ML20125E485

From kanterella
Jump to navigation Jump to search
Requests Approval to Eliminate Postulation of Intermediate Pipe Breaks,Per SRP 3.6.2,Sections II.1 & II.2,except Under Listed Conditions.Info Supporting Request Submitted,Per D Wagner Telcon
ML20125E485
Person / Time
Site: Hope Creek PSEG icon.png
Issue date: 06/11/1985
From: Mittl R
Public Service Enterprise Group
To: Butler W
Office of Nuclear Reactor Regulation
References
NUDOCS 8506130135
Download: ML20125E485 (45)


Text

g -_

PutWic Serv:ce l- PS G Cornpany Electnc and Gas 80 Park Plaza, Newark, NJ 07101/ 201430-8217 MAILING ADDRESS / P.O. Box 570, Newark, NJ 07101 Robert L. Mitti General Manager Nuclear Assurance and Regulation June 11, 1985 Director of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission 7920 Norfolk Avenue Bethesda, MD 20814 Attention: Mr. Walter Butler, Chief Licensing Branch 2 Division of Licensing Gentlemen:

ELIMINATION OF ARBITRARY INTERMEDIATE PIPE BREAKS HOPE CREEK GENERATING STATION DOCKET NO. 50-354 Public Service Electric and Gas Company requests approval for the Hope Creek Generating Station to eliminate the postulation of intermediate pipe breaks as specified by SRP 3.6.2 Sections II.1 and II.2 unless such locations exceed the stress and usage factor threshold levels provided in BTP MEB 3-1 or are located in the proximity of welded pipe attachments.

In support of this request, the following information, requested in a telecon by D. Wagner, is provided:

1. Provide a short discussion of the technical justifica-tion for elimination of arbitrary intermediate breaks.

RESPONSE

The technical justification for elimination of arbitrary intermediate breaks is as follows:

a. Deletion of whip restraints will improve access for operation, inservice inspection, and maintenance.
b. Occupational radiation exposure during inspection, maintenance, and repair will be reduced over the life of the plant.

5

c. The additional accessibility to the piping systems may improve the officiency of inservice inspections. f

\\

The Energy Peopio 0506130135 850611 PDR ADOCK 05000354 A PDR g

c .

Director of Nuclear-Reactor-Regulation 2 6/11/85

d. Postulating'. arbitrary intermediate breaks provides only additional conservatism with no physical basis.
e. . Deletion of arbitrary intermediate break locations will not' impact the environmental qualification of safety

'related equipment.and components since the harsh environment conditions'have already been defined and will~not be revised.

f. Although the. currently installed drywell pipe whip restraints will remain, substantial cost savings will occur since notching of insulation around shimpacs is not' required, resulting in reduced heat loss to the containment and ease of insulation installation, and removal.
g. The option exists to remove unnecessary existing pipe whip restraints if maintenance / inspection operations could be simplified by enhanced accessibility.
2. Provide a table or summary which includes the following informations a) identification of all affected piping systems.

b) pipe diameter and material of each system in (a).

c) estimated number of breaks eliminated in each system in (a).

d) -estimated number of rupture restraints and jet deflectors eliminated in each system in (a).

RESPONSE

A summary table of the affected systems is provided as follows:

Arb.

Non. Intenn. Pipe 14tip Jet Pipe Pipe Pipe Breaks Restraints Deflectors System Material Dia. Elimin.c Eliminateda Eliminated

-Inside Contairment IIHR Supply CS/SS(304L) 20" 2b 0 0 RHR Return CS/SS(304L) 12" 4b o 0 Core Spray CS 12" 4 0 0 t LPCI CS 12" 7' 0 0 HPCI CS 10" 2 0 0 RCIC CS 4" 1 0 0

m Director of Nuclear Reactor Regulation 3 6/11/85 Arb.

Non. Interm. Pipe Wiip Jet Pipe Pipe ' Pipe. Breaks Restraints Deflectors System Material Dia. Elimin.C Eliminateda Eliminated Ouside Contairement Main Steam CS 28" 2 0 0 Feedwater CS 24" 2 0 0 HPCI CS 12"/8" 5 7 0 RCIC. CS 6" 5 4 0 RNCU CS 4" 2- 0 0 RNCU G 6"/4"/3" 11 1 0 Mi1V Drains CS 3"/2" .7 0 0 Starting Air SS(304L) 3"/2" 16 0 0 NOTES: a. The quantities listed are those restraints which

have not yet been installed. Those restraints which have been installed will remain, however several restraint shimpacs may not be required.
b. The postulated intermediate breaks are located in the stainless steel portion of the RHR piping connections to the recirculation system piping.

c.- Welded piping attachments are not-located in the proximity of any eliminated arbitrary inter-mediate breaks and no such welded attachments are expected to be added in the future.

3. Provide a detailed discussion to justify why the l systems identified in 2(a) are not susceptible to the following l (a) IGSCC.

(b) Water / Steam hammer effects.

RESPONSE

'The above systems are not susceptible to intergranular stress corrosion cracking (IGSCC) or steam / water hammer effects due to the following:

a. Industry experience has shown per NUREG-1061 that IGSCC can occur when the following conditions exist simultaneously: high tensile stresses, piping material susceptible to cracking, and a corrosive environment.

i

{

~

-i

~

c rs

~

LDirector of Nuclear

Reactor' Regulation- '4 6/11/85

, Although any stainless or carbon steel piping will ,

exhibit.some degree of residual stresses-and be exposed to tensile stresses, the potential of IGSCC .

. is minimized by choosing. piping material with low Lausceptibility to. stress corrosion.and by ensuring that a corrosive environment does not exist. The .i likelihood of IGSCC in stainless steel increases, with carbon content. Therefore, only a low carbon content stainless steel has been used (304L) in the portion of the RHR system connecting to the '

. recirculation system. The remainder of the affected system piping is ferritic carbon steel which-has been found not to be susceptible to

The existence.of a. corrosive environment is minimized by specifying stringent criteria for internal and external cleaning and by.following the EPRI 1pnt water chemistry guidelines during power .

Lascension and normal operation.

b. . systems such as main steam, HPCI,.and RCIC steam 4

lines which experience transients as a result of '

fast valve closure have been designed to accommo-date such effects. In general, steam / water hammer effects are not expected to occur due to. system  :

piping designs which prevent such occurrence, e.g., -

steam lines with adequate slope and drainage and  !

water lines with fill system feed.

