ML20134N870
ML20134N870 | |
Person / Time | |
---|---|
Site: | Callaway |
Issue date: | 11/07/1996 |
From: | Witt W UNION ELECTRIC CO. |
To: | |
Shared Package | |
ML20134N868 | List: |
References | |
NUDOCS 9611270140 | |
Download: ML20134N870 (17) | |
Text
__.. _ _ _ _ .. ._ _ _ _ _ _ _ _ _ _ _ . __ _
. Rev.0
. Cdsway Cysle 9 i .)
p 4
4
- CALLAWAY CYCLE 9 i ,
CORE OPERATING LIMITS REPORT r
4 October 1996 :
s .
.) -
W v 1
s a
- 8' ' #' 7~
APPROVED BY: SUPT. SYSTEMS ENGINEERING / DA i
- 9611270140 961120
-PDR ADOCK 05000483 P pm PAGE-1 0F 17
l Rev o Causway Cycle 9 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for Callaway Plant Cycle 9 has been prepared in accordance with the requirements of Technical Speci5 cation 6.9.1.9 The Core Operating Limits affecting the following Technical Specifications are included in this report.
3.1.1.3 Moderator Temperamre Coefficient 3.1.3.5 Shutdown Rod Insertion Limit 3.1.3.6 Control Rod Insenion Limits 3.2.1 Axial Flux Difference 3.2.2 Heat Flux Hot Channel Factor 3.2.3 Nuclear Enthalpy Rise Hot Channel Factor .
3.'9.1~ Refueling Boron Concentration
/
4 GP
- 9 a
O 2 0F 17
J a.,, o
' Cellowey Cyels 9
.a.
2.0 - OPERATING LIMITS
.. De cycle-specific parameter limits for the specifications listed in Section 1.0 are presented
- l
. in the subsections which follow. Rese limits have been developed using the NRC-approved methodologies specified in Technical Specification 6.9.1.9. ;
- 2.1 - . Moderator Tensreture Coefficient 4 (Specification 3.1.1.3)
- .s 3 2.1.1 ne Moderator Temperature Coefficient shall be less positive than the limits ,
shown in Figure 1. Rese limits shall be referred to as the Beginning of Cycle .
Life (BOL) Limit. .
The Moderator Temperature Coefficient shall be less negative than -47.9 pcm!'F. his limit shall be referred to as the End of Cycle Life (EOL) Limit.
2.1.2 The MTC 300 ppm surveillance limit is -40.4 pcm/'F (all rods withdrawn, Rated Thermal Power condition).
~ '
).
en e i
. i e
)
T 6
3 o'F 17 ,
i
i -
Rov. 0
'Calleway Cyste 9 j
a i 7 ' ' '
'l' ti ii.! : ,
8 'i '
j IlIl
' lif 8l illiits :
'il ings l g ;,,, ,
' 8 i'llll': 4i l !: 1 ll .; ; g;,, ,,,,
- I I IlIllllll l 1 lll ll1i j j ,,,; ,,,,
I 6 ,,, !' ,
I' UNACCEPTABLE OPERATION IIII I I
'I
'l i
! !IiI 11ll
'I
- ti.
i II '
I I IlIl l lt l l l ijjj gg ,
{
o 'II I I I lli l'Is i .
ll ,j j ;g jg,,
E 'II 11 **l il i I I'
ilt
'l' ' l II i ii M
- 5 II I i ilii i
I I I i l II i i i (! I il 4lli
'I i i ! ' \ li !1 l l i; E I iIi
'W 'I I 'l' '
i e i ;\ 1i ; ,
4
$. III 8
' e i I
I i I i
I
(!
N
! 1 j
i n lii i b4 1 1 1 I I .\ I ,) j g i I l
' I
! i i it i lj
' o I - i ' I i it i i l l I l l \ l I i W ll
$ I" l li l I i ! I L i
}E 3 i *
! I i
i i l i
i i
i
)
A
, 11, l ll 6 i IIII
{( ;1 -
p g i i ! l l t I 'I i 11 i )
l,{
i
'\ 1 iii ACMTABLI OPERATION I
- . $ i
! I
'i i I
i i
l l i 1,
, I :
) Ii-g y i I I l l I
l [
J k I I 4 1 i l i E 3 i l l l
(
\
8 l I ,
i I i : ,
i I
- I i i 1 I l l A IT i j i ! l i l I
! l l t
l
\ 1 I
. I i
l i l I II I\i 1 1 i l I ! I I
i t\ :
if I I i 1' l I A i l i i I , i it Il li; I
i i !
