ML20128B972
| ML20128B972 | |
| Person / Time | |
|---|---|
| Site: | Vogtle, 05000426, 05000000, 05000427 |
| Issue date: | 04/30/1973 |
| From: | BECHTEL GROUP, INC. |
| To: | |
| Shared Package | |
| ML19292B772 | List:
|
| References | |
| FOIA-84-624 NUDOCS 8505280130 | |
| Download: ML20128B972 (10) | |
Text
.
t~
.,,?'*..
c'.
f--pf-ALVIN W. V0GTLE NUCLEAR PLANT BRIEF
SUMMARY
OF SOIL CONDITl01.4 AND FOUNDATION EVALUATION UNITS 1 to 4 "If e
SECHTEL JOB 9510-001 APRIL 1973 8505290130 841015 PDR FOIA SHOL'.YB4-624 PDR e
i g
_a ALVIN W. V0GTLE NUCLEAR PLANT SOIL CONDITIONS I'
The locations of borings in the main power block areas are shown
/on Figures 1 and 2.
There are three major strata of importance in the soil mechanics design in the main plant area:
1.
The upper sand stratum extends from the ground surface (approx-
-imately El. 210 to 225) to approximately El. 135 The soils range from clean sands to silty sands with clay seams. At the bottom of this strata is a shell layer which ranges from a few inches to 27 feet thick in the main pcwe.r block areas.
~
2.
The clay bearing stratum extends from about El.135 to about El.170.
This soll is a hard to very hard, slightly sandy, cemented, calcareous clay marl and is the uppermost stratum capable of supporting heavy structural loads.
3 Below about El. 70 is the lower sand stratum which ccnsists of dense to very dense, coarse to fine sands and silty sands.
There are two aquifer systems, one in the upper sand stratum and the other in the lower sand stratum. The clay bearing stratum is an aquiclude between the two.
The confined aquifer in the lower sand stratum is not in nwwbr kr W e h h 4ej hydraulic contact with the Category I structures.
Thejupper sand stratum, which is expected to rise as high as El.165 during the winter or spring months, will be controlled in excavations penetrating it during construction.
The results of field geophysical measurements are tabulated in Figure J.
These show ccmpression wave and shear wave velocities.
l 1
6
' t FOUNDATIONLEVALUATION Our analyses indicated that liquefaction of the upper sand stratum
. material ~ below the ground water level is a distinct possibility when subjected to a seismic event equivalent to a maximum ground surface acceleration of 0.29 in a safe shutdown earthquake (SSE).
Figure 4 shows the results of this eval-uation.
The upper sand stratum material including the shell zone and approx-Imately the top five feet of the clay bearing stratum will be removed to El.
130 in the vicinity of the Category I structures.
Select sand backfill or lean concrete backfill will be placed from the bottom of the excavation to the de-sign elevation of the various Category I structures as shown on Figure 5 All select sand backfill adjacent to and beneath Category I structures will be compacted to 97 percent of the maximum density determined by ASTM test desig-nation D-1557 to preclude the possibility of the fill being subject to IIque-faction.
The magnitude of tolerable settlement governs the choice of allow-able bearing pressure. The net settlements were com;gted under the center and edges of each structure in the main power block area and are shown for Units I and 2 on Figure 6.
The maximum differential settlement between edges of structures is 0 3 inch.
In all other cases the differential settlement is less than this.
A summary of the soll parameters used for design is given on Fig-ure 7.
2-r w
t
( e ioy. ' //0 4gg
~
f \\ 420 -
l 424 I
.T 42 C ~
~
~
4g G222 42 0 e205
- O206 I
i 4+00 4gCO L/NE N 3 g
8 gdy.
-///A e j3j gj f
- //2
]
- 22/
e l04$/04A._
\\
{
I I-g 4 700 _
n
~
tu e 2/7* e g,gg.
k k
14.9 2
e /9 N 8 2/8 i
./NE P rs, jo7A;
~
l
'00 16 00
/078 f
4 2220
/59 k\\
/05
/06 -
w w
_ - - I O
1018
,v0 v,w 15
. lah
/10 *
- 46 l
t
/
+
\\/##"
/0/A j
s% o) a #I'_
e 228 107 t
15l
("
03 6 deon
. =4
- e 200 I
920/,
9 doc k
' e //024 Nbiss.eios 102 om-8+00 O
O
( *s
.s
- 9202,
..)
203
, ) 4,s 00,
204 %
t
)
)
x U N ITS I AND 2 F,'9.
l
i n
1
_1 1
i
,3/4
- 3129, e,43 3/3 9"o 9
n
' 3 11 3j0 94+ 0l!
O i
i
._J 7
D l
309 5
O lg I
Is t
308 ey.
- \\h g
Q 3#
306
',79
/38 307 R+gg
-g d
9n /38A
-l 335 I
=
,,, 'y pr o
t
/
?
4 OO
~
f.'
t l
JOS 4 y/4/
4337. l e
, 338 i
't'#8 I
l
.L8+00 I
O' O.
