ML20128P340

From kanterella
Jump to navigation Jump to search
Submits Rept for Task 1 Per M Silberberg 841116 Memo Re Concerns Re Lanthanum Releases in BMI-2104.Discusses Discrepancies in Corcon Calculations,Presents Revised Tables 6.14 & 7.16 & Recommends Reanalyses
ML20128P340
Person / Time
Site: Peach Bottom, 05000000
Issue date: 12/05/1984
From: Gieseke J
Battelle Memorial Institute, COLUMBUS LABORATORIES
To: Meyer R
NRC OFFICE OF NUCLEAR REGULATORY RESEARCH (RES)
Shared Package
ML20127A894 List: ... further results
References
FOIA-85-110 NUDOCS 8507130254
Download: ML20128P340 (14)


Text

- - - -

.h . ~ 2 OBaHelle Columbus Laboratones 505 King Asenue Columbus. Ohio 41201 2693 Telephone thl 41424-6424 Ti s24 5414 December 5,1984 Ralph Meyer ~ ,

Fuel Behavior Research Branch .. {

Nuclear Regulatory Commission .!

Washington, DC 20555 '

t '

Dear Ralph:

This letter is our report for Task 1 as defined in Mel Silberberg's memo of November 16 on " Plan to Address Concerns Related to Lanthanum Releases in BMI-2104". The efforts under this task are defined as:

1. Examination of Peach Bottom AE Results f

BCL will verify that SNL has the correct input for CORCON/VANESA. SNL will reanalyze the Peach Bottom sequences using CORCON-Modl/VANESA,

  • and supply the results to BCL. BCL will run NAUA and other codes as necessary to revise tables 6.14 and 7.16 of Vol. II. SNL will review all CORCON calculations used in BMI-2104 and identify any sequences in which an excessive temperature excursion occurs. The results of this le BCL will review preparewill be transmitted a letter report that by(a)tter to BCL discusses anyand the NRC.discovered, discrepancies (b) presents the revised tables 6.14 and 7.16, and (c) recommends ,

reanalysis necessary to correct other tables in BMI-2104 (e.g., tables 6.15 and 6.16 of Vol. II).

This letter is divided into sections covering items a, b and c as defined above.

(a) Discrepancies Discovered Based on results of a sensitivity analysis reported by Dana Powers at our meeting in Silver Spring on November 20, it can be estimated that the CORCON, Modl version should be adequate for this analysis and should not give results substantially different than the Mod 1V or Mod 2 versions. Therefore, the efforts under this task have been based on use of the Modl version. The Modl version was used in performing calculations for the BMI-2104 report.

In reviewing the input for the AE sequence as reported for the WASH-1400 fission product group in BMI-2104, several inconsistencies were noted between parameters used and parameters that should have been used. .

h[1lg4850415 ALVAREZ85-110 PDR

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . AlV

Ralph Meyer Nuclear Regulatory Commission 2 December 5, 1984

.\

I One_ area of slight difference between the previous analyses and this {

reanalysis is the fission product composition of the melt at the initiation '

of the core-concrete interaction. The original analysis assumed a homogeneous core composition while the current case uses a typical power distribution to specify the spatial fission product concentration. The result is a slight l

difference in composition of the melt but not nearly enough difference to affect predicted core-concrete interaction behavior. The small differences do translate into slightly different amounts of fission products being released ex-vessel compared with in-vessel. Again the effects are minimal. The melt composition used in this reanalysis is shown in Table 1.

Other items subject to revision have concerned the radius of the reactor cavity.

.the amounts of structural steel and fuel contained initially in the melt, and 'i the time from scram to the core-concrete interaction initiation. These revisions are noted in more detail in Table 2.