0 40 50 60 70 80 M 100 0 10 20 30 PDtCD(T OF RATG itERHAl, PCER d
FIGURE 1 CALLAWAY CYCLE 9 MODERATOR TEMPERATURE COEFFICIENT VS. POWER LEVEL 14bF17 1
, i i
9
. Rev. 0 CaDaway % 9 2.2 ' Shutdown Rod Insertion Limits I (Specification 3.1.3.5) !
'Ibe shutdown rods shall be withdrawn to at least 225 steps. t 2.3 Control Rod Insertion Limits (Specification 3.1.3.6) fi The Control Bank Insertion Limits are specified by Figure 2.
i f
i i i i i
e 9
i e
! l
. l i
i l
i k
~
4 i
5 0F-17
Rev. O
^ Ca llaway Cysle 9 .
)
/
'! ll (78,2251 l' 225
/ I29,225)'- , ,, , ,
, , ., \ < , ,
{
) ,f l '
I f l If 4 i I l
f i' ' ; \ '
206 f ~
/ - gg g
/ >
175 .,
' l r
ll l l \
(188,161)-
^ ' ' '
r c- , , , r,,, y g (8,161) ,, -
.c
< < fc
.a ,, , ,
,r , ,
.c.
150 ,
r
/1 ,
i
/> ,
m / /
> f BM C / i
. , , 1
/ >
- g. 125
> /
/
$ / f
/
E f r a e r
.l,100
= ,
v ,\ ,1 ,
\
'r o
S-r
, i f BK 0 t i.
f j i / ii i ( ( l hc ', , i ,
s, 1 ,
n 1
x
< / ,
1 m , , ) \
I D If / i
/ ,
Q ,
r i
si
>, o 1 50 i
,,,8,
-( 46) e ; i i , s
,e < <
<< , 1 ,
s
,e >< t
, s > \
25 ,
/r ,<
t li i
l 4 4 l lI
,e i
I
(
, , l
' I I I I !
j j l { il i ii
, l l l } l ',
i
,, ,l ,l ,l ,
g (58.2,81-/l, l 00 30 90 1 0 40 50 60 70 0 10 20 30 ,
RATED TliERMAL POTER (Percent) i I FIGURE 2 !
i
) CALLAWAY CYCLE 9 ROD BANK INSERTION LIMITS VS. l
- RATED THERMAL POWER - FOUR LOOP OPEPATION 6 0F 17 l
Rev.0 ,
- CaDaway Cycle f !
-. i
) 2,4 Axial Flux Difference l
(Specification 3.2.1) .
2.4.1 The Axial Flux Difference (AFD) Limits are provided in Figure 3. .
[
2.4.2 The target band during Restricted AFD Operation is 3.3%. He AFD limits provided in Figure 3 also remain applicable during Restricted AFD Operation.
The minimum allowable power level for Restricted AFD Operation, APL", is 2.4.3 ;
-' 90% of RATED THERMAL POWER.
i 9
i i ..
l W
I I
J .
4 e
7 0F 17
l
. 1
. Rev.O Cansway Cycle 9 I
120 4 , . ; . . .,, 4 . . . . . . . . .
i6 e6 4 i , , . .i . . . i6 6 . . . . . . . . .
4 . 4 e , .
. . . . .. 4 . . . . . . 6 . . . . . .
. . e t t t . e 6 . .t t . . ! .
. e i 6 . . , , , . . . .
. 4 i . . . . 6 . . e . . i . . a a , e . 4 4 . .
110 . . , . . . , , . , , , ...: ..., . . . . . , .
. . . . 4 . , , . . . . . .
l-17. 188%) *
(+15, 188%) - - . . . 4
. . . . . l . . . , . .
. . . 4 . e 6 4 ! . . . . . e . . .
