ML20138A949

From kanterella
Jump to navigation Jump to search
Rev 1 to Environ Analysis of Silicone Rubber Boot Seals
ML20138A949
Person / Time
Site: Perry  FirstEnergy icon.png
Issue date: 11/01/1985
From: Farwell C, Rettig D, Woeste R
FARWELL & HENDRICKS, INC.
To:
Shared Package
ML20138A932 List:
References
20153, 20153-R01, 20153-R1, NUDOCS 8512120159
Download: ML20138A949 (37)


Text

{{#Wiki_filter:_ Farwell & Hendricks, Inc. )~ Report No. 20153 l Revision 1 R1 Date: November 1, 1985 Total No. of pages: 37 ENVIRONMENTAL ANALYSIS OF SILICONE RUBBER BOOT SEALS FOR PERRY NUCLZAR POWER PLANT 10 CENTER ROAD P.O. 80X 97 NORTH PERRY, OHIO 44081 E PREPARED BY FARWELL 4 HENORICKS, INC. 1000 FORD CIRCLE, SUITE C MILFORD, OHIO 45150 (513) 831-9390 Y 0 lJfw$ cavio P. Re tti g py A. noeste Project Engineer Qualtty Assurance Manager A Approved and / Reviewed by: d e -M /

r. Gnaries A.

Farwell, ' P E. Direc f Engineeri C a t fica c on of Lw liance: = ~ I rursuy cart!*y : rut me eng-me g evelettcri rus toen per-8:r-se in M1 ac::r-ance =tm me cus1sur's pr:rese emer as gr sioso a Farwi; 4 ect.s. Inc. Du ow.hstan tus osin smervissa sienec Dy *e. 0512120159 851210 0 PDR ADOCK 0500

sign, L/

V e tegisntitre p.t. *n. L-4991 1:23 of Ono a ///# /r / 3.t. s = <v

1 20159.O.,'.*1O0 r a a 1 45 h4 ,it , L st G 'l TABLE OF CONTENTS PAGE

SUMMARY

REP0RT......................................... 3 Table 1 Expected life......................... R1 Table 2 Arrhenius Tab 1e........................ 6 LIST OF REFERENCES..................................... 7 AP P EN D I X A - I n Li f e v s Tempe ra ture.................... 8 APPENDIX 8 - Tensile Strength (PSI) vs Life (Hours).... 24 A P P END I X C - Sa mp l e Ca l cula ti o n s....................... 34 e / d 1 i 4 4 3 1 _______j

2 0 1 5 3.. 0 ?3 0 0 3 i s N ~ =3 a s s.

SUMMARY

REPORT s s i This report 'somearizes the review of s'ource refereices for R1 temperature ar( radiation for ' Silicone Rubber in tne Farwell & Hendricks. Inc. System 1000 Database. Tne ca tabase contains the temperature informs tion from which the exoected life of the mate-ial can be calculated f1r the failure mechanism of elongation. Temperature data from tne source references are presented in a manner such tha t the Arrhenius i parameters of Slope and Intercept can be determined for tne -failure mechanism of. tensile strengtn. These parame ters are then use.1 ts calculate expected If f e. Data from the sokrce references were plotted as Tensile Strength -{ psi) versus Life (hours) for Sylgarc 170. Sylgard 184 and Sylgard 187. typical Silcone Rubber materials, These plot: were made at various aging temperatures in the range ef tensile strength of interest for each ma terial, and ' ace presented in Appendix A. A regression antlysis 4 eas performed on each Appendix .A plot and the. resulting lines were used to make plots of in Life (hours) versus the reciprocal of Tempera ture (1/*K). These plots are presented in Ap;endix 8 for each material at 80s 70s. and 605.of the unaged tensile strength. Elong a tion failure, as used to deterstne the Arrhenius parameters in the Systes 1000 Datsease, was taken as one-half-af the ~' unaged elengation in tne source references. A re2ression analysis was cerformed on each Appendix 8 plot and the resulting lines were used to determine tne Arrhenius parame ters of Slope ond In te rce p t. These valves are presented on each plot ic Apptadix 8. The expected life for each ma terial cana be cair.uis tsd.for a given set of. service conditions and give.1 failure mechantaas. CEI nas determined that the appropriste Pa11ureetechanisms for the 'Doot seal under investigation are elingation and tensile strength and that the applicab'le temperatur.e service conditfans are: R1 I Zone OW-1 Normal ,8 8.401 Hours 1 1,35'F 122*F 3.501 Hours 13a'F 33,8,149 Hours f Abnormal 136*F -49 Hours Achtden t ( L't 7 ./ 260*F.- J.$. Pours '215'F Hours, 175'F 222 Hours 125'F e 90= Days 100'/ 80 Dayt 4 4 i f 4 e s 9 ~( s ., (