I A final discrepancy was found in the identification of elements predicted to be released by the VANESA code. The apparent elemental composition of the release as given by Table 6.14 of Vol. II contains, in fact, several groupings which were not identified to the Battelle staff earlier. The groupings are as follows:

Ru = Ru, Tc, Rh and Pd La20 3 = La23 0 , Eu23 0 , Pr 23 0 , Nd 023, Pm 23 0 ' 3*2 30 and Gd23 0

Ce02 = Ce02 , Np02 and Pu0 2 Since it is now known that these groupings were already included in the VANESA output, the release rates and inventories.can be interpreted properly. Estimates of the effect of the grouping indicate that the source term reported previously for Peach Bottom, AE sequence, would be reduced by a factor of about 6 for the lanthanum group, and 1.5 for thE ruthenium grouo. This grouping effect alone has a considerable impact.

(b) Revised Results for Peach Bottom, AE Using corrected values for the various parameters and using a correct interpre-tation of VANESA output, the source term by WASH-1400 fission product group was recalculated for Peach Bottom, AE sequence. Revised versions of Tables 6.14 and 7.16 from BMI-2104, Vol. II have been prepared and are attached. The results are seen to be essentially identical to the previous BMI-2104 values for cesium, iodine and tellurium releases. The strontium group release is now predicted to be somewhat lower than previously predicted and the lanthanum group is much lower than previous predictions. These latest source term predictions are believed to be much more realistic than the previous estimates because of the corrections made for previous discrepancies and misinterpretations.

~

Ralph Meyer Nuclear Regulatory Commission 3 December 5,1984 (c) Recommended Reanalyses Reanalyses of various sequences throughout the current BMI-2104 volumes can be recommended for several reasons. Review of the Peach Bottom analyses (Vol. II) suggest that the sequences (TC and TW) other than the AE sequence considered here should be repeated at least to correct the fission product releases during core-concrete interaction and Tables 6.15 and 6.16 replaced with updated versions. This would require use of codes CORCON, VANESA, NAUA and SPARC.

The problem identified with the grouping of elements within the VANESA output suggests that all source terms for the WASH-1400 groups in all volumes are in error and should be corrected. This would require analyses using primarily the NAUA and SPARC codes.

Finally, it has been identified that the CORCON Modl code may give unrealistically high melt temperatures for some cores, especially these having basaltic concrete.

A review of this possibility is being performed by Sandia and the previous CORCON calculations are being checked for possible erroneous results. Based on discussions with Dana Powers, the results of this review will be transmitted directly from Sandia 'to the NRC.

If you have any questions, let me know.

Sincerely, James A. Gieseke Physico-Chemcial Systems Section ,

JAG:cjh Attachments cc: M. Silberberg

---y , > - . - ----,,--g-3 - - - - ---i------m -c--.p-w

TABLE 1. MELT COMPOSITION AT START OF CORE CONCRETE INTERACTION Element / Compound Mass, kg Element / Compound Mass, kg

Xe 0.55 Pm 11.5

, j Kr 0.04 Sm 53.8 I 0.02 Np .41.2 .

Cs 0.30 Pu 742.4 Rb 0.03 Nb 4.3 Te 28.0 Zr (fp) 266.8 Sr 58.4 U 140500.

Ba 86.7 Zr (clad) 41070.

Ru 171.0 32990.

Zr02(clad)

Tc 58.4 Fe 70160.

Rh 33.0 Fe0 825.

Pd 82.7 Cr 11100.

4 Mo 209.1 Ni 6164.

La 98.2 Sn 557, 3-4 <

Nd 270.8 Gd 287.

. Eu 14.1- Mn- 1233.

Y 36.2 Ag 0 Ce 207.8 In 0

Pr 80.3 Cd 0 i

r

++

e 4

.r - -

-e.. .__m.- - - - , , , , , - , , ., -.- -_ .- ,

r

~

TABLE 2. INPUT FOR CORE CONCRETE INTERACTION CALCULATIONS

~

Input BMI-2104 Value Revised Value  ;

Time from' scram to start of concrete attack (minutes) 81.8 126.26 Reactor cavity radius (m) 2.4384 3.2 Reactor operating power (MW thermal) 3400 3293 137977 159400 UO2 mass in core (kg)

Debris temperature at the start of core debris / concrete interaction (K) 2161 2125 Concrete composition CORCON default (a)- CORCON default (a)

(a) High limestone, low silica

~ . _ . _ , . . . _ . _- .. .

