ML20136F294

From kanterella
Jump to navigation Jump to search
Trojan Nuclear Power Plant Mod & Stress Analysis Rept for Pressurizer Safety & Relief Valve Small-Bore Piping Sys
ML20136F294
Person / Time
Site: Trojan File:Portland General Electric icon.png
Issue date: 06/30/1984
From:
ABB IMPELL CORP. (FORMERLY IMPELL CORP.)
To:
Shared Package
ML20136F274 List:
References
01-0300-1292, 01-0300-1292-R00, 1-300-1292, 1-300-1292-R, NUDOCS 8601070334
Download: ML20136F294 (72)


Text

l Trojan Nuclear Plant- Mr. Steven A. Varga Docket 50-344 Attachment License NPF-1 December 31, 1985 l (Q)

X Reference 10 1

~

TROJAN NUCLEAR POWER PLANT MODIFICATION AND STRESS ANALYSIS REPORT FOR THE PRESSURIZER SAFETY AND RELIEF YALVE  ;

SMALL-BORE PIPING SYSTEM l

, Prepared for:

Portland General Electric Company 121 Southwest Salmon Street Portland Oregon 97204 Prepared by:

Impe11 Corporation 350 Lennon Lane .

Walnut Creek, California 94598 Impell Report No.01-0300-1292 Revision 0 O e501070334 851231 June,1984 DR ADOCK 05000344 p

PDR

l l

O LYPELLJr i

APPROVALCOVERSHEET i

Trojan Nuclear Power Plant Modification and Stress Analysis '

Docunent

Title:

Report for the Pressurizer Safety and Relief Valve Small Bore Piping Control Number: n1-nann-1242 l

Client Portland General Electric Job No. 0300-018 Project Troian Nuclear Power Plant Revision Record Rev. No. Daa Prepared Reviewed A m ved 0 41lgy f -

A_l k ll$ p i i D

l

\

I

\

f%

CERTIFICATION The undersigned, a registered Professional Engineer, competent in the field of piping stress analysis, certifies that to the best of his knowledge and belief the analysis calculations for the subject piping system as presented in this Stress Report comply with the requirements of the Design Criteria and the applicable portions of the ASME Boiler and Pressure Yessel Code,Section III, Nuclear Pouer Plant Components. This report meetin Nuclear Power Piping, and ANSI B31.1, Power Piping.g the intent of ANSI B31.7, Piping System: Pressurizer Safety and Relief Valve Small Bcre Piping Lines Plant: Trojan Nuclear Power Plant gg0fESStog l+ f Ws **

Y7/9y

~

No.17230 l

g. g.s ,2' 0F CAON State of Caitfornia Registration No.: M- 172u O

11

- , . . - - - - - , . - - - , - , . - . ~ . . -- ,,.- , -

.-,,.,m --- _ 7,,- - - - - - ,-~ --,-,.-m- . . ., , , ---w- - - - - - - w---

.z.. ___ _ .__ . __

TABLE OF CONTENTS O

Page Report Approval Cover Sheet i certification (i 1.0 Introduction 1 -1 2.0 System Description 2-1 3.0 System Qualification Criteria 3-1 4.0 Analysis Methodology 4-1 4.1 Load Cases 4-1 4.2 Class 1 Branch Connection Stress Evaluatien 4-3

- 4.3 Class 2 and 3 Piping Stress Evaluation 4-3 5.0 Analysis Results 5-1 5.1 Class 1 Branch Connection

('J~'s N Stress Evaluation 5-1 5.2 Class 2 and 3 Piping Stress Evaluation 5-3 5.3 Support Loading 5-3 6.0 Conclusion 6-1 7.0 References 7-1 Appendix A: Mathematical Models A-1 Appendix B: Computer Program Description B-1 Appendix C: Support Load Sunnaries C-1 i

i

i I

4 Report No. 01-0300-1292  !

Revision 0 l l

l.0 INTRODUCTION This report, prepared by Impe11 Corporation, describes the stress analysis for the Pressurizer Safety and Relief Valve Small Bore-Piping System of the Trojan Nuclear Power Plant. The purpose of this work is to assist Portland General Electric Company (PGE) in meeting the requirements of NUREG-0737,Section II.D.1. The NUREG requires a plant-unique: verification of the function and integrity of the reactor coolant system safety, relief, and block valves, in conjunction with associated piping and support systems. The large-bore piping (portion of this system) analysis is described by Impe11 stress report No.

01-0300-1291 (Reference 7.4d). Loads from that analysis are transmitted thru the branch connections to the small-bore piping. These transmitted loads required the evaluation of the small-bore system as described by this report.

The qualification of the small-bore piping was divided into two tasks:

Task 1. As-designed Analysis:

'me as-cesigneTsmall-bore piping system was analyzed with the modified as-design large-bore system loading. This is identified as Task 2 of the large-bore stress report, which describes the addition Q

b of the Slug Diversion Device's (SDD's) and associated analysis.

Task 2. As-built Analysis:

The as-built small-bore piping system was analyzed with the modified large bore as-built system loading. This is described as Task 3 of the large-bore stress report. Note that the SDD drain lines, as described by Section 2 cf this report, remain Es-designed.

Section 2 of this report provides a description of the small-bore piping lines. Section 3 describes the system qualification criteria; the code criteria and applicable design input. Section 4 provides analysis methods and ANSI B31.7/B31.1 code combinations. Section 5 summarizes results. A copy of the as-built math models and support load summaries are provided in the

Appendices of this report.

The work has been performed in accordance with the Impe11 Quality Assurance Program, which complies fully with applicable regulatory requirements and industrial codes and standards.

1 -1 i

t

.--.--_,,,_,.,.._,.-__,,-,,,,,_.,ry.--_ _ _ . , , _ , _ , , _ _ , , , . _ , , , _ _ , , . _ , _ . _ _ _ _ .

Report No. 01-0300-1292 Revision 0 O

V 2.0 SYSTEM DESCRIPTION The Trojan Pressurizer small-bore S/RV piping lines are attached to the large-bore S/RV discharge pioing, They function as sample, drain, and vent lines to 2.0-1, Figure the large-bore are: piping. The system as shown on the schematic drawing Pressurizer Sample Line (Analysis RC-02): This 3/4-inch single line connects upstream of the relief valves, it is defined as a ANSI B31.7 class 2 seismic class 1 line.

Loop Seal Drain Lines (Analysis RC-03): These three 3/4-inch lines connect upstream of the safety valves, draining back thru the large-bore piping to the pressurizer relief tank. They are defined as ANSI B31-7 class 2 seismic class 1 piping upstream of valve 8093, and ANSI B31.7 class 3 seismic class 2 downstream.

Slug Diversion Device (SDD) Drain Lines (Analysis RC-04): These four 3/4-inch lines connect the bcttom of the SDDs to the pressurizer relief tank back thru the large-bore piping. They are defined as ANSI B31.7 class 3 seismic class 2 piping.

O O

Safety Valve "C" Vent Line (Analysis RC-05): This single 3/4-inch line vents downstream of the PSV8010C Safety Valve. It is defined as a ANSI B31.7 class 3 seismic class 2 pipe.

Pressure Point "449" Line (Analysis RC-06): This single 3/4-inch line connects downstream of the Relief Valve SDD. It is defined as a ANSI B31.7 class 3 seismic class 2 line.

Relief to Pressure Tank Line: This 4-inch line connects upstream of the pressurizer relief tank.

It is defined as ANSI B31.7 class 3 seismic

class 2 piping.

The first five linas are analyzed for the large-bore transmitted loading. The last line is not arialyzed as branch movement.t are negligible. Note that ANSI B31.7 specifies ANSI B31.1 for design and qualification of cluss 2 and 3 piping. Seismic class 2 piping is non-seismic and therefore no seismic analysis is performed.

A complete description of the attached large-bore piping system with functions defined is included in the large-bore pipe stress report (Reference 7.4d).

i lOv 2-1

3/4" SDD DRAIN LINE

    • I 8[ 3/4" 3/4" 3/4" 3/4" 12"x 6" f.--..-Q -- 3/4" ECB GB

-T--

l T - - 7 g

i

, g g

% i g i l 6" PRESSURE POINT g 6"

, 6" l 6" g

, 449 PIPDE 1 y lPsv801oc IPSV8010B g PSV8010A I '

l 6"x 3" d- d- -- C 3 L - s 3f4" X8093 4"g i f ~~ ~ ~ ~ ~ 1 $8052 g  ; g 8

.l l SV "C" VEtTfj IDOP SEAL DRLIN LINE 8

~

3" LINE 8 l l 3 g i gl 8

80640 8064B 4 i g l 8064A 8 PCV456 PcV455A  ! l l

I 6" gpgg , , 6" l 6" l SAMPLE

~"^E PRESSURIZER

{ -- 6"x 3"

$ -> I!

I g l

l g

l I

yy ANCHOR AT i LINE _. ! PRESSURIZER

, {

3/4",  ! , RzL1er taux.

6" l l 4

ET WT e 6: .

AhCHORATPRESSURIZER(FCURLOCATIONS)

Small Bore Large Bore FIGURE 2.0-1:

SCHEMATIC 0F THE TROJAN PRESSURIZER S/RV LARCE-BORE AND SMALL-80RE PIPING S e O O

Report No. 01-0300-1292 Revision 0 i A

b 3.0 SYSTEM QUALIFICATION CRITERIA The codes of record for the Trojan Nuclear Power Plant small-bore piping are the ANSI B31.7 Nuclear Power Piping,1969 Edition including all addenda

- through 1971 for the class I branch connections, and the ANSI B31.1 Power Piping,1973 Edition for the class 2 and 3 piping. The computer analysis code checking uses ASME Boiler and Pressure Yessel,Section III,1974 Edition equations. Modification (i.e., stress intensification factors) to these equations have been made to insure code of record intent has been met.

An exception to the code of record has been used for branch connection stress intensification factor (SIF) due to unavailable code ruling in ANSI B31.1.

The ASME B&PV Code,Section III,1974 Edition Sumer '74 Addenda is used to calculate this SIF.

The main design documents for qualification are the Analysis Design Criteria, Revision 0 (Reference 7.2a), Revision 1 (Reference 7.2b), Additional Design Criteria (Reference 7.2c), Revision 2 (Reference 7.2d), and Revision 3

, Reference (7.2e). These represent the as-designed and as-built design input.

These design criteria are used for code stress. evaluations. Support G qualifications are not included in this work scope. Support loads, for all V small-bore piping systems analyzed are reported in Appendix C for PGE review and approval.

O 3-1 e

7- - - - , _ _ . . - - . - _ - . _ _ .- --.

, -.m.. -_-.-, ____ _ __-__-- , - . . _ _ - _ - , , , - , _ _ _ _ . . - - . - . - - - - . - - - . , -

Report No. 01-0300-1292 Revision 0 r.

O 4.0 ANALYSIS METHODOLOGY The small bore piping lines were analyzed by either conservative hand calculations, or the Impell proprietary Computer program SUPERPIPE. A Description of this program is provided as Appendix B of this report.

Analyses RC-02, RC-03, RC-04 (Phase II), and RC-06 were analyzed by the computer program. While analyses RC-04 (Phase I) and RC-05 were analyzed by the hand methods, due to their simple configurations.

A mathematical model of each piping line was developed and is shun ir Appendix A, of this report. They include the final as-built destyn input provided by Section 3 references, of the report. Analytical model.e were then developed which represent the mass and stiffness effects a' !:a .

system.

Evaluations of all significant static and dynamic loading conditions were then perfomed to determine internal forces and moments, and support reactions. All load case results are entered into the code stress evaluations: Class 1 for the applicable branch connections (on large-bore Class I piping), and Class 2, 3 for the remainder.

p 4.1 Load Cases V Four load case analyses were performed: two static cases for gravity and thermal ' expansion loadings, one response spectum or equivalent static (for hand calculations) for seismic loading, and one equivalent static

! for all large-bore branch induced movements.

4.1.1 Gravity Analysis The effect of gravity on the piping system was detemined by static analysis. The mass of the piping components, valves, insulation and (conservatively) pipe fluid were considered.

4.1. 2 Themal Expansion Thermal expansion analysis was perfomed for the two enveloping

!. load cases : maximum themal expansion induced branch movements plus either ambient or design temperature small-bore thermal expansion. The results of these two cases were conservatively enveloped for code compliance.

Cold springing of supports SR/304 and SR/301 was analyzed to match large-bore branch connection movements. The results of this applicable cold spring loading (analysis RC-02 only) are algebraically summed with the above load cases, i

4-1

-- -,v-,..,,a.m . , , . , - ..n. ,, , ,, .,, -,--,,-.,,..-,.,.n. _ _ , , ~ , , . , , . , , _ , , , _ . ,,,,ng.,_,,.n.,-,,,-,n,,, -,n.c

Report No. 01-0300-1292 Revision 0 0

4.1. 3 Seismic Analysis

' Seismic analysis was performed by the modal response spectrum analysis technique. This utilizes response acceleration spectra as the input loading. The mass of the piping components, valves, piping contents, and insulation are considered in forming a mass matri . All rigid restraints and snubbers are considered while fomdating the stiffness matrix.

Once these matrixes are fomed, the frequencies and mode shape for -

all significant modes of vibration below 33Hz are detemined.

After the frequency is determined the corresponding modal spectral acceleration is then taken from the Section 3 referenced design input (of this report). Using these spectral accelerations, the characteristic response for each mode is found. Using these results the maximum displacement response of each mode is calculated for each mass point.

The square-root-of-the-sum-of-the-squares (SRSS) method is used to combine the effects for different modes and different seismic directions, except for the closely-spaced modes. These closely spaced modes are combined by absolute summation, as specified by the " grouping method" described in Regulatory Guide 1.92. ,

After the joint displacements are calculated, the individual member forces, moments, and support reactions are obtained by using the member stiffness properties.

Two seismic runs were performed; North-South with vertical OBE seismic excitation, and East-West with vertical OBE seismic excitation. Results of these runs are enveloped in absolute value. SSE loading is obtained by multipling the OBE results by a factor of 1,67 (Reference 7.2c).

4.1. 4 Branch Movements The large-bore piping branch movements (Reference 7.4c) are analyzed by equivalent static analysis. Movements in each direction are analyzed separately then combining absolutely. '

Branch movements from the valve thrust (Safety or Relief Valves) load cases, and the large-bore thermal operating modes are analyzed. A co3plete discription of each of these load cases are provided in the large-bore pipe stress report (Reference 7.4d).

Branch movements from large-bore gravity sag, and seismic inertia are negligible and not evaluated.

~

O 4-2

I l

1 Report No.- 01-0300-1292 Revision 0 O l 4.2 Class 1 Branch Connection Stress Evaluation The Class 1 branch connection stress evaluations were perfonned to ANSI B31.7 rules to show that each of the stress limitations of B31.7 Divisions 1-704 " Pressure Design of Components" and 1-705 " Analysis of Piping Components" are satisfied (ANSI B31.7 Divisions 1-704 and 1-705 correspond to ASME Section III Subarticles NB-3640 and NB-3650 respectively). The applicable Code Equations with corresponding service conditions and loadings are presented in Table 4.2-1. A description of service conditions, loading, and definition of symbols are provided in the large-bore stress report (Reference 7.4d).

4.3 Class 2 and 3 Piping Stress Evaluation Class 2 and 3 piping stress evaluation was perfonned per ANSI B31.1 rules to show that each of the stress limitations of B31.1 Paragraphs 104

" Pressure Design of Components", and 102.3 " Allowable Stresses and Other Stress Limits" arc satisfied (ANSI B31.1 Paragraph 104 corresponds to ASl1E Section III Subsubarticle NC-3540 and Paragraph 102.3 corresponds to NC-3650. Since the Code Equation numbers for stress evaluation are not explicitly mentioned in B31.1-1973 Edition, the corresponding Code 3 Equations 8 through 11 of ASME Section III NC-3650 are used for discussions). The applicable Code Equations with corresponding service '

conditions and loadings are presented in Table 4.3-1. A description of service conditions and loadint1s is summarized below (Refer to the Code for the definition of symbols).

Design Condition For the Design Condition, the pennissible pressure should not exceed the pressure P calculated with Code Equation 4 of B31.1 Paragraph 104.1.2 and the stresses due to sustained loads calculated with Code Equation 8 of NC-3652.1 (corresponds to 831.1 Paragraph 102.3.2) should not exceed 1.0 S.h The design conditions are specified by the design documents referenced in Section 3 of this report.

