ML20113E083

From kanterella
Jump to navigation Jump to search
Forwards Response to Four Questions Re Saturation Margin Monitor Loop Error Analysis,Per NRC 840928 Request.Analysis Demonstrates Max Loop Error in Positive Direction of 14.95 F.Instrument Loop Diagrams Also Encl
ML20113E083
Person / Time
Site: Crane Constellation icon.png
Issue date: 01/16/1985
From: Hukill H
GENERAL PUBLIC UTILITIES CORP.
To: Stolz J
Office of Nuclear Reactor Regulation
References
5211-85-2001, NUDOCS 8501230306
Download: ML20113E083 (46)


Text

Nuclear

= 0;ft'rer""

Route 441 South Middletown, Pennsylvania 17057 0191 717 944 7621 TELEX 84 2386 Writer's Direct Dial Number:

Januark162001 1985 5211-8 Office of Nuclear Reactor Regulation Attn:

J. F. Stolz, Chief Operating Reactor Branch No. 4 Division of Licensing U.S. Nuclear Regulatory Commission Washington, DC 20555

Dear Mr Stolz:

Three Mile Island Nuclear Station Unit 1 (TMI-1)

Operating License No. DPR-50 Docket No. 50-289 Error Analysis - Subcooling Margin Indication By letter dated September 28, 1984, NRC requested additional information with respect to the Saturation Margin Monitor Loop Error Analysis for TMI-1. Subsequently, the licensee and NRC staff met on October 30, 1984 to clarify the NRC concerns. By Letter 5211-84-2291 dated November 30, 1984, GPU Nuclear Corporation responded to seven of the eleven NRC questions.

Responses to the remaining four NRC questions are enclosed (Attachment 1), as well as a revised Saturation Margin Monitor Loop Error Analysis (Attachment 2). As requested by Dr. F. P. Kadambi of your staff by telephone, a set of instrument loop diagrams also is enclosed (Attachment 3).

References to Abnormal Transient Procedures (ATPs) have been included with this response as a supplement to the discussions of October 30, 1984.

The operator maintains awareness of reactor coolant system status in terms of margin to saturation under all required conditions. The revised Saturation Margin Monitor Loop Error Analysis demonstrates a maximum loop error in the positive direction of 14.95*F, which results in less than 25 F combined instrumentation and system configuration error. The Saturation Margin Monitor is used only when the reactor coolant pumps are operating.

gigogob P

GPU Nuclear Corporation is a subsidiary of the General Public Utilities Corporation

, i

2-With the pumps off, the combined error associated with the alternate use of the incore thermocouples and RCS pressure indication, in conjunction with steam tables, to determine margin to saturation is also less than 25 F, as discussed in response to Question 5.

Sincerely, H. D.

ukill Director, TMI-1 HDH:SK:spb cc: J.-Van Vliet Enclosures 0

. t s

i

'i r

4

-w,

.. +E,

=-v,-*

.-w-,...~,r y.,-,

.v

-wr>--w-3

N 4

ATTACHMENT 1 9

GPUN RESPONSE TO NRC QUESTIONS ON TMI-1 SATURATION MARGIN MONITOR LOOP ERROR ANALYSIS t-

L (l

{-

i h

t V.

i

^

a s

c s-t

[,'

r t

h,;

{ s.

1

-1 j -

_V i

'T S,

  • r, m,_.

Question 2 Sheet 2 of the loop error analysis states that the more conservative temperature effects of a harsh environment were considered and the radiation effects were ignored in the calculations. This is shown in the calculations on Sheet 13. We request that the basis for ignoring the radiation induced errors be provided.

Response

SBLOCA Accident Error As discussed in our meeting of October 30, 1984, we judged that the temperature error could not be significant at the time the integrated dose

)

induces significant error. As requested at that meeting, we have performed l

a detailed analysis which includes both temperature and radiation effects.

This evaluation considers the error above and below RCS pressures of 200 psig and relaxes some conservatisms associated with the negative systematic error due to containment pressure. The revised loop error analysis considering both temperature and radiation is provided in Attachment 2 and shows that the subcooling margin error is acceptable over its full range of use.

The Rosemount pressure transmitter error due to containment pressure an-1 temperature plus radiation has been evaluated. SBLOCA evaluations performed in conjunction with equipment environmental qualification considered break sizes in the range from 0.01 ft2 to 0.5 ft. The most severe credible 2

small break is that of the largest Reacter Coolant System branch line with a cross-sectional area of less than 0.5 ft2 The s core flood line which has a break area of 0.44 ft{eeved 14 inch diameter is the largest such line. This break results in a reactor building peak pressure of slightly below 30 PSIG. The accumulated radiation dqse was calculated based on the present failed fuel predicted for a 0.44 ftZ break (i.e. no fuel failures beyond those assumed in the FSAR for worst case normal operation is predicted to occur by licensing basis SBLOCA analyses). A methodology similar to that of Appendix D to NUREG 0588 was then used to evaluate the equipment radiation exposure due to the small break fuel failures. The 40 year integrated dose was added to the 180 day post accident dose to obtain the total dose. The total dose calculated for equipment in the same area as the Rosemount transmitters is 4 x 104 Rads.

The Rosemount qualification report contains data for normal lifetime exposures from 1.2 x 104 to 3.75 x 104 Rads. The report also contains dcta for large break LOCA exposures of 2 x 106 to 5 x 107 Rads.

Although the SBLOCA radiation dose would be in the order of 4 x 104 Rads, we have evaluated the dose according to DOR Guidelines at 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br />.

By this time the Decay Heat System would be in operation. The calculated maximum dose at 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> is 4 x 106 Rads.

Toestablishaconservativeupperboundusingavailagletestdata,the transmitter error was evaluated.for a dose of 4 x 10 Rads. This is a hundred times greater than the dose calculated for the 0.44 Ft2 SBLOCA.

2-1

1 In the qualification testing of the Rosemount 1153D series transmitters, the transmitters were subjected to LOCA/HELB conditions. The test chamber was ramped from 120*F/0 PSIG to 350*F/85 PSIG in about one minute, and chemical spray was initiated at t=16 minutes. The qualification report contains data for the five test transmitters at 320 F, 240*F and 180 F.

GPUN has used this data in a linear regressional analysis (least squares fit) to develop an equation for error due to containment temporature. With five test transmitters, and two coefficients in the fitted equation, the degrees of freedom are (5-2) = 3.

At 95% confidence '.imits, the percentage point of the t-distribution with 3 degrees of freidom is 3.182. Therefore, the standard deviation of the fitted equation was multiplied by 3.182 to obtain the two-sigma (95% confidence) error.

1 This two-sigma temperature error equation was used with the containment conditions predicted by CONTEMPT to calculate the temperature error as a function of time. Since the transmitter measures gauge pressure, the " low side" is open to containment.

Thus, during the SBLOCA, the transmitter output will have a systematic negative error equal to containment pressure.

l This error was combined with the temperature induced error during the SBLOCA. The spectrum of SBLOCA's was evaluated using CONTEMPT-LT/28 to i

detennine the worst combination of temperature and radiation induced errors in the transmitter. The results of this evaluation were used to pick a limiting combination of pressure and temperature. The largest positive two-sigma error occurs when the pressure comes back down to O PSIG and the l

containment temperature is about 200*F.

Since radiation dose is increasing with time, the worst case combination temperature, pressure and radiation errors is bounded by con conditgonsof0PSIG,212*Fandanintegrateddoseof4x10gainment Rads. The 4 x 10 Rad data from the qualification report was used in a linear j

regression analysis to detennine the two-sigma error due to radiation, using the same methods by GPUN discussed above for temperature.

Thisworstcasecombinederrorduetocontainmengtemperatureandpressure plus radiation dose at 212*F, O PSIG, and 4 x 10 Rads was then added to l

the errors in the remainder of the loop to determine the two-sigma error during a SBLOCA.

Summing cf Errors The basic principles of combining errors were discussed in our earlier j

submittal (Letter 5211-84-2291 dated November 30, 1984, Response to Question 3). We have carefully evaluated each type of error involved in i

this analysis and concluded that the only systematic errors are the negative systematic error in the characterizer and the negative systematic transmitter error due to containment pressure. All other errors are

-independent random errors which can be combined by taking the square root of l

the sum of the squares.

i-2-2 l

Th2 accident induced errors dua to temperature and radiation are statistically random. The five test transmitters exhibited errors which differed in both magnitude and sign. Each of these sources of error is also independent of the other. The two-sigma accident error values are based on the premise that given a SBLOCA, this is the two-sigma error value. Thus, any dependence based on the probability of a SBLOCA does not exist since the probability has been taken as 100%.

The same logic applies to the temperature induced errors in the instruments outside containment. These are also independent random errors. They are based on the premise that given an elevated ambient temperature, this is the two-sigma error value. Thus, any dependence based on the probability of elevated temperature does not exist since the probability has been taken as 100%.

Similar logic applies to the combining of other errors such as calibration errors and drift. These are independent random errors, i.e., fixing the value of one would have no effect on the probability distribution of the other.

For example, the accuracy of a pressure gauge has no effect on the probability of human error in reading it, or upon the probability of drift.

2-3

Question 5 The loop error analysis has not included an error allowance associated with the RTD's process measurement accuracy (i.e. the difference between the temperature of the fluid at the 'ofnt of measurement as compared with the mixed mean fluid temperature).

For similar temperature measurement instrument loops, this error has been calculated to be 1.0 percent span at full loop flow conditions. This error would be nonconservative in the calculated saturation margin if the measured temperature is lower than the average temperature. We request that you provide the basis for neglecting this factor in the loop error methodology.

Response

As discussed during the GPUN/NRC meeting of October 30, 1984, the concern with a difference between the temperature of the fluid at the point of measurement as compared with the mixed mean fluid temperature arises in consideration of natural circulation conditions, i.e. when the reactor coolant pumps are off. During the meeting, NRC also requested information regarding actions to be taken to restore the reactor coolant system to single phase natural circulation.

During natural circulation flow, the operator does not use the saturation margin monitor to determine subcooling margin. Under those conditions, the incore thermocouples are used to provide temperature information for a manual calculation using the average of the five highest operable thermocouples. This results in a conservative measurement of mixed mean fluid temperature, and no additional error allowance is required.