.} ,

TABLE 6.14 ,

AEROSUL E0MPOSITION AND TOTAL RELEASE RATE FOR PEACH BOTTOMS AE(NOVEMBER 30, 1984)

IllMI T ? PFRrF MT )

j SPEC 1ESI O l 1200 1 2400 1 3600 l 4800 l 6000 l 7200 l 8400 l 9600 l F.0 37.I 12.7 12.8 13.1 13.0 12.8 12.6 12.5 12.4

Cr2 3 0 - - - -

Na B.15 B. 40 8. 60 8.43 8.40 8.41 9.43 B. 44 9.46

! No -

2.-07 4.-07 2.-07 2.-07 2.-07 2.-07 2.-07 2.-07 l Ru (1) 2.-07 2.-06 3.-06 2.-06 2.-06 2.-06 2.-06 2.-06 2.-06

) Sn B. 44 8.48 B. 62 8.50 9.47 8.48 B. 48 9.49 8.49 l j  % _ _ _ _ _ _ _ _ _

j T. B. 80 8.50 8. 56 8.50 8.47 8.46 8.45 9.44 8.42  ;

j Ag - - - - - - - - -

Mn 13.3 12.4 12.5 12.9 12.8 12.6 12.4 12.3 12.2 l Ca0 -

25.5 25.7 26. 5 26.4 26. 0 25.7 25.5 25.5 ,

A1 0 3 -

1.91 4.07 4. 05 4.39 4.85 5.21 5.47 5.62 0 -

2.37 2.28 2.25 2.27 2.26 2.25 2.23 2.19 K -

11.0 11.3 11.7 11.8 11.7 11.6 11. 5 11.5 S

2 15.0 18.1 19.8 21.2 _

22.4 23.3 24.1 24.6 UO2 8.28 8.47 B. 68 8.45 8.39 8.38 8. 37 B. 37 8.36 Zr0 0.03 0.02 0.03 0. 02 0.-02 0. 02 0.02 0. 02 0. 02 -

C.b(2 25. B - - - - - - - -

7.99 3.47 3.37 2.83 2.39 2. 88 1.83 1.62 1.44 Sr0 6.64 4.21 4.29 3.19 2.55 2.17 1.87 1.62 1.40 ,

j 03 8.15 8.61 8.98 8.62 8.53 9.53 8.54 8.53 8.53 [,

j Lab C 4 8.48 1.31 1.89 1.21, 1.01 9.96 8. 92 8.88 0.83 jl

, Nb2 6.25 7.64 0. 25 - - - - - -

l 4

C. 2 '

O.12 0. 04 4.-03 3.-05 - - - - -

l,

< Cd - - - - - - - - -

i SOURCE I RATE, G/SEC. 21.96 92.48 141.81 153.03 140.06 136.79 142.51 148.81 154.00 I

i 4

. ..e .

F

-* . [.

i

. I, TABLE 6.14 (Continued) 1, h

SPECIESI 10000 l 12000 l 13200 1 14400 1 15600 l 16000 l 18000 l 19200 14.7 120400 15.2 F.0 12.4 12.5 12.7 13.0 13.5 13.9 14.3

~ ~

~ ~ ~

~

0 ~ ~ ~

Cc2 3 0.47 0.47 0.44 0.42 9. 41 0.40 0.40 0.39 Ni 0.46 2.-07 2.-07 2.-07_ 2.-07_ 2.-07 2.-07_ 2.-07 2.-07 2.-07_ ..