Normal and Upset Conditions For Normal and Upset Conditions, the stress range due to thermal expansion calculated with Code Equation 10 of NC-3652.3 (corresponds to 831.1 Paragraph 102.3.2) should not exceed AS , or the sum of stresses due to sustain loads and stress range due' to thermal expansion calculated with Code Equation 11 of NC-3652.3 (corresponds to B31.1 Paragraph

.102.3.2) should not exceed the sum of Sh andA S . Additionally for Upset Condition, the pennissible pressure shouTd not exceed the pressuro O

4-3

Report No. 01-0300-1292 Revision 0 0

P calculated with Code Equation 4 of B31.1 Paragraph 104.1.2 by more than 105 and the stresses due to occasional loads calculated with Code Equation 9 of NC-3652.2 (corresponds to B31.1 Paragraph 102.3.3) should not exceed 1.2 Sh .

The load cases included in Code Equation 9,10 and 11 evaluations are:

Weight of piping system - Equation 9 and 11 OBE (One-half the range) - Equation 9 Hydrodynamic load due to relief valve openings - Equation 9 Themal expansions (Normal and Upset) - Equations 10 and 11 Emergency Condition For Emergency Condition, the pemissible pressure should not exceed the pressure P calculated with Code Equation 4 of B31.1 Paragraph 104.1.2 by more than 505 and the primary stresses due to occasional loads calculated with Code Equation 9 of NC-3652.2 (corresponds to 831.1 Paragraph 102.3.3) should not exceed 1.8 Sh -

The load cases included in Code Equation 9 evaluation are:

Weight of piping. system OBE (One-half the range)

Hydrodynamic load due to both safety and relief valve openings (Envelope of both runs)

Faulted Condition For Faulted Condition, the permissible pressure should not exceed the pressure P calculated with Code Equation 4 of 831.1 Paragraph 104.1.2 by more than 1005 and the primary stresses due to occasional loads calculated with Code Equation 9 of NC-3652.2 (corresponds to B31.1 Paragraph 102.3.3) should not exceed 2.4 Sh-The load cases included in Code Equation 9 evaluation are:

Weight of piping system SSE (One-half the range)

H(ydrodynamic load Envelope of both due to both safety and relief valve openings runs)

O 4-4

~

l Report No. 01-0300-1292 Revision 0 TABLE 4.2-1 CLASS 1 PIPING CODE EQUATIONS AND LOAD COMBINATIONS B31.7 Paragraph 1-705 Service Condition Code Equation Load Combination (3)(4) Allowable Design (1) 9 Pressure (Design) + Gravity + 1.5 Sm OBE + R/V Open Emergency (1) 9 Pressure (Emergency) + Gravity + 2.25 Sm OBE + Envelope (R/V Open &

S/V Open)

Faulted (l) 9 Pressure (Faulted) + Gravity + 3.0 Sm SSE + Envelope (R/V Open &

S/V Open)

Normal & Upset 10 Pressure (Nomal & Upset) + OBE + 3.0 Sm( }

R/V Open + Themal (Nomal

& Upset) + Transient (ATj &

hv lTa-Tl} b Normal & Upset 11 Pressure (Nomal & Upset) + OBE + ---

R/V Open + Thermal (Normal

& Upset) + Transient (AT), AT2 &

lTa-Tl} b Nomal & Upset 12 Themal (Nonnal & Upset) 3.0 S,(2)

Nomal & Upset 13 Pressure (Normal & Upset) + 3.0 S,(2)

Gravity + OBE + R/V Open +

Transient (lTa-Tl) b Normal & Upset 14 K, x Eqn 11 (K, depends on Eqn 10 Cumulative results) Usage Factor

s1.0 NOTES: (1) Pressure checks are perfomed by calculating the allowable design pressure (P) with Code Eqn. 2 of B31.7 Paragraph 1-704.1.2. The limits are P for Design Condition,1.5P for Emergency Condition and 2.0P for Faulted Condition.

(2) Code Eqns.12 and 13 need to be satisfied if Code Eqn.10 stress exceeds the limit 3 Sm-4 4-5 t

Report No. 01-0300-1292 Revision 0 O

TABLE 4.2-1 CLASS 1 PIPING CODE EQUATIONS AND LOAD COMBINATIONS a

NOTES: (3) OBE and valve actuation (R/V Open or S/V Open) were summed by the (Contd) SRSS technique based on References 7.ld and 7.6b.

(4) The thermal expansion associated rith safety valve opening is defined as an emergency condition by Reference 7.6a. Therefore, it is not used for code compliance.

O i

i I

t

'l 1

4-6 l

l *

[

Report No. 01-0300-1292 Revision 0 O

v TABLE 4.3-1 CLASS 2 & 3 PIPING CODE EQUATIONS AND LOAD COMBINATIONS ASME NC-3650 III Service Condition _ Code Equation Load Combination (4) Allowable Design (2) 8 Pressure (Design) + Gravity Sh

^

Upset (2) 9 Pressure (Upset) + Gravity +

OBE + R/V Open 1.2 Sh Emergency (2) 9 Pressure (Emergency) + Gravity +

OBE + Envelope (R/V Open & 1.8 Sh S/V Open)

Faulted (2) 9 Pressure (Faulted) + Gravity +

SSE + Envelope (R/V Open & 2.4 Sh S/V Open) p a Normal & Upset 10 Thermal (Normal & Upset)

SA Nomal te Upset (3) 11 Pressure (Design) + Gravity + S +S Thermal (Normal & Upset) h A NOTES: (1) Code Equation numbers are not explicitly mentioned in B31.1 -

1973 Edition, Paragraph 102.3. The corresponding Code Equations 8 through 11 of ASME Section III NC-3650 are used.

(2) Pressure checks are perfonned by calculating the allowable design pressure P with Code Equation 4 of 831.1 Paragraph 104.1.2. The

' limits are P for Design Condition,1.1P for Upset Condition,1.5P for Emergency Condition and 2.0P for Faulted Condition.

(3) Either Equation 10 or Equation 11 should be satisfied.

(4) OBE and valve actuation (R/V Open or S/V Open) were sunened by the SRSS technique based on References 7.1d and 7.6b, or conservatively absolutely summed.

O i V 4-7

- . ._. . = _ - _ _ . - __ . . . .. _ _ _ _ _ _ .

Report No. 01-0300-1292 Revision 0 0

5.0 ANALYSIS RESULTS 5.1 Class 1 Branch Connection Stress Evaluation The two analyses RC-02 and RC-03 are conrected to the large-bore class 1

, piping (upstream of the safety or relief valves). Therefore complete stress evaluation of these branch connections included both run and branch pipe stresses.

5.1.1 Primary Stress Intensity The primary stress intensities as determined by Code Equation (9) of 1-705.1 are within Code allowables. A summary of maximum intensities and comparison to the applicable allowable for each I

service condition are shown below:

Maximum Primary Stress Intensity O Location Service Condition Stress Intensity (PSI)

Primary . Allowable _ Ratio RC-02 Design 10,991 24,120 .46 DCP 123 Emergency 11,487 36,180 .32 Faul ted 13,475 48,240 .28

, RC-03 Design 20,458 24,120 .85 Envelop of Emergency 22,359 36,180 .62 DCPs 13A,49A, Faulted 27,581 48,240 .57 and 84A 5.1.2 Consideration of Normal and Upset Conditions The satisfaction of primary-plus-secondary stress intensity and peak stress intensity :*ange as verified by Code Equations (10),

(11), (12), and (13) of 1-705 are within the allowables. No explicit verification of the branch connections upstream of safety valves (analysis RC-03 DCP's 13A, 49A, and 84A) was required since the thermal transients associated with the safety valve actuation '

are defined as an emergency case and relief valve transients are not applicable.

5-1 I

Report No. 01-0300-1292 Revision 0 A sumary of the maximum stress intensity ranges and cumulative usage factors are provided below for branch DCP 123 (Analysis r RC-02):

Stress Intensities Stress Intensity Range (PSI)

Code Equation Calculated Allowable Ratio 10 110,400 50,000 1.84(1) 12 22,360 60,000 .37 13 50,400 60,000 .84 Note: (1) Although the Equation (10) stress limit is exceeded the results are acceptable by satisfying Equations (12) & (13). The calculated stress for equation (10) is for the run pipe only but satisfaction of Equations (12) & (IT) includes both run and branch stresses. Since the stress exceeds 0.0mSm = 102,000, Xe = 3.33 for fatigue evaluation.

highest peak primary-plus-seconda stress The correspondinfCode intensity range Equation 11) and maximum cumul tive usage factor is. f i

Sp = 253,800 (PSI)~

Sal t = 422,580 (PSI)

Maximum Cumulative Usage Factor = 4.00 Cycles Allowed = 25 l

The maximum cumulative usage factor is based on 100 cycles of relief value discharge. By review of the plant history (References 7.4c and 7.4d) a revised estimate of 25 actuation over the 40 year plant life.was made.

Therefore, to maintain system qualification, the number of relief valve actuations should be monitored during the remaining plant life.

O 1 5-2

1 l

Report No. 01-0300-1292 '

Revision 0

.5.2 Class 2 and 3 Piping Stress Evaluation The minimum allowable internal design pressure.for straight pipe, as determined by Code Equation (4) of 104.1.2 is greater than the specified design pressures.

The pipe stresses, as verified by Code Equations (8), (9), (10), and (11) l 1

of NC-3650 are within allowables. A sununary of the maximum stresses and ratio of calculated to allowable stress is provided below.

Code Equation / Calculated - Allowable 4 Analysis Service Condition Stress (PSI) Stress (PSI) Ratio (8) Design RC-02 3,142 15,900 .20 (9) Upset 9,563 19,080 .50 (9) Emergency 9,563 23,620 .33

. (9) Faulted 14,263 38,160 .38 (10) Normal & Upset 26,969 27,475 .98 RC-03 (8) Design 4,439 15,900 .28 (9) Upset 6,187 19,080 .32 (9) Emergency 6,834 28,620 O (9) Faul ted (10) Normal & Upset 9,552 24,145 38,160 27,475

.24

.25

.88 RC-04(1) (8) Design 4,029 15,900 .25 (10) Nomal & Upset 11,751 27,475 .43 RC-05(1) (8) Design 1,394 15,900 .09.

(10) Nomal & Upset 10,146 27,475 .37 RC-06(l) (8) Design 2,296 15,900 .14 (10) Normal & Upset 25,789 27,475 .94 Note: (1) Analyses RC-04, RC-05, and RC-06 are seismic class 2. Therefore, only Equations (8) and (101 are evaluated.

5.3 Support Loading Support load combinations were based on the following table. They are included as Appendix C, and were transmitted to PGE for their review and approval (Reference 7.4f). All loading is in the plant global coordinate system, as shown by the math models contained in Appendix A.

O 5-3

Report No. 01-0300-1292 Revision 0 O

Set Name (1) Service Condition Load Combination (2)(3)(4)

NORM Normal Gravity + Thermal Expanison +

, Thermal Branch Movements + Cold Spring Movements UPST Upset Gravity + Therwal Expanison +

Thermal Branch Movements + Cold Spring Movements + OBE Seismic

+ Relief-Yalue Thrust Branch Movement EMER Emergency Gravity + Thermal Expanison +

Thermal Branch Movements + Cold Spring Movements + OBE Seismic

+ Envelop of Valve Thrust Branch Movements (Relief or Safety Valve)

FLTD Faulted Gravity + Thermal Expanison +

-Thermal Branch Movements + Cold N Spring Movements + SSE Seismic s + Envelop of Valve Thrust Branch Movements (Relief or Safety Valve)

Notes: (1) Set Names correspond to those used in Appendix C.

(2) OBE and Yalve Thrust (Relief or Safety Valve) loads are summed absolutely except for as-built analysis RC-03. These RC-03 loads are summed by the SRSS technique, based on Reference 7.1d.

(3) Analyses RC-02 and RC-03 are seismic class 1 piping, and therefore include seismic loads. Analyses RC-04, RC-05 and RC-06 are seismic class 2 piping, and therefore do not include seismic loads. Maximum loads reported for these seismic class 2 piping are for the upset service leval.

(4) Cold spring movements are for analysis RC-02 only.

1 5-4

Report No. 01-0300-1292 Revision 0 0

6.0 CONCLUSION

As discussed in Section 5, all small-bore Pressurizer Safety and Relief Yalve piping lines meet the requirements of the System Qualification Criteria, and the applicable sections of B31.7 and B31.1 Codes. The pressurizer sample line class 1 branch connection is qualified for 25 actuations of the relief valve.

To maintain system qualification the number of relief valve actuations should be monitored during the remaining plant life.

All piping and supports are as-built except for the SDD Drain Line, as shown by Appendix A drawing RC-04.

O O

6-1

,,--e '-

'~

i Report No. 01-0300-1292 i Revision 0 I

7.0 REFERENCES

7.1 Codes

a. ANSI B31.7, Nuclear Power Piping,1969 Edition, including all addenda through 1971 (Code of Record for Class 1 Piping).
b. ANSI B31.1, Power Piping,1973 Edition (Code of Record for Class 3 Piping).
c. ASME BAPV Code,Section III, Nuclear Power Plant Components,1974 Edition, including all addenda through Sumner 74 (For Class 3 Branch Connection SIF).
d. NUREG-0484, Methodology for Combir.ing Dynamic Responses, Rev. 1.
e. NUREG-0800, Standard Review Pla9 Section 3.7.3 Seismic Subsystem Analysis, Rev. 1.

7.2 Design Criteria / Input Data  !

a. Trojan Nuclear Pressurizer Blowdown Piping Analysis Design Criteria, O Revision 0, transmitted to Impell by PGE Letter RLS-415-82, dated April 2, 1982.
b. Trojan Nuclear Plant Pressurizer Blowdown Piping Analysis Design Criteria,  !

Rev.1, transmitted to bpell by PGE Letter RLS- 489-82, dated April 21,  !

1982. i

c. Trojan Nuclear Plant Pressurizer Blowdown Piping Analysis Additional Design Criteria, transmitted to Impell by PGE Letter RLS-554-82, dated May -

7, 1982.

d. Trojan Nuclear Plant Pressurizer Blowdown Pipe Analysis Design Criteria for Final Stress Report, Revision 2, transmitted by PGE Letter RLS-124-84, I i

dated January 20, 1984. '

l

e. Trojan Nuclear Plant Pressurizer Blowdown Pipe Analsyis Design Criteria I

' for the Final Stress Report, Revision 3, transmitted by PGE Letter RLS-390-84, dated March 27, 1984.

7.3 Final Safety Analysis Report l

Trojan Nuclear Power P1 ant, through Amendment 34.

f O

7-1 v--v v .---n -,- , --.--,-w- , - ,-- , , ,- , - - , -. . - . . = - - - - - - - . , - ,

Report No. 01-0300-1292 Revision 0 pJ 7.4 Impe11 Problem Files, Reports and Letters Related to the Pressurizer S/RV Piping System

a. Impe11 Pipe Stress Analysis Calculation File No. 0300-018-RC-01, Revision 0 (as-designed results).
b. Impe11 Pipe Stress Analysis Calculation File No. 0300-018-RC-02 through RC-06, Revision 0 (as-design results).
c. Impe11 Pipe Stress Analysis Calculation File No. 0300-018-RC-01, Revision 1 (as-built results).
d. Impell Report No. 01-0300-1 291, Revision 0, " Trojan Nuclear Power Plant Stress Analysis Report for the Pressurizer Safety and Relief Yalve Large-Bore Piping System".
e. Impell Pipe Stress Analysis Calculation File No. 0300-018-RC-02 through RC-06, Revision 1 (as-built results).
f. Impell Letter 0300-018-018, dated May 25,1984, " Transmittal of Small Bore Resul ts" .

7.5 Drawings

a. Piping Isometric Drawings:

RC-2501R-29-650, Revision 8 RC-60l R-2-651 , Revision 8 RC-2501R-12-650, Revision 14 RC-601R-2-653 , Revision 1 RC-601R-2-654 , Revision 1 RC-60lR-2-655 , Revision 1 1C-601R-2-656 , Revision 1 WC-60lR-2-650 , Revision 6 RC-601R-2-652 , Revision 1

b. Valve Drawings:

- PGE 6478-MIR(2)-231-3

- PGE M113A-16-5

c. Other Drawings:

- PGE Pipe Support Details Listed in PGE Letter RLS-124-84, dated January 20, 1984

~

O 7-2

k Report No. 01-0300-1292 Revision 0

. O 7.6 Other References

a. EPRI Letter (From A.J. Wheeler) to Utility Technical Contacts and Pi)ing Subcommittee Members, dated November 5,1981: S/RV Piping

, Su> committee, October 29, 1981, Meeting Agenda and Suggested Additional Note for the Load Combination and Acceptance Criteria Table.

b. WCAP-10105, Westinghouse Report, " Review of Pressurizer Safety Valve Performance and Observed in the EPRI Safety and Relief Valve Test Program", June 1982.