4. Provide a commitment that'all systems in 2(a) will be included in the preoperational piping testing program.

t RESPON8E  :

All piping systems in:which arbitrary intermediate breaks are to be eliminated are within the scope of the piping startup testing program. . Bach system will be tested to I

verify that steady state vibratory levels are within accept-able' limits for operating conditions anticipated during service.

5.' Provide a commitment that all safety related equipment in the vicinity of the eliminated breaks has been ,

environmentally qualified to withstand the effects of a  !

non-mechanistic break.

L  !

I t

! f o  ;

s 7 *t?'-? fyy, Wtipp 3.w-w- q-m gp,-mg-n y.yp- y gyp +y y.,99.p++m.-gue rewm yww .. sppe , .,, pqq q y g w* m wg* g w e f=m'*>gregP

c -

H" Director of Nuclear Reactor Regulation 5 6/11/85

~ RESPONSE Elimination of arbitrary intermediate breaks will not affect the. environmental' qualification of safety related' equipment in.the vicinity of the arbitrary intermediate break loca-L tions. The break locations for defining the worst- case harsh environment conditions ~for all safety related equip-ment have been evaluated, which include the arbitrary intermediate break locations, and the.results documented in the FSAR. These. worst case conditions will not be revised

' based-upon elimination of the arbitrary intermediate break locations.

In addition to the above.information, attached for your-review are proposed FSAR changes to Sections 1.11 and 3.6 eliminating the postulation of arbitrary pipe break loca-tions. These changes will be incorporated upon approval of the above request.

Should you have any questions in this regard, please contact us.

Very truly yours, Ig/

l C D. H. Wagner USNRC Licensing Project Manager A. R. Blough USNRC Senior Resident Inspector LP19 01/05

) e r

acss psam sfes g T& ALE 1.11-1 (cont) Page 3 of 28 I a==== ry PSAR Section(e) sur

  • ape-ific sar Description of Where

_mastaan . ^ - cr'*=-la Difforences M _::f 3.5.3 ascendia a, sect. II.1, aminforced 3.s.4.s saev 13 camerete ammhare Permissible doctitity raties for flesoral beams and elske

=h=11 he la accordamboo with esbjected to lopective loads, Segolatory emide 1.142. the permissible doctility ration exceed those given in Regulatory Goide 1.142.

W i= A, Sect.II.2, 3.9.4.8 structerol steel m== hare a=,-a==ih1= doctility retico por fleenral beams esbjected are listed. to impactive lande (other than tornado missiles) the permissible emetility ratio escoede that given la appendia A of e r 3.5.3.

per axial tematon numere subject to impt21eive lande, a permissible emetility ratio of 3 is need.

3.4.2 II.1and F 2 3.6.2.7 spew 13 -

Postulated pipe rupttare 0) scos design for uses piping moete locations tainment the provielone of Rev 4 (November should MB 3-1. 1973) of this stP section, and not Ondf OMf3#de the corret. SRP (Rev 1, hly 1981).

II.3 ####

  • This section refers to III.2.a(2), A pipe break initial condition which states that the initial of 1005 power at normal plant condition prior to postulated conditione 1e need.

sipe rupture should be the greater of the costalmad energy at hot standby or at 1825 power.

Amendment 10 l

HCGS FSAR Insert E

b. Intermediate breaks on Class 1, 2, and 3 piping are not postulated unless such locations exceed stress and usage factor threshold levels per MEB 3-1 or are located in the proximity of welded pipe attachments.

o 9

l l

7811/9

h HCGS FSAR 3.6.2.1.1.2 Recirculation System Piping See Section 3.6.2.6 for a discussion of recirculation system piping.

1 i 3.6.2.1.1.3 Class 1 Piping (Other Than Recirculation System Piping and Piping in Containment Penetration

Areas)

Breaks in high energy Class 1 piping (ASME B&PV Code,Section III) are postulated to occur at the following locations:

l

a. At terminal ends of piping runs or branch runs t
b. At intermediate locations between terminal ends, as

]

determined by one of the two following criteria

) 1. The maximum range of stress intensity as calculated by ASME B&PV Code equation (10) and -

either equation (12) or (13) exceeds 2.4 Sm.

i

2. The cumulative usage factor exceeds 0.1. j i

Add INwAT b --+ l i

f'When the bove str s and fat que criteri result in '

i less th two int mediate b ak locatio , a minimu t

of two eparated ocations e chosen b ed on highe t stres , as cale ated by ation (10) f i Para aph NS-3 3. The t locations re separat by l a c' nge in d ection of he pipe be k jet thrus i y ;or . Who the pipi consists a straight un hout fit ngs, valv , or weld attachments a nimum of ne locati is chosen n the basis of

/11ghests ess.

Interm late pipe reak locat ns are init ally based upon itted d ign piping tross cale ations in  !

l accor ance with he above e iteria. As result of  !

pipi g reanaly s, the hi est stress cations may be shi ted. An ' itially de ermined pi break locat on  !

wi not be pianged as consequence owever unl e one i

(o thefollpingcondi ons exist: t 1

I 4

3.6-42 ,

I e-,- - ,....m--- , . ,..,,.--.--,_ _ , - , _ , - - m_ _ , - , ,,,,.w,, , , , , , - . , = . - . , . , - . , , - - , , - . - , . . . , _ _ , , , _ . , ._,---mmy

HCGS FSAR Insert D When the above stress and usage factor criteria are not exceeded, the minimum of two intermediate breaks based on highest stress, as calculated by Equation 10 of paragraph NS-3653, are not postulated unless the break location is in o the proximity of a welded attachment.

PE11/9 l

. I

o HCGS FSAR

1. Re alysis sho a that the m simum stress ange or t e cumulativ usage facto at another cation ot only ex eds that for the initial ipe break location b also exce the above pe break criteria. In addition, the break a the new location esults in m e serious c sequences to i safety- lated syst than the i itial bre .