Ho f 2.-06_ 2.-06_ 2.-06 2.-06 1.-06 1.-06 1.-06 1.-06 Ru(1) 2.-06 0.49 0.49 0.47 0.46 0.45 0.45 0.44 0.44 ,

Sn 0.49 - -

56 - -

0.41 0.40 0.39 0. 37 0.36 0.35 0.34

  • 8.34 0.33  !

T.

l gg - -

11.5 12.2 12.3 12.4 12.8 12.4 12.1 12.0 11.7 l Hn 26.8 27.7 28.6 29.3 30.3 31.3 i coo 25.5 25.7 26.0 A1 0 5.66 5.62 5.39 4.86 4.39 3.93 3.47 2.95 2.35 2.17_ 2.17 2.15 2.12 2.15 2.21 2.26 2.29 _2.31 Na2 14.0 13.2 13.6 K0 11.5 11.6 11.8 12.1 12.5 12.9 l 20.8 23.0 22.3 21.6_

l Sb2 24.9 25.0 24.8 24.2 23.6 0.20 0.19 U0 0.34 0.33 0.31 0. 27 0.25 0.23 0.22  ;

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 2r 0.02 - - -

21 -

0.89 9.69 B. 60 9. 51 9.43 C.b Bo 1.28 1.14 1.02 9.78 9.46 0.32 Sr0 1.22 1.06 0.91 B. 76 8.64 9.55 8.39 9.52_ 0.50 9.47 _0 . 40 8.35 0,32 2.29 9.26 _0.22 Lap 0j3: 0.33 0.27 0.22 +

C.0 4: 0.77 0.71 0.64 0.53 0.45 0.38

~ ~ ~

~ ~

~ ~

~

Nb 2 -

C. 2: - -

Cd - _

190.33 201.64 191.58 184.15 180.87 179.67

$0URCE 157.12 171.21 195.83 RATE, G/SEC.

I h

. i i

1 TABLE 6.14 (Continued) l SPECIES l 21600 122000 l 24000 125200 126400 127600 l 28800 130000 l 31200 F.0 15.9 16.7 S.50 0.56 0.47 0.32 0. 31 0.36 0.40 B. 27 B. 06 B. 83 Cr203 0.24 0.16 9.23 8.83 l

Ni 0.37 0.35 0.65 0.54 0.38 0.25 0.20 0.19 0.19 Ha 1.-07 1.-07 1.-04 2.-04 2.-04 4.-04 6.-04 7.-04 7.-04 Ru(1) 1.-06 1.-06 1.-06 9.-07 5.-07 2.-07 2.-07 1.-07, 1.-07 Sn 0.43 0.42 2. 90 2.89 2.77 3.01 3.27 3.25 3.25 i Sb - - - - - - - -- -

T. 0.32 0.31 0.83 0.78 0.71 0.64 0.60 '0.58 0.58 1 Ag - - - - - - - - -

, Mn 11. 0 10.6 24.3 21._9 18.2 14.7 13.1 12.8 12.6 l cod 32.6 34.3 58.0, _60.6 66.1 71.7 74.I 74.7 74.9 j Al 0 3 1.60 0.68 2.-03 2.-03 2.-03 2.-03 2.-03_ 2.-03 2.-03

. N 20 2.20 2.09 0.33 0.43 0.42 0.34 0.29 0.29 0.29 K0 14.5 14.9 9.49 9.63 9.10 7.63 6.82 6.70 6.65 2

SiO 2 19.8 18.9 0.97 9.70 8.36 9.13 9. 07 9.06 0.96 >

00 9.17 B.16 1.74 1.54 1.26 1.16 1.12 1.93 B. 97 0.02 0.02 0. 06 0.06 0.06 0.06 0.06 0.06 0.05 Ze[2(2 C.70 Bw 0.33 0.19 0.02 0.01 0. 01 9. 9.-03 8.-03 8.-03 Sc0 B. 23 9.13 1.-03 8.-04 5.-04 4.-04 4.-04 3.-04 3.-04 La 31 0.18 0.12 6.-03 4.-03 2.-03 1.-03 9.-04 9.-04 8.-04 C 4J 0.15 0.08 6.-04 6.-04 5.-04 5.-04 5.-04 5.-04 5.-04 us _ _ _ _ _ _ _ _ _