20153e 0?3004 h nd S Accident (2) 330*F 6 Hours 310*F 24 Hours 250*F 24 Hours 90*F 98 Days Table 1 presents the re sul ts of the expected life calculations for each material, for each failure mechanism, for each of the two given sets of service conditions. A set of step-by-step sample calcula tions is presented in Appendix C to show how the lives presented in Table 1 were deterstned. The Arrhenius Da ta is summarized for each material and failure mechanism in Table 2. CEI has also determined that the applicable radiation service R1 conditions are: hl Normal + Abnormal + Accident: 1.5 E08 Reds Gamma r. 2.49 EOS Rads Beta 3.99 Rads Total Integrated Dose o CEI has specified a laminated, glass fiber sitcone rubber material of the phenyl methyl vinyl type for the subject boot seal. According to Reference (3), the Threshold Damage Level of laminated, glass fiber, silicone is 1.0E09 Rads Gamma (Table 2. p.13 Ref. (3)). Further, according to Reference (3) (see pages 67 and 158), glass laminates f abricated with stitcone resins show exceptionally good radiation resistance, reaching a threshold of degradation when exposed to gamma radiation doses of 1.0 E09 rads, as sentioned above. However, tensile strength does not drop of f until 2.49 E09 rads. The combination of heat and radiation is no more detrimental than heat alone to the flexural strength of silicone laminates untti an exposure dose 6f 8.3 E09 rads which is considerably in excess of the level to which the boot seals will be exposed. Also, according to Reference (3) (pages 119 and 158), the phenyl types of silicone are more radiation resistant than other silicone groups because of the presence of the aromatic ring, which very likely absorbs the radiation energy without affecting the other parts of the molecule. The presence of phenyl groups in the silicone chain increases radiation stability, while the presence of methyl groups increases flexibility. Based on these facts the boot seal saterial specified by CEI has adequate radiation resistance to be used in the environment described herein. 7

~ ~ ~ ' ' - ~ ~ , j5,t 3; ; ~ TABLE I EXPECTED LirEI3) ~ e EXPECTED LIFEI3) FAILURE Service Coat ition III) Service Condition 2(2) MATERIAL MECilANI SM ~' Hours Years Hours Years .A 4 Sylgard 170 Elonga tion >>350,400 >>40 >>350,400 >>40 801 Tensile Strength 331,676 37.86 331,709 37.87 e ^e 70s Tensile Strength >>350,400 >>40 >>350,400 >>40 605 Tensile Strength >>350,400 >>40 >>350,400 >>40 -? " sylgard 184 Elongation >>350,400 >>40 >>350,400 >>40 801 Tensile Strength 242,771 27.71 243,888 27.84 ^ 708 Tensile Strength >>350,400 >>40 >>350,400 >>40 605 Tensile Strength >>350,400 >>40 >>350,400 >>40 sylgard 187 Elongation >>350,400 >>40 >>350,400. >>40 80s Tensile Strength 12,568 1.43 16,268 1.86 70s Tensile Strength >>350,400 >>40 >>350,400 >>40 608 Tensile Strength >>350,400 >>40 >>350,400 >>40 Notes: (1) Service Condition 1 - Normal + Abnormal + Accident (1). (2) Service Condition 2 - Normal + Abnormal + Accident (2). (3) Expected Life is the Life in addition to the appropria te -~ q Accident Condi tion. (A tu k o b3 s3 C) Ul

