52 41 (1)

No = Number of plates tested 2

( ) Each row of data represents a heat of material used in the beltline region of the Hope Creek Unit 1 RPV.

l of 1 HCGS-UFSAR Revision 0 April 11 , 1988

TABLE SA-23 COMPARISON OF NOTCH TOUGHNESS INFORMATION FOR JAPAN STEEL AND Yl006A006 FORGINGS 1/4 Charpy V-Notch Test Results Test Average Average Thickness Temperature Absorbed Energy Lateral Expansion (in.) Source Orientation No.(l) (°F) (ft-lb) (mils)

ASOS Class 2 8-8.5 West. Tang. 1 +50 81 60 A508 Class 2 9-9.5 West. Tang. 1 +SO 96 64 A508 Class 2 15-20 GE Long. 1 +50 96 55 A508 Class 2 20-25 Lad ish N.R. 4 +50 1~8 NR ASME SASOS, 6.7 Japan Steel/ Long. See below( 2 ) -10 80 66 Class 2 Katsuta Works, Hitachi Ltd.

ASME SA508, 6.7 Japan Steel/ Long. -10 77 62 Class 2 Katsuta Works, Hitachi Ltd.

( 1 ) No. ~ Number of forgings tested

( 2 ) Each row of data represents a heat of material used in the fabrication of the low pressure core injection nozzles for Hope Creek Unit 1 RPV.

1 of 1 HCGS-UFSAR Revision 0 April 11, 1988

eTABLE SA-24 COMPARISONS OF V1006A006 AND HITACHI SHIELDED METAL ARC WELD MATERIAL Ul t fmata Reduc-Yield Tansile t1on of Cham1ca1 Comeos it ion (wt.  %} Strength Strangth Area u..tlLot _c_ ...!!L ..!!!!.... 2L _P_ _s_ ~ __v_ fL.. (kstl (ksl} __{&__ Heat Treatmant Y1006A006 DATA 9ASE:

~02P3162/H426827AE 0.066 0.83 1.06 0.46 0.02 0.018 0.49 0.019 0.03 78.7 9(). 7 42.8 1150°F zo" for so hours 40lP2871/H430827AF 0.06 0.98 1.09 0.36 0.013 0.017 o.sz 0.02 0.03 73.5 83.5 71.2 U50°F 20° tor SO hour 'I>

03L048/8525827AF 0.04 0.96 1.23 0.40 0.014 0.014 0.53 o.oz 0.09 18.0 91.0 64.7 U50°F 20° for 50 hours5.787037e-4 days <br />0.0139 hours <br />8.267196e-5 weeks <br />1.9025e-5 months <br /> L83978/J414827AO 0.08 1.06 1.15 0.51 0.017 0.014 0.54 0.02 0.02 83.7 94.5 69.5 1150"F 20° for SO hours 401S0371/B504827AE 0.05 l. o* 1.18 0.37 0.012 0.012 0.56 0.02 0.03 84.2 94.4 68.2 l150°F 20° for 50 hour5.787037e-4 days <br />0.0139 hours <br />8.267196e-5 weeks <br />1.9025e-5 months <br /> 'I>

492L4871/A421B27AE 0.07 0.95 1. 06 o. 37 0.018 0.025 o.so o.oz 0.04 72.0 84.5 72.7 1150°F 20° for 50 hours5.787037e-4 days <br />0.0139 hours <br />8.267196e-5 weeks <br />1.9025e-5 months <br /> 422K851l/G313A27AD 1).06 1.00 1.21 o. 31 0.016 0.013 0.54 o.oz 0.01 81.3 91.5 74.5 US0°F zo" for 50 hours5.787037e-4 days <br />0.0139 hours <br />8.267196e-5 weeks <br />1.9025e-5 months <br /> 640892/J424827AE 0.08 1.00 1.20 0.44 0.015 0.018 0.55 0.02 0.09 76.5 90.0 71.0 1150°1' zo" for 50 hours5.787037e-4 days <br />0.0139 hours <br />8.267196e-5 weeks <br />1.9025e-5 months <br /> 07R458/8503827AG 0.06 0.97 1. 14 0 . .35 0.020 0.021 0.51 0.02 0.04 68.0 80.5 71.4 1150°f' 20° for 50 hours5.787037e-4 days <br />0.0139 hours <br />8.267196e-5 weeks <br />1.9025e-5 months <br />