C3 2) _ _

j Cd ., ,_

[

SOURCE 193.33 235.15 85.41 94.20 91.28 65.53 45.35 34.88 29.38 [

RATE, G/SEC. i i

. .i

i-TABLE 6.14 (Continued)

I SPECIESI 32400 l 33600 l 34800 136000 l 37200 l 38400 l 39600 l 40800 l 42000 l F.0 0.43 0.47 0.50 0.53 l

~

B. 02 Cr203 9.93 9.83 8.83 Ni 9.19 0.19 0.19 0.19 .

Ho 7.-04 7.-04 7.-04 7.-04 Ru (1 1.-07 1.-07 1.-07 1.-07 Sn 3.28 3.34 3.40 3.45 Sb - - - -

T. 0.57 0.57 0. 57 0.57 -

Ag -

Mn 12.7 12.8 13.0 13.1 coo 74.8 74.7 74.4 74.2 At 0 2.-03 2.-03 2.-03 2.-03 Nh 9.29 9.29 B. 29 8.29 i K 6.63 6.62 6.62 6.61  !

S 0.06 0.06 0.06 0.06 2

002 0.93 0. 91 0.89 0.87 Zr0 0.05 0.05 0.05 0.05 Cepb(2 > - - - -

Bw 8.-03 8.-03 7.-03 7.-03 Sr0 3.-04 3.-04 3.-04 3.-04 Lap 0 ) 8.-04 8.-04 8.-04 7.-04 C.0 4: 5.-04 5.-04 5.-04 5.-04 Nb 3 - ' - -

C.I ) - - - -

Cd - - - -

SOURCE 26.15 24.34 23.46 23.24 RATE, G/SEC. i 4

. _ _ . . ~ --_.. _ _ _ . . _

e

. i TABLE 6.14 (Continued)

1) PERCENT FOR Ru INCLUDES Ru, TC, Po ANo RH.
2) PERCENT FOR CS INCLUDES CS ANo Rs.
3) PERCENT FOR LA2 0 3 INCLUDES LA203, 0Eu2 23 3 Y 0 , PR2 0 3, No203, Pn2 0 3, Sn20 3, ANo Go20 3 t 81 ) PERCENT FOR CE02 INCLUDES CE02 NP02 AND pug 2 .

D r

0 i

s

o' .

TABLE 7.16. FRACTION OF CORE INVENTORY RELEASED TO THE ATMOSPHERE STUDY (AE) / ({QR GROUPS OF REACTOR SAFETY Time I Cs Te Sr Ru La (hr) Group 2 Group 3 . Group 4 Group 5 Group 6 Group 7 0.5 0 0 0 0 0 0 -

1 0.11 0.18 2.0 x 10-2 6.5 x 10-3 1.5 x 10-3 5.1 x 10-5 2 0.21 0.20 7.2 x 10-2 1.1 x 10-2 3.1 x 10-3 9.1 x 10-5 4 0.32 0.31 0.23 0.24 4.6 x 10-3 9.7 x 10-3 7 0.32 0.31 0.43 0.46 4.6 x 10-3 1.9 x 10-2 10 0.32 0.31 0.62 0.50 4.8 x 10-3 2.1 x 10-2 15 -

0.32 0.31 0.67 0.50 5.0 x 10-3 2.1 x 10-2 (I) Species considered are Group 2 I Group 3 Cs Rb Group 4 Te Group 5 Sr. Ba Group 6 Ru, Rh, Pd, Tc, Mo Group 7 La, Y, Eu, Nd, Np, Sm, Pm, Pu, Zr, Ce, Nb, Pr,

s

$ , ,r , ., ,

, i'IG 1hILE ;IAN WISS1011 Co'ombus 1.4bo,aro,je, (Panafax MV 1200) --614-424-7695 (Panafax MV 3000) --614-424-3263 (Verification) --614-424 5059 T0: O c O,, a d w//t/e DATE: JSl.y ,/g