4 a

1 O

O l 7-3

.A ,_ _ _ . --- _ _

I I

I APPENDIX A MATHEMATICAL MODEL l

l l

l l

O D ,

O a

,9 W D4 a

\ / '

1/ v'

$ .\xA

\ a%

i/ \ gC,N D "  % e

>s E

\ h/ t,s o

.ao i "

< g 70

'y ih h f m f3 4

-/

AM 50 t 0

/ $ 25

/g h 60 ] .

Eh

  • b

{s j[

2o n " I i/L'py W

REFERENCE:

.2 g S to

~ P6E DW&. RC-2sotR-29-6S4kV6 5 $ g 9Hf~ f A --

Y a ^

O

  • %6 ~' d Q Q t P) Y ,

h b b . 10 M, fbRTAND GENERAL ELECTRIC Co.

S jg j TRodAM MUC1. EAR STATiod g ,,

g PRE'AuRizEPs SAMPLE t_fME i$ ,

BL p* 0 @g\ utz ey o4 eats Avenoveo ours . . .

"~

h MTS RBK W3M 6y -Y/h_4

___% _, j

z. 4 u, $p\ me,wuMeex PRAwiNG NUMBER. REVIMAN o?/Jo-018 RC-02. O Bf CNEoxEO AWF0VED PATC FEViSiON

'/M7 4 JN/' 2 ADL ' OS" LS

~~

E m__-_

l

-il g i t !1 f g .,Is,'1  :::li d 8

iT 58 s g l

(] Li e ll -

i r" l

m

- , o ,

i e , m, , .

.... ........... ...l. .............

8'

. .... et1 -4

---!! E W ii j li 4

8 I s

hii _

i

, n. -

.i

  • ll li

. [ ,, k n n

,f, . -

' s 3, g [ , .

0'

\

n v l d',_ ~ - ,,

d, gj se t t, i q;

. e .-

3 r ,

-s .

j 4 . ,

y 4

s- pi,e

]m

.k, , ,* (I  ;

4 . ,

J \ ~\

b. $,

4 ,

i

e. w s4 1 Sl ,

.j'  :

\ ,

t/ n n

k) 4_ (' N,kD r/

l h .

g I

t A-2 j

O a O l

t

\ l 3

[609.GLlo W '3" 1 i[x '

NORTH = - - " 'e + g.

4 D b 5'

, 65 r,b/ 4s 60 r e. HP. EL. (ct1L tn"

,5,, (,0 o 4

w. f l' iF.

9 /

/ 'l'j . .

>85

/  %'O'

=

,I4D

.e

\

f fg 4vi, is A X reo -

$ ~f f

~

l ,i

,0 6 io e ,

lOV y, } '

2s - -

5 ,p" ,f ,$ l

  • f.0

.ak { 13o j@ 2e 41 p

1 8 0 ils , ,

eg.

O O s. -

~ O t '

J "9 h #2d 10 5 v

9 d r REFEREMCE : '

9 I

HS 4 # 4 g$y3 hn M s 6 d) RC-GOl R-2-(o55 1%v. I 5

o t 8 0

N #

,5

" 4

  1. j ,

cosc-r,o ta- z-(,54 gav i 00 E-(,o l R- 2-(s55 REv. I

' ~

C Q W 65G REV. ! '

-t- o N < oo S++r

[i. C notes: F6F;TLA40 TRajAM 6EMERAL NuCLEAltELEG@TIOM IC CO.

$ l of 2. +

l. TEMPO 4RT' 'Tul4<, asth (LCD bog vc gqgg SHurvotay Wrttsc stcptAc@ Warm PVC SL PlVEDION TEVICE DRAIN LINE ( PHASE I ppW) .

5 As SHOWM 'BY 7Wi5 iso ~)uras 1959 5vwh, c4 ALE sy cHerxeo Avevouso pATE.

g y 2. TCP 30 iS AN PNht.YTchL hvicMt AT NTS ROY ld S!A GH W' l?3 ,

ANALYSIS TC Of ('DCP 2.a9) 13fblO4 Jos uuMeER 'picAWmo uusee.R.

"lP -E (%#/ECTzoo/ , __ CSOO-CIB RC-04 e isi m O

V- / 13)' Cl*E C KE D At*ItcyEV UATE REVISloN

__- . _ _ _ - _ --- - -- __ 2Vn .A _ _ _ AnuL _. t/lah . - -

~

O ,

O -

ga

, ~

f

. r,

.s ; _ . ._ z . . g g g a t H N d t, _ . . . . >

m

,Y v 0 o

E j t.e w j

- t I

._. x. $ .._ ____. _ ..._ .

d "

'-' 1 .. E 7

'e O e

. .O . . . . , d k

_ A __. _ a ._ _ ... ._

9_ _ _ _ _ _ J$

.g. i .

p't n -+

_ . 4,0 . O

$e G2 3

y0 a

I

._ . _. -e _

. 's v 6 er~

e l

= w r

- M 43 AS gn

$l g.g ,

2 O -

\ / JO

. ', . _ . 4 _

_.4.__.._-_...._.... 6 .

8A i - e Q O ~5 Wo 10 S 8 9_...._....__ . . d 5' .E z. _g.

$O o W 4 -

hD

.g E. . . . _ . . _ _ _ . . . . . Q / _ . . _ .

' [/ _ i Oe O' -

. - a r l~ k.y I We gm e

a

?

.. = a r G <

c3

=8

.3 3 g_

. . . . . . . . . 4. _. _ . .. ._._ . . 4. y, . . . . .

d9 . w ev uO 64

.. U .d .

.. E g .

~

W ,<os a-c o$ ., __.._ _...

_.__._..___.a...._..__

. J. N . ._. . _ _ _ _ _ . . . ; . y _. ._. _ _ . . _ . . . . ._ .. A e; ._.

- - . _M,.,. , . ,

g9=de

., a -- .

.e <e geq.

s

. , . 7 .,  ; . -. .. .. . .

- _ . _ _ , . y . _

2. _. . :s __. '. s s .....4__g._.__ -.

./t' .s... .

,_s. . . , , . l( < CD 3

\ s / \/ \ 'r \/  ;/ '/ s ,

1

f 1 _ . .,; . 4 ---

N s

s

/ s.

. .'s ..;' s ,/ .\y' s ., i. './.'<'N_.,>..',..s

. i s

.s .4 m- . ,

\ ,, x.> f

/ .

x - vat . rm.a O

  • N ,
  1. 'N

/ $DD 'D R AI .4 FIT's MCr Joe NO 0 30 0 -o IS PAGE O

/ x1 IMPELLUF

/z l

- - == ..c= == R c - o 4- l A-4 .

v i

n so; kN U b5 l' l 1

v :-

a ce g 4:

9 e >

1

$d gk u 3 g ,.

3<c fe !

s h, ee y3 to 9 e. .2 s w2 2 ,;y w

  • e ix f1 t .D 2 -

JT.

g 3

at '

4

'% k @a T @o 3

y o eO a s G L g3 y M -

( _

'e o W e' ID w- ~

w,L

.,3

\-

m b g i? c9x a 20 .

~

c2 a .

4 @\~ls

  • 0o

__.44 Qc f M wcp% p.

/ h. 4

%e #

\N-Qd

>e k

./ "?

so te l ;4 e e

t ce. ,>

$e-bwE

(

l W

a

?'

a'

.2 eI

.o u

to eW )

~

u O -/

~

s* A S E T r tig c ye ,, C ,, Ovntr

/

N . Vfd r N - o' e ~t Oc% '

'1, eds# nuclear or

  • - -- c~ c .. T- 05 I A-5 e +m-_,w -

[h V (g' V 5

\ / wa oY

. \ l n i / NS

, / ,e ..

x g

N' yOO 2.5 g *<6: "

n 9- ag 6 x  % ~

E J

d. 6 35 g

[ 'd 16 N eo e

  1. 40 g to 60

/@g g y 'g h (A to Y g 45 P

- { e d

!s, p *CKs G M ,;'

l + +e'. *s U 4 4'$g + g ,3*

j n5 8 # b F3i.F EREMCE*

p -

$ ( 0) %G ORw6 f?c.-60lR-t-&Sz, REV I Q y5k W - -

o k fbRTLAND GENER AL ELEc.TRIC. C,o.

@ (

TROJAN NJCt_ EAR. STATION j PRES $tJRE PotNT 449 PIPINO j eCALE BY OiECKE.D AlYRCNED DATE c , y

  • NTS RSK $gSm t &H SN23 l -a

y_ aos wouse.it ogAwino nomeER. gevision

! r o300-Oi8 Rc.- O G o eg j cusa uv m es arre mussw 7174D :M htA 2 tW F4 i 7

l l

i f

l l

APPENDIX B COWUTER PROGRAN i DESCRIPTION )

O I

O ,

.- -. . = ..

l Report No. 01-0300-1292 Revision 0 1 O APPENDIX B C0WUTER PROGRAM DESCRIPTION SUPERPIPE: Version ISB,15C, and 16A l

SUPERPIPE is a general-purpose piping program which perfoms comprehensive l structural analyses of linear elastic piping systems for dead weight, themal  !

expansion, seismic time-history or spectra, arbitrary force time-history, and other loading conditions. Analyses are performed to ASME requirements for Class 1, 2, and 3 systems.

The program has various features for user ease in defining the piping system.

These include automatic generation of node coordinates and curved segments or elbows, automatic cartesian / polar coordinate transfomation (translation /

rotation), built-in data (including stress indices) for standard material properties, and piping schedules. The program also has various plotting capabilities, and extensive diagnostic error and warning messages aid in checking the model.

In addition to the basic capabilities for performing dead weight, thermal expansion, seismic response spectrum, and anchor movement analyses, SUPERPIPE offers a number of more sophisticated features -for specialized piping analyses. These include:

a. Analysis with multiple response spectra for piping supported at numerous levels within a building and, therefore, subjected to independent loading (different spectra) at each level,
b. Modal superposition or direct-integration techniques of time-history analysis for shock loads associated with steam hammer and water hammer effects in piping systems, or other arbitrary force time-history loadings.
c. Analysis with multiple acceleration time history for situations in which a piping system is subjected to independent motions at each support, and in which the effect of phase relationships between these motions is important.

Static or dynamic equilibrium equations are fomulated using the direct stiffeess met. hod, in which the element stiffness matrices are fomed according te virtual work principles and assembled to fonn a global stiffness matrix for the system, relating external forces and moments to joint displace-ments and rotations. Six degrees-of-freedom may be specified at each joint of the global system for both static and dynamic analyses.

O B-1 s v ---* * - , - - - , - . - - . - . - - - -.-- ,.- , _ _ ____.,_ ___._____.____ __

Report No. 01-0300-1292 Revision 0 O

The program has a number of element types which may be used in any combina-tion. These include:

1. Straight pipe
2. Curved pipe
3. Valve
4. General beam
5. Flexible coupling
6. Arbitrary stiffness matrix Static equilibrium equations are solved using Gaussian reduction techniques on the compacted stiffness matrix. For dynamic problems, the equilibrium equations may be solved using either step-by-step direct integrations of the coupled equations of motion, or by first calculating natural frequencies and '

mode sha motion. pes and transforming Natural the mode frequencies and system into aare shapes set calculated of uncoupledusingequations the of deteminant search technique.

The program has been thoroughly tested and verified for a comprehensive set of sample problems, including extensive comparison with several publicly-available programs and ASME benchmark problems. All verification analyses have been documented in accordance with established Impe11 Nuclear Quality Assurance procedures.

O .

B-2 a

^* a ,

l l

1 i

APPENDIX C SUPPORT LOAD SUMMARIES i

)

i l

1 1

1

( l l .

I 1

I i

l i

1 . l t

l l

1 r

_._ m

l Reoort No. 01-0300-1292 Re' vision 0

().

l APPENDIX C COMPONENT LOA 0 SUMMARIES l

- Analysis RC-04 through RC-06 Pages C-2 through C-7 Analysis RC-02 Computer Output Sequence Wo. 83/06/14. 08.57.27 Pages 26 through 33.

Analysis RC-03 Computer Output Sequence No. 84/05/23. 08.25.35.  ;

Pages 256 through 278.

4 O

f f

1 O C-1

} . . . _ -. - . __j _ ._

__.. _ _ SLIPPOET LOAo $dMMARY SDD ORAtW .. ..

O -

-4 I2hMB19ED_foM2uIce._nto HWo ensut.TS) . -. . . _ .

-- --a >  :

__ _q: . __ _ .. _}  !

_ . r- ~ ~~ ' - -

. . _ i.

I i

, _____._.-.___._._q___. .

y _, ._

gtr.:r>wea :p .

I ' ' '

t ' i I

i

, . _2_ 40 'j ... .f'd._ppJ R:2-hO_8en..:1..____ ~~l . _ _ _

c4 _.J _ .. FC.:Go1R 2- 65L.Rev t

' i '

GL.._i ._..RC-2,o L&2..3),55 Rev. I _ _.. . _ . . , _ _ _ . . - .

t i e6. _.i.

RC p ol R-2 Gy&...Rev. l.

._. ... . _ _ e ._ _ __ __ _ _. .

- _ _ _ . . _ . _ _ . . _ _ _ . .2._._._ _ _ _ _ . . .

' t

_A _._

_ . . . . . _ _ . _ . . . . _ . _ __J._ _ . . . . . .

._._1_._.__. _ _ . . . . _ . _ . . . . .

LOAD CASE. DEF(MtTlOld i

... - -.. - .._:_ - -_ -.__i -__.._i ._. -. .

dP5ET= GRAYlTY + THERMAL EXPAN6tod_+ SDD ptSPLAGM9JTs . . . _ _ .

_.._.__ All' momenio.forecc>,ond .clieplacemens o.rc in gobc4 ccordnatcu- . . _ . .

_. (4th +0c execpiion of eup

_ . .. __ locod x-dlrcct100 bhc,ojorig ~

oxid of + fport nc pipc Rc.-90lR-2.-oso

'Tnc local TR y-clirecOon is para.llcl lo 4hc gioco.1.f direction . Tnc, local a-direchon _id . the remaMing #rcchco 'in_thc. norjecral . _ _ _ _ .

_ plane., entrl. trSiv'lg fhe righhhonct .fulc , .

._.L_.._. _..;. '

..__....._....f...._.__..._;._..__..._. ..

_.. - __ _ ._ . . . _.___1.-. _ . . . - . _ . _.

i i ___ ..__. _

i. . _. . ; . . . . _ . . . . _ .

I

$ . _ _ . j _ __ . . _ _ ._ ._. .._. ... .

i

\ l i '

  • i I '

l _  ! .

l  !  !  ! ,  !

..____ __i.. _..._.._._ 1; _.__.

l _ _ _ _ __ij ,  ;

. ._ q . _ . _ _ _ , . . _ . .

__..._..__._..__..__q_ '

q.. _...__ _ ... .. _.

. . _ . _ . a ._ . .

ORTLAklO 6EhlERAL. Etrd'TRIC,-TD-)%M OUPBCT LOAD SUMMACY v / M f$ Yi4' GH vl&hN JO8 NO C =.O.)- C) - ' AGE o a es/e3 w wrom l

REV BY DATE CHECKED DATE IN kCom>W PELLA " " ec.-c4 Od G

C-2

! p 60PPo2T SOPFDET DIPM ARIS GEDOLT LOAD uAus- TYPC com Tym. Typ6 .%1 X-Arld Y-AXb a-Axl5 Fca. N.u. E. P; ping.

E-Octe. E3 41cHot ot0P./t 6tteAL F0ec(LSI UPST 20 -

4?o TA3G t#bi - SS - 17 -18 (DC9(00)

._ _ .. _ . M0MT (F1 tb) . Ur5T l4 2. 24

_ . _. . . uPdT. --4 l -- l 1 - l6 5t-oolR-2*i3 eNcaL . Y otO6AL FORC(Led WT - ~~ -

H so2. lpsT - -g _

(D CP i d -. __

Disp (id .35 -

. I 4-St-00tE-2 -053 AGoe. G.ceAL 6t06AL FORC(Led dPST 21 19 TA tot uoT - 19 -16 --19 (OCP 1303 MOMT(Ff l$ L@T 8 to 28 DPoi -33 -11 -l 7 Rc-oo*-2-25 AucHoc GLo6AL 6LOBAL FORC(, Led UPST 20 ~

R TA Sol UPST -19) '22

-45 (9CP l A5)

McMT (FT LS) LANT 2 'J_ 24- ll uPST -16 - 2. ~50 2-40tR-M% MCtioR. eLC6AL OLo6AL FORC. (LSD UFoT 42- 4 26 TAcol UP6T -l7 -7 -19 (tY_P O 7 McMT(ff tb) UPST 2S II 24

~

Fct tbI pipy ec-Goir-2.-06S 6uet Y c,toege poec (Len op37 -

24 -

E.too updT -

- 44 -

OtoP (iN) .15 - -

ecTootR-2-G53 t*CL E (atoeAL FOR4, (Leh U67 - -

9 w Sm _

ves1

-9 Disp (,1@ i,IS - -

P2TTLAuD c2E.UEVAt ELEc.W ic.