~'

510-012:05 0.072 0.54 I .20 0.42 0.010 0.011 0.45 0.09 85.6 94.6 67.9 lll2-1170°F 40 hours4.62963e-4 days <br />0.0111 hours <br />6.613757e-5 weeks <br />1.522e-5 months <br /> 519-012:05 0.051 0.53 1.17 0.26 0.010 0.001 0.45 0.01 73.0 85.5 n. 1 1112-1170°f 40 hours4.62963e-4 days <br />0.0111 hours <br />6.613757e-5 weeks <br />1.522e-5 months <br /> 504-012:05 0.06 0.51 l. 30 0.26 o.011 0.005 0.41 o.o1 69.8 83.3 68.2 1112-1170°F of 1 40 hour*

HCGS-UfSAil ll*v~sion 5 Moy 11. 1993

TABLE SA-25 COMPARISON OF CVN TEST RESULTS OF Y1006A006 AND HITACHI WELD MATERIALS Test Temp Absorbed Energy Lateral Expansion Shear Source Heat/Flux Process ~oF} ~ft-lb~ ~mils~ ~::Q Y1006A006 031048/B525B27AF SHAW 0 61, 75, 79 44, 58, 59 50, 60, 60

+ 40 104, 108 75, 77 80, 80

+130 122, 123, 126 89, 83, 91 100, 100, 100 02R486/J404B27AG SMAW - 10 52, 64, 66 39, 45, 46 40, 40, 40

+ 40 84, 87 63, 68 60, 60

+130 121, 124, 129 91, 96, 95 100, 100, 100 L83978/J414B27AD SMAW - 20 51, 52, 81 37, 40, 63 35, so. 40

+ 40 120, 123 72, 73 80, 80

+72 128, 140 78, 81 90, 90 401S0371/BS04B27AE SMAW 0 80, 85, 82 63, 62, 60 35, so, 35

+ 40 95, 97 71. 76 40, 75

+ 70 111, 107. 109, 87, 85, 77 80, 90, 80 402P3162/H426B27AE SMAW - 10 60, 54, 68 44, 37, 53 40, 30, 30

+ 40 96, 99 57, 68 60, 60

+212 119, 122. 124 93, 90, 68 100, 100, 100 492L4871/A421B27AE SMAW 0 50, 51, 57 36, 38, 40 30, 40, 45

+ 40 135, 137 84, 80 90, so 422K8SAA/G313A27AD SHAW - 20 65, 74, 127 44, 48, 76 40, 50, 60

+ 25 107, 108 74, 80 80, 70 640892/J424B27AE SMAW 0 55, 62, 62 38, 44, 48 35, 40, 40

+ 40 56, 75 42, 55 50, 60

+130 118, 122. 130 87, 89, 82 100, 100, 100 401P2871/H430B27AE SMAW 0 27, so, 56 25, 42, 46 40, 45. 45

+ 10 75, 76, 107 60, 62, 74 60, so. 80

+ 40 90, 100 71, 76 70; 80 07R458/S403B27AG SMAW 0 59, 61, 70 51, 52, 58 50, 50, 60

+ 40 99, 101 77, 78 80, 75

+72 106, 110 85, 87 so. 80 Hitachi 510-01205 SMAW + 10 90, 73, 48 70, 64, 38 60, 40, 30 98, 87, 92 65, 66, 65 50, SO, so 519-01205 SMAW + 10 110, 110, 107 87, 78, 70 75, 75, 80 504-01205 SMAW + 10 130, 120, 123 89, 84, 92 75, so. 75 1 of 1 HCGS-UFSAR Revision 0 April 11, 1989