100 . , , , , . . .i . , , , . , , ,
4 , . . . . f f . 1 i ( i . .
- IIINbd I.D MiId5El D f 4 i L .
Iiwas 1 }F1 be(1 .p . .
ii . . . g . . ,
4
- i. . . . . t 4 i ,
)
j- 90 . . . , , . , . . 3 . . .
g 6 i ar mar moi J 4 h i inmi cer mi ,
e vi en i m 4 .i 41 . . .wi 1.mru s w. , .
y ' '
BB ' I
- I ' ' l * ' '
c3 + . . i * ' + . . '. l
- g6 80 . , . , ,
t . . 1
- i i 6 f. g . . 1
{ J e . , ,, w -n.w iieri + . i . . .
i l @ 70 ,/ , \ . , . '.
c
, , - - ..,.mm m ien i -,
i s
1 .i . s , , ,
8 l 1 80 ,
.i - . J t . t . .
! 4
- f . . . . T , 4 6
1 g .
t i . . . .i e . .
!; 50 , .' . . . '. . . 1 s . . . . .
l s .
E t-58, 58%) ' '
. ; , (+26, 58%) . l LJ . , . . . 4 u 40 , .
GC . . , . .
J W * '
. 06 , , . . . .' . . i i
. . s .
s . . .
i .
l * ' ' l l !
l l .
20 . . .
-6 . .
10 . '. '. . .
i . .
j . .
+
l 50 0 20 30 40
- -50 9 -30 -20 -10 0 10 a
1 AXIAL FLUX DIFFDtENCE (% DELTA-1) 4 FIGURE 3 CALLAWAY CYCLE 9 '
. s 1 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION '
l OF RATED THERMAL POWER FOR RAOC 8 0F If l I
m - _ _ _ _ _ -- - , . . . - ...r..- . _ _ _
Rev. 0
'Ca11 sway Cycle 9 '
2.5 Heat Flux Hot Channel Factor - Fn(Z)
(Specification 3.2.2)
Fo*
Fa(Z) I
- K(Z) for P > 0.5 P .
Fo*
Fo(Z) &
- K(Z) for P 10.5 0.5 7, THERMAL POWER where: P=
RATED THERMAL POWER 2.5.1 Fq" = 2.50 2.5.2 K(Z) is provided in Figure 4.
2.5.3 The W(z) functions that are to be used in Technical Specifications 4.2.2.2, 4.2.2.3, and 4.2.2.4 for Fa survei!!ance are shown in Figures 5 through 9.
The Normal Operation W(z) values have been determined for several burnups up to 18000 MWD /MTU in Cycle 9. This permits determination of W(z) at any cycle burnup up to 18000 MWD /MTU through the use of three point interpolation. For cycle burnups greater than 18000 MWD /MTU, use of the 18000 MWD /MTU W(z) values without interpolation or extrapolation is conservative. The W(z),o values were determined assuming Cycle 9 operates with the RAOC strategy. Also included is a W(z),o function that bounds the W(z)uo curve for all Cycle 9 burnups. Use of the bounding W(z)no curve will be conservative for any Cycle 9 burnup: however, additional margin--may be gained by using the burnup dependent W(z),o values.
Because significant margin exists between the analyticaJiy determined maximum Fe(z)*Pa values and their limit, Restricted Axial Flux Difference (RAFDO)
For this reason, no operation is not expected to be required for Cycle 9.
W(z) values are supplied for Cycle 9.
The W(z) values are provided for 73 axial points assuming the core height boundaries of 0 and 12 feet and intervals of .167 feet between the core boundaries.
Table A.1 shows the burnup dependent Fq penalty factors for Cycle 9. These values shall be used to increase Fa"(z) when required by Technical Specification Surveillance Requirement 4.2.2.2.e. A 2% penalty factor shall be used at all g
> cycle burnups that are outside the range of Table A.1.
9 0F 17
an.o
' ca. y cy.i. p
)
TABLE A.1 F PENALTY FACTORS AS A FUNCTION OF CYCLE BURNUP ,
Cycle Burnup (MWD /MTU) F,"(z) Penalty Factor (%)
2.00 3930 4102 2.04 4274 2.31 44M 2.52
~
4618 ' 2.63 4790 2.63 4961 2.52 5133 2.29 5305 2.00 Note: All cycle burnups outside the range of the above table shall use a 2% penalty factor for compliance with the 4.2.2.2.e Surveillance Requirement. Linear interpolation should be used for intermediate cycle burnups.