SU PPO C.T LoAO SOMMACT JOS NO o 3.,4 o - ni g PAGE D E H2ch; !Wf1 1/n/vi ly p(({ O cAtcwo y REV BY DATE CHECKED DATE Q"^Mm E~04 b 1

, C-3

evPR17 50 Prosy pigg AtL5 RE.h.h.T LOAD

.NAME. TTIT coCE TYPE TYPE eET X - AXtb T- AXib 2 -Av id tCefoote-2-054 SEL T etmAL R*c.LLS) uP3T 2.4 Te soo upsT -

-44 -

'~

. _. oceoo .

t .,s RC-GolE 2HsB4 seL X 6tDBAL F02c.(.L65 tPJT 9 "- -

TR Soo UPOT -9 - -

DlbPLIA - - d ,~l6 CMcotR- 2-r45 :l46L Y 6tDOAL fbRC (LST U PST 24 -

Tnsoo uo3T -

-44 -

DitP (19) i 3Ci - -

5'q-00lR-2-(i55 sw.st. P_ otreAL FORC (LB) OPbT

~ -

9 TRtoo 09bT

-i pl6P (thO :i3S C

Er-0clR 2-050 ScL Y local Focc. [L.e4 U9ST -

2.4 -

Tn aco upoT -

~44 --

L&AL pidp(10 a.75 - -

t-gotR-2-050 S%L LATEFAL. LOCAt. FCEC(L.ed UPST - -

9

,wsoo upsT - -

-1 .

LOCAL pioP (.INI t id' - -

N OG*

cn cumiec et/o,/o,. n.m.m.

(2) RC-C+ GOALIFICAItON OF sDO DRAiu PIPIPG,' W. O , g312.and I?.2.

TbEzrtMO eeue%L. e_urrec l 50FRCT LOAO couwALN l

m no o=,yf -ngr- PAGE l n REV cet BY now DATE

,x-CHECMED wn/e3 DATE IN PELL O 0**^*

^' "

  1. 3 l C-4  !

l l I

__-_..-.-7

.. . , . _ . . . _ . . I

, __ ._ _ . _ - i .._

I

_ _ . SUPPORT LOAD l$UMMARY ! _

h

_4 _ __ .

l. SAFE.TY VAtNE ."COUTLET "_ _i/ENT _ _ . - _ _ _ __

_.__._..4.__.....

i  !

J

, i 2F.._pWC2.fi . RC-(,o(R-b raSo WM_Gr ..__ ._-

i g_.

3 .

AtLforcco.ond I

displaceAwlb.. art. i _. global direchons. 4.. . . .

i l l 1

I s .

_ _ _ . . . . . - _ . ~ _ . . .

1  :

...7..__._._..___.._.__.. _ _.. - .

1._.;,_ _._ _ . .. . _ _

_. ' . . ... I

_ c_. _ _ . . . . ~ . _ .i . _ - .

.. ...__i. ._ i K . __ 1 ._ . _ .

_._ ._ _ _ _ __ _ . 1 __ . . _ _ _ . . _ _ . . . _ _ _ _ . . _ _ - _ __.._.

_ . _ . . .. ....._._..l__..._.._,._._._.-_._l..._._. .

I i '

i l

L' _ _ ___  ; _. . -

I I ,

t i '. i t >

i

.. . _ . . . ._J.._. . . . . . . _ . . _

FbRTLAMD O!ENERAL. ELECTEIC. GNAM

, . , 6JPft)CT LOAD SUMMt.RY

/ BGY 6fi'ytef fjQ L'id H Joe No ObOO - OI E, PAGE o ex w es * **" IM PELLO '

REV SY DATE CHECKED DATE 0"^' " " ac-o s

  • b C-5 .

l_ '

._.____-~..._....-.__.____-.i.  ?

'. i i

. .. _ _ SUPPORT NAME . __, ._ FoRCEt]l bed . _. Ol6PLACEMUMM14 I

_,.__..g_...

-. - 1--, ..l-._.- - _ _ - - . _ . .

It-00tR-1-G50 SR-200. .. .-_. Fxa F2 = i B l . 6 . . _ _ ..

1 AP 2.15 12C%01.R-1-h50.M-30( ._ ___. __Fy=2E = i 50.5 ._ ay 2.75 l  !  !  :.__...__.-.. .

I L ___ _._. . ._ _ i  ! ._. _ . .

_______j_.._. -__. _.._._. __.

3 I

i I

.__.-...-....__._...;... -..__.____.__.l___..._.

________a_.. ._ _ - . . . . . . _ . i._.-_.._______._ _ . . _ _

_ _ _ _ . _ _ _ . _ .__ ..- _ _ . . _ _ . . , _ _ _ . _ _ _ _ . _ . . . _ _ _ . . _ _ . . l

..-.d_____..._......__..._....

. _ _ . _ . . _ . . _ . . . . . _ . . _ ._ . _ _ . : ._ _ _ _ _. . y . . _ _-. .

4 ,

. . . .e .-g . . .-e

......._f.. . . . . _ .m ._ . ..__ _ .

_ _ .- _ ... - - . _ a _ - .. .._ = _ ._. - ._ _ . _ . . _ _ . _ . . . . _ . . . _ . . . - . .- .

I i

. ...._.____L.___ . ..

_..4__._.. . . . . . . ..

, I  ! i l h j 4 _. _-.

____ *C" OUTLET yEhlT EEV. O. . . . _

_._.l .ouAUFICATt09 OF.SAFETLYAINE  ! i  : .

3

, , . .. ._q _ . .. . ._.

l __ ._ _ .. ....t. _._ _t_.

anwo sensen.ew.truc-wcom 1 M N h"" *

! O REV RIK BY il2hlES DATE RXM CHECKED 7/n/p DATE ggQM k W'N cate se

~

,,b 2

i 1

i C-6 -

SUPPORT- LOAD cuMMAR.Y-PReesdR.i2ER. PoidT 44ct O ^"c"ce- 'oc4Teo ^T ace es

$Q6l* - Atid TYPE RESULT TYPE X- AXt5 Y-AXtS Z - AXl5 0 FDF.CE (.lbsl 8. 14 J -2.4 3.AMS ] mBR

~Z T .: .. MDMENT(f+-Id) --l4 9 - 2.

.fg W ggg FORCE (ib6l S7 - ._l3 . - (a

~: .~ ._ . _ . 1 ZZT MOMEMT(ft lb') ~/[. 42. C.

h,]f 61OBAL N 'D*

~ #' 7 Al

' ouatr(4+.tc)

M . .C i to g

THRM 61.08AL ' ~

~ ~~ O McMENT(ft tbl -5 - 84 . -3 .

gg cg g FORCE (Ibs') O - 2.2. -O MOMENT (A tb') .2 -C I

&q LOAD CASE DEFIMtTlOd:

s y

. _ . 13PSET = 6RA\/ + EWV(THEM&TAMLTHRH& tau 6, TAM 3,TAH5)+ FT4-Il 9)PftCT $UPPoer AX15 PE S U LT LOAD X- A'/IS Y'AYt$ 2.-4Y15 NAME TVFE TYFE WFE, 6E.T as ANo-1 aceAL FOPG UPSET 4D C 7 cioel OP3ET -37 -S7

~ . ). ~: r ~ . - -

MoueMT UPSET ~ 2.- 62.- 1

. = _ - - m m3 UI upset 7/7: - 30 4

{ _'NOTET : - ... . e m i 4. o, ec.

.Tnceu l

odds4 lj& nv.1l%  % ch Ib 7413,Y S i pin. n % - t _h ,*Term' wea.1 MN1 db f3:_FEREklCE; __ _ _ . .

~.[.6dPERPIPE 83/O(o[83,'O9,S[,t1, FORTL.AMD 6:NECA' . EmcTelC' TRC,J AM C JPiVC.T LO AD S Lj uM ARY 1 $W 9/A1/N #4 M4/g4 JOB NO OS.% - Q ~ , PAGE c cex. */95 wm  % c^'c "o FIEV BY DATE CHECKED DATE eldis@ nuclear RC-Occ o/i C-7

s N

r s

PAGE 2.

j O CDS NUCLEtt INC. .

SUPIKPIP! v!RS. IS: 357297921 SfSTEM E35 - Mit 83/'5/It. '8.5T.?T.

9

'JRTLA40 GENERAL ELECTRIC: TROJAN 1J:LI4R STATION ~- - -- -- - -- ---- ~

-PRES $UtIZER-SAMPLE LI1E- - - - - - - -

--- ~ ] .)

!l) j' lf, 7

' I. .

4_l

.. 1

)

l ................ ................. )

. DESI31 3 4 .. --

f E t I-F I C 4 f I 3 -N

)

j -

SU PP ORT LDAD IJ99ttr . . SUPPORT LOAD

SUMMARY

)

FOR ALL L34D C313tNtTI)13 .

  • FOR ALL LOAD C31RINATI315

)

LI:1r R)l?TLAND OOJER A1_ EECTEIC .
  • i i

- . " - - sos -ns ;;.QkQQ- Q]6 __;- - - - - - - '- - - - - - - - - - - - - - - - - - - - - - - -

)

. CALC./ PROB. NO. NC'QS - - _

. . y

. PttonRti tr: R.B. KAd oar :G[l4/83 .

)

  • , CHECKEJ aV: (g , g , g , [ g g g __ DATE: (/tdS3 .

................ .................. )

9 9

d d

d +

EDS NUCLE 41 I N C. r ~

') ,

SU)!RPIPI PAGC 21 s

  1. Et3. 15' '31/29712I SfSTI1 !)S - 133 83/*5/14. !s.5F.?'.

,, e PotTLAND SINERAL ELECTRIO: TROJAN 1JELIER STATION

~ ~~

PRESSUtIZER SAMPLE'LI h

[

~ ~ " 773

)

- ~

(l,3 ll ; SUPPORT LO4D SU144RT SJPPORT LOAD SUMMART CHICt!15 RI3ID4 1131:4T3t ^2 TUL'. ~(ALL' SUPS 3tT37- - ~ ~ ~~ -~~ ~

~ ~ ~ ' ~ "-- ' ' ' - '

l

( *R )

. OUTPJT. DETAIL It31:4T31 ..

JITL _3IT4tLI)

_ . . . . ._ I. S T..OU.T I l '.{ COMMINTARY IN31*4T01  ! - IOMM (COMMENT 4RT T3 BE PRINTED) '

, )

LO4D 045I 113f C4T 34

  • JL3I (RE-USE *RIVI OUS CASISI -

+

PRIS3JtE Stir 4T1JTI)1 I131:4T31 x 3L)* (40 31sTtI3JrIO45 TO 3I SPI:IFII)) '

TEMPIR4 TURI DIST tI3JTION INDICAT3R = OLDT (40 3ISTtI1JTISMS TO BE SPICIFII)B )

I 3ESIl1 :1E*( 03MMI1T4tr . . _ . . . . . _ . .. ._

' , . ., )

.2 . .. _ . _ . . _ . _ . _ - . - . _ _ _ _ . _ . - . _ . _- - . . _ _ . . . . _ . _ - . . , _ _ _ _~ . . _ _ . .

I GRAW GRAVITY THM1 THERMAL 8 138'F ~ ~ - -

T492 T1!t14 3 699 ' ,

T419 03.3 S*1'13 J *45: -  ! )

0BE1 3BE M*Y DERECTION - ~'-~ ~~ ~ ~ ~ ~ ~ - - ~ ~ ~ - ' - - - ~ ~~ - - --' ~ ~ ~ ' ' - " ~ ~ ~ ~ ~~

00E2 GBE Y-Z DIRECTION f115 T111

  • TM13 )

yqg .gqq, ,.T413 - - - - ' ' ~ ~ ' - ' ' ' ' - ' " ' ~ ~ ~ ~

ORE E4WA(OBE1 & 3BE2) '

SSI 1.57 X OBI ,

y 1341 314 v

  • tit 13 * "T113 ~~~- ~ ' - ~ -- - -~~--- - -- ~ -~ -- ' '- - -~'--- -

J3ST 314W

  • T199
  • T4M11
  • TH923 + 35 FLTD GR4V + THM3
  • THM13
  • THM23

, J t

9 4

EDS NUCLIECN:C. .

PAGE 28 9'

S UPE RPI PI WERS. 13: 35728f924 SYSTI9 I)5 - 433 83rds/14. J3.3T.2T.

.. y .

I'

'3RTL440 3EMIRAL E.ECTRIC: TR0 JAM (J*.I4R STATIDM '

t j ,

- ' *tESSut IZIt ' S AMPLE- LI MI- - m--- - -

7 l . .,

4

, 2*

i ; LO AD SET SSECIFIC ATI)4 ,)

SET C098 y NAME TYPE LIST 3F CASIS I4 G40US '

. . . . . . _ . .. _ . . . . TITLE'_

NotM 3FLT 3tu T193 T113 T123 40R14L CutDIT134 ,

2 UPST 3FLT G14W 3SE T4M3 T113 TH23 UPSET' CON 3ITI31 3 i FLTD )FLT Stty 3SE T193 T113 T123 'AULTI) CJ4DIT134 -

1 l )

T 1

en v.

I l I

)

, a i

l e

J I

o

y _. . .. _ .

f I .

A N

EDS Nu:LI44 120. PAGE 29 9 SUPERPIPI WERS.15: 35f28/921 SYSTEM EDS - NO3 83/36/14. 'h.5F.21.

N 2

. _._ . _ . . 3. t T .L t 1._3. ._3 !_1_!.14 I.IOTRI:2 T43J41 tJ:.ItR ST4T!31 ~ "- . '~~ ~"-~

~

~ 81E55'JRIZER ' S AMPLE ~LI1E-' ~ ~ ~ ~ ~ ~ - - ~ ~ ~

pT f

'7 p 3riaILS 3r SJss3tT3 r)1 Titi 3U11127 ' ' ~ - ~

~ ' ,-.

I I s,'. l' .. SUPP 3UPS -

-~E"-~~~ ' Y ~

', I

~ - ~ ~ "~ ~ Z ~- SUPP7I11 1 RCli DIR.-~COS. UR T ~3LV 3 41." 4 XE S'"--~" --' ~~* ~~ " - - - " * ' '

)

N49I .300  :))t3 0331) 2 33 8t) TYPE 03)E %XIS X Y Z grr3 try3 g r y3 ) r 2"; ij

)

123 1?! -53 157 129 1'I? -25 567 4NCM 3.33 ^'-

2SV 2* -37.3C1 129.667 -26 56T SNU3 Y s 252 2$ -39 167 129 667 -26 56F $4GL Z -)

. 35f 3:i -37.451 12 % 66 T -26.003 54GL f

- ~~

- ~ ' " ' ' ' ' ' ' ' '

lif 4' -37 439 129 567 -!5 567 SMU3 X ,

5DZ 51 -35.959 129.567 -15.334 SNGL Z

)

65Y 65 -35.459 130 253' '~ -2 5.5 6T ' " SM GL ~ f "' -

90 2n -53.126 130.250 -25.56F 41C1 3'.31

)

1

~')  ; s, as.-

-4 m

.o l'i

. ~ . . . . - . . . . . . . . - .. . . . . .

t

)'

i' g I <

b,3

)

i .

i..

.* h b

i \

r w/ G J 6 EDS NUCLE 41 I1C. .

PAGE 3?

SUDERPIP WERSv 15; 35/28/421 SfSTI1 !)$ = 135 83/16ft9. .8 57.27.

?

  • '1.

8097 LAND GENERAL ELECTRIC: TROJAN 1J .ILR STATIO1

.; -- -- '*t!SSuttE*1-$4MPLI lit..