TABLE 5A-26 DROP WEIGHT AND CHARPY V-NOTCH TEST RESULTS( 1 )

CLOSURE FLANGE REGION MATERIALS NDT Test Absorbed Lateral Temp . Temp. Energy Expansion Material Orientation .!..:n .!..:n_ (ft-lbs) (Mils)

SA508, Longitudinal -20/ -40 64.1,70.6,20.8,77.1 48,51,11,58 Cl.2 -10 -10 93.1,114.7,106.6, 64,78,62,55, (Head @180° 87.8,97.1,71.9 64,49 Flange) AWAY 10 81.1,108,133.6, 49,68,78,95, 137.6, 165.1 68,74 40 157.4,121.5,137.6, 89,73,77,86, 134.9,144.3,137.6 79,85 60 199.9,154.8,159.9 77,69,88,87, 195.4,144.3,170.1 82,73 SA508, Longitudinal -10 10 120.1,122.8,130.9 77,81,83,81, Cl.l 130.9,132.3,116.1 77,64 (Shell -10 120.1,95.8,128.2, 72,58,80,74 Flange) 109.3,101.2,87.8 59,57

+40 141.6,134.9,141.6, 81,77,84,82, 145.6,167.6,182.4 85,89

-40 13.4,69.3,59.0,55.2 7,48,41,38, 74.5,101.2 54,68 SA533,* Gr. B, Cl.l (Top Petal Plate connected to Head Flange)

(Piece Longitudinal 10 46.5,39.2,39.2 36,34,33, T2A) 103.9, 81.1' 75.8 73,57,54 (Piece Longitudinal 10 77.1,70.6,79.8 55,55,64 T2B) 74.5,71.9,61.5 57,55,50 (Piece Longitudinal 10 85.1,70.6,81.1 67,53,62 T2C) 95.8,85.1,85.1 70,65,70 (Piece Longitudinal 10 69.3,73.2,87.8 57,57,72 T2D) 61.5' 66.7 '85 .1 59,63,72

  • HCGS-UFSAR 1 of 2 Revision 0 April 11, 1988

TABLE 5A~26 (Cont)

NDT Test Absorbed Lateral

  • Temp. Temp. Energy Expansion Material Orientation 1.:El .crL (ft-lbs) (Mils)

SA533,GR.B, Cl.l (Upper Shell Connected to Shell Flange)

(Piece Longitudinal 10 71.8,46.9,61.5 59,39,53 '

SlC) 66.7,73.2,62.4 52,58,49 (Piece Longitudinal 10 74.5,87.8,53.0 57,74,45 S2A) 65.4,74.5,79.8 52,55,65 (Piece Longitudinal 10 84.7,95.8,95.8 65,75,79 S2C) 90.0,55.2,89.1 70,44,71 (1)

In accordance with the ASME Code and GE specification.

requirements, the weld metals joining the flange region materials have CVN absorbed energy values of at least 30 ft~lbs at +l0°F .

  • HCGS-UFSAR 2 of 2 Revision 0 April 11, 1988
  • so.T---------,----------r---------.--------~~=:::::::;::::::::::

IQO*r---------~---------t--------~r---------+---------~--------_j 120.~--------t---------t---------+---------4-------~L4~~------_j

.... 100.,---r----r----+---:~V:_____--t--l!t--_j 96.,---r----r----::;:~"""F-V-0..~--+-----+---_j t..a.

d)

..J t-LL

-r-___...a.--=O~V C>

rx w

z

_ ____,r---+-----+----_j v

w 1

2 60.

0 qo.: J--1/~-t-----t--t---1-___J

20. 1r-.--------t----------i~---------t----------~--------~~--------_J 0

0.~------~------~~------_L ________ l ________ l______.__j

0. . 20. QO. 60. 80. 100. 120.