) .
10 0F 17
i j
i 4 - l ca.iy er, ao l l
.)' I l
2.6 Nuclear Enthalov Rise Hot Channel Factor - Fa" (Specification 3.2.3)
F," 5 F,"" [1 + PF,(1-P)]
THERMAL POWER where: P = l RATED THERMAL POWER E
2.6.1 F ,"" = 1.59 :
2.6.2 PF, = 0.3 .
2.7 Refueline Boron Concentration i (Specification 3.9.1) 2.7.1 The refueling boron concentration to maintain K.,10.95 shall be .;> 2000 ppm.
l 1
r 1
i I
l
);
r i
11 0F 17
j
)
- R ;,O l j Calleway Cycle 9 l
i 1.2 ..... .
..o -
.' ii .,
, i e .. ,.4 . , , , ,,. ,
.' ' (6,1.8) ' > .
,, ; .' : . ..+ . .. '*.
1.0 ---- -- --
-A -
4 _"Z, _' &s_ _ =W r--- -----
_r_- __-- -h- -
- r-- -- - -
%___ .. 7
- w. . . . . _ ___ . _ ,
.. . _ _ ______ 7____.
m ..., .
4 . . .
1 .90 . , . . .. .
I12, .812411
' 6 .6 4 i .
I - .80 ,, l . . . . . . .
+ N . . . . . .
w ' '
, i i ,
. , 6 i I .
4 cr .- '
4 i . , , , ,
en . .70 wa . .
P4
} eS . t 4 i < .60 ,' ,
3 . , , ..
E .
, , i z
j . . . . .
-s .50 ,
1 , .
n , , . .
PQ , . ,
, . 4 . .
- :m: .40 ; . .
4 4
.30 4
+
+
.l ,
i ' '
. . . . +
.20 ',
i l .
'. )
.~ , 4
! 4 1
.10 '
, , s
, , , i + i
- ' to 11 12 0.00 0 1 1 's 4 5 g 7 3 3
, CORE lEIGHT (F"EET)
', FIGURE 4 -
i CALLAWAY CYCLE 9
) K(z)- NORMALIZED Fo(z) ;
AS A FUNCTION OF CORE HEIGHT i i
l 12 0F 17 J
- )
i
.a
4
- Rev. 0
. Callaw0y Cycle 9 assaut. 150.
) *
+
(FEST) 0.000
'* 9.167 W(3) 1.0000 1.0000 la 60-
- 6.333 1.0000
+ 0.500 1.0000
+ 0.667 1.0000
- 6.033 1.0000
- 1.000 1.0000
- 1.167 1.0000
- 1.333 1.0000
- 1.500 1.0000
- 1.667 1.0000 ,
1.033 1.4701 1.5C 1. e n 1. s n 2 2.167 1.4154 2.333 1.3073 4 2.500 1.3599 2 .6 67 1.3320 3.033 1 3046 3.000 1.2056 3.167 1.2710 3.333 1.2501 A 1.3467 3.500 3.467 1.2300 b.
[ 3.033 1.3307 p
4.000 1.2220 4.167 1 2139 4.333 1.2044 4.500 1.1942 4.667 1.1033 ,
b 4.033 1 1710 5.000 1.1596 5.167 1.1469 6 5.333 1.1337
- h. 1.3C
- 5.Su 5.667 1 1205 1.1112
% 5.033 1.1113 6 6.000 1.1150 )
" 6.167 1.1249 1 6.333 1.1326 (
.)
db 6.500 1.1392 "g 6.667 1.1455
. 6.033 1. L510 e d' 7.000 1.1574 o 7.167 1.1617 1.2C \ g e 7.333 7.500 1.1650 1.1670 7.667 1.1679 6 d b 0*di.A, 1.1675
- 7.033 0i.