20153.C?G003 t m 4 TABLE 2 ARRHENIUS DATA MATERIAL FAILURE MECHANISM SLOPE INTERCIPT REFERENCE Sylgarc 170 El o nga tio n - 14.478 -20.65 (2) 80: Tensile Strength 6.017 - 5.52 (1) 70: Tensile Strength 8,878 -11.39 (1) 60: Tensile Strength 10,422 -14.14 (1) Syl ga rd 184 El on ga ti o n 6,192 - 5.06 (2) 80: Tensile Strength 5,463 - 4.15 (1) 70: Tensile Strength 6,416 - 5.59 (1) 60: Tensile Strength 7,108 - 6.67 (1) Sylgard 187 El ong a tio n 7,540 - 7.96 (2) 80: Tensile Strength 3,951 - 2.28 (1) 70: Tensile Strength 6,339 - 6.17 (1) 60: Tensile Strengtn 7,722 - 8.01 (1) e s* l ~ -,

20153.0.'5907 ~1 2 LIST OF REFERENCES (1) Underwriters Laboratory File E-40195. dated August 15, 1973. l (2) System 1000 Database based on Reference (1). (3) The Effect of Nuclear Radiation on Elastomeric and R1 Plastic Components and Materials. A0-267 890. REIC Report No. 21. September 1.1961. Radiation Ef f ects Information Center. Battelle Memorial Institute. Columbus 1. Ohio, by R.W. King. N.J. Broadway, and S. Palinchak. e e m- + 9 e c ,<or f yy yym., ,yvv o9 .,,g. 9q g ,---- 9 y+.,

20 l 5 3. 0 F50 0 8 h APPENDIX A TENSILE STRENGTH (PSI) YS LIFE (HOURS) e b 4 ' - - ' - ~ ~

20153.O?5009 4 Tx t' l -3 l ~ l i TENSILE' STRENGTH (PSI) VS LIFE (HOURS) l SYLGARD 170 600 AGING TEMPERATURE = 177'C ,i ~ 550--- e. w x >= e 2 g 500 m W .J 45C: w >= 400 l l I 350 l l 300 p w 250 t O 1000 2000 3000 4000 5000 6000 LIFE (HOURS) l

2 015 3. C PG 010 u 4 f I TEN S ILE' 'STR E'N GTH' EP S i')' v5 4 i LIFE (HOURS) 4 SYLGARD 170

AGING TEMPERATURE 190*r ame G SSC l

I = ~ <a= g 500 w m w d y 45C: N 400 i 350: ^ 200 ~ z_ 2E0 0 1C00 2000 3000 4000 5000 ~ 6000 l LIFE (HOURS)

2 015 3. 0 ?G0 l l m .29 ~ n I TENSILE STRENGTH (PSI)....... I 1 VS LIFE (HOURS) SYLGARD 170 i AGING TEMPERATURE 210*C 600 3 550 a. = >= (3 = w 500-E; wa y 450' N 400 I 1 350 l Y 300 .l l s 0 1000 2000 3000 4000 5000 " 5000 LIFE (HOURS)

20153.0TG012 s :. P f TENSILE STRENGTH (PSI) VS LIFE (HOURS) SYLGARD 170 AGING TEMPERATURE 232*C 600 .a e U $50 ene = >= ur E j g 500 } W d y 450 l 400 350 x l x - 300 i 250 0 1000 2000 3000 4000 5000

  • S000 i

LIFI (HOURS) ..___,-,___,___,.m. y. ,_.._,y,,, ._m, ge-eew--*r "ee

i ? 0 I t 3. n. r.c n. I 3 i e i .~4 j = TENSILE STRENGTH' ('PS'I) VS 7 LIFE (HOURS) SYLGARD 170

AGING TEMPERATURE 250*C G 00.