P

2. Sig ficant chang s are made n the rout g, siz , I I or all thickne of the pi after the nitial p e break det mination. -

,,/

a j 3.6.2.1.1.4 Class 2 and 3 Piping (Other Than Recirculation System Piping and Piping in Containment Penetration Areas)

Breaks in high energy Class 2 and 3 piping (ASME B&PV Code, Seccion III) are postulated to occur at the following locations:

a. At terminal ends of piping runs or branch runs
b. At intermediate locations between terminal ends, as determined by one of the two following criteria:
1. At each location of potential high stress, such as pipe fittings with elbows, tees, reducers, etc; valves; and welded attachments
2. At each location where the maximum stress range,

- as calculated by the sum of equations (9) and (10) of Paragraph NC-3652, considering normal and upset plant conditions, exceeds 0.8(1.2 Sh+S). A A d d //VSC A T C 4 he abov stress c teria res t in less an tw (When inte mediate reak loc tions, a a imum of t se rated I cations e chosen b sed on high t stress, a calcula ed by th sum of eq tions (9) a d (10) of P ragraph C-3652. The two I cations are osen wit a iffere e in str s of at I ast 10% or, f stresse differ y less t an 10%, t two locati s are separ ed by a ange in irection of he pipe b eak jet rust ye or. Who the piping consists a j str ight run ithout fi tings, valv s, or wel t ,

3.6-43

l l

HCGS FSAR l l

l j

Incert C l

When the above stress criteria are not exceeded, the minimum l of two intermediate breaks based on highest stress, as l calculated by the sum of Equations 9 and 10 of paragraph NC-3652, are not postulated unless the break location is in the proximity of a welded attachment.

e PE11/9

= _ ......

  • eg . e e se

HCGS FSAR 8/83 attac ents, and a 1 stress nges are ess than T 0.8(1 2 Sh+SA ), a minimum o one loca on is che n on the asis of hig est stres .

In ermediate ipe break ocations e initial y based u n committ d design p ping stre calculat ons in ecordance ith the ab ve criter . As a r sult of iping rea alysis, th highest ress loca ions may b shifted. An initial y determi pipe br ak locatio will not e changed as a cons uence, ho ver, unle s one of e followi g conditi a exists f

, 1. ennalysis hows tha the maxi a stress r nge or the cumul ive usag factor a another lo ation not only xceeds t at for th initial pi e break locatio but also exceeds t above pi break criter . In ad ition, th break at e new locati n result in more rious con quence to safe -related ystems t n the ini al bre .

2. Si nificant hanges a e made in e rout g, size, o wall th kness of the pipe a ter the initial /

ipe break determin tion, f

f l 3.6.2.1.1.5 Nonnuclear Class Piping Breaks in high energy nonnuclear class piping are postulated to occur at the following locations:

l

a. At terminal ends of piping runs or branch runs
b. At each intermediate location of potential high stress, such as pipe fittings with elbows, tees, reducers, etc; valves; and welded attachments.

Alternatively, the break locations for nonnuclear class piping can be selected according to the same criteria used for Class 2 and 3 piping, provided that all necessary analyses are made.

3.6-44 Amendment 1

I' HCGS FSAR 1

the beam is based on a 20% ultimate elongation of L the diagonal plate.

3.0.2.6.4 Material to be Submitted for the Operating License Review 3.6.2.6.4.1 Implementation of Criteria for Pipe Break Location i and Orientation The criteria for selection of postulated p!*;e breaks in the recirculation piping system are provided in Section 3.6.2.6.1.

The postulated breaks and types, recircula'eion pipe breaks selected in accordance with these criter t; are shown on Figure 3.6-12. Conformation with the criteria is demonstrated in

' Table 3.6-6.

l 3.6.2.6.4.2 Implementation of Special Protection Criteria i l

The location of pipe whip restraints provided for the recirculation piping systems are also shown in Figure 3.6-12. l Using the analysis methods of Section 3.6.2.6.2.2, this system of I restraints was found to prevent unrestrained pipe whip at the break ~1ocations, postulated in Section 3.6.2.6.1. i 3.6.2.7 Standard Review Plan Rule Review 3.6.2.7.1 Acceptance Criterion II.1 and _2Z . 4 of Acceptance criterion II.1[gtandard geview plan (SRP)

Section 3.6.2 provides that postulated pipe rupture locations in containment should meet BTP MEB 3-1, which imposes new limits of 2.4 Sm for Class 1 pipe, in equations (10) and (12) of Paragraph NB-3653 of the ASME B&PV Code,Section III, for which pipe breaks must be postulated. Accepto nce. c r-ite ro on 2 .1 Pro "*de a mt tossutoteet p,;p e. r q + a na- /oca +>'ons au tside e on tainn' en f .s h o" /c/

l meet arP mc6 3 ~/.

The HCGS NSSS design meets the intent of MEB 3-1, Revision 1, with the following clarifications:

a. GE meets the requirements of criterion B.I.d, B.3.a (2-5),. and B.3.b, as described in Sections 3.6.2.6.1.5 and 3.6.2.6.2.1.1.

3.6-68

HCGS FSAR 6/84

b. GE has taken the following positions on the remaining items of BTP MEB 3-1, Revision 1, criteria within GE scope:
1. Criterion B.I.c(1) - GE uses criteria from SRP Section 3.6.2, Revision 0, which requires no break postulation if equation (10) is less than 3 S the cumulative usage factor is less than 0.1. ,and Section 3.6.2.6.1.4 discusses this criterion in detail.-

A dd /N'SER T A 3.6.2.7.2 Acceptance Criterion II.3 Acceptance criterion II.3 of SRP Section 3.6.2 provides criteria for initial conditions used in the dynamic analysis of postulated pipe break of the pressurized non-NSSS piping during operation at power. The initial condition to be used is the greater of the contained energy at hot standby or at 102% power.

On HCGS, the dynamic analysis of postulated pipe break is based on the initial condition of 100% power in the pressurized' pipe.

It is recognized that, for short periods of time, the pressure and enthalpy in some systems may be higher for some modes than for 100% power operation. From a safe and realistic protection point of view, 100% power represents the high energy condition of most likely occurrence, .;ue to the relatively short time period' of operation at the higher encrgy modes.

3.6.3 DEFINITIONS Certain terms used in Sections 3.6.1 and 3.6.2 have specific meanings, as described below:

a. Essential systems and components - Systems and components required to shut down the reactor, maintain it in a safe shutdown mode, and mitigate the consequences of a postulated piping failure, without offsite power.