,O, O-30/
f 302 y f
303s 304) i O
l i
O i
e L
N UNII3 3 A N O
'Y F,9 2
~__
t
)
e c v e 0
0 0
0 0
0 a s 0
0 0
0 5
0 W/
6 0,
0 3
6 8
- t S f 1
1 1
1 1
(
)
e c v e 0
0 0
0 0
0 a s 0
0 0
0 5
0 W /
4, 5,
6 0
6 8
- t P f 1
2 4
5 6
6
(
1 0
0 0
1
+
5 o
3 8
8 8
8 2
9 T
9 6
5 2
1 8
)
t 1
1 1
1 1
b f
o
(
J n
t o
n i
a t m
+
l a o 8
3 8
8 8
8 P
v r 0
9 6
5 2
1 eF 2
1 1
1 1
1 r
lE ae lcu e
l t
+
g o
5 0
0 0
0 0
o T
1 4
5 8
9 9
V
)
t 2
f
(
W h
n t m
+
i p o 0
5 0
0 0
0 v
e r 1
4 5
8 9
l D F A
~
1
~
3 M.P G
9
e c
I
_I I
1 I
AVERACE SHEAR STRESS (psin 0
200 400 600 800 1000 t*00 1400
'0:
\\ g y, ess o.c.<
N FOR Da SEE FIG. 2C-24 I
\\
30
\\
(AR TMOUA KE wt TH a,u,
- a 2 g r
\\
f.S = l $ ON U9PER LIMIT Of
.\\
1NOvCro sTnesStS.
\\
70 T \\\\
CAUSING LIQUE! ACTION IN 20 CYCL ES FOR O$0
- 0)rourr.
N g\\
30 7g N
/
s f
C CA U$1NG LIQUC! ACTION k \\,. (ltN 20 CYCLES Q
E y
a s
0
(
\\
p--
-p
\\
\\
\\
60
\\
\\
ekhisOuike'~
\\
min o,,,,,
a ze
\\
MANCE Of STMES$tS 13 iINOUCEO SY EARTH-OUAKE FOR DIFFERENT SOls.
faofit.rs
\\
=\\
\\
\\
SIMPLIFILD LIQUEFACTION ANALYSIS 9
4 1
I
/
\\
F ig. 4
/
/
e-
?
I
~ i t
k' 9 sm M5J Ew t
9 s
m D
wO '-
C$ m; 4
t M'oI
.I
'O e
= 8 'k ow i
2 6
4*5 b
o N
Ww ow %
g 3
~
g m
Q-J 20 u%
b*
{w o*
s4 4
6%
W um w
wh e
Q' N
k 04 ev
./
a
- ~
~
L w
t/
- h. O IJ3d S n eCSN)
Uf De
- o o
/ 6 ge m
a
=
g e
Q
?
J t
9 3 b
{%
.i 4
QQ o
w 9
w J
Lw=
E 5 e
w E
k $k
~
1 w0 e
o.
o.
- b. w 3
6 qg 6.
E
.% 4 q
4 d
O
- h 4
4 %
h 9
Ot
.h
( o,W-0 s
=u o
N w
o 5e m
a w
eo L u
U k O M g
N E $ $ o$
d 5
o*
i t
aw a
9 2
(
C J
W wh g
E a
a b 4
)
.m s
b e,
=w J
h-A I
d N
t
- o, J
... l' /
8 w
- s a
u a
i
$O 5W 8s-4
/
F,* g.
T
- . W e t.~
1_
~e,.,.
- ..e.:. E.**,,
.'s.G
.A 6..~
W.......
m....... e. e -
-m....
~u-..
w.
l I
- 0. + '
-o.
lNUCLS ay*
3ER ftCE
/,- %
l0 ** f!* fW
\\ coopnc ;
g owen j r
REAtTOR ygf.
l e a9' _..,\\ a7'
__4ar --
9 l
\\ COAT?"A/NMEN7'/
I x
a
\\
B L'D G.
c.s' N.
n"#~
,b ap s,' %
( SER//CE \\
, 0. 4' f,
, 0./ '
O. 4 '
ar o.s '
\\ coot./NG l
~
q
\\ TOWER
'1 CONTROL M
Y n
a.s _..a...'...
t o......o. 7' or o t'..-e.s'n.
al' O
O l
t I
N BU/L DING h
K q
s
. 05' A0 y
Null [
SERVICE b
~
,.a._". 1.:'
.ia4' t
0 y
n, y-( coolwcr j i
.-n- ~,
as' at'
\\ 70g',Ry' c
RE,4 C TOR
}0
+.7.*.
a
- 4_ S "
G7"
... +
1 CON 7*AINMEN?~
'O 4'
-o NUC ' [A A.
BL OG, 4tevicj 'y
%$- ' /
ao at ac r
N.Y'~5CEING rowee Q a+'
l CEGMC k
O
.*0 TNT Ar WHICH Sf77tCMfNT hv.e5 (GMf'UrfC.
R /NDICATC$ Nf7 Af80t/NO /Nf7(AO Cf $[77dfM!N)*
),
Ftg, 4
41.
O 0
ENGINEERING PROPERTIES FOR DESIGN
. Upper Clay Lower Sand Bearing Sand Stati,c Properties
- Stratum, Stratum Stratum In Situ Dry Density (pcf) 94 88 94 Jn Situ Moisture Content (%)
, 25 35 24 Degree of Saturation (3) 88 100 ASTM D 1557 Maximum Dry Density (pcf) 115.2 Optimum Moisture Content (2) 12.4 Unconsolidated Undrained Shear Strength c (psf) 2300 10,000 d (deg.)
6 0
Consolidated Undrained Shear Strength c (psf) 1000 I.o.
d (deg.)
18 Consolidated Drained Shear Strength c (psf).
0 W (deg.)
34 Standa'rd Split Spoon Driving Resistance (blows per foot) 30 100+
100+
Porosity
.497 Poisson's Ratio 0.4 0.5 Permeability (feet per year) Upper Sand Stratum 350-543 l
Specific Gravity 2.70 2.72 l
N j
Motlulus of Elasticity (kips per square foot) 4000 Coefficient of Consolidation (Variabl e)
Refer to Consolidation Test ' Data
[