) -

TOTAL

  • /

PAGZS M e

('2Me luding Lead)

F"0M: h (gjg j, it 12/06 16:22 -

/206099 #01 e

9 e

2/6

, , , . , _ _ 2 ..2--

a w

On the attached figure (from J. K. Dickens, et a1 " Fission Produc*

Energy Release for Times Following Thermal-Neutron Fission of U235 Setween 2and14005'.NSE14p106(1980)) we have superimposed decay heat calculated results using the 1979 ANSI standard. The lower dot is the fission product decay prehr and the upper dot includes the contribution from the actinides and

{

frem neutron capture. As expected the AN5! standard results without actinide and neutron capture heat are very close to the experimental values which involved short irradiation times (the ANS! stancard was largely based on this work). The heavy element contribution accounts for U239 and Np239 cecay. Note that for a 2-year irradiation the capture and heavy element decay account for 8 to .

38 percent of the total. depending on decay time, i

j i

l I

1 1

12/06 16:22 7208099 #02 l

. l l

1

! 1

~l I

i i

l l

l f

o d

m 6 .)'{ ~

i 3"tf F!331CN-PRODUCT DEC4Y HEAT '

t:3 sa U + nthermat CECAY POWER

--- ENCP/8 IV CALCULATICN titrad

  • 10s

--- ANS STANCARO (1971) t;rred *

  • g S.;J UNCERTAINTY AS$3CNED TO CALCULATICN t-f I

' ' '"] I (RT (1976) tirraq = 24 h 37 y5  %

- I LASL (1977) t;rred

  • 20 000 s ' '] ' '
  • 2.8

' i UC3 (1977) t;rred

  • 1. 4. AND 22.3 h j *

., I

~.2

  • PPESENT ORNL RESULTS

,.,j6 N

  • t #.

r

' r i tY

.,,,,y ,

!)

  • 2.4 3

,@l '

'? .

.3 S

^ U, a i'(,

4

  • $1 '. >

2.0 .

'  ; .r-. .

-!ltA 2

4 N;'i t , Si .

  • i f.6 3

fU ,

=*3

"*(i '. l

.?t -

d t

- f.2 a-i

-q2 q

-lG '

l k ' O.8

.; l @

7 SCALE CHANGE

)'t l . C i

j 0.4 1s 1 mini fi ;l 8

I '

t 1m  ! 1 day i i i , , i!.oj

, - gL ,, "1 ,

, i n ol

, ' e n "it i i

. ' d' .,.iorj .

!C*' 100 tC' i

..n" o 108 103 104 108 1C4

,* TIME AFTER $HUTDCWN (s)

, e etiained usint CRICEN (Ref. !!) and the ENOF/3-(V , .

dets fte (lef 19) The 197 andard was obtamed frore y , f!L tummation ssxMation for data obtained at the longest tane after shutd

, , a cont:tbute to the result, smce all three experi.

. nts report measuremenft for cooling times >10's. values gven in Table IV. For the third and fourth 3r example, for 'he time interval t ,,ee = 100 s. tirse intervsis, i.e.. fot *0 < t 4 600 s the ORNL

,y

  • 600 n. 997. of the determination of f(t,T) beta rsy data are smaller than calculation by up

- , imes from the first term in equare brackets in to !!"e. but the ORNL gamma ray data agree very

'. (9% Interpciations when needed, were obtained we!! with calculati m. Ifowever, for the time interval 11asar intarpelation of the logarithms of f ud 1000 < t < 6000 s. the CRNL gamma-ray data are

't. .'"). emsder than calculattort but the beta ray data are There are several puzzling differences amont the siis;htly larger. We were interested to see if other data sets behaved in a timdar or in a diffefernt 12/06 16:23 7208099 #03 0F 03 e

l 1