3.6-69 Amendment 6

HCGS FSAR Insert A The HCGS non-NSSS design meets the intent of MEB 3-1, Revision 1, 2

with the following clarifications:

a. For Class 1 piping, when the stress and usage factor criteria in section 3.6.2.1.1.3.b are not exceeded, the minimum of two intermediate breaks based on highest stress, as calculated by Equation 10 of paragraph NB-365 , are not postulated unless the break location is in the proximity of a welded attachment.
b. For Class 2 and 3 piping, when the stress criteria of Section 3.6.2.1.1.4.b are not exceeded, the minimum of two i intermediate breaks based on highest stress, as calculated by the sum of Equations 9 and 10 of paragraph NC-3652, are not postulated unless the break location is in the proximity of a welded attachment.  :

In addition to limiting the stress and usage factor values for Class 1 piping and limiting the stress values for Class 2 and -

3 piping, the following criteria are all required to be met when considering deletion of arbitrary intermediate breaks:

a. The piping systems are not susceptible to IGSCC nor to i unanticipated waterhammer/ thermal transient events.
b. The piping system is included in the piping startup testing program for steady state vibrations.
c. Safety related equipment in the vicinity of the deleted

> intermediate break remains environmentally qualified to the non-dynamic effects of the pipe break with the greatest consequences on the equipment.

d. The deleted intermediate break is not in the vicinity of a welded attachment.

1 PEll/9 i

l

0 HCGS FSAR 6/84 TABLE 3.6-3 PRELIMINARY MAIN STEAM SYSTEM PIPING STRESS LEVELS AND PIPE BREAK DATA (PORTION OUTSIDE PRIMARY CONTAINMENT)

Total Pipe Break h Stress Basis for ll Node Node EQ.9+EQ.10 Stress 0.8(1.2SM Li.m Sa, M)Break Break ll

~

Point (1) Type (2) ksi ksi TypeC3) Selection 45 EL 14.78 37.8 C TE l 215 EL 14.57 37.8 C TE l 385 EL 13.47 37.8 C TE l 565 EL 14.20 37.8 C TE l 75 EL 23.83 37.8 C MBL l 245 EL 25.62 37.8 C MBL l 4;; EL 29.6! 27.9 C "SL

  • l 5-00 EL 29.!2 37.O C MOL % l l

(1) Locations of the nodes are shown in Figure 3.6-3 (2) Symbols used to denote the node type are as follows EL -

Elbow (3) Break types are indicated as follows C -

Circumferential

(*) Symbols used to denote the basis for break selection are as follows:

TE - Terminal end MBL - Intermediate break locations selected to satisfy the requirements for a minimum number of break locationsx where sue h loca hon s a rs in +he prox om **iy e F u.s e.I cised o, M o.c.h m e n t s .

Amendment 6

i HCGS FSAR 6/84 TABLE 3.6-9 Page 1 of 2 l PRELIMINARY FEEDWATER SYSTEM PIPING STRESS LEVELS AND PIPE BREAK DATA (PORTION OUTSIDE PRIMARY CONTAINMENT)

Pipe Break h Total Stress Limi Basis for Node Node Stress 0.8(1.2 S Sa) -

Break Break Point (1) Type (2) (ksi) (ksi) Type (3) Selection (*)

Line ffom F.W. ISO: Valves l 50 *:L 0.21 22.10 C TE -~

l 70 EL 3.31 32.40 C MBEr 7'E l 055 El a 22.10 C T: l 630 EL 9.84 32.40 C -MBEr- 7"E l Line from HPCI pump disch. l A05 BW 21.45 32.40 C TE l A10 BW 21.02 32.40 C TE l Line from RCIC pump disch. l 60 BW 17.04 32.40 C TE l

??.51 22.00 e ""'

05? EL l 958 BW 28.74 32.40 C TE l Line from RUCU l 40 BW 16.33 32.40 C TE l 665 BW 12.07 32.40 C TE l 859 TEE !9.52 22.t0 C ""L l 072 EP 20.56 22.50 C ""L l Amendment 6

HCGS FSAR 6/84 TABLE 3.6-9 (Con't) Page 2 of 2 l I

(1) Locations of the nodes are shown in Figure 3.6-14 (a) Symbols used to denote the node type are as follows:

EL - Elbow TEE - Tee BW - Butt weld (2) Break types are indicated as follows: .

C - Circumferential

(*) Symbols used to denote the basis for break selection are as follows:

TE - Terminal end "Si - !=t:rz: dirt: breth 1:0: tie == ::100ted t: :sti:fy the r:q;irc :nt f:r : =inix:: n::b:: Of b;;;% 10:sti:ns. -

SFL - Stress and fatigue limits established in Section 3.6.2.1.1.3 are not met.

Amendment 6

i HCGS FSAR 6/84 TABLE 3.6-11 Page 1 of 2 l PRELIMINARY RWCU SYSTEM PIPING STRESS LEVELS AND PIPE BREAK DATA (PORTION OUTSIDE PRIMARY CONTAINMENT)

Total Pipe Break Stress Stress Limit Basis for  ;

Node Node EQ.9+EQ.10 0.8(1.2 Sh+Sa)

Break Break Point (1) Typeca) (ksi) (ksi) Type (s) Selection (*)

E Anch. 39.42 32.4 C TE l D Anch. 38.21 32.4 C TE l 10 EL  !!.?S 22.0 C "SL l 45 TEE 39.78 32.4 C $4 SFL l 250 FL 7.32 32.4 C TE l 355 FL 8.90 32.4 C TE l 315 EL 0.50 22.t C "?L l 2^0 EL 2.22 22.t C "SL l 255 FL 16.91 32.4 C TE l 375 FL 25.52 32.4 C TE l 450 TEE 10.20 22.t C "?L l 1; TE:" 0.0^ 22.4 C "EL l 05 TEE 12.?? 22.t C "SL l e0 TEE :e.27 22.4 C nEL l B Anch. 13.07 32.4 C TE l 500 EL 10.01 32.t C "BL l 5 BW 14.04 32.4 C TE l 640 BW 14.89 32.4 C TE l 20 EL

d2 22.! C "SL l 40 EL 12.79 22.t C "9L l 50 EL 14.73 32.4 C TE l Amendment 6

S HCGS FSAR 6/84 TABLE 3.6-11 (cont) Page 2 of 2 l I

(2) Locations of the nodes are shown in Figure 3.6-16 l (a) Symbols used to denote the node type are as follows:

FL -

Flange EL -

Elbow TEE -

Tee BW -

Butt weld RED -

Reducer Anch. - Anchor (3) Break types are indicated as follows:

C -

Circumferential L -

LonqlNdin al

(*) Symbols used to denote the basis for break selection are as follows:

TE -

Terminal end

-;;* 1Gt:c;;it:t b:::h 1:::ti:n ::1::t:0 t: ::ti fy th: :q;ir ::nt: for : =ini r nr ' : Of breth lecetion:.