J,* Nj

.a -

jp I.l .SUPP ORT LOAD $UMM arf

' ~ ' ' - - ~ - - - - - - - - -~~- --- -'--

,I SUPP SJam SJ** 3tti (I5JLT IISJ.T %WIS . DAD L3AD L3A9 lt e

L*

NAME t. 0 C N - TYPI CJOE -TYPE ~ U11 T - - T YP C -- ---- N= A N I S --SE T --- Y = A E I S --- S E T '- -- - -- ~ Z = A N I S ~ - S E T - - - - - - - --

I?1 171 41C1 G.38 - - - -'---'- ~ - - - ' - - - - - - - ' - - - - -

FORC (LB) 3LOS 29.2r 'LTO(1+) 12.15 'L13tM+) 19.51 FLTDti+) 3 EOE 4OI4}/535 1T.59 JPST 7.33 J85T 12 53 dSST

. . .12 - W O R M -- - - - . 2 9 - 13RM- - -~--3.s?~ N3R1 - -

Ft)PPr>th. OFE>f -43.ss 10RM -46.89 NORM -1.55 NORM y'

-61 1% JPST -53.93 UPST -10.48 UPST

  • F ?. 5 9 - LT0t1*) -5R.64- FLTotM-9 *16.97' FLT3tM-)

i 10MT t.1.rf) 3L33 1.11 rLT0ti+) 43.45 'LTDtM*) 14?.06 FLTotM+)

. ~ - h i l - -J P S T- - - ' - - - - 37 27 UPST 131.2 9 - UP S T -- - - -

-10.72 10RM 28.16 NORM 118 21 13R1 ,

=33.95 10RM -3.30 NORM -47.33 NOR1

-41.3% JPST -12 51 UPST- - -50.41 JPST

-45 79 L39tM-) -18 68 FLTDtM-1 -67.18 FLT0tM-) )

.)g gp - g g y, _ ytjg. - _ . _ _ . - _ _ _ _ . ___ _ ._ __ _ _ _ . - -- - _~--

1EGLIGISLI 1

toit (R43) 31.33 1ESLIGIBLE I

20f 20 $1Jl f

.. r g g ; . g g g y-;t3 3 -- - - - - - _ - - - - - - -

-32631 --rLTDEM*)- - - - - - -

19.J5 J2ST }

-19.35 'J PS T

-32.J1 *LTOEM-l JISP (11) 3L35 .353 :LT0tM*) 2.414 FLTDEM+) 080 'LT3ti+)

.051 JPST - - - 2.414 UPST --

efl8 UPST

.341 10RM 2.414 NORM .: 75 NORM g el!F GORM .162 43RM

.43T JPST .062 J2ST .3 USST

.444 :LTD(M-) .'62 FLTDEM-) ..005 FLT3(1-3 )

25Z 25 S1G. Z

)

. 234: ( 1) iL31 32.69 FLTO(1*)

19.1H UPST

.92 13R1 g

-13 07 NORM

-33.17 U*ST

! -45 63 FLTJtM-) ,

3ISS (I1) 3L33 .355 'LTO(1*) 2.125 eLTDtM+)

.345 JPST 2.t)? JFST

.335 10RM 2 752 NORM

% k EDS NUCLE 44 10. PAGE 31 g

S UPE RPIPE VERS.15 06/28/923 SYSTEM E35 - NOS 83/;6/14. .8.57.2T.

83tTLt13 3!1:14'. I.ECTRE1 14 0J41 1 J'.I t R STATIO1

-- P4ESSU4IZER SAMPLE ~LI1t b g

7, i t 3 SU7'09T L3tD iuggagt

- ' - - - ~ ' - - - '- - ~ ~ ' - - " - ~~ ~-~' -

(*3tT3.)

Ml SUPP SUPP SUPP DIR1 RESULT RESJLT L MIS .0AD LOAD LOAD . ,

il

' ' ^

NAME ~ L OC N TYPC' ~ C ODE -~ 'T TPE ~" UNIT ~~' T 73 E- '-- AEII SET T E R X T S ~ SE T- ' ---~ '- Ze 4 X I S-~~ S ET -~~ ~ - - ~ ' ~ --

.. n )

, 25Z

- ~~ ~ ~ - ~ ~ - ~ ~ ~ ~ ' ~ ~ " - ' - - --~~ ~~~

O

( C ote T D. ) .512

.522 40RM JPST

.359

.78R 13RM UPST

)

.114

- ~ ~

.529- rLTD(1-I- :LTD(M-1 ~~  ;

').

y, y sy,, y _ _ ._. - . . . . _ . . . _ _ . . . _ . . _ _ . . _ .

' ORC (LB) 3LOS ~2 4R FLT3 , )

-M.62 UPST

  • _ _ _ . . . . - _ . . - - ~ ~ ~ ' ~ ~ ' ~ ~ " ~ - ~ ~

.g7,79 . NORM - - ~ ~ - -

-27.95 NORM ) ;

-37.11 UPST

-- ~

-93.25 ' r L T D ( M - ) -"- ~ ~- ' --- ~ ' - - " ~ "- ' ' '

DISP (I1) 3 LOB .303 LTD(M*) .020 FLT)(1+)

le )

r

- - " - - ~ ~ ~ ~ ~ ~ - - - '

-~~~M 1 T ~ UP S T -~~ --~~ '-

.301- JPST- ---'-

'~ >

.302 10RM

)

.626 13RM

~ -~

.128 NORM

.D ^ ' - ' ' ' -i140- UPST'

-JPST~'~ -- ~

.632 rLTD(M-) .149 'L T )( 1-) ,; )

739: (.1) 3 L 31 .. _ _.25.43 42 55 'LTD(M*) -~- - ~~ ~~ " ~ ~ ~ ' - - ~ ~ ~ ~ ~ ' -

JPST p i

-?).47 JPST

-42.55 :LTD(M-)

t )

i.

J ,

3tSS IL31 .312 rLTD 1.891 FLTD(M*) .f>32 FLTD(M*)

I, (I t)

.1)! JPST 1.R51 UPST 024 UPST

)

.392 'GDRM ~~ 1 816 NORM ".* l l ' NO R 1 ~~~ ~

.633 10RM .it? NORM .127 43R1 I

)

.633 JPST .033 UPST .139 UPSI

.19# 'LT3(1*)-

~ ~

.635 .rLTD(Map .363 FLTD(M*) -' --- - --

)

592 59 S1GL Z ~ '

, ?31: (.1) IL31 64.!6 FLTD(1*) ,

48.36 UPST

'24.91'- 1341---

1.89 NORM #

l ,

-21.55 07St *

! -37.26 FLTJtM-)

i

  • LTD(M+)

l' 3 TSP (IH 3L31 . ? .15 FLT3(1.) 1.253 4

_ _ _ _ _ m .--

m m..i.

f f f J8'5 A e e e A e ^ s8"4 A Jun A spa 4 .%  %  %  %

+= - . . . . .-- . ,

,.:4 _ 2 ~ -

1 se e Sei f J 53 CD 5, g

==e **

% / t i @ C V e e me e em .J e

> ' S 9 4 3 e '

le.1 taa em j _F F en j e e , ,

S

  • e4 8% M M O A

. l I i a e I e e o e l

6

,  ; r. .

r m.

r  !'

E.

E w

r

...o m ee I O e- O>Er>0 O*.rE*O O r r e- n b= 8n E fu' ett b=

t W bJ be 44 E er M > e= tn K E M e=

IasOOra

% nM e anOOra Jennaa

@ Ji -

' unEEsw usEZow msEPs*

e.... i . g ,

6 g e9 % ' 9 4M M

' @ @ e re C e E 8P) M P P *)

&E @ wNO l m@ w e) N (P **

>e MPewed e ..e@M M

l I

. .. .P. .w. w N .e e e e e e o e e e e

  • e e ..e= 3 m wNee e>e@eN l s -

e e ep , eu .e.e e e N n g g g

>e e e se a N f' i . ,

e. p. N.

'  ; . .  ;  ; i f .

, t

?

I am an  ! sm i s.m em ash

, 4 e. '

e e e e e I

E w

Es w

  • E w -

E w E.

w E

w O n- >Er>O e w E E 6- O - 4 O > E E e= O O e- E E *- O at t.a to E E M e= == to E E M > i  ! e- M et E g/l > e= M E E M e-n em a O n n .J .s a O n at s .J a O O n. .a _J r n n a s

_A . 3 2 F *t h ee 3 E F 3 es i s. 3 E E 3 as. es 3 E E D IA

- f ,

  • @@@N@ eCAMDN Mwe>MM Mt >E@@
me me e et all rt ene e e's N CP > l r e e N N til se P em @ d e=

Bt ese e e e we o e e o e e '

e e e e e o e e o e e e 4 e e '9 e e se Pm J'l P >= 09  ! A P er) P trl fs C E fw e @ P*

l ,

B

} mM I G 0 0M@>@ ! C@e0MO ONg e>@

s >  ;

8 e 9 e '

$ e 8 0 9 I

  • I 8 e i y I , ,

et . , f , ,

he L an I an em em vem am a e= e e e r'-

e e e e

, g 4

  • I l r r t E , r F, E

'* l . w . . w w w a w e . w M . O e= ij >= E E b= 0 4 O e- E E t- O O 6= E E 8= c O e= E E *= O l e L.J M E E M e=

  • j e= e4 K E to >=
  • e= en E er en e= o= an K E en e=

E

! (,L O O EL J.

4

. i J A O O EL J i Oe M. ,w%e  ;  ; s. A%,O ,O A, ,.A s. =t ,. m . .a ==

EL O, ,O% Ae.#

e. .
e. I i ,

.8- b i  ; 4 t

  • 6e et -e N .s= e em. N em Eh @ tA a. De SR GFt B eP m. er fm m Po eft e rt

=t y me es #1 es art @ s JB en a N ert e GP N @ we 40 e er9 are af% @ in @

F te W ' e5 Pt eea 8 en rt om N N me e e e o e o e e e e e e

,a e e e e e e I e e .e o e e N era ort a 'n er* en .n en O e=

2 e e e e e eee @ce .e EP .c e e c E 44.0 E

  • 4 O e O 5 4J t j ,

OE e EE t' t * ,

he i t 6 i ,

to I i

    • w ,

e en u o.e en ks e m  ; , att en en sa m ee m e.e tL O i O i O m a m F E se 3r > .J 4 3 e .A .J .J e= se er t= ei e , eg esA. en een e UD W en l t l en a en h= l -

r an m eJ e.e e be am em em e= am an e.e w '

=m me

  • O E E ee w rs Jn Mr J !M , J j e w a r W e. 3 er w w in ' w er e.e E E l e' en e= bll en en E. l

> i.e , n. t .

M L9 J bl u A ' u >= &. F 34 E M E e M >

    • Oi 5

em M> O lM

, . O et me O e%e E! e e.e he b.

  • r't t SL T Pt w e e O w *
  • l

~ a e=

e E e%e >

r =. O w one art

% O' U su' O > ct en & ee == S  : i a

es t'b U ens e, > . e.e a,

,. f\ e~

o E .= u u d

. -Q w W  %> F y r sa e- M- s 3 aJs 5 $ o Ir ' r.e s.e a e M nE A u e

e e

em

< .) .

> 0 3O 4 O k., w a m .s q c e

s.* o.s O

A a

e o

ML b bI NO > S

  • e s te . .- aE E

c- - in . r 3 EL 3e o2 sc 2E D ME O '.s s.e CL U ES L & w O3 D 6.e M M i

6 *m me.--

. 4. . . . , . . * -

S EDS NUCLEAt 11 . PA3E 33 SUPERPIPE W E4 5. 13 11F?t73!I SfSf!9 !)3 - 131 83/06/14. " R. 3 T. 7 7.

3 O2 j POR T L.A N_D. _G_E.. NE R AL E L E CT RI : TROJAN 1J'LELR STATION li

. . _ . . - ~ - - - - ~ ~ ' ~ - - "' ~ ^~'

PRESSUtIZER' SAMPLE LI1E' -

3

. CONTENTS O' D A TL F I'. -

3ATA 3tTL 4:W 3tTI TI9E DATE ',

P - - ~ ~ ^ - - ' - ~ - ' " - - '

TITLE

' ' ~ '- 14 ME N J .' ~- ' ST3 M ED "-~ST3 t E3

~ - - ~ ~ - - - - - ~ ' ' - - ~

,i - T Y PE ',-

)

" - - ~ ~ ' - ~ ~ ' " '

~~'3E34'

~~ ~ - - ' ~~

. SY STEM 3~39Ef t f l'- 33r13f13;' 13.3!sIJ. -

i' S T AT I C L 3 A D .414.Y 3 I I T111 1 93/36/03. it.3!.IJ. YttERM AL A1 ALYSIS AT 108 F THE4 MAL ANALYSIS AT GR' F b' )

P ST ATIC LO AD 4NALYSIS THM2 1 93/36/03. 08.52 33.

GRAVITY A1ALYSIS

~ ~ - ~ ~

ST ATIC LD AD ANALYSIS GRAV 1 03/36/03.' 08 32 37.

DTNA1I: "R32*4 TIES 3714 I $3Flif33. 75.5!.17. DTNLMIC 'ROPERTIES *

)

RE SPONSE SPECTRUM 144.YSIS 03E1 1 83/36/03. 99 3!.13. SEISMIC X-Y D19ECTI31 (INERTIA)

C8.32.37.' SEISMIC Y-Z DI9ECTION (INERTIA)

~' ~~

RE SPONSE SPECTRUM ANALTSIS OBE2 1' 'R3736/03.

ST ATIC LO AD LN ALYit s THM3 1 83/06/03. 15 42 41. C3LD SPRU43 DC2 35 410 65 } )

.. . _ . . . . _ . __ . . . ~ . . - _ . .

l.

6 Y

!~ )

b e

i e

J

k I MPELL COPPOP'Qt! PAGF 2SE '

g SUPERPIPE VE R S I 0ft 164 IT/11/P38 SYSIEM IFPELL = NOS 84/?5/23. f8 25.35.

1.

PGE T50JAN NUCLEAR STATION .

.. q IMPELL PRCDLEM 43 f t ' l e - 4 C=P 3 R TV. . ]

LOOF SEAL D* Alt. LINES '

N

.. )

1 i 1

3

.1

)

................ ................. g

) . DE5 IGN .

3

. V ER IF IC A T ION

  • 3
SUFFORT LOAD SutMARY .
  • SUPPCRT LOAD SUPMA*Y  !

+

)

F OR , ALL LO AD CCPDINA TION! . FDP ALL LOAD COPRINATIONS

)

j CLIEAT MAT 4A[ _

J00 NO. __ "OI

)

+ CALC./FROR. NO., d "[/[, _NbMN .

l . 'I . I

. PPFPADED PY: f DATE: f } [.

CHECNED DY: gg DATE: If o

a i

b

- . -. . , - . . = - - -- . - . - . .

f ,r ' '

.I q

( i -

  • - 'PAGE 257 '- p

. I MPELL CORPOP A txsN 3,

$UPERPIPE VI P SI ON 16Ao II/CI/P38 SYSTEF IFFELL
  • NOS 84/55/23. 08.25 35.

PGE TP0JAN NtfCLEAP FTATION pg .

IMPELL PR00LEP '3L'aCIA oc *3 PrV. I ,

LOOP !EAL DeAIN LINES i )

, SUPPORT LOAD

SUMMARY

Supr0RT LOAD SUMMAPY 4 i

CHECMIhr PEGI0t3 INDICATOP = rutt (ALL SUPPGPTS) i ) 1 00TFUT DETAIL IP DICAT(R = DETL (DETAILED FRINTOUT)  ;

COMMENTAPY INDICAT05 = COWM (Co*NENT AR Y TO FE PPINTED) ).

i LOAD CASI INDICATOR = CLCC (P E-USE PR EVIOUS C ASES)  ;

PPESSURE DISTRIOUTIOk INDICATOP = CLPP (N0 DISTRIPUTICh5 TO DE SPECIFIED) i TEMPERATURE DISTRIHUTIDM INDICATOP = OLOT tr10 DISTRIffUTIONS TO BE SPECIFIED) ) ,

)-

DESIGN CHECF COPPENTARY i

)

l CRAV GRAVITY THMI THERWAL F I'P F THP; THERNAL E 6PC F }

CHET SEISFIC CBE IAEFTIA
  • AACPOR FOTICP l EPSS ( CFE + OCE SAM) l S!FT SElePIC tSE IPERTIA + AMCHOR POTION y 4

, SP'S t 'SE + SSE RAM 1 l FTHE SAFETY VALVE THPUST ANCHOR MOTION

Sv00 SRSS i OPET + FTHE 1 }

} SVSS SRSS ( STET + FTHE 1 l A0PM C#4V + THMI + TPw?

j LPST .GRAV + OFFT + TbM1 + YHr2 ) l j frof G#AV + SV0P

  • TFPI
  • THF0
FLTC GRAV
  • SVSS + THMI + THPF

! A i

=

o il i

4 L

y.