A 0 <,6 0.000 1.1651 o' A 0.167 1 1630 0.333 1 1624 a 4 1.1604 A ,,0.500
<, 0.E n 1.1562 33 0.'033 1 1509
- 0.en 1.1476 1.1C 9.167 1.1470 9.333 1.1594 9.500 1.1726 9.667 1 1030 9.033 1.1951 10.000 1.20$0 10.167 1.2159
- 10.333 1.0000
- 10.5n 1. n u ,
....22..:,,
- 10.6 n 1. n u ,
J
- 1. 0 0. . ~.. . . .
- .. : 8 9 10 11 12
- 10.O n 1.0000 3 4 5 6 7
- 11.O n 1. 00 n 0 1. 2 1. n 00 TOP
- 11.1n BOTTOM
- 11.3 n 1. n u CORE HEIGHT. (FEET)
- 11.500 1.0000 1,0000
- 11.467
- 11.033 1.0000
- u.0o 1. n a FIGURE 5 CALLAWAY CYCLE 9 .
W(z),,at 150 MWD /MTU
)
- Tor AND BOTTOM 1351%C1.UDED A3 PER TECH 1PEC 4.1.2.20 13 0F 17
. - . . ~ - - . - _ - - . . . . . . . _ . . - . , - . - . - - - - --. - . - . . - . . .
1
- i. ,
Rev. 0 hay Cycle 9 ,
1 1
-1.-
. 7, , .1 tee,.
l
. )1..o
- e.ees
- 4.167 1.eno 1.coes
'.
- e.333 1.eees
!
- e.See 1. nee
- e.60 1.eese
- e.e33 1.eue .
'* 1.cos 1. ene j
- 1.1n 1.cose
- 1.333 1.0000 3
a 4
- 1.667 1 1.se*"e's ;
f 1.5C 1.e33 1 50ee I
'
- 2.see 1 4e64 3.167 1 6511 I 3.333 1 4314
! 2.50c 1 3910 ,
1 0 2.667 1.3619 2.033 1.3333 i 1.3692 3.000
", a 3.167 1.393o ,
3.333 1.2614 3.500 1.2726 3.667 1.3642 3.e33 1.255e
, 4.000 1.246e j
, 4.167 1.2316 4.333 1.2265 ;
4.50s 1.2153
= 4.467 1.2e34 i
6 4.633 1.190s 3 1.1779 5.cos m 5.167 1.164e i
1,333 1.1.,9 N 1.u se
'. -. 1.3C 8 5.5ee 1.1249 5.667 3
5 ,
5.e33 1.1217 i d' ^
- 6. sos 1 1238 i
4.167 1 1295
^ 6.333. 1 1348 g,,,, g,1,gg a 3 1 1495 6.667
- j. .
b 6.e33 1 1564 2 db g 7. sos 1.1635 7.in 1.16,2
^ u 7.333 1.17 3 e l 1.2C O , , , gg ,
7.50e 1.1773
} ,
4,- m a- 1.667 1.1794 j O A 7.e33 1.16ed A
1.1796 e.cee g g 0.167 1.1763
] 0.333 1.10e9 d' 6 e.See 1.1e26 e A i. 8.467 1.1816 i e.033 1.1e35 e.coe 1 1n1 1.1C 9.167 1 1983 9.333 1315
, 9.5ee 1 2217 9.6t7 1.2324 l 9.e33 1.2435 10.000 1.1522 lo.in 1.3625
- Lo.333 1.ooes
- Lo.5ee 1. tote
- u.667 1. n u
_ _ _ . _ _ . . _ _ . .
- 19..n 1.ene j- 1.00 7 8 9 10 11 12
- u.en 1. ee n 0- - . . - ,1- _ _ _ 2 3 4 5 6 TOP ' IIN3S IN"o BOTTOM
- u.Soo 1.oese CORE HEIGHT (FEET)
- u.6 n 1.oooo 1.seet u.en
- 12.en 1""
' HGURE 6 1
CALLAWAY CYCLE 9
' ) W(z),,at 3000 MWDTMTU ,
<, n .- ...~m .,,, , --
__ ,_. . _ . - . m _. .- . _ . _ _ . . _ _ .. . . . _ . ._
I Rev. 0 Causway Chrcle 9 us2ar7 Seceo.
trar7) wts) 1,60 . e,eee 1.eees t
- e.as? 1.eees -
- e.333 ..ttee
. + e. sos a.cose
+ o.6s7 1. osse
= e.e33 3.eeee
+ 1.see 1.eees
- 1.ast 1.eese
- 1 333 1.seet ,
- 1.500 1.cose i
. 1.667 1... e 1.5C 1.e33 .1.2329 2.tes 1.3100 2.187 1.3026 h f
2.333 1.2071 2.58e 1. 27 L3 1.687 1.2553 1 2.033 1.2395 3.ees 1.2250 .