SFL - Stress and fatigue limits established in Section 3.6.2.1.1.3 are not met.

1 Amendment 6

HCGS FSAR 6/84 TABLE 3.6-12 PRELIMINARY HPCI SYSTEM PIPING STRESS LEVELS AND PIPE BREAK DATA (PORTION INSIDE PRIMARY CONTAINMENT)

Pipe Break Stress Stress Cumulative Limit Basis for Node Node By EQ. 10 Usage 2.4 Sm Break Break Point (1) Type (2) (ksi) Factor (ksi) Type (3) Selection (*)

31.3 402 TTJ tt-T 0.002(. 42.48 ,

C TE l 404 EL 30.42 0.0005 d2.?" C MOL l

-??O CL  ?!.??2 0.001 12.de C ""E l 420 EL Mh-M 0.0002 42.48 C TE l

33. A 0 00I5 (1) Locations of the nodes are shown in Figure 3.6-18 g (a) Symbols used to denote the node type are as follows:

TTJ - Tapered transition joint EL -

Elbow TC: T::

OW Outt acid '

RED -

Reducer (3) Break types are indicated as follows:

C -

Circumferential (d)' Symbols used to denote the basis for break selection are as follows:

TE -

Terminal end MOL -

Intec;;diate break Iccatiene selected t: ::tisfy -

the requir;;;nt; for mini;;; nt:b:r f brech" 1:0:ti:::.

SFL - Stress and fatigue limits established in Section 3.6.2.1.1.3 are not met.

Amendment 6 l l

HCGS FSAR 6/84 TABLE 3.6-13 l PRELIMINARY HPCI SYSTEM PIPING STRESS LEVELS AND PIPE BREAK DATA (PORTION OUTSIDE PRIMARY CONTAINMENT)

Pipe Break Total Stress Limit Basis for Node Node Stress 0.8(1.2 Sh+SA) Break Break Point (*) Type (s) (ksi) (ksi) Type (3) Selection (*)

Pump Discharge l (see Feedwater and Core Spray) l Turbine Steam Supply l 79 BW 12.79 32.40 C e

TE u,

=== ,, ,, ,, m

... _. ,, ,, ,, .m , uo ,

~

$h0 EL Ib.h8 b5.b b TE C ANCH 20.72 32.40 C TE m.,

... .. ,, ,o ,, in r

$hk bW 8.8k 55'.Ib d TE 110 BW 10.16 32.40 C TE 55 EL 7.^0 32.40 C ""L 20 L 7.54 22.40 C ."" L l

(m) Locations of the nodes are shown in Figure 3.6-19 l ca) Symbols used to denote the node type are as follows:

EL - Elbow T** T:

BW - Butt weld RED -

Reducer ANCH - Anchor (3) Break types are indicated as follows:

C -

Circumferential

(*) Symbols used to denote the basis for break selection are as follows:

TE - Terminal end i MOL - Inters;di;te br ;h lec;ticr.: ::lected t: ;;tisfy-the requir:::nt for : -in! r 9u-'er of brerh' ivu Liena.

1 Amendment 6 l 1

_ . . _ _ _ _ _ _ _ _ . a

HCGS FSAR 6/84 TABLE 3.6-14 .

PRELIMINARY RCIC SYSTEM PIPING STRESS LEVELS AND PIPE BREAK DATA (PORTION INSIDE PRIMARY CONTAINMENT)

Pipe Break Stress Stress Cumulative Limit Basis for Node Node By EO. 10 Usage 2.4 Sm Break Break Point (1) Type (a) (ksi) Factor (ksi) Type (3) Selection (*)

got 2 4 .11 0. coif 42. M

+tt TTJ W4 0,4G4 eit-09 C TE l:

920 DmtJ Md. os' O. 0/n 7 J 3. M , C. m81.

??O EL 27.2 0.0002 12.09 C "*L l' zw  ::.00 C cr; i 00:  ::.: 0.0:0 455 Eb HMb- 0.0000 $2.09 C TE l 84 / 7. 7f o. a00 3 4.?. / 4 (1) Locations of the nodes are shown in Figure 3.6-22 l (a) Symbols used to denote the node type are as follows:

TTJ - Tapered transition joint

~~.

.. ".. T. "

BW - Butt weld REC -

E;ic;7 pmW - b;ssi Wlar mahl toeld (8) Break types are indicated as follows:

C - Circumferential

(*) Symbols used to denote the basis for break selection are as follows:

TE -

Terminal end MBL - Intermediate break locations selected to satisfy the requirements for a minimum number of break locations;tohere sue.h i.e.4sns ars ln the prealm.'f1 o f welded SHOD S*

SFL - Stress and fatigue limits established in Section 3.6.2.1.1.3 are not met.

l l

l Amendment 6

HCGS FSAR 6/84 TABLE 3.6-15 PRELIMINARY RCIC SYSTEM PIPING STRESS LEVELS AND PIPE BREAK DATA (PORTION OUTSIDE PRIMARY CONTAINMENT)

Total Pipe Break Stress Stress Limit Basis for Node Node EQ.9+EO.10 0.8(1.2 Sh+SA) Type Break Point (1) Typeca) (ksi) (ksi) -

Break (s) Selection (*)

A EL 43.34 32.4 C Spk rs l 0;  :;.;; ""

05 22.' C _

20 "L 20.70 32.0 C ""i 85 BW 9.96 32.4 C TE 0 EL 0.37 22.? C ""i -

30 T::: 5.05 22.0 C r.0L 44 BW 7.60 32.4 C TE (1) Locations of the nodes are shown in Figure 3.6-23 l

<a) Symbols used to denote the node type are as follows:

EL - Elbow BW - Butt weld 00 0:nd-(3) Break types are indicated as follows:

C - Circumferential

(*) Symbols used to denote the basis for break selection are as follows:

TE - Terminal end

0L Int
r;; diet br
k Ic;; tion; ::1;;t:d t: ;;ti;fy th:
uircrrnte fer e mi=.!rr 9erber of break lecetienet OTL - Ots;;;
nd f;tigu; li;it; ::t:bli;hcd in 0 : tion 3.0.2.1.1.3 ;;; n;t ;;t.