~. .;

x d IttPFLL CCRPCP ( s1 PAGE 2?P 'g [

SUPERPIPE VER$1CN 16Ao If/L1/P?$ SYSTEP IPPELL:- No!- P4/C5/23.'CP 25 3*e u t.

, FGr Tp0JAN NUCLEAP STATION g 1* FELL rPOPLE9 J3'erts . PC.c3 PEv. 1 .

LOCP !EAL DPAIN LINE5 ,

L jI LOAD SET SPECIFIC 2 TION -)  ;

TET CO*P NAPE .TvFF LIST OF CA$rt IN GPCUP TITLE e

" )'  !

I i

.I

' y5 GRAV 0FLT. GPAV [

THM1 0Fli THM1 3.

THM2 DFLT THP2 '

( -t i OPET OFLT ceFT SSET OFLT *StT g, i-FTHE OFLr FTFE t NCPT OFLT GRAV THP1 THP2 NORFAL CONDITION l UPST OFLT CPAV 0FFT THF1 THP2 UPSET CONDITION )

i ENRG CFLT G9AV SVCD TNP1 TH'? EMERGENCY CONDITION i ) !

! FLTD DFLT GRAV SVES THP1 THP2 FAULTED CONDITION J

+

i j J 2 .

. 8 4

i e i

i l'

1 . ._ ._ ._ _ - .. . _.

. ._ ~ > - . - . - . - ,. .-.

3 IMPELL CORP [ w iCN n o

\

PAGE 259

[m v)

SurEEPIPr VERSICN 16Ao II/p!/838 SYSTEM IPPELL - N0!

R4/05/23. PP.25.'5.'

e)

(s PGE 750JAN NUCLEAR STATION

. IMPEL L 'PROPLEM 53*(01P - PC-03 PEV. 1 , r)

LOOP 'EAL DeAIN L1 PET a

')

DET AILS OF SUPPCRTS FOR TFIS SurMARV b *

)

SUPP SUPP R Y Z SUPP DIFN INCL DIR. COS. WRT GLOBAL APES r NAME LOCN C00rD ' COCPD COORD TYPF -CODE AMIS F Y 7 (FT3 fFT) (F7) )~

)

,49A 49A t

'7.724 116.75e -?7.sei ANCH G L OB '

35  ?? -41. Pal 115 500 -!P.tGC CONF Y 45 45 -42.224 115.! ' * -37 333 4NUD Y ) i 55 55 -42.224 11".5:'t -95.5UP SNGL F 7C 75 -42.224 11 E . 5.' f -33.271 CONF Y 75 75 -42.22* 115 5'*- g

-32.**R  ? NGL F 85 PS -42.224 115 5P: -31.50C SNUP Y 95X 95 -42.224 114.*17 -3'.800 ' NGL F .I

  • 52 9M -42.22* 114.*17 -3!.501 5NCL 7 )

ifGN l i e. -42.224 111.25( -3f.500 ShGL F ,

1002 16L -42.224 111 25* -30 5*5 ENGL 7 1:57 11' -42.224 1r5.'54 -33 500 SNGL M )

195Y 17" -42 22* 1:!.?$a -3 a.m ir. ' NGL Y i 1:52 1.% -42 22* 1C*.354 -3*.5CC. ' NGL 7 115 115 -42.724 It?."Po .-3;.5CO CONF Y )

140 141 -43.224 103 50C -26 25e ANCH GLOG 15uY 156 -37.P48 119 5"? -36.PPC SNGL Y 157:2 15t -37.8ap 11s .5 * *< -3 s . a ti; SMcL' 7 )

17C 17, -32 597 119.50* -35.75C SPUP Y 1*C 1** -?2.857 115.5'1' -35 19C CONF Y 20G 26G -32.557 115 50.' -33.000 SNGL M 13a 13A *1.S:7 116.75 -?".625 APCP CLOD P44 84A -43.4?2 118.75' -33 125 aNCH GLOS

}

I ) i 1

)

)

! a j

i

{

i l

4

m

{'3 I MPE LL CO2PO- <j or. PAGE 26F~

S UPES PIF F VERSION 16A, It/L1/034 Sv$7FP iPPELL - kOF 84#C$#23. CP.?5 35. r)

  • 7s PGE TF0JAN NUCLEAR STATION IPPFLt rPretrM t3rq91R . oc-f3 FEV. 1 ,) L LOOP SEAL CRAIN LINES 7' .

1 SUPPOP T Ln AD FUPVAPV ,

SUPP SUFP CUPP 2ipt REFLLY RESULT ANIS LOAD LOAD NAME LCCN TYPE COTE TvrE LOAD LNIT TYFE N-AVIS SET Y-ANIS SET 7-AMIS SET 40A 40A #NCH GLC0 h, FORC fLP) CLCD 90.P3 FLTDEM*) 7.63 SSETfM.)

3 31.R2 FLT0tP+)

77.6* EMP6 3 Fee AHA'645 -

73.6, e,r7 4.57 3,,a CBET 29.25 SSET FTHE 2e.10 EMRG 7 ppgp.gg pqty 55.17 THP2 2r.07 UP97 l 54.P4 NORM )

17.51 OBET 34.R1 SSET -1.to FTbE 2.59 THM1 20.** OPET -4 57 OPrY 2 56 NORM n .13 FTHE -7.63 SSET .ps )

FTHE

-12.?R FLTD

-15.39 E*PG

.32 GRAV -1".5P UP'T .83 GRAY )

.32 CPAV -20.07 GPAV .f3 GRAV 0 13 FTHE -PP.07 GPAV =.PR FTHE

-9.42 THP1 g

-2A.07 N0cM -13.35 T'dMP

-9 74 kOPM -32.EP THP2 -13.3? NORP

-2'.84 Opri -3R.6* THP1 -17.51 OPET

-3 9.5 m UrST -99.73 NOPM -28.25 SSET )

-32 56 EPRG -63 39 UPST -30.P9 UPST

-?4.81 S$rT -63.40 EPaC -30.91 EMAG '

-45.73 FLTDtM-1 -66.42 FLTDtM-f -42.63 FLTD(Mal )

( MOPT (LP.Fil GLOP 32.77 FLTDEM*) 22.58 FLTDEP*) 151.01 ILTDtM*1 24.63 S$rY 1P.65 EPPG 130.99 LMcG y

22.04 .FMPG 17 12 UPST 136.86 UPST 22.81 L'PS T 11 17 SSET 118 6R N0dM 14.75 CDET 10.43 NOPM 115.96 THM2

'3 P.66 THM2 I t'.17 THwl 45."2 THM1 P.07 NOPP 6 6a CBET 30 36 SSET 1.95 FTHE 4.18 FTFE 1P.18 OBET )

.'6 GRav 11 12 FTHE

- 4 GPAV .2.72 GREV

.55 CPAV y 2.72 NORM

.58 CPAV 2.72 GRAV

-1.9? FTHE -4.7P FTHE

-2.o* THP1 -6.6* CPET )

-3.54 NOPP -11 17 9507 -11 12 FTHE

-la.7* OPET -54.!K NORP -15.46 UPST

=18.2" UDST ~54.12 THw2 -1P.1P OPET j

-1R.41 FPPG -6r.7e Urs? -18.59 EMRG

-24.c3 trrv -62.;r EPDG -2".61 FLTD

-M.24 rLTCfP-? -75.21 FLTDtw-7 -!C.t* SSET(M-9 DiPP (Irl GLOD NEGLIG1BLE o

t #

w.

s I PPELL C03FoiwriON PAGE 261 SUPERPIFE VEPSICA 168, It/91/f28 SYSTEP IPPELL = AOS 84/!5/22. EP.25.35. #)

PGE TP0JAN NUCLEAR STATION. '

1"PELL PPOBLre :3'"t14 - PC**3 PFV. 1 LOOP !E4L DeAIN LINES D 3 SupPorf LOAC SUPPany trtNTD.)

~

SUPP SUPP SUPF DIPh PEstfLT P ESitLT ' . A FIS LOAD LOAD LOAD hAME LOCN TYPE -CODE TYFE 11N T T TYPE N-AYTS sri y-ATIS $tt 7-AFIS SET

)

4*A ECONTD.)

POTN (OAD) GLOB NEGLIGIDLE 35 35 CONF V FOPC (LB) GLOR - 12. ., a cppy

~12 3* Goay

-12.*9 NOPM ')

-12.P9 NCem

-12.?* UPST y

-12.G9 Up*T

-12.r.9 EA*G

-12.T* EM9G

-12.C9 FLTD )

-12.to FLTDir-1 DISP (IP) GLOP .'62 FLTDtM*3 2 430 FLTDtM*3 .313 FLTDEM*l

. 05 4 EMPG 2.42" EPRC .10T EM*G

. 93 7

  • Sri 2 424 flPST .1L5 UPST y

. 93 6 FTPE 2 455 THM1 .085 THM1

.034 UPST 2.415 NOPM .f94 NORP

.*P2 08ET 2.21'8 "vH'? ."17 SSET

.f! ? h0PM .'1' $$ET .r10 ceET }

. r10 THM1 609 6DET .008 FTHE

.*f t GPAV .?O4 FTHE

.A*1 GPAV )

. ?2 2 CPFT .fDR FTHE

. '3 6 FTHE .618 OBFT

.t? 7 SSET .c04 FTFE .*1T SSET

}

. col A0pH .or* OrrT .422 THMP

.(9 3 THMP .?ra UPST .423 NORP

.11 ? bPST .ftm EroG )

.435 UFST

.13 3 r*FC .ct" S$Et .436 EMRG

.142 FLTDtP-3 ."16 FLTDIP-l .442 FLT0tM-9

)

45 45 !AUD Y FOPC (LP1 GLOP P.32 FLTDtP*3 '

7."5 SSET A.!" EM*G 4.76 CPET '

4.7A tlPC T 2 . * *, FTPE

. .- - ~ .. r L'

f- s

% IM7 ELL CORPoms_,s 0 % ' _

SUPERPIrf VEPSIO*J 168, !!/P1tP38 SYSTEP TEPELL - NOS PAGE 262 >

't 84/65/23. 08 2b.35. '

p PGE TROJAN NUCLEAR STATION INFELL PPOELEM t.3 f ' 51 P - PC-L3 PFt. 1

)

LOOP 5EAL GRAIN LINES 4

'l

$dPPOWT LnAD FUPMARY (CtNTD.3 SUPP SUFP EUPP DIES >5CSULT PESULT AVIS LOAD LOAD LOAD 1

NAME LOCN TYPE L.0E TYPE l'N I T TTPE W-AFIS SFT T-ANIS SET 7-AXIS SET l'

4%

ICONfD.3 -2.45 FTHE

-4.76 UP!T )

-4.76 0 BET

-5.35 EMPG

-7.a$ ggry )

-P.32 FLTDtM.)

DIse (INI GLOB '4P FLTDfM*) 2 281 .110

)

THPitM*) FLT0tM*)

.f4 4 EVPG  ?.2 74 FLTD .1*6 EMRG

. 02 " SSET 2.274 EPPG .1C5 UPST

. P2 6 UPST P.274 UPST .r*A THM1

}

. t2 6 FTHE 2.2 74 NORM .De7 NORM

.rl e OBET  ?.137 TbFP .G12 SSET

  • .faa NOPM .tO7 OBET

} ,

.008 THP1 .QC4 FTHE

.01 2 OBET .404 FTHE

.f? 6 FTHE .967 OBET

)

.029 SSET .a37 GRAV .112 $$ET

.09 1 NORM .3C7 h0RM .368 THM2

.**? THPP .at7 GPAV .369 NORM }

.10P t'P*T .0P7 UPST .377 UPST

.12P EMPG .C'7 EMPG .377 EPPG

.130 FLTDtM-) . c f.7 FLTDEF-1 .382 FLT0tM.) )

55 55 SNSL M FOPC ILD) GLOP 127.01 FLT0tM*)

!?!.26 SSET A9 1

  • EPPG P 1. r,4 UPST
  1. c.64 CDET 3r.62 FTHE y 71.22 NORM 21 72 THP1

-3a.62 rTHE g

-65.64 OEt T

-tr1 2F SSET -

-18 4.6 F bOPP #

-!

  • 6.6 6 THF2

-??7.3C Leet -

-r3 4.5 a ryeG #

-?7?.4* rtTDr*-3 DISP t i t. ) GLCP 1.a(7 FLT0tP+) .11R FLT0fM*) #

a

- - - - - - - - - -- - ,-- - . n

n d ISPELL C09FO--+ ION SUPERFIFE VE R f lCf1 16A, 1(#f!/038 SYSTEM IPPELL - NOS O PAGE 263 O rg 34/(5/23. GR.25 35. ^

p FGE T S 0JA'J huCLE A P 'TATf0N <g

[MPELL PRODLEM t30Cn1P - PC-03 REV. 1 '

LOOP TEAL D#AIN LINE%

D  %

SUPPOST LOAC MUPPARY (CCNTD.3 SUPP SUPP SUPP D1Ph PESULT PESULT ARIS LOAD LOAO LOAD NAPE L OC P; TYPE Cone TYPE UNIT TYPE N-ANIS SET Y-ANIS SET 7-ANIS SET i )

55 (ConTD.) 1.P96 EMRG .11s EMRG 1.894 UDST .112 UPST

)

1.P'3 THP2 .106 THM1 1.877 N0*M .tr$ NOPM 1.R55 )

THP1 812 SSET

. r,2

  • SSET .at7 CBET

.C17 OPET .0*4 FTHF

.nm7 FTHE )

.807 FTFE

.(1E GRAY .004 FTHE

."16 NORP .r07 ORET

)

.'16 GRAV .912 SSET

.917 OBET .235 THM2

.r?* SSET .236 NORP

)

.t?3 UP!T .244 UPST

.t9= EMPG .245 EMRG

.P46 FLTDtP-1 .249 FLT0fM-> )

7( Tr CCNF V FORC (LB) GLOB -24 11 GRAV

-?4.11 GRAV

-24 11 h0PP )

-24.11 ho*P

-24 11 Ur!T g

-24.11 UPti

-24.11 EMSG

-24.11 EPRG g

-24.11 FLTD

-24 11 FLTDtP-1 PISP ( I P') CLCB .1r* FLT0tP+1 1.5 06 FLTDtP+1 .127 FLTDeM+3

.0f 7 F"PG 1 4** EPPG .123 EMPG

. Pa ? UPFT 1 498 UPet .322 UPST y

. nt? 4

  • SET 1 4a% THP2 .115 THP1

.c04 N08M 1.4PM hC#P .114 NORP

.er 4 ~ THM2 1 122 TH"1 .f12 SSET

. ir 3 CPFT .*2t 95ET .397 OBET

.t'? FTHE . *12 OPET .104 FTHE

.*:= FTHE

.'t2 rTHE .**4 FTHE

.e 09FT .007 OPET

.'** eSFT .*t= FTFE .a12 SSET i

a

1 m

- i

.%).

10PELL CO?P01 s., JN x_ PAGE 264 N- / r)

SU7EFPIPF- VERSlon IAA, }s/,$1#G?T $VSTEM IFPELL - NDS AS/05/23. Op.25 35.

PGE T F0JAN PtJCLE AR STATION IPPELL PF0eLEM (3rrt 18 - #C-03 PEv.1 LOOP !EAL DPAIM LINES SUPPSRT LOAD $UPPAPY (CCNTP.)

SUPP SUPP St PP DIFn PESULT RESUL1 AVIS LOAD LCAD LOAD NAME LOCN TTPE CCCE TVFE UNIT TYFC F-AFIS SET Y-AXIS SET Z-ARIS SET

)

7*

> (CONTD.) .005 NORP . .012 ORET .074 THM2 )

.005 TPP1 .P12 Urst .075 NORP

.PG7 UDST .r13 Empg . 0P2 UPST

.03P EPPG .?2C SSET .3R3 EMRG )

.Paa FLTDfM-9 .P21 FLTDths) .088 FLT0tP-3 75 75 SNGL N FnPC (LP) GLOP 79.5? FLTDfM*)

67.42 EMRG 64.21 UPST

)

    • .36 00bM 4 3.9 P THP2 .)