The procedural means for the operator to assess margin to saturation following entry into Abnormal Transient Procedures and the required actions to restore natural circulation are provided for information in Appendix A.

Determination of Margin to Saturation without the Saturation Margin Monitor Margin to saturation may be determined by manual computation based upon RC temperature and pressure indications available in the control room, and steam tables.

1.

The computer provides an updated display of RC temperature based upon the average of the five highest incore thermocouple readings in F.

2.

Control room indicator PI 949A provides an updated display of RC wide range pressure in PSIG.

5-1

3.

Margin to saturation is manually calculated by converting the RC pressure to its saturation temperature by the steam table, and finding the difference between this value and the value of the RC temperature.

The error associated with the instrumentation required to perform the manual determination has been calculated to be less than 25F :

1.

Error under non-harsh containment environment conditions (e.g. for steam generator tube leak) is + 12.8 F at an RC pressure of 100 psig, and decreases for higher RC pressures.

2.

Error under harsh containment environmental conditions following the SBLOCA reaches its worst values when the containment pressure returns to atmospherie and the containment temperature stabilizes at 212 F assuming a containmen theD0RGuidelineof4x10gradiationlevelat10hoursequalto Rads.

In the RC pressure region of concern under harsh environmental conditions the errors are:

RC PRESSURE TWO-SIGMA ERROR IN MANUAL CALCULATION (PSIG)

F 140

+19.64

-6.76 200

+15.94

-5.50 240

+14.38

-4.94 300

+12.69

-4.31 400

+11.12

-3.80 The positive error only is of concern, since the negative error denotes that the indicated margin is less than the true value. As indicated in response to Question 11, HPI Throttling is not a concern below 175 psig. Thus, subcooling margin of 25 F is maintained in the pressure range of interest.*

  • The system configuration error (+ 1.3 F) and an operator error in reading ASME steam tables of up to 0.5 F should be added to the values indicated in this table.

5-2

2 Apptndix A ATP PROCEDURAL GUIDANCE A.

PROCEDURAL MEANS TO ASSESS MARGIN TO SATURATION FOLLOWING ENTRY INTO ABNORMAL TRANSIENT PROCEDURES Entry into the Abnormal Transient Procedures (ATP's) occurs anytime either:

1) the control rod drive mechanisms have received an automatic or manual trip signal; or 2) the primary to secondary leak rate exceeds 1 gpm. From this point onward, the HPI throttling criteria of ATP 1210-10 apply.

1.

Margin to Saturation Determination / Limit Rule l

The_ minimum 1argin to saturation is 25 F* as determined by the saturation margin meter and/or the average of the five highest operable incore thermocouples and RCS narrow or wide pressure indication. The operator is required to use the most conservative operable indication of saturation margin, and the saturation margin monitor is not used unless the reactor coolant pumps are operabag.

The error associated with the use of the incore thermocouples and RCS pressure indication is addressed in response to Question 5.

The subcooling margin will be calculated by the operator by the use of these instruments in conjunction with steam tables.

'The following actions'related to subcooling margin (defined in ATP 1210-10) apply any time that the ATP entry point conditions have been met:

2.

High Pressure Injection (HPI) Initiation Criteria The operr. tor initiates two (2) HPI pumps, full flow in ES alignment,

.when:

a.

1600 psig ESAS has auto initiated, or b.

Subcooling margin is less than 25F*, or c.

Neither OTSG is available as a. heat sink.

3.

High Pressure Injection (HPI) Th$ottling Criteria The operator throttles HPI only if one or more of the following criteria are mei::

HPImustbethrbttledtopreventpumprunout(550gpm/ pump).

a.

(The operator does not throttle to less than 500.gpm unless one of the following criteria (b, c, or d) is met.)

_ b.. HPI must be throttled to prevent violation of the applicable brittle fracture / thermal shock curve limitations'.

c.

HPI.may be throttled if LPI flow is greater than 1000 gpm in each line and stable for 20 minutes.

d.

HPI may be throttled if the required 25F* subcooling margin-exists and pressurizer level is established at greater than 0

-inches.

5A-1

~

Appendix A B.

ACTIONS TO RESTORE NATURAL CIRCULATION The actions taken to restore and refill the loops are describsd in ATP 1210-4 " Loss of Primary to Secondary Heat Transfer." During this. entire

-process the operator is required to follow the HPI and subcooling rules..

These rules are a higher priority action than the recovery of primary to' i

secondary heet transfer.

ATP 1210-4 treats the. loss of primary to secondary heat transfer including n

the loss of single phase natural circulation.

In summary, ATP 1210-4:

a.

Initiates feed and bleed cooling if the secondary side is not available a's a heat sink..(Once feed and bleed is established, the i

operator refers to procedure ATP 1210-9, "HPI Cooling--Recovery from Solid Operations.")

b.

If the secondary side is available as a heat sink,'the operator l

attempts to establish a primary to secondary temperature difference

-by reducing the OTSG pressure.

c. -The operator also tries_to refill the system by " bumping" reactor i

coolant pumps to collapse steam voids.

If reactor coolant pumps are not available.for bumping, the procedure directs the operator to ATP 1210-9 "HPI Cooling - Recovery from Solid Operations." He would remain in that procedure until the subcooling margin is restored.

1.

Reactor Coolant System (RCS) Natural Circulation Verification The_ ATP's are specific about what constitutes indication of natural circulation flow. ATP 1210-10 provides procedural guidance regarding verification of natural circulation (indication of natural F

circulation may not stabilize for 15 to 30 minutes):

F a.

RCS delta T increases to approximately 30*F-to 50*F (dependent on decay heat) and stabilizes, and Th is less than 600*F.

l b.

Incore thermocouple' temperatures stabilize, and are tracking

.T -

h f

c.

Cold -leg temperatures approach saturation temperature for

'~

secondary' side pressure (normally within 5 minutes).

d.

Heat removal from OTSG's is ver,1fied, through steam flow indication and feed flow indication.

2.

Primary to Seconda'ry Heat Transfer Recognition Primary to secondary heat transfer is defined by the following:

a.

OTSG level and pressure are being controlled b.

RCS.Tc controlled by 0TSG pressure c.

Forced or verified natural RCS circulation.

4 1

l SA-2 t

w i '

L

Ouestion 7 Note 5 on Sheet 7 of the loop error analysis states that the pressure transmitter error values are not applicable for calibration error calculations. As shown on Sheets 21, 22, and 23, the allowable calibration error is calculated by subtracting the error associated with pressure transmitter from.the total loop error for the non-accident condition.

It is the staff's concern that this may not be an appropriate method for considering calibration error.

Typically, calibration error is considered in addition to the error specified by the manufacturer for accuracy, stability and temperature effects. Calibration error may be from a number of sources including the inaccuracy of the calibration equipment and the ability of the technician to precisely read the calibration equipment or set an instrument, or procedural guidelines on how precisely to set an instrument. Where digital calibration equipment or precision type gauges are utilized, neglecting the human factor in reading calibration instruments may be appropriate.

Calibration errors act in combination with component drift (stability error) and tend to work together as a single error component in their effects on the input / output relationship of a transmitter. When summing these errors statistically they should be added into one unit, and total error may then be used in a statisticai summation.

If, for example, the square root of the sum of the squares method is used, the following would be an appropriate method to consider the variables associated with calibration and stability:

[(transmitter stability error + human factor calibration considerations +

calibration equipment inaccuracy + error band allowed by procedure )2 +

(transmitter accuracy)2 + (transmitter temperature effects)2 + (x)2 +

(y)2 + (z)2]1/2.

In this equation x, y, and z represent the independent error contributions to the total loop error associated with other components in the loop. Accordingly, we recomend that the instrument loop error be recalculated utilizing the methods described above or other appropriate methods to treat the errors associated with calibration accuracy.

Response

Error values of the test instrumentation required for calibration and surveillance testing of the Tsat instrument loop have been included in the revised Tsat instrument loop error calculation. As discussed in the response to Question 2, the sources of error were examined and found to be independent random errors. The test instrument accuracies are altiplied by the applicable loop gains and span changes and are summed statistically, for both non accident and SBLOCA accident conditfons.

The contribution of test instrument accuracy in the ranges of interest were a maximum of i 1.6*F for 200-400 psig, and a minimum of i 0.40*F for RC pressure between 1900-2500 psig.

The contribution of drift (stability) for the Rosemount pressure transmitter has been included in the error analysis.

For the Foxboro instruments, the accuracy term inc!udes contribution due to drift.

Except for one analog pressure gauge with negligible readability error, digital equipment is used; therefore, neglecting the human factors contribution is appropriate.

Treatment of the error band allowed by procedure is discussed in part 3 of the error analysis (Attachment 2).

7-1

___________:~

Question 11 The error in the subcooling margin monitor loop increases with decreasing reactor system pressure. Based on operating procedures and LOCA analyses, we request that you identify the lowest reactor system pressure that the high pressure injection flow would be throttled.

Response

With RCPs running, the subcooling margin monitor would not be required below 200 psig in the RCS.

Figure 1A of ATP 1210-10 illustrates that when RCPs are operated, the required subcooling margin will be greater than 25F*.

For example, at 200 psig, the emergency NPSH curve requires a subcooling margin of more than 185F.

Since the corresponding RCS temperature is 190'F, subcooling margin is assured. With RCPs off, HPI throttling might be required to 175 psig in the RCS.

In both cases, the instrument error is small enough to assure adequate subcooling margin. The instrument errors are presented in and Question 5, respectively.

If RCPs are not running, HPI might be throttled using the manually calculated subcooling margin when RCS pressure is below 200 psig. With RC pumps off, the operator could be controlling HPI at the minimum subcooling margin in one of the following reactor coolant conditions:

a.

The break is too small to relieve the liquid volume injected by HPI, i.e. the RCS is water solid. The operator would have to throttle HPI to reduce RCS pressure or hold pressure and reduce temperature so that the DHR system could be initiated.

Decay heat will be removed through the OTSG heat sink until DHR is initiated.

b.

The RCS reaches the LPI pressure, but refills and repressurizes above the shutoff head of the LPI pumps. Again, this requires the RCS to be filled water solid. HPI would be throttled to control RCS pressure, while the RCS temperature is decreased by 0TSG heat removal.