m 550 a. w 1 / i =- E w 500 W

t y 450 400 1

350 1 300 l 230 1 0 1000 2000 3000 4000 5000 ' 6000 1 1 l LIFI (HOURS) l d , ~ ~,_,.--,.,-...,,,,,,--__._,_,_..___m,,._.,_.,.___,...,-,,..w.m.,,,_,..,_,,._%,-

2 015 3. 0 PG 014 d M +IENSILE 'TRENGTH'(PSI') S VS LIFE (HOURS) SYLGARD 170 j AGING TEMPERATUE 288*C 600 i l G 550 ~ = s-ur = g 500 i O w .a. 's 450 Y-400 l

l

^ i 350 300 250 0 1000 2000 3000 4000 5000 *- 5000 LIFE (HOURS)

2 015 3. 0 ?G 015 i i M i l, -i l I TENSILE STRENGTH (PSI) 15 LIFE (HOURS) SYLGARD 184 600 iAGING TEMPERATURE 190*C \\ U 550 t 5 i g g 500 N i 2 y 450; U i 40G 350 300 250 ' ~ 1000 2000 3000 4000 5000 - 6000 O LIFE (HOURS)

2 015 3. 0 ?G 013 !~ '.'i 1, e2 l 4 I i 1 TENSILE STRENGTH '(' PSI')' f VS LIFE (HOURS) SYLGARD 184 600 AGING TEMPERATURE 210*C 1 U SSO ~ =-uraw 500 E-l wa " 450 + 400 i A 350 3C0 I 1 l 0 1000 2000 3000 4000 5000 - 6000 J l 1 l LIFE (HOURS) 1 ) l I r

20153.0?G017 4 kJ a ?$: 1 fa i TENSILE STRENGTH (PSI); I YS i LIFE (HOURS) 1 1 600 .i SYLGARO 184 J 'A.GING T.EM.PERATURE 250*C G 550 m. L,' l = >= t3 2 g 500 w w 4 g 450 w s. 400 s v 350 i 4 t 300 250 0 1000 2000 3000 4000 5000 ' 5000 l I LIFE (Hollat t i

.i 2 015 3. 0.'G 918 i E i.i i s:J i

    • e e

t.t i l l TENSILE STRENGTH (ps!): 15 LIFE (HOURS) SYLGARD 187 600 ' AGING TEMPERATURE 177'C: i'.Yi r ei. 550 m a. s w =>ex w 500 E i ~ m w a.

  • 450 xw

>= a 400 l 350 l 300 i 250 l 0 1000 2000 2000 4000 5000 6000 l LIFI (HOURS)

l 2 015 3. 0 ?G 019 i t I s- ' TIN'SILi' STRENGTH (PSI) VS LIFE (HOURS) SYLGARO 187 1GING TEMPERATURE 190*C' 600 ? e 550 e. = = >= <z 500 w E >= m I H w 45g 2 4 W 8 >= 4 400 I i w 250 I 300 W i O 10C0 2000 2000 4000 5000 ' 5000 i t.IFI (hours) m - .m,.,aw-- w-e= wmew e,mmw ww-, em-w-y ,..w+wwe .-<et-a-g w-& v t-rarp--e---TMT* * ' -

  • 7-WF

20153.0.G020 . :q e t -l ~

t TENSILE STRENGTH (PSI)

YS LIFE (HOURS) L SYLGARD 187 AGING TEMPERATURE 210*C' 600 i m G 550 .a. = y = g 500 i -m i w i d j g 45C-N t 1 _ l 400 I a 350' = l l l 200 i l ~ 250. C 1000 20C0 30CC 4000 5000

  • 6CC3 i

LI?! (HOURS) .l - l l -,,.,,-n, n, ..,-w,. ,,-,-.-.-,an,,- _,,,,.e.,, -,---,,.--,-..e,e-. w-.._.r-,,.

i] 20153.0?G021 f r d i : l TENSILE STRENGTH (PSI) ' 4 15 LIFE (HOURS) i SYLGARO 187 ~ 4GING TEMPERATURE 232*C 600 j j i de Om $50 a. i ~ = >= $2=w 500 E m i W f d ). "m 450 W >= i l ^ 400 i 350-i 300 1 1 250 0 1000 2000 3000 4000 5000