Amendment 6

HCGS FSAR 6/84 TABLE 3.6-17 l PRELIMINARY MAIN STEAM DRAIN PIPING STEESS LEVELS AND PIPE BREAK DATA (PORTION OUTSIDE PRIMARY CONTAINMENT) l Pipe Break l Node Total Stress Limit Basis for Point Node Stress 0.8(1.2Sh+Sa) -

Break Type (3)

Break ll (1) Type (a) (ksi) (ksi) Selection (*) l 60 TE 12.26 32.40 C TE 120 IL i2.25 22.00 C c;;L '

1 4 ", T::" i2.0^ '2.00

, C MOL 5 BW 27.33 32.40 C TE 02" T": 25.15 32.00 C MOL 770 T :: 2 5 . ', 2 22.40 C MOL 815 BW 21.31 32.40 C TE 0 ', 2 T" 20.02 32.40 C M"L !

660 BW 23.20 32.40

,,n C

TE u.,

.a. ~~ .,. m,,. .... . .__

225 BW 17.15 32.40 C TE

-370 T: 15 '? 22.40 C M"L 160 EL 11.81 32.40 C TE 740 TEE 6.07 32.40 C TE 585 TEE 8.56 32.40 C TE 425 TEE 8.05 32.40 C TE Add inseR7" B

(*) Locations of the nodes are shown in Figure 3.6-27.

(a) Symbols used to denote the node type are as follows:

EL - Elbow TEE - Tee BW - Butt weld (8) Break types are indicated as follows:

C -

Circumferential (4) Symbols used to denote the basis for break selection are as follows:

TE - Terminal end ri;L - : .tesmadiate t,r;;k Ie;; tier.; ::lected t: ;;ti;fy the requ!rerente fer e -in!rur urb:r Of bre:S

-1;;;tisr.;.

Amendment 6

HCGS FSAR Insert B Pipe Break Basis For Node Node Total Stress Limit Break Break Point Type Stress 0.8(1.2Sh+SA) Type Selection (1) (2) (ksi) (ksi) (3) (4) 765 BW 20.7 32.40 C TE 680 BW 22.0 32.40 C TE 610 BW 23.9 32.40 C TE 540 BW 21.3 32.40 C TE 275 BW 5.3 32.40 C TE 345 BW 9.5 32.40 C TE 75 BW -

12.14 32.40 C TE 180 BW 17.54 32.40 C TE 305 BW 12.37 32.40 C' TE 380 BW 13.79 32.40 C TE 495 BW 4.30 32.40 C TE PE11/9 e........ ..

HCGS FSAR 6/84 TABLE 3.6-20 PRELIMINARY RHR SHUTDOWN COOLING SUCTION PIPING STRESS LEVELS AND PIPE EREAK DATA Pipe Break Stress Stress Cumulative Limit Basis for Node Node By EO. 10 Usage 2.4 Sm Break Break Point <a) Typeca) (ksi) Factor (ksi) Type (3) Selection (*)

M  %,8 O.coSI 34. os' 500 ew M-99 0.00t '4.032

, C TE

,,m. ., o, ,, ,, m,,

o ., .,

. , . . -- . .., m...,,.,,., .... .

m_.

oru

,.., n. e,

.n e. . . . n. . .e n. n.

... n..,, .

e , ,- - .

,w u mu n s, m_. e. s. . , a.

. ..i.ss.. ...a.ss__ et,

_c e , <

,,m. ,, ,, r,,

, , - - - . . n .o n. . .,1. =. .,,,. n. e. ,. --- .e..-. ,

.m, v .

,, a

. . . . .o n ,,,

..n...,, e,,

.-- .e.,.,

<< . m ,

,,. . n,,. ,. .., , ,i.n.,,

.. .. r. , ,_ e .,

630 TTJ M-et 0.012t Mve6 C TE M $~ o.ctst 4 7. 3 7$

(1) Locations of the nodes are shown in Figure 3.6-30 l (a) Symbols used to denote the node type are as follows:

TTJ - Tapered transition joint MTV .ans b b ww a is

. E% .ms.....

.s--,

(8) Break types are indicated as follows:

C Circumferent,ial

.-- > ..as..

u - . . ,. . . . . . . . .

(*) Symbols used to denote the basis for break selection are as follows:

TE - Terminal end "I'_ :nt;;;; dict: 5 ::h 1:::ti:n: ::1::t:d t: ::ti:fi th: ::q;ir ::nt: f:: : mini::: n;;b:: f b ::h 1:::ti:n:.

S*' - St ::: :nd ' ti;;; limit: ::t:blich:d in S:: tic.-

' S.2.1.1.2 ::: n:t ::t.

6 Amendment 6

r HCGS FSAR 6/84 TABLE 3.6-21 Page 1 of 2 l PRELIMINARY RHR SHUTDOWN COOLING RETURN PIPING STRESS LEVELS AND PIPE BREAK DATA Pipe Break Stress Stress Cumulative Limit Basis for l Node Node By EQ. 10 Usage 2.4 Sm Break Break l Point (1) Type <a) (ksi) Factor (ksi) Type (3) Selection (*)

LOOP A 12"-CCA-116(SS) 12"-DLA-069(CSS) 77]* 4/. .s o. 0196 34.of 500 -BW- .....o v..,,, ,,. m C TE

, , n. .

n. a . .e.. m. o n. . .,. ,.., ,,

., , . m..e. ,. ..

asu

.. ,v ..,. ... ,

m ,

v.

m, um oru

. , v.

o,,

n. . .,. ,. m, o.

-, a. o

,,m.

,, on, n.,.,,.,.

..n. ,, ,,

. r. .. ,.m.

.,.,.a .

. .. ,., i. . n. .o , . n. . i. e. .n o. ...n...

,, re,

-- .c e. -,

610 TTJ 0".'t 0.0'33 ' 2 . " 5 0- C TE 30.I c .o t.17 9.p . 3 7f LOOP B 12"-CCA-115(SS) 12"-DLA-021(CSS) 17.7 m,.. t,. O.03/O 34. o C 700 4H+ H r6 0.??? MrMt C TE

,,n, E iVa

.s aw

.,. n . a, m, n..,,,.,.