Plant emergency procedures (ATP 1210-6 and ATP 1210-9) address operation of the plant in conditions "a" and "b".

The decay heat system is operated with one loop in DHR alignment and one loop in LPI alignment. EFW must be maintained on until DHR flow is established at 1000 gpm per leg. Thus the plant is maintained in a state where decay heat is removed by either the DHR system or the OTSG's and inventory control is by the LPI and HPI systems. The procedure also allows the operator tc initiate DHR flow if system design conditions are met.

In addition, HPI flow woulc be throttled to control pressurizer level. The maximum pressure at which the DHR system can be established is 350 psig. The LPI system supplies 1,000 gpm at 175 psig and exceeds the HPI flow capability below 190 psig.

In breaks in this range the LPI system will be operating at or near its shutoff head of approximately 190 psig. Throttling HPI based on subcooling margin 1:; not critical to core cooling. The RCS is maintained water solid and RCS pressure is fixed by the volumetric flow of the LPI rystem. Any reduction of HPI flow results in an increase in the LPI flow. Thus, with LPI in operation, the RCS pressure is fixed at 180 to 190 psig, and throttling HPI flow can have no effect on RCS pressure or subcooling margin.

11-1

c.

The break is too small to remove decay heat at an RCS pressure below 200 psi. This would cause RCS pressure to hold up above the-pressure at which LPI flow is established (about 190 psi). HPI could not be throttled until the minimum subcooling margin is regained and pressurizer level returned on scale. Therefore, even if the calculated cubcooling margin is 25'F or greater, HPI flow would only be throttled to control pressurizer level.

Decay heat removal is provided by the steam generators and/or the decay heat removal system.

Thus, there are some plant conditions for which HPI throttling would be performed below 200 psig in the RCS. However, none of these conditions require throttling of HPI based on SCM for an RCS pressure less than 175 psig.

11-2

.m L

u a

m

. m.

m m.-*

.u

-m.

-m.

a

w ATTACHMENT 2 REVISED SATURATION MARGIN MONITOR LOOP ERROR ANALYSIS f

8

.-e

.A O

_----___-ux._s_-__-_,_._

6 4 -'

-s a

s.+++e44e J

w s

ATTACHMENT 3 4

7 f

I h

INSTRUMENT LOOP DIAGRAMS--

TEW ERATURE SATURATION MARGIN MONITORING AND ALARM CAPABILITY 4

h 1

i W

.s i

i l

g

\\

-rn,,

,,r-,,,--

y-,... a

...,,,..,n a_.

w

~

-q

~

if SkO)Q ({ 'e NUCIOSF DOCUMENT NO.

C-1101-665-5350-005 TITLE TMI-l SATURATION MARGIN MONITOR LOOP ERROR ANALYSIS REV

SUMMARY

OF CHANGE APPROVAL DATE 1

All sheets of the original issue were revised and additional sheets were added to this revision to include the g-(

g gain of the characterizer and the error I

j of the indicator and calibration b

/j instrument loops.

,mm 2

Added Part 4 calculations to include 44 [t4.

9.kW Steam Line Break errors.

Added Part 5 calculations tio include Systematic Loop errors.

,g 2::panded the Oojective, Assumptions and Discussions para. graphs to include

~g

( O SLB and Systematic errors.

3 Renumbered pages.

--_My 3

Changed Module 9 temperature effect error Tg from A T=10d *F to ATw50 *F & rev ised calculations to include new Tg value.

I" 2-N Delete Part 4 calculation and include SLB error as part of Part 1 calcula-tions.

4 References-Added reference 7 I

Discussion-included radiation for h

accident conditions (d T4 4< ' /1 4 t'l Conclusions-revised Table 1 values Sheets 5 through 8

- Deleted power variation errors

- Added Calibration Instrument errors

- Added RTD errors S'

N

- Changed Transmitter accident Temperature and radiation error values

- Added Transmitter stability as accident error Part 1 calculations revised Part 2 calculations revised A

Part 3 calculations revised f

I h-N'N Appendix-deleted

(/

gare' y#

M R

A0000038 782

DOCUMENT NO.

Mf C-1101-665-5350-005 TITLE TMI-l Saturation Margin Monitor Loop Error Analysis REV

SUMMARY

OF CHANGE APPROVAL DATE l' //~I 5

Corrected Calculation Error-Summary of A*

Results Page 15 and 19.

Corrected Table 1 Values and added

  • on Page 4.

Revised Description in Part 3 and Deleted Calculation Pages 21 & 22.

Deleted Pages 23 through 33.

Renumbered all sheets for new total of

)))f M i,,., c s

T U

I O

i i

I.

'mu 12 33

Rev.

5 Nt:12:i cAtc. no..C.1101.@.5.53.50-005 SHEET NO..1....... OF....$

~

DATE...U.l. /8.4.

...I.U.... 5.AJ,URAT,I ON,MA.RGI,, MO,N I, O,R..

I N

T l

7 SUBJECT....

COW BY/DATE.

N LOOP ERROR ANALYSIS

. M./.1/#/If cHK'D, BY/DATE 1

OBJECTIVE Determine the expected errors for the alarm, indicator, and calibration instrument loops during normal operations and also for small break LOCA, and steam line break conditions. This calculation is based on the instrument loop defined by the Reference 1 modification and includes the verification coments (Reference 2) to the original issue.

REFERENCES 1.

GPUN B/A 123072 - Modification of TSAT to replace non-lE temperature inputs with IE temp. inputs.

2.

GPUN verification of Calculation C-1101-665-5350-005 by J. P. Moore dated 7/10/84.

3.

USNRC Memo - Peter S. Kapotow 8/23/82 page A6 NUREG-0737 analytical solutions to two problems pertinent to Items II.F.1.4, 5, 6, a statistical treatment of deadband and hysteresis errors.

4.

Control valve handbook, Fisher Controls, Properties of Saturated Steam.

5.

GPUN memo EP&I/84/1525-047M, Rosemount 1153 accuracy.

6.

GPUN Calculation C-1101-665-5300-006, "TMI-l Saturation Margin Monitor Error Analysis - Rosemount Pressure Transmitter".

7.

GPUN Calculation C-1101-665-5300-008, "TMI Saturation Margin Monitor Error Analysis - Temperature and Radiation.d ASSUMPTIONS 1.

Unless othenvise stated, Vendor published accuracy data includes the combined effects of linearity, hystercsis, deadband and repeatability as stated in Standard ISA-551.1, 1959.

2.

Unless otherwise stated Vendor published accuracy data represents 3 Sigma (3a) values, and can be converted to 2o values by multiplying by 2/3 as stated in Ref.erence 3.

3.

Accident conditions are:

4 SBLOCA 30 PSIG (no RB spray), 100% RH, 4x10 R, 245 F.

Steam line break 38 psig, 390*F.

(245 F at pressure transmitter.)

4.

Signal conditioning electronics and display devices are located within controlled environments within the control building.

AOOO OO16 s a.s o 0918f

Rev.

5 N rleer CALC. NO..h.d.h.66.5.53.50-005

~

SHEET NO....... OF...1$

SUBJECT.,....1M1...SAIURAIIDR. MARGIN.MONI.TO.R.,

DATE.....12/

COMP BY/DATE...

M.

............. l.00,P, ER,RO,R A,NA,LY S I S......

CHK*D. BY/DATE

./M'/ V 8

DISCUSSION The saturation margin monitor measures RC temperature and pressure. The pressure signal is used to electronically compute the fluid saturation temperature. This computed saturation temperature is compared to the actual measured temperature and a margin to saturation is determined and displayed. An alarm is provided. There are two channels. The RTD's and RC pressure transmitters are inside containment and exposed to the SBLOCA/SLB environment. The system is used under normal, SBLOCA/SLB, and 0TSG tube rupture conditions only.

The Rosemount RC pressure transmitter latest test results (1153 series B/0)isbasedonLOCAconditjRAD.ons with a maximum temperature of 420' and radiation exposure of 5 x 10 This is too conservative compared 4

with SBLOCA conditions of 245*F and 4 x 10 R.

Therefore, original test data was reviewed to calculate the standard deviation of temperature effect error and radiation effect error for the required accident environmental conditions (Reference 7).

R4 In addition to the loop uncertainty errors that are random in nature, there exists systematic errors that are fixed quantities under certain conditions.

The systematic errors consist of:

a)

Characterizer Curve Error.

b)

Containment Pressure Error

's Characterizer curve error is a function of reactor coolant pressure conversion to saturation temperature. For each of eight segments of RC pressure, the error varies from slightly positive at the segment end values to negative errors in between. For this application, this would be the maximum negative error (conversion to a saturation temperature value that is lower than the actual saturation valu'e). Therefore, the maximum negative error for each RC pressure segment is presented as a systematic error and the negative random error should be added to it where applicable.

Containment pressure error is a fune. tion of ambient pressure in the containment building where the low side of the RC pressure transmitter.

vents. During SBLOCA and steam line break accident conditions when the' 1

containment pressure is elevated the RC pressure transmitter will provide a pressure signal that will be decreased by an amount equal to the increase of containment pressure over atmospheric. The increase in containment pressure during SBLOCA is about 30 psig, and for steam line' break is a maximum of 38 psig. The RC pressure is converted to its equivalent saturation temperature and the erroneous decreased pressure transmitter signal would result in a lower value of saturation temperature than actually exists for the true RC pressure.

AOOO 0018 a.a o

Rev.

5 Nuclear CALC. NO. 0-U01.665.5350-005 SHEET NO... 3..... OF,.

.. O DATE..

. 2[,N k SUBJECT.

.~

COMP. BY/DATE..

.I.$'ON LOOP ERROR ANALYSIS cHK'D. BY/DATE Since the containment pressure error is systematic and the contain.nent temperature error random, the two errors are added algebraically.

It was calculated that the combined containment temperature and pressure errors reach a maximum value when the pressure excurision is completed (at T =

12000 seconds) and P returns to atmospheric and T at about 200 F.