DUCT lLE fRACTURE AREA CPER CENT I PUBLICSERVICEElECTRICAND GAS COMPANY HOPECREEKGENERATINGSTATION

~ - UPPERCONFIDENCELIMIT 0 *DATAPOINT CVN ENERGYvsFRACTUREAREA 0 - LOWERCONFIDENCELIMIT SK2963 UpdatedFSAR Sheet1 of 1 Revision5, May11,1993 Figure SA-1

160.

tl40.

v

/

v 0

i20.

v 100. /

u.

(0 *

...J I v

I

90. /

C)

(k w

w z

/

z 60.

u>

  • /

'10.

0

20. ,

o.

o. 20. "0. 60. 80. 100. 120.

DUCTILEFRACTURE AREA (PER CENTt PUBLICSERVICEELECTRICAND GAS COMPANY HOPE CREEKGENERATINGSTATION A

  • UPPERCONFIDENCELIMIT 0 *DATAPOINT CVN ENERGYvsFRACTUREAREA 0
  • LOWERCONFIDENCELIMIT SK2530 UpdatedFSAA Sheet 1 of 1 Revision5, May 11, 1993 FigureSA-2

160-r-----------y-----------~----------.-----------.-----------~~=========

1~0-,-----------r-----------t-----------t-----------+-----------+---------__j 120 . .-----------t------------r-----------t-----------4------------~--------__J

_,.,v 100 . .---------~r----------1-----------t----------~----~~~~~--------~

,m....

.J t--

I 1..1.

QO.r--------T--------;---------r---~~~-+~--------~---L_M ~ __

60. r------r------t----:;:;:;;..:::....0~--t-v--+---+-----J 0~~

qo. r------------t--~~~----t-~~-------+------------+--------------+------------J

/v

20. ~~~~----r-----------t-----------r-----------~----------~---------J

~

0.~--------~----------~----------~--------_J

o. 20. IJO. 60.

__________100.

90.

_L__________J 120.

DUCTILE FRnCTUR£ nREA (PER C£NJ)

PUBLICSERVICEElECTRICAND GAS COMPANY HOPECREEKGENERATINGSTATION f:l. - UPPERCONFIDENCELIMIT Q- DATAPOINT 0 - lOWERCONFIDENCEliMIT CVN ENERGYvsFRACTUREAREA SK3238 UpdatedFSAR Sheet 1 of 1 Revision5, May11, 1993 FigureSA-3

160.

  • v

/

7 lliO.

1!1

/

120. /

- 100.

v

/

Ll.

en J

l Ll.

v

<.:) 80.

(.£ w

w z

2 y 0 L

u 60.

07 liO~*

20.

/8 C!l 0.

o. 20. 1.10. 60. 80. 100. 120.

DUCTILE FRACTURE AREA (PER CENTJ PUBLICSERVICEELECTRICAND GAS COMPANY f:l. *UPPERCONFIDENCELIMIT HOPE CREEKGENERATINGSTATION Q *DATAPOINT 0 - LOWERCONFIDENCELIMIT CVN ENERGYvsFRACTUREAREA SK3230 UpdatedFSAR Sheetlof 1 Revision5, May 11,1993 Figure5A*4

l60.t------------.r-----------~------------~~------------T-----------~-------------

tqo*r---------T---------~---------+---------1--------~~~--------~

120. r-----------~-----------;------------+-----------~7~~--------~----------~

/""

~

...J too. ~----------~-------------r------------;---~~~-----~r------------+------------~

t

//

t-u.

/v

80. ~----------~~----------~~----~~--~~----------~-------------+------------~

7

60. r-------------r-----~--~~~----------~~----------~-------------+------------~

7

40. r-----------~~----------_,~-----------1r-----------~-------------+------------~

0 0

20. ~~'-------~~----------~~----------~-------------+-------------+------------~

/"8

o. ~------------~------------~----------~~----------~-------------L
o. 20. qo. 60. 90. 100.