  • 5000 I

LIFI (HOURS) i i I i

i 2 015 3. O TG'] 2 2 e i u, +t a j tjr t i.:a 4 ~ TENSILE STRENGTH (PSI) f VS LIFE (HOURS) SYLGARD 187 AGING TEMPERATUR,E.250*C i i 4 ~*W9 w !!O b = s-c: 2 500 wm >= w i 1 vi 45 c-i = i w >= l

il' 40C:

350 300: 250 0 1000 2000 3000 4000 5000 ' 6CCO LIFI (MOURS) 1 1 l ..~... ~__..-._..._.,..,_,__.._____-,.__-....,___,-,....-..__m._

] 2 015 3. 0 ?G 0 2 3 ) l84 ,.J F 4 TENSILESTRENGTH'(PSI'I' VS LIFE (HOURS) SYLGARD 187 { 600 . AGING TEMPERATURE 288'C

=

m 550 m. w .i = >e 2 ] w 500 t#9 .g W i d

  • 450

=W i j 400. 350

300, 4

i l 250 j 0 1000 2000 3000 4000 5000 5000 1 LIFI (hours) I i l

2 01 R.1. 0 "e 0 ? 4 c + g+ d. k. c.a 4 Y+ APPENDIX 3 la LIFE VS TEMPERATURE-1 e 0 4 .n e. e d e A e( 4

2 015 3. 0 ?G 0 2 5

j

+- 4 4 4 10,000 _,s . _ __ m=- - = = =, ~ -- =.3= 3 _x d 7 l a 1 i In LIFE VS TEMPERATURE-1 in (HRS) YS (*K)-1 l SYLGARD 170 80* TENSILE STRENGTH (363 PSI) G vi 5 Ee = w t ner ] e = _ _. -==- _-==- -~p;+ q -3_- t f 1 In Life (Hrs) = Slope (1/*K) + In*erces: I Slope a 6017 (Hrs x *K1 Intercep = -5.5231 (Hrs) a t l

o"......

200

2.
  • 250 220 210 130

=* s TEMPERATURC 'C l

2 015 3. 0 ?G0 2 5 .p s r.1 10.,000 v- = =.. = _ _ = - - - _. = = = --2-_+.=+-+:=w=============:==-- n -In LIFE VS TEMPERATURE-1 P' in (HRS) VS (*K)-1 ^ m_______-_ -. _ - -. m e=m__mm% l_."- i-j~ --~~~ _. _ _ _ ~ _ _ SYLGARD 170 70% TENSILE STRENGTH (322 PSI) 9 = y -= :- - : 2 2 - - - ^' ^ - - u= =.=== ~ ~- ~ - ' ~::- T z: ~ =a .e e w m_ m=mm--- . 2.1 g x = =. l 1, O C C, 8 . -=_ - - =

==,._ . = =. _ = _ _ ~ - - - -. - -. 7'~~~ ' - ~ -~-.X_ r i g . z s=--- p-=_- =. - _ _. - = - - m 3" u, i= In Life (Hrs) v. _21 ope (1/*K) + Intercept = jj i:* .g. Slope = 8878 (Hrs x *K) 33 _ =7 . - _ - - -g ng,,.cac* = -11.39130 iHrs) " 3

  • . XL -

= = --- _ - - _ = _ _ _ _. _ _ _ _====- L 1 -


.--c_-y~__.______-

=

=

<_meg g y__n=_=+---.= =g - f_r

==- - yy g s w ___ _ - _ - _ _ = _. - - =- - - _ - - - _ -. g- .m.

_ = 3 4 5.