Thus, the worst case combined error during a SBLOCA occurs under the following conditions:

Containment Temperature = 200*F M

Containment Pressure = 0 psig Containment Radiation = 4x104R TID RC Pressure = 400 psig To be conservative, the accident condition errors were calculated under the following conditions:

Containment Temp = 212*F Containment Pressure = 0 psig Containment Radiation = 4x100R TIO RC Pressure = 400 psig CONCLUSIONS The calculated errors are the difference between the indicated margin value and the true margin value. A negative error is conservative and denotes that the indicated value is less than the true value. When the error is algebraically subtracted from the indicated value it gives the true value. For example, if the indicated margin and error is 50'F

(-10+15'F), the true margin is between 60'F and 35'F.

1 AOOO Oo16 It ce

CALC. NO..'.

.h.'.h. I.

SHEET NO...b... OF..b....

SUBJECT.....

D ATE.......\\ ~.U.~ 3.h........

COMP. BY/DATE..

...Df.I.h

....... CHK'O. BY/D ATE............

Table 1 presents the total alarm loop error for the eight ranges of RC pressure. The negative error for each range is calculated by statistically combining the independent random errors and then algebraically adding the maximum negative characterizer error. The positive error is calculated in the same manner except that the maximum positive characterizer error is zero.

RC PRESSURE TOTAL ALARM LOOP UNCERTAINTY (psig)

Normal SBLOCA

( F)

(*F) i 0-100*

-46.61 + 22.21

-N/A 100-200*'

-12.73 + 10.03

-7.28 + 20.48 200-400

-11.12 + 7.32

-5.79 + 14.95 g

400-600

- 7.85 + 6.25

-4.42 + 12.74 600-900

- 7.32 + 5.82

-4.96 + 11.10 900-1300

- 6.65 + 5.56

-4.84 + 10.24 1300-1900

- 6.71 + 5.41

-4.80 + 9.72 1900-2500

- 6.17 + 5.37

-4.88 + 10.06 i

TABLE 1 TOTAL ALARM LOOP ERROR The Saturation Margin Monitor will not be used unless the RCP's are on.

85 This precludes use in these ranges of RC Pressure.

AOOO 001e e a.a o e

Nucfocr cAtc.so.d. W..4A7. 4D..e5 h'S SHEET NO...k... OF -.

..l.W..*.%3............

f SUBJECT..........

DATE.

COMP. BY/DATE h..........

cmx.o. Bv,oAre x.......

IDsTQtM6nT Loop %nceA4 (CME OF Tco 1.copt. )

\\7

+

+

2 etn ce t Au TLT --- R/r 1%0*920*p 8

IS I

16 i

i

' i. _ f,

_ _f_ TI.

9

//

/.2.

-loo

  • to 4co*V i

PT

-- 1/6 - - -- 94) - 5 MARcto to 5A7 5 0d* ko 468.o'F g,g D\\MTAL-AbER. Rot cc*naatsdriod WGdD ioo9 'WG V W30/683D -1B-C-C-20-0-0 The stee fr-P99hiab u Ar bs hoe.uvsc.y t 0.5*T to.253*F di daugurk Veoege%sssynoes boa (u.nho Ws0 4

t o.02.%%%

i c.ois'hmoios MotoLE # 2 Ev.soeo K/chee.Ta. u ut M.V 1.

T>P.co SP6d.F'oR.($ff) A?k tcAT'oO GEtot.

A, AeopoeV

t. o,51 I c.3 3 3 */, > ac 3

% AsccThe 4 c. 5 '/.

<.t 0 ILC %

%Tc i EFFECT OF SPAA (f*8. 4T-25*G )

T<g.xT - 4.* -

3090 WDCLCS 4%f~ DICD %O AQ C@ DOME,NT @@'Vf dD A

w vcweam se o aw wm.eress to e s r. kamo E.99at.V At.ut, a DeRu,*D Tot. AT= t 2.5*T BY rMios W iW F of TkC VcNDeqts,1(%ws FoR. Ate A34 4

a l

.s AOOO 0016 s a-so

,. - _,, - -.., - - -,. ~.. -

_.p-

.m

,_y_

_.,.-n-.,.,w,

,c~,, -

Nuclear CALC. NO. J.!.Ik!N.h.h.~.h..@.Nb 5 SHEET NO... b.... OF..,N...

j SUBJECT,,....

DATE...

f COMP. BY/DATE.,

.I..~.h."d

. JP.1'if cHK'D. BY/DATE Motouf 9

'Postuoom Tkss 7teusume.e.

ti53GV *i T'ed cos.?T %9 9T %'S 3

Noo bue.cf CocoTsous

%$r)

W Ag= heaev t o.9.s L soo o t o.M "4 sea.w Sy naiuTv t o.s.5 '/. o m.

! o.1 % sp Tg: TeseE(fte.T

! o.'l5& ort.ro.55p t o.%7X:ew ME l per so*V AT a

t. l0 %spu f psr i o,oG7% f / psi k4 Co. bra \\Iom

\\

0:

/

9 (t/ctse kr Gaad kcc\\DEcT bcD\\TiooS 4

SE9 sTessurv t O.'n7, m 1 0.0.% s990

\\ 6 % $ u p E.o w c.

SCE ?WS \\1 To \\3 (FoL T > 150'O hg Att WTI oo 5CL~ 9f(=E.S \\3 To 13 g

(ws merRTn) l Uk l$ 099f.E D$f L.4NtT OF TRNtt4TTES. (*N %N SP 4 *lo" $PAQ ( Q AOOO 0016 e 2.s o i

N3 clear

  • k@.i.M

@.W5 CALC.NO SHEET NO..7..,.. O F. a.b.

DATE.

..L.7I9.~.Y. k..

SUBJECT....

COMP. BY/DATE.

CHK'D. BY/DATE Mocot6 ti Foyeeceo Ils b r-119 OM % 91me,f Pd l

3(

A9eumT. o O A ig k.eu p :q

t. o.5 %

t o.333 : ?<

Cu 6uo m *. Aa.wuT Aree.

t o. W s<-

'4

'Tu(9ER So't) i O.5C//f t

O. l(.7 Nec L e

Foysoto Ss o Au conRAc. rFRizee 0.AP-sGc. (4 % W%3e')

M\\ O'OOLE t2 3<r m :.te n.o o rf9ffa Ag6;ng t o.5 %

t.o.333To

a. c

% (pes, so O r o. 5 To I o.1677 wet R4 (rne um.TN77p,TV T78 0)

}Accouc ts rov.eeno sowem A A P

  • soM

)T P OW e 411 oC lhg5 lecopreV t D. 5 'lo t o.'335 Af T'is (per 51')

t 0. 5 *h t o.lL7 7 Mc 8 R4 f

M o t o L 6 l(o ws sfop DtairAttuescAT69.

3<-

e9euenTico bw Mcunecy t.. o 5 1

.o 33 Ar AOOO 0016 e a.s0

Nuicr Cate. No.?..l.l.0),4.4.5..5$.0.p b 5 SHEET NO...b.... OF h. 9..kh..

SUBJECT..

DATE......I..~.\\.0 3,5,,

1 COMP. 8Y/DATE.

CHK'D. BY/DATE Monats 17 Fov.cogo MM 1AP+ M-AR. (94 b.TI97? T.t97if)

S a-n cue 4r,o p As7 beng t I.o L r o. GC,'T 7, bd woTe 2 M

Tn Qer 50 C t O. 5 '[.

t O. I67 note. I d.t1 dAuse*Tiod osaant brusts FME" Syco A gA

- 0.03fo UADi UC, IO.01%"?4'Abn4 61 ME1 AL-lBR ATiOO AddoR.ACd W9E O "G.ST d,MV-S AP4 CECD w9 Weeen ML-AAP-to'2 094 AOOO 0016 e a-o o

Nucle r cate.no.0 @.l.(.G E 3 g o;oos k l SHEET NO.

. 3... OF u. 2.d..

DATE.

.. 1 7'.9.~.}.k.

SUBJECT..

COMP. BY/DATE.

CHK'D. BY/DATE

$4( bdLA7iOfJ$

McDoLG l'L \\s ex cupercreQbzsR Ter Gossn. oF E/duT-srRotGur Lun t scam &Ts TriAr CGS'thes Iw* SArJoonad TcMtvennaeE 6vst? A PQES$oOG RAGAf of C- $$~oo 95\\. %TMfo/2E comooree W r

ERQoks MoDOLES 9)ll MuST SG MucrtPuc0 *BY 0 %P, 4

a u n w se. cem-LJHicH t$ 71/c stoP/ of n/6,duRV6foR SAruRAT100 TcMP 1o* FRawar PAndd utTsa wHtc2 YMG~ MGASu240 PMS.$JRL FAa.3 T2GSSoRE % UGG OYldP [##lPs )

o - 10 0 psig

'l. Q. 6

/o c - Aco c.50 Quo - 4'00

a. 3 0 4eo-cco c.2o 600 700 e). I 5 too - 1300
o. II

./30o - 1900 c.off 1900- DSoo 0 07 Ypc RAn46 :? 7736 Fw>t aw+tuJrs of nc LvP is

- too 'f 77, L/co 'f su8ctou>>0. 75 d d A te u u) % 0 L :.o P ( R 2n Q

/ S GKORcsSEO IN i%RcCA>i~ of 77JtS ??AUC<T. lla w c,

  • 2 77' E 2 0

~

Al?c Sec;yn)TS of p/t* /O=P b>ird p vr.chwr Raa%$. Yut2GkW TW ofo 57&oR 9/2 Tdc~M&xGC /U 7ft <! $G4MCA)fS PUS 7* 3LF Matriotico GY TWE RMo of 7Ws Ss?3MsnT To* Asuot Rnsx363.

itwoutir n

'PAAk;6 9Anu Phn o 1

' 8'00f 10ol500 9

25'co psi (1socxd%pfroo 9 Do [F 2500*dT/dp)/foo iI su

457, 457/5oo

/2 as Soo P I. o I6 foo f Io I')

Soo f Io o ACOO 0016 e a.e o

N circr CALC.NOC'.k!Oh.".5.:5.350:c05 %*l SHEET NO. J 0... OF.M..N DATE.

....l. ~.l?.~.Y. S..

SUBJECT.

COMP. BY/DATE CHK'D. BY/DATE

~PkSSO(EG-SRC Tiup ~Raunoosa.A -scoPC(f) per R-ference.4.