_____________. 120.

DUCTILE FRACTURE AREA CP£R CENT)

PUBLICSERVICEELECTRICAND GAS COMPANY 8

  • UPPERCONFIDENCELIMIT HOPE CREEK GENERATING STATION Q- DATAPOINT 0 - LOWERCONFIDENCELIMIT CVN ENERGYvsFRACTUREAREA 6C35 UpdatedFSAR Sheet1of 1 Revision5, May 1t,1993 figure 5A-5

160.

v JIJO.

/

120.

/

v v

u.

i:O ID

...J t-I tOO.

L"l

/

0::

w

/

r5 80.

z:>

{,)

60. 0 / 0

~

/

110. 0 20.

~

  • 0 0.
o. 20. 110. 60. 80. 100. 120.

DUCTILEFRACTURE AREA CPER CENH PUBLICSERVICEELECTRICAND GAS COMPANY fl.. UPPERCONFIDENCELIMIT HOPE CREEKGENERATINGSTATION Q *DATAPOINT 0 *LOWERCONFIDENCELIMIT CVN ENERGYvsFRACTUREAREA 6C45 UpdatedFSAR Sheet1of 1 Revision5. Mayt1, 1993 FigureSA-6

Rev15ed portion 18 .arked IJ')"IA Oc.t. 22 '7S

  • R,eV1t;ed rt1ons ere 1nd1c.ateA b,. A frloY. '72 (EDS-23&,... £-,~B)
  • GQ1EAAL wnl>l~ PROC.SP£C.. NO. R.5-0576 fROC. QUAL. 1'ES1 Sf£C: .. JIO *...B§.::S~ .,.t.

~RD orlfJ,C:*tsQu,t;ctEST t1>. HPt;-oa t ,*ftiatEss MHG£ ~ to s 1

' pgsnJON Etlrs/tw)' P.R06RESS10N - J'l,PE Sit.£' - 10 - I l'J!S OP tLBctRODE 1ST' LAfi.RCONSUf:Wj,E ..SVIJSQUQn' CotJSuMAslJi. .

  • f'li.LER l<<JAL r~. 4lSMAtV) i*TJP£ OR TIWE IIIJE OF f'LUX '(F -2.DQ
  • WELDNITALA-10.  % :jT~ Oil fftAfJE' *-OF FJU.liit fQ"Al.)!%04- f',$W!) .

COHPO.SnlOU Of IWit'l' GAS - f'l.OW RA1£ - * 'Wtwt,

!liiiiCKSII!EID (YES. @l-$PI<SS (SI!l&£, i$f;flf~*AE'IAII!n ~@ l

.~.,G $llUP tws.~~ JalSe<<r LlES,@;?A*~ ~ HULttPLtl

  • JIOL.ARtTY ~TSKri@.iU h~UR.REtff <<i~~~ll OSCILLAtiON ( ¥&$_ fl.IJ
  • PGlfJAt .L lNI'ER.PASS 'TEMP. 99 .a_ 'ro S'oo °F. Wlltl!~~~~~!:f:fj~

lfltGR!iTAGE 1'05'1"WEt.D HEA'l' TREA"'I'Httn-15 HJ.rt. MlNlNJM

.f'IW..t. POST 'IEI.O HEA'l' 'TREAlMEflT-1. lfR./IN.. Of &ASE HE.TAL THlauJESS tWtcrfEST (AT I0 °F)

FOSI- SIZS

)BfO ' <:iii!It) ) TJOG (Ill)

SAZ ( CjiiJWO )

S': ~*

~N~OT~£-:-----*--.~~.----~fr ~z. S'SD,..,t,ro 2.8"""*~7 IC--v ~~ ~

l) I1'EHs VITI !HE tSI'EfU.k r'

  • II£ ESSEIITIAL V'ARlABtES fOR TtfiS PIDt:EDURB QUAL.lFJCATlMI

~ ~rDN7SD 28.,.,97 ID~Vf314 REVISION 0 APRIL 11, 1988 PUBLIC SERVICE ELECTRIC AND GAS COMPANY HDPE CREEK NUCLEAR GENERATING STATION WELD PROCEDUREFOR SURVEILLANCE TESTPLATE UPDATEDFSAR FIGURESA-7