=. .___... ___: p=a

==x --w_.--_-_-5;


.=_-_-=u_----

.. ~ .==- .=.-=_y 5 9 \\ 100: l 230 270 250 210 210 190 170 TEMPERATURE 'C i l l l l l l

n ~ 2 015 3. 0 ?G0 2 7 e i .r .,w 10,,000,=_=__n _ _,_--__ ---_ _ = _. _ _ _ _ _ = 3m ; gg =m

_ _w _= _

= - - - - - - - - - - - - - - - - -

= - - - - = =

r_ z_ _ = z z z r - r In LIFE VS TEMPERATURE - P= in (HRS) VS (*x)-1 y m___m u-__ 2 _ -- - y e== - - - q a" SYLGARD 170 60- TENSILE STRENGTH /_ (276 PSI) 9 e 1,0CC =_=--_2_-- - = - - -_gpgg+--= o==-_- =: r C. .e ~ ~~-" w ww= _==:=--= s_= .)

1 N

9 1C.C.==._=--=-==__----l_-=_--.-.___=.=,=-=._-__._ s g ~'- ~* __, ~ ^ r i. j y_ _ w_=_. n= In Life (Hrs) ' - ~ ~ = * = -il o c e (1/*X) + In tercent - .=: Ej Intercent = -14.140 (w..(Hrs x

  • K 5 Slope = 10,422.ZSt.

E 15 $3 5 r- ,n' }$

    • T.-

-.. - - -. = =- = = - = - - - - - = - - - = - =


==~_-2=------

- - - - - - - - =-: -~_5 ---=-=w - 3:_ g_ _ z_ _z _==;_ 21 g --=w c_=g=a:. 4 r=- __3 2 Wwere-522-W=& --C;_i-AMMWsRe P4-t:EiW fMM g====c-es-=M-e==== ==== =:=_m_ g== = = m_ _;_;;._ = _ =- = ' -= = = = - = = = = = r= _n - - m-

- =._ --4 l = _ _ _ 9 l i t.is 270 250 25C Z10 1 *rc 170 TEMPERATURE. *C l I l

I 0.Pf'078 c,. 2 0 I t: 3e a r: .t . N't F' A '? 10,000 gm = rmn=- = -=

r

.-g-r-- - --g p- = = _ _ _ a -212 _-- 1 p 7j.-- i l! In LIFE VS TEMPERATURE-1 in (HAS) YS (*K)-1 t 1 l T SYLGARD 184 80" TENSILE STRENGTH 4 (744 PSI) i E t w E = = E 1 E e E d 1,000 m __ ,._-_I_ 2 T_ VTP_ g S '-~$_ t_- r. e M.=--2,,,2 S N, T m n g .. =,~_sm a. 2-s t_;,- m. n = u-g la Life (Hrs) n- = I Sloce (1/*K) Intercep: + A Slope = S463 (Hrs x *K) L-Intercept = -4.1513 (Hrs) j i I l i 10Q.

o=

.ie L 29C 270 250 ZIO 2;c 130 170 TEMPERATURE. *c l

20153.0?G029 m -O t.'. ~ -- =MAM== wen 2-- M5 ;6=wMis%%dskWM -- * --. u -.. " w-ar_: ::_- =_ __: =_ _ _ _= =.==.==== = -==m:== 2==m_y*- c=_=_=_==_-=mm=. - - _ _- --- _== --- ---= m ~ - ~ ~ In LIFE VS TEMPERATURE-1*=~ t in (HRS) VS (*K)-1 _+ SYLGARD 184 70". TENSILE STRENGTH (651 PSI) L r m E:=c 1,0 C O. .w -.-- = - - - - -. n_.m; .z z# - m _ =- s _:- x =s-m - % 1 - = - - - - - - -sw:: a

.w=.
s. =_.

--_--_ 7 -- - _ __ - _ _ g-- x m;._ ? g - __ s. In Life (Hrs) = Slope (1/*K) + Intarces: Slope = 6416 (Hrs x *K) Intarcept = -5.5373 (Hrs) u I 1:;..' 290 270 250 Z0 210 LSC 170 O umesaseeuneeman TE:4P ERAT'JRE

  • C i

20153.0PG030

)