, ,r e,

. n. . . rw ., , e, a ad

, , n. .

un. no.of

.y. s. n. . .,F,f.F

,,n.,,.

.. u rw ., , ,P, h# 6 M

,..,n.. . e,

e. n. . , ,.. n..e,o ...

... . n. , ., r ., ,. .e..

r,, c e ,_

, ,n. .

-- e. .n . o. n. . .s e. e. 2 2. . n. , ,.. ---

., . . ., n. . o. .n,., ,,n.,.,

. .. e.

n. . a, ,. n..,.,,. .

,.n. ,,

. r~ ., ,~ a..u 830 TTJ 07."; 0.0130 '2.a0 C TE

$8. 9 c.o/VO (? 3 W l

(1) Locations of the nodes are shown in Figure 3.6-31 l (a) Symbols used to denote the node type are as fol' lows:

TTJ - Tapered transition joint

,m_.

~~ -.-

- . . u. . ... .u.

-.S.,

ET

- -_2.

.i.-.

(3) Break types are indicated as follows:

C -

Circumferent,ial

, _ w u.

Ed uv s . iy a i.wa... n.. _

(*) Symbols used to denote the basis for break selection are as follows:

TE - Terminal end MOL Intcr= diate break leestler.: =eleeted te est!=fy th: :quir:::nt: fer : mini ::.n..b: of break Amendment 6

HCGS FSAR 6/84 TABLE 3.6-21 (cont) Page 2 of 2 l l 4eeeMone,-

SFL - Stress and fatigue limits established in Section 3.6.2.1.1.3 are not met.

L l

l f

I l

Amendment 6

HCGS FSAR 6/84 TABLE 3.6-22 Page 1 of 2 l PRELIMINARY LPCI INJECTION PIPING STRESS LEVELS AND PIPE BREAK DATA Pipe Break Stress Stress Cumulative Limit Basis for l Node Node By EO. 10 Usage 2.4 Sm Break Break l Point (1) Typeca) (ksi) Factor (ksi) Type (3) Selection (*)

la5' J 9 0.0389 42. H 80 TTJ t+e-9 0.0047 42.004 C TE 75 CL 20.5 0.0000 02.000 C CTL SO EL 57.2 0.0025 12.955 C SFL '

25 TTJ 20.021- G.0142 42.00? C TE J7.39 0 0010 42 48 Line 12"-DLA-015 l k 3. 0 6, o.0303 42.4 9 180 TTJ 110.37 0.2903 42.004 C TE 17; "L 02.00 0.0000 42.000 C STL-140 TL 30.00 0.0000 ;2.004 C OTL-125 TTJ 00.200 0.0020 42.05? C TE

$ 9'. J 7 o.0008 42.48 to 273 0.0992 42.48 495 TTJ 100.00 0.2676 42.004 C TE 400 EL 00.05 0.0?00 ?2.050 C 0L 400 EL 40.312 0.0012 42.000 C JFL-425 TTJ 49d4 0.0047 ?2.00? C TE as.9J o.cocG ya. 48 Line 12"-DLA-056 l

11. 9 &n o.0233 42 48 395 TTJ 100.00 0.25t? 42.00s C TE 200 EL S5.05 0.0910 12.951 C STL 335 EL M : 99 39, Jo W o.***E ?2 . 0 04- V/. Y8 C mot.4FE 325 TTJ Ser?e 0.0037 42.004 C TE pg.ps o.oco7 ya,4 s l

() Locations of the nodes are shown in Figure'3.6-32 l (a) Symbols used to denote the node type are as follows:

TTJ - Tapered transition joint EL - Elbow T: T;; '

O'A L tt m id-

--- .a....

m. .... ...

(3) Break types are indicated as follows:

C -

Circumferential Amendment 6

HCGS FSAR 6/84 TABLE 3.6-22 (cont) Page 2 of 2 l

(*) Symbols used to denote the basis for break selection are as follows:

TE -

Terminal end MSL - Intermediate break locations selected to satisfy the requirements for a minimum number of break locationsp where such kcahees ar e on rk pru; mitt of w*'d*d oneo ms nis.

SFL - Stress and fatigue limits established in Section 3.6.2.1.1.3 are not met.

Amendment 6

F i

HCGS FSAR 6/84 TABLE 3.6-23 PRELIMINARY CORE SPRAY INJECTION PIPING STRESS LEVELS AND PIPE BREAK DATA Pipe Break i Stress Stress Cumulative Limit Basis for Node Node By EQ. 10 Usage 2.4 Sm Break Break Point (s) Typeca) (ksi) Factor (ksi) Type (3) Selection (*)

s.unc W - b u oot gy.o 7 c.os3 42.48 150 RED G3.03 Gr%9 +2 rM C TE 145 EL 59.?: 0.055  ? .00 C J;L

! 105 TTJ 27.53 0.0010 42.00 C nLL l

35 TTJ 2 5. ;T 0.0004 6 46 C TE 24 23 0 0003 42.qlf Line 12" - DLA-023 49.sa o .o W 42 4Et 140 RED L. L K betee 4t-99 C TE 135 EL (2/95) (2/95) 12.85 C ""L G3 TTJ (3/05) (2/05) t2.S5 C "Ei 35 TTJ 03/G5) 43/05i th96 C TE 26.. W 7 o.oooy t'J. 48 (1) Locations of the nodes are shown in Figure 3.6-33  !

(a) Symbols used to denote the node type are as follows:

TTJ - Tapered transition joint EL -

El u RED -

Reducer (3) Break types are indicated as follows:

C -

Circumferential

(*) Symbols used to denote the basis for break selection are as follows:

TE -

Terminal end OL -

Inter;; dict; br :h-lo::ti:n: ::12 ted t ::ti:f r the requir rrnte fer : minirer nurb:: Of br;;h 100:ti:::.

Amendment 6

. .I 8

,, l

\

I

\,

[s g

\' ,

s ,.

,,.g E

' I E .

Ik .

fl 1-i 'f5 W iI m I d**

l F

I it i :q I 7"9/ 1

,1 4

nA.Q"ff'

~

. u. m . ,

l= '

a,

"-- i 11 lf'!ll I

[

,R l 8

I-

'l ! i .

l 5 !=.e!I. I. I.

t.

LAX. .

g E

i, ..