3.167 1.2155 3.333 1.2125 3.see 1.211e 1.4C 3.5s? 1.2eed 3.033 1.20$3 4.cee 1.2035 4.187 1.2e26 6 4.333 1.2o00 4.5e0 1.1983 6 4.667 1.1981 6 A 4.e33 1.1913 db 5.eee 1.1053 d'
> 5.187 1.1814 b4 A s.333 1.177s ,
--. 1.3C 3 s.see 1.1719 3C 3 ' S.687 1.1887 3 61 06 6 s.033 1.17 12 h "a 6.eee 1.1793 A 6.187 1.1916 A 6 6.333 1.2 16
=
6.See 1.2109
6 6.667 1.23 e
" 6.033 1 2292 7.eee 1.2391'
06,,A , s 7.167 1.2407 L.2C -,
O 7.333 1.2568
,, 7.5e. 1.263e b
I
-n
7.687 1.26ee d'68 7.033 1.27 13 e.cee 1.2729 e.157 1.2739 e.333 1 2716
- 0.500 1.2666 0.657 1.2541
~~
e.e33 1.2695 9.ooe 1.2793 1.1C 9.1f7 1.2909 9.333 1.3032 9.5ee 1.3142 9.667 1.3241 l 9.e33 1.3337 le.ooo 1.3423 1e.181 1.350e ,
- 1e.333 1.eese
- 1e.See 1.000s 1o.6,7 1. sees l
..--..- .. . to.e33 1.esee 10 11 12 + 11.eee 1.000s 8 9 1.00o - - ' '1- ~ ~ ~ - - 3~ ~ -42 5 6 7 11.1,7 1.oese ,
zic>2nz<3,c TP . u.m 1.
cons usranT <rssT) .
11.6,, i.eees 1.eees 11.033
. 00e 1.ooe.
FIGURE 7 CALLAWAY CYCLE 9
} W(z),, at 10000 MWD /MTU ,
- TOP AND BOTTOM 135 EXCLUDED AS PER TECH SPEC 4.1.1.20 l5i C)F JL2'
i
- i
. I
+ Rev. 0 Calleway Cycle p
~
sales? 1ene.
trss?) wtil
. o.oes ..sete 2.60-
- e.1t? 1.ooes 1
+ o.n3 1.soes e e.see t. esse e o.667 1.ooes
+ e.e33 1.eese
. 1.oes 1.eeet -
- 1.1r1 1.coes
= 1.333 1.eese 3
+ 1.see 1. coot
+ 1. 6 s? 1.seet 1.50 1.e33 1.3085 2.ees 1.2999 2.167 1.2e30 .
2.333 1.2699 2.See 1.25($ ,
2.687 1.2427 2.e33 1.2388 3.eee 1.2154 ,
3.1s7 1.21e3 3.333 1.2138 3.See 1.2188 1.4C 3.667 1.2334 3.833 1.2279 4.teo 1.2312 4.1s7 1.2342 4.333 1.2376 4.50s 1.24e0 4.687 1.2487 4.e33 1.24e5 5.eee 1.2392 5.167 1.2375
^ .
A
.,AAM s.333 1.23se 1 24 - s 1.234e j w 1.30 S.See
, ,A6.,A A' 5.687 1.2333 ,
N 3
- 0 e
b a s<>
,5.033 1.2363 a #
(.ees 1.2474 6.10 1.2614 o
6.333 1.2736 d.5 0 1 2e27
%)
~
A ai A "--'%A O 6.667 1.2919 0 A' 4.e33 1.2991 d' 7.soo 1.3e43
,,h3 7.1o 1.3n.