33.16 "SSET 19.85 OPET 13.73 FTHE 3P C#8V )

.3P GRAY

-1 89 NORP )

-2 1 P THP1

-11 75 FTHE

-19.86 OPET

~21.66 UPET

)

-P4.8 7 EmpG

-?3 1 A SSET

-? F .* P FLTDfM-9 DISP (IN) GLOB 1 415 FLTDfP+) .129 FLTD(P+1 1.4t* EPPG .124 EMRG )

1 4Pp UPST .123 UPMT 1.39m NORP .117 THM1 1 39P THM2 .116 N OP P

)

97 TPP1 .012 SSET 917 SSET .b37 OPET

.atr OBET .0P4 FTHE )

.PS4 FTHE

, .PO4 FTHE j

.007 OBET-

.r*4 FTPE .012 SSET

.ill Unef ..r*E THM2 ,

.41' GPET .051 NORP

.*11 EPPG .r"P UPST

.r17 SSET .r*9 EMRG ,

J o

.__ _ m . . __ _ _ _ _ _ _ _ _ _

N

}

es IniELL CCRFL--< Og

  • SUPERFIFE VERSICN 16Ao !!/31/938 9' STEP IPPELL - Nos d PAGE 265 J

ry R4#e5/23. 09 25.?". '

{g PGE 150JAN htlC LE A P !TATION 1MPELL PROFLEM J30001P - RC-C3 REV. 1 rg LOOP !EAL ODAIN LINFt

$~ sq SUPP02% LO AD f 0MP ARY (CCNTD.)

-} SUPP SUFP SUPF LIph RESULT RESULT AFIS }

LCAD LOAD LOAD NAME LCCN TYPE CCDE TTPr UNTT TYPE X-ANI! SET Y-Anis SET 7-ANIS SET .

J 4' TS (CokTD.) .017 FLTDfM-9 7 .064 FLTDtM-7 ) ,

FCaC (LB1 FLOP 52.!2 FLTDfM*)

5t.42 SSET f 33.58 EM*G 3C.1* CPET )

3P.18 UPST 14.11 FTHE

-14.71 FTHE }

-30 1* UP?T

$ -3r.1* OBET

-33.** ENRG )

-51.42 SSET

-52 52 FLTDtP->

)

DISP GIN) GLOP . 03 " FLTDfM*l .997 THP2(M+3 .135 FLTDEM*3

. r3 5 EMRG 9a4 FLTD .130 [*RG

. d3 8 UPST 994 frog .12* UPST

)

  • 9a THM1 .a94 UPST .123 THP1

. P2

  • NOPM 494 NORM .172 NORP

. 01 3 THM2 y

.365 THP1 .054 THM2

. *t e $$ET ."12 SSET 9P6 CPET .Ctf CBET y

.f03 FTHE .PO4 FTHE

.ar? FTHE .at? GRAV .Lc4 FTHE

.*36 OPET .ro2 NORP .707 OPET

.ter LPST . ESP GRAV .P9P UPST ) .

i

.607 EP80 .PC2 UPST .0C9 EMRG '

.PCS SSET .Pr? EPoG . PIP ? SET '

. !!

  • FLTDtM-3 . r '. P FLTDir-1 .*14 FLTDfM-t )
  1. 5F *$ S P. G L N FC8C (LF) CLCP 21.** FLTDir.)

17.2 a EPPG 18.** Upt?

1?.! 1  !$ET

  • .*? THF1 n.F ' N0**

7 .1

  • cpFT 7.** FTHE

n ag I MP E L L C OR PL--*'! O N SUPERPIPE VEPSION 164. If/31/8?s Sv$7FM IPPFLL - ROS c .

RAGE 265 O r) -

84/05/23. 8e.25.35.

n PGF TFeJAN NUCLEAR STATION IMPELL.PP00LEM f3EEPIP - #C-53 PEV. 1 I LOOP *IAL DRAIN LINES SUPF0pf LOAD 'UPPERY ICENTP.) '

r.

SUPP SLFP ! OPP DIPS D Ef t:LT PF9LLY ANIF LOAD LosD NAME LOCN T 'f P E CODF LOAD TYRE UNIT TYPE F-ARIS SET Y-ANIS SET a 2-ANIS SET t

  • 52 ICONTD.) .12 CRAV '

.12 GRAV

-1 15 THP2

,- -1.27 N08M

-2.C* FTHE

-7 18 ODET l -R .4 6 UPST

-P.7F EMcG

-17.P1 TMET l -13.46 FLTDtM-)

)

PISP f i P!) GLOP .694 FLTDfM*)

.E*4 EPRG y

.694 UF3T

.694 T H P.*

  • .683 NORM

.841 THP1 r

957 as yggt 7 )

FCPC (LB) GLOB 394.46 FLTDEM*) ,

( 160.M6 EMRG ) ,

156.16 UPST 1"3.31 NonM 1E2.54 THM2

) ;

6P.26 SSET 52.P5 OPET 22.79 FTHE y

.77 GRAV

.77 GRAV

-11.04 NOPM y

~11 81 THM1 "

-22.79 FTHE

-5?.75 OBET y

-4?.A9 0057

-6R.59 EMRG

-PP.26 SSET -

-192 1* FLTDtM-1 DISP ( 15:1 GLOP ,

.684 FLTDtM*)

.6*4 EWpr # i

.6'4 UPTT

.684 THF2 e

e

g I F.PE L L COM P6~.--3 0 4

- SUPEPPIFE VFRSION,168e 1(/91/#31 SYSTEM IPPELL - NOS

\) PAGE 267

'~!

84#95/23. EP.25.35. -}-

p PGE T WOJ AN PIUCL E AR STATION IMFELL PPOPLEM E3foC1R - RC-03 PEY. 1 a)

LOCP $Est .CS AI A LINEF I

e)

SUPPO2T LO AD

SUMMARY

(CCNTC.)

SUPP StirP SitPP DIDn DESULT R E t tf L T AFI? LOAD LOAD LOAD NAPE LCCN TYPE CCrt TYPE LNIT TYPE N-ANIS SET Y-ANIS SET P- 2-ANIS SET 952 ICOPTD.)

.693 N0PM g

.f41 THP1 100N 1 . SNGL M I !

FDPC (LP) CLOP 1(.43 FLTDEM+3 18 29 CSET 63* EMRG I 6 29 UPRT  !

6.16 CBET 44 FTHE )

.12 GPAV

.! ? GRAY

.32 NORM

.44 FTHE

-# .15 OPET

-1".2* RSET

-12.27 THM2

-14.39 NOPM

-14.51 THM1. I +

-?P .5 5 UPtf

-2 e.5 7 EPRG

~74 6 9 FLTDtMal DISP (IM3 GLCP .42P FLTDip )

42P EMpG 42M UPST

.428 THP2 427 NOPP *

.a25 THP1

)

1 *N 7 1.r (NCL 7 FOPC (LP) G L C r-

.lf.P2 FLTDtM+)

1".51 SSET '

6.65 EMRG [

F.54 UPST 6.33 OPET i 1 19 FTHE

.24 GRAV

.24 GRAY ,

.?4 WOoM

-1.19 FTHE

.i

,x v)

-e

(

I'MPELL CORPCL-m409 ' J PAGE 218 S UPECPIPE VtRS!ch 16A, 1(/01/P3t Sv$fEW IP7 ELL - N0? ,

P4/05/23 08 25.?9.' .r) ,

FGE 180JAN NtrCLFAP 'TATION IMPELL PPOELEP f3CtSIP - RC *? PEV. 1 # ,-)

LOOP SEAL DRAIN LINES 'l D tr SUPPCD T LO AD CUPP ARY (CCNTD.)

St1PP SUPP ?UFP CIPE et-LLT RESULT AFIC- LOAD LOAD L040 TAPE LOCN TYPE CODE TYFE UNIT TYPE x-AWIS SET Y-AXIS SET' 2-ANIS- SET T

1"s2 (C0hTD.)

( -

-6.30 00CT ,

-1*.51 SSET ,

=

-19.90 THM2 '

-13.68 NORM i

-33.97 THM1

-39.97 UPST t

-40 98 EMPC ,

-44 26 FLTD(P-3

( ,

CI!P (INI GLOR 428 FLTDeM.) -

3

.42P EPRG i

.428 UPMT 428 THF7 3*

. .427 NOPP

.*25 THM1

)

1C5u Igs T N ;L y FCPC (LB) GLOB 27.50 FLTD(M*)

23 6* FPRG )

??.69 LPS?

18 10 THPP y

17 0" N08d 8.48  ? SET 5.' F CBET I 1.96 THF1 - ) '-

.11 FTHE

.1? rPsV [

.I* %0RM y *

.15 r*Av

.11 FTHE  ;

" .6 P OPET y t

-5.17 brST

-M .7 8 EroG

-9.48 **ET y '

  • .5* FLTDt4-1  !

DISP f i r. ) GLOP NFCLIGIELE #!

i i

  1. [

l

o

% IEPELL C33PLv408:

SUPERPIPE VERSIC4 16A, jf/E1/F38,373'EP IPPELL - NOS' O' PACE 2b9

-84/*3/22 U,-~;

08 25 35.

% FCE TPOJAN huCLEAR 'TATION '

IppELL PR0nLEN c3ren1q . pC-13 #EV. 1 .

LOOF EFAL DeAIN LINES

.m ,3 SUPPORT LO AD 3U7F AEV sctNTU.)

P' SUPP SUpr SLPP DIRh RESULT RESULT Avis LOAD LOAD LOAD

).

NAME LOCN TYPE C00E TYPE UNIT TYPE N-AMIS SET Y-AXIC SFT 7-ARIS SET I )

145Y 165 SAGL v r

i FORC (LP) GLOB P4.C5 FLTDtW+1 9

.f?.7a E 64.7P U.'m ST G

  • 7.lf THP1 45.*9 THM2

)

43.36 SSET 3R.87 NORM 25 97 OBET )

12 85 FTHE

~12.R5 FTHE

-1P.3* GRAV ) '

-1R.3% NDPM

-15.35 GRAV

-??.97 OBFT )

-43.3F SSET

-44.31 UPST

-47.32 EPoG )l

-63.*7 FLTDfM=) 5 DISP (IN) GLCB NEGLIGIBLE r

l*52 1r5 ep GL 7 i FORC (LD) GLCD 16.27 FLT0tM+1 12 19 SSET yi 11 3P EMRG 11.38 UP97 T.30 4.DP CBET NORN )l 1.P8 THM1 i

.26 FTHE [

.19 GRAV ) *

.19 GRAV i

.26 FTHE y '

-7.33 OBET

-12.19 SSET  !

, , ~41 86 NOPM l

-42.19 THP2

-49.26 UPST i

-49.24 FM#G l

-54.15 FLT0fM-9 - '

i DISF t i t. 3 GLCB NEGLIGIBLE i

. .- . . ~ . - - -

A ag I MPELL COR PG _-f 0N %d PAGE 279 S

SUFERFIPE VER$1CM 16A, It#L1/P?! SYSTFP IPPELL - R0t P4/35/23. 08 25.35. r)

{g PGI T50JAN hUCLEAR STAT 10N IMPELL PPOELEP l3E301P - #C-f' 'EV. 1 -)

L*3P ![AL ORAIN LINE!

D SttPPO*T LO AD SUMrsRy (CCNTp.)

St1PP SUFP !UPP Ctrh P E S L'L T Pr *tJL T AFI? LOAD LOAD LOAD NAME LOCH TYPE C00E TYPE UNIT TYPE 3-AFIS SET Y-ANIS SET 7-ANTS SET

[ '.

115 11! CONF V FCPC (LPI CLCD

{ -4.P3 CPAY y

-4.83 GRAV

-4.n3 N0rr

.{ -4.P3 N0*M

-4.P? UPtf

-4.P3 -UPST

{ -4.83 EMPG

~4.P3 EroG

' -4.a3 FLTD

{ -4.83 FLTDtP-3

)

DISP (INI CLOP .103 SSEftM.) .C27 FLT0tP*) .01R SSEftM+1 4 .152 FLTD .*2T SSET .018 FLTD

.06 1 OBET .a16 ENRG .111 OPET

)

.* 61 FMPG .f16 OPET .011 EMRG

.f61 UPST .alf UPTT .*11 UPST

.0C3 THP1 .n11 00E7 )

.*1* TPr1 .916 OEET .01R SSET

( . r2 e NOPM .027 SSrf .P23 THM1 i

. f'61 OPrf .132 TNP2 .2R3 THP2 )

.*at UPST .132 NORM .2P3 NORM

.*81 EPPG .14A UPST .294 UPST

.le? CSET .148 EPRG .294 EM*G )

.123 FLTDiM-1 .1"9 FLTDtP-1 .391 FLTDEM-)

)

140 14a ANCH GLOP FO*C (LP3 GLOP 6.3 P FLTDtM+) SSEftP*)

i 2.65 49.32 FLT0tM.3 6.31 SSFT 1.5* OPFT 44.72 EPRG )

YdR A PJAL'f$l $ 3 .m " FPPG 44.72 UPST

TDFfcpg DML *.m" UPST 37.98 THP2 3.'P CBET y 37.R5 NORP 07 r, Ray 11 47 SSET

. *7 CPAY ..?4 FLTD 6.R7

  • OBET 47 EORM 13 TPP1 y

-1 .11 FTHE -

.05 FTHE -1 4* EPSG

-1 4' UP'T - I

-1.59 ODET .11 FTHE #

t

. FTHE '.0% SSET .19 THM1  !

.4 e TPP1 -2.en Garv .22 GRAW  ;

  • .7F CPET j

-?.99 GPAV .?2 GRAV

-6.31 (SET -2.99 NOPM .41 NORP

-15.17 ACRM -2*.14 THr? -6.87 OBET

' I i

( *

, - ~ ..

3 f*PELL

\

C01PL,,slC?s

  • SupERr!PE V E R S I C fJ ltAo It/r1/238 SYSTEP IPPELL - h0S PAGE 271 84/t5/23. CP.25.35. ()

p FGE TF0JAN NUCLEAP STATION IMPFLL PPOELEM '3?'018 - PC-P3 REY. 1 3, LOOP ?EAL DRAIN L.INEt '

I i SUFPORT LOAD SUPPARY (CCNTD.)

SUPP SUPP StlPP D IP L RESULT R E St?L T AXIS LOAD LOAC LOAD NAME LOCN TV"E C00F TYPr UNIT TYPE y - A W I P, !FT Y-AMIS SET 7-ANIS TET I

I 14C r (CONTD.3 -15 1* THM2

' -23 13 NOPM -7.27 UP97

-1 A .a t UPST -24. 71 UPet -7.27 LMRG 3

-!P .9 C EPDG ~24.71 [ PPG -11.47 SSET

-21 43 FLTDfM-) -25.7P FLTDtP-3 -11.87 FLTDir-l

)

MCPT ELP.FT) GLOR R .17 SSETEM+1 47 10 FLTDtP+1 4.Pa CPET 5 38 FLTDtM+3

' 4C.la EMCG 5 29 SSET 4.44 FLTD g r . l it UrST 3.26 EMpG )

1.16 EMPG 29.63 THM2  !.26 UPST 1 16 LPST 28 53 NOPM 3 17 08ET

.n2 FTHE 17.65 SSET .08 GRAW )

10.57 OBET .P8 GRAY

' 2.74 THP1 .?P NORM

.02 FTHE .09 FTHE 82 FTHE )

-1.91 THM1

-3.73 GPAV

-3.73 GRAW .09 FTHE .02 FTHE )

-Z.73 R0PM .10 Gray .-1 04 THM1

-4.P a CBET .19 NORM -1 15 NORP

- P .17 SSET .la GPAV -1 23 THP2 )

-45 2? THP2 -1f.?7 OPET -3.17 OBET

-ao.'2 NOPM -1".57 Urti -4.32 UPST

-53.91 0rS7 y

-1*.67 EMRG -4.32 EMPG

-?3.91 FPRG -17 65 SSET -5 29 SSET

-57 1* FLTDtM-3 -17.75 FLTDfr-) -6.44 FLTDtM-9

)

DISP (INI GLOR NEGLIG1BLE P07% fpAnt GLOP NEGLIGIPLE 150Y 1%, SAGL y )

F0FC 'LP) CLOP *A.22 TH*lfM+1 P".*7 TMP2 78.33 FLTD )

75.55 EPPG 78.4* IJP S T 71.?! NOPP '

6.'" SSET 4.fo nPET 56 FTHE

.66 FTPE

-4 10 OPET

f yy

  • I i

eg IMPELL CO20 - ION SUPERr!FE VEbSIEN 1(A, 1(/11/E38 SYSTEF I* FELL - ROS s

PAGE 272 0 #

A4/f5/23. 08 25 35. ')

FCE T a0JAN 7:UELE AR STATION I*PELL PPOBLEM f3r'*19 - PC *3 REY. 1 I LOOP FEAL ORAIN LINES P

SUPP0PT LOAD MUMPAPY EECNTD.)