Lu,0ud r pg +_ +: = s w.,____n_._.. _ n:n ~:

n. _w - - -

- - xn::a n- -- - - - --- = = =:1__ i Y-J' i---- D .- **1________..___.'-~=FFE.J.~._^~~~__J . ' Z 1 1~f - L =2_ L:== -- - _ : : t= =2 w== = = === - - - - ~ = =E

r r =_2__

a g;&=== ='-^z= --=--l a z-3f ~- = e \\ ^ In LIFE VS TEMPERATURE-1 ~ In (HRS) YS (*K)-l SYLGARD 184 - 60% TENSILE STRINGTH (553 PSI) ,4 W 1 gg= c_ e g 1, C C q_ Q -_, _ m =.- __y LW%i[-e - =-- - -- 5., -#__.j;q i _._ 51 R _ 8 1-3 ~M ~-- -._g C = ._ =_-_- y =_ = 9_ _-_ L In Life (Hrs) = Stone (1/*K) + In tercept Slope = 7108 (Hrs x *x) Intercest = -6.5694 (Hrs) t l I i 3..

=-

4i0 270 zig 410 dig LiG 170 TEMPERATURE

  • C

. l

s 2 015 3. 0 ?G 0 31 ",o N

~

s ~ r.',s m-twr:g_w-v= -==- _ x-= T EM P r R ATU R - 1 E,-= - rg:n-w1-=- = E = =--3-~'=P E EZ.Y.=M=M T:EEE-i. ~l n LIFE 4-( m==______-

== = - = = = = - - _===-=-- ._=;c g I n: (HRS) YS (*K)-1 _=_ _ -.-._- _. _ _ __. _ _ ; _m _ =_ _-- ncm--; 2 r .--.= E SYLGARD 187 's '--5 8C*. TENSILE STRENGTH m __ ~ E (637 PSI) i1 i.- 4__ / .c ~. : ~ m 5 E= Iev**.C'_.__..' - - %z- _::== w a _ ms+a=;_;2w _= :- - a,= - w mm .:w,r.

m_m.---__.-,_

u. w -w =- - - m= 2_w+-.w mm a-ge=- =_- =- eg=_j;_gmg gr=-e===m-z; _, e g ;--_ & _;+_r - m g w _~_.-i___-__dC.__'_E f Z~_~l ~~ ~ =a--___ -1 _. = - --__-__--;- __.., . ar ______===_--_%-

  1. ~

2 1 ~~_-~EEE-'--I-f=Ei._i_;._~^~-='=[T_]' _NT___.___'-".C___._._..__ ~ - - ' - - - = ____: ___T_:.--____________ g-:--- a, 2 n_- s in Life (Hrs) = -w Sloce (1/*K) + Intercept ~ ~ c Slope = 10,024 (Hrs x *K) In tercept = -12.8569 (Hrs) 1_ i w 'T 100

5.... 41 230 270 7.50 22C 2.0 19c 170 v

s TEMPERATURE. 'C l A . I y 9 \\ 3.-

~ t 20153.0PG032 to,oco - -. _ _ _ _ _ _ _.__ =._ - .=pg In LIFE V5 TEMPERATURE-1 -r r '~= In (HRS) VS (*K)-1 = - _== L, SYL3ARD 187 70: TENSILE STRENGTH i I (!57 PSI) L b I l w. I \\ L 1 I I 1,0 0 C' -=_ ,,_n,.._. m,,,,=_ . = w - = _~ _: n .x - = w-;_ u _ w ;= w ~ ~- =. .w: g -. - - w- --- m u - ._. w -

-- W=1=-T_' r===M=&1* :- &.+. ws --w"M = -- ~----

~_ --+=E-F W L M hr M i_f 2 i l iE N I) =_"1 %_ =ea+%z- ^ r L j A. 5 In Ltfe (Hrs) = sloce (1/*K) + In tartes E Slope = 6339 (Hrs x *K)4 Intersect = -6.1577 (Hrs) Q 100; i