331f.07-212

/,1 (,

o-too paq p_1 -

AP too - o too-paopsig f _

3 z7 s7-338'.07 o. S' O Aco-/oo ADO -$05@lG f -

4W 37 -3 5'l 27 -

b,3 D AP 405-too 405-daCp s t ~b g.

AS9 7C-449.33.

o.10 AP sor-405-60S-9olpsty

{p: 534.59-487.75.

O, IC A

905-CoS 905-133Cpsig g.

58 9..T5 4.5jt o,jj 4P IS35 - 40C

~

bt -

5 0 LSW'(82 35 13 3C - 1885 psty^ A P O, o V ig(gg-73 35'

~

ISB(- 2A%5 psty E. -

f&S.13 - 6 2 8.S8

~ #*

7 A9 avec-isces-AOOO 0016 s -se

N rlear c,tc,yo( ij o(7,gs,-33g,y;og yef,s SHEET NO..!.I.

.OF..k.k..

SUBJECT.

DATE...l. M h.4.9.

comp. BY/DATE...

11-4-If k 'A'I'-Pb cHx.D. BY/DATE Pmt mo M.stcnM pcMtv \\ coq qt.nott

%%Q*g(df).ss)+(M j %)'+ Cys $ T)'+

3

+ (yy,y c3 )'+ (M,1 $ c )*+ 4' +(El cJ' 4

n

+(yg ^ %) +($f L)'+ N) + (Tivf+ $ T [

y' 2

  • (Of A,2)'t (Ass) +%)'+(@! A YL($ $R/ ['@r.D 2

Loop Epod{(5 po.2[+ (sp o.a7)'+ (5po.4c?) +

a p

.e (sp,3.cc?)'+ (spp.t)'+ (.o2)'qi.o.ci3f g

.e (s p, < o.n7)'+ Co.sixo.n.9)',(0.a7)"+ (o.ic7)T (t.c,o.S7j' p (o.91x o.tu)*+(o.333)'+ (0.6c7) +(l.6x0.333)'e(5 Ip%33)*

%4={1.og+o.cu(yf+sas(^d,)'

Y.01 Yf j h. 0004 b.0009

+ o.miy,f t-e.on + o.o2y + o.c e + o.om 0 p ~~,/ / se o *r \\

t 4- 0,2% + O,\\\\\\ + 0 4 4 5 + 0 L&4 4-2.171lg)

Q soo J y

L ii7 g)s> I.lil(fp) +. d l p + 1 177 h' p)"+ Q V3

/g ( PI) t

~/

- dk r

h(> G NE: 1 7

p t.wp wa = t [ti.73(pp) + 1.otri[ ( s F) f go g,g 4

J L-AOOO 0016 82-40

Nrclear Cate. no.6.g-g9Upg Reu-5 sscEr no...I.h.... OF.$.k...

SUBJECT.

DATE...l.49.Y.i.N..

COMP. BY/DATE...f. 4

.44 M.

-64 8

CHK'D. BY/DATE 4.[.... ' 6 L F F PARTt-mo AcettenT N.AEM 1.oc9 E8EoG. - e.owricoco 1-%

Wutog Au,eM t.oop be.ce..:((too9 E9*4). Ai.

+

' i {(toop intun)'4313.42)

Eo F2.

Re itasa2 "7@

Lwp EF-@%

~

t(*T )

% W abt G5tG)

(*7)

I (*T )

~ 0-ioo

1. M lb A

! u. u i i00-200 c.5 o 10 02.

to.o3 100. Aoo 03D

7. S 6 7.32 4

4oo-Goo

0. A0 C. 2.3
4. 'A 5

(,co - Too 0.i 5 5.5 o 5.1ra 900- 13co 011 5.53 s.54 tBoo-neo 0.o'd 5.3 V 5.0 19c0 - 800 0 07 5.34 5.37 L

C.

i EQ M EQ \\-4 AOOO 0016 iz.s o

Nuclear

!\\P

~ H. 9. b W CALC.NO.

SHEET NO. )3.... OF..U...

SUBJECT...

DATE...I.h O.. D........

comp. BY/DATE.

.lV*'M cHK'D. BY/DATE..

?!'"':'

h R.7.$

At Atki tooP GRROR-SBlodh AcerDa07 61>0irices

1. T%G nsesr Lcca? 6.9Vc9. c~og. beatDEuf CooD@ons CAleoLA1102)s IAldc006 %i h50Es TEADSMtTTER. STAtturer' t:RQok (5d,

6/4uGRAT.oo ERoca(dg) Aco a comesoeb yp%p. %9. Testw9Aryur 4

noch,nr.' o. %c creaca-areuser t.coe vocoucs osc taf o

BANS E9JikR 9ALOG5 USCD %2 GOO PccioE CT' douMoos suas TMY AR6 M to %i., <b9fAOMEAT hu btW.*. Aut Age. tu A doci?cu.ED EdOl9CM+4 CUT I

1. %%Lua%CT 9.s T 11000 SCcocOS Vesut. A SEtoa A

?

j dooToioMEnf b450E Aob Ti:MbGRAf46. EWRstocs Aed donecLam Q TIu Ts4G]STABittts AT T = IQoco (P:ceste,T M'l*F[

l

%eice. Tvc Te9 sh5eva, w_oe.siec Twe. eacteuntoc s

+

Asocatme.D i. asth "t'eMPERAfau A96'Rnuto4, Ano PD65 sons f.DeoEs Al2G SWrtMAftc IA) MC AlfdAnWG(doousceJ4nt/c) DtPedfloA).

% pe.saene som er row coi.rewso reuva wivu 4

%%oRgr cgeon.s ls AiwnYs Lsss %d 77tf deeon bouutArsO AT 17tctEA>O of #E G'xoupstod (OA T6M(M!2CfuRC GRl80ll hf VIQ*f AnbT+.fGSLkt Af bfWf'UIC-(REF.7)

AOOO 0016 e2 e0

cA c.no.h.\\.\\9.:%.S.'.5.3.5Q $05 kl t I

sn est no.1.+...... or..g+.....

s o,c,.........

o,7,,,,gg7,.y,4,,,,,,,,,,,

COMP. BY/DATE...N cun o. BYioATe N,ah.f,l%-la

,ss.ns-y 68u>cA pceiOFDTGVVDR -eaunA!.rb A

3.

'1kE DRGotoEttUC of 4 A ID'R "To O is osEP in PLACE of 4110 R

'II+A 7 ocevRs woca 774i dopTAo)MGDr 72MhagA70/2E //4S

-(T74 be Lt16O 19UO IQPiGSJRE iS 6rMcSh/c.hc-... SOJA 7ms) 4 AouD %Mh-QWuRE LTRRo(t (spfgg7$ AR5 fogaryyQ AAJO 10AM A 195Shmoi* VALud of Most P&bSABW GM.R AAtD 96~1YulAfion [AAAJEbM')[GM -

4.

7 Tis 1;rne s1ein) Etaeet a>as duaxnriro 3Y:

a) dome 4)u.in crarisneAay Wic Povm cebe of Mc Institopcor stRjw wirs 1%r P4vwH smut. es igic

+

$C#f 0/A)dO hM)CCSAYUO!n'~ AOlpbd $R20R., /WD

$NWAls Asuj Ar>nts>6 W35 RA*>rx.H Rfferr$ of a) ainae

$O W[ WO$f P&OdC*f$td [ASA VALUCE CA M/C br'tOWQ bircitArol26-SD A71bu SARQko AOOO 0016 t a-a o

leer

  • I.I.h.k. 4.5.U.5o cos Teu.5 CALC. NO.

SHEET NO..l.h..

. OF..h..

SUBJECT...

DATE.

.l k. @ N.....

COMP. BY/DATE..

,.14-%N

. CHK'D. RY/DATE

.a-l SGLodA bomt twece-ecorsotun Accesor Coottrious - 6 Bloc A A r f6 P. I k o o s d3 0 D 5 Pc_ Theop4 '.

tSo 954 ro \\too est4 doowev4pT Te sp. *

'D S* V

e. opt. wage.M 'RA omroc:

blD% TtD daniounui ?teMoe.E' A woS Egl-u t ((FApO94 Leop Egeog.)*r (e,m3 uogvff% %e LgSceL59 TTAL 5TRt04 EEko2 i

+

4 t

L Ca \\-H t!Q^t-\\0 EQ\\-7 5 o n M A u 't 5F R:.sArs k

9dPren P N o u.

dous r ten u r.t.e.

% fet s R 4 Cato0-(9%\\t. )

"=? M2-

? [; e_'

\\

(t 'T )

(t *T)

(+ *i )

(* T )

EQ t-H sq \\.so Eq s-7 SQ t-\\\\

~

l i

l

\\50 7.t9 I AW,

(. 39

+ l7. 76 - 7.ov l

/06-ioo

~1. M it %

6.60 4 0.4K - 7.18 juo - Too 4.31 B.11 4.5%

+ I4.9 5

- 5.77 40- coo

'i73 6.39 A.a tli N

- 4 44 R5

- f.co ot n 5.53 5.t1 3,o7

+ 11.1 o

- 4.9 (.

is i3co S.39 5.1'l 1.70

& 10.14

4. B+ ~

tw-noo 5.32 4.94 A.4 6 i d.7a

- 4.to i

/90 25oo 5.1'1 5 19 2.M

+ to. of,

- 4. 6B AOOO 0016 e2 eo

N : lear cate. no.C..l.l.41-4.5-53.50,aos k. s SHEET NO..\\[9... O F..h....

SUBJECT...

oggg,,3 %,.,}],.,9 Q,,_,,,

csx.o.,y,o,1.,./f,4y,k-94 COMP. BY/DATE.

. 17.-

,,, t. 2,.,#_

/ ben Lcce eme.- feemT semee -6ctromo twwweiDS

($)ss)' +

(g $ d )\\[ h Ca)+ Od + (No [+

3 (UF N Td+@ L[+(Tis)i(T,7)'[g T,)' +

~

@ d + %,f 4,& (*

n J q w p f # :; p g

=t(sipo.2)'+

(s p,oc77+ (5 fp.2)*+ (.a)'+ (i o.ce)',

a a s (s $p o.ic?)'+ (o.9i to.is7f- (o.ic7)'+ (o,w77+ (i, c S o.is7)'+

t (o.9i x o.m)'+-(o.su)'e (ou7f* (i.o 0.333f+ (5 lp,amj 74-(Q' A

I.ok)*+

p)*e oco4 + occ4 1

mt

.u 2.( p f +

p g

+ o.ut7(gf, o.oss to.om c.os s + o.c7,

+o.on Ma\\1 + o.445+o.2su 2172(dip)*f ($g )

T Maece- ( a Ls.w[p + 1.os3~ E(5)

F ee t-s j

,ooo ooi.

n...

c,tc go,g,g,,g,,{.@.g5 N.s NacIncr SHEET NO..d.... OF..h....