O SUPP SUPP SUPP OIRh RESULT RESULT Av!! LOAD LOAD NAME LOEN TYpr EOCE Typr tfNIT TvFE LOAD 3-ANIS SET Y-ANIS SET 7-AXIS i SET 150Y )

[ (CONTD.)

-6.99 SSET

-24.#1 GPAv

-24.91 NOFM

( -24.81 GRAV

-2*.In UPMT

-?*.15 EMac

( ~31.93 FLTD(M-9 DISP (INI

)

GLOB .3Sa FLTDtM.)

( .3*' E**G

.3J4 UPST I

.297 40PM

[ .297 THM2

.P21 THP1 I

.01 2 SSri

.006 OBET

.P*F FTHE I

.a95 FTHE

{ .**6 UPST

.0C 6 OBET I

.*r* EMRG

} . 01 1 ' SET

.(12 FLTD(M-1 I 5

15'2

. 1s t *AGL 7 F05C (LP) GLOP

)

' 4 4. nl FLTD(P.)

s 35 16 $$ET y 3t.11 EPRG

(

29 57 UPST 21.G5 OBET P.52 NORM )

P.51 THM1

(

4.79 FTHE y

91 GRAV

.pl GRAY

-4.7# FTHE

-21.05 OBET

-38.16 SSET

-RP.3* NOPP

=#0.49 THM2 #

-1*1.45 UPST

- l 'J 1.

  • M [mpC o

9 m .

_ . _ _ . . . . _ _ . . _ _ _ . .m m .

4 I MPELL COR PO4- aN PAGE '2T3 s_ j ,r).

S UPE F F IF E VEFSICh 164e If/#1/831 SYSTEn IF8 ELL - EOS 84/05/23, 43 25.35.

g PGE TFDJAN kUCLEAR *TATION f3 IMPELL PPoeLEP ?3Cce!P . aC-13 PEV. 1 LOOP TEAL DRAIN LINES f ')

SUFPO-27 LO AC SUPM ARY (CCNTD.3

{,

SUPP SUPP !0rP C185 PEstLT RESULT ANIr LOAD LOAD LOAD

.) -

MARE LOCN TvoE CCCE TVPE UNIT TYPE W-ANIS SET Y-ANIS SET 7-AWIS SET r,

) i 1547

  • (CONID.) -115.pA FLTDtM-t }

DIFP FLTDfM*)

(INI GLOP .?*a

.?96 F**G } }

.394 UF*T

.28T NOPP

.29 7 TP*? 3g

.02 1 TH*l

.C11 FSIT

.t06 OBET y

.e36 FTHE

.00 6 FTNE

.PC6 UPST )

.*36 OPET

..a09 FMcG

.01 1 SSET )

.el ? FLTDtM-) $

I ITc IT- Skue v FC'r ILPI GLOP 5.*1 FLTDfP*)

  • .06 SSET

?.6* EMPG

)

3.51 CBET 3 91 0057 )

81 FTHE

.R1 FTHE 3.51 UPST

-3 51 OBET

) l

-?.F9 EMpG

-5.86 $$ET ) !

  • .91 FLTDEP-3 ,

CISP 8th) GLOP .65 P FLTDEM*3 .4'2 THMitP*) .332 FLTDEM+3

)

.65? EMPG 4=1 FLTD .104 SSFT

. 6 5 ". UPST 4'1 EMPG .163 EMRG l

.f41 PORM 451 UP97 .073 UPST  ;

.64 1 THw2 451 NOPM . r. A m FTHE

.C3e THP1 .2Pr Ter? .P62 OPET <

.ol s *tr7 . POT N0*P ' i

.ppe epET .806 THM1  ;

. *re FTHE . t '* 1 GRAY

. ',01 G*AV l

I

fm  %

['N g IMPELL CORP s,,ON \s / PAGE 274 s/

S U7EE PIPE VER$1C4 16A, l'#L1/P?% SYSTEP IwPELL - %OS 84/05/23. 98 25.35. r)'

l., PGE f*0JAN MieCLfA> STATION IFFELL PP0tLEP (3Pf019 - #C-C? #FV. 1 r)

Loop EEAL CPAIN LINES w

SUPPORT LOAD SU'PARY (CCNTD.)

  • s SU8P SUPP SUPP DI4h RESULT RESOLT ATIS LOAD LOAD LOAD KAME LOCN TVPF CODE Tyre th!T TYFE N= ANIS SE' Y-AXIS SET l-ANIS SET 5

170

. (CGNTC.) .062 OBET 3

.C6A FTHE ,

.* P FTHE .*11 GD;V .194 SSET I. .P09 Urti . 8 11 NORM .30R NOPM

.009 OPET .?C1 GRAV .3C9 THM2

. *12 EMRG .f91 UPST .370 UPST

'. .01 5 ?$ET .801 EPRG .400 EMPG

.01 7 FLTDEMai .tt! FLTDEP-l .432 FLTDtM-1 1

191 19P CONF V F0kt 8LB) GLOP -11.r? GPAV

-11.03 GRAY M9PM )

, -11.?'

-11.f3 h0R8

-11.83 UPST y

-11.C3 UP*T

-11.c3 EPen

-11.f3 EMRG

-11.C3 FLTD )

j -11.C3 FLTD(M-9 DISP f!N) GLOB .50' FLTDtM*) .P?5 FLTDtM*3 .135 rLTDtM*)

496 FPPG .P49 [ ppg .104 $$ET j- .492 UFST .946 UPST .193 EM*G y 478 THP2 .P!5 THP1 973 UPST

! 47P NOFM .P?% NOPP .068 FTHE

. C2 6 THP1 .6P9 THM2 962 OBET y

.P2 4 SSFT .c1P SSET .311 NORP i

.'15 OPET .r11 OBET .en9 THM1

. b12 FTNE .r0* FTHE .f01 GRAV y 9a1 GRAV i .C62 CBET

.968 FTHE .

. *17 FTHE ."]* FTHE .104 SSET i .015 CPET .011 06ET .253 NORM

.* 15 Ue97 .f11 UPST .255 THP2  ;

. '1 a EMpG .!14 F w o r, .536 UPST

. *2 4 SEET . PIP SSET .346 EMRG

.'?T FLTD(P.) .t?" FLTDf"-l .378 FLTDfM-1 )

d e ,

n g I MPELL C02POLv-< DON

> SUPERFIPE -VEPSICW IfA. 1(#'.1/P3; SYSTEP IPPELL - NOS O PAGE 275 84/05/23. 08.25.35.

os U ()'

FCE TF0JAN NUCLEAR ST A TION 1"FrLL PPCBLEM 93rcS1m - RC-S3 PEY. 1 -

r)

LOOP FEAL DeAIN LINFS f ')

SUPPOPT LOAD SUPPARY fEtNTO.)

SUPP SUPP SUPP dip h - PESULT RESULT Avls LOAD LOAD LOAD NAME LOCN TYPF 000E TvPE UNIT T'PE F-AFIS 'ET Y-ANIS SET 7-AMIS SET f

')

2tt 2 J 's *%CL

  • 2 FOPC (LD3 GLCD 171 45 FLTDtM*3 157 11 F"PG 3 15 7.6 C UPST 12P.7P 90#M 12P.46 THM2 }

38.77 SSri 2

23.82 CBET 15.45 FTHE }

p.2 3 TH"1

.32 GPAV

.32 NORM )

j .' 2 GPAV e -18.48 FTHE 7 -23.95 UFST }

-23.R 2 ceET

->h.07 EMPG

= ' a .7 7 FSFT )

-42 35 FLTDtM-3 DISP (IN) GLCP 1.*11 FLTDfM*) .143 FLTDEM.3 1 8a4 EPPG .311 EM#G 1.R6P UFST .304 SSET 1 852 THP1 .tAl UPST

)

1.P47 NCEM .068 FTHE 1 749 TPP2 .P62 OBET

.O?" SSET .919 NORM )

.a33 OPFT .Cin TH91

.r33 FTFE 2*1 GPAV y

.111 GRAV

.eL5 GPsy i

.ro5 P:0PM ..C62 OBET y

.ra5 GRAV .968 FTHE

.n33 FTPE .194 $$ET

.e33 OBET .1*9 NOR M .

5 y

.a3R Up?T .110 THM2

.t9? EP8G .171 UPST

  • .r%! SSFT .211 EMPG

.efe FLTDir.) .233 FLT0fM-1 1

(~

n

(l (

,/~.

g IEPELL CCRh, jl0N 4 S U?E281PE VEPSICN 16A, it/01/P38 SYSTFP IPFELL - ACS RAGE 276 d

84/C5/23. 08 25 35. r}

b' PGE TP0JAN NUCLEAR STATION IPPELL PPCBLEM 93"* alm - *C-a3 #FV.-1 s LOCF TEAL DPA14 LINES i SU7P017 LO AD SUPP ARY (CCNTD.3 )

b' SUPP SUPP !UPP DIPk RESULT RESULT Aw15 LCAD LOAD NAME LOCN TYPE COPE TYPE UNIT TYPE F-AVIS  ?ET LOAD i- Y-AMIS SET Z-ANIS SET 13A 134 49:C H GLC6 )

I FORC (LP) CLDB 26 3P FLTDtM+3 7.41 SSEffr*3 24.93 ' SET 62.92 FLTDtM*)

IIcR SPlAL1PM b 4.43 OBET 53 87 EMRG

, 17.37 [ MPG 1 1* FLTD 53.74 14.03 OPET UPST fDIIIN ' 74 FTbE 40 15 THM2 14.70 UPST

, 9.31 FTHE 40 15 NORP

  • 22.49 SSET

.74 FTHE 13 59 OBET

-1.76 EMRG 1.e4 FTHE y

7

.22 GRAV -1.P2 UPST 1 .22 GPAV -4.43 CBET

.22 hopP -E.2* GRAV )

y -4.69 THM1 -F.25 GRAY 5 *.31 FTHE -6.25 NORP

-14.93 OBET

-1.55. THM1

-7.41 SSET ~1 55 NORM )

-24.95 SSET -2*.27 THM2

-46.41 THP2 -1 94 FTHE

-46.63

-?4 25 THP1 -13.59 OBET NORM -4*.50 No#P )

-61 56 UP'T -44.94

-15 14 UPST UPST -15 2P EMRb

( -64.23 EPPG -45.Cr EMRG

-73.24 FLTDtM-9 -22 69 SSET

-47.94 FLTDfP-3 -24 33 FLTDEM-1 y MOPT (LB.Fil GLDE 27.44 FSEftM+3 4".14 FLTDtP+) i 26.27 FLTD 73.9P FLTDtM+1 4E.21 EM*G 62 74 EMRG y 16.4? OPET 37.12 UPST 15 54 EPRG 59.42 UPST 25 56 SSET 4a.81 NOPP 14 83 OPST 22 11 NOPM 38 50 THM1 3 a .8 7 FTHE 21.R7 THP2 31.08 SSET

15. P1 OPET 1P.61 OBET It.12 FTHE 11 59 FTHE ',
  • 1 69 GRAV 1.64

-1.6L GPAV THM1 2 31 GRAV

.24 CPAV 2 31 GRAW

-1 6' NOPP .24 NOPM ' y

-4.n 7 FTPE .24 CPAV

  • -16.43 OPET

-27.44 -11.59 FTHE SEF T )

-135.02 THM1

-1P.55 40RP

-1*.?2 FTPE -IR.61 OPET

-17f.2E TPF2 -14.76 Uret -2r.86

-171.RF THM2 NCDP -15.J1 OPET )

-1

  • e .2 9 -31.08 $$ET UPST -15.pA EPac

-3P*.Sr FFRG

-27.16 UPST

-2?.L6 SSET -4r.49 EMPG

-!*9.7' rLvntM-3 -25.vp FLTDEM-3 .;

-51.72 FLTCEM-1 DI?P (INI GLOP NEGLIGIBLE ,

-o

l

, j'}

('

IMPELL CC p SUPEDPIPE TION R!!CQ 1644 I!/01/e?! fv37EP IPPELL - COS P*GE 277 V 6 84/C5/23. Es.25.35. 1 E PGE TDCJAN NUCLEAR STATION .

IMPrLL PPORLFM 432?Pl* - #C-93 REV. 1 '

LOOP ?EAL DRAIN LINE%

D SU; PORT LO AD ?L"P APT (CtNTD.3 SUPP SUFP .SUPF DI*A RESULT REST!LT ANIS LOAD NaME L ecti TYPE ,CCOE TYPF LCAD LOAD UNIT 'vPE W-4XTS SET T-ANIS SET 7-ANIS SET l'

/

13A

( (CONTO.) r-ROTN (RAD) GLCB j NEGLIGIPLC pga P44 AMCH GLCF FORC (LO) GLOB 6 0.P 3 FLTDfP*)

< 1D.5* SSEffP.) 92.99 FLTDfM+)

' 59 76 SSE' 6 34 OBET f eH( $MA L'f9f 37.62 EMpG 71.P3 EMRG 3.C3 FTPE 66.21 UPST {

, 35 7a CBET 57.95 S$FT

' ggpag{ eqpf  !$.6F UPST e l 34.70 OBET 11 98 FTHE -3.n3 FTHE 32.47 THM1 {

, -6.34 CBET 31 52 NORP

' -9.2e FLTD 2P.53 FTHE

.12 GRAV -1C.59 SSET {

.12 GRAY -13.27 EMPC g .12 NORP , -13.96 UPFT .96 GRAY

-4.93 THP2 -2P.1C GRAV .96 )

-16.05 GRAV THP1 -Pr.38 GPAV -20.53 FTHE

-10 17 NOPP -2C.3C h0RM -24.9R THM2 I

-11.* 9 FTHE -4P.46 THP2 ,-25.94 NORP )

{ -35 7* CBET -7P.44 THM1 '-34.7P

, OBET

  • -45 96 UPST -99.1* N0pM -37.95 SSET ,

-47.91 EPPG -tr?.r* UP'T -6P.63 UPST

-59.76 SSET -tr5.7P EMRG -66 25 EM8G

-71 12 FLTDfM-) -It9.77 FLTDfM-) -87.41 FLTDfM=)

POMT fLP.Ft1

}

GLOR 6*.02 FLTDEM+) 64.35 FLTDfP*) 67 54 FLTCfM+)

' 57.P 3 SSET 48.P3 SSFT 62.46 SSET 39.64 ER*G 46.35 EPPG 43.59 EMRG )

34 63 OPET 43.tr LPST 4P.8R UPST

' 31.P4 UPST 28.76 CBET 37.4P OBET 24.92 FTHE 14 29 FTHE 14 26 FTHE }

, 14 24 N0pm 3.47 GRAV A 14.20 Tivl 3.47 GRAV

-?.'9 CPAV 2.o2 THP2 3.47 NORP }

-2 7* GRAV .r4 GRAY

-2.79 ):0 P M 44 NOP"

-6.4 P THP2 . ** GRAV -14.26 FTHE

-24.52 FTHE -37.4R OBET

' -!4 63 OP.E T

-4C.60 THM2 <

.8 3 CSFT -14.2* FTFE ~52 69 NORP #

-F6."5 THM1 -28.72 UrTT

-P9.74 -?6 17 THP1

  • P. C f M -2P.Te CPf7 -62.46 SSET

,m f~3

$ IMPELL ECDPOE 4

's_- -

PAGE 278 /

S UV E R PIF E VEP5tCN 1EAe If/r1/F38 SYSTEP IPPELL - AOS et/05/23. C?.25 33.

's r)

PGE TROJAN NUCLEAR STATION '

!*FEtt PPOPLEp .tys >ge . oc.t3 pry. I -)

LOOP 'EAL CoAIN LINES

)

SU7PI7 7 LO AD SUPP an y (ECNTr.)

SUPP SUPP SUPP DIPh RESULY RESULT ANIS LOAD LOAD LOAD NAPF tcCN TfPC CODI TYFE Uw!T TvFE N-ANIS SET Y-ANIS SET 2-ANIS SET I

stA ICONTD.3 -124.36 UPST -32.98 EPRG -95.09 UPST )

-I32.17 EPRG ~4P.03 MSET -92.72 EMRG

-152.55 FLTDir-3 5P,gy FLTDgM-9 -116.76 FLTDEP-3 DISP (IN) GLOB NEGLIGIBLE ROTN (PAD) GLOP NEGLIGIOLE )

39 11.38.UCLP. LF. H533LP1. 23.430KLhe.

)

1

)

)

)

)

)

)

)

/

J d

e i - - _ _ - - _ - - _ - - - -