5. w 130 270 250 23C Z10 130 UO TEMPERATURE
  • C

E 2 015 3. G PG0 3 3 / i ') ~ / / ~

m.___

.._E= m__ .__m .-,= -==._ t, = _ _._ 7 gg: g .g = g g_- _q 5 g p. 7 7 7____- r 7 -. +. = u 4 s t a b-m M= S 1e-1,0CC w w i j e.E s = ., _ _. - - - - = _ -- ~ a s ~ in Life (Hrs) EEE = l + In tercep-::: Slope (1/*K) I ( Slope = 7722 (Hrs x *X)5 In terca p : = -8.01114 (Hrs) -: x x o 10C; j

$..., g 230 270 25c g:,

g;3 130 170 + 'i I TEMPERATURE. 'C / 5 ,k i i r n ) r, 1 b y e --.,---.,.,-,,,-.,-,.,-,---,--rw. . ~ - -, -

2 015 3. 0 FG 0 3 4 t 4 ao6 l T: APPENDIX C S AMPLE CALC'JLATIONS 6 AG, I. f4 - ~. e e e I 1 l

2 015 3. 0 FG O 3 5 s '.N SAMPLE CALCULATIONS -i Ma te ri al : Sylgare 134 Failure Mechanism: 80t Tensile St. ength Slope: 5463 Intercept: -4.15 Service Condi tion: 2 The expected life for the material at a given temperature can be calculated using the Arrhenius methodology in the. form. ~ in life = Slope (1/T) + Intercept A where b in life = natural log of life in hours 3 T = service temperature in *K, and Slope and Intercept are determined from life data Therefore, for the highest temperature of Accident (2): In life 330 = 5463 (1/439.2) - 4.15 = 12.44 - 4.15 = 8.29 life 330 = 3.984 hours since only 6 hours of the material life is used at '3'30*F, residual If fe330 = 3,984 - 6 = 3,978 The residual If fe at.330*F can be related to another temperature using the Arrhenius eisression in the form I~ ~ life 72 = residual lifeT1* 3 e

2 015 3, O PG 0 3 6 t 3 ..,- (- 4 III Therefore, continuing the calculation for Accident (2): -5463 (1/439.2 - 1/427.2) Iffe310 = 3,978 e 3,978 (1.418) = 5,641 hours = residual life 310 = 5641 - 24 = 5.617 hours -5463 (1/427.2 - 1/394.2) 't, Itf*250 = 5617 e 5617 (2.917) = 16,385 hours = residual 11fe250 = 16,385 - 24 = 16,361 hours -5463 (1/394.2 - 1/305.4) life 90 = 16,361 e 920.094 hours 16/361 (56.237) = [E = residual lifero = 920.094 - (98 x 24) = 917,742 hours 7. Now, considering the abnormal condition: ~5463 (1/305.4 - 1/331.0) life 136 = 917,742'e 917,742 (0.251) = 230,353 hours = residual life 136 = 230,353 -49 = 230,304 hours Finally, considering the normai condition: '~ -5463 (1/331.0 - 1/330.4) life 135 = 230,304 e = 230,304 (1.030) - 227,213 hours residual If fe135 = 237,213 - 8401 = 228,812 ' hours -5463 (1/330.4 - 1/323.2) li fe122 = 228,812 e 228,812 (1.445) = 330,633 hours = residual iffe122 = 330,633 - 3501 = 327,132 hours -5463 (1/323.2 - 1/329.9) 11fej34= 327,132 e 327.132 (0.709) = 231,937 hours = ~ - ' ' w-n_

2 015 3. 0 ?G 0 3 7 s ,e i.t:. ' I Gy "~ +: l', The expected life is therefore, Normal and Abnormal Service 8,401 hours at 135*F 3,501 hours at 122*F 231,937 hours at 134*F 49 hours at 136*F 243,883 hours normal and abnormal service plus Accident (2) or 27.84 years normal and abnormal service plus Accident (2) The calculatior. process can be truncated at anytime when the residual life at a given temperature exceeds the remaining life of all temp-eratures not yet considered, so long as those temperatures are lower than the temperature at which the residual life was calculated. For -3 example, if, af ter the accident calculation, the residual If fe at 136*F is greater than 40 years, then no further calculations need be ,y made since all temperatures for abnormal and normal service are at or .e Jl,', below 136*F. e 1}}