DATE..lM D.*.d SUBJECT..

COMP. BY/DATE..

$I

  • d it-t t-@

CHK'D. BY/DATE.

'"* W. p 53Lddh AdCADENT ES20R-SNW.B Loep E9gst = 1 5.58(fp)+1013 (5)

EQ1-3

  • I'3
  1. 553

@ Id btotA % Eppen. = he GRec.) +(k

=

sq s.3 60MMARY sF GtuG S

&\\Ap Lo.p Eaect PNten 6o Sece es/zum)

BC'hes, c1 13 c1 v 3 eges.3 EQi-3 to - Af o-Im I. M 15,7'1 15.7S too-Doo 0.50

1. S 'T 7.59 po-Aco 0.30 6 30

(,. 3 2.

400-too 0.10 5.71 5'l3 Goo-ho 0.lf 5.50 5.53 Mo-\\300

%JI 5.3 G 5,3%

1300 - \\*,cc C.o 7 5.A9 5.32 1 tec-1D3

c. 07 5,1'l 5.30 t

g

}' (3

'~

)69la j to1-9

\\

LSi.?'"

9esv%

4o00 ooa n...

NucI2 r cAtc. no.d.t.l.43.4.).9.?.5.Q,.005 7e.V.5 SHEET NO...I.O.... OF..h...

DATE.,..@.T.I.7~.T.Y.

SU BJ ECT..........

COMP. BY/DATE.. h

.. M

..l.b

.., cHK'D. BY/DATE

^ #4 48-N

" " ^ "

sBLccA.Accim6T aece, somouco bainen Tmececons thoveu t 2(wacmea (f9ce 947,1) l) Mostbeattt< tisp EReott.(douTAioWut<3 A)A*T.)

-fene Estor.)tso = {(-o.0507)-(o.3%7)(T 5*)' (W)[I,*)

L EQ l-5 a) Most PPeooc heintmo smit (4> d Rao TIb) bo ERut)t.so : {(oAus') & (t.1oso)(*fe 5P"") (I[)h) 64I

3) Most PPeete couTso.'hsssm ggrog : o (hamore op4)
4) Most hat 4 hsw2o Ev.gog.)tw(Y!,Ip"$, )+(50YeUa)

EQ1-7 m

,au)<,q(0.ne aoso)+6.uss-o.=)(W")](W)(#)

(cQ1-Mt(fQs6)

=[0.u:9 Co.v.n)C@")'j(@)($)

om 3xcmi 7

."\\.(o.rms) *(o.%u)(Y)~ (DY)($e)

[(it.iN)4 (is.u)(@)] ($e)
5) Le ema. r ac-b Ar ce(ero,ugeur e wv) wp teece)ww i {(c.s 254)+6.n!Q($')] Ili') hts BQ \\-t'

= 1 {( t'.74) + (55 35 )(Yg)[$p)

6) VAc+roo Evaca t oc oca.n.~ (4io'1R Tn) t4 -i

'Rm. Eeyco.)2.: to. I. ((0.3 828'.) + (o.5's 5F) (@")[#@)(die).

-i{(i.957)+6r,.t":3)('Qj")}OIp)

7) Co%oso Etutca)x oeg. = i ((he Enon.2<oed&(MEeeet.Leesv)

GQ l-10

%) Totne.bwnreog.: (6m2 pstEpece.)t3q t (6mmuso Eeena)q Aooocom u...

Nu:Incr cAtc. no.0..00.l../;6 s..gs.o. oo s h. 5 SHEET No..d.... or..M.....

SUBJECT.

DATE...lM.I.l d.i........

COMP. BY/DATE.

.i.S *S~i'f CHK'D. BY/DATE //..

'. Il 2 rVF 50 TAM ET OF d>MbO7.0 b9 t hnflo ERt3t Res 6

y,.w o us w

wp c,e,o o Tuss e

TE~

mab vm won wu#,w GM) et/nd ey (t n (t5) t r)

I egi-7 EU v cet-i q g tao

\\so

0. 5 -

. o',

c.u 3.s3 52.0 t o.%

/w 2eo a.3

.o7 G. Lo 10 0E 5.37 0A2 200- %

o.1

.tko 4.5B 7.37

3. I.5
1. M. '

R5 4

  • Gzo o.'s

,M 4.tG 5.4 o 2.69 4.39 80-ico c.i) 3.07

{

5.34

2. 3?.
5. ( 2, 900 13co 03

. M.

1.70 4 TV

2. 00 5.27 k

1300- 19eo e,c ')

,7G 1.40

4. f. l I,75 4.94 L

~

latoo- 0 Soo o.ot

1. o

- 1 59 4.94 l.34 5.19 l

AOOO 0016 e 2.s o

c,tc. no g )1,g,),.g,}y5y,Q,.pph,5 N:: clear SHEET NO. 40.... O F.. h.h....,

~

DATE....lf.".GT. N SU BJ ECT......................

COMP. BY/DA i ?..

. h..lk"

  • b CHK'D. BY/DATE nziff Teat Ewecs. \\.009 Eaece.- coo 9m.enT Tc Lcce Egitce-6.c;oATious Vc,tt%C. p,mm w% rwt G.c iomecaos.L cce Aes rac pas Ew.e.9t tne seece w_ms r*on. uccotc7 (FeBoteo ALARH) APE 6.:eT12pcTE.D Pot WC 6ReoE.

rwas va. u ur u.brauwa. uera)ac Acceo. sus n a u eaetc. e e. s o w b m or w o % oe ct cs a n n o o s,

cn

~

(amAta uxecuo$ (~-(r,D -(AJ+(A d/4 (Q rq 2.\\ 3 n.e =

i

[( nLe)* +([- (.u.17 - (, u.7.)' 4. (.osf['4- (s)/~f 4

1 1

1.

its.

= (p tc) + L.o s v

. e s +.eo9

. ((pte)'- (s.mfl'^

'8d fRusut6 hw Am

' Pro %g Iaoe Aros (psse,)

La>9 (Rtct Luo9 t.tRoR.

t (*1) 9% )

E4J-2 E_Q %-\\_..

o-We

" $.11 2.T. dl4 }

i 100 -S.oo (o.o3 9.'O.

t 1*-Ace

7. $ ?.

4 Af, 4

4eo-f.oo

4. 2.5 5.'1.'2.

l t.w 900 s.cf 2.

i A. (,9 I

i 300 *GCC

3. $ 6 j

4,37 i

nw-n.

s.o l

4.is I

L

\\3o0.%560 5.37 h

4,11 l

AOOOC014 t a-s e

Nuclear Cricul:ti::n Sh;ct Subject Calc. No Rev No Sheet No

(*\\\\b\\ *(abh* bb bD

  • OO5 Nof 0 Or9nator t

Reviewed f Date DP-T 3 STIOC k dALnMANoQ EF9c9 bs3ALYSIS TCs*T iC6TR0Mk.DT 'REQotRED Tc*- 30WM.AucE. f'ssfi4 Acb CAuftgAraon of -res Sof0tATaoc MARole MoVtfolk, doijdtsy of :

d, g D6dAcc h$ssfAuf Boy.

b\\

b it.ft E C T I A I T C S.

Gg a ctsc csst doecc d1 DG tTAL \\)ot.fMIfait.

t Tu6 / coTEt9.0 00 of TAC t"6,tf tot-rRoMGOTS To %E TdTAL, 59 Sff M 9 Acto 4.4*Aso#- 15 luct.cos O to EC l-\\ 9o0. cou ecc.goCut*

At,AnJA Loo?E.9 eor; IO 6Cp l-3 For $BLOd.A Acc.it)trof Pt.AEM Loop 6pgeltj AGO \\o EQ 2-1 Tot. 0o0 PcmbECT bucAfog l.cc? EM9..

WC 9b9.Vosc cf soRV6 tt.tAuc.C 'I~e.s-r't ue, \\s To MEStFV dooficoco 9 AuoW c# Tui ERQdit AcAtrise Asawoeos, Sosweitute i

P Poc c t0RG To tc.;tA s.se 6 a u -th encTop C 'B f. S c t* W o pic u gU, -[*a A M TM AP9%oVTb ATd d.Au20 L4'f4.D MCM ICC L Q G OI' F92cR T'ogt. % i7 AOOOOOl6 5 84

Nualocr cat.c.no.0.*.l.19.\\.:@.5.~.5A0.0..oo5 sHEc7 so..?-A. or..M.....

SU BJ E CT.......................

............................ DATE....D.I.3.*.d..........

coup. BY/DATE...

CHK'D. BY/DATE.

l T M.T 5 dat0TP':JEC PP_s 59X'i ESt@

'TsG.1iW 9%.550P.G ~GM39.WG 15 UX%Tf D latTMt3 comAmEcf mb us A509Es it@stG. Twos tF TT E CoIMfhtO MSPT iS COE.it. AW.CS.'PQES509.6 TPE 'Rd.

TEE 550VE '5WuAL esu tG TEcPJ Ase.D M Ac NuouT TQO A To cooTniow.01" T%!Ess094~, Tms RcuxEs n4E tuncAT6b S)Bd:rs.iC2 t#CCID. 7\\S @?.OE.(d.?E) \\S SfsTEMATsc. AuO \\po?.sT CAS615 :

A 9 S B \\.Cx*, = 3 0 9 5 \\ Q 1

a 9 st.B - se esto (A9 m bee toe oT = -\\ t o + 29 sic,) *

CPE =(69)(A%p) 90 hcs'Roua6 d[d.p c?E (t.oe n) cPC(sra)

T T

o-ico ese

1. M 4

/ - 37.3 *T l-47,0 *i-l 100-500

0. Ll%

) - Ill.9

  • Q

(- I6.8 's )

200- 4'00 D. 30

)

  • l.0 ' %

\\ - II. 4 ~f 1100- boo 0.10y C-T.I*z\\

\\ - 7 7 'il sco 3.00

o. In i ZT,'r,lT' lf-f. y ' F i

' 4J *N 900-/Soo

0. //A

[ - 3.V 1.1 t-130]- 190 6.D VS

\\ -2. 6 ' * \\

\\ -3 2. 'V \\

I900 D500 D.GLA

\\-1.9 *?