7.333 1.3082 1.2C 7.See 1.3e66 7.857 1.3839 7.033 1.297e '
e.oea 1.2 n e
\ 1 2703 o.167 e.333 1.2727 o.5ee 1 2719 s.6s? 1 2734 s.e33 1 27e2
. *** 1.2e33 9.teo 9.1n 1.2ss9
- 1.10 9.333 1.2 51 9.5ee 1.2643 p.667 1.2s29 9.e33 1.2775 1o.0e0 1.27 4 lo.in 1.tel5
- 10.333 1.ooes
. + 1s.see 1.sooo
- to.sn 1.eene I . no,,33 1,n oo
+ u.on 1.sooo 1.00 . . . . .
8 9 10 11 12
--.~ ~
4 5 6 7 0 1. . . .. 2 3 TOP *. "u *.*n"3 *1.o* "o "o s
. u.in 1. ..e BOTTOM CORE HEIGHT (FEET)
- 11.6 0 1.ooet u.n3 1. nu
. u.no 1. o n .
FIGURE 8 CALLAWAY CYCLE 9
) W(z) at 18000 MWD /MTU
_ . _ . . - - m_ _ _ _ . . _ . _ _ . _ _ _ ... .__ . - - . _ . , _ _ _ _
i ,
i
. Rev.0 ,
CeBewey Cycle 9
+. \
sussurr asaz
.. . l trurr) wtEl
)1.60 . e.eee
+ e.1<7 1.eees 1.eese i
e e.333 1.eeee e e.See 1.cose [
. e.667 1.eees >
+ e.e33 1.eees t
+ 1.ees 1.ooes l 6 + 1.167 1. sees r
. 1.333 1.eees t
. 1.See 1.eese i 1*5C 1.033 1.5336 3.ees 1.5647 3.167 1.4149 i A
3.333 1.4440 f 3.5e0 1.4144 I 3.687 1.3e43 J 6 3.e33 1.3551 !
3.ees 1.3387 3.167 1.3133 d, 3.333 1.3e34 L 3.5ee 1.3e35 :
1.4C l 3.667 1.3849
- g 3.e33' 1.3764 4.soe 1.365e j 4.1s7 1.3579 A 4.333 1.3533 6 1 2535 4.500 4.667 1.3553 l
,,, a 4.033 1.354 ;
b4 4,
^^
" 5.000 1.3535
- =* 6 6 6 A A 1.3,514 ,
$C A o
=
5,.167
,333 1, tee n 3 g
, 3. 3 C 6 6<n0 5.50s 1.3403 1.3475 A
- 5.487 s A 5.633 1.3546 .
,, 4.000 1.2610 l 6 .1 57 1.3763 {
60 00< 66 dub 6 6.333 1.3873 6.See 1.3975
"#~ 6. 6 t7 1.3460 6.633 1.3141 1.ees 1 3193 1.167 1.3334 [
1.2C '7.333 1.3333 6 7.5e0 1.3317
- 1. 6 t? 1.31eo 1.e33 1 3119 0.000 1.3e36 e.187 1.3939 4.333 1.3e6e
,. e.50s 1.Se65 e.6sf 1.2 eel
,,e.e33 1.393e 9.ees 1.3875 1.3411 1.1C 9.it?
9.333 1.3116 9.5 0 1.2211 ,
e .6 t7 1.33 3 '
9.e33 1.3366 I
1e.00s 3.3443 1e.187 1.3515
- 10.333 1. oet
- So.5ee 1.eees *f
- 10.667 1.eese
. So,e33 1.eees ,
1.00 9 10 11 12 + 11.oes 1.soes 4 5 6 7 8 11.1st 1. sees 0 1 2 3 TOP 11.333 1.eees BOTTOM . t1.5.. 1. oes CORE HEIGHT (FEET)
- L1. 4 67 1.cose
- 11.633 1. tees
- 13.soe 1.0 0.
MGURE 9 CALLAWAY CYCLE 9
~I BOUNDING W(z),,
'
- TOP AND 501 TOM 135 EXCLtJDED AS FER TECH SPEC 4.3.1.30 17 0F 17
. .__