. i V~ - - . . _ _ _ . _

e *

~

ll l1

./ y, i

i ll '

b "

Y(

- }-

A U

~

, a i l'

lll gj/jpJ g!' ] f;" 't

'~ '

P gg T\ 3

/;i < . ,

\:

ll n, to %,4!, d; \

!,1 ii a, t ,,

, l e

.. , sp s p

Ax l11  ! i mans t

' ~ ' ' ' '

.~ . . . .

, g s '< $1 gj I

l'j

=

ll $ Ij.

i si 'a lil ld

~~-

ij i

, 1 l li i ,

! I - J

-:_. u

)a, V_ i ;t. s

'n Ijdj

, l \ .

. n,

.,5 '

l -[!ll

(), (( i ,,A'

+ -

m p. ..>

q

s Iz 1 , ..

,\----',,ll i s

~

'  : g g\, \f!

t

' -- A

'; i6  ;; 1

. t blllilllll!b!

g eee-lT' d .A., A.A_

! .Q

I I

l

'l .lliilIl Ill i tili I

' 3 ,i

- i  ;

I r .

, ,x Ns.'N.

N' -

I lI .

g 8 g

i t,

I 1

'A i ,

1

[ -

r

!n1r s I,pt,a n,3..

li,j;I,i . . ;;; g.:,. ,,,,

IIl.l,illi.

.s. : s .%,.

lI M t1$4w a dwawww I

4 e

- . (,

.. l I

I i i

. t i I

1 1 .

g... . . . . . .

I@.aEd__A_40T,l . . . . .

't i

g.

's i 2 ./

,lg 8 , yl j

il - i s -

f l' i

3

i ,

1 v- 97@ --

l p ,

a ., !,

ixg. m.m i L [ a'.?

'~~ ~

': 'yJ .C.. f ' n.$; ',

' ~ -

, . , .. # )

1,

" i '

UE cg,.a.W in 3

{ l ,, L, , ,

  • g g  ;

s 8

$ g a

f.

t0 *h

) .

l l 11i i

1 i

ll 11I '

p 4 I

ilI gg@t644

g. ... .=-

I

. Th / /

iod/

,\

. .- BT r\ 1 , ,

j/., ,.. er I

./t t

"{ R i ,

  • g 0 gg I  !

l

Ilili,lllflI t a 2jg. ...... ___ .... . . .

n...... . . .

f j

r.

_ e ,

yI S .: e l I

/ ,,

I I ,

. ./

lh 4  ;

z a 4

a

i

  • M h emes . o. ., , , , , , ----:-......... . . .

g I.. .

i

- Il p 4 ,.,s ~

l A LT . ca . :. 27 .e l n

,., .p\\,".

\ 4

,j l

\

.e g

xs= .

\x ,

&\, . \x, 9

. j

' '\ ' , ' ,

I,)

i 4 '

h i.j*g,;g l'

r g,f .

\ .

Q E

11 %

fr ;4

.I ,

I -

G .L (J ,.

O .t . . .

,e w

_._. . . . . . . ____ 2_ . . . ._ :_-

.. n - .. .. ... .. ..

M

t. i, i .

g lI.

I li li l

l :.J.e. .i : A. 6

. ..~

l e . . - .

  • es* * * = = =
  • i l 5  ;

' 7 i

~

.i a i4s i' sh(  !, b-

$ $e bl

\\

, a .

8

% 5 a "

l [ (b

~

l 8 - F

!; 5* #

I-i w

!vil! v, i

Jr j E 5

=

Y Ty 9 -

i I .I v' Sg f

! F ],;

  • 5}

E yon h

  • 4 ,

,iu,f4

<p'

,1' i

5 E -

_E .I  %

h $

t*

lr'oh@-

i* .

- - _ - - - - - - i .)' .) ,

e ,

  • * * *
  • es I

i d8I i; l; ,; l ll 1:::nell,! $ e +.1 i

f]( t # .

, f '-

,3 I

6(

k% ()t(.

]

'I x>

i i

s 1

k -

N f't .

l' ',

-)

e -- M e gm, ,

O

~

I.

Ili ii lIi i

I il l!li I 1

h f

- e

! h h -

. t a

A

,,,. l

< 1 v, (a i

" I fl e e a g

/  :

C';...

  • 5-

.. * ., 2[' .t I I

.i*}

.<g' 5j. **

~ * *

,, . d,?. *

".jj,* ' .

l l

8 1

l

. Il I....4 EE i

I.

N I .: aass.

n (' - -

m , .- ~ 2a A._ -.--

99m g g, O

I

,il li.I

'll lIl 1l li l

..b 1.c

~~.*-

F .Ph....

_.. eJg.
P . - - - - .

l

, $g.t.

l l T

i -

U E

5 I i $

1 s*

a k

f$ I !I,j.i

$fj.

e i \ 1l.i,,!!

H i

geeri-i I -

%{.g 1

1

\ 5 1

s -

' . _ _ = . . _ _ - - . _ , _ . _ . . _ _ _ _

I I I'gl I

I , ghl I. .f.. n, l,lu l

,,I 8

, " I, s, flI Is

- l O0=....,, r 174 ..

I

~ s,r'*&

a ,

I h  ;,

N i

' ki;..

[

E --

+

a , a -3 k_ E E

t t

E E h.

t d

a. ,

' ac4ueu. , " M~~ ., .V

[h,. #

2 _

g ,

f g cIp o

n

b. :,

i

- 7

~ ~ ' '

s y'

, 4I I r I

s

(

f[

f f

$1 f

1

~ ~

/} _%o g

i g f I t

,J = =u ,,-

e 6 r -

e i t f

( -

qs -

t 5

1 pr

.s

-/ .

h. '

h~ dhg 1, -

i :2: G G

y/ $

e -  :;.3

, t

  • y '

,o;r"l f 6 t c .,. ,-

l y .

i 5

.I s 'S.

." ) .

c-- -- .-.

~-

.~~~~~ .:.'_T 7 L- -

I-

I

~

I E lI1 l .

Il 3

g11 Ii 1 l ll-1 Ill!l111i!ili s - ~

1998: M::4

'1@5 11 j

.d. A d.

s-

\/

i

< 7 ..

I~

l

,Mx

\

9i 0

e

! i

- \ l t

\ -l 3

's / E

  • g g

.nymn \' .

5 M_ .$. k hQs .. ~' ' {tk .

1.. .

I T .- II -

I ,

i p\ > l 1M

.n ,8

(

o . -- .