\\ -2.'l "V l

th n \\ s A s ucRT Tc G t4 TRA u u c cT w svg i u *T H

  • Fi R S T 840 5(CD*JD 5 j

AF'Td R *iWE Act in t oT, Au D w s e ct.0 t3Eb l A *Ti E 4 AI.40LAT'o4 5 6 5 4

TB E uW9.ST C.A*.E CcNbm on.

Mp

'Qg $dt."'AMT ER4cR Vc.2. Mf 64 Tid 4 fiJSf,cp4 g$ ids \\GusheattT puo 45 mot tucta)t>~.b t u cat coJTiOO.

l A000 0010 is ee A

n.._____-

Nu21 oar I5wevest c.iauintien aace, Coas he

_*# N%W9 c.1101/.45-5350 0o5 i Aev No.

I snese mE~

. 'y,.$$5

~ W )) D l=

'9fA%t:1 'S - S o Tsc o $ b

    • % u-r

.f,..

,%.t'ftho,o@.$dt No? Bstot Tc5fe.D.

.Dy sousucAuct Sesctys SVoo Sne. tow GTurce. ta94 ate. %au WG T t alt Auc(, Tas mststouso@TroO o.

40% ?.E ADlutfeO A5 dios5LY 45 QoMtSt6 T of-7-ERO GR9AE ADIW ALL 4ASC5 j

tono nt enteoi.Atto cou Ace 20sOf Eon

. on, fot pc 1061 Esc 3fefico %og

~TF=TED, Yif LAtM$f #'fMSG %umALt'43 uou401W5 730'F At too-4cogsg u micu>o eo Wct \\1 Go. tit 1.oo? uaablue "Pussoas 10 ape g

s t

fr.p. k AiAlan.

be 'EC uot4T CA$t! dochTho (4oo psa io wr ko-4co uo6) %E CA.cus. Arco F.su. tcop t.9. teca t t 7.$a Tr cuts CoS mat. aubtTEcs Aub R.%*Y uodet $catbcuf 6utwEus. Bos Tes F ou too p 5,o nv ei u.a uc.C,

TM. mettWGoT sost gC Abah7Eb tF GC 'Drusaro4 CW

ccbd "1.30'f AT i

400 ptiso. Tes LumuCS AMout MR.Q.c c.3%o 69k41do of sco.vn u.auct To A%JM *T*g Af tu(C $.5'T-L Mif wobb utKSCbYCAT. DJD Ocud.R Acc.ibc97 COSft>tf5 AC.

I 8

A0000016 8 44

UCIOCr SusascY...

cAtc. nob *)NI.(.k."W.H T

..... oA Ts... x..c SHEET NO. e.M... OF COMP BY/DATE..$.

P A9,5 4 CHK'O. BY/DATE.

SNSTE14 ATLd. \\.CD9 EERCRS c

-.%RAcTcgi'zCR d_oR96 EReen _(ccc )

'T'E EsGne.t cpRerettzerc @ctot c is) uT Liut AE LNG 56dHEkWS To 699Gox tM AT iu2.ss ter Cog.uc. WtT9'u F PcH Lt46 ScGMEpT T*E A9D TAE SANRAT.00 EAT 0tu OO ?It 'DE.%ATURC VAR'ds 29CM m

96vM eTEb

}

~(~6EtE'lAt06.~IWS @ hA 6 STEAt4

~

j

~ Des.c.rsoc etcc9r voe. go.T500 \\S buOf V3.nlT+T WCBTcJ6 tmcSeptcTte Nssoe_6 V Atues uwas tw TSC R.R.JC D GATCPATioM TEM 9.15 LESSTM W n.t. BC McPM. ~T'v M \\ ubC ATE D %

E fc0At-

0 To SA70R ra'ou

\\.e>o? 'F:N N AMcoMT~ EC0AL To T66 E @GTQ4MGMT dousERVKssm TwC MAX t MOM MEG M FE7.6UCt:'.FcR.

'PC'PEESSODE.9AOGrE t5 tMdLODED AS

\\

5 VSf5M A T'c E.RSOR..

CtC =

STarHTesui')$.c0G - SMV. 3WGGM o - I c o psc.'

cet e 180 63 - 256.24 =,I-24,y V e as esir,

337. BB - 33 4.4

=

U-c.c6, 3 6L 40 - 5f.o.10. :

o.5 5 e iseesir 3 100- Roo psto:

i 3 t1,19 - 38 B.

-1.r;*i-ditsguyI 4

W - Am WG

o. t* t. e 3.oo 99 i

ce_6 - 4 \\ B. 77 - 4 \\5 5

44.B.R 448

+ 3. 6 '; e-MI M l 4CO-6cC EW o.1 v o. 4o0 este.

cc E $ AGB.37 -4LL.76 A B B.BI - 486 8

- I!5 4 e 49.t.95tc.,

1 O

  • T G Coo euG

(

=

4-l.CC-9 :P;A cce.

51).55-510.o 6

\\

i y -..... -

S33. t1 - 514 4

),5* F G 740-98 4 '

I 9C0. 3c 3 '. -

o.s v e 9ecesic

,? ? - S 57.92.- 5 5/..s

- Q'T G

~

512.tE-57%2.

"

  • P

3,73

  • 5 413oo eSe

!!W-600 M cc.c - 403.F4-(42 2(

6 *a.1. G,5 430 4 e I -1,2 a ;. e #5 7o 9w,~

A o.B* C G

\\% ~ W r vs.

tim e* c cec : 6 54.2 6-453.94 l

M b. M - W. V. t

- 0. T *E G 0 N T o. 't.

  • G 6 WOO Ps'c t

aooo oots t..

~ _

' ATTACNNENT 3 i

f

/

j i. t i

e J

i INSTRUMENT LOOP DIAGRAMS--

TEMPERATURE SATURATION MARGIN 4

M6NITORING AND ALARM CAPA8ILITY -

d'

(

i i

1 i

4 t

f i

j O

i

. _.. _,,,,. _ - -....___..__ _.___.._ __,__.._ __ -._,,,...-.-.,_.-~

.__ -., _.....~,.,

~

g

  • low senJts-660- 4 2 -083 I

FIE L D INSTRUMENT CABINET (01) PATCH PANEL ROOM RMT SHT ON PflL(B)

CONTROL-ROOM PATCH PANEL ROOM PANEL E-

.h E/E O-ravD:

_P 1_

_ _ _- 8 0 V DC, _

0

(

949A l

0 4-)

o-2500 9.58 t/E l gjg 4

  • t o met oc PY o-wv oc pr c RLq h Fce LM 43 4*

149 941 I,,.________________,

nit BY OTHERS pg,y Le Py TY I

- + To COMeuTER NOTESt

(

978 E

-P T-40G 0.ros DC 4496 p-i f-e i

~\\978/

LPOWER SUPPLY f-

._. _ S U g l

FOR THIS LOOP IS g'

I 9 7, 7g y, g a g,,

S CHANNEs.

FROM VITAL BUS Ty 1

75 75 i

In 1780 9 76A 973 8

  • B' iGREEN 8 e

e -l>

a c.FCH REF Ptt0 SEE

~

g b--

DWG C -302 -6 50 a

-- + To Anuvu.

E/E t

a 0-10 V DC E TY e

- - + 1'& CC'AIPU TEK FROM 18-6 G0-42 Offe 9'00 l

PTdel

~

(Ty-9CO / )

SAr. MAC&iN *tous TJi' CHANNi.,d w_______

J.KI/E2 l ** ( AI.;/.= l 3 e Le - l

'lI*lt--

l5 j

.J,.

lse..*

~

.t

i. e.

,, e vi:co nx ocvn e c:imu-ou ru - - r. s c : sr w: u ~ ' -

n:tsse.: nir.r - awa ec~n ras a: u. ~.. s - f r-as s r,r.u....,..,.-

l wn..,.v.:.os -

! r- * * '-

I.rerte l J u4,. i IP12eucealIJJ* I rd.: -- ~ l 5 t * '

3

^u aevisto nx sciv-occidrare -sooro pr-s4 sa. ri-s re NUCLEAR SAFETY RELATED Ty-9 73 C, TY-s7dO, TY-7 78 C TS *78A, T.*- Ud 2 / T/- 'G d S EOutP9ENT CL ASSIFICATIOra IE SEISMIC CLASSIFIC ATIOff SI REvlSIOtJS t,n m eYEFER r~a o 2.n&Au _RorL1' W acs REV 2GfsE '

CESCRIPTIJN m,,,, ig,er _. igg c 4.a r P. 12 8

ig. Mein L 7('d DieeM A u IN O R Aw r4 l< r$ECKED lOSGN. t.OR l Ef4GINEER lfAAf1AGER l DATE o,,,,c p_

g,,t d yj s g a n g '-*

  • gT FD UIb M
. r :: o ME PMvtoVe RLvenoM

,Ti -, ;. i :n.t. Dr. N3. DC O s ti

. ~',.3 i-i. - ~~~r T-m T ', ~ ~... ; l -... -.~~

owc 8s018 -660-4 2 - 08 3 nrv.

- : 5..

r hc wm -

scatt:NONE

[4 urn,eso. p g e.,

i e

  • ~

Y

[oma. noJ8-660 014

}

b FIELD INSTRUMENT CABINET (AO E.S.'CAalNE T ROOM CONTROL ROOM

~

, _ --_-----------------_---._\\

- ^PA NEL g

Ex0m os-GSo-e t-osin.- _ -

_1 (TY-9 San)

I e

l I

e 0=mlnl PT A-tb en A DC.

l

'f 63

~q O

g MA SY OTHERS i.

g f(s) y u

'l NOTES:

PY e

PY T Y_

TS TS 4

__ __,,, p ygyy, Sr,5A

~

T53~

"~

4 1770 IIIA g

CoNTAC T I

\\

s50s. A70R l

1.THIS LOOP IS h - - - - - - - - -~ --- -_M ONLY REQUIRED I

977 FOR SATURATION MARGIN MONITOR l

g l

SA T. TEMP. MAR &tM I

"d"###""# #-

q l

2. POWER SUPPLY E/E FOR THIS LOOP 15 L.,,,

T_Y

-e-coatpv7sg FROW VITAL. BUS o11t e

p ra t O4'-

  • A'(RED)

' sas: nnaam nonsron cNkWil A ISCL A TOR g70gggg pggg$gg t __ -__

DWG C-302-650 1

T. KEffR l M & AW.l* l \\%La l [.Ths\\t : l de.

/-- l **-

s e 0

ALL REvl3ED PER DCNNeCo27286-DELETED T Y *f 77C $ 'NOT pup;ggy; y gg;g,ygg Rtw5e2 nore - son:n comeuree Des'a"no" or-toa.

T,x ac,,, o z.xertsl s. rwalperwesal tsaw I.-Inu l s-s

""""*T 3

A s t-arvneo rea DcN-ocase, reei-pr rasA was tv-sas-spoto NIJCLEAR SAFETY RELATED 77-743, Ts-177A, T5-1776, TY-7 77C. Tr-7770, TY-977E / T/-97 7 EOUtPMENT CLASSIFICATION lE SEISulC CLASSIFICATION SI AEvtStONS c..w IMEFER cow o J. F%Au y gjJIServiCS GEV 'ZOr.i DESCRIPTION p y, uo,.gpagppg,,g3,gg.gT,'/r(L_

INSTRUMENT t.OOP DIMRAI4 DRAWN lCotECKED lDSGN LOR l ENGINEER lM AN AGER l OATE

,,,,,c,,,,g.pf,g;;;;d s u.,

gF SS W der

)

w 2

h

$ ;$ $,*p,'ff m ^ NO DCo7 DC Fog PRE.voostS Ittv6i%

L..

. _L~.-3 '?'l :.. ~ '-: l"'< *'!li.G " I * '"M

** "0 "i l * *'WC'- n l 4 i

t h

l sana seola -660- 42 -015 l

~N FIELD INSTRUMENT CABINET ( Al)

. Rl4T SHT ON P N L ( A )

NNI CABINET

- CONTROL ROOM k.

E.S. CABINET ROOM

, PATCH PANEL ROOM RELAY ROOM PA flEL

..sia-gjg gjg H

E.o'D. FOR tu 4Sc.

204A I?O - 620 F 44 oew sc44 es g,g_ _ g gC' INSTR. ADDED BY hl (8210-956 e

n n

(4WitE RTDj l

suscs RAwGE I

'It l

f, met couv.

ry 8210-9581-

,,a v x-I i

k M HZ W EXIST E &W INSTR.]

3 mon /TCA CHANNfl 'A' Y5 I? lE To SArupartoN MARG /N

$ OUIU V"E E

t 800 tAf IOC9*fvTIR &,QY OTHER$

Sgotggg ( U S gvF anr DwG. N9 18 -6 C O o/4 a

yOffS I, SAFETY GRADE

~

? ry 1e.evoc Ty t

,oo py 7acomrurec PT-d40 INSTRUMENTS o-sovoc l 977A sto*-920 *r a

l N '

sto*- vo*r SA1 LEY D*Kr.

Sur AuP 2 P![lR REF. DWN.SEE

'I' l o-sov o_g 7y

_ TI norrr 0803NO3 l

l

  • * ["# " #2 D[

5.POwE R' SUPPLY-

-b l

l ssotArons FOR THE5E LOOPS

, THIS RTO WILL BEIN ARE FROIt vlTAL t/E l 1

EXISTsNG THEMOWELL.

A. ( RE D I TE r20- 920*/

-TY o.,gcepo.nov Ty W

_M SEE B&W DWGl31964E a

958 155A

- go7g3,j 9553 5-Uvo! @,.,(sorts)

& BAILEY DWG.

4.WEING BE TWEEN 9w morrt) f,

,7,

,,o g C 6621:46R.

CASINET 'A' AND (RTD)

Ty a-sor oe EE **s E 6,FOR REF P&lD SEE RSP iS ISOLATED (rooTE.5 s,5)

  1. 5ccAr.* QE ( g g$8,4) to20*- 4to*f)

D OwG c-302-sso.

TO LIMll C % AE.E l

DUE 10 FIRE PROPAGATION.

I. KEFEK l M 6.Asedm. l ) &G l T9 te b-- l '/lJ-. 4 l **-* S

  • l 4

ALL KEvtJEp PER DCNNG CO2 7266-L'iL ETED T Y-9 7 76 /

L c-su r tC TD CMPUTEg WLIME of MiGM Nor trirA.rre nore.

G* Co rPT-839 T C P Cit *C, K : V O 7.xsreeIs.re w lpereerd W A 14 - l4.n.

writta WAS L OST.

NUCLEAR SAFETY RELATED 3

pu a i v!$EO PER DCNNA DCO14 7 FE V/ -ADDED / Sow T4C T Y= 4 H6 ggggpyggy (Lggg gg& y99 gg

$gggyt( (Lg$$ gggN9N gg s.oro p wS ret op - s co-4 2-ors wa s co r por~ Dwo.v? CD-* ?

RE VISIONS OP m 8EEFER ew o J. F AGA*4 lrj dJ]$gryicg REV ZONE OESCRIPTION ortscas ataqmM /-te S4 w 7 k N TRUMENT t QOP iAGRAM ORAWN l CHECKED lOSGN LOR l ENGINEER l MANAGER l OATE

, gg g g g LE g l R

ista As E och Noacot*1. 7084. PREvto:JS IGV 5 o'*5 g

g

,g gg

=5 i n l:. L.%u,c, b l. 6 -- lM-. - l - -- -

muont

\\ sum no n:x uu.1

'\\

- ?. ;.

s.,'.cyggy-z.3 9_

(

<p.g ypy

'. - F.4 flE i.D ' -

i.

LNSTR UME NT.CA SIN (7 PATCH PANEL ROOM ~ ;.(BIP ' R' T SHJ ON P N).E B )

.:N N I ZABIET.

M CONTROL ROMht

2. > #A

~'

s Y-F%TCH FANEL' ROOM RELAY ROOM PA NE1.#. ?s t EM M.'?,5'e-' eft:__ A _..-- s 6 - _

. w.d;;' A w;: V.5, '

w---.3-

?

c 8 ~ ~

&,-N'

%g L.c.s a

_- _ __ m,.-

rn..

rra.?.*p.._._Lc,

'L9,$

3'

*gW'I%*

f(wter tro)

~-

A*

ww hist I '" E M

  • SIGNAL CDMA

- TY (O ~

Y ta y g,. ~

-~

.>./.:4 TO SA TURA TMN $2RPG/N

'ONE AU

.h fNlN' TY JnON/TDK CHANNEL 'B '

(hYTC a

~~

DNS. N2 to - GG0- 4 2-O13

!**)

~N*P L.-

.e.~~'00" L -

5E0'-C20 1,7p con & g fbE

}

J III N g

FT.*4 07

.Q..

o-sov pc !

rr 1

'i;; "h "3;.-

TY flerac TY

+ soo My

.$kFtT ADE gro.stof'#'*'c'4$, [kNSTRUMEN I

graa rg.

a t 1Ler,iggye4 I

.i

'sur Aur

.Q l

ggggg7,$gg:

n e

EM sto*-sto*y 7y

-- s 43paq y

,gyt gy'f05 '/"

{.E-!E Ec

_ n S803?

  1. ~

5 l

a(NOTEI)

&$ 3.POWERT*WYk

)

e/E g

Isot.nToM TC 120-9%o*F Ty e-ran oc no'-420*F S.FOR REF P&lO SEE FDR T)E$E' v

- ~ --

96o 96D T

960 (sore O DWG C-302-650 ARE FRQW MA sf #

,,orr pl

's A BUS 'S TGREEN)gk (RTD) o E/E DE =*- + #

~ ~ ~ "

  1. E N###0 #>O L

7Y o-eovoc 4.THIS RTD WILL BE -

(uo* vzo'r.)

- - -~1 960 INSTALLEDIN EX:ST-sSoter

@TE ()

i ING TERMOWELL.

l SEE B&W DWGL3064E g

& BAA.EY DWG.

c

.~

l

.(662114.6R.dy,p I. KEFER l M 6,ar-sh l \\ W l T NL.ia - l*f!'-

l * * -~ M ggyy3gp pgg pcyge gog 7pgs-pfzzygg y y_ '9 7g g g

. L9-10 V DC 4

All anta*r

  • TO C@9UTit.

DVPLICATE n'DtJCIMAL g

  • ' No r RflFASED ** NorE -

pr.g4g TFAttttG KEY.0 WHICh WA S L OS T.

I.NEEEe l >. M&tal IFRafl10eSI l 4J6 lJul 1 I-I

'-2 'i NUCLEAR SAFETY RELATED 3

ALL aEvuSED !!R DCN NO DCOld 1 REVl= ADOED /SQL A ToA' T Y-17d 8 Ano cuc arn re-cco-4t-os3 was ropeoro OwG Na co-?3 EOutPMENT CL ASS. IE & NON lE SEISulC CLASS.Si& NON Si H Ev iS IO NS es.m extrER cm o J. s:A4Au

'sj gJ) $gy*gg tW REV ZONE DE SC RIPTION I

DRAWN lCHECMED lDSGN LOR) ENGINEER l MANAGE R l DAT E g u t,,,pg4gAtggjg g,g,4,,,g p4 4 INS TRUWEMI DIAGRAM.

g- ***

R C OUY LOOP TLEG,WR) TEM 6 3

,a R evign As e E st. Ocm No.DcoaC. Fo% P Rt.wo% 8% 5485804 6 MET E D C_O L W-3 siMI UNIT-H e ~.. c.

c.aes.

m -c-g o.c ois-csO.42-Dis g

r.2.s u ro i r.m.c.,.,.-Jro-- r1MM ' VW~ I.e_J i-s 9. pf scar NONE. laut e no.552060:5# 4 A